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Abstract
This paper develops approximate message passing algorithms to optimize multi-species
spherical spin glasses. We first show how to efficiently achieve the algorithmic thresh-
old energy identified in our companion work (Huang and Sellke in arXiv preprint, 2023.
arXiv:2303.12172), thus confirming that the Lipschitz hardness result proved therein is tight.
Next we give two generalized algorithms which produce multiple outputs and show all of
them are approximate critical points. Namely, in an r -species model we construct 2r approx-
imate critical points when the external field is stronger than a “topological trivialization"
phase boundary, and exponentially many such points in the complementary regime. We also
compute the local behavior of the Hamiltonian around each. These extensions are relevant
for another companion work (Huang and Sellke in arXiv preprint, 2023. arXiv:2308.09677)
on topological trivialization of the landscape.

Keywords Spin glasses · Optimization · Approximate message passing

1 Introduction

This paper studies the efficient optimization of a family of random non-convex functions HN

defined on high-dimensional spaces, namely the Hamiltonians of multi-species spherical
spin glasses. Mean-field spin glasses have been studied since [25] as models for disordered
magnetic systems and are also closely linked to random combinatorial optimization problems
[12, 19, 22]. In short, their Hamiltonians are certain polynomials in many variables with
independent centered Gaussian coefficients.
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The purpose of thiswork is to develop efficient algorithms to optimize HN . Our companion
work [16] derives an algorithmic threshold ALG and proves no optimization algorithm with
suitably Lipschitz dependence on HN can achieve energy better than ALG with more than
exponentially small probability. The value ALG is expressed as the maximum of a variational
principle over several increasing functions, which was shown to be achieved by joining the
solutions to a pair of well-posed differential equations. The first main contribution of this
paper is to show that given a solution to this variational problem, so-called approximate
message passing (AMP) algorithms efficiently achieve the value ALG. We note that several
previous works [4, 21, 24, 26] have given similar algorithms for mean-field spin glasses with
1 species, and our algorithm is in line with the latter three.

Furthermore, we use these AMP algorithms to aid a detailed study of the landscape of HN

by probing neighborhoods of special critical points. This is related to a second companion
work [17] which identifies the phase boundary for topological trivialization of HN , where
the number of critical points is a constant independent of N . Therein, Kac-Rice estimates
are used to show that for r -species models (defined on a product of r spheres) in the “super-
solvable” regime with strong external field, HN has exactly 2r critical points with high
probability. In this paper,wegive a signedAMPalgorithmwhich explicitly approximates each
of these critical points. Moreover in the complementary “sub-solvable” regime, we use AMP
to construct exp(cN ) separated approximate critical pointswith high probability. This implies
the failure of strong topological trivialization as defined in [17], which is proved therein to
hold for super-solvable models. Finally, the machinery of AMP allows us to compute the
local behavior of HN around these algorithmic outputs, giving evenmore precise information
about the landscape.

1.1 Problem Description

Fix a finite set S = {1, . . . , r}. For each positive integer N , fix a deterministic partition
{1, . . . , N } = �s∈S Is with limN→∞ |Is |/N = λs where �λ = (λ1, . . . , λr ) ∈ R

S
>0. For

s ∈ S and x ∈ R
N , let xs ∈ R

Is denote the restriction of x to coordinates Is . We consider
the state space

BN =
{
x ∈ R

N : ‖xs‖22 ≤ λs N ∀ s ∈ S
}

. (1.1)

Fix �h = (h1, . . . , hr ) ∈ R
S≥0 and let 1 = (1, . . . , 1) ∈ R

N . For each k ≥ 2 fix a symmetric

tensor �(k) = (γs1,...,sk )s1,...,sk∈S ∈ (RS≥0)
⊗k with

∑
k≥2 2

k
∥∥�(k)

∥∥∞ < ∞, and let G(k) ∈
(RN )⊗k be a tensor with i.i.d. standard Gaussian entries.

For A ∈ (RS)⊗k , B ∈ (RN )⊗k , define A � B ∈ (RN )⊗k to be the tensor with entries

(A � B)i1,...,ik = As(i1),...,s(ik )Bi1,...,ik , (1.2)

where s(i) denotes the s ∈ S such that i ∈ Is . Let h = �h � 1. We consider the mean-field
multi-species spin glass Hamiltonian

HN (σ ) = 〈h, σ 〉 + H̃N (σ ), where (1.3)

H̃N (σ ) =
∑
k≥2

1

N (k−1)/2
〈�(k) � G(k), σ⊗k〉

=
∑
k≥2

1

N (k−1)/2

N∑
i1,...,ik=1

γs(i1),...,s(ik )G
(k)
i1,...,ik

σi1 . . . σik (1.4)
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with inputs σ = (σ1, . . . , σN ) ∈ BN . For example, the choice of parameters �(2) = ( 0 1
1 0 )

and �(k) = 0 for k ≥ 3 is the well-known bipartite spherical SK model [2]. For σ , ρ ∈ BN ,
define the species s overlap and overlap vector

Rs(σ , ρ) = 〈σ s, ρs〉
λs N

, �R(σ , ρ) = (R1(σ , ρ), . . . , Rr (σ , ρ)) . (1.5)

Let � denote coordinate-wise product. For �x = (x1, . . . , xr ) ∈ R
S, let

ξ(�x) =
∑
k≥2

〈�(k) � �(k), (�λ � �x)⊗k〉

=
∑
k≥2

∑
s1...,sk∈S

γ 2
s1,...,sk (λs1xs1) . . . (λsk xsk ).

The random function H̃N can also be described as the Gaussian process on BN with covari-
ance

EH̃(σ )H̃(ρ) = Nξ( �R(σ , ρ)).

We will also often refer to the product of spheres

SN = {
u ∈ R

N : ‖us‖2 = λs N ∀ s ∈ S
}
. (1.6)

It will be useful to define, for s ∈ S,

ξ s(�x) = λ−1
s ∂xs ξ(�x).

1.2 TheValueALG

Given (�λ, ξ), the ground state energy of the associated multi-species spherical spin glass is1

OPT = OPT(ξ) = p-lim
N→∞

sup
σ∈BN

HN (σ )/N .

In the bipartite SK model mentioned above, OPT is the limiting operator norm of an IID
Gaussian rectangular matrix with aspect ratio λ1/λ2. For large k, the asymptotic operator
norm of an IID random k-tensor is similarly encoded asOPT(ξ) for some ξ (with e.g. r = k).
Perhaps surprisingly, it is generally believed that polynomial-time algorithms are not in
general capable of finding σ ∈ BN such that HN (σ ) ≥ OPT(ξ)− ε with high probability as
N → ∞. Our work [15] showed that in the single species case (and with all terms of even
degree), one can identify an exact threshold ALG for the performance of a class of Lipschitz
algorithmswhich includes gradient-basedmethods and Langevin dynamics.More recently in
[16], we extended the algorithmic hardness direction of this result to multi-species spherical
spin glasses, using a new proof technique that applies even when OPT is not known. The
purpose of this paper is to give explicit algorithms attaining the value ALG, and we present
here the formula for this value.

The algorithmic threshold ALG is given by the following variational principle. This is
a simplification of the more general variational formula [16, Equation (1.7)], obtained by a
partial characterization of its maximizers [16, Theorem 3]. The following generic assumption
is needed therein to ensure well-posedness of the ODE (2.3) used in this description, and we
will freely assume it throughout the paper.

1 Technically the N → ∞ limit is not known to exist for general ξ . Since OPT appears in the present paper
only in this informal discussion, we will not belabor this point.
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Assumption 1 All quadratic and cubic interactions participate in H , i.e. �(2), �(3) > 0
coordinate-wise. We will call such models non-degenerate. Since this condition depends
only on ξ , we similarly call ξ non-degenerate.

To optimize HN for degenerate ξ , it suffices to apply our algorithms to a slight perturbation
ξ̃ which is non-degenerate and satisfies ‖ξ − ξ̃‖C3([0,1]r ) ≤ ε to obtain the guarantees in this
and the next section. Here, C3([0, 1]r ) denotes the norm

‖ξ‖C3([0,1]r ) = sup
�x∈[0,1]r

max
{|ξ(�x)|, ‖∇ξ(�x)‖∞, ‖∇2ξ(�x)‖∞, ‖∇3ξ(�x)‖∞

}
.

Since both the ground state and themore generalALG formula in [16] (allowing degenerate ξ )
vary continuously in ξ , there is essentially no loss of generality in assuming non-degeneracy.

The formula for ALG is described by two cases depending on whether �1 = 1S is super-
solvable as defined below.

Definition 1.1 A matrix M ∈ R
S×S is diagonally signed if Mi,i ≥ 0 and Mi, j < 0 for all

i �= j .

Definition 1.2 A symmetric diagonally signed matrix M is super-solvable if it is positive
semidefinite, and solvable if it is furthermore singular; otherwise M is strictly sub-solvable.
A point �x ∈ (0, 1]S is super-solvable, solvable, or strictly sub-solvable if M∗(�x) is, where

M∗(�x) = diag

((
∂xs ξ(�x) + λsh2s

xs

)

s∈S

)
− (

∂xs ,xs′ ξ(�x))s,s′∈S . (1.7)

We also adopt the convention that �0 is always super-solvable, and solvable if �h = �0.
The following will be useful.

Proposition 1.3 ([16, Proposition 4.3], see also [17, Lemma 2.5]) If the square matrix M is
diagonally signed, then the minimal eigenvalue λmin(M) has multiplicity 1, and the corre-
sponding eigenvector �v has strictly positive entries. Moreover

λmin(M) = sup
�v��0

min
s∈S

(M �v)s

vs
,

and the supremum is uniquely attained at �v.
It is easy to see that any x ∈ (0, 1]S is sub-solvable when �h = �0, and that super-solvability

is a coordinate-wise increasing property of �h. For our purposes, an external field is large if �1
is super-solvable and small if �1 is strictly sub-solvable. (Unfortunately we do not have more
refined intuition for the precise form of M∗ above, nor the resulting phase boundary between
super and sub-solvability.) As shown in our companion work [17], in super-solvable models
the external fields h are strong enough to trivialize the “glassy” nature of the landscape for
HN . Namely the number of critical points is exactly 2r with high probability, the minimum
number of any generic smooth (“Morse”) function on a product of r spheres. By contrast
in the sub-solvable case, the expected number of critical points is exponentially large in
the dimension N . As explained below, the optimization algorithms are also simpler in the
super-solvable case.

Definition 1.4 (Algorithmic Threshold, Super-Solvable Case) If �1 is super-solvable, then

ALG =
∑
s∈S

λs

√
ξ s(�1) + h2s .
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When �1 is strictly sub-solvable, the formula for ALG becomes more complicated and
depends on the optimal choice of a increasing C2 function 	 : [q1, 1] → [0, 1]S satisfying
certain conditions. We term such 	 pseudo-maximizers and defer the formal definition to
Definition 2.1. Note that q1 ∈ [0, 1] is not fixed, but is determined by the choice of 	.

Definition 1.5 (Algorithmic Threshold, Strictly Sub-solvable Case) If �1 is strictly sub-
solvable, then with the maximum taken over all pseudo-maximizers 	 of A,

ALG = max
	

A(	);

A(	) ≡
∑
s∈S

λs

[√
	s(q1)(ξ s(	(q1)) + h2s ) +

∫ 1

q1

√
	′

s(q)(ξ s ◦ 	)′(q) dq

]
.

(1.8)

See [16, Remark 1.3] for an approach to maximizing A using the well-posedness of the
ODEs (2.2), (2.3) in the definition of pseudo-maximizer. The computational complexity of
this task is in particular independent of N .

The following theorem is our main result. We equip the space HN of Hamiltonians HN

with the following distance. We identify HN with its disorder coefficients (G(k))k≥2, which
we arrange in an arbitrary but fixed order into an infinite vector g(HN ), and define

‖HN − H ′
N‖2 = ‖g(HN ) − g(H ′

N )‖2.
(In other words, ‖HN − H ′

N‖22 is the sum of squared differences (gi1,...,ik −g′i1,...,ik )
2 between

all corresponding pairs of coefficients in (G(k))k≥2 and (G′(k))k≥2.) We say an algorithm
AN : HN → BN is τ -Lipschitz if

‖AN (HN ) −AN (H ′
N )‖2 ≤ τ‖HN − H ′

N‖2, ∀HN , H ′
N ∈ HN .

Note that ‖HN − H ′
N‖2 may be infinite, and if so this condition holds vacuously for such

pairs (HN , H ′
N ). Here and throughout, all implicit constants may depend also on (ξ, �h, �λ).

Theorem 1 For any ε > 0, there exists an Oε(1)-Lipschitz AN : HN → BN such that

P[HN (AN (HN ))/N ≥ ALG− ε] ≥ 1− exp(−cN ), c = c(ε) > 0.

The main result in our companion work [16, Theorem 1] states that any τ -Lipschitz
AN : HN → BN satisfies, for the same threshold ALG and N sufficiently large,

P[HN (AN (HN ))/N ≥ ALG+ ε] ≤ exp(−cN ), c = c(ε, τ ) > 0.

Together these results thus characterize the best possible Lipschitz optimization algorithms
for multi-species spherical spin glasses.

We prove Theorem 1 with an explicit algorithm based on AMP, following a recent line of
work [4, 5, 21, 24, 26]. Such algorithms are shown to be Lipschitz (up to modification on a
set with exp(−cN ) probability) in [15, Sect. 8]. AMP algorithms also have computational
complexity which is linear in the input size when HN is a polynomial of finite degree (modulo
solving for 	, a task that does not depend on N ). See [4, Remark 2.1] for related discussion
on this last point.

Similarly to [5, 24], our algorithm has two phases, a “root-finding" phase and a “tree-
descending" phase. Roughly speaking, the set of points reachable by our algorithm has the
geometry of a densely branching ultrametric tree, which is rooted at the origin when h = 0
and more generally at a random point correlated with h. The first phase identifies this root,
and the second traces a root-to-leaf path of this tree. The structure of the first phase is similar

123
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to the original AMP algorithm of [9] for the SK model at high-temperature, while the latter
incremental AMP technique was introduced in [21].

For the purposes of this paper, the significance of (super, sub)-solvability is as follows.
When the external field is sufficiently large, the root moves all the way to the boundary of
BN (in all r species) and the algorithmic tree becomes degenerate. In [16], it is shown that
the external field is large enough for this to occur if and only if �1 is super-solvable. Moreover,
[17] shows this condition coincides with strong topological trivialization (defined therein) of
the optimization landscape.

In Sect. 3 we extend our main algorithm in several ways. In Sect. 3.1 we define 2r signed
generalizations of the root-finding algorithm with similar behavior. In Sect. 3.2 we compute
the gradients of HN at the points output by our algorithm, in both cases when �1 is super-
solvable and sub-solvable. In particular, we show that they are approximate critical points
on the product of spheres SN (defined in (1.6)). As explained in Remark 3.1, in the strictly
super-solvable case these 2r outputs approximate the 2r genuine critical points of HN on
SN . The sub-solvable case of this computation is used in our companion paper [17, Theorem
1.5(c) and Sect. 5.3] to show failure of annealed topological trivialization in the sub-solvable
case. Finally in Sect. 3.3 we give a modification of the tree-descending phase for the super-
solvable case. It constructs exp(cN ) well-separated approximate critical points arranged in a
densely branching ultrametric tree; this implies the failure of strong topological trivialization
in [17, Definition 6 and Theorem 1.6].

1.3 Notations

Throughout, we will use boldface lowercase letters (u, v, . . .) to denote vectors in R
N , and

lowercase letterswith vector sign (�u, �v, . . .) to denote vectors inRS � R
r . Similarly, boldface

uppercase letters denote matrices or tensors in (RN )⊗k , and non-boldface uppercase letters
denote matrices or tensors in (Rr )⊗k . We let

〈v〉N = N−1
∑
i≤N

vi ; 〈u, v〉N = N−1
∑
i≤N

uivi = 〈�λ, �R(u, v)〉

for u, v ∈ R
N . The corresponding norm is

‖u‖N = 〈u, u〉1/2N =
√∑

s

λs Rs(u, u).

Next aN � bN means that aN − bN converges in probability to 0. Analogously, for two
vectors uN , vN , we write uN � vN when ‖uN − vN‖N converges in probability to 0. We
denote limits in probability by p-limN→∞. Analogously we write ≈δ to denote asymptotic
equality as δ → 0.

For any tensor A ∈ (RN )⊗k , we define the operator norm

‖A‖op = sup
‖σ 1‖,...,‖σ k‖≤1

∣∣∣〈A, σ 1 ⊗ · · · ⊗ σ k〉
∣∣∣ .

The following proposition shows thatwith exponentially good probability, the operator norms
of all constant-order gradients of HN are bounded on the appropriate scale.

Proposition 1.6 ([16, Proposition 1.13]) For any fixed model (ξ, �h) there exists a constant
c > 0, sequence (KN )N≥1 of convex sets KN ⊆ HN , and sequence of constants (Ck)k≥1

independent of N , such that the following properties hold.
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(a) P[HN ∈ KN ] ≥ 1− e−cN ;
(b) For all HN ∈ KN and x ∈ BN ,∥∥∥∇k HN (x)

∥∥∥
op

≤ CkN
1− k

2 . (1.9)

2 Achieving Energy ALG

In this sectionwe prove Theorem 1 by exhibiting anAMP algorithm. Throughout this section,
Assumption 1 on non-degeneracy of ξ will be enforced without loss of generality.

2.1 Definition of Pseudo-Maximizer

As mentioned before Definition 1.5, the threshold ALG in the sub-solvable case depends on
a notion of pseudo-maximizer. We now provide this definition, which was derived in [16,
Theorem 3] as a necessary condition for 	 to maximize A defined in (1.8) (and it is proved
therein that a maximizer always exists).

Definition 2.1 A coordinate-wise strictly increasing C2 function 	 : [q1, 1] → [0, 1]S, for
some q1 ∈ [0, 1], is a pseudo-maximizer if:

(1) 	 is admissible, meaning it satisfies the normalization

〈�λ,	(q)〉 = q, ∀q ∈ [q1, 1]. (2.1)

In particular 	(1) = �1.
(2) 	(q1) is solvable.
(3) The derivative at q1 satisfiesM∗(	(q1))	′(q1) = �0. This amounts to no restriction when

�h = �0 and thus (q1,	(q1)) = (0, �0); when �h �= �0 it means that

	′
s(q1) =

	s(q1)(ξ s ◦ 	)′(q1)
ξ s(	(q1)) + h2s

, s ∈ S. (2.2)

(4) For all q ∈ [q1, 1], 	 solves the (second-order) tree-descending differential equation:

�(q) ≡ 1

	′
s(q)

d

dq

√
	′

s(q)

(ξ s ◦ 	)′(q)
(2.3)

is independent of the species s. (See [16, Lemma 4.37] for well-posedness of this ODE.)

Note that there may exist multiple such 	, see [16, Figure 2]. If �1 is super-solvable, we
adopt the convention that q1 = 1 and 	 has domain {1}.

We now give an efficient AMP algorithm achieving energy A(	) for any pseudo-
maximizer 	. In particular for the optimal pseudo-maximizer this achieves energy ALG.

2.2 Review of Approximate Message Passing

Herewe recall the class ofAMP algorithms, specialized to our setting of interest.We initialize
AMP with a deterministic vector w0 with coordinates

w0
i = ws(i) (2.4)

123
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depending only on the species. Let ft,s : R
t+1 → R be a Lipschitz function for each

(t, s) ∈ Z≥0 × S. For (w0,w1, . . . ,wt ) ∈ R
N×(t+1), let ft (w0,w1, . . . ,wt ) ∈ R

N be given
by

ft (w
0,w1, . . . ,wt )i = ft,s(i)(w

1
i , . . . , w

t
i ), i ∈ [N ].

We generate subsequent iterates through recursions of the following form, where onst is
known as the Onsager correction term:

wt+1 = ∇HN (mt ) − onst ;
mt = ft (w

0,w1, . . . ,wt ); (2.5)

onst =
∑
t ′≤t

dt,t ′ � ft ′−1(w
1, . . . ,wt ′−1); (2.6)

dt,t ′,s =
(∑
s′∈S

∂xs′ ξ
s
((
E[Mt

s′′M
t ′−1
s′′ ])s′′∈S

)
· E

[
∂Wt ′

s′
ft,s′(W

0
s′ , . . . ,W

t
s′)

])
. (2.7)

Here Wt
s , M

t
s are defined as follows. W 0

s = ws and the variables (W̃ t
s )(t,s)∈Z≥1×S form a

centered Gaussian process with covariance defined recursively by

E[W̃ t+1
s W̃ t ′+1

s ] = ξ s
(
E[ ft,s(W 0

s , . . . ,Wt
s ) ft ′,s(W

0
s , . . . ,Wt ′

s )]
)

,

Wt
s = W̃ t

s + hs;
Mt

s = ft,s(W
0
s , . . . ,Wt

s )

(2.8)

and E[W̃ t+1
s W̃ t ′+1

s′ ] = 0 if s �= s′ (i.e. different species are independent).
The following state evolution characterizes the behavior of the above iterates. It states

that for each s ∈ S, when i ∈ Is is uniformly random the sequence of coordinates
(w1

i , w
2
i , . . . , w

t
i ) has the same law as (W 1

s , . . . ,Wt
s ). Say a function ψ : R

� → R is
pseudo-Lipschitz if |ψ(x) − ψ(y)| ≤ C(1+ |x | + |y|)|x − y| for a constant C .

Proposition 2.2 For any pseudo-Lipschitz function ψ and � ∈ Z≥0, s ∈ S,

p-lim
N→∞

1

Ns

∑
i∈Is

ψ(w0
i , . . . ,w

�
i ) = E[ψ(W 0

s , . . . ,W �
s )]. (2.9)

This proposition allows us to read off normalized inner products of the AMP iterates,
since e.g.

〈wk,w�〉N �
∑
s∈S

λsE[Wk
s W

�
s ].

Proposition 2.2 is proved in Appendix 1. In fact we show a slight generalization allow-
ing ft = ft (w0, . . . ,wt , g0, . . . , gt ) to depend also on independently generated vectors
(g0, . . . , gt ) ∈ R

N (t+1).When using this extension, wewill always take each gt ∼ N (0, IN )

to be standard Gaussian. The more general result essentially says that gt still acts as an inde-
pendent Gaussian for the purposes of state evolution. Since this is relatively intuitive, we
refer to Theorem 2 in the appendix for a precise statement.

For random matrices (i.e. the case of quadratic H ) there is a considerable literature estab-
lishing state evolution in many settings beginning with [7, 9] and later [6, 8, 10, 11, 13] (see
also [14] for a survey of many statistical applications). The generalization to tensors was
introduced in [23] and proved in [4], whose approach we follow.
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2.3 Stage I: Finding the Root of the Ultrametric Tree

Our goal in this subsection will be to compute a vector m� satisfying

p-lim
�→∞

lim
N→∞

�R(m�,m�) = 	(q1)

and with the correct energy value (as stated in Lemma 2.5). We take as given a maximizer 	

to A with domain [q1, 1]. Recall 	(q1) is super-solvable: either �1 is strictly sub-solvable, in
which case 	(q1) is solvable, or �1 is super-solvable, in which case 	(q1) = 	(1) = �1.

We use the initialization

w0
i =

√
ξ s(	(q1)) + h2s , i ∈ Is .

Define the vector �a ∈ R
S by

as =
√

	s(q1)

ξ s(	(q1)) + h2s
.

Subsequent iterates are defined via the following recursion.

wk+1 = ∇HN (mk) − �bk � mk−1

= h + ∇ H̃N (mk) − �bk � mk−1; (2.10)

mk = �a � wk (2.11)

bk,s ≡
∑
s′∈S

as′∂s′ξ
s( �R(mk,mk−1)

)
. (2.12)

The last term in (2.10) comes from specializing the formula (2.6) for the Onsager term.
Next recalling (2.8), let (W j

s , M j
s ) j≥0,s∈S be the state evolution limit of the coordinates

of

(w0,m0, . . . ,wk,mk)

as N → ∞. Concretely, each W j
s is Gaussian with mean hs and

M j
s =

√
	s(q1)

ξ s(	(q1)) + h2s
·W j

s , j ≥ 0, s ∈ S.

We next compute the covariance of the Gaussians W̃ j
s = W j

s − hs . Define �α : RS≥0 → R
S≥0

by

αs(�x) =
(
ξ s(�x) + h2s

) ( 	s(q1)

ξ s(	(q1)) + h2s

)
. (2.13)

Define the (deterministic) RS≥0-valued sequence ( �R0, �R1, . . . ) of asymptotic overlaps recur-

sively by �R0 = �0 and �Rk+1 = �α( �Rk).

Lemma 2.3 For integers 0 ≤ j < k, the following equalities hold (the first in distribution):

W j
s

d= hs + Z
√

ξ s(	(q1)), Z ∼ N (0, 1) (2.14)

E[W̃ j
s W̃

k
s ] = ξ s( �R j ) (2.15)

E[(M j
s )2] = 	s(q1) (2.16)

E[M j
s M

k
s ] = R j+1

s . (2.17)
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Proof We proceed by induction on j , first showing (2.14) and (2.16) together. As a base case,
(2.14) holds for j = 0 by initialization. For the inductive step, assume first that (2.14) holds
for j . Then by the definition (2.11),

E

[
(M j

s )2
]
= (

ξ s(	(q1)) + h2s
) · a2s

= (
ξ s(	(q1)) + h2s

) ·
(

	s(q1)

ξ s(	(q1)) + h2s

)

= 	s(q1)

so that (2.14) implies (2.16) for each j ≥ 0. On the other hand, state evolution directly
implies that if (2.16) holds for j then (2.14) holds for j + 1. This establishes (2.14) and
(2.16) for all j ≥ 0.

We similarly show (2.15) and (2.17) together by induction, beginning with (2.15). When
j = 0 it is clear because W̃ k

s is mean zero and independent of W̃ 0
s . Just as above, it follows

from state evolution that (2.15) for ( j, k) implies (2.17) for ( j, k)which in turn implies (2.15)
for ( j + 1, k + 1). Hence induction on j proves (2.15) and (2.17) for all ( j, k). ��

The next lemma is crucial and uses super-solvability of 	(q1).

Lemma 2.4 The limit �R∞ ≡ lim j→∞ �R j exists and equals 	(q1).

Proof First we observe that �α (recall (2.13)) is coordinate-wise strictly increasing in the sense
that if 0 � x ≺ y then �α(x) ≺ �α(y). Moreover �α(�0) � 0 (assuming �h �= 0, else the result is
trivial) and �α(	(q1)) = 	(q1). Therefore �R∞ exists, �α( �R∞) = �R∞, and

�0 � �R∞ � 	(q1).

It remains to show that the above forces �R∞ = 	(q1) to hold.
Let M ∈ R

S×S be the matrix with entries Ms,s′ = d
dt �αs(	(q1) + tes′)|t=0 for es′ a

standard basis vector. Then M is the derivative matrix for �α at 	(q1) in the sense that for
any �u ∈ R

S,

d

dt
�α(	(q1) + t �u)|t=0 = M �u.

We easily calculate that

Ms,s′ =
	s(q1)∂xs ,xs′ ξ(	(q1))

∂xs ξ(	(q1)) + λsh2s
.

We claim that for any entry-wise non-negative vector �w ∈ R
S≥0,

(M �w)s ≤ ws (2.18)

for some s ∈ S. Indeed, suppose to the contrary that (M �w)s > ws for all s ∈ S. This
rearranges to

∂xs ξ(	(q1)) + λsh2s
	s(q1)

ws −
∑
s′∈S

∂xs ,xs′ ξ(	(q1))ws′ < 0 ∀s ∈ S,

i.e.M∗(	(q1)) �w ≺ �0 (recall (1.7)). Proposition 1.3 then implies that λmin(M∗(	(q1))) < 0,
so 	(q1) is strictly sub-solvable, which is a contradiction. Thus (2.18) holds for some s ∈ S.

Now suppose for sake of contradiction that �R∞ ≺ 	(q1), let �w = 	(q1) − �R∞, and
choose s ∈ S such that (2.18) holds. Write f (t) = αs(	(q1)+ t �w). Since αs is a polynomial
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with non-negative coefficients and ξ is non-degenerate, f is strictly convex and strictly
increasing on [−1, 0]. Hence

αs( �R∞) = f (−1) > f (0) − f ′(0) ≥ 	s(q1) − (M �w)s
(2.18)≥ 	s(q1) − ws = R∞

s .

The first inequality above is strict, so we deduce that �α( �R∞) �= �R∞ if �R∞ ≺ 	(q1). This
contradicts the definition of �R∞. Therefore �R∞ = 	(q1), completing the proof. ��

Remark 2.1 Super-solvability of 	(q1) is a tight condition for the above argument to hold,
as the matrix M above needs to have Perron-Frobenius eigenvalue at most 1. Indeed suppose
that 	(q1) was chosen so that λ1(M) > 1. Then there exists �w ∈ R

S
>0 with M �w � �w.

Letting �x = 	(q1) − ε �w for small ε > 0, we find �α(�x) ≺ �x . Monotonicity implies that �α
maps the compact, convex set

K = {�y ∈ [0, 1]S : �0 � �y � �x}
into itself. By the Brouwer fixed point theorem, a fixed point of �α strictly smaller than 	(q1)
exists whenever 	(q1) is strictly subsolvable.

We finish our analysis of the first AMP phase by computing the asymptotic energy it
achieves. As expected, the resulting value agrees with the first term in the formula (1.8) for
ALG.

Lemma 2.5

lim
k→∞ p-lim

N→∞
HN (mk)

N
=

∑
s∈S

λs

√
	s(q1) ·

(
h2s + ξ s(	(q1))

)
.

Proof We use the identity

HN (mk)

N
= 〈

h,mk〉N +
∫ 1

0
〈mk,∇ H̃N (tmk)

〉
Ndt (2.19)

and interchange the limit in probability with the integral. To compute p-limN→∞〈mk,∇ H̃N

(tmk)〉 we introduce an auxiliary AMP step

yk+1 = ∇ H̃N (tmk) − t �bk � mk−1

which depends implicitly on t ∈ [0, 1]. Rearranging yields

�R(mk,∇ H̃N (tmk)) = �R(mk, yk+1) + t ·
( �R(mk,mk−1) � �bk

)

� �R(mk, yk+1) + t ·
( �Rk � �bk

)
.

For the first term, recalling (2.11) yields

Rs(mk, yk+1) = E[asWk
s Y

k+1
s ]

= as ξ s(t �Rk).

Note also that
λs∂s′ξ

s( �Rk) = ∂xs ,xs′ ξ( �Rk) = λs′∂sξ
s′( �Rk). (2.20)
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Integrating with respect to t , and switching the roles of s, s′ in applying (2.20), we thus find
∫ 1

0
〈mk,∇ H̃N (tmk)〉Ndt �

∑
s∈S

λs

∫ 1

0
Rs(mk,∇ H̃N (tmk))dt

�
∑
s∈S

λs

∫ 1

0

(
asξ

s(t �Rk) + t Rk
s

∑
s′

as′∂s′ξ
s( �Rk)

)
dt

(2.20)=
∑
s∈S

λs

∫ 1

0

(
asξ

s(t �Rk) + tas
∑
s′

Rk
s′∂s′ξ

s( �Rk)
)
dt

=
∑
s∈S

λsas

∫ 1

0

d

dt

(
t ξ s(t �Rk)

)
dt

=
∑
s∈S

λsasξ
s( �Rk).

Finally the external field h gives energy contribution

〈h,mk〉N �
∑
s∈S

λshsE[Mk
s ] =

∑
s∈S

λsash
2
s .

Since �R∞ = 	(q1) by Lemma 2.4, we conclude

lim
k→∞ p-lim

N→∞
HN (mk)

N
=

∑
s∈S

λsas
(
h2s + ξ s(	(q1))

)

=
∑
s∈S

λs

√
	s(q1) ·

(
h2s + ξ s(	(q1))

)
.

��

2.4 Stage II: Descending the Ultrametric Tree

We now turn to the second phase which uses incremental approximate message passing.
Choose a large integer �, and with δ = �−1 let

qδ
� = q1 + (� − �)δ, � ≥ 0.

We then define
n� = m� +√

	(q1 + δ) − 	(q1) � g (2.21)

with the square-root taken entrywise, and g ∼ N (0, IN ). Then

�R(n�, n�) � 	(q1 + δ) = 	(qδ
�+1). (2.22)

The point n� will be the “root” of our IAMP algorithm.2

Moreover we set � = max{� ∈ Z+ : qδ
� ≤ 1 − 2δ}. We also define for s ∈ S and

� ≤ � ≤ � the constants

uδ
�,s =

√√√√ 	s(qδ
�+1) − 	s(qδ

� )

ξ s(	(qδ
�+1)) − ξ s(	(qδ

� ))
. (2.23)

2 If �h = 0, one takes � = q1 = 0, n1i = √
	s(i)(δ)gi , and proceeds identically.
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Set z� = w� − h. We will define (z�)�≥�+1 via

z�+1 = ∇ H̃N ( f�(z�, . . . , z�)) −
�∑

j=0

d�, j � f j−1(z�, . . . , z j−1). (2.24)

The Onsager coefficients d�, j are given by (2.7) and will not appear explicitly in any cal-
culations until Sect. 3.2. Note that formally, they may depend on the first � iteratates, since
(2.24) is a continuation of the same AMP iteration. To complete the definition of the iteration
(2.24), for s(i) = s and � ≥ � we set

f�,s(z
�

i , . . . , z
�
i ) = n�

i , (2.25)

where
n�+1 = n� + uδ

� �
(
z�+1 − z�

)
. (2.26)

The algorithm A outputs

A(HN ) = �R(n�, n�)−1/2 � n� ∈ BN (2.27)

where the power −1/2 is taken entry-wise. We show in (2.32) below that

lim
�→∞ p-lim

N→∞
‖n� −A(HN )‖N = 0.

Hence we will often not distinguish between the two and just consider n� to be the output.
This makes essentially no difference by virtue of Proposition 1.6.

The state evolution limits of z� and n� are described by time-changed Brownian motions
with total variance 	s(qδ

� ) in species s after iteration �. This is made precise below.

Lemma 2.6 Fix s ∈ S. The sequences (Z δ
�,s, Z

δ
�+1,s, . . . ) and (N δ

�,s, N
δ
�+1,s, . . . ) are Gaus-

sian processes satisfying

E[(Z δ
�+1,s − Z δ

�,s)Z
δ
j,s] = 0, for all � + 1 ≤ j ≤ � (2.28)

E
[
(Z δ

�+1,s − Z δ
�,s)

2] = ξ s(	(qδ
�+1)) − ξ s(	(qδ

� )) (2.29)

E[Z δ
�,s Z

δ
j,s] = ξ s(	(qδ

j∧�)) (2.30)

E[N δ
�,s N

δ
j,s] = 	s(q

δ
( j∧�)+1). (2.31)

Proof The fact that these sequences are Gaussian processes is a general fact about state
evolution (the external Gaussian g is permitted in Theorem 2). We proceed by induction
on � ≥ �. The proof is similar to [24, Sect. 8] so we give only the main points (in fact
(2.21) simplifies the corresponding construction therein, which avoided the use of external
Gaussian noise). We will make liberal use of (2.8) to connect asymptotic overlaps before and
after applying ∇HN (·).

For base cases, the � case of (2.30) is immediate from (2.16). The base case of (2.31)
follows from (2.22), and thus the � + 1 case of (2.30). The main computation for the base
case is

E
[(
Z δ

�+1,s − Z δ
�,s

)
Z δ

�,s

] = ξ s
(
{E[N δ

�,sM
�−1
s ]}s∈S

)
− ξ s

(
{E[M�−1

s M
�−1
s ]}s∈S

)

= ξ s(	(q1)) − ξ s(	(q1))

= 0.
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Here we used the general AMP statement of Theorem 2 to say that

E[N δ
�,sM

�−1
s ] = E[M�−1

s M
�−1
s ] = 	s(q1).

For inductive steps, we always have by state evolution

E[Z δ
�+1,s Z

δ
j+1,s] � ξ s

( �R(n�, n j )
)
.

It follows by the inductive hypothesis of (2.28) that for j ≤ �,

Rs(n�, n j ) = Rs(n�, n�) +
j−1∑
k=�

(uδ
k)

2Rs(zk+1 − zk, zk+1 − zk)

= Rs(n�, n�) +
j−1∑
k=�

(uδ
k)

2 (
ξ s(	(qδ

k+1)) − ξ s(	(qδ
k ))

)

= 	s(q1) +
j−1∑
k=�

(
	s(q

δ
k+1) − 	s(q

δ
k )

)

= 	s(q
δ
j ).

Plugging into the above yields that for j ≤ �,

E[Z δ
�+1,s Z

δ
j+1,s] = ξ s(	(qδ

j )).

This depends only on min( j, �), so (2.28) follows. The others are proved by similar compu-
tations. ��

Equation (2.31) implies that �R(nδ
�, n

δ
j ) � 	(qδ

(�∧ j)+1), which exactly corresponds to the

previous sections of the paper. In particular it implies that the final iterate nδ

�
satisfies

(1− O(δ)) · �1 � �R(nδ

�
, nδ

�
) � �1 (2.32)

so the rounding step (2.27) causes only an O(δ) change in the Hamiltonian value. Finally we
compute in Lemma 2.7 the energy gain from the second phase, which matches the second
term in (1.8).

Lemma 2.7

lim
�→∞ p-lim

N→∞
HN (n�) − HN

(
n�

)

N
=

∑
s∈S

λs

∫ 1

q1

√
	′

s(t)(ξ
s ◦ 	)′(t) dt (2.33)

Proof Observe that 〈h, n� − n�〉N � 0 because the values (N δ
�,s)�≥� form a martingale

sequence for each s ∈ S. Therefore it suffices to find the in-probability limit of H̃N (n�)−H̃N (n�)
N .

We write

H̃N (n�) − H̃N (n�)

N
=

�−1∑
�=�

H̃N (n�+1) − H̃N (n�)

N
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and use a Taylor series approximation for each term. In particular for F ∈ C3(R;R), applying
Taylor’s approximation theorem twice yields

F(1) − F(0) = F ′(0) + 1

2
F ′′(0) + O

(
sup

a∈[0,1]
|F ′′′(a)|)

= F ′(0) + 1

2
(F ′(1) − F ′(0)) + O

(
sup

a∈[0,1]
|F ′′′(a)|)

= 1

2
(F ′(1) + F ′(0)) + O

(
sup

a∈[0,1]
|F ′′′(a)|).

Assuming sup�

∥∥n�
∥∥
N ≤ 1, which holds with probability 1 − oN (1) by state evolution and

the definition of �, we apply this estimate with

F(a) = 1

N
H̃N

(
(1− a)n� + an�+1

)
.

The result is:

1

N

∣∣∣∣H̃N (n�+1) − H̃N (n�) − 1

2

〈
∇ H̃N (n�) + ∇ H̃N (n�+1), n�+1 − n�

〉∣∣∣∣
≤ O

(
C‖n�+1 − n�‖3N

)
;

CN−1/2 = sup
‖σ‖≤√

N

∥∥∇3 H̃N (σ )
∥∥
op .

Proposition 1.6 implies that for deterministic constants c,C ,

P[C ≤ C] ≥ 1− e−cN .

On the other hand for each � ≤ � ≤ � − 1 we have

p-lim
N→∞

‖n�+1 − n�‖N =
√∑

s∈S
λs Rs(n�+1 − n�, n�+1 − n�)

=
√∑

s∈S
λs

(
	s(qδ

�+2) − 	s(qδ
�+1)

)

= √
δ.

Summing and noting that � − � ≤ δ−1 yields the high-probability estimate

�−1∑
�=�

1

N

∣∣∣∣H̃N (n�+1) − H̃N (n�) − 1

2

〈
∇ H̃N (n�) + ∇ H̃N (n�+1), n�+1 − n�

〉∣∣∣∣

≤
�−1∑
�=�

‖n�+1 − n�‖3N ≤ O(
√

δ).

So, this term vanishes as δ → 0. It remains to prove

lim
δ→0

p-lim
N→∞

�−1∑
�=�

〈
∇ H̃N (n�) +∇ H̃N (n�+1), n�+1 − n�

〉
N

?= 2
∑

s∈S
λs

∫ 1

q1

√
	′
s(t)(ξ s ◦ 	)′(t)dt .
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To establish this it suffices to show for each species s ∈ S the equality

lim
δ→0

p-lim
N→∞

�−1∑
�=�

Rs

(
∇ H̃N (n�) + ∇ H̃N (n�+1), n�+1 − n�

)
?= 2

∫ 1

q1

√
	′

s(t)(ξ
s ◦ 	)′(t)dt .

(2.34)
Observe by (2.24) that

∇ H̃N (n�) = z�+1 +
�∑

j=0

d�, j � n j−1. (2.35)

Passing to the limiting Gaussian process (Z δ
k )k∈Z+ via state evolution,

p-lim
N→∞

R
(
∇ H̃N (n�), n�+1 − n�

)
s
= E

[
Z δ

�+1,s(N
δ
�+1,s − N δ

�,s)
]

+
�∑

j=0

d�, j,sE

[
N δ

j−1,s(N
δ
�+1,s − N δ

�,s)
]
,

p-lim
N→∞

R
(
∇ H̃N (n�+1), n�+1 − n�

)
s
= E

[
Z δ

�+2,s(N
δ
�+1,s − N δ

�,s)
]

+
�+1∑
j=0

d�+1, j,sE

[
N δ

j−1(N
δ
�+1,s − N δ

�,s)
]
.

As (N δ
k )k≥Z+ is a martingale process, it follows that all right-most expectations vanish.

Similarly it holds that

E[Z δ
�+2(N

δ
�+1 − N δ

� )] = E[Z δ
�+1(N

δ
�+1 − N δ

� )]
E[Z δ

�(N
δ
�+1 − N δ

� )] = 0.

We conclude that

p-lim
N→∞

R
(
∇ H̃N (n�) + ∇ H̃N (n�+1), n�+1 − n�

)
s

= 2E[(Z δ
�+1,s − Z δ

�,s)(N
δ
�+1,s − N δ

�,s)]
= 2E[uδ

�,s(Z
δ
�,s)(Z

δ
�+1,s − Z δ

�,s)
2]

= 2E[uδ
�,s(Z

δ
�,s)] · E[(Z δ

�+1,s − Z δ
�,s)

2]

= 2

√(
	s(qδ

�+1,s) − 	s(qδ
�,s)

)
·
(
ξ s(	(qδ

�+1)) − ξ s(	(qδ
� ))

)
.

In the second-to-last step we used independence of Z δ
�,s increments, which follows from

Lemma 2.6, while the last step used (2.23) and (2.29). Combining with [16, Lemma 3.7] on
discrete approximation of the integral in A implies (2.34). ��
Proof of Theorem 1 We take A as in (2.27) for � a large constant depending on (ε, ξ, h, λ).
First,

P[HN (A(HN ))/N ≥ ALG− ε/2] ≥ 1− oN (1) (2.36)

follows from combining Lemmas 2.5, 2.7 and the fact that (recall (2.32))

HN (A(HN ))/N � HN (n�)/N + oP(1).
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Next, let KN ⊆ HN be as in Proposition 1.6. We recall that P[HN ∈ KN ] ≥ 1 −
e−cN . Exactly as in [15, Theorem 10] it follows that there is a C(ε)-Lipschitz function
Ã : HN → R such that Ã andA agree on KN . Moreover (1.6) and concentration of measure
on Gaussian space imply that HN (Ã(HN )) is O(N 1/2)-sub-Gaussian. In light of (2.36) and
since P[Ã(HN ) = A(HN )] ≥ P[HN ∈ KN ] ≥ 1− e−cN , we deduce that

P[HN (A(HN ))/N ≥ ALG− ε] ≥ 1− e−cN .

This concludes the proof. ��

3 Extensions

3.1 Signed AMP

In our companion paper [17], we show that strictly super-solvable models have w.h.p. exactly
2r critical points, indexed by sign patterns �� ∈ {±1}r with the following physical meaning.
Consider first the extreme case of a linear Hamiltonian, with external field h = �h � 1 where
all entries of �h are nonzero and no other interactions. This model clearly has 2r critical
points, which are the products of the maxima and minima in the spheres {‖xs‖22 = λs N }
corresponding to each species s ∈ S, and the signs �� record whether the critical point
is a maximum or minimum in each species. As explained in [17, Sect. 6.6], if a strictly
super-solvable HN is gradually deformed to a linear function (staying inside the strictly
super-solvable phase), the critical points move stably, and over this process their Hessian
eigenvalues do not cross zero. Thus, each critical point of HN can also be associated with a
sign pattern ��.

We now show that the root-finding algorithm defined in Sect. 2.3 can be generalized to find
all 2r critical points in a strictly super-solvablemodel.More precisely, it finds 2r approximate
critical points, one in a neighborhood of each exact critical point of the model, from which
the exact critical points can be computed by Newton’s method (see Remark 3.2). For general
models, it finds 2r approximate critical points on the product of spheres with self-overlap
	(q1). The restriction of HN to this set, considered as a spin glass in its own right (see [16,
Remark 1.2]) is a solvable model.

Fixing �� ∈ {±1}r , the analogous iteration to (2.10) is:

wk+1 = ∇HN (mk) − �bk � mk−1

= h + ∇ H̃N (mk) − �bk( ��) � mk−1;
mk = �� � �a � wk

bk,s( ��) ≡
∑
s′∈S

�s′as′∂s′ξ
s( �R(mk,mk−1)

)
.

(3.1)

The change of sign does not affect the proofs or statements of Lemmas 2.3, 2.4. Indeed a2s
only changes to �2

s a
2
s in the former proof which is no change at all. The generalization of

Lemma 2.5 is as follows.

Lemma 3.1

lim
k→∞ p-lim

N→∞
HN (mk)

N
=

∑
s∈S

λs�s

√
	s(q1)

(
h2s + ξ s(	(q1))

)
.

123



   29 Page 18 of 42 B. Huang, M. Sellke

Proof The proof is similar to Lemma 2.5. The main calculation now becomes:
∫ 1

0
〈mk,∇ H̃N (tmk)〉Ndt �

∑
s∈S

λs

∫ 1

0
Rs(mk,∇ H̃N (tmk))dt

�
∑
s∈S

λs

∫ 1

0

(
�sasξ

s(t �Rk) + t Rk
s

∑
s′∈S

�s′as′∂s′ξ
s( �Rk)

)
dt

(2.20)=
∑
s∈S

λs

∫ 1

0

(
�sasξ

s(t �Rk) + t�sas
∑
s′∈S

Rk
s′∂s′ξ

s( �Rk)
)
dt

=
∑
s∈S

λs�sas

∫ 1

0

d

dt

(
t ξ s(t �Rk)

)
dt

=
∑
s∈S

λs�sasξ
s( �Rk).

Moreover the external field h now contributes energy

〈h,mk〉N �
∑
s∈S

λshsE[Mk
s ] =

∑
s∈S

λs�sash
2
s .

Combining gives the desired statement. ��
Remark 3.1 One can sign the IAMP phase as well by redefining (2.26) to

n�+1( ��) = n�( ��) + �� � uδ
� � (z�+1 − z�). (3.2)

The resulting output n�( ��) then achieves asymptotic energy (recall (1.8))

lim
�→∞ p-lim

N→∞
HN

(
n�( ��)

)

N

=
∑
s∈S

λs�s

[√
	s(q1)(ξ s(	(q1)) + h2s ) +

∫ 1

q1

√
	′

s(q)(ξ s ◦ 	)′(q) dq

]
. (3.3)

However it is unclear whether n�( ��) can be made to obey any notable properties. We will
show that the signed outputs mk( ��) of the first phase above are approximate critical points
for HN (and in [17] that all near-critical points are close to one of them). By contrast, for
the output of signed IAMP to be a critical point, 	 must satisfy a signed version of the
tree-descending ODE (2.3) in which the function (ξ s ◦ 	)′(q) is replaced by

∑
s′∈S

�s′∂s′ξ
s(	(q))	′

s(q).

Since this quantity appears inside a square root in (2.3), it is unclear when to expect solutions
to exist. Furthermore the proof in [16] of well-posedness relies on positivity of coefficients
(via Perron-Frobenius theory) and does not seem to generalize. Additionally, a solutionwould
not seem to correspond to a maximizer of any variational problem as in (1.8). As a result we
do not know how to prove a solution exists in the signed case. However if one takes as given
a smooth function 	 satisfying the signed tree-descending ODE, the iteration (3.2) starting
from signed initialization n�( ��) = m�( ��) + √

	(q1 + δ) − 	(q1) � g would produce an
approximate critical point n�( ��) which still satisfies (3.3).
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3.2 Gradient Computation and Connection to E∞

We now compute the gradient of the outputs, showing that m�( ��) and n� (� ≤ � ≤ �) are
approximate critical points for the restriction of HN to the products of r spheres with suitable
radii passing through them. For σ to be an approximate critical point means precisely that
there exist coefficients �A ∈ R

r such that

‖∇HN (σ ) − �A � σ‖N � 0.

In our case, these coefficients will be given as follows. If �1 is strictly sub-solvable (so q1 < 1),
define �A(q) for q ∈ [q1, 1] by

As(q) ≡ fs(q)−1 +
∑
s′∈S

fs′(q)∂s′ξ
s(	(q)

)
, (3.4)

fs(q) ≡
√

	′
s(q)

(ξ s ◦ 	)′(q)
. (3.5)

Further define for �� ∈ {−1, 1}r

As(q1; ��) ≡ �s

√
ξ s(	(q1)) + h2s

	s(q1)
+

∑
s′∈S

�s′∂s′ξ
s(	(q1)

)√ 	s′(q1)

ξ s
′
(	(q1)) + h2s′

. (3.6)

Note that, by (2.2), this is consistent with the definition of �A(q1) above, in the sense that
�A(q1; �1) = �A(q1). We take this to be the definition of �A(q1) if �1 is super-solvable (and
q1 = 1).

Proposition 3.2 If 	 is a pseudo-maximizer for A (recall Definition 2.1) then for any �� ∈
{±1}r ,

lim
�→∞ p-lim

N→∞
‖∇HN (m�( ��)) − �A(q1, ��) � m�( ��)‖N = 0. (3.7)

Proof Recall from Lemma 2.3 (which holds without modification for general ��) that

lim
�→∞ p-lim

N→∞
‖m�+1( ��) − m�( ��)‖N = 0. (3.8)

Thus rearranging (3.1) yields

lim
k→∞ p-lim

N→∞
‖∇HN (m�( ��)) − ( �� � �a−1 + �bk( ��)) � m�( ��)‖N = 0.

Since lim�→∞
(
�sa−1

s + b�,s( ��)
) = As( ��) by (3.6), the result follows. ��

Remark 3.2 In [17, Theorems 1.5 and 1.6], we show that when ξ is strictly super-solvable,
HN has exactly 2r critical points {x( ��)} ��∈{−1,1}r . Moreover all ε-approximate critical points

with Riemannian gradient ‖∇spHN (x)‖ ≤ ε
√
N arewithin oε(

√
N ) of some x( ��). It follows

from Proposition 3.2 that eachm�( ��) is an ε-approximate critical point for large enough � =
�(ξ, ε). In fact the preceding gradient computation shows that the values �� agree, implying
that ‖m�( ��)− x( ��)‖N ≤ o�→∞(1) (compare with [17, Definition 5, Eq. (1.15)]). Moreover
by [17, Theorem 1.6] each Riemannian Hessian∇2

spHN (x( ��)) has condition number at least

1/C(ξ). It follows that each critical point x( ��) can be efficiently computed to arbitrary
accuracy by applying Newton’s method from m�( ��) for a large enough � = �(ξ). (By
contrast, the convergence of m�( ��) itself to x( ��) is only in the careful double-limit sense
lim�→∞ limN→∞.)
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Proposition 3.3 If	 is a pseudo-maximizer forA, then for any �-indexed sequence (q∗, �) =(
(q∗, �)�≥1

)
such that q∗ ∈ [q1, 1], � ≤ � ≤ � and lim�→∞ |q∗ − qδ

� | = 0, we have

lim
�→∞ p-lim

N→∞

∥∥∥∇HN (n�) − �A(q∗) � n�
∥∥∥
N
= 0.

Proof For notational convenience we assume (q∗, �) = (1, �); the proof is identical in gen-
eral. Recall the rearrangement (2.35):

∇ H̃N (n�) = z�+1 +
�∑

j=0

d�, j � n j−1. (3.9)

So far we did not have to compute d�, j . We do this now, focusing on the IAMP phase.
Recalling (2.25), the IAMP iteration used non-linearity

f � = n� = n� +
�−1∑
j=�

(n j+1 − n j )

= �a � z� +
�−1∑
j=�

uδ
j � (z j+1 − z j )

= (�a − uδ
�) � z� + uδ

�−1
� z� −

�−1∑
j=�+1

(uδ
j − uδ

j−1) � z j .

Using the formula (2.7) we find

d�, j,s ≈

⎧⎪⎪⎨
⎪⎪⎩

∑
s′∈S ∂s′ξ s(	(1)) uδ

�,s′ , j = �;
−∑

s′∈S ∂s′ξ s(	(qδ
j−1)) (uδ

j,s′ − uδ
j−1,s′), � < j < �;∑

s′∈S ∂s′ξ s(	(q1)) (as′ − uδ
�,s′), j = �.

Note that since 	 ∈ C2([q1, 1]) we have the uniform-in-qδ
j approximations (recall (3.5)):

uδ
�,s ≈ fs(q

δ
j ),

uδ
�,s − uδ

�−1,s

δ
≈ d

dq

√
	′

s(q)

(ξ s ◦ 	)′(q)

∣∣∣∣
q=qδ

j

,

as ≈ uδ
�,s ≈ fs(q

δ
� ) ≈ fs(q1).

(3.10)

Substituting into (3.9), we obtain

∇HN (n�) = h + z�+1 +
�∑
j=�

d�, j � n j−1

= �a−1 � m� +
�∑
j=�

uδ
j � (n j+1 − n j ) +

�∑
j=�

d�, j � n j−1

≈
(
�a−1 +

�∑
j=�

d�, j

)
� n� +

�−1∑
j=�

�C j � (n j+1 − n j );
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C j,s ≡ a−1
s +

�∑
k= j+1

d�,k,s

(3.10)≈ fs(q
δ
j )
−1 +

∑
s′∈S

(
∂s′ξ

s(	(1)) fs′(1) −
∫ 1

qδ
j

∂s′ξ
s(	(q)) f ′s′(q) dq

)

≡ Ĉs(q
δ
j ). (3.11)

Since the increments (n j+1−n j ) are orthogonal in the state evolution sense, it easily follows
that the approximation of C j,s by Ĉs(qδ

j ) commutes with summation, i.e.

∇HN (n�) ≈
(
�a−1 +

�∑
j=�

d�, j

)
� n� +

�−1∑
j=�

Ĉ(qδ
j ) � (n j+1 − n j )

Note that wemanifestly have Ĉ(1) = �A(1).We claim the function Ĉ is constant on [q1, 1].
This is equivalent to showing that for each s the function

Fs(q) = 1

fs(q)
+

(∫ q

q1

∑
s′∈S

∂s′ξ
s(	(t)) f ′s′(t) dt

)

is constant. Differentiating, it suffices to show
∑
s′∈S

∂s′ξ
s(	(q)) f ′s′(q)

?= f ′s (q)/ fs(q)2. (3.12)

Write f ′s′(q) = �(q)	′
s′(q), where� is independent of s since	 solves the tree-descending

ODE (2.3). Then using the chain rule, the left-hand side of (3.12) equals

�(q)
∑
s′∈S

∂s′ξ
s(	(q)) · 	′

s′(q) = �(q)(ξ s ◦ 	)′(q).

Meanwhile the right-hand side of (3.12) is

f ′s (q)/ fs(q)2 = �(q)	′
s(q) · (ξ s ◦ 	)′(q)

	′
s(q)

= �(q)(ξ s ◦ 	)′(q).

Therefore Ĉ(q) = �A(1) is constant as claimed. Finally it is clear that the n� coefficient in
(3.11) approximately equals Ĉ(q1) and hence also �A(1). Then (3.11) implies

∇HN (n�) ≈ �A(1) �
⎛
⎝n� +

�−1∑
j=�

(n j+1 − n j )

⎞
⎠

= �A(1) � n�

which completes the proof. ��
From the point of view of [16], the fact that ‖∇spHN (n�)‖N ≈ 0 is to be expected. At least

for (	; q1) maximizing A, if this were not true than an extra step of gradient descent would
essentially suffice to reach energy strictly better than ALG, contradicting the optimality in
[16, Theorem 1]. However the radial derivative computation is interesting in its own right
and lets us study the spherical Hessian around an output σ . We believe that Corollary 3.4
can be strengthened to hold with λ1 rather than λεN . This seems to require a more precise
Gaussian conditioning argument around A(HN ) which we chose not to pursue.
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Corollary 3.4 With λk the k-th largest eigenvalue of a symmetric real matrix,

lim
�→∞,ε→0

p-lim
N→∞

λεN

(
∇2
spHN (n�)

)
= 0. (3.13)

Proof Fixing �A = �A(1), the bulk spectral measure of

W(x) = ∇2HN (x) − �A � x (3.14)

for deterministic x ∈ SN concentrates with rate function N 2 around a limiting spectral
measure independent of x. By union-bounding over an δ

√
N -net as in [26, Proof of Lemma

3], it thus suffices to show (3.13) at a point x ∈ SN independent of HN , with W(x) in
place of ∇2

spHN (σ ). This is purely a statement of random matrix theory and is shown in [17,
Proposition 5.18]. ��

Notably Corollary 3.4 explains the equalityALG = E∞ for puremodels, whichwe derived
manually in [16]. Indeed for a puremodel with ξ = ∏r

i=1 x
ai
i , the energy and radial derivative

are deterministically proportional:

∇radHN (x) = −HN (x)�a � x, ∀x ∈ BN .

It follows (using again the N 2 large deviation rate for the spectral bulk) that there is a unique
energy level E∞ at which critical points can have spherical Hessian obeying the conclusion
of Corollary 3.4. This is the definition of E∞ given in [1, 20].

3.3 Branching IAMP and Exponential Concentration

Herewemodify the second stage of our IAMP algorithm (which requires �� = �1) to use exter-
nal Gaussian randomness in a small number of increment steps. This allows the construction
of an ultrametric tree of outputs with large constant depth and exp(cN ) breadth, with pair-
wise overlaps given by	. More precisely, for any finite ultrametric space X = (x1, . . . , xM ),
M = exp(cN ), of diameter at most 1− q1, branching IAMP outputs (σ 1, . . . , σ M ) with

p-lim
N→∞

max
1≤i, j≤M

‖ �R(σ i , σ j ) − 	
(
1− dX (xi , x j )

)‖∞ = 0.

We use an approach suggested in [3] by injecting external Gaussian noise g(i) into the IAMP
phase of the algorithm at depth qi ∈ (q1, 1). Importantly, this gives an explicit construction of
exp(cN ) approximate critical points of HN (with exponentially good probability) whenever
there is an IAMP phase. A similar construction was used by one of us in [24, Sect. 4]. There
the Gaussian noise was constructed artificially by preliminary iterates of AMP rather than
from exogenous noise (due to the lack of a state evolution result incorporating independent
Gaussian vectors). This only enabled the construction of a large constant number of outputs
rather than exponentially many.

Our branching IAMP proceeds as follows. We first apply Stage I with �� = �1 as before.
We fix q1 < q2 < · · · < qm = 1 and let

�δ
qi = � +

⌈
qi − q

δ

⌉
+ 1, i ∈ [m].

We define n� with the same recursive formula as before, unless � = �δ
qi for some i ∈ [m].

For these cases, we define g(1), . . . , g(m) ∼ N (0, 1N ) to be independent standard Gaussian
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vectors. Then we set:

n�+1 =
⎧⎨
⎩
n� +

√
ξ s

(
	(qδ

�δ
qi
+1

)
)− ξ s

(
	(qδ

�δ
qi

)
) � g(i), � = �δ

qi for some i ∈ [m]
n� + uδ

� �
(
z�+1 − z�

)
, else.

(3.15)
The definition (3.15) naturally enables couplings for pairs of iterations. We say the itera-

tions
(
n�,1, n�,2

)
�≥1 are q j -coupled if their associated Gaussian vectors

g(1,1), . . . , g(m,1) ∼ N (0, 1N ),

g(1,2), . . . , g(m,2) ∼ N (0, 1N )

are coupled so that g(i,1) = g(i,2) almost surely for i < j , and the variables are otherwise
independent.

Proposition 3.5 Let the iterations n�,1, n�,2 be q j coupled as above, and let 	 be a pseudo-
maximizer of A (recall Definition 2.1). Then

lim
�→∞ p-lim

N→∞
HN (n�,a

δ )

N
= A(	), a ∈ {1, 2}; (3.16)

lim
�→∞ p-lim

N→∞

∥∥∥∇HN (n�,a) − �A(1) � n�,a
∥∥∥
N
= 0, a ∈ {1, 2}; (3.17)

lim
�→∞ p-lim

N→∞
〈n�,1

δ , n�,2
δ 〉

N
= 	(qδ

j ). (3.18)

Proof The analysis uses the slightly generalized state evolution given in Theorem 2, which
states that (2.8) continues to hold even in the presence of external randomness g(i). Modulo
this point, the calculations are essentially identical. Indeed [24] uses exactly the same cal-
culations to analyze a slightly different formulation of branching IAMP (therein, the vectors
g are defined via negatively time-indexed AMP iterates to sidestep the lack of a generalized
state evolution result). We therefore give only an outline below.

The SDE description in (2.6) is unchanged if one uses the slightly added generality of
Theorem 2 to incorporate the external Gaussian noise. (This Gaussian noise is scaled in (3.15)
to achieve exactly the same effect as a usual iteration step.) The energy analysis of HN (n�)

only changes on the m modified steps which has negligible effect since δ → 0 as � → ∞;

similarly for∇HN (n�). Thus (3.16) follows by the same proof as before. The proof of (3.18)
is identical to [24, Sect. 8]. ��

In Proposition 3.6 we observe that concentration of measure implies Proposition 3.5 holds
with exponentially high probability. Thus we can couple together exp(cN ) branching IAMPs
to construct a full ultrametric tree of large constant depthm and breadth exp(cN ). To do this,
we fixm, take � sufficiently large and then η > 0 sufficiently small. Thenwith K = exp(ηN ),
we consider a complete depth m rooted tree T , with root defined to have depth 1, such that
each vertex at depths 1, . . . ,m−1 has K children. Thus the leaf-set L(T ) is naturally indexed
by [K ]m . For v, v′ ∈ L(T ) we let v ∧ v′ ∈ {1, 2, . . . ,m} denote the height of their least
common ancestor. For each non-leaf x ∈ V (T ), label the edge from x to its parent by an
i.i.d. Gaussian vector g(x) ∼ N (0, IN ). Then for each leaf v ∈ L(T ), using the m Gaussian
vectors along the path from the root of T to v yields branching IAMP output σ (v) for any
HN .
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Proposition 3.6 Proposition 3.5 holds with exponentially good probability in the following
sense. Fix m and q1 < q2 < · · · < qm = 1. For any ε > 0, for large enough � there exists
η = η(ε, �) > 0 such that for N large enough, the following hold simultaneously across all
v, v′ ∈ L(T ) with probability at least 1− exp(−ηN ):

|A(	) − HN (n�,v)/N | ≤ ε;
‖∇HN (n�,v) − �A(1) � n�,v‖N ≤ ε;∥∥∥ �R(n�,v, n�,v′) − 	(qv∧v′)

∥∥∥
N
≤ ε.

(3.19)

Proof As explained in [15, Sect. 8], themap HN  → n� agrees with aC(�)-Lipschitz function
of the coefficients G(k) of HN except with probability 1−exp(−cN ). The same proof applies
for HN  → n�,v as well since the external noise variables are also Gaussian. Concentration of
measure on Gaussian space now ensures that the statements above hold with exponentially
high probability for each fixed (v, v′). Union bounding over all such pairs for small enough
η implies the result. ��

In particular, the last conclusion in (3.19) shows that all exp(ηN ) constructed points have
pairwise distance at least δ

√
N for 0 < δ < 1 − qm−1. Thus for any sub-solvable model,

with high probability there are exponentially many
√
N/C(ξ)-separated approximate critical

points. This is a converse to themain result of [17], wherewe show that strictly super-solvable
models enjoy a strong topological trivialization property which rules out such behavior.

Remark 3.3 An alternative to branching IAMP, which is very natural from the point of view
of our companion work [16], is to slightly perturb HN to a (1− η)-correlated function H (η)

N .
Concentration of measure implies that the overlap

�R(
A(HN ),A(H (η)

N )
)

concentrates exponentially around a limiting value Rδ,�,η ∈ R
r . We expect that taking η →

0 with δ, � in a suitable way enables Rδ,�,η ≈ 	(q) for any desired q ∈ [q1, 1]. This
corresponds to the fact that p(q) for q ∈ [q1, 1] for any (p,	; q0) maximizing A. However
this approach seems more cumbersome to analyze explicitly.

Remark 3.4 The construction in this section shows the quenched existence of exp(ηN ) well-
separated approximate critical points for strictly sub-solvable models. In [17, Theorem 5.15]
we use this fact to prove the number of exact critical points is exponentially large in expec-
tation. However we are unable to prove the quenched (i.e. high-probability) existence of
exp(ηN ) exact critical points in strictly sub-solvable models. Showing that this is the case, or
more generally identifying the quenched exponential order of the number of critical points,
is an interesting direction for future work.
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Appendix A: State Evolution: Proof of Proposition 2.2

In this section we prove Proposition 2.2, following the appendix of [4]. Throughout, we
denote by G(k) ∈ (RN )⊗k , k ≥ 2 a sequence of standard Gaussian tensors. For Sk the
symmetric group on k elements we also write

A(k) = 1

N (k−1)/2
�(k) �

∑

π∈Sk
(G(k))π (A.1)

for the rescaled tensors with entries

A(k)
i1,...,ik

= 1

N (k−1)/2
γs(i1),...,s(ik )

∑
π∈Sk

G(k)
iπ(1),...,iπ(k)

. (A.2)

For a symmetric tensor A(k) ∈ (RN )⊗k and T ∈ (RN )⊗(k−1), we denote by A(k){T } ∈ R
N

the vector with components

A(k){T }i = 1

(k − 1)!
∑

1≤i1,...,ik−1≤N

A(k)
i,i1,...,ik−1

Ti1...ik−1 . (A.3)

For u ∈ R
N we denote by A(k){u} = A(k){u⊗(k−1)} the vector with entries

A(k){u}i = 1

(k − 1)!
∑

1≤i1,...,ik−1≤N

A(k)
i,i1,...,ik−1

ui1 . . . uik−1 . (A.4)

Note that for A(k) as in (A.1), one has

A(k){u} = ∇HN ,k(u)

where HN ,k denotes the part of HN of total degree k.
For u, v ∈ R

N we recall from Sect. 1.3 the notations

〈v〉N = N−1
∑
i≤N

vi ,

〈u, v〉N = N−1
∑
i≤N

uivi = 〈�λ, �R(u, v)〉,

‖u‖N = 〈u, u〉1/2N =
√∑

s

λs Rs(u, u).
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Given functions ft,s : Rt+1 → R of t + 1 variables for each s ∈ S, and v0, v1, . . . , vt ∈
R

N , we define ft (v0, v1, . . . , vt ) ∈ R
N component-wise via

ft (v
0, v1, . . . , vt )i = ft,s(i)(v

0
i , . . . , v

t
i ). (A.5)

Finally, for a sequence of vectors w0,w1, . . . , we write w≤t = (w0,w1, . . . ,wt ).
To deduce the state evolution result for mixed tensors, we analyze a slightly more general

iterationwhere each homogenous k-tensor is tracked separately, while restricting ourselves to
the casewhere themixture ξ has finitelymany components: γs1,...,sk = 0 for all (s1, . . . , sk) ∈
Sk for all k ≥ D+ 1 for some fixed D ≥ 2. We then proceed by an approximation argument
to extend the convergence to the general case D = ∞.

We begin by introducing the Gaussian process that captures the asymptotic behavior of
AMP. Define ξ k to be the degree k part of ξ , and

ξ k,s = 1

λs
∂xs ξ

k(x1, . . . , xr )

the degree k − 1 part of ξ s .
An AMP iteration is specified by Lipschitz functions ft,s : R2(t+1) → R for each (t, s) ∈

N × S.3 For each iteration t , the state of the algorithm is given by vectors wt ∈ R
N , and

zk,t ∈ R
N , with k ∈ {2, . . . , D}. Moreover for each t , there is also an external randomness

vector et ∈ R
N with independent coordinates eti ∼ μt,s(i) from deterministic probability

distributions
(
μt,s

)
t≥0,s∈S with finite second moment. We now start to define the AMP

iteration steps (the definition finishes at (A.11)). A single step is given by

AMPt
(
w0, . . . ,wt ; e0, . . . , et)k ≡ A(k){ f t } −

∑
t ′≤t

dt,t ′,k � f t ′−1, (A.6)

f t = ft (w
0, . . . ,wt ; e0, . . . , et ), (A.7)

dt,t ′,k,s ≡
(∑
s′∈S

∂xs′ ξ
k,s ((

E
[
Ft,s Ft ′−1,s

])
s∈S

)× E

[
∂Wt ′

s′
Ft,s′

])
,

(A.8)

Ft,s′ ≡ ft,s′
(
W 0

s′ ,W
1
s′ , . . . ,W

t
s′ ; E0

s′ , . . . , E
t
s′
)
. (A.9)

A general multi-species tensor AMP algorithm then takes the form:

wt =
∑

2≤k≤D

zk,t , zk,t+1 = AMPt
(
w0, . . . ,wt ; e0, . . . , et)k . (A.10)

For the right-hand side of (A.9) to make sense, we must define for each t ≥ 0 and s ∈ S a
distribution over sequences (W 0

s , . . . ,Wt
s ; E0

s , . . . , E
t
s). The latter variables E

t ′
s ∼ μt ′,s are

simply taken independent of each other and all other variables. The construction of the W
variables is recursive across t as follows. For each 2 ≤ k ≤ D and s ∈ S, we let Uk,0

s ∼ νk,s
and construct a centered Gaussian process

(Uk,1
s ,Uk,1

s , . . . ,Uk,t
s )

3 The unusual factor 2 in the exponent comes from the external randomness vectors e1, . . . , et .
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which is independent of Uk,0
s . The variables Uk,t

s and Uk′,t ′
s′ are independent unless (k, s) =

(k′, s′). It remains to specify the covariance of (Uk,t
s )1≤t≤T which is given recursively by:

E
[
Uk,t+1
s Uk,t ′+1

s

] = ξ k,s(�k,t,t ′);
�k,t,t ′

s = E

[
ft,s(W

0
s , . . . ,Wt

s ; E0
s , . . . , E

t
s) ft ′,s(W

0
s , . . . ,Wt ′

s ; E0
s , . . . , E

t ′
s )

]
,

∀s ∈ S

Wt
s ≡

∑
2≤k≤D

Uk,t
s . (A.11)

The main result, an extension of Proposition 2.2, follows. Below we useW2 to denote the
Wasserstein-2 distance between probability measures on Euclidean space in any dimension.
We say a function ψ : Rd → R is pseudo-Lipschitz if

|ψ(w) − ψ( y)| ≤ C(1+ ‖w‖ + ‖ y‖) · ‖w − y‖, ∀w, y ∈ R
d .

Theorem 2 (State Evolution for AMP) Let {G(k)}k≥2 be independent standard Gaussian
tensorswithG(k) ∈ (RN )⊗k , and define A(k) as in (A.2). Fix a sequence of Lipschitz functions
ft,s : Rk+1 → R. Let z2,0, . . . zD,0 ∈ R

N be deterministic vectors and w0 = ∑
2≤k≤D zk,0.

Assume that for each s ∈ S, the empirical distribution of the vectors

(z2,0i , . . . zD,0
i ), i ∈ Is

converges in W2(R
D−1) distance to the law of the vector (Uk,0

s )2≤k≤D.
Let wt , zk,t , t ≥ 1 be given by the tensor AMP iteration. Then, for all s ∈ S and T ≥ 1

and for any pseudo-Lipschitz functions ψ : RD×T → R and ψ̃ : RT → R, we have

p-lim
N→∞

1

Ns

∑
i∈Is

ψ
(
(zk,ti )k≤D,t≤T

)
= E

[
ψ

(
(Uk,t

s )2≤k≤D,t≤T
)] ; (A.12)

p-lim
N→∞

1

Ns

∑
i∈Is

ψ̃
(
(wt

i )t≤T

)
= E

[
ψ̃

(
(Wt

s )t≤T
)]

. (A.13)

Note that (A.13) (which concerns the actual AMP iterates wt ) is a special case of
(A.12) (which is more convenient to prove). Indeed one can take ψ

(
(zk,t )k≤D,t≤T

) =
ψ̃

((∑
k≤D zk,t

)
t≤T

)
. In the special case that ck = 0 for all k ≥ D + 1, Proposition

2.2 follows immediately from Theorem 2 by baking the contribution of h explicitly into ft
(since we require k ≥ 2 above). Proposition 2.2 for non-polynomial ξ follows by a standard
approximation argument outlined at the end of Sect. 1. For the remainder of this appendix
we thus focus on establishing (A.12).

A.1: Further Definitions

We define the notations

W t =
[
w0 | w1 | . . . | wt ],

Et =
[
e0 | e1 | . . . | et ],

Zk,t =
[
zk,0 | zk,1 | . . . | zk,t ].
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Given a N × (t + 1) matrix such as W t , and a tensor A(k) ∈ (RN )⊗k , we write A(k){W t } for
the N × (t + 1) matrix with columns A(k){w0}, …, A(k){wt }:

A(k){W t } =
[
A(k){w0}

∣∣∣A(k){w1}
∣∣∣ . . .

∣∣∣A(k){wt }
]
.

We will write f t = ft (W t , Et ) = ft (w0, . . . ,wt , e0, . . . , et ) and also set

yk,t+1(Zk,t ) = Ak
{
f t

} = zk,t+1 +
∑
t1≤t

dt,t1,k � f t1−1, (A.14)

Y k,t = [ yk,1| . . . | yk,t ],
yt (Zk,t ) =

∑
2≤k≤D

yk,t (Zk,t ). (A.15)

We also define an associated (t + 1) × (t + 1) Gram matrix Gξ k,s = Gξ k,s ,t via

(Gξ k,s )t1,t2 = ξ k,s
( �R( f t1 , f t2)

)
. (A.16)

The dependence of Gξ k,s ,t on t will often be suppressed (this dependence is relevant when
inverting the matrix Gξ k,s ,t but not for defining individual entries). Finally, we let Ft denote
the σ -algebra generated by all iterates up to time t :

Ft = σ
({zk,t1 ,wt1 , et1 , f t1}k≤D,t1≤t

)
. (A.17)

Throughout the proof of state evolution we make the following simplifying assumptions:

Assumption 2 ξ is a degree D polynomial with all coefficients γs1,...,sk for 2 ≤ k ≤ D strictly
positive.

Assumption 3 Each matrix Gξ k,s ,t is well-conditioned, i.e.

C−1 ≤ σmin(Gξ k,s ,t ) ≤ σmax(Gξ k,s ,t ) ≤ C

for all t ≤ T . Here Gξ k,s ,t is defined based on iterates that will appear in Theorems 3 and
A.6. The same holds for Lk,t as defined in (A.34).

It is a standard argument that to establish Proposition 2.2, it suffices to do so under the
above assumptions. The reason is that one can always slightly perturb both ξ and the non-
linearities ft,s to ensure the assumptions hold. Then suitable continuity properties suffice to
transfer all asymptotic guarantees. We refer the reader to [4, Appendices A.8 and A.9] for
the arguments in the single-species case, still in the generality of mixed tensors. (In the more
common setting D = 2 of just a random matrix this step is also common for state evolution
proofs, see e.g. [18, Sect. 4.2.1].) The corresponding extension in our setting is completely
analogous and omitted.

A.2: Preliminary Lemmas

The next lemma has several parts. All are elementary Gaussian calculations so their proofs
are omitted.

Lemma A.1 For any deterministic u, v ∈ R
N and A(k) defined by (A.2) we have:
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1. Letting g0 ∼ N(0, 1) be independent of g ∼ N(0, IN ), we have

A(k){u} d=
∑
s∈S

gs

√
ξ k,s( �R(u, u)) + g0√

N

∑
s∈S

us

√∑
s′∈S

∂xs′ ξ
k,s

( �R(u, u)
)
. (A.18)

2. Let g0, g1, . . . , gr ∼ N(0, 1) be independent. We have (jointly across s ∈ S)

√
λs N Rs(v, A(k){u}) d=

√
ξ k,s( �R(u, u)) · �R(v, v)gs

+
√∑

s′∈S
∂xs′ ξ

k,s
( �R(u, u)

)
Rs(u, v) g0. (A.19)

3. For s ∈ S:

R
(
A(k){u}, A(k){v}

)
s
� ξ k,s

( �R(u, v)
)

.

4. For a deterministic symmetric tensor T ∈ (RN )⊗k−1, the vector A(k){T } is centered
Gaussian. Its covariance is given by

E
[
A(k){T }i A(k){T } j

] = 〈ξ k,s(i) � T , T 〉N · 1{i = j}

+ k(k − 1)

Nk−1

N∑
i1,...,ik−2=1

γi,i1,...,ik−2γ j,i1,...,ik−2Ti,i1,...,ik−2Tj,i1,...,ik−2 .

5. Let P ∈ R
N×N be the orthogonal projection onto a (deterministic) subspace S ⊆ R

N

with d = dim(S) = O(1). Then

‖PG(k){u} − G(k){u}‖2/‖G(k){u}‖2 � 0.

We next develop a formula for the conditional expectation of a Gaussian tensor A(k) given
a collection of linear observations. We set D to be the t × t × t tensor with entries Di jk = 1
if i = j = k and Di jk = 0 otherwise.

Lemma A.2 Recalling (A.17), let E{A(k)|Ft }. Equivalently E{A(k)|Ft } is the conditional
expectation of A(k) given the linear-in-A(k) observations

A(k){ f t ′ } = yk,t ′+1 for s ∈ {0, . . . , t − 1}. (A.20)

Then we have for i1, i2, . . . , ik ≤ n,

E[A(k)|Ft ]i1,i2,...,ik

=
k∑
j=1

∑
0≤t1,t2≤t−1

(Ẑk,t )i j ,t2 · (G−1
ξ k,s ,t−1

)t2,t1 · ( f t1,i1 . . . f t1,i j−1
f t1,i j+1

. . . f t1,ik ).

(A.21)

Here, the matrix Ẑk,t ∈ R
N×t is defined as the solution of a system of linear equations as

follows.Define the linear operatorTk,t : RN×t → R
N×t by letting, for i ≤ N,0 ≤ t3 ≤ t−1:

[Tk,t (Z)]i,t3 =
N∑
j=1

∑
0≤t1,t2≤t−1

( f t2)i ( f t2) j

×
(
(G−1

ξ k,s(i),t−1
)t2,t1∂s( j)ξ

k,s(i)( �R( f t2 , f t3)
)) � (Z) j,t1 . (A.22)

123



   29 Page 30 of 42 B. Huang, M. Sellke

Then Ẑk,t is the unique solution of the following linear equation (with Y k,t defined as per
(A.14))

Ẑk,t + Tk,t (Ẑk,t ) = Y k,t . (A.23)

(Here, Ẑk,t = [ ẑk,0, . . . , ẑk,t−1] and Y k,t = [ ŷk,1, . . . , ŷk,t ] have dimensions N × t .)

The above formulas forE[A(k)|Ft ] and Tk,t are rather complicated. In [4, Appendix A] the
reader may find helpful tensor network diagrams for the single-species case. Unfortunately
it is less clear how to draw a corresponding tensor network with multiple species.

Proof of Lemma A.2 Let Vk,t be the affine space of symmetric tensors satisfying the con-
straint (A.20). The conditional expectation E[A(k)|Ft ] is the tensor with minimum weighted
Frobenius norm ‖ · ‖F,ξ k in the affine space Vk,t , given by

‖A‖2F,ξ k
= 〈(�(k))−1 � A, (�(k))−1 � A〉. (A.24)

Here (�(k))−1 is the entry-wise inverse of �(k), which exists by Assumption 2.
By Lagrange multipliers, there exist vectors m1, . . . ,mt ∈ R

N such that E[A(k)|Ft ] =
Â

(k)
equals

Â
(k)
t ≡ �(k) �

t−1∑
t ′=0

k∑
j=1

f t ′ ⊗ · · · ⊗ f t ′︸ ︷︷ ︸
j−1 times

⊗mt ′ ⊗ f t ′ ⊗ · · · ⊗ f t ′︸ ︷︷ ︸
k− j times

. (A.25)

Also by Lagrange multipliers, if a tensor Â
(k)

is of this form (for some choice of vectors

m1, . . . ,mt ) and satisfies the constraints Â
(k){ f t ′ } = yk,t ′+1 for s < t , then this tensor is

unique and equals E[A(k)|Ft ]. Without loss of generality, we write

mt1
i =

t−1∑
t2=0

(G−1
ξ k,s(i),t−1

)t1,t2 ẑ
t2
i , Ẑk,t = [ ẑ1| . . . | ẑt ]. (A.26)

By direct calculation we obtain that for each i ∈ [N ],
(
Â

(k)
t { f t1}

)
i =

t−1∑
t2=0

(Gξ k,s(i),t−1)t1,t2(m
t2)i

+
t−1∑
t2=0

∑
s′∈S

(
∂s′ξ

k,s(i)( �R( f t1 , f t2))Rs′( f t1 ,m
t2)

)
( f t2)i

f = ( ẑt1)i +
t−1∑
t2=0

∑
s′∈S

(
∂s′ξ

k,s(i)( �R( f t1 , f t2))Rs′( f t1 ,m
t2)

)
( f t2)i .

(A.27)

We next stack these vectors as columns of an N × t matrix. The first term yields Ẑk,t .
Moreover the second term coincides with Tk,t (Ẑk,t ) by rearranging the order of sums in
(A.27). Hence

[
Â

(k)
t { f 0}, . . . , Â(k)

t { f t−1}
] = Ẑk,t + Tk,t (Ẑk,t ). (A.28)

This in turn implies that the equation determining Ẑk,t takes the form (A.23). ��
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A.3: Long AMP

As an intermediate step towards proving Theorem 2, we introduce a new iteration that we call
Long AMP (LAMP), following [8]. This iteration is less compact but simpler to analyze. For
each k ≤ D, let Sk,t ⊆ (RN )⊗k be the linear subspace of tensors T that are symmetric and
such that T { f t1} = 0 for all t1 < t . We denote by P⊥

t (A(k)) the projection of A(k) onto Sk,t ,
in the inner product space (A.24) corresponding to �(k). We then define the LAMP mapping

LAMPt
(
v≤t)

k ≡ P⊥
t (A(k)){ f t } +

∑
0≤t1≤t

ht,t1−1,k � qk,t1 , (A.29)

ht,t1,k,s ≡
∑

0≤t2≤t−1

[
G−1

ξ k,s ,t−1

]
t1,t2

[
Gξ k,s ,t

]
t2,t

, ht,−1,k = 0. (A.30)

Here we use similar notations f t = ft (V t ; Et ) and Gξ k,s ,t as before (recall (A.16)), and
take the vectors et as before. However the quantities f t , Gξ k,s ,t are now different: they are
computed using the vectors v0, . . . , vt using the recursion:

vt =
∑

2≤k≤D

qk,t , qk,t+1 = LAMPt
(
v≤t)

k . (A.31)

Following [4, 8], we first establish state evolution for LAMP (under the non-degeneracy
Assumption 2), and then deduce the result for the original AMP. In analyzing LAMP we use
notations analogous to the ones introduced for AMP. In particular:

V t = [v1|v2| . . . |vt ] (A.32)

Qk,t = [q⊗k
k,1|q⊗k

k,2| . . . |q⊗k
k,t ]. (A.33)

A.4: State Evolution for Long AMP

Theorem 3 Under the assumptions of Theorem 2, let q2,0, . . . qD,0 ∈ R
N be deterministic

vectors and v0 = ∑
2≤k≤D qk,0. Assume that the uniform empirical distribution of the N

vectors {(q2,0i , . . . , qD,0
i )}i≤N converges inW2 distance to the lawof the vector (Uk,0)2≤k≤D.

Further we assume there is a constant C < ∞ such that for all t ≤ T :

(i) The matrices Gξ k,s ,t = Gξ k,s ,t (V ) are uniformly well-conditioned as guaranteed by
Assumption 3.

(ii) Let the linear operator Tk,t : RN×t → R
N×t be defined as per (A.22), with Gξ k,s ,t =

Gξ k,s ,t (V , E), and f t = ft (V , E), and define

Lk,t = 1+ Tk,t . (A.34)

Then C−1 ≤ σmin(Lk,t ) ≤ σmax(Lk,t ) ≤ C.

Then the following statements hold for any t ≤ T and sufficiently large N:

(a) Correct conditional law:

qk,t+1|Ft

d= E[qk,t+1|Ft ] + P⊥
t ( Ã

(k)
){ f t }. (A.35)

where Ã
(k)

is a symmetric tensor distributed identically to A(k) and independent of
everything else, andP⊥

t is the projection onto the subspaceSk,t defined in Sect.1. Further

E[qk,t+1|Ft ] =
∑
s∈S

∑
0≤t1≤t

ht,t1−1,k,sqk,t1s . (A.36)
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Moreover, the vectors (qk,t+1)2≤k≤D are conditionally independent given Ft .
(b) Approximate isometry: we have

Rs(qk,t1+1, qk,t2+1) � ξ k,s
( �R( f t1 , f t2)

)
, (A.37)

Rs(v
t1+1, vt2+1) � ξ s

( �R( f t1 , f t2)
)
. (A.38)

Moreover, both sides converge in probability to constants as N → ∞, and for k1 �= k2
and any (t1, t2) and s ∈ S,

Rs(qk1,t1 , qk2,t2) � 0. (A.39)

(c) State evolution: for each s ∈ S and any pseudo-Lipschitz function ψ : RD×2(t+1) → R,
we have

p-lim
N→∞

1

Ns

∑
i∈Is

ψ
(
(qk,t

′
i )k≤D,t ′≤t ; (eti )t ′≤t

) = E
{
ψ

(
(Uk,t ′

s )2≤k≤D,t ′≤t ; (Et ′
s )t ′≤t

)}
.

(A.40)

where (Uk,t
s )k≤D,1≤t≤T is the centered Gaussian process defined in the statement of

Theorem 2.

In the next subsection, we will prove these statements by induction on t . The crucial point
we exploit is the representation (a). We emphasize that the iteration number t is bounded as
N → ∞; therefore all numerical quantities not depending on N (but possibly on t) will be
treated as constants.

A.5: Proof of Theorem 3

The proof will be by induction over t . The base case is clear, (e.g. see Proposition A.4) and
we focus on the inductive step. We assume the statements above for t − 1 and prove them
for t .

A.5.1: Proof of (a)

Note that P⊥
t (A(k)) is by construction independent of Ft , and therefore we can replace A(k)

by a fresh independent matrix in (A.29), whence (A.35) follows. The equality (A.36) holds
by definition of the iteration.

A.5.2: Proof of (b): Approximate isometry

We will repeatedly apply Lemma A.1. We start with (A.37). As we are inducting on t , we
may limit ourselves to considering overlaps �R(qk,t+1, qk,t1+1), for t1 ≤ t .

Define the tensor �(k),∇ ∈ (RS≥0)
⊗(k−1) by

�(k),∇
s1,...,sk−1

=
√
k
∑
s∈S

λs
(
�

(k)
s,s1,...,sk−1

)2
. (A.41)

We choose

( f⊗k−1
t )‖ ∈ span

(
f⊗k−1
t1

)
t1<t

123



Optimization Algorithms... Page 33 of 42    29 

such that

�(k),∇ � (
f⊗k−1
t

)
‖

is the orthogonal projection of �(k),∇ � f⊗k−1
t onto

span
(
�(k),∇ � f⊗k−1

t1

)
t1<t

and also set

( f⊗k−1
t )⊥ = f⊗k−1

t − ( f⊗k−1
t )‖.

We will use (and soon after, prove) the following lemma.

Lemma A.3 For all t1 ≤ t1, we have

P⊥
t ( Ã

(k)
){( f⊗k−1

t )⊥} � Ã
(k){( f⊗k−1

t )⊥}. (A.42)

For t1 ≤ t − 1, using Lemma A.1, point 2 implies

�R(qk,t+1, qk,t1+1) � �R(
E[qk,t+1|Ft ], qk,t1+1)

We next use the formula in (a) for E[qk,t+1|Ft ] together with the expression in (A.29). For
each s ∈ S:

R
(
E[qk,t+1|Ft ], qk,t1+1)

s � R

( ∑
0≤t2,t3≤t−1

qk,t3+1(G−1
ξ k,s ,t−1

)t3,t2 ξ k,s
(
f t2 , f t

)
, qk,t1+1

)

s

=
∑

0≤t2,t3≤t−1

R
(
qk,t3+1, qk,t1+1)

s (G−1
ξ k,s ,t−1

)t3,t2 ξ k,s
(
f t2 , f t

)

�
∑

0≤t2,t3≤t−1

(Gξ k,s ,t−1)t3,t1 (G−1
ξ k,s ,t−1

)t3,t2 ξ k,s
(
f t2 , f t

)

= (
Gξ k,s ,t−1 × G−1

ξ k,s ,t−1
× Gξ k,s ,t−1

)
t1,t

= (Gξ k,s ,t−1)t1,t . (A.43)

Here (A.43) comes from the induction hypothesis (A.37) (and the symmetry of the matrix
Gξ k,s ,t−1 is used to obtain the next line). We next prove that (A.37) holds for t1 = t . We have
by definition of the projections that

P⊥
t ( Ã

(k)
){ f t } = P⊥

t ( Ã
(k)

){( f⊗k−1
t )⊥},

where the right-hand side is defined according to (A.3). Using (A.42) from Lemma A.3 as
well as point 4 of Lemma A.1, we have

R
(
P⊥
t ( Ã

(k)
){ f t },P⊥

t ( Ã
(k)

){ f t }
)
s
� ξ (k,s)

(
R
(
( f⊗k−1

t )⊥, ( f⊗k−1
t )⊥

))
. (A.44)

Next, using (A.42) and Lemma A.1 (point 2), we obtain that for all s ∈ S

R
(
P⊥
t ( Ã

(k)
){ f t },E[qk,t+1|Ft ]

)
s � 0. (A.45)

Moreover we recall that by the expression for E[qk,t+1|Ft ] from part (a),

R
(
E[qk,t+1|Ft ],E[qk,t+1|Ft ]

)
� ξ k,s

( �R(( f⊗k−1
t )‖, ( f⊗k−1

t )‖)
)

. (A.46)
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The formula for linear regression implies

( f⊗k−1
t )‖ =

∑
0≤t1≤t−1

αt1,t�
(k,s) � f⊗k−1

t1 , (A.47)

αt1,t =
∑

0≤t2≤t−1

(G−1
ξ k,s ,t−1

)t1,t2〈�(k,s) � f⊗k−1
t2 , �(k,s) � f⊗k−1

t 〉N (A.48)

=
∑

0≤t2≤t−1

(G−1
ξ k,s ,t−1

)t1,t2(Gξ k,s ,t )t2,t . (A.49)

By part (b) of the inductive step, for 1 ≤ t1, t2 ≤ t − 1 we have

ξ k,s
( �R( f t2 , f t1)

) � Rs(qk,t2+1, qk,t1+1).

In particular the formulas (A.30) and (A.47) have asymptotically the same coefficients, and
the overlap structure between the summands is identical. It follows that

R
(
E[qk,t+1|Ft ],E[qk,t+1|Ft ]

)
� R

(
( f⊗k−1

t )‖, ( f⊗k−1
t )‖

)
. (A.50)

Using together Eqs. (A.44), (A.45), and (A.50), we get

R
(
qk,t+1, qk,t+1

)
� R

(
E[qk,t+1|Ft ],E[qk,t+1|Ft ]

)
+ R

(
( f⊗k−1

t )⊥, ( f⊗k−1
t )⊥

)

� R
(
( f⊗k−1

t )⊥, ( f⊗k−1
t )⊥

)

= ξ k,s
( �R( f t , f t )

)
.

This establishes (A.37).
Next consider (A.39), i.e., approximate orthogonality of qk,r and q p′,r for k �= p′. This

follows easily from the representation in point (a) which, together with Lemma A.1, induc-
tively implies that the iterates qs,k for different k are approximately orthogonal. Finally,
(A.38) follows directly from (A.37) and (A.39). We now prove Lemma A.3.

Proof of Lemma A.3 For convenience we write Ã = Ã
(k)

. By Lagrange multipliers, there
exist vectors (θ t1)t1≤t−1 in R

N such that P⊥
t ( Ã) = Ã− Q, where

Q = (
�(k))�2 � (k − 1)!

Nk−1

t−1∑
t1=0

k∑
j=1

f t1 ⊗ · · · ⊗ f t1︸ ︷︷ ︸
j−1 times

⊗θ t1 ⊗ f t1 ⊗ · · · ⊗ f t1︸ ︷︷ ︸
k− j times

.

The vectors (θ t1)t1≤t−1 are determined by the equations Q{ f t1} = Ã{ f t1} for all t1 ≤ t −1.
This expands (for each t1 ≤ t − 1) to
∑

t2≤t−1

(Gξ k,s ,t−1)t1,t2 � θ t2 +
∑

t2≤t−1

∑
s′∈S

(
∂s′ξ

k,s(i)( �R( f t1 , f t2))Rs′( f t1 , θ t2)
)
f t2 = Ã{ f t1}.

Recall that we assume each Gξ k,s ,t−1 is well-conditioned with high probability. Thus we can

multiply the system of t equations above by G−1
ξ k,s ,t−1

in the coordinates Is for each s ∈ S.
For each t3 ≤ t − 1, we obtain:

θ t3 +
∑

t1,t2<t

(
(G−1

ξ k,s ,t−1
)t1,t3

∑
s′∈S

(
∂s′ξ

k,s(i)( �R( f t1 , f t2))Rs′( f t1 , θ t2)
))

f t2

=
∑
t1<t

(G−1
ξ k,s ,t−1

)t1,t3 � Ã{ f t1}.
(A.51)
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Switching t3 to t1, we find

θ t1 = θ0t1 + θ
‖
t1 ,

θ0t1 ≡
∑
t2<t

(G−1
ξ k,s ,t−1

)t1,t2 � Ã{ f t2},

θ
‖
t1 ∈ span

(
( f t2,s)t2<t,s∈S

)
. (A.52)

We claim that ‖θ‖t1‖N � 0, i.e., θ t1 � θ0t1 . Indeed, let � ∈ R
N×t be the matrix with columns

(θ t2)t2<t , and �0 the matrix with columns (θ0t2)t2<t . Then (A.51) can be written as

LT
k,t (�) = �0.

Here we recall Lk,t = 1 + Tk,t and Tk,t ∈ R
Nt×Nt is defined in (A.22). Substituting the

decomposition � = �0 + �‖ in the above, we obtain

LT
k,t (�

‖) = −T T
k,t (�

0).

Recall that Lk,t is well-conditioned by Assumption 3. Therefore it remains to prove

T T
k,t (�

0)
?� 0. (A.53)

Let c0, . . . , ct−1 ∈ R
N be the columns of T T

k,t (�
0). We first note that for all t1 ≤ t − 1 and

s ∈ S,

ct1,s ∈ span
(
( f t2,s)t2<t

)
.

Moreover the Gram matrix

G1,t−1,s =
(
Rs( f t1 , f t2)

)
t1,t2<t

is well-conditioned for each s ∈ S. Therefore it is sufficient to check that Rs( f t1 , ct4) � 0
for each t1, t4 < t and s ∈ S. Plugging in the definition (A.22), it remains to check that for
0 ≤ t1, t4 ≤ t − 1,

∑
t2,t3<t

∑
s′′∈S

λs′′ �Rs

(
f t1 , (G−1

ξ k,s
′′
,t−1

)t2,t3

∑
s′

∂s′ξ
k,s′′( �R( f t4 , f t3))Rs′( f t4 , θ

0
t2 )

)
Rs( f t1 , f t3)

?� 0.

Finally, this last claim follows by substituting the definition (A.52) of θ0t2 , and using the fact
that

Rs′( f t4 , Ã{ f t2}) � 0, ∀ t4, t2 ≤ t, s′ ∈ S

which follows from Lemma A.1. Thus (A.53) is established.
We are now ready to prove Lemma A.3. First note that

Ã{( f⊗k−1
t )⊥} − P⊥

t ( Ã){( f⊗k−1
t )⊥} = Q{( f⊗k−1

t )⊥} (A.54)

decomposes into two types of terms based on the definition of Q above. Recalling (A.41),
the first involves 〈

�(k),∇ � ( f⊗k−1
t1 )⊥, �(k),∇ � ( f⊗k−1

t )⊥
〉
N

θ t1

for t1 ≤ t − 1, which vanishes by the definition of ( f⊗k−1
t )⊥. The other terms take the form

〈
�(k),∇ � (θ t1 ⊗ f⊗k−2

t1 ), �(k),∇ � ( f⊗k−1
t )⊥

〉
N

f t1 .
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In particular, this means that to prove (A.54) vanishes, suffices to show

R
(
Q{( f⊗k−1

t )⊥}, f t2

)
= 0

for all t2 ≤ t .
Note that by construction,

( f⊗k−1
t )⊥ =

∑
t1≤t

bt1 f
⊗k−1
t1 .

By the well-conditioning assumption, the bt1 are bounded. Therefore it suffices to show that

R
(
Q{ f⊗k−1

t2 }, f t1

) ?� 0, ∀ t1 ≤ t − 1, t2 ≤ t .

Finally note that each term in the left-hand side includes an overlap Rs(θ t1 , f t2). However
these all vanish:

Rs(θ t1 , f t2) � 0.

This is because we can substitute θ t1 with θ0t1 as defined in (A.52) and use the fact that
�R( Ã{ f t3}, f t ) � 0 which follows from Lemma A.1. This completes the proof. ��

A.5.3: Proof of (c)

The base case of initialization is handled by the following basic fact.

Proposition A.4 Let μ ∈ P(Rk) be a probability distribution with finite second moment.

Then if E1, . . . , EN
i .i .d.∼ μ and μ̂N = 1

N

∑N
i=1 δEi , one has

p-lim
N→∞

W2(μ̂N , μ) = 0.

Proof It suffices to show that μ̂N → μ weakly in probability and show convergence in
probability of the L2 norm. The first is clear and the second holds by the law of large
numbers. ��

Continuing to the inductive step, recall that the process (Uk,t
s )t≥1 is Gaussian by construc-

tion, and independent of Uk,0
s . Define

Ct1,t2,s = E
[
Uk,t1
s Uk,t2

s

];
C≤t,s = (Ct1,t2,s)t1,t2≤t .

We then have

E[Uk,t+1
s |Uk,0

s , . . . ,Uk,t
s ] =

t∑
t1=1

α̃t1,sU
k,t1;

α̃t1,s ≡
t∑

t2=1

(C−1≤t,s)t1,t2Ct2,t+1,s .

(A.55)

Here in writing (C−1≤t,s)t1,t2 , we view C≤t,s as a (t + 1) × (t + 1) matrix for each s ∈ S.
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On the other hand, from point (a), we know that

E[qk,t+1
s |Ft ] =

∑
1≤t1≤t

αt1,sq
t1,k
s ;

αt1,s ≡
t∑

t2=1

(G−1
ξ k,s ,t−1

)t1−1,t2−1(Gξ k,s ,t )t2−1,t .

(A.56)

Moreover the induction hypothesis of (A.40) implies that for t1, t2 ≤ t ,

(Gξ k,s ,t )t1,t2 � E

[
ξ k,s

(
ft1(W

0
s , . . . ,Wt1

s ; E0
s , . . . , E

t1
s ), ft (W

0
s , . . . ,Wt2

s ; E0
s , . . . , E

t2
s )})

]
.

(A.57)

(Recall that by definition Wt
s ≡ ∑

k≤D Uk,t
s , while f t = ft (V t ; Et ) here.)

Therefore, from the definition of the process (Uk,t
s )t≥0,

(Gξ k,s ,t )t1,t2 � Ct1+1,t2+1,s, ∀t1, t2 ≤ t .

Recalling that Gξ k,s ,t is well-conditioned, we find (recall (A.55), (A.56)):

αt1,s � α̃t1,s .

Therefore we also have

E[qk,t+1|Ft ] −
t∑

t1=1

α̃t1 � qk,t1 =
t∑

t1=1

(αt1 − α̃t1) � qk,t1

� 0.

Moreover, Lemma A.1 (point 4) shows that P⊥
t ( Ã

(k)
){ f t } � Ã

(k){( f⊗k−1
t )⊥} has entries

which are approximately independent Gaussian with variance

σ 2
t,s ≡

(
�(k),∇ � ( f⊗k−1

t )⊥, �(k),∇ � ( f⊗k−1
t )⊥

)

on coordinates i ∈ Is , even conditionally on Ft . Therefore

qk,t+1 d=
t∑

t1=1

α̃t1 � qk,t1 + σt � g + er rk,t+1, (A.58)

where ‖er r‖N � 0 and g ∼ N(0, IN ) is independent of everything else. It now remains to
verify that this agrees with the desired covariance. As proved in the previous point, for any
t1 ≤ t ,

R
(
qk,t+1, qk,t

′+1
)
s
� ξ k,s

(
f t , f t ′

)

� E
[
Uk,t+1
s Uk,t ′+1

s

]
.

In particular this establishes convergence of the second moment, so in order to prove (A.40)
it is sufficient to establish weak convergence. Hence we may assume ψ : RD×(t+1) → R is
Lipschitz (rather than just pseudo-Lipschitz).
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Using the representation (A.58), and focusing for simplicity on a single k, we get

1

Ns

∑
i∈Is

ψ
(
qk,≤t
i , qk,t+1

i ; e≤t
i

) � 1

Ns

∑
i∈Is

ψ

(
qk,≤t
i ,

t∑
s=1

α̃sqk,s + σt gi ; e≤t
i

)

� 1

Ns

∑
i∈Is

E
g∼N (0,1)ψ

(
qk,≤t
i ,

t∑
s=1

α̃sqk,s + σt g; e≤t
i

)
.

The second equality above follows by Gaussian concentration since ψ is assumed Lips-
chitz. Applying the induction hypothesis now implies (A.40), except that et+1 is not present.
However since et+1

i and Et+1
s have the same law and are both independent of the past, W2

convergence immediately transfers by Proposition A.5 below. This completes the proof of
part (c).

Proposition A.5 Let νn = ∑n
i=1 δX̂i

for n ≥ 1 be a sequence of probability measures on Rk

converging to ν ∈ P(Rk) in W2. Let μ ∈ P(Rk) be a probability distribution with finite
second moment. Let

E1, . . . , EN
i .i .d.∼ μ

and set

ν̃n =
n∑

i=1

δ(X̂i ,Ei )
.

Then

p-lim
N→∞

W2(̃νN , ν ⊗ μ) = 0.

Proof Using Proposition A.4 applied to ν, we can find for any ε > 0 a coupling � =(
(X̂i , Xi )

)
i∈[N ] ofνn with i.i.d. samples ν̂n with transport cost atmost ε.Generate independent

variables E1, . . . , EN

i .i .d.∑
μ. Then note that

W2
(̃
νn, ν ⊗ μ

) ≤ W2

(
ν̃n,

n∑
i=1

δ(Xi ,Ei )

)
+W2

(
n∑

i=1

δ(Xi ,Ei ), ν ⊗ μ

)

≤ ε + oP(1).

Here in the latter step we used the assumption on the coupling � for the first term and
Proposition A.4 applied to ν ⊗ μ on the second term. This completes the proof. ��

A.6: Asymptotic Equivalence of AMP and Long AMP

Here we show that AMP and LAMP produce approximately the same iterates.

Lemma A.6 Let {G(k)}k≤D be standard Gaussian tensors, and A(k) = �(k) �G(k) for k ≥ 2.
Consider the corresponding AMP iterates Zt ≡ (zk,t1)k≤D,t1≤t and LAMP iterates Qt ≡
(qk,t1)k≤D,t1≤t , from the same initialization Z0 = Q0 satisfying the assumptions of Theorems
2 and 3.

Let f t = ft (V t ; Et ), t ≥ 0 be the nonlinearities applied to LAMP iterates. Further
assume that there exists a constant C < ∞ such that, for all t ≤ T ,
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(i) The LAMP Gram matrices Gk,t = Gk,t are well-conditioned as guaranteed by Assump-
tion 3, i.e.,

C−1 ≤ σmin(Gk,t ) ≤ σmax(Gk,t ) ≤ C, ∀k ≤ D, t ≤ T .

(ii) Let the linear operator Tk,t : RN×t → R
N×t be defined as per (A.22), with Gk,t =

Gk,t (V ), and f t = ft (V , Et ), and define Lk,t = 1+ Tk,t . Then

C−1 ≤ σmin(Lk,t ) ≤ σmax(Lk,t ) ≤ C .

Then, for any t ≤ T , we have

‖Zt − Qt‖N � 0. (A.59)

Proof Throughout the proof we will suppress Et and simply write ft (W t ) or ft (V t ) to
distinguish AMP and LAMP iterates, and analogously for Gk,t (W t ) or Gk,t (V t ). The proof
is by induction over the iteration number, so we will assume it to hold at iteration t , and prove
it for iteration t + 1. We prove the induction step by establishing the following two facts for
each 2 ≤ k ≤ D:

∥∥AMPt+1(Zt )k − AMPt+1(Qt )k
∥∥
N � 0, (A.60)∥∥AMPt+1(Qt )k − LAMPt+1(Qt )k

∥∥
N � 0. (A.61)

Let us first consider the claim (A.60), and note that

AMPt+1(Zt )k − AMPt+1(Qt )k = A(k){ ft (W t )} − A(k){ ft (V t )}
−

∑
t1≤t

dt,t1,k �
(
ft1−1(W t1−1) − ft1−1(V t1−1)

)
,

where we wrote dt,t1,k,s for the coefficients of (A.8), with AMP iterates replaced by LAMP
iterates. We then have
∥∥AMPt+1(Zt )k − AMPt+1(Qt )k

∥∥
N ≤ D1,t + D2,t ;

D1,t ≡
∥∥A(k){ ft (W t )} − A(k){ ft (V t )}

∥∥
N ,

D2,t ≡
∑

t1≤t, s∈S
|dt,t1,k,s | ·

∥∥ ft1−1,s(W t1−1) − ft1−1,s(V t1−1)
∥∥
N .

Notice that, by the induction assumption (and recalling that each ft,s is Lipschitz continuous
and acts component-wise):

∥∥ ft (W t ) − ft (V t )
∥∥
N ≤ CT

∑
t1≤t, k≤D

‖wk,t1 − vk,t1‖N � 0. (A.62)

Further, for any tensor T ∈ (RN )⊗k , and any vectors v1, bv2 ∈ R
N ,

‖T {v1} − T {v2}‖N ≤ (N
k−2
2 ‖T‖op)(‖v1‖N + ‖v2‖N )k−2‖v1 − v2‖N (A.63)

Using Lemma A.1, this implies that the following bound holds with high probability for a
constant C :

D1,t ≤ C(‖ ft (W t )‖N + ‖ ft (V t )‖N )k−2‖ ft (W t ) − ft (V t )‖N
≤ C(2‖ ft (V t )‖N + ‖ ft (W t ) − ft (V t )‖N )k−2‖ ft (W t ) − ft (V t )‖N
� 0.

123



   29 Page 40 of 42 B. Huang, M. Sellke

The last step follows from (A.62) and Theorem 3, which implies (recall each ft,s is Lipschitz)
that ‖ ft (V t )‖N ≤ C with probability 1 − o(1). Notice that the same argument implies
‖ ft (W t )‖N ≤ C with high probability.

Similarly, D2,t � 0 follows since ‖ ft1−1(W t1−1)− ft1−1(V t1−1)‖N � 0 and |dt,t1,k,s | ≤
CT by construction, thus yielding (A.60).

We now prove (A.61). Comparing (A.8) and (A.29), with P‖
t = 1− P⊥

t we find

AMPt+1(Qt )k − LAMPt+1(Qt )k = P‖
t (A(k)){ ft (V t )} − onsk,t+1 −

∑
0≤t1≤t−1

ht,t1,k � qk,t1+1,

onsk,t+1 =
∑
t1≤t

dt,t1,k � ft1−1(V t1−1) (A.64)

Note that P‖
t (A

(k)) = E
[
A(k)|Ft

]
, where Ft here is the analogous σ -algebra generated by

{qk,t1 , et1}t1≤t,k≤D . Equivalently, this is the conditional expectation of A(k) given the linear
constraints

A(k){ ft1(V t1)} = yk,t1+1, for t1 ∈ {0, . . . , t − 1}, (A.65)

Also notice that, by the induction hypothesis, and the definition of yk,t1 , (A.14), we have for
all t1 ≤ t ,

yk,t1 � qk,t1 + onsk,t1 . (A.66)

LemmaA.2 implies thatP‖
t (A

(k)) takes the form of (A.21) for a suitablematrix Ẑk,t ∈ R
N×t .

The key claim is that
Ẑk,t � Qt . (A.67)

In order to establish this claim, we show that, under the inductive hypothesis,

(1+ Tk,t )Qt � Y k,t . (A.68)

Since Lk,t = 1 + Tk,t is well-conditioned by assumption, the combination of (A.23) and
(A.68) implies Ẑk,t � Qt . By (A.66), in order to prove (A.68), it is sufficient to show that

Tt Qt � ONSk,t ≡ [onsk,1| · · · |onsk,t ]. (A.69)

In order to prove (A.69), we use Theorem 3. Recall that

Ct1,t2,s = E{Uk,t1
s Uk,t2

s },
Wt1

s =
∑

2≤k≤D

Uk,t1
s ,

C≤t = (Ct1,t2,s)t1,t2≤t .

(The value 2 ≤ k ≤ D is implicitly fixed in the definition of C≤t .) By Theorem 3,

Ct1+1,t2+1 � 〈qk,t1+1, qk,t2+1〉 � (Gξ k,s ,t (V ))t1,t2 , ∀ t1, t2 ≤ t .
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This implies for any 0 ≤ t1 ≤ t − 1 and s ∈ S,

t−1∑
t2=0

(G−1
ξ k,s ,t−1

)t1,t2 R
(
qk,t2+1, ft−1(V t−1)

)
s

�
t−1∑
t2=0

(C−1≤t,s)t1+1,t2+1 E

[
Uk,t2+1
s ft−1,s(W

0
s , . . . ,Wt−1

s ; E0
s , . . . , E

t−1
s )

]

= E

[
∂ ft−1,s

∂Wt1+1
s

(W 0
s , . . . ,Wt−1

s ; E0
s , . . . , E

t−1
s )

]
1t1≤t−2. (A.70)

Indeed, Gaussian integration by parts yields the latter expression (it can be done conditionally
on the variables E since they are independent). Combining (A.70) with the definition (A.8)
will now allow us to conclude Tk,t Qt � ONSk,t as desired. Indeed for each s ∈ S we have

[
Tk,t Qt

]
t,s =

t−1∑
t1=0

∂s′ξ
k,s( �R( f t1 , f t−1))

( t−1∑
t2=0

(G−1
ξ k,s

′
,t−1

)t1,t2 Rs′(q
k,t2+1, f t−1)

)
f t1,s

�
t−2∑
t1=0

∑
s′∈S

∂s′ξ
k,s( �R( f t1 , f t−1)

) · E
[

∂ ft−1,s′

∂Wt1+1
s′

(W 0
s′ , . . . ,W

t−1
s′ )

]
f t1,s

= onsk,t .

Having established (A.67), we now use the formula (A.21) for P‖
t (A

(k)) = E
[
A(k)|Ft

]
. The

result is:

P‖
t (A

(k)){ f t } �
∑
t1≤t

(
αt1 � qk,t1 + βt1 � f t1

);

αt1,s ≡
∑

0≤t2≤t−1

(G−1
ξ k,s ,t−1

)t1,t2 ξ k,s
( �R( ft2(V t2), ft (V t ))

)
,

βt1,s ≡
∑
s′∈S

∂s′ξ
k,s( �R( f t1 , f t )

)
⎛
⎝ ∑

0≤t2≤t−1

(G−1
ξ k,s

′
,t−1

)t1,t2 Rs′(q
k,t2 , f t )

⎞
⎠ .

(A.71)

On the other hand, using again (A.70) gives
∑
t1≤t

βt1 � f t1 �
∑

t1≤t−1

dt,t1,k � f t1−1 = onsk,t+1,

∑
t1≤t

αt1 � qk,t1 �
∑

0≤t1≤t−1

ht,t1,k � qk,t1+1.

We conclude from (A.64) that ‖AMPt+1(Qt )k − LAMPt+1(Qt )k‖N � 0. This concludes the
proof. ��
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