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ABSTRACT

Representations fromartificial neural network (ANN) languagemodels havebeen shown topredict
human brain activity in the language network. To understand what aspects of linguistic stimuli
contribute to ANN-to-brain similarity, we used an fMRI data set of responses to n= 627 naturalistic
English sentences (Pereira et al., 2018) and systematically manipulated the stimuli for which ANN
representations were extracted. In particular, we (i) perturbed sentences’word order, (ii) removed
different subsets of words, or (iii) replaced sentences with other sentences of varying semantic
similarity. We found that the lexical-semantic content of the sentence (largely carried by content
words) rather than the sentence’s syntactic form (conveyed via word order or function words) is
primarily responsible for the ANN-to-brain similarity. In follow-up analyses, we found that
perturbation manipulations that adversely affect brain predictivity also lead to more divergent
representations in theANN’sembeddingspaceanddecrease theANN’sability topredictupcoming
tokens in those stimuli. Further, results are robust as to whether the mapping model is trained on
intact or perturbed stimuli and whether the ANN sentence representations are conditioned on the
same linguistic context that humans saw. The critical result—that lexical-semantic content is the
main contributor to the similarity between ANN representations and neural ones—aligns with the
idea that the goalof thehuman language system is to extractmeaning from linguistic strings. Finally,
thisworkhighlights the strengthof systematicexperimentalmanipulations for evaluatinghowclose
we are to accurate and generalizable models of the human language network.

INTRODUCTION

Research in psycholinguistics and cognitive neuroscience of language strives to understand
the representations and algorithms that support human comprehension and production abili-
ties. Until recently, mechanistic accounts of human language processing have been out of
reach. However, artificial neural network (ANN) language models now hold substantial prom-
ise for developing and evaluating computationally precise hypotheses about language pro-
cessing. In particular, contemporary ANN language models achieve impressive performance
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on a variety of linguistic tasks (e.g., Brown et al., 2020; Chowdhery et al., 2022; Devlin et al.,
2018; Liu et al., 2019; OpenAI, 2023; Rae et al., 2021). Furthermore, representations extracted
from ANN language models—especially unidirectional attention transformer architectures like
GPT2 (Radford et al., 2019) can explain substantial variance in brain activity recorded from
the human language network using regression-based evaluation metrics (e.g., Caucheteux &
King, 2022; Gauthier & Levy, 2019; Goldstein et al., 2022; Hosseini et al., 2022; Jain & Huth,
2018; Kumar et al., 2022; Oota et al., 2022; Pasquiou et al., 2022; Schrimpf et al., 2021;
Toneva & Wehbe, 2019). This correspondence has been suggested to derive, at least in part,
from the convergence of the ANNs’ linguistic representations with those in the human brain
(Caucheteux & King, 2022; Goldstein et al., 2022; Hosseini et al., 2022; Schrimpf et al., 2021),
despite the vast differences in their learning and architecture (e.g., Huebner & Willits, 2021;
Warstadt & Bowman, 2022).

However, many questions remain about the factors that contribute to ANN-to-brain map-
ping, that is, the ability to predict brain responses from ANN representations. One critical
question concerns the aspects of linguistic content and form that play a role. To shed light
on this question, we used a published functional magnetic resonance imaging (fMRI) data
set (Pereira et al., 2018) where brain responses were collected from 10 native speakers of
English as they read syntactically and semantically diverse passages, consisting of several sen-
tences each. We reproduced the result of the top-performing brain-encoding ANN language
model in Schrimpf et al. (2021)—GPT2-xl (Radford et al., 2019)—on this data set, and inves-
tigated what drives the model’s brain predictivity, or brain score (Schrimpf et al., 2018). In
particular, we evaluated the contributions to accurate mapping of sentence meaning (largely
carried by content words) and syntactic form (conveyed via word order and function words),
along with superficial control features, like sentence length. To do so, we performed 12 sets of
experiments: three categories of linguistic manipulations across four variants of what we term
here computational experimental design, as elaborated next.

First, we systematically manipulated the linguistic stimuli in three ways: by altering the
word order of the sentence (across seven conditions; see the Perturbation Manipulation Con-
ditions section for details), omitting different subsets of words (across five conditions), and
replacing a sentence with sentences of different degrees of semantic relatedness (across four
conditions). Some of these manipulations disrupt the syntactic form of the sentence (e.g.,
changing the order of the words or removing the function words); whereas other manipulations
affect sentence meaning (e.g., removing the content words or replacing a sentence with a
semantically unrelated sentence). We asked how well ANN representations for the resulting
altered stimuli (across the 16 conditions) can predict neural responses compared to the ANN
representations of (a) the original, unaltered sentence and (b) a control, length-matched con-
dition (a random list of words). Next, we explored possible causes for the differential effects of
these manipulations on brain predictivity by examining the changes in the ANN representa-
tions and next-word prediction task performance as a function of stimulus alterations. Finally,
to evaluate the robustness of the results to the computational experiment design, we performed
all three types of linguistic manipulations across four experimental setups, crossing (i) whether
the model that maps from stimuli to brain representations was trained on intact or perturbed
stimuli; and (ii) whether the ANN representations of the target sentences were contextualized
with respect to the preceding sentences in a passage or not.

Manipulations of Linguistic Stimuli

Language allows its users to package meanings into sequences of words. Content words, such
as nouns, verbs, and adjectives (which carry the most information in a sentence, as can be

Unidirectional ANN language
models:
A class of ANN language models that
only have access to previous
linguistic context when performing
word-in-context prediction.
Unidirectional models can be argued
to be more biologically plausible
than bidirectional models (which use
both left and right context for
prediction).

Language network:
A set of brain regions on that lateral
surface of the frontal and temporal
lobes of the left hemisphere (in most
individuals) that selectively support
language comprehension and
production.

ANN-to-brain similarity:
The similarity between artificial
neural networks (ANNs) and human
brain activity, quantified as
prediction performance of a linear
regression model from ANN
representations to recordings of brain
activity.
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quantified using information-theoretic measures; e.g., Shannon, 1948), have to be selected, so
as to capture the right word-level meanings, and then they have to be assembled into phrases
and sentences according to the rules of the language. The assembly process includes ordering
the words in a particular way as well as adding appropriate inflectional morphological markers
and function words, like determiners and prepositions. The result of all these operations is a
meaningful and well-formed sentence. Here we evaluate the relative importance of different
aspects of linguistic stimuli (sentences) for ANN-to-brain mapping. To do so, we systematically
manipulate the sentences across three manipulation categories (Figure 1; Table 1) before pass-
ing them into the ANN and use the resulting ANN model representations to predict brain
responses (Figure 2).

Word-order manipulations

The first class of manipulations targets the order of the words in the sentence. Word order is an
important cue to how words relate during sentence comprehension (e.g., Bever, 1970;
Kimball, 1973). However, word order rigidity varies across languages, with some languages
exhibiting flexible orderings, pointing to a more limited role of word order, at least in those
languages (e.g., Dryer & Haspelmath, 2013; Hale, 1983; Jackendoff & Wittenberg, 2014).
Moreover, work in psycholinguistics has shown that comprehension is highly robust to errors
in the linguistic input, including word order errors, as long as a plausible meaning can be
recovered. For example, given the sentence The mother gave the candle the daughter, people
typically infer the intended meaning to be the more plausible The mother gave the daughter
the candle, suggesting that word order information can be overridden in favor of a plausible
meaning (e.g., Gibson et al., 2013; Levy et al., 2009). Furthermore, word-order transpositions,
as in You that read wrong again!, often go unnoticed during sentence reading (Mirault et al.,
2018; Wen et al., 2021).

Figure 1. Overview of perturbation manipulation conditions and the ANN-to-brain mapping approach. An example (original) sentence is
illustrated together with an example of the stimulus in a sample condition from each of the three types of perturbation manipulations
(word-order manipulations, information-loss manipulations, and semantic-distance manipulations), as detailed in Perturbation Manipulation
Conditions.
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Similarly, recent evidence from neuroscience has shown that the human language
network—a set of brain areas that are selectively and robustly activated when humans process
language (e.g., Fedorenko et al., 2011; Fedorenko & Thompson-Schill, 2014; Lipkin et al.,
2022; Regev et al., 2013)—exhibits the same amount of activation to word-order-manipulated
sentences as to intact ones as long as the pointwise mutual information (PMI) among nearby
words remains as high as in the intact sentences (which presumably allows for the formation of
local semantic and syntactic dependencies; Mollica et al., 2020). This result aligns with
findings by Gauthier & Levy (2019), who showed that fine-tuning the pre-trained bidirectional
encoder representations from transformers (BERT) language model (Devlin et al., 2018) on a
word prediction task that selects against word-order-based representations of the input
(namely, fine-tuning on a corpus where words were randomly shuffled within a sentence) leads
to an increase in brain decoding performance for the same fMRI benchmark used here (Pereira
et al., 2018). Lastly, recent work in natural language processing (NLP) has shown that

Table 1. Overview of perturbation manipulation conditions and sample stimuli for each condition.

Manipulation type Condition name Sample stimulus

original Original it is in every beekeeper’s interest to conserve local plants that produce pollen.

word-order 1LocalWordSwap it is in every beekeeper’s interest to conserve local plants produce that pollen.

3LocalWordSwaps in it is every beekeeper’s interest to conserve local plants produce that pollen.

5LocalWordSwaps in it is every interest beekeeper’s to conserve local plants produce pollen that.

7LocalWordSwaps in every it is interest beekeeper’s to conserve plants local that pollen produce.

ReverseOrder pollen produce that plants local conserve to interest beekeeper’s every in is it.

LowPMI it beekeeper’s conserve plants pollen in to every that is interest local produce.

LowPMIRandom in that pollen to is plants every beekeeper’s conserve produce interest it local.

information-loss KeepContentW it is beekeeper’s interest conserve local plants produce pollen.

KeepNVAdj it is beekeeper’s interest conserve local plants produce pollen.

KeepNV it is beekeeper’s interest conserve plants produce pollen.

KeepN it beekeeper’s interest plants pollen.

KeepFunctionW in every to that.

semantic-distance Paraphrase conserving regional vegetation that provides pollen is of the utmost importance for beekeepers.

RandSentFromPassage beekeepers also discourage the use of pesticides on crops because they could kill the honeybees.

RandSentFromTopic artisanal honey-making emphasizes quality and character over quantity and consistency.

RandSent mosquitos are thin small flying insects that emit a high-pitched sound.

control RandWordList of shears metallic is in individual machine for fracture a singer can have.

Note. The perturbation manipulation conditions that we use in the current work are motivated by prior theorizing in language research and/or past empirical
findings from both neuroscience and natural language processing (NLP). The perturbation manipulations include (i) word-order manipulations of varying sever-
ity that preserve or destroy local dependency structure (following Mollica et al., 2020), allowing us to investigate the effect of word order degradation while
controlling for local word co-occurrence statistics; (ii) information-loss manipulations with deletion of words of different parts of speech (following O’Connor &
Andreas, 2021), allowing us to investigate loss of information from particular classes of words; (iii) semantic-distance manipulations with sentence substitutions
that relate to the meaning of the original sentence to varying degrees (inspired by Pereira et al., 2018), allowing us to investigate loss of semantic and more
general topical information while retaining sentence well-formedness. As a baseline length-matched control condition, we include a random word list, where
each word is substituted with a different random word.

Pointwise mutual information (PMI):
A metric from information theory
which quantifies the degree to which
two words covary systematically.
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word-order information is not necessarily needed to solve many current NLP benchmark tasks
(e.g., Papadimitriou et al., 2022; Pham et al., 2021; Sinha et al., 2021; cf. Abdou et al., 2022;
Lasri et al., 2022), although these results may be more reflective of how the benchmarks were
constructed than about human language or language-processing mechanisms (e.g., McCoy
et al., 2019).

Therefore, given this evidence from NLP and language neuroscience, we hypothesized that
ANN-to-brain mapping performance on current fMRI data sets may similarly not require ANNs
to leverage word-order information. Building on Mollica et al. (2020), we evaluate both local
scrambling of words (which may better preserve syntactic and semantic dependencies among

Figure 2. Overview of the ANN-to-brain mapping approach. Brain data from human participants (n = 10) were recorded while they read
intact sentences using functional magnetic resonance imaging (fMRI; Pereira et al., 2018). Brain data consisted of voxel responses within the
language-selective network (individually defined using an independent localizer task; Fedorenko et al., 2010) for each of the 10 participants.
Following Schrimpf et al. (2021), we divided the stimuli (i.e., sentences) into training/test sets. We then retrieved ANN model representations
for the stimuli and fitted a linear ANN-to-brain mapping model (M) from the ANN representations of the training stimuli to each single voxel’s
(within the language network) corresponding recordings for those stimuli (the fitting process is not illustrated in this graphic). Next, we tested
the ANN-to-brain mapping model (M) on the ANN representations of the held-out test stimuli to generate predicted brain responses for those
stimuli, for each voxel (illustrated by the gradient arrows). Lastly, we compared predicted versus actual brain responses for each voxel using the
Pearson correlation coefficient. This process was repeated five times, holding out a different set of 20% of stimuli each time. ANN represen-
tations were obtained using two approaches (for the motivation and details, see Manipulations of Computational Experimental Design): (1)
TrainIntact–TestPerturbed, where ANN representations for the training set were obtained from the original, intact stimuli, whereas the ANN
representations for the test set were obtained from the perturbed stimuli; and (2) TrainPerturbed–TestPerturbed, where ANN representations for
the training and test set were obtained from the perturbed stimuli. These two approaches were crossed with whether the preceding sentences in
the passage were included as contextualizing input for the ANN (not depicted). The GPT2 illustration was adapted from Radford et al. (2018).
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nearby words) and more global re-arrangement of words (which does not preserve such
dependencies).

Information-loss manipulations

The second class of manipulations targets the information carried by words from specific parts
of speech. Research in formal semantics has traditionally posited a categorical difference
between the semantics of content (open-class/ lexical) words and function (closed-class/
logical) words, whereby function words, unlike content words, are assumed to carry little
lexical meaning and primarily encode logical relationships between content words (e.g.,
Chierchia, 2013; Partee, 1992). Further, research in distributional semantics suggests that
the semantic properties of function words are not well represented by word co-occurrence
distributions, in sharp contrast with the meanings of content words, which are better captured
by distributional patterns (Boleda, 2020; though see, e.g., Abrusán et al., 2018; Baroni et al.,
2012; Linzen et al., 2016).

Indeed, previous co-occurrence-based models often benefited from the removal of function
words and other high-frequency “stop words” for solving various NLP tasks (e.g., Bernardi
et al., 2013; Herbelot & Baroni, 2017; Lazaridou et al., 2017). Even for state-of-the-art ANN
language models, it has recently been shown that retaining only the content words in linguistic
context has little effect on next-word prediction performance, with performance varying as a
function of how much of the lexical content is included (i.e., higher performance when keep-
ing all content words vs. keeping only subsets, such as keeping only the nouns and verbs, or
keeping only the nouns; O’Connor & Andreas, 2021). Whereas function words have been
shown to have a sizable effect on ANN next-word prediction performance within local sen-
tence contexts (because they help ensure grammaticality; Khandelwal et al., 2018), content
words strongly influence prediction performance both within local and more extended con-
texts (Khandelwal et al., 2018; O’Connor & Andreas, 2021).

Research from psycholinguistics similarly shows an asymmetry between content and func-
tion words: when reading sentences, people tend to overlook the omission or repetition of
function words, but such errors are much more noticeable for content words (Huang & Staub,
2021; Staub et al., 2019). Differences can also be found in language production: Function
words tend to have shorter pronunciations than content words of the same length, because
they are typically highly predictable from context, which leads to phonological reduction
and de-stressing (e.g., Bell et al., 2009).

In line with this previous research, we hypothesized that removing content words, but not
function words, should have a strong negative effect on ANN-to-brain mapping and that brain
predictivity should increase the more lexical content of the original sentence is available to the
ANN for building a representation. Following O’Connor and Andreas (2021), we evaluate the
effect of preserving all or some of the content words (e.g., nouns and verbs) or function words.

Semantic-distance manipulations

The third class of manipulations targets sentence-level meanings and serves to test how pre-
cisely the meaning of a sentence has to be encoded for a successful ANN-to-brain mapping.
Previous research in computational neuroscience has shown that vectors that represent lexical
semantics based on word co-occurrence statistics (global vectors for word representation
[GloVe]; Pennington et al., 2014) can be decoded from fMRI data recorded while participants
read sentences (Pereira et al., 2018). In particular, Pereira et al. (2018) demonstrated that sen-
tence pairwise classification accuracy depended on how semantically similar the sentence
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pairs were: Sentences from different topics (e.g., a sentence about beekeeping vs. a sentence
about skiing) were easier to distinguish than sentences that talk about different ideas within the
same general topic (e.g., two sentences about beekeeping that come from distinct passages,
such as one passage about the importance of beekeeping for the health of the planet and the
other telling a story about a particular beekeeper), with sentences that talk about related ideas
within the same topic (e.g., two sentences from the same passage on the importance of bee-
keeping) being the most challenging to distinguish.

However, in Pereira et al. (2018), even neural responses to sentences from the same pas-
sage could still be reliably discriminated, suggesting that semantic representations of linguistic
input are relatively fine-grained in both fMRI data and word embeddings. On the other hand,
even neural responses to sentences from distinct topics could not be perfectly discriminated
(classification accuracy: 81%–84%, chance level: 50%), suggesting that representations of
sentences that are unrelated to the target sentence may share some features with the represen-
tation of the target sentence that can lead to misclassification (at least when using coarse
representations based on averaged decontextualized GloVe embeddings for decoding). This
pattern of results raises the question of how much of the fMRI signal that ANN-to-brain models
are able to predict represents a sentence’s exact or approximate semantic content.

We manipulate sentence meaning by replacing the original sentence with sentences that
vary in how similar they are in meaning to the original. In line with Pereira et al. (2018),
we hypothesized that substituting sentences that are semantically more distant from the target
sentence would elicit lower ANN-to-brain mapping performance. Further, because ANN rep-
resentations of compositional sentence meaning (as investigated here) are richer and finer-
grained than a simple average of decontextualized word embeddings, we hypothesized that
the representations of topically unrelated sentences would be more distant, so that substituting
them would result in very low brain predictivity. We leveraged the hierarchical structure of the
linguistic materials in the Pereira et al. (2018) fMRI benchmark to vary semantic distance
between the original sentences and the manipulated ones, in a similar way to the original
study, and additionally created paraphrases for each sentence, which were expected to elicit
high ANN-to-brain performance.

Understanding the Effects of Linguistic Manipulations on Brain Predictivity

To complement our findings across the linguistic perturbation manipulations, we present a set
of exploratory analyses that aim to uncover potential causes for the differential effects of per-
turbation manipulations on brain predictivity. In particular, we look for possible correlates of
brain predictivity across perturbation manipulation conditions in (a) the ANN’s representa-
tional space and (b) the ANN’s performance on the next-word prediction task for the manip-
ulated sentence sets.

The investigation of the ANN representational space is motivated by the use of representa-
tional similarity metrics to compare high-dimensional vectors derived from brain recordings,
ANNs, or both (Kriegeskorte, 2015; Kriegeskorte et al., 2008). Representational similarity anal-
ysis (RSA) relies on the strength of correlation between sets of vectors to make inferences about
the information contained in the distributed patterns within the vectors. Although originally
developed to compare vectors derived from different brain recording modalities, RSA-style
approaches can also be used to compare representations derived from various instantiations
of ANNs (e.g., Barrett et al., 2019; Kornblith et al., 2019; Morcos et al., 2018). Here, we inves-
tigated how the ANN representational space is transformed by different perturbation manipu-
lations. We hypothesized that larger transformations in the ANN representational space
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(relative to the representational space for the original, intact stimuli) would be associated with
larger changes in brain predictivity.

The investigation of ANN task performance is motivated by research in psycholinguistics
and neuroscience, suggesting that predictive processing is a core mechanism for language
comprehension (within psycholinguistics: Bicknell et al., 2010; Brothers & Kuperberg, 2021;
Demberg & Keller, 2008; Rayner et al., 2006; Smith & Levy, 2013; within neuroscience:
Heilbron et al., 2019; Henderson et al., 2016; Lopopolo et al., 2017; Shain et al., 2020;
Willems et al., 2016). Converging research from computational neuroscience has reported a
positive correlation between the next-word prediction performance of ANN language models
and model-to-brain correspondence (Caucheteux & King, 2022; Goldstein et al., 2022;
Hosseini et al., 2022; Schrimpf et al., 2021; cf. Antonello & Huth, 2022). In line with this
evidence, we hypothesized that ANN brain predictivity would correlate with how well the
model can predict upcoming words within a manipulated sentence, such that manipulations
that render sentences less predictable would, on average, lead to representations that map less
well onto human brain data.

Manipulations of Computational Experimental Design

ANN-based modeling of language provides a novel toolkit for testing theoretically motivated
hypotheses about language processing in the mind and brain. However, results derived via
such in-silico investigations of human language processing may not be robust to variations
in how the ANN-to-brain match comparisons are performed. Here, we evaluate the relative
importance of manipulations to what we denote as the computational experimental design for
ANN-to-brain match performance to evaluate the robustness of our results. Specifically, we
investigate the contribution of two factors, as elaborated below: (i) whether the training data
stimuli for the ANN-to-brain mapping model are intact or perturbed, and (ii) whether the target
sentence is contextualized with preceding sentences from the passage.

ANN-to-brain mapping model training stimuli

In our main approach (TrainIntact–TestPerturbed, as illustrated in Figure 2, upper two panels),
we train a linear ANN-to-brain mapping model using ANN representations for the original
(intact) stimuli from Pereira et al. (2018) and human brain responses obtained during the pro-
cessing of the same, intact versions of the stimuli. This training setup corresponds to the main
use case of ANN-to-brain encoding models and follows prior work (e.g., Caucheteux & King,
2022; Goldstein et al., 2022; Schrimpf et al., 2021). Using this standard setup, we investigated
our main research question, that is, Which aspects of a linguistic stimulus contribute to
successful ANN-to-brain mapping performance?, by evaluating the mapping model’s ability
to predict brain responses to intact sentences from ANN representations of sentences that were
perturbed in one of the ways described above. (For a detailed description, see Perturbation
Manipulation Conditions in Materials and Methods.) If degrading a particular aspect of the
sentence decreases the mapping model’s performance (brain predictivity), we would like to
conclude that this aspect of the stimulus is a critical contributor to the mapping model’s
performance. If, on the other hand, degrading the stimulus does not lead to lower brain
predictivity, we would like to conclude that the mapping model does not pay any appreciable
attention to the part of the ANN representation of the stimulus that is sensitive to the removed
information.

However, there are (at least) two possible explanations for why sentence perturbation
manipulations may adversely affect the success of an ANN-to-brain mapping model trained
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on representations of intact sentences: Either a successful mapping must critically rely on the
information removed by a given perturbation (our desired interpretation, as stated above), or
perturbing the input to the ANN model only at test time introduces out-of-distribution inputs
to the trained ANN-to-brain mapping model; that is, lower brain predictivity can be explained
by a distribution shift of the input to the mapping model at test time. To distinguish between
these possibilities, we tested how well an ANN-to-brain mapping model can predict brain
responses when the input to the ANN is perturbed in the same way during training and testing
(Figure 2, TrainPerturbed–TestPerturbed). When the ANN-to-brain mapping models are trained
and tested on the same set of perturbations, a decline in brain predictivity relative to the
performance using intact sentences (Original benchmark) cannot be explained by a distribution
shift in the input to the model at test time. Thus, this approach can reveal the degree to which
perturbations remove information from the ANN representation of the stimuli that is useful for a
mapping model when it learns a relationship between ANN representations and brain data.

Contextualization of the linguistic stimuli

ANN-to-brain predictivity analyses typically aim to mimic the experimental procedure for which
the human brain data were obtained. Linguistic stimuli in human brain imaging studies are often
contextualizedwithin a story (e.g., Blank et al., 2014; Huth et al., 2016; Schoffelen et al., 2019) or
a passage (e.g., Pereira et al., 2018). Given that large-scale ANN language models (such as
transformer language models) are able to condition input representations on large amounts of
preceding linguistic context, they enablemimicking the human experimental design by providing
the same linguistic stimuli as context to the ANN as were provided to the human participants.
However, whether this is the right approach, empirically and conceptually, is not clear.

On the one hand, providing the same context to the ANN language models for represen-
tation building as what humans saw/heard during the experiment could improve ANN-to-
brain mapping performance by modulating sentence representations in ways similar to how
the human brain is affected by context. On the other hand, sentence contextualization could
hurt match-to-brain performance. First, the way in which ANNs versus humans represent con-
textual information in memory is likely very different. In particular, constrained by memory
limitations, humans do not retain detailed linguistic representations of the preceding context
(e.g., Futrell et al., 2020; Potter, 2012; Potter et al., 1980; Potter & Lombardi, 1990); instead, as
they process linguistic input, they appear to extract the representations of the relevant meaning
and “discard” the exact word sequences (e.g., Christiansen & Chater, 2016; Potter & Lombardi,
1998). And second, human neuroscience studies have suggested that extended story contexts
are represented not in the language network proper (which we focus on here), but in a distinct
brain network—the default network (e.g., Blank & Fedorenko, 2020; Lerner et al., 2011;
Simony et al., 2016). Thus, neural responses to language stimuli of the language-selective
areas may only be capturing the local processing of the current sentence and would therefore
align better with decontextualized sentence representations (see Caucheteux et al., 2021, and
Jain & Huth, 2018, for evidence that ANN representations with varying amounts of linguistic
context lead to differential mapping performance with different brain areas). We therefore
evaluated brain predictivity for sentence representations with and without contextualization
through inclusion of preceding sentences in the passage; we refer to these as contextualized
and decontextualized sentence representations, respectively. We did this for the two ANN-to-
brain mapping model training approaches introduced above (i.e., TrainIntact–TestPerturbed
and TrainPerturbed–TestPerturbed).

To foreshadow our results, we find that (i) lexical-semantic content of the sentence, rather
than syntactic structure (conveyed via word order or function words), is responsible for the

Lexical semantic sentence content:
The meaning of a sentence as
expressed by its lexical items (words),
independent of the syntactic
structure of the sentence.
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ability of ANNs to predict fMRI responses in the human language network. We further show
that (ii) linguistic perturbations that decrease brain predictivity have interpretable causes: They
lead to (a) more divergent representations in the ANN’s embedding space (relative to the rep-
resentations of intact sentences) and (b) a decrease in the ANN’s next-word prediction task
performance, that is, its ability to predict upcoming tokens in those stimuli. Finally, (iii) the
results from the linguistic manipulations are largely robust to variations in the computational
experimental design, which impact the overall magnitude of brain scores but not their pattern
across conditions.

MATERIALS AND METHODS

Here we describe in detail (i) our manipulations of the linguistic stimuli that are designed to
isolate the influences of different features of the input, (ii) how we obtain ANN representations
for these stimuli, and (iii) how we perform ANN-to-brain mappings. Because our approach is
based on the ANN-to-brain mapping framework from Schrimpf et al. (2021), the sections
Comparison of ANN Model Representations to Brain Measurements, fMRI Data Set (Pereira
et al., 2018), and Estimation of Noise Ceiling (Quantified as Brain-to-Brain Predictivity) are
similar to the methods reported in Schrimpf et al. (2021).

fMRI Data Set

We used the data from Pereira et al.’s (2018) Experiments 2 (n = 9) and 3 (n = 6) (10 unique
participants, all native speakers of English). (The set of participants is not identical to Pereira
et al.: One participant, tested at Princeton, was excluded from both experiments here to keep
the fMRI scanner the same across participants; and two participants who were excluded from
Experiment 2 in Pereira et al. based on the decoding results in Experiment 1 of that study were
included here, to err on the conservative side.) Stimuli for Experiment 2 consisted of 384 sen-
tences (96 text passages, four sentences each), and stimuli for Experiment 3 consisted of 243
sentences (72 text passages, three or four sentences each). The two sets of materials were
constructed independently, and each spanned a broad range of content areas. Sentences were
7–18 words long in Experiment 2, and 5–20 words long in Experiment 3. The sentences were
presented on the screen one at a time for 4 s each (followed by 4 s of fixation, with additional
4 s of fixation at the end of each passage), and each participant read each sentence three times,
across independent scanning sessions (see Pereira et al., for details of experimental procedure
and data acquisition).

Preprocessing and response estimation

Data preprocessing was carried out with SPM5 (using default parameters, unless specified
otherwise) and supporting, custom MATLAB scripts. Preprocessing included motion correction
(realignment to the mean image of the first functional run using second-degree b-spline inter-
polation), normalization (estimated for the mean image using trilinear interpolation), resam-
pling into 2 mm isotropic voxels, smoothing with a 4 mm full-width at half maximum Gaussian
filter and high-pass filtering at 200 s. A standard mass univariate analysis was performed in
SPM5 whereby a general linear model estimated the response to each sentence in each
run. These effects were modeled with a boxcar function convolved with the canonical hemo-
dynamic response function. The model also included first-order temporal derivatives of these
effects (which were not used in the analyses), as well as nuisance regressors representing entire
experimental runs and offline-estimated motion parameters.
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Functional localization

Data analyses were performed on fMRI blood oxygen level dependent (BOLD) signals
extracted from the bilateral fronto-temporal language network. This network was defined func-
tionally in each participant using a well-validated language localizer task (Fedorenko et al.,
2010), where participants read sentences versus lists of nonwords. This contrast targets brain
areas that support “high-level” linguistic processing, past the perceptual (auditory/visual)
analysis. Brain regions that this localizer identifies are robust to modality of presentation
(Fedorenko et al., 2010; Malik-Moraleda et al., 2022; Scott et al., 2017), as well as materials
and task (e.g., Diachek et al., 2020). Further, these regions have been shown to exhibit strong
sensitivity to both lexico-semantic processing (understanding individual word meanings) and
combinatorial, syntactic/semantic processing (putting words together into phrases and sen-
tences) (Bautista & Wilson, 2016; Blank et al., 2016; Blank & Fedorenko, 2020; Fedorenko
et al., 2010; Fedorenko et al., 2012; Fedorenko et al., 2016; Fedorenko et al., 2020). Following
prior work, we used group-constrained, participant-specific functional localization (Fedorenko
et al., 2010). Namely, individual activation maps for the target contrast (here, sentences > non-
words) were combined with constraints in the form of spatial “masks”—corresponding to
broad areas within which most participants in a large, independent sample show activation
for the same contrast. The masks, which are derived in a data-driven way from this indepen-
dent sample of participants and are available from https://evlab.mit.edu/funcloc/, have been
used in many prior studies (e.g., Diachek et al., 2020; Jouravlev et al., 2019; Shain et al.,
2020). They include six regions in each hemisphere: three in the frontal cortex (two in the
inferior frontal gyrus, including its orbital portion, and one in the middle frontal gyrus), two
in the anterior and posterior temporal cortex, and one in the angular gyrus. Within each mask,
we selected 10% of most localizer-responsive voxels (voxels with the highest t value for the
localizer contrast) following the standard approach in prior work. This approach allows the
pooling of data from the same functional regions across participants even when these regions
do not align well spatially in the common space.

We constructed a stimulus–response matrix for each of the two experiments by (i) averaging
the BOLD responses to each sentence in each experiment across the three repetitions, result-
ing in one data point per sentence per language-responsive voxel of each participant, selected
as described above (13,553 voxels total across the unique 10 participants; 1,355 average,
±6 SD), and (ii) concatenating all sentences (384 in Experiment 2 and 243 in Experiment 3),
yielding a 384 × 12,195 matrix for the nine unique participants in Experiment 2, and a
243 × 8,121 matrix for the six unique participants in Experiment 3.

ANN Models

As our computational models, we chose to investigate the GPT2 transformer model family
(Radford et al., 2019). These models are trained to predict the next token in a large data set
emphasizing document quality (WebText). We focus on this model family for two reasons: (i)
As a unidirectional-attention model, GPT2 arguably processes input in a more humanlike
manner than bidirectional-attention models such as BERT (Devlin et al., 2018), which have
access to the yet unseen input in the future context; and (ii) previous work has shown that
GPT2 in particular seems to accurately capture human brain activity in the language system
during the processing of the same linguistic stimuli (e.g., Caucheteux & King, 2022; Goldstein
et al., 2022; Schrimpf et al., 2021). We report results for GPT2-xl, the top-performing ANN
language model in previous work (Schrimpf et al., 2021) and validate that the findings hold
across the GPT2 model family (see Figure SI 1A in the Supporting Information, available at
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https://doi.org/10.11.62/nol_a_00116) to ensure the robustness of our results to idiosyncratic
model features. Hence, our primary ANN language model of interest was GPT2-xl (number of
layers L = 48, hidden size H = 1,600). Additionally, we tested GPT2 (L = 12, H = 768) and
Distil-GPT2, a distilled version (Sanh et al., 2019; L = 6 H = 768). For all three GPT2 models,
we used the pretrained models available via the HuggingFace library (Wolf et al., 2020).

Retrieving ANN Model Representations

To retrieve ANN model representations, we treated each ANN model (see ANN Models) as
an experimental participant and ran similar experiments on them as would be run on
humans. We retrieved ANN representations for each sentence for each ANN layer (i.e., at
the end of each transformer block). Given that human participants were exposed to the full
sentence at once, we similarly computed a sequence summary representation for each
sentence. Our primary approach for obtaining a sequence summary representation was using
the last-token representation: We obtained the representation of the last sentence token
(which was always the representation of the final period token “.”) as a sequence summary,
given that unidirectional models already aggregate representations of the preceding context
(i.e., earlier tokens in the sentence; see Figure SI 1B for generalization to average-token rep-
resentations of sentences).

To retrieve ANN model representations, we fed sentences to the model sequentially (i.e.,
sentence by sentence). For the contextualized representations (see Manipulations of Compu-
tational Experimental Design), we grouped sentences by passage to mimic the experimental
procedure for human participants and fed the passage context (if any) before, but not after,
each sentence to the ANN model. For the decontextualized representations, we did not feed
any passage context to the model.

Comparison of ANN Model Representations to Brain Measurements

Because we were interested in which aspects of the stimulus contribute to high brain predic-
tivity, we compared ANN model representations of systematically manipulated stimuli (see
Perturbation Manipulation Conditions) with brain recordings of humans processing the origi-
nal (intact) version of the sentences (see fMRI Data Set).

We treated the ANN language model representation at each layer separately and tested
how well it could predict human brain recordings. (We treated the two experiments in the
Pereira et al., 2018 data set separately but averaged the results across experiments for all plots.)
Following Schrimpf et al. (2021), we divided the stimuli (i.e., sentences) into an 80%–20%
training–held-out split. For each (participant-specific) voxel, we fitted a linear regression model
(ordinary least squares) from the ANN’s representations of the training stimuli to that voxel’s
corresponding brain recordings for those stimuli. We applied the regression on model repre-
sentations of the held-out 20% of stimuli to generate predicted brain responses for those stimuli,
and then compared predicted versus actual brain responses for that voxel using the Pearson
correlation coefficient. This process was repeated five times, holding out a different 20% of
stimuli each time. For each voxel, we then took the mean of the resulting five scores to give
us that voxel’s mean predictivity score, computed each participant’s median predictivity score
across that participant’s voxels, and computed the median and median absolute deviation
(MAD) within-participant error within each perturbation condition manipulation category.
We report the results for the best-performing layer of the ANN, as well as results across layers,
for completeness (Figure SI 2).

Contextualization of ANN
representations:
Specification of the amount of
linguistic context that is used for
representing some target text (e.g., a
word or a sentence).
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Estimation of Noise Ceiling (Quantified as Brain-to-Brain Predictivity)

Due to intrinsic noise in biological measurements, we estimated how well the best possible
“average human”model could perform on predicting brain responses in single voxels for held-
out “target” participants. In our brain-to-brain predictivity estimation, we included the n = 5
participants that completed both experiments in the Pereira et al. (2018) data set to obtain full
overlap in the materials across participants. Following Schrimpf et al. (2021), the ceiling value
was estimated using a three-step procedure (see Supplementary Methods for additional
details): We (i) iteratively subsampled the data to predict voxel responses in a given target par-
ticipant from the voxel responses of the remaining “predictor” participants, (ii) extrapolated the
procedure to a participant pool of infinitely many participants, and (iii) obtained a final ceiling
value by aggregating the estimated voxel-wise predictivity ceilings. Via this procedure, we
obtained a ceiling value of 0.32 for the Pereira et al. (2018) data set.

Perturbation Manipulation Conditions

For our baseline Original condition, we stripped the sentence stimuli (from Experiments 2 and
3 in Pereira et al., 2018) of all sentence-internal punctuation, except for hyphens and apos-
trophes, and lower-cased all words. This was done to ensure that conditions are as comparable
as possible across manipulation conditions (e.g., it is unclear where sentence-internal punc-
tuation should go when sentence word order is perturbed). For a baseline Control condition,
we created length-controlled random word lists, RandWordList, by gathering all words across
the data set into a list and replacing every word in every sentence by a random draw (without
replacement). For the critical conditions, we applied a range of controlled manipulations to the
stimuli used in the original fMRI experiments reported in Pereira et al. These manipulations
can be grouped into three categories: (i) word-order manipulations, designed to understand
how degrading word order in various ways affects processing; (ii) information-loss manipula-
tions, designed to understand how loss of words from a particular part of speech category
affects processing, and (iii) semantic-distance manipulations, designed to understand how
replacing sentences with sentences that are closer versus further semantically affects process-
ing. Manipulations were applied once to the full data set. This perturbed data set was then fed
into the ANN language models sentence by sentence and contextualized or decontextualized
sentence representations were obtained. (As described in Retrieving ANN Model Representa-
tions, contextualized representations of perturbed sentences were obtained using the sen-
tence’s passage context, which was perturbed in the same way as the sentence of interest.)

Word-order manipulations

For the word-order manipulations, we investigated ANN-to-brain mapping performance across
different sentence-internal word scrambling conditions. For five of the word-order manipula-
tion conditions, we followed the material creation procedure described in (Mollica et al.,
2020). Specifically, in four of these conditions, word order was scrambled to different degrees
by iteratively and randomly choosing 1, 3, 5, or 7 words from the Original sentence stimuli
and swapping them with one of their immediate word neighbors, leading to the creation of the
1LocalWordSwap, 3LocalWordSwaps, 5LocalWordSwaps, 7LocalWordSwaps conditions. To
ensure that the desired number of local swaps has in fact been achieved (i.e., within the cho-
sen number of swaps, no swap was undone by another), the pairwise edit distance between
the original sentence and the scrambled condition was calculated. As reported in Mollica et al.
(2020), these local swap manipulations, even for the 7-swap case (7LocalWordSwaps), typi-
cally preserve local semantic dependency structure, as can be measured by PMI among
nearby words (as detailed below). The fifth (and last) condition, which also followed the
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creation procedure described in Mollica et al. (2020) was a condition where the PMI among
nearby words is minimized (the LowPMI condition). Here, we assigned the content and func-
tion words of every sentence to two lists (creating four lists overall: even- and odd-numbered
content words, and even- and odd-numbered function words, according to their position in
the sentence). These lists were then re-concatenated into a string such that all function words
intervened between the content words in the two lists, creating maximal linear distance
between combinable content words (i.e., words that were adjacent/proximal in the original
sentence).

We also created two additional word-order manipulation conditions that were not investi-
gated in Mollica et al. (2020). The first used a different strategy for minimizing local combin-
ability than the one used in the LowPMI condition: the LowPMIRandom condition. Here,
stimuli were created by generating 10 random permutations of the words within each sentence
(which we ensured did not include the versions used in the 1LocalWordSwap-7 condition) and
choosing the perturbation with the lowest PMI score (computed as detailed next). Given that
the LowPMI condition was the only condition from the original paper that was generated in a
deterministic way, the LowPMIRandom condition was included to ensure that the models
could not exploit the latent generation procedure. The second was a ReverseOrder condition,
in which the order of the words in the sentence was reversed. This condition ensures maximal
linear distance between words in the original and the manipulated string, while preserving the
PMI profile of the original stimulus.

A string’s PMI score was calculated using the procedure described in Mollica et al. (2020):
For each string, we used a sliding four-word window to extract local word pairs (equivalent to
collecting the bigrams, 1-skip-grams, and 2-skip-grams from each string). For each word pair,
we then calculated its positive PMI score. We used positive pointwise mutual information
because negative PMI values are in practice extremely noisy due to data sparsity (Jurafsky &
Martin, 2009). Probabilities were estimated using the Google N-gram corpus (Michel et al.,
2011) and ZS Python library (Smith, 2014) with Laplace smoothing (α = 0.1). The string’s
PMI score was finally calculated by averaging across the positive PMI values for all word pairs
occurring within a four-word sliding window (see Equation 1). The PMI scores for all condi-
tions can be found in Figure SI 3.

PMI wi…wnð Þ ¼ 1
3 n−2ð Þ

Xn–1

i¼1

Xmin iþ3;nð Þ
j¼iþ1

max 0; log
P wi ;wj
� �

P wið ÞP wj
� �

 !
(1)

Information-loss manipulations

For the information-loss manipulations, we investigated ANN-to-brain mapping performance
across five versions of each sentence, for which different subsets of words were retained rel-
ative to the original sentence. For the different manipulations, we respectively retained only
words whose part of speech tag, as determined by the NLTK part-of-speech tagger (Bird et al.,
2009), is in a given set, while preserving the original order of the retained words. Specifically,
we examined versions made up of: (i) all the content words, that is, nouns, verbs, adjectives,
and adverbs (KeepContentW ); (ii) nouns, verbs, and adjectives (KeepNVA ); (iii) nouns and
verbs (KeepNV ); (iv) nouns (KeepN); and (v) only the function words (KeepFunctionW ).
Following O’Connor and Andreas (2021), we included pronouns and proper names in the
set of nouns. Note also that because not all the sentences had adverbs and/or adjectives, some
pairs of the conditions (i), (ii), (iii), and (iv) could be identical for some sentences.
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Semantic-distance manipulations

For the semantic-distance manipulations, we investigated ANN-to-brain mapping performance
across four conditions, for which the original sentence was replaced by a sentence of variable
semantic distances. For three of these conditions, we leveraged the hierarchical organization
of the materials in Pereira et al. (2018; Figure SI 4). For the fourth condition, we generated
sentence paraphrases.

We first describe the three conditions that leverage the hierarchical structure of the Pereira
et al. (2018) data set. As described in fMRI Data Set, stimuli for Experiment 2 consisted of 384
sentences grouped into 96 passages with four sentences each, and stimuli for Experiment 3
consisted of 243 sentences grouped into 72 passages with three or four sentences each.
Further, the passages in both experiments came from a smaller number of “topics” that
spanned a broad and diverse range of content areas, for example, clothes or animals. The
96 passages in Experiment 2 were grouped into 24 topics (with four passages per topic;
e.g., for the topic of clothes, there was a passage about a dress and a passage about a glove),
and the 72 passages in Experiment 3 were also grouped into 24 topics (with three passages per
topic, e.g., beekeeping as a topic, with three different passages), nonoverlapping with the
topics in Experiment 2 (e.g., passages from each experiment; see Table SI 1). We created three
experimental conditions. In two of them, RandSentFromPassage and RandSentFromTopic, each
sentence was replaced by a sentence from the same passage or topic, respectively. And in the
third, RandSent, condition, each sentence was replaced by a sentence that was randomly
drawn from the entire data set, with the constraint that no sentence ended up in its original
position (proportion of sentences in RandSent condition that come from a different topic than
the original sentence: 97.1%; proportion of sentences in RandSent condition that come from a
different passage than the original sentence: 99.2%).

As described in Comparison of ANN Model Representations to Brain Measurements, the
cross-validation scheme used in this paper was a fivefold cross-validation, holding out 20%
of stimuli in each fold. In the TrainIntact–TestPerturbed experimental design, the mapping
model was trained on ANN representations of stimuli from the Original benchmark. When
benchmarks by design shuffled stimuli relative to the fMRI data (all semantic-distance bench-
marks except Paraphrase), this procedure could lead to nonindependence in train and test
splits. To prevent such overlap between the training and test stimuli in the TrainIntact–
TestPerturbed versions of these benchmarks, we proceeded as follows: For each of the five
cross-validation splits, we retrieved the representations of the stimuli that belonged to the
test set for the same split in the Original benchmark. We then either (a) randomly shuffled
the order of these activations relative to the fMRI data and ensured that no sentence repre-
sentation remained in its original position (RandSent ) or we (b) iterated over the
passages/topics and, whenever possible (i.e., whenever the test set contained more than
one sentence from the given passage/topic), randomly shuffled the sentence representations
within the passages/sentences, ensuring that no sentence representation remained in its
original position (RandSentFromPassage/RandSentFromTopic). Given this constraint, and
because the average number of sentences per passage (4 sentences/passage in Experiment
2, and 3.38 sentences/passage in Experiment 3) was lower than the number of cross-
validation splits (n = 5), the average percentage of sentences whose representations were
not shuffled relative to the associated fMRI data using the default fivefold cross-validation
scheme was 53.72% for RandSentFromPassage and 8.97% for RandSentFromTopic.
Although this procedure led to a high proportion of nonshuffled sentence representations
relative to the associated fMRI data in the test set, we opted for this method to ensure con-
sistency and comparability across all TrainIntact–TestPerturbed benchmarks, which were

Fivefold cross-validation:
A procedure for splitting a data set
into subsets in order to quantify
unbiased predictivity performance.
The entire data set is split into a
training set (80% of the data) and a
test set (20% of the data). This
procedure is carried out five times
such that each data point ends up in
the test data set once.
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thus all trained on the exact same intact sentence representations. To alleviate concerns
about the mapping performance being driven mainly by matched fMRI representations,
we additionally ran the RandSent, RandSentFromPassage and RandSentFromTopic
TrainIntact–TestPerturbed benchmark versions, as well as the Original and RandWordList
benchmarks for comparison, using only two cross-validation splits instead of the default
number of five folds. Using this procedure, all but 17.17% of sentence representations could
be shuffled relative to its associated fMRI data for RandSentFromPassage and all sentences
could be successfully shuffled with the associated fMRI data for RandSentFromTopic, and the
key result pattern was not affected (Figure SI 5).

For the fourth and last condition, we generated a paraphrase for each sentence in the set. To
do so, we used the online OpenAI ChatGPT interface to generate three paraphrases for each
sentence. For each of these paraphrases, we automatically selected the paraphrase that was
closest in number of words to the original sentence. These approximately length-matched
paraphrases were then manually edited if (i) the absolute difference in number of words
between the paraphrased sentence and the original sentence was more than three words;
(ii) the paraphrased sentence did not capture the semantic content of the original sentence
(as judged by the authors); or (iii) the paraphrased sentence contained different pronouns com-
pared to the original sentence due to ChatGPT history. Out of 627 paraphrase sentences, 111
sentences (17.7%) were manually edited to yield the final set of paraphrased stimuli. Identical
to the remaining benchmarks, we stripped the sentence stimuli of all sentence-internal punc-
tuation, except for hyphens and apostrophes, and lowercased all words. On average, the
paraphrased sentences were −0.44 words shorter than the original sentences (median: 0). The
paraphrased sentences overlapped partly with the original sentences in terms of their lexical
content: The average fraction of overlapping words between the paraphrased and original sen-
tences was 0.46 (median: 0.46, min: 0.05, max: 1).

Manipulations of Computational Experimental Design

The computational experimental design conditions aim to investigate factors related to how
the comparisons between ANN representations and brain data are performed. Specifically, we
investigated two factors: ANN-to-brain mapping model training stimuli and contextualization
of the linguistic stimuli.

ANN-to-brain mapping model training stimuli

This condition investigated the effect of the training data for the ANN-to-brain mapping model.
In the TrainIntact–TestPerturbed condition we trained the mapping model on intact (i.e.,
original, same as the humans were exposed to) stimuli, and tested the mapping model on
perturbed stimuli. In the TrainPerturbed–TestPerturbed condition we trained the mapping
model on perturbed stimuli and tested the mapping model on perturbed stimuli (using the
same perturbation manipulation type).

Contextualization of the linguistic stimuli

This condition investigated the effect of preceding linguistic context on the ANN represen-
tations derived for each stimulus according to the structure of the materials investigated (see
fMRI Data Set). In brief, humans were presented sentences (one at a time) as part of short
(3–4 sentence-long) passages. In the Contextualized condition, the ANN representations
were obtained using the preceding sentences in the passage of interest as context (if any;
i.e., the first sentence in a passage would have no preceding contextual information).
Because the perturbations were applied to the full set of materials once, and ANN
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representations were derived based on the perturbed sentences, the preceding context of a
sentence was perturbed in the same manner as the sentence of interest. The contextualiza-
tion for the test set sentences in the TrainIntact–TestPerturbed_Contextualized semantic-
distance manipulation benchmarks where sentence representations were shuffled relative
to the fMRI data (RandSentFromPassage, RandSentFromTopic, RandSent) is an exception
to this rule. Here, we take the sentence representations of the original sentences and shuffle
the order of these (correctly contextualized) sentence representations with the associated
fMRI data either randomly or based on the sentence’s membership in a particular passage
or topic. In the Decontextualized condition, the ANN representations were obtained without
any preceding context, and representations were hence obtained using individual, decon-
textualized sentence representations.

These two factors were crossed in a 2 × 2 design to yield the four conditions: TrainIntact–
TestPerturbed_Contextualized, TrainPerturbed–TestPerturbed_Contextualized, TrainIntact–
TestPerturbed_Decontextualized, and TrainPerturbed–TestPerturbed_Decontextualized.

Statistical tests. For statistical testing of brain predictivity scores within perturbation manip-
ulation conditions (see Figure 3 and Figure 5 in the Results section and Figures SI 4–SI 6
in the Supporting Information; see also Lexical-Semantic Content, Not Syntactic Structure,
Is the Main Contributor to ANN-Brain Similarity in the Language Network and The Pat-
tern of Brain Predictivity Across Linguistic Perturbation Manipulations Is Robust to Varia-
tion in the Computational Experimental Design), we performed pairwise, two-sided,
dependent-samples t tests for all comparisons among the participant-wise brain predictiv-
ity values (i.e., 10 values given that the Pereira et al., 2018, consisted of 10 unique par-
ticipants) between pairs of conditions. P values were corrected for multiple comparisons
(within each perturbation manipulation condition) using the Bonferroni procedure (i.e., if
a perturbation manipulation consisted of seven conditions and, correspondingly, seven
pairwise comparisons were performed, with each condition compared to the original con-
dition [or to the baseline, random word list, condition] the correction was performed over
these seven tests; for completeness, all pairwise condition comparisons are reported in
Table SI 2).

Error bars of brain predictivity scores show MAD within participants using SciPy 1.8.0’s
median_abs_deviation function (Virtanen et al., 2020) with a scaling factor of ∼0.67 (scale =
“normal”) for approximate consistency with the standard deviation for normally distributed
data. Thus, error bars were computed by centering the data across conditions within a
manipulation category per participant to remove within-participant differences and finally
computing the MAD over participants. The error bars hence demonstrate the ANN-to-brain
mapping model’s prediction variance within participants across conditions rather than
uncertainty around the median.

For statistical testing between computational experimental design conditions (see
Figure 7 in The Pattern of Brain Predictivity Across Linguistic Perturbation Manipulations
Is Robust to Variation in the Computational Experimental Design), we concatenated the
participant-wise brain predictivity values within a perturbation manipulation condition
(i.e., if a perturbation manipulation consisted of seven conditions, we concatenated 10 *
7 = 70 values). Two-sided dependent-samples t tests were performed between these pairs
of computational experimental conditions. P values were corrected for multiple comparisons
(within each computational experimental design condition) using the Bonferroni procedure.
Throughout the figures, significance levels are denoted as follows: *p < 0.05, **p < 0.01,
***p < 0.001.
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RESULTS

Lexical-Semantic Content, Not Syntactic Structure, Is the Main Contributor to ANN-to-Brain Similarity

in the Language Network

In this section, we investigate which aspects of a linguistic stimulus contribute to successful
ANN-to-brain correspondence of canonically trained ANN-to-brain mapping models. In par-
ticular, we trained ANN-to-brain mapping models on ANN representations of intact stimuli
(with corresponding brain responses to intact stimuli) and tested these models using ANN
representations of perturbed stimuli (with corresponding brain responses for intact stimuli;
the TrainIntact–TestPerturbed approach, as illustrated in Figure 2). We report results for
GPT2-xl, the top-performing ANN language model in previous work (Schrimpf et al., 2021).
(See Figure SI 1A for the generalization of the findings across the GPT2 model family, and
Figure SI 1B for generalization to a different sequence summarization approach when extract-
ing ANN model representations). In line with Schrimpf et al. (2021), we treat each GPT2-xl
layer as an individual model (layer model ) and report the brain predictivity score for the best-
performing GPT2-xl layer model per perturbation condition. We note that the results derived in
this way were comparable to selecting the best-performing GPT2-xl model layer on the Orig-
inal benchmark and using this layer for evaluating the remaining perturbation manipulation
conditions (Figure SI 5). We diverge from Schrimpf et al. (2021) in that the brain predictivity
scores throughout the manuscript are raw Pearson r values, rather than r values normalized by
the noise ceiling value quantified to be r = 0.32 via extrapolated brain-to-brain predictivity for
the Pereira et al. (2018) data set (see Estimation of Noise Ceiling).

First, we investigated the performance of the mapping model on a control condition: a
length-matched list of random words. For this condition, the mapping model performed at
near-chance level (Figure 3, RandWordList condition in panels A–C). Chance level (zero pre-
dictivity) was not fully reached for the best-performing layer model, possibly because this layer
is able to exploit some information about the length of the stimulus (see Figure SI 6). We then
investigated the effect of our three types of perturbation manipulations—manipulations of
word order within the sentence (word-order manipulations), loss of different subsets of words
from the sentence (information-loss manipulations), and manipulations of the semantic dis-
tance from the original sentence (semantic-distance manipulation)—on the mapping model’s
ability to predict brain activity, relative to the original sentence (Figure 3, Original condition in
panels A–C).

Word-order manipulations

Word-order manipulations (Figure 3A) significantly affected brain predictivity, but predictivity
scores did not correlate with the severity of word-order manipulations: In particular, predictiv-
ity remained relatively high even for the most severe scrambling manipulations, with drops in
predictivity values ranging between 8% and 24% for the different manipulations. In particular,
one local word swap (1LocalWordSwap) led to an ∼8% drop in brain predictivity (0.35
Original vs. 0.32 1LocalWordSwap: pairwise dependent t test, t = 5.52, p < 0.01; all reported
p values were corrected for multiple comparisons within each manipulation category using the
Bonferroni procedure). The remaining local word swap conditions ({3,5,7}LocalWordSwaps)
all had a comparable numerical effect (∼17% drop) on brain predictivity (from 0.35 to
0.29, ts > 5.81, ps < 0.001). Pairwise comparisons among the {1,3,5,7}LocalWordSwaps
conditions showed no significant differences (see Table SI 3 for the pairwise statistical
comparisons among all conditions). Even the most extreme local word-order scrambling
condition, that is, reversing the order of the words (ReverseOrder), yielded a decrease relative
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to Original that was statistically comparable to, albeit larger than, the conditions where three
or more local pairs were swapped (0.35 Original vs. 0.27 ReverseOrder, ∼24% drop, t = 9.29,
p < 0.001).

Critically, all these five conditions ({1,3,5,7}LocalWordSwaps, ReverseOrder) were designed
to retain local semantic dependency structure as quantified by PMI (see Perturbation Manip-
ulation Conditions; Figure SI 2). To test whether preserving local combinability of words

Figure 3. Perturbation manipulations that lead to the loss of lexical-semantic or topical content information decrease brain predictivity. Per-
formance of ANN-to-brain mapping models on held-out sentences, trained on ANN representations of intact sentences and evaluated on ANN
representations of perturbed sentences (see Figure 2) from the three perturbation manipulation conditions (A–C). For each condition (bar), we
plot the raw brain predictivity Pearson r value of the best-performing layer (as in Schrimpf et al., 2021). The ceiling level for the Pereira et al.
(2018) data set is r = 0.32, as estimated via brain-to-brain predictivity (see Estimation of Noise Ceiling), which for theOriginal benchmark leads
to ceiling-level predictivity, in line with Schrimpf et al. (2021). Error bars show median absolute deviation within participants. Manipulation
condition scores that were significantly different from the Original and RandWordList control benchmarks (dark and light gray dashed lines,
respectively; these conditions are identical across the three panels) are marked with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001) above and
below the bars, respectively, in each graph. Significance was established via dependent two-sided t tests, with p values corrected for multiple
comparisons (within each perturbation manipulation condition and separately for the comparisons to the original vs. the random word list
baseline) using the Bonferroni procedure.

Neurobiology of Language 19

Lexical semantic content drives ANN-brain similarity in language

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol_a_00116/2158743/nol_a_00116.pdf by M
IT Libraries user on 12 February 2024

https://doi.org/10.11.62/nol_a_00116


is critical for brain predictivity (cf. Mollica et al., 2020), we examined two conditions where
local dependency structure was destroyed: the LowPMI and LowPMIRandom conditions, both
of which decreased local PMI. Strikingly, even for these conditions, the effect on brain predic-
tivity was relatively small, similar to the local-scrambling conditions (0.35 Original vs. 0.30
LowPMI, ∼16% drop, t = 6.35 p < 0.001; and vs. 0.28 LowPMIRandom, ∼20% drop, t =
8.47, p < 0.001). Hence, destroying the local dependency structure does not appear to affect
brain predictivity beyond how it is affected by local word swaps that keep local dependency
structure more easily inferable.

Information-loss manipulations

Preservation of different subsets of content-carrying words relative to the full sentence was
associated with relatively high brain predictivity, though all of these conditions led to a signif-
icant drop in performance relative to the Original condition (0.35 Original vs. 0.28–0.21, ts =
9.21–28.58, ps < 0.001; 20%–42% drops; Figure 3B). Preserving fewer content
words—preserving all content words (KeepContentW ), preserving only the nouns, verbs,
and adjectives (KeepNVA), only the nouns and verbs (KeepNV), or only the nouns (KeepN)
—led to a gradual decrease in predictivity values, even though scores for KeepContentW
and KeepNVA as well as for KeepNVAdj and KeepNV did not differ significantly from each
other (see Table SI 3). By contrast, retaining only the function words (i.e., removing all
content-carrying words) led to a brain predictivity comparable to that of a random word list
(0.03 RandWordList vs. 0.06 KeepFunctionW, t = −2.57, p > 0.05; a ∼ 83% drop from the
Original condition). To ensure that the strong drop in predictivity for the KeepFunctionW con-
dition was not merely an artifact of the length of the condition (a relatively low number of
words in each input string, Table SI 4), we included an additional control condition (RandN;
Figure SI 7), which was matched for length with the KeepN condition, but in which the nouns
were randomly sampled from the nouns in the data set. This RandN control condition was
associated with predictivity performance no different than the random word list control
condition (0.03 RandWordList vs. 0.04 RandN, t = −0.96, p > 0.05) and similar to the Keep-
FunctionW condition (0.04 RandN vs. 0.06 FunctionWords, t = −1.88, p > 0.05; Table SI 2).
These results highlight a large asymmetry in the contribution of content vs. function words to
brain predictivity and suggest that preserving more of the lexical-semantic content leads to
higher predictivity.

Semantic-distance manipulations

As expected, replacing the original sentence with a random sentence was associated with
chance-level predictivity (0.01, ∼98% predictivity drop; one-sample t test to 0: t = 0.78,
p > 0.05), similar to that of a random list of words (RandWordList vs. RandSent, t = 2.1, p >
0.05; ruling out the possibility that any well-formed and meaningful sentence would yield high
brain predictivity). Replacing the sentence with a sentence from the same topic was associated
with a ∼68% drop relative to Original (0.11; Original vs. RandSentFromTopic, t = 28.35, p <
0.001), much lower than the predictivity associated with word order scrambling manipulations
(∼8%–24% predictivity drop range) or manipulations that preserve at least some of the content
words (e.g., ∼42% predictivity drop in the KeepN condition). This result (Figure 3C) demon-
strates that a rough topical overlap does not suffice for high brain predictivity. However,
replacing the original sentence with a sentence from the same passage was associated with
a drop in predictivity of ∼13% (0.31; Original vs. RandSentFromPassage, t = 6.84, p < 0.001).
(Note that in the RandSentFromPassage and RandSentFromTopic conditions where sentences
were shuffled within subparts of the hierarchically structured data set, an unavoidable overlap
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between train and test sentences was introduced for the experimental setup using five splits.
We show that no key pattern of results was affected using a 2-split cross-validation split in
Figure SI 8 and report the results for the fivefold experimental paradigm here for consistency
across manipulation types.) Finally, replacing the original sentence with a paraphrase led to a
drop of ∼11% (0.31;Original vs. Paraphrase, t = 10.78, p < 0.001), which is comparable to the
predictivity of the RandSentFromPassage condition, even though the lexical overlap is substan-
tially higher between the Original and the Paraphrase conditions compared to the Original vs.
the RandSentFromPassage condition (Figure SI 9). The result from the Paraphrase condition
shows that (a) even sentences that are highly similar in overall meaning are still associated
with a small but reliable decrease in predictivity relative to the original sentence, which
can be taken to suggest that the model-to-brain match is sensitive to subtle differences in word-
ing, which are associated with subtle semantic differences; and (b) when a certain degree of
sentence-level semantic similarity with Original is reached (as is the case for both Paraphrase
and RandSentFromPassage conditions; see Figure SI 4), stronger lexical overlap does not have
much of an effect on predictivity as evidenced from the fact that Paraphrase was not signifi-
cantly different from RandSentFromPassage (Table SI 3).

Perturbation Manipulations That Are Associated With Larger Representational Distortion in the ANN

Embedding Space and Render Linguistic Stimuli More Surprising Lead to Lower Brain Predictivity

In this section, we investigate why certain perturbation manipulation conditions yield lower
brain predictivity than others. We explore two potential factors: (1) differences between the
original sentences and the perturbed versions in the ANN representational embedding space
and (2) the effect of the perturbation manipulations on the ANN’s task performance (i.e., next-
word prediction performance.

Perturbation manipulations that are associated with larger representational distortion in the ANN

embedding space lead to lower brain predictivity

Do changes in the ANN representational space across perturbed sentence sets (relative to the
intact sentences) explain why certain perturbation conditions yield lower brain predictivity
than others? To find out, we investigate—for all ANN model layers—what makes some
ANN layer representations more suitable than others for predicting brain responses. In partic-
ular, we investigated whether layers for which representations of the perturbed stimuli are
more similar to the representations of the intact sentences perform better at predicting brain
responses. To do so, for each of 18 perturbation manipulations (1 original, 7 word-order
manipulations, 5 information-loss manipulations, 4 semantic-distance manipulations, and 1
control [randomword list] manipulation) we calculated the degree of representational similarity
(as quantified by the Spearman rank correlation coefficient, ρ) between a layer’s representation
of the original, intact sentence and the corresponding perturbed sentence. We then averaged
these correlation coefficients across all intact-perturbed pairs, to derive a single value per per-
turbation manipulation per ANN layer. We then correlated these average correlation values
with the associated brain predictivity scores (i.e., a total of 864 values: 18 average correlation
values × 48 layers).

We observed a strong positive correlation (Pearson r = 0.72 across all perturbation manip-
ulation conditions, p < 0.001; Figure 4A) between (i) the similarity of an ANN layer’s repre-
sentation of the original and perturbed stimuli for a given manipulation and (ii) how well that
layer could predict neural responses for that perturbation manipulation. The positive relation-
ship differed across perturbation manipulation conditions, but was statistically significant in
each condition (Figure 4A, panels i–v). This relationship suggests that perturbation
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manipulation conditions that distort the representation of the original, intact sentences to a
larger extent are associated with lower brain predictivity scores. On average, later layers
(red colors) yielded higher brain predictivity scores. For some perturbation manipulation con-
ditions, like the KeepFunctionW condition (pentagon symbol), however, all layers (including
later ones) exhibited poor brain predictivity performance that was also associated with consis-
tently low representational similarity to the intact sentences.

Finally, to understand the trends in Figure 4A at a finer grain, we investigated the degree of
similarity between the representations of the intact and perturbed stimuli in a selected layer
(here: GPT2-xl’s last layer) across perturbation manipulation conditions (Figure 4B). As
expected, relatively subtle manipulations (e.g., 1LocalWordSwap) did not strongly affect the
representational similarity: The representation of the perturbed sentence versions is very
similar to that of the original versions (Spearman ρ = 0.95). Across the word-order manipula-
tions (Figure 4B; panel ii), representational similarity to the intact sentences gradually

Figure 4. Representational similarity to the original sentences is correlated with brain predictivity. (A) Each individual data point shows the
correlation between brain predictivity (y axis) and degree of similarity to the intact sentence set (x axis, quantified using the Spearman’s rank
correlation coefficient (ρ) for a layer of the GPT2-xl artificial neural network (ANN) model and a certain perturbation manipulation condition.
The ANN layer index is denoted by colors. The perturbation manipulation condition is denoted by data point marker symbols. (B) Similarity of
the representations from the last layer of GPT2-xl across conditions to its representations of the intact sentences. Note, though, that the brain
predictivity scores reported in the previous sections are from the best-performing layer, not the last one.
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decreased with the severity of the word-order scrambling. Likewise, across the information-
loss manipulations (Figure 4B; panel iii), representational similarity decreased the more lexical
content was removed, with representations of only the nouns in the sentence already achiev-
ing an average representational similarity of 0.66. Across the semantic-distance manipulations
(Figure 4B; panel iv), representational similarity decreased with increasing semantic distance.
The most destructive manipulations (e.g., the KeepFunctionW, RandSent, and RandWordList
conditions) were the least similar in their representations to the original sentences. Note that
the random word list control condition, although showing lower similarity to the original sen-
tences than all the critical perturbation conditions (except the KeepFunctionW condition), still
achieved a similarity score of 0.39. This suggests that GPT2-xl’s representations of length-
matched random word lists are not orthogonal to those of intact sentences (i.e., some units
in the last layer of GPT2-xl respond similarly independent of the specific words).

The overall pattern across perturbation manipulation conditions, shown in Figure 4B, is
similar to the pattern of brain predictivity scores shown in Figure 3. This similarity mirrors
the main finding from Figure 4A, which includes information on all perturbations across all
ANN layers: Perturbation manipulations that render the representations more distinct from
those for intact sentences also result in lower brain predictivity scores.

Perturbation manipulations that render linguistic stimuli more surprising lead to lower brain predictivity

In this section, we ask whether the performance of the ANN-to-brain mapping model is linked
to the next-word prediction accuracy of a language ANN model. The most widely used train-
ing task for large-scale language ANNs is word-in-context prediction, which aims to minimize
the surprisal of a word in the input string conditioned on its context. For this analysis, we
obtained the average token surprisal of each input string and averaged these surprisal values
across items in each linguistic manipulation condition. We then correlated the difference in
these average surprisal values for each condition, relative to the surprisal of the original string,
with the difference in brain predictivity for each manipulation condition, relative to brain pre-
dictivity for the original condition (Figure 5). Sentence surprisal values were always obtained
for the last layer of the ANN (given that GPT2 models are trained to predict next tokens using
the last layer representation of the context, and not any other layer representation), whereas
brain predictivity scores were derived from the best-performing layer, as before.

Across the Original, Word-order, Information-loss, and Control perturbation manipulation
conditions, we observed a positive correlation between the difference in average string sur-
prisal (i.e., surprisal averaged across tokens in a string, and then averaged across items in a
condition) and the difference in brain predictivity relative to the Original sentence condition
(Pearson r = 0.58, p < 0.05), indicating that stimuli with high surprisal yield less predictive
ANN representations for encoding brain responses. This finding suggests that sentence pertur-
bations that affect an ANN language model’s mapping onto brain responses also affect the
language model’s performance on the next-word prediction task.

The Pattern of Brain Predictivity Across Linguistic Perturbation Manipulations Is Robust to Variation in

the Computational Experimental Design

In the above sections, we provided a systematic analysis of the aspects of linguistic stimuli that
contribute to the high performance of ANN-to-brain mapping models, as reported in Schrimpf
et al. (2021) and investigated why certain perturbation manipulations yield lower brain pre-
dictivity than others. In this section, we investigate the robustness of these findings to changes
in the computational experimental design.
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In particular, we focus on two factors of the experimental design: training the mapping
model on intact versus perturbed stimuli and contextualization of sentence representations with
respect to the preceding passage context, crossed in 2 × 2 factorial design (as summarized in
Figure 6). Figure 7A–E shows each of these four factor combinations as individual, colored lines
across our perturbation manipulations. The experimental design condition investigated in the
above sections is the TrainIntact–TestPerturbed_Contextualized condition (dark purple lines).

The four computational experimental design conditions yielded highly similar brain predictiv-
ity patterns across the 18 perturbation manipulation conditions, as was evidenced by an average
pairwise Pearson correlation of r = 0.84 (p < 0.001). The lowest pairwise correlation across
perturbation manipulations (Pearson r = 0.63) was obtained by comparing TrainPerturbed–
TestPerturbed_Contextualized versus TrainIntact–TestPerturbed_Decontextualized, while the
highest correlation was obtained for TrainPerturbed–TestPerturbed_Decontextualized versus
TrainIntact–TestPerturbed_Decontextualized (Pearson r = 0.96).

We note that even though all computational experimental conditions were highly corre-
lated, there was a substantial difference in the magnitude of brain predictivity scores associ-
ated with each profile. For example, brain predictivity for the intact (Original ) condition
ranged between 0.26 and 0.35 (Figure 7A). Across perturbation manipulation conditions,
we observed a boost in brain predictivity performance when including previous in-passage
sentences as context (purple lines vs. orange lines): On average brain predictivity improved

Figure 5. Correlation between difference in brain predictivity relative to the original brain predictiv-
ity scoreanddifference inaverage string surprisal relative to theOriginal sentencecondition. Individual
data points are perturbation manipulation conditions (Original, Information-loss, Word-order, and
Control) colored according to overall perturbation manipulation category. Surprisal values are in nats
(logarithm to base e). Note that we excluded the semantic-distance manipulation category for this
analysis, because 3 out of 4 of these manipulations by design shuffled sentences across the entire
material set and hence (i) each string did not bear relation to the original string and (ii) average
surprisal values across the materials would be identical to Original. In contrast, the stimuli in the
two other perturbation categories bear relation to the original string: The information-loss conditions
retain words of certain parts of speech relative to the intact sentence, word-order manipulations retain
all lexical items from the original string, and the control condition RandWordList exchanges every
word in the sentence with a different word and is thus length-matched.
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by 0.06 for TrainIntact–TestPerturbed designs and 0.14 for TrainPerturbed–TestPerturbed
designs (cf. How Close Are We to Quantitatively Accurate and Generalizable Models of the
Human Language Network?; see Table SI 5 for all pairwise comparison statistics between com-
putational experimental design profiles within a manipulation condition).

For all experimental design conditions, we observed a substantial drop in ANN-to-brain
mapping performance for the randomword list control condition relative toOriginal (Figure 7E)
(Original vs.RandWordList: p<0.05 across all four factor combinations). Nevertheless, when the
mapping model was trained and tested on contextualized representations of random word lists,
the performance of the mapping model was unexpectedly high (TrainPerturbed–TestPerturbed_
Contextualized, light purple line). For the same computational experimental design, we also
observed surprisingly highANN-to-brainmappingmodel performance for the random sentences
semantic-distance manipulation (RandSent ). These results suggest that this mapping model was
still able to extract a substantial amount of useful information for predicting responses to held-out
sentences, even for stimuli thatwewould not expect to carry a lot of useful information formatch-
to-brain (indicating an undesired interaction between the contextualization and cross-validation
schemes; see Discussion). However, not just any input sentence elicited a high brain predictivity
score in this design.Replacing allwords in the sentencewithoneand the sameword (Figure SI 6B,
conditionLengthControl ), led toanearchance-levelperformance (seealsoFigureSI4). This result
shows that, when allowed to exploit meaningful, lexical-semantic content from the context, a
mapping model can use ANN representations derived from random word lists and random
sentences to obtain relatively high predictivity, even though low-level features of the stimulus,
such as its length, are not sufficient to obtain high predictivity (Figure SI 6B).

In sum, our findings suggest that the conclusions from Lexical-Semantic Content, Not Syn-
tactic Structure, Is the Main Contributor to ANN-Brain Similarity in the Language Network

Figure 6. Overview of computational experimental design conditions. We provide a factorial anal-
ysis of the contribution of (i) the ANN-to-brain mapping model (either forcing the mapping model to
generalize to novel perturbation types during test time (TrainIntact–TestPerturbed ) or allowing the
mapping model to exploit perturbation types seen at training time (TrainPerturbed–Test-Perturbed ),
and (ii) linguistic contextualization in the computational experimental design (either mimicking the
human experimental design and providing prior passage context (Contextualized ) or no sentence-
external context (Decontextualized ). Note that the condition presented in Word-Order Manipula-
tions and Figure 3 is the TrainIntact–Test-Perturbed_Contextualized.
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regarding the contributions of features of the linguistic input are mostly robust against variation
in the computational experimental design. In the Supporting Information, we report results
indicating that the conclusions of Perturbation Manipulations That Render Linguistic Stimuli
More Surprising Lead to Lower Brain Predictivity are similarly robust: Across computational
experimental design conditions, we observed that greater linguistic perturbations lead to (a)
more divergent representations in the ANN’s embedding space (relative to the representations
of intact sentences; Figure SI 10) and (b) a decrease in the ANN’s next-word prediction task
performance, that is, its ability to predict upcoming tokens in those stimuli (Figure SI 11).

Figure 7. Brain predictivity patterns are largely robust to variations in the computational experimental design. (A–E) Comparison of brain
predictivity across experimental design conditions (as summarized in Figure 6). Each experimental design condition is shown as an individual
line across our perturbational manipulation conditions (individual panels). For each condition, we plot the raw brain predictivity (Pearson r ) of
the best-performing layer, i.e., the fraction of variance explained that the model can predict relative to the ceiling of the fMRI data set. We note
that the condition presented in Lexical-Semantic Content, Not Syntactic Structure, Is the Main Contributor to ANN-to-Brain Similarity in the
Language Network and Figure 3 is the TrainIntact–TestPerturbed_Contextualized condition (dark purple line). (F–I) Barplots for each experi-
mental design condition. Each panel (with a series of barplots) corresponds to a single line in panels A–E with box color matching the line
color. Manipulation condition scores that were significantly different from the Original and RandWordList control benchmarks (dark and light
gray dashed lines, respectively) are marked with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). Significance was established via dependent
two-sided t tests, with p values corrected for multiple comparisons (within each perturbation manipulation condition) using the Bonferroni
procedure. Error bars show median absolute deviation within participants.
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DISCUSSION

A number of independent studies have recently shown that representations from state-of-the-
art ANN models—especially unidirectional transformer models—align well with brain
responsesof humansprocessing linguistic input (e.g.,Caucheteux&King,2022;Gauthier&Levy,
2019;Goldsteinet al., 2022; Jain&Huth, 2018;Kumaret al., 2022;Merlin&Toneva, 2022;Millet
et al., 2022; Oota et al., 2022; Pasquiou et al., 2022; Pereira et al., 2018; Schrimpf et al., 2021;
Toneva &Wehbe, 2019). However, what makes ANN representations align with human neural
responses to languagehasbeen little explored (cf.Gauthier&Levy, 2019;Merlin&Toneva, 2022;
Oota et al., 2022). Focusing on the top-performing unidirectional-attention GPT model family
(Schrimpf et al., 2021), we systematically investigated the effect of diverse linguistic perturbation
manipulations, including manipulations that strongly affect sentence meaning (carried largely
by content words) and those that primarily affect syntactic structure (carried by word order and
function words) on the ability of an ANN-to-brain model to predict brain responses.

The contributions of our work are threefold: First, we found that lexical-semantic content is a
strongercontributor to thesimilaritybetweenANNlanguagemodelsandbraindata thansyntactic
structure (conveyedbywordorder or functionwords), althoughaboveacertain level of sentence-
level semantic similarity, lexical overlap no longer contributes much. Second, we found that lin-
guistic perturbations that decreasebrainpredictivity have interpretable causes: They lead tomore
divergent representations in the ANN’s embedding space (relative to the representations of intact
sentences) and decrease the ANN’s next-word prediction task performance, that is, its ability to
predict upcoming tokens in those stimuli. Finally, we found that the effects of these linguistic
manipulations are largely robust to variations in the computational experimental design, includ-
ing whether the mapping model is trained on intact versus perturbed stimuli and whether the
model is fed contextualized representations that mimic the experimental setup in human exper-
iments. We elaborate on our findings and discuss their implications below.

Lexical-Semantic Content, Not Syntactic Structure, Is the Primary Driver of the ANN-to-Brain Similarity

We showed that ANN language models exploit the lexical-semantic content of the sentence,
rather than the sentence’s syntactic form (conveyed via word order or function words) when
predicting brain data. Similarly, sentences elicit higher brain predictivity the more topically
related they are to the stimulus for which brain representations were obtained. We demon-
strated that this pattern is robust across variations in the computational experimental design,
indicating that the ANN-to-brain mapping model pays only limited attention to the part of the
ANN representation of the stimulus that is sensitive to syntactic information, but rather relies
on the representations of the content words’ meanings. These findings align with two growing
bodies of evidence: one from (computational) neuroscience that points to the relatively greater
importance of meaning for both the magnitude and distributed patterns of activation in the
brain’s language system as measured/measurable by fMRI (e.g., Fedorenko et al., 2016;
Gauthier & Levy, 2019; Huth et al., 2016; Mollica et al., 2020; Pereira et al., 2018), and
another from NLP that shows that ANNs do not necessarily need to use word-order informa-
tion to solve many current natural language processing benchmark tasks (e.g., O’Connor &
Andreas, 2021; Pham et al., 2021; Sinha et al., 2021; cf. Abdou et al., 2022; Lasri et al., 2022).

In our study, we aimed to integrate neuroscientific and NLP perspectives on the role of
lexical-semantic content versus syntactic information in the building of linguistic representa-
tions, and our perturbation conditions took inspiration from both of these fields. Specifically,
the word order manipulations investigated here were inspired by an fMRI study that found the
human language network responds as robustly to strings with scrambled word order as to
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naturalistic input as long as the scrambled order still allows for local composition of words into
chunks and phrases (Mollica et al., 2020). Similar to these findings, we found that word-order
perturbations that preserve local PMI lead to only a small decrease in a model’s ability to predict
brain responses; but unlike the results reported for human participants in (Mollica et al., 2020),
we found that even extreme word-order perturbations, which disrupt local semantic and syntactic
dependencies, lead to a similarly small decrease in ANN-to-brain mapping performance.
Further, we found that the omission of function words does little to decrease brain predictivity.

We hypothesize that these results are due to the fact that mapping models do not strongly
rely on syntactic information (as argued above). However, an alternative explanation is
that—at least in the word-order scrambling manipulations—ANN language models might
implicitly (albeit perhaps noisily) reconstruct the original sentence (Malkin et al., 2021; Sinha
et al., 2021), plausibly enabled by their extensive memory capacity. In particular, ANNs have
access to the exact words in the sentence context (up to a maximal token length, which is not
exceeded in our sentence material), whereas memory limitations in humans lead them to
discard the exact word sequences after extracting the relevant meaning from them (e.g.,
Christiansen & Chater, 2016; Hahn et al., 2022; Potter, 2012; Potter et al., 1998).

Of course, the inability of ANN-to-brain mapping models to detect the fine-grained struc-
ture of the original sentence could also be due to other reasons, such as the low temporal
resolution of fMRI data, which might impose limitations on the detection of structure effects.
Given that the language system is strongly sensitive to syntactic processing difficulty (e.g.,
Blank et al., 2016; Shain et al., 2020; Shain et al., 2022), it is plausible that modeling linguistic
representation construction word by word (cf. for the whole sentence at once as we did here),
along with perhaps using more temporally resolved data (e.g., from intracranial human record-
ings), would reveal stronger effects of syntactic structure than the ones found here. Neverthe-
less, our results show that syntactic structure is not critical in matching ANN representations
with fMRI BOLD responses, at least for the summary representations of sentences.

It is also worth noting that stronger effects of structure might be detected in sentence mate-
rials where structure is critical to interpretation, as in cases where word order is the only cue to
the propositional meaning, in the absence of animacy/plausibility cues (e.g., The boy intro-
duced the teacher to the girl ) or in cases where the identity/location of a particular function
word is critical, again in the absence of plausibility biases (e.g., He went out of the building vs.
He went into the building, or The book is on the table vs. The book is under the table).

Perturbations That Decrease Brain Predictivity Have Interpretable Causes

Given that different perturbation conditions affected brain predictivity to quite different
extents, we investigated potential reasons for these differences and identified two interpretable
correlates, one related to the ANN representational space and the other related to ANN task
performance. Perturbation manipulations that led to lower brain scores also (i) led to more
divergent representations in the ANN’s embedding space (relative to the representations of
intact sentences) and (ii) decreased the ANN’s next-word prediction task performance, that
is, its ability to predict upcoming tokens in those stimuli.

Related to the ANN representational space, there has been interest in understanding how
the units that make up the representations of current large ANN language models change
across stimuli and model layers (Biś et al., 2021; Ethayarajh, 2019). In the Results section
we quantified the changes in the representational space across our perturbation conditions
relative to the intact stimuli and found that perturbations that changed the ANN representation
to a greater extent (relative to the representation of the original, intact sentence) also led to
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larger decreases in brain predictivity scores. Interestingly, even for the most extreme perturba-
tions (e.g., replacing a sentence with a random word list or a random sentence) led to repre-
sentations that were still moderately correlated with the representations of the intact stimuli
(even if these altered representations could not capture human neural responses under most
computational experimental design settings). This pattern suggests that in our mapping models,
only a subset of the full ANN representational space is being used to represent the stimuli
investigated here (naturalistic sentences of length 5–20 words and their perturbed versions).
More diverse linguistic materials (e.g., sentences of different length, style, content or context
length) may engage a larger subset of the ANN representational space in mapping models.

Related to the ANN task performance, there has been interest in understanding how the
next-word prediction performance of ANN language models is related to ANN-to-brain corre-
spondence (e.g., Antonello & Huth, 2022; Caucheteux & King, 2022; Goldstein et al., 2022;
Hosseini et al., 2022; Merlin & Toneva, 2022; Schrimpf et al., 2021), motivated by substantial
evidence for predictive processing in human language comprehension (e.g., Bicknell et al.,
2010; Brothers & Kuperberg, 2021; Demberg & Keller, 2008; Heilbron et al., 2019; Heilbron
et al., 2022; Henderson et al., 2016; Lopopolo et al., 2017; Rayner et al., 2006; Shain et al.,
2022; Smith & Levy, 2013; Willems et al., 2016). Here, we presented evidence that among our
perturbations, those that rendered stimuli less predictable, on average, led to larger decreases
in brain predictivity performance (see Merlin & Toneva, 2022, for a similar claim for a natu-
ralistic narratives fMRI data set). This pattern suggests that less predictable strings may yield
representations that have features that are less suitable for predicting fMRI brain data.

How Close Are We to Quantitatively Accurate and Generalizable Models of the Human

Language Network?

We identified features of linguistic stimuli (namely, lexical-semantic content) that ANN-to-
brain mapping models exploit when learning a successful mapping to brain responses. These
features are exploited by the mapping model independently of whether the mapping model is
trained on intact or perturbed stimuli, and of whether the ANN representations of the target
sentences are contextualized with respect to the preceding sentences in a passage. At the same
time, we demonstrated that these design choices substantially affect the magnitude of the brain
scores, which may lead to different conclusions about the similarity of current ANN language
model representations to the ones in the human brain (Figure 7; Original ). Furthermore, we
showed that certain computational experimental designs lead to high brain scores for pertur-
bations that we would not expect to not carry a lot of informative structure such as a random
word list (TrainPerturbed–TestPerturbed, RandWordList; see Figure 3 and Figure 7).

The findings from the computational experimental design manipulations yield three impor-
tant insights. First, until the effort of relating ANN model representations to neural representa-
tions reaches maturity—and the field (hopefully) agrees on a unified framework for performing
model-to-brain comparisons—any findings about the similarity between ANN and human rep-
resentations should be evaluated for robustness to the details of how the comparisons are
performed. Contextualization of stimuli with respect to the preceding linguistic context may
be especially important as it may introduce nonindependence issues under certain cross-
validation setups, as elaborated in the third point below.

Second, these findings highlight the general importance of using careful stimulus-based
controls (e.g., replacing the stimuli with random sentences or lists of words) when evaluating
ANN-to-brain mappings, in addition to using control (e.g., untrained) models. Examining
ANN-to-brain mapping performance only for the original stimuli (those presented to human
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participants) may lead to flawed inferences about the nature of the similarity. For example, if
the ANN representation of a list of random words leads to a similar level of mapping perfor-
mance with a neural response to some sentence as the representation of that sentence, then we
cannot infer that the ANN model is representing the sentence in a similar way to humans.

Third, combining the two previous points, the fact that certain computational experimental
designs achieve high predictivity performance on stimuli that are not well-matched with the
input to humans showcases an important point that has not received sufficient attention in
the recent ANN-to-brain literature: Contextualizing sentences by including the preceding
sentences in the story/passage, to match how the stimuli were presented to humans can lead
to inflated brain predictivity performance under certain cross-validation setups. In particular,
current language models have the ability to keep track of extended contexts, and if contextu-
alization is not properly controlled for, shared context windows for sentences that go into the
train set versus the test set can lead to “leakage” of statistical regularities in these contextualized
ANN representations, leaving the two sets not truly independent. Furthermore, on the brain
side, neural responses to coherent texts can be correlated across time for (at least) two reasons:
(1) the participant is still thinking about the content of the previous context when processing the
current word/sentence, and/or (2) neural measurements tend to be more similar when they are
temporally close (the property known as autocorrelation, which is especially prevalent in
methods like fMRI that rely on slow physiological changes; e.g., Bullmore et al., 1996). The
two sources of statistical leakage (one in the contextualized sentence representations, one in
the neural signal) can be potentially exploited by the ANN-to-brain mapping model.

The passage structure of the benchmark we used in the current study (Pereira et al., 2018)
allowed us to perform an exploratory analysis of this issue. Given that contextualization affects
sentences and the fMRI BOLD signal within passages, but not across them, we split the stimuli
into train and test sets in two ways: by sentence versus by passage. By-sentence splitting is the
approach that was adopted in Schrimpf et al. (2021) and that we followed here; this approach
disregards the passage structure and is therefore subject to the ANN contextualization leakage
problem just described. In contrast, by-passage splitting, whereby all the sentences from the
same passage end up in the same set (train or test) rather than being split across those sets,
should solve the leakage problem (although note that this splitting approach additionally
requires generalization to new semantic domains: e.g., predicting neural responses to sen-
tences about beekeeping when the mapping model has never seen any sentences related to
beekeeping).

We found that splitting the train and test sets by passage yielded much lower brain predic-
tivity scores than splitting the data set by sentences: ∼0.10 brain predictivity (Figure SI 12), in
comparison with ∼0.35 brain predictivity for by-sentence splitting when preceding within-
passage sentences are included as context, and ∼0.26 for by-sentence splitting when preced-
ing sentences are not included as context. In addition, representations of random sentences
and random lists of words are no longer predictive of human neural responses under this split-
ting approach in the TrainPerturbed–TestPerturbed_Contextualized experimental design (in
contrast to the same design, i.e., the light purple data points in Figure 7A). As laid out above,
this drop in predictivity could be due to the following non-mutually exclusive factors: ANN
contextualization leakage, fMRI autocorrelation, and/or the greater difficulty of generalizing to
novel semantic domains. Given that noncontextualized sentence representations achieve
predictivity of ∼0.26 (substantially higher than ∼0.10; Figure 7 and Figure SI 12), we can
tentatively rule out the contextual leakage in ANN representations as the main contributor.
Understanding the contributions to higher predictivity in the by-sentence cross-validation
approach of (a) temporal autocorrelation in the fMRI signal versus (b) the relative difficulty
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of generalizing to new semantic domains may require additional data collection (e.g., neural
responses to semantically diverse sentences, similar to Pereira et al. [2018], but presented in a
random order instead of in passage structure; removing the autocorrelation between semanti-
cally related sentences in this new benchmark would enable a direct comparison of general-
ization of the mapping model to sentences from the same/similar semantic domains versus to
sentences from new semantic domains, and comparing the results with those from the current
benchmark would allow quantifying the contribution of autocorrelation to neural predictivity).
Regardless of what these future investigations reveal, however, it seems clear that current ANN
language models still have much room for improvement before they can serve as accurate and
generalizable models of the fMRI BOLD responses in the human language network.

CONCLUSION

In this work, we asked why representations from state-of-the-art ANN language models align
with human brain responses (as measured with fMRI) during language processing. To do so,
we performed a systematic, large-scale investigation of which linguistic features (across three
manipulation categories and four computational experimental designs) reliably contribute to
ANN-to-brain mapping performance. We found that the ANN-to-brain mapping model mainly
attends to the lexical-semantic content—the key contributor to the sentence’s meaning—
rather than to word order or function words, which jointly create the sentence’s syntactic
frame. Changes in lexical-semantic content, compared to word order or function words, lead
to more divergent representations in the ANN’s embedding space and also decrease the
ANN’s ability to predict upcoming tokens in those stimuli. This pattern of results is robust to
variations in the computational experimental design, suggesting that the lexical-semantic con-
tent of a sentence is reliably encoded in fMRI responses to language. However, our exploratory
investigation of different cross-validation settings has also revealed that although current
ANN-to-brain mapping models capture a nontrivial amount of variance in human neural data,
they do not easily generalize to new semantic contexts, which leaves room for future work to
make language models more humanlike.
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