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Travel distance, frequency 
of return, and the spread of disease
Cate Heine 1*, Kevin P. O’Keeffe 1, Paolo Santi 1,2, Li Yan 1 & Carlo Ratti 1

Human mobility is a key driver of infectious disease spread. Recent literature has uncovered a clear 
pattern underlying the complexity of human mobility in cities: r · f  , the product of distance traveled 
r and frequency of return f per user to a given location, is invariant across space. This paper asks 
whether the invariant r · f  also serves as a driver for epidemic spread, so that the risk associated 
with human movement can be modeled by a unifying variable r · f  . We use two large-scale datasets 
of individual human mobility to show that there is in fact a simple relation between r and f and both 
speed and spatial dispersion of disease spread. This discovery could assist in modeling spread of 
disease and inform travel policies in future epidemics—based not only on travel distance r but also on 
frequency of return f.

The global impact of the COVID-19 pandemic on both human health and socioeconomic activity has brought 
to light the importance of a nuanced understanding of the way that epidemics spread in cities. Urban spread of 
disease is inherently tied to human mobility: as we move through and between cities, we serve as vectors that 
allow disease to spread to new individuals and communities. The nature of the relationship between mobility 
and spread of disease has been extensively studied; it is widely understood that human travel is a driving force 
behind disease spread1–5. For this reason, many public policy interventions implemented worldwide to contain 
the spread of COVID-19 focused on limiting mobility, restricting travel between regions and countries and 
encouraging individuals to avoid unnecessary travel6–10.

A large body of dynamic transmission modelling literature has incorporated spatial structure and mobility 
patterns into models of disease spread—for example, modelling the spread of disease across random spatial 
networks11, incorporating human movement patterns into metapopulation models of disease12, or assessing the 
impact of different types of movement in spatial-transmission models13. Accurate understandings of human 
mobility are critical to this literature, as different models of mobility can produce significantly different expected 
disease dynamics14. As we continue to learn more about how humans move, it is important to apply new discov-
eries about human mobility to the study of disease spread, deepening our understanding of urban epidemics for 
use in future public health crises.

Recent research uncovered a clear pattern in urban mobility: the total distance that the average visitor to a 
given location travels to reach it is constant across a city, unrelated to the location’s overall attractiveness 15. This 
value, equivalent to the distance of a location to an individual’s home multiplied by the number of times that 
they visit it over the course of some time period, can be thought of as an “exploration velocity”: it is the effective 
distance individuals travel towards any given location per unit of time. It is a simple but critical parameter to 
understanding human movement.

Given the simplicity of this parameter of human mobility and its apparent consistency across urban contexts, 
its relationship to disease spread is a natural next question. What if speed of disease spread depends not just on 
radius of travel r, but also on the product v := r · f  ? If v has additional impact on disease spread, beyond average 
travel radius r, mobility models that do not incorporate this dependency may fail to accurately model disease 
spread through urban systems. This paper investigates the relationship between exploration velocity v := r · f  
and spread of disease, opening the door to future research on the ways in which that relationship can be utilized 
to model and contain epidemics.

Results
Simulating reduction of exploration velocity on real data.  In order to understand how v := r · f  
interacts with speed of disease spread, we start with large-scale datasets of individual human movements in New 
York City and Dakar, Senegal, which we call Mreal . The datasets each consist of a set of trips for N individuals 
over different time periods T, where each trip indicates a given individual moving between two locations. We 
then use agent based susceptible-infected (SI), susceptible-infected-recovered (SIR), and susceptible-exposed-
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infected-recovered (SEIR) models calibrated with transmission parameter estimates for COVID-1916 to simulate 
disease spread as agents follow the trajectories in our datasets. Aside from their unique trajectories, each indi-
vidual is assumed identical. In each simulation, we vary two parameters: the maximum travel distance r, meas-
ured relative to each agent’s home location (see Methods for details), and the travel frequency f, the maximum 
number of times each location was visited. By varying these two parameters together, we are able to manually 
adjust exploration velocity v in the system. In practice, this means discarding any trip of length greater than r 
and all but f randomly selected trips to a given location from our datasets. Varying r and f separately allows us to 
isolate their individual effects on simulation outcomes—see Figure S1 in the Supplementary Material for results 
of simulations in which we vary the product r · f  itself. Simulations are run over the entire length of the datasets 
(28 days for the New York City dataset; 14 days for the Dakar dataset) with 10,000 agents. The details of the spa-
tial partitionings used as well as other simulation details are given in the Methods.

Figure 1A and B plot characteristic time τ , the time that the disease process takes to reach 1/e ≈ 36% of all 
susceptible individuals in our SEIR models, against our frequency restriction, the number of times agents are 
allowed to return to the same place. The trends are intuitive and not surprising. For a given f, τ decreases mono-
tonically with r: the further people are allowed travel, the faster the epidemic spreads. Similarly, for a given r, τ 

Figure 1.   Characteristic times for SEIR model. Top row: characteristic time plotted against maximum travel 
frequency f for different values of maximum allowed travel distance r. Bottom row: characteristic time in days 
plotted against exploration velocity r · f  . All plots have logarithmic scales on both the x and y axes. Each smaller 
data point represents the result of one of 10 total simulations, with the larger data points representing their 
average. For simulation details see Methods. R2 values for best-fit lines are .990 (NYC) and .917 (Dakar). Best-fit 
line parameters are a = −0.03, b = 19.55 (NYC) and a = −0.02, b = 12.70 (Dakar).
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decreases monotonically with f: more frequent return trips lead to faster-spreading epidemics. What is surpris-
ing, however, is that the τ(r) curves for each value of f have similar shape. This echoes a previous finding15 and 
hints that τ , r and f might have a simple relationship. Figure 1C and D show that they do. Under the rescaling 
r → r · f  all the data appear to merge, collapsing to a single curve that depends on the unifying factor v := r · f  , 
or exploration velocity. This curve can be empirically characterized as

where a and b vary across cities and model types.
This relationship is robust to changes in model parameters. Figure S2 in the Supplementary Material shows 

that the relationship holds across initial infected proportions of .1%, 1%, and 5% . Figure S3 shows that the same 
scaling collapse is achieved when the SI and SIR models are used, Figure S4 shows that it persists in higher values 
of r · f  up to a certain limit, and Figure S5 shows that it persists for different values of the disease parameter R0 , 
though the relationship appears stronger with higher (as opposed to lower) R0 values. These findings suggest the 
r → r · f  collapse persists across multiple disease processes.

After observing the relationship between r · f  and characteristic time, we check whether there is a relation-
ship between r · f  and spatial dispersion of the disease. We analyze the spatial concentration of infected persons 
in our New York City simulations using the M function developed by Marcon and Puech, which is calculated 
in relation to some radius k around each agent 17—see Methods for a detailed description of this statistic. High 
M indicates tighter clusters of cases; low M indicates a more homogeneous distribution of cases across space. 
We find that for a given radius k, as r and f increase, M(k, r, f) decreases: infections become consistently more 
dispersed across the city (see Fig. 2A for this relationship when k = 700m). As with epidemic size, under the 
rescaling r → r · f  , this relationship collapses to a single curve, as shown in Fig. 2B. This indicates that restrict-
ing r · f  is more effective than restricting r alone at containing geographic spread of disease, just as with slowing 
epidemic spread. This relationship is robust to the choice of k. As k increases, M(k, r, f) decreases (as would be 
expected—the larger radius you look at around an agent, the more representative sample of the whole population 
you will capture) but stays significant and maintains its relationship to r · f—see Figure S6 in the Supplementary 
Material. This relationship is demonstrated visually in Fig. 2C and D, which show geographic spread of infection 
for two simulations which have the same f but different r values: in Panel C, where r = 1, f = 6 , spread is more 
tightly clustered, especially in Manhattan, than in Panel D, where r = 6, f = 6 and the infection has dispersed 
more widely throughout the study area.

Mechanisms.  In order to illustrate the potential mechanism by which r · f  determines disease spread time, 
we assess the relationship between r · f  and both number and variance of contacts between agents in our simula-
tions. Think of our simulations as a network, where agents are nodes and edges are formed whenever two agents 
come within some distance ǫ of one another, enabling disease transmission. It is a known result of the SIR model 
that speed at which a disease spreads through a network of individuals depends not only on the average degree, 
or number of contacts per individual 〈k〉 , but also on the variance of contacts (via 〈k2〉 , or mean squared degree) 
according to the following relation:18

where τ is the characteristic time, or time it takes for the disease to reach 1/e = 36% of the population, γ is the 
daily recovery parameter and β is the infection parameter. This relation isn’t perfectly applicable to our context—it 
assumes exposure to all contacts at all timesteps, whereas our simulations incorporate movement in space and 
thus non-constant degree 〈k〉 over time. However, it is valuable in illustrating the effects of restricting r and f in 
our dataset. Restricting radius of travel r and frequency of return f affects both 〈k〉 and 〈k2〉 . The closer you stay to 
home and the fewer trips you take, the fewer unique individuals you have the opportunity to encounter (reducing 
average number of contacts 〈k〉 ). Further, as stricter restrictions are enforced, high-r, high-f trips are removed 
and the mobility patterns of high-frequency, long-distance travelers start to look more like the mobility patterns 
of low-frequency travelers who stay close to home (reducing variance of contacts 〈k2〉).

Figure 3 plots these relationships in our New York City data, showing exploration velocity r · f  on the x-axis 
against average number of contacts 〈k〉 and average squared number of contacts 〈k2〉 on the y-axis in Panels A 
and B, respectively. Again, we see a power law relationship, except at r = 1 , where degree and degree squared 
grow more slowly than expected. Plugging both 〈k〉 and 〈k2〉 into the relation above, we see that characteristic 
time as predicted by the degree distribution ( ̂τ ) is proportional to the true characteristic time ( τ ) that we see in 
our simulations—Fig. 3, Panel C. Taken together, these findings show that the shape of the relationship between 
r · f  and τ can be predicted by decreases in number and variance of contacts between agents in combination 
with fundamental SIR modeling results.

These results can be replicated by a simple modification of the preferential exploration and preferential 
return (PEPR) mobility model presented in previous literature15. Under the PEPR model as proposed in15, at 
each timestep, agents either explore a new location with a fixed probability Pnew or return to a previously-visited 
location with complementary probability 1− Pnew . In order to choose a new location, agents draw a radius of 
travel �r from a heavy-tailed distribution with exponent P(�r) ∼ |�r|−1−α , with α = 0.55 taken from15, and 
they draw an angle of travel θ with preference towards θ that are heavily visited by other agents (see Methods for 
details). It is demonstrated in15 that the PEPR model replicates the consistency of r · f  across space that is seen 
in real mobility data. However, when we run our SEIR model on mobility trajectories simulated with the PEPR 
model, we do not see the same relationship between r · f  and τ that we see in our real data (see Fig. 4C and D). 

τ(r · f ) = (r · f )a · b

(1)τ = �k�
�k2� − (γ + β)�k� ,
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This is because, in the original PEPR model, agents are always moving from place to place without necessarily 
returning home, whereas in our real mobility trajectories, time spent close to home (as enforced by our mobility 
restrictions) means less exposure to new, unique contacts and more exposure to the same neighbors. This leads 
to the PEPR model being unable to replicate the changes in 〈k〉 that are associated with loosening or tightening 
radius restrictions, as seen in Fig. 4A and B. In order to correct for this, we add a probability of travel Ptravel
—at each timestep, with probability Ptravel , the agent travels to a new location according to the protocol above, 
whereas with complementary probability 1− Ptravel the agent stays or returns home.

Figures 4C and D show the results of rerunning the same SEIR simulations that were run on our real mobility 
traces Mreal on a set of simulated trajectories Msim derived from the modified PEPR model with Ptravel set to 
.25, the true probability of travel in our real trajectories Mreal (see Methods for details). We see the same power 
law relationship between r · f  and both τ and τ̂ that we see in our simulations over Mreal , although the simulated 
results are less precise than the results we see in Mreal . We also replicate the simulations with Ptravel = .40 and 
see similar results (see Figure S7 in the SM). This indicates that the modified PEPR model is able to replicate the 
relationship between exploration velocity and speed of epidemic spread.

Figure 2.   Scaling collapse of spatial dispersion of infections in NYC SEIR simulations. Top row: spatial 
dispersion M plotted against the product r · f  (left) and plotted against maximum frequency restriction f for 
different values of r (right). Here, M is calculated using a radius of k = 700 meters. Both plots have logarithmic 
scales on both the x and y axes. We see a similar scaling collapse to that which we saw in τ . R2 of the best-fit 
line in Panel (A) is .982. Bottom row: this relationship is visually represented in a map of our NYC study area 
divided into approximately 400 m grid cells, where yellow grid cells have at least one infected agent living inside 
them and purple grid cells have no infected agents. We see geographic spread of infection for two simulations 
with the same f but different r values—infection disperses much more widely, especially through Manhattan, 
when r increases from 1 (left) to 6 (right) given fixed f.
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Discussion
The significance of r · f  was revealed in recent work15 on human mobility patterns: the number of people who 
visit a given location f times from a distance r during a certain reference period follow an inverse square law 
N(r, f ) ∝ 1/(rf )2 . We suspect the τ(r · f ) relationship found in this paper derives from this inverse square law. 
We have explored the relationship between exploration velocity and network contacts, but deriving the exact 
mechanism linking the inverse square law to τ(rf ) is an open question for future work.

An implication of the τ(r · f ) relationship is that restricting short, high frequency trips in a simulated environ-
ment does as much to slow disease spread as restricting long, low frequency trips. Agents in our simulations that 
take multiple trips around their neighbourhood spread disease as quickly as a those taking a single, long trip to 
the city center. This is interesting academically, but more importantly, it has potential implications for policy: 

Figure 3.   Relationship between spreading speed and number and variance of contacts. (A) r · f  plotted against 
mean degree 〈k〉 . (B) r · f  plotted against mean degree squared 〈k2〉 . Both (A) and (B) have logarithmic scales on 
both the x and y axes. (C) simulated τ plotted against τ̂ as predicted from Eq. 1 using degree and degree squared. 
Both mean number of contacts 〈k〉 and mean squared number of contacts 〈k2〉 of the agents in our dataset show a 
power law relationship with exploration velocity r · f  when r > 1 . The relationship between r · f  and 〈k〉 , 〈k2〉 can 
predict spreading speed τ using a simple relation that is a known result of the SIR model (Eq. 1). Best-fit lines are 
fit to data excluding r = 1 , which shows significant deviation from these relationships. R2 values of best-fit lines 
are .977, .980, and .968 for (A), (B), and (C), respectively.
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it means that restricting travel distance r but ignoring travel frequency f could be ineffective in containing the 
spreading of a disease.

That said, an important limitation of this study is that it restricts exploration velocity in a very specific way, 
removing trips that extend beyond a certain r or f. In reality, it is unclear how people would respond to policies 
that aim to restrict exploration velocity. True behavioral responses to different travel policies and what policies 
or mechanisms would be required to change individuals’ behavior in a way that reduces exploration velocity are 
areas for future research. Further limitations of this study include the inherent limitations of simple epidemiologi-
cal modeling—it is known that the SI, SIR, SEIR and other classic disease models make assumptions which bound 
their accuracy19–21—and of cell phone-derived data, which may under-represent certain socioeconomic groups22 
and is likely to exclude children. The estimates for the model parameters likely carry error23, and we also assumed 
that each agent was identical and that each exposure within a set radius carried equal likelihood of infection.

Figure 4.   PEPR simulation results. (A) log r · f  plotted against characteristic time τ from modified PEPR 
simulations with Ptravel = 1 . (B) log r · f  plotted against predicted characteristic time τ̂ calculated using Eq. 1 
and degree and degree squared from modified PEPR simulations with Ptravel = 1 . (C,D) analagous to Panels 
A and B but with Ptravel = .25 . All plots have logarithmic scales on both the x and y axes. When we run 
SEIR models across a set of trajectories Msim which have been created using the modified PEPR model with 
Ptravel = .25 , we see a similar relationship between r · f  and τ to that in our real trajectories Mreal . When we 
run SEIR models across trajectories which have been created using the original PEPR model (with Ptravel = 1 ), 
we do not see this relationship. R2 value of best fit lines are .690, .491, .875, and .924 for (A), (B), (C), and (D) 
respectively.
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It would be valuable in future work to explore whether these results hold under more complex disease 
transmission models or with different mobility datasets that may cover populations who are underrepresented 
in ours. Replicating this study with a mobility dataset that covers a longer timeframe would also be valuable, for 
two primary reasons. First, due to the limited timeframe of our dataset, we are only able to study pairs of initial 
and final thresholds that can be reasonably reached within 28 days and we are only able to use r and f restric-
tions for which a substantial number of users exceed the restriction (or the restriction would have no impact on 
our mobility traces)—see Figure S4 in the SM. Relatedly, by nature of our dataset, our simulations are limited to 
28 days in length. This does not allow for a wide range of characteristic times, which makes it more difficult to 
establish a robust power law relationship. A replication study with a longer timeframe would allow the limits of 
the observed relationship to be more robustly tested.

Moreover, the scale of our analysis is restricted to the city level (because our datasets are collected at this level) 
and so our findings do not necessarily generalize to the perhaps more policy-relevant case of country-level and 
international travel. If the r · f  collapse, or some form of inverse relation between r and f, holds for international 
mobility patterns, then, as at the city scale, lax distance limits could be compensated by strict frequency restric-
tions. This is a bold hypothesis, which should be tested in future work. Metapopulation disease models24–26, 
with their convenient trade off between realism and parsimony, seem like a good theoretical starting point for 
this effort.

Despite these limitations, we believe our results reveal novel insights and bring up an important component 
of human mobility that could prove useful for future modelling of COVID-19 and other epidemic diseases, as 
well as for policy design. In the current COVID-19 pandemic and in future pandemics, evidence-based policies 
at the city scale (not to mention the national or international scale) are needed to mitigate speed and intensity 
of disease spread. Our results have the potential to help this effort by opening up investigation into the relation-
ship between exploration velocity and epidemic spread. They indicate that the exploration velocity of a city’s 
inhabitants r · f  must be bounded—to bound distance r but not visitation frequency f leaves potential for disease 
containment unmet. Furthermore, and more optimistically, if a bound on exploration velocity is possible and 
effective, it would mean that strict distance restrictions at the city or town level—as adopted by, e.g., Ireland and 
Italy at the beginning of the infection—are perhaps unnecessary6. Given a desired bound on epidemic speed 
τbound , a large r could be offset by a small f; allowing citizens to travel infrequently to distant services (doctors, 
hospitals etc) may be safe. This inverse relation between travel distance and frequency ( r ∝ τbound/f  ) could 
also vitally inform remote working policies supporting the hypothesis that working from home multiple days 
per week— and thereby limiting the visitation frequency to workplaces—helps prevent the spread of disease.

Methods
New York City data.  Individuals’ movements in New York City are inferred from GPS traces collected 
from mobile phones by the company X-Mode over a span of one month (February 2020). The raw data contains 
about 479,163 anonymized users; our analysis uses 10,000 users randomly selected from those that appear in the 
dataset every day in the month of February.

Dakar data.  The Dakar dataset is based on anonymized Call Detailed Records (CDR) provided by the Data 
for Development (D4D) Challenge. The detailed information of this dataset is provided in27. Here, we use SET2, 
which includes individual trajectories for 300,000 sampled users in Senegal, and after the preprocess, we have 
173,000 users and 173 cells in Dakar region during two weeks of January, 2013. We subselect for users who 
appear at least 200 times in the dataset to ensure that we have adequate information about their trajectories over 
the two weeks.

Data preprocessing.  The X-Mode data from NYC is generated on an very fine spatial and temporal scale, 
with exact latitude and longitude coordinate updates as frequently as every second. The CDR data from Dakar, 
on the other hand, are generated only for voice calls, text messages or data exchanges and therefore have limited 
resolution in time. The geographic location of the cell towers and their density determines the accuracy of loca-
tion measurements through triangularization techniques. Therefore, the trajectories extracted from CDRs con-
stitute a discrete approximation of the moving population M(x; y; t). There are several steps in preprocessing of 
the data before it can be suitable for use in our analysis, which vary between the X-Mode data and the CDR data.

The main steps for the NYC data are: (i) We use density-based spatial clustering of applications with noise 
(DBSCAN) to group tightly-clustered latitude/longitude pairs in each individual’s trajectory into locations28. 
If a cluster of at least five latitude/longitude points exists such that no point is more than .0004 degrees (about 
56 m) from two other points in the cluster, those points are grouped together as a single location. (ii) Each agent 
is assigned the DBSCAN cluster it visits most as its home location. (iii) We drop all locations in the trajectory 
that have been visited for less than a minimum time τmin = 15min . (iv) In order to restrict travel distance r, we 
calculate distance between locations by the haversine formula, which derives the great-circle distance between 
two points on a sphere. All locations that are more than r km from an agents home location are removed from 
their trajectory. (v) In order to restrict travel frequency f, for each DBSCAN cluster that an agent visits more 
than f distinct times (where distinct visits are determined by an agent leaving a location and then coming back 
to it), we randomly select f visits to include in their trajectory and drop the rest.

The main steps for the Dakar data are: (i) We view each cell tower as a different location in the city. (ii) For 
each person, we determine the home location as the cell tower location which has been visited for the most 
cumulative time. By summing over all days in a given time window, one can find the home cell with high level of 
confidence for the majority of subjects. (iii) We drop all locations in the trajectory that have been visited for less 
than a minimum time τmin = 10 min . iv) In order to restrict travel distance r, we calculate distance between cell 
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towers by the haversine formula, which derives the great-circle distance between two points on a sphere. All cell 
towers that are more than r km from an agent’s home location are removed from their trajectory. (v) In order to 
restrict travel frequency f, for each location that an agent visits more than f distinct times (where distinct visits 
are determined by an agent leaving a location and then coming back to it), we randomly select f visits to include 
in their trajectory and drop the rest (excepting visits to an agent’s home location, which are not restricted).

The duration of stay, frequency, and distance criteria on defining cell visits yields a list of cells visited by that 
subject over the study period for a given frequency restriction f and distance restriction r.

Simulation details.  We run an agent-based SEIR, SIR, and SI models with N = 10, 000 agents. In order 
to study the characteristic time of disease spread, we set our initial infected proportion, i0 , to a high enough 
value that the disease will reach 36% of all susceptible individuals within our study time frame (which is natu-
rally restricted to 14 days within our Dakar data and 28 days within our NYC data). Empirically, we find that 
the minimum value is i0min = 10% for New York City and for Dakar in our SEIR models and 1% in SI and SIR 
models—see Figure S2 in the SM for an analogous exercise that lets us explore lower initial infected populations. 
Each agent is assigned the trajectory of a real person from our dataset, with location updated every 900 seconds 
(15 min) for the NYC simulations or every 600 seconds (10 min) for the Dakar simulations. At each time step, 
each user’s location is updated according to their assigned trajectory and infection status is updated according 
to the following parameters, drawn from Chen 202016’s estimates of R0 = 3.58, incubation period = 5.2 days, and 
infection period = 5.8 days:

β = daily transmission parameter = 3.58

5.8
= .617

σ = daily rate at which an exposed person becomes infective = 1/5.2

γ = daily recovery parameter = 1/5.8

Let s be the number of time steps in a day. We then transform the above daily parameters into timestep param-
eters as follows:

β∗ = time step transmission probability = β/s
γ ∗ = time step recovery probability = 1− s

√
1− γ

σ ∗ = time step probability that an exposed person becomes infective = 1− s
√
1− σ

In addition, we reproduce our results with disease parameters estimated for the more highly-contagious Delta 
variant of COVID-19 ( β = 1.42 , all other parameters remain the same,29) and the 2009 H1N1 influenza strain 
( β = .913, γ = 1.6, σ = 1,30,31).

Finally, let Ilocal and Nlocal be the number of infected agents and total agents within a 190 meter radius of 
the agent’s current location for the NYC data or within the same cell tower location for the Dakar data. Then, 
transition probabilities are:

P[S → E] = β∗ ∗ Ilocal
Nlocal

P[E → I] = σ ∗

P[I → R] = γ ∗

In the SIR and SI models, if an agent becomes infected on a given day, they will become contagious at the start 
of the next day.

Quantifying dispersion.  We use the M function developed in17 to quantify spatial dispersion of disease in 
our New York City simulations for a given r, f. The M function is calculated as follows: for each infected agent 
I and some radius k, we calculate the ratio between the proportion of agents within k of I which are infected to 
the proportion of agents in the total population which are infected. Summing this value over all infected agents 
I and dividing by N − 1 , where N is the number of infected agents, gives M(k), the M function evaluated at k. 
While M is generally analyzed as a function over all reasonable k, we evaluate the M function at a specific k in 
order to compare spatial dispersion across r · f  values at that k, and then show that the relationship is robust to 
choice of k.

Confidence intervals for M(k) are obtained by Monte Carlo simulation—for a given epidemic size ψ , we 
randomly assign ψ infections across the population 1,000 times and calculate Mψ each time. By taking the .025 
and .975 quantiles of these simulated M, we form an upper and lower bound on Mψ under the null hypothesis 
that infections are randomly distributed across individuals. It is notable that our empirical M never reaches this 
confidence band, implying that spatial dispersion is significantly non-homogenous for every k and ψ.

Robustness to model parameters.  We demonstrate that the τ(r · f ) curve is robust to changes in the 
parameters R0 by running our simulations with estimated transmission parameters for the 2009 H1N1 influenza 
strain ( β = .913, γ = 1/1.6, σ = 130,31) and the Delta variant of COVID-19 ( β = 1.42, σ = 1/5.2, γ = 1/5.8

,29). Figure S5 shows that, with these parameters, the τ(r · f ) relationship still holds.

Preferential return model.  The preferential return model proposed in15 is based off of that proposed in 
Song et al.32. We assume uniform residential population density: home locations are drawn uniformly from the 
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area of study. At each time step, with some probability Pnew , agents return to a location they have already visited; 
with probability 1− Pnew they visit a new location with distance drawn from the empirical distance distribution 
and direction drawn uniformly at random. The probability Pnew is a function of the number of locations already 
visited:

where S is the number of locations visited. The parameters ρ and γnew are fit to the real data using least-squares 
regression (using the NYC dataset, we find ρ = .500 and γnew = .267.)

In order to implement radius restrictions within the PEPR model we restrict the distribution from which 
�r is drawn and in order to implement frequency restrictions we delete all trips beyond frequency f to the same 
location. We set Ptravel = .25 , the average proportion of time spent away from home in Mreal , and run the PEPR 
simulations on a unit square for 500 timesteps.

We add the following modification to the model in15: while in the original PEPR model agents travel at each 
timestep, we set some probability Ptravel with which agents travel at any given timestep. Conversely, with prob-
ability 1− Ptravel , agents stay home.

Human subjects considerations.  All methods were performed in accordance with the relevant guide-
lines and regulations. This research does not fall under the definition of human subjects research, as data is 
anonymous and unidentified and was not collected for the purpose of this research. No one on the study team 
has access to subject identifiers—all processing of raw GPS trajectories, including home location estimation, is 
done within-simulation and neither saved nor seen by the researchers.

Data availibility
The data and code used in this study are available from the corresponding author (cate.heine@gmail.com) upon 
reasonable request and with permission of X-Mode Social, Inc.
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