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1 Introduction

Sachdev-Ye-Kitaev (SYK) model [1, 2] has been studied extensively in recent years as a
candidate for low dimensional holography [2, 3]. This model consists of N Majorana fermions
ψi with a q-local all-to-all random Hamiltonian

H =
∑
{ik}

Ji1···iqψi1 · · ·ψiq (1.1)

where Ji1···iq obeys a Gaussian distribution. This 0+1 dimensional quantum mechanical
model in large N limit is conjectured to be dual to 2-dimensional quantum gravity. Since this
model does not involve spatial direction, it is the simplest (potentially) holographic model,
which might be realized in an experiment in the foreseeable future. Several experimental
proposals have been made, e.g. [4–9]. Along this direction, it has been proposed by Susskind
and his collaborators as an exciting project called “quantum gravity in the lab” [10–12],
which aims to utilize a near-future quantum computer or specially designed condensed matter
system to simulate the dynamics of quantum gravity in asymptotic AdS background through
holographic duality.
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One of the very first nontrivial tasks for “quantum gravity in the lab” is to verify
ER=EPR [13] in terms of the traversable wormhole teleportation protocol [14]. Euclidean
path integral formalism of quantum gravity suggests that a pair of identical entangled black
holes (labeled as l and r) in the thermofield double state is dual to a non-traversable wormhole
(Einstein-Rosen bridge) connecting the two black holes behind their horizons. However, ER
bridge does not grant a causal connection between two black holes behind the horizons, which
makes the existence of ER bridge hard to verify. Nonetheless, turning on a generic coupling
δH = µOlOr with a specific sign of µ between these two black holes will backreact on the
geometry such that the ER bridge, if it exists, changes to a traversable wormhole [15]. Here
Ol,r are two generic identical operators respectively in the two black holes. Through this
traversable wormhole, one can send a qubit into one black hole and receive it from the horizon
of the other black hole. One can directly observe this causal connection between the two
sides that is based on the ER bridge. This bulk process is dual to quantum teleportation in
many-body systems on the boundary [15], which was realized by a concrete protocol in the
SYK model [14]. Therefore, if we can implement this quantum teleportation protocol on a
holographic model (e.g. SYK model) in an experimental setting, we will be able to simulate
the dynamics of a traversable wormhole in quantum gravity.

Even though the SYK model is the best candidate for an experimentally realizable
holographic model, it is still too complicated for state-of-art technology because it involves
a massive number of random coupling terms in the Hamiltonian that scales as N q with N .
If we implement the unitary evolution with this Hamiltonian on a quantum computer, the
complexity of the circuit is much beyond current fault tolerance. Therefore, reducing the
complexity of the Hamiltonian while keeping its essential holographic properties is necessary
for the simulation of quantum gravity in the lab. In [16, 17], a sparse version of the SYK
model has been studied, in which only kN randomly selected terms in the full Hamiltonian
exist. For large enough but still of order unity k, it has been shown in [16] that the global
spectral density of the sparse SYK model around its ground state energy E0 has a form of
sinh(

√
γ(E − E0)), which indicates a gravitational dual that is effectively described by a

Schwarzian derivative. This was also discussed in [17] with a different method to suggest that
a maximally chaotic gravitational sector exists in the sparse SYK model in low temperatures.
Even though both methods rely on some approximations and the duality is not rigorously
proven, minimizing the number of terms in the Hamiltonian while preserving holography
to some extent becomes possible.

Following this idea of the sparse SYK model, the recent paper [18] shows that one can
learn a N = 7 sparse SYK Hamiltonian, which only contains 5 terms (see (5.1)), to simulate
the dynamics of a traversable wormhole on Google’s quantum processor Sycamore. With this
5-term learned Hamiltonian, we can construct the thermofield double state of two identical
SYK models, and then measure how much causal relation is built between them after turning
on a two-sided coupling e−iµV that in the dual gravity will generate a traversable wormhole
for µ > 0. A strong causal relation built in this way will guarantee high fidelity of the
teleportation [14]. However, the five terms in this learned Hamiltonian are all commutative
to each other, which causes some debates [19, 20] on to what extent this model is holographic.
It is sort of peculiar and also surprising that this small N , five-term commuting SYK model
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exhibits some holographic features that (at least) qualitatively match with the dynamics of
the traversable wormhole because, after all, it is an integrable model in essence.

Putting aside the debates [19, 20], it is indeed very interesting to understand why a
commuting SYK model could exhibit some holographic features. Would this be a small N
behavior or it extends to large N? Does this only exist for specific learned Hamiltonians or
for a generic ensemble of random commuting Hamiltonians? How different are these features
from the authentic holography of the full SYK model with a non-commuting Hamiltonian?
In this paper, we will try to study these questions by focusing on a type of commuting
SYK model with random couplings for any even number N . This model is equivalent to
the q generalization of the well-known Sherrington-Kirkpatrick (SK) model [21–23] though
we define it in terms of the fundamental Majorana fermions. In large N limit, this model
has a critical temperature Tc, below which there is a spin glass phase. We will only focus
on the non-spin glass phase in this paper. Interestingly, we find that the commuting SYK
model, on the one hand, is integrable, but on the other hand, after the ensemble average
and in high temperature, it shows the size-winding property [11, 12], which is a very special
feature only observed in holographic models before and is shown to be the mechanism for
quantum teleportation through a traversable wormhole. Roughly speaking, size-winding
means the coefficients of a (scrambled) growing operator expanded in terms of the basis of
fixed size all have a phase proportional to the size (see more details in section 3.2). Because
of this, we would like to call the commuting SYK model psuedo-holographic. As we drop the
temperature but still above Tc, the size-winding of the commuting SYK model is damped
because the phases of the coefficients of the same size are not well aligned though their
averaged phase is still proportional to their size.

After looking into this model in more detail, we find that this size winding in the large
N limit is quite different from the size winding in an ordinary SYK model. It has a narrowly
peaked operator size distribution, which reflects that this model does not scramble as fast
as a holographic model. For a holographic model, the scrambling speed measured by the
out-of-time-ordered-correlator (OTOC) is exponential, while for the commuting SYK, the
scrambling speed is just quadratic due to integrability. This leads to the conclusion that in
the large N limit and near the scrambling time, the quantum teleportation protocol works
based on the peaked-size mechanism [24] rather than the size-winding mechanism though
the latter property is present.

The peaked size distribution persists only in the large N limit and near the scrambling
time regime. For a time much earlier than the scrambling time, the peaked-size mechanism fails
to work for quantum teleportation and we find that an effective characteristic frequency due
to the thermalization of this integrable model plays a crucial role in the sign difference effect
of µ, which means positive (negative) µ leads to a better (worse) teleportation. In this regime,
we also find the signal ordering is preserved in the teleportation protocol, which is surprisingly
compatible with a semiclassical traversable picture, though in a much shorter time scale.

For small N systems, the size distribution is never narrowly peaked and the size-winding
property still emerges after a short evolution of time in high temperatures. In this regime, the
size winding starts to affect the fidelity of teleportation though thermalization is still equally
important because the optimal parameter for teleportation has an order one deviation from
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the value required by the size-winding property. This is indeed the regime that [18] probes,
and we suggest that the mechanism behind the simulation in [18] is an interplay between
thermalization and size winding (see more analysis in section 5).

The paper is organized as follows. In section 2, we define a type of commuting SYK
model and show that it is not holographic by checking its spectrum, two-point function, and
four-point functions. In section 3, we set up the two-sided version of the commuting SYK
and show that it has near-perfect size-winding in large N limit and high temperature. We
point out that this size-winding feature also comes with peaked size distribution. In section 4,
we apply the traversable wormhole teleportation protocol in the commuting SYK model in
both large N limit and small N cases. We focus on the sign difference effect of µ and the
preservation/inversion of the signal ordering. In section 5, we summarize the conclusion
and discuss a few questions. Appendix A includes the technical details of computing the
correlation function in the traversable wormhole teleportation protocol.

2 Commuting SYK is not holographic

2.1 The model

The commuting SYK model consists of N Majorana fermions obeying

{ψi, ψj} = δij (2.1)

Define
Xi = ψ2i−1ψ2i =⇒ (Xi)2 = −1/4, i = 1, · · · , N/2 (2.2)

and consider the Hamiltonian

H =
∑
ik

Ji1···iq/2Xi1 · · ·Xiq/2 ≡
∑
I

JIXI , XI ≡ Xi1 · · ·Xiq/2 (2.3)

where I is the collective indices for all q fermions in the string Xi1 · · ·Xiq/2 . Note that Xi

takes eigenvalues of ±i/2, the Hamiltonian (2.3) indeed defines a q-local generalization [25–
27] of the well-known Sherrington-Kirkpatrick (SK) model (q = 4) [21–23]. Unlike these
classic papers of the SK model focusing on the thermodynamics and the spin glass phase
in low temperatures in N → ∞ thermodynamic limit, we will instead mainly study the
scrambling and teleportation features of this model in the context of comparison with the
ordinary SYK model.1 In particular, for large N case, we will limit our discussion above
the critical temperature Tc of spin glass phase. For finite and small N cases, since no sharp
phase transition and definite critical temperature exist, we will discuss the scenarios for all
temperatures as long as it is not too low. Here we have a little abuse of notation because
for JI the I has q/2 length long but for string XI the I has q length long recording all
fermionic indices. Similar to the SYK model, we take the random couplings JI as symmetric
tensors whose ensemble average is〈(

Ji1···iq/2

)2
〉
= σ2 = (q/2− 1)!(N/2− q/2)!2q−1

(N/2− 1)! J 2 (2.4)

1The comparison of free energy in low temperatures between bosonic SYK-like models and the ordinary
fermionic SYK model are studied in [28].
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This mode is integrable because each Xi is an independent conserved charge. For simplicity,
we assume q ∈ 4Z throughout this paper.

Note that (2.3) is not the unique way to define a commuting SYK-like Hamiltonian. Here
we construct a commuting SYK Hamiltonian using a set of bi-fermion bosonic operators
Xi for i = 1, · · · , N/2, which only works for even N . To define more general commuting
SYK Hamiltonian, we can first set a few groups labeled by α and for each α we define
a set of bi-fermion bosonic operators Xα

i . For each group, we can define a Hamiltonian
Hα =

∑
{ik} J

α
i1···iq/2

Xα
i1 · · ·X

α
iq/2

and the total Hamiltonian is H =
∑
αH

α. Note that Xα
i

defined for different α could have overlapped fermions but we need to make sure that each term
in Hα has even numbers of overlapped fermions with all terms in other Hα′ . Besides, another
type of integrable commuting SYK-like model has been studied in [29, 30], in which the
complexity growth was mainly discussed. For simplicity, we will only focus on the commuting
SYK model defined in (2.3) and leave other constructions as a future direction of research.

Since each term in the Hamiltonian is commutative to each other, we can exponentiate
it exactly before the ensemble average. Using the fact

(XI)2 = (−1/4)q/2 = 1/2q (2.5)

we have

eτH =
∏
I

eτJIXI =
∏
I

(
cosh τJI

2q/2 + 2q/2XI sinh
τJI
2q/2

)
(2.6)

For eτH moving across ψi, we have

eτHψi =
∏
I

(
cosh τJI

2q/2 + 2q/2XI sinh
τJI
2q/2

)
ψi

= ψi
∏
i/∈I

(
cosh τJI

2q/2 + 2q/2XI sinh
τJI
2q/2

)∏
i∈I

(
cosh τJI

2q/2 − 2q/2XI sinh
τJI
2q/2

)
(2.7)

where ∈ means the index i is in the string I of indices of fermions and we used the fact that
[ψi,XI ] = 0 if i /∈ I and {ψi,XI} = 0 if i ∈ I. We define a new notation

Fcondition(τ) ≡
∏

condition

(
cosh τJI

2q/2 + 2q/2XI sinh
τJI
2q/2

)
(2.8)

where the condition could be i ∈ I, i, j /∈ I, etc. Each term in the product commutes with
others. F has normalization Fc(0) = I. The product of two F ’s with the same condition
has an addition rule

Fc(τ1)Fc(τ2) = Fc(τ1 + τ2) (2.9)

The product of two F with the same argument but different conditions has a union rule

Fc1(τ)Fc2(τ) = Fc1∪c2(τ) (2.10)

For the product of all I, we just simply write F (τ). Then (2.7) can be written as

F (τ)ψi = ψiFi/∈I(τ)Fi∈I(−τ) (2.11)

As we will see as follows, all computations of this model boil down to repetitively using
the rules (2.9), (2.10), (2.11) and their variants.
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2.2 Partition function and spectrum

The partition function is

Z = Tre−βH = F (−β) = Tr
∏
I

(
cosh βJI

2q/2 − 2q/2XI sinh
βJI
2q/2

)
(2.12)

Taking the ensemble average for the above expression and using

1√
2πσ2

∫
dJIe−J 2

I /(2σ2) sinh aJI = 0, 1√
2πσ2

∫
dJIe−J 2

I /(2σ2) cosh aJI = e
1
2a

2σ2 (2.13)

we have

Z = exp
(

c

2q+1β
2σ2

)
(2.14)

where c = C
q/2
N/2 = (N/2)!

(N/2−q/2)!(q/2)! is the total number of index choices of I. By (2.4), we have

Z = exp(Nβ2J 2/(4q)) (2.15)

Using the inverse Laplace transformation, we can derive the averaged spectrum

Z =
∫
dEe−βEρ(E) =⇒ ρ(E) = 1

J

√
q

πN
exp(−qE2/(NJ 2)) (2.16)

which is a Gaussian distribution [25]. This spectrum has no
√
E edge behavior that is from

the ordinary SYK model [3, 31]. Since it does not have a dense spectrum near the edge,
we should expect that this model is non-holographic. The easiest way to understand the
Gaussian spectrum is by noting that each term in the Hamiltonian is commuting and has
eigenvalue ±1/2q/2JI because of (2.5). As we assume that JI obeys Gaussian distribution,
the energy spectrum should simply follow.

2.3 Two-point function

Consider the two-point function in finite temperature

Gi(τ) =
1
Z

Tr
(
e−βHψi(τ)ψi(0)

)
, ψi(τ) = eτHψie

−τH (2.17)

Using (2.11), it follows that

Gi(τ) =
1
2ZTr [Fi/∈I(−β)Fi∈I(2τ − β)] (2.18)

For ensemble average, in this paper, we will take an approximation by averaging the numerator
and denominator independently (self-averaging), which gives an error scales as N1−q/2 by
the highly narrow Gaussian distribution (2.4). As we mentioned in section 2.1, this model
has a spin glass phase when N → ∞ and T < Tc, in which the ensemble average between
replicas becomes crucial. Therefore, for large N case the self-average approximation only
holds for T > Tc. For finite and small N , there is no phase transition and we expect our
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self-average approximation should hold (at least qualitatively) as long as the temperature
is not too low. Using (2.13) we have

Gi(τ) ≈
1
2Z

Tr

∏
i/∈I

(
cosh βJI

2q/2

)∏
i∈I

(
cosh (2τ − β)JI

2q/2

)
= 1
2Z

exp
(
(ci/∈Iβ2 + ci∈I(2τ − β)2)σ2

2q+1

)
(2.19)

where ci∈I = C
q/2−1
N/2−1 = (N/2−1)!

(q/2−1)!(N/2−q/2)! is the number of I that obeys i ∈ I. By (2.15),
we have

Gi(τ) =
1
2 exp

(
−ci∈Iσ

2τ(β − τ)
2q−1

)
(2.20)

which has correct normalization being 1/2 at τ = 0, β and decays away from τ = 0, β as
expected. By (2.4), we have

Gi(τ) =
1
2 exp

(
−J 2τ(β − τ)

)
(2.21)

Analytic continuation to Lorentzian time τ → it, we have Gaussian decay two-point function

Gi(t) =
1
2 exp

(
−J 2t2 − iJ 2βt

)
(2.22)

Clearly, this two-point function implies that this model is non-holographic because it de-
cays as a Gaussian tail with oscillation rather than an exponential e−αt with rate proportional
to temperature 1/β. The decay of the two-point function indicates the “thermalization” pro-
cess in which the excitation ψi mixes with other degrees of freedom. Here we quote the term
“thermalization” to indicate that it is different from the ordinary thermalization in the sense of
Eigenvalue Thermalization Hypothesis (ETH) (for a review see e.g. [32]). Instead, throughout
this paper we simply refer the “thermalizaiton” as the decay of the two-point function in
the commuting SYK model due to degrees of freedom mixing. Notably, the thermalization
has an additional feature of oscillation, which reflects the integrability of the underlying
model, in which the excitation ψi has an effective (ensemble-averaged) characteristic frequency
J 2β. This frequency can be understood as the energy change due to a ψi excitation on the
thermal state in leading order of β, namely δEψ ≈ Tr(e−βHψiHψi)/Z ≈ βJ 2 +O(β2). In a
holographic model (e.g. full SYK model), there is no oscillation in two-point functions.

2.4 Four-point function

The next to consider is four-point function. Let us take (for i ̸= j)

Wij(τ1, τ2, τ3, τ4) =
1
Z

Tr
(
e−βHψi(τ1)ψj(τ2)ψi(τ3)ψj(τ4)

)
, β > τ1 > τ2 > τ3 > τ4 > 0

(2.23)
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Using (2.11), we can move two ψi’s and ψj ’s next to each other and annihilate them,
which leads to

Wij =
1
Z

Tr (F (τ14 − β)ψiF (τ21)ψjF (τ32)ψiF (τ43)ψj)

=− 1
Z

Tr
(
F (τ14 − β)ψiψiFi/∈I(τ21)Fi∈I(τ12)ψjψjFi/∈I,j /∈I(τ32)Fi/∈I,j∈I(τ23)

Fi∈I,j /∈I(τ23)Fi∈I,j∈I(τ32)Fj /∈I(τ43)Fj∈I(τ34)
)

=− 1
4ZTr

(
Fi/∈I,j /∈I(−β)Fi/∈I,j∈I(2τ24 − β)Fi∈I,j /∈I(2τ13 − β)Fi∈I,j∈I(2(τ12 + τ34)− β)

)
(2.24)

where in the last step we used (2.9) and (2.10) to organize all F ’s into four groups. For (2.24),
we can take the ensemble average independently, which basically replaces each F (τ) with
Gaussian function

Wij = − 1
4Z

exp
(
(ci/∈I,j∈I(2τ24 − β)2 + ci∈I,j /∈I(2τ13 − β)2 + ci∈I,j∈I(2(τ12 + τ34)− β)2)σ2

2q+1

)
(2.25)

where ccondition means the number of I that obeys the condition.
There are two cases. For ψi, ψj not in one Xk

ci/∈I,j∈I = ci/∈I,j∈I = C
q/2−1
N/2−2 ≈ (N/2− 2)q/2−1

(q/2− 1)! , ci∈I,j∈I = C
q/2−2
N/2−2 ≈ (N/2− 2)q/2−2

(q/2− 2)!
(2.26)

and for ψi, ψj in one Xk (e.g. i = 2k − 1 and j = 2k)

ci/∈I,j∈I = ci/∈I,j∈I = 0, ci∈I,j∈I = C
q/2−1
N/2−1 ≈ (N/2− 1)q/2−1

(q/2− 1)! (2.27)

Here the approximation is under the large N limit. It follows that

Wij =−1
4 exp

(
−σ2 ci/∈I,j∈I (τ24(β−τ24)+τ13(β−τ13))

2q−1 −σ2 ci∈I,j∈I(τ12+τ34)(β−τ12−τ34)
2q−1

)

≈−1
4

e−J 2(τ24(β−τ24)+τ13(β−τ13))− (q−2)J 2
N

(τ12+τ34)(β−τ12−τ34) ψi ∈Xk,ψj ∈Xk′

e−J 2(τ12+τ34)(β−τ12−τ34) ψi,ψj ∈Xk

(2.28)

where the first term in the first line is just the factorized two point function in large N limit
and the second term is the 1/N correction for the non-factorized part. It is interesting that
for the second case, there is no factorized piece but the non-factorized piece is enhanced by
N . If we take i = j, following the same computation, the result is the same as the second
line of (2.28) with an additional minus sign.

Quantum chaos can be diagnosed by out-of-time-ordered correlators (OTOC) near the
scrambling time [33–35]. For a quantum system with large N degrees of freedom, a typical
OTOC of interest is

WOTOC(t) =
1
Z

Tr
(
e−βHO1(t)O2(0)O1(t)O2(0)

)
(2.29)
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whose leading behavior is

WOTOC(t) ∼ d1 − d2f(t)/N (2.30)

with f(t) = eλt for fast-scrambling systems [3, 33–37] and non-exponential f(t) for other
slow-scrambling systems. Holographic systems should have fast-scrambling and in particular
in the strong coupling regime with semiclassical gravity dual should saturate the chaos bound
λ = 2π/β [38] because it is related to the boost symmetry near horizon [33]. SYK model is
a well-known example that has λ = 2π/β in low temperature limit and λ < 2π/β in finite
temperature [3]. For the commuting SYK model, we would like to check the scrambling
feature by OTOC. Taking τ1 = τ3 = it and τ2 = τ4 = 0, we have

WOTOC(t) = −1
4

exp
(
− (q−2)

N J 2(4t2 + 2iβt)
)
≈ 1− 4(q − 2)J 2t2/N i ∈ Xk, j ∈ Xk′

exp
(
−J 2(4t2 + 2iβt)

)
≈ 1− 4J 2t2 i, j ∈ Xk

(2.31)
where we expand the exponent in leading order of 1/N and assume t ≫ β. Comparing
with the general form (2.30), we find that this model is slow-scrambling because f(t) ∼ t2

is quadratic. This slow scrambling behavior for q = 4 was studied before, for example,
in [39]. Due to the quadratic growth, we can also identify the scrambling time as O(

√
N)

from (2.31). On the other hand, the imaginary part of the exponent in (2.31) again has
effective frequency of oscillation proportional to βJ 2.

This difference to the ordinary SYK model can be qualitatively understood as follows.
The OTOC (2.29) essentially uses O2(0) to probe how fast the operator O1(t) is scrambled
along time. The fast scrambling of ordinary SYK model is analogous to the pandemic model,
in which the all-to-all random non-integrable Hamiltonian couples each fermion with any
other fermions such that the operator size growth rate of ψi(t) is proportional to the size
itself [40, 41]. This leads to the exponential growth of OTOC because the probability being
probed by another fermion ψi should be proportional to the size of ψi(t). On the other hand,
though the commuting SYK also has all-to-all random coupling in (2.3), the coupling is much
more sparse and in a form with integrability. Existence of large number of conserved charges
Xi prevents many quantities from scrambling. For example, eiHtXie

−iHt = Xi implies that
any product of Xi does not scramble. As we will see in section 3.4, the operator size growth
in commuting SYK model is quadratic and thus the growth of OTOC follows the same rule.
Another thing to mention is that the second case of (2.31) has order N enhancement to the
first case because when the source ψi and probe ψj are in the same Xk, there are Cq/2−1

N/2−1
terms in the Hamiltonian scrambling the source and is also detectable by the probe, but
when the source and probe are in two different Xk, there are only Cq/2−2

N/2−2 terms do the same
job, which is 1/N smaller than the former case. By above analysis of OTOC and scrambling
features in the commuting SYK model, we see again that this model is not holographic.

3 Commuting SYK has some holography-like features

In the last section, we have shown that the commuting SYK model is not holographic by
checking its spectrum, two-point, and four-point functions. Nevertheless, this model is not
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as trivial as it looks so far. In this section, we will show that the commuting SYK model
has some holography-like features, especially near-perfect size-winding in high temperatures,
which was thought as a significant property of holographic systems [11, 12].

By the essence of the ensemble average (2.13), we know that the J dependence is only
through βJ or τJ , where τ is an Euclidean time variable. For a simpler notation, we will
rescale β and τ with a factor of 1/J , which is equivalent to setting J = 1, in the rest of
the paper. To recover the J dependence, we just need to replace β → βJ and τ → τJ
in the following equations.

In order to check size distribution and size winding [11, 12], we can consider the two-sided
system. Define two commuting SYK models labeled as left l and right r

{ψai , ψbj} = δabδij , Ha =
∑
I

JIX a
I , a, b = l, r (3.1)

The size operator is

S = N/2 +
∑
j

iψljψ
r
j = N/2 + V (3.2)

which measures the size of a right size-basis of operators ΓrI = 2s/2i|I|(|I|−1)/2ψri1 · · ·ψ
r
is = Γr†I

as |I| = s by the expectation value [41]〈
0|Γr†I S

kΓrJ |0
〉
=
〈
0|ΓrISkΓrJ |0

〉
= skδIJ (3.3)

where the size-basis is normalized (ΓrI)2 = 1 and |0⟩ is an EPR state defined by

ψlj + iψrj |0⟩ = 0, ⟨0|0⟩ = 1 (3.4)

By this definition, the size of operator ΓrI means the length |I| of the string of indices I.
By q = 4Z and we have symmetry

Hl |0⟩ = Hr |0⟩ , ψlj(t) |0⟩ = −iψrj (−t) |0⟩ (3.5)

3.1 Size distribution

Introducing the left (auxiliary) system helps compute the size-related quantities in the right
system. We are interested in the size distribution of ψrj (t)ρ

1/2
r where ρr = 1

Z e
−βHr . To define

the size distribution, we first expand this right operator in terms of the right size-basis

ψrj (t)ρ1/2 = 1√
2
∑
I

cI(t)ΓrI (3.6)

Note that this expansion is always possible because ΓrI are 2N independent (and also orthogonal
in the sense of (3.3) for k = 0) operators spanning the full space of operators in the right
system. We define the size distribution of ψrj (t)ρ

1/2
r as

Pn(t) =
∑
|I|=n

|cI(t)|2 (3.7)
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The distribution is unity normalized

N∑
n=0

Pn(t) = 2
〈
0|ρ1/2

r ψrj (t)ψrj (t)ρ1/2
r |0

〉
= 1 (3.8)

To compute the distribution, we can instead compute the generating function [41]

Kµ(t) =
〈
0|ρ1/2

r ψrj (t)e−µSψrj (t)ρ1/2
r |0

〉
= 1

2
∑
I

|cI(t)|2e−µ|I| (3.9)

The normalization of size distribution leads to K0(t) = 1/2.
To compute this, we start with the Euclidean time correlation function

kµ(τ) =
〈
0|ρ1/2

r ψrj (τ)e−µV ψrj (τ)ρ1/2
r |0

〉
(3.10)

and analytically continue τ → it in the end. Let us first expand e−µV as

e−µV =
∏
j

e−µiψ
l
jψ

r
j =

∏
j

(
cosh µ2 − 2iψljψrj sinh

µ

2

)

=
∑
I

(
cosh µ2

)N−|I| (
−i sinh µ2

)|I|
ΓlIΓrI (3.11)

Taking this back to (3.10), we have

kµ(τ)=
∑
I

(
cosh µ2

)N−|I|(
−isinh µ2

)|I|〈
0|ρ1/2

r ψrj (τ)ΓlIΓrIψrj (τ)ρ1/2
r |0

〉
= 1
Z

∑
I

(
cosh µ2

)N−|I|(
−sinh µ2

)|I|
Trr

(
ΓrIF (τ−β/2)ψrjF (−τ)ΓrIF (τ)ψrjF (−τ−β/2)

)
= 1
2Z

∑
I

(
cosh µ2

)N−|I|(
sinh µ2

)|I|
(−)|j∩I|

×Trr
(
ΓrIFj /∈J(−β/2)Fj∈J(2τ−β/2)ΓrIFj /∈J(−β/2)Fj∈J(−2τ−β/2)

)
(3.12)

where in the second line we move ΓlI to the left to act on ⟨0| and rewrite the expectation
value as a trace in the right system, and in the last line we move one ψrj across many terms
to annihilate the other ψrj . The next step is to move ΓrI across the two F ’s and annihilate
the other ΓrI . Use the notation Z± referring to even/odd integers respectively. We have
the following property generalized from (2.11)

Fc(τ)ΓrI = ΓrIFc,|I∩J |∈Z+(τ)Fc,|I∩J |∈Z−(−τ), c = j ∈ J or j /∈ J (3.13)

where |I ∩ J | means the number of overlapping fermionic indices between I and J . Moving
ΓrI across two F ’s in (3.12) leads to

kµ(τ) =
1
2Z

∑
I

(
cosh µ2

)N−|I| (
sinh µ2

)|I|
(−)|j∩I|Tr

(
F|I∩J |∈Z+(−β)Fj∈J,|I∩J |∈Z−(−4τ)

)
(3.14)
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where we used (2.9) and (2.10) to combine a few F ’s together. After the ensemble average,
we have

kµ(τ) =
1
2Z

∑
I

(
cosh µ2

)N−|I| (
sinh µ2

)|I|
(−)|j∩I| exp

(
c|I∩J |∈Z+β

2 + cj∈J,|I∩J |∈Z−(4τ)2

2q+1σ−2

)

=1
2
∑
I

(
cosh µ2

)N−|I| (
sinh µ2

)|I|
(−)|j∩I| exp

(
−c|I∩J |∈Z−β

2 + cj∈J,|I∩J |∈Z−(4τ)2

2q+1σ−2

)
(3.15)

where we used (2.15) and

call = c|I∩J |∈Z+ + c|I∩J |∈Z− = C
q/2
N/2 (3.16)

For simplicity, in the rest of this paper, we only consider q = 4. This is the case for
the original Sherrington-Kirkpatrick (SK) model. With our notation J = 1, the critical
temperature is Tc = 1/βc = 1 in large N limit [21]. Note that each Xi = ψ2i−1ψ2i contains
two successive indices for fermions. Given an I, let us split it into two categories: only one
index of a Xi is overlapped with I, or both indices of a Xi is overlapped with I. We count
the number of the former indices in I as i1 and others as i2. For example, if I = (1, 2, 5, 9),
then (1, 2) overlap with X1, (5) overlaps with X3 and (9) overlaps with X5, from which we
count i1 = 2 and i2 = 1. It is clear that |I| = i1 + 2i2. For q = 4, XJ = Xj1Xj2 , and we only
need to check two X in the counting of c for all possible J . It does not matter which j we
choose in (3.15), so we will take j = 1. Moreover, |I ∩ J | can only take values 0, 1, 2, 3, 4.
The counting for c’s in (3.15) are as follows.

1. Compute cj∈J,|I∩J |∈Z− . For 1 ∈ J , say j1 = 1. There are two cases: a) 1 or 2 ∈ I, b)
1, 2 /∈ I or 1, 2 ∈ I. For a) |I∩J | counts from 1, and j2 needs to be chosen to avoid i1−1
choices from total N/2−1 choices, which gives |I∩J | = 1, 3 and cj∈J,|I∩J |∈Z− = N/2−i1;
for b) |I ∩ J | counts from 0 or 2, and j2 are those covering i1 choices, which gives
|I ∩ J | = 1, 3 and cj∈J,|I∩J |∈Z− = i1.

2. Compute cj /∈J,|I∩J |∈Z− . There are again the two cases: a) 1 or 2 ∈ I, b) 1, 2 /∈ I, or
1, 2 ∈ I. For a) j1 needs to be chosen from i1 − 1 choices andj2 can be any other
N/2− i1 choices that lead to |I ∩ J | = 1, 3 and cj /∈J,|I∩J |∈Z− = (i1 − 1)(N/2− i1); for
b) j1 needs to be chosen from i1 choices and j2 can be any other N/2− 1− i1 choices
that lead to |I ∩ J | = 1, 3 and cj /∈J,|I∩J |∈Z− = i1(N/2− i1 − 1).

The number c|I∩J |∈Z− in (3.15) is the sum over the above two numbers.
There is a (−)|j∩I| factor that one needs to be careful with. Given i1 and i2, depending

on |j ∩ I| = 0, 1, the total numbers of possible I are different but they have opposite sign.
The counting is as follows

1. |j∩I| = 0, namely 1 /∈ I. For case a), 2 ∈ I, the total number of I is 2i1−1Ci1−1
N/2−1C

i2
N/2−i1 ;

for case b), 2 /∈ I, the total number of I is 2i1Ci1N/2−1C
i2
N/2−i1−1.

2. |j∩I| = 1, namely 1 ∈ I. For case a), 2 /∈ I, the total number of I is 2i1−1Ci1−1
N/2−1C

i2
N/2−i1 ;

for case b), 2 ∈ I, the total number of I is 2i1Ci1N/2−1C
i2−1
N/2−i1−1.
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It is noteworthy in (3.15) that for case a) the exponential piece is the same and the total
number of I in both |j ∩ I| = 0 and |j ∩ I| = 1 are also the same. The factor (−)|j∩I| leads to
complete cancellation between these two parts. For case b), the cancellation is partial because

2i1Ci1N/2−1C
i2
N/2−i1−1 − 2i1Ci1N/2−1C

i2−1
N/2−i1−1 = 2i1(N/2− 1)!(N/2− i1 − 2i2)

i1!i2!(N/2− i1 − i2)!
(3.17)

Taking the above analysis together, it follows that

kµ(τ)
(N/2−1)! =

1
2
∑
i1,i2

(
cosh µ2

)N−i1−2i2 (
sinh µ2

)i1+2i2 2i1(N/2−i1−2i2)
i1!i2!(N/2−i1−i2)!

e
−i1(N/2−i1)β2+i1(4τ)2

2(N−2)

=1
2

N/2∑
i1=0

2i1
(
cosh µ

2
)N−i1 (sinh µ

2
)i1

i1!
e

−i1(N/2−i1)β2+i1(4τ)2
2(N−2)

N/2−i1∑
i2=0

(tanh µ2 )
2i2 N/2−i1−2i2
i2!(N/2−i1−i2)!

=1
2

N/2−1∑
i1=0

(coshµ)N/2−i1−1(sinhµ)i1
i1!(N/2−1−i1)!

e
−i1(N/2−i1)β2+i1(4τ)2

2(N−2) (3.18)

where we have used σ−2 = (N/2− 1)/(23) for q = 4 and J = 1. From (3.18), we can confirm
the normalization of the size distribution

K0 = k0 = 1
2 (3.19)

where only i1 = 0 term survives. Continuing τ → it, we have the generating function Kµ(t) as

Kµ(t) = e−µN/2kµ(it)

=
N/2−1∑
n=0

e−µ(2n+1)
N/2−1∑
i1=0

min{n,i1}∑
k=max{0,n+i1+1−N/2}

(N/2− 1)!Cn−kN/2−i1−1C
k
i1(−)k

2N/2i1!(N/2− 1− i1)!
e

−i1(N/2−i1)β2−i1(4t)2
2(N−2)

(3.20)

Comparing with (3.9) yields the size distribution

P2n+1(t) =
1

2N/2−1

N/2−1∑
i1=0

min{n,i1}∑
k=max{0,n+i1+1−N/2}

(N/2− 1)!(−)k exp
(
−i1(N/2−i1)β2−i1(4t)2

2(N−2)

)
(i1 − k)!k!(N/2− 1− i1 − n+ k)!(n− k)!

(3.21)

3.2 Size-winding

While size distribution computes the magnitude of the coefficients in the expansion (3.6), we
are also interested in their phases. For holographic systems, it has been argued in [11, 12]
that the phase of cI(t) is linear in their size, namely

cI(t) ≡ rI(t)eiϕI(t), ϕI(t) = a1 + a2|I|, rI(t), ϕI(t) ∈ R (3.22)

This nontrivial feature is called size-winding and it is the microscopic mechanism for the
traversable wormhole teleportation protocol.
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To check the size-winding, we need to compute a different generating function

Gµ(t) = −i
〈
0|ρ1/2

l ψlj(−t)e−µSψrj (t)ρ1/2
r |0

〉
=
〈
0|ψrj (t)ρ1/2

r e−µSψrj (t)ρ1/2
r |0

〉
= 1

2
∑
I

cI(t)2
〈
0|ΓrIe−µSΓrI |0

〉
= 1

2
∑
I

cI(t)2e−µ|I| (3.23)

and define

Qn(t) =
∑
|I|=n

cI(t)2 (3.24)

By definition |Qn(t)| ≤ Pn(t). Note that this generating function can only probe the averaged
phase of coefficients with same size rather than the phase of each individual coefficient.
Nevertheless, it is still a good measure for size winding, which can be characterized by the
following two properties of Pn and Qn [18, 19]

1. The phase of Qn(t) is a linear function of n

2. The ratio between rn = |Qn(t)|/Pn(t) should be close to one.

The first property states that the averaged phase for the basis with the same size is proportional
to the size, and the second property states that the phases of these bases with the same size
are also aligned (otherwise their cancellation leads to rn less than one).

The argument for the size-winding of holographic systems by [11, 12] is briefly reviewed
as follows. For holographic systems, there is a bulk computation for Gµ(t) by regarding
it as a bulk scattering process between the null shockwaves generated by ψlj(−t)ψrj (t) and
V = i

∑
j ψ

l
jψ

r
j at t = 0 respectively in the near-AdS2 background [42]. It has been shown that

the ground state |G⟩ of Ê = Hl+Hr+µV is dual to an eternal traversable wormhole [43]. The
ground state |G⟩ has order one overlap with the thermofield double state |TFD⟩ = ρ

1/2
r |0⟩

that has a boost symmetry B̂ |TFD⟩ ≡ Hr − Hl |TFD⟩ = 0. Therefore, we can regard
Ê = Hl +Hr + µV − E0 as an extra approximate symmetry of |TFD⟩ with µ,E0 chosen
such that Ê |TFD⟩ ≈ 0. The bulk dual of thermofield double state is near-AdS2 that has
an isometry of SL(2). It was shown in [44] that Ê generates the global time translation in
near-AdS2 spacetime, and Ê, B̂ and [Ê, B̂] indeed form the three generators of the SL(2)
isometry of near-AdS2 spacetime.

The translation generators along the two null directions of near-AdS2 are linear combina-
tions of Ê and B̂: P̂± = −1

2(Ê ± B̂). In particular, −P̂+ = Hr + µV/2 +E0/2, where the Hr

can be replaced by its expectation value in thermofield double state if we consider t≫ β [12].
Therefore, the size operator S is indeed approximately dual to the null momentum P̂+ up to
a constant [42–44]. It follows that we can expand Gµ(t) in the null momentum basis |p⟩

Gµ(t) ∝
∫
dpe−µp

〈
TFD|ψlj(−t)|p

〉〈
p|ψrj (t)|TFD

〉
(3.25)

Comparing with (3.23), we can identify that

Qp(t) =
〈
TFD|ψlj(−t)|p

〉〈
p|ψrj (t)|TFD

〉
(3.26)
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where the r.h.s. is the wavefunction in AdS2 and can be computed directly using the SL(2)
isometry [45]. Similarly, there is a bulk computation for Kµ(t) by understanding ψrj (t) as
a left operator ψlj(iβ/2 − t) acting on |TFD⟩. It turns out that the SL(2) isometry leads
to perfect size winding [12, 42, 44]

Qp(t) = Pp(t)eia1+ia2p, a2 ∝ e−2πt/β (3.27)

For the non-holographic commuting SYK model, it does not have a bulk alternative
to guarantee the size-winding. Therefore, it would more appealing to understand how that
could happen in some parameter regimes. To compute Gµ(t), we again start with the
Euclidean version

gµ(τ) = −i
〈
0|ρ1/2

l ψlj(−τ)e−µV ψrj (τ)ρ1/2
r |0

〉
=
〈
0|ψrj (τ)ρ1/2

r e−µV ψrj (τ)ρ1/2
r |0

〉
(3.28)

Taking (3.11) into (3.28) and following a similar computation as (3.12) to annihilate two
ψrj yields

gµ(τ) =
1
2Z

∑
I

(
cosh µ2

)N−|I| (
sinh µ2

)|I|
(−)|j∩I|

× Trr
(
ΓrIFj /∈J(−β/2)Fj∈J(2τ + β/2)ΓrIFj /∈J(−β/2)Fj∈J(−2τ − β/2)

)
(3.29)

Using (3.13), (ΓrI)2 = 1 and Fc(0) = 1, it follows that

gµ(τ)

= 1
2Z

∑
I

(
cosh µ2

)N−|I| (
sinh µ2

)|I|
(−)|j∩I|Trr

(
Fj /∈J,|I∩J |∈Z+(−β)Fj∈J,|I∩J |∈Z−(−4τ − β)

)
(3.30)

Let us take the ensemble average, which leads to

gµ(τ) =
1
2Z

∑
I

(
cosh µ2

)N−|I| (
sinh µ2

)|I|
(−)|j∩I|e

cj /∈J,|I∩J|∈Z+
β2+cj∈J,|I∩J|∈Z−

(4τ+β)2

2q+1σ−2

= e−β
2/4

2
∑
I

(
cosh µ2

)N−|I| (
sinh µ2

)|I|
(−)|j∩I|e

−cj /∈J,|I∩J|∈Z−
β2+cj∈J,|I∩J|∈Z−

(4τ+β)2

2q+1σ−2

(3.31)

where in the last step we used the fact

cj /∈J = cj /∈J,|I∩J |∈Z+ + cj /∈J,|I∩J |∈Z− = C
q/2
N/2−1 (3.32)

Take q = 4. The counting of coefficients are exactly the same as section 3.1. By the
cancellation due to (−)|j∩I| we have

gµ(τ)
(N/2− 1)!

= e−β
2/4

2
∑
i1,i2

(
cosh µ2

)N−i1−2i2 (
sinh µ2

)i1+2i2 2i1(N/2− i1 − 2i2)
i1!i2!(N/2− i1 − i2)!

e
−i1(N/2−i1−1)β2+i1(β+4τ)2

2(N−2)
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= e−β
2/4

2

N/2∑
i1=0

2i1(cosh µ
2 )
N−i1(sinh µ

2 )
i1

i1!
e

−i1(N/2−i1−1)β2+i1(β+4τ)2
2(N−2)

N/2−i1∑
i2=0

(
tanh µ2

)2i2 N/2− i1 − 2i2
i2!(N/2− i1 − i2)!

= e−β
2/4

2

N/2−1∑
i1=0

(coshµ)N/2−i1−1(sinhµ)i1
i1!(N/2− 1− i1)!

e
−i1(N/2−i1−1)β2+i1(β+4τ)2

2(N−2) (3.33)

Multiplying e−µN/2 and continuing τ → it, we can expand Gµ(t) in power series of e−µ

Gµ(t)= e−µN/2gµ(it)

=
N/2−1∑

n=0
e−µ(2n+1)

N/2−1∑
i1=0

min{n,i1}∑
k=max{0,n+i1+1−N/2}

(N/2−1)!Cn−k
N/2−i1−1C

k
i1
(−)k

eβ2/42N/2i1!(N/2−1−i1)!
e

−i1(N/2−i1−1)β2+i1(β+4it)2
2(N−2)

(3.34)

Comparing with (3.23), we have

Q2n+1(t)

= e−β
2/4

2N/2−1

N/2−1∑
i1=0

min{n,i1}∑
k=max{0,n+i1+1−N/2}

(N/2− 1)!(−)k exp
(
−i1(N/2−i1−1)β2+i1(β+4it)2

2(N−2)

)
(i1 − k)!k!(N/2− 1− i1 − n+ k)!(n− k)!

(3.35)

3.3 Saddle approximation for size distribution and size winding

Given the exact formula for P2n+1(t) and Q2n+1(t) by (3.21) and (3.35), it is not obvious to
check if the size winding is satisfied or not. However, in large N limit, we can do a saddle
approximation and have better analytic control of them. Let us first rewrite the sum in (3.18)
and (3.33) in terms of an integral by the trick

eau
2+bu = 1√

aπ

∫
dxe−

1
a
x2+(2x+b)u (3.36)

It follows for the size distribution that

e−µN/2kµ(τ) =
e−µN/2Γ(N/2)

2
√
a′π

∫
dx

N/2−1∑
i1=0

(coshµ)N/2−i1−1(sinhµ)i1
i1!(N/2− 1− i1)!

e−
1
a′ x

2+(2x+b′)i1

= e−µN/2

2
√
a′π

∫
dxe−

1
a′ x

2 (
coshµ+ sinhµe2x+b′

)N/2−1

= e−µ

2N/2
√
a′π

∫
dxe−

1
a′ x

2 (
(1 + e−2µ) + (1− e−2µ)e2x+b′

)N/2−1
(3.37)

where
a′ = β2

4(N/2− 1) , b′ = 16τ2 − β2

4(N/2− 1) − β2/4 (3.38)

We can evaluate the integral in (3.37) using saddle approximation as

1√
2a′π

∫
dxe−

1
a′ F (x) ≈ 1√

F ′′(x0)
e−

1
a′ F (x0) (3.39)
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where
F (x) = x2 − β2

4 log
(
(1 + e−2µ) + (1− e−2µ)e2x+b′

)
(3.40)

The saddle equation is

x = β2

4
(1− e−2µ)e2x+b′

(1 + e−2µ) + (1− e−2µ)e2x+b′ (3.41)

Since we are looking for a size distribution that could be as large as O(N), we need to set
µ ∼ O(1/N). For such a small µ, the solution of (3.41) is very close to zero and of order
∼ (1 − e−2µ), which gives an approximate solution

x0 ≈ β2

4
(1− e−2µ)eb′

(1 + e−2µ) + (1− e−2µ)eb′ (3.42)

Taking this back to (3.40), we have

F (x0) = x2
0 −

β2

4 log
(
(1 + e−2µ) + (1− e−2µ)e2x0eb

′) (3.43)

F ′′(x0) = 2− β2e2x0+b′(1− e−4µ)
(e2x0(1− e−2µ) + eb′(1 + e−2µ))2 (3.44)

Taking these two equations into (3.37) and using (3.39), we can expand it in powers series of
e−2µ. This power series need to be truncated at N/2− 1 order because N − 1 is the maximal
size of a fermionic operator. This expansion is complicated but in high temperature β ≪ 1
we will have a good simplification. In this case x0 is further suppressed by β2e−β

2/4 ≪ 1
and we can approximate x0 ≈ 0 in (3.39). It follows that

e−µN/2kµ(τ) ≈
e−µ

2N/2

(
(1 + e−2µ) + (1− e−2µ)eb′

)N/2−1

=
N/2−1∑
n=0

e−(2n+1)µ

2N/2 CnN/2−1(1 + eb
′)N/2−1−n(1− eb

′)n (3.45)

which leads to

P2n+1(t) =
1

2N/2−1C
n
N/2−1(1 + e−bp(t))N/2−1−n(1− e−bp(t))n, bp(t) =

16t2 + β2

4(N/2− 1) + β2/4

(3.46)
Similarly, for size winding, we have

e−µN/2gµ(τ) =
e−β

2/4e−µN/2Γ(N/2)
2
√
a′π

∫
dx

N/2−1∑
i1=0

(coshµ)N/2−i1−1(sinhµ)i1
i1!(N/2− 1− i1)!

e−
1
a′ x

2+(2x+b′′)i1

= e−β
2/4e−µ

2N/2
√
a′π

∫
dxe−

1
a′ x

2 (
(1 + e−2µ) + (1− e−2µ)e2x+b′′

)N/2−1
(3.47)

where
b′′ = (β + 4τ)2

4(N/2− 1) − β2/4 (3.48)
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(e) β = 1/3, t = −7
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Figure 1. The comparison between the simplified saddle approximation and exact results with
N = 100 and for high temperature β = 1/3 (a,c,e) and intermediate temperature β = 0.95 < βc

(b,d,f). In the P2n+1, |Q2n+1| plots, the blue dots are exact values of P2n+1 and the red dots are exact
values of |Q2n+1|; the yellow joint lines are saddle approximation of P2n+1 and the green joint lines are
saddle approximation of |Q2n+1|. In the argQ2n+1 plots, the blue dots are exact values of argQ2n+1
and the yellow joint lines are saddle approximation of argQ2n+1. In (b) where the simplified saddle
approximation does not work very well, we plot the saddle approximation using (3.42). The purple
joint line is P2n+1,the gray joint line is |Q2n+1| in the left picture, and the green joint line is argQ2n+1
in the right picture. For n not too big, the saddle approximation is improved, but for large n it loses
accuracy and we need to improve the saddle location x0 further in (3.42).

The saddle approximation is the same as before, which sets x0 = 0 in the leading order
of small µ. This leads to

Q2n+1(t) =
e−β

2/4

2N/2−1C
n
N/2−1(1+e

−bq(t))N/2−1−n(1−e−bq(t))n, bq(t) =
16t2 − β2 − 8iβt

4(N/2− 1) +β2/4

(3.49)
Note that the phase of Q2n+1(t) is perfectly proportional to the size because 1+e−bq(t) has

fixed phase ϕ1 and 1−e−bq(t) has fixed phase ϕ2, which together leads to the phase of (3.49) as
(N/2−1)ϕ1+(ϕ2−ϕ1)n, which is linear in size 2n+1. By (3.49) the slope to n of the phase is

ϕ2 − ϕ1 = arg 1− e−bq(t)

1 + e−bq(t) ≈ − 4βt/N
sinh(β2/4 + (16t2 − β2)/(2N)) (3.50)

which increases with t until the scrambling scale and then decreases. A few numerics with
N = 100 in figure 1 shows that the simplified saddle approximation (3.46) and (3.49) is quite
good for high temperatures. One might complain that the saddle approximation for the
phase of Q2n+1 is not quite good for large and small n, especially at early time in figure 1(a).
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0.5 1.0 1.5 2.0 2.5 3.0
n

0.1

0.2

0.3

0.4

P2 n+1,|Q2 n+1|

0.5 1.0 1.5 2.0 2.5 3.0
n

-0.015

-0.010

-0.005

0.005

0.010

0.015

arg(Q2 n+1)

(e) β = 0.1, t = −1.5
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Figure 2. The exact results with N = 8 and for high temperature β = 0.1 (a,c,e) and low temperature
β = 1 (b,d,f). In the P2n+1, |Q2n+1| plots, the joint blue dots are exact values of P2n+1 and the
joint yellow dots are exact values of |Q2n+1|. These two series of joint dots are plotted with different
thicknesses for clear comparison. In the argQ2n+1 plots, the joint blue dots are exact values of
argQ2n+1.

But this is not important because the dominant pieces are around the peak of the magnitude
where the linearity matches well. As we decrease the temperature but still above the critical
temperature Tc, the simplified saddle approximation does not work very well in the early
times but then improves as time increases. From thermal scale (∼ β) to scrambling scale
(∼

√
N), the size distribution moves from small to large and eventually stabilizes around

N/2; the phase of Q2n+1 organizes itself from not quite linear to linear in n; and the slope
of the phase also decays, which is consistent with (3.50).

Besides the linearity of the phase of Q2n+1, we also need to check if the phase of each
individual size basis with the same size aligns. This can be measured by how rn = |Qn|/Pn
is close to one. With the numerical evidence in figure 1, in the following, we will use the
simplified saddle approximation (3.46) and (3.49) to estimate rn for all temperatures. we have

r2n+1 = e−β
2/4
∣∣∣∣∣1 + e−bq(t)

1 + e−bp(t)

∣∣∣∣∣
N/2−1−n ∣∣∣∣∣1− e−bq(t)

1− e−bp(t)

∣∣∣∣∣
n

(3.51)

We approximate e−bp(t) ≈ e−β
2/4−8t2/N

(
1− β2

4(N/2−1)

)
and e−bq(t) ≈ e−β

2/4−8t2/N
(
1+ β2+8iβt

4(N/2−1)

)
,

which leads to

r2n+1 ≈ exp
[
−β

2(1− e−β
2/4−8t2/N )

4(1 + e−β2/4−8t2/N )
− β2n

N sinh(β2/4 + 8t2/N)

]
(3.52)
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Note that the second term in the exponent of (3.52) is not important in all scenarios. Since
β ∼ O(1), at late times this term is exponentially suppressed, and at early times the dominant
size is n ∼ O(1) and this term is of order O(1/N). Keeping only the first exponent in (3.52)
leads to the conclusion that r2n+1 ∼ e−γβ

2/4 where γ ∈ [0, 1], which implies that the size
winding of commuting SYK model is near-perfect in high temperatures but damped as we
decrease the temperature. When we cool down the system, the phase of the coefficients of
the size basis with the same size starts to spread out from the perfectly alignment though
their averaged phase is still proportional to the size. This estimate can be verified by the
numeric result in figure 1. In high temperatures, the difference between P2n+1 and |Q2n+1| is
quite small (a,c,e), but in lower temperature, the difference is larger (b,d,f) due to the overall
suppression e−γβ

2/4 as we just analyzed above. Therefore, we can confirm that the large N
commuting SYK model has size winding in high temperatures. As far as we know, this is the
first nontrivial large N non-holographic model that has near-perfect size winding.

As a comparison, we also show a case of small N in figure 2, where we take N = 8. Since
there is no sharp phase transition for finite N , here we choose the temperatures for best
exhibiting the features regardless of Tc. As we can see from these plots, the small N is indeed
qualitatively the same as the large N case though the thermal scale is not quite separable from
the scrambling scale. The main difference is that for small N at early time (t ≲ β) the phases
are poorly lined up for both low and high temperatures, but quickly reorganize themselves
with linearity as time goes by. However, phase linearity only guarantees near-perfect size
winding for high temperature because the magnitude of Q2n+1 still matches with P2n+1 in
later times, while the magnitude of Q2n+1 starts to drop off after the thermalization scale
from P2n+1 for lower temperature.

3.4 Peaked-size versus size-winding

In [24], there is another mechanism of teleportation in a generic scrambling system in
high temperatures called peaked-size teleportation. This mechanism requires a narrow size
distribution Pn(t) of the scrambled operator ψrj (t)ρ

1/2
r around its average size S. Such

mechanism widely exists in many systems [24], including the late-time regime of a generic
scrambling system when the dynamics can be approximated by Haar random unitaries [46, 47],
random unitary circuits (≥ 1D) with local gates, random unitary circuits in 0D with all-to-all
coupling and large q SYK model in infinite temperature. The last two require encoding the
to-be-scrambled qubit in terms of a large number of qubits. When the size distribution is
peaked, in the sense that the ratio between size fluctuation and the size δS/S ≪ 1, we can
simply replace e−µS in both Kµ(t) and Gµ(t) as e−µS .

We can check if the commuting SYK model is peaked-size. The point is to compare the
average size S and its variation δS, which can be easily computed by Kµ(t)

S = −2∂µKµ(t)|µ=0, (δS)2 = 2∂2
µKµ(t)|µ=0 − S2 (3.53)

where the additional coefficient 2 is due to the normalization of ψrj (tr)ρ
1/2
r . Since Kµ =

e−µN/2kµ, we have

S = Nk0 − 2k′0, (δS)2 = 2k′′0 − 4(k′0)2 + 2Nk′0(2k0 − 1)− 1
2N

2k0(2k0 − 1) (3.54)
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Figure 3. The traversable wormhole teleportation protocol (copied from [14]).

where prime is derivative to µ. From (3.18) we have

k0 = 1
2 , k′0 = 1

4(N − 2)e−β2/4e−8t2/(N−2) (3.55)

k′′0 = 1
4(N − 2) + 1

8(N − 2)(N − 4)e−
N−4

2(N−2)β
2
e−16t2/(N−2) (3.56)

Let us consider the large N limit. This leads to

S ≈ N

2 (1− e−β
2/4e−8t2/N ) (3.57)

δS ≈
√
N

2
(
2 + (β2 − 2)e−β2/2e−16t2/N

)1/2
(3.58)

where the ratio between size fluctuation and the size is O(1/
√
N). ThisO(1/

√
N) ratio can also

be understood as a common feature of binary distribution (3.46) as long as 1± e−bp(t) ∼ O(1).
This analysis implies that the commuting SYK model should follow the mechanism of peaked
size teleportation even though we see from section 3.3 that size winding is also obeyed in high
temperatures. There is no contradiction because size winding requires Qn(t) ≈ Pn(t)ei(a1+a2n)

but does not impose any restriction on the distribution of Pn(t). It is a little bit surprising
that in the past work [24] (and also [11, 12]), they are regarded as two distinct mechanisms,
which are found in different (holographic versus non-holographic) models or exclusive regimes
(e.g. low-temperature versus high-temperature SYK model).

Despite the ratio δS/S is of order O(1/
√
N), as we will discuss in the next section, the

teleportation protocol follows the peaked-size mechanism only for long time scale t ∼ O(
√
N).

For short time scale t ∼ O(1), the teleportation protocol works quite differently is related
to thermalization.

4 Traversable wormhole teleportation protocol in commuting SYK

As the commuting SYK model shows near-perfect size winding in high temperature, it is
natural to consier how it behaves in the traversable wormhole teleportation protocol [14].
It has been shown in [11, 12] that the size winding is the microscopic mechanism for the
teleportation through a traversable wormhole in the ordinary SYK model.
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The quantum circuit of the traversable wormhole teleportation protocol is given by
figure 3, in which Ut = e−iHt is the evolution operator and SWAP works as an injection and
extraction of the qubit being teleported. However, to study its effectiveness, computing a
left-right causal correlator is sufficient. For fermionic system, this is defined as

C(tl, tr) =
〈
{eiµV ψlj(tl)e−iµV , ψrj (tr)}

〉
TFD

= −2ℑHiµ(tl, tr) (4.1)

where we define the perturbed two-point function

Hiµ(tl, tr) = −i
〈
0|ρ1/2

r eiµV ψlj(tl)e−iµV ψrj (tr)ρ1/2
r |0

〉
(4.2)

For convenience, we compute the Euclidean version

hµ(τ1, τ2) = −i
〈
0|ρ1/2

r eµV ψlj(τ1)e−µV ψrj (τ2)ρ1/2
r |0

〉
(4.3)

The computation is similar to section 3 but more involved because we need to expand
two exponentials e±µV in (4.3) and counting the number of terms with index conditions
needs a finer analysis. We leave the computations (q = 4) in appendix A and just present
the result here. We have

hµ(τ1, τ2) = h1
µ(τ1, τ2) + h2

µ(τ1, τ2) (4.4)

where

h1
µ = e−β2/4+(τ1+τ2)2 coshµ

2
√
aπ

∫
dxe−

1
a x2
(
cosh2µ−e−b1 sinh2µ−sinh2µsinh τ1(2τ2+β)

N/2−1 e2x−b2

)N/2−1

(4.5)

h2
µ =−e

(τ1+τ2)(τ1+τ2+β) sinhµ
2
√
aπ

∫
dxe−

1
a x2
(
cosh2µ−e−c1 sinh2µ−sinh2µsinh 2τ1τ2

N/2−1e
2x−c2

)N/2−1

(4.6)

and a few parameters are defined as

a = β2

4(N/2− 1) , b1 = 4τ1τ2
N/2− 1 b2 = τ2(2τ1 − β) + (N − 4)β2/8

N/2− 1 (4.7)

c1 = 2τ1(2τ2 + β)
N/2− 1 , c2 = 2τ1τ2 + (τ1 + τ2)β +Nβ2/8

N/2− 1 (4.8)

4.1 Saddle approximation

Similar to section 3.3, for large N we can do the saddle approximation for the x integral
in hiµ. In order to discuss the µ dependence, we will not restrict µ to be small. We will
solve the saddle after analytic continuation µ → iµ, τ1 → itl and τ2 → itr. Up to a sign
flip, from (4.5) and (4.6), we find that C has µ periodicity of π. Therefore, we can restrict
µ to the range of [−π/2, π/2].

For H1
iµ in large N limit, we have

H1
iµ = e−β

2/4−(tl+tr)2 cosµ
2
√
aπ

∫
dxe−

1
a
F1(x) (4.9)
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where a = β2/(2N) and

F1(x) = x2 − β2

4 log
(
cos2 µ+ e

4tltr
N/2 sin2 µ+ ie−β

2/4 sin 2µ sinh 2tltr − iβtl
N/2 e

2tltr+iβtr
N/2 e2x

)
(4.10)

In this equation, we have kept some N dependence for later consideration for scales of tl,r
up to O(N). Taking derivative to x, we have the saddle equation

x = β2

4
ie−β

2/4 sin 2µ sinh 2tltr−iβtl
N/2 e

2tltr+iβtr
N/2 e2x

cos2 µ+ e
4tltr
N/2 sin2 µ+ ie−β2/4 sin 2µ sinh 2tltr−iβtl

N/2 e
2tltr+iβtr

N/2 e2x
(4.11)

For teleportation, we consider tl > 0 and tr < 0, which leads to tltr < 0. Due to the
overall exponential suppression factor e−(tl+tr)2 in (4.9), we only need to consider the case
tl + tr ∼ O(1). In the large N limit, we have

i sinh 2tltr − iβtl
N/2 e

2tltr+iβtr
N/2 ≈


2itltr+βtl

N/2 tl ∼ −tr ∼ O(1)
i
2

(
e

4tltr
N/2 − 1

)
tl ∼ −tr ≳ O(

√
N)

(4.12)

where we considered two scales of tl ∼ −tr. For the short time scale tl ∼ −tr ∼ O(1),
the saddle of x is of order 1/N and we can approximate e2x ∼ 1 in leading order, which
leads the solution to (4.11) as

xsaddle ≈
β2

4 e
−β2/4 sin(2µ)2itltr + βtl

N/2 (4.13)

At this saddle point, we have in large N limit

−1
a
F1(xsaddle) ≈ 4tltr sin2 µ+ e−β

2/4 sin(2µ)(2itltr + βtl) (4.14)

F ′′
1 (xsaddle) ≈ 2 (4.15)

which leads to

H1
iµ = e−β

2/4−(tl+tr)2 cosµ
2 exp

(
4tltr sin2 µ+ e−β

2/4 sin(2µ)(2itltr + βtl)
)

(4.16)

For the long time scale where tl ∼ −tr is the same or higher order than O(
√
N) in (4.12),

the saddle of x is an O(1) complex number, which gives an O(1) value for F1(xsaddle). These
saddles do not have an analytic expression but we can easily find their values numerically.
One can show numerically that the saddle leads to an O(1) positive real part of F1(xsaddle)
for most choices in the parameter space. Due to large 1/a coefficient, H1

iµ is exponentially
suppressed in large N . An interesting exception is µ close to zero and scales as 1/N . Let us
assume µ = µ0/N , and the saddle of x in (4.11) is again of order 1/N

xsaddle ≈
iµ0β

2

4N e−β
2/4
(
e

4tltr
N/2 − 1

)
(4.17)
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At this saddle point, we have in large N limit

−1
a
F (xsaddle) ≈

i

2e
−β2/4µ0

(
e

4tltr
N/2 − 1

)
(4.18)

F ′′(xsaddle) ≈ 2 (4.19)

which leads to

H1
iµ = e−β

2/4−(tl+tr)2

2 exp
(
iµ0
2 e−β

2/4
(
e

4tltr
N/2 − 1

))
(4.20)

Similarly, for H2
iµ in large N limit, we have

H2
iµ = −e

iβ(tl+tr)−(tl+tr)2
i sinµ

2
√
aπ

∫
dxe−

1
a
F2(x) (4.21)

where

F2(x) = x2 − β2

4 log
(
cos2 µ+ e

4tltr−2iβtl
N/2 sin2 µ+ ie−β

2/4 sin 2µ sinh 2tltr
N/2 e

2tltr−iβ(tl+tr)
N/2 e2x

)
(4.22)

Taking the derivative to x, we have the saddle equation

x = β2

4
ie−β

2/4 sin 2µ sinh 2tltr
N/2 e

2tltr−iβ(tl+tr)
N/2 e2x

cos2 µ+ e
4tltr−2iβtl

N/2 sin2 µ+ ie−β2/4 sin 2µ sinh 2tltr
N/2 e

2tltr−iβ(tl+tr)
N/2 e2x

(4.23)

Again due to the overall exponential suppression factor e−(tl+tr)2 in (4.21), we only need to
consider the case tl + tr ∼ O(1). In the large N limit, we have

i sinh 2tltr
N/2 e

2tltr−iβ(tl+tr)
N/2 ≈


2itltr
N/2 tl ∼ −tr ∼ O(1)
i
2

(
e

4tltr
N/2 − 1

)
tl ∼ −tr ≳ O(

√
N)

(4.24)

For the short time scale tl ∼ −tr ∼ O(1), the saddle of x is of order 1/N

xsaddle ≈
β2

4 e
−β2/4 sin(2µ)2itltr

N/2 (4.25)

At this saddle point, we have in large N limit

−1
a
F2(xsaddle) ≈ (4tltr − 2iβtl) sin2 µ+ e−β

2/4 sin(2µ)(2itltr) (4.26)

F ′′
2 (xsaddle) ≈ 2 (4.27)

which leads to

H2
iµ = −e

iβ(tl cos 2µ+tr)−(tl+tr)2
i sinµ

2 exp
(
4tltr sin2 µ+ e−β

2/4 sin(2µ)(2itltr)
)

(4.28)

For the long time scale tl ∼ −tr ≳ O(
√
N), the saddle is a complex O(1) number, which

can be shown numerically leading to positive real part of F2(xsaddle) for most choices in
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the parameters space, which results in an exponentially suppressed H2
iµ in large N limit.

The interesting exception is to consider µ = µ0/N , which gives order one value saddle
approximation for the integral (4.21). However, the sinµ factor will be order 1/N and H2

iµ

is suppressed relative to H1
iµ.

Putting all together, we have for the short time scale tl ∼ −tr ∼ O(1)

Hiµ =e
−(tl+tr)2+4tltr sin2 µ

2
[
cosµ exp

(
−β2/4 + e−β

2/4 sin(2µ)(2itltr + βtl)
)

−i sinµ exp
(
e−β

2/4 sin(2µ)(2itltr) + iβ(tl cos 2µ+ tr)
)]

(4.29)

and for the long time scale tl ∼ −tr ≳ O(
√
N)

Hiµ = e−β
2/4−(tl+tr)2

2 exp
(
iµ0
2 e−β

2/4
(
e

4tltr
N/2 − 1

))
(4.30)

Note that (4.29) has exponential decay as we send a signal earlier and receive the signal
later, namely tl ∼ −tr ≫ 1, due to the factor e−(tl+tr)2+4tltr sin2 µ, while (4.30) tends to an
O(1) constant in the regime tl ∼ −tr ≫

√
N . One should not be confused by this because in

the long time scale (4.30), µ is been rescaled to µ0/N that compensates the decaying effect
of large time in the short time scale in the term 4tltr sin2 µ.

4.2 Sign of µ

There is a crucial feature of the traversable wormhole teleportation that only one sign of
µ allows the information sent through [14]. In the semiclassical picture, the sign of µ is
proportional to the stress tensor of the injected matter that supports the traversable wormhole.
The throat of a traversable wormhole opens only when the averaged null energy of the matter,
which in turn is proportional to µ, is negative [15]. It is interesting to check if the teleportation
in the commuting SYK model follows the same rule.

Since we have two distinct time scales, we need to discuss the dependence on the sign of µ
separately. For the long time scale tl ∼ −tr ≳ O(

√
N). It is interesting that the sign of µ does

not affect the leading order magnitude of C. This can be seen easily using (4.30), which leads to

C(tl, tr) = e−β
2/4−(tl+tr)2 sin

(
µ0
2 e

−β2/4
(
1− e

4tltr
N/2

))
(4.31)

It is noteworthy that this formula holds for any temperature T > Tc and scrambling time
scale O(

√
N). This is very different from the large N limit of the ordinary SYK model

at scrambling time scale O(logN), which prefers positive µ in low temperature but has
indifference in the sign of µ only in high temperature [14].

As we discussed in section 3.4 that the distribution is peaked in the sense δS/S ≪ 1,
we can find that (4.31) follows directly from the peaked-size mechanism [24]. The result of
the peaked-size teleportation is quite simple that the e−iµV in (4.2) measures the averaged
size of ψrj (tr)ρ

1/2
r and becomes an exponential factor e−iµ(S−N/2) due to the narrow size

distribution. It follows that

Hiµ(t,−t) ≈ Glr(t,−t) exp (−iµ(S +NGlr(0, 0)−N/2)) (4.32)
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Figure 4. The optimized max |ℑHiµ| − max |ℑH−iµ| for the scale tl ∼ −tr ∼ O(1). The blue
curves are −ℑHiµ and the yellow curves are ℑH−iµ. (a) Lower temperature β = 0.95, the optimal
µ = 0.0468π and the injection time is at tr = −1.791. (d) High temperature β = 0.1, the optimal
µ = 0.0509π and the injection time is at tr = −1.507.

where the first exponential eiµV simply factorizes as eiµ⟨V ⟩ = e−iµGlr(0,0) because it is a TOC.
Taking (4.32) into (4.1), the left-right causal correlator has the form

C(t,−t) = 2Glr(t,−t) sinµ(S +NGlr(0, 0)−N/2) (4.33)

Note that the magnitude of C is bounded by Glr(tl, tr) which decays as we drop the tempera-
ture. Therefore, the peaked-size teleportation works better in high temperatures. From (2.21),
we can easily find that the left-right correlator in the commuting SYK model is given by

Glr(tl, tr) ≡ −i
〈
0|ρ1/2

r ψlj(tl)ψrj (tr)ρ1/2
r |0

〉
= 1

2e
−β2/4−(tl+tr)2 (4.34)

Using (4.34) and (3.57), we see that (4.31) exactly matches with (4.33). For late time t→ ∞,
we have C(t,−t) = 2Glr(t,−t) sinµNGlr(0, 0), which is the universal late-time behavior
of “quantum traversable wormhole” due to the interference effect [48], in which OTOCs
simply vanish and TOCs factorize.

For the short time scale tl ∼ −tr ∼ O(1), there is an obvious asymmetry for the flip
µ→ −µ from (4.29). To have a good exhibition of the sign effect, we can optimize the peak
difference between |ℑHiµ| and |ℑH−iµ| for different temperatures in the range of µ ∈ [0, π/2]
and tr < 0. The result is shown in figure 4. From the plots, we find that in high temperature
β = 0.1, the sign difference is not large. Then as we decrease the temperature to an
intermediate level β = 0.95 but still in non-spin glass phase, the sign difference becomes
large. In the both cases, we see that positive µ leads to a higher peak in |Hiµ| while negative
µ gives a lower peak. Though this is qualitatively compatible with the analysis in large q
SYK model [14] that positive µ generates a negative energy shockwave into a black hole, we
would like to emphasize again that the commuting SYK is not holographic. In particular,
we do not see strong suppression of ℑHiµ for negative µ, which was observed in the large
q SYK model in the low temperature limit [14]. This means that for any nonzero µ, there
is always an O(1) fidelity of teleportation.

Note that the sign difference in C in the short time scale is completely different from
the size-winding mechanism. Let us first recall why size winding prefers a specific sign (and
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indeed the value) of µ for teleportation. For the time scale larger than the thermalization
scale, the exponential eiµV factorizes because it is a TOC piece [42]

Hiµ(tl, tr) ≈ −ieiµ⟨V ⟩
〈
0|ρ1/2

r ψlj(tl)e−iµV ψrj (tr)ρ1/2
r |0

〉
(4.35)

where ⟨V ⟩ is the expectation value in the thermofield double state. Given the size winding
assumption ψrj (t)ρ

1/2
r = 1√

2
∑
I |cI(t)|ei(a1(t)+a2(t)|I|)ΓI , (4.35) becomes

Hiµ(tl, tr) ≈
1
2e

iµ(⟨V ⟩+N/2)∑
I

|cI(tr)cI(−tl)|ei(a1(tr)+a1(−tl)+(a2(tr)+a2(−tl)−µ)|I|) (4.36)

If we take tl = −tr and µ = 2a2(tr), we have Hiµ = 1
2e
iθ for a pure phase θ. This guarantees

the success of teleportation only for the specific sign (and also the value as a function of tr)
of 2a2(tr) with an O(1) imaginary part of Hiµ. If we choose the opposite sign of µ, each term
in (4.36) will have a nonzero phase and the sum will be highly suppressed by the cancellation
among terms, which leads to the failure of teleportation. From (3.50) we know that the
slope to n of the phase is O(t/N) and µ should have been the same magnitude if the sign
difference of µ were caused by size winding. However, in the short time scale and figure 4,
we have taken N → ∞ but the optimal µ is still of order one.

To understand the sign difference of µ for finite β, let us first consider the high temperature
limit β → 0 in (4.29). We have

Hiµ(tl, tr) =
1
2e

−(tl+tr)2+4tltr sin2 µei(2tltr sin 2µ−µ) (4.37)

which changes to its complex conjugate under µ → −µ and is consistent with figure 4(b).
As we decrease the temperature from β = 0, consider the small µ expansion in (4.29) with
tl ∼ −tr. The second line of (4.29) in leading order of µ is −iµ exp(e−β2/4(2µ)(−2it2l )), which
does not contribute to the sign difference of µ of ℑHiµ. For the first line of (4.29), in leading
order of small β, we can rewrite it approximately as

Hiµ ≈ 1
2e

iµ(−4t2l −2iβtl) ≈ −i
〈
ψlj(tl)ψrj (−tl)

〉
eiµ⟨[V,ψl

j(tl)]ψr
j (−tl)⟩/⟨ψl

j(tl)ψr
j (−tl)⟩+iµ (4.38)

where the ⟨· · · ⟩ is evaluated in the thermofield double state at high temperature. In this
equation, we have

〈
ψlj(tl)ψrj (−tl)

〉
≈ i/2 (for β = 0) and the exponent is the difference

between a pair of OTOC and TOC

〈
[V, ψlj(tl)]ψrj (−tl)

〉
/
〈
ψlj(tl)ψrj (−tl)

〉
≈

N∑
i=1

−1
2 − 2Wji(itl + β/2, β/2, itl, 0)

≈ −4t2l − 2iβtl − 1 (4.39)

where Wji is the OTOC in (2.28), in which we expanded the exponent in leading order.
The exponentiation of the difference between TOC and OTOC in (4.38) also exists in
the regenesis phenomenon in 2d CFT [48], though the latter is valid in a wider regime.
The commutator (4.39) can be roughly understood as the “scattering” between V and
the pair of ψlj(tl)ψrj (−tl). From (4.38), we see that the term linear in β in the exponent
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Figure 5. The optimized max |ℑHiµ| −max |ℑH−iµ| for N = 8. The blue curves are −ℑHiµ and the
yellow curves are ℑH−iµ. The dashed lines are extended plots for tl < 0, which is an unphysical regime.
(a) Even-lower temperature β = 4, the optimal µ = 0.221π and the injection time is at tr = −0.474.
(b) Low temperature β = 2.5, the optimal µ = 0.195π and the injection time is at tr = −0.614. (c)
Intermediate temperature β = 1, the optimal µ = 0.139π and the injection time is at tr = −0.720. (d)
High temperature β = 0.1, the optimal µ = 0.131π and the injection time is at tr = −0.742.

contributes to the sign difference of µ because it gives an enhancement for positive µ

and a suppression for negative µ. As we discussed below (2.22), this linear in β term
is exactly the effective characteristic frequency βJ 2 by thermalization and reflects the
underlying integrability of the commuting SYK model. As we decrease the temperature, the
relative enhancement/suppression is stronger because the effective characteristic frequency is
proportional to β. Though this analysis is for small β, it is compatible with the observation in
figure 4 for finite temperatures as long as we are still in non spin-glass phase. It is interesting
to examine how the sign difference behaves if we drop the temperature below Tc and enter
the spin-glass phase. We leave this investigation to future work.

We can also compare the O(1) time and high temperature result with the peaked-size
formula (4.32). In early times, the size is S ≈ 4t2 by (3.57). Comparing (4.32) with (4.38)
at high temperature, it is easy to see that the quadratic term in the exponent in (4.38) is
exactly the size S. The piece beyond the peaked-size mechanism in this regime completely
comes from the effective characteristic frequency βJ 2.

On the other hand, one might be confused that why the short time scale does not follow
the peaked-size mechanism given that δS/S ∼ O(1/

√
N) even in early times. Indeed, the

simple criterion δS/S ≪ 1 is not always enough to guarantee peaked-size teleportation [24]
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and sometimes we need a much finer criterion. For the current case, a simple explanation is
that the peaked-size teleportation in [24] assumes µ ∼ O(1/K) for K being a large number (K
could equal to N). Then the size fluctuation δS ∼ O(

√
K) only affects the phase of eiµS by a

negligible O(1/
√
K) amount. However, when we choose µ ∼ O(1), the size fluctuation affects

the phase by a large O(
√
K) amount and the peaked-size criterion must be much tighter.

As a comparison, we can also study the sign difference effect for small N systems, which
might be related to the recent simulation of traversable wormhole dynamics on the Sycamore
quantum processor [18]. For small N the saddle approximation is poorly behaved, but the
explicit expression of Hiµ can be easily written down by expanding the N/2− 1 power term
in both (4.5) and (4.6). We take N = 8 and the numerics are straightforward. The optimized
curves of |ℑHiµ|−|ℑH−iµ| for a few choices of temperatures are shown in figure 5.

For small N , different time scales are not separable and we only need to consider
tl,r ∼ O(1). Surprisingly, we find that the behavior of small N in figure 5 is qualitatively
similar to the behavior of large N in the short time scale in figure 4. In all temperatures
checked in figure 5, positive µ leads to a higher maximum value than the negative −µ. It is
noteworthy that the dependence of the sign difference of µ on temperature follows a similar
pattern as figure 4, where we when cool down the system from high temperature, the sign
difference becomes more visible until some critical temperature. If we continue to decrease
the temperature, the sign difference is again diminished. This critical temperature seems
to be the same order as the critical temperature Tc = 1 for spin glass phase in the large
N case. Though we do not have a clean analysis of effective characteristic frequency for
finite N case, this similarity of sign difference suggest that the thermalization process of the
commuting SYK model should play a crucial role. Moreover, as we drop the temperature
from high to low, ℑHiµ develops more and more peaks. To show the generation of new peaks,
we extend the plot to an unphysical negative tl regime in figure 5. For very large β if we
inject the signal around or earlier than −β, the plot of ℑHiµ will have many wiggles, and
the sign difference is not visible (which is not plotted here because the self-average result
may not be reliable for too low temperatures).

4.3 Peak location and signal ordering

Another feature of a holographic model that is dual to a semiclassical traversable wormhole
is the signal ordering [14]. If two signals are sent consecutively from the right side early
enough to go through a traversable wormhole, they should be received on the left side with
the same ordering of signals due to the smooth geometry in the traversable wormhole. This
signal ordering preserving feature is unusual because the thermofield double state of two
entangled black holes has maximal correlation at tl = −tr due to the boost symmetry. This
maximal correlation at opposite times on two sides indicates that the signal received time
tl is approximately around −tr, which leads to opposite signal ordering before scrambling
time. Only when we send the signal in the time window for the semiclassical traversable
wormhole throat, which is around scrambling time, the effects of two-sided instant coupling
at t = 0 generates a large enough backreaction that alters the signal ordering. This feature
was verified in the large q SYK model in low temperatures [14].

It is interesting that for the non-holographic commuting SYK model, we could also find
some time regime, in which the signal ordering is preserved. We define the signal receiving
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Figure 6. Signal ordering for the scale tl ∼ −tr ∼ O(1) in large N limit. The first row is the
signal receiving time tpeak as a function of signal sending time tr for different temperatures. The
yellow straight line is the reference tpeak = −tr. The choices of µ are the same as figure 4 for both
temperatures. The second row is the plot of ℑHiµ as a function of tl for three consecutive signals
sent around different times tr at high temperature β = 0.1. In each figure, the blue, yellow and green
curves are for the latest, middle and earliest signals respectively around tr.

time as the tl = tpeak at the highest peak of Hiµ. Let us first take the large N case. For short
time scale, the solution to ∂tlHiµ = 0 for (4.29) can be numerically solved and is shown in
figure 6. The first row is the signal receiving time tpeak as a function of signal sending time
tr for different temperatures. By definition, if the slope of the function tpeak(tr) is positive,
this means that the signal ordering is preserved at tr. We also draw a yellow straight line as
the reference tpeak = −tr to show the asymptotic reverse signal ordering. For convenience,
we choose µ to be the same as figure 4 for all three temperatures.

A few interesting features can be readily observed from the first row of figure 6. First, the
function tpeak(tr) is split into many intervals, in which the signal orderings could be different.
Second, as we increase the temperature, we see more times preserving signal ordering. But
in all temperatures, the first time interval with the largest tr does not preserve the signal
ordering. For the intermediate (β = 0.95) and high (β = 0.1) temperatures, starting from
the second largest time interval of tr, the signal ordering is preserved. Third, the function
tpeak(tr) is ambiguous between two neighboring intervals. This is because at these times
multiple comparable peaks emerge and the highest peak has a discontinuous jump.

To have an intuitive picture of the signal peak, we draw the second row of figure 6
for ℑHiµ as a function of tl for three consecutive signals sent around different times tr at
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Figure 7. Signal ordering for N = 8. (a) The signal receiving time tpeak as a function of signal
sending time tr for different temperatures. The blue, yellow, and green curves are for β = 0.1, 1, 2.5
respectively. The red dashed line is the reference tpeak = −tr. (b) Choose large µ = 0.473π and β = 4
leads to signal ordering preserved in early times. (c) ℑHiµ in the signal ordering preserved regime.
(d) ℑHiµ in the signal ordering reversed regime. In both (c) and (d), blue, yellow, and green curves
are for the latest, middle and earliest signals in the consecutive sequence of signals sent around tr
with the same β and µ as (b).

high temperature β = 0.1. In each figure, the blue, yellow, and green curves are for the
latest, middle and earliest signals respectively around tr. In figure 6(c), the signal sending
time tr ∼ −1.6 is chosen from the first interval of figure 6(b), which shows reverse signal
ordering. In figure 6(d), the signal sending time tr ∼ −2.2 is chosen from the bordering
regime between the first and second interval of figure 6(b), which shows comparable two
peaks. In figure 6(e), the signal sending time tr ∼ −2.8 is chosen from the second interval
of figure 6(b), which shows signal ordering is preserved.

This observation is indeed similar to the semiclassical traversable wormhole in the large
q SYK model in low temperature in the sense that the signal ordering will be preserved only
when you send it early enough. However, the transition time occurs at scrambling time for
large q SYK with µ ∼ O(1/N) but only at O(1) time for the commuting SYK model with
a much large µ ∼ O(1). Furthermore, the preservation of signal ordering occurs in many
intervals and only for intermediate and high temperatures in the commuting SYK model.

For the long time scale, we always have reverse signal ordering due to the simple
formula (4.31). Let us define

tl = −
√
N/2T + t, tr =

√
N/2T (4.40)

which in large N limit leads to

C = e−β
2/4−t2 sin

[
µ0
2 e

−β2/4
(
1− e−4T 2)] (4.41)

for a given T < 0. The signal receiving time is the peak as a function of t, which is always at
t = 0. From (4.41), we can infer that the peak is in the form of Gaussian. If µ0 is large enough,
the sending time is split into a few intervals that are separated by Tn = −1

2

√
log 1

1−2πneβ2/4/µ0

for n ∈ Z+, at which the signal vanishes C = 0. The threshold of µ0 for the existence of
such multiple intervals is µ0 ≥ 2πeβ2/4.
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As a comparison, let us check the signal ordering for small N . We again take N = 8
and the same parameters in figure 5. The result is in figure 7(a), which shows that the
signal ordering is reversed for all high (β = 0.1), intermediate (β = 1) and low temperatures
(β = 2.5). This is compatible with the observation in [18] that a one-time two-sided coupling
is not strong enough to preserve the signal ordering for a learned commuting Hamiltonian
with small N . While [18] finely tuned the model by trotterized the one-time coupling into
three times to achieve the preservation of signal ordering in some time range, here we can
instead tune a large enough µ or β to see a similar effect. Choosing µ close to π/2 and large
β, we find that the signal ordering is preserved in early times as shown in figure 7(b). An
illustration of ℑHiµ in this regime for three consecutive signals sent around tr ∼ −0.35 is
given by figure 7(c). However, such a regime is smaller than the thermal scale and quite
transient, which is in essence quite different from the case for large N and the short time
scale case in figure 6. The preservation of signal ordering is also piecewise in figure 7(b)
because there are multiple peaks competing as we send a signal toward earlier times. Roughly
after the thermal scale β, we see from 7(b) that the signal ordering is reversed and obeys
tpeak = −tr quite well. In this regime, we plot ℑHiµ for three consecutive signals sent around
tr ∼ −3.35 in figure 7(d) as an example.

5 Conclusion and discussion

In this work, we studied the large N limit of a variant of the SYK model whose Hamiltonian
contains only commutative q-local interaction terms. There are many different ways to define
such a commuting SYK-like Hamiltonian and we choose the simplest one by constructing each
term in the Hamiltonian by a q/2 product of commutative ingredients Xi = ψ2i−1ψ2i with a
random coupling JI that is drawn from a Gaussian ensemble. Since this model has infinite
numbers of conserved charges in the large N limit, it is integrable and completely solvable.
It turns out that this model is non-holographic by checking its spectrum, two-point functions,
and out-of-time-ordered correlators. Due to the large numbers of degrees of freedom in this
model, an excitation ψi thermalizes but in a way different from holographic models. In
particular, its thermalization has two features: it has a non-holographic Gaussian tail decay
in two-point function, and an oscillation with effective characteristic frequency βJ 2, which
is the typical energy of the excitation ψi on a thermal state. The existence of this effective
characteristic frequency reflects the underlying integrability of the commuting SYK model.
This effective characteristic frequency also appears in four-point functions.

In spite of this, this model has some holography-like features, especially the near-perfect
size-winding in high temperatures. It has been shown and also briefly reviewed in section 3.2
that size-winding is a feature of holographic models but it is not known that any non-
holographic models with size winding before this work. Nevertheless, the size winding
in the commuting SYK model is quite different from the ordinary SYK model because it
simultaneously has peaked-size distribution, to which the teleportation in the long time
(scrambling) scale t ≳ O(

√
N) is attributed. Because of this, we would like to call the

non-holographic commuting SYK model as pseudo-holographic.
Applying the traversable wormhole teleportation protocol to this commuting SYK model,

we also find some similarities and differences with the ordinary SYK model. For large N ,
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we find two different behaviors in short time scale t ∼ O(1) and long time scale t ≳ O(
√
N).

In the short time scale, the sign of µ matters more and more as we decrease from infinite
temperature but still above critical temperature Tc = 1. A positive µ leads to a stronger
signal transmission than the negative −µ, which is compatible with the expectation of
holography. However, the mechanism for the sign difference is neither size-winding nor
peaked-size teleportation. Though the size is peaked in the sense that δS/S ≪ 1, there
is an important correction from the effective characteristic frequency βJ 2 that leads to
the relative enhancement/suppression for the sign choice of µ. This is a special feature
of the thermalization of this model. On the other hand, the distinctions are also obvious
that the time scale is much shorter than scrambling time O(

√
N), and it does not prohibit

teleportation with negative µ in any temperatures, unlike the large q SYK model in low
temperatures. For the long time scale, we must take µ ∼ O(1/N) and the sign of µ does not
matter for teleportation efficiency for all T > Tc. In this case, the teleportation undergoes
the peaked-size mechanism.

Besides the sign of µ, the preservation of signal ordering also has interesting features. In
the short time scale, there are many intervals that preserve the signal ordering with O(1)
value of µ turned on for intermediate and high temperatures above Tc. This is different from
the semiclassical picture of the large q SYK model, which preserves the signal ordering in
low temperature with µ ∼ O(1/N) and in scrambling time scale. On the other hand, the
commuting SYK model always has reversed signal ordering in the long time scale.

As a comparison, we also numerically studied the small N case and take N = 8 as an
example. Since N is finite, there is only one time scale, in which the sign of µ matters as
we drop from high temperature, which is qualitatively similar to the large N case. As we
decrease the temperature further, the sign difference disappears. The signal ordering is mostly
reversed unless we tune large enough µ and β, in which we see quite transient reversed signal
ordering in early times that are smaller than the thermal scale.

Below we end with a few discussions and comparisons with other related works.

Geometric picture of size winding. In the last section of [12], the authors suggested
that the existence of size winding alone could potentially provide a geometrical picture for
teleportation because one can heuristically identify the winding size distribution Qn(t) as
the momentum wave function of a one-dimensional particle. However, the non-holographic
essence of the commuting SYK model would give a strong constraint on the interpretation of
such a geometric picture if it could be defined explicitly. Another aspect to note is that the
argument for size winding in holographic systems [12] is based on the near-AdS2 isometry,
which exists near the horizon of a semiclassical near-extremal black hole, which usually occurs
in low temperature.2 But in the commuting SYK model, the size winding occurs at high
temperatures and becomes damped when we decrease the temperature. This suggests that
the size winding of the two types is from two different microscopic origins. This is a very
interesting direction that we leave for future investigation.

2An SL(2) symmetry still exists for large q SYK model in finite temperature. But the bulk dual of this
SL(2) is not well understood.
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Comparison with the learned SYK Hamiltonian. It is interesting to compare the
N = 8 ensemble averaged size winding result in section 3.3 with the learned commuting SYK
model in [18] (and also follow-ups [19, 20]). The learnt Hamiltonian in [18] consists of five terms

H = −0.36ψ1ψ2ψ4ψ5+0.19ψ1ψ3ψ4ψ7−0.71ψ1ψ3ψ5ψ6+0.22ψ2ψ3ψ4ψ6+0.49ψ2ψ3ψ5ψ7 (5.1)

Note that this commuting Hamiltonian can not be written in terms of (2.3) because the
five terms do not share the same set of commuting ingredients Xi. However, it can be
separated into two commuting groups, each of which shares a set of commuting ingredients.3

Nevertheless, comparing (5.1) with our N = 8 model is still qualitatively reasonable. The main
reason is that multiple groups of shared commuting ingredients just splits one F into multiple
commutative factors, and the counting in section 3.1 and 3.2 mostly care about how many
commuting terms of different overlap types in the Hamiltonian. Since N = 8, q = 4 allows at
most Cq/2

N/2 = 6 terms, which is close to 5, we should expect qualitatively close behavior.
Let us simply fit the five coefficients of (5.1) with Gaussian distribution by comparing the

moments, which gives −0.034 mean value and fluctuation σ = 0.436. Comparing with (2.4)
for N = 8 and q = 4, we have J = 0.267. In [18] , the size winding is mainly checked at β = 4
and tr = −2.8 with µ = 12/(4× 7) = 0.429, which in our notation is βhere = βthereJ = 1.07
and tr,here = tr,thereJ = −0.748. The size winding of close parameters is demonstrated in
figure 2(d), which shows that the phases are almost lined up and the difference between
P2n+1 and |Q2n+1| is not quite large. The alignment of phases with the same size can be
measured by the ratio r2n+1 = |Q2n+1|/P2n+1, which on the four data points in figure 2(d)
is r2n+1 ≳ 0.8. In figure 5(c), we optimized the difference between the peak of |ℑHiµ| and
the peak of |ℑH−iµ| for β = 1 by tuning parameters µ = 0.139π ≈ 0.437 and tr = −0.72.
Note that the specific Hamiltonian (5.1) with N = 7 was learnt in [18] also by maximizing
the sign difference of µ but for another closely related quantity, the mutual information
between the reference system and the qubit receiver in the traversable wormhole teleportation
protocol. An interesting coincidence is that the optimal parameters tr and µ are quite close
between our commuting SYK model and [18].

However, if we look more carefully into these two models, we will see that the underlying
mechanism is not completely due to size winding. Since the Hamiltonian (5.1) is given explicitly
and each term is commutative to each other, it is quite straightforward to compute Hiµ and
Q2n+1 with (5.1) in Mathematica. We first compute the phase of Q2n+1(t) for t = −2.8 in
figure 8(a), which is equivalent to figure 3d (or figure S15) in [18] after shifting the first data
point to the origin. We see that the three data points are aligned pretty well. The yellow
straight line is the linear fit for these three points read as Q2n+1(−2.8) = −1.432 + 1.323n.
By the argument of size winding below (4.36), we should choose µ equal to half of the slope,
namely µSW = 0.662, for best fidelity.4 On the other hand, we can maximize |ℑHiµ| by
finding the appropriate tl and µ given tr = −2.8. It turns out that the optimal choice is

3ψ1ψ2ψ4ψ5, ψ2ψ3ψ5ψ7 and ψ1ψ3ψ4ψ7 can be constructed by ψ1ψ4, ψ2ψ5 and ψ3ψ7; ψ1ψ3ψ5ψ6 and
ψ2ψ3ψ4ψ6 can be constructed by ψ3ψ6, ψ2ψ4 and ψ1ψ5.

4By the definition of perfect size-winding, this µSW should also maximize |Giµ(−2.8)|. But because the
linearity of phase to size is not perfect, we will instead get a very close µ = 0.659 if we maximize |Giµ(−2.8)|.
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Figure 8. The first row is for the learned Hamiltonian in [18]; the second row is for the ensemble-
averaged commuting SYK model with N = 8, β = 1.07 and t = −0.748 (J = 1); the third row is for
the ensemble-averaged commuting SYK model with N = 6, β = 1.9 and t = −0.475 (J = 1). The left
column is the phase of Q2n+1 as a function of n. The yellow line is the linear fit of the three/four
data points. The middle column is −ℑHiµ for µ|H| (blue), µℑH (yellow) and µSW (green). The right
column is |Hiµ| for µ|H| (blue), µℑH (yellow) and µSW (green).

µℑH = 0.463 with tl = 3.87. By (4.36), if eiµV can be approximated by eiµ⟨V ⟩, the optimal µ
for size winding should also give the maximal |Hiµ|. Maximizing |Hiµ| by scanning tl and
µ given tr = −2.8, we find the optimal choice is µ|H| = 0.381 with tl = 3.71.5 We plot the
−ℑHiµ and |Hiµ| in figure 8(b) and 8(c) respectively for these three choices of µ.

Clearly, these three optimal choices of µ are different. In particular, µ|H| deviates from
µSW quite much and is just 58% of the latter. The explanation behind this distinction is
that the size-winding mechanism is compatible with traversable wormhole teleportation only
when the time scale is much larger than the thermal scale so that we can factorize out a pure
phase in (4.36) by the argument of time-order-correlator. In this case Hiµ ∝ Giµ and perfect
size winding implies maximal |Hiµ|. However, in the above example, tr = −2.8, which is even
shorter than the thermal scale β = 4. Therefore we should expect the thermalization process
to have an important interplay with the size winding and tunes the optimal µ. The difference
between µℑH and µ|H| is much subtler. Even for the factorized case (4.35), these two are

5One can also search the maximal |Hiµ| with tl = 2.8 fixed. The optimal result is µ = 0.346, which deviate
even more from µSW.
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not necessarily the same because the phase eiµ(⟨V ⟩+N/2) exerts an additional rotation to Giµ,
which will affect the imaginary part in a nontrivial way. However, in the known holographic
large q SYK model, one can check from [14] that these three µ’s coincide in low temperature
and equal to −4πNe−2πt/β/(βJ ) (with the notation of [14]).

If we check the same aspects with the ensemble-averaged commuting SYK model, we will
find that thermalization also plays an important role. It has been discussed in section 4.2
that in the short time scale and large N , thermalization is responsible for the sign difference
of µ rather than size winding. In small N cases in figure 5, we see similar sign difference
effect only when t is comparable with β for intermediate β. Though for small N we have
size winding with order one phase slope as shown in figure 1, we now show that the size
winding is not the complete mechanism for the sign difference. Let us take N = 8, β = 1.07
and t = −0.748 as an example.6 The phase of Q2n+1(−0.748) is shown in figure 8(d), where
the four data points are mostly aligned. The yellow straight line is the linear fit for these
three points read as Q2n+1(−0.748) = −0.430 + 0.425n, which by size-winding assumption
leads to µSW = 0.213. Maximizing |ℑHiµ| leads to the optimal choice µℑH = 0.451 with
tl = 0.929.7 Maximizing |Hiµ| leads to the optimal choice µ|H| = 0.267 with tl = 0.912. We
plot the −ℑHiµ and |Hiµ| in figure 8(e) and 8(f) respectively for these three choices of µ.

Here we see that these three µ’s are different and the minimum µSW is just about 47% of
the maximum µℑH . Compare the learned SYK model and the ensemble-averaged one, we see
that the optimal µ’s are different, the size-winding phase aligns better, and the peak of ℑHiµ

is slightly higher in the learned model. This is reasonable because the Hamiltonian (5.1) is
especially learned to achieve the best teleportation fidelity for a specific operator ψ1. For
other operators ψi, the size-winding quality is worse at the same time [18, 19]. On the
other hand, the ensemble-averaged model works for all operators ψi equally and shows an
average level of teleportation efficiency.

As we argued before, the large deviation between µ|H| and µSW for the learned Hamil-
tonian implies that the system is undergoing thermalization. For the ensemble-averaged
model with equivalent parameter β = 1.07, we see that µ|H| is not far from µSW, which
means the thermalization is close to complete. This suggests that the effective temperature
for the learned Hamiltonian is even lower than 1/β, which strengthens the conclusion that
thermalization plays a crucial role besides size-winding. To justify this, we tune the param-
eters in the ensemble-averaged model with lower temperature in the third row of figure 6.
We find that for N = 6, β = 1.9, and tr = −0.475, the linearity of size-winding phase is
pretty good8 with a large phase slope that gives µSW = 0.785 as shown in figure 8(g). At
the same time, we find that µℑH = 0.570 and µ|H| = 0.468. On one hand, this is quite
similar to the learned Hamiltonian case (the first row of figure 8), including the relative
ordering of three µ’s (µSW > µℑH > µ|H| with µ|H|/µSW ≈ 59.6%). On the other hand,
the ratio |tr|/β = 25% suggests that the size-winding of the learned Hamiltonian occurs
at the early stage of thermalization.

6These numbers are in J = 1 unit and are equivalent to the parameters of [18] as we discussed earlier.
7If we maximize the peak difference between |ℑHiµ| and |ℑH−iµ|, we will get a slightly different optimal

choice that is close to figure 5(c).
8The averaged rn ratio weighted by probability is r =

∑
n
|Qn(t)| ≈ 0.58 [19], which shows the phases

of the same size are not quite aligned (due to the low temperature) but not too bad. As a comparison, the
learned Hamiltonian has an averaged r ≈ 0.95 for all ψi.
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Non-commutative terms. The non-existence of non-commutative terms was discussed
in [19, 20], where the main focus was on their effects on size winding. However, based on
the observation of the commuting SYK model, we find that size winding is not a unique
feature of holographic models. It can exist in the non-holographic commuting SYK model,
though in long time scale and large N it also has peaked size distribution. Clearly, we need
to introduce non-commutative terms to save it from peaked size distribution in large N limit
and keep the size-winding feature at the same time. For small N cases, there is no peaked
size distribution and the size-winding also exists. However, teleportation does not completely
follow the rule of size-winding, and thermalization becomes important.

Recent simulation of the dynamics of traversable wormholes in [18] is an excellent start
toward the project “quantum gravity in the lab”. However, given the holography-like features
in the commuting SYK model, it is not obvious that the simulation in [18] with N = 7 is for the
non-holographic commuting SYK model or the holographic full SYK model. To have a better
simulation for the dynamics of traversable wormhole that is mostly due to non-peaked size
winding, we must increase N , separate the thermal scale with scrambling scale, and consider
times after thermalization. This indicates that we will not learn commuting Hamiltonian
as we scale up the system.9 Otherwise, it will be peaked-size and non-holographic. On the
other hand, non-commutative terms will bring challenges because the implementation steps
of simulation will be more complicated. Therefore, to understand how to minimally introduce
non-commutative terms while preserving essential holographic features (e.g. non-peaked size
winding distribution, very close three optimal µ’s, etc.) is crucial for future simulation studies.

On the theoretical side, understanding the non-commutative terms is equally important.
As we know that the commuting SYK model has large numbers of conserved charges that
are related to overly abundant symmetries of the system. However, in quantum gravity,
we should have much fewer symmetries and most of them need to be explicitly broken by
introducing the non-commutative terms. It is extremely interesting to construct a holographic
theory by (perhaps minimally) breaking symmetries in steps and to understand their meaning
in the dual gravity language.
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A Computation of hµ

Expanding the two exponentials e±µV in (4.3), we have

hµ=−i
∑
I,J

K̃IJ

〈
0|F (−β/2)ΓlIΓrIψlj(τ1)ΓlJΓrJψrj (τ2)F (−β/2)|0

〉
=−i

∑
I,J

K̃IJ i
|I|
〈
0|F|I∩K|=Z+(−β/2)F|I∩K|=Z−(β/2)ψ

l
j(τ1)ΓlJΓrJψrj (τ2)F (−β/2)|0

〉
9The possible exception is a learnt large N commuting Hamiltonian that has teleportation-like behavior as

figure 4, which has t in the thermal scale with µ ∼ O(1).
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=
∑
I,J

K̃IJ i
|I|
〈
0|F (−τ1)ψrjF|I∩K|=Z+(τ1−β/2)F|I∩K|=Z−(τ1+β/2)ΓlJΓrJψrj (τ2)F (−β/2)|0

〉
=
∑
I,J

K̃IJ i
|I|+|J |(−)|J |Trr

(
ΓrJF (−τ1)ψrjF|I∩K|=Z+(τ1−β/2)F|I∩K|=Z−(τ1+β/2)

ΓrJF (τ2)ψrjF (−τ2−β/2)
)

=
∑
I,J

K̃IJ i
|I|+|J |(−)|j∩J |Tr

(
F|I∩K|=Z+(τ1−β/2)F|I∩K|=Z−(τ1+β/2)F|J∩K|=Z+(τ2)

F|J∩K|=Z−(−τ2)ψrjF|J∩K|=Z+(−τ2−τ1−β/2)F|J∩K|=Z−(τ2−τ1+β/2)ψrj
)

=1
2
∑
I,J

K̃IJ i
|I|+|J |(−)|j∩J |Tr

(
F|I∩K|=Z+(τ1−β/2)F|I∩K|=Z−(τ1+β/2)

Fj∈K,|J∩K|=Z+(2τ2+τ1+β/2)Fj /∈K,|J∩K|=Z+(−τ1−β/2)Fj∈K,|J∩K|=Z−(−2τ2+τ1−β/2)

Fj /∈K,|J∩K|=Z−(−τ1+β/2)
)

(A.1)

where K̃IJ = 1
Z (cosh

µ
2 )

2N−|I|−|J |(isinh µ
2 )

|I|+|J |(−)|J | and we can define

KIJ = i|I|+|J |K̃IJ =
1
Z
(−)|I|

(
cosh µ2

)2N−|I|−|J |(
sinh µ2

)|I|+|J |
(A.2)

All F terms in (A.1) can be factorized as a product of eight terms, which are summarized
as table 1. For each Fcondition(x), taking ensemble average leads to

Fcondition(x)= exp
(
cconditionx

2σ2

2q+1

)
(A.3)

Let us again consider q=4 and j=1. In order to count the terms correctly, we first
separate the indices into 9 groups, each group includes a pattern of Xi overlapping with I

and J . For each Xi, if it overlaps a indices with I and b indices with J , we call it (a,b) type,
where a,b=0,1,2. We count each type as iab. For example, if N =10 and I = {1,3,4,5,6}
and J = {1,2,3,5,7,8}, we have i12 = i02 =1, i21 =2 and all other iab=0. It is easy to find
the following relations

∑
ab

iab=N/2,
∑
ab

aiab= |I|,
∑
ab

biab= |J | (A.4)

To compute (A.1), besides the cases in table 1, we need to consider more conditions, which
depends on whether X1 has overlap with I and J . This is because under the condition 1∈K
or 1 /∈K, the counting for ccondition will be different. Before we proceed to the counting, let
us first note a cancellation due to the factor (−)|j∩J |. If |X1∩J |=1, there are two cases
1∈ J,2 /∈ J and 1 /∈ J,2∈ J . If we consider two J of these two cases with all other indices
to be identical, ccondition is the same for all cases in table 1. However, they will have the
opposite sign due to (−)|j∩J | and thus cancel each other exactly. Therefore, we only have the
following 6 cases to consider: |X1∩I|= γ, |X1∩J |= δ with γ=0,1,2 and δ=0,2, which are
labelled by (γ,δ) in table 2. The countings for all nontrivial #’s in table 1 are as follows.

– 38 –



J
H
E
P
0
1
(
2
0
2
4
)
1
4
9

# conditions x

1 j /∈K, |I∩K|=Z+, |J∩K|=Z+ −β
2 j /∈K, |I∩K|=Z+, |J∩K|=Z− 0
3 j /∈K, |I∩K|=Z−, |J∩K|=Z+ 0
4 j /∈K, |I∩K|=Z−, |J∩K|=Z− β

5 j ∈K, |I∩K|=Z+, |J∩K|=Z+ 2(τ1+τ2)
6 j ∈K, |I∩K|=Z+, |J∩K|=Z− 2(τ1−τ2)−β
7 j ∈K, |I∩K|=Z−, |J∩K|=Z+ 2(τ1+τ2)+β
8 j ∈K, |I∩K|=Z−, |J∩K|=Z− 2(τ1−τ2)

Table 1. Eight cases for Fcondition(x).

ccondition(for different (γ,δ))
# (0,0),(2,0),(0,2),(2,2) (1,0),(1,2)

1+4 1
2(u−1)(u−2)+ 1

2v(v−1) 1
2u(u−1)+ 1

2(v−1)(v−2)
5 u−i11−1 i10+i12−1
6 i01+i21 i11

7 i10+i12 u−i11

8 i11 i01+i21

Table 2. Counting for ccondition.

#1. For all 1 /∈K, we have two indices of Xk1 and Xk2 to choose from 2 to N/2. We
have 9 cases: (|I∩K|, |J∩K|)= (0,0),(0,2),(2,0),(2,2),(4,0),(0,4),(4,2),(2,4),(4,4), which
for (γ,δ)= (0,0) case contributes to ccondition (the total choice of k1 and k2) respectively as
C2
i00−1,C

2
i01+i02(i00−1),C2

i10+i20(i00−1), i20i02+C2
i11+(i00−1)i22+i10i12+i01i21,C

2
i20 ,C

2
i02 ,

i20i22+C2
i21 , i02i22+C2

i12 ,C
2
i22 . Note that i00−1 appears here because k1,2 ̸=1 in the (γ,δ)=

(0,0) case. Summing over all cases leads to

ccondition =
1
2
[
i200+(2i02+2i20+2i22−1) i00+i201+i210+(i02+i20+i22)2−i02+(i11−1) i11

+(i12−1) i12+i10 (2i12−1)−i20+(i21−1) i21+i01 (2i21−1)−i22]i00→i00−1 (A.5)

For other (γ,δ), one just needs to replace the i00 → i00−1 with iγδ→ iγδ−1 in (A.5). One
can check that ccondition are identical for (γ,δ)= (1,0),(1,2), and also identical for (γ,δ)=
(0,0),(0,2),(2,0),(2,2) but with a different value.

#4. We have 4 cases: (|I∩K|, |J∩K|)= (1,1),(1,3),(3,1),(3,3), which for (γ,δ)= (0,0) case
contributes to ccondition respectively as i10i01+(i00−1)i11, i11i02+i12i01, i11i20+i21i10, i11i22+
i12i21. Summing over all cases leads to

ccondition =(i10+i12)(i01+i21)+i11 (i00+i02+i20+i22) |i00→i00−1 (A.6)
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For other (γ,δ), one just needs to replace the i00 → i00−1 with iγδ→ iγδ−1 in (A.6). Again,
we see that ccondition are identical for (γ,δ)= (1,0),(1,2), and also identical for (γ,δ)=
(0,0),(0,2),(2,0),(2,2) but with a different value.

#1+4. Since x2 =β2 for both #1 and #4, we can add their ccondition together and have

ccondition =


1
2(u−1)(u−2)+ 1

2v(v−1), (γ,δ)= (0,0),(0,2),(2,0),(2,2)
1
2u(u−1)+ 1

2(v−1)(v−2), (γ,δ)= (1,0),(1,2)
(A.7)

where
u= i00+i02+i20+i22+i11, v= i10+i12+i01+i21 (A.8)

#5. For all 1∈K cases, we set k1 =1 and we only need to choose k2 from 2 to N/2. For
(γ,δ)= (0,0), we have four cases: (|I∩k2|, |J∩k2|)= (0,0),(0,2),(2,0),(2,2), which contributes
to ccondition respectively as i00−1, i02, i20, i22. Similarly, for (γ,δ)= (2,0),(0,2),(2,2) cases,
just need to replace i00−1 with i00 and iγδ with iγδ−1. In all these cases, the total ccondition
are the same

ccondition = i00+i02+i20+i22−1 (A.9)

For (γ,δ)= (1,0), the counting is different and we have (|I∩k2|, |J∩k2|)= (1,0),(1,2), which
contributes to ccondition respectively as i10−1, i12; for (γ,δ)= (1,2), the counting leads to
the contribution to ccondition respectively as i10, i12−1. In both cases, the total ccondition
are the same

ccondition = i10+i12−1 (A.10)

#6. For (γ,δ)= (0,0),(2,0),(0,2),(2,2), we have four cases: (|I∩k2|, |J∩k2|)= (0,1),(2,1),
which contributes to ccondition respectively as i01, i21, which together gives

ccondition = i01+i21 (A.11)

For (γ,δ)= (1,0),(1,2), we have (|I∩k2|, |J∩k2|)= (1,1), whose contribution to ccondition is

ccondition = i11 (A.12)

#7. For (γ,δ)= (0,0),(2,0),(0,2),(2,2), we have four cases: (|I∩k2|, |J∩k2|)= (1,0),(1,2),
which contributes to ccondition respectively as i10, i12, which together gives

ccondition = i10+i12 (A.13)

For (γ,δ)= (1,0),(1,2), we have (|I∩k2|, |J∩k2|)= (0,0),(2,0),(0,2),(2,2), which contributes
to ccondition respectively as i00, i20, i02, i22, which together gives

ccondition = i00+i02+i20+i22 (A.14)
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#8. For (γ,δ)= (0,0),(0,2),(2,0),(2,2), we have (|I∩k2|, |J∩k2|)= (1,1), whose contribu-
tion to ccondition is

ccondition = i11 (A.15)

For (γ,δ)= (1,0),(1,2), we have (|I∩k2|, |J∩k2|)= (0,1),(2,1), whose contribution to
ccondition is

ccondition = i01+i21 (A.16)

Above results are summarized in table 2.
The next step is to count the number dγ,δ of configurations of I and J for given iab

and (γ,δ). This is staightforward and the result is

dγ,δ =
iγδ(N/2−1)!∏

ab iab!
∏
ab

( 4
a!b!(2−a)!(2−b)!

)iab

≡ iγδd(iab) (A.17)

In (A.1) (γ,δ)= (0,0),(2,0),(1,0) gives (−)|j∩J |=1 and (γ,δ)= (0,2),(2,2),(1,2) gives
(−)|j∩J |=−1. Therefore, the net contribution from (γ,δ)= (0,0),(0,2),(2,0),(2,2) to (A.1) is

h1
µ=

1
2
∑
iab

KIJ(i00+i20−i02−i22)d(iab)e
[ 1

2 (u−1)(u−2)+ 1
2 v(v−1)]β2+4(u−i11−1)(τ1+τ2)2

4(N/2−1)

×e
(i01+i21)(2(τ1−τ2)−β)2+(i10+i12)(2(τ1+τ2)+β)2+4i11(τ1−τ2)2

4(N/2−1) ) (A.18)

and the net contribution from (γ,δ)= (1,0),(1,2) to (A.1) is

h2
µ=

1
2
∑
iab

KIJ(i10−i12)d(iab)e
[ 1

2 (v−1)(v−2)+ 1
2 u(u−1)]β2+4(i10+i12−1)(τ1+τ2)2

4(N/2−1)

×e
i11(2(τ1−τ2)−β)2+(u−i11)(2(τ1+τ2)+β)2+4(i01+i21)(τ1−τ2)2

4(N/2−1) (A.19)

where the sum over iab is restricted to
∑
ab iab=N/2 and KIJ in terms of iab is

KIJ =
1
Z
(−)

∑
ab
aiab

(
cosh µ2

)2N−
∑

ab
(a+b)iab

(
sinh µ2

)∑
ab

(a+b)iab

(A.20)

For both (A.18) and (A.19), the exponents are fixed if we fix u,w= i11,y= i01+i21 and
z= i10+i12. Therefore, we can sum over other degrees of freedom first without changing
the exponents. The remaining numbers obey

u+y+z=u+v=N/2 (A.21)

For (A.18), it turns out that

h1
µ =

(
cosh µ2

)2N ∑
u,v,w

∑
z+y=v

(−)z+w22w+v−1(tanh µ
2 )

2w+v(1+tanh2 µ
2 )

2u−2w+vΓ(N/2)
Z coshµΓ(u−w)Γ(1+y)Γ(1+z)Γ(1+w)

×e
y(2τ12−β)2+z(2(τ1+τ2)+β)2

4(N/2−1) e
[ 1

2 (u−1)(u−2)+ 1
2 v(v−1)]β2+4(u−w−1)(τ1+τ2)2+4w(τ1−τ2)2

4(N/2−1)
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=
(
cosh µ2

)2N∑
u,v

u∑
w=0

(−)w+v22w+2v−1(tanh µ
2 )

2w+v(1+tanh2 µ
2 )

2u−2w+vΓ(N/2)
Z coshµΓ(u−w)Γ(1+v)Γ(1+w)

e−
wτ1τ2
N/2−1

×e
[(u−1)(u−2)+v(v−1)]β2/8+(u−1)(τ1+τ2)2+v(τ2

1 +(τ2+β/2)2)
N/2−1

[
sinh τ1(2τ2+β)

N/2−1

]v

=
(
cosh µ2

)2N ∑
u+v=N/2

(−)v22v−1(tanh µ
2 )

v(1+tanh2 µ
2 )

2u+vΓ(N/2)
Z coshµΓ(u)Γ(1+v)

(
1−e−

4τ1τ2
N/2−1 tanh2µ

)u−1

×e
[(u−1)(u−2)+v(v−1)]β2/8+(u−1)(τ1+τ2)2+v(τ2

1 +(τ2+β/2)2)
N/2−1

[
sinh τ1(2τ2+β)

N/2−1

]v

=(coshµ)N−1
N/2−1∑

v=0

(−)v2v−1(tanhµ)vΓ(N/2)
Γ(N/2−v)Γ(1+v)

(
1−e−

4τ1τ2
N/2−1 tanh2µ

)N/2−v−1

×
[
sinh τ1(2τ2+β)

N/2−1

]v

e
v2β2/4−v(τ2(2τ1−β)+(N−4)β2/8)

N/2−1 e−β2/4+(τ1+τ2)2 (A.22)

where in the last step we drop off v=N/2 term because 1/Γ(0)=0. Smilarly, for (A.19),
we have

h2
µ =

(
cosh µ2

)2N ∑
u,v,w

∑
z+y=v

(−)z+w22w+v−1(tanh µ
2 )

2w+v(1+tanh2 µ
2 )

2u+v−2wΓ(N/2)
Z coshµΓ(1+u−w)Γ(1+y)Γ(1+w)Γ(z)

×e
yτ2

12+z(τ1+τ2)2

N/2−1 e
[ 1

2 (v−1)(v−2)+ 1
2 u(u−1)]β2−8wτ1(2τ2+β)+u(2(τ1+τ2)+β)2−4(τ1+τ2)2

4(N/2−1)

=
(
cosh µ2

)2N∑
u,v

u∑
w=0

(−)w+v22w+2v−2(tanh µ
2 )

2w+v(1+tanh2 µ
2 )

2u+v−2wΓ(N/2)
Z coshµΓ(1+u−w)Γ(1+w)Γ(v)

×e−
2wτ1(2τ2+β)

N/2−1 e
[(v−1)(v−2)+u(u−1)]β2/8+u(τ1+τ2+β/2)2+(v−1)(τ2

1 +τ2
2 )

N/2−1

[
sinh 2τ1τ2

N/2−1

]v−1

=
(
cosh µ2

)2N ∑
u+v=N/2

(−)v22v−2(tanh µ
2 )

v(1+tanh2 µ
2 )

2u+vΓ(N/2)
Z coshµΓ(1+u)Γ(v)

(
1−e−

2τ1(2τ2+β)
N/2−1 tanh2µ

)u

×e
[(v−1)(v−2)+u(u−1)]β2/8+u(τ1+τ2+β/2)2+(v−1)(τ2

1 +τ2
2 )

N/2−1

[
sinh 2τ1τ2

N/2−1

]v−1

=(coshµ)N−1
N/2−1∑

v=0

(−)v+12v−1(tanhµ)v+1Γ(N/2)
Γ(N/2−v)Γ(v+1)

(
1−e−

2τ1(2τ2+β)
N/2−1 tanh2µ

)N/2−v−1

×
[
sinh 2τ1τ2

N/2−1

]v

e
v2β2/4−v(2τ1τ2+(τ1+τ2)β+Nβ2/8)

N/2−1 e(τ1+τ2)(τ1+τ2+β) (A.23)

where in the last line we used 1/Γ(0)=0 and shift v→ v+1.
As a consistency check, at µ=0, we should get back to two point function G(β/2−τ1−τ2).

From (A.22), this leaves one term with v=0, which gives

h1
µ=

1
2e

−β2/4+(τ1+τ2)2 (A.24)

From (A.23), we see no term survives under µ→ 0. Comparing (A.24) with (2.20) (for q=4
and τ =β/2−τ1−τ2), we see they exactly match.

To evaluate h1
µ and h2

µ, we can rewrite the sum over v in terms of Gaussian integral.
Using the same trick (3.36), we can write the normalized (A.22) as

h1
µ =(coshµ)N−1

2
√
aπ

(
1−e−

4τ1τ2
N/2−1 tanh2µ

)N/2−1
e−β2/4+(τ1+τ2)2
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×
∫
dxe−

1
a x2

N/2−1∑
v=0

Γ(N/2)
Γ(N/2−v)Γ(1+v)

−2tanhµ
sinh τ1(2τ2+β)

N/2−1

1−e−
4τ1τ2

N/2−1 tanh2µ
e2x− (τ2(2τ1−β)+(N−4)β2/8)

N/2−1

v

=e
−β2/4+(τ1+τ2)2 coshµ

2
√
aπ

∫
dxe−

1
a x2
(
cosh2µ−e−b1 sinh2µ−sinh2µsinh τ1(2τ2+β)

N/2−1 e2x−b2

)N/2−1

(A.25)

where

a= β2

4(N/2−1) , b1 =
4τ1τ2
N/2−1 b2 =

τ2(2τ1−β)+(N−4)β2/8
N/2−1 (A.26)

Similarly, we can write the normalized (A.23) as

h2
µ =− (coshµ)N−1 tanhµ

2
√
aπ

(
1−e−

2τ1(2τ2+β)
N/2−1 tanh2µ

)N/2−1
e(τ1+τ2)(τ1+τ2+β)

×
∫
dxe−

1
a x2

N/2−1∑
v=0

Γ(N/2)
Γ(N/2−v)Γ(1+v)

−2tanhµ
sinh 2τ1τ2

N/2−1e
2x− (2τ1τ2+(τ1+τ2)β+Nβ2/8)

N/2−1

1−e−
2τ1(2τ2+β)

N/2−1 tanh2µ


v

=− e(τ1+τ2)(τ1+τ2+β) sinhµ
2
√
aπ

∫
dxe−

1
a x2
(
cosh2µ−e−c1 sinh2µ−sinh2µsinh 2τ1τ2

N/2−1e
2x−c2

)N/2−1

(A.27)

where

c1 =
2τ1(2τ2+β)
N/2−1 , c2 =

2τ1τ2+(τ1+τ2)β+Nβ2/8
N/2−1 (A.28)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet,
Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

[2] A. Kitaev, A simple model of quantum holography, talks at KITP, 7 April 2015 and 27 May 2015,
http://online.kitp.ucsb.edu/online/entangled15/kitaev,
http://online.kitp.ucsb.edu/online/entangled15/kitaev2.

[3] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94
(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[4] I. Danshita, M. Hanada and M. Tezuka, Creating and probing the Sachdev-Ye-Kitaev model with
ultracold gases: Towards experimental studies of quantum gravity, PTEP 2017 (2017) 083I01
[arXiv:1606.02454] [INSPIRE].

[5] L. García-Álvarez et al., Digital Quantum Simulation of Minimal AdS/CFT, Phys. Rev. Lett.
119 (2017) 040501 [arXiv:1607.08560] [INSPIRE].

[6] D.I. Pikulin and M. Franz, Black Hole on a Chip: Proposal for a Physical Realization of the
Sachdev-Ye-Kitaev model in a Solid-State System, Phys. Rev. X 7 (2017) 031006
[arXiv:1702.04426] [INSPIRE].

– 43 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.70.3339
https://arxiv.org/abs/cond-mat/9212030
https://inspirehep.net/literature/342314
http://online.kitp.ucsb.edu/online/entangled15/kitaev
http://online.kitp.ucsb.edu/online/entangled15/kitaev2
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/literature/1452588
https://doi.org/10.1093/ptep/ptx108
https://arxiv.org/abs/1606.02454
https://inspirehep.net/literature/1468156
https://doi.org/10.1103/PhysRevLett.119.040501
https://doi.org/10.1103/PhysRevLett.119.040501
https://arxiv.org/abs/1607.08560
https://inspirehep.net/literature/1478397
https://doi.org/10.1103/PhysRevX.7.031006
https://arxiv.org/abs/1702.04426
https://inspirehep.net/literature/1513833


J
H
E
P
0
1
(
2
0
2
4
)
1
4
9

[7] A. Chen et al., Quantum holography in a graphene flake with an irregular boundary, Phys. Rev.
Lett. 121 (2018) 036403 [arXiv:1802.00802] [INSPIRE].

[8] M. Brzezinska et al., Engineering SYK Interactions in Disordered Graphene Flakes under
Realistic Experimental Conditions, Phys. Rev. Lett. 131 (2023) 036503 [arXiv:2208.01032]
[INSPIRE].

[9] P. Uhrich et al., A cavity quantum electrodynamics implementation of the Sachdev-Ye-Kitaev
model, arXiv:2303.11343 [INSPIRE].

[10] L. Susskind, Dear Qubitzers, GR=QM, arXiv:1708.03040 [INSPIRE].

[11] A.R. Brown et al., Quantum Gravity in the Lab. I. Teleportation by Size and Traversable
Wormholes, PRX Quantum 4 (2023) 010320 [arXiv:1911.06314] [INSPIRE].

[12] S. Nezami et al., Quantum Gravity in the Lab. II. Teleportation by Size and Traversable
Wormholes, PRX Quantum 4 (2023) 010321 [arXiv:2102.01064] [INSPIRE].

[13] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013)
781 [arXiv:1306.0533] [INSPIRE].

[14] P. Gao and D.L. Jafferis, A traversable wormhole teleportation protocol in the SYK model, JHEP
07 (2021) 097 [arXiv:1911.07416] [INSPIRE].

[15] P. Gao, D.L. Jafferis and A.C. Wall, Traversable Wormholes via a Double Trace Deformation,
JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

[16] A.M. García-García, Y. Jia, D. Rosa and J.J.M. Verbaarschot, Sparse Sachdev-Ye-Kitaev model,
quantum chaos and gravity duals, Phys. Rev. D 103 (2021) 106002 [arXiv:2007.13837]
[INSPIRE].

[17] S. Xu, L. Susskind, Y. Su and B. Swingle, A Sparse Model of Quantum Holography,
arXiv:2008.02303 [INSPIRE].

[18] D. Jafferis et al., Traversable wormhole dynamics on a quantum processor, Nature 612 (2022) 51
[INSPIRE].

[19] B. Kobrin, T. Schuster and N.Y. Yao, Comment on “Traversable wormhole dynamics on a
quantum processor”, arXiv:2302.07897 [INSPIRE].

[20] D. Jafferis et al., Comment on “Comment on “Traversable wormhole dynamics on a quantum
processor” ”, arXiv:2303.15423 [INSPIRE].

[21] D. Sherrington and S. Kirkpatrick, Solvable Model of a Spin-Glass, Phys. Rev. Lett. 35 (1975)
1792 [INSPIRE].

[22] D.J. Thouless, P.W. Anderson and R.G. Palmer, Solution of ‘solvable model of a spin glass’, Phil.
Mag. 35 (1977) 593.

[23] G. Parisi, An Infinite Number of Order Parameters for Spin Glasses, Phys. Rev. Lett. 43 (1979)
1754 [INSPIRE].

[24] T. Schuster et al., Many-Body Quantum Teleportation via Operator Spreading in the Traversable
Wormhole Protocol, Phys. Rev. X 12 (2022) 031013 [arXiv:2102.00010] [INSPIRE].

[25] B. Derrida, Random-Energy Model: Limit of a Family of Disordered Models, Phys. Rev. Lett. 45
(1980) 79 [INSPIRE].

[26] E. Gardner, Spin glasses with p-spin interactions, Nucl. Phys. B 257 (1985) 747 [INSPIRE].

[27] T.R. Kirkpatrick and D. Thirumalai, Dynamics of the structural glass transition and the
p-spin-interaction spin-glass model, Phys. Rev. Lett. 58 (1987) 2091.

– 44 –

https://doi.org/10.1103/PhysRevLett.121.036403
https://doi.org/10.1103/PhysRevLett.121.036403
https://arxiv.org/abs/1802.00802
https://inspirehep.net/literature/1652896
https://doi.org/10.1103/PhysRevLett.131.036503
https://arxiv.org/abs/2208.01032
https://inspirehep.net/literature/2129553
https://arxiv.org/abs/2303.11343
https://inspirehep.net/literature/2644525
https://arxiv.org/abs/1708.03040
https://inspirehep.net/literature/1615488
https://doi.org/10.1103/PRXQuantum.4.010320
https://arxiv.org/abs/1911.06314
https://inspirehep.net/literature/1765146
https://doi.org/10.1103/PRXQuantum.4.010321
https://arxiv.org/abs/2102.01064
https://inspirehep.net/literature/1844318
https://doi.org/10.1002/prop.201300020
https://doi.org/10.1002/prop.201300020
https://arxiv.org/abs/1306.0533
https://inspirehep.net/literature/1236661
https://doi.org/10.1007/JHEP07(2021)097
https://doi.org/10.1007/JHEP07(2021)097
https://arxiv.org/abs/1911.07416
https://inspirehep.net/literature/1765778
https://doi.org/10.1007/JHEP12(2017)151
https://arxiv.org/abs/1608.05687
https://inspirehep.net/literature/1482669
https://doi.org/10.1103/PhysRevD.103.106002
https://arxiv.org/abs/2007.13837
https://inspirehep.net/literature/1809070
https://arxiv.org/abs/2008.02303
https://inspirehep.net/literature/1810358
https://doi.org/10.1038/s41586-022-05424-3
https://inspirehep.net/literature/2605741
https://arxiv.org/abs/2302.07897
https://inspirehep.net/literature/2633045
https://arxiv.org/abs/2303.15423
https://inspirehep.net/literature/2646123
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://inspirehep.net/literature/107911
https://doi.org/10.1103/PhysRevLett.43.1754
https://doi.org/10.1103/PhysRevLett.43.1754
https://inspirehep.net/literature/141724
https://doi.org/10.1103/PhysRevX.12.031013
https://arxiv.org/abs/2102.00010
https://inspirehep.net/literature/1844255
https://doi.org/10.1103/PhysRevLett.45.79
https://doi.org/10.1103/PhysRevLett.45.79
https://inspirehep.net/literature/163915
https://doi.org/10.1016/0550-3213(85)90374-8
https://inspirehep.net/literature/17216


J
H
E
P
0
1
(
2
0
2
4
)
1
4
9

[28] C.L. Baldwin and B. Swingle, Quenched vs Annealed: Glassiness from SK to SYK, Phys. Rev. X
10 (2020) 031026 [arXiv:1911.11865] [INSPIRE].

[29] V. Balasubramanian et al., Complexity growth in integrable and chaotic models, JHEP 07 (2021)
011 [arXiv:2101.02209] [INSPIRE].

[30] B. Craps et al., Bounds on quantum evolution complexity via lattice cryptography, SciPost Phys.
13 (2022) 090 [arXiv:2202.13924] [INSPIRE].

[31] A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the
Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].

[32] J.M. Deutsch, Eigenstate thermalization hypothesis, Rept. Prog. Phys. 81 (2018) 082001
[arXiv:1805.01616] [INSPIRE].

[33] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067
[arXiv:1306.0622] [INSPIRE].

[34] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, in the proceedings of
the Talk given at the Fundamental Physics Prize Symposium, vol. 10, (2014).

[35] D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect,
Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].

[36] S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296]
[INSPIRE].

[37] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132
[arXiv:1412.6087] [INSPIRE].

[38] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106
[arXiv:1503.01409] [INSPIRE].

[39] B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B 95
(2017) 060201 [arXiv:1608.03280] [INSPIRE].

[40] D.A. Roberts, D. Stanford and A. Streicher, Operator growth in the SYK model, JHEP 06 (2018)
122 [arXiv:1802.02633] [INSPIRE].

[41] X.-L. Qi and A. Streicher, Quantum Epidemiology: Operator Growth, Thermal Effects, and SYK,
JHEP 08 (2019) 012 [arXiv:1810.11958] [INSPIRE].

[42] J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65
(2017) 1700034 [arXiv:1704.05333] [INSPIRE].

[43] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

[44] H.W. Lin, J. Maldacena and Y. Zhao, Symmetries Near the Horizon, JHEP 08 (2019) 049
[arXiv:1904.12820] [INSPIRE].

[45] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two
dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]
[INSPIRE].

[46] P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems,
JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

[47] D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04 (2017) 121
[arXiv:1610.04903] [INSPIRE].

[48] P. Gao and H. Liu, Regenesis and quantum traversable wormholes, JHEP 10 (2019) 048
[arXiv:1810.01444] [INSPIRE].

– 45 –

https://doi.org/10.1103/PhysRevX.10.031026
https://doi.org/10.1103/PhysRevX.10.031026
https://arxiv.org/abs/1911.11865
https://inspirehep.net/literature/1767450
https://doi.org/10.1007/JHEP07(2021)011
https://doi.org/10.1007/JHEP07(2021)011
https://arxiv.org/abs/2101.02209
https://inspirehep.net/literature/1839661
https://doi.org/10.21468/SciPostPhys.13.4.090
https://doi.org/10.21468/SciPostPhys.13.4.090
https://arxiv.org/abs/2202.13924
https://inspirehep.net/literature/2039758
https://doi.org/10.1103/PhysRevD.94.126010
https://arxiv.org/abs/1610.03816
https://inspirehep.net/literature/1491407
https://doi.org/10.1088/1361-6633/aac9f1
https://arxiv.org/abs/1805.01616
https://inspirehep.net/literature/2732297
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/literature/1236835
https://doi.org/10.1103/PhysRevLett.115.131603
https://arxiv.org/abs/1412.5123
https://inspirehep.net/literature/1334562
https://doi.org/10.1007/JHEP12(2014)046
https://arxiv.org/abs/1312.3296
https://inspirehep.net/literature/1268850
https://doi.org/10.1007/JHEP05(2015)132
https://arxiv.org/abs/1412.6087
https://inspirehep.net/literature/1334998
https://doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
https://inspirehep.net/literature/1347290
https://doi.org/10.1103/PhysRevB.95.060201
https://doi.org/10.1103/PhysRevB.95.060201
https://arxiv.org/abs/1608.03280
https://inspirehep.net/literature/1480879
https://doi.org/10.1007/JHEP06(2018)122
https://doi.org/10.1007/JHEP06(2018)122
https://arxiv.org/abs/1802.02633
https://inspirehep.net/literature/1653963
https://doi.org/10.1007/JHEP08(2019)012
https://arxiv.org/abs/1810.11958
https://inspirehep.net/literature/1700790
https://doi.org/10.1002/prop.201700034
https://doi.org/10.1002/prop.201700034
https://arxiv.org/abs/1704.05333
https://inspirehep.net/literature/1592007
https://arxiv.org/abs/1804.00491
https://inspirehep.net/literature/1665582
https://doi.org/10.1007/JHEP08(2019)049
https://arxiv.org/abs/1904.12820
https://inspirehep.net/literature/1731865
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/literature/1467447
https://doi.org/10.1088/1126-6708/2007/09/120
https://arxiv.org/abs/0708.4025
https://inspirehep.net/literature/759404
https://doi.org/10.1007/JHEP04(2017)121
https://arxiv.org/abs/1610.04903
https://inspirehep.net/literature/1492351
https://doi.org/10.1007/JHEP10(2019)048
https://arxiv.org/abs/1810.01444
https://inspirehep.net/literature/1696804

	Introduction
	Commuting SYK is not holographic
	The model
	Partition function and spectrum
	Two-point function
	Four-point function

	Commuting SYK has some holography-like features
	Size distribution
	Size-winding
	Saddle approximation for size distribution and size winding
	Peaked-size versus size-winding 

	Traversable wormhole teleportation protocol in commuting SYK
	Saddle approximation
	Sign of 
	Peak location and signal ordering

	Conclusion and discussion
	Computation of h(mu)

