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1 Introduction

Improving our understanding of motion has arguably been one of the most important aspects
of physics through the ages. We reached a peak with special and general relativity, but
quantum mechanics immediately put a dent in the concept of a sharply defined trajectory
for a point particle, by adding an irreducible uncertainty to position and momentum, and
quantum field theory made the situation even worse, by making even the number of moving
particles not particularly well defined in general.

This is particularly manifest in relativistic hydrodynamics, where beyond the lowest order
in a derivative expansion, there are so-called “frame” ambiguities regarding how to define the
local fluid velocity field [1]. For a non-relativistic fluid with only elastic collision processes, one
can define the velocity field through kinetic theory, simply as the local statistical average of
the invidual particles’ velocities. But for a relativistic fluid such a definition is not particularly
meaningful, and one instead focuses on local conserved currents, such as the stress-energy
tensor and U(1) charge current. Each of these locally has a certain directionality and naturally
defines a four-velocity field. It so happens, however, that different currents in general define
different four-velocity fields. Which one is the correct one? Does the question even make sense?

The situation is somewhat ironic, in that relativistic quantum field theory has an
absolutely sharp bound on motion — microcausality: commutators and retarded two-point
functions of local operators must vanish outside the lightcone, which we usually take as
meaning that nothing can travel faster the light. Then, from this viewpoint, it seems that
we can tell more easily how fast something can move rather than how fast something is
moving or even what is moving.
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With this paper, we want to exhibit yet another puzzle, regarding relativistic superfluids.
We consider the theory of a complex scalar field with quartic interactions, invariant under a
U(1) symmetry, in a state of finite charge density. This, in four spacetime dimensions, is a
renormalizable theory, and provides the simplest UV completion for the effective theory of a
relativistic superfluid. We will show that at weak coupling and at small chemical potentials,
there are stable vortex solutions for which the standard definition of the superfluid velocity
field can become arbitrarily superluminal. This happens close to the core of the vortex, but
still well within the regime of validity of the superfluid effective theory.

So, it appears that a superfluid can move faster than light. But all this is consistently
derived within a renormalizable relativistic quantum field theory, where nothing can travel
faster than light! In fact, we check that the excitations of our vortex solutions still obey
microcausality: they are all subluminal even when the background appears to be superluminal.
Our conclusion is that the standard definition of a superfluid velocity field might not correspond
to the actual velocity of anything. Perhaps in the non-relativistic limit one can make physical
sense of it, but for a relativistic superfluid it should not be taken literally as a velocity field.

As a check, we consider a generic vortex configuration for an ordinary fluid. There, we
show that as soon as the velocity field turns superluminal, the solution becomes unstable,
with a UV-dominated instability rate, signaling that such a vortex is not a consistent solution
within the fluid effective theory. We take this as an indication that, despite the frame
ambiguities mentioned above, the four-velocity field of an ordinary relativistic fluid has a
more physical status than that of a relativistic superfluid.

Notation and conventions: we work in natural units (ℏ = c = kB = 1) and with the
mostly-plus signature for the spacetime metric.

2 The fundamental and effective theories

The simplest UV-completion for a relativistic superfluid’s effective theory is given by a
complex scalar field Φ with the U(1) invariant action [2]

S = −
∫

|∂Φ|2 + λ
(
|Φ|2 − v2)2 . (2.1)

We are interested in the λ > 0, v2 > 0 case, which corresponds to having spontaneous
symmetry breaking (SSB) already in the Poincaré invariant vacuum, as opposed to having it
only for large enough chemical potentials [2]. The reason will be clear in the next section.

Because of SSB, it is convenient to parametrize the scalar in polar field coordinates,

Φ(x) = ρ(x)√
2
eiψ(x) . (2.2)

The angular mode ψ is massless. On the other hand, the radial mode ρ has mass of order
m2 = 2λv2 and, at low energies compared to m, one can integrate it out. At tree-level, this
is equivalent to using its equation of motion, which to lowest order in derivatives reads

ρ2 ≃ 2v2 + 1
λ
X , X ≡ −∂µψ∂µψ . (2.3)
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Then, the effective low-energy Lagrangian for the Goldstone ψ is [2, 3]

Leff [ψ] ≃
1
4λ(2m

2X +X2) , m2 = 2λv2 . (2.4)

This result is approximate in two senses:

1. In the effective field theory sense: it is the lowest order in the derivative expansion, for
∂/m ≪ 1. Notice however that higher derivative corrections will not involve higher
powers of X = −(∂ψ)2 without derivatives acting on them. This is because ρ couples
to ψ only through the combination X. So, from the point of view of the derivative
expansion, the effective theory above is correct to all orders in X, but to zeroth order
in its derivatives (see a discussion in [2]).

2. In the small coupling sense: it is the lowest order in the perturbative expansion, for
λ≪ 1. More generally, to this order in derivatives, the U(1)-breaking pattern allows for

Leff [ψ] = P (X) , (2.5)

with generic P . In fact, at one-loop the result is of this form, with O(λ) corrections
relative to (2.4) [2]. For our purposes, (2.4) will be enough.

Now, in this theory a superfluid at equilibrium and at rest in the lab frame can be
thought of as a field configuration ψ(x) with constant time derivative, ψ(x) = µt, where µ
is the chemical potential. More in general, any field configuration ψ(x) with a nonzero ∂µψ
and with mild gradients thereof (compared to m) can be thought of as a superfluid state,
possibly featuring excitations or some nontrivial flow.

More explicitly, one can consider the U(1) current and the stress-energy tensor associated
with the general EFT (2.5),

Jµ = 2P ′(X)∂µψ , Tµν = 2P ′(X)∂µψ∂νψ + P (X) ηµν . (2.6)

On the other hand, for an ordinary fluid, in the perfect fluid limit we would write

Jµ = nuµ , Tµν = (ϱ+ p)uµuν + p ηµν , (2.7)

where n, ϱ, and p are the number density, energy density, and pressure, and uµ is the fluid’s
four-velocity field. By comparing (2.6) with (2.7), there seems to be no doubt that, if we
want to associate some form of fluid motion with what we call a superfluid, we should identify
the fluid four-velocity field with a suitably normalized version of ∂µψ,1

uµ = − ∂µψ√
|X|

. (2.8)

It is also immediate to extract the values of n, ϱ, and p associated with our superfluid. For
what follows, it is actually more interesting to focus on the enthalpy density ϱ+ p, which
for our specific UV completion reads

ϱ+ p = 2P ′(X)X ≃ 1
λ
(m2 +X)X , (2.9)

where we restricted to the timelike ∂µψ (positive X) case.
1The overall sign is conventional. Our choice corresponds to uµ being future-directed for positive ∂0ψ,

which we identify with positive chemical potential and positive charge density.

– 3 –



J
H
E
P
0
1
(
2
0
2
4
)
0
8
0

3 The superluminal vortex

We now come to our specific vortex solution. Within the effective theory, it is simply

ψ̄(x) = µt+ φ , (3.1)

where µ is the asymptotic chemical potential at spatial infinity, which we take to be small,

µ≪ m , (3.2)

and φ is the azimuthal angle about an arbitrary axis (say, the z axis.) It is immediate to
verify that this ψ̄(x) obeys the EFT equations of motion for any P (X),

∂µ
(
P (X̄) ∂µψ̄

)
= 0 . (3.3)

This solution is singular at the z-axis, and one can ask if our UV completion resolves
the singularity. As usual [4], this question can be phrased as an ODE for the radial mode
with two boundary conditions, one at the z-axis and one at infinity, which always has a
solution. In particular, close to the z-axis, at distances smaller than r ∼ m−1, the radial
mode smoothly interpolates between its SSB minimum and zero, thus restoring the U(1)
symmetry at the vortex’s center.

The low-energy effective theory breaks down at such small distances, and this is something
that one can infer just by looking at the solution. For example, on our solution we have

X(x) = X̄(x) ≡ µ2 − 1
r2 , (3.4)

where r is the distance from the z-axis, and so

∂X(r ≪ µ−1) ∼ X

r
, (3.5)

signaling that the effective theory breaks down at distances from the z-axis of order

rUV ≡ m−1 (3.6)

and shorter.
However, if we restrict to µ ≪ m, there is a much bigger critical scale,

r∗ ≡ µ−1 ≫ rUV , (3.7)

where we can still trust the effective theory, but which however corresponds to an interesting
transition: if we look at our X̄ above (eq. (3.4)), we discover immediately that right at
r = r∗, X̄ changes sign, going from positive to negative as one moves in from larger to smaller
distances. Negative X corresponds to spacelike ∂µψ and thus to spacelike uµ, according
to (2.8). If uµ is to be interpreted as the four-velocity of our superfluid, then our superfluid
is moving superluminally for rUV ≪ r ≪ r∗. A visual representation of the vortex can
be found in figure 1.

Before addressing in detail the question of stability and causality of our solution, we
want to emphasize a few points:
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r∗ = µ−1

rUV = m−1

X < 0
X > 0

Figure 1. The vortex solution (3.1) smoothly interpolates between timelike and spacelike superfluid
velocities, as determined by the value of X in (3.4). At r∗ = µ−1, indicated by the purple dashed
line, the background becomes lightlike. The EFT breaks down at scales smaller than rUV = m−1,
indicated by the white line. Fluctuations remain well-behaved in the intermediate region, where the
background velocity formally becomes superluminal.

1. If we abandon momentarily the superfluid interpretation, we realize that our solution
is nothing new. Indeed, setting µ to zero for a moment, our solution is nothing but
the usual “cosmic string” solution for theories with a spontaneously broken global U(1)
symmetry [4]. Such configurations are well studied in the literature, and are known
to be consistent QFT saddle points, which are, in particular, stable against small
perturbations. Now, turning on a tiny µ≪ m does not change in a substantial way the
physics at energies much higher than µ, or, equivalently, at distances r from the core
much smaller than µ−1, which is exactly the regime in which our superfluid becomes
very superluminal. So, from this viewpoint, the superluminal regime corresponds to the
standard physics of a cosmic string.

2. Related to the previous point, we can now appreciate why we need to have SSB already
at zero µ: we want to start with the relativistic theory of a U(1) Goldstone that
makes sense if expanded about X = 0. This is because X = 0 is the divide between
subluminality and superluminality in the superfluid interpretation, and we want to find
a solution that interpolates between the two regimes. Moreover, we want to work at
µ2 ≪ m2, to that there is a wide range of scales, rUV = m−1 ≪ r ≪ r∗ = µ−1 where
our superfluid velocity is superluminal within the regime of validity of the effective
theory.
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3. Our solution exists for a generic P (X), and the resulting superluminality can be
trusted for µ much smaller than the UV cutoff of that effective theory (the mass of
the radial mode m, in our case). Because of this, our conclusions are robust against
the inclusion of higher orders in perturbation theory. Whatever we prove using (2.4)
will be qualitatively correct to all orders, and quantitatively it will receive corrections
involving higher powers of λ≪ 1.

4. Similarly, higher derivative corrections (2.4) will not change our conclusions qualitatively,
but only quantitatively, by powers of 1/(r∗m) = µ/m≪ 1.

5. Usually, within special relativity, one of the signs that it is impossible to accelerate
a massive particle past the speed the light is that the amount of energy needed to
get closer and closer to the speed of light grows indefinitely. For a relativistic fluid
substance, what measures local inertia — what weighs kinetic energy — is the enthalpy
density ϱ+ p. In our case this is proportional to X (see eq. (2.9)), and so the inertia of
our superfluid vanishes precisely when the superfluid velocity is crossing the speed of
light, at X = 0, making it possible to cross that boundary.

6. While the U(1) current Jµ becomes spacelike as soon as uµ does, the four-momentum
density T 0µ is timelike (or null) everywhere. It is not clear how much physical significance
to assign to either of these two facts though. In general, a purely spatial Jµ can be
set up by having an equal amount of positive and negative charges move opposite to
each other at the same speed, and an arbitrary T 0µ can be made timelike or spacelike
by adding a suitable cosmological constant, which, in the absence of gravity, has no
physical consequence.

4 Stability and causality

We now want to study the dynamics of small perturbations about our vortex solution. Given
the first two items at the end of the last section, we do not expect many surprises: we
will be expanding the standard relativistic theory of a U(1) Goldstone, eq. (2.4), about a
weak background field. Since that theory is stable about a trivial background, and since
the quartic interaction has the correct (positive) sign [5], introducing a small background
cannot affect the theory’s stability or causality properties.

However, given our superfluid interpretation, it is instructive to look at the quadratic
action for the perturbations directly, and to see how these remain well-behaved even in the
superluminal superfluid velocity regime. To this end, we will exploit the r ≫ m−1 hierarchy:
at large distances from the core of the string, we can zoom in on a small patch of size L,
still within the regime of validity of the effective theory, L≫ m−1, but small enough so that
the effects of the curvature of our vortex solution can be neglected, L ≪ r. In this case,
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we can take for our Goldstone a linear background,2

ψ̄(x) = Vµ x
µ + const , (4.1)

and expand in small perturbations about it. This approach gives us the leading order
dynamics for perturbations with wavelengths much smaller than r. The two cases r > r∗
and r < r∗ correspond, respectively, to timelike Vµ and spacelike Vµ.

Rewriting ψ(x) as ψ(x) = ψ̄(x) + π(x), with ψ̄ given by the background above, we get
the quadratic action for the π perturbation

Lπ = 1
2λ
(
(V 2 −m2)ηµν + 2V µV ν)∂µπ∂νπ ≡ 1

2Z
µν ∂µπ∂νπ . (4.2)

A Lorentz-invariant condition for stability is [6, 7]

Z00 > 0 , Gij ≻ 0 , Gij = Z0iZ0j − Z00Zij . (4.3)

(The ‘≻ ’ symbol for a matrix means ‘positive definite’.) In our case, since we trust the
effective theory for our vortex solution only for ∂ψ = V ≪ m, those two conditions read

1 +O(V 2/m2) > 0 , δij +O(V 2/m2) ≻ 0 , (4.4)

which are clearly obeyed. In fact, to quadratic order in Vµ, the linearized equations of
motion read

(
ηµν − 2V µV ν/m2) ∂µ∂νπ ≃ 0 , (4.5)

corresponding to the dispersion relation

ω2 = ω2
k⃗
≃ |⃗k|2 − 2

m2

(
V 0 |⃗k| − V⃗ · k⃗

)2
. (4.6)

Clearly, within our V ≪ m approximation, the solutions for ω are real, thus showing that
there are no exponentially growing modes. (For simplicity, here we are only displaying the
positive frequency solutions. The negative frequency ones are related to these by a suitable
sign change, ω−

k⃗
= −ω−k⃗.)

To check that excitations do indeed respect causality, we notice that the square of their
direction-dependent phase velocity is3

c2
s(k̂) =

ω2
k⃗

|⃗k|2
≃ 1− 2

m2

(
V 0 − V⃗ · k̂

)2
. (4.7)

2One may wonder what happens when considering long wavelength perturbations. Deriving the Hamiltonian
in cylindrical coordinates, one can verify that it is positive definite in the regime of validity of the EFT (r−1,
µ≪ m), and that therefore no instabilities occur. The linearized approach taken in the main text will have
the advantage of being applicable also to backgrounds more general than our specific vortex solution.

3It is easy to check that, to the order at which we are working, the square of the phase velocity agrees
with the square of the group velocity, v2

g(k̂) =
∣∣ ∂ω

∂k⃗

∣∣2. That is, the two notions of velocity differ only in their
directions, but not in their absolute values.
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Regardless of the value of V µ and of the orientation of k̂ relative to it, this can never exceed
the speed of light, at best reaching it only for specific, V µ-dependent propagation directions.4

More carefully, one might want to check the theory’s causal properties by inspecting the
support of the position-space ππ retarded Green’s function rather than simply the propagation
speeds of free waves [8]. Given the quadratic Lagrangian (4.2), in Fourier space we have

G̃ret(k) =
i

Zµνk′µk
′
ν

, k′µ ≡ (ω + iϵ, k⃗) , (4.8)

and so in position space we find

Gret(x) =
∫

d4k

(2π)4
i

Zµνk′µk
′
ν

eik·x . (4.9)

Treating Zµν as an effective inverse (constant) metric, defining a tetrad eµα through Zµν =
eµαe

ν
β η

αβ, and using standard GR manipulations, we expect Gret(x) to be

Gret(x) =
1√

− detZ
G0(y) , (4.10)

where G0(y) is the Lorentz-invariant expression, in Minkowski coordinates yα = (e−1)αµxµ,
for the retarded Green’s function for a massless free scalar in a Poincaré invariant vacuum.
Since this vanishes outside the light-cone, that is for y2 > 0, our Green’s function vanishes for
(Z−1)µνxµxν < 0, that is, outside a modified light-cone with a direction-dependent aperture
given precisely by the phase velocity (4.7).

Comments on Cherenkov emission. As discussed in [6, 7, 9], in certain situations one
might want to impose a form of stability stronger than (4.3), namely

Z00 > 0 , −Zij ≻ 0 . (4.11)

Such a condition is not Lorentz invariant, and there are physical situations in which it is
violated in specific reference frames but not in others. Most notably, when a source is moving
faster than the speed of sound relative to the medium it is moving in, in its rest frame
the above condition is violated: the associated instability corresponds to the possibility of
emitting Cherenkov phonons (or classical sound waves). This is a form of instability, but
an instability that depends on the source. In particular, even though Cherenkov emission
is peaked in the UV, dΓ/dω ∼ ω2 [10], it is cut off at a source-dependent frequency, the
inverse sound-crossing time for the source. Moreover, it has a localized origin — the source
itself — and so its effects are confined. As a result, even when present, Cherenkov emission
is not a violent instability that destroys the system: for example, a fighter jet crossing the
sound barrier does not set the sky ablaze.

Still, in order to be absolutely sure that our vortex solution is viable, we want to see
how it behaves as far as the condition (4.11) is concerned. Since this condition is not Lorentz

4For spacelike and null V µ, the speed of light is attained in a direction k̂ such that cos θ ≡ V̂ · k̂ = V 0/|V⃗ |.
For time-like V µ, the maximum speed is attained for k̂ parallel or anti-paralled to V⃗ (depending on the sign
of V 0), and is always subluminal, c2

max = 1 − 2
m2 (|V 0| − |V⃗ |)2 < 1.

– 8 –
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invariant, we have to choose a frame where to check it. We choose the ‘lab frame’ where the
vortex core is at rest; if we have stationary sources in our lab, that is the relevant frame where
to check for Cherenkov emission. Since within the regime of validity of the effective theory
all components of V µ are small in that frame, V ≪ m, the condition (4.11) still reduces
to (4.4), which is trivially obeyed. We conclude that our vortex solution is stable also against
Cherenkov emission by sources that are stationary in the lab frame.

5 Instability for normal fluids

We now consider a similar setup for regular fluids. In contrast to the superfluid case, we will
see that gradient instabilities develop as soon as the fluid velocity field becomes superluminal.

From an EFT standpoint, a normal fluid, like a solid, is described by an SO(3)-triplet of
scalars ϕI(x) for which spacetime translations P i are broken, but a combination of P i and
internal shifts remains unbroken [11]. In the case of an isotropic solid, the action is SO(3)-
invariant. Normal fluids constitute a special case thereof, with an action that is invariant under
the larger group of 3-volume-preserving diffeomorphisms. This ensures that fluid elements
can slide past each other without creating transverse stresses. The scalars ϕI(x⃗, t) can be
thought of as the Lagrangian (i.e., comoving) coordinates corresponding to Eulerian position
x⃗ at time t. For a normal fluid, the low-energy EFT thus comes with the lowest order action

S =
∫
d4xF

(
detB

)
, BIJ ≡ ∂µϕI∂µϕ

J , (5.1)

where F is a function determined by the equation of state. The normalized fluid 4-velocity
satisfies uµ∂µϕI = 0 and is therefore determined to be

uµ = 1
3!
√
detB

ϵµαβγϵIJK ∂αϕ
I∂βϕ

J∂γϕ
K . (5.2)

We can now imagine that we have set up a vortex solution and that, as for the superfluid,
there is a macroscopic critical distance from the axis below which the velocity field becomes
superluminal. To study the local stability properties of such a solution, we can adopt the
same approximation as for the superfluid case: at distances much bigger than the effective
theory’s UV cutoff ℓ (such as the mean free path for a weakly coupled gas), r ≫ ℓ, there is
a range of scales L where we can still use the effective theory, L ≫ ℓ and we can neglect
the effects of curvature of the vortex solution L ≪ r. In that window of scales we can
approximate the building blocks of the effective theory, BIJ and uµ, as constant, that is, we
can take the background values for our fields ϕI as linear in xµ:

ϕ̄I(x) = aIµx
µ , (5.3)

where a is a 3× 4 matrix, and we neglected an irrelevant additive constant. We now want to
perturb this solution and study its stability. To avoid clutter, we want to use the symmetries
of the system. Both the action and the stability criterion (4.3) (or its multi-field analog) are
Lorentz invariant, so we can choose any frame that we find convenient. Moreover, the action
is invariant under internal volume preserving diffs (acting on the I index). We can simplify
the expression (5.3) while maintaining its linearity if we restrict to the linear subgroup of
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these transformations, that is, SL(3,R). Each element of this subgroup can be thought of
as a combination of a rotation and a shear transformation [12].

We start by performing a rotation in internal space (I index) and a rotation in physical
space (µ = i) so as to diagonalize the 3×3 block aI i. Then, we can rescale the three I = 1, 2, 3
axes with a volume-preserving shear so as to make aI i proportional to the identity δIi . This
is invariant under combined internal/spatial rotations, and so we can use those to align aI0
with the first direction in I space. So far, we are left with

aI i = C δIi , aI0 = D δI1 . (5.4)

Where C and D are two arbitrary numbers.
We can now use boost invariance: if C > D, which corresponds to a subluminal uµ, we

can boost to a frame where D is zero. This keeps aI i diagonal but makes it anisotropic. After
performing an isotropizing shear in I-space, our fields are simply

ϕI(x) = α
(
xI + πI(x)

)
(subluminal) , (5.5)

where α is an arbitrary constant and the πI ’s are small perturbations. As far the background
is concerned, this is equivalent to going to the rest frame of the fluid, where uµ = (1, 0⃗). If
on the other hand D > C, which corresponds to a superluminal uµ, we can boost to a frame
where aI1 is zero, in which case, after a suitable shear transformation, our fields read

ϕ1(x) = α
(
t+ π1(x)

)
, ϕa=2,3(x) = α

(
xa + πa(x)

)
(superluminal) . (5.6)

For the background, this is equivalent to going to a frame where uµ is purely spatial,
uµ = (0, 1, 0, 0).

Plugging these expressions into the action, and expanding in the π fields (see e.g. [9]),
we find the quadratric actions for the perturbations. In the subluminal uµ case, we have the
standard action for fluid perturbations in the fluid’s rest frame [9]

L = −α6F ′
[
˙⃗π 2 − c2

s(∇⃗ · π⃗)2
]

(subluminal) , (5.7)

where the speed of sound is

c2
s =

dp

dϱ
= 1 + 2α6F

′′

F ′ , (5.8)

and all derivatives of F are evaluated at the background value detB = α6. The speed of sound
is smaller than one if F ′′ > 0 and F ′ < 0, in which case the action also has the right overall
sign. All fluids that exist in nature must feature an F with these properties. Notice that the
transverse modes (∇⃗ · π⃗ = 0) do not have a gradient energy. As a result, they have a trivial
dispersion relation, ω = 0. They can be thought of as the linear progenitors of vortices [9].

In the superluminal case instead, we get the perturbations’ action

L = α6F ′
[
(∂1π

1)2 − (∂1π
a)2 − c̃2

s

(
π̇1 + ∂aπ

a)2] (superluminal) , (5.9)

where a = 2, 3 labels the transverse directions, c̃2
s is defined as

c̃2
s = 1− 2α6F

′′

F ′ , (5.10)
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and all derivatives of F are evaluated at the new background value detB = −α6. As we now
show, such a Lagrangian describes a constrained, unstable system.

To see this, consider first decomposing πa into its transverse and longitudinal part
w.r.t to the x2,3 derivatives ∂a:

πa = πaL + πaT , πaL = ∂aϕ , ∂aπ
a
T = 0 , (5.11)

for some function ϕ(x) Then, the transverse field πaT enters the Lagrangian above through
the combination (∂1π

a
T )2. Its equation of motion is thus the constraint

∂2
1π

a
T = 0 , (5.12)

with independent solutions faT (t, xa) and x1gaT (t, xa), where faT and gaT are arbitrary transverse
functions. The large space of solutions is a consequence of a gauge invariance, which is
itself a consequence — in this frame and for this peculiar background — of the original
volume preserving diff symmetry.

Regardless of the solution one chooses, at this order πaT is decoupled from the other
degrees of freedom, and so, as far as their dynamics is concerned, we can just ignore it.
For the reduced (π1, πaL) system, the above Lagrangian corresponds to the kinetic matrix
(up to an overall factor)

KIJ =
(
−c̃2

s ω
2 + k2

∥ c̃2
s ωk⊥

c̃2
s ωk⊥ −k2

∥ − c̃2
s k

2
⊥

)
(5.13)

where we have expanded the fields in Fourier modes e−i(ωt+k∥x1+ka
⊥x

a). The eigenmodes are
most easily studied in the long wavelength limit for the x1 direction:

k∥ ≪ k⊥, ω . (5.14)

Indeed, in this limit the eigenvalues of K take the form

λ1 = c̃2
s(ω2 + k2

⊥) +O(k2
∥) , λ2 = −ω

2 − k2
⊥

ω2 + k2
⊥
k2
∥ +O(k4

∥) , (5.15)

which means that the eigenfrequencies of the system are

ω2
1 = −k2

⊥ +O(k2
∥) , ω2

2 = k2
⊥ +O(k2

∥) . (5.16)

Clearly, the eigenmode associated with ω1 corresponds to an exponential instability, ek⊥t,
which is dominated by UV physics, since it is faster and faster at shorter and shorter
wavelengths, signaling a breakdown of the long distance effective theory.

We conclude that, for normal fluids, there cannot be a consistent solution describing the
analog of the superluminal vortex that we found in the superfluid case.

6 Finite temperature superfluids

We may ask whether heating up a superfluid to some finite temperature has any effect on the
conclusions that were drawn in the zero-temperature case. This is an interesting question given
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the usual two-fluid picture for superfluids at finite temperature, where a thermal background
of phonons behaving as a normal fluid coexists with a superfluid component. The low-T EFT
for such a system was first derived in [13] and the general EFT description was formulated
by [14]. As shown in [7], this low-T EFT accurately captures the thermodynamics of the
phonons around a general superfluid background V µ, even when this is spacelike. At the same
time, it also allows us to consider any background for the normal fluid component. Having
an explicit form for the low-T EFT we are able to check directly, for all different background
choices, to what extent the stability properties change when considering a mixture of fluid
and superfluid components.

Concretely, we start with the low-T expansion [7, 14]

L0 + L1 = P (X)− 3
[

b4

cs(X)
(
1−

(
1− cs(X)2)y2

X

)2]1/3
, (6.1)

where

c2
s(X) ≡ P ′(X)

P ′(X) + 2P ′′(X)X ,

y ≡ 1
b
ϵµαβγ∂µψ∂αϕ

1∂βϕ
2∂γϕ

3 = uµ∂µψ,

b ≡
√
B =

√
det(∂µϕI∂µϕJ).

(6.2)

Here the temperature is measured in the frame determined by the fluid velocity uµ, and
b has the interpretation of entropy density (up to normalization [7]), scaling like b ∝ T 3 ≪
µ3 ≪ m3. Let us consider uµ = (1, 0⃗ ) to begin with. This corresponds to a stationary and
homogeneous fluid background of the form ϕI = α(xI + πI), so that b = α3. Considering
fluctuations around a generic superfluid background as well, ψ = Vµx

µ + π, the building
blocks of (6.1) are expanded to

b2 = α6(1 + 2∇⃗ · π⃗ + (∇⃗ · π⃗)2 − ˙⃗π2), (6.3)
X = −∂µψ∂µψ = −V µVµ − 2V µ∂µπ − ∂µπ∂µπ, (6.4)

by = b uµVµ + α3V0 ∇⃗ · π⃗ − α3V⃗ · ˙⃗π + b uµ∂µπ , (6.5)

where we have taken the liberty to integrate by parts some of the quadratic terms, which
is allowed since we will be expanding the action up to quadratic order only.

In order to study the system’s stability, we plug the above expressions into (6.1) and
keep only the leading terms in the low-temperature expansion, up to second order in the
fluctuation fields. We will first consider two special cases while keeping a ‘completely timelike’
fluid background, uµ = (1, 0⃗ ): (a) the superfluid background being also completely timelike,
Vµ ∝ (1, 0⃗ ), and (b) the superfluid background being completely spacelike, Vµ ∝ (0, 1, 0, 0).

Fluids at relative rest. Considering first a timelike, stationary superfluid Vµ = µ(1, 0⃗),
we find

L1 = 2α4

cs

[
˙⃗π2 − c2

s

3 (∇⃗ · π⃗)2 + 2(c2
s − 1)
µ

π̇(∇⃗ · π⃗)− (c2
s − 1)
µ

(∇⃗π)2
]
.5 (6.6)

5In complete generality, the coefficients of the structures appearing here are corrected also by terms with a
further relative suppresion of (µ2/m2), or higher. We omit these here for a clearer presentation of results,
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This correction to the zero temperature Lagrangian includes the regular fluid part, a mixing
term, and a new contribution to the superfluid phonon’s gradient term — however the latter
two are suppressed and don’t affect the stability of the system. To see this more easily we
may normalize all the fields canonically, in which case:

L0 + L1 = 1
2

(
π̇2
c − (c2

s + 4(c2
s − 1)ϵ2)(∇⃗πc)2 + ˙⃗π2

c −
c2
s

3 (∇⃗ · π⃗c)2 + 4(c2
s − 1)ϵ π̇c(∇⃗ · π⃗c)

)
,

(6.7)
where ϵ2 ≡ λα4

µ2m2 ≪ 1. The system with ϵ = 0 is strictly subluminal and stable. By
continuity, introducing a small ϵ cannot change that. To see this more explicitly, one can
solve for the eigenfrequencies of the system. As before, the transverse components of π⃗c have
degenerate dispersion relations, ωT = 0. On the other hand, the longitudinal component
mixes with the superfluid phonon πc. The corresponding eigenfrequencies, for so-called
first and second sound, are:

ω2
1 =

(
c2
s − 2ϵ2(1− cs)(3cs − 1)

)
k2 ω2

2 =
(
c2
s

3 − 2ϵ2(1− cs)2
)
k2, (6.8)

The propagation speeds then are both subluminal, since so is the original sound speed,
c2
s ≈ 1 − 2(µ/m)2 < 1. We can conclude, then, that the leading effect of heating up the

superfluid, in the case where both backgrounds are taken timelike and stationary, is to
introduce a normal fluid component with a speed of sound equal to cs/

√
3. As we just argued,

the mixing terms, suppressed by a factor of at least ϵ, do not introduce an instability to
the system. We can summarize this as follows:

L1 → 2α4

cs

[
˙⃗π2 − c2

s

3 (∇⃗ · π⃗)2
]
. (6.9)

To avoid clutter, we will use the same notation in the setups that we consider next, i.e. we
will not explicitly write down suppressed terms, unless there are subtleties. Instead, we
will report only the leading contributions.

Purely spacelike superfluid. We now consider instead Vµ = µ(0, V̂ ), and in particular
choose the background to align with the x-direction for convenience. In this case we find:

L1 → 2α4

c
1/3
s

[
c2
s(π̇1)2 + (π̇2)2 + (π̇3)2 − 1

3(∇⃗ · π⃗)2
]
. (6.10)

This is again a contribution from the normal fluid component, but, in this case, anisotropic.
There are only compressional modes, since the only gradient energy term is (∇⃗ · π⃗)2, but the
speed of sound depends on the direction. It’s worth noting that, with this specific choice of
Vµ, the superfluid phonon in L0 propagates at the speed of light in the y, z directions and has
a speed c2 ≈ 1− 2(µ/m)2 along x. As for the normal fluid fluctuations, we see that both π2

and π3 propagate with second sound speed equal to 1/
√
3, which is the same fraction of the

superfluid speed of sound in those directions as in the previous case. On the other hand, π1

has a speed of sound of 1/(
√
3cs), which in the regime of validity of the EFT is smaller than

one. Hence, also in this case, there are no superluminal fluctuations or other pathologies.
since they don’t affect the analysis and conclusions.
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Cases where the fluid background is spacelike. While the thermal interpretation of
this system is physical for timelike normal fluid backgrounds, the form of (6.1) allows us to
check what happens in the case where the normal fluid background is taken to be spacelike
as well. In this case the question is reversed, i.e. we want to see whether the instability
discussed in the normal fluid section is present here too, or whether the mixing at finite T
in L1 = f(b, y,X) somehow stabilizes the system. We have found that to leading order this
doesn’t happen, and we discuss three simple cases to outline how this conclusion manifests
itself: (a) one case where the superfluid background is taken timelike, and two cases where
the superfluid background is taken spacelike either (b) in the same or (c) in a perpendicular
direction with respect to the (spacelike) normal fluid background.

In analogy with the examples above, we perform variable expansions for X, b, y as in (6.3)–
(6.5) with the field configurations that suit each case, and plug these modified expressions
into the low-T Lagrangian (6.1).

(a) Here we choose a stationary, timelike superfluid background Vµ like before, and a
spacelike background in the x-direction for the normal fluid. The corrections to the
Lagrangian are:

L1 → 2α4

c
1/3
s

[
c2
s(∂1π

1)2 − (∂1π
2)2 − (∂1π

3)2 − 1
3(π̇

1 + ∂2π
2 + ∂3π

3)2
]
. (6.11)

This takes the same form we encountered in (5.9); a similar analysis would reveal the
same type of exponential instability. There is a mixing term that appears to subleading
order of the form ∂1π ∂1π

1, further suppressed by a factor of α2/(µm), but it does not
remove the instability.

(b) Taking both backgrounds to be spacelike and parallel (in the x-direction for simplicity),
we find:

L1 → 2α4

cs

[
(∂1π

1)2 − (∂1π
2)2 − (∂1π

3)2 − c2
s

3 (π̇1 + ∂2π
2 + ∂3π

3)2
]
. (6.12)

Up to multiplicative factors, this correction is of the same form we found in the case
above, and so the same type of instability carries over.

(c) Finally, we take both the superfluid and normal fluid backgrounds to be spacelike,
pointing in orthogonal directions x and y. We find

L1 → 2α4

c
1/3
s

[
(∂2π

2)2 − c2
s(∂2π

1)2 − (∂2π
3)2 − 1

3(π̇
2 + ∂1π

1 + ∂3π
3)2
]
. (6.13)

Perhaps unsurprisingly by now, we observe the same structure, with the expected minor
twist of the fluctuation along the direction of the fluid background being the dynamical
one (in this case π2, as opposed to π1 in the previous examples). The exponential
instability characteristic of spacelike backgrounds for a normal fluid is present here too.

For clarity, we have only presented the simplest cases that capture all the possible
distinct arrangements one could consider, but one can generalize to arbitrary backgrounds
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(as opposed to picking a direction, like we did in these examples). We have checked this
explicitly in the physically relevant scenario, where the normal fluid background is chosen
timelike, but moving. The expressions look too messy to claim that their presentation in
this paper would be illuminating to the reader, but they lead to the same conclusion: that
the finite temperature superfluid retains the peculiar property of being stable and having
only subluminal excitations, even for spacelike background configurations, as long as the
normal fluid component is timelike.

7 Velocity fields in thermodynamics

At the level of the effective action, the two four-velocities — describing the motion of the
normal fluid and superfluid — are merely parameters that appear in the constitutive relations
for the Noether currents, namely the stress-energy tensor and particle-number currents. They
are vectors that pick out a preferred local rest frame of the medium or some sub-component of
the medium. From this perspective, the four-velocity of the fluid and superfluid appear to be
on the same footing. So why should it be that in the examples we considered, a superluminal
superfluid velocity is okay while a superluminal normal fluid velocity is unstable and hence
unphysical? The answer lies in the fact that our effective action approach obscures the
fundamental physical differences between these two notions of four-velocity.

Normal fluids. Begin by considering normal fluids. By their nature, they are inher-
ently thermal media; no zero-temperature ordinary fluids exists. Their equilibrium state
is characterized entirely by the thermal density matrix

ρfluid
0 = e−βH

Z(β) , Z(β) ≡ tr e−βH , (7.1)

where β is the equilibrium inverse temperature and H is the Hamiltonian, H = P 0 = −P0,
where Pµ are the generators of spacetime translations. (For simplicity, we are assuming
that the only symmetries present are Poincaré transformations, i.e. there are no chemical
potentials.)

We would like a covariant expression for the thermal density matrix. To this end, we
must introduce a constant time-like four-vector βµ, which can be decomposed into norm and
direction by βµ = βuµ, where uµ is a unit vector. The density matrix then takes the form

ρfluid = eβ
µPµ

Z(β) , Z(β) ≡ tr eβµPµ . (7.2)

To recover the original expression (7.1), all we need do is choose uµ to point along the time
direction, namely uµ = (1, 0⃗ ). To work in any other frame, we can suitably boost uµ. The
interpretation of uµ is now clear: it specifies the zero-momentum frame. As a result, we
identify it as the equilibrium four-velocity of the fluid.

Assuming that the underlying physics is stable — that is that H is bounded from below —
and that we appropriately regularize our system by placing it in a finite volume, the density
matrix is well-defined so long as uµ is subluminal. In this case, we may always boost to a
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frame in which uµ = (1, 0⃗ ), meaning that uµPµ = −H. Explicitly, the expression for the
partition function Z is therefore

Z(β) =
∫
dE ϱ0(E) e−βE , (7.3)

where ϱ0 represents the density of states with energy E. For any stable system, the Hamilto-
nian is bounded below by some energy Emin. Thus the density of states satisfies ϱ0(E) = 0
for any E < Emin, so no divergence in the definition of Z can arise because of negative-energy
states. The only way for Z to be ill-defined is if ϱ0(E) grows sufficiently fast for large E (or
if ϱ0 diverges badly enough for some value of E). But so long as ϱ0(E) is finite and grows
slower than eβE , which is a reasonable assumption for most situations, then Z is well-defined.
As a result, the density matrix is well defined.

Now suppose that uµ is spacelike. Then, we can always boost to a frame in which uµ

has no temporal component. Without loss of generality suppose that uµ = (0, 1, 0, 0). Then
the density matrix takes the form

ρfluid
x = eβPx

Zx(β)
, Zx(β) ≡ tr eβPx . (7.4)

In terms of the density of states of definite x-momentum px given by ϱx(px), the explicit
expression for the partition function is

Zx(β) =
∫
dp ϱx(p) eβp. (7.5)

Our situation now is fundamentally different from the case in which uµ was subluminal.
Unlike the Hamiltonian, the momentum operator Px is not bounded from above or below.
In fact, even in theories without parity, by rotational invariance the spectrum of Px must
be symmetric around zero. As a result, the only way for Zx to be finite is if ϱx(p) decays
faster than e−βp for large p. This behavior for the density of state is highly unrealistic;
indeed it is impossible for relativistic systems. As a result, Zx is divergent, meaning that
ρx is non-normalizable and hence ill-defined. Thus ρfluid does not exist when the fluid four-
velocity is superluminal, so it should be no surprise that superluminal fluid four-velocities
give nonsensical results in the effective field theory.

Superfluids. Now consider a zero-temperature superfluid; the description in terms of
a thermal density matrix is still possible, as a β → ∞ limit, but not necessary. The
equilibrium state of the superfluid is represented by a pure quantum state that spontaneously
breaks various symmetries, typically Poincaré symmetry and a U(1) charge corresponding
to particle-number conservation. Denote spacetime translation generators by Pµ, Lorentz
symmetry generators by Jµν and the U(1) generator by Q. The ground state of the system∣∣Ω〉 spontaneously breaks P0, Q, and J0i, while leaving Jij , Pi, and the diagonal combination
P̄0 ≡ P0 + µQ unbroken, as clear from the background field ψ(x) = µt. We interpret µ as the
equilibrium chemical potential, and H̄ = P̄ 0 = H − µQ as the Hamiltonian for the superfluid.
In particular, the ground state of a superfluid is the lowest lying eigenstate of H̄ . A superfluid
exists for some µ only if the corresponding H̄ is bounded from below.
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Now consider a different state for our superfluid, one in which the background field
is not purely timelike, like for instance the one in (4.1). In this case, the unbroken linear
combinations of Pµ and Q are

P̄µ = Pµ + VµQ . (7.6)

In particular, the ground state of the superfluid will be the lowest lying eigenstate of

H̄ = P̄ 0 = H − V0Q (7.7)

that is also an eigenstate of P̄i = Pi + ViQ. If Vµ is timelike, this will simply be the boosted
version of the superfluid’s ground state we had above, for Vµ = (µ, 0⃗ ). If on the other hand Vµ
is spacelike, which would suggest a superluminal superfluid velocity, this will be another state,
but we cannot see any obvious pathologies associated with it. After all, (7.7) is bounded
from below, at least in a range of values for V0, because of the assumptions above.

Whenever Vµ is spacelike we may choose a frame in which it has no component along
the time direction. Without loss of generality, suppose that Vµ = (0, Vx, 0, 0). Then the
unbroken generators are

Pa , Px + VxQ , Jab , (7.8)

where a,b = 0, 2, 3, while the broken generators are Px, Q, and all Lorentz transformations
that act non-trivially on Vµ ∝ δxµ. This symmetry-breaking pattern is most unlike those of
normal states of matter [11]. In particular, we usually expect a medium to spontaneously
break all boost symmetries, while here boosts about the y- and z-directions remain unbroken.
Although unusual, there is nothing intrinsically pathological about this SSB pattern. Whether
or not it is possible depends on the particular model in question. As a result, it should
not come as a surprise that there exist certain superfluid theories that admit apparently
superluminal four-velocities, in the sense that the associated Vµ is spacelike.

We should note, however, that calling such a state of matter a ‘superfluid’ is not entirely
correct. Although we began with the action for a superfluid, as soon as Vµ becomes spacelike,
the spontaneous symmetry breaking pattern becomes fundamentally different. It is therefore
best to conceptualize the superluminal core of our superfluid vortex as no longer existing in
superfluid phase. Instead it exists in the heretofore unnamed phase of matter characterized
by the above SSB pattern. We will see that at finite temperature, all boosts are once again
broken and this phase of matter has a name.

Finite temperature superfluids. Ignoring the usual subtleties about how to properly
characterize SSB for a thermal density matrix [15], we write the density matrix

ρsuper = eβ
µP̄µ

Z(β, V ) , Z(β, V ) = tr eβµP̄µ , (7.9)

with the same notation as above for P̄µ (see eq. (7.6)). Such a density matrix describes the
thermodynamics of a fluid system with a conserved charge. For certain values of the control
parameters βµ and Vµ, such a charge will be spontaneously broken and in that case we end
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up with a finite-temperature superfluid. We now want to understand under what conditions
on βµ = βuµ and Vµ we can expect the density matrix to be normalizable.

First, suppose that uµ is timelike and choose coordinate such that uµ = (1, 0⃗ ). We get

ρsuper
0 = e−β(P 0−V0Q)

Z(β, V ) , Z(β, V ) = tr e−β(P 0−V0Q) . (7.10)

Such a density matrix is well-defined assuming that P 0 − V0Q is bounded from below, which
is a prerequisite assumption for the superfluid phase to exist. This is essentially the same
conclusion that we had for the zero-temperature superfluid. Thus no matter the choice of
V µ, as long as uµ is timelike and the desired SSB pattern can be realized at temperature
1/β, the density matrix is well-behaved.

Next, suppose that uµ is spacelike and choose coordinates such that uµ = (0, 1, 0, 0).
The density matrix then takes the form

ρsuper
x = eβ(Px+VxQ)

Z(β, V ) , Z(β, V ) = tr eβ(Px+VxQ) . (7.11)

As was the case for the normal fluid, P x is totally unbounded — the same will be true
for P x + VxQ in a sector with fixed finite charge. To see how this is so, consider a state
of fixed finite charge and non-zero 4-momentum. By Lorentz symmetry, this state can be
boosted along the x-direction to have arbitrary momentum px. As the charge is unaffected
by boosts, we see that P x + VxQ is totally unbounded. Thus, when uµ is spacelike, the
density matrix can never be normalized.

Notice that the claim we are making here is stronger than what we showed by explicit
calculations in previous sections. We previously considered special cases for the fluid and
superfluid velocity within a particular model. In all such cases, a superluminal normal fluid
velocity spelled catastrophe. Here, we have demonstrated that for any fluid or superfluid
state in a relativistic theory at finite temperature, a superluminal normal fluid velocity leads
to a pathologically non-normalizable state and it is hence unphysical.

To summarize: the normal fluid velocity must remain subluminal or else the density
matrix fails to be normalizable, while a superfluid four-velocity has no such restrictions.
When the superfluid four-velocity becomes superluminal, however, the resulting SSB pattern
no longer describes a superfluid phase. For the simplified case in which uµ is along time and
Vµ is along x, the broken generators are Px, Q, J0i, and Jxi, while the unbroken generators
are temporal translations, spatial translations orthogonal to x, and the diagonal combination
Px + VxQ. This SSB pattern gives rise to a state of matter with a well-known name: smectic
liquid crystal in phase-A [16, 17]. This state of matter looks like a solid along one direction,
that is Px is broken, but looks like a liquid along the remaining two directions as Py and Pz
are unbroken. Unlike ordinary smectic liquid crystals, however, the superluminal superfluid
exhibits two longitudinal sound modes. This appearance of second sound at low temperatures
is a general phenomenon also in solids, which arises, roughly speaking, due to the exponential
suppression of Umklapp scattering [18].
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8 Relation to giant vortices

Ref. [19] studied a system that has some relationship with ours. That paper considers a
conformal superfluid EFT described, in 2+1 dimensions, by the action

P (X) = X
3
2 . (8.1)

On the sphere, for a strip around the equator, they consider what they call a giant vortex
solution

ψ̄ = µt+ ℓφ , (8.2)

which we recognize as our superluminal vortex, now allowing for more general angular
momentum, parametrized by ℓ. They find the presence of chiral modes moving at the speed
of light, and argue that these modes are what allows the giant vortex to have rapid rotation.
The approximations they make to find these modes are similar to zooming in near the X = 0
region in our setup. So, let’s try to do that in our case. Focusing on fluctuations in a small
strip near r∗ = µ−1, and on modes which only depend on φ and t, we get

λLπ = µ2(∂−π)2 + m2

2 ∂+π∂−π, (8.3)

where ∂± = ∂t ± µ∂φ. We thus find one mode, in the − direction, moving at speed of light,
whereas the + mode is almost, but not quite, lightlike, since it moves at c = m2−2µ2

m2+2µ2 ≃ 1−4 µ
2

m2 .
These are essentially the chiral modes of [19]. The main difference is that for us the relative
coefficient m2/µ2 in (8.3) is large, whereas in [19] it is instead very small (there is no analog
of m for a conformal superfluid).

9 Discussion

Our results cast doubts on the interpretation of a superfluid velocity field as the actual velocity
field of some form of matter. As we briefly discussed in the Introduction, to understand
the issue better one should probably be more precise in defining what it means — in a
quantum theory and in particular in relativistic QFT — that something physical is moving
at a given speed.

Even without doing so, we can make some sense of our results. Recall that we trust
our superluminal vortex solution within the superfluid EFT only for cases in which we
have SSB already at vanishing chemical potential, so that we can have a superfluid phase
at arbitrarily low values of the chemical potential. This makes our superfluid somewhat
peculiar compared to, say, helium-4: there, the absolute ground state of the theory is the
standard Poincaré-invariant, U(1)-invariant vacuum. Then we have excited states that are
approximately described by well-separated particles (i.e., helium-4 atoms), and only at nonzero
density, for chemical potentials that exceed the mass of a single particle, do we break the
U(1) symmetry and form a superfluid. Given this physical picture, we can think of superfluid
helium-4 as being made up of helium atoms, and we can characterize its velocity field as
some sort of local average of its constituents’ velocities.

On the other hand, in our case we have no such interpretation available: our U(1)
symmetry is always spontaneously broken, and so we don’t have the analog of the helium
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atoms, each carrying one unit of charge. In a sense, our superfluid is not made up of
particles. It is a more field-theoretical object, which at finite chemical potential has the
same symmetries and symmetry-breaking pattern as an ‘ordinary’ superfluid, but with a
strikingly different starting point.

It might well be that superfluids of this sort, whose SSB survives all the way to vanishing
chemical potential, should be interpreted as generalized superfluids, with only a formal,
symmetry-based connection to ordinary superfluids made up of particles. It might be that
the resolution of our superluminal puzzle is that for ordinary superfluids like helium-4 the
superfluid velocity field is the physical velocity of ‘something’, and is thus constrained to
be subluminal, whereas for our generalized superfluids there is ‘nothing’ moving at that
speed. Without a better characterization of ‘something’ and ‘nothing,’ it is difficult to test
this idea, but the distinction between generalized and ordinary superfluids might turn out
to be physically relevant.
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