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Abstract: We prove that any unitary highest weight module over a universal minimal
quantum affine W -algebra at non-critical level descends to its simple quotient. We find
the defining relations of the unitary simple minimal quantum affine W -algebras and
the list of all their irreducible positive energy modules. We also classify all irreducible
highest weight modules for the simple affine vertex algebras in the cases when the
associated simple minimal W -algebra is unitary.

1. Introduction

Vertex algebras have been playing an increasingly important role in quantum physics
(see e.g. [BML15,BMR19,CKLW,Ch19,Beem20] and references therein). Some of the
most relevant to physics among them are unitary vertex algebras.

The problem of unitarity of highest weight representations of infinite-dimensional
Lie superalgebras has been a hot topic in Mathematics and Physics in the 1980s
and 1990s. Unitary highest weight representations have been classified for
many infinite-dimensional Lie algebras and superalgebras, including affine Lie
algebras [K], Virasoro algebra [FQS85-1,GKO85], N=1, 2, 3 and 4 superconformal al-
gebras[FQS85-2,FQS85-1,FQS86,KR,KW85,KT85,BFK86,GKO86,DPYZ86,ET87,
ET88-1,ET88-2,KS89,M90,FST,Ad01,CLRW]. All these Lie (super)algebras arise nat-
urally in the context of a special class of vertex algebras, called quantum affine W -
algebras, which are obtained by quantum Hamiltonian reduction from affine vertex
algebras.

Quantum affine W -algebras Wk(g, x, f ), are simple vertex algebras constructed in
[KRW03,KW04], starting from a datum (g, x, f ) and k ∈ C. Here g = g0̄ ⊕ g1̄ is a
basic Lie superalgebra, i.e. g is simple, its even part g0̄ is a reductive Lie algebra and g
carries an even invariant non-degenerate supersymmetric bilinear form (.|.), x is an ad–
diagonalizable element of g0̄ with eigenvalues in 1

2Z, f ∈ g0̄ is such that [x, f ] = − f
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and the eigenvalues of ad x on the centralizer g f of f in g are non-positive, and k is non-
critical, i.e. k �= −h∨, where h∨ is the dual Coxeter number of g. Recall that Wk(g, x, f )

is the unique simple quotient of the universal W -algebra, denoted by W k(g, x, f ), which
is freely strongly generated by elements labeled by a basis of the centralizer of f in g
[KW04].

In the paper [KMP23] we focused on minimal data (g, x, f ), i.e. the cases when f is
an even minimal nilpotent element. In this case x and f are contained in a (unique) sub-
algebra s, isomorphic to sl(2). The Virasoro, Neveu–Schwarz and N = 2 algebras cover
all minimal W -algebras (associated withg = sl(2), spo(2|1), sl(2|1) respectively), such
that the 0-eigenspace g0 of ad x is abelian: their unitarity, and that of their irreducible
highest weight modules, has been studied in the papers quoted above. In [KMP23] we
dealt with the cases when g0 is not abelian, and we found all non-critical k ∈ C for
which the simple minimal W -algebras Wk(g, x, f ), denoted henceforth by W min

k (g),
are unitary, along with the (partly conjectural) classification of unitary highest weight
modules over their universal covers W k

min(g). We call this set of values of k the unitarity
range. Recall from [AKMPP18] that a level k is said to be collapsing if W min

k (g) is the
simple affine vertex algebra attached to the centralizer g� in g0 of s. If k is collapsing,
then the unitarity of W min

k (g) reduces to the unitarity of an affine vertex algebras, which
is well-understood. Requiring that the unitary range contains non-collapsing levels im-
poses severe restrictions on the Lie superalgebra g, namely g must be one of the algebras
listed in Table 1. It turns out that the unitarity range (described explicitly in Table 1) is
precisely the set of levels for which the affine vertex subalgebra of W min

k (g) generated
by g� is integrable when viewed as a ĝ�-module.

The analysis of the unitarity of W min
k (g) developed in [KMP23] led to the more gen-

eral problem of classifying unitary highest weight modules over W min
k (g); these results,

regarding modules in the Neveu–Schwarz sector, are summarized in Sect. 2.

In particular, we gave a mathematically rigorous proofs of the classification for the
N = 3 and N = 4 superconformal algebras, due to Miki [M90] and Eguchi-Taormina
[ET87,ET88-1,ET88-2], respectively.

It was conjectured in [KMP23] that actually any unitary highest weight W k
min(g)-

module descends to W min
k (g). In the present paper we prove this conjecture (Theorem 5.1

and Corollary 5.2). The proof is based on the classification of irreducible highest weight
modules over the simple affine vertex algebras Vk(g) for these k (Theorem 3.1). We also
find generators for the maximal ideal I k of W k

min(g), so that W min
k (g) = W k

min(g)/I k

(Theorem 4.1). Finally, for all non-critical k ∈ C in the unitarity range, we classify all
irreducible highest weight modules over W min

k (g) (Theorem 6.1), using the Zhu algebra
method. It follows from this classification that all these vertex algebras have infinitely
many irreducible modules, and therefore are not rational, unless k is a collapsing level.
We also prove that for W min

k (g) all irreducible positive energy modules are highest weight
modules (Theorem 6.9), whereas this statement does not hold for Vk(g) (Remark 3.3).
In the final section, we show examples of positive energy modules over Vk(g) which
are not highest weight and we outline an approach to more general representations of
W min

k (g), showing the existence of non-positive energy modules.

In the present paper we keep notation and terminology of [KMP23]; in particular, N
and Z+ denote the sets of positive and non-negative integer numbers, respectively. The
base field is C.
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2. Setup

2.1. Minimal W -algebras. Let g = g0̄ ⊕ g1̄ be a simple finite-dimensional Lie superal-
gebra over C with a reductive even part g0̄ and a non-degenerate even supersymmetric
invariant bilinear form (.|.). They are classified in [K77]. Let s = {e, x, f } ⊂ g0̄ be a
minimal sl(2)-triple, i.e. [x, e] = e, [x, f ] = − f, [e, f ] = x and the ad x gradation of
g has the form

g =
⊕

j∈ 1
2Z

g j , where g j = 0 for | j | > 1, g1 = Ce, g−1 = C f. (2.1)

Denote by g� the centralizer of s in g0. Let W k
min(g) be the associated to s and k ∈ C

universal quantum affine W -algebra [KW04]. This vertex algebra is strongly generated
by fields J {a}, a ∈ g�, G{v}, v ∈ g−1/2, L of respective conformal weight 1, 3/2, 2
and λ-brackets explicitly given in [KW04]. We normalize the bilinear form (.|.) by the
condition (x |x) = 1

2 , and denote by h∨ the corresponding dual Coxeter number. We
shall assume throughout the paper that k �= −h∨, i.e. k is non-critical. Then the vertex
algebra W k

min(g) has a unique maximal ideal I k , and we let W min
k (g) = W k

min(g)/I k be
the corresponding simple vertex algebra.

2.2. Unitary conformal vertex algebras. Let V be a conformal vertex algebra with con-
formal vector L = ∑

n∈Z Lnz−n−2. Let φ be a conjugate linear involution of V . A
Hermitian form H( . , . ) on V is called φ–invariant if, for all a ∈ V , one has [KMP22]

H(v, Y (a, z)u) = H(Y (A(z)a, z−1)v, u), u, v ∈ V . (2.2)

Here the linear map A(z) : V → V ((z)) is defined by

A(z) = ezL1 z−2L0 g, (2.3)

where
g(a) = (−1)L0+2L2

0φ(a), a ∈ V . (2.4)

We say that V is unitary if there is a conjugate linear involution φ of V and a φ-invariant
Hermitian form on V which is positive definite.

2.3. Unitary minimal W -algebras and unitary highest weight modules. In classifying
the unitary minimal W -algebras W min

k (g), one first considers the levels k when W min
k (g)

is either C or an affine vertex algebra. Such levels are called collapsing levels.
The triples (g, s, k) such that W min

k (g) = C are described in Proposition 3.4 of
[AKMPP18]. Corollary 7.12 of [KMP22] provides the list of triples (g, s, k) such that
W min

k (g) is an affine unitary vertex algebra.
Turning to the non collapsing levels, it is proven in [KMP22, Proposition 7.9] that,

if W min
k (g) is unitary and k is not a collapsing level, then the parity of g is compatible

with the ad x–gradation, i.e. the parity of the whole subspace g j is 2 j mod 2. It follows
from [KRW03,KW04] that for each basic simple Lie superalgebra g there is at most one
minimal datum (g, s) that is compatible with parity, and the complete list of the g which
admit such a datum is as follows:

sl(2|m) for m ≥ 3, psl(2|2), spo(2|m) for m ≥ 0,

osp(4|m) for m > 2 even, D(2, 1; a), F(4), G(3).
(2.5)
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Table 1. Unitarity range, g�, Mi (k), and h∨

g psl(2|2) spo(2|3) spo(2|m), m > 4 D(2, 1; m
n ), m, n ∈ N F(4) G(3)

−k N + 1 1
4 (N + 2) 1

2 (N + 1) mn
m+n N, (m, n) = 1 2

3 (N + 1) 3
4 (N + 1)

g� sl(2) sl(2) so(m) sl(2) ⊕ sl(2) so(7) G2
−Mi (k) k + 1 4k + 2 2k + 1 m+n

n k + 1, m+n
m k + 1 3

2 k + 1 4
3 k + 1

h∨ 0 1
2 2 − 1

2 m 0 −2 − 3
2

Remark 2.1. Recall from [K77] that in the case of D(2, 1; a), the parameter a ranges
over C \ {0,−1} (if a = 0,−1 the superalgebra is not simple); moreover the sym-
metric group S3 generated by the tranformations a 	→ −1 − a, a 	→ 1/a induces Lie
superalgebra isomorphisms.

The even part g0̄ of g in these cases is g� ⊕ s with g� a reductive Lie algebra. In
Propositions 7.1. and 7.2 of [KMP23] it is proven that the conjugate linear involutions
of W min

k (g) that fix the Virasoro vector L are in one-to-one correspondence with the
conjugate linear involutions φ of g that fix pointwise the triple {e, x, f }. It is easy to
see that, in order to have W min

k (g) unitary, φ|g� must be the conjugation corresponding
to a compact real form. Such a conjugate linear involution is called an almost compact
involution and Proposition 3.2 of [KMP23] shows that an almost compact involution φac
exists in all the cases listed in (2.5). Since the cases g = spo(2|m), m = 0, 1, and 2,
correspond to the well understood cases of the simple Virasoro, Neveu–Schwarz and N =
2 vertex algebras, we exclude these g from consideration. For the other cases, Theorem
1.4 of [KMP23] lists all the pairs (g, k) for which the φac-invariant hermitian form on
W min

k (g) is positive definite, making W min
k (g) a unitary vertex algebra. We say that k

belongs to the unitary range if k is not collapsing and W min
k (g) is a unitary vertex algebra.

We have [KMP23]

g� =
⊕

i∈S

g
�
i and g0 = g� ⊕ Cx, (2.6)

where g�
i are simple summands of g�, and either S = {1} or S = {1, 2}; the latter happens

only for D(2, 1; m
n ). Let h� be a Cartan subalgebra of g�, then h = h� + Cx is a Cartan

subalgebra of g0 and of g. Let θ ∈ h∗ be the root of e, so that (θ |θ) = 2, and denote by
θi ∈ (h�)∗ the highest root of g�

i . Denote by Mi (k) the levels of the affine Lie algebras

ĝ
�
i in W k

min(g). Then we have for i ∈ S [KMP23]

Mi (k) = 2k

(θi |θi )
+ χi , (2.7)

χi = −ξ(θ∨
i ), (2.8)

where ξ ∈ (h�)∗ is the highest weight of the g�-module g−1/2 (this module is irreducible,
except for g = psl(2|2), when its two irreducible components turn out to be isomorphic).
In [KMP23] it is shown that χi = −2 when g = spo(2|3), and χi = −1 otherwise.

In Table 1 we describe the unitary range in all cases, along with the subalgebras g�,
the numbers Mi (k), and the dual Coxeter numbers h∨.

We also make a specific choice for a set of simple roots � of g in each case. In
Table 2 we list our choice of � = {α1, . . .} of g, ordered from left to right, as well as
the invariant bilinear form (.|.) on h∗, and the root θ .
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Table 2. Simple roots �, invariant form (.|.), and the highest root θ of g

g � (.|.) θ

psl(2|2) {ε1 − δ1, δ1 −
δ2, δ2 − ε2}

(εi |ε j ) = δi, j =
−(δi |δ j )

ε1 − ε2

(εi |δ j ) = 0
spo(2|2m + 1), m ≥ 1 {δ1 − ε1, ε1 −

ε2, . . . , εm−1 −
εm , εm }

(εi |ε j ) =
− 1

2 δi, j , (δ1|δ1) =
1
2 , (εi |δ1) = 0

2δ1

spo(2|2m), m ≥ 3 {δ1 − ε1, ε1 −
ε2, . . . , εm−1 −
εm , εm−1 + εm }

(εi |ε j ) =
− 1

2 δi, j , (δ1|δ1) =
1
2 , (εi |δ1) = 0

2δ1

D(2, 1; a) {ε1 − ε2 −
ε3, 2ε2, 2ε3}

(ε1|ε1) = 1
2 , (ε2|ε2) =

−1
2(1+a)

, (ε3|ε3) = −a
2(1+a)

2ε1

(ε1|ε2) =
(ε1|ε3) =
(ε2|ε3) = 0

F(4) { 1
2 (δ1 − ε1 −

ε2 − ε3), ε3, ε2 −
ε3, ε1 − ε2}

(εi |ε j ) =
− 2

3 δi, j , (δ1|δ1) =
2

δ1

(εi |δ1) = 0
G(3) {δ1 + ε3, ε1, ε2 −

ε1}
(εi |ε j ) =
1−3δi, j

4 , (δ1|δ1) =
1
2

2δ1

(εi |δ1) =
0, ε1 + ε2 + ε3 = 0

Let �� be the set of roots of (g�, h�). We made our choice of � so that �� = �∩��

is a set of simple roots for g�. Write g� = n
�
− ⊕h� ⊕n

�
+ for the triangular decomposition

of g� corresponding to choosing �� as a set of simple roots. Note that α1 is an isotropic
root, and that we have

(α1)|h� = −ξ. (2.9)

We parametrize the highest weight modules for W k
min(g) following Section 7 of [KW04].

For ν ∈ (h�)∗ and �0 ∈ C, let LW (ν, �0) denote the irreducible highest weight W k
min(g)–

module with highest weight (ν, �0) and highest weight vector vν,�0 . This means that one
has

J {h}
0 vν,�0 = ν(h)vν,�0 for h ∈ h�, L0vν,�0 = �0vν,�0 ,

J {u}
n vν,�0 = G{v}

n vν,�0 = Lnvν,�0 = 0 for n > 0, u ∈ g�, v ∈ g−1/2,

J {u}
0 vν,�0 = 0 for u ∈ n

�
+.

Let P+ ⊂ (h�)∗ be the set of dominant integral weights for g� and let

P+
k = {

ν ∈ P+ | ν(θ∨
i ) ≤ Mi (k) for all i ≥ 1

}

. (2.10)

Definition 2.2. An element ν ∈ P+
k is called an extremal weight if ν + ξ doesn’t lie in

P+
k . Equivalently, ν is extremal if

ν(θ∨
i ) > Mi (k) + χi for some i ∈ S. (2.11)
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For ν ∈ P+, introduce the following number [KMP23]

A(k, ν) = (ν|ν + 2ρ�)

2(k + h∨)
+

(ξ |ν)

k + h∨ ((ξ |ν) − k − 1), (2.12)

where 2ρ� is the sum of positive roots of g�. The main result of [KMP23] is the following
theorem.

Theorem 2.3. Let LW (ν, �0) be an irreducible highest weight W k
min(g)–module for

g = psl(2|2), spo(2|m) with m ≥ 3, D(2, 1; a), F(4) or G(3).

(1) This module can be unitary only if the following conditions hold:
(a) Mi (k) are non-negative integers,
(b) ν(θ∨

i ) ≤ Mi (k) for all i ,
(c)

�0 ≥ A(k, ν), (2.13)

and equality holds in (2.13) if ν(θ∨
i ) > Mi (k) + χi for i = 1 or 2.

(2) This module is unitary if the following conditions hold:
(a) Mi (k) + χi ∈ Z+ for all i ,
(b) ν(θ∨

i ) ≤ Mi (k) + χi for all i (i.e. ν is not extremal),
(c) inequality (2.13) holds.

Applying this theorem to LW (0, 0) = W min
k (g) one recovers the unitarity range dis-

played in Table 1.

2.4. A technical result. Let � be the set of roots of g and let ̂� = {α0 = δ − θ, α1, . . .}
be a set of simple roots of the affine Lie superalgebra ĝ. For an isotropic root β ∈ ̂�,
we denote by rβ(̂�) the set of simple roots in the set ̂� of roots of ĝ obtained by the
corresponding odd reflection. We denote by xα a root vector of ĝ, attached to α ∈ ̂�,
and by w. the shifted action of ̂W : w.λ = w(λ + ρ̂) − ρ̂.

Lemma 2.4. [KMP23, Lemma 11.3] Let ̂�′ be a set of simple roots for ̂�. Let M be a
ĝ–module and assume that m ∈ M is a singular vector with respect to ̂�′. If α ∈ ̂�′ is
an isotropic root and x−αm �= 0, then x−αm is a singular vector with respect to rα(̂�′).

3. Classification
of Irreducible Highest Weight Representations of Vk(g) in the Unitary Range

Denote by V k(g) and Vk(g) the universal and simple affine vertex algebras of level k
associated to g. Denote by L(λ) the irreducible highest weight V k(g)-module of highest
weight λ. For h ∈ C and ν ∈ (h�)∗, set

ν̂h = k�0 + hθ + ν. (3.1)

Note that every highest weight module for V k(g) has highest weight ν̂h for some
ν ∈ (h�)∗ and h ∈ C.

Theorem 3.1. Let k be in the unitary range. Then, up to isomorphism, the irreducible
highest weight Vk(g)-modules are as follows:

(1) L (̂νh) with ν ∈ P+
k non-extremal and h ∈ C arbitrary;
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(2) L (̂νh) with ν extremal and h from the set Ek,ν = {(ξ |ν), k + 1 − (ξ |ν)}.
Lemma 3.2. Let k be in the unitary range. Then Vk(g) is integrable for ĝ�.

Proof of Lemma 3.2. It is enough to check that (xθi )
N
(−1)1 = 0 for some N ∈ N and all i .

Using Table 2 one easily checks that θ −α1 is a root of g. Since (xα1)(0)1 = 0, 1 is a sin-
gular vector in V k(g) also for rα1(

̂�). Since (xθ−α1)(−1)1 is nonzero in V k(g), it follows
from Lemma 2.4 that (xθ−α1)(−1)1 is a singular vector in V k(g) for ̂�′ = rα0+α1rα1(

̂�).
Note that, since k �= 0,

(x−θ+α1)(1)(xθ−α1)(−1)1=[(x−θ+α1)(1), (xθ−α1)(−1)]1=((hθ−α1)(0)+k(x−θ+α1 |xθ−α1))1
= k(x−θ+α1 |xθ−α1)1 = γ 1, γ �= 0.

In particular, (xθ−α1)(−1)1 generates V k(g).
Let �′ = k�0 −α0 −α1 = k�0 −δ+θ −α1 be the weight of (xθ−α1)(−1)1. By a case-

wise verification one shows that the roots ηi := δ − θi are in ̂�′ and, by (2.7) and (2.8),

(�′|η∨
i ) = 2

(θi |θi )
k + (α1|θ∨

i ) = Mi (k) − χi − (ξ |θ∨
i ) = Mi (k).

Hence the vector (xθi )
Mi (k)+1
(−1) (xθ−α1)(−1)1 is singular in V k(g) for ̂�′. Since the vector

(xθ−α1)(−1)1 generates V k(g), it follows that Vk(g) is ĝ�–integrable. ��
Proof of Theorem 3.1. In [GK15, Sections 4 and 6] the characters of highest weight
ĝ-modules with highest weight k�0 have been computed using only their integrability
with respect to ĝ�, which implies that such modules are irreducible. It was deduced
from this in [GS18, Theorem 5.3.1] that, if Vk(g) is integrable as a ĝ�-module, then the
V k(g)–modules, which are integrable over ĝ�, descend to Vk(g).

By Lemma 3.2, we are left with proving that the modules listed in (1), (2) are ĝ�–
integrable. Let v be a highest weight vector for L (̂νh).

Case (1) ν is not extremal, h ∈ C. If (̂νh |α1) �= 0 and (̂νh − α1|α0 + α1) �= 0,
then (xθ−α1)(−1)(x−α1)(0)v is a singular vector with respect to the set of simple roots
rα0+α1rα1(

̂�). Moreover, by (2.7), (2.8), and (2.9) we have for i ∈ S

mi := (̂νh − 2α1 − α0|η∨
i ) = Mi (k) − χi + 2(α1|θ∨

i ) − (ν|θ∨
i )

= Mi (k) − χi − 2(ξ |θ∨
i ) − (ν|θ∨

i )

= Mi (k) + χi − (ν|θ∨
i ) ∈ Z+ (3.2)

by (2.11). Since ηi ∈ rα0+α1rα1(
̂�), we see that, in L (̂νh),

(xθi )
mi +1
(−1) (xθ−α1)(−1)(x−α1)(0)v = 0,

hence L (̂νh) is ĝ�–integrable.
If (̂νh |α1) = 0, since (̂νh |α0 + α1) = (̂νh |α0) �= 0, we have that (xθ−α1)(−1)v is a

singular vector for rα0+α1rα1(
̂�). Moreover,

(̂νh − α1 − α0|η∨
i ) = Mi (k) − (ν|θ∨

i ) ∈ Z+ (3.3)

since ν ∈ P+
k . We can therefore conclude as above that L (̂νh) is ĝ�–integrable.
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Finally, if (̂νh |α1) �= 0 and (̂νh −α1|α0 +α1) = 0, then (x−α1)(0)v is a singular vector
for rα0+α1rα1(

̂�). Moreover,

(̂νh − α1|η∨
i ) = Mi (k) − (ν|θ∨

i ) ∈ Z+, (3.4)

and we conclude as in the previous case.
Case (2) ν is extremal, h ∈ Ek,ν . If h = (ξ |ν), then (̂νh |α1) = 0. We can then con-

clude as in the non-extremal case. If h = k +1−(ξ |ν), we may assume that (̂νh |α1) �= 0.
Then, since (θ |α1) = 1, we have

(̂νh − α1|α0 + α1) = (k�0 + (k + 1 − (ξ |ν))θ + ν − α1|α0 + α1)

= k − 2(k + 1 − (ξ |ν)) + 1 + (k + 1 − (ξ |ν)) + (ν|α1) = 0.

We can therefore conclude as in the non-extremal case.
We are left with proving that any irreducible highest weight module for Vk(g) is of the
form (1) or (2). Let L (̂νh) be an irreducible highest weight Vk(g)-module. We prove
that, necessarily, ν ∈ P+

k . Indeed, the action of g� on a highest weight vector v should be
locally finite, so that ν ∈ P+. If h /∈ Ek,ν then (̂νh |α1) �= 0 and (̂νh − α1|α0 + α1) �= 0.
It follows that (xθ−α1)(−1)(x−α1)(0)v is a highest weight vector with respect to the set of
simple roots rα0+α1rα1(

̂�) of highest weight �′ = ν̂h − α0 − 2α1. If L (̂νh) is integrable
with respect to ĝ�, the computation done in (3.2) shows that mi should be a non-negative
integer, hence

(ν|θ∨
i ) ≤ Mi (k) + χi ≤ Mi (k).

It follows that ν ∈ P+
k and it is not extremal, i.e. L (̂νh) is of type (1).

If h = (ξ |ν) (resp. h = k + 1 − (ξ |ν)), then (̂νh |α1) = 0 (resp. (̂νh |α0 + α1) = 0 )
and as in (3.3) (resp. (3.4)) we get that ν ∈ P+

k . In particular, L (̂νh) is of type (1) if ν is
not extremal and of type (2) if ν is extremal. ��
Remark 3.3. All modules listed in Theorem 3.1 are of positive energy (the definition is
recalled in Sect. 6), but there might exist positive energy Vk(g)–modules outside of this
list. In § 7.1 we present arguments for this claim in the case g = spo(2|3), k = −m/4,
and m ≥ 4 even.

One of the referees pointed out that in [GS18, 5.6.4] the authors give an example
of an irreducible positive energy module which is not a highest weight module. Similar
examples, with g as in Table 1 and k in the unitarity range, are given in [GS18, 5.6.6]
(note that in [GS18] a normalization of the bilinear form different from ours is used).

Let us explain what happens in our situation. If M is a positive energy module for a
vertex algebra V , we set Mtop = Zhu(M), where Zhu(−) is the Zhu functor between
positive energy modules and modules for the Zhu algebra A(V ). We start with the Vk(g)–
module L (̂νh) with ν ∈ P+

k non-extremal and h ∈ C arbitrary, from Theorem 3.1. Then
L (̂νh)top contains an irreducible g0̄–submodule E = U (g0̄).v, where v is the highest
weight vector of L (̂νh). Next we consider the Kac module E1, which is a suitable quo-
tient of I ndg

g0̄
E . As mentioned in [GS18], if all Mi (k) are large enough, we get that E1

is a module for Zhu’s algebra A(Vk(g)). Using Zhu’s functor we conclude the following:

• there exists a positive energy Vk(g)–module ˜L (̂νh) such that ˜L (̂νh)top = E1.
• the module ˜L (̂νh) is indecomposable and has an irreducible subquotient isomorphic
to L (̂νh).
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Hence non-highest weight positive energy modules for Vk(g) exist. But still these mod-
ules are weight modules with finite-dimensional weight spaces.

Let us mention one important consequence. Take h ∈ C such that E is finite-
dimensional, irreducible module and assume that Mi (k) are large enough. Then E1
is an indecomposable finite-dimensional module for Zhu’s algebra A(Vk(g)), and there-
fore the category K Lk [AMP22] is not semisimple. In the case g = spo(2|3), one can
show that the category K L−m/4(g) is not semisimple for m ≥ 4.

4. Explicit Description of the Maximal Ideal of Wk
min(g)

Let, as before, � = {α1, . . .} be the set of simple roots for g given in Table 2, and I k be
the maximal ideal of W k

min(g). Also denote by J k the maximal ideal of V k(g). Set

vi = (J
{xθi }
(−1) )

Mi (k)+11, i ∈ S. (4.1)

If an irreducible highest weight W k
min(g)–module LW (ν, �0) is unitary, then, restricted to

the affine subalgebra V βk (g�) (see [KMP23, (7.4), (7.5)] for the definition of this subalge-
bra), it is unitary, hence a direct sum of irreducible integrable highest weight ĝ�–modules
of levels Mi (k), i ∈ S. But it is well-known [FZ92,KWang92] that all these modules
descend to the simple affine vertex algebra Vβk (g

�), and are annihilated by the elements
vi . In particular, applying this argument to W min

k (g) = LW (0, 0), we deduce that

vi ∈ I k . (4.2)

Theorem 4.1. Let k be in the unitary range. The maximal ideal I k is generated by the
singular vector

ṽ1 = (J
{xθ1 }
(−1) )M1(k)−1G

{x−α1 }
(−1) 1 (4.3)

if g = spo(2|3) and by the singular vectors vi , i ∈ S (cf. (4.1)) in the other cases.

We split the proof according to whether g �= spo(2|3) or g = spo(2|3).

4.1. g �= spo(2|3). In this case χi = −1, i ∈ S.

Lemma 4.2. Set ηi = δ − θi , i ∈ S. One has

dim V k(g)k�0− jηi = 1 for all j ≥ 0, (4.4)

dim Vk(g)k�0− jηi = 1 if and only if j ≤ s, (4.5)

where

s = (k�0|η∨
i ). (4.6)

In particular, for each M ∈ Z≥0, the vector (x−θ+α1)(1)(xθi )
M
(−1)(xθ−α1)(−1)1 is a mul-

tiple of (xθi )
M
(−1)1.
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Proof. Any basic Lie superalgebra g different form spo(2|3) admits a set of simple roots
�′′ with the property that θi is the maximal root, hence the root ηi = δ − θi lies in ̂�′′.
Since V k(g) is the vacuum module, xα1 = 0 for any root α ∈ �, in particular xα1 = 0 for
any α ∈ �′′. Since (x−θi )(1)1 = 0, 1 is a singular vector also for ̂�′′. Since ηi is simple

in ̂�′′, it is clear that V k(g)k�0− jηi ⊂ C(xθi )
j
(−1)1, and indeed dim V k(g)k�0− jηi = 1,

since (xθi )
j
(−1)1 �= 0 in V k(g). This proves (4.4). By Lemma 3.2, Vk(g) is integrable

for ĝ�, in particular, (xθi )
j
(−1)1 = 0 if and only if j > (k�0|η∨

i ), hence (4.5) holds. The
final claim follows from (4.4) by comparing weights. ��

Introduce the following vectors in V k(g), where i ∈ S:

wi = (xθi )
Mi (k)+1
(−1) (xθ−α1)(−1)1, (4.7)

si = (xα1)(0)wi , (4.8)

ui = (x−θ+α1)(1)wi . (4.9)

Proposition 4.3. The vectors si are singular in the universal affine vertex algebra V k(g)
and generate J k .

Proof. Recall that α0 = δ − θ . Since (xα1)(0)1 = 0, 1 is singular also for rα1(
̂�).

Since (xθ−α1)(−1)1 is nonzero, it follows from Lemma 2.4 that (xθ−α1)(−1)1 is singular
in V k(g) for ̂�′ = rα0+α1rα1(

̂�). Let �′ = k�0−δ+θ−α1 be the weight of (xθ−α1)(−1)1.
Since δ − θi is in ̂�′ and, by (2.7) and (2.8),

(�′|(δ − θi )
∨) = 2

(θi |θi )
k + (α1|θ∨

i ) = Mi (k) − χi − (ξ |θ∨
i ) = Mi (k),

we see that wi is singular for ̂�′. Since V k(g)/〈wi 〉 is integrable with respect to ĝ�, it
is irreducible, because the computation of its character formula in [GK15] did not use
irreducibility, but only integrability. Hence the vectors wi generate the maximal proper
ideal of V k(g).

The weight of ui is k�0 − s′ηi , where

s′ := 1 + (�′|η∨
i ) = 1 + (k�0|η∨

i ) − (α0 + α1|η∨
i ) = 1 + s + (α1, θ

∨
i ),

and s is defined in (4.6). Since (α1|θ∨
i ) ≤ −1, we have s′ ≤ (k�0|η∨

i ), so (J k)k�0−s′ηi =
0 by Lemma 4.2 (2). Since wi ∈ J k , we have ui ∈ J k , so ui = 0.

We now observe that the fact that ui = 0 implies that wi is a singular vector for
r−α0−α1(

̂�′)= rα1(
̂�). Indeed, if β �= α0+α1 is a simple root for r−α0−α1(

̂�′), then it is a
positive root for ̂�′, hence, since wi is singular for ̂�′, (xβ)(0)(xθi )

Mi (k)+1
(−1) (xθ−α1)(−1)1 =

0. Observe that, since α0 = δ − θ , ui = 0 simply means that

(x−θ+α1)(1)wi = 0.

Having shown that wi are singular for rα1(
̂�), it follows that the si are either zero or

singular vectors for ̂�.
Let �′′′

i = k�0 − (Mi (k) + 1)(δ − θi ) − δ + θ − α1 be the weight of wi . Since k ≤ 0
(see Table 1), we have

(�′′′
i |α1) = ((Mi (k) + 1)θi |α1) + 1 = −k + 1 > 0,
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so,

(x−α1)(0)si = c(−k + 1)wi − (xα1)(0)(x−α1)(0)wi , where c ∈ C.

Since wi are singular vectors for rα1(
̂�), we see that

(x−α1)(0)wi = 0.

It follows that (x−α1)(0)si are nonzero multiples of wi , hence the si generate the maximal
proper ideal of V k(g), since the wi do. ��
Proof of Theorem 4.1 for g �= spo(2|3).

Since L(k�0) = V k(g)/J k is irreducible, H0 is exact on categoryO and H0(L(k�0))

�= 0, by [Ar05], we have that the W k
min(g)-module H0(V k(g))/H0(J k) irreducible,

so I k = H0(J k). Assume first that |S| = 1. From Proposition 4.3, we deduce that
I k = H0(J k) is a highest weight module. Due to [KRW03, (2.19)] its highest weight is

((M1(k) + 1)θ1, M1(k) + 1). (4.10)

By (4.2), v1 lies in I k ; moreover, it has weight (4.10), hence it is a highest weight vector.
In particular it is singular and generates I k . When |S| = 2, g is of type D(2, 1; m

n )

and k = mn
m+n q, q ∈ N. H0(J k) is the sum of two highest weight modules of weights

(mqθ1, mq), (nqθ2, nq). By Remark 2.1, we can assume m > n; then v2 is singular,
by the above comparing weight argument. We should prove that v1 is not in the sub-
module generated by v2. Otherwise, we can reach v1 applying to v2 a combination of
operators Lm, m < 0, J {u}

r , u ∈ g�, r ≤ 0, G{v}
s , v ∈ g−1/2, s < 0. We can clearly

assume that the v’s appearing are root vectors; let βv be the corresponding root, so
that ηv := (βv)|h� is the corresponding weight. Let � = {α1, α2, α3} with α1 odd.

Then ηv ∈ ±{α2−α3
2 , α2+α3

2 }. Define the weight of G{v}
s to be the pair (ηv,−s); like-

wise, if u is a root vector of g�, and ηu is the corresponding root, define the weight of
J {u}

r as (ηu,−r). Finally, declare that the weight of Ln is (0,−n). Let �W be the set
of weights. Note that any element of �W is a positive integral linear combination of
�W = {(−α2, 0), (−α3, 0), ( α2+α3

2 , 1
2 )}. It follows that

(mqα2, mq) − (nqα3, nq) = a1(−α2, 0) + a2(−α3, 0) + a3(
α2+α3

2 , 1
2 ), ai ∈ Z+,

so that a1 = −nq, a2 = mq, a3 = 2(m −n)q. Since a1 is negative, we have the required
contradiction.

4.2. g = spo(2|3). Introduce the following vector

r1 = (xα1)(0)u1 = (xα1)(0)(x−θ+α1)(1)w1. (4.11)

Proposition 4.4. The vector r1 is singular in the universal affine vertex algebra V k(g)
and generates J k .

Proof. As in the proof of Proposition 4.3, the vector w1 generates the maximal proper
ideal of V k(g). Let μ be weight of w1. An explicit calculation shows that (μ|α0 + α1) =
−k − 1

2 �= 0, hence u1 �= 0, and it is singular for rα1
̂�. So r1 is either 0 or singular for

̂�. The first possibility does not occur, since

(k�0 − (M1(k) + 1)(δ − θ1)|α1) = 1
2 (M1(k) + 1) �= 0.

The claim follows. ��
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Proof of Theorem 4.1 for g = spo(2|3).
Arguing as in the previous subsection, by Proposition 4.4 it follows that the maximal

ideal in W k
min(g) generated by a singular vector v of weight (2(m − 2)ω1, m − 3/2),

where ω1 is the fundamental weight for sl2 and m = M1(k)+2. We observe that also the
weight of ṽ1 (cf. (4.3)) is (2(m −2)ω1, m −3/2). Moreover, using (4.2) and the relations

(G{x−α1 })(0)ṽ1 = c1v1, (G{x−ξ })(1)v1 = c2ṽ1, where c1, c2 ∈ C \ {0},

we see that ṽ1 ∈ I k , hence it is a multiple of v, so it is singular and generates I k . ��

5. Descending from Wk
min(g) to Wmin

k (g)

Let H0 be the quantum Hamiltonian reduction functor from the categoryOk of ĝ-modules
of level k to the category of W k

min(g)-modules [KW04]. By [Ar05], it is exact. As in
(3.1), for ν ∈ P+

k and h ∈ C let ν̂h = k�0 + hθ + ν. By [Ar05,KW04], H0(L (̂νh)) = 0
if ν̂h(α∨

0 ) = k −2 h ∈ Z≥0, and H0(L (̂νh) = LW (ν, �0(h)) if ν̂h(α∨
0 ) = k −2 h /∈ Z≥0,

where

�0(h) = (̂νh |̂νh + 2ρ̂)

2(k + h∨)
− h, (5.1)

and LW (ν, �0) is the irreducible highest weight W k
min(g)-module with highest weight

(ν, �0) [KMP23,KW04].

Theorem 5.1. Let k be in the unitary range. Then all irreducible highest weight W k
min(g)–

modules LW (ν, �0) with �0 ∈ C when ν ∈ P+
k is not extremal, and �0 = A(k, ν)

otherwise, descend to W min
k (g).

Proof. If k − 2h ∈ Z≥0, then, by [KMP23, Lemma 11.8], for h′ = k + 1 − h we have
�0 := �0(h) = �0(h′). Since k − 2 h′ /∈ Z+ we conclude that H0(L (̂νh′)) = LW (ν, �0).

So

for each �0 there is h̃ ∈ C such that LW (ν, �0) = H0(L (̂νh̃)). (5.2)

By Theorem 3.1, if ν is not extremal, then L (̂νh̃) is a Vk(g)–module, hence LW (ν, �0(h̃))

is a W min
k (g)-module. Note that h ∈ Ek,ν if and only if �0(h) = A(k, ν). It follows from

Theorem 3.1 that, if ν is extremal, then L (̂νh̃) is a Vk(g)–module, hence LW (ν, A(k, ν))

is a W min
k (g)-module. ��

A simple application of Theorem 5.1 is the proof of Conjecture 4 in [KMP23].

Corollary 5.2. Any unitary W k
min(g)–module LW (ν, �0) descends to W min

k (g).

Proof. By Theorem 1.3 (1) of [KMP23] (see Theorem 2.3 (1)), the unitary representa-
tions of W k

min(g) occur as representations listed in Theorem 5.1. ��
Remark 5.3. Conjecture 2 from [KMP23] that all W min

k (g)-modules LW (ν, A(k, ν)) for
extremal ν are unitary is still an open problem, except for g = spo(2|3) and psl(2|2).
We can prove this statement also when g = spo(2|n) and k = −1.
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6. Classification of Irreducible Highest Weight Representations of Wmin
k (g)

in the Unitarity Range

The main result of this section is the following theorem.

Theorem 6.1. Let k be in the unitary range. The modules appearing in Theorem 5.1 form
the complete list of inequivalent irreducible highest weight representations of W min

k (g).

Remark 6.2. Combining (5.2) and Theorem 6.1, we have proven that the irreducible
highest weight modules of W min

k (g) are precisely the non-zero images of the irreducible
Vk(g) under Hamiltonian reduction.

We need to recall some well-known facts about Zhu algebras in the super case
[KWang92].
Let V = ⊕

n∈ 1
2Z

Vn be a conformal vertex algebra, graded by the eigenspaces of L0, with

the parity p(Vn) ≡ 2n mod 2. For a ∈ Vn we write deg a = n. Define bilinear maps
∗ : V × V → V, ◦ : V × V → V , setting

a ∗ b =
{

Resz

(

Y (a, z) (z+1)deg a

z b
)

if a, b ∈ V0,

0 if a or b ∈ V1.

a ◦ b =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Resz

(

Y (a, z) (z+1)deg a

z2 b
)

for a ∈ V0,

Resz

(

Y (a, z) (z+1)
deg a− 1

2
z2 b

)

for a ∈ V1.

Denote by O(V ) ⊂ V the C-span of elements of the form a ◦ b, and by Zhu(V ) the
quotient space V/O(V ). Then Zhu(V ) is an associative algebra. Recall from [FZ92,
(3.1.12)] or [KWang92, Lemma 1.1.(3)] that if [a] denotes the class of an element a ∈ V
in Zhu(V ), then for all a, b ∈ V0 the following relations hold:

[a(−1)1] ∗ [b] = [(a(−1) + a(0))b], [b] ∗ [a(−1)1] = [a(−1)b]. (6.1)

Recall that a module M over a conformal vertex algebra is called a positive energy
module if L0 is diagonalizable on M and all its eigenvalues lie in h+R≥0 for some h ∈ C:

M =
⊕

j∈h+R≥0

M j , Mh �= {0}.

The subspace Mh is called the top component of M .
Recall [FZ92,KWang92] that there is one-to-one correspondence between irreducible

positive energy V –modules and irreducible modules over the Zhu algebra Zhu(V ),
which associates to a V -module M the Zhu(V )-module Mh . Namely, to Y M (a, z) = ∑

j

aM
j z− j−deg a one associates aM

0 |Mh
. By the above construction of the Zhu algebra, it fol-

lows from [KW04, Theorem 7.1] that

Zhu(W k
min(g)) � C[L] ⊗ U (g�). (6.2)

Under the correspondence between irreducible positive energy W k
min(g)-modules and

irreducible modules over its Zhu algebra, the module LW (ν, h) goes to the irreducible
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highest weight g�-module with highest weight ν on which L acts by the scalar h, which
we denote by V (ν, h). It follows from (6.2) that

Zhu(W min
k (g)) � (

C[L] ⊗ U (g�)
)

/J (g), (6.3)

where J (g) is a 2-sided ideal of the associative algebra C[L] ⊗ U (g�). So any non-zero
element in J (g) imposes a condition on the highest weight (ν, h) of the Zhu(W min

k (g))-
module V (ν, h).
Proof of Theorem 6.1: the case g = spo(2|3).

First we present a proof in the case g = spo(2|3), which gives a motivation for the
proof in the general case.

Let k = −m
4 , where m ∈ Z≥3, so that M1(k) = m − 2 and P+

k = { jω1 | 0 ≤ j ≤
m − 2} (here ω1 is the fundamental weight for g� ∼= sl2). Set Wk = W k

min(spo(2|3)),

Wk = W min
k (spo(2|3)).

Denote by Lk[ j, q] the irreducible highest weight Wk-module of level k generated
by a highest weight vector v j,q , such that for n ∈ Z≥0:

Lnv j,q = qδn,0v j,q , G+
(n+1/2)v j,q = G−

(n+1/2)v j,q = G0
(n+1/2)v j,q = 0

J 0
(n)v j,q = jδn,0v j,q , J +

(n)v j,q = J−
(n+1)v j,q = 0.

Here we use notation for the generators of Wk as in [KW04, Section 8.5]. Note that
U (sl(2))v j,q = V ( jω1) is the irreducible highest weight sl(2)–module with highest
weight jω1.

Lemma 6.3. Set � = −m−2
4 ([L] + [J 0]

4 ) + 1
8 [J +] ∗ [J−]. Then

� ∗ [J−]m−3 ∈ J (g). (6.4)

Proof. By Theorem 4.1, we have that (J−)m−3
(−1)G− ∈ I k , hence [G+

(0)(J−)m−3
(−1)G−] = 0.

Since G+
0 acts as a derivation, using (6.1) we get that

0 = [(G+)(0)(J−)m−3
(−1)G−] = [(G0)(−1)(J−)m−4

(−1)G−] + · · · +

[(J−)m−5
(−1)(G

0)(−1)(J−)(−1)G
−] + [(J−)m−4

(−1)(G
+)(0)G

−]
= (m − 3)[(J−)m−4

(−1)(G
0)(−1)G

−] + (m−3)(m−4)
2 [(J−)m−5

(−1)(G
−)(−2)G

−]
+ [(J−)m−4

(−1)(G
+)(0)G

−]
= (m − 3)[(G0)(−1)G

+] ∗ [J−]m−4 + (m−3)(m−4)
2 [(G−)(−2)G

−] ∗ [J−]m−5

+ [(G+)(0)G
−] ∗ [J−]m−3. (6.5)

Using λ–bracket formulas from [KW04, Section 8.5] we get that the following relations
hold in Wk :

(G+)(0)G
− = 2k+1

2 L + 1
8 : J− J + : + k+1

4 ∂ J 0,

(G0)(0)G
− = 1

8 : J− J 0 : − k+1
2 ∂ J−,

(G−)(0)G
− = − 1

4 : J− J− : .
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This implies, in Zhu(Wk),

[G+
(0)G

−] = 2k+1
2 ([L] + 1

4(2k+1)
[J +] ∗ [J−] − k+1

2(2k+1)
[J 0]), (6.6)

[G0
(−1)G

−] = −[(G0)(0)G
−] = − 1

8 [J 0] ∗ [J−] − k+1
2 [J−] = − 1

8 ([J 0] + 4(k + 1)) ∗ [J−],
(6.7)

[G−
(−2)G

−] = −[(G−)(−1)G
−] = [(G−)(0)G

−] = − 1
4 [J−] ∗ [J−]. (6.8)

Substituting (6.6), (6.7), (6.8) into (6.5) and collecting [J−]m−3, we get (6.4), where

� = 2k+1
2 [L] + 1

8 [J +] ∗ [J−] − k+1
4 [J 0] − (m−3)(m−4)

8 − m−3
8 ([J 0] + 4(k + 1)).

= −m−2
4 [L] + 1

8 [J +] ∗ [J−] + m−4
16 [J 0] − (m−3)(m−4)

8 − m−3
8 ([J 0] − m + 4)

= −m−2
4 [L] − m−2

16 [J 0] + 1
8 [J +] ∗ [J−].

��
Proposition 6.4. Let Lk[ j, q] be an irreducible highest weight Wk–module. Then it is
isomorphic to exactly one of the following modules:

• Lk[ j, q] with 0 ≤ j ≤ m − 4 and q ∈ C;
• Lk[m − 3, m−3

4 ];
• Lk[m − 2, m−2

4 ].
Proof. First, j ∈ {0, . . . , m −2} and the top component is Lk[ j, q]top = V ( jω1)⊗Cq ,

where V ( jω1) is the ( j + 1)–dimensional irreducible sl(2)–module with highest weight
jω1, and Cq the 1-dimensional C[L]–module on which L0–acts as multiplication with
q ∈ C. If 0 ≤ j ≤ m − 4, then [J−]m−3 acts trivially on Lk[ j, q]top for each q ∈ C,
hence the same holds for the action of [G+

(0)G−] ∗ [J−]m−3. If m − 3 ≤ j ≤ m − 2,
then (J−)m−3

(0) acts non-trivially on Lk[ j, q]top. Hence there exists w ∈ Lk[ j, q]top such

that w′ = (J−)m−3
(0) w is a lowest weight vector for sl(2), i.e.

(J 0)(0)w
′ = − jw′, (J−)(0)w

′ = 0.

Then we have, by Lemma 6.3:

0 = (� ∗ [J−]m−3)w

=
(

−m−2
4 (L0 + 1

4 (J 0)(0)) + 1
8 (J +)(0)(J−)(0)

)

(J−)m−3
(0) w

=
(

−m−2
4 (L0 + 1

4 (J 0)(0)) + 1
8 (J +)(0)(J−)(0)

)

w′

= −m−2
4 (q − j

4 )w′,

hence, when j = m − 3 or m − 2, we have that q = j
4 . ��

Since the modules appearing in Theorem 6.1 in case of g = spo(2|3) are exactly
those listed in Proposition 6.4, Theorem 6.1 is proved in this case.
Proof of Theorem 6.1: the case g �= spo(2|3).

We first illustrate the strategy of the proof in the case g = psl(2|2). We use notation
of [KW04, Section 8.4].

Set Wk
min = W k

min(psl(2|2)) and Wmin
k = W min

k (psl(2|2)).
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Let m = −k − 1 = M1(k) ∈ Z>0. Then Vk(sl(2)) is a vertex subalgebra of Wmin
k

generated by J±, J 0. The odd generators of conformal weight 3/2 are G±, G
±

. By
Theorem 4.1 the maximal ideal I k is generated by the singular vector (J +)m+1

(−1)1. Then

(G−)(0)(G
−
)(0)(J +

(−1))
m+11 ∈ I k . By the λ-bracket formulas given in [KW04, Section

8.4] we have

(G−)(0)G
−
(0)(J +

(−1))
m+11 = (m + 1)(G−)(0)(J +

(−1))
m G

+

= −(m + 1)m(J +
(−1))

m−1(G+)(−1)G
+

+ (m + 1)(J +
(−1))

m(G−)(0)G
+
.

(6.9)

Using the definition of the Zhu algebra Zhu(Wk
min), we have that for G = G± or

G = G
±

and each v ∈ Wk
min:

Resz
(z + 1)deg G−1/2

z
G(z)v = (G(−1) + G(0))v = 0 in Zhu(Wk

min). (6.10)

Using (6.10) and the λ-bracket formulas given in [KW04, Section 8.4], we get

[(G+)(−1)G
+] = −[(G+)(0)G

+] = −[(J +)(−2)1] = [J +], (6.11)

[(G−)(0)G
+] = [L] − 1

2 [(J 0)(−2)1] = [L] + 1
2 [J 0], (6.12)

Using (6.9), (6.11),(6.12) and (6.1), we find

[(G−)(0)(G
−
)(0)(J +

(−1))
m+11] = −m(m + 1)[J +]m + (m + 1)([L] + 1

2 [J 0]) ∗ [J +]m

= (m + 1)
(

[L] + 1
2 [J 0] − m

)

∗ [J +]m

so that, setting � = [L] + 1
2 [J 0] − m, we have from (6.10)

� ∗ [J +]m ∈ J (g). (6.13)

Proposition 6.5. Let L N4
k [ j, �0] be an irreducible highest weight Wmin

k –module. Then
it is isomorphic to exactly one of the following modules:

• L N4
k [ j, �0] with 0 ≤ j ≤ m − 1 and �0 ∈ C;

• L N4
k [m, m

2 ].
Proof. Let v[ j, �0] be a highest weight vector for L N4

k [ j, �0]. Then j ∈ {0, . . . , m}
and the top component is L N4

k [ j, �0]top = V ( jω1) ⊗ C�0 , where V ( jω1) is the ( j +
1)–dimensional irreducible sl(2)–module with highest weight jω1, and C�0 the 1-
dimensional C[L]–module on which L(0)–acts as multiplication by �0 ∈ C. If 0 ≤
j ≤ m − 1, then � ∗ [J +]m acts trivially on L N4

k [ j, �0]top for each �0 ∈ C.
If j = m, then (J +

(0))
m acts non-trivially on L N4

k [ j, �0]top. Then there exists w ∈
L N4

k [ j, �0]top such that (J +
(0))

mw = v[ j, �0] is a highest weight vector for sl(2). We get
by (6.10)

0 = (� ∗ [J +]m)w

= (L(0) + 1
2 (J 0

(0)) = −m(J +
(0))

mw

= (�0 − m/2) v[ j, �0].
This implies that for j = m we need to have �0 = m

2 . ��



Defining Relations for Minimal Unitary Page 17 of 25    33 

Table 3. Root data

g spo(2|3) psl(2|2) spo(2|m), m > 4 D(2, 1; m
n ) F(4) G(3)

γ1 δ1 + ε1 ε1 − δ2 δ1 + ε1 ε1 + ε2 − ε3, ε1 + ε2 + ε3
1
2 (δ1 + ε1 + ε2 − ε3) δ1 − ε3

γ2 δ1 δ1 − ε2 δ1 + ε2 ε1 + ε2 + ε3, ε1 − ε2 + ε3
1
2 (δ1 + ε1 + ε2 + ε3) δ1 + ε2

θi ε1 δ1 − δ2 ε1 + ε2 2ε2, 2ε3 ε1 + ε2 ε2 − ε3
θ 2δ1 ε1 − ε2 2δ1 2ε1 δ1 2δ1

Proposition 6.5 proves, in particular, Theorem 6.1 for g = psl(2|2). We now deal
with the general case g �= spo(2|3). We shall see that a relation similar to (6.13) holds in
Zhu(W k

min(g)). We do not need a very precise expression for �: what is really relevant
is the fact that the action of � gives a relation which is linear in �0.

We start by observing that there exist two odd positive roots γ1, γ2 such that

θ − γ1 − γ2 = −θi , i ∈ S. (6.14)

This fact can be verified directly by looking at Table 3.
Using (6.14) and the explicit expression for [G{u}

λG{v}] given in [AKMPP18, (1.1)]
we find

G{xθi −γ1 }
(0)G

{xθi −γ2 } =
dim g1/2
∑

s=1

: J {[xθi −γ1 ,us ]�} J {[us ,xθi −γ2 ]�} : +2c1(k + 1)∂ J {xθi },

(6.15)

G{x−γ1 }
(0)G

{xθi −γ2 } = −2(k + h∨)c2 L + c2

dim g�
∑

α=1

: J {aα} J {aα} : +

dim g1/2
∑

s=1

: J {[x−γ1 ,us ]�} J {[us ,xθi −γ2 ]�} : +2(k + 1)c3∂ J
{h�

−θi +γ2
}
, (6.16)

where c1, c2, c3 are constants independent of k. Here a� denotes the orthogonal projec-
tion of a ∈ g to g� and {us}, {us} are basis of g1/2 dual with respect to the bilinear form

〈u, v〉 = (x−θ |[u, v]). (6.17)

Set xθi −γ j = [x−γ j , xθi ], j = 1, 2. Recall that, by [KW04, Theorem 2.1 (e)], if
u ∈ g−1/2 and a ∈ g�, then

[J {a}
(−1), G{u}

(0)] = G{[a,u]}
(−1) . (6.18)

Lemma 6.6. If g �= spo(2|3), N ∈ Z≥1 and M ∈ Z≥2, then, for i ∈ S we have

[G{x−γ j }
(0) , (J

{xθi }
(−1) )

N ] = −N (J
{xθi }
(−1) )

N−1G
{xθi −γ j }
(−1) , j = 1, 2. (6.19)

(G{x−γ1 })(0)(G
{x−γ2 })(0)(J

{xθi }
(−1) )

M 1

= M
(

(M − 1)(J
{xθi }
(−1) )

M−2(G{xθi −γ1 })(−1)(G
{xθi −γ2 })(−1)1

− (J
{xθi }
(−1) )

M−1(G{x−γ1 })(0)(G
{xθi −γ2 })

)

. (6.20)

Proof. We prove (6.19) by induction on N , with base N = 1 given by (6.18). If N > 1
we have
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[G{x−γ j }
(0) , (J

{xθi }
(−1) )

N ] = [G{x−γ j }
(0) , (J

{xθi }
(−1) )

N−1](J
{xθi }
(−1) ) + (J

{xθi }
(−1) )

N−1[G{x−γ j }
(0) , (J

{xθi }
(−1) )]

= (1 − N )(J
{xθi }
(−1) )

N−2G
{xθi −γ j }
(−1) (J

{xθi }
(−1) ) − (J

{xθi }
(−1) )

N−1G
{xθi −γ j }
(−1)

= −N (J
{xθi }
(−1) )

N−1G
{xθi −γ j }
(−1) .

In the final equality we have used that 2θi − γ j /∈ � for g �= spo(2|3).
We now prove (6.20):

(G{x−γ1 })(0)(G
{x−γ2 })(0)(J

{xθi }
(−1) )M 1 = −M(G{x−γ1 })(0)(J

{xθi }
(−1) )M−1(G{xθi −γ2 })(−1)1

= M(M − 1)(J
{xθi }
(−1) )M−2(G{xθi −γ1 })(−1)(G

{xθi −γ2 })(−1)1

− M(J
{xθi }
(−1) )M−1(G{x−γ1 })(0)(G

{xθi −γ2 })1.

��
By Theorem 4.1, if M = Mi (k)+1, then the element displayed in (6.20) lies in I k , hence
its projection to Zhu(W min

k (g)) lies in J (g). Next we calculate explicitly this projection.
First remark that, by (6.10),

[(G{xθi −γ1 })(−1)(G
{xθi −γ2 })(−1)1] = −[(G{xθi −γ1 })(0)(G

{xθi −γ2 })]. (6.21)

Substituting (6.21) into (6.20) and using (6.15), (6.16), we get

1

Mi (k) + 1
[(G{−γ1})(0)(G

{−γ2})(0)(J
{xθi }
(−1) )Mi (k)+11] =

− Mi (k)

⎛

⎝

dim g1/2
∑

γ=1

[J {[us ,xθi −γ2 ]�}] ∗ [J {[xθi −γ1 ,us ]�}] ∗ [J {xθi }]Mi (k)−1 − 2(k + 1)c1[J {xθi }]Mi (k)

⎞

⎠

+ c2

⎛

⎝−(k + h∨)[L] + 1
2

dim g�
∑

α=1

[J {aα}][J {aα}]
⎞

⎠ ∗ [J {xθi }]Mi (k)+

−
⎛

⎝

dim g1/2
∑

s=1

[J {[us ,xθi −γ2 ]�}] ∗ [J {[x−γ1 ,us ]�}] + 2(k + 1)c3[∂ J
{h�

−θi +γ2
}]

⎞

⎠ ∗ [J {xθi }]Mi (k). (6.22)

To finish the calculation we need the following fact.

Lemma 6.7. For suitable constants d1, d2, d3, independent of k, we have

dim g1/2
∑

s=1

[J {[us ,xθi −γ2 ]�}] ∗ [J {[xθi −γ1 ,us ]�}] = d1 [J
{h�

−θi +γ2
}] ∗ [J {xθi }] + d2 [J {xθi }] ∗ [J

{h�
−θi +γ1

}]

= (d1 [J
{h�

−θi +γ2
}] + d2 [J

{h�
−θi +γ1

}] + d3) ∗ [J {xθi }]. (6.23)

Proof. We can assume that us, us are root vectors. A direct inspection shows that
[us, xθi −γ2 ]�, [xθi −γ1 , us]� are both non-zero only if us ∈ gα, us ∈ gβ with either
−α = θi − γ2 and β = γ1 or α = γ2 and −β = θi − γ1. ��
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Set

�i = (−Mi (k)(d1 [J
{h�

−θi +γ2
}] + d2 [J

{h�
−θi +γ1

}] + d3) − c2(k + h∨)[L]

+ 1
2 c2

dim g�
∑

α=1

[J {aα}][J {aα}] +

dim g1/2
∑

s=1

[J {[us ,xθi −γ2 ]�}] ∗ [J {[x−γ1 ,us ]�}] − 2(k + 1)c3[J
{h�

−θi +γ2
}]).

(6.24)

Note that all the constants involved in (6.24) do not depend on k; moreover, by (6.14),

c2 = (xθ |[xθi −γ1 , xθi −γ2 ]) �= 0. (6.25)

Substituting (6.23) in (6.22) we obtain

Proposition 6.8. In Zhu(W k
min(g)), we have

�i ∗ [J {xθi }]Mi (k) ∈ J (g), i ∈ S. (6.26)

Proof of Theorem 6.1. We have to prove that if LW (ν, �0) is a irreducible highest weight
W min

k (g)-module, then the pair (ν, �0) is among those listed in the statement. Note that

there is a non-zero vertex algebra homomorphism � : V Mi (k)(g
�
i ) → W min

k (g). Since

W min
k (g) is unitary, we have that �(V Mi (k)(g

�
i )) = VMi (k)(g

�). In particular, LW (ν, �0)

is integrable as a VMi (k)(g
�
i )-module, hence ν ∈ P+

k . If ν is not extremal, we are done.
Assume therefore that ν is extremal. The action of the Zhu algebra on the top com-
ponent V (ν, �0) of LW (ν, �0) is given by the action of the elements [J {a}] on the ir-
reducible finite-dimensional g�-module V (ν, �0) of highest weight ν, while [L] acts
as the multiplication by �0. Consider the sl(2)-triple {xθi , hθi , x−θi }. Since ν is ex-
tremal, ν(θ∨

i ) = Mi (k) for some i ∈ S. By sl(2)-theory applied to U (sl(2))v where

v ∈ V (ν, �0) is a highest weight vector, we see that v is a non-zero multiple of x Mi (k)
θi

v′,
with v′ = x Mi (k)

−θi
v. It follows that

0 = �i [J {xθi }]Mi (k)v′ = �i (�0)[J {xθi }]Mi (k)v′, (6.27)

where, by (6.24), �i (�0) = −c2(k +h∨)�0 +b and b ∈ C is independent of �0, and c2 �= 0
by (6.25). Since, by construction, [J {xθi }]Mi (k)v′ �= 0, we find from (6.27) that �i (�0) =
0. Since LW (ν, A(k, ν)) is a representation of W min

k (g), then �i (A(k, ν)) = 0. But �i
is a linear relation, so �0 = A(k, ν) is the unique solution of the equation �i (�0) = 0. ��

A further refinement of Theorem 6.1 is the following result.

Theorem 6.9. Let k be in the unitary range. The irreducible highest weight W min
k (g)-

modules are all the irreducible positive energy representations.

Proof. Let Vk(g
�) = ⊗

i∈S VMi (k)(g
�
i ). Since each VMi (k)(g

�
i ) is a rational vertex al-

gebra, then Zhu(Vk(g
�)) = ⊗

i Zhu(VMi (k)(g
�
i )) is a semi-simple finite-dimensional

associative algebra.
Let M be an irreducible positive energy W min

k (g)–module. Then the top component
Mtop is an irreducible module for Zhu’s algebra Zhu(W min

k (g)). By using the embed-
ding Vk(g

�) → W min
k (g) we see that Mtop is also a Zhu(Vk(g

�))–module. Since [L] is
a central element in Zhu(W min

k (g)), it acts on Mtop as multiplication by a scalar, hence,
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by (6.3), Mtop remains irreducible when restricted to g� and therefore it is an irreducible
Zhu(Vk(g

�))–module. Since Zhu(Vk(g
�)) is a semi-simple finite-dimensional associa-

tive algebra, we conclude that Mtop is finite-dimensional. This implies that Mtop contains
a highest weight Vk(g

�)–vector w, which is then a highest weight vector for the action
of W min

k (g). Therefore W min
k (g)w is a highest weight submodule of M . Irreducibility of

M implies that M = W min
k (g)w is a highest weight W min

k (g)–module. ��

7. On Positive Energy Modules Over Vk(g) and Wmin
k (g)

By Theorem 6.9, the irreducible highest weight W min
k (g)-modules are all the irreducible

positive energy representations. In this section we show, by contrast, that Vk(g) admits
positive energy modules which are not highest weight, and we show that W min

k (g) admits
non-positive energy modules.

The Vk(g)–modules which we construct belong to class of modules called relaxed
highest weight modules. These modules appear in [AdM95,FST,LMRS,R], in the con-
text of the representation theory of Vk(sl2); later they have been systematically studied
in [KR1,KR2,KaRW] for higher rank cases. We will show the existence of such mod-
ules for Vk(g) for some values of k belonging to the unitary range. We explore a free
field realization which enables us to construct relaxed highest weight modules from re-
laxed highest weight modules over the Weyl vertex algebra (also called βγ ghost vertex
algebra). These relaxed modules were previously studied in [RW,AW22,AdP19].

On the contrary, the vertex algebra W min
k (g) does not have non-highest weight pos-

itive energy modules. The non-highest weight relaxed highest weight Vk(g)–modules
are either mapped to zero by quantum Hamiltonian reduction, so they don’t contribute
to W min

k (g)–modules; or they are mapped to highest weight W min
k (g)–modules. This

connection deserves a more detailed analysis in the future.
We shall see below that W min

k (g) contains non-positive energy modules having all
infinite dimensional weight spaces.

7.1. Positive energy modules over Vk(g) which are not highest weight. We follow the
notation and results of [AMPP20, Section 6].

Consider the superspace C
m|2n equipped with the standard supersymmetric form

〈·, ·〉m|2n given in [K77]. Let V = �C
m|2n , where � is the parity reversing functor. Let

M(m|2n) be the universal vertex algebra generated by V with λ–bracket

[vλw] = 〈w, v〉. (7.1)

Let {ei } be the standard basis of V and let {ei } be its dual basis with respect to 〈·, ·〉 (i.
e. 〈ei , e j 〉 = δi j ). In this basis the λ-brackets are given by

[ehλem−k+1] = δhk, [em+i λem+2n− j+1] = −δi j , [em+n+i λem+n− j+1] = δi j ,

for h, k = 1, . . . m, i, j = 1 . . . , n.
The vertex algebra M(m|n) is called the Weyl–Clifford vertex algebra and, in the

physics terminology, the βγ bc system (cf. [FMS86]). In the case m = 0 (resp. n = 0),
we have the Weyl vertex algebra M(n) := M(0,2n), (resp. the Clifford vertex algebra
F(m) := M(m,0)). Clearly, we have the isomorphism:

M(m|2n)
∼= F(m) ⊗ M(n).
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It was proved in [AdP19,AW22,RW] that the Weyl vertex algebra M(n) has a remark-
able family of irreducible positive energy modules, which we denote by ˜Un(a), whose
top components are isomorphic to

Un(a) = xa1
1 · · · xan

n C[x1, . . . , xn, x−1
1 , . . . , x−1

n ], for a = (a1, . . . , an) ∈ (C \ Z)n .

It was proved in [AMPP20, Section 6] that the simple affine vertex algebra
V−1/2(spo(2r |s)) is realized as a fixed point subalgebra M+

(s|2r) of M(s|2r). In particular,
for g = spo(2|3), we have

V−1/2(g) = M+
(3|2).

From Proposition 4.4 it follows that

V−m/4(g) = V −m/4(g)

V −m/4(g)((xθ1)(−1))m+11
.

This easily implies that

V−m/4(g) ↪→ V−1/2(g)
⊗ m

2 ↪→ M
⊗ m

2
(3|2)

∼= M
(

3m
2 |m)

.

In this way, we get a non-zero vertex algebra homomorphism �(m) : V−m/4(g) →
M( 3 m

2 |m) for each m ≥ 4 even. Now using positive energy modules ˜Um(a) for M(m), we

construct M( 3 m
2 |m)–modules F( 3 m

2 ) ⊗ ˜Um(a), which by restriction become V−m/4(g)–
modules. Since their top components are not highest weight g–modules, we have con-
structed a family of non highest weight, positive energy V−m/4(g)–modules. Interest-
ingly, these modules are still integrable for ĝ�. We shall present details and irreducibility
analysis in our forthcoming publications.

7.2. Non-positive energy modules over W min
k (g). For a conformal vertex algebra V let

E(V ) be the category of all (weak) V –modules, on which L0 is diagonalizable, and
let E+(V ) be the category of positive energy modules in E(V ). Set Ek = E(W min

k (g)),
E+

k = E+(W min
k (g)), where k is from the unitary range for g.

A W min
k (g)–module M is called a weight W min

k (g)–module if it is a weight module
for ĝ�.

Let E f in
k be the subcategory of Ek consisting of weight modules with finite multi-

plicities.
Theorem 6.9 shows that each irreducible module in E+

k belongs to the category E f in
k .

One very interesting question is to see if there are weight representations of W min
k (g)

outside of the category E+
k . We believe that there are no such modules in E f in

k :

Conjecture 7.1. The irreducible highest weight W min
k (g)-modules are all the irreducible

representations in the category E f in
k .

However, weight modules which are not in E+
k do exist. In order to see this, we use

Kac–Wakimoto free field realization of W k
min(g) [KW04, Theorem 5.2], which gives a

vertex algebra homomorphism

� : W k
min(g) → H ⊗ V

k(g�) ⊗ F(g1/2),

where
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• H is the Heisenberg vertex algebra of rank 1 generated by a field a such that
[aλa] = λ;

• V
k(g�) = ⊗

i∈S V Mi (k)+χi (g
�
i );• F(g1/2) is a fermionic vertex algebra.

Lemma 7.2. There is a embedding of vertex algebras � : ⊗

i∈S V−χi (g
�
i ) → F(g1/2)

uniquely determined by

b 	→ 1
2

∑

α∈A

: �α�[uα,b] :, b ∈ g�. (7.2)

Proof. We start with Kac–Wakimoto free field realization [KW04, Theorem 5.1]

� ′ : W k
min(g) → V = V 1(Ca) ⊗ V αk (g�) ⊗ F(g1/2),

where

αk(a, b) = δi, j (Mi (k) + χi )(a|b)
�
i for a ∈ g

�
i , b ∈ g

�
j , i, j ≥ 0.

Choose μ ∈ C such that the V-invariant Hermitian form on M(μ)⊗ V αk (g�)⊗ F(g1/2)

is invariant for the action of W k
min(g). Since � ′(J {b}) ∈ V αk (g�) ⊗ F(g1/2), it follows

that the map J {b} 	→ � ′(J {b})(−1)(vμ ⊗ 1 ⊗ 1), b ∈ g
�
i , extends to a map

⊗

i∈S

V Mi (k)(g
�
i ) → Cvμ ⊗ Vαk (g

�) ⊗ F(g1/2) (7.3)

that, identifying Cvμ ⊗Vαk (g
�)⊗ F(g1/2) with Vαk (g

�)⊗ F(g1/2) in the obvious way, is
a vertex algebra homomorphism. Now plug αi (k) = 0, i.e. Mi (k) = −χi , into (7.3). We
get the homomorphism �′ : ⊗

i V −χi (g
�
i ) → F(g1/2) explicitly given by (7.2). Since

F(g1/2) is unitary, it is completely reducible, hence the image of �′ is simple. Therefore
�′ descends to �. ��

The map � ′ induces a map � : W k
min(g) → V 1(Ca) ⊗ Vαk (g

�) ⊗ F(g1/2). We first
prove that the image of � is simple.

Proposition 7.3. Assume that Mi (k)+χi ∈ Z≥0 for all i . Then �(W k
min(g)) = W min

k (g).

Proof. As shown in the proof of Theorem 4.1, the vectors vi generate the maximal ideal
in W k

min(g) (although v1 is not a singular vector when g = spo(2|3)). Hence it suffices
to check that in V 1(Ca) ⊗ Vαk (g

�) ⊗ F(g1/2) we have:

(J
{xθi }
(−1) )

Mi (k)+11 = 0 i ≥ 1.

From Kac–Wakimoto free field realization and Lemma 7.2 we get that the map b 	→
b + 1

2

∑

α∈A : �α�[uα,b] : induces a homomorphism

� := � ◦ �|V Mi (k) : V Mi (k)(g
�
i ) → VMi (k)+χi (g

�
i ) ⊗ V−χi (g

�
i ) ⊂ Vαk (g

�) ⊗ F(g1/2).

Since Mi (k) + χi ∈ Z≥0, the vertex algebra Vαk (g
�) ⊗ F(g1/2) is unitary, hence it is

completely reducible, so I m � is simple and in turn (J
{xθi }
(−1) )

Mi (k)+11 = 0. ��
We have therefore proved the following result.
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Theorem 7.4. If k is non-collapsing and lies in the unitary range, then � induces a
non-trivial homomorphism of vertex algebras

˜� : W min
k (g) → H ⊗ Vk(g

�) ⊗ F(g1/2),

where Vk(g
�) = ⊗

i∈S VMi (k)+χi (g
�
i ).

Since Vk(g
�) and F(g1/2) are rational vertex algebras, they don’t have non-positive

energy modules. But the Heisenberg vertex algebra H is not rational and it has very rich
representation theory:

(fin) The category of H–modules with finite-dimensional weight spaces E f in(H) is
semi-simple and every irreducible H–module in that category is of highest weight.
The category E f in(H) concides with the category of modules in E+(H) of finite
length.

(inf) The categoryE(H) admits irreducibleH–modules with infinite-dimensional weight
spaces [FGM14].

Remark 7.5. Using Theorem 7.4 and the representation theory of the Heisenberg vertex
algebra H one can prove the following facts: assume that E1 is an irreducible module
in E(H). Let E2 be a Vk(g

�)-module. Then we have:

(1) E1 ⊗ E2 ⊗ F(g1/2) lies in Ek . It lies in the category E+
k if and only if E1 lies in the

category E+(H).
(2) If E1 is a weight H-module with infinite-dimensional weight spaces then E1 ⊗ E2 ⊗

F(g1/2) is a non-positive energy weight W min
k (g)–module with infinite-dimensional

weight spaces.
(3) If E1 is a non-weight H-module, then E1 ⊗ E2 ⊗ F(g1/2) is a non-weight W min

k (g)-
module. In particular, we can construct analogs of non-weight Vk(g)–modules from
Remark 3.3.

Further details on applications of Theorem 7.4 and Remark 7.5 will appear elsewhere.
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