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twitter Sentiment Geographical 
Index Dataset
Yuchen Chai1, Devika Kakkar2, Juan Palacios1 & Siqi Zheng  1 ✉

Promoting well-being is one of the key targets of the Sustainable Development Goals at the United 
Nations. Many national and city governments worldwide are incorporating Subjective Well-Being 
(SWB) indicators into their agenda, to complement traditional objective development and economic 
metrics. In this study, we introduce the twitter Sentiment Geographical Index (tSGI), a location-
specific expressed sentiment database with SWB implications, derived through deep-learning-based 
natural language processing techniques applied to 4.3 billion geotagged tweets worldwide since 2019. 
Our open-source tSGI database represents the most extensive twitter sentiment resource to date, 
encompassing multilingual sentiment measurements across 164 countries at the admin-2 (county/
city) level and daily frequency. Based on the tSGI database, we have created a web platform allowing 
researchers to access the sentiment indices of selected regions in the given time period.

Background & Summary
Subjective Well-Being (SWB) is commonly defined as the combination of reflective cognitive judgments and 
emotional feelings in ongoing life1. SWB indicators have been increasingly used by researchers and policymak-
ers as measures of life satisfaction to complement traditional objective development and economic metrics2. In 
the meantime, research centred around SWB has grown enormously in recent years1. Studies in this field have 
documented strong correlations between SWB and important human outcomes3, such as health and longevity4, 
social relationships1, and earning5.

Given the importance of SWB, researchers have been putting a lot of effort into measuring SWB, mainly 
employing self-report interviews and surveys6. For example, Gallup surveys collect well-being indicators world-
wide3. Similarly, household panels such as the PSID in the US7, SOEP in Germany8, and the BHPS in the UK9 
incorporate SWB measures in their questionnaires. More recently, there have been efforts to map the impact 
of the COVID-19 pandemic on SWB. For instance, Patrick et al. (2020) conducted a national survey in the 
US to measure satisfaction with many aspects of daily life during the COVID-19 period10. Although survey 
methods are effective in quantifying SWB, they have scalability problems, as well as significant time delay and 
high implementation cost11. Such limitations are especially pronounced when researchers or policymakers try 
to make timely evaluations of well-being changes in response to unexpected events (e.g., epidemics or climate 
disasters). There is a growing interest in developing more efficient methods that allow researchers to monitor 
instant well-being and trace back to history with high spatial-temporal granularity.

The rising adoption of social media platforms worldwide, together with the advances in Natural Language 
Processing (NLP) techniques, provides a new and valuable complement. Every day, active social media users 
create content through these platforms, generating useful traces of their attitudes, beliefs, and feelings at every 
moment12. For example, Twitter, one of the major social media platforms, has over 330 million monthly active 
users across the world13. While this scale of data was traditionally impossible to analyse, recent developments in 
NLP have made it possible to automatically extract sentiment information from unstructured social media posts 
using high-performance computing infrastructures.

Researchers in the field of NLP have recently developed sentiment analysis algorithms to quantify the affec-
tive states from texts14 and validated it to have strong correlations with SWB2. The existing studies have used 
different methods to extract overall scores of positive and negative emotions through either word-level or 
data-driven methods2. For example, Passi and Motisariya (2022) measure the public sentiment toward political 
leaders using Linguistic Inquiry and Word Count (LIWC)15. Schwartz et al. (2019) leverage the Hedonometer 
Index to investigate the evolution of expressed happiness before, during, and after visits to San Francisco’s urban 
park system16. Lyu et al.17 uncover the sentiment trend of the Chinese population during the peak period of 
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COVID-19 using Bidirectional Encoder Representations from Transformers (BERT)17. Although there has been 
significant progress in sentiment analysis, the existing studies either focus on a specific topic/event or are limited 
to narrow temporal and spatial extents.

This project aims to develop a comprehensive Twitter sentiment geographical index (TSGI)18, an expressed 
sentiment database having SWB implications, that can provide a high-resolution and large-scale comple-
ment to traditional survey measures of SWB. The Sustainable Urbanization Lab of MIT trains a BERT-based 
multi-lingual sentiment classification model based on a labelled database and applies it to a global geotagged 
Twitter archive19 (containing 10 billion posts) from the Center of Geographic Analysis (CGA) of Harvard. We 
impute a sentiment score, defined as the probability of a post being classified as a post with a positive mood, 
for every post and aggregate them to multiple administrative levels (i.e., city/county, state, and country) daily. 
Figure 1 below shows the global sentiment trend, daily count of tweets, and spatial distribution of tweets on 
the country level for a sample period. To validate our data, we conduct several analyses: (1) We test the model 
accuracy on an additional multi-lingual sentiment dataset; (2) We conduct an analysis to investigate the geolo-
cation origin of the posts with different languages; (3) We replicate sentiment classification methods including 
dictionary-based and bag-of-word based and compare the performance of these models on the test dataset; (4) 
We implement a language usage test on 20 million randomly selected tweets with word shift visualization. In 
addition, to facilitate public access to our generated indices, we develop a freely accessible web platform avail-
able to the entire research community, so that researchers can easily view the evolution of global and regional 
sentiment.

This dataset has been partly used by a previous work which is published in Nature Human Behavior20. The 
work documents the causal relationship between the outbreak of COVID-19 and a steep decline in expressed 
sentiment followed by a slower recovery in multiple countries. This study provides an example of how our data-
set can be utilized to investigate global major events.

Our primary contribution lies in the development of the most comprehensive open-source geotagged Twitter 
sentiment database to date. In contrast to previous studies that used the Twitter sentiment for a specific research 
question within a particular country, our database offers open access and several advantages: (1) Model per-
formance: By employing BERT as the embedding method, we take sentence context into account to improve 
the accuracy of downstream classification tasks (see the quantitative performance comparison between our 
approach and other traditional approaches using our Twitter data); (2) Multilingual computation: We utilize 
a consistent method for multilingual sentiment computation on a global scale, enabling cross-country com-
parisons across over 164 countries; (3) Temporal coverage: Our dataset encompasses the most recent five-year 
period, allowing researchers to examine the sentiment impacts of the most up-to-date social challenges and 
policies. We expect that our TSGI database will be able to support in-time investigations of expressed sentiment 
alterations for researchers across disciplines and be a valuable complement to traditional surveys to provide 
SWB insights.

Methods
twitter data collection. Geotweet Archive v2.019 (Archive): To generate our global sentiment index, 
we retrieve raw tweet data from Archive, a project at the Center for Geographic Analysis (CGA) at Harvard 
University. CGA maintains the Geotweet Archive v2.0, a global record of tweets spanning time, geography, and 
language. The primary purpose of the Archive is to make a comprehensive collection of geo-located tweets availa-
ble to the academic research community. The Archive extends from 2010 to 2023. More information on this data-
set is available (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3NCMB6). Tweet 
IDs can be requested via the request form (https://gis.harvard.edu/geotweet-request-form).

The tweets in the archive are harvested using the Twitter Streaming API which allows users to stream Tweets 
in real-time. Only tweets that carry one or both of the spatial attributes (Coordinate and Place) are included in 
the Archive. Approximately 1–2% of all tweets contain such geographic coordinates although this percentage 
needs verification and may vary over time21.

Twitter has two attributes/objects Coordinates and Place which are associated with the spatial location of the 
tweet. Each of these is described in detail below:

•	 Coordinates: This attribute represents the geographic location of the Tweet as reported by the user or client 
application. The inner coordinates array is formatted as geoJson with longitude first, then latitude.

•	 Place- Twitter place attribute when present indicates that the tweet is associated with a place. It is the geo-
graphic place as defined by the user and is usually a town name. A bounding box is determined by Twitter 
based on this field. We assume the centroid of this Bounding Box as the coordinates when actual GPS coor-
dinates are not present in the tweet. Further, we find the radius of the circle of this BB to estimate the spatial 
error associated with the coordinates.

The key fields for location signatures are described below:
•	 Latitude and Longitude- Every tweet has a latitude and longitude field which is derived from either:

•	 Twitter Coordinates objects or
•	 Calculated using the centroid of Bounding Box based on Twitter’s place object

•	 GPS: Flag for whether the coordinates of tweets are taken from GPS or Place name-based bounding box. If the 
tweet coordinates are from GPS, then this field is marked “Yes” otherwise “No”. When both are present, the 
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GPS coordinate takes priority. This helps us determine if the tweet coordinates are the actual GPS coordinates 
from the tweet or derived coordinates based on the place name.

•	 Spatial Error- Every tweet is marked with a spatial error field which is very crucial in interpreting the location 
of the tweets. This is an estimate of meters horizontal error for the tweet coordinates. We have assumed a 10 m 
spatial error for GPS coordinates whereas the error for place name-based coordinates is calculated as the 
Radius of a circle with the area of the bounding box.

Fig. 1 (a) Line graph shows the daily sentiment index for the whole world from January 1st, 2020, to December 
31st, 2021. In general, the aggregated sentiment is floating around 0.6 and is gradually increasing after being 
impacted by COVID-19 on March 11th, 2020 (WHO declared the COVID-19 outbreak a global pandemic).  
(b) The area plot displays the daily number of geotagged posts used for generating the sentiment index during 
2020 and 2021. On average, there are 2.64 million geotagged posts collected daily during these two years.  
(c) The world map illustrates the spatial distribution of collected geotagged posts at the country level for 2021. 
Countries with color closing to red generate more tweet traffic while color closing to green generates fewer 
tweets. Among all countries, the USA has the most geotagged tweets taking up 24% of the total traffic, followed 
by Brazil (14%) and Japan (9%). The uneven tweet generation is due to many reasons such as the number of 
users/population size or application preference (e.g., users in China prefer using Sina-Weibo).

https://doi.org/10.1038/s41597-023-02572-7
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The count of tweets mentioned in the manuscript refers to tweets harvested directly from Twitter with one 
or both of the spatial attributes mentioned above. We do some pre-processing of tweets to add a few addi-
tional fields/attributes (particularly spatial attributes) to support our research. However, this pre-processing 
only added new fields to each tweet and did not change the total number of tweets harvested. To ensure the data 
quality, we reserve the data starting from 2019, which contains an overall 4.37 billion tweets until the end of 
December 2022. On average, 2.99 million geotagged tweets are collected every day.

twitter data cleaning. Geotweets from bots’ sender names are not generated by a human with a mobile 
device since they are randomly scattered across the globe. After a thorough analysis of our data in January 2018, 
we discovered several automated tweet-bots which generate tweets with randomly spoofed coordinates. These 
bots appear to be randomly distributed spatially. We provide a list of the most commonly occurring bots in 
Table 1 below. These bots make up less than 1 percent of harvested Geotweets.

Before feeding the Twitter text data into the language model, to ensure the quality of the results, we take sev-
eral pre-processing steps. Following Pradha et al.22, (1) we remove any URL from the tweet since they provide no 
information to determine the sentiment polarity; (2) given that the chosen labelled training dataset (Sentiment 
140) has stripped out all emoticons to prevent potential overfitting23, we also remove emojis from the tweets to 
ensure the same format of our data; (3) we replace varying user mentions with a fixed format of string (@user) 
to notify the model about mentioning; (4) we remove any non-alphanumeric words from the original tweets.

In addition to the steps mentioned above, another step we take is to truncate the sentence. A sentence with 
more words contains more information. However, it requires a larger memory to store the information and a 
longer time for the language model to process it. According to our statistics on a randomly selected 20 million 
geotagged tweets generated in 2021 from the Archive, 90% of posts have a length of fewer than 32 words, and 
99% of posts have a length of fewer than 52 words (Fig. 2). To balance the performance and efficiency, we choose 
to discard any inputs beyond 52 words.

We apply these steps to all text involved in this project to assure consistency between model training, testing, 
and predicting.

Sentiment analysis. The imputation of sentiment scores for each Tweet is made in two separate steps24. 
First, we create semantic representations by extracting contextual information from text data. Next, we train and 

Index Bot name Index Bot name

1 googuns_lulz 6 AL_FiN_07839216 _grammar_ equivocagent

2 googuns_staging 7 mozatsubot

3 googuns_prod 8 recentideas

4 MarsBots 9 seq82

5 autoRNG 10 kaikkisanat

Table 1. List of major automated tweet bots discovered as of January 2018.

Fig. 2 The text length distribution of a randomly selected 20 million geotagged tweets generated in 2021 from 
the Archive. The figure shows that 90% of geotagged posts have less than 32 words while 99% of geotagged posts 
have less than 52 words.

https://doi.org/10.1038/s41597-023-02572-7
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select the classifier which performs the best on the testing dataset to decide the sentiment polarity for the training 
data (i.e., positive sentiment and negative sentiment). Since assigning a dummy sentiment label to each tweet 
ignores the delicate difference between tweets, we leverage the SoftMax25 function to assign a score between zero 
and one to represent the tweet sentiment intensity (see Fig. 3). We describe each step in the following sections.

Creating the semantic representations for text data. Converting human-readable text into a machine-readable 
numerical sequence is known as text representation26. Traditional dictionary-based methods usually encode 
sentences into a list of 1’s and 0’s based on whether a list of given words is in the sentence or not27. However, the 
representations generated by these methods neglect synonyms, word order, and sentence construction, leading 
to high sparsity problems and resulting in poor performance for the downstream tasks28. Those methods are also 
constrained by the availability of dictionaries in certain languages. In 2018, Google released the BERT model 
which reads the text as sequences of words and uses a transformers architecture to assign contextual embeddings 
to words based on their nearest neighbors29. This machine-learning technique ensures that words with similar 
semantic meanings will have similar fixed-length representations, overcoming the previously mentioned weak-
ness. This feature also allows researchers to finetune the model using a rich-resource language dataset and then 
apply it to other lack-of-training-resource languages. Many researchers have documented that the sentiment 
analysis utilizing the pre-trained BERT model outperforms traditional methods across languages30,31.

For this project, we leverage a modified BERT model, i.e., Sentence-BERT (S-BERT)32, with a pooling layer 
that combines all the word embeddings into a single representation indicative of the entire sequence of words. 
We import the model weights from “stsb-xlm-r-multilingual”, a model pre-trained on Stanford Natural Language 
Inference (SNLI) corpus33, Multi-Genre Natural Language Inference (MultiNLI)34 corpus, and Semantic Textual 
Similarity (STS) benchmark dataset35, allowing to encode text for more than 50 languages. The selected model 
takes the truncated pre-processed input and generates a vector of fixed size 768 (pre-defined by the model) 
representing the entire tweet.

Training sentiment classifier. Sentiment classification is the second step in the implementation of sentiment 
analysis. It receives the input of text representations and assigns a sentiment label (positive or negative) to each 

Fig. 3 Schematic to understand the logic of sentiment index generation. Upper part shows the steps to train 
sentiment models and select the one with the best performance. After designing the structure of a neural 
classifier, we train the model using 80% of the Sentiment 140 dataset and evaluate the performance of the 
remaining 20%. All models are trained on the same training dataset and evaluated on the same test dataset to 
ensure consistency. Lower part describes the steps to generate a local sentiment index. We input the vectorized 
geotagged tweets into the selected best model. Then, we assign a value between 0 and 1 to represent the 
sentiment score for each tweet using the SoftMax function. Finally, we aggregate the tweet level sentiment score 
to county/city, state, or country level to represent the local sentiment index.

https://doi.org/10.1038/s41597-023-02572-7
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of them. A wide range of models including logistic regressions and neural networks can be fitted on the labelled 
training dataset and give a prediction on an unlabelled Twitter post36. For this sentiment classification task, we 
specifically design a four-layer dense neural network with the Sigmoid Linear Unit (SiLU)37 as the activation 
function (Fig. 4).

The training and testing data we use is Sentiment 140, an English-language sentiment-labelled dataset con-
taining 1.6 million Twitter posts23. The dataset was constructed by imputing sentiment on every tweet based on 
the occurrence of positive or negative emojis with the text. We first apply the pre-processing steps described in 
the previous section, then compute the S-BERT embeddings for every observation in the Sentiment 140 dataset, 
train a classifier on 80% of the data (training set), and test the classifier on the remaining 20% of the data (testing 
set). In the end, our best model is trained using an SGD optimizer with 60 epochs achieving 83% accuracy on 
the testing set using the aforementioned neural network structure. As the baseline, a logistic regression model 
without any penalty achieves 81% accuracy on the testing set.

Assign sentiment intensity. Labelling a single tweet or a group of tweets with a continuous score between 0 and 
1 is defined as sentiment intensity assignment, where 0 represents the most negative sentiment and 1 represents 
the most positive sentiment. Simply generating a dummy sentiment classification of each tweet is not granular 
enough to capture the intensity of sentiment. Therefore, we decide to assign a sentiment score at the tweet level 
to achieve a better proxy.

The last dense layer of the neural network outputs two unbounded values representing the weight of positive 
and negative categories. Then, following He et al., (2017)38 who applies SoftMax to a computer vision classifi-
cation task, we add a SoftMax layer to convert the outputs of the last dense layer into a value between 0 and 1, 
representing the probability of the tweet to be categorized into positive sentiment class. We use this likelihood 
as the sentiment score on the tweet level.

aggregating tweet-level sentiment scores. In this subsection, we describe how we aggregate the senti-
ment of Tweets to construct sentiment indices. We define the boundary of the administrative area for each tweet 
and conduct spatial intersection to find the corresponding spatial belongings of each tweet. Finally, we aggregate 
the sentiment scores to sentiment indices based on their spatial belongings.

We retrieve the global administrative boundary data from the Database of Global Administrative Boundaries 
(GADM), which contains a minimum mapping unit of ADMIN 2 (county/city) with the global scale and is 
updated frequently. For our TSGI, we use GADM version 3.6 for the spatial analysis which was the latest build 
when we downloaded the data. In total, GADM contains 256 distinct ADMIN 0 areas (country/region); 3638 
distinct ADMIN 1 areas (state/province), and 46782 ADMIN 2 areas (county/city).

Using the acquired GADM vectorized data, we conduct spatial intersection for each tweet using Heavy.ai39 
on Harvard FAS Research Computing infrastructure. For each tweet, we extract the spatial information includ-
ing ADMIN 0, ADMIN 1, and ADMIN 2 from GADM, allowing us to build sentiment indices at different levels.

Besides the aforementioned spatial information, each tweet is labelled with the date when the tweet was 
generated. We then average the value of sentiment scores over location and date to build the temporal local 
index. To enable researchers to aggregate the sentiment scores on different scales (different spatial levels such as 
metropolitan areas; different temporal levels such as weekly or monthly periods), we attach a field indicating the 
number of tweets for every sentiment index record in our dataset.

Data records
The aggregated multi-level (Globe, country, state, and county/city) daily sentiment indices are available at 
https://doi.org/10.7910/DVN/3IL00Q18. Multiple comma-separated values (CSV) files are under the folder with 
the information shown in Table 2, each for sentiment indices in each year starting from 2019. Users can access 
data for free and use any level of the index to best fit their purpose of usage. 

Fig. 4 Designed dense network architectures for sentiment classification.
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Moreover, a visualization of the historic sentiment indices is available on https://www.globalsentiment.mit.
edu/dataset, based on the latest version of the sentiment analysis model.

technical Validation
Model validation on an external dataset. Since multilingual Sentence-BERT can convert sentences in 
different languages with similar meanings into similar vectors, it allows us to train the model on a rich-resource 
language and then apply it to other languages. In our case, the model is trained on the first 80% of Sentiment 140, 
a pure English-language dataset that achieves 83% accuracy on the rest of the 20%. We wish to evaluate the per-
formance of our model in different languages.

We retrieve a multilingual sentiment dataset for 15 languages40. There are 1.6 million tweets id included in 
this dataset together with their sentiment label in negative, neutral, and positive classes. We rehydrate tweets text 
using Twitter API41; clean the text using the same pre-processing techniques; vectorize the text using the same 
Sentence-BERT model and apply the best-trained model on positive and negative tweets to get sentiment labels 
to every recovered tweet. Table 3 shows the performance of the model across 15 languages. Overall, our model 
achieves 71.4% accuracy on this corpus.

Since the language of the tweet is not evenly distributed42, to estimate the general accuracy of our model on 
the actual data, we conduct additional analysis. Of all the data we have in 2021, 38.66% of geotagged tweets are 
in English, followed by Portuguese (13.45%) and Spanish (12.42%). In total, these 15 languages cover 66.90% 
of all tweets in 2021. Taking the share of language as the weight, the adjusted model accuracy for the languages 
is 72.2%.

Language usage validation on a raw dataset. To validate language use and their location we analysed 
the latest 50 million tweets between January and February 2023. We checked the language distribution of tweets 
within our sample. As shown in Table 4, the top four languages already account for 70% of the geotagged tweets. 
We plot the spatial distribution of tweets for these four languages. We further plotted the spatial distribution of 
tweets in these top languages. It can be seen from Fig. 5 that English tweets are distributed across the globe with 
the highest concentration in the US, Europe, and South East Asia. The Spanish tweets are coming mainly from 
Mexico, Spain, Colombia, Peru, Chile, and Argentina. The Portuguese tweets are coming mostly from Brazil. The 
Japanese tweets are concentrated in Japan. Thus, it is validated that the languages of tweets correspond well with 
the geographical areas where they are the predominant language.

Recognizing that smaller languages are more susceptible to biases in spatial representation, we conducted a 
spatial concentration analysis for several such languages, namely Tibetan, Armenian, and Sindhi. Although the 

Entry Variable Notes on variable

1 DATE Date for the sentiment index

3 NAME_0 Country name

5 NAME_1 State/Province name

7 NAME_2 County/City name

8 SCORE Mean sentiment of all posts within the geospatial range on a given date

9 N Number of posts within the geospatial range on a given date

Table 2. The variable and their explanations for the county-level daily sentiment indices.

Dataset Size Share in 2021 tweet Accuracy Precision

Albanian 22,126 — 69.2 83.6

Bosnian 13,621 — 74.7 74.6

Bulgarian 12,320 0.02% 72.1 73.1

Croatian 45,505 — 79.6 82.3

English 22,844 38.66% 78.6 77.0

German 29,705 0.77% 74.5 73.9

Hungarian 26,880 0.06% 75.5 89.5

Polish 84,758 0.41% 71.7 73.7

Portuguese 34,539 13.45% 57.9 48.6

Russian 23,751 0.82% 71.3 67.0

Serbian 21,311 0.04% 63.4 53.2

Slovakian 37,021 — 77.2 80.7

Slovenian 42,978 0.05% 72.4 66.7

Spanish 81,143 12.42% 67.9 86.1

Swedish 20,068 0.20% 67.7 58.4

Table 3. Model accuracy on an external dataset.
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number of tweets these languages is fewer than 5000 within our 50 million sample, we found that around 90% of 
these tweets are concentrated in countries where the corresponding languages are spoken (Table 5). This obser-
vation provides further assurance of the validity of our spatial mapping of geotagged tweets.

Model performance against other sentiment methods. To demonstrate our model’s performance, we 
benchmark the performance of our sentiment classification using BERT as the word embedding approach against 
the most commonly used dictionary and bag of words sentiment methods employed in other studies: LIWC43,44, 
VADER45, and Bag of words46. As demonstrated in Table 6, our trained model significantly outperforms other 
methods on the testing dataset in terms of both accuracy rate and F1 score.

The performance improvement depicted above mainly focuses on expressed sentiment. Our expressed sen-
timent database provides useful information for investigating the spatial and temporal variations in expressed 
sentiment across regions, with the understanding that expressed sentiment has a correlation with underlying 
subjective well-being variations. Jaidka et al. (2020) demonstrated the validity of Twitter sentiment by corre-
lating it with the Gallup-Sharecare Well-Being Index survey, showing that adjusted LIWC or data-driven sen-
timent analysis models have robust correlations with regional well-being. The BERT model we employ has 
shown performance improvements over dictionary-based methods like LIWC and hedonometer (Devlin et 
al., 2018; Tanana et al., 2021). However, no research to date has specifically tested the correlations between 

Language
# of tweets in 50 
million sample

Percentage of tweets 
in 50 million sample

English (en) 16,618,957 35.81%

Spanish (es) 5,897,099 12.71%

Portugese (pt) 5,300,609 11.42%

Japanese (ja) 4,881,423 10.52%

Arabic (ar) 1,581,877 3.41%

Indonesian (in) 1,370,835 2.95%

Turkish (tr) 1,340,662 2.89%

Hindi (hi) 931,777 2.00%

Others 9,146,503 18.29%

Table 4. Language distribution of tweets.

Fig. 5 Spatial distribution of top 4 most used languages for 50 million tweets between January and February 
2023 (English: red, Portuguese: purple, Spanish: green, Japanese: blue).

Language # of tweets in 50 million sample Country Number of tweets Ratio

Tibetan 648 China 631 97.38%

Armenian 1621 Armenia 1555 95.93%

Sindhi 2419 Pakistan 2059 85.12%

Table 5. Spatial distribution of tweets in Tibetan, Armenian, and Sindhi.

https://doi.org/10.1038/s41597-023-02572-7
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BERT sentiment indices and well-calibrated subjective well-being surveys. As we lack access to global subjec-
tive well-being surveys, we instead demonstrate convergent validity by examining the correlation between our 
TSGI index and the multilingual Hedonometer Happiness trend across languages. Hedonometer Happiness is a 
widely accepted happiness measure based on the bag-of-words approach to reflect the general sentiment trend 
on Twitter by language without the geotagged information. As shown in Table 7, our generated TSGI exhibits 
positive and significant correlations with the Hedonometer Happiness trend.

Sentiment score and word usage. According to our definition, a sentiment score represents the pos-
sibility of a tweet being classified as a post with a positive mood. Here we investigate the relationship between 
sentiment score and word usage to validate our method.

First, we randomly select 2.5 million posts across 2019 and 2022 respectively and filter out non-English 
tweets so that the readers here can better understand the content. Then, we divide the filtered dataset evenly into 
four quarters according to their sentiment scores. For this analysis, only the tweets with the top 25% sentiment 
score (top quarter) and the bottom 25% are reserved (bottom quarter). To better show the difference between 
the two subsets, we introduce Linguistic Inquiry and Word Count, a dictionary to aid word usage analysis47. It 
contains more than six thousand English words with human-labelled sentiment polarity tags (i.e., the word with 
tag 31 means that the word contains positive sentiment, and the word with tag 32 means that the word contains 
negative sentiment). For each word showing up in two quarters, we only count the occurrence of those words 
that contain positive or negative sentiment.

Using a word shift figure48 (Fig. 6), we show the relative frequency change of words in the top quarter and 
the bottom quarter. People tend to use words on the left to convey positive moods such as “thank”, “good” or 
“happy”, while using words like “bad”, “hate” or “sorry” to express negative sentiments. The consistency in word 
usage to express sentiment across years demonstrates that our trained model can effectively capture human 
sentiment expression patterns, despite being trained on data from several years ago.

Usage Notes
This dataset offers a complementary data source to investigate rich topics related to SWB. It mainly provides 
a detailed sentiment index spanning time and geography. To the best of our knowledge, it is the most exten-
sive social media-expressed sentiment dataset to date, with the largest scale and spatiotemporal granularity. 
However, our dataset also has several limitations. We recommend reading this section before using the dataset.

First, this dataset is constructed based on the geotagged posts only, which accounts for approximately 1–2% 
of the total traffic at Twitter21. This is worth noting when representing the entire Twitter dataset using geotagged 
tweets that constitute a relatively small proportion. Researchers face the inevitable trade-off between the com-
prehensive representativeness of tweets and the need for location information (Li et al.49). For this study, the 
location information is critical because a major advantage of our sentiment index is the regional variation and 
the related policy implications. However, a recent paper has found that geotagged posts are subjected to a bias 
of being happier compared to non-geotagged posts since people like to attach their tweets to a specific location 
to record the joyous and special events50. Nevertheless, our expressed sentiment indices based on the geotagged 
tweets do have significant correlations with Hedonometer sentiment generated using total tweets (see Table 6), 

Index Embedding Method Classification method Accuracy F1 score

1 LIWC Voting 0.288 0.394

2 VADER Voting 0.285 0.378

3 Bag of words (5000 features) MultinomialNB 0.769 0.770

4 Bag of words (5000 features) LinearSVC 0.791 0.788

5 BERT Logistic Regression 0.808 0.810

6 BERT (our paper) Neural Network 0.829 0.829

Table 6. Sentiment model performance on the testing dataset.

Year English German Spanish Portuguese

2019
0.350 0.230 0.195 0.172

(0.000) (0.000) (0.000) (0.000)

2020
0.681 0.637 0.704 0.659

(0.000) (0.000) (0.000) (0.000)

2021
0.796 0.521 0.532 0.478

(0.000) (0.000) (0.000) (0.000)

2022
0.361 0.402 0.405 0.212

(0.000) (0.000) (0.000) (0.000)

Table 7. Correlation in temporal trends of Twitter sentiment between TSGI and Hedonometer. Note: Pearson 
correlation coefficients between the TSGI index and Hedonometer Happiness Index and the corresponding P 
values (in brackets) are displayed for each language in each year.
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suggesting that geotagged tweets and total tweets have similar sentiment variations over time. Thus, it is recom-
mended that users pay more attention to the local sentiment variations, instead of the absolute sentiment value.

Second, based on the retrieved coordinates of each tweet, we decide to aggregate the tweet sentiment scores 
at the county/city level to represent the local sentiment instead of going to a finer level. This is due to the pre-
cision consideration since the mid of 2019. Twitter changed its policy of location sharing in 2019 to put more 
emphasis on personal data protection51. Instead of sharing the exact coordinates, according to the study, most 
tweets are sharing the location which can be a country, city, or point of interest. To accommodate this change 
and prevent the potential bias introduced by policy change, we choose the county/city level as our finest aggre-
gation level.

Third, as we lack socio-demographic information on Twitter users, our database should be regarded as an 
expressed sentiment database for Twitter users, as opposed to the overall population. We have tested an alter-
native aggregation approach to mitigate biases towards certain “Tweetaholics”, that involves first aggregating 
sentiment indices of tweets at the user level, followed by aggregating user sentiment at different administrative 
regions. We find a high correlation between the indices from different aggregation methods (Table 8). This 

Fig. 6 The word shift figures show the relative frequency of words in the top 25% and bottom 25% of tweets in 
2.5 million randomly selected tweets in both year 2019 and 2022. Words on the left (e.g., thank, good, happy, 
etc.) indicate that they are relatively more common in the top quarter of tweets while words on the right (e.g., 
bad, hate, sorry, etc.) represent that they show up more in the bottom quarter of tweets.
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consistency across aggregation methods bolsters confidence in our TSGI index’s ability to represent Twitter 
users. To what extent the sentiment trends of Twitter users represent the overall population requires further 
investigation and validation.

Code availability
Codes for the raw text processing, model training, and statistics generation are available on our project GitHub 
(https://github.com/MIT-SUL-Team/Twitter-Sentiment-Geographical-Index).
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