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ABSTRACT: The continued success of the jet substructure program will require widespread
use of tracking information to enable increasingly precise measurements of a broader class of
observables. The recent reformulation of jet substructure in terms of energy correlators has
simplified the incorporation of universal non-perturbative matrix elements, so called “track
functions”, in jet substructure calculations. These advances make it timely to understand
how these universal non-perturbative functions can be extracted from hadron collider data,
which is complicated by the use jet algorithms. In this paper we introduce a new class of jet
functions, which we call (semi-inclusive) track jet functions, which describe measurements of
the track energy fraction in identified jets. These track jet functions can be matched onto the
universal track functions, with perturbatively calculable matching coefficients that incorporate
the jet algorithm dependence. We perform this matching, and present phenomenological
results for the charged energy fraction in jets at the LHC and EIC/HERA at collinear
next-to-leading logarithmic accuracy. We show that higher moments of the charged energy
fraction directly exhibit non-linear Lorentzian renormalization group flows, allowing the
study of these flows with collider data. Our factorization theorem enables the extraction
of universal track functions from jet measurements, opening the door to their use for a
precision jet substructure program.
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1 Introduction

Jet substructure [1, 2] plays a central role in many aspects of collider physics, from searches
for new physics, to precision Standard Model measurements, to studies of QCD. To further
extend the ability to decode energy flux within jets will require the study of higher-point
correlations, as well as higher precision. Experimentally, this will require an increased use
of tracking information, which has already proven crucial in cutting-edge jet substructure
measurements at ATLAS [3-7], CMS [8, 9], ALICE [10-13] and LHCb [14, 15], as well as in
many measurements of fragmentation [15-20]. Since tracking information uses the charges of
hadrons, theoretical calculations of jet substructure observables on tracks are not infrared
and collinear safe [21, 22], and hence cannot be performed purely in perturbation theory.
This significantly complicates their theoretical description, and until recently has acted as
a blockade to achieving precision theoretical calculations of jet substructure observables
on tracks.

In refs. [23, 24] a factorization for observables measured on tracks was introduced, allow-
ing a separation of perturbative physics, whose description can be systematically improved
by higher-order calculations, from non-perturbative physics, described by universal non-
perturbative matrix elements. The non-perturbative inputs appearing in this factorization
were termed “track functions” [23-28]. While originally formulated in the context of incor-
porating tracking information, this formalism applies much more generally for computing
jet substructure observables on subsets of final-state hadrons.

Due to a recent reformulation of jet substructure [29, 30] in terms of energy correlators [31-
35] (for applications see refs. [36-46]), the use of track functions in higher-order perturbative
calculations has now become practical. This has reinvigorated their study, leading to a system-
atic understanding of their renormalization group evolution, and explicit calculations to next-
to-leading order [25-28]. These calculations revealed an interesting non-linear renormalization



group structure going beyond the standard linear Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) [47-49] paradigm of fragmentation functions (FFs) and parton distribution functions
(PDFs). Efficient numerical implementations of the track function evolution were developed
in refs. [25, 26], and are available at https://github.com/HaoChernl4/Track-Evolution,
making them ready for phenomenological applications. Indeed, they have recently been
applied to compute the small angle limit of the energy correlators on tracks at collinear
next-to-leading logarithmic accuracy [50].

While the renormalization group equations of the track functions can be systematically
computed in perturbation theory, the values of the track functions at a particular scale
are non-perturbative parameters of QCD. Since track functions describe timelike dynamics
near the lightcone, there is currently no known way to compute them from first principles.
This is in contrast to PDFs, which describe spacelike dynamics, and for which there has
been significant recent progress in calculations using Euclidean lattice formulations of QCD
(see e.g. refs. [51-55]). Therefore, the missing link in the application of track functions to
improving jet substructure measurements is an understanding of how they can be extracted
from data. This is similar to the extraction of the universal FFs (see e.g. [56-59]) and
PDFs [60-63] from hadron collider data using the foundational factorization theorems of
Collins-Soper-Sterman [64—66]. Despite their more complicated RG evolution, we actually
think that the extraction of track functions from data will be easier than FFs, due to their
simpler behavior at small momentum fraction. Due to the increasing importance of jet
substructure in hadron collider physics, we hope that track functions can soon be found
alongside PDFs and FFs as standard universal non-perturbative inputs for collider physics.

Track functions describe the total fraction of energy carried by charged hadrons from the
fragmentation of a quark or gluon. In eTe™ colliders they can be extracted by measuring the
fraction of energy in charged hadrons. This was computed to NNLO in [26], and was seen to
exhibit excellent perturbative convergence. However, at hadron colliders, where we currently
have the most precise data, the situation is more complicated due to the necessity of jet
algorithms [67-70] to identify hard scattering events. In this case, the practical measurement
that can be made is the energy fraction, x,x, of charged hadrons inside a jet defined by a
given jet algorithm and transverse momentum pr. This is significantly more complicated
both experimentally and theoretically. From the experimental perspective, this measurement
is challenging since it requires a precise measurement of both the charged energy flux and
total energy flux within identified jets. The measurement of the total energy flux is difficult,
with a more limited jet energy scale resolution at the LHC [71-74]. This is in contrast to
ete™, where the hard scale Q is fixed, and so only the energy of charged particles needs to
be measured. From the theoretical perspective, this observable is also more complicated,
since unlike the track functions themselves, these measurements are non-universal, exhibiting
an explicit dependence on the jet algorithm.

In this paper, we derive a factorization theorem to relate measurements of the track energy
fraction inside high-pr jets to universal track functions, enabling the extraction of universal
track functions from hadron-collider data. Our factorization theorem involves a new type of
jet function, which we term (semi-inclusive) track jet functions due to their analogy with their
(semi-inclusive) fragmenting jet functions’ counterparts [75, 76]. These track jet functions
can be matched onto the standard track functions, with perturbatively calculable coefficients
that incorporate the details of the jet algorithm. We compute these objects for anti-kp [69]
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jets, and study their properties. We also show that they are a gen- erating functional for
(semi-inclusive) multi-hadron fragmenting jet functions, much like how track functions are
a generating functional for multi-hadron fragmentation functions [25, 26]. We then present
phenomenological results both at the LHC, and at deep-inelastic scattering experiments
(HERA/EIC), and show the importance of the track jet functions for properly extracting the
universal track functions from jet-based measurements. Our results bridge recent theoretical
advances in our understanding of track functions with experimental data, and provide the
final missing piece for extracting universal track functions from jet measurements (apart
from the measurement itself!).

There are two primary reasons why measurements of the track functions are interesting.
The first is, as mentioned above, that there is currently no way to calculate the track function
from first principles, and therefore it must be measured if it is to be used in precision jet
substructure calculations. Its universality then ensures that it can be used in any experiment.
This is similar to the program of extracting PDFs or FFs. This is an extremely valuable
output of the measurement of the track function, and will certainly lead to new tests of
QCD from new jet substructure measurements. However, due to the fact that there is
currently no first principles way of computing the track function from the QCD Lagrangian,
the measurement of the track function at a single scale does not provide a test of QCD.
The second motivation for measuring the track functions is as a test of the dynamics of
QCD, due to the fact that the renormalization group evolution of the track functions can
be computed in perturbative QCD, and exhibits remarkable features of QCD that to our
knowledge have not previously been directly measured.

A particular interesting aspect of the measurement of the x, is that it provides not
just a value of the mean (xk), but also of higher moments, ((ztx — (zx))"), which encode
interesting fluctuations in the fragmentation process. While the mean value of fragmentation
quantities, such as the multiplicity can be described to high orders [77], fluctuations are
much less understood, and are one of the primary advances arising from the study of jet
substructure. Higher moments of the energy fraction distribution in jets exhibit non-linear
RG flows of the underlying track functions, allowing these RG flows to be directly studied
in a clean experimental observable. It is precisely these higher moments, which capture
fluctuations as opposed to mean values, that make jet substructure theoretically interesting,
and is where the advances in our understanding using field theory, have occurred. The
non-linearity of the RG is a feature common to a number of Lorentzian RG equations, such
as the BK [78, 79] or B-JIMWLK [80, 81] equations for forward scattering, the BMS equation
for the resummation of non-global logarithms [82, 83], the evolution equations for leading
jets [84, 85], and small-z fragmentation [86, 87]. However, a unique feature here is that we
are able to directly measure the RG flows of these operators. This is, to our knowledge,
unique, and provides interesting insight into Lorentzian RG phenomena.

An outline of this paper is as follows: in section 2, we introduce the track jet functions,
and discuss some of their basic properties, including their operator product expansion onto
the universal track function, their renormalization group evolution, and their relation to (semi-
inclusive) multi-hadron fragmenting jet functions. In section 3, we study the perturbative
structure of the track jet functions, computing them at one-loop, and predicting their two-loop
structure using the renormalization group. We then present numerical results for the energy
fraction on charged hadrons inside identified jets at the LHC and HERA /EIC in section 4.
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Figure 1. An illustration of a jet with charged momentum fraction x, produced through the
fragmentation of a quark with momentum k. Charged particles are indicated in red, and the grey
blob denotes the hadronization process from partons to hadrons. This is described field-theoretically
using a track jet function.

We highlight the large numerical impact of the matching coefficients in properly extracting
the universal track functions, as well as the interesting renormalization group flows that can
be probed through measurements of the x distribution. We conclude in section 5.

2 Track jet functions

In this section we define the track jet functions and study their basic properties, namely
their operator product expansion onto universal track functions, their renormalization group
evolution, and the structure of their moments. We also show that they are a generating
functional for (semi-inclusive) multi-hadron fragmenting jet functions.

2.1 Definition

Our goal is to describe the momentum fraction of tracks with respect to the momentum of an
identified anti-k7 jet, which we will denote by ;. We illustrate this in figure 1. In particular,
we want to express the cross section for this observable in terms of universal track functions,
which describe the non-perturbative dynamics at the scale Aqcp, and a perturbative matching
coefficient, which describes the jet formation at the scale prR, where pr is the transverse
momentum of the jet and R is its radius. This is a generalization of factorization theorems
for identified hadrons in jets, first considered in ref. [88], and significantly developed and
extended to a variety of different contexts [75, 76, 89-94].

To obtain a factorization theorem for the x,x observable in a hadron collider environment,
we begin with the factorization theorem of Collins-Soper-Sterman [64-66, 95-98] for inclusive

hadron production
do
Ipr dydom = Hi(pr/z,m, 1t) @z Gisstrk (2, Tork, PTR, 1) (2.1)

where the fragmentation function is replaced by the track jet function G, which describes the
inclusive production of jets from an initial parton ¢ and the measurement of the observable



Tirk. H is the inclusive hard function, which contains the PDFs and the perturbative cross
section for producing a parton ¢ with transverse momentum pr/z and rapidity n. The
argument z of G denotes the momentum fraction of the jet with respect to the initial parton
produced by the hard function #;, such that the jet transverse momentum is pr/z X z = pr.
A sum over the repeated flavor index 7 is understood and the convolution structure over
the momentum fraction z is explicitly given as

[Hi @2 Gisurk] (DT, 1, Tiak, 1 Z/ *7'[ (pr/2:m, 1) Gimstrk (2, Toake, pr Ry 1), (2.2)

min 2

where 2™ = 2pr coshn/+/s. The jet function G is a multiscale function, describing both
the jet dynamics at the scale prR, as well as the non-perturbative dynamics at the scale
Aqcp, through the dependence on zyk. It also depends explicitly on the jet algorithm
used to define the jets.

As compared to a measurement of a single hadron fragmentation function in a jet [76], the
measurement of the track energy fraction does not modify the proof of the factorization [64—
66, 95-98]. It only modifies the explicit form of the jet function appearing in eq. (2.2).
Much like for the extraction of universal PDFs and FFs, our ability to extract universal
field-theoretic matrix elements relies crucially on rigorous factorization theorems in the
hadron collider environment, highlighting the seminal work of [64-66], and emphasizing
the importance of further understanding factorization and its breaking in hadron-hadron
collisions (see e.g. [99-116] for recent progress).

The track jet functions can be given a field theoretic definition in Soft-Collinear Effective
Theory (SCET) [115, 117-120], following the treatment of fragmenting jet functions. We
define the quark and gluon track jet functions as

z Pp
Tt prR, ) = ~Sprcodhy
Gg—trk (2, Tork, PT R, 1) 2N, (mtrk 2pr coshn>

x Ztr[ (018 = 7 PR O XOUX O] (23)
Zw Py
gg%trk(zu 5Utrk;pTRa /'L) (d 2)( 1) 5($trk_2pTCO]Zh(7])>
x Z<0|5<w 0 P)B O X)IXIBL 00).  (24)

J,X
Here J denotes the identified jet state with large light-cone momentum pr, as defined using
an appropriate jet algorithm with jet radius R. We sum over all unidentified states X, and all
jet states, J, consistent with the jet definition. Py denotes the large light-cone momentum
of the charged hadrons in the jet. The matrix elements are averaged over color and spin,
and we have used d space-time dimensions as a regularization. The fields x and B are the
collinear quark and gluon fields of SCET [115, 117-120]. The variable w denotes the large
light-cone momentum component of the field initiating the jet. The track jet function is
expressed in terms of the variable
bpr
2= (2.5)
The resulting track jet function ends up being a function of the combination prR.



In the case that prR > Aqcp, we can factorize G into a convolution of a perturbative
matching coefficient and non-perturbative matrix element(s). This factorization can be
efficiently achieved using SCET, and the track functions onto which we will match are defined
in terms of the SCET fields as [23, 24]

i) = G 3 8= TE Jul S0 -7 P KO0 20
1673w
Tg(x,,u) = _(d— 2)(N2 — 1)
< S8(e 2 )0l — - PIEPLB O XIBL 00 @)

As compared to the track jet function, there is no identified jet, and hence no jet algorithm
dependence, making the track function a universal non-perturbative function of QCD. The
matching of the track jet function G onto products of these universal track functions T;(x)
takes the following form

gi—)trk('z)xtrkapTRnu) = Z Z / H dyk dfﬂszk ZL‘k 5(xtrk - Z xkyk) 5(2 Yr — 1)
k=1 k=1 k=1

m=1 i1,.,im

Aqep
X Z—}[il,..‘,im](zv Yty - 7ym717pTR, M) + O<pTR)
=% ¥ T © I Tulond +0(252) . 28)
m=1 i1,.,im o k=1 prR

where the definition of the convolution structure involving different number of track functions
can be inferred by comparing the two lines. Since the measurement of the track energy
fraction in a jet requires one to track all the hadrons (as compared to fragmentation), the
matching coefficients are differential in an arbitrary number of final state hadrons. At O(alY)
in perturbation the maximum number of partons is N + 1. In eq. (2.8) we have also used
that J;,[i,....i,,) can always be written independent of the momentum fraction y,, by using
momentum conservation, expressed explicitly by the delta function §(} ;- yx — 1).

2.2 Renormalization group evolution
The factorization theorem in eq. (2.1) guarantees that the function G evolves with the timelike

DGLAP evolution, namely

1

d dz’ z

m Gistrk (2, Toak, pT R, 1) = 2/7 Pj; <z’) gj%trk(zlaxtrk7pTR7/~L)~ (2.9)
J z

We follow the convention for the normalization of the timelike splitting functions used

n [121-123], and expand it in terms of the reduced coupling a; = 7= as

Z aF1 P (). (2.10)



The timelike splitting function is known to NNLO [122, 124-127]. The evolution of the track
jet function can then similarly be expanded as

d 0
m gi%trk(zg xtrk7pTRa M) = Clst(i ) (S gjﬁtrk(z, Ttrk, pTR7 M)
+ “gpy(z ®z Gjstrk (2, Terke, PO R, p1) + -+ - (2.11)

where we have introduced the shorthand notation ®, to express the convolution defined
in eq. (2.9).

The RG equations for the track function are also known, but they exhibit a more
complicated non-linear evolution equation [23-28], due to the fact that they measure the
energy fraction on all charged hadrons, as opposed to a single identified hadron. Their
evolution is described by perturbative kernels, K;_,;, .., that capture the mixing between a
single track function 7; and a product of k track functions, T}, - - - T;,. To NLO, or O(a?2),
their evolution equations are given by

d

0
T @) = o [KOT + K, @ 1T | (@)
1 1
+a2 [ KT+ KDY, 9 T T, + KDY, @ T Ty (2), (212)

where the explicit expressions of these multi-parton final state kernels are given to NLO for all
channels in ref. [25]. The convolution structures for the 1 — 2 and 1 — 3 kernels are defined as

Kiiviy ® T3, Tiy () (2.13)
/ dzidze T, (21)T5, (22 / dzidzg 0(1—21—29)0(x— 2121 — 2022) Ki—siyiy (21, 22)
Kisiyigiy @ T3, Ty Tig (2)
= /01 daydxedas Ty, (x1)Tiy (22) Tiy (23)
X /01 dz1dzadzs 6(1—21 —22—23)0(x — 2121 — 2002 — 23%3) Kiyiyigis (21, 22, 23) . (2.14)

We note that the timelike DGLAP splitting kernels can in fact be written in terms of the
kernels for the track function evolution [25]

P](zo)(z) = ‘Pz(g)]( ) - 51‘7K’L*>Z ZKfi)]k Z 1- Z) ’ (215)
1 1 1
P](l)(Z)E'P’L(J]( ) _61]Kzﬁz+ZKz(—zjk Z 1_2)
+> /dz’ d2"6(1—2 -2 —2") Klgizjkl(z, 22", (2.16)

These kernels provide a unified description of collinear evolution equations.
Renormalization group consistency fixes the RG evolution of the perturbative matching

kernels J in eq. (2.8) to be the difference of the DGLAP and the track function evolution, as

is standard for such refactorizations. Hence they also evolve with a complicated non-linear



RG equation. This is of course expected, since G is sensitive to the charge fraction of all
hadrons within a jet. However, the RG evolution is completely fixed, and is known from
recent calculations of the track function RG [25-28].

2.3 Moments

Moments of the track functions play a key role since they appear in factorization theorems
for energy correlators [30], and exhibit simpler evolution equations [27, 28]. We define the
moments of a track function of flavor i as

1
Ti(n,p) = / dz 2" T;(x, pn) . (2.17)
0
They obey the sum rule
Ti(0,0) =1, (2.18)

corresponding to probability conservation. Since moments of the track jet function can also
be directly measured experimentally, it is important to understand the relation between
moments of the track jet function, and moments of the track functions itself.

Taking moments of eq. (2.8) with respect to the track energy fraction, we find

dU(N) N do
d " dordndee o b z Ji—tr 7Na R7 5 2.19
dpr dn / Lirk LTirk dpr dn Az =Hi(pr/z,m, 1) @2 Gistrk (2 prR, 1) ( )
where

gi—)trk(za N7 pTR7 /,L)

[d T;
mz:l Z;Z:m s zn;_ <n17n27..., ) /H o " Ty ()
nz>0

/H Ak Y3 ") Tis i) (25 yl,---,yn—l,pTR,MN(Z Yk — 1)
paie} k=1

5 5 (o) o

e R LTI
n; >0
X k7i—>[i1,...,im](za n1,N2, ..., Nm—1,pr R, :u) : (220)

Terms involving 7;(0) can be simplified using the sum rule in eq. (2.18). This provides an
explicit relationship between the moments of the universal non-perturbative track functions
and the moments of charged energy distribution inside jets at the LHC, and will thus play a
key role in the extraction of track functions from experiment. This relation also shows that
it is possible to directly observe the renormalization group evolution of the track function
moments by measuring the moments of the xy distribution. We will discuss this in detail in
section 4. Note that the zeroth-moment of G, ., gives back the semi-inclusive jet function
from ref. [128], due to the sum-rule in (2.18).

2.4 Relation to multi-hadron fragmenting jet functions

Although the main focus of this paper is on developing the formalism necessary to extract
track functions from hadron-collider data, we also note that the formalism introduced here
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allows for the calculation of N-hadron fragmentation within jets. This is due to the relation
between track functions and multi-hadron fragmentation functions discovered in refs. [25, 26],
that was used to obtain the renormalization group equations of the latter from the former.
In our case we can use it to obtain the matching for (multi-hadron) fragmenting jet functions
from that of track jet functions. See refs. [129-132] where di-hadron fragmentation functions
were discussed and extracted from the available data.

The key insight of refs. [25, 26] was that since the track functions measure the energy
fraction on all hadrons, they must contain in them the renormalization group evolution for N-
hadron fragmentation functions, for all N. In this sense, the RG equations for track functions
can be viewed as generating functionals for the RG equations of N-hadron fragmentation
functions. Intuitively, the relationship is clear: to reduce an equation involving track functions
to a similar equation involving N-hadron fragmentation functions, one must integrate out
all but N hadrons. At a mathematical level, this is achieved by replacing (some of) the
track functions T;(z) — d(z), integrating over the energy fraction, and then relabelling
the remaining track functions as (multi-hadron) fragmentation functions. In the general
N-hadron case, this also involves summing over all ways to divide the set of N hadrons into
non-empty sets. The detailed procedure was described in ref. [25].

Interestingly, we can view the matching from G onto products of track functions in the
same manner. Since G tracks the energy fraction of all hadrons in the jet, it can be viewed
as a generating functional for N-hadron fragmenting jet functions. These can be derived in
an identical manner as presented in ref. [25] for the renormalization equation.

Applying these rules to the track jet function, we first sum over all ways of replacing
track functions by delta functions

gi—M:rk(vatrkapTRvﬂ) (221)

=33 > Tisfirein) @ Tiy (4)8(,) - 0(2y,,)

m2>1 {iy} fre{1,2,,m}

+ Z Z Z ~7i—>[i1,...,im] ® Tifl (xfl)Tif2 (xfz)d(xf?,) T 5(xfm)

m2>2 {is} C{{lf;fg}m}

3 D Tistiveind @ Ty ()T, (20,) Ty, (24,)0(2,) - - 0(2 )

m>3 {is} C{{f11 72f%-,‘f3nz}

+ Z Z Z -ji—)[il,...,im] ® Tif1 ($f1 )Tif2 (fo) - 'TifN (fo)6(fo+1) T 5(xfm)
m>N {if} {2171/‘22v"‘»fN}

12,00 ,m}

We then replace these with (products of) multi-hadron fragmentation functions

gi—>h1h2-~~h1\r (Zuy17y2)"‘7yn7pTR7H) (222)

= Z Z Z ‘7i_>[i17~~~7im]®Dif1*>h1h2'“h1\’(y}hl’y./flaz’.“ ’y}hN)

+ Z Z Z \-,7i—>[i1,...,im] ®ZDif1 —k hadrons(y}hla T ay;‘l,k)

m>2 {zf} C{{lf%,fz} , So
=1h4,m / /
XDifQA)(ka) hadrons(yfg,k+17 T 7yf2,N)
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+2 00 D Tisfinein] @D Dig sk hadsons (U 1 Y k)

m>3 {i {f1.f2,f3} S
>3 {ig} §{11,2,%»3n} 3
/ ! / /
X Dif2—>k2 hadrons(yf27k1+1> T 7ny,k1+k2)Dif3—>(n—k1—k2) hadrons(yf37k1+k2+1a Tt >yf2,N)
/ /
+ Z Z Z t7i—>[i1,.~.,im}®ZDiflﬁl hadron(yfl,l)x"'XDifNﬁl hadron(ny,N)v
m2>N {ig} {f1.f2:fN} SN

C{1,2,-,m}

where S} denote all ways of dividing the set of hadrons into k& non-empty sets. For details,
see ref. [25]. This provides an expression for the general N-hadron fragmenting jet function.

This expression is useful in two ways. First, as a check on our results, we have used
this procedure to derive the (semi-inclusive) single-hadron fragmenting jet function, which
was computed to O(ay) in ref. [76]. Second, it provides a practical means of computing
the (semi-inclusive) multi-hadron fragmenting jet functions. It would be interesting to
investigate phenomenological applications of these functions in future work. In particular,
this formalism could be useful for the extraction of multi-hadron fragmentation functions
from jet measurements at the LHC.

3 Perturbative calculations of matching coefficients

We now perform the perturbative calculation of the matching coefficients J between the
track jet function and the universal track functions. We consider the track jet functions
up to O(a?). At this order, we can have at most three particles in the final state, and
thus eq. (2.8) simplifies to

gi—)trk (Z, Ttrk, pTRa M) = (31>

‘ZL%[Z]T‘(‘IEtrk) + ai tz(i))[J] T; (:Etrk) + \7 & T‘ka(xtrk)

%[J k]

+ a2 [T © Tywame) + T2, 4 © TiTk(wa) + T

i—[j

_>[] k1] ® ETkﬂ(‘rtrk)] ’

where a sum over the repeated indices is implied. Since all m partons in the matching
coefficients are required to be inside the jet in order to contribute to the track momen-
tum fraction, the jet momentum fraction z = 1 for the first order at which this happens,
7,—>[7,17 Sim] X z)
Using the fact that both the timelike DGLAP and the track function evolution generate
single-logarithmic series, we can parameterize the matching coefficients as

T (=) = 66(1 = 2), (3.2)
T prRo ) = 50— 2)[AL) L+ ALD+BLY () L+ BLD (), (33)

1—] 1—]

Z(i)m(z,pTR ) =0(1—2)[AZV L + A% L+ A7)

11— 1—) 11—
+ B2 (:)L? + BE) ()L + B2 (=), (3.4)
T @y pr R, ) = 61 = 2)[C0 () L+ CE5 ()] (3.5)
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T gz prR, ) = 6(1 = 2)[CE5 () L2 + O (i) L+ C20) ()]

(]

+DE) () L2+ DD (2, )L+ DY) (2oy1), (3.6
\71'(*23[‘7',]@7[] (Za Y1, y27pTR7 ,LL) = 5(1 - Z) (37)

[Fl(—;J]){?l(y17 y2)L? + F(_w)d@h y2) L + F(ﬂl)d(?/l )],

where L = In(u?/(p%R?)). We have separated terms by the order of the logarithms, and
by whether they are explicitly proportional to §(1 — z).

The 1-loop coefficients are straightforward to compute, following a procedure akin to
the single-hadron fragmenting jet function [76]. The main difference lies in the absorption of
infrared divergence by the one-loop track function from [25], rather than the fragmentation
function. As noted in section 2.4, the one-loop coefficients for the track case can be projected to
the one-loop coefficients for the single-hadron case. For kp-type algorithms! [67, 69], we find

In(1—
T b o) =8(1-2) | = LPD () +4C (142 | "2
+

+2CF(1_yq)+2Pq(c(1))(yq) lnyq} )
1
jqﬁ[g Q]<Z’y9’pTR’ /L) = jtJ(—Z[q,g} (Z’ ]‘_yQ’pTR?M) 5

TN a o varr By ) = 61— 2) [~ L P (yg) + 2P (yg) Infyg (1 —q) +4Try,(1—1g)]

1
j(%[q (I](z yq"pTR /,L) ‘7( )[q,ﬂ (271_yCI7pTR7/J/)7

- 4y 1
T, g (- v0spr Rop) = 5(1_2){ -k [CA <(1_ygg)+ +4(1-y,) LJ ++4(1—yg)yg)

+ﬂ0[5(1yg)+5(yg)ﬂ0,4( (17 ) Iny,—8(1— yg)[lr;?:gkr

~8(1-) |

Yg

} . In(1—yy)—8y, [lnil_;zg)] N —8yy(1-yy) 1H[yg(1—yg)}) } 7

In(1—
j;B[qﬁz,pTR,u)=LP§8><2>—4OF(1+22>[“§ j)} ~2Cp(1-2),
+

jq(iz[g] (z,prR,p) = LPg(g) (2) —2Pg(2) (2)In(1—2)—2CFz,

T3P0 R, ) = LR (2) = 2P (2)In(1 —2) —4Tp2(1-2),
1—24+22)2 | In(1—=
T eprRa) =L P ()~ 804 U §_Z>]+. (3.8)

Here the [ |+ denotes a standard plus distribution. From these expressions, we are able to
read off the coefficients for the parameterization in eqs. (3.2)—(3.7) above. Note also that
some terms that are proportional to §(1 — z) are hidden in the DGLAP splitting kernels.

"Whether two particles are clustered into the same jet depends solely on their angular separation for
kr-type algorithms (like kr, Cambridge-Aachen, and anti-k7) [128, 133]. The energy exponent differentiating
these algorithms will enter at higher order in perturbation theory.
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Unlike the 1-loop computation, the 2-loop computation of the matching coefficients is
much more challenging. The logarithmically-enhanced terms (shown in blue in egs. (3.2)—
(3.7)) are fixed by the renormalization group equations, and will be determined below. The
remaining terms (shown in red) can be calculated by combining the approaches developed in
refs. [134, 135] and are left to future work. The non-trivial ingredient is the NLO evolution
of the track functions in eq. (2.12), which was computed recently in ref. [25]. Performing
the perturbative evolution, we are then able to express the blue terms in egs. (3.2)—(3.7) in
terms of the known evolution kernels, and the 8 function, which we expand as

) g\ "1
aoz—z%ggm(yg . (3.9
We find
A =5y (K~ o) (3.10)
Agilj) :—5ini(2¢—AEi(;‘) (KJQ]' —Bo) » (3.11)
BE2(2) =~ PO (K, + L PO ()L PO PO, (2), (3.12)
B (2) =P (2) - BE) () K2, + o BLY (2)+ PO () ALY
+P B (2), (3.13)
Ci(i;?;c(yj):%Ki(Eij(yﬁ1_yj)(Kz(EZz+Kg(—)>] K2 —B0) (3.14)
Cfi;i(yj) Agi%Kﬁng(yja1*yj)*K¢(i)jk(yjalfyj)
Cfi%( DK K2, 4 o) (3.15)
D2 (25) =— P (K, (w5, 1- ;) (3.16)
DE, (2,5) =P () D) = BEN KD (95,1 -5), (317)
S MRS =3 / dm 4 w kKO () K (;ii) O (Ym—yr—y1)6(1=y—yx—1)
+({ek)+ <), (3.18)
Fi(ijl'l)el(yj’yk): 3 dymdyszi%(yj,ym)nglm (;’;i) O (Ym=yr—y1) 6 (1=y—yr—u1)

G k)G D =KD e -y ). (3.19)

Here we have used the notation Pz(—>)j( ) = Pi(jn)(z) for convenience. The sum over repeated

indices are implied as long as the indices are not one of the incoming or outgoing states. For

(2,

i—]
the incoming (outgoing) state of the l.h.s. Lastly, although the explicit calculation at 1-loop

example, the r.h.s. expression of A; %) do not have sum over i (or j), as i (or j) is the index of
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Quark and Gluon Track Jet Functions
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Figure 2. The track jet functions at LO and NLO for both quark and gluon jets. Results of the x
distribution from the Pythia parton shower for pure quark and gluons samples (shown as histograms).
Good convergence of the perturbative results is observed, as well as good agreement with Pythia. Note
that the LO track jet functions are identical to the LO track functions here. As the input LO track
functions are extracted using the LO hard coefficients from eTe™ [23], they agree well with Pythia.

(1,0)
i—]
without assuming this. The logarithmically enhanced terms presented here depend on jet
algorithms only through their dependence on the NLO coefficients in eq. (3.8). As these NLO

coeflicients are identical across all kp-type algorithms, within this category, the logarithmically

demonstrates that A = 0, we present the full expressions derived from the RG structure

enhanced terms exhibit no algorithm dependency. On the other hand, even within the kpr-type
algorithms, the constant terms indicated in red in egs. (3.4), (3.6), and (3.7) could vary. In
our presentation, we find it most convenient to express the dependence on the momentum
fraction z of the jet in terms of the usual DGLAP splitting functions, and track-momentum
fractions y; in terms of the general kernels K appearing in the track function evolutions
given to NLO in ref. [25]. We do not reproduce these kernels here due to their length. This
provides an explicit result for all the logarithmically enhanced terms of the two-loop matching
coefficients between the track jet functions and the universal track functions.

4 Track jet functions at hadron colliders

In this section, we apply our track jet formalism to obtain phenomenological predictions
for the track energy fraction in jets in both proton-proton collisions and DIS. We will
highlight the impact of the matching coefficients, which appear in the expansion of the
track jet functions onto track functions, for extracting the universal track functions from
jet measurements. We also feature some properties of the RG evolution of moments of the
track energy fraction that would be interesting to measure experimentally.

We will use the matching coefficients of the track jet functions at order o and ay, which
are matched with track functions with LL and NLL evolution, respectively. In particular, we

,13,



Track Jet Functions vs. Track Functions

3f prR =500 GeV

— Quark Jet, NLO

& Gluon Jet, NLO
2 = Quark Track, NLO
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/

0.6
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Figure 3. A comparison of the NLO track jet function with the pure track function, both evaluated
at the scale p = 250 GeV. The corresponding Pythia distribution is also shown (as histogram). The
large numerical differences are due to the matching coefficients between the track jet function and the
universal track functions, and show the importance of using the track jet function to extract track
functions from jet measurements at the LHC.

will not include the logarithmic terms at order a2 that we determined in section 3. This choice
in accuracy is motivated both by the exceptional convergence of the results for the track
energy fraction in ete™ [26], and by the uncertainties of initial measurements of the track
function, which will be limited by the jet energy scale to a few percent [71-74]. Furthermore,
we find that track functions have smaller scale dependence than their fragmentation functions
counterparts, which leads to a reduction in the theoretical uncertainties from scale variation.
We use the track functions with an input scale of 100 GeV, extracted in ref. [23] and evolve
them to the jet scale prR (or QR) using eq. (2.12), where the matching coefficients are
evaluated. The jet scale is varied by a factor 2 around prR (or QR) in order to estimate
the scale uncertainties.

For full collider predictions, i.e. without separations into a pure quark or gluon jet sample,
we convolve the track jet functions after carrying out NLL DGLAP resummations from the
jet scale puy = prR (or QR) to the hard scale py = pr (or Q) with the appropriate process
dependent hard functions. For predictions at the LHC we use the NLO hard functions from
refs. [136-141], and for predictions in DIS we use the NLO hard functions from ref. [142]. The
hard function encapsulate the details of the parton distribution functions and the underlying
hard processes, and this evolution resums logarithms of the jet radius R, allowing us to
account for the quark/gluon fraction of jets. In addition to varying the jet scale, we also vary
the hard scale pr (or @) by a factor of 2 to estimate the scale uncertainties.

4.1 LHC

We start by considering the case of the LHC, which is of obvious phenomenological interest
due to the fact that it is currently operating, it can measure the track functions over a wide
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Track Energy Fraction Inside Jets at the LHC

3t /s=13TeV, 550 > pr > 500 GeV, R = 0.6, || < 2.1
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Figure 4. The z,y distribution for 500 GeV jets at the LHC computed at NLL, and compared with
Pythia (shown as histogram). The measurement of this observable will enable the extraction of the
universal track functions.

range of energies to probe their renormalization group evolution, and it can take advantage
of modern state-of-the-art detectors for precision measurements.

We begin in figure 2 by plotting the track jet function for anti-kr quark and gluon jets at
the scale prR = 500 GeV (Note that this is not the full zyy distribution, which involves the
convolution of the quark and gluon track jet functions with the hard function, and is shown
in figure 4). Results are shown at both LO and NLO,? and for both quark and gluon jets.
Additionally, we have compared with the Pythia parton shower [143, 144]. Good convergence
of the perturbative series is observed, as well as good agreement with Pythia.

To emphasize the importance of incorporating the perturbative matching coefficients, we
show in figure 3 a comparison between the universal quark and gluon track functions, with
the track jet functions. We have evolved both to the scale u = prR = 500 GeV to enable
a comparison highlighting the impact of the perturbative matching coefficients. We see a
sizeable difference between the two due to matching coefficients mixing quark and gluon track
functions contributions at the scale prR. This illustrates that it is crucial to account for the jet
using track jet functions, when extracting track functions from jet measurements at the LHC.

In figure 4 we show the full physical x, distribution, which properly incorporates the
convolution with the hard function. As compared to figure 2, the full distribution further
incorporates the resummation of the logarithms from pr R up to the hard scale pr, and properly
accounts for the quark and gluon fractions. The NLL result is compared with Pythia, and
excellent agreement is observed. We also see that excellent perturbative accuracy is achieved,
certainly sufficient for initial extractions of the track functions from LHC measurements.

An interesting feature of the x observable, and the track functions themselves, is
that they have a simple shape, which should facilitate their extraction from data. This

2Meaning LO and NLO matching coefficients were respectively used, as well as LO and NLO evolution
kernels to evolve the non-perturbative track functions to the scale of prR.
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Figure 5. The renormalization group flows of the cumulants k4 and kako of the Tipac distribution.
The arrows indicate the direction of the flow towards the UV. This flow exhibits an interesting
mixing between k4 — Kokg, which probes non-linear renormalization group equations in QCD. The
specific non-perturbative parameters of QCD select out the blue and orange flows for quark and gluon
jets, respectively.

is in contrast to fragmentation functions, D(z), whose distributions cover a large range
due to their scaling as ~ 1/z. Therefore, while the RG evolution of the track functions is
much more complicated than for fragmentation functions, the non-perturbative function
itself is arguably simpler. Additionally, for precision jet substructure applications, such as
to the energy correlators, one is often interested in positive integer moments of the track
functions [28, 30], which are even better behaved.

4.2 Renormalization group flows

The incredible energy reach of the LHC enables measurements of the track functions over a
wide range of energies, making tests of their RG flow possible. Unlike standard fragmentation
functions, which exhibit a linear Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [47-49]
evolution, the track functions exhibit non-linear RG evolution, which results in non-trivial
RG flows in the space of their moments [27]. As shown in section 2.3, this non-linear RG
evolution is directly reflected in the RG evolution of the track jet function. Therefore, one
can study this evolution by measuring moments of the x, distribution in high-energy jets.
While the evolution of average quantities, such as (xx) are well understood, fluctuations,
((xtrk — (Tk))™) are much less understood. They have long been of interest in the study of
QCD, see e.g. ref. [145]. As compared to multiplicity fluctuations, which are difficult both
experimentally and theoretically, fluctuations in the track energy fraction can be accurately
measured, and their evolution can be computed systematically in perturbation theory. It is
precisely these fluctuations that make jet substructure interesting from a QFT perspective.

Higher moments of the track energy fraction, ((zx — (ztk))™), provide clean experimental
observables where interesting RG phenomena can occur. In particular, they exhibit mixing
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Figure 6. The renormalization group flows of the cumulants k5 and k3ko of the Tiack distribution.
The arrows indicate the direction of the flow towards the UV. This demonstrates the mixing between
K5 — K3kg, probing interesting non-linear renormalization group equations in QCD. The specific
non-perturbative parameters of QCD select out the blue and orange flows for quark and gluon
jets, respectively.

between products of different moments, giving rise to non-trivial RG flows. We are unaware
of other examples where such phenomena can be directly measured, making measurements
of higher moments of the xt, distribution a unique probe of Lorentzian QFT and the
renormalization group in particular.

We present our results for the mixing of the x; moments in terms of the cumulants,
kn of the track function distribution. Recall that for a random variable X, we define the
central moments as

pn = E[(X — E[X])"], (4.1)
and the cumulants as the coefficients in the power series

K(t) = log B[e!] Zmn : (4.2)

Explicitly, for the first few central moments, we have

Ko = p2,

K3 = U3,

Ka = pa — 343,

ks = p5 — 10uspe ,

K6 = pig — 15uaptn — 1013 + 30443 . (4.3)

The first interesting mixings arise between k4 and kaka, as well as between k5 and K3re. At
kg, one can have for the first time a mixing into a product of three moments kg — Kokoka,
as well as the mixings into k4ko and K3ks.
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Figure 7. The 3-dimensional renormalization group flows of the cumulants kg, £3,and 3 of the
Tirack distribution. This is the first moment that mixes with a product of three track functions. The
specific non-perturbative parameters of QCD select out the blue and orange flows for quark and gluon
jets, respectively.

The flow of the moments of the track energy fraction in LHC jets is shown in figure 5
for k4 — Kokg and figure 6 for k5 — K3ke. In figure 7 we show a three dimensional mixing
involving kg, #3 and x3.3 This is the first moment where there is a triple mixing kg — 3. In
these plots we show the general structure of the RG flows using the NLO evolution equations of
the track jet functions. We also highlight the specific flows singled out by the non-perturbative
parameters of QCD, shown for quark jets in blue, and gluon jets in orange evolved between
5 GeV < pp < 3 TeV. The arrows indicate the direction of the flow towards the UV. The UV
fixed point is x; = 0 for all ¢ > 1, corresponding to the flow of the track function towards a
delta function [27]. These flows directly reflect the non-linear RG flows of the track functions
in a physical jet substructure observable, which we find to be quite remarkable.

4.3 HERA and the EIC

In addition to the LHC, we can also apply our formalism to extract track functions from
identified jets in DIS experiments. The motivation for this is two-fold: first, there has been

3Technically, the RG flow space is bigger than just the dimensions of the plots here. That is, the cumulants
are actually given separately for quark and gluon tracks, and k¢ also has mixing with k4k2 as well. In order
to represent the RG mixing in 2- or 3-dimensional plots shown here, we made some simple choices which cause
a slight deviation between the vector fields and the actual flow of the cumulants to UV. This figure is mostly
intended for illustrative purposes to highlight the interesting mixing structures.

,18,



Track Energy Fraction Inside Jets in DIS
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Figure 8. The NLL x, distribution in DIS for both HERA and EIC kinematics. In both cases, the
result is dominated by quark jets. This will allow the extraction of the quark track functions from jet
measurements at HERA and the EIC.

recent excitement in applications of re-analyzed HERA data (see e.g. ref. [146]), and it would
be particularly interesting to apply this to the measurement of track functions. Second,
the EIC is currently being built, which will enable extremely high-precision measurements
of QCD jets in DIS processes. One potential advantage of DIS experiments, apart from
their clean environment, is that it is possible to scan the flavor composition of the jets by
tuning the value of Bjorken x. This may enable a more detailed measurement of the flavor
dependence of track functions for light quarks as compared to what is possible at the LHC,
which can then also be used as an input for precision studies at the LHC. This could be
further enhanced by using approaches to tag the flavor of jets [147, 148]. However, unlike
the LHC, HERA/EIC do not provide as many gluon jets.

We consider jets produced in electron-proton collisions ep — e + jet + X. The photon
virtuality Q% and Bjorken z are determined by measuring the scattered electron. Here we
limit ourselves to the high-Q? DIS region. At LO, the only contribution is the electron-quark
scattering channel. In order to capture the LO process, we consider jets reconstructed in the
Breit frame using a spherically invariant anti-k7 algorithm similar to the one used in ete™
collisions [149]. Instead of requiring large transverse momentum jets, we measure the jet
energy z. The cross section including the jet substructure measurement i, can be written as

do
dr dQ? dz dzi

= HPB(2,2,Q, 1) ®. Gisrk (2, ok, QR, 1) . (4.4)

As in (2.1), a sum over repeated indices is implied and ®, denotes a convolution integral
over the jet energy fraction z. Note that the hard scale of the process is set by the photon
virtuality Q? instead of the jet transverse momentum as in pp collisions discussed above.
Using the relation Q? = zys, we also include a cut on the inelasticity y. In order to evaluate
the cross section, we make use of a double Mellin transform for the variables x, z. The NLO
hard functions HP™S in Mellin space can be found in ref. [142]. In figure 8 we show the
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distribution at HERA and EIC. Again, we observe small uncertainties at NLL despite the
relatively low energies of HERA/EIC. Finally, we note that, analogous to eTe™ collisions,
track functions could also be accessed in ep collisions without the reconstruction of jets,
since @ provides a jet-independent hard scale.

5 Conclusions

The use of tracking information will play an increasingly important role in future developments
in jet substructure. Due to recent improvements in our understanding of the RG evolution of
track functions and their application to physical observables, we believe that it is timely to
extract them from data. This is made complicated at hadron colliders due to the necessity
to first identify hard jets using jet algorithms, introducing jet-algorithm dependence into
any observable used to extract the track functions.

In this paper we have derived the factorization theorem required to extract track functions
from measurements of the track energy fraction in high energy jets at hadron colliders. This
involved the introduction of a new “track jet function”, which can be matched onto the
universal track functions, with the perturbatively-calculable matching coefficient incorporating
all aspects of the jet algorithm. We studied the basic properties of this observable, including
its renormalization group evolution, computed its matching onto track functions at one loop,
and determined the logarithmically enhanced two-loop terms.

We applied these results to derive phenomenological predictions for measurements of
the track energy fraction in jets at both the LHC, and at HERA/EIC. These illustrated
the large impact of the matching coefficients appearing in the expansion of the track jet
functions onto track functions for properly extracting the universal track functions from
jet-based measurements. Our results enable the extraction of universal track functions from
hadron collider measurements, opening the door to their application in a wide variety of jet
substructure measurements. It would be of particular interest to extract the track functions
from two different colliders with widely different energies, for example the LHC and HERA,
to test their universality and renormalization group properties.

The precision measurement of the track function will be useful both as a foundational
non-perturbative quantity that cannot currently be computed from first principles in QCD,
but also as a powerful new test of QCD through its perturbatively calculable renormalization
group evolution. From a theoretical perspective, a particularly interesting aspect of the track
functions is that they exhibit a non-linear evolution equation, characteristic of Lorentzian
physics. In moment space, this translates to a mixing between moments of the track functions,
and products of moments, leading to interesting Lorentzian renormalization group flows.
These are directly imprinted into the physical xx observable, allowing these flows to be
cleanly measured at the LHC. We find this to be quite remarkable, and we are unaware of
other examples where such physics can be accessed in a similar manner. Their measurement
will provide significant insight into non-linear renormalization group equations in QCD.

Measurements of track jets open the door to a wide range of phenomenological applications.
Notably, this includes precision measurements of o and parton distribution functions, where
some of the sharpest measurements at hadron colliders are linked to the inclusive jet cross-
section [150-154]. A significant source of uncertainty in these measurements is the jet energy
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scale (JES), for which track measurements provide greater accuracy [155]. This precision
suggests that inclusive track jet cross-section* can significantly reduce the uncertainty in
these measurements compared to their all-particle counterparts. Furthermore, track-jet
measurements may play a valuable role in studying the underlying event, featuring in a recent
proposal [156] that considers the azimuthal angle between small-pp track jets. The use of
track-based jets and the precision measurement of track functions will open a new era in jet
substructure, enabling data-theory comparisons for a much broader class of jet substructure
observables, and allowing us to probe increasingly subtle features in the substructure of jets,
revealing clues about the microscopic dynamics of QCD and the Standard Model.
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