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Abstract: We present a methodology to determine optimal financial parameters in shale-gas produc-
tion, combining numerical simulation of decline curves and stochastic modeling of the gas price. The
mathematical model of gas production considers free gas in the pore and the gas adsorbed in kerogen.
The dependence of gas production on petrophysical parameters and stimulated permeability is quan-
tified by solving the model equations in a 3D geometry representing a typical fractured shale well.
We use Monte Carlo simulation to characterize the statistical properties of various common financial
indicators of the investment in shale-gas. The analysis combines many realizations of the physical
model, which explores the variability of porosity, induced permeability, and fracture geometry, with
thousands of realizations of gas price trajectories. The evolution of gas prices is modeled using
the bootstrapping statistical resampling technique to obtain a probability density function of the
initial price, the drift, and the volatility of a geometric Brownian motion for the time evolution of
gas price. We analyze the Net Present Value (NPV), Internal Rate of Return (IRR), and Discounted
Payback Period (DPP) indicators. By computing the probability density function of each indicator,
we characterize the statistical percentile of each value of the indicator. Alternatively, we can infer the
value of the indicator for a given statistical percentile. By mapping these parametric combinations
for different indicators, we can determine the parameters that maximize or minimize each of them.
We show that, to achieve a profitable investment in shale-gas with high certainty, it is necessary to
place the wells in extremely good locations in terms of geological parameters (porosity) and to have
exceptional fracturing technology (geometry) and fracture permeability. These high demands in terms
of petrophysical properties and hydrofracture engineering may explain the industry observation of
“sweet spots”, that is, specific areas within shale-gas plays that tend to yield more profitable wells
and where many operators concentrate their production. We shed light on the rational origin of
this phenomenon: while shale formations are abundant, areas prone to having a multi-parameter
combination that renders the well profitable are less common.

Keywords: unconventional resources of hydrocarbons; economic geology of fossil fuels; numerical
decline curve analysis; economic performance shale-gas; shale-gas 3D production model

1. Introduction

The shale-gas production line is very broad [1–3], from gas extraction through the
well (upstream) and gathering, storing and transformation of the gas (midstream), to the
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distribution and transportation of gas to households and industry (downstream) [4–7].
Several engineering processes along this complex value chain are well-suited for the imple-
mentation of optimization techniques that may improve the overall system efficiency [8–10].
These include the optimization of fracturing fluid properties, gas transport processes, and
geometric design of the shale-gas wells, among others [11–15]. Here, we focus on financial
optimization of the shale-gas wells using financial indicators like Net Present Value (NPV),
Internal Rate of Return (IRR), and Discounted Payback Period (DPP) [16–26]. A novelty
of our approach is that we consider uncertainty in gas prices. We refer to the financial
optimization of shale-gas wells as the search for the petrophysical and well parameters that
maximize or minimize a percentile of a certain financial indicator [27–29]. These objective
functions allow us to find the optimal parameters for a certain level of risk. This information
helps in making more informed decisions [30–35].

In this study, we seek to determine the values of the design parameters of a shale-gas
well and the geological characteristics of a shale-gas reservoir that maximize or minimize
the financial indicators NPV, IRR, and DPP for a certain probability of occurrence [36–38].
We adopt as our main uncertain parameters the porosity of the formation, the permeability
induced by hydraulic fracturing, and the geometry of the fractured reservoir volume
(known as Effective Propped Volume, EPV), assuming that these three parameters are the
most relevant for methane production and shale-gas financial performance [39–45]. We
neglect the variability in other parameters, such as distance between fractures along the
well, or the amount of kerogen in the source rock [46–49]. The distance between hydraulic
fractures does not have a relevant impact on financial indicators since the cost of executing a
shale-gas well is essentially determined by the number of hydraulic fractures and the length
of the fractured wells. The position of the hydraulic fractures does not change the execution
cost significantly. In relation to gas production, the distance between hydraulic fractures
can affect the production speed, although not so much the accumulated production over
10 years. Thus, if the fractures are very close to each other, production interference will
occur very early, causing the production regime to go from potential decay (slow) to
exponential decay (fast). But when all the interference is fully developed between the
fractures, the regime will again be potential, and the long-term production will be very
similar regardless of the position of the fractures. This will mean that the influence on
the NPV or the IRR will be low, and the indicator that may be somewhat altered would
be the DPP given that the speed of gas production determines the rate of recovery of the
investment. On the other hand, kerogen, in the case studied in this article, has adsorption
properties that mean that the gas produced by this source is very low. For the amount of
gas produced to be relevant, the pressure would have to drop a lot, a phenomenon that
does not occur. Therefore, for the purposes of cash flows derived from gas from kerogen,
we can consider them little relevant and without influence on the financial indicators.

The conceptual approach that we propose in this work is novel in that we seek to
determine parameters that optimize financial indicators that have a certain probability of
occurrence. Explained with two examples, we determine the values of porosity, induced
permeability, and geometry of the EPV that maximize the NPV whose probability of
occurrence is 90% or higher, or the parametric set that minimizes the DPP whose probability
of occurrence is 60% or less. We chose these probability thresholds because they are the
ones that will give us results of the financial indicators within the parameter values that
would be common in shale-gas exploitation, e.g., porosity between 1% and 5%. The use of
Discounted Payback Period (DPP), or the time required for an investment to be amortized
from an economic point of view, is also a novelty of this work.

The proposed methodology combines numerical simulation of gas production and
stochastic simulation of the gas price based on historical data. Through computational fluid
dynamics, we obtain the decline curves of gas production for different combinations of
porosity (ϕ), induced permeability or EPV permeability (kEPV), and EPV geometry values
(AR) [50–52]. Using historical gas price data and applying the bootstrapping statistical
re-sampling technique [53], we obtain the drift and volatility of the stochastic process of
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gas price evolution over time [54]. We then use Monte Carlo simulation [55] to generate
thousands of possible gas price trajectories over a 10-year time period. These trajectories
are combined with the production decay curves, obtaining multiple values of the NPV,
IRR, and DPP financial indicators. We fit a probability density function (PDF) using
the Gaussian Kernel Density Estimation method (KDE) [56]. Finally, for each percentile
and for parametric combination (ϕ, k, AR) we perform a calculation of the value of the
financial indicators, generating a field of iso-probability curves on which the optimization
calculations will be carried out by a scanning technique.

The proposed optimization process is applied to a prototype shale well. The main
conclusion of this study is that, to achieve a positive investment (NPV > 0 and IRR > 0) with
low recovery time (DPP), very demanding and therefore rare geological and design param-
eter combinations are required; that is, high porosities, very high induced permeabilities,
and very flat fracture geometries. Our results may help constrain shale-gas reserve calcula-
tions [57–59] and are consistent with the “sweet spot” theory [60–62], which rationalizes
the observed phenomenon that shale-gas plays have developed following a geographic
pattern of concentration of wells at a few geographic zones within large formations. In
these zones, poorly understood characteristics result in profitable investments. With this
study, we shed some light on this phenomenon.

2. Materials and Methods

The development of this section presents the methodologies used and the numerical
calculations carried out to achieve the objectives set out in the article: optimization of
financial indicators in shale-gas investments with statistical percentile quantification. In
this sense, the numerical calculations of gas production and the stochastic and statistical
process for determining the synthetic series of the gas price are considered intermediate
results, which are not the central objective of discussion in this article. The results that are
subject to analysis and discussion are all those related to the optimization results. In these,
parametric maps are obtained by optimization that determine the values of the NPV, IRR,
and DPP for a percentile.

2.1. Physical, Mathematical, and Numerical Model of Gas Production in a Standard Shale-Gas Well

The modeling setup is that of a prototype shale-gas well (Figure 1a) [39,40]. The well
depth is 3000 m, and there are seven hydraulic fractures along the 1500 m of the horizontal
section of the well. The mathematical model that describes the phenomenon of reservoir
pressure evolution and gas flow after hydrofracturing is based on mass conservation for a
representative volume of fractured porous medium (Figure 1a) and is derived below.

Mass conservation of gas within a 3D volume can be expressed mathematically as:

∂m(x, t)
∂t

= Q(x, t)Ω − F(x, t)Γ, (1)

where m(x, t) is the mass at point x and time t, Q denotes sources and sinks, and F is
the mass flux in and out of the volume centered around x. In this study, we assume
a single-component gas (methane), neglecting the presence of other light hydrocarbons
(e.g., butane). The consideration of multi-component gases does not alter the methodology
proposed in this document, but nevertheless, it would make the explanation and calculation
developments of the article more complex by having to include a compositional study of
the gas and a determination of the viscosity and density of mixing and creating a series
of prices for the mix based on the prices of each of the components. All these calculations
would delve into already known concepts and would partially cover up the main scientific
innovations of this study.
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Figure 1. In this figure, we represent the process of numerical calculation of gas production in the
standard well presented in this article. (a) Graphic representation of the standard shale-gas well.
An inset shows the fractured shale formation; mathematically, this body is a control volume with a
certain Ω domain and a Γ contour. Within the control volume, pores (holes), kerogen (dark brown),
and methane are represented in the form of blue bubbles. (b) 3D numerical model of the shale-gas
well. (c) Graphic representation of the pressure field 10 years after beginning methane extraction.
The pressure scale has MPa units. (d) Methane production curves over time for different porosity
values from 1% to 5%. Each curve represents a 0.5% increase in porosity compared to the previous
curve. The curves with more intense gray have porosities closer to 5% and the lighter ones to 1%. We
also indicate with warm colors the three most characteristic curves of the study (1 %, 3% and 5%).
The graphic representation is done on a decimal–logarithmic scale.

Free gas is present in the pore space and in the form of adsorbed gas in the kerogen.
We neglect gas that may be present in other forms, such as dissolved gas in the kerogen.
Thus, the total mass of gas for a differential volume (dV) is the sum of free and adsorbed
methane. Using the notation of Table 1, the mass differential is:

dm = dmfree + dmadsorbed = ρϕdV + ρ0ρkSkVadV. (2)

Possible unit conversions in the above expression can be analyzed as:

kgCH4
=

kgCH4

�����m3
CH4 free

·�
��m3
pore

���m3
bulk

·���m3
bulk +

kgCH4

�����m3
CH4 n.c.

·�
����kgkerogen

����m3
kerogen

·�
���m3
kerogen

���m3
bulk

·�
����m3
CH4 n.c.

�����kgkerogen
·���m3

bulk,

kgCH4
= kgCH4 free + kgCH4 adsorbed,

(3)

where we assume that free methane gas occupies all the available pore space so that
m3

CH4 free
= m3

pore.

The integral form of the mass conservation equation can be written as:

∂

∂t

∫∫∫
Ω

dm =
∫∫∫

Ω
QdV −

∫∫
Γ

F n̄dΓ. (4)
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Neglecting sources and sinks, introducing Equation (2) in Equation (4), and with the
parameters and notation of Table 1, Equation (4) reduces to:

∂

∂t

[∫∫∫
Ω
(ρϕ + ρ0ρkSkVa)dV

]
= −

∫∫
Γ

F n̄dΓ. (5)

Applying the divergence theorem and assuming that the control volume does not
change in time, Equation (5) can be written as:∫∫∫

Ω

∂

∂t
(ρϕ + ρ0ρkSkVa)dV +

∫∫∫
Ω
∇ · FdV = 0. (6)

The differential form of the mass conservation equation is derived through the Lo-
calization Principle, which states that, if the integral form is true for an arbitrary control
volume, then the differential form must also hold. Specifically:

If
∫∫∫

Ω
Ψ(x, t)dV = 0, ∀Ω, ∀t ⇒ Ψ(x, t) = 0 ∀Ω, ∀t, (7)

which implies that Equation (6) can be written as:∫∫∫
Ω

[
∂

∂t
(ρϕ + ρ0ρkSkVa) +∇ · F

]
dV = 0. (8)

and mass conservation of free and adsorbed gas in a geological formation is described by:

∂

∂t
(ρϕ + ρ0ρkSkVa) +∇ · F = 0. (9)

To calculate the flux F, we use Darcy’s law:

F =
−kρ

µ
∇P, (10)

so that Equation (9) reads:

∂

∂t
(ρϕ + ρ0ρkSkVa) +∇ ·

(
−kρ

µ
∇P

)
= 0. (11)

We use an ideal gas equation of state model for methane that assumes a linear rela-
tionship between density and pressure:

ρ = cgP. (12)

The time derivative of the Langmuir isotherm can be written as:

∂Va
∂t

=
∂Va
∂P

· ∂P
∂t

= cf ·
∂P
∂t

. (13)

Finally, introducing Equations (12) and (13) into Equation (11), we arrive at the follow-
ing expression:

(
cgϕ + ρ0ρkSkcf

)∂P(x, t)
∂t

+

(
−cg

k
µ

)
[∇ · P(x, t)(∇P(x, t))] = 0; x ∈ Ω ∪ Γ and t > 0.

(14)
The strong form of the mathematical problem governing the evolution of gas pressure

in the reservoir includes Equation (14), supplemented with suitable boundary and initial
conditions:

α
∂P(x, t)

∂t
+ β[∇ · P(x, t)(∇P(x, t))] = 0, x ∈ Ω ∪ Γ and t > 0, (15)
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α =
(
cgϕ + ρ0ρkSkcf

)
, β =

(
−cg

k
µ

)
, (16)

P(x, 0) = Pr x ∈ Ω ∪ Γ, P(x, t) = Pbhp x ∈ Γ and t > 0, (17)

Va(P) =
VLP(x, t)

PL + P(x, t)
. (18)

Equations (15)–(18) allow us to calculate the evolution of the field pressure, P(x, t),
in a 3D domain Ω and in a contour Γ for each point x = (x, y, z), and at each instant of
time t. Va(P) represents the amount of gas adsorbed by using the mathematical model of
the Langmuir isotherm. The meaning and values of the other variables and parameters in
Equations (15)–(18) are shown in Table 1 and in [39].

Equation (15) is mass conservation equation that governs the entire computational
domain. Coefficients α and β are defined in Equation (16). We obtain these coefficients from
the petrological parameters of the hydraulic fractured formation and the PVT properties of
the methane. The compressibility factor of the gas is derived from the ideal gas law under
isothermal conditions.

Equation (17) defines the initial and boundary conditions of the mathematical formu-
lation. An initial condition of constant pressure is established throughout the domain, Ω,
and a Dirichlet-type boundary condition of pressure is imposed on the contours of the well,
Γ, where the gas flow out of the formation occurs.

Finally, Langmuir’s isotherm has been included in the mathematical model in order
to accurately represent the adsorption phenomenon, Equation (18). In this expression, the
Langmuir pressure and the Langmuir volume take values that appear in Table 1 [39] and
that have been obtained from [14].

The methane flow rate is calculated from the evolution of the field pressures using, as
an integral over the well’s area Γ:

q(t) =
∫∫

Γ

(−2cgk
µ

P(x, t)
)
∇P(x, t) · n̄dΓ. (19)

Rewriting Equations (15)–(19) in a more compact form, the mathematical model that
describes gas production in a shale-gas well appears as:

α
∂P
∂t

+

[
∇ ·

cgk
µ

P(∇P)
]
= 0, (20)

α =
(
cgϕ + ρ0ρkSkcf

)
, (21)

P(x, 0) = Pr in Ω, P(x, t) = Pbhp in Γ, (22)

Va =
VLP

PL + P
, (23)

q(t) =
∫∫

Γ

(−2cgk
µ

P
)
∇P · n̄dΓ. (24)

Table 1 shows the meaning of the variables and constants of Equations (20)–(24).
The porosity is assumed to be constant in time, homogeneous, and isotropic for each

parametric sweep performed. Likewise, the permeabilities of the EPVs and fractured
shale are considered constant, homogeneous, and isotropic regardless of the parameter
combination. We discretize and solve the model Equations (20)–(24) using the finite element
implementation platform COMSOL Multiphysics® 5.4 [63]. The computational mesh
comprises 155,561 linear tetrahedral elements. The problem domain is a rectangular prism
with permeability ranging from 10−18 m2 to 10−17 m2 (1 µD to 10 µD) [64–67]. This
permeability range in the volumetric domain is chosen for each set of parameters. The
Effective Propped Volumes around each planar fracture have an ellipsoidal shape, and
their permeability range is 2 × 10−15 m2. That is, the model has two permeabilities in each
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parametric combination: that of the unchanged fractured volume of the EPVs and that of
the shale-gas volume domain. For purely comparative purposes, relative to the effect of
hydraulic fracturing, we consider that the initial permeability of the shale rock is 10−21 m2,
equivalent to 1 nano Darcy (nD).

Table 1. Variables and parameters.

Variable Meaning Value

P(x, t) gas pressure [30–35 MPa]
Pr initial reservoir pressure 30 MPa

Pbhp bottom hole pressure 5 MPa
cg gas compressibility 3.979 × 10−6 [s2/m2]
cf Langmuir isotherm slope -
ϕ porosity 1–5%
ρ0 methane density at standard conditions 0.717 [kg/m3]
ρk kerogen density 1250 [kg/m3]
Sk kerogen relative volume 10%
Va Langmuir isotherm -
VL Langmuir volume 0.00264 [m3/kg]
PL Langmuir pressure 3 MPa
k fractured shale permeability 10−18 [m2]− 10−17 [m2] ≈ 1 [µD] − 10 [µD]

kEPV EPV permeability 2 × 10−15 [m2] ≈ 2 [mD]
µ methane viscosity 10−4 [Pa · s]
q methane flux Mscf/month (1 m3 ≈ 0.0353 Mscf)
Ω stimulated volume -
n̄ normal vector to contour Γ -

We simulate 10 years of gas flow for different values of porosity, permeability, and
flatness of the fracture. Porosities range between 1% and 5%, induced permeabilities
between 1 and 10 micro Darcy (µD), and fracture flatness between 150 m and 250 m of
the semi-major axis of the fracturing ellipsoid. The volume enclosed by these ellipsoids
is the same for all parameter combinations and equal to the volume of an ellipsoid of
150 m × 20 m × 35 m (volume = 4.4 × 105 m3). Flatness is achieved by keeping this volume
and the length of the vertical semi-axis constant while increasing the length of the semi-axis
perpendicular to the well and horizontal with respect to the ground. In Figure 1, we present
this entire gas production setup.

2.2. Methods for the Statistical Characterization of Financial Indicators

In this section, we explain the combined application of four mathematical/numerical
methodologies that allow us to statistically characterize financial indicators of shale
well performance.

While the evolution of gas production is determined by the physical model described
in the previous section, the evolution of gas price is considered as a stochastic process.
Gas price trajectories are modeled as Geometrical Brownian Motions (GBMs) [68–70]. To
derive the GBM model, we start from an Itô-type stochastic differential equation [71–73],
particularized for the gas price, Pgas, as:

dPgas = µPgas(t)dt + σPgas(t)dB(t), (25)

dBt = ξ(0, 1)(t)
√

dt, (26)

Pgas(0) = P0. (27)

In Equations (25)–(27), Pgas(t) is the value of the gas price at time t, dPgas is the
differential increase of said price in the time interval dt, µ is the drift or general trend of the
price of gas, and σ is the gas price volatility or dispersion of normalized price returns.
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dBt is an increase in the value of the gas price that follows a Wiener or Brownian
motion process, a particular case of a stochastic Markov process [74]. In a Markov process,
the probability that a certain event occurs depends solely on the value of the event at
the previous instant of time. This mathematical approach fits very well with the Efficient
Market Hypothesis [75] in its weak form, according to which the price of an asset (gas in
this case) contains in a moment of time t all the information that can affect the value of the
asset, with a certain variability or random component that has to do with unexpected news
that happens in a chaotic way and that the market cannot discount immediately. In the case
of the Wiener process, it is also postulated what the statistical variability of the gas price is.
Specifically, the price of gas is considered to have a stochastic component of mean 0 and
variance dt.

A Wiener process [76] has mean 0 and variance dt, so the stochastic component of gas
price variation can be rewritten in such a way that dBt = ξ(0, 1)(t)

√
dt, where ξ(0, 1) is a

normal random distribution with mean 0 and variance 1 that takes independent values in
for each time step dt, also called the white noise distribution [77].

To solve solution stochastic differential Equations (25)–(27), we apply Itô’s lemma
which, in its full version, can be written as follows [78]: let x(t) be a stochastic process that
satisfies the following differential equation with the following initial condition:

dx(t) = F(t, x(t))dt + g(t, x(t))dB(t), t ≥ 0, (28)

x(0) = x0, (29)

and F(x, t) is a function F:R × [0,T]−→ R such that the following partial derivatives exist
and are continuous:

∂F(x, t)
∂t

= F1(t, x),
∂F(x, t)

∂x
= F2(t, x),

∂F2(x, t)
∂x2 = F22(x, t). (30)

Then, it can be stated that t > 0 is fulfilled:

F(x(t), t)− F(x0, s) =
∫ t

0
[F1(x(r), r) + f(x(r), r)F2(x(r), r)]dr

+
∫ t

0

1
2
(g(x(r)), r)2 + F22(x(r), r)dr +

∫ t

0
(g(x(r)), r)F2(x(r), r)dB(r).

(31)

Writing the Equation (25) in integral form, the following is obtained:∫ t

0
dPgas(r) =

∫ t

0
µPgas(r)dr +

∫ t

0
σPgas(r)dB(r),

Pgas(t)− Pgas(0) =
∫ t

0
µPgas(r)dr +

∫ t

0
σPgas(r)dB(r).

(32)

As Pgas(t) is the stochastic variable assimilable to x(t) in Itô’s lemma, the following
identifications are made:

f(t, x(t)) = f(t, Pgas(t)) = µPgas(t),

g(t, x(t)) = g(t, Pgas(t)) = σPgas(t),

F(t, x) = ln(x).

(33)

According to the formulations that appear in (30):

F1(t, x) =
∂F(t, x)

∂t
= 0,

F2(t, x) =
∂F(t, x)

∂x
=

1
x

,

F22(t, x) =
∂F2(t, x)

∂x2 = − 1
x2 .

(34)
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Substituting Equations (32)–(34) in the expression of Itô’s lemma (31), we obtain:

ln(Pgas(t))− ln(Pgas(0)) =
∫ t

0

[
0 + µPgas(r)

1
Pgas(r)

]
dr

+
∫ t

0

[
1
2
(σPgas(r))2 −1

P2
gas(r)

]
dr +

∫ t

0
(σPgas(r)

1
Pgas(r)

dB(r).
(35)

Simplifying Equation (35), we obtain:

ln
(

Pgas(t)
Pgas(0)

)
=

∫ t

0

(
µ − 1

2
σ2

)
dr +

∫ t

0
σdB(r), (36)

ln
(

Pgas(t)
Pgas(0)

)
=

(
µ − 1

2
σ2

)
t + σ(B(t)− B(0)). (37)

The general thesis is that, for t = 0, a Brownian motion type Wiener process takes value
0, that is to say, B(0) = 0. Taking into account this hypothesis, Equation (37) can be solved,
and we obtain:

Pgas(t) = Pgas(0) · e[(µ−
1
2 σ)t+σB(t)], B(t) = ξ(0, 1)(t)

√
t. (38)

In Equation (38), the parameter µ is the drift or trend of the process, σ is the volatility
of the gas, and ξt is a white noise-type random process with distribution ξt ∼ N(0,1). A
price value P0 is used to calculate gas price Pt at the instant t. With this equation, we can
simulate random gas price trajectories that meet the behavioral properties of an asset in a
perfect market.

We use Equations (39) and (40) to determine the drift and volatility based on the gas
price history data. In these equations, Pi is the price of gas at the instant i, Pi−1 is the price
of gas at the instant i−1, ∆t is the time step between two natural gas price observations,
and N is the number of observations considered to carry out the estimate. Both expressions
come from the application of the Maximum Likelihood Estimation to the estimate of the
parameters (µ, σ) in a GBM-type stochastic model.

µ̂ =
1

N · ∆t

N

∑
i=1

(
Pi

Pi−1
− 1

)
, (39)

σ̂ =
1

N · ∆t

N

∑
i=1

(
Pi

Pi−1
− 1 − µ̂∆t

)2
. (40)

.
We can simplify Equations (39) and (40) because there is a temporary data series for

gas price at a daily frequency, and the time step considered to estimate the parameters
(µ, σ) is 1 day; therefore, ∆t = 1. Likewise, we can understand the expression inside
the sum of Equation (39) as the return of the day-to-day gas price normalized to a unit
basis. That is, this expression states the gas price increase or decrease over time expressed
on a unit basis. Based on these considerations, we rewrite Equations (39) and (40) as
Equations (41)–(43). (

Pi

Pi−1
− 1

)
= Ri, (41)

µ̂ =
1
N

N

∑
i=1

Ri, (42)

σ̂ =
1
N

N

∑
i=1

(Ri − µ̂)2. (43)
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The Maximum Likelihood Estimation for drift and volatility can be used to simulate
the gas price using GBM. These are simply the arithmetic mean of gas price unitary returns
and its standard deviation for a time series of price data with N values.

We simulate gas price trajectories over 10-year periods using GBM, considering that
both drift and volatility are variables at each time step. Thus, the initial price, the drift, and
the volatility are random variables whose Probability Density Function (PDF) [79] arises
from statistical resampling of the historical data series. We take as reference daily gas prices
the Henry Hub Spot Price (HHSP) [80] from January 1997 to April 2020.

We calculate the empirical initial price, drift, and volatility using a statistical resam-
pling technique known as bootstrapping [53], which aims at improving the accuracy of
estimators based on small sample sizes by “resampling the sample”. A subset of N data
is taken from the initial sample, and the statistical calculation under investigation is per-
formed using the subset. The data are selected randomly and with replacement, i.e., the
data selected are not separated from the original sample but returned to the same, and
hence each element can be repeated in the subsample. This operation is repeated M times,
with N data taken from the original sample each time. In this manner, we obtain a statistical
distribution of the indicator under investigation. This statistical approach is schematically
illustrated in Figure 2.

We incorporate some additional considerations regarding the process of calculating
the initial price, empirical drift, and volatility based on the HHSP price series:

• Each subsample takes a time lapse of between 3 and 5609 days, in such a manner
that each of the subsamples consists of consecutive gas price values throughout the
historical series of time lapses of 3 days, 4 days, 5 days, etc. The maximum time lapse
we take is 5609 days, as this is the equivalent of the historical sample 5861 minus
one stock market year of 252 days. Then, for a time lapse of 5609 days, the size or
total resamples will be 252, which is considered the reasonable minimum required to
generate a probability distribution of a statistic.

• The shorter the time lapse, the greater the number of resamples for this time lapse and
vice versa.

• Each time lapse will generate subsamples with elements that are not repeated and are
consecutive over time. In this manner, for two subsamples from a specific time lapse,
some of the elements of the subsamples will be repeated twice, at most.

• The idea of taking consecutive data over time from the different subsamples comes
from the perspective that there is a certain time correlation within the gas price data.
It is common to find weak long-tailed or long-term correlations in historical evolution
of listed assets [81].

We carry out bootstrapping resampling with time lapses ranging from 3 days to
5609 days. We determine the statistics of drift and volatility of gas prices. For each time
lapse, we calculate the empirical probability distribution function for drift and volatility.
Furthermore, we carry out a Kolmogorov–Smirnov (K–S) test [82] to determine if the
proposed function is rejected or not as a PDF function. Note that no parametric classical
functions such as the normal, log-normal, or Weibull distributions are well-suited to fit the
empirical distribution function of drift and/or volatility for any studied time lapse. Instead,
both statistics are modeled using nonparametric functions consisting of Gaussian kernels.
This methodology is known as Kernel Density Estimation or KDE [83], which adapts to
empirical frequency distributions with complex data geometries.

We carry out a general analysis, sweeping the entire historical price series for all of
the aforementioned time lapses. We look for the time lapse that produces the highest level
of significance for both drift and volatility. The significance level provides a metric for
how good the adjustment between the theoretical function and empirical function is. The
significance level ranges between 0% and 100%, with the common required minimum
being 5%.
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Figure 2. Top: general diagram of the bootstrapping method. Bottom: bootstrapping applied to the
gas price series.

We show the evolution of the significance level with the time lapse for both volatility
and drift in Figure 3a. In order to identify the best possible time lapse for both drift and
volatility simultaneously, we calculate the F1 score of the significance level of both statistics
according to Equation (44):

F1 = 2 ·
αdrift · αvolatility

αdrift + αvolatility
. (44)

The F1 score for maximum significance is reached for a time lapse of 7 days; see
Figure 3b. The frequency histogram for both the gas price drift and volatility is calculated
for this time lapse, and the corresponding adjustment is made using the KDE method;
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see Figure 3c,d. We show the significance values for the 7 days and the corresponding F1
scores in Table 2.

Figure 3. (a) Significance level of drift and volatility for each time lapse expressed on a unit basis.
The significance level limit of 0.05 or 5% is indicated by a dashed black line. (b) F1 scores combine
significance levels for drift and volatility. The limit is indicated by a dashed black line. (c) Drift
frequency and KDE adjustment of the PDF for a 7-day time lapse. (d) Volatility frequency and
KDE adjustment of the PDF for a 7-day time lapse. (e) Comparison between the inverse CDF of
the drift calculated using the non-parametric function with the KDE method (black curve) and the
empirical data (blue dots). (f) Comparison between the inverse CDF of the drift calculated using the
non-parametric function with the KDE method (black curve) and the empirical data (blue dots).

Table 2. Drift and volatility values for S4.

p-Value–Time Lapse = 7 Days F1 Score–Time Lapse = 7 Days

µ̂ 0.8127 0.6161

σ̂ 0.4961 0.6161

Additionally, we use a PDF adjusted with the KDE to calculate the initial price of each
price trajectory in this scenario. This indicator is denoted as P̂0.

We determine the most suitable PDF by performing a random sweep of 10,000 real-
ization time lapses and start dates across the entire “lapse vs. start date” space within the
historical HHSP period. We omit a sweep of all the possible options since this would have
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an excessive computational cost and does not present substantial advantages compared to
a sufficiently large random sampling. Analyzing all the options of the sample space would
involve a study on the order of 58002 empirical functions of probability distribution, their
corresponding adjustments of PDF non-parametric functions using KDE, and a K–S test to
determine the level of significance of the adjustment. Instead of this, with the sampling of
the 10,000 possible combinations taken at random, it is determined that, for a time lapse
of 1021 days and the starting date of the period as 14 March 2001, a PDF non-parametric
distribution can be fitted with a p-value of 0.9062; see Figure 4. This PDF is used to calculate
the P̂0 at the start of each price trajectory.

Figure 4. (a) Statistical significance level of the 10,000 random samples. (b) Empirical distribution and
adjustment of PDF by the nonparametric KDE method of the initial price, P̂0. Lapse time = 1021 days,
and start date is 3 March 2001. Dark reds indicate high concentrations of realizations or frequency,
and bright yellow colors indicate low concentrations of realizations or frequencies.

Finally, we apply the Monte Carlo method [84,85] by performing 1000 numerical
simulations of the gas price trajectories using the GBM equations, considering a random
initial price for each trajectory according to the calculated PDF distribution, and varying
the drift and volatility at each time step of each gas price trajectory following the PDFs
estimated. This generates a trajectory structure that closely resembles the historical gas
price structure. Figure 5 displays 10 trajectories of the 1000 calculated, as well as the
frequency distribution at the end of the 10-year period.

Figure 5. (a) Examples of realizations and price density maps for 1000 realizations of price evolution.
Only 10 of the 1000 simulations carried out are shown. The outputs with the maximum value,
minimum value, and 8 random intermediate values are shown. We indicate on a warm color scale
graph the concentration of trajectories; the area with higher concentration of price trajectories is in
dark red, and the area containing the lower concentration is in bright yellow. (b) Histogram of price
frequencies at the end of the 10-year period.
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2.3. Statistical Calculation of Financial Indicators

In this study, we consider that CAPEX remains constant. We estimate that this hypoth-
esis is reasonable since the number of fractures remains constant in the study (7 hydraulic
fractures). In turn, each fractured ellipsoid maintains its volume constant, although its
shape varies from more spherical to flatter. The volumes of the fractured ellipsoids are
directly linked to the investment: volume of fluid injected and amount of proppants. If the
ellipsoids are kept constant in volume, the investment in fracturing fluid and proppants is
considered quasi-constant. The shape of the hydraulic fracture is associated with the greater
skill of the operators in detecting the main direction of fracturing, which allows them to
fire the initial projectiles in more or less accurate ways, but the perforating technique is not
considered to significantly affect the CAPEX of the well.

In the next step of the methodology, we calculate the financial indicators Net Present
Value (NPV), Internal Rate of Return (IRR), and Discounted Payback Period (DPP) sta-
tistically; that is, we calculate multiple values of each of them and again perform a non-
parametric adjustment using Gaussian kernels (the KDE method).

The Net Present Value (NPV) is defined as the cash flow value for a determined
investment, updated to the present moment in time. It is a dynamic indicator, as it considers
the depreciation of monetary flows over time. NPV > 0 indicates a feasible investment,
given that its value at the end of the operating lifespan will be positive. In general, the
higher the NPV, the more attractive the investment. NPV = 0 indicates a financially neutral
investment. NPV < 0 indicates an unprofitable investment that should not be undertaken.

The Internal Rate of Return (IRR) is defined as the discount rate value that gives an
NPV of 0. It is the interest rate at which the cash flows equal the value of the investment
made, and therefore the closest financial indicator to the commonly used concept of prof-
itability of a financial product like an investment fund or government bond. An IRR that
exceeds the expected for a financial product, considered risk-free, makes the investment
appear attractive. Another way to analyze this indicator is to check if the IRR obtained in
the investment analysis is greater than the expected depreciation or discount rate, in which
case it can also be considered a viable investment. Both the NPV and IRR have been used
in the study of shale-gas investments by authors such as [14,17,38,86–92].

The Break Even (BE) point, or profitability threshold, is the number of productive units
after which studied investment enters into positive profitability [93]. In other words, Break
Even can be considered as the time, expressed in units sold, at which the gains equal the
fixed and variable costs of the investment. In this article, we propose a financial indicator
based on the traditional idea of BE, which characterizes the time at which a shale-gas well
achieves a positive valuation. The proposed indicator, termed Discounted Payback Period
(DPP), is the time at which the NPV turns positive (the Break Even time). This indicator
considers the dynamic evolution of gas price, the gas production according to physics, as
well as the discounts and reductions in cash flows caused by inflation, operating costs,
royalties and taxes. Figure 6 presents a graphical illustration of the idea behind the DPP.

Mathematically, the NPV, IRR, and DPP can be expressed as shown in
Equations (45) to (47). This formula uses classical terminology in the O&G industry
regarding asset evaluation:

NPV =
N

∑
i=1

(1 − RateT) ·
(
Pgas(i) · Mscf(i) · (1 − Roy)− OPEX

)
(1 + CPId(CPIgas y(i)))i − CAPEX, (45)

0 =
N

∑
i=1

(1 − RateT) ·
(
Pgas(i) · Mscf(i) · (1 − Roy)− OPEX

)
(1 + IRR)i − CAPEX. (46)

DPP = Time|NPV=0 (47)

The terms appearing in Equations (45)–(47) are as follows:
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• CAPEX or Capital Expenditure is the financial value of the investment in the shale-
gas well expressed in USD. We consider an investment of 4.8 million USD as the
estimated cost of a shale-gas well of 1500 m length with 7 hydraulic fractures located at
3000 m depth.

• i is the time step.
• N represents the total time steps.
• Pgas(i) is the gas price at the time step i, its value expressed in USD/Mscf.
• Mscf(i) is the flow rate at time step i, its value expressed in Mscf/d. When this value

is multiplied by Pgas(i), the gross cash flows for time step i are obtained.
• Roy refers to royalties, expressed on a unit basis, paid to the owner of the land and

other agents such as county administrations in some cases. We assume a constant rate
of 15% of the gross economic flow.

• OPEX or Operational Expenditures are the well operating costs. We estimate a constant
cost value of 150 USD/day. It is sometimes expressed in units of USD/Mscf, showing
that its importance decreases as gas production drops. In this case, we consider it
fixed and constant day to day. It is assumed as a hypothesis that day-to-day opera-
tions costs (OPEX) are constant since gas extraction management is carried out in an
automated manner [14].

• CPId refers to daily inflation and depends on (CPIgas y(i)). That is, it depends on the
annualized gas price inflation. This varies with each time step and is expressed on a
unit basis. The annualized discount rate ranges from −0.1% to 1.75% over the life of
the well.

• RateT represents the profit taxes expressed on a unit basis. We apply 21% tax, which
is the current gross rate for corporate tax in the USA.

Figure 6. (a) Graphical representation of the DPP calculation (b) Results of the DPP (years) analysis
presented in matrix form. The vertical axis represents the variations of the gas production parameters
(petrological and design). The horizontal axis represents the different price scenarios S1 to S4.
The percentages P10, P50, and P90 are represented for each result, and the areas with a higher
concentration (red) and lower concentration (yellow) of realizations are shown using a warm color
scale. The area with the higher concentration corresponds with the distribution mode of the adjusted
PDF function. For each result, a graph is inserted showing the statistical significance level of the
adjustment of the nonparametric function (blue dots) on a scale of 0 to 1. We use red dots in the insets
to indicate the normalized bandwidth by 10-year value of the Gaussian kernels that were used to
adjust the PDF.

2.4. Optimization of Financial Indicators

The search for optimal design variables is based on exploring the parametric spaces
of porosity, permeability, and fracture aspect ratio. For each triplet of values, a percentile
calculation of the NPV, IRR, and DPP indicators is performed, and the iso-probability
curves are calculated, which determine the optimal parameter combinations.

The proposed modeling workflow can be described as follows:

• An induced porosity–permeability field is defined in which parameter values vary
between 1% and 5% for the porosity and between 1 and 10 µd induced permeability in
the SRV. There are 9 intervals of variation of porosity (0.5% increase per interval) and
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11 intervals of variation of permeability (0.9 µd of increase per interval). We generate
99 “porosity-induced permeability” pairs, calculating the corresponding production
curve or flow-rate for each one.

• Each production curve is combined with the 1000 price realizations. With the eco-
nomic production curves (Mscf × Pricegas), the statistical percentiles of the financial
indicators are calculated (NPV, IRR, and DPP).

• This same operation is performed for half-length ellipsoidal fractured volumes of
150 m, 200 m, and 250 m. The longer the axis, the flatter the ellipsoids. For certain
financial indicators (NPV, IRR, or DPP) and risk level (X%), we determine the threshold
value for which the investment is consider admissible. For NPV and IRR, we set the
threshold at 0 USD/% or higher, and for DPP in 7 years or less.

• Based on the porosity–permeability combinations, we perform a minimization of
the absolute NPV and IRR percentiles adopted and a minimization of the absolute
value of the DPP minus 7. Thus, if we decide to assume a risk of X0%, the absolute
NPV, IRR, and DPP-7 values should be minimized, and the porosity–permeability
combination that generates that minimum is a curve in the porosity–permeability
plane for a PX0 percentile. This combination will also define a region in this plane in
which the probability of achieving a positive NPV and IRR will be at least 100–X0%,
or a region where the DPP will be less than 7 years with the same probability.

The steps summarized above can be expressed mathematically as:

min|NPVPX0(ϕ, k, a)|, (48)

ϕ ∈ (0, 5)%, k ∈ (1, 10)µd, a = {150, 200, 250}m, (49)

min|IRRPX0(ϕ, k, a)| or IRRPX0(ϕ, k, a) = 0, (50)

ϕ ∈ (0, 5)%, k ∈ (1, 10)µd, a = {150, 200, 250}m, (51)

min|DPPPX0(ϕ, k, a)− 7| or DPPPX0(ϕ, k, a) = 7, (52)

ϕ ∈ (0, 5)%, k ∈ (1, 10)µd, a = {150, 200, 250}m. (53)

We analyze the P60–90 percentiles of NPV as a function of fracture geometry (Figure 7).
The absence of parametric combinations that yield percentiles lower than 60% illustrates
the complexity of getting a good location for a shale-gas well and an appropriate design;
see Figures 7–9. In Figures 7 and 8, the region with the parameter combinations in yellow
guarantees positive NPVs and IRRs with a probability 100–PX0%, while in the area of
red colors, the parameter combinations indicate that the NPVs will be negative, with the
probability PX0%. The thick black line marks the limit between negative and positive values
of NPVs and shows the parametric combinations that minimize the objective function.

In practice, we resort to minimization of high percentile functions (60% and higher).
This is because the shale-gas production process is very demanding in terms of petrophysi-
cal and design parameters (Figures 7 and 8). Designs that allow a considerable increase in
permeability and generate a fracture flatness that guarantees a high fracture surface and
late time interference between fractures are needed to render the investment profitable.

The DPP financial indicator characterizes the moment that the NPV goes from negative
to positive in a shale-gas investment. Taking into account that the expected life of a standard
well is 10 years, we assume that the investment is attractive if the valuation of the shale-gas
well becomes positive after 7 years. This would be 70% of the useful life of the investment.
As in the case of IRR and NPV, the results from P60 to P90 are reflected in Figure 9.
However, in this case, the interpretation of the graphs is slightly different: DPP decreases
monotonically in all its percentiles with the improvement in the parameters. This renders
large parametric values attractive, as in the case of NPV and IRR, but the probability of
occurrence of some DPPs in the yellow areas (good parametric values) of Figure 9 is PX0%.
In the red areas, the probability of occurrence is 100–X0%.
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Figure 7. NPV values expressed in USD for each statistical percentile indicated. The NPVs are
calculated for each value of the semi-axis a of the EPVs, and we set the parameters for each pair as
induced permeability (vertical axis and µd scale) and porosity (horizontal axis and scale in %). We
show different NPV isoline values drawn in a thin black line. A thick black line defines the parametric
combination of NPV = 0 or optimization of Equation (48). The yellow areas indicate parametric
combinations that generate a positive NPV, and the red areas indicate parametric combinations that
generate a negative NPV.

Figure 8. IRR values expressed in % for each statistical percentile indicated. The NPVs are calculated
for each value of the semi-axis a of the EPVs, and we set the parameters for each pair as induced per-
meability (vertical axis and µd scale) and porosity (horizontal axis and scale in %). We show different
NPV isoline values drawn in a thin black line. A thick black line defines the parametric combination
of IRR = 0 or optimization of Equation (48). The yellow areas indicate parametric combinations that
generate a positive IRR, and the red areas indicate parametric combinations that generate a negative IRR.
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Figure 9. DPP values expressed in years for each statistical percentile indicated. The DPPs are
calculated for each value of the semi-axis a of the EPVs, and we set these parameters for each pair
as induced permeability (vertical axis and µd scale) and porosity (horizontal axis and scale in %).
We show different DPP isoline values drawn in a thin black line. A thick black line defines the
parametric combination of DPP = 7 or optimization of Equation (52). The yellow areas indicate
parametric combinations that generate a DPP less than 7 years, and the red areas indicate parametric
combinations that generate a DPP greater than 7 years.

2.5. Aggregate Results of Financial Indicators

We summarize all the calculations performed to achieve optimized shale-gas well
design. This aggregation appears in Figure 10, which can be considered as a scientific design
guide for shale-gas wells. As an example of the usefulness of this aggregate calculation,
design answers could be given in different circumstances. Suppose that an unconventional
block in which the porosity is 5% is going to be exploited by the shale-gas well presented
in this paper over the course of 10 years. Observing Figure 10, a design with 150 m of
EPV half-axis and 7 µd of induced permeability could be recommended to assure positive
inversion with a 40% certainty. Another query could be that an O&G operator has a shale-
type formation exploitation system that achieves a very flat fracturing geometry (250 m
semi-ellipsoid axis), reaching an induced permeability of 8 µd. In this situation, what
field of porosities would a formation have to exploit with 60% security that allow us to
recover the investment 7 years after starting the exploitation (or earlier)? The answer to
this question would be, observing Figure 10, between 3.5% and 5% or, in any case, always
higher than 3.5%.
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Figure 10. Aggregate graphical representation of the percentiles of NPV = 0 USD, IRR =0 %, and
DPP = 7 years over the fields (k, ϕ) and for each semi-axis value a perpendicular to the well.

3. Results and Discussion

After the calculations in the optimization process, which appear compacted and
summarized in Figures 7–10, we move on to analyze the results and discuss their meaning.
As the statistical percentiles decrease from P90 to P60, the parametric region of positive
NPV decreases. In turn, as the geometry of the fractured volumes becomes more spherical,
this NPV-positive region is further reduced. This means that the lower the risk to be
assumed and the less flat the fractured volumes are, higher the porosities and induced
permeabilities will be required in order to guarantee a successful economic exploitation of
the shale-gas well.

For a given percentile and semi-axis of the ellipsoid fractured volume, the locus of
parametric combinations with NPV = 0 is a smooth curve on the porosity–permeability
plane (Figure 7). Likewise, the curves of other NPV values, whether negative or positive,
also present a smooth behavior, without breaks. The curves of the NPVs are shown
equidistributed throughout the plane (Figure 7). Parametric regions and curves of the IRR
have a behavior analogous to that of the NPV (Figure 8).

By comparing the regions of NPV positive and IRR positive for the same half-axis of
the fractured volumes and for the same statistical percentile, we observe that IRR presents
a greater surface area (Figures 7 and 8). IRR is a less demanding financial indicator than the
NPV. In any case, if the NPV shows a negative value for a certain parametric combination,
the shale-gas investment must be discarded regardless of the IRR value. The parametric
regions in DPP have a qualitative behavior very similar to that shown for NPV and IRR, but
the curves that define these regions present quite a few breaks and instabilities (Figure 9).
This is due to the difficulty of performing non-parametric PDF adjustments using the KDE
method (see the significance level and bandwidth in Figure 6).
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Regarding the parametric regions with a DPP less than 7 years (yellow region), we
show how these have a quantitative behavior inverse to NPV and IRR. This is because
the DPP curves are monotonically decreasing. As the percentile value increases and the
flatness of the fractured volumes decreases, the DPP area less than 7 years (yellow region)
disappears; see Figure 9.

Figure 10 presents the contours of different percentiles, with three ellipsoid fractured
volume semi-axes, for NPV = 0 USD, IRR = 0%, and TBE = 7 years. These curves show a
very similar behavior. They tend to cluster at low parametric values for both porosity and
permeability (dark red zone) and tend to be further apart as we approach better parametric
values (light yellow zone); see Figure 10. Note that the DPP P90 does not appear in the
graphs for any value of the EPV semi-axis. This is because the parametric requirement is
very high to ensure that 90% of the time a null value investment is achieved within 7 years
(Figure 10).

By comparing the isocurves of DPP P80 and NPV P60, we observe that the parametric
requirement to get the NPV to be 0 at 7 years or less after starting the investment with 80%
security is not much higher than the parametric requirement to get the NPV to be 0 USD or
greater than after 10 years of investment with 40% (100–60%) security. The petrophysical
and design parameters necessary to achieve a positive investment value (NPV > 0) are
very demanding for an acceptable level of risk or acceptable probability of occurrence
(yellow areas in Figures 7–9).

Out of the three financial indicators we studied, the DPP is the one that requires
the most favorable parameters to achieve a favorable investment evaluation; it is more
demanding than the IRR and the DPP. There is no yellow area in DPP P90 (Figure 9).

Focusing on the NPV and IRR indicators, the most demanding one in terms of design
parameters is the NPV. If an investment in shale-gas has a negative NPV and a positive IRR,
this rules out the investment. From a decision-making point of view, NPV is the limiting
indicator. Shale-gas production, understood as an investment, turns out to be a high-risk
business, with a high probability of large profits, but also with a high probability of large
losses (Figure 7).

The DPP optimization graphs (Figure 9) suggest that positive NPVs can be achieved
relatively quickly for a given probability level and for a very wide parametric range.
This supports the idea of treating the shale-gas production business as a speculative type
business in which, once the risk of the initial investment has been eliminated, a rapid
divestment and collection of capital gains is carried out via the sale of assets. This also
eliminates the risk inherent to the evolution of production and especially of gas prices in
the remaining three years of investment.

4. Conclusions

We have found that, for an investment in shale-gas to be profitable with high certainty,
it is required that both the petrological parameters and the fracturing technology be ex-
traordinarily good; simply having good parameters are not enough. Thus, if we use the
NPV as a financial indicator for decision-making, we observe that, to achieve a positive
investment after 10 years and with a statistical percentile of 60%, we will need, jointly: (i) a
permeability in the stimulated domain of 4 to 10 µD (three orders of magnitude more than
the original rock matrix), (ii) a porosity of between 3.5% and 5%, and (iii) a practically flat
fractured volume with a half-length of 250 m. If the IRR is adopted as a financial decision
indicator, to achieve a positive return of 10% over the 10 years of the investment’s life, or
the 60% percentile, the following are required: (i) an induced permeability in the stimulated
zone of between 7 and 10 µD, (ii) a porosity of between 4.5% and 5%, and (iii) a geometry
of a flat fractured volume with a semi-length of 250 m. Finally, analyzing the recovery
time of the investment, for the DPP to be less than 7 years with a percentile of 80% if the
fracture is relatively spherical (semi-length of 150 m), porosity and induced permeability
are required at the maximums of the ranges of this study, i.e., 5% and 10 µD. The high level
of parametric demand that a good investment in shale-gas implies supports the theory
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known as “sweet spots”. According to this theory, although shale-gas resources are very
abundant in the world, with the current technology, only a few “sweet” areas meet the
appropriate characteristics to be exploited profitably in terms of economics. These sweet
areas are those that are being intensively exploited in the great basins of the USA, such as
Marcellus, Barnet, Bakken, or Eagle Ford [94].

To precisely fine-tune the location of the shale-gas wells, a powerful campaign of
petrological and geomechanical characterization of the blocks in which the shale-gas
operations will be developed is required. This is the only way to reduce risk from the
heterogeneity and uncertainty of shale-like exploration. In the event that the O&G operator
discovers that he has been assigned a shale block with very poor petrology and with
extremely low porosity, 1% can make the investment profitable. For this specific case, a
positive NPV with a 90% percentile could be achieved with hydraulic stimulation that
increases the permeability of the entire volume to 7 µD or more, achieving high flatness of
the fracturing volume (semi-axis 250 m). Our study shows that, with adequate fracturing
technology, the operator can obtain enough gas to guarantee a sufficiently profitable
investment even if the formation is naturally not ideal from a petrological point of view.

We have scientifically defined parametric maps that allow us to know the probability
of achieving a certain value in a financial indicator. These design maps allow us to observe
that achieving a profitable shale-gas well with guarantees is not impossible, but it is
extraordinarily complex. The aggregated parametric mapping of NPV, IRR, and DPP that
we have carried out sheds light on what parametric combination guarantees a positive
investment or an early return on investment for a certain percentile. In this way, an NPV
at least equal to zero with a percentile of 70% can be guaranteed with a combination of
porosity, induced permeability, and EPV half-length that takes the values 3%, 7 µD, and
150 m. Using the same parameter map, we can achieve a return on investment in seven
years with a statistical percentile of 70%, with the semi-length of the ellipsoids being 200
m with the following parametric combinations: (5%, 2µD ), (2.5%, 4µD), or (1.5%, 10µD).
As can be seen, the relationships between parameters are inverse and relatively easy to
parameterize, which can be very useful in making financial decisions in shale-gas.

Shale-gas considered from the investment point of view is a high-risk business, which
requires very good optimization of the block or formation in operation.

The NPV financial indicator is more demanding than the IRR. In fact, in some cases,
there are discrepancies between the two. This result was not evident, but it positions NPV
as the indicator with to make financial decisions in shale-gas wells. Comparison of NPV and
IRR results with DPP results shows that investments in shale-gas are speculatively safer.

These conclusions lead us to the conviction that in shale-gas field there is still a long
scientific and technological path. A route that makes it possible to make the most of
these fossil resources in the most economically efficient way will undoubtedly have a very
positive impact on companies (increased profits), consumers (reduced prices), and the
environment (exploitation of an abundant and relatively clean resource).
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