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Abstract: Efficient control schemes for ill-conditioned systems, such as the high-purity distillation
column, can be challenging and costly to design and implement. In this paper, we propose a
distributed control scheme that utilizes well-designed excitation signals to identify the system. Unlike
traditional systems, we found that a summation of correlated and uncorrelated signals can yield
better excitation of the plant. Our proposed distributed model predictive control (MPC) scheme uses a
shifted input sequence to address loop interactions and reduce the computational load. This approach
deviates from traditional schemes that use iteration, which can increase complexity and computational
load. We initially tested the proposed method on the linear model of a highly coupled 2 × 2 process
and compared its performance with decentralized proportional-integral-derivative (PID) controllers
and centralized MPC. Our results show improved performance over PID controllers and similar
results to centralized MPC. Furthermore, we compared the performance of the proposed approach
with a centralized MPC on a nonlinear model of a distillation column. The results for the second
study also demonstrated comparable performance between the two controllers with the decentralised
control slightly outperforming the centralised MPC in some cases. These findings are promising and
may be of interest to practitioners that are more comfortable with tuning decentralised loops.

Keywords: distributed control; ill-conditioned process; control-relevant excitation; model predictive
control; distributed model predictive control; decoupling

1. Introduction

Ill conditioned non-linear processes are standard in the process industries. Such sys-
tems are characterized by high loop interaction and directionality, making them challenging
to model and control. A typical example of such a process is the high-purity distillation
column. The first step in most control design methods is to obtain a suitable model. The
ability of the obtained model to capture the plant dynamics impacts the quality of control
that can be achieved. Moreover, depleting resources means that the use of the available re-
sources needs to be optimized. This requirement for the optimal usage of resources and the
need to reduce product variability make the development of accurate models imperative.
Therefore, the availability of such models will lead to an improvement in process control.

The challenges associated with identifying and controlling ill-conditioned systems
mean that unusual steps are necessary for the development of plant excitation signals, the
identification process and controller design [1–3]. Typical systems require that the excitation
signals used for identification be uncorrelated for the proper excitation of the plant to
obtain informative data for identification. However, for ill-conditioned systems, intelligent
utilization of partially correlated plant excitation inputs has been demonstrated to generate
informative data, yielding better results [4–7]. The work in [5] presents practical steps for
the effective identification of industrial processes. In [8], the performance of an open-loop
signal was compared with closed-loop generated signals for subspace identification. The
models obtained from the closed-loop tests gave better performance both in terms of error
in the frequency response and when used for model predictive control design.
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The work presented in [9] developed a method for the identification of ill-conditioned
systems using output rotation. To identify models in output directions that are control-
relevant, the least-squares technique was employed to generate autoregression with ex-
ogenous input (ARX) models. However, prior to the development of such models, the
outputs were rotated using principal component analysis (PCA). In [10], three methods
for designing excitation signals to avoid correlated outputs in highly coupled systems
were developed. These methods were based on the full state space model, an approximate
covariance model and a simple dynamic gain matrix. When compared based on their
speeds of execution, the methods displayed varying performances depending on the sys-
tem under study. However, these techniques have not found wide adoption by industrial
control practitioners.

The primary aim of any identification exercise is to obtain a control-relevant model.
Hence, any benefits resulting from such an exercise need to be consolidated by an excellent
controller. PID control has remained the most adopted controller in industrial and other
applications [11]. This popularity has been linked to historical reasons: the availability of
off-the-shelf hardware and ease of implementation. Its parameters i.e., the proportional,
integral and derivative gains contribute control actions that are proportional to the current,
historic and future errors, respectively. Hence, these parameters collaborate to eliminate
these error components.

Therefore, PID is the default controller to be considered by most practitioners. How-
ever, standard PID controllers cannot address the interaction and coupling associated
with ill-conditioned systems. Therefore, a range of decentralized PID (DPID) controllers
have been proposed in the literature. Some of the most adopted DPID by industries
were proposed in [12,13]. Both controllers have been successful in the industry and have
motivated the development of several controllers [14,15]. The authors of [14] tuned a
decentralized fractional order PID for two-input two-output (TITO) systems. In the work, a
bat optimization algorithm was used to design diagonal fractional order PID controllers
using a predetermined equivalent transfer function (ETF) model and decoupler. This was
implemented on an interacting canonical tank-level process. An example of non stan-
dard implementation of PID is given in [16]. However, this work focuses on standard
implementations which are easily implemented by most practitioners.

The recent drive towards the digitization and automation of industries towards the
industry 4.0 paradigm shift means that there is the need to improve the performance of
existing control loops. Moreover, about 30% of exisiting controllers are in manual mode
while 41% of control loops are considered to have fair or poor performance [17].

Model predictive control (MPC) is the most influential advanced process control
scheme for industrial applications. It has the inherent capability to handle process coupling
and interactions naturally. Recently, MPC has found application in a variety of industries
outside of process and manufacturing [18,19]. Despite this feat, the presence of MPC in the
industry is still not as expected, considering its benefits and potential to revolutionize the
industry. The complexity associated with managing extensive and interconnected systems
has motivated the emergence of decentralized and distributed MPC (DMPC). Moreover,
a significant number of existing industrial controlled systems are structured in a single-
input, single-output (SISO) manner. Therefore, practitioners are quite comfortable with
tuning SISO loops. Hence, considering the deployment of DMPC may appeal more to such
practitioners, this may motivate a wider adoption of MPC to improve existing control loops
performing poorly. Hence, studying these schemes on TITO systems is reasonable. Some
studies in Distributed Model Predictive Control (DMPC) for extensive and interconnected
processes are elucidated in these works [20–22]. Earlier works have also considered the
relative performance of PID and MPC on dead-time dominant systems [23,24], while
MPC was used to improve the performance of a PID with feedfoward in an industrial
process in [25].

This paper proposes a decentralized MPC strategy to handle ill-conditioned TITO
systems. However, the steps for obtaining informative data and a control-relevant model
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are first explored to achieve these objectives. The developed scheme is compared with
central MPC and decentralized PID controllers. The paper is therefore organized as follows.
Section 2 is the methodology section. It discusses the details of the design of excitation
signal, the different control algorithms used in the paper and details of the high-purity
distillation column. The proposed DMPC approach is presented in Section 2.6. The
outcomes are presented and critically analyzed within Section 3. The paper culminates
with a conclusion in Section 4.

2. Methodology
2.1. The Skogestad and Morari Distillation Column

Distillation columns are among the most prevalent process systems in industrial
applications. Therefore, over the past three to four decades, there has been research interest
in the modelling and control of distillation columns. One of the most studied systems
is the high-purity distillation column referred to as “Column A” [26–28]. In this paper,
we only consider the input/output characteristics of the model. Details of the theory
and assumptions used to develop the benchmark known as column A are given in [27].
The details of this are outside the scope of this work. The binary distillation column is a
4× 4 system with inputs, outputs and measured disturbances as defined in Table 1.

Table 1. Process variables for the binary column.

Controlled Variables Manipulated Variables Measured Disturbances

Reflux flow (L ) Top composition (xD) Feed rate (F)
Boil-up flow (V) Bottoms composition (xB) Feed composition (zF)
Distillate flow (D) Condenser boiler holdup (MD) Liquid fraction in feed (qF)
Bottoms flow rate (B) reboiler holdup (MB) -

The binary distillation can be configured in several ways based on input–output
pairing. Some of these are the LV, DV and (L/D)(V/B) configurations [26]. These configu-
rations are achieved by closing some of the loops and using the remaining variables for
control. In this paper, the LV-configuration, depicted in Figure 1, is adopted.

Figure 1. A simple Distillation Column Controlled with LV-Configuration [27].

In the LV-configuration, the loops for the distillate flow (D) and bottoms flow rate (B)
are intially closed to ensure tight control. Then the reflux flow (L) is paired with the top
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composition and boil-up flow (V) with bottoms composition. The resulting 2× 2 system
can therefore be represented (1). [

xD
xB

]
=

[
G11 G12
G21 G22

][
L
V

]
(1)

The LV-configuration of this process is a non-linear system with directionally depen-
dent dynamics. Therefore, it is imperative to take these factors into account when designing
plant test signals and control strategy.

2.2. Manipulated-Variable Controlled-Variable (MV-CV) Pairing

Process interaction determines how the various manipulated variables (MVs) in a
process affect the respective controlled variables (CVs). The most commonly adopted
techniques for measuring the degree of process interaction are the singular value decompo-
sition (SVD) and relative gain array (RGA) methods [29]. In this work, the RGA approach
is adopted.

For a typical system represented by (2). Each of the outputs Y1 and Y2 are affected by
both inputs U1 and U2.

Y(s) = G(s)U(s) (2)[
Y1(s)
Y2(s)

]
=

[
G11 G12
G21 G22

][
U1(s)
U2(s)

]
(3)

where

G11(s) =
K11

τ11s + 1
e−sθ11 G12(s) =

K12

τ12s + 1
e−sθ12

G21(s) =
K21

τ21s + 1
e−sθ21 G22(s) =

K22

τ22s + 1
e−sθ22

Let the matrix of process gains be defined as K and the matrix H = (K−1)T . Then the
RGA Λ is computed as follows [29]:

Λ = K⊗ H =
[
λij
]

(4)

The operator ⊗ represents the Schur product such that λij = KijHij.

K =

[
K11 K12
K21 K22

]
; Λ =

[
λ 1− λ

1− λ λ

]
(5)

Note that for a TITO process, Λ is a symmetrical matrix: ∑i λij = ∑j λij = 1. Typically,
λ ≤ 1. A value of λ ≥ 0.5 leads to the direct pairing of Y1 with U1, else reverse pairing
is adopted [29].

2.3. Identification Test Signals

Identification tests are generally performed when plants are in operation. Hence,
it is essential to develop plant friendly identification procedure that will have limited
effect on the process. Since plant tests account for over three-quarters of the total costs
associated with the deployment of advanced process controllers [30,31], it is imperative to
determine optimized test signal magnitude and duration [5,32]. Several efficient excitation
signals have been proposed in the literature. These include special noise signals such as the
generalised binary noise (GBN) and filtered white noise. Other specially designed signals
are the sum of sinusoids and pseudo random binary sequence (PRBS) [5,32,33]. PRBS
signals ensure that the plant is not over excited outside its range of steady-state operations.
Hence, the PRBS signal is adopted in this work. The details for designing appropriate PRBS
signals are available in these works [30,32,33].
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2.4. PID Decoupling Control

Numerous structures of the PID controller are available in the literature [11]. Moreover,
several control companies and industries have their in-house structure and tuning methods.
For its simplicity and prevalence, the ideal (or parallel) structure, described by (6), is
adopted in this work.

k(s) = kp +
ki
s

s + kds (6)

where the proportional, integral and derivative gains are represented by kp, ki and
kd respectively.

In highly coupled systems, multivariable controllers may be used to achieve defined
control objectives. However, because of the difficulty associated with the tuning of multi-
variable PID controllers, decentralized controllers integrated with decouplers are often used.
Usually, these decouplers are used to cancel the dynamics of non-paired loops. Several of
these decouplers have been proposed over the years, some of which are presented in [34].

Assuming the utilization of a decoupling matrix D, the transformed transfer function
Q(s), following the decoupling process, is expressed as (7):

Q(s) = G(s)D(s)

=

[
q11 0
0 q22

]
(7)

D(s) =

[
1 d12(s)

d21(s) 1

]
(8)

Hence, the parameters d12 and d21 can be computed using (9) as follows:

d12 = −G12

G11
d21 = −G21

G22
(9)

Sometimes, the decoupler parameters d12 and d21 may not be physically imple-
mentable. For the sake of simplicity, static decoupling [35] is frequently employed. This
method entails the utilization of a steady-state model, i.e., replacing the corresponding
transfer functions with their steady-state gain values:

d12 = −K12

K11
d21 = −K21

K22
(10)

Static decouplers have the drawback that interactions still occur in dissimilar loops
during transients. However, the performance of such decouplers is sufficient for most
loops during steady-state operations. The resulting decoupled process is subsequently
controlled with a PID, which has the structure of (11). In situations where improved
performance is required more sophisticated dynamic decouplers can be employed [36].
Owing to their wide acceptance by the research community and industry, two such items
presented in [12,13] are adopted for comparison in this work.

K(s) =
[

K1 0
0 K2

]
(11)

The controllers k1(s) and k2(s) have the structure represented in (6) or any other
PI/PID structure. Although, there is a recent trend in tuning PID controllers using optimiza-
tion based methods, these methods have not shown better performance when compared
to MPC controllers [23,24]. Moreover, these optimization based PID controllers have not
found much application in industrial settings. Hence, we adopt PID controllers that have
found industrial application [12,13].
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2.4.1. PID with Lead-Lag Decoupling KW

The PID controller proposed in [12] is tuned automatically and uses the lead-lag
decoupler represented in (12).

D(s) =
[

d11 d12
d21 d22

]
(12)

The parameters d12 and d21 are defined in Equations (13) and (14).

d12 = −K12

K11

(
1 + τ11s
1 + τ12s

)
e−(θ12−θ11) (13)

d21 = −K21

K22

(
1 + τ22s
1 + τ21s

)
e−(θ21−θ22) (14)

The terms d12 and d21 are not physically realizable when (θ12 − θ11) < 0 or (θ21 −
θ22) < 0. To mitigate this. the first and second columns of D are multiplied by e(θ12−θ11)

and e(θ12−θ11), respectively [12]. Then the resulting decoupling matrix becomes:

D(s) =

[
e−v(θ22−θ21) − g12

g11
e−v(θ12−θ11)

− g21
g22

e−v(θ21−θ22) e−v(θ22−θ21)

]
(15)

such that:

v(θ) =
{

1 i f θ ≥ 0
0 i f θ < 0

2.4.2. Non-Dimensionally Tuned PID ( KN)

A decoupling matrix is initially employed to mitigate process coupling. Subsequently,
a secondary-order model is derived for the obtained process, facilitating the development
of a decentralized PI/PID controller through a non-dimensional tuning method. There are
three possibilities for the resulting design based on pole-zero positions. Three scenarios are
outlined and dedicated decouplers are developed accordingly [13]. These include:

1. When there are no right half poles and right half zeros in the off-diagonal and diagonal
elements of D, respectively:

D(s) =
[

w1(s) d12(s)w2(s)
d21(s)w1(s) w2(s)

]
(16)

Then,

w1(s) =

{
1 i f θ21 ≥ θ22
e(θ21−θ22) i f θ21 < θ22

(17)

w2(s) =

{
1 i f θ12 ≥ θ11
e(θ12−θ11) i f θ12 < θ11

(18)

d12(s) = − g12

g11
e−(θ12−θ11)

d21(s) = − g21

g22
e−(θ21−θ22) (19)

This is identical to the lead-lag decoupling system outlined in (15).
2. When there are no right half poles and no right half zeros in the diagonal and off-

diagonal elements of D(s), respectively:

D(s) =
[

d11(s)w3(s) w3(s)
w4(s) d22(s)w4(s)

]
(20)
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w3(s) =

{
1 i f θ22 ≥ θ21
e(θ22−θ21) i f θ22 < θ21

(21)

w4(s) =

{
1 i f θ11 ≥ θ12
e(θ11−θ12) i f θ11 < θ21

(22)

d11(s) = − g22

g21
e−(θ22−θ21)

d22(s) = − g11

g12
e−(θ11−θ12) (23)

3. When there are right half zeros in the diagonal and off-diagonal elements. This is not
addressed in this paper because achieving stability in a decoupler using (19) and (23)
is infeasible. Hence, it is beyond the scope of this work. For more details, an interested
reader is referred to [13].

2.4.3. Model Predictive Control (MPC)

Model predictive control is a well-known control technique with most recent ad-
vancements focusing on its state space representation [37]. MPC computes a sequence of
optimized control inputs by optimizing the predicted operations of the plant over a fixed
future horizon. Then only the first input is applied to the plant and its output compared to
that of the model used for prediction. At each step, the necessary adjustments are made
to eradicate any steady-state errors and disturbances. The fundamental idea of MPC is
illustrated in Figure 2. Other modelling approaches for predictive control applications
are available as documented in [37,38] but we adopt the augmented state space method
outlined in [39]. The transformation of the model presented in Equation (2) into a discrete
state space representation is feasible. Because of the associated benefits such off-set free
control, this work uses the augmented velocity formats as detailed in (24) and (26) [39].

Figure 2. The concept of Model Predictive Control.

xp(k + 1) = Apxp(k) + Bpu(k)

y(k) = Cpxp(k) (24)

Then

xp(k) = Apxp(k− 1) + Bpu(k− 1)

xp(k + 1)− xp(k) = bAp
[
xp(k)− xp(k− 1)

]
+ Bp[u(k)− u(k− 1)]

∆xp(k + 1) = Ap∆xp(k) + Bp∆u(k)

y(k + 1) = Cpxp(k + 1)

= Cp
[
xp(k) + A∆xp(k) + Bp∆u(k)

]
(25)
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Consider an extended state x(k) specified as:

x(k) =
[

∆xp(k)
yp(k)

]
, then x(k + 1) =

[
∆xp(k + k)
yp(k + 1)

]
Then

x(k + 1) =

[
Ap 0T

n
Cp Ap I

][
∆xp(k)
yp(k)

]
+

[
Bp

CpBp

]
∆u(k)

y(k) =
[

0np Inout

][ ∆xp(k)
yp(k)

]
Finally, the state equations are summarized as:

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k) (26)

The following equations cater for the effects of measured disturbances d(k).

xp(k + 1) = Apxp(k) + Bpu(k) + Bdd(k)

yp(k) = Cpxp(k) (27)

x(k + 1) = Ax(k) + B∆u(k) + BD∆d(k)

y(k) = Cx(k) (28)

where BD =

[
Bp

CpBp

]
. The cost function given in (29) penalizes both the tracking error

and the change in manipulated variable.

J =
p

∑
i=1
‖r(k + 1)− y(k + i)‖2

q +
M

∑
i=1
‖∆u‖2

rw
(29)

where ‖x‖2
P = xT Px. Let the variable x0 represent the initial state of x(k) and the vectors

X, ∆U and Y be defined as follows:

X =


x(k + 1)
x(k + 2)

...
x(k + Np)

 ∆U =


∆u(k)

∆u(k + 1)
...

∆u(k + Nc − 1)

 Y =


y(k + 1)
y(k + 2)

...
y(k + Np)

 (30)

A concise form of these prediction equations is:

X = F1x0 + Φ1∆U + Φd1 ∆D

Y = Fx0 + Φ∆U + Φd∆D (31)

where

F =


CA
CA2

...
CAP

 Φ =


CB 0 . . . 0

CAB CB . . . 0
...

CAP−1B CAP−2B . . . CAP−MB


The matrices ∆D and Φd are defined similarly to ∆U and Φ by substituting ∆u = ∆d

and B = Bd, respectively. With the proper definition of matrices, a compact form of the cost
function in (29) is:

J = (S−Y)TQ̄(S−Y) + ∆UT R̄∆U (32)
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Such that S = r(k)×
[

1 1 . . . 1
]T , Q̄ = diag{q} > 0 and R̄ = diag{rw} ≥ 0.

The resulting unconstrained and constrained optimal trajectory of manipulated variables
are obtained using (33) and (34), respectively.

∆U = −
(

ΦTQ̄Φ + R̄
)−1

ΦTQ̄(Fx0 + Φd∆D− S) (33)

min
∆U

∆ UT
(

ΦTQ̄Φ + R̄
)

∆U + 2∆UTΦTQ̄(Fx0 + Φd∆D− S) + constant

: M∆U ≤ N (34)

2.5. Simulation Setup

For the simulations carried out in this work, the system is set up as shown in Figure 3.
The blocks and signals are defined as in standard control systems with input and output
disturbances du and dy, respectively.

Figure 3. Control problem block diagram.

2.6. Decentralised MPC

Any TITO system such as the process defined by (2) can be subdivided into two
interacting subsystems as follows:

G1(s) =
[

g11(s)e−τ11(s) g12(s)e−τ12(s)
]

G2(s) =
[

g21(s)e−τ21(s) g22(s)e−τ22(s)
]

(35)

The procedure for converting these subsystems into their discrete state space format
is straightforward. The resulting configurations of these subsystems, as expressed in
Equation (36), solely exhibit interconnections through their inputs; thus, no couplings
between the states are present. In this formulation, the inputs to each of the subsystems
serves as a measured disturbance in the other subsystem. Any system can be converted to
the discrete state space format [20].

xpi(k + 1) = Api xpi (k) + Bpiui(k) + Bdi
uj(k)

yi(k) = cpi xpi

i, j = 1, 2, i 6= j (36)

This can be converted to an augmented model form similar to (26) to give:

xi(k + 1) = Aixi(k) + Bi∆ui(k) + BDi ∆udj
(k)

yi(k) = Cixi(k) (37)
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The resulting prediction matrices for the subsystems are:

Xi = F1ixi0 + Φ1i∆Ui + Φdi
∆Di (38)

Yi = Fixi0 + Φi∆Ui + ΦDi ∆Di (39)

All the parameters of this equation are defined similarly to the parameters of (31). The
predicted measured disturbances for the subsystems are defined according to (40):

∆Di =


∆uj(k)

∆uj(k + 1)
...

∆uj(k + M− 1)

 (40)

Since the inputs for each of the subsystems serve as disturbances to the complementing
subsystem, the traditional approach to obtaining the optimal control sequences is to iterate
the systems to converge to their Nash equilibrium or Pareto-optima [40]. In this work, we
propose a method which avoids iterations but provides good results that are optimal based
on model predictions. If the input trajectory calculated at time k is represented by D̂i(k)
according to (41),

∆D̂i(k) =


∆ûj(k)

∆ûj(k + 1)
...

∆ûj(k + M− 1)

 (41)

then the entire sequence is assumed to be optimal at the present time instance which is a
valid assumption because of the prediction capability of MPC over the horizon. And to
obtain the values of ∆D̂i at sample time k+ 1, we use the shifted sequence with the last entry
of the sequence repeated to complete the trajectory. The computed input for MPC typically
remains constant at the end of the horizon. Therefore, the shifted sequence becomes:

∆D̂i(k + 1) =


∆ûj(k + 1)

...
∆ûj(k + M− 2)
∆ûj(k + M− 1)
∆ûj(k + M− 1)

 (42)

so that there will be no need for iterations and (39) becomes:

Yi = Fixi0 + Φi∆Ui + ΦDi∆D̂i(k) (43)

Hence, the problem at hand is to solve two quadratic programming formulations, one
for each of the subsystems. These QP problems can be represented in compact form as:

min
∆Ui

{
∆UT

i

(
ΦT

i Q̄iΦi + Ri

)
∆Ui + 2∆UT

i ΦT
i Q̄i

(
Fixi0 + ΦDi∆D̂i − S

)}
: Mi∆Ui ≤ Ni : i = 1, 2 (44)

Therefore, there will be a reduction in computational load since the need for iterations
has been alleviated. However, the performance of the proposed method may degrade with
increasing loop interactions and coupling.
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3. Results and Discussion
3.1. Case Study I: Wood and Berry Distilllation Column

Consider the Wood–Berry distillation column model, which is a well-studied 2× 2
process model [12,13,41]. The model is given as [29]:[

XD(s)
XB(s)

]
=

[
12.8e−s

16.7s+1
−18.9e−3s

21s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

][
R(s)
S(s)

]
(45)

where XD(s) is the overhead composition and XB(s) is the bottom composition, R(s) is the
reflux flow and S(s) is the steam flow.

The system was connected according to the simulation setup described in Section 2.5.
The performance of the considered controllers was compared in terms of set-point ysp and
output disturbance dy, assuming du = 0 and H = 1.

The RGA is computed as presented (46).

Λ = K⊗ H =

[
2 −1
−1 2

]
The first element Λ11 > 1 implies strong coupling. The decoupling matrices of the

PID/PI were obtained using methods discussed in Section 2. The decoupler D(s), given
in (46), is the same for the two considered decentralized PID controllers.

D(s) =

[
1 1.477(16.7s+1)e−2s

21s+1
0.34(14.4s+1)e−4s

10.9s+1 1

]
(46)

The resulting controllers are given as [13]:

KN =

[
0.41 + 0.074

s 0
0 −0.12− 0.024

s

]
(47)

KW =

[
0.216 + 0.076

s + 0.017s 0
0 −0.068− 0.019

s − 0.064s

]
(48)

Both the MPC and DMPC controllers tuned used a sample time of 1 s, prediction
horizon of 20 samples and a control horizon of 4 samples. Similarly, the weightings on the
change in MV of 10 and 100 were used for loops 1 and 2 of both controllers, respectively. The
controllers were tested for set-point response and output disturbance rejection using step
signals with a step size of 0.5. To analyze the input response, step inputs were employed
in loops 1 and 2 at 0 and 50 min for the set-point response, respectively. The resulting
set-point responses are shown in Figures 4 and 5. Similarly, output step disturbances, also
of size 0.5, were applied to loops 1 and 2 at 0 and 50 min, respectively. The plots of the
output step disturbance response are shown in Figures 6 and 7.

The plots for both the set-point response and disturbance rejection showed that the
predictive controllers had smoother responses without any oscillations and overshoots
while the PI/PID controllers had average overshoots of about 20%.

Table 2 presents the mean squared error (MSE) values obtained by the different
controllers when comparing their output to the set point. The values of MSE showed that
predictive controllers had a similar performance but outperformed the PI/PID controllers,
which also had similar performance. A similar trend is observed for the results of the
output disturbance rejection presented in the same table.

Overall, the DMPC achieved better results when compared with all the other con-
trollers. The gains achieved by the predictive controllers are expected to be more for
constrained processes and processes with larger dead times.
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Figure 4. Response of distillate composition of the Wood and Berry distillation column to a step
input reference.
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Figure 5. Response of bottoms composition of the Wood and Berry distillation column to a step
input reference.
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Figure 6. Response of distillate composition of the Wood and Berry distillation column to a step
output disturbance.
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Figure 7. Response of bottoms composition of the Wood and Berry distillation column to a step
output disturbance.

Table 2. MSE for all controllers applied to the Wood and Berry distillation column.

Controller
Set-Point Response Disturbance Rejection

XD XB XD × 10−4 XB × 10−4

KN 0.2438 0.1170 6.7597 1.3616
KW 0.2454 0.1131 8.1202 1.5143
MPC 0.2414 0.1087 4.7006 1.3415
DMPC 0.2411 0.1088 4.6867 1.3647

It is often not sufficient to evaluate controllers considering output responses alone.
Therefore, the total variance (TV) for the controllers was used to study their smoothness
based on controller activity, which can imply robustness and greatly affect actuator wear
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and tear. The TVs for the controllers were computed using (49). The results presented in
Table 3 show that KW had the least controller activity while KN had the highest activity.
However, for the disturbance rejection case, the PID/PI controller had slightly lower
controller activity. In this case, the higher controller activity in the predictive controllers
can be justified by their improved performance.

TV =
∞

∑
k=0
‖u(k + 1)− u(k)‖. (49)

Table 3. TV for all controllers applied to the Wood and Berry distillation column.

Controller
Set-Point Response Disturbance Rejection

XD XB XD XB

KN 0.6228 0.1806 0.6228 0.1806
KW 0.2647 0.1105 0.2647 0.1185
MPC 0.3954 0.1801 0.7079 0.3127
DMPC 0.3824 0.1076 0.6103 0.3041

3.2. Case Study II: High-Purity Distillation Column

The binary distillation column introduced in Section 2 has a steady-state gain matrix of:

G =

[
0.8754 −0.8618
1.0846 −1.0982

]
(50)

This system has an RGA of 36 and a condition number of 197. Since the magnitudes of
the steady-state gains have close values, there is strong interaction between the loops. The
large condition number implies that the process is ill conditioned. The step responses of
the studied system are shown in Figures 8–11. Careful observation of these responses show
both non-linear and directionality of the model.
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Figure 8. Response to positive step change on L.
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Figure 11. Response to negative step change on V.

3.2.1. Identification Tests

The tuning and performance of model-based controllers depends on the quality of
the obtained model. Therefore, it is necessary to take steps that would improve system
identification. Due to the nature of poorly conditioned processes, unique approaches are
required to acquire informative identification data. While normal processes require the use
of uncorrelated inputs for system excitation, ill-conditioned processes may require partly
correlated signals. Hence, we consider three different sets of identification signals to find
the most appropriate for the considered system. These tests were proposed by [4].

1. The use of uncorrelated signals.
In this method, uncorrelated signals are used to stimulate the plant simultaneously.
This is the conventional approach for normal plants. However, studies have suggested
that these signals are unlikely to fully excite the process low-gain direction. To address
this, two independent pseudo-random binary sequence (PRBS) signals were designed
with caution to avoid overexciting the system into strong non-linearity, taking into
account the process’s non-linearity and directional dynamics. The data collected
from this test are displayed in Figure 12. As seen in Figure 13, the process high-gain
direction was adequately stimulated while the low-gain direction was hardly excited.

2. The use of partly correlated signals.
To effectively excite both the high- and low-gain directions in a test signal, a two-period
approach is employed. The two periods consist of a low-amplitude uncorrelated
period and a high-amplitude identical signal period. During the high-amplitude
period, the identical signals excite the low-gain direction, while during the low-
amplitude period, the signals move the outputs in opposite directions (effectively
moving them in the same direction) to nearly cancel out their effects on the high-
gain direction. This approach ensures that both directions are adequately excited.
Figure 14 shows the test signal, while Figure 15 shows the resulting output directions.
The plot shows that despite using these signals, the low-gain direction was only
slightly excited.
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Figure 12. Plot of plant test data for test with uncorrelated inputs.
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Figure 13. Plot of output directions for test with uncorrelated inputs.
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Figure 14. Plot of plant test data for test with partly correlated inputs.

-4 -3 -2 -1 0 1 2 3 4

x
D

10
-4

-5

-4

-3

-2

-1

0

1

2

3

4

5

x
B

10
-4

Figure 15. Plot of output directions for test with partly correlated inputs.

3. The use of a combination of correlated signals and uncorrelated signals
In this approach, two types of test signals are combined to excite the plant in both high-
and low-gain directions. The first type consists of low-amplitude uncorrelated signals,
while the second type consists of high-amplitude identical signals. By adding together
these two signal types, the high-amplitude signals with the same time intervals can
further stimulate the low-gain direction, surpassing the results obtained in previous
discussed tests. Meanwhile, the low-amplitude uncorrelated signals excite the high-
gain direction. The acquired test dataset and measurements of the plant’s output are
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depicted in Figure 16, while the output directions are plotted in Figure 17. The figure
shows improved excitation of the low-gain direction over the other tests. Hence, the
data from this test were used for system identification.
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Figure 16. Plot of plant test data for test with sum of correlated and uncorrelated inputs.
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Figure 17. Plot of output directions for test with sum of correlated and uncorrelated inputs.

3.2.2. System Identification

The data collected in the plant tests discussed in Section 3.2.1 were used to identify
different models to be considered for controller design. The models obtained from the
results of the third test were retained for controller design because, as seen from the tests,
this test excites both output directions more than the two other tests. Two different types
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of models were developed and compared. A transfer function model is given in (51) and
two multi-input single-output (MISO) ARX models are given in (52)–(57).

[
xD(s)
xB(s)

]
=

[ 0.8697
188.69s+1 e−4.278 −0.8549

190.13s+1 e−5.325

1.0739
189.93s+1 e−4.599 −1.0876

188.98s+1 e−1.482

][
L(s)
V(s)

]
(51)

The polynomials for xD are given in (52)–(54) and the corresponding polynomials
for xB are given in (55)–(57). These models gave very good prediction. Hence, they were
adopted for controller design.

A1(z) = 1− 2.418z−1 + 2.05z−2 − 0.7299z−3 + 0.09901z−4 (52)

B11(z) = 0.01238z−1 − 0.01672z−2 + 0.00653z−3 − 0.0007573z−4 (53)

B12(z) = −0.01168z−1 + 0.01631z−2 − 0.006845z−3 + 0.0008076z−4 (54)

A2(z) = 1− 1.373z−1 + 0.113z−2 + 0.2174z−3 + 0.04745z−4 (55)

B21(z) = 0.00493z−1 + 0.0134z−2 − 0.0101z−3 − 0.00349z−4 (56)

B22(z) = −0.02159z−1 + 0.01073z−2 + 0.005933z−3 + 0.00009341z−4 (57)

3.2.3. Control Design

In this case study, we only compare MPC and the proposed DMPC because earlier
comparisons with the PID/PI techniques demonstrated improved performance with both
MPC and DMPC. Moreover, MPC is considered the benchmark for comparison.

Both the MPC and DMPC controllers were tuned using a sample time of 3 s, prediction
horizon of 20 samples and a control horizon of 4 samples. Similarly, for both controllers,
the weightings on the change in MV of 0.05 were used for loops 1 and 2. The predictive
controllers were tested for set-point response and output disturbance rejection using step
signals with a step size of 0.01. To analyze the input response, step inputs were utilized
in loops 1 and 2 at 0 and 450 min for the set-point response, respectively. The resulting
set-point responses are shown in Figures 18 and 19. Similarly, output step disturbances,
also of size 0.01, were applied to loops 1 and 2 at 0 and 450 min, respectively. The plots of
the output step disturbance response are shown in Figures 20 and 21.

The MSE obtained for the controllers are shown in Table 4 and the TVs are given
in Table 5. From the tables, it is evident that for both set-point tracking and disturbance
rejection, DMPC exhibits a slightly lower MAE. DMPC also has higher values of total
variance for the set-point response case, signifying more actuator movement. However,
the converse is true for the disturbance rejection case. Therefore, the obtained results show
that the proposed DMPC gives a performance that is similar to that of traditional MPC and
therefore can be considered as a candidate replacement in suitable loops.

Table 4. MSE for predictive controllers applied to the binary distillation column.

Controller
Set-Point Response Disturbance Rejection

XD × 10−6 XB × 10−6 XD × 10−6 XB × 10−6

MPC 3.869 2.801 4.024 3.421
DMPC 2.988 2.073 3.237 2.687

Table 5. TV for predictive controllers applied to the binary distillation column.

Controller
Set-Point Response Disturbance Rejection

XD XB XD XB

MPC 0.7793 0.8562 2.1272 1.8121
DMPC 1.3491 1.1555 1.4435 1.1987
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Figure 18. Step response of the distillate for case study II.
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Figure 19. Step response of the bottoms for case study II.
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Figure 20. Step output disturbance response of the distillate for case study II.

0 100 200 300 400 500 600 700 800 900

-5

0

5

10

x
B

10
-3

MPC

DMPC

0 100 200 300 400 500 600 700 800 900

Time (mins)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V

Figure 21. Step output disturbance response of the bottoms for case study II.

4. Conclusions

This paper presented the development of a decentralised model predictive control for
highly coupled ill-conditioned two-input two-output processes. To achieve this, a detailed
process for designing suitable plant tests was presented. The results show that a sum of
correlated with uncorrelated signals excited both output directions better. The developed
DMPC was also found to outperform well-known decentralised PID controllers while
having a comparable performance to the centralised MPC. The technique may also find
acceptability amongst practitioners since it allows them to tune the loops in a SISO-like
manner. Therefore, the proposed method can be considered as a candidate solution to
motivate further adoption of MPC to regulate industrial processes beyond what is currently
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obtainable by replacing poorly performing PID loops. The motivation for adopting the
proposed technique may be more justifiable in large-scale and networked MIMO systems
in which the management of large controllers is a challenge. Therefore, future works will
investigate the extension of the proposed method to MIMO systems. This will involve a
detailed guidelines on how to incrementally replace existing PID controllers with DMPC
on suitable systems. Another area of future work is to study the relative performance of
the controllers under constraints.
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