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l. SUMMARY

A. Object:

In many structural problems the vibrational
characteristics are very Ilmportant for the practical
design. The theoretical solution of these problems is too
tedious and moreover many assumptions are made that are
not always close to the truth. Examples of this type of
problems are the two dimensional and three dlmensional
bullding frames. For this type of problem and many others,
we can make an experimental ‘solution from which we can use
the experimental results for the practical design.

The object of this thesis 1s to extend the solution
of the two dimensional frame buildings to the three
dimensional case, and compare the experimental frequencies
and amplitude with the theoretical ones.

B. BSecopey

As the three dimensional model was the one in which
the authors were interested, they started in building two
similar two dimensional frames which had stiffness within
the range of the instrument. These models represent
typlcal building frames.

The models were made of steel and were three story
single bay frames. The three dimensional model was built
from these two similar bents by welding girders between them.
All the girders and the columns were prismatic and all the

Joints were welded to make them perfectly rigid. The floors
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were attached to the four corners of the building by means
of screws and were made of 3/16 inch steel plates. The
supports were made very heavy and rigid.

C. Method:

All the models were vibrated by means of a pulsating
force which was provided by permanent magnet speaker which
was properly designed for this purpose. An electromagnetic
type of a pick up was used and connected to a cathod ray
oscilloscope on which the amplitudes were recorded. For
determining the natural frequencies, the resonance of the
model with that of the loud speaker were observed. A
detailed discussion of the instruments may be found in the
thesis done by Messrs. Shih-Ying Lee and Maleo L.P.Go. at
MIT. 1943.

D. Theoretical Solution:

The frequencies and shapes of the normal modes of
vibration were computed by conventional methods assuming
that the mass of each story of the frame was concentrated
at the level of the floors. The necessary stiffness factors
were computed by the slope - deflection method assuming
that the two dimensional model and the four sides of the
three dimensional model were three story one bay planer
buillding frames with rigid Joints.

E. Discussion of Results and Conclusions:

The experimental results obtalned from the two
dimensional models agree with the theoretical results,
as far as the sense of the amplitudes are concerned. In

magnitude, however, these results were not in agreement,



probably due to the fact that the theoretical assumption

was, that the masses were concentrated at the floor level.
The avthers believe that this difference of magnitude

is due to this assumption only. As far as the frequencies are

concerned, all the experimental results were in very close

agreement with the theoretical ones. S50 it would be correct

to say that the experimental results are more reliable than

the theoretical ones, because it represents the actual con-

ditions of the model.

In comparing the experimental with the theoretical
results, for the three dimensional model, it shows that the
experimental results are closer to the theoretical, especially
in the symmetrical modes, which proves the explanation given
above, that the difference in the amplitudes is due to the
assumption that the mass of the columns are concentrated at
the floor level, and the heavier the floor, as compared to
the mass of the columns, the closer the agreement between the
experimental and theoretical results.

It is probably that another type of theoretical ass-
umption would lead to a more exact solution, dbut it would be

very complicated and tedious to caleculate.



11l. INTRODUCTION

Vibration of framed buildings 1s due to many factors,
The most important of which nowadays are the development
of heavy machlinery, which 1s Installed in framed bulldings.
The effect of earthquakes, and lately the necessity of
constructing air rald shelters and bulldings which with-
stand explosions,

For these reasons englneers are looking for practical
methods to be used in solving the vibration problems of
framed builldings.

In such studlies, the characteristics of the models of
vibration are very important.

The object of this thesls is to propose the use of
models of the framed buildings to determine thelr vibrational
characteristics.,

A steel model was bullt up to represent a three story:
framed building, which 1s properly supported. Then by using
a vibrator, the model was &s=tmg vibrated at a certain
frequency which 1s furnished by an oscillator. This
oscillator was tuned at one of the natural frequencles of
the model, and that particular mode was excited much more
than the others.

Two pick-ups were used to pick up the vibration of
the model and it was recorded on a cathod-ray oscilloscope.
When the natural mode was excited, a loop of good silze
appeared on the screen of the cathod-ray oscllloscope. A

Vertical variable reading could be taken from the movable



pick-up and constant horizontal reading for the fixed
pick-up. By taking the reading of the joints, the shape
of the mode could be attalned.

The model should be constructed in such a manner that
its natural vibration is going to be within the range of
the equipment used for the experiment. And the size of
the different members of the model has to bear a certain
ratio: to the prototype, so that the investigator can
interpret the experimental results from the model to 1ts
prototype. The construction of the supports should be in

such a manner that 1t represent the actual conditions.



III. THEORETICAL SOLUTION.
The authers wish to explain briefly the following, in
order to facilitate the understanding of the vibration
properties .

I. Vibration;

Vibration in its general sense means a motioh, which
can be either periodic i.e, a motion which‘repeata'iteelf
in all its particulars after a certain interval of time(?‘)
which is called the period of vibration, or nomperiodic.

If the displacemeht in the x direction is plotted
against the time (t) it will form a curve of considerable
complication. Fige I. show the vibration curve of the first

mode of a simply supported beam. Which is a:sine curve.

Fig. I.



2 JDegrees of freedom.

A mechanical system is said to have one degree of
freedom if its geometrical position can be expressed at
any instant by one number only. As an example, take a
position of moving piston inside a cylinder,its position
could be specified at any time by giving its distance .-
from the cylinder end. And so it has one degree of free-
dom. A weight suspended from a spring in such a manner
that it is constrained in guides to move in a vertical
direction only (up and down) is the classical single-
degree-of-freed om vibration. If it takes (n) numbers
to specify the position of a mechanical system, then that
system is sald to have (n) degrees of freedom.

A disk moving in its plane without any restraint
has three degrees of freedom. The x, and y, displaee-
ment of the center of gravity , and the angular rotati-
on about an axis passing through the center of gravity
and perpendicular to the plane of the disk.

An elastie structure such as a beam, has an inf¢atte
htiber of degrees of freed om because the definition of
its position requires one to enumerate the ordinate of
the deflection curve for every point on the beam, of
which there are an infinite number. But in some cases,
the mass of the beam may be concideredto have a neglig-

ible effect on the analysis of its motion . Under those



conditions, the beam may be considered to have a finite
numher of degrees of freedom which is determined by the

other conditions of the problem.

3. Differential equation of motion of a single-degree

of- freedom.

Consider the case of a mass (M) suspended from
a rigld ceiling®by means of a spring, as shown in Fig.
(2) the stiffness of the spring is denoted by its
(spring constant), (k). Which is the number of pounds
required to expand this spring one inch. In this problem
the friction is neglected.
Let an external force (Po)?sincut act on the mass.
The problem consists: in calculating this motion of the
mass (M) due to the applied force.
Let (x) be the distance between any instantaheous posi-
tion of the mass during its motion and the equilibrium
position . To find (x) as a function of (M) using Newton
second law of motion. f < ,.
F-Ma , where (F) is the force , / :

() is the mass,
and (a) is the acceleratio

.of that mass.

Consider all the forces on the
mass to be positive when acting

downward, and negative when acting vpward, Flig. (2)



Because the spring follows Hook's Law of proportionality
between forece and extension, then the spring force will
be (k x) in pounds because the spring has expanded (x)
inchés . This force is negative because the spring pulls
upwards while the displacement is downwards. Thus (- k x )
is the force of the spring. The force on the spring is act-
ing downwards in this case; therefore it is (+ P, sinw t)
but we have,

F=L a

M a=-k X 4 Po sinwt

o *x
and a =1;?;

ok
1\&:-2-;‘:- — -kX+P0 sinw t
and MEZ + kX = By 8nwbeereeeraeaanaasna(l)

This equation is known as the differential equation
of motion of a single-degree-of freedom system. The effect
of gravity is omitted in this equation since the displace-
ment (x) was measured from the static equilibrium position
of the body.

4, Free Vibration

In case there is not any external or impressed force,
then ( Py sinwt ) will be equal to zero.
a4+ kX2 0ueiiisesnnnssscnseasncnnsonnneeah)
This case 1is called the free vibration .
From equation (2) we have ,

ag=- kX - kex

b 3
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Hence the free vibration is that which takes place
without any external or impressed forces, and will be
either constant, or a function of time (t).

5. A Natural or Normal lode of Vibration

A normal mode is a free vibration which is not only
periodie, but also has the characteristic, that at any
instant, the displacement of each and every point on the
structure is the same proportional part of the maximum
displacement of that point during the vibration.

In the case of a beam, & natural or normal mode of
vibration could be represented by the eguations:

Bl TR Dol 1o cnnivmin o v snien i Biaub f (8
where (y) is the deflection at any point, F(t) is a per-
iodic funetion of time, and u(x) is a function of the
distance along the span.

Lquation (3) specifies that at any instant, the
shape of the displacement curve is similar to that at
any other instant.

Fig. (3) gives a clear

. - a —— ' 2
idea about the natural mode of “__kEj\“ilg

vibration. e v
bl -;-,.E'.l. \ 2
Fz_ a‘l 3 Jo, i _-'rl
As a structure vibrates Flg. (3)

in one of its natural modes, the motion repeats itself
periodically with a frequency which is called the Fatural
fregquency of that mode. Since each mode has its own

particular natural frequency, there will be (n) natural
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frequencies for a structure having (n) degrees of freedom.
From that, it is shown that a structure has a number of
normel modes of vibration equal to the number of degrees
of freedom of that structure.

6. Solution of The Differential Equation of Free Vibration.

From equation (2) we have:
M a+Xk x=0
By inspection, the solution is:
X!c‘ Sil’l't —+c2008 t/z—conioaln.'-(:’;)
J M M
where c, and c, are arbitrary constants. This eqguation can

be verified as follows:
d'x ! /"’ 4 =
==¢ g '8in T/ k = Xk weos t/k
i T 2% T
d

x o
N Mgt kx:-cl ¢ 8in % /%{\T—c’ k cos t/%_

+¢ ksint fk +4¢ kcos t/k =0
/ T 2 T

If we assume that the body is pulled down a dis-

®

tance equal to (xo) from its statical equilibrium and then
released without any initial velocity, then:
at $ =0, x=xf, -and %’%:o
If the first condition is substituted in equation (3)
then we have:
Xoa CI' 0 “'01‘ 1

and therefore caa Xo

To substitute for the second condition, different-

iate equation (3).
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dx
=@ Jjk coa.t .k _eo0.i/k .@gin.t. [k
Y, . S Ve o JI

Substituting the same condition in this equation,

D=o-JkE «l=e JjE .0
' 2 /T
q4§_=o, M'q=0

Substituting back those results in equation (3),

you have:

we have:

x=x_cos8. 1t /k
¢ I

One cycle of this vibration occurs when t Q/%;:

varies through 360° or 277 radians, if we denote the

time of one cycle by (T), as in Fig. (4), we have:

T-k :2” q‘i T:z 000000000000(4)
= fE

rig. (4)



It is customary to denote the term k by (w,)
which is called the "natural circular freggency". This
value (@,) is the angular velocity of the rotating vector
whieh represents the vibrating motion.

The reciprocal of (T), or the natural frequency(fn)

may be defined by the following equations:

fhs 103 B
;i T N T

/3



7. Theoretical Solution of the Two Dimensionsl Frames.,

— e B e e e e S e e e SRR R S G e M R S e e e S e e e e e e e S e S e e S S A e

If ah exscst sclution is to be carried out for a
frame, we should consider that the massesaare distribdbu-
ted all the way along the columns and girders, which
means that the frame will have an infinite number of
degreeg of freedom. For common types of buildings, the
mass of the floor is large compared to the mass of the
columns, so it is legitimate to assume that the masses
are concentrated at the floor level., The system is
reduced , therefore to a weightless frame acted upon by
concentrated masses, one mass at each floor. The degree
of freedom of such a frame is equal to the number of
floors.

Fig. (5a) shows such a building frame, having three

floors and , therefore,three degrees of freedom.

i @
w y,
e - l_.?
i
e
/
Lo s -:_"’_"I
!
-’—-“"“ﬁq“:—-—-——_{f
' f
!

4
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This solution presumably leads to good results as long
a8 the mass of the floor is large compared to the mass of
the columns. The motion of these masses during a normal
mode of vibration may be represented by the following
equations:i-

yn=a.-sj.n.2_1:_r_.t oooonooocoo--o-oonooooa3000009(5)
n T
in which

(yn)’is the deflection of the mass (M),
(an))is the amplitﬁde of the same massy
The characteristic shapes of the modes of the structure
depend on the elastic and internal properties of the struc-
ture which are fugctions of the dimensions , the conditions
of the supports , and the physical properties of the mat--

erial of the structure.

From equation (5) the acceleration of the mass (M) is

given by:-
.‘_{:‘1'.'-. _—_""&n 4:172‘3111 21T_t .Dt.l.l.!....l.....lllo0000.(6)
dt? T

th.

Denoting by (Mp) the mass of the n floor, then the

inertia force on this mass 1is

o’ 2 .
Pn= "Mn-.a—-g%'-.}h'[n.4ﬂ ‘&n.Sln_Eﬂ'.t.-.-..........(?)

substituting the value of(y,) from equation (5), you
have:~-

Pyl %r:_}yn B g vy ¥ w10 5 0w n il aa L)
Which mesns that the inertia force is directly propor-

tional to the displacement.



16

v 3 4
ALl b

the 2

forces,

tloor-by

s v A UL

g np Lilk

i 4
e

)

+
-

20 C1INE

ce

lacemen

QX8 P4

WL

4

vl

de =

4 iy

for the

.+~(10)

C Qs

3

e |

(.
gt

..{/()



/7

oL

gide

1

lelt

the

rIOR
AL

L(12)

(n) wnknowris .

for

order

in

3 e
i

8 W1

0
Aad

-3 L:

018 eJneé

yarne

nome

e

Ty

ZET 0

wall %
V¥ BLAUCT

Ay e

to hi

nnowms

0
e

to zer

qual

he &

must

ileaients

s

i &

41

L

——h
4 AaS

tting

nave ;

Nne. NEgses 8¢

.=()




/8

’ Solving this determinant leads to an equation of the
(ntP ) degree with(n) real roots.

In our case, where we have three story frame building,
this determinant . will be expanded to a cubical equation
in terms of (Kﬁ and the three values of (ﬁb will be fou-
nd.

Using the relation between (T) and (X)

T=2FfK = 2M[JK'M cevvnoinernnnanea(Id)
and substituting (X) for each mode back in equation(I2)
we can obtain the relative values of (Pn)-and therefore

the relative values of amplitudes could also be attained.
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Q. THEORETICAL SOLUTION OF THE THREE DIMENSIONAL MODEL.
The solution of the three dimensional building is
somewhat more complicated than a two dimensional frame.
Fig.(%) represent the three dimensional model which is
composed of twos symmetrical bents (Yﬁ&(Yﬁ and the two
unsymmetrical ones (xﬁ&(xﬁ.

If & force is applied to | "y

this struecture:othree types z/ﬂiifiiir [l 3

of displaecement may occur. | Fi~ ; ¥

I, Horizontal(x)direction, ; iy “*f;7

2. Vertical (y)direction, /

3. Portional. Y // 7
Selecting an origin il =/ W

(o) at the centre of the - *

(fth.) flooy,and letting D C e

( Cf.;f)&(dyf) represent the |

displacement of poimnt(o) Fig. (5b)

in (x)&(y) directions

respectively, and (“q) represent the rotation of the floor
about an axis passing through point (o) and perpendicular
to the floor surface.

() being plus to the right,

(y) being plus when up,
() being plus when it is clockwise.,
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In order to have an equilibirium condition in each

floor the following statie equations should hold.

ZF; =0 Summation of all the forces in the x direetion
must add to zero,
2 Fy=0o Summation of all the forces in the y direction
' must add to zero.
> M=o Summation of all the moments around an axis
through the origin and perpendicular to the floor

must add to gzero,

For 2 Ax=o will have

d*(dx,)

*Mtf o+ = E x}- 57 00 it

i
g
-
.
| el
U
p

For E F7 =0 will heve,

4% (d,)
N

i
Lo}
"

For @ M, =o will have,

dt(qqf) %
Lo By Z Xp 8 % 29 "Xy = 9y .. (1)

—
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is the tohal mags of the T flooxr plus the weight
oi“ the gipders =nd the columns attached to that flcoor,
is the total mass moment of inertia of the total mass,
ggsumed to be distridbuted cver that iloocr.

g the summation of the forces sciting in t;':v:;:(:ﬁ}:l;rect-

th __
on &t the £ floors

1=

is the summatlion ofthe forces acting ir the(y)direoticn
o
-

: I
at the ¥ floor,

5 7Y
e ]

Iense, there wlll be three equatios of thie type for

[ %31 A
Ilcl'!'.'li'itpllll..l\t-‘:}

dz( d}f},
‘—";Té-——=-0”___’.?_ sin =— =\
& T

q‘; =R°fs-"n '_-T_-—-t .----vr-ct-t--o--l-v.'!’.&,‘f

d("(o'f}
—dE

2 \
:-ﬁof (3;,2) S;n—'g-;r.r'f o S N o A

s 277‘)2 : S LELE ‘
if we let K=z (—"'7:* equations (24, 24, & 27) will e, alter
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ubstituting -the values of dxf y dl} and Xqf

[\
m
2
I

~

2 3
‘—J__(fﬁt_) —_— def R T T T T R B B R T T A O B B B B R A
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sb 1% 1 l,i YU L e Y 10l egauatlong | { M .7, X !
equat e 2 22D gspectively will get

in equation (2I) will get.

-[eE Xy - my k]l - (Txiyd = - (T X)) 4

n
= TV, =T (X K) Kz e --Ef"ff'm“»f = 0

ond floor., - s - (34).

-2 (X0, - [Cix:,y M K] s oo o3y,

*2(*;:');) Xoy — E (X:? ')lx)qﬁl s e —'E(xz;'rx)qof:o

t v v(38)
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Substituting the values cof Xf & yf Tfrom equations

(18a&18b) in equation (33)will get.
Sgee xRS S (R el e S 0y, ol o £ )R b
Sy n n
20X v )y + 20y, e~y s (yly )
h n
NG ) %2 = %20 %) %, - X3,

uy E(X/”)J’r)"(oj_—-XZ(ynx)o(o + I Lk v B P
X £ 7 £ Y f t} of _‘____(40)

- 2%, %) 2 - ACHE A +2(y27 x,) d, *E(’Z:Xﬂ"{n
" Z(Xzf x?')d"f*E(é';x)')d?f"yxi(x;);)“’o,

o
: YK E(Xu}’x)‘*oz -xfz(?v x?')a(ot—-)sg(yz’:x ) «

02

7

7 {7
WA 2 L% 7,\>°‘a;-"72t>j,f "y)"‘o}+rtf‘ K-« =0

Lo i e R AT ‘(4/)
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g n - _ -
¥ AR ] 3 Z(XH v by + Z(Yh x)')(/)’/ *Z()}zx;)d’z
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n ”

_'7; Z(xiz yx)qOZ—xrz(zfxy)qol—x)fz(zzxy).qoz I i B
n i 4
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Stodola's Method of Iteration provides an expedient
method which was made use of in the solutions of these
'equations. An outline of the Iteration procedure will be
presented as follows:

Assuming values for,

=T e o e AT Aoy
ol

) ‘JX? s Sghils .d&”
%o ) B e A 0) Ty c*‘Ian

And trying these values as it is explained in the
appendix until the solution is carried to convergence.

After one mode has been determined, one equation may
be eliminated from the group of equations used by using the

orthogonality relationship, which is:-
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d”’ m-i ) Jm m-i SO
HE Rl Y P B R Mg ¢ R e M
L RGO o WA i
e TR B PR "/yn"'fl;
m m-1 m
o o - i i i
or + %y By 4 “a %y og 0t P hen  %n - Ty =o

In which the exponent (m) refers to the mode,

Another assumptlon will be made and the solutlion will
be carried to convergence as before for the d& s b, a& s
and «, 's . The orthogonallty relationship will agailn
facilitate the elimination of this mode ffom further assump-
tlons.

The frequencies corresponding to each mode are de-

termined by substituting the proper valuss in the following

equation..

\
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IV, EXPERIMENTAL SQOLUTION.

A, A pparatus.

FPig. (6) shows the apparatus arranged with the

Model diagramatically.

3 rrnrhrrﬁ rr xR "'l' |
| e
i .l = — -,».1 =

Fig. (6)
Arrangement of model and apparatus.

R B
i

A.Useillator. Fl.liodel,
B.0Oscilloscope. GsSupports.
Ce.liovable pick-upe. He.Sliding frame.
D.Fixed pick-up. I.Concrete piers.

E.Vibrator. J.Continuous channels.
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1) Osclllator

An oscillator was used to produce a pulsating current
which drives a vibrator, The maximum energy output 1is
around 12 watts. The frequency ranges from 20 to 4000
cycles per second. The output voltaze and current are a
sine function of time,

2) 0Oscilloscope

The oscilloscope used was a 3-1lnch Dumont Cathode-
Ray oscllloscope. A description of theée principle of the
oscilloscope may be found in thesis of Mr. Shih-Ying Lee
at MIT. 1943.
l5) Pick-ups

The pilck ups used were of the electromagnetic type.
The statlonary pick-up was rigldly connected very close to
one of the supports.

The movable pick up was mounted on a sliding frame in
such a manner so that 1t could be used at any polint on the
model.

4) Vibrator
A permanent magnet speaker was used for the vibrator.

B. The liodels

As 1t has been mentioned before that the main purpose
of the theslis was to compare the theoretical and experi-
mental results found by experiment for model of a three
dimensional building frame, The whole structure was bullt

by welding the girders to those two slde frames and the
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floors were attached by means of screws to the four corners

of each floor.
All of the members were prismatic and made of steel,

The columns were contirbus and the gilrders were welded in

order to accomplish a complete rigidity. Model No. (1)

which represents the two symetrical side bents, was a

three story frame. The full dimenslons of which are found

in Pig. (7).

Twl feeter s
i l 1 4
s g3 ¢ Eie— 7
t 4
Pwﬂ L ‘f’ T T Z —— z g 7" 1
% : | 4 i
p Al
N ’ ! — S
W Fig. (7)

Model represents side Y'&Yzof the
three dimensional model,

To assure rlgidity at the support connections, a surplus
These

of (4") was provided at the lower end of each column.
ends were attached to a base made of 3" channels., A detail

drawing of which is found in Fig. (8).
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Fig. (8)
Supporting frame of the two side bents.

The ends of the columns were screwed to thls com-
paratively heavy base, and thls base was mounted on a
heavy continuous chartls which are fixed to a concrete
piers. The base was attached to these cheénels by means of
heavy clamps.

All the models were mounted horizontally so that when
the plck-up will slide on a horizontal bar, all the
vertical readings can be taken very easlly. To take any
horizontal reading, the end of the pick up is attached to
a rod at 90 to the vertlcal and so with the same set up
of the models any reading could be taken.

Fig. No. (10) shows the set up of the whole building.
A detail drawing of the building model 1is found in Fig. No (11)

The same base was used for the building model by attaching



Three Dimensional Model-Set up.




o T A BT
e
N ¥ ! u3/8
| A
B R _ |
™ _ % ..3& L:
Ny Es sl ~ P:
| i
|
_
m
AN - X ,:Wa
~ 4k ¥, 9 g~
" L
= 7, 1
- TR - " - o
e&, / ~N
o . r o ! : b/
e LI S R Y A
ST el e W r Sdﬂ
e Y5 XTI 7
W BIRS
o 0N
|
|
W _
4 4
e 13 ! 1
ST G ) R 1t li =
1t 1t C_— 3 L
- 7 eis 7 Y 73 l.Tilﬂwll.. L:&v\nr.

36

DETRIL DRAWING ¢F THREE DIMENSIONAL MNMTODEL

ii.

( Fig)
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another side of the triangular base to it. A full detail

drawing of which is found in Fig. (12)

Nl
§ FL

—
N

T

C J L
| A | 745

a1 s
: Jp
=2 =4, o

10 l/,' 9 i 75

Fig. (12)
Supporting frame of the three dimensional model.

C. Procs=dure.

a) Calibration of oscillator.

The oscillator was calibrated with steady power
source of (60) cycles per second. The output of the
oscillator is connected to the right set of plates of the
oscillbscope and the 60 cycie power source 1ls connected to
the left set of plates. When the frequency of the output
voltage of the oscillator has simple ratio with respect to
the source frequency, a certain curve is formed on the
screen of the cathoderay tube. The shapes of some of those

curves are shown in Fig. (13)

i

iy
(N



23

{=o

N

~_ s

o
~

1

dﬂr- 3/5T d‘: '/; T

NN

—_— —

51
[
~|

!
N

|

e

Y

| N

1N OV K

J
LS;E— |

—ezs |

oy

—_

I
|

&

|
J
i

Fig.

(13)

Shape of curves on the cathodtray
oscilloscope screen.
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For a high frequency the loops are hard to be counted.

An outlined proceedure is found in the thesls of Mr. Shih-

Ying Lee at MIT 1943.

b) Measurement of the Natural freguencies of the
Models.

In measuring the natural frequencles, the movable

pick-up was set at a point which had a large amplitude of
Then the oscillator was tuned until a maximum

The

vibration.
reading was obtained at the oscilloscope screen.

resonance frequency can be easily recognlzed when the loop
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which i1s obtained at the Cathode-ray screen is clearly cut,
In many cases 1t i1s almost a perfect ellipse. These loops
stay still and do not oscilate. However, this is not
enough for the recognition of the order of the mode,
because higher modes sometimes give the same amplitude as
a lower one with the same power input. And very often 1t
was necessary to move up the movable pick on many points
so that the mode will show its order.

It is also necessary to let the osclllator be warmed
up for a time of fifteen minutes before using it because
this 1s the approximate time that it takes to start
furnishing a steady frequency. The Calibration was made
under the same conditlon for thilis reason also. Care should
be taken to turn the frequency dial very slowly from one
direction only.

¢c) Amplltude measurement.

The amplitudes of vibration were measured at
the floor levels only because it was sufficient to reveal
the mode shepe. The movable pick up was made to touch
the model very slightly and then moved back very slowly
until 1t releases the contact. This reading should stay
constant for that type of mode.

Care was taken in pointing the pick-up plunger at the
center line of the columns to assure that the model was

in resonance at the time the amplitude readings were taken.
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The horizontal component of the loop 1n the screen was

checked for every reading and maintained to be constant
throughout the readings of the mode under consideration,
The amplitude readings of the vertical component of the

loop was registered at the desired points.
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V. DISCUSSION (F RESULTS AND CONCLUSIOKS.

In comparing the theoretical results with the ex-
perimental ones, for the three dimensional model, shown
on pages (7/,72, 73 ), two kinds of modes are observed,
symmetrical and unsymmetrical modes. The comparison of the
symmetrical modes shows that the frequencies obtained by
experiment check pretty well with the symmetrical ones,
and the small percentage error is about the same for all
the modes, with slightly higher discrepancies in the high-
er modes, which is probably due to the fact that the cal-
ibration curves for the oscillator are much steeper for
higher frequencies than for lower ones, and values can-
not be read as sasccurately.

The amplitudes check pretty well also, as far as
the shapes are concerned. In magnitude however, the slight
discrepancy that appeared is merely due to the assumptions
made, The most important of which is assuming that the
masses of the columns are concentrated at the floor level.
These results would be nearer to thé theoretical ones if
the masses of the floors are large as compared to the masses
of the columns,

In the symmetrical modes, where the model has no

vibration in the (x) direction, and no rotation, a good



42

check may be furnished by comparing the theoretical fre-
quencies and amplitudes with the experimental ones of the
two dimensional bents.

The experimental results of the two dimensional
bents show that their experimental amplitudes (in magni-
tudes only), are not as near to the theoretical as the
symmetrical modes for the three dimensional model, which
proves that the effect of the mass of the columns in the
two dimensional frame is more than the effect of the three
dimensionallone.

In considering the case of the unsymmetrical
modes, it shows that the frequencies are a little bit high-
er in the experimental results than in the theoretical
ones, lMany factors enter in the explanation of this phe-
nomenan. One of these factors is due to the assumption
made which states that the masses of the girders and the
columns are distributed over the floor. This assumption
does not affect the symmetrical modes, because there is
no rotation, but it has a greater effect on thewsymmetri-
cal ones.

Another effeet is that the maximum amplitude
occurs when the vibration is in the (x) direction, a recker
was used to transmit the vibration to the model. The ad-
dition of the rocker tends to increase the frequency,
when another smaller piece of steel was used as a rocker,

it showed a decrease in the fregquency.
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The percentage error in the frequencies of the higher modes
is higher than that in the low modes, the explanation of
which is the same as given for the symmetrical modes.

The frequency of the third unsymmetrical mode could
not be taken because it occurs either at the top of the low
sgale,or 2t the'bottom of the medium scale, and the two sc-
" ales do not overlap.

The fifth unsymmetrical mode could be heard and the
freouency was registered, but it was not possible to piek
up the amplitude because the instrument could not supply
enough power to vibrate the model enousgh, so that the amp-
litude could be read on the oscillograph screen.

The frequency of the sixth unsymmetrical mode could
not be taken, because it is a very high mode, and eﬁough
power could not be supplied to the speaker to cause vib-
ration.

The amplitudes for the first two unsymmetrical modes
g8ve good shapes and were nearer to the theoretical solu-
tion than the higher modes. The reason for this discrep-
ancy in the higher modes is the same as that which was
given for the symmetrical modes, and that is,in the higher
modes, 1t needs higher power to vibrate the model, a nd
then it distorts the shape of the amplitude.

In performing such an experiment, special care
should be taken in fixing the model to its base, because
any small vibration in the base will cause inconsistencies

in the readings of the samplitudes and frequencies.
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Four extrs modes appeared in this experiment which were
believed to be true modes, but it was finally found that
it was due to some vibration at the base, which could not
be eliminated, although many trials were made to make it
as rigid as possible., This vibration could be eliminated
easily by making the base heavier and more rigid.

In mounting the speasker, part.of the vibration is lost
through theée hook attached to the model, so it is necessary
to plase the hook of the speaker right over the screw which
is attached to the model. In order mnot to lose much of the
vibration.

Special care should be taken in reading +the horizontal
amplitude, because any small increment in the distance bet-
ween the pick-up and the model, will cause a bigger differe-
nce in the reading. There is no deviee in the instrument
for making the distance between the pick-up and the model
as small as possible, and keeping it constant through all
the readings of that mode.,

The best place for mounting the speaker is at the point
where the maximum amplitude is expected. In dealing with
symmetrical modes , it is advisable to attach the speaker
ééﬁthe middle of the girders joining the two symmetrical
bents to eliminate the effect of the unsymmetrical modes,
on the symmetrical ones.

As a conelusion for this experiment, it ca n be said

that the experimentallsolution for ¥wibratiom in building



frames is a good solution, if special instruments are used
by well trained persons, in taking the readings. After get-
ting rid of the above mentioned difficulties, excellent

results can be attained.
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Using lhe Slope peflection Equalions , all the end

moments for the members of this frame, Can be expressed

as follows,

n

Mo, = 16 EK (6 ~3¢,) Ma=l6EK (26 +6-3¢,)
My=l6EK (6t26-3¢)

My =16 EK,(26,-3¢)
M, REKG(szq-a) 1'32:251\;(25;4»92—0)

11

M, 16EK (28 +8-3¢,)

Myaz16EK( 6,+28-3¢;)
Myy= 2E Kg(26,+6 -0 )

unknowns . (e, @ ,guw,,vz,g)

ove fo Symmelry we have S/

'Us.r'ng S M=o for Each joint you gel fhe fo[!owinj,

]
o

(s b,y -+ M, +07,

1l
[+]

(@) My + Mzt 11,

"
=]

(8] P Py

Usinj the Shear eyuah'ons far the [hree Stors/es yov get,

(]

(o]
(4) My, R, . + i.’I =p
(5)'2”2;*21'1:21}:} =i
1

(92!‘7’0 7‘2!"?“ f?;f = o0
T

Subsf,-l'ur,-nj the expressions far the €nd moments n
these Six eyval‘:lons, we oblain Six Simultaneous egualions

with Stx uUnknowns 8l 8, ,Bj T A R 5 g T "’3)

(1) EK, (356 186, - 24¢ - 24¢,) =0
() EK, ( 8¢ 1356+ 86, -29¢,-24¢; =0

=0

(3) EKG(892+1963—29V3) .

(4) EKG(%ozfeeq;—!?Ztr’;)rﬂ;} =

(5) E Kz (966, 19686 -/92 "-f’z)'f'i?!}

?

(6) EK; (9686,-192¢,)+ VI = o
T

o

"
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Slope Deflection Solulion for Deflection

egqualtions

equrtiER Y, | ERG Y, | £K, % E!&G}I.Ekcel ENG® | () (2) (3
/ S ) 0 +35 |+ 8 o a o o
2 ° T =24 | T8 35 t+ 8 o o 0
3 o 0 R o t+ 8 13 | o o 0
4 o o |-192 | o |+96 [+96 | o o | +7
5 fo} -/32 o |t96 |+36 o 0 17 £ 7
6 ~i{92 o o |[+96 o o + 7 +7 + 7

So/w'nj the above set of e?uahans S:'mu/taneouslije
oblt ain the fo[low.r‘nj resulls:

Sclvlien
Loadrnj Ccna(;f.rans
TE R (3)
EK% to0.084200 f01538’5"5' +0188292
EK ¢y + o 069656 4'+azs'7947 + 0. 387083
EKY; +0.039937 |+0 163573 +o4/f345
EI‘{’: |to: 589400 iH 076985 (+(.318094
FE_r ¢, It 0987592 +1.805629 +2 709581
ET ¥; +0. 24105‘5 L-” qu'ou 12 375422
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Using the S[ope Deflecff'oﬂ eyuah'o”s, all the end
moments for the members of /this framel Can be expressed

as follows.

M,, = REK( 6,-3¥%) M,2:2£k(29,f 8 ~359,)
M, = 2EK(R0 -34) My;= 2K @& +28-3Y,)
M, =2EK(26+ 60) rM, =28k (12486~ 0 )

GARE 25}{(2921‘63 -3¢ )

Iy, =2EK( 6, 126~-3¥;)
MB:ZEK(zs_; te -o0)

Duve [lo Symmelry we have Six unknowns . (88, ,6,) &

("/I P Vl ) L/S)
U.S/'nj SM=0 for each Jonl you gel /he fa//aw/})j.

o

(1) Mol t 1M, 5 + M, =0
(3) Msz + Mgzs =%
USIhj the shear C’?Ua(“iaﬂs far the three stories you
get.
(4) M52 + 2 1M, ff‘;’fso
(5) 2/,?2/ +2M,2 + {g; =0

7

6) R My, + 2107, +{77j=o
7

Subsh'tuh‘nj the exprc-ssfans for the end moments 7

these Si=x eyuaff'ons , we obtain s/x Stmollancouvs e?uaf‘_

/ g 7
ons wilh six vnknowns (g ,8 2100 e by L s L)

(1) EK(/46, 126, -6¢,-6¢,) =o
R) EK (26, 1/96 +26,-6¢, -€Y;)=0
(3) £k (26 1/06, = ¢;) =0
(4) EK (126, f293—24¢/3)+
&) EK (126,+/2 6 -24 9’2)+§
(6) EK (126, - 29¢,)+ I
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}
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Slope. Def[ecl'mﬂ 5o/uf/or7 _for Deflection

ggvations

eqagéh _?g"% &.'K% EA;W_; E—k—s ER’G Eke T m (2) (3) ]
™ 6 1B anletia | o] e |
2 o -6 |~6 1+2 212 |tz | o o )
3 £ O—— - M”(; -6 (o) —1_;_2 t70 | o o 0
] o 0 _| 24 o |+/12 |+/2 0 LY
| 5 [ o J-2410 [#12 [t/2 | o | o |t [t7
G | 24 o | 0 (|t12 Gl 0 +7 (+7 |+7

Solving the above set of equalions Simvltaneovsly we

obtain fthe fal[owr'f?j resuvlls.
Solutron.
Loading Conditions.
(7) (2) (3)
FTEK il r;-.;o?s ro [t0.57 28700 H-O 599 265
EK ¥2 +0.-/25290 Hf0.669570 L+0 g8/5053
EK Wy $0.016168 40./6/1680 +o 726139
| EI¢. |tz §/9670 [13.696700 13.809855 |
EI Y +0.877030 |(+4. 686930 ‘+570537I
| £I1¢s 10-1/3176 |4/.13/1760 \1‘-5_‘-0-82—9;;—-
__r_zg[(f'c['/bﬂs
i -—E—;_‘; a?rgr;} C‘oﬂ c/f{rons—|
r %)) 3)
£1d, |t19.737690 [+25876 900 126.668985
FI 125876900 +58.685830 l+ss 606582
A 2t MR Wt o it
EL o3 +26 669/32 +66 608 /150 LHO.? 187393
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Using rthe slope Def lection equations , all the end mom-
ents for the members of this frame , Can be expressedasfollows

M., =4 EK(O,~3Y ) Myse 2 EK(e,r =392

Mo =4EK(26-3¢,) Mig'= R EK(26-3¢,)

r, =2EK (26,+6,-0) mI.’=2EK(2c9!,+9’—0)
PL =9 EX(26, 1.6,=3%,) M,'z':ZEK(zq.,L%.—s%)
Pl = TEK( 8, fzez-sﬁ,) Pl =REK( 6 +26,-3¢)
M, =REK(28t g Mot :25!((;262-1‘62 e )
My =4EK(26,19-3¢;) Myz' 22 EK(26, T6,-3¢3)
Ply,=FEK( 6, 128-3¢;) Moryt= 2ZEK( 6, 1293.—3?’3)
Mest=2EK(28, 6~ 0) Mg's= 2E K(26,,16,, - 0 )

Us:rnj the L M=o al every Joint you get .

PR PR T o MR R R
M = ] [y [ —_

R). Hae T Moyt Pl 3080 (5) Pyt Myt + Myey =0

(3) My, + M33' = (6) Mjfj + Myipt = o

Us;fnj the shear eyuaff'ans for the Ihree sltorses yov gel,
7
7 My, + M, + P00 4Py, +i; { =0
) oy o 1
(8) My # L, + ”2‘/ + MMy 4 5;} =0
(9) Moyt Moz + MMggr + Myize 4 i‘é} =0
Substituting the expressiopns for the enod moments in the mine

eyum‘f'ons we obtain nine Simullaneovs eguvalions with pine
Uﬂknnwns,{e' )Bz ;93):(0,‘192‘,931) & (‘f',a‘/,;‘/_;)-
(/)ffr(/of‘rzaz,«ef,-sﬂ_5912) -0
() EK |( 29,+;062+e3+9 e 69f2—b;~_;);o

2
(3) EK (26,166 6. -64s) =0
(4) EK( 6 t+ 66/ +6,-3¢-3¢,) =0
(5) EK ( 62 o 6’r +6g,+63,—3912-3¢3)=o
(6)EK(93+62.+463~39¢3) =0

(7) EK (126468 ~364, t{1] P
7 o
(8) EK (120,126,166, 468, —36g+;;i=°
(9) EK (126,1 120,466,665 -36¢5+ ?;j:.o
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Slope Defleclion Solution for pDeflection

e_'quatf'af;i
equ. EKO,I EKﬂﬂ EK,ei iK_,s’" 5!{92-_ EfET EKY, |EKY, EK"’JJ!_ () F (2) | (3) ]
A TR B T T L T R R T
2 |12 (+to [t2 [ 0 T+l | o | o |-6 |-6 13 T
3 o t2 i+6 j pilloptitn [ To e leE | 6 o ke
A 4 e (g HG_':H | @ |3t ex e Ul o 1 8 {ﬁ-b'_j
s | o +1 | o [+1 J¥6 [+i B s Aamrrs o o |
s | o'l o [#7 T OTREFIY4 [0 |0 [°F | o | o |0 |
| 7 [H2 [0 | o 46 | o 1o 7—736 I o | o |¥1 [t7 |v71 |
g8 [+12 [ti2 o ey teml o | o %6 Ta La - e P
ENERT) 1%?2 Iy +'3"L:4_~'6'"J"b | o j-3§‘] 0 J o I}j{

Solumj the above sect of eyuahons s:mu”ant’at/ﬂy we oblamn

the j-o[lowiﬂg Helisoiltc

i ﬁ“:_cad:n_q Cond;t:ans il
L T S Y T
FK W |+ozggn$[+o 4!95‘5‘1'1-0 44”91)
L_EL;J? 0% Efo :2/436‘1»707.’3'6_2_449 +0. 7/;2'_511_3’ﬂ
BRI | ko021 890\|50i17210950.696804 |
| 14, |12.086805 12936857 [+3,088537
EI ¥ [ t0.850052 |+3,937/43 i+49904'5
| £1¢  [rou5iq80|+1.209763 [13.527625
Defleclrons
B ) L oa__é!“;;}ﬁ Conditions, |
L S T e
Erd‘, +/4.607635 |t20.557999|+2/.618359
EI &, $20.557999 (448.118000 {456, 55/292
& ik +21.618359 |+56.55/ 341 433.244655 |




56

Subsf[fui‘fnja he def[t’cf/‘an values sn th determinant,
we 331_
(‘/4_507635'-k,} 1 R0.557999 + 21.618359
20. 557999 . 48.1/ 8000-K)} 56,5512 92
+ 56.55/34/ 438.244688—!\’)

=0

|2!.6183f5
.S'o/w.n_g this delterminant we hauve the j»oﬂowl.ﬂj c?uu[r'on.
‘3 i ’
K -/50,970323 KJ1‘2/5'0,05'8/04/(“5793,5’00955’:0

For which Me roots  are ob ltarped

/ /
K :135 407923 K'=11.99560 K:3.566799

These /\’f valves substitvteo 11 he equalion il A1
| ¢ e Sl
wilh lhe proper valves for P and I gives lhe fr’//ou}lﬂj

resuvlls .

Mode | Frequency €relifse.
First 6062
Second | 219.05

Third dof.12

7o find the relative amplitvdes for cach mode subst

ttvle the valves of k' in Me ar:y/ﬂa/ 8700//3/75 ariol

.{;-H‘,-'nj Fj, L be un:'fy anof kﬂow}ﬂf thal
I o P ym L} Mm. Ay ,bdf/ﬂmzma‘—'ca”s{a”[

—r

Fn_: .yw 3 m’l an

Mode First Second| 7hird
3] 9 | 300 = /.790 +2.780

| a | r1E -0.902 -2.550

g s +/.000 + |.000 + 1 .000,




Experimental Soluftron.

7 At fo//owfnj lable s how the average
results of firve different rvns. for bent(Y']

Mode n Frrsi Secondl T hird.
Frequency 620 20y . 370
| a | +t-475 |-0.900 +o0.960
-‘h 1
i a, | +.825 |-o0.907 = f 020
| {
g i .000 .000 | L0000
Com'_g_grt'son of resulls
3 _2.' f' o‘
| TR t
| !
1 ﬁ
| |
w f 4
L= ‘ ‘ N
- | it l.l 5%
Hlr— =  t.825
First Mode. 1~'7’;r--"_'—::‘““:—1'"__;“ — teqis
f?#f. =62 fme‘: 65.2 J "“\o,f‘—“*‘—:—:__‘j_-; X
u\
Second mode
f?yf:v":sz }fll(’:.z 19 3 \ By oy e _1‘ = S N w7 o

U?f‘r*c{_ gade. :{"\\

}CIF." 370 !m; 40!-7 \ . E T




Experimental Scolulion.

T he /o/(owr?zj Table Show the average results
of }-r've c/:'j}crenf rons' for bff/[[)/z]

[T e | Eirst | Second | Thind .
| Frequeney | 620 | 2/7 ‘—%—__3_77“
¥ Fc, M e I T
=2 s = ama = % H PR S RREE s e
£ 'q, [ +.830 |-04y7 [-/.0/0
=i Sk e A S
& .0 00 ! L0 00 0o
B T R BT
Comparison of resulls

¢ ’ ’

3! ; e / O-E

w7

Eirst riode.

fexp: 62 f,-rhgz 652

+ I
s econd Mode

fexp=217  fpe219

N
"~
~
\
==
A

Third rode.

fexpz 370 f -q0u1

538



F?ﬂg[v L1 cal Solution

7he Three D:mensrona/ Model

- =~
0
= i -
i o A “
% 6_/3__..“..;;61*
1 R .
wt 7 = m:*r‘"\ !
|
|
| | ,
1 59 Y
2 ¥ 3
= i )
e O B SR i X
0 ' | N
1
i1 14
=T’\$ 1 . 2l 72 *jfe“ 1
w i o
% 64 3
e 224 -
/
&
(/) side X’
substit uf.r'nj th e proper va lves in  the sel of egualions
(5 a) we gef. far side x!
5 P I
egualtion x,' X Xy Bz’ | Byt it
() +F.25800|+7.538895 |+ 9. 226308 -7 so
—_— e ——— R e e -
(2) +7.538949 420178298 [F28.193375 -1 =
Ak el sy | 2 Cnc .
(3) $9.226357 +28.193375 +98.349329 — o

SO/Vf.ﬂj hesie

eyuaff'ans

simultaneously we get the set of (l6a)

&, x!

t 0.8949 1496

x

= o.5l6 28 a

ty o (N~

+0.130486

Bag’ ¥ gt
S T T +0./304983
t0.565724 —0231344
5. 251345 l4o. 30684 |




2y side x°

svbstitvting the proper wvalves jn the Seft of egua-
trons (/5a) for stde ' we gel

—é‘!"“ tian K A P__;;’-u—[. B g | G2x | Agxt

7 ) #19.737690 |+t25.876900 +26.668985: 2 4 =@
(2)  |+25816900 |458,685830|+66.606582 =

3y |+26.669132 }as'saé?&o_ so187393- | | D L s e e

solving these equations Simoulltaneously we qet the set o f (foa)

Azx:

10069070 +oo:26/2

e e s s e e ] e

+0./03905 —6049700

Hf0049 70'2 +o 03 8890

R S SRS

(3) sfdcs Tch

sub:,f'r'fuh'ng the proper valuves in lthe Sc& of e:/uah'ang

(15 6) we get the following, fthe Same values are correct for

side Y alse.

equation| Y, i 9 A P I P

(1) +/4,.607635|+20.557999|+2/. 618359 .__,. 7
" (2) |+20.557993(+45.115000],56, 551292] =3 5
I (3) +21.618359 |+ 56, 55139/ |+8 8. 24 4688 e P 3 ooy .=

Solving these egualions Ssimvltaneouvusly we gef selof
efuah'ons (16 8) the same values are Correct for side Y also

A,y e ey
)”' =*O./809//-————O--102/I/ |1‘0.0.;_—f/’3
oyt leelt ez r _'3“'“_5"/ 41830 |_-0065876 |
) <|t00z21 119 L do GL?BA;S 1+0.048375




Substituting the proper values in egualions (349 ,35, 36) ; (37, 38, 39); and

we gct‘ the fo{(ow/'nj- Sel of egqualions,

(90, 41, 4z2)

£g. dx, : dxz d,g dy' dfz d},s x,, I < e

/ ..;.ofsszzﬂ;t;t +0. 585448 |_0./43095 o) o (@) +2.699895 |-1.565578 |L0.4/25499
2 |+0.585455 | 0.66962%0K 0281094 o 0 0 ~1.565603 |4+,.616367 |-0.635754
3 |[-o0/43/00 1»0.2‘!04:’ _0.169574”2" o o) 0 +0.412552 |-0.63575! |40,3212719
4 o) o ) _o.3s:322+r1¢}<+5.2o4222 .0.042236 o o o

& o o o +0,209226 -o.zesssﬂfng+o.13175‘2 o e o

6 o o e} -0,042238 (y0,/131752 ..o.ossu’on:; 5 o o

7 142 6949895 |.1.565578 (;0.4/25498 o 0 ) -;2.47”457‘1‘;:”7‘:7/ 738 |-1.752914
3 r-:.s‘e‘.fsos +1.616367 |_0,635759 o o 0 (71824 _3.202955?{;.,.3.442789
G 404912552 |-0.635 751 |40.32/279 o 0 0 _1.752975 +3.44'28:26 -2.01728247% '

9



7o KC’C’F fhe Same CO’?S['Q'I]f Mroujbt rh e r)frh? 97:/01'1'0/75 SU‘:’S{!‘tU[-f ﬂ?cb"a/uc‘
1 z L
of I = b :zd Mf‘f where b=2x ; d=ay then let Mf}, K =K' weé have rthe following equations
—— e ]“ e — e — == ] e ey R e e e ) _‘l'
Eg. d o * ' T
7 X, o~ E dxj { d)’, ‘ d)} d73 N P Nos
7 -7 083224K [4+0.58549498 5-0.143095 l o 0 ? 0 42.6949895 (-/. 565578 $0.412599 !
| |
e |
2 l+0.5854955 g..0.6696291”(;4-ca.:é'SIfJ'‘i"i’ ; o I 0 i o -/,.565603 |4+/.6/6367 |—0.635754
] | : | i Ry (s !
| | | T ; 2
3 U_prq93100 (+0.28/1097 |_0.169579tK o | 0 . 0 +0.9/2 552 |-0.63575/ 40321279
! | | | |
i ‘ %! \ I
4 0 } o : 0 —0.36/822+ K +0.204222 (-0.092236 | o | 0 o
! j ‘ ' “ "
+ : i | ! | |
| i | i !
‘ H ] | |
=3 o ; o o 1$0.209226 :— 0.283660tK[4+0./3/752 | 0 0 o
i ? | % *
6 o i 0 ! o -0.0492238 :r+o,/3/ 752 _0,095750+K;‘ o o o
! i ! | |
i + SN S — _*.ﬁ._4__..‘_.—..-..u__ ]
3299 | | | | | '
7 |+0.329 3? i_o.f.fjnos i44).05051'6! o ! 0 | o L/.52?483+K5+o.878/72 —0- 2 14643
N e m e e T i =
8 -0 191706 40./197922 i_o.onS‘i? i o ; o 1 o 40.878183 §-;.ooqqqsfﬁ+o.4zf566 i
. | ' ! i
| : f i
| i ! | . p
9 l+0.050517 |-0.077897 [+o.039340 | o ; 0 i 0 _0.2/9650 [+0:.9215 7 |_0.25936ltK
| ! | | | i

29
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By Looking /o [hese equalions , we see thal (t Can

be broken down /nto fwo setbs o f e?uaf‘f'aﬂs‘ Orne

wilh three and the other wilth Six e7ua/‘r‘on5.

If this s)rs(em rs- Fo heve soluolrons a"r'ffereﬁffrom

zero th detevrminant ‘of He Coeff icients must be zero.

Solving the delerpisnant of the miadle three leads
lo an equalion of rhe 3rd degree with three real
roots for K’

i
(~0.36/822+K) + 0.2049222 - 0.042236

[}
t0,.204226(-0, 283660 +K) 4+ 0.031 752

T0.042238 + 0./31752 (~ 0.096 75*0-1-!\")

E §

4 2 [
k' - 0.7142232 K +0./04234 K — 0.00/380 = o
Solving for K will get.
K'=o0.560730 5 K RONOETSS K w0, 009757

b

subsf.-'ful'f'nj the valve s o f K' in the oniddle

three cyua!‘fons and assum-"nj dn:-l and 50/v11nj

th em Sf'mu/('aneousl)/ w il 3€t‘

! / i
K'=o0.560730 K=zo.166757 K= 0.004757
drx="2~38"33<’ dy=-1.162254 d7/=+°-3°’2°3
dyzz_’,z'éooj—lq C{YZ"’O' 903365 dn=+o.7!8702

d,= =l.000000 . —4/.000000 =+/.000000
y; =/ d73,+/ ey =100




The Second set of homogeneous

eyuaf/‘an:j ( First &k last fhree)’ Can be Solved by

Stodolas plethod of Iteralion as follows:—
dxi ol "(xs ®or o2 o3

~1.0/18322 +0.585 448 -0./43095 +2.694895 -1.565578 +0.412549
+0.585455 -0.669629 +0.281044 -1.-565603 +1.61 6361 -0.635754
-0./43100 $0.281047 ~0.169574 +0.412552 —~0.63575/ +0.321219
+0.329987 -0.1917093 to.050516 -1.527483 t0.878/172 -0.214643
~-0./19/706 +0./91922 -0.017847 +0.878 183 ~-/.00444 3 +0.421566
+0.050517 -0.071847 + 0.039340 -0.214650 +0.421571 ~0,254936/

Assvme valuves for :-

d,, =~/ dy,=+.615 dyz =—~,205 oy, = F-480 %,z:-.326 €3 = +.100 -
+ 1018 + .395 +.029 t 1,299 + ~510 4 .04 = +3.28%K, Ay = +1

~ 585 - 452 - 058 - <757 o) - 064 2~ 29431 dyy~~.741
+ 143 + -/190 + 035 + (98 + -207 + .032 = 4 0.805 , 9 .4.245
- 330 - 130 - 010 =1 2737 - .286 - .oal =~ 1510 %, 5 459
+ -192 + 133 + .0/6 + .4qal + 327 + 092 = 40031 @, -4.399
= oSt =05 -~ 008 - 103 S E & =, 02% e B R s D

Carrying the Soluvlion lto Conver gence:-

b9



Last Irral
dxu dxz dx 3 X Xez Xo 3
+/.0/8322 +.443723 +.036503 ¢+ [.23034/ +.548002 + 049039 3.325q40=k dy =+ J.0
- .5BS455 . .507526 ~ 0U6I4  _  7/4768 - 565790 - o755 2 520809 dy, = - 0.757922
+ -(43100 +.213011 + 093258 4+ /88399 % 222537 4 L3890 o- SUTHYS dy;= +0.255099
- .329987 ~ /45296 ~ .012887 - .692365 - . 307399 ~ 02557 I.5/84943 Aop= -~ 0.4956596
+ 191706 +./50009 +.019859 + 400930 + 357593 +.050111 /- (64208 A,z + 0.350039
- -0505/1  _.059002 - .0/0036 - -097997  _ 147566  ~--030236 0.39535¢ 3= —0.113870

the or/%o_gona/';‘fy rf(at‘f'aﬂsh'r.f gives e fo((ogw}?y eg vation belween the o5

for lhe second through Mhe sixth mode .

d = +.757922 dxz

X1/

= 2855097 s + 37284599, ~2.858652%,, 4970772 «,

o (@)

SUbstftutr‘ng the valve o}(o(xl)in e?uaf."ans (2,3,7,8and39) will gel.

Az s Xoy %oz %e3
~ 422 5900 t.[31695 +.617292 -.057245 - .06714/ =90 ... (2a)
+-172588% ~.133069 ~. 120990 -.226618 + 182362 .5 -~ . .(3a)
+ .05840/ —.033663 T -297Y0  -.065146 + 105699 ., .. _ (7a)
+ 052629 —-028993 +.16349/5 ~-456422 4 235463 -0 .. -(8a)
~-.039559 +.0264953 --026399 +.277160 - 205321 =9 . - +(9a)

£9
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Assuming new valves for (d, , d ) %oy 5 Ky A )

and carrying fhe soluvlion lo Con vergence will gel:-

K'2= 0645107 and dy, =41 , di=_0.866245,

Xoy==0.496478 5 X,,=-0.559238 , X,,=+9.469169

Suvbstituting the valves of (d,, Ay , %, > Roq ANd X, )
inequalion (a) will get -

d,, =+1.17707/

Making vuse of the Orthogomality equalion, w/![yet‘:~

dy,=-0.849566c, 40735933 dy; +3. 4494627 «,,
t3.860063%,; -~3.220463«, 2% 3 ae e B
Solw'ng etyua({'ons (a) and (b) for the value of

(dxz.) af ter ell'mfnaf/'ny(cfw) ot gelt -

cdy, =+0.616510d , ~0./76569 %y, + 4-192078%,,~2.6073209,...(C)

Svubstirtuvling the valves of (dy,) from egqualion(c)in
quaf/‘oris (3a , 7a , 8a , and ga ) w r{l gel: -

L]
dXB a{o’ "(az Xo3
—0.026667 -—0.15/464 +0.4968249 —0.267630 =0 .-.(35)

40.002342 =-0.3074952 +0./79676 —0.04657/ =0 « .. (7§)
+0.003500 +0./54/23 =~ 0.2358/8 +0.098255 =0 *+-(8b)

+ 0.002064 =~0.0/93/4 + 0.1/1326 —0./02178 =0 ...(9b)

ﬂssdmfnj new valyues f‘O" (dxa > Aoy ¥ 5 anol

«o3) anod Carrying the solution to Convergence

wf/l 3ef:—



K = 0.465315 , and

d,.. = +1

e , %o =+0.686922

> %23-0.563,769 «.:40.20368¢

Suvbs f,'tuf:'nj the valves of des L ‘Yoz}and Ay in
eyuafr‘ori (c) will 39(:-

dx2 = -2.399212

o ffnaf the valve of(dx’)) the va{ue,s of dxz d

) x3 )

Xo1 1+ %, 5 and «,. should be substituvted in either

equat‘f‘on ta ) or (b) . which cwill gr’ve:-

dy, = +t2.296996

Making vse of the orthogonality egquation we have:-

dy,=+1.044500dy, ~0.43535/1; - 2. 942261 %,

+2.009907 X5, ~0.7249171 %3 _ _ . sy Cd)

so/ufﬂ_y eyuah'ons £a ;187 dnc{a/) Simultaneously for
the valve of («,) after eliminating (dy, , and d,,)

will get i~

Xy, == 0.000574d, 1 +0.974780,, - 0.39254% Xp5 _ __ . (e)

Svubstituvtling the value of(xo) from equalion (€) in

I 7 egqua lions (36 , 8b and gb) w ) L gef:—-

dx3 ‘foz “03
T~ 026580 + 0.349/80 SO @B 7S 0 o~ v~ o~ T
+0. 003472 - 0. 0B5582 +0.03775% =o0 . (gc)

+0.002075 4 0.092499 t0.0949596 =0 . .- - (9c¢)



’

7o solve for the valves of K Ll

f
— 0.026 550+K + ©0.349/80 —~ 0.208171¢%
L
+ 0.003412 - 0.085582tK +0.037755 =0
L
+ 0.002075 + 0.0924999 + 0.094596+K

Expancfl‘n_g this o elerminant we have e

following cuvbical equalion
3 1 2 '
K° = 0.206758K' " +0.008 639K -~0.000085 =¢

The Frhree real r'oots of K' are : —

i

r ¢
K=0.154<7/0 ) K =0.037793 ; K =o0.0/4555

Subsf:‘tuh'ng the valve af K': OIS HAIO 4 e?uah‘aﬂ_s
(3¢, 8c , and 9¢), assvming the value of dx3 = 4+

Solving any l(wo of fhese eyuaf/'ons simullaneou-

Sly and using the thirod one for ocheck Wf‘[ljet,‘--

f
K =ousqqo ; o =44

3 ‘K°2=-O.2012‘-{3 3 403_—, +0.27650¥4
For the ofher Two values of K’ svbstituting

in the Same manner by assuming Aoz =t will gel-

(]

K=0.037793 , Yoy =t Xy 3+ 0.65'613‘95 d,-{sz-;.g;-:rwg

L]

K'=zo0.014555 ; & =+

- . 0 IR ST
55 o, + 0759076 ; +4.736225

P % e

o

68
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The valves of (X,,) for the three valves of(f(jcould

be found by subsh'[‘u[‘f"ng the values of [ PR T

an cl d”) for each valve of(i\”l 1 eqgvalion (€)

% {
For K = o.1544/0 . %, =-0.305282

el

’

For KK = 0.0377393 +0.2481493

u

5 %oy

’

and For K= 0.0 |4 555 Xy, = +0.344669

Svbstituting the valves of (dyy  «, , «,, and
%93) fer each value of(K') in equalion (c) will

gel the Corresf:and/‘ng valves o f (dy,)

For K =z=o0.1544¢0 5 dye, =-0.8949147
‘ L)

v K =20.937733 5 dey = ~1.05651/0
’

and For K=0.014 555 P dy, =+3.933858

Subsff'f'utl'ﬂg the values of (dxz :d-"32°‘or)°"oa)

ann’ n¢93) f-or each valuc Of (K') rn e(]uqt,'on (a) w,”

get rne corresponding valves of(cly)

For K’: O IS4 45 {0 > olx‘ = =22 T348
' .

= e oiedmiz9s 5 d, =-0.30217/
¥

andfor K=0-0094555 5 dy, =+1.480313



F:}wa/f}:g th e velves of K' we can find the frequency 1~

we have K=(E‘r_:r:)2

the proper valuves of £ and I we have the following valves. of Freguencies

where K =

K/ﬂn

f =

..—l-—- K’é’!t "
e /___ﬁ___ "

Subsh’fut‘.-'nj

wilth thewr Correspond;'nj omp(:'tua’e va/ues,for each mode.

Mode - g”'- 8”" 7 1%, 6 14 . 5 4 f[,_A '3,-61_ o nd. 7 5t
K = 1 3.325940 0.645 704| 0.560730 |0.465315|0.166 751 |0 .154410|0.037793| 0.0/14757 | 0.014 555]
£ 590 262 245 223.5| 133.5| 1282)| 62.8 | 39.7 | 39.4
oy, = [+1.0  [+r0070% +2.296996 -1.227318|-0.302(71 +1.4803/3
dyy = |-0757922ft 10 -2.3992/2 -0.894147|-1.856510) +3.433858
dyy - |+0,255093|-0.866245] +1.0 +1.0 -1.8757/46 +4.736225

‘-'{y, = i2.§84338 =1 163259 +0.301203

dyz 3 '—-2.6005‘19 -0,903365 +0.7/8702

dys . +l.0 +1.0 +41.0

Xoy = [-0.4565496/-0.996418 4 0.6 86 922 ~0305282(10.298/43 +0.3949669

Xy = [+0:350039|-0.559233 -0,563769 -0,201243 [+0.656159 +0.159076

Xo3 = (=01 8870 +0.9649169 +0,203689 +0.276509 41,00 4 /.0
Mode~| 9 8- 7 - 6 . 5 1h. 4 A 3 rad 2 nd. y SE.

oL



Svbstitoting the valves of

e_x“ = dx{-f a(.fvyx

g Afx’ = dxfd-l"j -7k Kf- -qaf . 3.5
4 G B
fx —0‘*-}...0(,{-)', ] dx;_rqo} 35_:'
a -
107 s ge %
AIY'*O’l-* « Xy = d o( e
s Y¥ af i = Y§ o of 3.5
b, 2 . o
Y 7}*"‘.}*1‘, = d)'f + % Sone

we have the fo U.owfng valves.

e AL F=39.9
Amplitvde Ax' A g2 Ayr A 2
/5t story | + 0.0 21 +0.326 |-0./47 +0./47
2nd. o +0.094 to.7490 -0.323 +.0,3 23
Ird. « to.150 +/.000 |-0.925 t0.425
Mode — || 274 f =39.4
1 5t story +0.30/ |+ 0.30/
2nd. t0.719 |+ 0.30/
grda. t+{.000 |+ ([.000
rMode -| 379 ek
(st storyl- 0.217 + 0.105 |-0.162 +0./162
2079 -0.625 + 0.231/ ~-0:428 +0.428
Jrd. «1.000 t+ 0.312 ~0.651 +0.65/

rMode | 4 t. F=128.2
/5¢ story|-0.069 -/.000 | +0.465 |~0.4965
2nd. 4 ~0.082 -0.697 |+0.307 |-0.307
zrd. +0.0/4 +0:858 |-0.922 [40.422
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Mode -~ 5 /A, fF=r33.5
Amplitude Ax Ax2 Ay i s
[-5&. SFary = 3 ~/.000 I-J,000
2nd. -0.877 |-0.8177
3ros +0.877 |+0.817
Mot de = 6 th- f=223.5
{5t . story|| ~0.0273 +/.000 -0.5/2 |+4+0.512
2nd.story|l ~0.09 1 ~0.929 +0:4919 | -0.419
3rd.storyll 4+ 0.06/ +0.364 - 0.15/ 0151
Mode — p At fs2495
[St- story - {. 0009 ~-{.000
2o 4 +0.902 +0.902
grols 1 -0.3497 | -0.3497
rMode — g * F*262
(st-story| 4+0.986 -~0.202 +0.588 |-0.588
2nd. +1.000 -0.324 +0.622 {-0.622
srol. 4 - 0.8492 +0.256 -0-5499 |40.549
Mode — CEE f=590
(54 Story||+1:000 |-0.230 |40.6/5 -0.615
209, -0.769 |+0./173 [-0.4972 [+0.472
e +0.258 |-0.062 |+0.]60 -0.160
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Experimental Solulion.

The following table Show the average resuvllsof
four d::[feren! runs. for the Three Oimensional model.

Mode —» / SE. fexp: 53
Amplitude A s Az A e Byz
[SE. story|| +0.050 + 0.45 0 -0.200 + 0.200
2nd.  « + 0.1 00 + 0.800 - 0.35¢ + 0.3 50
gro- « + 0,200 + f.000 Ll qo0 + 0.9 00

Mo de — 2 nd. ffxp = 39
/St story + 0.333 +0.333
and.  « + 0.665 +o0.665
3red. o« + /.c00 +/.000

Mod e = 3 rd- fexp = 77 )
RSt story| - 0. 410 + 0- 410 - 0.49l0 + 0.4910
2nd. s - 0.740 + o. %590 - 0. 680 + o.680
Jrols wu — (.000 |+ 0:595 |- 0:770 + 0.770
Mode — 4h- Exe =2
(st slory |l cunnot get| Becauvse it| occur either] onlop of
2nd. Law Scal€or| Bollom of |Medivm Scald and the
3rol. . [weo Scaley do nef cver lap.

Modode — 5 4. Fexp =730
/$¢ story - /.000 - /.000
2ad. - 0.850 -0.850
zrol w +0.900 to0.9g00
Mode -» 6 - fexp’zaz
(St Story | + 0. 375 +/.000 -0.375 |to0.375
27w - 0125 - {400 O +0.750 - 0.750
zrd. n 6.0 + 0. 750 —0.500 | + 0.500
Mode - 7% fexp = 236
/St Séory = 0RO - /.000
27d. 4 t/. 420 +1.4920
3rod o -0.715 =07 15
Mod ¢ - 8 . fexp™ 368
1SL- Story couvld | not pick the shap e.

2”0’- "7 ol
3-"0/- v

— th. = 3
ﬂ?.i‘efory ? feze ¢
204  w
I rd- "




Norris, Charles H.

Den Hartog, J.

Timoshenko, S.
Lee, S. Y. and

Delf¢no, R. .

B

Go,

BIBLIOGRAPHY

4

Notes on Vibration

Mechanical Vibrations

Vibration Problems in
Engineering

MIIOT.
tions,

M.I.T.
tions,

thesis on Vibra-
1943

thesis on Vibra-
1945



	Vibrational characteristics of building frames /
	TitlePage
	Acknowledgment
	TableOfContents
	Chapter I
	Chapter II
	Chapter III
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5a
	Figure 5b

	Chapter IV
	Figure 6
	Figure 7
	Figure 8
	Figure 10
	Figure 11
	Figure 12
	Figure 13

	Chapter V
	Appendix
	Bibliography


