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Real-time Optimal Landing Control of the MIT Mini Cheetah

Se Hwan Jeon1, Sangbae Kim1, and Donghyun Kim2

Abstract— Quadrupedal landing is a complex process involv-
ing large impacts, elaborate contact transitions, and is a crucial
recovery behavior observed in many biological animals. This
work presents a real-time, optimal landing controller that is free
of pre-specified contact schedules. The controller determines
optimal touchdown postures and reaction force profiles and is
able to recover from a variety of falling configurations. The
quadrupedal platform used, the MIT Mini Cheetah, recovered
safely from drops of up to 8 m in simulation, as well as from
a range of orientations and planar velocities. The controller is
also tested on hardware, successfully recovering from drops of
up to 2 m.

I. INTRODUCTION
Safe recovery from planned drops or unexpected falls is

one of the most crucial features of animals and is beneficial
both in navigating challenging terrain and preventing signif-
icant damage in the case of unexpected drops. Furthermore,
a robust landing controller opens up the possibility of de-
ploying quadruped robots directly into harsh environments
where supervision can be difficult. However, in contrast to
the progress in quadrupedal locomotion on robotic platforms
[1], [2], there has been relatively little work exploring how
robots address significant changes in elevation or react to
falling. Several works have explored controlling a body’s
orientation while rotating, but do not focus on the reaction
force profiles and poses needed to safely recover from the
fall [3], [4].

A common approach for landing actuated systems is
to control contact point impedances with some additional
feedforward reaction forces. Lynch et al. describes the so-
called ‘soft landing problem’, exploring control methods
to minimize foot penetration depth into a surface from a
fall with prismatic actuation, but discussion was limited
to single impacts on a body without rigid contacts [5].
Similar to quadrupeds, [6] explores actuated landing gear
for rotorcraft and finding optimal impedances to mitigate
impacts, but considers only horizontal landings. Although
previous works demonstrated the effectiveness of impedance
control, they did not capture all detailed motion included
in landing behavior such as landing posture, reaction force
profile, contact location, and sequence. Without taking into
account these complexities, we cannot fully utilize the robot
hardware’s capability to achieve smooth and safe landings.

For motion planning problems consisting of multiple,
complex decision processes, trajectory optimization methods
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Fig. 1. High speed landing of quadruped robot. The proposed controller
enables the robot to safely land after falling from a high place. (a) In the
simulation, we accomplished safe landing from 2.5m-high free drop. (b) In
hardware experiments, we demonstrated 2m-high free drop.

have been widely used. It is worth noting that automatic
contact sequence selection is crucial to controlling an landing
because feasible contact sequences could be entirely different
depending on the orientation of the body at touchdown. This
timing becomes especially important at higher velocities.
Previous work by Winkler et al. parameterizes the gait to
optimize for the timings of the contact schedule, but the
complexity of the formulation makes it difficult to solve for
real-time applications [7]. Similarly, the work of [8] shows
realistic, dynamic behaviors independent of prescribed con-
tacts, but is likewise intractable for real-time performance.

Several other approaches such as reinforcement learning
or model-predictive control (MPC) present interesting land-
ing behaviors also demonstrated on hardware. [9] demon-
strated planar landing and airborne orientation control on
the SpaceBok quadruped in a ”low-gravity” environment, but
it is unclear how easily the algorithm could be applied for
real-world, 3D conditions with more dramatic impacts and
inertial effects. While planar landing and jumping was also
demonstrated in [10] and [11], touchdown was made without
considering optimal touchdown positions or timings, and
were from relatively low heights with little pitch or roll of
the body. With a heuristics-guided MPC, [12] demonstrated
dropping the MIT Mini Cheetah from around 1.5 m, but
did not investigate landing with changes in orientation or
body velocities. Simple joint or Cartesian impedance control
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can often be enough to stabilize a robot’s motion from
small drops, but fail consistently at higher velocities or with
significant orientations away from the horizontal.

In this work, we use a nonlinear trajectory optimization
including contact complementary constraints to find optimal
landing postures and reaction force profiles. The formu-
lation is based on [13], and we modified the algorithm
to accommodate actuator torque and leg kinematic limits.
The optimization is solved while the robot is airborne in
a MPC fashion at approximately 10 Hz. Once touchdown
is detected, the optimized trajectory is then tracked with
a whole-body impulse controller [14]. In our high-fidelity
physics simulation environment, the Mini Cheetah robot
recovered from drops of up to 8 m high, angular velocities
between -0.5 and 0.5 rad/s, horizontal velocities ranging
from -1.5 to 1.5 m/s, pitch orientations ranging from −π3 to
π
3 , and roll orientations ranging from −π6 to π

6 . In hardware
tests, the Mini Cheetah was able to land successfully from a
height of 2 m.

The contribution of this work is two-fold: 1) we formulate
a real-time landing control framework that finds optimal
contact locations and timings from various orientations and
body velocities, and 2) we demonstrate successful landings
in simulation from significant heights and orientations and
in hardware from heights of up to 2 m, as shown in Figure
1.

II. SYSTEM OVERVIEW

The MIT Mini Cheetah has a mass of approximately 9
kg with 12 modular actuators (ab/ad, hip, and knee for each
of its four legs). Each actuator is capable of producing a
maximum torque of 17 N m and a continuous torque of 6.9
N m [15]. Because the legs make up less than 10% of its
mass, the dynamics of the Mini Cheetah can be approximated
as a single rigid body model (SRBM) given as

mp̈ =

nc∑
i=1

λi − fg, (1)

d

dt
(Iω) =

nc∑
i=1

(ri − p)× λi, (2)

where m is the mass, nc is the number of contacts, p,
ri, λi, and fg are the vectors for the body position, foot
positions, reaction forces, and gravitational force, expressed
in the world frame. I ∈ R3×3 and ω are the rotational
inertia tensor of the body and angular velocity of the body
respectively, expressed in the body frame.

III. FRAMEWORK

The landing controller in this work consists of three major
components: nonlinear model predictive control, a trained
neural network that outputs initial guesses for trajectories,
and a whole-body controller. Based on its current state
estimate, a nonlinear program (NLP) solves for dynamically
feasible landing trajectories. The optimization is ”warm
started” with a guess for the trajectories output by the trained
neural network to improve convergence speed. Finally, when

Fig. 2. Overview of the components of the landing controller. If
contact is detected, the latest optimization solution is tracked with whole-
body control. Otherwise, the robot maintains a nominal or optimized pose
with joint PD control while airborne.

touchdown is detected, the optimized trajectory is used as
a reference and tracked by a whole-body controller. An
overview of this framework is shown in Figure 2.

A. Optimization Formulation

The controller is formulated as a direct transcription, kino-
dynamic trajectory optimization over N timesteps, similar
to [16] and [17] with three key modifications for real-time
performance: the use of a simpler model, assuming no-slip
conditions in the CCCs, and reducing the number of decision
variables necessary for the optimization.

The centroidal dynamics of a system considers the ag-
gregate effects of each rigid link projected onto its center of
mass frame, as detailed in [18]. However, given the low iner-
tia limbs of many quadrupedal platforms and relatively small
swinging movements during, this contribution is ignored, and
the SRBM is used instead. This simplification significantly
simplifies the dynamic constraints on the optimization.

With significant roll or pitch, it is difficult to determine
how to prescribe appropriate contact schedules or sequences
for landing, especially with the short timeframes high-speed
landings would involve. However, the contact complemen-
tarity constraints allow these contact schedules to be directly
optimized over without using mixed-integer formulations to
characterize making and breaking contact. They are a set
of conditions that require either the vertical ground reaction
forces or the foot’s height in the world frame to be zero
when the other is positive. While the CCCs outlined in [13]
consider the full Coulomb friction model with sliding, this
formulation only considers no-slip constraints, expressed as

φi(qb,qj) ≥ 0 (3)
λz ≥ 0 (4)

λzφi(qb,qj) ≤ ε, (5)

where φi(qb,qj) is the signed distance to the ground from
the ith foot, qb and qj are the floating base and joint gen-
eralized coordinates respectively, and ε is a slack parameter
to encourage convergence. The no-slip condition is enforced



with
(rk+1 − rk)λz,k = 0, (6)

where k is a timestep index in the optimization. This mod-
ification of the CCCs allows for more consistent and faster
convergence to solutions, a key requirement for real-time
performance.

To further reduce the complexity of the problem, the joint
velocities are also excluded as decision variables. We post-
process the optimized joint angle trajectories to find reason-
able approximations for the joint velocities. This likewise
improves the convergence and solve times of the NLP.

The full optimization formulation can be then be given as

min
x,u,qj

||(xN − xref )||2Q s.t. (7)

(Dynamics) ẋk+1 = f(xk,uk), (8)
(Initial conditions) x(0) = x0, (9)

r(0) = r0, (10)
(Contact constraints) CCC(λi, ri,k) (11)

(rk+1 − rk)λz,k = 0, (12)
λx,y ε F(µ, λz), (13)

(Kin. constraints) rTi,kri,k ≤ l2max, (14)

ri,k − g(qj) = 0, (15)

(Force limits) |JTλk| ≤ τmax, (16)
(Bounds) r ε Rx,y,z(xi), (17)

xi ε X , (18)
x(tf ) ε Xterm, (19)
qj,i ε Q, (20)

where the decision variables X = [ΘT pT ωT ṗT ]T ∈ R12

is the state of the SRBM with roll-pitch-yaw orientation,
U = [rT λT ]T ∈ R24 is the inputs, and qj ∈ R12

is the joint positions of the legs. The foot Jacobians are
represented by J , Q is a weighting matrix, µ is the friction
coefficient, CCC(λi, ri,k) is the set of contact complemen-
tarity conditions, and f(xk,uk), g(qj), F(µ, λz), and R(xi)
are functions for the dynamics of the SRBM, the forward
kinematics of the feet, friction pyramid constraints, and
foot kinematic box constraints respectively. The optimization
variables are bounded by lmax, τmax, X , and Q, which
are the maximum leg length, torque limits, state limits, and
joint limits respectively. The dynamics of the system are
propagated through the N timesteps with Euler forward
integration. An example of an optimized trajectory in the
MATLAB environment can be seen in Figure 3. Additionally,
instantaneous changes in velocity due to impact are not
considered. Due to the light, low-inertia limbs of the Mini
Cheetah, it was assumed that impact forces could be ignored
at touchdown.

Discretization and Initial Conditions: To reduce solve
times, it was important to keep the number of timesteps N
small. However, certain phases of the trajectory, such as
directly after impact, requires high resolution for faithful
tracking and smoother force profiles. This tradeoff was

Fig. 3. Landing trajectory optimizations visualized in MATLAB. The
optimization scheme is able to find solutions involving a variety of different
contact timings to stabilize the body to a nominal resting height.

approached by implementing unevenly discretized timesteps
for the phases of the trajectory. The timesteps nears the final
phase of the landing trajectory are larger in comparison to
the period directly after impact. This allows the optimization
to find smaller forces over longer time periods to stabilize
the robot’s state.

The final landing height of the quadruped is unknown, so
its initial height is set to ”expect” a touchdown immediately
at all times. With constant updates from state estimation, this
makes the controller independent of the global height of the
robot relative to the ground plane it is landing on. The initial
height of the robot is calculated to be

pz,hmin = min(Sz
BR0ph,i ∀ i) (21)

pz,0 = lmax + |pz,hmin |+ |vz,0∆t0|, (22)

where BR0 is the rotation matrix from the initial roll-pitch-
yaw orientation of the SRBM, ph,i is the vector from the
COM to the ith hip, Sz is a selection matrix to find the
z-component of a position vector, pz,hmin

is the lowest
height of the hips of the quadruped, and ∆t0 is the duration
of the first timestep. While the initial angular velocity of
the robot would also contribute to the orientation of the
robot at touchdown, small angular velocities are assumed
for simplicity.

This offset ensures that the lowest foot is able to reach
the ground only after the first timestep from the forward
Euler integration pz,1 = pz,0 + ∆t0vz,0, as shown in Figure
4. While the height of the SRBM could be positioned so
that feet begin in contact with the ground as in [19], this
prevents the NLP from finding optimal footstep locations
relative to the body. With this formulation, the trajectory is
always ”expecting” to touchdown immediately after the first
timestep based on its current velocity, and by solving this
problem in a model-predictive fashion, becomes independent
of the global coordinates of the body.

Cost: The cost in Eqn (7) consists only of the quadratic
penalty between the final state of the optimized trajectory,
XN , and a desired final position, Xref . The weighting matrix
Q was only non-zero for entries corresponding to velocities,
orientation, and a final desired resting height. It was found
that penalizing only the terminal state significantly improved
convergence speed, and, in some cases, solution quality.
Introducing running costs on applied forces or states often



Fig. 4. The initial height setting given by Eq. 22. This guarantees that the
robot is unable to make contact during the first timestep and to touchdown
in the second, allowing for contact locations and poses to be optimized over.
If the optimal pose from a previous solution is unavailable, it is initialized
with some nominal pose.

generated impractical trajectories, where the knees of the
Mini Cheetah would penetrate the ground, or significant
forces would be commanded before touchdown. In [7], costs
similarly seemed to increase solve times and the overall
complexity of the NLP.

Without thorough biomechanical study, it is difficult to
ascertain which quantities, if any, are best to optimize for
landing. This cost formulation allows for more flexibility in
finding landing trajectories instead of imposing costs that
may guide the optimization to infeasible solutions. By only
penalizing the final desired state, feasible landing trajectories
can be generated quickly and reliably.

Kinematic Box Limits: From initial trajectory optimiza-
tions, it was observed that the touchdown angle of the feet
correlated strongly with the direction of the COM velocity in
the world frame, as shown in Figure [FOOT ANGLE AND
VEL PLOT]. Intuitively, it follows that in order to generate
force to oppose some velocity, it would be efficient to align
the moment arm of the contact point with the direction of
that velocity as well. With this observation, a simple heuristic
constraint was added to the optimization that would adjust
the kinematic box limits of the quadruped’s feet based on
its current velocity similar to [7], as shown in Figure 5. The
equations to govern the size of the box limits are given as

Rx,y,z(xi) = {r|r ≤ d| v

vmax
|}, (23)

where d is the maximum limit of the box in x, y, and z
directions, v is the x, y, or z component of the body velocity
expressed in the body frame, and vmax determines the speed
limit at which the box will extend to the kinematic limits
of the leg. The values for d and vmax were determined
experimentally and adjusted based on the solutions of the
trajectory optimizations. By limiting the range of locations
the feet could be positioned relative to the body, kinematic
limits can be implicitly enforced, improving the convergence
of the optimization.

B. Supervised Learning Framework
As studied in [20], the initial guess provided to a non-

linear optimization is crucial. Depending on its quality, the

Fig. 5. Visualized kinematic box limits. The red box marks the default
foot position bounds, the dimensions of which are determined by R0. The
kinematic bounds in the optimization (green) adapt to the body velocity v
expressed in the body frame and falling conditions as necessary to encourage
convergence, the lengths of which are denoted with R.

optimization could be attracted to undesirable local minima
or fail to find a feasible solution entirely. To improve con-
vergence speed as well as solution quality, a neural network
is trained in a supervised learning fashion to warm start the
nonlinear trajectory optimization outlined in Section III. The
inputs to the optimization are only the initial orientation,
velocity, and angular velocity of the SRBM, which will be
denoted z = [ΘT ωT ṗT ]T ∈ R9. Random samples are
taken from selected ranges of z and optimal trajectories
are generated for each initial falling condition to train the
network. Table 1 details the selected ranges for each element
in z.

TABLE I
RANGE OF SAMPLED INPUT SPACE FOR SUPERVISED LEARNING

z Θx Θy Θz ω (r/s) vx,y (m/s) vz (m/s)
Min. -π/4 -π/3 -π/2 -1 -1.5 -6
Max. π/4 π/3 π/2 1 1.5 -2

The generated solutions were post-processed so that trajec-
tories with ground penetration or resteps were removed. The
data was normalized with respect to the mean and standard
deviation of each variable in the output trajectory. A neural
network with 2 hidden layers with 128 nodes each was
trained to generate output trajectories to serve as a warm
start to the optimization.

C. Whole-body Controller

The whole-body controller used in this work is a quadratic
program (QP) detailed in [14] with a control bandwidth of
500 Hz. The fast update rates allow for reference trajectories
to be tracked closely and stabilized with small deviations in
expected states. An optimized landing trajectory is tracked
by the WBC when touchdown is detected. Because timesteps



are discretized unevenly, interpolated values of the trajectory
are calculated to be tracked by the WBC.

IV. IMPLEMENTATION

The controller was developed in MATLAB with the
CasADi symbolic framework and the spatial v2 pack-
age from Roy Featherstone [21], [22]. With Casadi’s
internal code generation features, the optimization was ex-
ported to C++ where the Lightweight Communications and
Marshalling package (LCM) was used to communicate be-
tween the optimization and the simulation environment and
the robot hardware asynchronously [23]. The commercial
nonlinear optimization solver Artelys Knitro was used
to solve the problem online [24]. While the solver IPOPT
demonstrated similar solve speeds, Knitro was far more
consistent in finding solutions from the range of initial falling
conditions given.

The neural network was developed with Pytorch and
similarly exported to C++ with the LibTorch packages.
Without the overhead of the MATLAB interface, the opti-
mizations were able to be solved faster as well.

The optimization is run as a process separate from the
main body of the software on the Mini Cheetah. Requests
for optimizations are sent via LCM from the robot’s state
estimator and received when a solution is found. If a solution
is not found within 300 ms, a new request is made and the
optimization is restarted. Decoupling the optimization from
the main processes on Mini Cheetah in this manner allows
for asynchronous, model-predictive control.

Touchdown is detected when a threshold on the joint ve-
locities of the legs is exceeded. The latest feasible trajectory
is then interpolated and tracked with the QP-based whole-
body controller from [14]. While there have been learned and
probabilistic approaches to detecting contact proprioceptively
[25], [26], joint encoder feedback is used instead. Due to its
low response time of around 3 ms and the impulsive nature
of landing that could be difficult to learn, encoder data was
used as a touchdown trigger for its simplicity.

V. RESULTS

A. Trained Trajectory Generation

The network was trained with roughly 1500 samples of
trajectory data over a range of falling conditions. The state
space was uniformly sampled over, but the majority of
the successful landings tended to be near the horizontal
body posture, as landing in a near-horizontal position is
the simplest landing to stabilize. Samples from the space
of successful landing conditions are shown in Figure 6.

B. Real-time Performance

By warm starting the optimization with the trajectories
generated by the neural net, there is a significant decrease in
computation time that allows for real-time performance to be
possible. On a typical desktop computer in the MATLAB envi-
ronment, z was randomly sampled across the same ranges as
in Table 1 and optimized with the warm-start from the neural

Fig. 6. Training data sampling and warm-start evaluation. A: sampled
space of falling conditions for training data. B: comparisons of solve times
for neural net warm-started optimization, cold-started optimization, and two-
stage warm-started optimization, from left to right.

net. This was compared with the solve times from cold-
starts and a two-stage optimization process. The two-stage
optimization involved solving the NLP outlined in Section III
without kinematic decision variables, and using its solution
as a warm start to the full kino-dynamic optimization. As
shown in Figure 6, the neural-net warm started optimization
showed speedups of roughly 5-10 times over the range of
falling conditions. Even with the overhead of MATLAB, solve
times were in the range of 5-8 Hz, allowing for real-time
performance onboard the Mini Cheetah.

C. Simulation

The Mini Cheetah was initialized in various falling con-
figurations (orientation and velocities) in the Robot-Software
environment and simulated to test recovery behavior. The
desired final state for Xref = [ΘT pT ωT ṗT ]T was set to
be all zero except the height, which was set to 0.25 m. Zero
entries in the weighting matrix Q, ensures no penalty was
applied on the final yaw, px, or py .

The Robot-Software simulation evaluates its dynamics at
1000 Hz and includes motor constraints, rotor inertias, and
impact calculations in its environment. A friction coefficient
of µ = 0.75 was used, and it was assumed that there was no
state estimation error in the simulation. Torque and force
plots for a landing trajectory from a 2.5 m high pitched
landing with small lateral velocities are shown in Figure 7.
While the impact on touchdown causes a high initial tracking
error, this quickly goes to zero within the first 0.1 s, and both
torque and force profiles are tracked closely. With the adjust-
ments from the whole-body controller, the trajectories are
well followed even with significant disturbances. Deliberate
errors in velocity, orientation, or angular velocity were used
as inputs to the optimization, but the controller was often able
to stabilize to a nominal resting position with small errors in
the expected falling conditions z. The authors plan to more
fully characterize the robustness of this controller in future
work.

To test the limits of the hardware in simulation, the Mini
Cheetah was dropped horizontally from a height of 8 m,
corresponding to vertical velocities of roughly -12 m s−1.
The controller was able to stabilize the fall, but further work



Fig. 7. Actuation limits during simulated landing. A: desired (τ∗) and
actual (τ ) torques from the simulation environment. The black dotted lines
represent the absolute torque limits of the individual motors. B: desired
(λ∗) and actual (λ) ground reaction forces commanded by the whole-body
controller. The Mini Cheetah is able to stabilize itself from significant drops
while respecting the torque limits of the system.

must be done to investigate the effect of the impacts and
post-impact velocities at these higher speeds.

Recovering from landing is far more sensitive to roll and
lateral velocity than pitch and longitudinal velocity. This is
intuitive given the design of the Mini Cheetah, where only
the single ab/ad motor is dedicated to stabilizing significant
disturbances in body roll and lateral velocity.

D. Hardware

To verify the controller on hardware and ensure safe
landings, it was critical that the state estimation of the Mini
Cheetah was as accurate as possible. However, there was
severe and constant drift in state estimates once the robot is
in the air because kinematics based estimation is not possible
while airborne. With unreliable state estimation, falling con-
ditions were instead hard coded to be approximately similar
to the state of the robot at touchdown instead.

Several horizontal drops were performed from heights of
up to 2 m successfully, as shown in Figure 1. Although hard-
coded conditions were used as inputs to the optimization,
the Mini Cheetah was released by hand, causing deviations
from the expected falling state. Despite these errors, the Mini
Cheetah was able to recover to a nominal resting height,
as shown in the plots in Figures 8. The state estimator
was paused in a resting state until touchdown was detected
because of its drift, causing a significant difference between
the estimated and actual velocities of the quadruped at
touchdown, but the WBC is able to stabilize the robot about
the planned trajectory.

Because of the unreliable state estimation, drops with
significant pitch, roll, or lateral velocities were not tested
to prevent damage to the robot. While simulation results
suggest these landings would also be possible, we found that
significant orientation errors in the state estimator quickly
caused the controller to become unstable in the Robot-

Fig. 8. Trajectory tracking on hardware. Desired body posture (p∗,
v∗) and body posture from state estimation (p, v). Note that the velocity
discrepancy is due to pausing the state estimation until touchdown.

Software environment.

VI. CONCLUSIONS
This paper presents a control framework that is able to

reason about optimal contact locations and timings in real-
time, and demonstrates successful landings in both simu-
lation and hardware. By modifying the contact constraints
and model considered, dynamic trajectories can be planned
independently from prescribed contact modes at real-time
rates.

Future work will involve hardware upgrades to the Mini
Cheetah, implementing onboard vision, and characterizing
the robustness of the controller. Processor and power board
upgrades to the Mini Cheetah will enable it to solve the
presented formulation completely untethered and onboard,
and with greater margin for motor failure. The authors also
plan to integrate an event camera into the Mini Cheetah for
more accurate localization and state estimation. Additionally,
while it was shown that the controller was able to stabilize
itself from small errors in the falling conditions, we have
yet to characterize this. In the future, the robustness of the
controller and its performance over uneven terrain will be
explored in greater detail.
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