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Abstract
Pulmonary hypertension (PH) in newborns and infants is a complex condition associated with several pulmonary, cardiac,
and systemic diseases contributing to morbidity and mortality. Thus, accurate and early detection of PH and the classification
of its severity is crucial for appropriate and successful management. Using echocardiography, the primary diagnostic tool in
pediatrics, human assessment is both time-consuming and expertise-demanding, raising the need for an automated approach.
Little effort has been directed towards automatic assessment of PH using echocardiography, and the few proposed methods
only focus on binary PH classification on the adult population. In this work, we present an explainable multi-view video-based
deep learning approach to predict and classify the severity of PH for a cohort of 270 newborns using echocardiograms. We
use spatio-temporal convolutional architectures for the prediction of PH from each view, and aggregate the predictions of the
different views using majority voting. Our results show a mean F1-score of 0.84 for severity prediction and 0.92 for binary
detection using 10-fold cross-validation and 0.63 for severity prediction and 0.78 for binary detection on the held-out test set.
We complement our predictions with saliency maps and show that the learned model focuses on clinically relevant cardiac
structures, motivating its usage in clinical practice. To the best of our knowledge, this is the first work for an automated
assessment of PH in newborns using echocardiograms.

Keywords Echocardiography · Computer assisted diagnosis · Explainable machine learning · Pulmonary hypertension ·
Pediatrics
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1 Introduction

Pulmonary hypertension (PH) is a rare but complex and
progressive condition of the pulmonary arterioles that can
affect newborns and children as well as adults. Functional
and anatomical changes increase pulmonary artery pressure
(PAP) and PH is formally defined as an increased mean PAP
at restwithmPAP> 20mmHg (Simonneau et al., 2019). The
level of PAP in newborns is frequently high and is expected
to decrease after birth to reach a level comparable to healthy
adult values (de Boode et al., 2018).When normal cardiopul-
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monary transition fails to occur, the newborns are affected by
persistent pulmonary hypertension of the newborn (PPHN).
PH is associated with bronchopulmonary dysplasia in older
premature infants and various chronic pulmonary, cardiac,
and systemic diseases for newborns at term contributing to
morbidity and mortality (EL-Khuffash, 2014; Hansmann,
2017; Steinhorn, 2010). The PH prognosis is associated with
the severity of the disease at diagnosis; thus, delayed treat-
ment decreases the chance of survival (Barst et al., 2012; Żuk
et al., 2016).

The gold standard for PH diagnosis is right heart catheter-
isation (RHC). However, due to the invasive nature of this
costly procedure and the resulting high risk of related compli-
cations, especially in the pediatric age group (Rosenkranz &
Preston, 2015), RHC is not a screening procedure. Transtho-
racic echocardiography performed by experts is instead the
recommended non-invasive diagnostic tool for estimating the
likelihood of PH and the severity of PH (Ni et al., 2019).
This technique involves capturing a sequence of ultrasound
images of the beating heart from different angles of the heart
(views), obtaining by placing the transducer in different loca-
tions. It is one of the most common and growing diagnostic
tools due to its low-cost, portable, and non-invasive technol-
ogy, which makes it an ideal choice for pediatrics (Lang et
al., 2015).

Different echocardiography modes are available, includ-
ing 2D, 3D and Doppler. Although 3D echocardiography can
give more information about the assessed region and is supe-
rior to 2D echocardiography, it has yet to translate to routine
clinical usage (Hur & Sugeng, 2019). Thus, PH evaluation
is commonly done using either 2D echocardiography videos
(ECHOs) or Doppler echocardiograms (Lang et al., 2015;
Ni et al., 2019). Using Doppler, screening of PH typically
involves estimating PAP; however, the measurements may
frequently be inaccurate. Thus, it is not the ultimate pre-
dictive tool to assess and manage PH (Fisher et al., 2009).
Since elevated PAP can result in abnormalities in the shape
and structure of the heart, subjective evaluation is often per-
formed to detect the changes using ECHOs (Galiè et al.,
2015).

Human assessment of PH using echocardiography with
the procedures mentioned above is both time-consuming
and expertise-demanding, which may delay care to a more
advanced stage of illness, potentially decreasing the chance
of survival (Barst et al., 2012). Thus, there is a clear need for
an automatic and streamlined method to assist clinicians in
assessing PH in newborns. Currently, little effort is directed
toward automatic approaches for PH diagnostics; thus, this
demand still needs to be met. The few existing methods from
the literature for automatic PH prediction are only proposed
for the adult population and do not assess the PH severity
nor explain their predictions (Zhang et al., 2018; Leha et al.,
2019).

In this work, we are interested in not only having an auto-
mated method to predict the existence of PH but also to
classify its severity, as the severity plays a key role in the
appropriate PH treatment strategy (Dasgupta et al., 2021;
Fisher et al., 2009). We aim at exploring the importance
of the various factors contributing to the solution, including
the effects of known deep learning techniques, such as data
augmentation and regularisation and the effects of various
domain-specific factors. These include the exploration of the
effect of including ECHOs from different views of the heart
and the effect of temporal component of the ECHO videos.
Finally, we seek to explain the predictions regarding cardiac
structures and features, both to increase our understanding
of the method and to increase the trust in the automatic pre-
diction, ensuring clinical usability.

Accordingly, we propose a robust and explainable deep
learning approach to predict and classify the severity of PH
byutilising spatio-temporal patterns of theECHOs frommul-
tiple views. To the best of our knowledge, this is the first
work on multi-view video-based automated assessment of
PH in newborns. To increase its clinical usability, we com-
plement our predictionswith saliencymaps highlighting how
the learnedmodel focuses on clinically relevant cardiac struc-
tures. We show that these learned localization maps align
with how clinicians subjectively assess PH.

To ensure the reproducibility of our work, the code was
made publicly available under https://github.com/hanna15/
echo_classification.

2 Background

PH assessment is commonly performed manually on 2D or
Doppler ECHO by measuring echocardiographic variables
and/or by subjective ECHO evaluation. We will discuss the
quantitative and the qualitative approaches for human assess-
ment of PH in more detail below. Afterwards, we will walk
the reader through the few existing Machine Learning (ML)
approaches for PH prediction. We will conclude the section
with a brief discussion on the importance of explainable ML
for healthcare.

2.1 Human Assessment of PH in Newborns

Toassess the heart’s condition, a clinician records an echocar-
diogram containing a sequence of ultrasound images of the
patient’s heart at a specific view. The three major views
include a parasternal long-axis view (PLAX), an apical four
chamber view (A4C), and a parasternal short-axis view at the
level of papillary muscles (PSAX-P).
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2.1.1 Quantitative Evaluation

PH estimation in newborns frequently involves measur-
ing various echocardiographic variables of 2D and Doppler
echocardiography that allow for estimating mPAP. The
traditional approach assumes the presence of tricuspid regur-
gitation (TR) in PH patients and relies on measuring the TR
velocity (TRV) from Doppler of A4C and/or PLAX views.
Systolic PAP (sPAP) can then be estimated from the TRV and
right atrial pressure (RAP), as described in Eq. (1). Impor-
tantly, RAP is not measured but estimated from inferior vena
cava (IVC) diameter and inspiratory collapse. Finally, mPAP
has a strong linear relationship with sPAP, and can be derived
as Brugger et al. (2021):

sPAP = 4 ∗ (TRV)2 + RAP (1)

mPAP = 0.61 ∗ sPAP + 2mmHg (2)

Previous studies have demonstrated that the agreement
between PAP estimated from TRV and invasively measured
PAP is onlymoderate (D’Alto et al., 2013; Fisher et al., 2009;
Greiner et al., 2014). At an individual level, there can be
significant under- and overestimation, potentially leading to
misdiagnosis and inappropriate treatment (Augustine et al.,
2018). This can happen due to many factors: (i) as TRV is
squared in Eq. (1) even small errors in the absolute measure-
ment of TRV can result in significant changes to the estimate
of sPAP, (ii) in many patients, IVC dimensions for RAP esti-
mation cannot be obtained, (iii) absence of TR is insufficient
to exclude the presence of PH. For example, a recent study
has shown that for patients that are both referred for RHC and
ECHO, PH (as determined by RHC) is present in nearly half
of the patients without a measurable TR velocity (O’Leary
et al., 2018). Measurements of further variables are thus rec-
ommended, especially in the absence of measurable TRV.
These include variables measured from 2D ECHOs, such as
the left atrial (LA) to aortic ratio (LA:Ao) from the PLAX
view, which correlates with increased pulmonary flow (EL-

Khuffash, 2014). However, given that no single variable has
been detected as the definitive predictive parameter to assess
PH, and because the measurement may be frequently inac-
curate, quantitative evaluation of 2D or Doppler ECHO is
not the ultimate predictive tool, despite its widespread use
(Fisher et al., 2009).

2.1.2 Qualitative Evaluation

Since elevated PAP can result in abnormalities in the shape
and structure of the heart, visual and subjective evaluation on
ECHOs is also commonly performed for estimating PH (EL-
Khuffash, 2014; Galiè et al., 2015). The parasternal short
axis view (PSAX) is specifically suitable for a subjective
echocardiography evaluation of PH in newborns. From this
view, abnormalities can, for example, be detected in the shape
of the interventricular septum (IVS) and left ventricle during
minimum expansion of the heart (systole). In a normal heart,
the IVS is round, but becomes flat in patients with mild PH,
and in severe PH the left-ventricle becomes D-shaped, or
crescentic, as seen in Fig. 1.

During maximum expansion (diastole), reversed volume
of the ventricles can also be detected (EL-Khuffash, 2014).
Other views, such as the parasternal long axis view (PLAX)
and the apical four-chamber view (A4C), can also be uti-
lized for subjective evaluation of PH in newborns. Changes
in right-ventricular size and hypertrophia of the right ventric-
ular wall can be seen from the PLAX view, and from the A4C
view changes in the right-ventricular area are often detected
in case of moderate and severe PH (EL-Khuffash, 2014).

2.2 Automated PH Predictions

Several ML methods have been proposed to automatically
estimate PH in adults using different input modalities, such
as chest X-rays (Kusunose et al., 2020; Zou et al., 2020),
ECGs (Kwon et al., 2020; Mori et al., 2021; Aras et al.,
2023), heart sounds recorded by acoustic sensors (Kaddoura

Fig. 1 Varying septal morphology depending on the degree of PH on the PSAX-P view during systole (minimum expansion of the heart). Left: No
PH, Middle: Mild PH, Right: Severe PH. The examples are taken from our dataset
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et al., 2016), CTs (Sharkey et al., 2022; Vainio et al., 2021),
EHRs (Kogan et al., 2023), and MRIs (Bello et al., 2019;
Dawes et al., 2017). Even though echocardiography is the
recommended non-invasive modality for PH estimation, and
the most common routine test used in newborns to diagnose
or rule out various heart diseases (Ni et al., 2019), not much
effort has been directed towards the automatic assessment
of PH using echocardiography. The exceptions are the work
of Leha et al. (2019), Diller et al. (2022), and Zhang et al.
(2018), which propose methods for automatic PH prediction
in the adult population.

The authors in Leha et al. (2019) propose an approach that
relies on manually extracted ECHO parameters and applies
variousML algorithms, such as regression and SVM in order
to predict PH. The goal of their method is to help standardize
and simplify integration of the several parameters that relate
to PH. Themain drawback is that the ECHOparametersmust
still be measured and estimated by highly trained specialists
limiting its applicability in a real-world scenario.

The work of Zhang et al. (2018) shows the potential of
using deep learning for predicting PH using ECHOs, requir-
ing no manual feature extraction. This method, however, has
several limitations. First of all, it only uses a single A4C
view of the heart, although the literature has shown that con-
sidering multiple views improves accuracy for the manual
prediction of PH (Schneider et al., 2017). Second, it works
on static frames of the ECHO videos and does not exploit
the spatio-temporal patterns in theECHOsequence, although
spatio-temporal deep learning methods have shown superior
results for various video classification tasks. Similarly, Diller
et al. (2022) use deep learning to estimate PH based on static
ECHO frames. Specifically, they propose to train a model to
segment cardiac chambers and extract geometric information
throughout the cardiac cycle. The ensemble of deep convo-
lutional networks estimates RV systolic pressure (RVSP), as
a predictor of PH. Finally, similar to the existing approaches
for PH prediction from other modalities, Zhang et al. (2018)
has limited accountability and clinical usability. The reason
is twofold; first, the black-box nature of these approaches
makes their internal mechanisms and their results opaque,
and second, they focus only on binary PH classification but
do not predict the PH severity. Severity estimation of PH is
of great clinical importance, as guidelines for PH treatment
type and urgency depend on PH severity (Corris & Degano,
2014; Galiè et al., 2015).

2.3 Explainable ML in Healthcare

In recent years, interpretability and explainability ofmachine
learning (ML)models have attractedmuch attention. Various
methods have been proposed to help explain the reasons for a
model’s prediction, which is vital for applying ML to health-
care, where achieving high predictive accuracy is often as

important as understanding the prediction. Indeed, the lack
of explainability is a critical factor that limits the wider adop-
tion of ML in healthcare, as without it, medical practitioners
often find it challenging to trust ML models (Stiglic et al.,
2020).

Although explainability and interpretability ofMLmodels
are often used interchangeably, interpretability technically
refers to the extent to which a human can understand a model
independently. In contrast, explainability refers to the extent
to which the internal mechanics of a model can be (post-hoc)
explained in human terms—usually for models which are
too complicated to be understood by humans (Rudin, 2019).
In this work, we will be focusing on the explainability of
the methods to explain the convolutional neural networks
(CNNs), one of the most common deep learning methods
for medical image understanding. Their black-box nature,
however, limits clinical usability.

Recently, several works have proposed explainability of
CNNs by using visual explanation methods, which identify
and visualize the contribution of each pixel to the output of
the trained network (Molnar, 2022). Generally, the results
are expressed as an importance map (often referred to as
salience or attribution map) of the same size as the input
image, where each scalar in the map quantifies the contri-
bution of the corresponding pixel (Li et al., 2021; Molnar,
2022). The explanations are either generated by perturb-
ing parts of the image and observing the change of the
prediction (perturbation-based methods) or by computing
the gradient of the prediction with respect to input features
(gradient-based methods). The gradient-based methods are
commonly used, since they are faster to compute. How-
ever, the perturbation-based methods have the benefit of not
requiring access to the intermediate layers (Molnar, 2022). A
vast number of gradient-based methods have been proposed,
including Vanilla Gradients (Simonyan et al., 2014), Decon-
vNet (Zeiler & Fergus, 2014), and Grad-CAM (Selvaraju et
al., 2017). While they have been shown to explain model
decisions (Selvaraju et al., 2017; Lanfredi et al., 2021), some
of those methods have also been shown to be insensitive to
models and data, acting more like edge detectors by simply
highlighting strong pixel changes in images. Of the tested
explainability methods in Adebayo et al. (2018), Ghorbani
et al. (2019), only Vanilla Gradients and Grad-CAM passed
the insensitivity check, making them the preferred methods.

In medical imaging, the predictions of CNNs can be
further explained by utilising expert- and domain-specific
medical knowledge (Zhu & Ogino, 2019; Lee et al., 2019).
The first application of interpretation frameworks to under-
stand deep learning models from ECHOs has just recently
been proposed (Ghorbani et al., 2020). Using visual expla-
nation methods, they show that their models (trained on
static ECHO frames) pay appropriate attention to key car-
diac structures when performing human-explainable tasks,
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such as detecting the presence of pacemaker and defibrilla-
tor leads. However, no effort has yet beenmade to explain the
predictions of models assessing PH, and no published work
has shown spatio-temporal explanation of ECHO sequences.
Indeed, most work on explainable ML is centered around
spatial input. However, visual explanation approaches have
recently been shown to be expandable to 3D-CNNs trained
on video clips (Li et al., 2021). For example, Stergiou et
al. (2019a, b) recently adapted Class Activation Mapping
(CAM) for 3D-CNNs, such that important spatio-temporal
regions of the input videos are highlighted.

3 Methods

In this section, we first introduce the dataset employed in
this work, along with the preprocessing and data augmenta-
tion steps undertaken. We then discuss the spatial approach
and introduce our proposed spatio-temporal approach in both
single- andmulti-view settings. Finally, this section will con-
clude with the explainability method adapted in this work.

3.1 Dataset

The dataset in this work was collected in two batches. The
first batch consists of 936 2D transthoracic echocardiography
videos (ECHOs) from192newborns, taken froma single cen-
ter (the Hospital Barmherzige Brüder Regensburg), between
the years 2019–2020 and used as the training and validation
set. The second batch was collected in 2022 at the same cen-
ter, has 375 ECHOs and serves as the held-out test set with 78
newborns. The ECHOs were performed by a senior pediatric
cardiologist using a GE Logic S8 ultrasound machine with
the S4–10 transducer at 6MHz frequency.

Each ECHO consists of a sequence of ultrasound images
of the patient’s heart from one of five standard views: PLAX,
A4C, and three parasternal short-axis views; at the level of
papillary muscles (PSAX-P), at the level of semilunar valves
(PSAX-S), and on the apical short-axis view (PSAX-A). The
ECHO videos are recorded at 25 frames per second with an
average length of 5 s, covering approximately ten heartbeats.
The spatial resolution of the videos is 1440 × 866.

The ground truth annotations for each ECHO were deter-
mined through visual evaluation by a senior pediatric cardi-
ologist. The ground truth labels differentiate between three
levels of pulmonary hypertension (PH). For the first batch the
levels are none (65%), mild (17%), and moderate to severe
(18%) PH, and for the second batch none (70%), mild (12%),
and moderate to severe (18%) PH. Grading was done using
PSAX-P view, annotating no PH if there is no septal flatten-
ing; mild PH, if there is a decent septal flattening (curvature
into the right ventricle); andmoderate to severe PH if the sep-
tum is bowing into the left ventricle, as visualised in Fig. 1.
Furthermore, for each ECHO, its corresponding view is also
annotated. Note that the dataset is inherently imbalanced as
mild and severe cases are rare compared to healthy cases,
increasing the complexity of the problem.

A detailed overview of the data for both of the batches is
provided in Table 1. The conduct of this study was approved
by the local ethics committee and all collected data was
pseudonymized to protect the privacy.

3.2 Preprocessing and Data Augmentation

As the first step in preprocessing the available data, we crop
and mask the ECHOs to eliminate any extraneous informa-
tion (additional text or signals) outside the scanning sector
and resize them to 224 × 224 pixels using bilinear interpo-

Table 1 Characteristics of the dataset. It includes 192 newborns and 936 2D ECHOs for train and validation and 78 newborns and 375 ECHOs for
the test set from 5 different standard views

Data split Feature Value

Train + Validation PH (#None (%)/#Mild (%)/#Severe (%)) 126 (65%)/32 (17%)/34 (18%)

Age (days) (Mean ± SD) 56 ± 160

Maturity in birth (days) (Mean ± SD) 230 ± 46

Patient’s weight (kg) (Mean ± SD) 2.9 ± 1.5

Test PH (#None (%)/#Mild (%)/#Severe (%)) 55 (70%)/9 (12%)/14 (18%)

Age (days) (Mean ± SD) 34 ± 42

Maturity in birth (days) (Mean ± SD) 206 ± 32

Patient’s weight (kg) (Mean ± SD) 2.1 ± 1.2

Train + Validation + Test Spatial size of original 2D images (pixels) 1440 x 866

Video length (frames) (Mean ± SD) 122 ± 2

Video FPS 25 fps

Manufacturer (ultrasound machine/transducer) GE Logic S8/S4–10 at 6MHz
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lation. A histogram equalization technique is then applied to
distribute the pixel intensities across the full range of gray-
scale values and normalize them.

During training, various image transformations are applied
to improve the robustness of the learned model. The first
type of transformation is intensity transformations, designed
to make the model invariant to variations in intensity or
brightness levels in the ECHOs. The second type of trans-
formation is spatial transformations, which are applied to
increase resilience against different zoom settings of the
ultrasound machine, variations in the actual size of the heart
being imaged, and different transducer placements.

In particular, we apply sharpness and brightness adjust-
ments, Gamma correction, noise addition and background
variation as intensity transformations and rotation, transla-
tion and re-scaling as spatial transformations. These random
transformations are applied to each sequence, where each
transformation has a probability of 0.5:

1. Sharpness adjustments: Sharpening the image by up to
8x, or blurring it with a sharpness factor ( f ) < 1.0,
specifically f ∈ [0, 0.9999].

2. Brightness adjustments: Using an enhancement factor
between 0.5 and 1.2 (a factor< 1 gives a darker image, a
factor> 1.0 a brighter image and 1.0 the original image).

3. Gamma correction: Using a gamma factor (γ ) between
0.25 and 2.0,where the gamma correction (Iγ ) of an input
image Iin is given by: Iγ = 255 ∗ (Iin/255)γ

4. Addition of noise: Salt and pepper noise, with a threshold
of 0.005, and random Gaussian noise.

5. Background variation:Usingdifferent amounts of speckle
noise.

6. Rotation and translation: Rotate between −15◦ to 15◦,
and translate up to 0.1×.

7. Re-scaling: Scaling down to 0.8×, and zooming up to
1.2×.

In this work, the dataset is very imbalanced, a very com-
mon challenge in machine learning applications, especially
in healthcare. Strategies to address this imbalance have
been extensively studied, and one commonly used approach
involves sampling methods (Buda et al., 2018). To address
this issue, we apply random resampling with replacement,
in combination with the random augmentations described
above, during training.More specifically, we process approx-
imately an equal number of samples from each class for each
epoch, ensuring the model receives a balanced representa-
tion of the samples from all classes. To achieve this, we
employ a weighted random sampler sampling elements from
the dataset with replacement from indices i = [0, . . . , N ],
with probabilities given by the weights W = [w0, . . . , wN ],
using weight wi of each sample. Note that the oversampling
procedure will not produce identical copies of the same sam-

ples because the data augmentation slightly modifies each
sample.

3.3 Single-View Spatial Approach

We first implement a spatial-only model using a single-
view ECHO for PH prediction for newborns by training a
convolutional neural network on manually curated frames
from ECHO videos. To overcome the scarcity of the anno-
tated data, we extract n frames from each ECHO, using
different frame extraction heuristics, as further explained
in Sect. 3.3.1. Thus, each frame is considered an individ-
ual sample for the classification, giving rise to frame-level
predictions, whose results are aggregated to achieve view-
level predictions, as explained in Sect. 3.3.2. The training
details and the model architecture are further described in
the following sections. An overview of the spatial approach
is provided in Fig. 2, both for the (a) frame extraction phase
and (b) classification phase.

3.3.1 Frame Extraction

Wepropose three differentmethods to extract training frames
from each ECHO. As a first approach, we select n frames at
random. As a second and third approach, we use domain
knowledge to select the most representative frames that are
most relevant for assessing PH by cardiologists, specifi-
cally those corresponding to systole (minimum expansion)
where variations in septal morphology due to PH are most
prominent, but potentially also those corresponding to dias-
tole (heart’s maximum expansion) (EL-Khuffash, 2014).
We explore two methods for identifying these frames: an
algorithmic approach based on a cardiac phase detection
algorithm (Zhang et al., 2017) with parameters optimized for
newborns and a neural network-based image segmentation
approach. However, the algorithmic approach proved impre-
cise due to small errors in heart-phase estimation in the first
cycle accumulating in subsequent cycles. Thus, we moved
forward with the neural network-based image segmentation
method.

More concretely, we identify the pixels corresponding to
the left ventricle (LV) and right ventricle (RV) using the out-
put of the segmentation model. We then calculate the relative
area of the ventricles in each frame by dividing the number of
pixels corresponding to the ventricles by the total number of
pixels. The minimum and maximum expansion frames were
then identified with the smallest or largest relative ventricle
area. For getting the segmentation masks, we apply ECHO
segmentation models from Zhang et al. (2018), which were
trained on adult ECHOs in five standard views, including
PSAX-P, PLAX, and A4. The intersection over union (IoU)
scores for the views and segmentation areas of interest on the
local test data from Zhang et al. (2018) ranged from 64.6 to
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Fig. 2 Overview of the spatial method for PH detection using a sin-
gle view (PSAXP-P), when training on e.g. three maximum-expansion
frames per ECHO (shown only for a single patient for simplicity). The

first step involves a extracting maximum-expansion frames using seg-
mentation models. The next step involves b classification using the
extracted frames

88.9. However, these models were trained on a dataset with
a mean subject age of 59 (Zhang et al., 2018). In contrast,
our dataset population consists of newborns; thus, lower per-
formance is to be expected on our dataset. Due to the lack
of segmentation ground truth for our data, this assumption
cannot be verified numerically. However, visual inspection
approves this. Since we are only interested in the joint area
of the LV and RV relative to the rest of the heart, perfect
segmentation of each ventricle is not necessary.

3.3.2 Spatial Classification

For the PH classification on spatial input, we train a convolu-
tional neural network with residual connections on n frames
per ECHO, yielding a prediction for each frame. To get view-
level results, we aggregate frame-level predictions of a given
view {yview,i }i=1,...,n through majority voting, i.e. by select-
ing the most frequently predicted label as the view-level
prediction yview. The view-level confidence is then defined as
C = y∗

view/n, where y∗
view is the count of the most frequently

predicted label from the list of predictions for the n frames of
a given ECHO per view. Figure2b summarises the classifica-
tion process when training on maximum-expansion frames
after the maximum-expansion frames have been extracted
and augmented. Note that the process is the same for training
on minimum-expansion frames, but for training on random
frames, the segmentation step can be excluded.

3.4 Proposed Spatio-Temporal Approach

In contrast to previous work Zhang et al. (2018) using
a single-view temporal approach, we introduce a spatio-
temporal multi-view end-to-end deep learning model. We

assume that, we have access to multiple ECHOs showing the
heart fromdifferent views for each patient,which should con-
tribute to the patient-level prediction. Even though a single
view is commonly used for the subjective assessment, recent
works have shown that using multiple views is beneficial for
the assessment (EL-Khuffash, 2014; Schneider et al., 2017).
The proposed framework is depicted in Fig. 3.

3.4.1 Single-View

We first process each view separately. In particular, we
employ a 3D-CNN architecture with residual connections
and spatio-temporal convolutions across frames Hara et al.
(2017) (see Fig. 3a). In contrast to previous work (Zhang
et al., 2018), our approach integrates spatial as well as tem-
poral information into the learning process. This mitigates
the frame-level variations that can occur due to external
changes, such as the position or the contact of the transducer
or the cardiac function itself, thereby increasing robustness.
To overcome the scarcity of the annotated data, common in
the medical domain, from each ECHO, we extract n shorter
video sequences by randomly choosing a frame as their start-
ing frame followed by k − 1 consecutive frames (using a
sampling interval of s = 1), with total k frames, cover-
ing on average one heartbeat. Sequence-level predictions
{yview,i }i=1,...,n are then aggregated through majority vot-
ing, i.e., by selecting the most frequently predicted label, to
a view-level prediction yview.

The view-level confidence is then defined in a similarman-
ner as for the spatial approach, that is: C = y∗

view/n, where
y∗
view is the count of the most frequently predicted label from
the list of predictions for the n sequences of a given ECHO
per view.
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Fig. 3 Overview of our proposed method to automatically assess PH severity of a patient using a single view and b multi-view approach with
majority voting utilising spatio-temporal patterns of ECHOs. Spatio-temporal saliency maps c are provided from each view to increase clinical
usability

3.4.2 Multi-view

To increase the robustness of the method further, we employ
a multi-view approach by combining the models trained on
each available view (as in Fig. 3b). The final subject-level
prediction, yf, is then achievedbymajority votingof the view-
level predictions. In the case of a tie, the prediction of the
model(s) with higher confidence is selected. We tried differ-
ent approaches for view aggregation, including feature-level
fusion, where modalities are combined in the embedding
space. This is done by learning intermediate features for each
view and these are then combined and jointly modeled to
make a decision. However, the feature-level fusion is mem-
ory heavy and did not provide improvements compared to
simple majority voting.

Note that our proposed method uses view annotations to
differentiate the distinct modalities. Following recent work
on view classification (Zhang et al., 2018), our method can
easily be extended to incorporate ECHOswithout view anno-
tation. Furthermore, both spatial and spatio-temporal can be
used with multi-view setting.

3.4.3 Explainability

To increase the accountability and clinical usability of our
proposed method, we complement our predictions with

spatio-temporal saliencymaps from each view (as in Fig. 3c).
The automatic localisation of relevant pixels in the video
sequence for the model’s prediction provides explanations
that mimic the clinical workflow. Among different methods
(Selvaraju et al., 2017; Springenberg et al., 2015; Zhou et
al., 2016), we chose to use Grad-CAM (Gradient-weighted
Class Activation Mapping). This method exploits the gra-
dients of target concept flowing into a given convolutional
layer to produce a coarse localization map highlighting the
important regions in the image for predicting the label Sel-
varaju et al. (2017). Recent works Kindermans et al. (2019),
Adebayo et al. (2018) have shown how pixel-space gradient
visualizations, such as Guided Backpropagation and Guided
Grad-CAM, could be rather insensitive to model and data,
making them similar to edge detectors. Grad-CAM is one of
few saliency methods that pass the insensitivity check, mak-
ing it our saliency method of choice (Adebayo et al., 2018).

Note that Grad-CAM was originally proposed for 2D-
CNNs. We extend Grad-CAM to 3D-CNNs processing
spatio-temporal video inputs. This allows us to identify the
spatio-temporal regions on the video sequence that the net-
work finds most informative for its prediction, which are the
regions in spatial and time domains. We do this by assigning
each neuron a relevance score for the class prediction at the
output layer. Then, we backpropagate this information to the
last convolutional layer to produce a coarse spatio-temporal
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localization map highlighting spatio-temporal areas of the
ECHO video sequence.

4 Experiments and Results

4.1 Implementation Details

Our method was developed using the Python programming
language with the PyTorch deep learning library. Experi-
ments were run on a cluster containing different NVIDIA
GeForce graphic cards: GTX 1080, GTX 1080 Ti, RTX 2080
Ti with 2048 MB RAM per processor core.

For both spatial and spatio-temporal approach we used
a ResNet-18 as the model backbone (Carreira & Zisser-
man, 2017), and initialise the model weights with pre-trained
weights from ImageNet (Russakovsky et al., 2014). For
the spatio-temporal approach we extracted n = 10 video
sequences for each view, and each sequence was composed
of k = 12 consecutive frames, covering on average one heart-
beat in every sequence. The sequence length, k, and sampling
interval s were determined empirically (see Sect. 4.4.2). For
the spatial approach, we extracted n = 10 frames, with dif-
ferent extraction method, see Sect. 4.3. To deal with class
imbalance, we employed a weighted random sampler, which
samples elements from the dataset using their inverse class
weight as their sample weight, ensuring that for every epoch,
the model sees approximately equal number of samples
from each class. Additionally, during training, we contin-
uously augmented each sample with a probability of 90%, as
selected empirically. Each model was trained for around 150
epochs per view minimizing the (categorical) cross-entropy
loss with the Adam (Kingma & Ba, 2014) optimiser. Both
the learning rate and weight decay were set to 0.001. For
the spatio-temporal approach the batch size was set to 8
video sequences, while it was set to 64 images for the spatial
approach.

4.2 Experimental Setup

For the ablation studies, a stratified 10-fold cross-validation
was performed using the first batch of data, such that the
data was randomly split ten times into 20% validation set
and 80% training set. Note that the splitting into training and
validation sets was done on a patient basis. Furthermore, we
evaluated these trained models also on the held-out test set.

As classification metrics, we evaluated the area under
the receiver operation characteristic (AUROC, one-vs-one),
balanced accuracy, frequency-weighted F1-score, weighted
precision, and weighted recall, as commonly used metrics.
Themulti-viewAUROCwas computed from the output prob-
abilities of the most confident model selected by the majority

voting. Results were averaged over the folds, and the mean
and standard deviation were reported on patient level.

4.3 Ablation Studies for Spatial Approach

For performing various ablation studies, we simplified the
problem setting to a binary classification. We then discrimi-
nated between no PH (65% of the data) and PH, combining
mild, moderate, and severe cases, in line with previous work
(Zhang et al., 2018). Even though assessing the severity of
PH is crucial for correct treatment, as the morbidity rate
significantly increases for higher degrees of PH (Corris &
Degano, 2014; Galiè et al., 2015), the clinicians might also
be interested in simply discriminating between healthy and
unhealthy patients as an initial screening procedure. In such a
case, the data imbalance would be less significant. To under-
stand the importance of different regularisationmethods, and
the effects of different frame extraction methods, ablation
studies were performed on the simpler task of single-view
binary PH detection, for the PSAX-P view, using a spatial-
only approach.

4.3.1 Augmentation and Regularisation

We report in Table 2 the results of regularisation techniques
when applied to the spatial PSAX-P model for PH detec-
tion, specifically the following: Augmentation (aug), weight
decay of 0.001 (wd), and initialising the model with pre-
trained weights (pre-trained). The weight decay value of
0.001 was set empirically. For this study, we keep the num-
ber of frames per ECHO fixed, extracting 10 random frames
from each ECHO.

The results clearly demonstrate the significance of regu-
larisation in improving the performance.We observed a clear
improvement in using all three regularisation techniques
compared to no regularisation. This finding is consistent with
our expectation that overfitting ismore likely to occur in small
datasets, and regularisation can help mitigate this issue. We
found that data augmentation had the most substantial posi-
tive impact on performance compared to other regularisation
techniques. We apply all three regularisation techniques for
subsequent experiments, both for spatial and spatio-temporal
approach.

4.3.2 Extraction of Frames

This study investigates the impact of using different methods
to extract ECHO frames. Specifically,we compare the perfor-
mance of a spatial single-view PH detection model, trained
on around 10 frames from the PSAX-P view, correspond-
ing to maximum-expansion frames (Max 90th), minimum-
expansion frames (Min 90th), and random frames (Rand-10).
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Table 2 Effects of different regularisation methods, i.e pre-trained weights, augmentation (aug), and weight decay (wd), on the PH detection with
the spatial PSAX-P model, when training on 10 random frames per subject

Regularisation AUROC F1-Score Precision Recall Balanced Accuracy Confidence

Random Baseline 0.76 ± 0.07 0.72 ± 0.04 0.77 ± 0.05 0.72 ± 0.05 0.72 ± 0.05 0.85 ± 0.02

wd 0.79 ± 0.09 0.73 ± 0.11 0.80 ± 0.04 0.73 ± 0.10 0.74 ± 0.07 0.85 ± 0.03

aug 0.91 ± 0.04 0.89 ± 0.05 0.91 ± 0.04 0.89 ± 0.05 0.89 ± 0.05 0.85 ± 0.02

aug, wd 0.91 ± 0.03 0.89 ± 0.04 0.90 ± 0.03 0.89 ± 0.04 0.89 ± 0.04 0.85 ± 0.02

Pre-trained Baseline 0.86 ± 0.04 0.82 ± 0.05 0.84 ± 0.05 0.82 ± 0.05 0.81 ± 0.05 0.87 ± 0.02

wd 0.86 ± 0.07 0.83 ± 0.07 0.84 ± 0.06 0.83 ± 0.07 0.82 ± 0.06 0.87 ± 0.02

aug 0.92 ± 0.05 0.90 ± 0.04 0.92 ± 0.03 0.90 ± 0.04 0.91 ± 0.04 0.86 ± 0.03

aug, wd 0.93 ± 0.04 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.87 ± 0.03

The best results are highlighted in bold

As a baseline, we also show the results from training on all
frames.

Our experimental results, reported in Table 3, indicate
that selecting the frames corresponding to the minimum-
expansion of the heart is more effective than selecting those
corresponding to the maximum-expansion. This suggests
that the minimum-expansion frames contain more informa-
tive features for detecting PH.

This finding is consistent with previous research. It shows
that PH-related abnormalities visible from the PSAX-P view
in newborns, such as changes in the shape of the IVS and
LV, are most prominent during systole, i.e. when the heart is
at its minimum-expansion (EL-Khuffash, 2014). Although
PH is also associated with the reversed volume of the ven-
tricles during diastole, the systolic changes in LV and IVS
morphology appear to bemore discriminative features for the
spatial model. This is in line with ground-truth annotations
being primarily based on IVSmorphology and is further sup-
ported by our explainability analysis in the following sections
(Sect. 4.5.1).

While best results are achieved using frames correspond-
ing to the minimum expansion, the improvement compared
to using randomly selected frames is negligible, with the bal-
anced accuracybeing the sameandothermetrics only slightly
improved. We, thus, choose to train our model on random
frames for future experiments. Using random frames aligns
with previous work, creating a fair comparison and is more
generalizable across different views.

An interesting observation is that training on random
frames yields better results than training on maximum-
expansion frames. This may be because by introducing
randomness into the training process, the model has the
opportunity to identify and incorporate a broader range of
features that might not be immediately apparent to human
observers. The maximum-expansion frames might not be
discriminative enough in isolation. Finally, training on all
frames does not give improvements over selecting only 10
frames.

4.4 Ablation Studies for Spatio-Temporal Approach

We performed ablation studies to understand the importance
of different 3D-CNN Architectures for extracting spatio-
temporal features and the effects of different ECHOsequence
lengths. The ablation studies were performed on the binary
PH detection task using the PSAX-P view.

4.4.1 Different 3D-CNN Architectures

We evaluated different spatio-temporal architectures, such as
ResNet3D (Hara et al., 2017), R(2+1)D (Tran et al., 2018)
andSlowFast (Feichtenhofer et al., 2019). Table 4provides an
empirical evaluation for binary PH detection using PSAX-P
view. The 18-layer ResNet3D (same results as in Table 6(b))
shows superior performance compared to the other two archi-
tectures, with SlowFast being slightly better than R(2+1)D.
Although the 50-layer SlowFast network has shown superior
performances on various video classification tasks (Feichten-
hofer et al., 2019), it seems to lead to overfitting in our dataset.
Furthermore, factoring the 3D convolutional filters into sep-
arate spatial and temporal components, as in R(2+1)D, does
not improve accuracy in our case.

4.4.2 Sequence Length and Sampling Interval

Given an ECHO sequence length k and sampling interval s,
the effective sequence length l is defined as l = k ∗ s, and
it determines the number of frames the given sequence cov-
ers. The effective length can, in theory, be set to any number
between 1 andmax frames, wheremax is the length of the full
ECHO, on average max = 122 frames. However, a sequence
covering a single frame does not utilize the temporal infor-
mation and using an entire ECHO as a sequence leads to slow
training and provides fewer training samples.

We hypothesize a sequence covering at least a full heart-
beat (i.e. 10–12 frames) will be necessary for the best
performance. However, the ideal effective length, sequence
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Table 3 Results of PH detection with the spatial PSAX-P model, when varying the method of extracting frames, i.e. maximum-expansion (Max),
minimum-expansion (Min) or random (Rand). 90th percentile correspond on average to 10–12 frames per ECHO

Frame Extraction AUROC F1-Score Precision Recall Balanced Accuracy Confidence

Max 90th 0.87 ± 0.04 0.87 ± 0.03 0.88 ± 0.03 0.87 ± 0.04 0.86 ± 0.03 0.89 ± 0.01

Min 90th 0.95 ± 0.03 0.92 ± 0.04 0.93 ± 0.04 0.92 ± 0.04 0.92 ± 0.04 0.88 ± 0.02

Rand 10 0.93 ± 0.04 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.87 ± 0.03

All 0.94 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.90 ± 0.04 0.86 ± 0.02

The best results are highlighted in bold

Table 4 Results from different spatio-temporal architectures for binary PH detection using PSAX-P view

Architecture AUROC F1-Score Precision Recall Balanced Accuracy Confidence

R(2+1)D - 18 layers 0.90 ± 0.06 0.90 ± 0.03 0.91 ± 0.03 0.90 ± 0.03 0.90 ± 0.05 0.91 ± 0.03

SlowFast - 50 layers 0.93 ± 0.04 0.90 ± 0.04 0.91 ± 0.04 0.90 ± 0.04 0.90 ± 0.05 0.90 ± 0.03

ResNet3D - 18 layers 0.95 ± 0.04 0.92 ± 0.03 0.93 ± 0.03 0.92 ± 0.03 0.94 ± 0.03 0.91 ± 0.01

The best results for each task have been highlighted in bold

length, and sampling interval are determined with an abla-
tion study. Table 5 reports the effects of varying the effective
length (l) of the input sequences from min 8 to max 24
for sampling intervals s = 1 and s = 2 when training a
ResNet3D-18 model on the PSAX-P view, for the task of
binary PH detection. These settings correspond to sequence
lengths (k) in the range of 4 to 24.

The best results are achieved when training on input
sequences of length 12, where every consecutive frame is
selected (i.e. l = 12, k = 12, s = 1). Recall that a sin-
gle heartbeat covers, on average, 10 frames, so when the
input sequences cover 12 frames, they contain at least one
heartbeat on average. The second-best performance is also
achieved with sequences of length k = 12, but by sampling
every other frame, such that the effective length is 24 frames,
l = 24, k = 12, s = 2. In general we can see that training
on sequences with the same effective length but varying the
sampling rate yields similar results.

4.5 Results of Proposed Approach and Discussions

We hereby provide an empirical assessment of the pro-
posed approaches for PH severity prediction on the dataset
described in Sect. 3.1. Note that, we used the ablation study
results from the previous section to select the best model
and parameters.We report the quantitative performance from
each of the three major views (A4C, PLAX, PSAX-P) (see
Fig. 3a) and two minor views (PSAX-S, PSAX-A). We also
report the results from the multi-view approach (see Fig. 3b)
obtained through majority voting using different combina-
tions of views. In particular, we combined the 3 major views
(MV-3) and all views for a total of 5 different views (MV-All).

We report PHseverity predictionperformance inTable 6(a).
Among the single-view methods, the parasternal short-axis

view at the level of papillary muscles (PSAX-P) shows the
best performance in PH severity prediction. It achieves an
F1-score of 0.81 and Balanced Accuracy of 0.73, followed
by the parasternal long-axis view (PLAX). Although the api-
cal four-chamber view (A4C) is one of the most commonly
used views for cardiovascular disease diagnosis, our evalu-
ation shows that it is not as discriminative as PSAX-P and
PLAX, yielding an F1-score of 0.72 and Balanced Accuracy
of 0.65,which are clearly lower than the other twoviews.This
is also in line with the neonatal echocardiography teaching
manual (EL-Khuffash, 2014), where it is stated that subjec-
tive assessment of PH from the A4C view in a 2D ECHO is
usually only possible for moderate to severe PH cases, and
quantitative evaluation is difficult.

The PH severity prediction problem is challenging, not
only due to the complex task at hand but also because of the
data imbalance. In this case, the robustness and accuracy can
be increased by utilising more views. By combining results
from the PSAX-P, PLAX, and A4C views using majority
voting, the F1-score increased to 0.83, while the Balanced
Accuracy to 0.76. This improvement surpasses the perfor-
mance of any of the single views. When the other two
short-axis views are included, we get an F1-score of 0.84
and a Balanced Accuracy of 0.78. The majority voting is not
only helpful to enhance the performance, but it is also useful
in case a single view has an unsatisfactory quality for a given
subject, a common scenario in many real-world applications.

Moreover, we performed an additional ablation, where we
simplified the problem setting to a binary classification, as
described in Sect. 4.3. We report the binary PH detection
results in Table 6(b). PSAX-P view is still the most discrimi-
native onewith anF1-score of 0.92 andBalancedAccuracyof
0.94. Given the substantial prediction accuracy of the PSAX-
P view alone for binary PH detection, including more views
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Table 5 Results of PH detection with the ResNet3D PSAX-P model when varying the effective length (l), sequence-length (k) and sampling
interval (s) of the input sequences

k, s (l) AUROC F1-Score Precision Recall Balanced Accuracy Confidence

8, 1 (8) 0.92 ± 0.03 0.90 ± 0.04 0.92 ± 0.02 0.90 ± 0.04 0.91 ± 0.03 0.90 ± 0.02

12, 1 (12) 0.95 ± 0.04 0.92 ± 0.03 0.93 ± 0.03 0.92 ± 0.03 0.94 ± 0.03 0.90 ± 0.03

16, 1 (16) 0.92 ± 0.04 0.90 ± 0.04 0.91 ± 0.03 0.89 ± 0.04 0.91 ± 0.04 0.92 ± 0.02

24, 1 (24) 0.92 ± 0.04 0.88 ± 0.03 0.90 ± 0.02 0.87 ± 0.03 0.89 ± 0.03 0.93 ± 0.01

4, 2 (8) 0.92 ± 0.04 0.89 ± 0.05 0.91 ± 0.03 0.89 ± 0.05 0.90 ± 0.04 0.89 ± 0.02

6, 12 (12) 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.02 0.91 ± 0.03 0.92 ± 0.03 0.90 ± 0.01

8, 2 (16) 0.92 ± 0.04 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.92 ± 0.02

12, 2 (24) 0.94 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.04 0.93 ± 0.01

The best results have been highlighted in bold

Table 6 Results from both spatio-temporal (a, b) and spatial (c, d) approaches for PH severity prediction (a,c) and binary PH detection (b,d) using
10-fold cross-validation. MV-3 refers to majority voting of A4C, PLAX, and, PSAX-P views

View AUROC F1-Score Precision Recall Balanced accuracy Confidence

(a) Spatio-temp. Severity prediction A4C 0.77 ± 0.03 0.72 ± 0.05 0.75 ± 0.05 0.72 ± 0.05 0.65 ± 0.06 0.88 ± 0.02

PLAX 0.85 ± 0.04 0.78 ± 0.05 0.82 ± 0.06 0.79 ± 0.06 0.72 ± 0.05 0.89 ± 0.03

PSAX-P 0.85 ± 0.04 0.81 ± 0.05 0.83 ± 0.06 0.82 ± 0.04 0.73 ± 0.06 0.90 ± 0.03

PSAX-S 0.73 ± 0.07 0.68 ± 0.08 0.69 ± 0.09 0.69 ± 0.08 0.62 ± 0.07 0.85 ± 0.04

PSAX-A 0.77 ± 0.07 0.74 ± 0.06 0.77 ± 0.04 0.74 ± 0.06 0.67 ± 0.06 0.84 ± 0.04

MV-3 0.84 ± 0.08 0.83 ± 0.05 0.86 ± 0.04 0.83 ± 0.05 0.76 ± 0.07 0.91 ± 0.02

MV-All 0.86 ± 0.09 0.84 ± 0.06 0.86 ± 0.05 0.85 ± 0.05 0.78 ± 0.07 0.90 ± 0.02

(b) Spatio-temp. Binary detection A4C 0.83 ± 0.05 0.81 ± 0.04 0.84 ± 0.03 0.81 ± 0.04 0.81 ± 0.04 0.91 ± 0.03

PLAX 0.90 ± 0.07 0.86 ± 0.09 0.88 ± 0.07 0.86 ± 0.09 0.86 ± 0.08 0.91 ± 0.02

PSAX-P 0.95 ± 0.04 0.92 ± 0.03 0.93 ± 0.03 0.92 ± 0.03 0.94 ± 0.03 0.90 ± 0.03

PSAX-S 0.79 ± 0.04 0.81 ± 0.03 0.82 ± 0.04 0.81 ± 0.03 0.80 ± 0.04 0.90 ± 0.02

PSAX-A 0.88 ± 0.05 0.87 ± 0.03 0.88 ± 0.03 0.87 ± 0.03 0.87 ± 0.04 0.89 ± 0.03

MV-3 0.90 ± 0.03 0.87 ± 0.04 0.88 ± 0.03 0.87 ± 0.04 0.87 ± 0.04 0.92 ± 0.01

MV-All 0.90 ± 0.03 0.89 ± 0.02 0.90 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.91 ± 0.01

(c) Spatial Severity prediction A4C 0.79 ± 0.04 0.75 ± 0.05 0.77 ± 0.04 0.75 ± 0.06 0.67 ± 0.06 0.84 ± 0.03

PLAX 0.84 ± 0.04 0.76 ± 0.04 0.78 ± 0.05 0.77 ± 0.04 0.70 ± 0.05 0.85 ± 0.03

PSAX-P 0.83 ± 0.03 0.81 ± 0.02 0.82 ± 0.03 0.81 ± 0.03 0.74 ± 0.03 0.83 ± 0.03

PSAX-S 0.74 ± 0.07 0.68 ± 0.06 0.70 ± 0.07 0.70 ± 0.08 0.62 ± 0.06 0.83 ± 0.03

PSAX-A 0.80 ± 0.03 0.75 ± 0.04 0.76 ± 0.04 0.76 ± 0.05 0.66 ± 0.04 0.84 ± 0.03

MV-3 0.84 ± 0.03 0.81 ± 0.03 0.83 ± 0.04 0.82 ± 0.03 0.74 ± 0.06 0.85 ± 0.02

MV-All 0.84 ± 0.03 0.82 ± 0.03 0.83 ± 0.04 0.83 ± 0.03 0.73 ± 0.04 0.85 ± 0.01

(d) Spatial Binary detection A4C∗ 0.87 ± 0.04 0.83 ± 0.04 0.85 ± 0.03 0.83 ± 0.04 0.83 ± 0.03 0.87 ± 0.03

PLAX 0.92 ± 0.05 0.88 ± 0.04 0.89 ± 0.04 0.88 ± 0.04 0.88 ± 0.04 0.89 ± 0.02

PSAX-P 0.93 ± 0.04 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.87 ± 0.03

PSAX-S 0.83 ± 0.03 0.81 ± 0.03 0.83 ± 0.02 0.81 ± 0.03 0.81 ± 0.03 0.86 ± 0.04

PSAX-A 0.86 ± 0.04 0.85 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.84 ± 0.03 0.87 ± 0.02

MV-3 0.91 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.01

MV-All 0.92 ± 0.02 0.90 ± 0.02 0.91 ± 0.01 0.90 ± 0.02 0.90 ± 0.01 0.87 ± 0.02

MV-All refers to majority voting of all five views. The best results for each task have been highlighted in bold
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to the aggregated model does not result in increased perfor-
mances. This is due to the larger number of weaker models
and the high performance of the PSAX-P single view. The
voting strategy is then driven by weaker models rather than
the single best performing PSAX-P view.

In addition, we also explored an alternative end-to-end
approach by merging the views in the embedding space.
This was considered as an alternative method for combining
views instead of majority voting. However, this approach did
not yield improved results compared to the majority voting.
Furthermore, we investigated confidence-weighted majority
voting. While the average confidence is higher for correct
predictions, there were some cases where the models confi-
dently made incorrect predictions. Thus, we decided against
using voting weighted by confidence.

The existing method (Zhang et al., 2018) for binary
PH detection in adults does not exploit the spatio-temporal
patterns. Thus, as a comparison,we also evaluated the spatial-
only approach. The results are reported in Table 6(c) for
severity prediction and in Table 6(d) for binary PH detec-
tion.We achieve similar results as the state-of-the-art method
using A4C view as in Zhang et al. (2018), with an AUROC
of 0.87 compared to 0.85 from Zhang et al. (2018), when
evaluating a similar task in adults. In terms of severity predic-
tion using a spatial only approach, from Table 6(c), MV-All
demonstrates (slightly) higher performance over PSAX-P.
Furthermore, when comparing the spatio-temporal method
in Table 6(a) with the spatial method in Table 6(c), the uti-
lization of the spatio-temporal method with MV-All helps
enhancing the overall performance, improving the Balanced
Accuracy from 0.73 to 0.78. Regarding binary PH detec-
tion, the comparison between the spatio-temporal method
in Table 6(b) and the spatial method in Table 6(d) indicates
that employing a single and highly predictive PSAX-P view
yields the best outcomes for both methods. As a future work,
we aim to improve the aggregation strategy frommulti views
for binary detection.

We evaluated ourmodels on the held-out test set, and these
results are presented in Table 7. In Table 7(a), our MV-All
method achieved an F1 score of 0.63 for severity predic-
tion on the test set, compared to 0.84 in the validation set.
Furthermore, the PSAX-A view is the most predictive view
for the severity prediction task on the test set, closely fol-
lowed by PLAX. Regarding the binary PH detection, shown
in Table 7(b), our MV-All method achieved an F1 score of
0.78, compared to the best accuracy using PSAX-P of 0.92 in
the validation set. For severity prediction, shown inTable 7(a)
and (c), employing the spatio-temporal approach resulted in
better scores. In contrast, for binary PH detection, the spa-
tial approach yielded higher scores with both single- and
multi-viewmethods, as shown in Table 7(b) and (d). Overall,

the models demonstrated high accuracy for the binary PH
detection task on the unseen test set.However, as severity pre-
diction presents a more challenging task, these models might
benefit from additional data to better differentiate between
varying levels of PH in future iterations, potentially enhanc-
ing accuracy.

4.5.1 Explainability

To increase the clinical usability, our method contains a post-
hoc analysis of the single-view spatio-temporal convolutions.
For eachECHOview,wehighlight the pixels that are themost
relevant for assessing PH severity. In Fig. 4, we show the
original ECHO frames with different levels of PH (left col-
umn) combined with saliency maps using Grad-CAM (right
column) corresponding to the significant views, in Fig. 4a
PSAX-P and in Fig. 4b PLAX views.

According to the neonatal echocardiography teaching
manual (EL-Khuffash, 2014), for the PSAX-P view, PH
results in change in the IVSmorphology andLVshape,which
stems from the change in RV pressure. In mild to moder-
ate PH, the IVS becomes flat during systole. In moderate to
severe PH, the septum bows into the LV, such that the LV
becomes D-shaped or crescentic. We show in Fig. 4a that our
PSAX-P severity prediction model evaluates the change in
the shape of LV, which is the result of an enlarged RV. Thus,
our model focuses on the same clinically relevant features as
are recommended for diagnosis.

Subjective evaluation of the IVSmorphology is also possi-
ble from the PLAX view (EL-Khuffash, 2014). Furthermore,
quantitative assessments are frequently performed on this
view. These assessments include measurements evaluating
left atrial filling like left atrial-to-aortic root diameter ratio
(LA:Ao) by extracting theM-mode as demonstrated with the
yellow line in Fig. 4b. When exploring the saliency map of
the PLAX severity model, we see in Fig. 4b that the model
focuses on the area around the LA, AV andAo, and IVS. This
suggests that the model is able to consider both the relevant
quantitative features and the subjective ones.

Note that, for simplicity, we show the visualisation results
of a single frame per patient in Fig. 4. In a clinical setting,
the visualizations can be viewed as a video containing spatio-
temporal explanation. In Fig. 5, we show more examples of
how the focus changes along the frames of a sequence.

We would like to stress that, although we only plotted a
few random individuals, we analyzed saliency maps of the
entire population to draw meaningful conclusions. Publicly
available provided code can be used to test such findings.
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Table 7 Results from both spatio-temporal (a, b) and spatial (c, d) approaches for PH severity prediction (a, c) and binary PH detection (b, d) on
held-out test data

View AUROC F1-Score Precision Recall Balanced Accuracy Confidence

(a) Spatio-temp. Severity prediction A4C 0.72 ± 0.06 0.58 ± 0.08 0.59 ± 0.06 0.64 ± 0.09 0.45 ± 0.07 0.88 ± 0.06

PLAX 0.72 ± 0.07 0.65 ± 0.03 0.65 ± 0.05 0.69 ± 0.04 0.44 ± 0.04 0.90 ± 0.03

PSAX-P 0.76 ± 0.06 0.60 ± 0.07 0.61 ± 0.10 0.66 ± 0.06 0.48 ± 0.08 0.88 ± 0.02

PSAX-S 0.73 ± 0.08 0.58 ± 0.07 0.59 ± 0.07 0.60 ± 0.08 0.48 ± 0.07 0.81 ± 0.04

PSAX-A 0.79 ± 0.04 0.66 ± 0.05 0.67 ± 0.07 0.69 ± 0.05 0.50 ± 0.07 0.88 ± 0.03

MV-3 0.73 ± 0.06 0.61 ± 0.02 0.62 ± 0.03 0.68 ± 0.03 0.46 ± 0.03 0.91 ± 0.03

MV-All 0.74 ± 0.06 0.63 ± 0.03 0.63 ± 0.02 0.70 ± 0.02 0.48 ± 0.04 0.89 ± 0.02

(b) Spatio-temp. Binary detection A4C 0.83 ± 0.04 0.71 ± 0.05 0.74 ± 0.05 0.73 ± 0.04 0.67 ± 0.05 0.89 ± 0.02

PLAX 0.82 ± 0.08 0.68 ± 0.06 0.77 ± 0.05 0.72 ± 0.05 0.63 ± 0.07 0.92 ± 0.04

PSAX-P 0.83 ± 0.05 0.72 ± 0.06 0.77 ± 0.04 0.74 ± 0.05 0.71 ± 0.06 0.90 ± 0.04

PSAX-S 0.84 ± 0.07 0.75 ± 0.06 0.77 ± 0.06 0.75 ± 0.06 0.75 ± 0.06 0.84 ± 0.03

PSAX-A 0.85 ± 0.05 0.78 ± 0.04 0.81 ± 0.05 0.79 ± 0.04 0.73 ± 0.05 0.92 ± 0.04

MV-3 0.83 ± 0.07 0.73 ± 0.07 0.81 ± 0.03 0.76 ± 0.05 0.70 ± 0.06 0.92 ± 0.01

MV-All 0.84 ± 0.07 0.78 ± 0.04 0.84 ± 0.03 0.80 ± 0.03 0.75 ± 0.04 0.91 ± 0.01

(c) Spatial Severity prediction A4C 0.70 ± 0.10 0.54 ± 0.04 0.52 ± 0.07 0.62 ± 0.04 0.39 ± 0.04 0.89 ± 0.04

PLAX 0.76 ± 0.06 0.64 ± 0.05 0.63 ± 0.10 0.71 ± 0.04 0.43 ± 0.08 0.93 ± 0.03

PSAX-P 0.79 ± 0.02 0.60 ± 0.05 0.64 ± 0.09 0.66 ± 0.03 0.47 ± 0.05 0.85 ± 0.04

PSAX-S 0.73 ± 0.07 0.60 ± 0.07 0.59 ± 0.08 0.64 ± 0.06 0.46 ± 0.07 0.85 ± 0.03

PSAX-A 0.84 ± 0.04 0.66 ± 0.05 0.68 ± 0.06 0.71 ± 0.04 0.49 ± 0.09 0.89 ± 0.03

MV-3 0.73 ± 0.06 0.58 ± 0.02 0.58 ± 0.05 0.66 ± 0.02 0.42 ± 0.03 0.90 ± 0.02

MV-All 0.72 ± 0.05 0.58 ± 0.03 0.60 ± 0.07 0.66 ± 0.02 0.42 ± 0.03 0.90 ± 0.02

(d) Spatial Binary detection A4C 0.81 ± 0.06 0.71 ± 0.06 0.76 ± 0.05 0.74 ± 0.04 0.68 ± 0.07 0.90 ± 0.03

PLAX 0.79 ± 0.07 0.73 ± 0.05 0.80 ± 0.06 0.77 ± 0.04 0.66 ± 0.05 0.95 ± 0.02

PSAX-P 0.90 ± 0.04 0.79 ± 0.04 0.82 ± 0.05 0.80 ± 0.04 0.77 ± 0.04 0.89 ± 0.02

PSAX-S 0.90 ± 0.05 0.80 ± 0.04 0.82 ± 0.05 0.80 ± 0.04 0.78 ± 0.04 0.86 ± 0.03

PSAX-A 0.89 ± 0.05 0.83 ± 0.04 0.85 ± 0.04 0.84 ± 0.04 0.80 ± 0.05 0.90 ± 0.02

MV-3 0.86 ± 0.09 0.78 ± 0.05 0.84 ± 0.03 0.80 ± 0.04 0.75 ± 0.05 0.92 ± 0.01

MV-All 0.86 ± 0.08 0.80 ± 0.04 0.86 ± 0.01 0.82 ± 0.03 0.77 ± 0.04 0.91 ± 0.01

MV-3 refers to majority voting of A4C, PLAX, and, PSAX-P views. MV-All refers to majority voting of all five views

5 Conclusion

In this study, we developed an automated and streamlined
approach to assist clinicians in assessing pulmonary hyper-
tension (PH) in newborns using echocardiography (ECHO),
which remains a challenge for cardiologists (Dasgupta et al.,
2021; Fisher et al., 2009).

To estimate PH severity, we experimented with spatial-
only as well as spatio-temporal approaches from one or
multiple views. The optimal performancewas achieved using
a spatio-temporal convolutionalmodel onmultiple views and
using the majority voting of those as the final prediction for
the validation set. For the held-out test set, the models can
benefit from more data to improve the accuracy. Our method
has the potential to significantly improve the accuracy, relia-
bility, and consistency of PH estimation in newborns, thereby
reducing the number ofmissedor delayeddiagnoses of severe

PH. As the severity of PH determines the urgency of treat-
ment (Corris&Degano, 2014;Galiè et al., 2015), this, in turn,
could improve the prognosis of PH patients by allowing for
earlier treatment.

Collecting ECHOs from multiple views requires spe-
cialized expertise, and integrating these into the model
can be time-intensive. However, our approach presents a
standardized and more objective method for detecting PH
and assessing its severity. This method complements and
potentially enhances the expertise-driven assessments. Fur-
thermore, the models can be further refined by incorporating
multi-annotator labels through re-training, aiming to further
reduce subjectivity. Moreover, our approach may assist less
trained specialists and reduce the workload of highly trained
experts. Additionally, by highlighting the input features that
are crucial for PH assessment, our proposedmethod provides
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Fig. 4 ECHO frames of subjects with no, mild and severe PH (left), as well as the IP-PHN saliency maps (right), for a the PSAX-P view, and b
the PLAX view. The yellow line shows how the M-mode for the LA:Ao measurement is extracted. The highlighted pixels feature crucial cardiac
structures

Fig. 5 Spatio-temporal Grad-CAM saliency maps (bottom) imposed on the original frames (top) for frames corresponding to systole, mid, diastole,
mid in a PLAX ECHO
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understandable explanations for clinicians, making the sys-
tem accountable.

It is important to note that this study focused on analyzing
the shape change and motion of the ventricles and septum
using 2D echos in standard planes and was conducted retro-
spectively. However, integrating other modalities, such as
Doppler echocardiography or electrocardiograms (ECGs),
could extend the method to detect abnormalities in cardiac
functions. Furthermore, the proposed method is not lim-
ited to newborns and could be applied to ECHOs from the
adult population, with re-training required. Finally, due to
the multi-view setup, the pipeline could be adapted to other
types of disease predictions in the medical context, where
clinicians benefit from different views of the heart in their
clinical routine.
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