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Heat transport is a fundamental property of all physical systems and can serve as a fingerprint identifying dif-
ferent states of matter. In a normal liquid a hot spot diffuses while in a superfluid heat propagates as a wave called
second sound. Despite its importance for understanding quantum materials, direct imaging of heat transport is
challenging, and one usually resorts to detecting secondary effects, such as changes in density or pressure. Here
we establish thermography of a strongly interacting atomic Fermi gas, a paradigmatic system whose properties
relate to strongly correlated electrons, nuclear matter and neutron stars. Just as the color of a glowing metal
reveals its temperature, the radiofrequency spectrum of the interacting Fermi gas provides spatially resolved
thermometry with sub-nanokelvin resolution. The superfluid phase transition is directly observed as the sudden
change from thermal diffusion to second sound propagation, and is accompanied by a peak in the second sound
diffusivity. The method yields the full heat and density response of the strongly interacting Fermi gas, and there-
fore all defining properties of Landau’s two-fluid hydrodynamics. Our measurements serve as a benchmark for
theories of transport in strongly interacting fermionic matter.

Heat transport is a ubiquitous phenomenon, at work in
steam engines and the formation of stars, and dictates how
energy, information and entropy flow in the system. In con-
ventional materials, heat, mass, and charge are all trans-
ported by the motion of (quasi-)particles, such as electrons
in metals. This common origin of transport results e.g. in the
Wiedemann-Franz law, relating thermal and electrical conduc-
tivity. However, in strongly correlated systems, such as high-
temperature superconductors [1], neutron stars [2], and the
quark-gluon plasma of the early universe [3], the notion of
a quasi-particle is poorly defined. It is unknown whether there
is a common relaxation rate for heat, density, and spin trans-
port [4] or if strong correlations separate these phenomena.
Understanding the flow of entropy is at the forefront of cur-
rent research, with powerful techniques connecting thermal
flow in quantum systems to gravitational duals [3, 5]. Directly
measuring thermal transport, as distinct from mass or charge
transport, is thus of great relevance to elucidate the origin of
heat dissipation in strongly correlated matter.

Strongly interacting atomic Fermi gases near a Feshbach
resonance provide an ideal platform for quantitative studies of
fermion transport [6–10]. As a result of scale invariance in res-
onant Fermi gases [11], measurements constrain the equation
of state and transport properties of other strongly interacting
Fermi systems, including neutron matter at densities 25 or-
ders of magnitude higher. The system features the largest su-
perfluid transition temperature Tc, relative to its density, of all
known fermionic systems [12].

Here we introduce a novel thermography method to image
heat in interacting quantum gases, whose working principle
is general and may be applied to electronic systems as well.
The method only requires a temperature-dependent spectral
response that can be locally resolved. In the case of the Fermi
gas studied here, the radio-frequency (rf) spectrum is temper-
ature dependent [13, 14]. We spatially resolve this spectral
response, and directly measure heat transport in the strongly

interacting Fermi gas.
Remarkably, via heat transport one can distinguish states of

matter. In ordinary liquids, heat transport is purely diffusive,
and governed by thermal conductivity. In contrast, in superflu-
ids, heat propagates as a wave called second sound. The two-
fluid model of superfluidity introduces a normal and super-
fluid component which can move in and out of phase [15, 16].
This gives rise to two distinct sound modes, first and second
sound, corresponding to a density and an entropy wave [17].
The speed of second sound c2 is a direct measure of the su-
perfluid fraction ρS/ρN [18]. Its attenuation yields the second
sound diffusivity D2, which involves the thermal conductiv-
ity, bulk and shear viscosities [17, 19]. Consequently, we ob-
serve a dramatic change in thermal transport as the Fermi gas
is cooled below its superfluid critical temperature Tc. Simul-
taneously recording the complete density and heat response
of the system to a known external perturbation allows us to
completely characterize the two-fluid hydrodynamics of the
strongly interacting Fermi gas [19, 20].

Previous studies of thermal transport in quantum gases re-
lied on the weak coupling between the density and tempera-
ture of the gas [21–24]. This allowed the observation of sec-
ond sound in Bose [25, 26] and Fermi gases [21, 24, 27] but
without directly measuring heat propagation. By employing
a homogeneous box potential formed by light sheets, we ob-
serve running and standing waves of second sound, demon-
strating multiple reflections of entropy waves from the walls
of the box. Our thermography works across the superfluid
transition, allowing the observation of a pronounced peak in
thermal diffusion at Tc, characteristic of critical behavior ex-
pected near second order phase transitions.

Spectral Thermometry

The working principle of our method is sketched in Fig.1A-D.
In radiofrequency spectroscopy, interacting atoms are ejected
from the many-body system into an initially unoccupied in-
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ternal spin state [28]. For interacting gases, such spectra de-
pend on temperature: at high temperatures they approach the
bare, unshifted response for an isolated atom, while at low
temperatures they display interaction-induced shifts known as
clock shifts. In the particular case of attractive two-component
Fermi gases, at zero temperature the spectral peak is shifted by
approximately the pairing energy EB of fermion pairs [13],
while at non-zero temperature broken pairs contribute to the
response at lower frequencies (Fig. 1A). For a fixed detuning
ω0 on the flank of the spectrum, the rf response is sensitive to
changes in temperature (Fig. 1B). As the rf response can be
spatially resolved, this allows for a direct measurement of the
local temperature from a single image of rf-transferred atoms.

As a striking application of this method, we may detect sec-
ond sound in the fermionic superfluid, which is a wave in the
gas of excitations that close to Tc consists predominantly of
broken pairs (Fig. 1C). A suitably detuned rf drive can trans-
fer atoms from the gas of excitations, yielding a direct, local
measure of heat (Fig. 1D). We stress that the method does
not depend on this simplified picture of broken pairs and only
relies on the temperature-dependence of the rf spectrum. It
therefore applies in a wide range of temperatures set by the
magnitude of clock shifts, which for the unitary Fermi gas are
on the scale of the Fermi temperature [13].

Our experiment starts with a uniform fermionic superfluid
trapped in a cylindrical box potential, formed by an equal
mixture of resonantly interacting fermions in the first (|1⟩)
and third (|3⟩) hyperfine state of 6Li at a Feshbach reso-
nance (magnetic field 690 G) [29]. The density of n0 =
0.75 µm−3 per spin state corresponds to a Fermi energy of
EF = h · 10.5 kHz and a Fermi temperature of TF =
EF /kB ≃ 500 nK. To create temperature gradients in the
superfluid gas, we resonantly excite a standing wave of sec-
ond sound using an oscillating potential gradient along the
axis of the cylindrical box [18]. Our thermography employs
rf transfer of atoms from state |1⟩ into the initially unoccupied
state |f⟩ ≡ |2⟩. Simultaneous in situ absorption images of
atoms in states |2⟩ and |3⟩ yield the original gas density n(r)
(Fig. 1E) as well as the density nf(r) of rf transferred atoms,
carrying the information on the local temperature (Fig. 1F).
The rf thermometer is calibrated on gases in thermal equi-
librium by recording the dependence of nf on temperature,
∂nf

∂T

∣∣∣
n

, and density, ∂nf

∂n

∣∣∣
T

[18]. This method of calibrating
spectral responses versus each thermodynamic variable while
holding other parameters constant can be applied universally.
More generally, all that is required for the observation of ther-
mal transport is access to any local observable which is sensi-
tive to temperature, meaning it can be achieved even without
a calibrated thermometer. Integrating the 2D temperature pro-
file along the uniform radial direction yields a 1D temperature
profile ∆T (z) with a precision of 500 picokelvin from a sin-
gle image, as shown in Fig. 1F. The data reveals an essentially
flat density in the presence of a ∼ 8 nK temperature difference
across the box.

A B

C D
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x

FIG. 1. Direct local thermography using radio-frequency spec-
troscopy. (A) A sketch of rf spectra at various temperatures for the
unitary Fermi gas [13]. Blue, grey, and red lines correspond to the
rf response I(ω) at successively higher temperatures. (B) At fixed
frequency ω0 on the flank of a spectrum (black dotted line in A),
the rf response is sensitive to temperature, and serves as a local ther-
mometer. (C) In a simplified picture, the superfluid component (SF)
consists of fermion pairs, while the normal fluid (NF) is composed
of broken pairs. (D) The unpaired atoms are transferred to a weakly
interacting state by an rf pulse and subsequently imaged to deter-
mine the spatial distribution of the normal component density. (E)
and (F) In-situ observation of a second sound wave after resonant
gradient excitation. Shown are the column density and local temper-
ature, respectively, from simultaneous in situ absorption images of
unperturbed (|3⟩) and rf-transferred (|2⟩) atoms, with density n and
temperature variation ∆T , averaged along the x-axis, shown below.
The vertical dotted line marks the edge of the box potential (half-
maximum of potential). The black dashed line in (F) is a fit to the
fundamental eigenmode in the box. Second sound leaves a signifi-
cant trace in the temperature, but not in the density.

Observation of heat propagation

Armed with the ability to spatially resolve temperature in the
strongly interacting Fermi gas, we directly observe one of the
most striking manifestations of superfluidity, second sound, as
the free back-and-forth sloshing of heat after resonant gradi-
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FIG. 2. Direct observation of the superfluid transition from heat propagation in a strongly interacting Fermi gas. (A) in situ thermographs
at times t=0, 26, and 54ms after second-sound excitation, and (B) time evolution of the axial temperature profiles, revealing the wave-like
propagation of heat. (C) Amplitude of the first spatial Fourier mode of the temperature profiles ∆T (k1, t) versus time (black circles). A fit to
a damped sinusoid (dashed line) gives the speed and attenuation rate of second sound. In (A-C) the second sound is generated with resonant
gradient excitation, and the gas temperature is T = 63 nK or 0.75Tc. (D) Time evolution of temperature amplitudes ∆T (k1, t) (solid circles)
and fits (dashed lines) at various gas temperatures. (E) 2D interpolation with gaussian smoothing of temperature amplitudes versus time across
the superfluid transition. In (D-E) the second sound is generated with local heating, and the initial temperature variation for each time traces
are normalized to be 1.

ent excitation (see Fig. 2 A-C). Fig. 2A shows the measured
rf transfer ∆nf(r, t) obtained at various times after second-
sound generation. Fig. 2B presents the time evolution of the
1D temperature profiles ∆T (z, t), and Fig. 2C shows the cor-
responding evolution of the amplitude ∆T (k1, t) of the first
spatial Fourier mode supported by the box (km = mπ/L), all
clearly demonstrating the wave-like propagation of heat. Here
the absolute temperature of the gas in equilibrium, obtained
from expansion [14], is T = 63(2) nK = 0.125(5) TF, or
T = 0.75(3) Tc when compared with the superfluid transi-
tion temperature Tc = 0.167 reported in Ref. [12]. A damped
sinusoidal fit to ∆T (k1, t) yields a speed of second sound
of c2 = ω/k = 3.57(2)mm/s, corresponding to about a
tenth of the Fermi velocity c2 = 0.092(2) vF. From the mea-
sured damping rate Γ we obtain a diffusivity of second sound
D2 = Γ/k2 = 2.44(11)ℏ/m. As was found for the diffusiv-
ities of spin [30, 31], momentum [32] and first sound [33], a
natural scale for the diffusivity of second sound is Planck’s
constant, divided by the particle mass [27, 34]. This scale di-
rectly emerges in a strongly interacting quantum fluid from
a mean-free path of carriers of approximately one interparti-
cle spacing d, and characteristic speeds given by Heisenberg’s
uncertainty ℏ/md [30]. Remarkably, a similar scale of diffu-
sivity is also measured for second sound in the strongly in-
teracting bosonic superfluid 4He [35], while the more weakly
interacting, fermionic 3He in its superfluid A1 and B phases

displays much larger values of many hundreds to thousand
times ℏ/m [36].

Thermography provides an unprecedented view of the
superfluid transition in the strongly interacting Fermi gas.
Figs. 2D-E show the transition from heat diffusion in the nor-
mal state to wave-like propagation of heat, second sound, in
the superfluid. For these data, we created a local hot spot on
one side of the box by locally applying an intensity-modulated
optical grating [18]. Modulation at ∼ 2 kHz efficiently creates
high-frequency phonons that rapidly decay into heat [33, 37],
creating a temperature profile with good overlap with the
m=1 mode. The subsequent evolution of the temperature am-
plitude ∆T (k1, T ) displays a striking change in character
from exponential decay above Tc to the damped sinusoid of
second sound below Tc.

Entropy and Density response functions

The full linear response theory of two-fluid hydrodynamics
for superfluids was provided over half a century ago by Ho-
henberg and Martin [19]. Under an external potential that acts
on the density n with wavevector k and frequency ω, systems
respond through changes in their density n as well as their
temperature or equivalently entropy density s. Thermography
enables us to obtain the corresponding response functions,
not only χn,n(k, ω) but also, for the first time in a quantum
gas, χs,n(k, ω). These encode all the thermodynamic and two-
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A B

C D

FIG. 3. Steady state entropy and density response of the unitary Fermi superfluid. Shown are the change in entropy per particle ∆s (A)
and density ∆n (B) after excitation via an integer number of cycles of an oscillating axial potential gradient. For frequencies below 50 Hz,
the drive duration is 5 cycles at an amplitude of g = h · 2.12 Hz/µm; for frequencies above 50Hz, we drive for 20 cycles at an oscillation
amplitude of g = h · 0.85 Hz/µm. The gas temperature is T/Tc = 0.75. Amplitudes of the first spatial Fourier mode are shown in (C) and
(D) for various temperatures in the superfluid phase. The solid lines are fits using the full entropy and density response function from two-fluid
hydrodynamics [18, 19].

fluid hydrodynamic information of the unitary Fermi gas [18–
20].

To determine the linear response functions, we apply a
potential gradient, oscillating at frequency ω. The steady-
state temperature change ∆T (k1, ω) and density change
∆n(k1, ω) measured after an integer number of oscillation cy-
cles yield the respective out-of-phase response functions [19,
20]. The change in entropy per particle s is linked to the tem-
perature and density variation by the equation of state. For
our scale invariant, unitary Fermi gas, this connection is pro-
vided by the specific heat per particle cV at constant density
[11, 12],

∆s = cV

(
∆T

T
− 2

3

∆n

n0

)
. (1)

Measurements of fractional temperature and density varia-
tions thus directly yield the entropy variation in units of cV .
Fig. 3A-B displays the entropy and density response of the
superfluid in a frequency range that solely excites the low-
est spatial mode (m=1), the sloshing mode. The density re-
veals a dominant peak attributed to first sound near 90Hz [33],
and a faint signature of second sound at 20Hz, expected in a

gas of non-zero expansivity, where density and temperature
are coupled. However, in the entropy channel, whose signal
derives predominantly from the rf transfer [18], the second
sound peak yields a large response. This directly demonstrates
that second sound in the unitary Fermi gas is predominantly
an entropy wave, while first sound is essentially isentropic.
This is similar to the case in superfluid 4He [17] but drasti-
cally different from the case in 2D and 3D Bose gases, where
density and entropy are strongly coupled [25, 26, 38]. In
Fig. 3C and D, we show the thermal evolution of the entropy
and density responses in the first spatial Fourier mode, which
serve as a direct measurement of the out-of-phase entropy-
density Imχs,n(k1, ω) and density-density Imχn,n(k1, ω) re-
sponse functions [18]. The measured response functions com-
pletely encode all information about the two-fluid hydrody-
namics in a unitary Fermi gas [18–20]. The peak positions
and widths give the speeds and diffusivities of first and sec-
ond sound. While the speed of first sound is a direct mea-
sure of the energy of the gas [33], the speed of second sound
yields the superfluid density. The height of the second sound
peak in the entropy-density response is given by the expansiv-
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ity αp of the gas, and the weight of the second sound vs the
first sound response in the density-density response directly
equals γ − 1, where γ = cp/cV is the ratio of heat capaci-
ties at constant pressure and density. These are related by the
isothermal compressibility κT , heat capacity and temperature
by γ − 1 = Tα2

p/(nκT cV ), and in particular for the unitary
gas simply by γ − 1 = 2

3αpT .

Heat transport across superfluid transition

Fig. 4A shows the speed of second sound, measured con-
sistently using our three independent methods: free evolu-
tion after resonant excitation of the second sound mode (yel-
low squares), local heating (red diamonds) and steady state
response functions (blue circles). The superfluid fraction is
obtained from c2 and the previously measured equation of
state [12, 18] and shown in Fig. 4B. The measurements show
a qualitative agreement with Nozières and Schmitt-Rink the-
ory [39, 40] (dot-dashed line), although their absolute value
of Tc differs from experiment. Our superfluid fraction agrees
well with the result reconstructed for the homogeneous case
from the second sound measurement in a quasi-1D trapped gas
in [21], which relied on the same equation of state of Ref. [12].
With the local heating method (red diamonds) we are able
to observe the continuous evolution of c2 and ρS from a fi-
nite value in the superfluid phase to zero in the normal phase.
The phase transition temperature Tc obtained from this mea-
surement is consistent with the equilibrium thermodynamic
measurement [12] (the vertical gray area) and the onset of
pair condensation [7, 13], which we have measured here as
well (Fig. 4C). As is expected, there is a clear quantitative
difference between the superfluid fraction, which saturates to
unity at temperatures T ≲ 0.1TF, and the pair condensate
fraction, which remains less than ∼ 0.75. The superfluid den-
sity quantifies the portion of the fluid that flows without fric-
tion. Formally it measures the rigidity against phase twists,
while the condensate fraction is a measure for the number of
fermion pairs at zero center of mass momentum. In the zero-
temperature limit, the entire system is superfluid, but only a
fraction of fermion pairs are condensed, due to quantum de-
pletion and Pauli blocking [6, 7, 9].

A further dramatic signature of the superfluid transition is
seen in the temperature dependence of the second sound dif-
fusivity D2 in the superfluid state, and thermal diffusion in
the normal state, shown in Fig. 4D. We observe a striking
peak in this transport coefficient within a range ∆T ≈ 0.1Tc

around the critical temperature of superfluidity, rising above
a background minimum value of about 2ℏ/m up to nearly
three times this value. This behavior echoes that found in
liquid 4He [35, 41] near its superfluid transition, associated
with classical criticality. Indeed, the order parameters of both
the Fermi superfluid and liquid helium belong to the same
3D XY static universality class, and also the same (model F
in ref. [42]) dynamic universality class, dictating a behavior
D2 ∝ |Tc − T |−ν/2 near the transition, with critical expo-
nent ν ≈ 0.672, as observed in 4He [41]. Related critical

A

B

C

D

FIG. 4. The speed and diffusivity of second sound. (A) Speed of
second sound, normalized by the Fermi velocity, as a function of
temperature, determined by fitting the steady state response func-
tions (blue circles), and the free evolution of second sound after
resonant gradient excitation (yellow squares) or after local heating
(red diamonds). The first sound speed measured from the response
functions (gray circles) is also shown. Dot-dashed line: Nozières-
Schmitt-Rink theory [39]. (B) The superfluid fraction of the unitary
Fermi gas obtained from the speed of second sound (symbols as in
A). The blue shaded area indicates the uncertainty from the equa-
tion of state. Solid green circles: superfluid fraction obtained from
quasi-1D experiments via the MIT equation of state [21]. (C) Pair
condensate fraction measured via the rapid ramp technique to detect
fermion pair condensates [13]. (D) Second sound diffusivity obtained
from various methods (symbols as in A). The vertical gray area indi-
cates the uncertainty of critical temperature from Ref. [12].

behavior for the speed of second sound c2 ∝ (Tc − T )ν/2

and ρs ∝ (Tc − T )ν is qualitatively consistent with the steep
slopes we observe close to Tc in these quantities. For the uni-
tary Fermi gas, the width of the region governed by criticality
is not precisely known, but estimated to be on the order of
Tc [43, 44]. A quantitative analysis of critical behavior, such
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as the measurement of critical exponents, is prevented by the
residual inhomogeneity of the gas density, giving a variation
of ∆(T/Tc) ∼ 5 × 10−3, and by the finite size of our sys-
tem. Indeed, even for the lowest spatial mode m = 1, second
sound becomes overdamped (Γ ≳ 2ω) within 3% of Tc. At
low temperatures T/Tc < 0.6, D2 is again seen to rise signif-
icantly, which we attribute to the diverging mean-free path of
phonons, the only remaining contribution at low temperatures
once pair-breaking excitations are frozen out.

Above the transition temperature, the second sound mode
evolves into a thermal diffusion mode whose diffusivity is di-
rectly given by thermal conductivity κ: D2 = κ/ncP [19, 20,
45, 46]. We therefore find quantum limited thermal diffusion
∼ 2ℏ/m [47], similar to prior results for spin [30, 31], mo-
mentum [32] and first sound diffusion [33] in the unitary gas.
However, the non-monotonous behavior of second sound dif-
fusivity, with steep rise at low temperatures and around Tc has
not been observed in other transport coefficients.

The second sound diffusivity D2 was independently mea-
sured via Bragg scattering [27], and a small rise in the sec-
ond sound damping rate approaching Tc was observed. How-
ever, a peak in D2 near Tc could not be resolved, presumably
since Bragg scattering as a density probe becomes insensitive
to heat propagation above Tc. Away from Tc, the values for
D2 reported in ref [27] were about half of what we observe.
Since the experiment in [27] used a much higher wave vector
and correspondingly more elevated frequencies, the gas may
no longer have been hydrodynamic but instead entered the col-
lisionless regime, similar to the behavior for high-momentum
first sound in [33, 37]. Assuming the hydrodynamic relation
Γ = D2k

2 for such modes will yield too small a value for D2.
In contrast, in the present work using thermography we veri-
fied hydrodynamic scaling by exciting also the second m = 2
spatial mode supported by the box, finding within error bars
identical values of D2 [18].

In the superfluid regime of the unitary Fermi gas, there are
three contributions to second sound diffusion: thermal con-
ductivity κ, shear viscosity η as well as bulk viscosity ζ3 from
normal-superfluid counterflow [36, 48]. While it is known that
ζ3 = 0 for a pure phonon gas with linear dispersion [49], in
the range T/Tc ≳ 0.5 the normal fluid is dominated by pair
breaking excitations. In this case, all three contributions are of
similar importance [36, 48]. Assuming ζ3 = 0 in this regime,
as was done in [27], is not warranted, and obtaining viscosity
and thermal conductivity from first and second sound diffu-
sion alone is not possible.

Outlook

Direct measurement of heat transport has been a long-standing
goal in quantum gas experiments. Thermography now opens
the door to study a host of intriguing non-equilibrium phe-
nomena, from non-linear heat waves to quench dynam-
ics [50, 51] and even far-from-equilibrium phenomena such as
prethermal states [52, 53]. Using tomographic imaging tech-
niques [54], the complete 3D spectral response can be mea-

sured, enabling the investigation of transverse entropy trans-
port in anisotropic or inhomogeneous systems. For thermo-
dynamic systems with additional degrees of freedom beyond
density and temperature, for example spin-imbalanced sys-
tems, additional independent measurements such as probes of
the local spin polarization can be supplemented to fully de-
termine thermodynamic response functions. The spectral re-
sponse continues to serve as a channel highly sensitive to tem-
perature. Therefore, our spectroscopic thermometry method is
general and can be applied to a wide variety of quantum gas
platforms such as Bose gases, Bose-Fermi mixtures, impu-
rity systems and Hubbard quantum simulators [55], and more
broadly to electronic or excitonic condensed matter systems.
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Supplementary Materials
Thermography of the superfluid transition in a strongly interacting Fermi gas

Materials and Methods

A strongly interacting Fermi gas of 6Li atoms is initially prepared in an equal mixture of the first and third lowest hyperfine
states, |1⟩ ≡ |mJ = − 1

2 ,mI = 1⟩ and |3⟩ ≡ |−1
2 ,−1⟩, at a magnetic field of B = 690G, the location of the broad Feshbach

resonance between these two states [56]. The box potential is formed by walls of 532 nm light [29] and has cylindrical symmetry
with a radius of 60µm and a length of 90µm. The Fermi energy of the system is EF = 10.5(3) h · kHz corresponding to
a density of n0 = 0.75(3) µm−3 per spin state or a Fermi temperature of TF ≃ 500 nK. Evaporation in the uniform trap
leads to a temperature T ≲ 0.1TF. An additional heating step via periodic modulation of the box potential is used to finely
control the temperature of the cloud. To excite temperature gradients and second sound in the gas, we either apply an oscillating
potential gradient, or alternatively we imprint an intensity-modulated light grating (Fig. S1). The potential gradient is applied
magnetically, by adding current on one of the magnetic field coils generating the Feshbach field. The amplitude of the magnetic
field oscillation is less than 0.02 G, much less than the width of the Feshbach resonance (∆B ≈ 170G) [56], such that the
modulation of atomic interactions is negligible. The oscillating gradient potential can generate a standing wave of first or second
sound in the m = 1 spatial mode, when the oscillation frequency is resonant. The intensity-modulated grating potential serves as
a local heat source in the atomic cloud. For this we employ 589 nm laser light to project a light-intensity grating onto the atoms.
The grating spacing on the atomic cloud is 7 µm. The intensity modulation is set to a frequency of 2 kHz, where phonons are
efficiently created and rapidly decay into heat. The amplitude of the grating modulation is kept at a low level so that the change
in density and excitation of first sound is negligible.

To detect the temperature change in the system, a 0.5 ms rf pulse with a Rabi frequency of ΩR = 2π · 1.9 kHz is used
to transfer atoms in state |1⟩ to the second lowest hyperfine state |f⟩ ≡ |2⟩ = |mJ = − 1

2 ,mI = 0⟩. For thermometry at gas
temperatures below T = 0.15TF ≈ 0.9Tc, an rf detuning of 5 kHz is used. For data obtained above 0.15 TF, taken via the
local heating method, a range of detunings from 2 to 5 kHz is used to improve temperature sensitivity. The local densities nf(r)
and n(r) of transferred atoms in state |f⟩ and unaffected atoms in state |3⟩ are imaged after the rf pulse. The spatial resolution
of rf thermometry is dominated by diffusion of the transferred |2⟩ atoms through the background of |1⟩-|3⟩ atoms during the
0.5 ms pulse time. The interaction between rf-transferred |2⟩ atoms with atoms in states |1⟩ and |3⟩ is weakly repulsive with
kFa23 = 0.21 and kFa12 = 0.26. The diffusivity of a |2⟩ atom can be estimated with D2i ≈ ℏ

m
1

(kF a2i)2
, with i ∈ {1, 2}, leading

to a diffusion distance during the pulse time of about 10µm. This estimate agrees with direct measurements of this diffusion on
a localized sample of |2⟩ atoms, created in a |1⟩-|3⟩ background via localized Raman beams.

RF Thermometry

The sensitivity to temperature of the rf transfer is all that is needed to obtain a response from second sound and heat diffusion.
The response would not need to be calibrated just to measure the speed and damping of second sound. However, by calibrating
the response of the rf transfer to temperature, ∂nf

∂T

∣∣∣
n

(rf-temperature response) and to density, ∂nf

∂n

∣∣∣
T

(rf-density response), we
can directly obtain the density-density and the density-temperature response functions of the unitary Fermi gas. We calibrate
the rf transfer at various temperatures and rf detunings, working at constant atom density (Fig. S2A). The temperature of the
cloud is determined from the total energy measured through an isoenergetic expansion from the box potential into a harmonic
trap [14] and converting this to temperature via the equation of state of the unitary Fermi gas from Ref. [12]. For temperatures
between ∼ 0.08 and 0.15TF, a detuning of ω = 2π · 5 kHz is optimal, for which the temperature dependence of the transferred

A B

7 μm

z

x

z

FIG. S1. Two methods for creating second sound and heat gradients (A) Second sound created by an oscillating potential gradient. The
expansivity of the gas allows exciting temperature gradients through potential gradients. (B) Creating temperature gradients using an intensity
modulated light grating applied to one side of the box-trapped gas. Rapid modulations (at 2 kHz) create short-wavelength phonons that rapidly
decay into heat. In both A and B the blue to red color gradient represents an induced temperature variation from cold to hot.
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A B

FIG. S2. Calibration of the temperature dependence of the rf transfer at constant density ∂nf

∂T

∣∣∣
n

. (A) Rf transfer fraction nf/n0 at

various temperatures and detunings in the superfluid phase. In the regime below T/TF = 0.15, we find a maximum linear gradient along the
temperature axis at a detuning of 5 kHz, marked by the gray vertical line. (B) The temperature dependence of the rf transfer rate across the
superfluid transition (vertical dotted line). The green (yellow) circles are the measured rf transfer fraction at a detuning of 5 kHz (2 kHz). The
dashed lines are hyperbolas used to fit the rf transfer rate.

fraction nf/n0 is almost linear in temperature (Fig. S2B). Above the transition temperature, the rf transfer at 5 kHz detuning
saturates with increasing temperature. Therefore, when working close to and above Tc, we employ a smaller detuning, as in the
measurement of the thermal evolution after local heating. A hyperbola is used to fit the rf-temperature responses and extract
the local slope. To calibrate the response of the rf transfer to density at constant temperature, we adiabatically ramp up a linear
gradient potential along the axial z-direction and measure the change in both n(z) and nf(z), as shown in Fig. S3A. The potential
ramp is slow enough so that the temperature stays constant across the cloud. The transferred atom number is seen to decrease
with increasing initial density, as expected for a clock shift that increases with density. A linear fit to the nf(∆n) curve gives the
rf-density response, as shown in Fig. S3B. The temperature dependence of the rf-density response ∂nf

∂n

∣∣∣
T

is shown in Fig. S3C,

displaying maximal sensitivity, about a quarter of the actual density variation, near T/TF = 0.14.
Having calibrated the temperature and density dependence of the rf transfer, we obtain the local temperature change via the

relation

∆T (r, t) =
∂T

∂nf

∣∣∣
n

[
∆nf(r, t)−

∂nf

∂n

∣∣∣
T
∆n(r, t)

]
. (S1)

Our measurements capture another crucial thermodynamic quantity that is the change in the reduced temperature T̃ = T/TF,
given by the relation

∆T̃ (r, t) =
∆T (r, t)

TF
− 2T

3TF

∆n(r, t)

n0
. (S2)

A B C

FIG. S3. Calibration of the density dependence of the rf transfer at constant temperature ∂nf

∂n

∣∣∣
T

. (A) Density change along the axial

direction in the state |f⟩∆nf(z) (blue) and state |3⟩∆n(z) (red) after an adiabatic gradient ramp and the rf pulse. Only the data measured away
from the edges of the cloud (marked by the vertical dotted lines) are used for the calibration (solid line). (B) The linear response of rf transfer
rate to the density change (black circles). ∂nf

∂n

∣∣∣
T

is determined by a linear fit (dashed line). (C) ∂nf

∂n

∣∣∣
T

measured at various temperatures below
Tc.
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A B

C D

FIG. S4. Steady state response of density ∆n (A), rf transfer ∆nf (B), temperature ∆T (C), and reduced temperature ∆(T/TF) (D). In
a unitary Fermi gas, the reduced temperature corresponds to entropy per particle. The measurements shown here are done at a temperature of
T/TF = 0.125.

In our scale invariant, unitary Fermi gas, the reduced temperature dictates the state of the system [11]. The entropy per particle
s = kBf(T̃ ) is a direct function of T̃ , and the change ∆T̃ directly yields the change in entropy via ∆s = cV ∆T̃ /T̃ , since
the specific heat cV = T ∂s/∂T |n = kBT̃ f

′(T̃ ). A measurement of the system’s response in T̃ therefore directly yields the
change in its entropy per particle, in units of the specific heat cV . Fig. S4 presents the individual responses of the density,
rf transfer, temperature and reduced temperature after continuous oscillation of the potential gradient. The density responds
predominantly at the first sound resonance, with a faint response at the second sound resonance (Fig. S4A). The rf transfer
instead predominantly responds at the second sound resonance (Fig. S4B). Converting to absolute temperature changes ∆T , we
see that similar to the density response the strongest feature is from first sound. However, the response in reduced temperature
∆(T/TF ), which directly measures entropy changes, is strongest for the second sound resonance. We have thus directly shown
that second sound is an entropy wave (rather than a temperature wave) in a unitary Fermi superfluid, while first sound is an
essentially isentropic density wave. It is also evident that the rf transfer is a close proxy of the local entropy change. This is
intuitively clear in the simplified picture of Fig. 1, where the rf transfer predominantly excites the gas of excitations, e.g. pair
breaking excitations, which directly determine the entropy of the gas.

Testing hydrodynamic scaling of second sound damping

The validity of hydrodynamics relies on local thermal relaxation being much faster than the frequency of a propagating dis-
turbance. While damping rates of first and second sound are similar, second sound is much slower than first sound, and thus
its frequency for a given spatial mode is much lower than that of the corresponding first sound. The criterion for full two-fluid
hydrodynamicity is therefore much more stringent for heat transport than for density (mass) transport. The breakdown of hy-
drodynamics affects the expression for the sound damping rate Γ. While Γ ∝ k2 in the hydrodynamic regime, so that Γ/k2

can be interpreted as a diffusivity, the damping rate rather scales linearly with k in the collisionless regime. The crossover was
experimentally observed in [33] for first sound to occur at frequencies ω ≲ 0.2mc21/ℏ at temperatures below Tc, where c1 is the
speed of first sound. For our system, for first sound, only the eight lowest box modes (m ≲ 8) are safely in the hydrodynamic
regime. For second sound, therefore, we should expect only the lowest two spatial modes (m ≲ 2) to display hydrodynamic
scaling of their damping rates.

To test hydrodynamic scaling, we were able to directly measure the frequency and damping rate of second sound in the
m = 2 mode. To excite this mode we imprint a potential using a 1064 nm laser beam focused at the center of the cloud, with
a beam waist of ∼ 30µm, about one third of the box length. The intensity of the beam is modulated at the resonant frequency
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of the m = 2 second sound mode, setting up a standing wave of second sound in m = 2. Fig. S5A shows the subsequent free
time evolution of the temperature profile ∆T (z, t) after the end of the laser modulation. The corresponding Fourier amplitude
∆T (k2, t) at k2 = 2π/L is shown in Fig. S5B. As it should be for linear dispersion, the frequency of the m = 2 is twice as high
as for the corresponding m = 1 mode (compare to Fig. 2), i.e. the obtained speed of second sound is identical. The damping rate
Γ is found to be four times as high for m = 2 than for m = 1, as expected for hydrodynamic scaling. Fig. S5C and D present
the m = 2 data points for speed and diffusivity together with the results for m = 1. This consistency confirms that the observed
damping rate Γ for second sound is in the hydrodynamic regime for m = 1 and m = 2 and allows to uniquely define a second
sound diffusivity D2 = Γ/k2.

A

B

C

D

FIG. S5. Testing hydrodynamic scaling with the m = 2 spatial mode of second sound. (A) Axial temperature profile ∆T (z, t) versus
time after resonant excitation of the second spatial mode m = 2 supported by the box. (B) Fourier amplitude of the m = 2 spatial mode of
the temperature profile, ∆T (k2, t) (blue circles). The dashed line is a fit with Eq. S22. The speed (C) and diffusivity (D) obtained from the
evolution of the m = 2 mode (red circle) is compared with the values measured for the m = 1 sloshing mode (black circles), demonstrating
linear dispersion of second sound and hydrodynamic scaling of damping rates. The data shown here for m = 2 mode are taken with free
evolution after resonant excitation.

Response functions

The complete linear hydrodynamics of the two-fluid model of superfluids can be described via response functions as shown
by Hohenberg and Martin [19]. The measured changes in density ∆n, entropy ∆s and reduced temperature ∆(T/TF) under
a periodically modulated potential drive U are associated with the density-density response function χn,n(k, ω), the entropy-
density response function χs,n(k, ω), and the T̃ -density response function χT̃ ,n(k, ω):

∆n(k, ω) =− Imχn,n(k, ω) · U(k, ω), (S3)
∆s(k, ω) =− Imχs,n(k, ω) · U(k, ω), (S4)

∆T̃ (k, ω) =− ImχT̃ ,n(k, ω) · U(k, ω) (S5)

Since we measure the state of the system right after an integer number of modulation cycles, the relations only involve the
imaginary part of the response functions, the out-of-phase response. For a unitary Fermi gas, χs,n(k, ω) and χT̃ ,n(k, ω) are
simply related to each other via

χT̃ ,n(k, ω) =
T̃

cV
χs,n(k, ω) (S6)

A spatial Fourier transform of the measured density or rf transfer responses is used to quantify the amplitude of density or
reduced temperature changes at a certain wavenumber k:

∆n(k) =
2

L

∫ L

0

dz ∆n(z) cos(kz). (S7)
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A linear gradient potential with slope g only has a strong spatial Fourier component at the first fundamental mode of the box:
U(k1 = π/L) = 4gL/π2. Hence, we mainly focus on the first Fourier mode of the responses in this work.

The general form of the density-density, entropy-density, and T̃ -density response functions are [19]:

χn,n(k, ω) =
n0k

2

m

−ω2 + γc220k
2 − iΓn,nk

2ω

(ω2 − c12k2 + iD1k2ω)(ω2 − c22k2 + iD2k2ω)
, (S8)

χs,n(k, ω) = k2
−αpc10

2c20
2k2 + iΓs,nk

2ω

(ω2 − c12k2 + iD1k2ω)(ω2 − c22k2 + iD2k2ω)
, (S9)

χT̃ ,n(k, ω) =
kBT

cV EF
k2

−αpc10
2c20

2k2 + iΓs,nk
2ω

(ω2 − c12k2 + iD1k2ω)(ω2 − c22k2 + iD2k2ω)
. (S10)

Here, γ = cp/cV is the isentropic expansion coefficient. γ − 1 controls the relative weight of the second to the first sound
peak in the density response. αp = 1

V
∂V
∂T

∣∣
p

is the thermal expansivity, and it controls the strength of the second sound peak
in the entropy-density response. αP also represents the static susceptibility of the change of entropy to an applied potential U .
Indeed, one has the Maxwell relation giving the change in entropy per particle upon a change in chemical potential dµ = −dU :
∂s
∂µ

∣∣∣
T
= − 1

V
∂V
∂T

∣∣
p
= −αp. We note that at unitarity, αP = 3

2
1
T (γ − 1) is directly proportional to γ − 1.

All response functions share the same denominator and poles. The shared denominator is the determinant of the linear hydro-
dynamic equations, and the poles are located at

ωi,± = ±
√

ci2k2 − (Dik2/2)2 − iDik
2/2, (i = 1 or 2). (S11)

c10 =
√

(∂p/∂ρ)s and c20 =
√

s2

m
ρs

ρn

∂T
∂s

∣∣
p

are the uncoupled speeds of first and second sound, and their values are given by the
equation of state and for c2 also the superfluid fraction. The two sound modes are coupled by the isentropic expansion factor γ:

c1
2 + c2

2 = c10
2 + γc20

2, (S12)
c1c2 = c10c20. (S13)

The diffusivities of the two sound modes D1 and D2 are both linear combinations of thermal conductivity κ, shear viscosity
η, and bulk viscosities ζ3 in the unitary Fermi gas [17, 19]. Introducing Dκ = κ

ρcP
, Dη = 4

3
η
ρ and Dζ = ρζ3, as well as

D20 = Dκ + ρs

ρn
(Dη +Dζ), one has the relations

D1 +D2 = Dη +D20 + (γ − 1)Dκ (S14)

c21D2 + c22D1 = c210D20 + c220γDη(1− 2a) (S15)

with a = 1
ρs

∂p
∂T

∣∣∣
n
=

√
ρs

ρn

c210
c220

γ−1
γ2 . For the unitary gas, this simplifies to a = 2

3
cV
s . Solving for D1 and D2, one obtains

D1 =
c21(

ρs

ρn
+ 1)− c210

ρs

ρn
+ (2a− 1)c220γ

c21 − c22
Dη +

γc21 − c210
c21 − c22

Dκ +
(c21 − c210)

ρs

ρn

c21 − c22
Dζ , (S16)

D2 =
c210

ρs

ρn
− c22

ρs

ρn
− (2a− 1)c220γ

c21 − c22
Dη +

c210 − γc22
c21 − c22

Dκ +
(c210 − c22)

ρs

ρn

c21 − c22
Dζ . (S17)

A measurement of D1 and D2 alone does not allow to obtain the three individual diffusivities Dη , Dκ and Dζ . However, the
terms Γn,n and Γs,n, which govern the asymmetry of the sound peaks in the imaginary part of the response functions, are also
functions of κ, η, and ζ3:

Γn,n = γDκ +
ρs
ρn

(Dη +Dζ), (S18)

Γs,n =

(
ρs
ρn

Dη + aγDκ

)
s

m
. (S19)

We see that the response functions enable to determine all thermodynamic and linear transport parameters of the unitary Fermi
gas. In practice, determination of Dη , Dκ and Dζ separately involves taking the difference of noisy experimental data, leading
to significant errors. Direct measurements of these quantities, e.g. by measuring the damping of shear flow to determine η alone
are necessary.
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FIG. S6. Thermodynamics from measured steady state response functions. (A) The isentropic expansion coefficient γ, obtained from the
measured density response (blue circles), compared to the value obtained from the previously measured equation of state [12] (gray circles).
(B) The amplitude of the normalized temperature response (blue circles), compared to the prediction kBTαp/cV (gray circles) from the
equation of state [12]. (C) Coupled and uncoupled speeds of sound. The black circles (diamonds) and blue circles (diamonds) are the coupled
(uncoupled) speeds of first and second sound, c1 (c10) and c2 (c20). The vertical dashed line and shaded area indicates the phase transition
temperature and its uncertainty, from [12].

When fitting the measured density ∆n(k1, ω) and normalized temperature ∆T̃ (k1, ω) responses (Fig. S7) with the linear re-
sponse functions, we first normalize the measured responses with the corresponding modulating amplitude U(k1, ω) to acquired
the out-of-phase response functions Imχn,n(k1, ω) and Imχn,n(k1, ω) (Fig. S8) using Eq. S3 and S5. A total of 8 free parame-
ters, c1, c2, D1, D2, γ, kBT

cV
αp, Γn,n, and kBT

cV
Γs,n are used for fitting ImχT̃ ,n(k1, ω) and Imχn,n(k1, ω) simultaneously with

Eq. S8 and S10. Their number corresponds to the two resonance frequencies, the two resonance widths, and the four response
amplitudes present in the response. The fitting curves shown in Fig. 3 and S7 are products of the fitted response functions and
modulating amplitude U(k1, ω), which is a factor of 2.5 higher at frequencies lower than 50 Hz. We directly obtain isentropic ex-
pansion coefficient γ from the density-density response function (Fig. S6A), and the value of kBTαp

cV
from the T̃ -density response

function (Fig. S6B). At unitarity, we have cV = 3
2

αp

nκT
, where κT is the isothermal compressibility. Therefore, the normalized

temperature-density response is governed by the compressibility of the gas: kBTαp

cV
= κT

κ0

T
TF

, where κ0 = 3
2

1
nEF

is the com-
pressibility of a non-interacting Fermi gas at zero temperature. The measured coupling between two sound modes is weak, owed
to the large difference in speeds, so that coupled and uncoupled sound speeds are almost identical, as shown in Fig. S6C.

While the second sound diffusivity obtained from the m = 1 mode agrees with that from the m = 2 mode, the width of the
first sound mode for m = 1 is inherently broadened by non-linear effects. Such non-linear behavior of the fundamental first
sound mode was studied in Ref. [57] in the case of box-trapped Bose-Einstein condensates. Since the lowest first sound mode in
the box, the sloshing mode, cannot decay into lower-lying sound modes, its damping is inherently non-linear and governed by
an inverse Beliaev-type process, generating higher modes. We indeed observe the generation of m = 2 and m = 3 modes in the
free evolution after generating the fundamental first sound mode. Accordingly, while the m = 1 resonance width agrees with
the decay rate observed for the m = 1 mode in Ref. [33], it is for our parameters almost twice the value one would expect from
the measured D1, obtained from m = 2 in Ref. [33]. As found in Ref. [57] for BECs, no plateau in the damping is observed
when we reduce the amplitude of excitation from ∆n/n0 = 0.15 to 0.03. The observed non-linearity in the damping of the
fundamental first sound mode will be the subject of a future investigation.

Free evolution following an excitation

The free evolution of density, temperature, entropy etc. can also be expressed with the help of the response functions, as demon-
strated by Kadanoff and Martin in Ref. [20]. The general form of the time evolution of any physical quantities A is

∆A(k, t) =

∫ +∞

−∞

∑
i,±

[
Ai,±

z − ωi,±(k)
e−izt

]
dz. (S20)

Here ωi,±(k) are the poles of the response functions at a given wave vector k. The Ai,± are determined by the initial conditions
and the residue of the response functions

Ai,± =
∑
j

lim
ω→ωi,±

[
(ω − ωi,±)

ImχA,Aj
(k, ω)

ω

]
δAj(k, 0), (S21)

where δAj(k, 0) is the initial deviation of physical observable Aj from the equilibrium state and χA,Aj
is the response function

connecting A and Aj . Carrying out the inverse Fourier transform in Eq. S20, one sees that the free evolution has the same form
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as a superposition of two damped harmonic oscillators with frequencies c1k and c2k, and damping rates D1k
2 and D2k

2. The
general free-evolution solution of second sound and heat diffusion is:

∆A(k, t) =


A0e

−D2k
2t/2 cos (

√
c22k2 − (D2k2/2)2t+ ϕ), c2k > D2k

2/2 (a)

A+e
−(D2k

2/2+
√

(D2k2/2)2−c22k2)t +A−e
−(D2k

2/2−
√

(D2k2/2)2−c22k2)t, 0 < c2k < D2k
2/2 (b)

A0e
−D2k

2t. c2k = 0 (c)

(S22)

The functions in Eq. S22 are used to fit the thermal evolution data in Fig. 2. To determine if a time evolution trace is underdamped,
overdamped, or with c2 = 0, we first fit all time traces with both Eq. S22a and b to obtain fit residuals. When the residual from
fitting with Eq. S22a is smaller, we conclude the system is underdamped, and accept the fitted c2 and D2 from Eq. S22a. Fitting
time traces in the normal phase with c2 = 0 using Eq. S22b is underconstrained, leading to a diverging fitting error. Therefore,
we categorize time traces, that show a fitting error of c2 2 times larger than the fitted value of c2 with Eq. S22b, as purely diffusive
with c2 = 0. We then extract D2 from these data using a fit with Eq. S22c. For the rest of time traces, we categorize them as
overdamped and extract c2 and D2 using Eq. S22b. A collection of measured free thermal evolution data after local heating is
shown in Fig. S9.

Testing linear response of second sound

Proper interpretation of the obtained response functions requires the second sound excitation to remain in the linear response
regime. This is verified in two distinct ways. First, we fit the thermal evolution ∆T (k, t) with the solution of a damped harmonic
oscillator (Eq. S22) in a time range t ≥ τf . By varying τf , we effectively measure the frequency and decay rate of second sound
at various initial amplitudes. We find the acquired frequency ω = c2k and damping rate Γ = D2k

2 to be independent of the
fitting range. Secondly, we measure the amplitude of second sound excited by a resonant gradient oscillation and find a linear
dependence on the oscillation amplitude g (Fig. S10A and B). The measured damping rate is also independent of the oscillation
amplitude g (Fig. S10C).
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FIG. S7. Steady state entropy and density responses under continuous modulation of a potential gradient. (A and B) The normalized tem-
perature (A) and density (B) response amplitude is obtained at wavenumber k1 = π/L. An oscillation amplitude of g = h·2.12 (0.85) Hz/µm
and 5 (20) shaking cycles is used for oscillation frequencies below (above) 50 Hz. The solid lines are fits using Eq. S8 and S10.
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FIG. S8. The normalized temperature-density response function ImχT̃ ,n(k1, ω) = T̃
cV

Imχs,n(k1, ω) (A) and the density-density re-
sponse function Imχn,n(k1, ω) (B). The data shown here are the steady state responses from Fig. S7 normalized by the driving amplitude.
The solid lines are fits to Eq. S8 and S10.
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FIG. S9. Free evolution of temperature changes after local heating across the superfluid transition. The thermal amplitude ∆T is obtained
at wavenumber k1 = π/L. The dashed lines are fits with Eq. S22, Beside each time trace, we label the fitting function used, along with the
resulting second sound frequency and decay rate.
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A B C

FIG. S10. Testing linear response. (A) The amplitude of second sound generated by resonant excitation using an oscillating potential gradient
of strength g. The dashed line is a linear fit to the data. (B) Ratio between the amplitude of second sound and gradient oscillation. The
horizontal dashed line is the slope of the linear fit in (A). (C) The damping rate of second sound measured after resonant gradient oscillation.
The horizontal dashed line is the width of the reduced temperature response ∆ T

TF
(k1, ω) measured at g = 2.12 h · Hz/µm. The data shown

here are measured at a temperature of T/TF = 0.12.
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