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ABSTRACT

Major histocompatibility complex (MHC) proteins play a critical role in the adaptive immune
system, presenting peptide fragments on the surface of cells for surveillance by T cells. In this
way, T cells are able to sense cellular dysfunction associated with disease, such as the presence of
pathogen-derived peptides. The ability to assess and predict peptide-MHC binding is, therefore,
an important component of understanding and engineering immune responses. Peptide-MHC
binding is complex, in part due to the immense diversity on both sides of the interaction: MHCs
are encoded by the most polymorphic genes in the body and can bind to a subset of trillions of
potential peptides. Further, MHC alleles have not been uniformly studied, which presents
challenges when designing therapies for diverse patient populations. In this work, we develop tools
to study and manipulate peptide-MHC interactions in a more globally-representative manner. First,
we study highly polymorphic class I MHC alleles, utilizing data from high-throughput yeast
display screens to train algorithms for antigen prediction. Next, we adapt the yeast display platform
to screen user-defined libraries of peptides and apply the approach for optimizing peptides and
profiling whole viral pathogens for MHC binding. To further increase the MHC throughput of
these approaches, we develop a second-generation platform that opens the pipeline for MHC
alleles. Finally, we take an orthogonal approach to studying peptide-MHC binding in a
representative manner, studying the highly conserved, class Ib MHC HLA-E. We characterize the
HLA-E peptide repertoire and train prediction algorithms to identify novel proteome-derived
binders. Taken together, these works advance our toolset for studying peptide-MHC interactions
across patient populations, with applications in infectious disease, cancer, and autoimmunity.

Thesis Supervisor: Michael E. Birnbaum, Ph.D.
Title: Associate Professor of Biological Engineering
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CHAPTER 1: INTRODUCTION

1.1 T cells are an important component of the adaptive immune system

The human immune system is remarkable, capable of responding to diverse pathogens encountered
over a lifetime, including a range of bacteria, viruses, fungi, and parasites. To couple speed with
specificity and memory, the immune system can be partitioned into two subsets: the innate and
adaptive immune systems (Chaplin, 2010). The innate immune system relies on pattern recognition
of a conserved set of molecular signals indicative of disease, allowing for rapid deployment to
fight pathogens. In contrast, the adaptive immune system, while slower to react, provides a more
specific response and can provide immunological memory, such that repeated infections with a
given pathogen will provide a more robust and rapid response (Bonilla and Oettgen, 2010; Chaplin,
2010).

In order to recognize and respond to diverse threats with specificity, the adaptive immune system
is characterized by a high degree of molecular diversity (Birnbaum et al., 2012; Bonilla and
Oettgen, 2010). Two main cell types comprise the adaptive immune system, B cells and T cells,
which each detect pathogenic ligands via a repertoire of diverse receptors, called B cell receptors
(BCRs) and T cell receptors (TCRs), respectively. BCRs and TCRs are generated through
recombination of germline-encoded genes to produce a diverse repertoire of receptors (Chaplin,
2010). B cells can undergo a process of somatic hypermutation to increase their receptors’ affinity
for their targets, and B cells can secrete their receptors as antibodies (Bonilla and Oettgen, 2010).
T cells, in contrast, are unable to affinity mature or secrete their TCRs. Instead, via their TCRs, T
cells recognize peptides presented on the cell surface by the specialized immune proteins, Major
Histocompatibility Complex (MHC) proteins (Wucherpfennig, 2010), allowing them to react to
dangers within a cell. T cells further play a role in coordinating and tuning immune responses
(Gonzalez et al., 2018; Swain et al., 2012).

T cells balance opposing needs for specificity and cross-reactivity and are challenging to study in
part because of their sequence diversity and low affinities. T cells bind their peptide-MHC (pMHC)
ligands with affinities on the order of 1-100 pM, which is much weaker than antibody affinities
for their ligands (Gee et al., 2018a; Matsui et al., 1991). Despite this low affinity, even few
interactions between TCR molecules on a given cell and its pMHC ligands can elicit a response
(Irvine et al., 2002). The potential sequence space of TCRs is massive, with an estimated 10!
possible sequences (Birnbaum et al., 2012; Davis and Bjorkman, 1988). Of these, a given person
has on the order of ten million unique TCR clones (Arstila et al., 1999; Robins et al., 2010). Each
TCR in turn recognizes thousands to millions of peptide sequences (Birnbaum et al., 2014;
Wooldridge et al., 2012), and the frequency of TCRs in a person changes over time, as T cell
clones expand after antigen exposure and activation (Dash et al., 2017; Kumar et al., 2018).

T cells can be grouped into subsets based on the molecules on their surface. Firstly, T cells can be
partitioned based on the heterodimeric TCR chains they express. The majority of T cells express
aff TCRs, although a subset express Y0 TCRs which recognize non-peptide antigens presented on
non-classical MHC molecules and MHC-related molecules (Bonilla and Oettgen, 2010). aff T cells
are subdivided into CD4" and CD8" T cells, based on expression of the CD4 or CD8 co-receptor,
each of which recognizes a different class of MHC protein (Chaplin, 2010). Namely, CD4 can
bind to class I MHCs (MHC-II) and CD8 can bind to class I MHCs (MHC-I). CD8* T cells



canonically act as ‘killer’ T cells, with cytotoxic activity against infected or transformed cells.
Conversely, CD4" T cells act as ‘helper’ T cells, helping coordinate and modulate immune
responses, with a subset playing a critical role in enabling antibody affinity maturation (Bonilla
and Oettgen, 2010; Chaplin, 2010; Crotty, 2019).

Another class of cells, called Natural Killer (NK) cells, primarily act as innate immune cells, but
are thought to serve as a bridge between innate and adaptive immune responses (Sun and Lanier,
2009). NK cells express germline encoded receptors (Carrillo-Bustamante et al., 2016; Chaplin,
2010), including NKG2A, NKG2C, NKG2E, and NKG2D, as well as killer immunoglobulin-like
receptors (KIRs) (Carrillo-Bustamante et al., 2016). These receptors confer the ability to bind to a
more constrained set of ligands, and NK cells are capable of recognizing missing MHC expression
(Carrillo-Bustamante et al., 2016). Finally, NK-T cells share some characteristics of both NK cells
and T cells, typically bearing NK cell markers, as well as an a3 TCR that recognizes glycolipids
presented by non-classical MHC-like molecules (Balato et al., 2009).

1.2 MHC:s present peptides for T cell surveillance and are highly polymorphic and diverse
among global populations

MHCs, which present peptides on the cell surface for T cell surveillance, are highly diverse,
contributing a further to the molecular diversity of the adaptive immune system. MHCs in humans,
referred to as human leukocyte antigens (HLAs), are encoded on chromosome 6 and represent the
most variable region in the human genome (Blackwell et al., 2009). This large degree of variation
is crucial for presentation of diverse peptides from potential threats, which is critical to prevent
gaps in presentation that could otherwise render T cells oblivious to an ongoing infection or
pathogenesis.

The two classes of MHC proteins, MHC-I and MHC-II, are capable of being recognized by CD8*
and CD4" T cells, respectively. These classes of MHC proteins are present on different populations
of cells. Essentially all nucleated cells in the body present MHC-I proteins. In contrast, MHC-II
molecules are primarily on more specialized antigen presenting cells, such as dendritic cells,
macrophages, and B cells (Piertney and Oliver, 2006; Sommer, 2005). MHC-I and MHC-II also
follow distinct processing pathways to reach the cell surface, resulting in presentation of peptides
drawn from different pools of peptides, processed in different ways. Broadly, and with a number
of exceptions, MHC-I proteins present fragments from inside of the cell, and MHC-II proteins
present peptides sampled from outside of the cell, such as through endocytosis (Sommer, 2005;
Vyas et al., 2008).

Peptides bind to MHC proteins in a defined manner. Specifically, MHCs have two parallel alpha
helices, and the groove between them accommodates peptide binding and is referred to as the
peptide binding groove (Wieczorek et al., 2017). The MHC-I and MHC-II grooves are distinct.
The MHC-I groove is made of the al and a2 domains of the MHC protein heavy a-chain
(Wieczorek et al., 2017). MHC-I utilizes an invariant structural component, called Beta-2-
microglobulin (B2M), for folding and stability. The ends of the MHC-I groove are closed, with the
peptide sitting within the groove; peptide lengths typically range from 8-10 amino acids
(Wieczorek et al., 2017). In contrast, the MHC-II groove is a composite of two chains, a and f,
and is open at either ends of the groove. The open groove accommodates longer peptides, typically
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in the range of 13-25 amino acids, with a 9 amino acid ‘core’ sitting in the groove, which is the
primary determinant of binding affinity (Jones et al., 2006; Stern, 1994; Wieczorek et al., 2017).

Humans each express a set of at least six canonical HLA genes from each copy of chromosome 6.
In humans, canonical MHC-I proteins are HLA-A, HLA-B, and HLA-C. Additional non-canonical
MHCs include HLA-E, HLA-F, and HLA-G, which display limited polymorphism (Heinrichs and
Orr, 1990; O’Callaghan and Bell, 1998; Robinson et al., 2015). Canonical MHC-II proteins are
HLA-DR, HLA-DP, and HLA-DQ (Neefjes et al., 2011). MHC-II proteins are comprised of an a
and P chain. Every chromosome 6 expresses at least one HLA-DR B chain, HLA-DRBI1, which
pairs with a conserved o domain, HLA-DRA (Marsh et al., 1999). HLA-DRA can also pair with {3
chains encoded in the HLA-DRB3, HLA-DRB4, or HLA-DRBS5 loci, although not every
individual has these genes (Marsh et al., 1999). HLA-DQ forms from gene products of HLA-
DQAI1 and HLA-DQBI1, and HLA-DP from HLA-DPA1 and HLA-DPB1 (Choo, 2007). Unlike
the HLA-DR a chain, HLA-DP and HLA-DQ a chains are polymorphic. HLA-DQ and -DP
molecules can form from a and B chains pairing from the same chromosome or from the opposite
chromosomes, further increasing the number of possible HLA molecules in a person. Across these
genes, there are over thirty thousand known and named HLA alleles (Robinson et al., 2015),
underscoring the diversity across HLA genes and possible HLA haplotypes across individuals.

From large-scale datasets surveying HLA types, we can observe variability in HLA allele
frequencies and HLA haplotypes across global regions and populations (Baek et al., 2021;
Bhattacharya et al., 2007; Gonzalez-Galarza et al., 2020; Jawdat et al., 2020; Toki¢ et al., 2020).
However, HLA alleles across populations have not historically been equally represented in MHC
datasets, such as datasets assessing peptide-MHC binding rules, as described by Abelin et al
(Abelin et al., 2019). For example, HLA-DRB1*04:07 is highly represented in certain South and
Central America populations (Gonzalez-Galarza et al., 2020), but has only 169 deposited peptide
binders in the central Immune Epitope Database, as of March 2022, while a more highly-studied
allele HLA-DRB1*01:01 has over 18,000 known binders (Vita et al., 2019). This issue has been
especially acute for MHC-II alleles, as our overall understanding of MHC-II alleles has lagged
behind MHC-I (Abelin et al., 2019).

Given the critical role of MHC proteins in the adaptive immune response, there are some striking
relationships that can be seen between alleles and disease. For example, HLA-B*57 is related to
long term non-progressive control of HIV infection (Altfeld et al., 2003). Similarly, in genome-
wide association studies, MHC alleles have some of the highest odds-ratios in describing risk for
autoimmune diseases (Karnes et al., 2017).

1.3 T cell-directed therapeutics are powerful tools to combat disease

Given the central role of MHCs and T cells in adaptive immunity, there has been great interest in
developing therapeutics to target or modulate their activity. One such therapeutic is neoantigen
peptide vaccines for treating cancer (Hu et al., 2018). This approach seeks to enhance the response
of tumor antigen-specific T cells by vaccinating with peptides encoding cancer-specific mutations,
and it has been utilized to treat cancers including melanoma and glioblastoma (Hu et al., 2021;
Keskin et al., 2019; Ott et al., 2017; Sahin et al., 2017). Identification and selection of neoantigen
targets involves RNA sequencing and/or whole-exome sequencing to identify somatic mutations,
HLA-typing to identify a patient’s HLA type, and computational prediction to identify mutation-
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containing peptides capable of binding a patient’s HLAs (Keskin et al., 2019; Ott et al., 2017;
Sahin et al., 2017). As such, a critical component of peptide vaccine design is the ability to predict
which peptides can bind to a patients’ HLAs, underscoring a need for pan-allele data and
predictors. After selecting peptide sequences, long peptides are synthesized and administered in
peptide pools (Keskin et al., 2019; Ott et al., 2017). Resulting patient outcomes have been
promising, including years after disease (Hu et al., 2021).

A second application in T cell-directed therapeutics is checkpoint immunotherapy, in which
negative regulators of T cell function are blocked to promote T cell antitumor function. Two
prominent examples include anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) and
anti-programmed cell death 1 (anti-PD-1) therapies (Ribas and Wolchok, 2018). Checkpoint
inhibitors have become routinely used in the clinic for certain cancers (Robert et al., 2015).
Compared to peptide vaccines, checkpoint inhibition acts to more indiscriminately increase T cell
function, which resultingly requires less tailoring for individual patients, making it more broadly
accessible. A related example is anti-NKG2A checkpoint inhibition, which disinhibits T and NK
cell effector functions, and an anti-NKG2A antibody is currently being assessed in a clinical trial
for head and neck carcinoma (André¢ et al., 2018).

A final example of T cell-directed therapies is adoptive transfer of autologous tumor-infiltrating
lymphocytes (TIL). In this approach, TILs are expanded ex vivo with cytokines such as IL-2 and
adoptively transferred back into patient, with the goal of enhancing existing T cell responses (Wu
etal., 2012). This approach highlights questions about what the tumor-associated expanded T cells
are recognizing. Identifying and understanding their ligands could open new treatment options.

There has been a great deal of interest in understanding T cell function and pMHC targets in the
context of disease, with the potential to identify new treatment avenues. Such work has spanned
from cancer (Gee et al., 2018b; Grace et al., 2022; Oliveira et al., 2021), to autoimmunity (Jelcic
et al., 2018; Kent et al., 2017; Planas et al., 2018), and infectious disease (Ma et al., 2021; Pan et
al., 2021). Further, there has been sustained interest in developing new technologies to study
peptide-MHC-TCR interactions in greater detail and throughput (Abelin et al., 2017, 2019;
Birnbaum et al., 2014; Dobson et al., 2021; Guo and Elledge, 2022; Joglekar et al., 2019; Kula et
al., 2019; Reynisson et al., 2020).

1.4 Thesis overview and motivation

In this thesis, I present our work to utilize and build tools to study peptide-MHC binding and their
interactions with immune receptors. Given the 1) vast degree of HLA diversity, 2) clinical
relevance of studying peptide-MHC interactions, and 3) non-uniform understanding of binding
across alleles, we seek to develop tools to study and manipulate peptide-MHC interactions and to
do this in a more globally-representative manner.

First, we approach this goal by studying highly polymorphic MHC-II alleles. We utilize data from
high-throughput yeast display screens to train prediction algorithms to extrapolate the data for
better antigen prediction (Chapter 2). These yeast display-trained algorithms improve peptide-
MHC affinity prediction and predictions on a systemically-missed subset of peptides, and
demonstrate utility in candidate antigen identification.
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Next, we adapt the MHC-II platform for designing better MHC-binding peptides, to engineer
stronger binders and more compact sets of peptides, with implications in peptide vaccine design
(Chapter 3). Further, we extend this approach to directly assess pathogen-derived peptides for
MHC binding (Chapter 4), identifying SARS-CoV-2-derived peptides capable of binding to an
MHC of interest that were missed by other state-of-the-art approaches. To increase our throughput
of MHC-II alleles, we develop a second-generation platform for peptide-MHC-II binding
(Chapter 5), with applications in identification of human autoantigens.

Finally, we take an orthogonal approach to understanding peptide-MHC interactions in a globally-
representative manner: we investigate the highly-conserved non-canonical MHC HLA-E
(Chapter 6). We characterize the peptide repertoire of this allele and its cognate NK cell receptors.
Utilizing these data, we perform computational predictions to identify novel HLA-E-binders.

Taken together, these works provide new data and advance our suite of tools for studying peptide-

MHC interactions across patient populations, with applications in infectious disease, cancer,
autoimmunity, and beyond.
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CHAPTER 2: UTILIZING PEPTIDE-MHC-II DATA FROM HIGH-THROUGHPUT YEAST
DISPLAY EXPERIMENTS FOR IMPROVED ANTIGEN PREDICTION

This chapter contains work conducted in collaboration with C. Garrett Rappazzo and adapted
under the Creative Commons license from: Rappazzo* Huisman* and Birnbaum (2020).
“Repertoire-scale determination of class 1 MHC peptide binding via yeast display improves
antigen prediction”. Nat. Commun. A full acknowledgements statement is included as Chapter
2.8.

Abstract

CD4" T cells play an important role in the immune response to infection and cancer by recognizing
antigenic peptides presented by class II major histocompatibility complexes (MHC-II) on the cell
surface. Predicting peptide-MHC binding is a critical component of probing this interaction. While
many computational algorithms for predicting peptide binding to MHC-II proteins have been
reported, their performance varies greatly. Here we present a yeast display approach for the
identification of over an order of magnitude more unique MHC-II binders than comparable
approaches and the application of these data for training prediction algorithms, which improves
the prediction of peptide-binding affinity and the identification of pathogen- and tumor-associated
peptides. Yeast display-generated MHC-II-binding peptide datasets can be used to improve the
accuracy of MHC-II binding prediction algorithms, and potentially enhance our understanding of
CD4" T cell recognition.

2.1 Introduction

Computational prediction algorithms are crucial tools for inferring binding between highly
polymorphic MHC molecules and peptides drawn from a diverse pool of possible binders. Recent
advances have described improvements of computational methods (Chen et al., 2019; O’Donnell
et al., 2020; Racle et al., 2019; Reynisson et al., 2020; Zeng and Gifford, 2019) and training data
(Abelin et al., 2017, 2019; Sarkizova et al., 2020). While these advances have benefited antigen
prediction for both class I (MHC-I) and class I MHCs (MHC-II), there has been sustained interest
in improving the performance of MHC-II prediction algorithms (2017), which frequently under-
perform their MHC-I counterparts (Andreatta et al., 2018; Jensen et al., 2018; Lin et al., 2008;
Nielsen et al., 2010; Wang et al., 2008; Zhao and Sher, 2018).

The under-performance of MHC-II prediction algorithms has been at least partially due to a
relative paucity of peptide-binding data (Vita et al., 2019), as under-performance is particularly
pronounced for MHC-II alleles with few reported binders (Nielsen et al., 2010; Zhao and Sher,
2018). However, peptide binding predictions for even well-characterized MHC-II alleles have
under-performed their MHC-I counterparts (Wang et al., 2008; Zhao and Sher, 2018). This is likely
due to challenges inherent to class II MHCs, which have more degenerate peptide-binding motifs
than their class I counterparts (Alvarez et al., 2018), and an open peptide-binding groove that
requires an added algorithmic step of peptide-register determination (Jones et al., 2006; Nielsen
and Lund, 2009; Nielsen et al., 2010; Stern, 1994). Additionally, publicly available MHC-II-
binding peptide datasets contain redundant nested peptide sets and single amino-acid variants of
well-characterized peptides, potentially limiting their effective depth and generalizability
(Rammensee et al., 1999; Vita et al., 2019). Therefore, we hypothesize that the under-performance
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of MHC-II prediction algorithms has been driven by deficiencies in their underlying training data,
and can be ameliorated by higher-quality peptide datasets.

Here, we describe a yeast display-based platform to screen 10® peptides for MHC-II binding,
generating over an order of magnitude more unique binders than comparable approaches for two
human MHC-II alleles, and apply these data for training prediction algorithms. Yeast display-
trained models perform comparably with other state-of-the-art models, but outperform on subsets
of peptides systematically missed by other algorithms. Additionally, yeast display-trained models
improve the prediction of peptide-binding affinity for pathogen- and tumor-associated peptides,
even when compared to recently described mass spectrometry-based approaches. Collectively,
these data show the importance of large datasets of unique peptide binders to improve MHC-II
binding prediction, and suggest yeast display-generated data can potentially facilitate better
understanding of CD4" T cell recognition and enhance patient benefit from antigen-targeted
therapeutics.

2.2 Yeast display platform for identifying peptide binders of MHC-II proteins
Yeast-displayed MHC-II constructs have been previously reported (Birnbaum et al., 2014, 2017),
and we modify these constructs for direct assessment of peptide and MHC-II binding (Rappazzo
et al., 2020). Constructs for HLA-DR401 (HLA-DRA1*01:01, HLA-DRB1*04:01) and a lesser-
studied allele, HLA-DR402 (HLA-DRA1*01:01, HLA-DRB1*04:02), were adapted to determine
peptide-MHC interactions. In the adapted constructs, a 3C protease site and a Myc epitope tag are
introduced into the flexible linker that connects the peptide to the HLA 3 chain (Figure 1A). When
yeast are incubated with 3C protease, the linker is cleaved, allowing unbound peptides to freely
disassociate. Yeast are then incubated at low pH in the presence of a high-affinity competitor
peptide and the peptide-exchange catalyst HLA-DM (Figure 1B), emulating the native endosomal
environment of MHC-II peptide loading (Roche and Furuta, 2015). Yeast encoding binding or
non-binding peptides are then differentiated with a fluorescently-labeled antibody directed against
the peptide-proximal epitope tag.

A Class Il pMHC B
P Competitor peptide O N
+SC +HLA DM O Weak peptide
\ ¢ (Myc )
¢ + pH 5 \,. \ : y «-Myc
Linker Peptide
Yeast cleaved exchange

Strong peptide
(Myc *)
Figure 1. Design and validation of a yeast display platform to identify peptide binding to a co-expressed class
II MHC. A) Structural representation of HLA-DR401 (PDB 1J8H) modified to encode a 3C protease cleavage site
and Myc epitope tag within the linker connecting the peptide and MHC 1 domain. B) Schematic of validation
protocol, including linker cleavage with 3C, peptide exchange at low pH in the presence of HLA-DM and high-affinity
competitor peptide, and quantification of remaining bound peptide with an anti-Myc antibody.
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Repertoire-scale investigations of HLA-DR401 and HLA-DR402 were conducted on libraries
encoding 1x10® random peptides. Because the ends of the MHC-II peptide-binding groove are
open, the peptide-binding groove can accommodate peptides in many possible registers. To favor
peptides binding in a single register and simplify downstream analysis, peptides were designed as
randomized 9mers flanked by constant residues (Andreatta et al., 2018; Lin et al., 2008), namely
N-terminal Ala-Ala and C-terminal Trp-Glu-Glu (Rappazzo et al., 2020). The library was
subjected to iterative rounds of linker cleavage, peptide exchange, and selection for epitope tag
retention (Figure 2A), resulting in a pool of yeast encoding strong binders after five rounds. The
enriched peptides were highly diverse, consisting of 81,422 unique peptides in the expected
register for HLA-DR401 and 7,692 unique peptides in the expected register for HLA-DR402.
Sequence logos of the resulting enriched peptides were generated using Seq2Logo (Thomsen and
Nielsen, 2012) and are shown in Figure 2B and 2C.

Enriched peptides show strong amino acid preferences at MHC anchor peptide positions P1, P4,
P6, and P9, which orient directly into MHC surface pockets (Figure 2F), largely matching
previously reported binders and polymorphisms between HLA-DR401 and HLA-DR402 (Figure
2D and 2E) (Abelin et al., 2019; Dessen et al., 1997; Hammer et al., 1993, 1994; Racle et al., 2019;
Scally et al., 2017; Sette et al., 1993). Notably, the observed enrichment of P9 Cys has not been
previously reported (Abelin et al., 2019; Racle et al., 2019; Scally et al., 2017). However, binding
of the cysteine-containing peptides was specific, as two allele-mismatched cysteine-containing
peptides did not exhibit binding, as assessed through a fluorescence polarization competition
binding assay (Figure 3A).

To investigate the effect of positions outside of the groove on peptide binding, selections were also
performed on a randomized 13mer HLA-DR401 library. After selections, 15,147 unique peptides
were identified. Through register deconvolution by Gibbs Cluster (Andreatta et al., 2017), 3,374
of these peptides were identified as occupying the central register where positions P(-2) through
P11 are diversified (Figure 3B). Position P10 displayed a mild preference for aromatic residues,
consistent with previous findings (Zavala-Ruiz et al., 2004), and depletion of both Gly and Glu.
We also observed depletion of hydrophobic residues and enrichment of acidic residues at positions
P(-2) and P(-1). Positional preferences between positions P1 and P9 were consistent with the
original library (Figure 2B, D), suggesting our motif was not influenced by the fixed peptide
flanking residues in our original design.
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Figure 2. Selection and analysis of a yeast-displayed MHC-II randomized peptide libraries. A) Schematic of
sequential rounds of library selection to eliminate non-binding peptides and enrich binders. B, C) Kullback-Leibler
relative entropy motifs of the core nine amino acids of MHC-binding peptides for B) HLA-DR401 and C) HLA-
DR402. D, E) Unweighted heatmaps of positional percent frequency and log2-fold enrichment of each amino acid in
round 5 of selection for D) HLA-DR401 and E) HLA-DR402. F) Structure of HAso6-31s peptide in the HLA-DR401
peptide-binding groove (PDB 1J8H), with primary peptide MHC anchor positions denoted in bold.
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Figure 3. Discovery of preferences at TCR contacts and positions outside the peptide core and validation of
cysteine-containing peptides. A) Relative binding of cysteine-containing peptides found in round 5 of selection of
either the randomized 9mer HLA-DR401 (allele-matched) or HLA-DR402 (allele-mismatched) libraries, tested at two
concentrations with HLA-DR401 in a fluorescence polarization competition assay. Curves are fit to N = 3 technical
replicates per condition. B) Unweighted heat maps of log2-fold enrichment and/or positional percent frequency of
each amino acid for all peptides in round five of selection of a randomized 13mer HLA-DR401 library determined to
bind in the third peptide register (N = 3,374 unique peptides).

2.3 Training prediction algorithms

We hypothesized that yeast display-derived peptide binding data could be used to improve
algorithmic prediction of MHC binding, due to the dataset’s large size and origin from unbiased
random libraries. To address this hypothesis, we trained prediction algorithms with our yeast
display library data using NNAlign 2.0, an artificial neural network framework, and the
architecture underlying the NetMHCII and NetMHClIpan family of algorithms (Nielsen and
Andreatta, 2017). Utilizing NNAlign facilitates direct comparison of the effect of the training data
versus that of the prediction algorithm architecture.

First, to determine the identity of yeast-expressed peptides, plasmid DNA was extracted from 5 x
107 yeast from each round of selection, including the unselected library. The peptide-encoding
region was sequenced via Next-Generation Sequencing to determine peptide identities, and
peptides were sorted to determine the final round of selection in which they were observed. Next,
NNAlign was trained on sequence data and quantitative target values; up to 80,000 sequenced
peptides were assigned a target value commensurate with the final round of selection in which they
were observed, between 0 and 1, with increasing target values for observation in later rounds.
Specifically, target values for rounds O through 5, ascending were assigned as follows: [0, 0.05,
0.2, 0.8, 0.95, 1], to account for convergence seen following the third round of selection. As
peptides from the pre-selection library were randomly generated, sequences observed in the pre-
selection library but not in subsequent rounds serve as negative examples. To maintain a class-
balanced training set, peptides were selected to be evenly distributed among rounds of last
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appearance. Yeast display-trained models were generated using data from the 9mer peptide
libraries for HLA-DR401 and HLA-DR402, as well as the 13mer peptide library for HLA-DR401.
When training the NNAlign algorithm, the 9mer library data was used for training with default
settings for ‘MHC class II ligands’, excepting expected peptide length set to 9 amino acids and
expected PFR (peptide flanking residue) length set to 0 amino acids. The 13mer library data was
used for trained with default settings, excepting expected peptide length set to 13 amino acids.

Recently, high-quality data has been generated for many MHC-I and MHC-II alleles utilizing
eluted ligand mono-allelic mass spectrometry (MS) (Abelin et al., 2017, 2019; Sarkizova et al.,
2020; Scally et al., 2017). In mono-allelic MS, antigen-presenting cells are engineered to express
only a single MHC-II allele, eliminating the ambiguity in allelic assignment encountered in
conventional poly-allelic MS eluted ligand datasets (Abelin et al., 2017; Alvarez et al., 2018).
While these datasets are over an order of magnitude smaller than those generated by yeast display
in terms of unique peptide cores, their motifs are largely consistent with yeast display, though
absent P9 Cys. One of these datasets (Abelin et al., 2019) underlies the recently published MHC-
II prediction algorithm NeonMHC?2. To provide further comparison on the effect of training data
versus the underlying algorithmic architecture, we generated an additional prediction algorithm
from this data, again using NNAlign. Because of the open peptide-binding groove, MHC-II-
derived mass spectrometry datasets contain overlapping nested peptides, and the mass
spectrometry-generated peptide sets were curated to filtered minimum epitopes to remove
redundant training examples and assigned a target value of 1. In order to prevent the algorithm
from conflating altered amino acid frequencies arising from MS data collection with peptide-
binding preferences, each peptide was scrambled to generate negative instances and assigned a
target value of 0, in line with previously published recommendations (Abelin et al., 2019). These
mass spectrometry algorithms were trained with default ‘MHC class II ligands’ settings.

For all NNAlign yeast display- and mass spectrometry-trained models, percentile ranks were
established by comparing prediction values to the distribution of prediction values generated by
apply each model to 50,000 computationally generated random 15mer peptides.

2.4 Generating test datasets and benchmarking performance

We next set out to comprehensively benchmark the predictive performance of our yeast display-
trained algorithms as compared to a large array of other described approaches, including NNAlign
trained on MS data. We identified a second mono-allelic MS peptide-binding dataset for each
allele that were not represented in most current prediction training datasets (Scally et al., 2017).
These data were utilized to generate a test dataset to facilitate independent evaluation. The filtered
minimum core epitopes (as done in Chapter 2.3) were classified as positive instances. Since MS
approaches generate positive examples only, we computationally generated negative decoy
peptides to be length- and expression-matched, as previously described (Abelin et al., 2019). For
each source protein observed within the dataset, we tiled across its sequence with peptide lengths
randomly selected from the length distribution of the observed peptides, starting at the first amino
acid in the protein and allowing an eight amino acid overlap between subsequent proteins. If the
length of the final peptide extended beyond the end of the protein, we randomly shifted the starting
amino acid such that the starting amino acid of the first peptide and last amino acid of the final
peptide were all within the protein. We randomly selected decoy peptides from this set such that
the length distribution of decoy peptides matched that of the positive instances, and that there was
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no 9mer sequence match with the other decoys or positive instances, to avoid inadvertently adding
redundant sequences to the test set.

We chose two metrics to assess predictive performance: the area under the receiver operating
characteristic curve (AUC) and the positive predictive value (PPV). AUC is a commonly used
metric in binary classification which illustrates the trade-off between the true positive rate and
false positive rate as the threshold for classification is changed (Hanley and McNeil, 1982). A 1:1
ratio of positive instances and decoy peptides was used to generate receiver operating characteristic
curves, where AUC was calculated with scikit-learn version 0.20.3. Because AUC is determined
across thresholds and classifies a test set with equal numbers of positive and negative examples, it
does not accurately capture a relevant ratio of true binders among examples and includes
information from non-relevant threshold cutoffs. Therefore, as a second metric, we also calculated
PPV. To calculate PPV, a test set with a more biologically-relevant 1:19 ratio of positive instances
and decoy peptides was generated, and PPV was calculated as the fraction of true instances
observed in the top 5% of predicted peptides for each algorithm (Abelin et al., 2019).

Each algorithm was applied to the allele-matched dataset (Scally et al., 2017), with length- and
expression-matched decoy peptides. While the MS- and 9mer yeast display-trained models
performed comparably to one another, the overall predictive performance of each of these
algorithms was initially relatively low, with a maximum AUC of 0.81 (Figure 4A), suggesting a
disparity between the training and evaluation sets. Unsupervised clustering of each MS-derived
evaluation set with Gibbs Cluster (Andreatta et al., 2017) revealed that a substantial portion of
each set (26% for HLA-DR401, 19% for HLA-DR402) were outliers, including peptides with long
stretches of Gly or Pro, which have been previously reported to nonspecifically populate eluted
ligand datasets (Heyder et al., 2016).

Removal of these outliers universally improved prediction performance (Figure SA). For both
alleles, the MS- and yeast display-trained algorithms performed comparably in AUC (0.92-0.94),
and outperformed NetMHCII 2.3 and NetMHClIpan 3.2, which are also built on NNAlign. This
outperformance was more pronounced in PPV, with the yeast display-trained algorithm reaching
67% PPV for HLA-DR401. While the recently released NetMHClIpan 4.0 EL (Reynisson et al.,
2020) greatly outperformed its predecessors, its training set included our evaluation set, and
therefore this algorithm could not be evaluated equitably. NeonMHC2 demonstrated strong
performance for both alleles via AUC (0.96-0.97) and PPV (64-69%). As NeonMHC?2 is built
upon the same underlying data as the MS-trained algorithms, its improved performance may be
due to the incorporation of peptide processing information, such as peptide cleavage preferences
(Abelin et al., 2019). In addition, the recently described MixMHC2Pred (Racle et al., 2019), which
is trained on conventional poly-allelic eluted ligand MS data, displayed comparable performance
to NeonMHC?2 on a subset of HLA-DR401 peptides (Figure 4B), but could not be fully compared
due to peptide length constraints and the absence of an HLA-DR402 predictor. Nearly all
algorithms evaluated outperformed another recently released poly-allelic eluted ligand MS-trained
algorithm, MARIA (Figure 5) (Chen et al., 2019).

Importantly, however, the use of a MS-derived test set in evaluating predictive performance may

not fully capture false negatives that might arise due to gaps in MS-derived data, such as those
arising from systemic under-sampling of cysteine-containing peptides (Abelin et al., 2019; Scally
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et al., 2017). Therefore, we further evaluated the predictive performance of each algorithm on our
13mer HLA-DR401 library data. For our yeast display test set, a randomly selected size-matched
set of peptides found enriched in round 5 of selection were classified as positive instances, and
decoy peptides were randomly selected from peptides only observed in their respective unselected
library. We observed comparable performance between NetMHCII 2.3, NetMHClIpan 3.2,
NetMHClIpan 4.0 EL, and the MS-trained NNAlign algorithm (AUC 0.79-0.82, PPV 27-30%)
(Figure 5B). NeonMHC?2 slightly underperformed its NNAlign-based counterpart, even though it
was used in ‘tiling mode’ which ignores peptide cleavage preferences, further suggesting that the
incorporation of peptide cleavage preferences underlie its previously noted outperformance on
MS-derived data. The yeast display-trained model clearly outperformed each alternative
algorithm, with an AUC of 0.92 and a PPV of 55%, and prediction performance only minimally
improved by the removal of outlier peptides (Figure 4C).

Overall, our yeast display-trained algorithm performed comparably to current state-of-the-art
approaches such as NeonMHC2 and NetMHClIpan 4.0 on MS-derived data, while performing
better on yeast display-derived data. These results suggest the presence of bona fide peptide motifs
in yeast display data that are not adequately sampled in MS-derived data. Direct comparison of the
MS- and yeast display-trained algorithms at a positional level revealed a significantly (p < 0.05)
more stringent P9 preference in the yeast display-trained algorithm for both alleles (Figure 6).
Furthermore, consistent with its under-representation in MS-derived data, Cys was significantly
over- or under-represented at multiple positions and the MS-trained algorithms had a greater
preference for small hydrophobic residues Ile, Leu, and Val at multiple positions.
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Figure 4. Benchmarking MHC-II prediction algorithm performance on eluted ligand mass spectrometry or
yeast display data. Receiver operating characteristic (ROC) curves for prediction with published prediction
algorithms, or algorithms trained on our 9mer yeast display library (YD-trained) or mono-allelic MS (MS-trained)
data, for either A) mono-allelic MS data for HLA-DR401 and -DR402, with expression-matched decoy peptides, B)
length restricted (12-24mer) outlier-removed mono-allelic MS data for HLA-DR401, with expression-matched decoy
peptides or C) outlier-removed round five 13mer yeast display library data with decoys from the naive library. For
each dataset, the area under the ROC curve (AUC) and positive predictive value (PPV) of each prediction are shown.
Asterisks indicate algorithms that contain the evaluation set in their training data.

22



A HLA-DR401 MS test set HLA-DR402 MS test set B HLA-DR401 YD test set

0.8

g 06 % 061! % 06
cfé; od — YD-trained § — YD-trained g — YD-trained
= ~—— MS-trained 2 04 ~—— MS-trained g 04 ~—— MS-trained
— NetMHCII —— NetMHCII —— NetMHCII
02 — NetMHClIpan 3.2 —— NetMHClIpan 3.2 — NetMHClIpan 3.2
) — NeonMHC2 02 —— NeonMHC2 02 —— NeonMHC2
— MARIA . — MARIA — MARIA
00 ‘ NetMHClIpan 4.0 2 NetMHClIpan 4.0 * . NetMHCllpan 4.0
b0 02 e 04 06 08 10 0Q% 02 04 06 08 10 %% 02 0.4 06 08 10
alse Positive Rate False Positive Rate False Positive Rate
Prediction AUC PPV (%) Prediction  AUC PPV (%) Prediction AUC PPV (%)
YD-trained 0.93 67 YD-trained 0.94 47 YD-trained 0.92 55
MS-trained 0.92 54 MS-trained 0.93 53 MS-trained 0.79 27
NetMHCII 2.3 0.88 42 NetMHCII 2.3 0.55 6 NetMHCII 2.3 0.82 30
NetMHCllpan 3.2 0.85 41 NetMHCllpan 3.2 0.80 24 NetMHCllpan 3.2 0.81 27
NeonMHC2 0.96 64 NeonMHC2 0.97 69 NeonMHC2 0.74 29
MARIA 0.85 34 MARIA 0.82 29 MARIA 0.58 12
NetMHCllpan 4.0 * 0.95 74 NetMHCllpan 4.0 * 0.94 75 NetMHCllpan 4.0 0.82 29

Figure 5. Benchmarking performance of yeast display-trained algorithms. Receiver operating characteristic
(ROC) curves for prediction with existing prediction algorithms, or algorithms trained on our 9mer yeast display
library (YD-trained) or eluted ligand mono-allelic mass spectrometry (MS-trained) data, on either A) outlier-removed
eluted ligand MS data for HLA-DR401 and -DR402, with expression-matched decoy peptides, or B) yeast display
13mer HLA-DR401 library data, with naive library decoys. For each dataset, the area under the ROC curve (AUC)
and positive predictive value (PPV) of each prediction are shown. Asterisks indicate algorithms that contain the
evaluation set in their training data.
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Figure 6. Comparison of peptide motifs derived from eluted ligand mono-allelic mass spectrometry and yeast
display library datasets. Amino acids significantly (p < 0.05) more or less represented at each position within the
core 9 amino acids of HLA-DR401 or -DR402-binding peptides, as determined by algorithms trained on our yeast
display libraries (YD-trained), relative to algorithms trained on eluted ligand mono-allelic MS data (MS-trained).
Displayed size of residues correlates with statistical significance of deviation and significance was determined by two-
sided unweighted binomial test for p < 0.05, with a Bonferroni correction for multiple hypothesis testing.
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2.5 Improvements in affinity prediction and prediction of clinically relevant peptides

To investigate the effect algorithmic differences may have on the prediction of clinically relevant
peptides, we performed antigen prediction for HLA-DR401 with NeonMHC2 and the 9mer yeast
display-trained algorithm on two datasets: the proteome of Influenza A virus (IAV), and
expression-validated mutations from human lung adenocarcinoma patients (Cai et al., 2018). From
these datasets, the 9mer yeast display-trained model differentially classified — relative to
NeonMHC2 — 5 [AV-derived peptides as strong or non-binders, and differentially classified 13
adenocarcinoma-derived peptides as potential cancer neoantigens. Interestingly, these algorithms
displayed non-overlapping algorithmic misses (Table 1, Figure 7), suggesting that there are
peptide motifs unique to both the MS- and yeast display-derived training data that contribute to
improved peptide prediction performance.

WT NeonMHC2 WT YD-trained Mut. NeonMHC2 Mut. YD-trained Measured

Peptide Rank (%) Rank (%) Rank (%) Rank (%)  1C50 (nM)
LLPVKQSVVPLAKGTLITHC 7.7 5.4 14 1.8 307
ASDSSYRNECPMAEKEDTQM 30 22 22 1.8 47
MKRRPVWTDINPKAVTNDEL 14 4.3 11 0.8 21
PIPVIFHRIATELRKTNDIN 0.8 28 <0.1 0.4 698
VYGWATLVSERSKNGMQRIL 0.4 27 0.3 0.5 245
YVGDMLAWLHQSTASEKEHL 1.0 46 0.5 34 406
EVKYCTFSKDRSKPIPGMTL 1.3 32 1.5 18 > 50,000
WRAPSYILSPELTQRLFSAA 2.1 39 1.8 24 248
RKDLIVMLMDTDVNKQDKQK 1.8 30 1.0 19 3173
YCDLPQLFRLSCSSTQLNEL 2.1 31 2.0 16 39
FVGNIAEDLCLDITKLSARG 2.4 43 1.6 19 86
ESSISDKNYWKTVSNAFSVI 5.8 25 2.0 12 25
YSIEVLLVLDDSVVRFHGKE 1.4 30 1.2 30 > 50,000
FYHKCDNECMESVRNGTYDY 51 1.7 - - 7273
LFQNWGVEPIDNVMGMIGIL 13 1.6 - - 2524
EGIPLYDAIKCMRTFFGWKE 0.1 17 - - 61
ARQMVQAMRTIGTHPSSSAG 1.7 32 - - 3994
MFLYVRTNGTSKIKMKWGME 0.9 43 - - 6102

Table 1. Prediction of pathogen- and tumor-associated peptides with MHC-II algorithms trained on yeast
display library or eluted ligand mass spectrometry datasets. Mutant peptides from human lung adenocarcinomas
differentially predicted as neoantigens for HLA-DR401, or peptides derived from Influenza A virus differentially
predicted as strong- versus non-binders, by NeonMHC2 or a model trained on our 9mer yeast display library data,
with measured ICso values for peptides that NeonMHC2 and the yeast display-trained algorithm disagreed, derived
from fluorescence polarization competition assays.

24



Adenocarcinoma-derived peptides IAV-derived peptides

] * 3
i L4
1001
S g
o
> g
2 2
o m 501
o S
e 3
(4 4
0.
1 10 100 1000 10000 100000 1 10 100 1000 10000 100'000
Peptide Concentration (nM) Peptide Concentration (nM)

Figure 7. Prediction of pathogen- and tumor-associated peptides with MHC-II algorithms trained on yeast
display library or eluted ligand mass spectrometry datasets. Binding curves for HLA-DR401 from fluorescence
polarization competition assays for peptides found mutated in human lung adenocarcinomas and differentially
predicted as neoantigens for HLA-DR401, or peptides derived from influenza A virus differentially predicted as
strong- versus non-binders, by NeonMHC?2 or a model trained on our 9mer yeast display library data. Curves are fit
to N = 3 technical replicates per condition.

In the course of this study, we have generated data in-house on binding affinity to HLA-DR401
for 55 peptides (Rappazzo et al., 2020). When measured and predicted affinities for all 55 peptides
assayed for binding were considered, current eluted ligand MS-trained algorithms NeonMHC2,
NetMHClIpan 4.0 EL, MARIA, and our own MS-trained model displayed little to no correlation
with measured ICso (R? = 0.08-0.19), indicative of poor peptide affinity prediction performance
(Figure 8). In addition, NetMHClIIpan 4.0 BA, which is trained exclusively on peptide binding
affinity data (Reynisson et al., 2020), failed to show correlation with measured ICso for these
peptides (R? = 0.01) However, our 9mer yeast display trained model algorithm displayed notably
improved correlation with measured ICso (R? = 0.47), and consistent with our findings on peptide
flanking residues, the predictions of the 13mer yeast display-trained model displayed even greater
correlation (R? = 0.62).

Overall, our results demonstrated that both eluted ligand MS- and yeast display-derived peptide
datasets improved the performance of MHC-II prediction algorithms relative to legacy datasets,
and both identified unique peptide motifs. However, we find that yeast display provided much
larger datasets than eluted ligand MS, and provided notably improved performance in predicting
peptide affinity.
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Figure 8. Benchmarking MHC-II algorithm performance for prediction of peptide-binding affinity. Scatterplots
of algorithmic predictions versus measured ICso values for 55 peptides assayed for binding to HLA-DR401 in
fluorescence polarization competition assays, with lines of best fit and their associated coefficients of determination
(R?). Asterisk denotes R? values of negative correlations.

2.6 Discussion and outlook

The central role of CD4" T cells across infection, cancer, autoimmunity, and allergy motivates a
need to predict which peptide antigens can be presented by MHC-IIs. However, MHC-II prediction
algorithms can suffer from consequential gaps and inaccuracies in coverage, especially for less
characterized alleles (Andreatta et al., 2018; Jensen et al., 2018; Lin et al., 2008; Nielsen et al.,
2010; Wang et al., 2008; Zhao and Sher, 2018). Here, we present a platform for large-scale
identification of diverse MHC-II-binding peptides, generating over an order of magnitude more
unique data than comparable approaches for two human MHC-II alleles and identifying subsets of
peptides missed by frequently used prediction algorithms. We utilized this yeast display-generated
data to train existing algorithmic architectures and used these algorithms to discover bona fide
peptide binders that are not predicted by other prediction algorithms.

Analysis of the training data underlying previously described prediction algorithms revealed
multiple sources of underperformance. For both alleles studied, we found large numbers of nested
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and single amino acid variant peptides within curated training sets. While training algorithms
account for redundant information from nested sets (Nielsen and Lund, 2009), their presence
diminishes the functional size of the training set. Single amino acid variants, however, are
considered unique peptides, and can therefore impart biases. Furthermore, a systemic absence of
cysteine in training sets resulted in substantial algorithmic false negatives for cysteine-containing
peptides. This is likely due to an aversion to working with cysteine-containing peptides, as well as
the difficulties inherent to sampling them in mass-spectrometry (Barra et al., 2018). A systemic
underrepresentation of acidic residues in the Immune Epitope Database (IEDB) has also been
reported (Abelin et al., 2019).

By using our data to train prediction algorithms and benchmark their performance against existing
algorithms, we identified several key considerations for MHC-II antigen prediction. First, our
results demonstrate that high-quality training data improves the performance of MHC-II prediction
algorithms without alteration of underlying training algorithm architectures, especially for less
characterized alleles (Figure SA). However, there are important opportunities for algorithmic
improvement, such as increased focus on peptide flanking residues. Second, we find that each
source of data has non-overlapping strengths and weaknesses for improving prediction
performance. Therefore, an ideal MHC-II prediction algorithm may be trained on both high-quality
datasets that reflect native processing (Barra et al., 2018), such as eluted ligand MS datasets, as
well as large and diverse peptide datasets, such as those generated by our yeast display platform.
Third, we highlight the importance of the choice of validation sets for benchmarking prediction
algorithms, as frequently used metrics of prediction performance underestimate false negatives
due to gaps in test sets, allowing entire classes of peptides to be missed without impacting
performance metrics (Figure SA, SB). Finally, we find that yeast display-trained algorithms are
superior at predicting peptide affinity, which is a crucial consideration in identifying peptides
suitable for antigen-targeted therapeutics (Backert and Kohlbacher, 2015; Hu et al., 2018; Patronov
and Doytchinova, 2013). The non-binary nature of yeast display data, which is trained on peptides
from five rounds of selection, possibly accounts for this key disparity.

This work also presents opportunities for utilizing yeast display for high-throughput, direct
assessment of binding between MHC-IIs and defined peptides of interest, which we explore further
in Chapter 3 and Chapter 4. And, as this platform does not require allele-specific reagents, we
believe it can generate high-quality repertoire-scale data for many additional MHC-II alleles, even
those with few curated binders, greatly increasing its applicability. Extensions of the yeast display
platform for additional MHC-II alleles are explored in Chapter 5. With this in mind, we believe
this technology can greatly benefit the field of MHC-II antigen prediction, and therefore the study
and application of CD4" T cell recognition across pathogen infection, cancer, and immune
disorders.

2.7 Methods

Yeast-displayed pMHC design

Full-length yeast-displayed HLA-DR401 (HLA-DRA1*01:01, HLA-DRB1*04:01) with a
cleavable peptide linker was based upon a previously described HLA-DR401 construct optimized
for yeast display with the mutations Ma36L, Val132M, HB33N, and DB43E to enable proper
folding without perturbing either TCR- or peptide-contacting residues (Birnbaum et al., 2017). The
alpha and beta chain ectodomains were expressed as a single transcript connected by a self-
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cleaving P2A sequence. The peptide was joined through a flexible linker to N-terminus of MHC
B1 domain. This construct was further modified to express a 3C protease site (LEVLFQ/GP) and
Myc epitope tag (EQKLISEEDL) within the flexible linker, for a total of 32 amino acids between
the peptide and 1 domain. HLA-DR402 (HLA-DRA1*01:01, HLA-DRB1*04:02) was generated
by modification of this construct with each native HLA-DRJ polymorphism of HLA-DR402. All
yeast display constructs were produced on the pY AL vector as N-terminal fusions to AGA2. All
yeast strains were grown to confluence at 30°C in pH 5 SDCAA yeast media then subcultured into
pH 5 SGCAA media at ODgoo = 1.0 for a 48 hour induction at 20°C (Chao et al., 2006).

Library design and selection

Randomized peptide yeast libraries were generated by polymerase chain reaction (PCR) of the
pMHC construct with primers encoding NNK degenerate codons. To ensure only randomized
peptides expressed within the library, the template peptide region encoded multiple stop codons.
Randomized 9mer libraries were designed as [AAXXXXXXXXXWEEG...] to constrain peptide
register and randomized 13mer libraries were designed as [AXXXXXXXXXXXXXG...].
Randomized pMHC PCR product and linearized pY AL vector backbone were mixed at a 5:1 mass
ratio and electroporated into electrically competent RJY 100 yeast (Van Deventer et al., 2015) to
generate libraries of at least 1 x 108 transformants.

Libraries were subjected to 3C cleavage with 1 uM 3C protease in PBS pH 7.4 at a concentration
of 2 x 108 yeast/mL for 45 minutes at room temperature. After linker cleavage, yeast expressing
the pMHC were washed into pH 5 citric acid saline buffer (20 mM citric acid, 150 mM NaCl) at
1 x 108 yeast/mL with 1 uM HLA-DM and a high-affinity competitor peptide at 4°C to catalyze
peptide exchange. HLA-DR401-expressing yeast were incubated with 1 pM HA306-318
(PKYVKQNTLKLAT) and HLA-DR402-expressing yeast were incubated with 5 uM CD4836.53
(FDQKIVEWDSRKSKYFES) (Genscript; Piscataway NJ). Libraries were subjected to 3C
cleavage and peptide exchange for 16-18 hours, and were selected for peptide-retention via binding
of o«-Myc-AlexaFluor647 antibody and magnetic oc-AlexaFluor647 magnetic beads (Miltenyi
Biotec; Bergisch Gladbach, Germany). Selected yeast were re-cultured, induced, and selected for
an additional four rounds, for five total rounds of selection.

Generation and comparison of peptide motifs

Kullback-Leibler relative entropy motifs were generated with Seq2Logo-2.0 (Thomsen and
Nielsen, 2012). For yeast display data, the core 9mers of round 5 sequences were input with
background amino acid frequencies derived from their average in their matched unselected library.

Benchmarking and comparison of prediction algorithms

Prediction algorithms were benchmarked against independently generated allele-specific eluted
ligand mono-allelic MS or yeast display library data, with matched decoy peptides. AUC and PPV
values are provided for the 1-log50k(aff) output of NetMHCII 2.3 and NetMHCllIpan 3.2, and was
comparable to the performance of the %Rank output. For NetMHClIpan 4.0, %Rank EL was
provided, and performs comparably to the Score EL output. Reported prediction values for
NNAlign models are the inverse of model output prediction values (l-value) for ease of
comparison to other prediction algorithms.
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Prediction algorithms were compared at a positional level by Two Sample Logo (Vacic et al.,
2006). For each comparison, the two algorithms were applied to a common set of 50,000
computationally-generated 15mer peptides. The predicted core 9mer of peptides that rank within
the 90™ percentile or higher of predicted value for only one algorithm were evaluated against the
cores of peptides that rank within the 90" percentile or higher of predicted value for both
algorithms. Significance was determined by two-sided unweighted binomial test for p < 0.05, with
a Bonferroni correction for multiple hypothesis testing.

Library deep sequencing and analysis

Libraries were deep sequenced to determine the peptide repertoire at each round of selection.
Plasmid DNA was extracted from 5 x 107 yeast from each round of selection with the Zymoprep
Yeast Miniprep Kit (Zymo Research; Irvine CA), according to manufacturer’s instructions.
Amplicons were generated by PCR with primers designed to capture the peptide encoding region
through the polymorphic region that differentiates HLA-DR401 from HLA-DR402. An additional
PCR round was then performed to add i5 and i7 paired-end handles with inline sequencing
barcodes unique to each library and round of selection. Amplicons were sequenced on an Illumina
MiSeq (Illumina Incorporated; San Diego, CA) with the paired-end MiSeq v2 500bp kit at the MIT
BioMicroCenter.

Paired-end reads were assembled via FLASH (Mago¢ and Salzberg, 2011) and processed with an
in-house pipeline that filtered for assembled reads with exact matches to the expected length,
polymorphic sequences, and 3C protease cleavage site, then sorted each read based on its inline
barcode and extracted the peptide-encoding region. To ensure only high-quality peptides were
analyzed, reads were discarded if any peptide-encoding base pair was assigned a Phred33 score
less than 20, or did not match the expected codon pattern at NNK sites (N = any nucleotide, K =
G or T). To account for PCR and read errors from high-prevalence peptides, reads were discarded
if their peptide-encoding regions were Hamming distance > 1 from any more prevalent sequence,
Hamming distance > 2 from a sequence 100 times more prevalent, or Hamming distance > 3 from
a sequence 10,000 times more prevalent within the same round, in line with previously published
analysis methods (Christiansen et al., 2015). Unique DNA sequences were translated by Virtual
Ribosome (Wernersson, 2006) and filtered for peptides not encoding a stop codon.

Heat map visualization of library peptide preferences

Heat maps were generated from filtered sequences from indicated round to visually represent
positional preferences. For each round, the unweighted prevalence of each amino acid at each
position was calculated as a percentage. This positional percent prevalence was compared to its
matched value in the unselected library to generate log2-fold enrichment values.

For randomized 9mer libraries, these log2-fold enrichment values were used to generate 20x9
position-specific scoring matrices (PSSMs) that were used to identify out-of-register peptides in
round 5 of selection. Each 15mer peptide was scored in each of its seven possible 9mer registers
by the PSSM, without positional weighting. Peptides which scored highest in a shifted register,
regardless of score, were deemed out-of-register. For the randomized 13mer library, peptide
register was determined by Gibbs Cluster 2.0 (Andreatta et al., 2017), with settings imported from
‘MHC class I ligands of the same length’, a motif of 13 amino acids, no discarding of outlier
peptides, and background amino acid frequencies derived from the data. This allowed visualization
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of each peptide register independently, without collapsing to a common 9mer motif. The number
of unique clusters was determined by maximum Kullback-Leibler distance. Results were
comparable between both methods of register determination for the 9mer peptide data.

Analysis of peptide data from external data sources

External MHC-binding peptide data was curated from two previously-published eluted ligand
mono-allelic mass-spectrometry (MS) datasets (Abelin et al., 2019; Scally et al., 2017). Eluted
ligand mono-allelic MS peptide data was analyzed as previously recommended (Scally et al.,
2017), the minimum epitope of nested peptide sets were filtered for those that did not map to
immunoglobulin or HLA proteins. Each dataset was clustered by Gibbs Cluster 2.0 (Andreatta et
al., 2017) with default settings for ‘MHC class II ligands’, excepting the default removal of outlier
peptides, and amino acid frequencies ‘from data’, to identify the core 9mer of each peptide. In
each case, Kullback-Leibler distance was maximized for one cluster. For identification of outlier
peptides, the default removal of outlier peptides was enabled.

Recombinant protein production

Recombinant soluble HLA-DM, HLA-DR401, and HLA-DR402 were produced in High Five
(Hi5) insect cells (Thermo Fisher) via a baculovirus expression system, as previously described
for other MHC-II proteins (Birnbaum et al., 2014). Ectodomain sequences of each chain followed
by a poly-histidine purification site were cloned into pAcGP67a vectors. For each construct, 2 pg
of plasmid DNA was transfected into SF9 insect cells with BestBac 2.0 linearized baculovirus
DNA (Expression Systems; Davis, CA) using Cellfectin II reagent (Thermo Fisher; Waltham,
MA). Viruses were propagated to high titer, co-titrated to maximize expression and ensure 1:1
MHC heterodimer formation, then co-transduced into Hi5 cells and grown at 27°C for 48-72 hours.
Proteins were purified from the pre-conditioned media supernatant with Ni-NTA resin and size
purified via size exclusion chromatography using a S200 increase column on an AKTAPURE
FPLC (GE Healthcare, Chicago IL). HLA-DRB1*04:01 and HLA-DRB1*04:02 chains were
expressed with CLIPg.101 peptide connected by a 3C protease-cleavable flexible linker to the MHC
N-terminus to improve protein yields.

Peptide competition assays and ICsy determination

The ICso of characterized peptides was quantified with a protocol modified from Yin, L. and Stern,
L.J. (2014) (Yin and Stern, 2014). Relative binding values were generated at each concentration
according to the equation (FPsample — FPfree)/(FPno comp — FPfiee), Where FPre. is the polarization
value of the fluorescent peptide before addition of MHC, FPno comp is the polarization value with
added MHC but no competitor peptide, and FPsample is the polarization value with added MHC and
competitor peptide. Relative binding curves were generated and fit by Prism 8.0 (GraphPad
Software Inc; San Diego CA) to the equation y = 1/(1+[pep]/ICso), where [pep] is the concentration
of competitor peptide, to determine the ICso of each peptide, its concentration of half-maximal
inhibition.

For each 200 pL assay, 100 nM soluble MHC was combined with 25 nM of fluorescently-modified
peptide in pH 5 binding buffer and incubated at 37°C for 72 hours in black 96-well flat bottom
plates (Greiner Biotech; Kremsmiinster, Austria). Modified HAzo6-308 peptide [APRFV {Lys(5,6
FAM)}QNTLRLATG] was used for HLA-DR401. N=3 replicates were performed for each
unlabeled peptide (Genscript; Piscataway, NJ) concentration, ranging in five-fold dilutions from
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20 uM to 1.28 nM. Plates were read on a Tecan M 1000 (Tecan Group Ltd., Morrisville NC) with
470 nm excitation, 520 nm emission, optimal gain, and a G-factor of 1.10. An important
modification of our protocol is the presence of the MHC-linked CLIP peptide that was released by
incubation with 3C protease at a 1:100 molar ratio at room temperature for 1 hour prior to dilution
into plates. Residual cleaved CLIP peptide at 100 nM is not expected to alter peptide binding.

Lines of best fit between predicted and measured affinity for characterized peptide, and associated
coefficients of determination (R?), were generated in Prism 8.0.

Data availability
All deep sequencing data was deposited on the sequence read archive (SRA) with accession code
PRINA647875 [https://www.ncbi.nlm.nih.gov/bioproject/PRINA647875/].

Code availability
All scripts used for data processing and analysis, as well as all NNAlign model files, are publicly
available at https://github.com/birnbaumlab/Rappazzo-et-al-2020.
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CHAPTER 3: MACHINE LEARNING OPTIMIZATION AND YEAST DISPLAY
ASSESSMENT OF PEPTIDES FOR ENHANCED MHC-IT BINDING

This chapter contains work conducted in collaboration with Zheng Dai and adapted under the
Creative Commons license from: Dai*, Huisman®, et al (2021). “Machine learning optimization
of peptides for presentation by class I MHCs”. Bioinformatics. A full acknowledgements
statement is included as Chapter 3.11.

Abstract

T cells play a critical role in cellular immune responses to pathogens and cancer and can be
activated and expanded by MHC-presented antigens contained in peptide vaccines. We present a
machine learning method to optimize the presentation of peptides by class I MHCs by modifying
their anchor residues. Our method first learns a model of peptide affinity for a class Il MHC using
an ensemble of deep residual networks, and then uses the model to propose anchor residue changes
to improve peptide affinity. We use a high throughput yeast display assay to show that anchor
residue optimization improves peptide binding.

3.1 Introduction

Machine learning holds great promise for improving therapeutic molecules, and here we show how
it can be applied to enhance the display of peptides that invoke cellular immune responses to
pathogens and cancer. T cells surveille peptides displayed on the cell surface by Major
Histocompatibility Complexes (MHCs), or Human Leukocyte Antigens (HLAs) in humans, and T
cell-mediated killing is initiated by recognition of a foreign peptide bound to an MHC.
Specifically, CD8" cytotoxic T cells recognize peptides presented by class I MHCs (MHC-I), and
CD4" helper T cells recognize peptides presented by class II MHCs (MHC-II) (Hennecke and
Wiley, 2001). MHC-Is have a closed peptide-binding groove and typically present peptides of 8-
11 amino acids; MHC-IIs have an open binding groove and typically present longer peptides, with
a 9 amino acid core binding within the groove and the ends protruding from the groove. Prediction
algorithms have been utilized to predict peptide-MHC binding. Recent strides in algorithmic
performance have been enabled by advances in computational methods (Chen et al., 2019;
O’Donnell et al., 2020; Racle et al., 2019; Reynisson et al., 2020; Zeng and Gifford, 2019) and the
development of new methodologies for generating training data, such as mono-allelic mass
spectrometry (Abelin et al., 2017, 2019; Sarkizova et al., 2020) and yeast display (Rappazzo et al.,
2020). With the help of these tools, peptide vaccines with constituent peptides computationally
selected for the ability to be displayed by MHCs have been utilized to amplify T cell responses
and proven clinically successful for patients with cancer after eliciting CD8" and CD4" T cell
responses (Abelin et al., 2017; Hu et al., 2018; Ott et al., 2017).

Engineered peptides with modified residues can further improve the effectiveness of such
interventions. It has been observed that peptides with modified peptide anchor residues can
improve the tumor cell killing response of the adaptive immune system (van Stipdonk et al., 2009).
For peptides presented by MHC-I, not all modifications to the antigen sequences improve the
recognition of peptides by the immune system, likely due to subtle structural changes that alter the
TCR-binding interface (Cole et al., 2010). However, in contrast to MHC-Is, MHC-IIs have open
grooves in which presented peptides are displayed in an extended conformation, resulting in
peptides binding in a highly conserved manner. The peptide side chains at positions P1, P4, P6,
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and P9 are completely buried within binding pockets in the groove and are considered anchor
positions (Jones et al., 2006). These four anchor residues are key determinants of peptide-MHC
binding affinity. Because of the highly conserved conformation of peptides within the MHC-II
binding groove (Jones et al., 2006), changing the identities of the MHC-II-binding anchor residues
will allow us to alter binding affinity without changing binding conformation or the T cell receptor
interface.

Traditional approaches to identifying good peptide modifications is a complicated process (van
Stipdonk et al., 2009), necessitating the development of computational approaches. A rule-based
approach, EpitOpimizer, has been used to design modified peptides for MHC-I binding with
anchor position changes that resulted in improved adaptive immune system response (Houghton
et al., 2007). EpitOptimizer uses a limited sequence context for its suggestions, and each MHC-I
molecule has a different set of rules. By contrast, PeptX (Knapp et al., 2011) uses a genetic
algorithm to determine the peptides most likely to be displayed by a specific MHC-I allele, which
may provide helpful information for the subsequent design of a vaccine. The performance of PeptX
was not experimentally evaluated.

We introduce a model-based approach to optimize peptide-MHC-II binding by optimizing the
peptide anchor residues of disease-associated peptides. We optimize peptide-MHC-II affinity by
enumerating all possible changes to the anchor positions of a peptide, then scoring them against
an objective function in silico and choosing the best ones. This is computationally tractable due to
the limited number of anchor positions on a given peptide. We adapt a yeast display platform
(described in Chapter 2) to test our improved peptide sequences for binding to MHC-II molecules.

For our objective function, we use predictions from the PUFFIN peptide-MHC binding model
(Zeng and Gifford, 2019) trained on peptide binding data from a MHC-II yeast display platform
(described in Chapter 2) (Rappazzo et al., 2020). PUFFIN uses an ensemble of deep residual
networks to quantify its uncertainty about its predictions, while achieving state of the art
performance on MHC-II binding prediction tasks and allowing us to perform optimization with
objective functions which incorporate affinity prediction in addition to prediction uncertainty
metrics (Zeng and Gifford, 2019). We show that our method generates peptide modifications that
improve peptide binding affinity for two MHC-IIs.

3.2 Approach: model, model training, selection of seed sequences, and definition of
optimization tasks

We utilized peptide-MHC binding data from the yeast display platform introduced in Chapter 2
for training prediction algorithms (Rappazzo et al., 2020) (Figure 1A illustrates this step and the
overall study). In this platform, MHC-IIs are covalently linked to a query peptide with a flexible
linker which contains a 3C protease cleavage site. When the linker is cleaved, unbound peptides
can be displaced from the MHC in the presence of a high-affinity competitor peptide. The linker
also contains a peptide-proximal epitope tag, which we use to enrich yeast that maintain peptide-
MHC binding. Figure 1B and Figure 1C illustrate the yeast display construct and selection
strategy. Data was collected over multiple iterative rounds of selection. After each round of
selection, deep sequencing was carried out on the enriched yeast. We filter the deep sequencing
results for reads that match the invariant portions of the construct, from which we extract the
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peptide sequence. The resulting dataset assigns to every observed peptide its read count for each
round of the yeast display assay.

We utilized data from two MHC-II alleles: HLA-DR401 (HLA-DRA1*01:01, HLA-DRB1*04:01)
and HLA-DR402 (HLA-DRA1*01:01, HLA-DRB1%*04:02). This ensures that our results are not
an allele specific artifact and allows us to study optimization for multiple alleles.

For training the machine learning (ML) model, we utilized enrichment data from a library
consisting of 108 random 9mer peptides flanked by invariant peptide flanking residues (IPFR)
which encourages binding in a single register and simplifies identification of anchor residues
(Rappazzo et al., 2020). This dataset contains orders of magnitude more peptide binders than
comparable approaches and can be used for improved peptide affinity prediction (Rappazzo et al.,
2020), which will be beneficial when scoring and selecting optimized sequences.

For each MHC-II allele, we train a neural network-based ML model (PUFFIN) (Zeng and Gifford,
2019) that takes a 9 residue peptide sequence as input, and predicts a measure of the strength of
the peptide-MHC interaction. Rather than the NNAlign model architecture utilized in Chapter 2,
we selected the PUFFIN architecture because it outputs uncertainty estimates in addition to affinity
predictions, which allows us to compute Bayesian acquisition functions. Utilizing the yeast display
data and PUFFIN framework, we trained two predictors for each allele. The first predictor models
the enrichment as a continuous value and outputs a Gaussian distribution, while the second
predictor models the enrichment as categoricals and outputs a probability distribution over the
categories. In both cases, the enrichment value of a given 9mer is based on the last round of its
appearance in the yeast display experiment.

To utilize these prediction tools for optimization, we leverage the relatively small space of 20*-1
possible anchor substitutions to evaluate an objective function over each substitution based on the
output of the model. We then output the 10 substitutions that score the highest as the proposed
optimizations. The use of a neural network-based model along with the complete enumeration of
the anchor substitution space allows our optimizations to take more complex interactions between
residues into account.

We proposed anchor optimizations to 9mers drawn from the proteomes of the zika, HIV, and

dengue viral proteomes, which we refer to as seed sequences. We selected three sets of sequences

on which to evaluate three different optimization tasks. These sets of sequences are:

1. 82 seed sequences that have some affinity for HLA-DR401, which we optimize for affinity
to HLA-DR401.

2. 87 seed sequences that have some affinity for HLA-DR402, which we optimize for affinity
to HLA-DR402.

3. 44 seed sequences that have high affinity for HLA-DR402 and some affinity for HLA-
DR401, which we optimize for affinity to both MHC alleles.

We use predictions from the categorical ML predictor as a surrogate for affinity in this context.
PUFFIN was designed to characterize the uncertainty of its predictions by outputting a variance.
This allows us to use various Bayesian acquisition functions as our objectives. For this study, we
chose to study point estimate (PE) which is just the enrichment, and upper confidence bound
(UCB) which adds the enrichment and the standard deviation of the prediction. For our third task
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of optimizing for both alleles, the objectives were computed for each allele individually and then
added to produce the combined objective.

Optimizations using PE and UCB were performed with both the Gaussian and categorical models.
Optimization with a given objective was done by enumerating and evaluating all possible anchor
substitutions with that objective and selecting the top 10 scoring substitutions, giving a total of 40
optimized sequences for each seed. For each seed, 10 random anchor substitutions were also
generated as a random control. We add these sequences to a new yeast display library for testing
our designs.

Instead of adding the 9mers directly, we first flanked with IPFR so the sequences would resemble
those from the original randomized library (Rappazzo et al., 2020). Therefore, the sequences will
take the form “AAXXXXXXXXXWEEG”, where “X” denotes any residue. As a further control,
we also flanked the 9mers with their wild type peptide flanking residues (WPFR), which were
defined as the 3 residues that flanked the seed 9mer in the source proteome. Finally, we sampled
some sequences that performed well and some sequences that performed poorly in the training
data and added them as positive and negative controls, respectively.
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Figure 1. Generation of training and validation data. A) Details on the generation of the training and validation
data. The initial randomized library is used to generate the training data. The training data is used to train two variants
of PUFFIN. One of these was used to select seeds from viral proteomes. These seeds were then optimized and
combined with some peptides from the original randomized library to produce the defined library. Yeast display was
done on the defined library to produce the validation data, on which most of our analysis is done. B) Schematic of the
construct used in the yeast display assay. C) The overall process for yeast display. First, the peptide-MHC is expressed
on the surface of yeast, and then the linker between peptide and the MHC molecule is cleaved. Peptide exchange is
catalyzed, and yeast are selected which retain the Myc epitope tag. The resulting population is then sequenced and
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3.3 Assessment of optimized peptides using yeast display

In order to test our optimized sequences, we adapted the yeast display platform and workflow from
randomized peptide libraries to presentation of user-defined peptides. We designed a 36,000-
member defined library containing our optimized sequences and controls from Chapter 3.2. Each
peptide sequence was encoded in DNA space by randomly selecting an encoding codon, weighted
by probability matching yeast codon frequency (GenScript Codon Usage Frequency Table;
GenScript, Piscataway, NJ). This helps avoid encoding similar peptide sequences with the same
codon encoding, and thus decreases the probability of template switching between similarly
encoded sequences. The defined sequences were synthesized by Twist Bioscience as a single-
stranded oligonucleotide pool with a maximum length of 120 nucleotides. Utilizing this defined
oligonucleotide pool, we generated a second yeast display library encoding these peptides, linked
to MHCs.

To better assess enrichment, the HLA-DR401 and HLA-DR402 defined peptide libraries were
doped into a 20-million-member randomized peptide library containing stop codons, at a ratio of
approximately 1:500 so that each unique peptide was represented at similar starting frequency.
Doping into this library provides a null set of peptides over which real binders must enrich, to

increase the stringency of selections. Four iterative rounds of selection were performed (Figure
10).

To compare affinities between given peptides, for each peptide we estimated the proportion of that
peptide which survives between rounds. This value is determined by fitting a geometric
progression to the concentration of each peptide. We assume that read counts are drawn from a
Poisson distribution that is parametrized by the concentration of the peptide multiplied by a
constant that is dependent on the overall population being sequenced, and we fit the maximum
likelihood estimate.

By fitting a geometric progression, we can extract the proportion between successive values in the
progression, which we can interpret to be the proportion of peptides that survive a single round of
the experiment. The constant of the sequenced population is undetermined, so the proportion we
extract is a scalar multiple of the true proportion. Therefore, this proportion is unnormalized, so
we refer to it as a round survival rate (RSR). While RSR are not unique, we find that it is able to
provide a highly consistent ranking to the peptides. We use RSR as a surrogate for affinity for the
remainder of this text. RSR values of replicate selections of the defined library are concordant with
the first replicate (Pearson and Spearman correlation coefficients 0.81-0.84; Supplemental Figure
1), suggesting selections and RSR determination is reproducible. A subset of sequences is absent
from a single replicate due to stochastic dropout, which likely occurs in the initial rounds of
selection when each member of the library is present at low frequency.

3.4 Round survival rates of peptides across optimization tasks

We first examine the overall RSR distribution of the following groups of sequences for each allele:
sequences optimized for that allele with PE under the Gaussian model, UCB under the Gaussian
model, PE under the categorical model, UCB under the categorical model, sequences with random
anchor mutations (negative control), seed sequences, sequences from the training data which were
not present after round 2 (negative control), and sequences from the training data which were
present after round 2 (positive control). We find that the groups of optimized sequences exhibit
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higher RSRs for the alleles they were optimized for than either of the negative controls (Figure 2).
The improvements are statistically significant, with p < 1.58e-23 between any optimized set and
negative control for either allele by the two-sided Mann-Whitney U test.

We find that no optimization method significantly outperforms the others. Between any two groups
of optimized sequences, p > 0.4 under the two-sided Mann-Whitney U test for both alleles. This
can be explained by the overlaps observed in the optimizations proposed by different methods.
When optimizing for HLA-DR401 affinity, if we compare the proposals generated by two
optimization methods there are at most 2 seed sequences out of 82 whose proposed optimizations
did not include any common sequences. Likewise, for HLA-DR402 for any two optimization
methods there are at most 3 seed sequences out of 87 that had no overlap. This suggests that the
specific objective does not significantly affect the quality of proposals. We compared the
consistency of point estimate optimization proposals where uncertainty estimates are not required
between NetMHClIpan 4.0 (Reynisson et al., 2020) and PUFFIN. We found that they proposed
overlapping optimized sequences (Table 1).
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Figure 2. Anchor optimization improves round survival rate. The distributions of RSR for A) HLA-DR401 and
B) HLA-DR402 is plotted for the optimized and control groups. The sequences from the training data are split into
two groups: “Training data (LRP 0-2)” is composed of sequences which did not appear after round 2 in the initial
yeast display assay and is shown as a negative control, while “Training data (LRP 3-5)” is composed of sequences
that did appear after round 2 and is shown as a positive control. The differences between the optimized groups and the
negative controls (Random control, Seed and Training data (LRP 0-2)) are significant for both alleles, with p < 1.58e-
23 under the two-sided Mann-Whitney U test. Each plot is a combination of a box plot and a violin plot, where the
distribution is shown by the violin plot in a lighter color, and the box plot shows the middle quartiles in a darker color
along with the median. The mean is indicated by a black vertical line. Flier points are marked with the “|” symbol.



Optimized Set PE, UCB, PE, UCB, NetMHCII Random

Gaussian ~ Gaussian ~ Categorical ~ Categorical  pan 4.0 Neighbor
HLA-DR401 PE, Gaussian 82/82 82/82 82/82 82/82 57/82 0/82
HLA-DR401 UCB, Gaussian 82/82 82/82 82/82 82/82 50/82 0/82
HLA-DR401 PE, Categorical 82/82 82/82 82/82 80/82 65/82 0/82
HLA-DR401 UCB, Categorical 82/82 82/82 80/82 82/82 57/82 0/82
HLA-DR401 NetMHClIpan 4.0 57/82 50/82 65/82 57/82 82/82 0/82
HLA-DR401 Random Control 0/82 0/82 0/82 0/82 0/82 82/82
HLA-DR402 PE, Gaussian 87/87 87/87 86/87 85/87 45/87 0/87
HLA-DR402 UCB, Gaussian 87/87 87/87 84/87 85/87 44/87 0/87
HLA-DR402 PE, Categorical 86/87 84/87 87/87 87/87 52/87 0/87
HLA-DR402 UCB, Categorical 85/87 85/87 87/87 87/87 49/87 0/87
HLA-DR402 NetMHClIpan 4.0 45/87 44/87 52/87 49/87 87/87 0/87
HLA-DR402 Random Control 0/87 0/87 0/87 0/87 0/87 87/87
Joint PE, Gaussian 44/44 44/44 44/44 44/44 27/44 0/44
Joint UCB, Gaussian 44/44 44/44 44/44 44/44 25/44 0/44
Joint PE, Categorical 44/44 44/44 44/44 44/44 27/44 0/44
Joint UCB, Categorical 44/44 44/44 44/44 44/44 26/44 0/44
Joint NetMHClIpan 4.0 27/44 25/44 27/44 26/44 44/44 0/44
Joint Random Control 0/44 0/44 0/44 0/44 0/44 44/44

Table 1. Overlapping predictions from alternate prediction algorithms. Each column indicates a proposed optimization
method, and each row indicates a proposed optimization. Each entry indicates the number of seeds with overlapping
proposed peptides between optimization methods (out of 82, 87, and 44 seed sequences for HLA-DR401, HLA-
DR402, and joint optimization, respectively). "PE, Gaussian", "UCB, Gaussian", "PE, Categorical", and "UCB,
Categorical" are the main optimization methods we analyzed which use PUFFIN predictions, “NetMHClIpan 4.0”
uses the EL score predicted by NetMHClIpan 4.0 as an objective function but otherwise operates identically to the
other optimization methods, and "Random Control" draws anchor substitutions randomly.

3.5 Optimization for single or multiple alleles

Since our method of generating proposals performs comparably under the different objectives we
tested, we will focus the rest of our analysis on point estimate optimization under the Gaussian
model for simplicity. We include an analogous analysis of the other optimization methods, which
are similar (Supplemental Figures 2-5).

We find that most optimized sequences outperform their unaltered seed sequences (Figure 3A,

3C). For HLA-DR401, for 44 out of the 82 seed sequences, all of the proposed optimizations
performed better, while for HLA-DR402 this was the case for 72 out of the 87 seed sequences. In
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sequences where optimization was less effective, we find that generally the seed sequence already
performs well via round survival rate (Figure 3B, 3D).

We find that sequences that were optimized for both alleles were generally able to improve their
RSR for HLA-DR401 while maintaining their RSR for HLA-DR402 (Figure 4). Out of a total of
44 seed sequences, there were 35 in which all proposed optimizations had a higher RSR for HLA-
DR401. For 23 seed sequences, all proposed sequence optimizations outperformed the seeds on
HLA-DR401 and achieved greater than 80% of the seed sequence RSR for HLA-DR402. For 13
seed sequences, all proposed optimizations outperformed the seeds on both HLA-DR401 and
HLA-DR402.

If we instead consider seeds where the optimization criterion was reached for at least 8 out of the
10 proposed sequences, these values rise to 42, 35, and 18 respectively. For the random controls,
they are 2, 1, and 1 (Figure 4).
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Figure 3. Number of sequences that exhibit improvement after optimizing with the point estimate objective
under the Gaussian model. A) For each seed sequence, we calculate the number of proposed optimizations that
achieve a RSR for HLA-DR401 that is higher than that of the seed. We then take that as a percentage of the number
of proposals to obtain the optimization success rate. We plot the distribution of these rates for both sequences
optimized for HLA-DR401 affinity and the randomly perturbed sequences. B) For each sequence optimized for HLA-
DRA401 affinity and randomly perturbed sequence, we plot their RSR for HLA-DR401 against the RSR of the seed
sequence they derive from. C) We calculate the distribution of optimization success rates for sequences optimized for
HLA-DR402 using RSR for HLA-DR402. D) We plot the RSR for HLA-DR402 of sequences optimized for HLA-
DR402 against the RSR of their seed sequence.
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Figure 4. Number of sequences that exhibit improvement for multiple alleles after optimizing with the point
estimate objective under the Gaussian model. A) For each seed sequence, we calculate the number of proposed
optimizations that achieve a RSR for HLA-DR401 that is higher than that of the seed. We then take that as a percentage
of the number of proposals to obtain the optimization success rate. We plot the distribution of these rates for both
sequences optimized for HLA-DR401 and HLA-DR402 affinity and the randomly perturbed sequences. B) We
produce the same distribution but with optimization success rates based on HLA-DR402 affinity. The seed sequences
were selected to have high HLA-DR402 affinity. C) For each optimized, random control, and seed sequence, we plot
their RSR for both alleles. D) For each optimized and random control sequence, we take their RSR and subtract the
RSR of the seed sequence they derive from to obtain the changes in their RSR.

3.6 Complexity of interactions between residue positions captured by optimizations

By analyzing our training data, we find that the identity of residues outside of the primary anchor
residues can have a significant impact on which anchor residues will improve affinity. As an
example (Figure 5), for HLA-DR401 if a sequence contains a threonine (T) at the non-anchor
position P7, then having an aspartic acid (D) at anchor position P6 tends to increase the RSR.
However, if the sequence contains a D at the non-anchor position P7, then having a D at P6 tends
to decrease the RSR instead. Higher order effects can be seen between other anchor and non-
anchor positions as well, so these relationships are not limited to adjacent positions nor to residues
at P7, which can be considered an auxiliary anchor because of its contacts with the MHC groove
(Jones et al., 2006).
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The dependency between anchor positions and non-anchor positions can be observed in the
proposals generated by our method. Out of the 820 sequences proposed using PE under the
Gaussian model for HLA-DR401, 20 (2%) have a D at anchor position P6. Six of our seed
sequences have a T at P7; of our proposed optimizations for these seeds, 17/60 (28%) have a D at
P6. Conversely, nine of our seed sequences have a D at P7, and none of their 90 proposed
optimizations have a D at P6. This demonstrates the advantages of enumerating the full anchor
residue landscape as it allows the capture of these higher order effects.

Given the presence of the higher order effects between peptide positions, including non-anchor
positions, it seems unlikely that a more naive approach to anchor optimization could be as
successful. In particular, it is unlikely that there exists a set of anchor residues that would optimize
affinity in all non-anchor contexts. As further support for this, we find that there are no sets of
anchor residues that were proposed for all seed sequences for any optimization task, even when
combining the proposed optimizations across all 4 of our optimization methods. For HLA-DR401
optimization, the most frequently proposed set is Y, D, T, A at anchor positions P1, P4, P6, P9
(respectively), which was proposed for 54 out of the 82 seeds. For HLA-DR402, the most
frequently proposed setis L, W, T, A at P1, P4, P6, P9 (respectively), which was proposed for 44
out of the 87 seeds. For optimization for both alleles, the most frequently proposed set is F, M, N,
A at P1, P4, P6, P9 (respectively), which was proposed 34 out of 44 times.
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Figure 5. Whether a given anchor residue improves affinity can depend on non-anchor residues. Peptides with
aspartic acid at P7 tend to have lower round survival rates when compared to all peptides, and peptides that additionally
have another aspartic acid at anchor position P6 tend to have even lower round survival rates than the peptides that
just have an aspartic acid at P7. In contrast, although peptides with threonine at non-anchor position P7 also tend to
have lower round survival rates when compared to all peptides, peptides that additionally have an aspartic acid at
anchor position P6 tend to have higher round survival rates instead even when compared to all peptides. The
differences found in these comparisons are significant, with p < 4.968e-5 between any two groups mentioned above
under the Mann-Whitney two-sided U test. The sequences plotted and used for computing significance are from the
training data. Each plot is a combination of a box plot and a violin plot, where the distribution is shown by the violin
plot in a lighter color, and the box plot shows the middle quartiles in a darker color along with the median. The mean
is indicated by a black vertical line. Flier points are marked with the “|” symbol.
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3.7 Effects of invariant flanking residues on optimized peptides

All the optimized peptides we have presented so far have been flanked with IPFR, which were
used to train the model. If we replace the IPFR with WPFR, we observe that the optimized
sequences still outperform the seed and random controls (Figure 6). The improvement is still
significant, with p < 5.51e-5 when comparing the optimized sequences to the random control or
seed sequences for either allele under the two-sided Mann-Whitney U test. However, the optimized
sequences with WPFR significantly underperform their IPFR counterparts (p < 1.36e-22 for either
allele under the two-sided U test).

The reduction in improvement is only observed in the optimized sequences for WPFR. In the case
of the seed and random control groups, the WPFR sequences either do not display any significant
difference or mildly outperform the IPFR counterparts (0.0018 < p < 0.92 under the two-sided
Mann-Whitney U test).
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Figure 6. Comparing round survival rate of various groups with invariant peptide flanking residues and wild
type peptide flanking residues. From top to bottom, the first four pairs of groups depicted in that figure are optimized
sequences, and the pairs below them are sequences with random anchor mutations and seed sequences. The upper
group of each pair contain IPFR flanked sequences and are the same as those in Figure 2, while the lower group in
green contain WPFR flanked sequences. The distributions of RSR for A) HLA-DR401 and B) HLA-DR402 are plotted
for these groups. Each plot is a combination of a box plot and a violin plot, where the distribution is shown by the
violin plot in a lighter color, and the box plot shows the middle quartiles in a darker color along with the median. The
mean is indicated by a black vertical line. Flier points are marked with the



3.8 Sequence motifs of optimized peptides

The peptide optimizations made by our machine learning models are consistent with the structures
and peptide-binding motifs of HLA-DR401 and HLA-DR402 in our training data. The
polymorphisms between HLA-DR401 and HLA-DR402 affect the P1 and P4 binding pockets.
Both alleles prefer hydrophobic amino acids in the P1 pocket, although HLA-DR401 prefers larger
amino acids, while the truncated HLA-DR402 pocket prefers smaller amino acids. In the P4
pocket, HLA-DR401 prefers acidic residues, and HLA-DR402 prefers basic residues and large
hydrophobic residues. The conserved P6 and P9 binding pockets prefer polar and small amino
acids, respectively. The preference for each allele is reflected in MHC allele-specific peptide
optimization, shown for the optimization with PE objective under the Gaussian model as an
example (Figure 7A). Joint MHC optimization is also consistent with these preferences: P1 and
P4 amino acids are mutually preferred between both alleles, such as F/I/L at P1 and increased
usage of M at P4. P6 and P9 amino acids are consistent with usage in individual allele-optimized
peptides. Amino acid frequency in the seed sequences is also shown for reference (Figure 7B).
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Figure 7. Motifs arising from optimization with the PE objective under the Gaussian model. A) Sequence logos
depicting the motifs present in the optimized sequences. For each position, 3 different residue distributions are shown.
The first one shows the distribution for the sequences optimized for HLA-DR401, the last one shows the distribution
for the sequences optimized for HLA-DR402, and the one in the middle shows the distribution for the sequences
optimized for both alleles. Sequence logos were generated with a custom script. B) Sequence logos depicting the
motifs present in the original seed sequences for comparison with the same setup.
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3.9 Discussion and outlook

In this work, we introduced our method for optimizing the affinity of peptide sequences for MHC-
IIs by replacing their anchor residues with more optimal residues generated with the help of a
machine learning model. We validated this technique on two different MHC-II alleles, and showed
that it is possible to optimize a single sequence for multiple alleles simultaneously. We have
developed a high-throughput yeast display-based pipeline to test our optimized sequences, and we
introduced the notion of a round survival rate which allows us to compare the results of the assay.

We demonstrated that our method leverages deep learning models in a way that allows the
proposed optimizations to capture complex interactions between residues. Our ability to optimize
sequences for two alleles simultaneously suggests that the method can generalize to even more
complicated objectives. These contributions improve our ability to engineer peptides for
therapeutic purposes, and allows us to develop more robust cocktails by allowing their constituent
peptides to fulfill multiple objectives.

We note that the method for generating proposals is independent of the specific predictor used.
Our results indicate that taking uncertainty into account does not significantly improve the quality
of the proposals over using a simple point estimate, so a model that quantifies its uncertainty is not
strictly necessary. Therefore, substituting PUFFIN for another algorithm that performs comparably
to PUFFIN should yield similar results.

As a caveat, we note that our optimization is less effective if we allow arbitrary flanking residues.
The reduction in improvement when we change from IPFR to WPFR is only observed in the
optimized sequences and is not observed in seed or sequences with random anchor residues.
Therefore, it is likely that the drop in performance is due to the predictor being trained on IPFR
data, so the predictor is unable to take the effects of flanking residues or register shifts into account.
The IPFRs also contain preferred amino acids in the flanking sequences, such as the tryptophan at
position P10. Aromatic residues at P10 have been shown to bolster binding and may impact the
superior performance of IPFR peptides compared to WPRF peptides (Rappazzo et al., 2020;
Zavala-Ruiz et al., 2004). As noted above, since our method is independent of the specific
underlying predictor, we should be able to address this issue by replacing our current predictor
with one that takes the flanking residues into account. More generally, the quality of our
optimization should improve as the quality of predictors available continues to improve.

Our future work will extend our method to incorporate wild type flanking residue information in
our optimization, and will seek to characterize the effect of anchor optimization on peptide
immunogenicity. Future work can also utilize the yeast display defined library approach for other
objectives, including assessing antigenic peptides of interest for MHC-binding in high-throughput,
which is explored further in Chapter 4.

3.10 Methods

Collecting enrichment data using a high throughput yeast display assay

We utilize peptide-MHC binding data from a yeast display library of 10® random 9mer peptides,
as also described in Chapter 2 (Figure 1) (Rappazzo et al., 2020). The peptides are flanked by
invariant peptide flanking residues (IPFR), which encourages binding in a single register and
simplifies identification of anchor residues. The IPFR consists of “AA” on the N-terminus and
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“WEEG” on the C-terminus. Paired-end sequencing reads (Rappazzo et al., 2020) were assembled
via FLASH (Mago¢ and Salzberg, 2011) and filtered for correct length and 3C cut site sequence.

We adapted the yeast display platform for testing our optimized sequences, encoding the peptide
sequences in DNA and ordering as a defined oligonucleotide pool from Twist Bioscience. The
oligo pool was amplified with low cycle number PCR then amplified with construct DNA using
overlap extension PCR. This longer DNA product was assembled with the linearized pY AL vector
in yeast at a 5:1 mass ratio of insert:vector and electroporated into electrocompetent RJY 100 yeast.
To increase the stringency of selections, the defined peptide libraries were doped into a 20-million-
member randomized peptide library containing stop codons so that each unique peptide was
represented at similar starting frequency. The diverse null library had the peptide encoded as
“NNNTAANNNNNNNNNTAGNNNNNNNNNNNNTGANNNNNN”, where N indicates any
nucleotide.

For each round of selection, yeast were washed into PBS, with competitor peptide (HLA-DR401:
HA306318, 1 pM; HLA-DR402: CD4836.53, 5 uM) and 1 uM 3C protease, then incubated for 45
minutes at room temperature. After incubation, yeast were washed into cold acid saline (20 mM
pH 5 citric acid, 150 mM NaCl) with competitor peptide (same concentration as first incubation)
and 1 uM HLA-DM, then incubated overnight at 4°C. Negative selections for non-specific binders
was performed with oc-AlexaFluor647 magnetic beads (Miltenyi Biotec; Bergish Gladbach,
Germany), followed by a positive selection consisting of incubation with o«c-Myc-AlexaFluor647
antibody (1:100 volume:volume) and positive selection with x-AlexaFluor647 magnetic beads.
The first round was conducted on 400 million yeast for 20x coverage of peptides and incubations
were conducted in 2 mL PBS and 4 mL acid saline. For subsequent rounds, 25 million yeast were
selected; incubations were conducted in 250ul PBS, 500uL acid saline. Four iterative rounds of
selection were performed and repeated in duplicate. Between rounds, yeast were grown to
confluence at 30°C in SDCAA (pH 5) yeast media and sub-cultured into SGCAA (pH 5) media at
ODeoo=1 for two days at 20°C (Chao et al., 2006).

Following selections, plasmid DNA was isolated from 10 million yeast from each round using a
Zymoprep Y east Miniprep Kit (Zymo Research; Irvine, CA). Amplicons were generated to capture
the peptide through the 3C protease site. Unique barcodes were added for each library and round
of selection and i5 and 17 anchors added through two rounds of PCR. Amplicons were sequenced
on an [llumina MiSeq (Illumina; San Diego, California) at the MIT BioMicroCenter, with a paired-
end MiSeq v2 300nt kit.

Forward and reverse reads are assembled using PandaSeq. Data were processed using in-house
scripts to extract peptide sequences with correctly encoded constant flanking regions. Peptides
were filtered for exact matches to the defined sequences ordered from Twist and those matching
the DNA encoding of the randomized null library.

HLA-DM was recombinantly expressed as previously described (Rappazzo et al., 2020). In brief,
the ectodomains of the alpha and beta chains were followed by a poly-histidine purification site
and encoded in pAcGP67a vectors. Plasmids for each chain were separately transfected into SF9
insect cells with BestBac 2.0 baculovirus DNA (Expression Systems; Davis, CA) and Cellfectin
II reagent (Thermo Fisher; Waltham, MA). Cells were propagated to high virus titer, co-titrated to
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ensure an equal ratio of alpha and beta expression, and co-transduced into Hi5 cells. Following
48-72 hours of incubation, proteins were purified with Ni-NTA resin and purified with size
exclusion chromatography on an AKTAPURE FPLC S200 increase column (GE Healthcare;
Chicago, IL).

Training a neural network-based ML model to predict the enrichment category of a peptide

We trained a neural network-based ML model (PUFFIN) (Zeng and Gifford, 2019) to predict the
enrichment label of a given peptide. The predictor takes a 9-residue peptide sequence as input, and
outputs an enrichment label. We use the final round where a peptide is observed in the yeast display
assay as our enrichment label for both training and prediction. For example, if a sequence appears
in the sequencing reads for round 3 but fails to appear in round 4 or any other future rounds, it
receives the label “3”. To improve the granularity, round 5 presence was further split up into 3
categories, where “5” indicates round 5 presence with less than 10 read counts in round 5, “6”
indicates round 5 presence with a read count between 10-99 inclusive, and “7” indicates round 5
presence with a read count of 100 or more. A label of 0 is given to sequences that only appear
before any enrichment is performed. This gives a total of 8 enrichment categories.

PUFFIN is an ensemble of deep residual neural networks that is regularized by dropout and
controlled for overfitting with validation data. Each component model consists of one
convolutional layer, five residual blocks, and one output layer. Each residual fits the difference
between the input and the output of a residual block with two convolutional layers. Each
convolutional layer has 256 convolutional filters and is followed by a batch-norm layer. ReLU is
used as non-linearity throughout the network.

For each allele, we trained two predictors to predict the enrichment labels. The first predictor
assumes the enrichment labels 0-7 are realizations of a continuous random variable taken from a
Gaussian distribution, and was trained to output a mean and variance. The second predictor models
the labels as categoricals, and outputs a discrete probability distribution over the 8 labels 0-7. For
regularization, dropout (Srivastava, 2014) is used in the output layer with a dropout probability of
0.2. We randomly hold out 10% of the data for validation, and the rest is used for training. We use
Adam (Kingma and Ba, 2014) to minimize the negative log-likelihood of the observed enrichment
under the probability distribution parameterized by the output of the neural network. We train for
50 epochs and select the model from the epoch where validation loss is minimized.

While the outputs of each predictor naturally characterize aleatoric uncertainty, we also
characterize the epistemic uncertainty through ensemble methods (Lakshminarayanan et al., 2016).
Specifically, we generate 10 training and validation splits of our data and train 2 separate predictors
for each split, giving us an ensemble of 20 predictors. When performing predictions, we run each
predictor 50 times with dropout turned on (Gal and Ghahramani, 2015), resulting in a total of 1000
predictions for each input. The final output is then characterized by a mean and variance, where
the mean is the average of the distribution means over all 1000 trials, and the final variance is the
average of the distribution variances for each trial plus the variance of the distribution means.

We also ran PUFFIN predictions on a published orthogonal 13mer peptide yeast display test set

(Rappazzo et al., 2020), to compare to existing models. We observe comparable performance
between PUFFIN and current state of the art (AUC of 0.91, 0.91, and 0.82, for Gaussian PUFFIN,
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Categorical PUFFIN, and NetMHClIIpan 4.0 %rank eluted ligand mode, respectively, on a dataset
with a 1:1 ratio of binders to non-binders; and positive predictive values of 0.57, 0.57, and 0.29,
for Gaussian PUFFIN, Categorical PUFFIN, and NetMHClIIpan 4.0 %rank eluted ligand mode,
respectively, on dataset with 1:19 ratio of binders to non-binders), where PUFFIN-identified cores
are the maximum-scoring 9mer within the 13mer.

Using an ML model to compute an objective function for anchor optimization

For both the Gaussian and the categorical predictors, we considered two different objective
functions for scoring 9mers: point estimate (PE) and upper confidence bound (UCB). In both
functions, we first run our predictor over the 9mer to obtain a predicted mean and variance. Then
to compute the PE objective, we simply return the mean. To compute UCB, we return the sum of
the mean and the standard deviation, which we take to be the square root of the variance.

This gives us a total of 4 methods for scoring 9mers. For each method, given an input 9mer to
optimize, we enumerate all possible residue substitutions at positions 1, 4, 6, and 9 (sequences are
I-indexed). For each substitution, we compute its score using our objective function, and in the
end, we output the 10 sequences that score the highest as proposed optimizations.

Designing a validation library to test the efficacy of anchor optimization

We tested the efficacy of anchor optimization on three tasks using a yeast display approach. Our
evaluation was conducted using viral peptides selected from the zika, HIV, and dengue viral
proteomes. The 9mers in the candidate proteomes have no overlap with the peptides in our random
peptide training library. We selected seeds for optimization from zika, HIV, and dengue based on
the predictions of the categorical predictor. We first filter the sequences by removing all whose
PUFFIN prediction has a predicted variance higher than the median predicted variance. For the
seeds for Task 1 and Task 2, we selected peptides with a predicted enrichment mean between 2
and 3, yielding 82 seeds for HLA-DR401 and 87 seeds for HLA-DR402. For the seeds for Task 3,
we selected peptides with a predicted HLA-DR401 enrichment mean below 3 and a predicted
HLA-DR402 enrichment mean above 5, resulting in 44 seeds.

For each seed sequence, we ran each of our 4 optimization methods over it for each allele, giving
10 optimized sequences for each method. As a control, we also proposed 10 random anchor residue
mutations for each seed.

We then take the seed, optimized, and random sequences and flank them with IPFR. As a control,
we also produce a second set of sequences from the same 9mers but flanked with WPFR, defined
to be the 3 residues that flank the original seed sequence in the original proteome. This forms the
basis of the library.

As a further control, we added sequences from the original training data to the library. For each
allele, we sampled 300 sequences that had no presence after the second round of selections, and
300 sequences that had presence after the second round of selections, giving us 1200 sequences
overall.
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Calculating round survival rate as a representation of enrichment

The enrichment information reported in the yeast display assay comes in the form of a vector of
read counts indexed by round. In order to compare enrichment between different peptides, we
assign to each peptide a value that can be interpreted as an unnormalized proportion of that peptide
that survives between rounds of enrichment. We will refer to this quantity as a round survival rate
(RSR), where a higher RSR will be indicative of higher enrichment.

To calculate a peptide’s RSR, we consider a simplified model where the peptide has a starting
concentration drawn from a given prior, and the dominating event is peptide dissociation from the
MHC-II. Additionally, we assume that we can treat the entire experiment as though it was
happening in one solution, and everything that occurs between rounds can be captured by a scaling
factor. Finally, we suppose that read counts follow a Poisson distribution parameterized by the
concentration multiplied by a scaling factor.

Rs;i ~ Poisson(aicsps’)

In(cs) ~ Gaussian(0,1)

For all peptides S and all rounds i, where Rs; is the read count of peptide S in round i, cs is the
starting concentration of the peptide S, ps is an unnormalized proportion of peptide S that survive
to the next round, and a; is a round-specific constant. The prior for constraining cs is for
regularization purposes, and a log normal distribution was selected for its interpretability as the
result of geometric Brownian motion.

We then define the RSR for peptide S as the maximum a posteriori (MAP) estimate of ps. This
value is not unique, as an adequate scaling in the a; values can give the same probabilities with
different ps values. However, such a transformation preserves the ratio between ps, and in practice
we find that the estimates converge reliably. We estimate these values by iteratively optimizing
each variable individually for 500 rounds. 23 rounds were carried out with random initializations,
where ps were drawn from Uniform(0.1,1) and In(cs) were drawn from Gaussian(0,1).

For experiments conducted over the defined library, we use the null library to construct a baseline
model where the read count in each round follows its own Poisson distribution. The lambda
parameter for each distribution was estimated by average read counts (with added pseudocounts
for peptides which don’t show up in any round added to make the variance of the distribution in
the zeroth round match the mean). When performing MAP estimation, an additional parameter is
given to each peptide which indicates whether it comes from this baseline distribution or from the
model described above to filter out noise.

Data and code availability

Code utilized in this study can be accessed on GitHub at https://github.com/zheng-dai/MHC2-
optimization. New deep sequencing data are available on the NCBI Sequence Read Archive with
accession code PRINA708266 (https://www.ncbi.nlm.nih.gov/bioproject/PRINA708266).
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3.12 Supplemental Figures
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Supplemental Figure 1. Validation through replicates. We validated the RSR values from the validation round by
performing a second replicate. A) We plot the RSR values between the original and replicate rounds for HLA-DR401.
If a point is not present in one of the experiments, it is given a value of 0 and marked in red. The line of best fit is
obtained from linear regression for points that were present in both experiments, and is shown alongside the Pearson
correlation coefficient r and the Spearman correlation coefficient rs. B) We plot the RSR values between the original
and replicate rounds for HLA-DR402.
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Supplemental Figure 2. Number of sequences that exhibit improvement for other optimization methods on
HLA-DR401. These depict the same plots as Figure 3, but for different optimization schemes for HLA-DR401. A)
PE under the categorical model. B) UCB under the Gaussian model. C) UCB under the categorical model.
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CHAPTER 4: A HIGH-THROUGHPUT YEAST DISPLAY APPROACH TO PROFILE
PATHOGEN PROTEOMES FOR MHC-II BINDING

The material covered in this chapter has been submitted for review and made available on bioRxiv
as: Huisman, Dai, Gifford, Birnbaum (2022). “A high-throughput yeast display approach to
profile pathogen proteomes for MHC-II binding”. A full acknowledgements statement is included
as Chapter 4.10.

Abstract

T cells play a critical role in the adaptive immune response, recognizing peptide antigens presented
on the cell surface by Major Histocompatibility Complex (MHC) proteins. While assessing
peptides for MHC binding is an important component of probing these interactions, traditional
assays for testing peptides of interest for MHC binding are limited in throughput. Here we present
a yeast display-based platform for assessing the binding of tens of thousands of user-defined
peptides in a high throughput manner. We apply this approach to assess a tiled library covering
the SARS-CoV-2 proteome and four dengue virus serotypes for binding to human class I MHCs,
including HLA-DR401, -DR402, and -DR404. This approach identifies binders missed by
computational prediction, highlighting the potential for systemic computational errors given even
state-of-the-art training data, and underlines design considerations for epitope identification
experiments. This platform serves as a framework for examining relationships between viral
conservation and MHC binding, and can be used to identify potentially high-interest peptide
binders from viral proteins. These results demonstrate the utility of this approach for determining
high-confidence peptide-MHC binding.

4.1 Introduction

Major histocompatibility complex (MHC) proteins play a critical role in adaptive immunity by
presenting peptide fragments on the surface of cells. Peptide-MHCs (pMHCs) are then surveilled
by T cells via their T cell receptors (TCRs), enabling immune cells to sense dysfunction, such as
the presence of pathogen-derived peptides (Chaplin, 2010; Hennecke and Wiley, 2001). Class II
MHC molecules (MHC-II) are expressed primarily on professional antigen presenting cells, and
are recognized by antigen-specific CD4" T cells that drive the coordination of innate and adaptive
immune responses (Chaplin, 2010; Swain et al., 2012). MHC-II molecules have an open peptide-
binding groove, allowing for display of long peptides, consisting of a 9 amino acid ‘core’ flanked
by a variable number of additional residues on each side (Jones et al., 2006).

Generating reliable and rapid data on peptide-MHC binding is beneficial for understanding the
underlying biology of adaptive immunity and for clinical applications, including for optimized T
cell epitopes in vaccine design (Dai et al., 2021; Keskin et al., 2019; Liu et al., 2020, 2021a; Moise
et al., 2015; Ott et al., 2017; Patronov and Doytchinova, 2013; Rosati et al., 2021). In fact,
therapeutics to generate antigen-specific T cell responses have shown great promise in cancer
(Keskin et al., 2019; Ott et al., 2017) and infectious disease (Gambino et al., 2021). Since
understanding peptide-MHC binding is critical for identifying and engineering T cell epitopes,
there have been sustained efforts to produce high-quality experimental data and predictive
algorithms.
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Initial experimental methods for determining peptide binding to MHC relied upon the analysis of
synthesized candidate peptides via MHC stability or functional assays, and can produce high-
confidence data, but can be difficult to scale beyond a small number of candidate peptides
(Altmann and Boyton, 2020; Justesen et al., 2009; Mateus et al., 2020; Sidney et al., 2010; Yin
and Stern, 2014). More recently, mass spectrometry-based approaches have been demonstrated for
determining the MHC-presented peptide repertoire of cells. These approaches include monoallelic
mass spectrometry, which allows for the unambiguous assignment of presented peptides to a given
MHC allele. However, mass spectrometry-based approaches are not necessarily quantitative
measures of presented peptide affinity or abundance, although there have been advances in
quantitation using internal standards (Stopfer et al., 2020, 2021). Additionally, the peptides
endogenously expressed by a cell can crowd out exogenously examined peptides of interest, and
mass spectrometry approaches typically require large numbers of input cells (Abelin et al., 2017,
2019; Parker et al., 2021; Purcell et al., 2019).

A wave of higher throughput approaches have been recently developed for studying peptide-MHC
interactions, including yeast display (Jiang and Boder, 2010; Liu et al., 2021b; Rappazzo et al.,
2020) and mammalian display-based methods (Obermair et al., 2021). Several of these approaches
circumvent the bottlenecks of synthesizing or identifying peptides by utilizing DNA-based inputs
and outputs (Jiang and Boder, 2010; Obermair et al., 2021; Rappazzo et al., 2020). These assays
rely upon libraries that are often generated via DNA oligonucleotide synthesis, and use peptide
stabilization and surface expression (Jiang and Boder, 2010; Liu et al., 2021b; Obermair et al.,
2021) or peptide dissociation (Rappazzo et al., 2020) to assess peptide-MHC binding.

In addition to experimental advances, computational approaches for peptide-MHC binding
prediction have advanced markedly over the past decade. These developments are due to
algorithmic advances (O’Donnell et al., 2020; Racle et al., 2019; Reynisson et al., 2020; Zeng and
Gifford, 2019) and the availability of large, high-quality training data (Abelin et al., 2017, 2019;
Rappazzo et al., 2020; Reynisson et al., 2020). However, despite the improvements in predicting
peptide binding to MHC in a broad sense, the predictive power for individual peptides often remain
imperfect relative to experimental measurements (Rappazzo et al., 2020; Zhao and Sher, 2018).

In this chapter, we present a yeast display approach to directly assess peptide-MHC binding for
large collections of defined peptide antigens to screen whole viral proteomes for MHC-II binding
in high-throughput. We utilize this approach to screen the full proteome of SARS-CoV-2, a
present, global threat to public health, and identify SARS-CoV-2-derived MHC binders missed by
computational prediction. We additionally apply this approach to screen proteomes from serotypes
1-4 of dengue viruses, in which antibody dependent enhancement results in more severe disease
upon second infection with a different dengue virus serotype (Guzman et al., 2016), and thus
represents a potential important application area for T cell-directed therapeutics. Our approach
enables exploration of peptide binding to MHCs in the context of serotype-specific mutations,
identifying homologous, pan-serotype regions of interest that are capable of MHC binding and
thus may represent desirable targets for immune interventions.

4.2 Generation of yeast display libraries for profiling the SARS-CoV-2 proteome
Previous studies have reported the use of yeast-displayed MHC-II for characterizing peptide-MHC
and pMHC-TCR interactions (Birnbaum et al., 2014, 2017; Rappazzo et al., 2020). We adapted
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MHC-II yeast display constructs (Rappazzo et al., 2020) to generate a defined library of peptides
that cover the SARS-CoV-2 proteome to assess them for MHC binding. To compare SARS-CoV-
2 with a related coronavirus, we also included peptides from the spike and nucleocapsid proteins
from SARS-CoV.

Each protein was windowed into peptides of 15 amino acids in length, with a step size of 1 to cover
every possible 15mer peptide in the protein (Figure 1A). Each peptide was encoded in DNA and
cloned in a pooled format into yeast vectors containing MHC-II proteins. The generated library
was linked to three MHC-II alleles: HLA-DR401 (HLA-DRA1*01:01, HLA-DRB1*04:01), HLA-
DR402 (HLA-DRA1*01:01, HLA-DRB1%*04:02), and HLA-DR404 (HLA-DRA1*01:01, HLA-
DRB1*04:04). Yeast were formatted with a flexible linker connecting the peptide and MHC,
containing a 3C protease site and a Myc epitope tag, which can be used for selections (Figure 1A)
(Rappazzo et al., 2020). The final library contained 11,040 unique peptides, with 99% of the
designed peptides present in each cloned yeast library, as assessed by next-generation sequencing.
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Figure 1. Overview of library and selections. A) The defined library contains pathogen proteome peptides (length
15, sliding window 1). Poor binding peptides are displaced with addition of protease, competitor peptide, and HLA-
DM. B) Schematic of doped and undoped libraries: in the doped selection strategy, the library is added to a library of
null, non-expressing constructs. C) Representative flow plots showing enrichment of MHC-expressing yeast over
rounds of selection for the library containing SARS-CoV-2 and SARS-CoV peptides on HLA-DR401.
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4.3 Strategies for selecting defined libraries

To enrich for peptide binders, iterative selections were performed (Figure 1A): the library is first
incubated with competitor peptide and 3C protease, which cleaves the covalent linkage between
peptide and MHC, followed by the addition of HLA-DM at lower pH. These conditions allow for
the encoded peptide to be displaced from the peptide-binding groove. The Myc epitope tag is
proximal to the peptide, which can be identified via incubation with an anti-epitope tag antibody
followed by enrichment via magnetic bead selection if the yeast-expressed peptide remains bound
to the MHC after the peptide exchange reaction.

Three rounds of selection were iteratively performed. Representative enrichment of yeast
expressing Myc-tagged peptides can be seen in Figure 1C (“undoped library”), for the library
displayed by HLA-DR401. Here the pre-selection Myc-positive population starts at 29.3% and
quickly converges, with 65.0% positive in the pre-selection Round 2 population and 74.1% in the
pre-selection Round 3 population.

Given the rapid convergence of the library, we performed a second set of selections in which we
doped the defined library into a randomized, null library to enable a greater degree of enrichment
as compared to non-binding peptides. The null library was generated by fully randomizing ten
amino acids in the peptide region of the peptide-MHC-II construct while fixing three amino acids
to encode stop codons. This library provides a baseline population of yeast which should not
express pMHC, and therefore not enrich in our selections. We doped our defined peptide library
into a 500-fold excess of null library, such that each peptide member was represented at
approximately the same frequency (Figure 1B). The null library provides baseline competition,
which true binders must enrich beyond, and increases the stringency of the enrichment task.

We performed four rounds of selection on the doped library. Because of the excess of null yeast,
the initial pre-selection stain is low (1.6%) compared to the initial undoped library (Figure 1C).
This staining enriched over the first three rounds of selection, reflective of the stringency of the
task and clarity of enrichment. This is in contrast to the initial undoped library, which began with
a much higher pre-selection stain, with a lower fold-change in staining over rounds of selection.
The low frequency of each member in the starting doped library, however, increases the likelihood
of stochastic dropout for any given member.

4.4 Analysis of selection data

After selections, peptide identities were determined through deep sequencing of enriched yeast
populations, providing us with a dataset comprised of positive enrichment over four rounds of
selection from the doped library and both positive and negative enrichment for three rounds of
selection from the undoped library. Supplemental Figure 1 shows the correlation between defined
library members on HLA-DR401 across rounds. As expected, the unselected library correlated
poorly with post-selection rounds. Consistent with the observed staining (Figure 1C), the doped
library essentially converged after Round 3. Similarly, the undoped library appears converged
following Round 2.

Next, we established metrics for enrichment for each mode of selection. Given the high starting

frequency of members in the undoped library, we classify enrichment based on fold change
between Round 1 and Round 2, and we define criteria for enriched yeast in the undoped library as
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making up a higher fraction of reads following Round 2 compared to Round 1. In contrast, in the
doped library, members start at low frequencies, and we define enrichment based on presence
above a threshold in Round 3 of selection, specifically as having greater than or equal to 10 reads
following Round 3. Figure 2B illustrates the correspondence between enrichment metrics in the
doped and undoped library for the library on HLA-DR401. Of the 11,040 peptides in the library,
2,467 enriched in both the doped and undoped libraries displayed by HLA-DR401 (Figure 2A).
An additional 1,252 enriched in the doped library only and 797 enriched in the undoped library
only.

Because the library is designed with a step size of one, we next utilized overlap between adjacent
peptides to determine high-confidence binders. This analysis allows us to address the potential that
peptide sequences could register shift in such a way that invariant portions of the linker sequences
could inadvertently be incorporated into the peptide-binding groove. To do this, we develop and
implement a smoothing method, examining overlapping peptides for shared enrichment behavior.
Classically, the strongest determinant of peptide affinity for an MHC is the nine amino acid stretch
sitting within the peptide-binding groove (Jones et al., 2006; Stern, 1994), although proximal
peptide flanking residues can also affect binding (Lovitch et al., 2006; O’Brien et al., 2008; Zavala-
Ruiz et al., 2004). In our libraries, a given 9mer is present in seven overlapping 15mer peptides,
and we calculate how many of these seven 15mers have enriched. This calculation is shown
schematically in Figure 3A with toy sequences and applied to enrichment data for SARS-CoV-2
nucleocapsid on HLA-DR401 in Figure 3B. Sequences with good 9mer cores should enrich along
with neighboring sequences with the same 9mer sequence. In contrast, sequences which enrich
spuriously or due to linker sequence in the peptide groove or other stochastic factors should have
few neighbor sequences also enriching. Thus, we define a cutoff for high confidence 9mer
enrichment of five out of seven 9mer-containing sequences enriching. This cutoff tolerates some
stochastic dropout, while still disallowing any cores that may solely enrich by register shifting the
Gly-Ser linker residues into the Position 9 pocket, which are favorable for each MHC allele in our
study. (Abelin et al., 2019; Rappazzo et al., 2020; Reynisson et al., 2020). Of the 2,467 peptides
which enriched in both the doped and undoped libraries for HLA-DR401, 1,791 also contain a
9mer sequence which enriched in five or more peptides of the seven neighboring sequences
containing it (Figure 2A), with 676 peptides enriching in both doped and undoped libraries but
not containing a 9mer core enriched in five or more peptides, and 788 15mers containing a 9mer
which enriched in five or more peptides but enriched in zero or one of the doped and undoped
libraries. These full relationships are captured in Venn diagrams in Supplemental Figure 2 for all
three MHC alleles studied here.
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Figure 2. Output of selections and analysis of selection data. A) Overview of filtering peptides and correspondence
between selection strategies for SARS-CoV and SARS-CoV-2 library on HLA-DR401. Peptides are filtered for
enrichment in both doped and undoped libraries. Further, the relationship between these peptides and peptides which
contain a 9mer that is enriched in five or more of the seven peptides containing it is shown. B) Relationships between
enrichment in doped and undoped libraries. Absolute counts following Round 3 of selection of the doped library are
plotted against the log2 fold change between read fraction for peptides in Round 2 and Round 1. Data are shown for
the library on HLA-DR401. C) Sequence logo of 2,467 peptides that enriched in both doped and undoped selected
libraries for HLA-DR401. Registers are inferred with a position weight matrix-based alignment method. Logos were
generated with Seq2Logo-2.0.
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4.5 Sequence motifs of enriched peptides and considerations for epitope identification
experiments

To examine the 9mer core motifs of enriched peptides, we utilized a position weight matrix method
to infer the peptide register and generated visualizations of the 9mer cores using Seq2Logo
(Thomsen and Nielsen, 2012). Figure 2C shows a sequence logo of the aligned 9mer cores from
the 2,467 15mer peptides which enriched on HLA-DR401 in both doped and undoped libraries.
The peptide motif is consistent with previously reported motifs for HLA-DR401 (Abelin et al.,
2019; Rappazzo et al., 2020): hydrophobic amino acids are preferred at P1, acidic residues at P4,
polar residues at P6, and small residues at P9. We also observe some preference for glycine at P8
in the sequence logo, which is potentially an artifact of non-native registers with linker at P8 and
Po.

The other alleles used in the study, HLA-DR402 and HLA-DR404, have polymorphisms in their
peptide binding groove sequences as compared to HLA-DR401, which affect binding preferences.
HLA-DRA401 differs from HLA-DR402 at four amino acids and from HLA-DR404 at two amino
acids, with all polymorphisms located in the beta chain. HLA-DR402 and HLA-DR404 share an
amino acid distinct from HLA-DR401 affecting the P1 pocket (Gly86Val), resulting in a
preference for smaller hydrophobic residues (Figure SA). Three polymorphisms in HLA-DR402
affect P4, P5, and P7 compared to HLA-DR401 (Leu67Ile, GIn70Asp, and Lys71Glu), while
HLA-DR404 has only one (Lys71Arg). Sequence logos for HLA-DR402 and HLA-DR404 are
consistent with previously reported motifs and MHC polymorphisms (Figure 4). For HLA-
DR402, we observe less P4 preference compared to the motif of HLA-DR402 binders enriched
from a randomized yeast display peptide library (Rappazzo et al., 2020), albeit consistent with
mass spectrometry-generated motifs which also showed minimal P4 preference for HLA-DR402
(Abelin et al., 2019).

To explore differences between mass spectrometry, defined libraries, and random libraries, and to
probe the differing strengths of P4 peptide preference observed for HLA-DR402 between these
modalities, we examined the compositions of randomized and defined libraries. We hypothesized
that skewed amino acid abundances in nature, which are reflected in the defined library, could
result in an apparent diminished amino acid preference. Indeed, three of the most preferred P4
residues for binding HLA-DR402, Trp, His, and Met (Rappazzo et al., 2020), are all low
abundance in the SARS-CoV-2 proteome (Trp 1.1%, His 1.9%, Met 2.2%). In comparison, a
randomized peptide library for HLA-DR402 (Rappazzo et al., 2020) had a higher representation
of these amino acids (Trp 3.8%, His 2.9%, Met 3.8%). Additionally, the randomized library had
approximately nine thousand-fold more members than the defined library, providing more
instances of all amino acids. The low abundance and underrepresentation of these amino acids
likely underlies the apparent lack of amino acid consensus at P4 in enriched peptides. Interestingly,
Arg and Lys, which have also been reported as preferred HLA-DR402 P4 residues, are more
abundant than Trp, His, and Met in the SARS-CoV-2 proteome (Arg 3.4% and Lys 5.9%; compare
to Arg 9.7%, Lys 4.0% in the random library), but still show less representation at P4 in the defined
library enriched peptides compared to the random library-enriched peptides. These differences in
motifs between randomized and defined libraries highlight the utility of randomized libraries for
downstream applications such as training prediction algorithms. Approaches influenced by amino
acid abundance in nature, such as defined libraries and mass spectrometry approaches, could
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inadvertently bias against possible binders because of absence of amino acids in their null
distribution, rather than true binding preference.

Next, we wanted to examine the distribution of peptides among the possible 9mer registers along
each 15 amino acid sequence. Based on our register inference, of the 2,467 enriched peptides from
the HLA-DR401 library, 1,610 peptides bound native 9mer cores without using any linker
sequence residues in the 9mer core, which is consistent with theoretical ratios of possible native
and non-native cores for a given 9mer. The peptides with predicted native 9mer cores were
approximately equally distributed between possible registers, with the exception of the N-terminal
register, which had one-third fewer peptides. This register had only a single N-terminal flanking
residue (a fixed Ala), which is likely disfavored.

Because the library was designed with step size of one, many of the 9mer cores will be repeated
among neighboring peptides. Of the 1,610 HLA-DR401 peptides which enriched using a native
9mer core, there are 563 unique 9mer cores identified through register-inference. Table 1
summarizes enrichment for each protein included in the library, highlighting the number of 15mers
which enriched in both the doped and undoped libraries, the number of unique native 9mer cores,
and the number of 15mers containing a 9mer enriched in at least five of seven overlapping
peptides.

A B

Bits
Bits

8
Created by Seq2Logo Created by Seq2Logo

Figure 4. Sequence logo for HLA-DR402 and HLA-DR404. A) HLA-DR402: Sequence logo of 1,690 peptides that
enriched in both doped and undoped selections of the SARS-CoV and SARS-CoV-2 library for HLA-DR402. B)
HLA-DR404: Sequence logo of 2,094 peptides that enriched in both doped and undoped selections of the SARS-CoV
and SARS-CoV-2 library for HLA-DR404. Logos were generated with Seq2Logo-2.0.
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Protein length # of smoothed

Virus Protein (# of amino acids) MHC Allele  # of 15mers # of 9mer cores 15mers
HLA-DR401 324 74 221
SARS-CoV Spike 1255 HLA-DR402 217 65 110
HLA-DR404 289 61 193
HLA-DR401 40 8 34
SARS-CoV Nucleocapsid 422  HLA-DR402 34 13 12
HLA-DR404 31 6 20
HLA-DR401 305 67 221
SARS-CoV-2 Spike 1273 HLA-DR402 230 62 130
HLA-DR404 290 64 217
HLA-DR401 34 8 24
SARS-CoV-2 Nucleocapsid 419 HLA-DR402 33 10 15
HLA-DR404 30 8 18
. HLA-DR401 1652 388 1204
Replicase
SARS-CoV-2 polyprotein 1ab 7096 HLA-DR402 1104 325 678
HLA-DR404 1368 350 890
Non-structural HLA-DR401 41 10 32
SARS-CoV-2 protein 8 121 HLA-DR402 21 7 17
HLA-DR404 32 8 19
HLA-DR401 27 8 18
SARS-CoV-2 Protein 7a 121 HLA-DR402 7 3 0
HLA-DR404 13 2 6
Non-structural HLA-DR401 0 0 0
SARS-CoV-2 R 61 HLA-DR402 1 1 0
protein 6
HLA-DR404 0 0 0
b HLA-DR401 40 7 29
SARS-CoV-2 '::Z:;inra"e 222 HLA-DR402 26 6 19
HLA-DR404 23 7 21
Envelope small HLA-DR401 6 1 0
SARS-CoV-2 membrane 75 HLA-DR402 7 3 0
protein HLA-DR404 6 1 0
HLA-DR401 22 4 11
SARS-CoV-2 Protein 3a 275 HLA-DR402 13 4 10
HLA-DR404 10 2 0
l HLA-DR401 948 228 658
SARS-CoV-2 Egl’\’/;f‘t‘;n 1 4405  HLA-DR402 657 196 409
HLA-DR404 865 222 582
HLA-DR401 6 1 6
SARS-CoV-2 ORF10 protein 38 HLA-DR402 2 0 0
HLA-DR404 5 1 5
X HLA-DR401 0 0 0
SARS-CoV-2 :,::Lt:t':rzl";‘b 43 HLA-DR402 0 0 0
HLA-DR404 0 0 0
h R HLA-DR401 8 4 6
SARS-CoV-2 Err;cte?r:aﬂe”zed 73 HLA-DR402 20 5 16
HLA-DR404 22 4 21
HLA-DR401 29 7 27
SARS-CoV-2 Protein 9b 97 HLA-DR402 35 6 31
HLA-DR404 37 9 34

Table 1. Summary of enriched peptides for each source protein. This includes: the number of unique 15mers
which each enriched in both of the doped and undoped libraries; the number of unique 9mer cores identified by
register-inference in these enriched 15mers (native cores only, so linker-containing inferred cores excluded); and the
number of unique enriched 15mers that contain 9mer sequences enriched in five or more of overlapping neighbors.
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4.6 Examining relationships between MHC-specific binding and spike proteins from SARS-
CoV-2 and SARS-CoV

To further explore relationships between the MHCs studied here and their virally-derived peptide
repertoires, we compared the binding of SARS-CoV-2 and SARS-CoV spike proteins to all three
MHC alleles. Sequence alignment of these three MHC alleles is shown in Figure SA, with
polymorphic regions highlighted on an HLA-DR401 structure (adapted from PDB 1J8H).
Interplay between viral conservation and binding are illustrated in Figure 5B, highlighting
conserved regions of the proteome in black and binders to each allele in grey, red, and blue.
Regions are highlighted where sequences enrich in overlapping peptides; that is, for each 9 amino
acid stretch along the proteome, we calculated how many of the seven 15mer peptides enrich in
the yeast display assay, and if a 9mer enriched five or more times, it is marked as a hit. Specific
examples of these relationships are probed in Figure SC, D, and E, where individually enriched
I5mer sequences are represented as horizontal lines above 15mer stretches in the proteome.
Bolded 9mers are identified through register inference as consensus binding cores for these
peptides. Only 15mers which contain the bolded 9mer are included in this representation. Non-
conserved amino acids within this 9mer are highlighted in yellow.

Figure 5C illustrates a region that is not conserved between SARS-CoV-2 and SARS-CoV, where
the SARS-CoV-2 peptides containing the core [YQAGSTPC are enriched for binding to all three
MHCs, but mutations, including at both P1 and P4 to Proline, discourage binding of the aligned
SARS-CoV peptide. Figure SE illustrates a core that is conserved between SARS-CoV and SARS-
CoV-2, which can bind only to HLA-DR401, but not to HLA-DR402 or HLA-DR404, likely due
to the size of the P1 hydrophobic residue and, for HLA-DR402, the acidic P4 residue. Figure 5D
illustrates relationships between both viral conservation and MHC preference. In Figure 5D, the
SARS-CoV peptides containing the core IKNQCVNEFN can bind to all three alleles. However, the
aligned SARS-CoV-2 peptides containing the core VKNKCVNFN do not bind to HLA-DR401,
likely because of the less preferable P1 Valine and basic P4 Lysine, but can bind to HLA-DR402,
which prefers these residues. These peptides can bind to HLA-DR404, although only four of the
adjacent peptides containing this core enrich, which is below the cutoff of five or more, and since
no other adjacent peptides enriched, this would not have been classified as a binder (reflected in
Figure 5B). This marginal, but below-threshold binding is logical, given that the P4 pocket for
HLA-DR404 is similar to HLA-DR401, which does not prefer P4 Lysine, but HLA-DR404 has
the same P1 binding pocket as HLA-DR402, which both prefer the P1 Valine in the SARS-CoV-
2 peptide.
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Figure 5. Comparing HLA-DR401, HLA-DR402, and HLA-DR404 for binding to related Spike proteins from
SARS-CoV-2 and SARS-CoV. A) Sequence alignment showing sequence differences in HLA-DR402 and HLA-
DR404 compared to HLA-DR401 and highlighted on HLA-DR401 structure (PDB 1J8H). Colors are: red for amino
acids shared between HLA-DR401 and HLA-DR404, green for amino acids shared between HLA-DR402 and HLA-
DR404, and yellow for amino acids different in all 3 alleles. Affected peptide positions (P1, P4, P5, P7) are colored
in blue and labeled on the structure. B) Conservation and enrichment of 9mer peptides from SARS-CoV-2 and SARS-
CoV Spike proteins. Conserved 9mers are indicated in black. If a 9mer along the proteome enriched in 5 or more of
the adjacent peptides containing it, its enrichment is indicated with a vertical line with color for allele (HLA-DR401:
blue; HLA-DR402: red; HLA-DR404: grey) and opacity for virus (SARS-CoV-2: dark; SARS-CoV: light). C-E)
Zoomed regions show enrichment of individual 15mer peptides. Only peptides containing the bolded 9mer sequence
are shown. Amino acids in the bolded 9mer that are not conserved between SARS-CoV-2 and SARS-CoV are
highlighted in yellow.
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4.7 Identifying peptide binders missed by computational prediction

Next, we compared our direct experimental assessments with results from computational MHC
binding predictions. Prediction algorithms allow for rapid computational screening of potential
peptide binders (Abelin et al., 2019; Reynisson et al., 2020), although they can contain systemic
biases (Rappazzo et al., 2020). To test the outputs of our direct assessment approach and
computational prediction algorithms, we assessed binding of several peptides using a fluorescence
polarization competition assay to determine ICso values, as described previously (Rappazzo et al.,
2020; Yin and Stern, 2014). Yeast-formatted peptides (Ala+15mer+Gly+Gly+Ser) from SARS-
CoV-2 spike protein were run through NetMHClIpan 4.0 for binding to HLA-DR401, with binders
defined as having < 10% Rank (Eluted Ligand mode). Yeast display binders to HLA-DR401 were
defined via the stringent criteria of 1) enriching in both in doped and undoped selections, and 2)
containing a 9mer that enriched in five or more of the overlapping seven 15mers. 15mers were
selected such that they could contain a maximum overlap of 8 amino acids with other selected
peptides, to avoid selecting peptides with redundant 9mer cores. An length-matched version of the
commonly studied Influenza A HA306-318 peptide (APKYVKQNTLKLATG) known to bind HLA-
DR401 (Hennecke and Wiley, 2002; Rappazzo et al., 2020) was included as a positive control,
along with sequences that yeast display and NetMHClIpan 4.0 both classified as either binders or
non-binders. Supplemental Figure 3 shows a comparison of yeast-enriched and NetMHClIpan
4.0 predicted binders, with boxed sequences selected for testing by fluorescence polarization.

The resulting fluorescence polarization 1Cso data from the native 15mer peptides are shown in
Table 2 and Supplemental Figure 4. Peptides which both enriched in yeast display and were
predicted by NetMHClIpan 4.0 to bind (‘Agreed Binders’) all showed ICso values consistent with
binding, each with ICso < 2.2 uM. Similarly, peptides which were agreed non-binders showed no
affinity for HLA-DR401, with ICso > 50 uM.

All 8 “Yeast-Enriched Binders’, which enriched in the yeast display assay but were not predicted
to bind via NetMHCllIpan 4.0, showed some degree of binding, with ICso values distributed from
14 nM (higher affinity than the HA control peptide) to 18 uM (weak, but measurable, binding).
Retrospectively, the weakest two binders appear to be enriching in the yeast display assay using
the peptide linker or have a binding core offset from center. Interestingly, NetMHClIpan 4.0
predictions on the peptides identified via yeast display proved highly sensitive to the length or
content of the flanking sequences: if we repeat predictions on only the antigen-derived 15mer
sequences without the flanking sequences, NetMHCIIpan 4.0 recovers four of its former false
negative peptides (Table 3; peptides listed at the top in each section of the table). We will refer to
these four peptides as ‘flank-sensitive centered peptides’, as they each have the consensus 9mer
core centered in the peptide.

To further investigate the relationship with flanking residues, we selected five additional peptides
(‘offset peptides’) matching three criteria; these offset peptides were 1) enriched in the yeast
display assay, 2) share an overlapping core with the four flank-sensitive centered peptides, but are
3) not predicted by NetMHClIIpan 4.0 to be binders (either with or without invariant flanking
sequence added). All five offset peptides have their predicted cores offset by 1-2 amino acids from
center, leaving at minimum 1 amino acid on both ends of the 9mer core for each peptide. All five
offset peptides exhibit some binding, with ICso values below 13 uM. Each peptide is lower affinity
than its overlapping centered counterpart, illustrating effects of flanking residues on peptide
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binding, although some over-estimation of these effects in NetMHClIIpan 4.0 predictions are
present.

We tested three NetMHC-Predicted Binders’, which were predicted to bind by NetMHClIpan 4.0,
but were not enriched (nor did any neighboring sequences within an offset of 4 amino acids) in the
yeast display assay (Table 2). Of these, one bound to HLA-DR401 (ICso 475 nM), while two
showed minimal binding with IC50 > 35 uM, which is above the maximum 20 pM concentration
tested. All three were predicted by NetMHClIpan 4.0 to bind with or without the invariant flanking
sequences (Eluted ligand mode % Rank: 5.7, 4.1, 8.7 (with flanking residues) and 2.3, 0.6, 7.0
(without flanking residues), for ELDKYFKNHTSPDVD, LQSYGFQPTNGVGYQ, and
KTQSLLIVNNATNVYV, respectively).

Of the eight ‘Yeast-Enriched Binders’ in Table 2, six contain cysteine residues, which have been
shown to be systematically absent from other datasets, including those from mono-allelic mass
spectrometry (Abelin et al., 2019; Barra et al., 2018), yet present in yeast display-derived datasets
(Rappazzo et al., 2020). To test for non-specific binding due to cysteine, two cysteine-containing
‘Agreed Non-Binders’ were also tested and showed no affinity for HLA-DR401, suggesting that
cysteine itself is not causing non-specific binding. In the fluorescence polarization dataset, the
highest affinity binder (14 nM) contained cysteine and was missed by NetMHCIIpan 4.0
predictions (Eluted ligand mode % Rank: 71 (with flanking residues) and 28 (without flanking
residues)).

The relationship between measured ICso values and NetMHClIpan 4.0 predicted values for all
15mer SARS-CoV-2 spike peptides tested is shown in Figure 6 and Supplemental Figure 5.

NetMHCllpan4.0 NetMHClIpan4.0

Peptide+flank Predicted Core %Rank 15mer Affinity
Spike Position (A+15mer+GGS) (A+15mer+GGS)  (A+15mer+GGS) from FP (IC.,, nM)
34-48 ARGVYYPDKVFRSSVLGGS YYPDKVFRS 1.49 15.8
87-101 ANDGVYFASTEKSNIIGGS VYFASTEKS 4.28 2117
Agreed Binders 303-317 ALKSFTVEKGIYQTSNGGS FTVEKGIYQ 8.41 396.9
362-376 AVADYSVLYNSASFSTGGS YSVLYNSAS 8.36 113.7
1015-1029 AAAEIRASANLAATKMGGS IRASANLAA 3.13 105.4
1112-1126 APQIITTDNTEVSGNCGGS ITTDNTEVS 7.32 527.0
165-179 ANCTFEYVSQPFLMDLGGS YVSQPFLMD 64.83 14,652
172-186 ASQPFLMDLEGKQGNFGGS FLMDLEGKQ 20.34 123.2
286-300 ATDAVDCALDPLSETKGGS VDCALDPLS 32.68 521.6
Yeast-Enriched 373-387 ASFSTFKCYGVSPTKLGGS YGVSPTKLG 16.59 18,452
Binders 469-483 ASTEIYQAGSTPCNGVGGS IYQAGSTPC 18.22 67.7
580-594 AQTLEILDITPCSFGGGGS LEILDITPC 62 119.9
739-753 ATMYICGDSTECSNLLGGS YICGDSTEC 70.91 14.4
920-934 AQKLIANQFNSAIGKIGGS FNSAIGKIG 20.47 1121
NetMHC- 113-127 AKTQSLLIVNNATNVVGGS IVNNATNVV 8.74 >50,000
Predicted 492-506 ALQSYGFQPTNGVGYQGGS YGFQPTNGV 411 454.7
Binders 1151-1165 AELDKYFKNHTSPDVDGGS YFKNHTSPD 5.74 35,510
Agreed Non-  534-548 AVKNKCVNFNFNGLTGGGS FNFNGLTGG 57.13 >50,000
Binders 1079-1093 APAICHDGKAHFPREGGGS ICHDGKAHF 80.47 >50,000

Table 2. Peptides selected for fluorescence polarization (FP) experiments for binding to HLA-DR401.
NetMHClIpan 4.0 predictions for HLA-DR401 binding were performed on 15mers plus invariant flanking residues
(N-terminal Ala, C-terminal Gly-Gly-Ser) and percent rank values generated using Eluted Ligand mode. Fluorescence
polarization was performed on native 15mer peptides without invariant flanking residues.

72



NetMHCIIpan4.0 NetMHClIpan4.0 NetMHCllpan4.0 NetMHClipan4.0

Spike Predicted Core  %Rank Predicted Core ~ %Rank 15mer Affinity from FP
Position  Sequence (A+15mer+GGS) (A+15mer+GGS) (15mer) (15mer) (1C50, nM)

172-186 SQPFLMDLEGKQGNF FLMDLEGKQ 20.34 FLMDLEGKQ 4.1 123.2
173-187 QPFLMDLEGKQGNFK FLMDLEGKQ 27.73 FLMDLEGKQ 12.21 8613
286-300 TDAVDCALDPLSETK VDCALDPLS 32.68 VDCALDPLS 9.8 1154
287-301 DAVDCALDPLSETKC VDCALDPLS 4242 VDCALDPLS 22.57 4393
469-483 STEIYQAGSTPCNGV IYQAGSTPC 18.22 IYQAGSTPC 5.41 67.7
467-481 DISTEIYQAGSTPCN IYQAGSTPC 11.47 IYQAGSTPC 12.61 4875
471-485 EIYQAGSTPCNGVEG YQAGSTPCN 39.17 YQAGSTPCN 21.81 12519
920-934 QKLIANQFNSAIGKI FNSAIGKIG 20.47 TIANQFNSAT 7.89 1495
921-935 KLIANQFNSAIGKIQ FNSAIGKIQ 18.3 IANQFNSAI 19.79 11937

Table 3. Effects of peptide flanking sequences on NetMHCIIpan 4.0 predictions for HLA-DR401 binding and
measured fluorescence polarization (FP) values for overlapping peptides. Yeast display-enriched peptides that
are predicted to bind by NetMHClIpan 4.0 when without flanking residues, plus offset variants of these peptides,
which are not predicted to bind, with or without flanking sequence. Yeast display register-inferred consensus cores
are highlighted in green. NetMHClIpan 4.0 percent rank values were generated using Eluted Ligand mode.
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Figure 6. Comparing measured ICso values and computational predictions. Relationship between measured I1Cso

values and NetMHClIpan 4.0 predicted ranks in Eluted Ligand mode (EL) on invariant-flanked sequences. Data points
are colored by label, and ICso values >50 uM are set to 50 puM.
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4.8 Comparing whole dengue serotype proteomes for common MHC-binding peptides
Defined yeast display libraries can generate data for diverse objectives. Dengue viruses typically
cause most severe disease after a second infection with a serotype different from the first infection,
due to antibody dependent enhancement (Guzman et al., 2016), which makes T cell-directed
therapeutics a potentially attractive means of combatting disease. To profile and compare MHC
binding across serotypes, we generated libraries containing 12,672 dengue-derived peptides,
covering the entire proteomes of dengue serotypes 1-4. These libraries were on HLA-DR401 and
HLA-DR402 and had coverage of 98% and 96% of the dengue library members after construction,
respectively.

Peptides from homologous regions of the four dengue serotypes have different MHC binding
ability, as illustrated in Figure 7A for binding to HLA-DR401. The proteins encoded in the dengue
genome are indicated along the horizontal axis (C: capsid; M: membrane; E: envelope; NS:
nonstructural proteins). Peptides that enriched in the yeast display assay are marked by a line
(serotype 1 in blue, serotype 2 in purple, serotype 3 in red, and serotype 4 in grey). The proteome
is smoothed to 9 amino acid stretches (as in Figure 5B), with a given 9 amino acid region marked
as a hit if five or more of the seven adjacent peptides enrich. For each 9mer, the maximum number
of serotypes with a conserved identical 9mer at that position is indicated at the top in black.

These data can reveal relationships between conservation and binding ability. Figure 7B-D shows
enrichment data for individual 15mer peptides, with consensus inferred 9mer cores in bold and
non-conserved amino acids in these cores highlighted in yellow, as in Figure SC-E. Conserved
cores which show binding ability (Figure 7C) may be ideal T cell targets. However, the
permissiveness of the binding groove allows for peptides to bind that have mutations at the
anchors, such as in NS5 (Figure 7D), where P4 Asn and P4 Met both allow binding. Interestingly,
the serotype 3 core (LASNAICSA) only enriched in four peptides, which is below our described
cutoff for high-confidence peptide cores. However, three adjacent peptides enriched and register-
inference for these peptides identifies the non-native, linker-containing version of the
LASNAICSA core as binding in the MHC-binding groove. This results in an adjacent 9mer being
highlighted as a binder in this region (Figure 7A) because overlapping 15mers enrich in five or
more of the seven adjacent peptides. With this in mind, care must be taken for core identification
in enriched regions and can be aided by coupling enrichment with register-inference of enriched
peptides. Further, we can also see relationships between conservation and binding in non-
conserved regions, such as in the envelope protein (Figure 7B) with the mutations in serotype 3
enabling binding.
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Figure 7. Conservation and enrichment of dengue virus serotypes 1-4. A) Conservation and enrichment of 9mer
peptides along four aligned dengue serotypes. All stretches of 9 amino acids are compared across the four serotypes
and conservation is indicated with a black vertical line (i.e. 2, 3, or 4 of 4 serotypes conserved). 9mers which enriched
on HLA-DR401 are also indicated, colored by virus serotype. B-D) Zoomed regions, showing enrichment for
individual 15mer peptides to HLA-DR401. Only peptides which contain the bolded 9mer sequence are shown. Amino
acids in the bolded 9mer that are not conserved between serotypes are highlighted in yellow. Insets show regions
which are differently conserved and enriched: B) non-conserved sequences with peptides from one serotype enriched;
C) conserved sequences enriched across all serotypes; D) non-conserved sequences which are enriched.

4.9 Discussion and outlook

CD4" T cell responses play important roles in infection, autoimmunity, and cancer. By extension,
understanding peptide-MHC binding is critical for identifying and engineering T cell epitopes.
Here we present an approach to directly assess defined libraries of peptides covering whole
pathogen proteomes for binding to MHC-II proteins. We examine alternative modes of selection
and utilize overlapping peptides to determine high-confidence binders. We demonstrate the utility
of this approach by identifying binders that are missed by prediction algorithms, highlighting a
prediction algorithm bias against cysteine-containing peptides and sensitivity to peptide flanking
residues (Table 2 and Table 3). Finally, this approach can be utilized for different objectives,
including comparing binding to multiple MHC alleles (Figure 5) or comparing peptides from
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related pathogen sequences for MHC-II binding (Figure 7). Whole protein- or proteome-scale
analysis across related viruses provides insight into relationships between conserved epitopes and
MHC binding (Figure 5B, 7A) and specific examples validate the consistency with the underlying
biophysics of peptide-MHC binding (Figures SC-E and 7B-D).

This approach for direct assessment shows benefit compared to prediction algorithms for
identifying binders, particularly for finding weak peptide binders. The overlapping peptides in our
library were useful for identifying enriched cores, especially when combined with our register
inference to identify consensus cores shared between these overlapping peptides. NetMHClIIpan
4.0 exhibits a sensitivity to length and register, which may cause users to miss binders, albeit
potentially of lower affinity. Of the overlapping peptides we tested to study this phenomenon,
NetMHCIIpan 4.0 correctly ranked the affinities of the overlapping peptides (Table 3), but missed
binders. Supplemental Figure 3 also highlights the sensitivity of NetMHClIIpan 4.0 to flanking
sequences, where neighboring peptides with shared cores often are not predicted to bind, resulting
in fewer clusters of peptides in Supplemental Figure 3.

Our work reveals insights on the design of epitope identification experiments, including the utility
of overlapping peptides and considerations for comparing libraries of unbiased and proteome-
derived peptides. Design of defined libraries with sources of redundancy, such as overlapping
peptides, was critical for determining binders with higher degrees of confidence and allowed us to
apply stringent cutoffs for individual peptides. Overlapping peptides allowed us to account for
construct-specific confounding effects, such as the peptides binding using non-native residues in
the linker. Future iterations can change the sequence of the linker, such as defining favorable P(-
1) and P10 anchors to fix the register (Rappazzo et al., 2020), although these adaptations would
likely require MHC-specific knowledge in advance and may need to be altered for different MHCs.
Additionally, the engineered redundancy and multiple modes of selection result in
hyperparameters that can be tuned to meet users’ stringency requirements, such as defining
different thresholds for calling individual 15mer binders or alternative integration of overlapping
binders. Additionally, our comparison of unbiased and proteome-derived libraries highlights how
aggregate motifs may be affected by underlying amino acid preferences found in protein sequences
themselves, which may inadvertently disfavor sequences that can bind strongly to MHC molecules
yet consist of amino acid covariates that are not as commonly found in proteins.

Further, this approach can be used to study MHC binding between similar viruses, as done with
the dengue proteomes and the spike proteins from SARS-CoV-2 and SARS-CoV, highlighting
regions where mutations disrupt binding as well as regions where binding is unperturbed. This
method can also be rapidly adapted to study future sequences if pathogens evolve over time.

As experimental approaches and computational approaches continue to co-develop, they present
complementary benefits. Though this platform allows for rapid assessment of peptide-MHC
binding, the speed of computational prediction surpasses experimental approaches. NetMHClIIpan
4.0 prediction and yeast display selections identified sets of non-overlapping misses, highlighting
a utility for both. Additionally, all agreed binders and non-binders matched fluorescence
polarization results, suggesting a consensus of yeast display enrichment and algorithmic prediction
provide high-confidence results. Approaches such as yeast display assessment can be used to
complement computational approaches, such as for identifying cysteine-containing peptides which
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are still under-predicted by algorithms. Similarly, prediction algorithms can be trained using large,
quality datasets to account for biases. In another application, our platform to assess peptide-MHC
binding can be used to design high-throughput assays to test peptide immunogenicity in clinical
samples (Klinger et al., 2015; Snyder et al., 2020).

Defined yeast display peptide libraries can also be readily applied to identification of T cell ligands
and present an opportunity for identifying unknown ligands from orphan TCRs known to respond
to a proteome of interest (Birnbaum et al., 2014; Gee et al., 2018b). Indeed, as DNA synthesis and
sequencing continue to advance, defined peptide libraries expanding beyond viral proteomes to
covering whole bacterial or human proteomes will be possible, and could present opportunities for
investigating autoimmune diseases, which frequently have strong MHC-II associations (Karnes et
al., 2017). Such tools would be rich resources for identifying both peptide-MHC binders and TCR
ligands.

4.9 Methods

Library design and creation

Yeast display libraries were designed to cover all 15mer sequences within a given proteome, with
step size one. Reference proteomes used in creating defined libraries were accessed from Uniprot,
with the following Proteome IDs. SARS-CoV-2: UP000464024, SARS-CoV: UP000000354,
dengue serotype 1: UP000002500, dengue serotype 2: UP000180751, dengue serotype 3:
UP000007200, dengue serotype 4: UP000000275. The dengue proteome is expressed as a single
polypeptide, and peptides were generated from that contiguous stretch.

Each library peptide is encoded in DNA space, with specific codons selected randomly from
possible codons, with probabilities matching yeast codon usage (GenScript Codon Usage
Frequency Table). The DNA-encoded peptide sequences were flanked by invariant sequences
from the yeast construct for handles in amplification and cloning, and the DNA oligonucleotide
sequences were ordered from Twist Bioscience (South San Francisco, CA), with maximum length
of 120 nucleotides. The DNA oligo pool was amplified in low cycle PCR, followed by
amplification with construct DNA using overlap extension PCR. This extended product was
assembled in yeast with linearized pYAL vector at a 5:1 insert:vector via electroporation with
electrocompetent RJY 100 yeast.

HLA-DR401 and HLA-DR402 libraries were generated using previously described vectors
(Rappazzo et al., 2020) which contain mutations from wild type Meta36Leu, Valal32Met,
Hisp33Asn, and AspB43Glu to enable proper folding without disrupting TCR or peptide contact
residues (Birnbaum et al., 2017). HLA-DR404 was generated using the same stabilizing mutations.
As previously described (Rappazzo et al., 2020), the peptide C-terminus is connected to the MHC
construct via a Gly-Ser linker (Figure 1A), and the N-terminus of the peptide includes an extra
alanine to ensure consistent cleavage between the construct and its signal peptide.

The previously described null library (Dai et al., 2021) was generated with a peptide encoded as
“NNNTAANNNNNNNNNTAGNNNNNNNNNNNNTGANNNNNN”, where “N” indicates any
nucleotide and encodes ten random amino acids and three stop codons. This library was similarly
generated in yeast using electrocompetent RJY 100 yeast.
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Peptide visualizations and predictions

Data visualizations of viral conservation and enrichment were generated using custom scripts. For
each 9mer stretch in a protein of interest, there are seven 15mer sequences that overlap and contain
that 9mer. We calculate how many of these seven 15mers enriched in both the doped and undoped
libraries. If five or more of the seven 15mers enriched, that stretch is marked as a ‘hit’. To examine
conservation between viruses, viral proteins are aligned using ClustalOmega (Madeira et al.,
2019). Aligned 9mer stretches are compared between viruses and identical stretches are considered
conserved. Hits are determined individually for each virus before merging, such that gaps in
sequence alignments do not affect calculations of enrichment for a given virus.

Representations of 15mer hits (as in Figure 5, Figure 7 and Supplemental Figure 3) were
generated using in-house scripts, such that a 15mer that enriched in both the doped and undoped
library was marked as a horizontal line above the relevant 15mer sequence. Only 15mers
containing the bolded 9mer in Figure 5 and Figure 7 were included.

NetMHClIIpan 4.0 webserver was used for computational predictions (Reynisson et al., 2020),
where a binder is defined as having a predicted percent rank < 10%, as defined in the webserver
instructions.

Yeast library selections

Library selections were consistent with previous peptide-MHC-II yeast display dissociation
studies (Dai et al., 2021; Rappazzo et al., 2020). Yeast were washed into pH 7.2 PBS with 1 uM
3C protease and incubated at room temperature for 45 minutes. Yeast were then washed into 4°C
acid saline (150 mM NaCl, 20 mM citric acid, pH 5) with 1 pM HLA-DM and incubated at 4°C
overnight. Each step takes place in the presence of competitor peptide (HLA-DR401: HA306-318
PKYVKQNTLKLAT, 1 uM; HLA-DR402: CD4836.s1 FDQKIVEWDSRKSKYF, 5 uM; HLA-
DR404: NKVKSLRILNTRRKL, 5 uM (Vita et al., 2019)). Non-specific binders are removed by
incubating yeast with oc-AlexaFluor647 magnetic beads and flowed over a magnetic Miltenyi
column at 4°C (Miltenyi Biotec; Bergisch Gladbach, Germany). A positive selection follows,
comprised of incubation with <-Myc-AlexaFluor647 antibody (1:100 volume:volume) and «-
AlexaFluor647 magnetic beads (1:10 volume:volume) and flowed over a Miltenyi column on a
magnet at 4°C, such that yeast with bound peptide are retained on the column. These yeast are
eluted, grown to confluence in at 30°C in SDCAA media (pH 5), and sub-cultured in at 20°C
SGCAA media (pH 5) at OD600=1 for two days. The first round of selections of doped libraries
were conducted on 180 million yeast (SARS-CoV-2 library) or 400 million yeast (dengue library)
to ensure at least 20-fold coverage or peptides. Subsequent rounds of doped library selection, and
all rounds of undoped library selections, were performed on 20-25 million yeast.

Library sequencing and analysis

Libraries were deep sequenced to determine their composition after each round of selection.
Plasmid DNA was extracted from ten million yeast from each round of selection using the
Zymoprep Yeast Miniprep Kit (Zymo Research), following manufacturer instructions. Amplicons
were generated through PCR, covering the peptide sequence through the 3C cut site. A second
PCR round was performed to add i5 and 17 sequencing handles and in-line index barcodes unique
to each round of selection. Amplicons were sequenced on an Illumina MiSeq using paired-end
MiSeq v2 300bp kits at the MIT BioMicroCenter.
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Paired-end reads were assembled using PandaSeq (Masella et al., 2012). Peptide sequences were
extracted by identifying correctly encoded flanking regions, and were filtered to ensure they
matched designed members of the library or the randomized null construct encoding, providing a
stringent threshold for contamination and PCR and read errors.

The resulting data are analyzed for convergence, as described in the main text. Once a library has
converged, it is likely that changes in subsequent rounds of selection are due to stochastic variation
rather than improved binding.

Register inference and sequence logos

The 9mer core of enriched sequences was inferred using an in-house alignment algorithm. In this
approach, we utilize a 9mer position weight matrix (PWM), which we assess at different offsets
along the peptide. We one-hot encode sequences and pad with zeros on the C-terminus of the
peptide; to assess seven native registers and four non-native registers, we pad the peptides with
four zeros. Three of the non-native registers utilize the linker at the P9 anchor but not the P6
anchor, and the addition of a fourth register captures a minority set of peptides which utilize Gly-
Gly-Ser-Gly of the linker at P6 through P9 in the groove. Register-setting is performed with zero-
padded 15mers, rather than 15mers flanked by invariant flanking residues, because the PWM
would otherwise align all sequences to the invariant region.

At the start, we randomly assign peptides to registers and generate a 9mer PWM. Over subsequent
iterations, peptides are assigned to new registers and the PWM was updated. Assignments are
random but biased, such that clusters corresponding to registers that match the PWM are favored.
Specifically, at each assignment we first take out the sequence under consideration from the PWM.
The PWM then defines an energy value for each register shift of a given peptide, which is then
used to generate a Boltzmann distribution from which we sample the updated register shift. The
stochasticity is decreased over time by raising the inverse temperature linearly from 0.05 to 1 over
60 iterations, simulating ‘cooling’ (Andreatta et al., 2017). A final deterministic iteration was
carried out, where the distribution concentrates entirely on the optimal register shift.

After register inference, sequence logo visualizations of the 9mer cores were generated using
Seq2Logo-2.0 with default settings, except using background frequencies from the SARS-CoV-2
proteome and SARS-CoV spike and nucleocapsid proteins (Thomsen and Nielsen, 2012). For
registers with the C-terminus utilizing the C-terminal linker, the relevant linker sequence was
added to achieve a full 9mer sequence for visualizing the full 9mer core. For HLA-DR401,
distribution among registers, starting from N-terminally to C-terminally aligned in the peptide, is:
161, 237,227, 238, 231, 279, 237, 266, 271, 202, 118.

Recombinant protein expression

HLA-DM and HLA-DR401 were expressed recombinantly in High Five insect cells (Thermo
Fisher; Waltham, MA) using a baculovirus expression system, as previously described (Birnbaum
et al., 2014; Rappazzo et al., 2020). Ectodomain sequences of each chain were formatted with a
C-terminal poly-histidine purification tag and cloned into pAcGP67a vectors. Each vector was
individually transfected into SF9 insect cells (Thermo Fisher) with BestBac 2.0 linearized
baculovirus DNA (Expression Systems; Davis, CA) and Cellfectin II Reagent (Thermo Fisher),
and propagated to high titer. Viruses were co-titrated for optimal expression to maximize balanced
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MHC heterodimer formation, co-transduced into Hi5 cells, and grown for 48-72 hours at 27°C.
The secreted protein was purified from pre-conditioned media supernatant with Ni-NTA resin and
purified via size exclusion chromatography with a S200 increase column on an AKTA PURE
FPLC (GE Healthcare). To improve protein yields, the HLA-DRB1*04:01 chain was expressed
with a CLIPg7.101 peptide (PVSKMRMATPLLMQA) connected to the N-terminus of the MHC
chain via a flexible, 3C protease-cleavable linker.

Fluorescence polarization experiments for peptide ICso determination

Peptide 1Cso values were determined following a protocol modified from Yin & Stern (Yin and
Stern, 2014), as in Rappazzo et al (Rappazzo et al., 2020). In the assay, recombinantly expressed
HLA-DR401 is incubated with fluorescently labelled modified HA306.318 (APRFV{Lys(5,6
FAM)}QNTLRLATG) peptide and a titration series for each unlabeled competitor peptide is
added (1.28 nM — 20 uM). A change in polarization value resulting from displacement of
fluorescent peptide from the binding groove is used to determine 1Cso values.

Relative binding at each concentration is calculated as (FPsampie — FPfree)/(FPno_comp — FPiee). Here,
FPsec 1s the polarization value for the fluorescent peptide alone with no added MHC, FPuo comp 1S
polarization value for MHC with no competitor peptide added, and FPsampie is the polarization
value with both MHC and competitor peptide added. Relative binding curves were then generated
and fit in Prism 9.3 (GraphPad Software Inc; San Diego CA) to the equation y = 1/(1+[pep]/I1Cso),
where [pep] is the concentration of un-labelled competitor peptide, in order to determine the
concentration of half-maximal inhibition, the ICso value.

Each assay was performed at 200 pL, with 100 nM recombinant MHC, 25 nM fluorescent peptide,
and competitor peptide (GenScript; Piscataway, NJ). This mixture co-incubates in pH 5 binding
buffer at 37°C for 72 hours in black flat bottom 96-well plates. Competitor peptide concentrations
ranged from 1.28 nM to 20 puM, as a five-fold dilution series. Three replicates are performed for
each peptide concentration. Fluorescent peptide-only, no competitor peptide, and binding buffer
controls were also included. Our MHC was expressed with a linked CLIP peptide, so prior to co-
incubation, the peptide linker is cleaved by addition of 3C protease at 1:10 molar ratio at room
temperature for one hour; the residual cleaved 100 nM CLIP peptide is not expected to alter peptide
binding measurements.

Measurements were taken on a Molecular Devices SpectraMax M5 instrument. G-value was 1.1
for each plate, as calculated per manufacturer instructions for each plate based on fluorescent
peptide-only wells minus buffer blank wells, with 35 mP reference for 5,6FAM (Fluorescein
setting). Measurements were made with 470 nm excitation and 520 nm emission, 10 flashes per
read, and default PMT gain high.

Data Availability

All deep sequencing data are deposited on the Sequence Read Archive (SRA), with accession
codes PRINA806475 [https://www.ncbi.nlm.nih.gov/bioproject/PRINA806475] and
PRINA708266 [https://www.ncbi.nlm.nih.gov/bioproject/PRINA708266]
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Code Availability
Scripts used for data processing and visualization are publicly available at
https://github.com/birnbaumlab/Huisman-et-al-2022.
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4.11 Supplemental Figures

Doped Undoped
RO R1 R2 R3 R4 RO R1+ R1- R2+ R2- R3+ R3-

RO 0.16 0.16 0.16 0.16f 0.09 0.18 -0.03 0.18 0.11 0.16 0.16

R1 0.16 0.24 -0.30 0.42
Doped |R2 0.16 0.21 -0.35 0.37

R3 0.16 0.17 -0.37 0.25

R4 0.16 0.13 -0.34 0.11

RO 0.09 0.24 0.21 0.17 0.13 036 041 0.21 042 0.16 0.27

R1+ 0.18 0.36 -0.27

R1- -0.03 -0.30 -0.35 -0.37 -0.34/ 041 -0.27 -0.40 0.04 -0.38 -0.32
Undoped|R2+ 0.18 0.21 -0.40 0.34

R2- 0.11 042 0.37 025 0.11f 0.42 0.04 034 0.18

R3+ 0.16 0.16 -0.38 0.18

R3- 0.16 0.27 -0.32

Supplemental Figure 1. Correlations between selection rounds. Pearson correlation for HLA-DR401 SARS-CoV-
2 and SARS-CoV defined library members (+/- signs indicate enriched (+) or not enriched (-) yeast in undoped library;
rounds of selection are indicated e.g. “R1” indicates “Round 17, and “R0” is the unselected “Round 0” library).

A B C

Doped Undoped Doped Doped

Undoped Undoped

=5/7 =5/7 =5/7

Supplemental Figure 2. Full Venn diagrams. Full Venn diagrams showing relationships between peptides which
enriched in the doped library (“Doped”), and undoped library (“Undoped”), and contained a 9mer peptide which
enriched in five or more of the seven 15mers containing it (“>5/77), for A) HLA-DR401, B) HLA-DR402, and C)
HLA-DR404.
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== Yeast-enriched binders
= NetMHClIpan4.0 predicted binders
= Agreed binders

Agreed non-binders

SEPVLKGVKLHYT
Supplemental Figure 3. Comparing defined library selections with algorithmic predictions: SARS-CoV-2 spike
protein. 15mer peptides which enriched for binding to HLA-DR401 in both the doped and undoped libraries are
indicated with horizontal lines above the enriched 15mer sequence (blue). NetMHClIpan 4.0 predicted binders (rank
< 10%) on yeast-formatted peptides are shown in red. Boxed sequences are tested in subsequent fluorescent
polarization experiments, and colored as indicated in the legend.
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Supplemental Figure 4. Titration curves for peptides tested via fluorescence polarization for binding to HLA-
DR401, by category. A) Agreed binder peptides which are predicted to bind by NetMHClIIpan 4.0 and enriched in
yeast display experiments. Dashed line is the positive control HA peptide. B) Agreed non-binder peptides which did
not enrich in yeast display experiments and were not predicted to bind by NetMHClIpan 4.0. C) Yeast enriched
peptides from Table 2 and Table 3. Offset variants from Table 3 are dashed lines. D) NetMHClIpan 4.0 predicted

peptides which are not enriched in the yeast display library.
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Supplemental Figure 5. Comparing measured ICso values and predictions. Relationship between measured ICso
values and NetMHClIpan 4.0 predicted ranks in Eluted Ligand mode (EL) on unflanked (native) 15mer sequences.

Data points are colored by label, and ICso values >50 uM are set to 50 uM.

85



CHAPTER 5: SECOND-GENERATION PLATFORM FOR INCREASING MHC-II
THROUGHPUT IN YEAST DISPLAY SCREENS

Abstract

Yeast display serves as a powerful tool for assessing peptide-MHC (pMHC) binding and pMHC-
TCR binding. This tool is often limited, however, by the need to optimize MHC proteins for yeast
surface expression, which can be laborious and time-consuming, with no guarantee that screens
for stabilizing mutations will yield productive results. Here we present a second-generation yeast
display platform for class I MHC molecules (MHC-II) which decouples MHC-II expression from
yeast-expressed peptides, referred to as “peptide display”. Peptide display obviates the need for
yeast-specific MHC optimizations and increases the throughput of MHC-II alleles in yeast display
screens. Because MHC identity is separated from the peptide library, a further benefit of this
platform is the ability to assess a single library of peptides against any MHC-II. We demonstrate
the utility of the peptide display platform across MHC-II proteins, screening HLA-DR, HLA-DP,
and HLA-DQ alleles. We further explore parameters of selections, including reagent
dependencies, MHC avidity, and use of competitor peptides. This approach presents an advance
in throughput and accessibility of screening peptide-MHC-II binding, and we explore the potential
implications of this technology in identifying disease-relevant peptides, such as in autoimmune
diseases.

5.1 Introduction

Yeast display assessment of peptide-MHC-II binding has proven useful for generating large, high-
quality datasets of peptide binders, useful for training prediction algorithms (Chapter 2) (Jiang
and Boder, 2010; Liu et al., 2021b; Rappazzo et al., 2020), as well as assessing user-defined
libraries of peptides for peptide optimization (Chapter 3) (Dai et al., 2021) and pathogen screening
(Chapter 4). In traditional peptide-MHC-II yeast display approaches, peptide and MHC are
covalently linked (Figure 1A), in a mini (Birnbaum et al., 2014; Fernandes et al., 2020) or full
length format (Rappazzo et al., 2020) and cloned into the pYAL vector. While theoretically any
MHC allele can be presented by yeast display, the simple machinery for protein-folding in yeast
can cause some MHCs, especially MHC-IIs, to not fold properly, despite detectable surface
expression (Birnbaum et al., 2014; Fernandes et al., 2020; Rappazzo et al., 2020). This necessitates
each MHC be validated for fold, such as through binding of a recombinantly expressed TCR
(Birnbaum et al., 2014; Fernandes et al., 2020). In the absence of detectable TCR binding, error-
prone mutagenesis of the MHC is required to install stabilizing mutations away from the peptide-
and receptor-binding surfaces (Birnbaum et al., 2014; Fernandes et al., 2020). This process can be
time and effort intensive and requires availability of reagents such as a known MHC-restricted
TCR.

To circumvent the need for individual optimization of MHC proteins, we have developed a second-
generation yeast display approach for assessing peptide-MHC-II binding which does not require
yeast-specific MHC-II optimizations. In this approach, peptide and MHC-II are decoupled, with a
library of peptides displayed on the surface of yeast and MHC-II protein expressed recombinantly.
Because of this decoupling and exclusive presentation of peptides on the yeast surface, we refer to
this approach as “peptide display”.
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In this chapter, we outline the system, explore experimental conditions, and compare the results
with existing yeast display datasets. We apply this approach to study HLA-DR alleles, followed
by HLA-DP and HLA-DQ alleles, which have to this point largely been inaccessible in
conventional yeast display approaches (Liu et al., 2021b). The original pMHC yeast display
platform further requires generation of a new library for each new MHC being screened (Birnbaum
et al., 2014; Dai et al., 2021; Fernandes et al., 2020; Gee et al., 2018b; Rappazzo et al., 2020). In
contrast, because the peptide library is decoupled from MHC, a single peptide display library is
extensible to any MHC-II without requiring additional library cloning and generation. Because of
its functionality across MHCs, ongoing work applies this platform to antigen discovery in
autoimmunity through comparison of the peptide repertoires of disease-predisposing and disease-
protective MHC-II alleles.

5.2 Design of peptide display libraries and experiments

For the peptide display approach, we adapted the pCT302 vector for protein fusions to the C-
terminus of Aga2 (Midelfort et al., 2004). We left unchanged the N-terminus of the construct,
which consists of Aga2 fused to an epitope tag and a subsequent C-terminal linker sequence. To
the C-terminus of this linker, we connected the N-terminus of our peptide sequence of interest. In
order to readily assess frameshift mutations in our peptide sequence, we linked the peptide to a
Myc epitope tag via a short linker.

Rather than co-expressing MHC-II proteins on the surface of yeast, MHC-II protein was expressed
recombinantly, which circumvents yeast protein folding concerns. MHC-II proteins were
stabilized with a linked class Il-associated Ii peptide (CLIP) (Busch et al., 2005), specifically
CLIPg7.101 (PVSKMRMATPLLMQA), connected to the N-terminus of MHC-IIf chain via a linker
containing a 3C protease cleavage site. MHC-II protein was site specifically biotinylated, allowing
for easy functionalization and visualization with fluorescent streptavidin.

To assess peptide-MHC-II binding, yeast were co-incubated with fluorescent tetramerized MHC-
IT protein, 3C protease, and HLA-DM (Figure 1B). 3C protease cleaves the CLIP-MHC linker,
enabling the stabilizing peptide to dissociate. The peptide exchange catalyst HLA-DM is available
to assist with dissociation of CLIP and binding to the yeast-expressed peptide (Jiang et al., 2015).
If the MHC is able to bind to the peptide of interest, we can detect fluorescence via flow cytometry-
based assessment of the yeast population. We see a clear fluorescent population for yeast
expressing a version of the well-studied Influenza A HA306-318 peptide (APKYVKQNTLKLAT)
known to bind HLA-DR401 (Hennecke and Wiley, 2002; Rappazzo et al., 2020), with minimal
binding to an off-target CD4836.51 peptide (FDQKIVEWDSRKSKYF) (Figure 1C) when utilizing
tetramerized HLA-DR401 (HLA-DRA1*01:01 / DRB1*04:01). CD4836-51 binds to a related allele,
HLA-DR402 (HLA-DRA1*01:01 / DRB1*04:02) (Rappazzo et al., 2020), but is likely dis-
preferred for HLA-DR401 binding because of the large aromatic Trp residue at the expected P4
pocket in the optimal register.
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Figure 1. Overview of peptide display formatting and experiments. A) Formatting of pMHC construct for original
MHC-II platform. B) New peptide display platform formatting and selection strategy. Peptides are expressed on the
surface of yeast, and MHC is expressed recombinantly, with CLIPsi-101 peptide for stability. Upon addition of HLA-
DM and 3C protease to cleave the CLIP-MHC linkage, the MHC can bind to yeast-expressed peptides. Binders can
be manipulated using a handle on the MHC, such as a fluorescent streptavidin. C) Flow cytometry analysis of
tetramerized HLA-DR401 with binder (HA-derived) and non-binder (CD48-derived) peptides. MHC is tetramerized
with streptavidin-AlexaFluor647 (SAV-647).

To explore the constraints of the system and reliance on each component of the selection reaction
mix, we separately titrated HLA-DR401 tetramers, HLA-DM, and 3C protease and assessed
peptide-MHC-II binding. As expected, there was MHC tetramer concentration dependence, with
binding signal decreasing as MHC concentration decreased (Figure 2A). We similarly observe a
dependence on the presence of HLA-DM, with largely unchanged signal across concentrations
from 0.5 uM — 3.5 uM, and with signal lost at the lowest concentration tested, 75nM (Figure 2B).
The clear dependence on HLA-DM presence stands in contrast to the minimal HLA-DM reliance
in the original, dissociation-based pMHC-II platform (Figure 1A), which has previously shown
similar results in library selections with or without HLA-DM (Rappazzo et al., 2020). These
differences are likely due to the need to dissociate CLIP peptide and bind to a yeast-expressed
peptide, compared to approaches in which the peptide of interest begins in the groove and
dissociation is assessed (Rappazzo et al., 2020). Next, we were curious if the peptide exchange
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reaction could proceed without cleaving the linker between recombinant MHC-II and the
stabilizing CLIP peptide. We observe signal is lost when we decrease 3C concentrations,
illustrating a need to freely allow the stabilizing peptide to dissociate to enable loading of yeast-
expressed peptide (Figure 2C; Figure 1C is a subset of this figure). Across all experiments, the
negative control peptide showed minimal signal with the concentrations tested.

From these experiments, we selected 75 nM MHC-II tetramer concentration, 0.5 uM HLA-DM
concentration, and 1 pM 3C concentration to utilize in large-scale experiments. To fill in the
concentration gap in HLA-DM titration (Figure 2B), an additional experiment (data not shown)
assessing HLA-DM concentrations of 0.5 uM, 0.4 uM, 0.25 pM, and 0.1 uM showed a decrease
in signal over concentrations, supporting proceeding with 0.5 uyM HLA-DM.
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Figure 2. Testing experimental conditions. Reliance on each component of the selection reaction mix is assessed
with titrations of A) HLA-DR401 tetramers, B) HLA-DM, and C) 3C protease with binder (HA-derived) and non-
binder (CD48-derived) peptides. MHC is tetramerized with streptavidin-AlexaFluor647 (SAV-647).
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5.3 Application of peptide display platform to screen HLA-DR401

To utilize the peptide display approach to screen peptides at a repertoire-scale, we next generated
a library of fully randomized 13mer peptides, containing 100 million members. We performed
selections with HLA-DR401, which would enable comparison with existing pMHC datasets. Yeast
were incubated with fluorescent tetramerized HLA-DR401, with 3C protease, and HLA-DM in
phosphate buffered saline (PBS) for 45 minutes. The neutral pH allows 3C protease to cleave the
linker which connects MHC-II to the stabilizing CLIP peptide. To mimic acidic endosomal
conditions, yeast were then moved to an excess of pH 5 acidic saline for an additional 45 minutes.
Next, yeast were incubated with anti-fluorophore magnetic beads, and yeast which express
peptides which bound to HLA-DR401 were enriched utilizing a magnetic enrichment strategy.

We performed three iterative rounds of selection, growing yeast to confluence between each round.
In each round, we sampled yeast after the first incubation in PBS, the second incubation in acidic
saline, and after elution from the magnetic column and examine the fluorescent population via
flow cytometry. Over subsequent rounds, the population of fluorescent MHC-bound yeast
increased at each of these steps (Figure 3).
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Figure 3. Dynamics of library selections for HLA-DR401 tetramer-based library selections. Pre-selection
induction staining with anti-epitope tag antibody and tetramer staining at timepoints throughout each selection,
including after incubation in pH 7.2 PBS, after subsequent incubation in acidic saline, and after elution from magnetic
enrichment column. MHC is tetramerized with streptavidin-AlexaFluor647 (SAV-647).
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Through deep sequencing of the selected libraries, we can determine the identities of pe