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Abstract
Pure is a new programming model and runtime system ex-
plicitly designed to take advantage of shared memory within
nodes in the context of a mostly message passing interface
enhanced with the ability to use tasks to make use of idle
cores. Pure leverages shared memory in two ways: (a) by
allowing cores to steal work from each other while wait-
ing on messages to arrive, and, (b) by leveraging e�cient
lock-free data structures in shared memory to achieve high-
performance messaging and collective operations between
the ranks within nodes. We use microbenchmarks to eval-
uate Pure’s key messaging and collective features and also
show application speedups up to 2.1⇥ on the CoMD molecu-
lar dynamics and the miniAMR adaptive mesh re�nement
applications scaling up to 4,096 cores.

CCS Concepts: • Computing methodologies! Parallel
programming languages; Shared memory algorithms; Mas-
sively parallel algorithms;Distributed programming languages.

Keywords: parallel programming models; distributed run-
time systems; task-based parallelism; concurrent data struc-
tures; lock-free data structures
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1 Introduction
In the late nineties, high performance computing shifted
from using large vector machines to clusters with lots of
single processor machines connected by a network. MPI
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quickly became the standard parallel programming approach
for these distributed memory machines, enabling ranks to
communicate using message passing. Since then, program-
mers put signi�cant e�ort into creating MPI applications,
partitioning computation carefully to garner the bene�ts of
locality on their clusters.

Over the last decade, hardware has shifted from uniproces-
sor clusters to multicore clusters, with cores on nodes shar-
ing memory and nodes communicating through a network.
The community has been on the lookout for new paradigms
to more fully take advantage of modern clusters. The �rst
approach, and perhaps still the most popular, is to retain
the uni�ed MPI programming approach across all cores, but
to attempt to make MPI runtime system implementations
better leverage shared memory. A huge advantage to keep-
ing the status quo is that it doesn’t requires any changes
to applications. However, this approach potentially leaves
performance on the table because of the strictures that the
MPI standard places on the behavior of its interface.
A second common approach is the so-called MPI+X, or

“hybrid” programming, which still uses MPI across nodes,
but uses shared memory parallelism within nodes. With
this approach, programmers aim to more closely match the
programming model to the hardware in an attempt to gain
improved performance. Yet, this approach introduces a signif-
icant programming challenge, as the programmer must now
manage and optimize two programming models and care-
fully partition the application hierarchically. Furthermore,
because of Amdahl’s Law, the programmermust aggressively
use, say, OpenMP throughout the code to leverage avail-
able cores. This is one reason why both our own experience
and others in the literature have shown that getting hybrid
schemes to even match, let alone surpass, the performance
of MPI-everywhere often requires signi�cant e�ort.
The community has experimented with many other ap-

proaches, including PGAS, which provides the illusion of
sharedmemory across the entire cluster, and also implicit par-
allel programming languages like Legion, Chapel, and X10,
which give the programmer higher level abstractions and at-
tempt to e�ciently orchestrate the application automatically.
Despite the progress and proliferation of new approaches, a
signi�cant portion of modern HPC applications still using
MPI [50]. MPC [43] and AMPI [33] also use threads as MPI
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ranks and strive to leverage shared memory internally to im-
prove performance. For example, AMPI, which we analyze in
Section 5.2, has an SMP mode that improves messaging per-
formance and also virtualizes application ranks and migrates
them to mitigate load imbalance.
Surprisingly, the MPI-only approach often outperforms

the hybrid applications. Yet, we believe the narrowness of
the interface and inability to fully leverage shared memory
within nodes causes MPI to leave a lot of performance un-
realized. What we propose in this paper builds upon the
�rst, MPI-everywhere approach, and breaks some of MPI’s
assumptions to more e�ciently leverage shared memory
while not requiring a signi�cant rewrite of the program. MPI
application developers have already developed e�ective ap-
proaches to cleanly partitioning applications that achieve
strong locality and performance. Our proposed parallel pro-
gramming system, Pure, o�ers a programming model that
is similar to MPI, thereby leveraging the HPC community’s
existing MPI knowledge and extant application base.
Pure is inspired by MPI; the programming model is es-

sentially message passing with the optional use of tasks.
However, Pure breaks the constraints of using process-level
ranks and requiring support for older languages. In particu-
lar, Pure uses threads as ranks instead of processes, allowing
it to use lightweight, lock-free synchronization to coordinate
between threads running within the same node e�ciently.
Pure builds on the thread-based ranks to implement highly
e�cient collective operations within nodes leveraging e�-
cient lock-free algorithms. Finally, Pure optionally allows
pieces of the application to run in standard C++ lambda
expressions that can be executed concurrently by the own-
ing rank and any other ranks that are idle, all coordinated
automatically by the Pure Runtime System. Expanding the
responsibility of the runtime system to include optional con-
current task execution is valuable, as it allows the runtime
to e�ciently and automatically overlap communication and
computation without orchestration by the programmer.

We outline several performance challenges in implement-
ing our parallel runtime system and describe our optimiza-
tions, including a lock-free messaging approach for both
small and large messages; lock-free collective data structures
which we compose to implement collective algorithms; a
lock-free task scheduler that allows idle threads to e�ciently
steal work from other threads. We use standard C++ libraries
for widespread compatibility, and show substantial perfor-
mance improvement over a heavily optimized MPI baseline.
We also show that the Pure programming model is se-

mantically similar to MPI, making learning it and migrating
from existing applications straightforward. Furthermore, we
show that we can easily migrate most of existing MPI pro-
grams with a provided source-to-source translation tool. In
summary, this paper makes the following contributions:

1 void rand_stencil_mpi(double* const a, size_t arr_sz, size_t iters, int my_rank,

2 int n_ranks) {

3 double temp[arr_sz];

4 for (auto it = 0; it < iters; ++it) {

5 for (auto i = 0; i < arr_sz; ++i) {

6 temp[i] = random_work(a[i]);

7 }

8 for (auto i = 1; i < arr_sz - 1; ++i) {

9 a[i] = (temp[i - 1] + temp[i] + temp[i + 1]) / 3.0;

10 }

11 if (my_rank > 0) {

12 MPI_Send(&temp[0], 1, MPI_DOUBLE, my_rank - 1, 0, MPI_COMM_WORLD);

13 double neighbor_hi_val;

14 MPI_Recv(&neighbor_hi_val, 1, MPI_DOUBLE, my_rank - 1, 0,

15 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

16 a[0] = (neighbor_hi_val + temp[0] + temp[1]) / 3.0;

17 } // ends if not first rank

18 if (my_rank < n_ranks - 1) {

19 MPI_Send(&temp[arr_sz - 1], 1, MPI_DOUBLE, my_rank + 1, 0,

20 MPI_COMM_WORLD);

21 double neighbor_lo_val;

22 MPI_Recv(&neighbor_lo_val, 1, MPI_DOUBLE, my_rank + 1, 0,

23 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

24 a[arr_sz - 1] =

25 (temp[arr_sz - 2] + temp[arr_sz - 1] + neighbor_lo_val) /

26 3.0;

27 } // ends if not last rank

28 } // ends for all iterations

29 }

Listing 1. 1-D Stencil with Random Work, MPI Version

1. We introduce a programming model and runtime system
that e�ciently integrates message passing and task paral-
lelism using standard C++ features. By widening the runtime
system interface, we show that the runtime system is able
to e�ciently and automatically overlap communication and
task execution.

2. We show how modern C++ can help support a more �exible
application interface for parallel runtime systems.

3. We describe the design of a lock-free, multithreaded and dis-
tributed runtime system which achieves signi�cant within-
node speedups over MPI.

4. We show that with only minimal source code changes to ex-
isting MPI applications, we can get substantial performance
improvements over a state-of-the-art MPI implementation
on both microbenchmarks and three applications.

2 Example
We now illustrate how to use Pure using a simple example
program. While the application is a trivial 1-D stencil-like
algorithm, the fundamentals of Pure, and its commonalities
with MPI, are demonstrated so more complex programs can
be written. In the MPI version in Listing 1, the bulk of the
computation occurs in function random_work.
Brie�y, the rand_stencil function enters a loop of iters

iterations and computes random_work on each element of a.
Importantly, random_work takes a variable, unknown amount
of time (and, therefore, introduces load imbalance), and it
does not modify a. Then, a is updated by averaging adjacent

134



Pure: Evolving Message Passing To Be�er Leverage Shared Memory Within Nodes PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

1 void rand_stencil_pure(double* const a, size_t arr_sz, size_t iters,

2 int my_rank, int n_ranks) {

3 double temp[arr_sz];

4 PureTask rand_work_task = [a, temp, arr_sz,

5 my_rank](chunk_id_t start_chunk,

6 chunk_id_t end_chunk,

7 std::optional<void*> cont_params) {

8 auto [min_idx, max_idx] =

9 pure_aligned_idx_range<double>(arr_sz, start_chunk, end_chunk);

10 for (auto i = min_idx; i <= max_idx; ++i) {

11 temp[i] = random_work(a[i]);

12 }

13 }; // ends defining the Pure Task rand_work_task

14 for (auto it = 0; it < iters; ++it) {

15 rand_work_task.execute(); // execute all chunks of rand_work_task

16 for (auto i = 1; i < arr_sz - 1; ++i) {

17 a[i] = (temp[i - 1] + temp[i] + temp[i + 1]) / 3.0;

18 }

19 if (my_rank > 0) {

20 pure_send_msg(&temp[0], 1, PURE_DOUBLE, my_rank - 1, 0,

21 PURE_COMM_WORLD);

22 double neighbor_hi_val;

23 pure_recv_msg(&neighbor_hi_val, 1, PURE_DOUBLE, my_rank - 1, 0,

24 PURE_COMM_WORLD);

25 a[0] = (neighbor_hi_val + temp[0] + temp[1]) / 3.0;

26 } // ends if not first rank

27 if (my_rank < n_ranks - 1) {

28 pure_send_msg(&temp[arr_sz - 1], 1, PURE_DOUBLE, my_rank + 1, 0,

29 PURE_COMM_WORLD);

30 double neighbor_lo_val;

31 pure_recv_msg(&neighbor_lo_val, 1, PURE_DOUBLE, my_rank + 1, 0,

32 PURE_COMM_WORLD);

33 a[arr_sz - 1] =

34 (temp[arr_sz - 2] + temp[arr_sz - 1] + neighbor_lo_val) /

35 3.0;

36 } // ends if not last rank

37 } // ends for all iterations

38 }

Listing 2. 1-D Stencil with Random Work, Pure Version

elements of temp. Finally, we use MPI_Send and MPI_Recv to
exchange the low and high elements of temp so that the low
and high elements of a can be computed. Because random_-
work takes a variable amount of time, some ranks will �nish
their work early and sometimes block on the MPI_Recv call
on a slow sender.

Listing 2 shows a Pure version of the same function with
some key di�erences. First, the message calls are di�erent,
and use the analogous Puremessaging functions, pure_send_-
msg and pure_recv_msg, instead of the MPI calls. Note that
the arguments are essentially the same as the MPI analogs;
we used our MPI-to-Pure source translator to automatically
write the Pure message code. Pure messaging semantics are
like MPI’s: the sender bu�er is copied to the receiver bu�er.
Note that Pure uses a lightweight messaging approachwithin
nodes to achieve lower latency than an optimized MPI base-
line.
The more substantial change exists on lines 4–13 and 15,

which are highlighted and de�ne and execute a PureTask
called rand_work_task. Pure Tasks are implemented as C++

pure_recv_msg()
BLOCKING BLOCKING BLOCKING BLOCKING BLOCKINGBLOCKING

pure_recv_msg()pure_send_
msg()

rand_work_task.execute()
chunk 0

chunk 1
chunk 2

chunk 3
chunk 4

chunk 5

rank 1
steals

rank 2
steals

rank 0

rank 1

rank 2

time

pure_send_msg()

BLOCKING BLOCKING BLOCKING BLOCKING

rank 1
steals

Figure 1. Timeline snippet of example Pure code

lambdas [1] with a particular set of arguments. We lever-
age the lambda’s capture arguments, which allow variables
outside the lambda’s body to be captured by either value or
reference and used when the lambda is executed. Pure Tasks
can be thought of as snippets of application code that the
Pure runtime system is responsible for executing, possibly
concurrently using multiple threads. Therefore, Pure Tasks
should be structured in such a way that parts of the work can
be run concurrently. In other words, the body of a Pure Task
is like a small island of concurrent code that the programmer
must ensure is thread-safe.
In this example, we structure the computation to run on

subranges of the work by running independent loop itera-
tions in parallel. However, the programmer is free to use the
chunk ranges to describe concurrency in a di�erent way. The
sub ranges, or chunks, are speci�ed using the start_chunk
and end_chunk arguments that are passed to the Pure Task
by the runtime. The runtime system is responsible for en-
suring all of the work is done, perhaps by di�erent threads,
by keeping track of which chunks have been allocated and
completed. The programmer is responsible for mapping the
start_chunk and end_chunk arguments, given by the Pure
Runtime, to something relevant to the application’s compu-
tation. In this case, we convert them to loop index subranges
using the provided pure_aligned_idx_range helper function.
This helper is aware of cache lines and should be used if pos-
sible to prevent false sharing, but an unaligned version is also
available. Lines 10–12 simply iterate through the computed
range and calls the random_work function on the subrange
of the array. On line 15, which is in the outer loop, we call
execute on the Pure Task. This call passes responsibility to
the Pure runtime system to execute task and only returns
when it is complete.

In this example, random_work introduces load imbalance,
so some ranks will inevitably be waiting on other ranks to
send their message. The Pure Task Scheduler automatically
leverages these idle ranks to execute chunks of Pure Tasks
that are awaiting execution within the same node (i.e., shared
memory region). Figure 1 illustrates this, where we see three
ranks coresident on a single node: rank 0 is executing a
Pure Task that is broken into 6 chunks, and ranks 1 and
2 are blocking on pure_msg_recv (see gray shading). Note
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that time �ows to the right in this �gure. The Pure Runtime
System is aware of both the blocking communication as well
as the executing task, so ranks 1 and 2 can attempt to steal
chunks of work from rank 0.

We can see that rank 0 starts o� executing chunk 0, then
rank 1 steals chunk 1, which is run in parallel to rank 0’s
execution. The Pure Task Scheduler then allocates chunk 2
to rank 0, and chunk 3 to rank 1. Then rank 2 tries to steal
some work and is given chunk 4. Note that chunks 2 and
4 turn out to be long-running chunks of work due to the
random nature of random_work. Chunk 5 is given to rank 1,
which ends up being a small amount of work and �nishes
before rank 2 has �nished chunk 4. The Scheduler does not
let rank 0 return from the task until all chunks are done;
here it completes when chunk 4 is done. Ranks 1 and 2 keep
trying to steal more chunks (from any other rank) while they
are still blocking. Eventually, rank 1 and rank 2’s messages
arrive. Physically, ranks 1 and 2 run the chunks they steal on
their own hardware threads but “peek” into rank 0’s context
given how Pure Tasks capture relevant application scope.
In our experiments with this simple example, the Pure

version running on a single node with 32 ranks achieved a
10% speedup over the MPI version from Pure’s faster messag-
ing, and achieved over 200% speedup from using Pure Tasks.
These speedups, of course, are a function of the amount
of load imbalance, which we chose arbitrarily. However, in
Section 5 we show that for real applications, Pure is able
to achieve similar speedups. Again, these speedups are due
to how the Pure runtime system is able to automatically
“soak up” idle compute and redirect it to useful work when
it exists.

3 Programming Model
The Pure programming model can be summarized as “mes-
sage passing with optional tasks.” Pure messaging and col-
lectives are semantically equivalent to MPI, with minor syn-
tax di�erences. The Pure rank namespace is “�at” (non-
hierarchical) across all nodes, despite using threads within
nodes. The number of ranks is �xed throughout a Pure pro-
gram. Pure applications are written in C++ in an SPMD
fashion and are internally multithreaded; the ranks within a
node (i.e., a shared memory region) are implemented using
kernel threads. Process-global variables in Pure applications
must be removed or made thread_local to preserve their se-
mantics and prevent race conditions. Note that this currently
presents a challenge for applications that use closed-source
libraries that make use of global variables.
For applications that contain load imbalance, program-

mers may use Pure Tasks in parts of the application that: (1)
are a computational hotspot; (2) can be structured to exe-
cute concurrently. Appendix D o�ers recommendations on
writing Pure programs.

3.1 Messaging and Collectives
Pure messaging calls, pure_send_msg and pure_recv_msg, are
similar to MPI_Send and MPI_Recv, as seen in Section 2. Non-
blocking calls are also available. The Pure runtime system
guarantees that the message will eventually be delivered
when the message calls return and messages are guaranteed
to be delivered in send-order for each sender-receiver pair.
Once the send call returns, the application can safely reuse
or free the message bu�er.

Pure also implements the following collectives, which are
semantically equivalent to MPI’s: reduce; all-reduce; bar-
rier; broadcast. Pure also contains communicators, like MPI,
which are created with pure_comm_split.

Pure applications should be written using modern C++,
and must be compiled with the std=c++11 �ag (or newer).
The Pure distribution is packaged with a Make-based build
system, which automatically sets appropriate �ags and links
the Pure Runtime Library, libpure, and de�nes a number of
useful debugging and pro�ling targets. See the Appendix for
details.

3.2 Pure Tasks
Pure Tasks allow the programmer to describe how some part
of the application’s computation can be broken into “chunks”
of work that can be executed concurrently by the Pure Run-
time System. Use of Pure Tasks is optional; programmers
should selectively add tasks when the work is e�ciently
partitionable into chunks and when it contributes to load
imbalance. Anecdotally, we found that in our experiments
we added Pure Tasks to fewer than 10% of the lines of code.

Pure Tasks are implemented using C++ lambdas and are
executed synchronously when the owning rank calls execute
on it. A given rank will only have at most one task execut-
ing at a time. C++ lambdas support variable capture, which
conveniently allows context from one rank to be e�ciently
shared with other ranks that are helping execute chunks of
a task. Typically the same task is de�ned once and executed
many times over the course of an application, such as once
per timestep in a scienti�c application.
The programmer is responsible for writing the task in a

way that uses captured arguments, as well as the arguments
passed by the runtime (i.e., chunk range and extra arguments
from the application), to execute a non-overlapping portion,
of the work upon each invocation. Tasks must also avoid
dependencies with each other, but because they are executed
completely during the execute call, their execution will not
race with code that exists outside the task.
Tasks have a single method, execute, which is called by

the application code and takes an optional<void*> per_exe_-
args argument that the runtime passes to each invocation of
the task. We found this feature useful when the task body re-
quired values that changed upon successive task executions,
and therefore could not be captured upon task de�nition. For
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example, the programmer may de�ne a local struct on the
stack and pass a pointer to it to execute.

As shown in the example, the �rst two arguments to Pure-
Tasks are unsigned integers start_chunk and end_chunk that
specify the range of chunks to be executed. The chunk ar-
guments are assigned by the Pure Runtime to ensure that
all chunks are executed exactly once, possibly concurrently
and in an arbitrary order. Pure uses a range of chunks to
allow the scheduler the �exibility to assign multiple chunks
at a time (e.g., it assigns more at the beginning of a task’s
execution and to the owning rank). The number of chunks
that the runtime breaks a given Task into is determined by
the Pure Task Scheduler, but will never exceed a �xed maxi-
mum value speci�ed by the PURE_MAX_TASK_CHUNKS Make�le
variable.

The current interface requires the programmer to manu-
ally convert chunk numbers to array indicies. This is even
more burdensome for multi-dimensional arrays. We aim to
extend the current interface with cleaner, higher-level inter-
faces more akin to TBB’s parallel_for [44].

The Pure programmer is responsible for ensuring thread-
safetywithin the Pure Task de�nition so thatmultiple chunks
of the same task that are executing concurrently do not
race with each other. In just one task in one of the bench-
marks shown in this paper (CoMD) we had to deal with
multiple threads concurrently writing to the same memory
location. We addressed this by changing an int array to
a std::atomic<int> array. All other task de�nitions were
embarrassingly parallel as concurrently executing threads
wrote to di�erent addresses. Also, by default Pure creates
chunks that are cacheline-aligned to prevent false sharing.

4 Pure Runtime System
The Pure runtime system is implemented as a multithreaded
and distributed runtime system library. Pure application de-
velopers include pure.h, build with a C++17 compiler, and
link with libpure. The Pure Runtime automatically looks
for opportunities to overlap computation and communica-
tion transparently to the programmer, typically during high-
latency communication events.

Overall, Pure is responsible for e�ciently: (1) creating and
pinning the necessary processes and threads, and launching
the application; (2) managing communication and collective
operations between ranks; (3) managing internal memory
bu�ers and data structures; (4) scheduling and executing
Pure Tasks, if any are used in the application.

4.0.1 Rank Initialization and Mapping. Pure ranks are
logically like MPI ranks, serving as a named thread of ex-
ecution that can explicitly communicate with other ranks.
Unlike in MPI, where ranks are implemented as operating
system processes, ranks in Pure are implemented as kernel
threads [3], which are children of MPI processes. Internally,
Pure runs MPI for cross-node communication on multinode

applications, and does not use MPI at all for single node runs,
but Pure applications can not directly make MPI calls. Pure
programs can be con�gured via Make�le �ag to run either
one MPI process per node (or NUMA node), and run as many
threads as cores per node (or NUMA node). The application
programmer only is aware of a �at rank namespace; notions
of di�erent nodes, threads, MPI processes, variable latencies,
etc. are all abstracted away from the programmer.
Like MPI, Pure supports mapping ranks to nodes in an

arbitrary fashion. By default, Pure allocates ranks using SMP-
style placement and pins ranks to cores, but it supports ar-
bitrary rank-to-node-to-core mappings. Pure also supports
CrayPAT [18] rank reordering �les. While these hierarchical
hardware details are abstracted from the programmer, Pure
internally uses this information to optimize key functional-
ity.

When a Pure application starts, the application’s original
main function is not called directly. The underlying MPI pro-
gram with one MPI rank per node contains a main function
that is de�ned in the Pure Runtime. That function initializes
key Pure data structures, forks and pins the threads, and
those threads each run an __original_main function which
is a renamed version of the original main function from the
application code. Upon the application’s completion, the
application’s __original_main returns back to the Pure run-
time, which then �nalizes MPI, cleans up, and returns. Pure
includes special debugging and pro�ling modes to assist in
application development.

4.0.2 The Spin-Steal Waiting Loop (SSW-Loop). When
a Pure rank encounters a blocking event, such as waiting for
a message to arrive, it must wait. Instead of yielding or idly
waiting, Pure ranks perform the “spin-steal wait loop,” or
SSW-Loop. This loop simply checks the blocking condition
(i.e., “has message arrived?”) and, if not, tries to steal work. If
the blocking rank is able to help another thread in its process
that is coincidentally executing a concurrently-executable
Pure Task, it does so.We use this approach in dozens of places
in the Pure runtime, increasing the chances that Pure Tasks
can be concurrently executed. Given that we are pinning
threads to CPUs and only running one application on the
node, we chose to actively spin instead of yielding. The SSW-
Loop allows ranks to act “polymorphically,” both as �rst-
class application ranks and also helper threads that assist
other ranks execute their work. Stealing threads, or “thieves,”
do just one chunk of stolen work before checking on their
blocking event again; Pure prioritizes work owned by each
�rst class rank, taking a work-�rst scheduling policy [5].
Pure’s approach is unlike systems that use helper threads to
implement work stealing or communication, as application
ranks directly do the stealing.

4.0.3 Implementation Complexity. Pure was written
using C++17 and the C++ Standard Library. The Pure runtime
contains 21k source lines of code (SLOC) and Pure Tools
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another 14k SLOC. Pure has been tested on laptops and
clusters, and only requires a C++17 compiler, a Unix-like OS,
and MPI. The Pure source code is available at
h�ps://github.com/psota/pure.

4.1 Point-to-Point Messaging in Pure
Pure implements blocking and non-blocking point-to-point
messaging that is semantically equivalent to MPI’s messag-
ing. While the programmer’s view of sending and receiving
messages are the same regardless of where the sending and
receiving ranks are physically located, Pure uses three di�er-
ent messaging strategies internally. The speci�c approach
used depends on the size of the message and depending on if
the sender and receiver rank are co-located on the same node
or not. Pure supports both blocking and non-blocking sends
and receives, and, like MPI, supports multiple non-blocking
calls in �ight before the corresponding wait call is made. For
all message types described below, we allocate a persistent
“channel” object that is stored in the runtime system and is
reused throughout the program; the internal Channel Man-
ager maps message arguments (e.g., ranks, tags, datatypes,
etc.) to the appropriate data structure, creating it on-demand
if needed.

4.1.1 Intra-node Short Messages. For short messages
(e.g., <8kB, con�gurable) between two ranks on the same
node, we implemented a lock-free circular queuewith acquire-
release memory semantics that bu�ers a �xed number of
messages. The sender thread copies the message into the
PureBu�erQueue (PBQ) when space becomes available, and
the receiver thread copies the message out when available.
Note that this two-copy scheme is inspired by MPI’s bu�ered
send approach [22], and is typically used in messaging sys-
tems for short messages because the copy overhead is rela-
tively small, and this allows the sending rank to return from
the "send" call to [hopefully] proceed with other useful work.

Both threads employ the SSW-Loop to wait, automatically
overlapping computation with communication when possi-
ble. We use a single contiguous bu�er that stores all message
“slots”, and we use simple pointer arithmetic to align each
slot to cacheline boundaries to avoid false-sharing between
the writing sender thread and reading receiver thread. We
experimented with di�erent approaches while implement-
ing fast messaging between threads and found that the key
drivers of performance were: (1) reusing bu�ers and chan-
nel data structures; (2) using atomics instead of locks; (3)
avoiding false sharing. The con�gurable number of slots
within the PBQ was not a material performance driver in
our experiments.

4.1.2 Intra-Node Large Messages. For large messages
(e.g., �8kB) where the sender and receiver ranks are on the
same node, we take a similar strategy to the PBQ, but with
a single memory copy from sender to receiver, inspired by
MPI’s rendezvous mode [26]. We use a lock-free �xed-size

circular bu�er to store the receiver’s receive call arguments
(i.e., destination bu�er, size, etc.). The sender rank waits via
SSW-Loop on the metadata queue entry, and then copies the
message payload directly into the receiver’s desired bu�er.
The sender signals completion to the receiver using a di�er-
ent lock-free queue by inserting the number of bytes trans-
ferred.

4.1.3 Inter-Node Messages. For messages between ranks
on di�erent nodes, we transparently leverage MPI_Send and
MPI_Recv. Using an internal thread-rank-process-node map-
ping data structure created during Pure initialization using a
distributed consensus algorithm, we translate Pure ranks to
MPI ranks within the given communicator. The runtimemust
also ensure that the proper receiver thread on the receiving
node gets the correct message destined for it, and currently
there is no native MPI mechanism to do this thread-level
routing. Given that we run MPI in MPI_THREAD_MULTI-
PLE mode, any thread can make MPI calls and could receive
a message destined for another thread on the same node.
We resolve this challenge by encoding the sender thread
number and receiver thread number (within their respective
processes) into upper bits of the MPI tag argument. In our
experiments, using the upper 6 bits of the tag was adequate
for the 64 threads we used (at most) and the applications
we ran. However, enabling a large tag MPI mode would also
mitigate most tag over�ow issues.

4.2 Collective Communications in Pure
Pure’s collective communication operations are semantically
equivalent to MPI’s and are implemented using data struc-
tures within nodes built from the ground up. As with point-
to-point messages, we use MPI’s collectives across nodes.
Despite using MPI across nodes, we achieved signi�cant
speedups over MPI on single and multi-node benchmarks.

We experimented signi�cantly with di�erent collective de-
signs, starting with simple lock-based approaches and atomic
counters across all threads. After signi�cant exploration,
we landed on new lock-free data structures that generally
have a leader thread that orchestrates the collective process,
leverages other threads for help as long as they don’t false-
share, and makes MPI collective calls as needed. We use a
simple static leader election process, which outperformed a
compare-and-swap based “�rst thread in” process. We walk
through our two designs for all-reduce, one for each small
and large data, and then generalize these approaches to other
collectives.

4.2.1 All-Reduce on Small Data. The all-reduce opera-
tion requires each participating rank to contribute an input
array and receive an element-wise reduction of all ranks’
inputs in an output array. Figure 2 shows a simpli�ed version
of the concurrent data structure we created to execute the
all-reduce for small data, called the Sequenced Per-Thread
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Figure 2. Sequenced Per-Thread Dropbox (SPTD)

Dropbox (SPTD). It provides an e�cient lock-free mecha-
nism for synchronizing and optionally sharing data between
the leader thread and each non-leader thread in a pairwise
fashion. We use a technique inspired by �at-combining [28]
to execute the reduction, assigning thread 0 of the commu-
nicator as the leader. With this approach, which we used
for arrays up to 2kB, each non-leader thread �rst copies its
data into the SPTD and then pairwise-synchronizes with the
leader thread to indicate that its input values are available.
Then, the leader does the element-wise reduction compu-
tation on all of the input arrays. We use cacheline aligned
bu�ers to achieve vectorized computation and pad bu�ers
to avoid false sharing.

The leader threads on each node use MPI_Allreduce to re-
duce each node’s reduction. After the leader has completed
the reduction, it synchronizes and the non-leader threads
each copy out the �nal reduced value into their respective
private result bu�ers. While our approach serializes all com-
putation through the leader thread, in practice we found
this approach to work better than trying to have too many
threads collaborating on too little work. We use atomic se-
quence numbers, with C++ acquire-release semantics, to
indicate that a payload is ready and also when the �nal
reduction is done. We found the pairwise synchronization of-
fered by this approach vastly outperformed a shared atomic
counter approach. Threads use the SSW-Loop to wait.

4.2.2 All-Reduce onLargeData. For reductions of arrays
larger (e.g., �2kB), the actual reduction computation starts
to become the driver of performance, so we take a di�erent
strategy. Here we employ as many as all the threads to con-
currently execute the reduction operation by pulling directly
from each threads’ input data bu�ers using shared memory
and writing the reduced result directly to the output bu�er.
The reduction work is divided into roughly equal chunks (in
multiples of aligned cachelines to avoid false sharing and
achieve vectorization), as seen in Figure 3. For example, a
reduction of 4kB input arrays on a machine with 64B cache-
lines will be broken into 64 chunks, so up to 64 threads will
concurrently execute the reduction operation. Some threads
may not have any work to do if the number of threads is
larger than the number of cachelines in the input bu�ers.

Threads alert other threads that they have “arrived” using
a SPTD, but instead of copying in their data, they just set a

thread 0’s input buffer

thread 0’s reduction
data range

thread 1’s reduction
data range

thread (n-1)’s reduction
data range

thread 1’s input buffer

thread (n-1)’s input buffer

reduced output buffer

thread 2’s input buffer

element-wise addition

...

+ + +

...

Figure 3. Partitioned Reducer on Large Data

pointer to their bu�er (which is directly readable in shared
memory) before incrementing their sequence number. Af-
ter each thread executes their chunk of work by reducing
all ) threads’ bu�ers, they signal that computation is done
using a sequenced atomic counter with the leader thread.
The leader thread executes the cross-node all-reduce using
MPI_Allreduce and propagates the �nal reduced value using
another atomic sequence number.

Pure implements other collectives (e.g., broadcast; barrier;
reduce) using the same techniques outlined above. Pure’s
collectives signi�cantly outperform their MPI and OpenMP
analogs, as shown in Section 5.5 and Appendix A.

4.3 The Pure Task Scheduler
The Pure runtime maintains an active_tasks array in shared
memory containing atomic pointers to running tasks, with
one entry per rank (thread) on a node, each initialized to
nullptr. When a task is executed, the runtime initializes
relevant state and atomically updates the active_tasks entry
for the owning rank.When active_tasks contains a non-null
pointer, it indicates to other threads that this task is “open
for stealing.” Note that the rank (thread) that owns the task
serves as the leader of the concurrent execution process;
there are no other special threads running within the Pure
runtime. After the task is initialized, the rank that owns the
task starts executing chunks, as described below.

Other threads, during their SSL-Loop, probe active_tasks,
atomically loading values looking for a non-null entry. Thief
threads probe active_tasks randomly, as in Cilk [5] and
other work-stealing schedulers. If they �nd a non-null task,
they attempt to steal a chunk.
The chunks of a task are always executed by the owning

rank and possibly other stealing ranks. Two atomic inte-
ger values drive the concurrent execution, curr_chunk and
chunks_done. The owner rank and thief ranks run the same
concurrent execution function, although the thieves execute
just one chunk and then return, while the owning rank ex-
ecutes until all chunks are done. Threads use fetch_add to
determine which chunk to execute, although they return if
the value is already greater than the total number of chunks.
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Threads also atomically increment chunks_done if they suc-
cessfully �nished any chunks; the owner only stores this
locally to avoid a cache miss. Finally, the owning (leader)
rank waits until all chunks have been executed, which, as
illustrated in Figure 1. When all chunks have been executed,
the owning rank resets their active_tasks entry to null and
returns to the application.

Note that task chunks are executed on the same hardware
thread as the application rank; every hardware thread is al-
located to Pure application ranks. Pure currently does not
leverage hardware accelerator hardware (e.g., GPUs) to ac-
celerate task execution, but we believe the Pure architecture
would support this.

The Pure scheduler has di�erent chunk execution modes
and stealing algorithms. For example, we implemented both
a single chunk mode and a guided-self scheduling mode [46],
which is awork partitioning algorithmwhereby larger chunks
of work are allocated (stolen) at �rst, and smaller chunks
are allocated (stolen) later. The scheduler also has a NUMA-
aware stealingmode (which prefers steals from victim threads
on the same NUMA node) as well as a “sticky” stealing mode
where thieves return to their most recently stolen task which
may still be active. For simplicity in our evaluations, we only
used “single chunk” and random steal mode in our evalua-
tions, and did not �nd signi�cant performance di�erences
from these enhancements.

5 Evaluation
We evaluated the performance and scalability of Pure on
the NERSC Cori supercomputer [27] (a Cray XC40) on mi-
crobenchmarks and three applications, comparing to a highly
optimized MPI implementation. Our experiments used open-
source MPI benchmarks, which allowed us to assess the
programmability challenge of migrating to Pure. Our experi-
ments varied the number of ranks from 2 to 65,536, which
used up to 1,024 Cori nodes. Each Cori node shares memory
across two Intel Xeon "Haswell" E5-2698 v3 processors, each
of which have 32 hardware threads and constitute NUMA
regions, which can communicate with each other via shared
memory. The Cori nodes are connected via the Cray Aries
network [6]. We enabled Hyperthreading and mostly ran
our experiments with 64 hardware threads (and application
ranks) per Cori node. We pinned ranks to cores for the du-
ration of each application. Note that this paper’s Appendix
has additional results.
Our baseline for comparison was the highly-optimized

Cray MPICH MPI (version 7.7.19), the recommended and
default MPI on Cori. We also enabled all recommended mod-
ules /settings [27]: XPMEM v2.2.27 [30], which allows pro-
cesses on the same node to communicate e�ciently through
shared memory; DMAPP v7.1.1, which speeds up some MPI
collectives. Also, we compiled with -O3 and enabled 2MB
Linux Hugepages and used the default system compiler (icc

0

2

1

Class A, 80 Ranks Class B, 192 Ranks Class C, 448 Ranks Class D, 1,024 Ranks

Sp
ee

du
p 

ov
er

 M
PI

 B
as

el
in

e

MPI

Pure, no Tasks

Pure, with Tasks

Pure, with Tasks + Helpers

Figure 4. DT: Pure speedup over MPI

19.1.2.254). Ranks were mapped to cores identically for the
Pure andMPI runs.We pro�led ourMPI baseline applications
with Cray’s CrayPAT pro�ler [18], which recommends an
improved rank-to-node mapping and used the recommended
mapping for both the MPI and Pure implementations. Our
baseline MPI experiments used MPI in MPI_THREAD_SINGLE,
the fastest mode, and Pure with MPI_THREAD_MULTIPLE, con-
sidered the slowest MPI mode due to synchronization over-
head in the MPI runtime system. We measured clock cycles
using rdtscp, taking the median result across 10 runs.

5.1 NAS DT Benchmark
NAS DT is a “data tra�c” MPI benchmark that implements
communication graphs, contains communication bottlenecks
and load imbalance. We ran the SH, or “shu�e” graph topol-
ogy, which has particularly unwieldy load imbalance. The
original C code has 900 lines and uses just 8 MPI_Send and
MPI_Recv calls. We converted the MPI calls to Pure automati-
cally using our MPI-to-Pure source translator. For size D, we
ran with 16 ranks per node due to memory limitations. On
size A, we used 40 ranks per node and on sizes B and C we
ran with 64 ranks per node.
Figure 4 shows speedups over MPI for three con�gura-

tions, showing the impact of di�erent Pure features. The
orange bars show speedups due to Pure messages, ranging
from 11% to 25%. Then, we added Pure Tasks to three sections
of code due to signi�cant application load imbalance; this
was a two-day programming e�ort. A signi�cant number
of ranks block on incoming communication while upstream
(sending) ranks are busy computing. The green bars show
the Pure speedup due to both messaging and Pure Tasks,
ranging from 1.7⇥ to 2.5⇥. Finally, the blue bar in the �gure
for size A shows further bene�t when Pure helper threads
are enabled on unused cores. This was possible because for
size A, which required 80 ranks, we had 24 unused cores on
each node. Pure helper threads are simply extra threads that
continuously try to steal work. For DT size A, this increases
the speedup over MPI from 2.3⇥ to 2.6⇥. Note that DT size
A was the only benchmark in this paper for which we used
helper threads; other benchmarks were able to scale up ranks
to use all of the cores on a node.
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Figure 5. miniApp End-to-End runtimes

5.2 CoMD Benchmark
CoMD [2] is an open-source classical molecular dynamics ap-
plication. CoMD’s MPI version contains about 3,000 source
lines of code, containing both message and collective calls.
We used the MPI-to-Pure translator to create the Pure ver-
sion. Pro�ling the default application did not show signi�-
cant load imbalance, so we did not introduce Pure Tasks. We
also evaluated the provided MPI+OpenMP version. We used
all 64 hardware cores per node and we scaled the input sizes
weakly. We ran the simulations for 150 iterations and other-
wise ran with application defaults. We ran with 4 OpenMP
threads per MPI process and 16 MPI ranks per node, as this
yielded the best results.
Figure 5a shows the end-to-end runtimes for all three

con�gurations from 8 to 2,048 cores. Pure consistently per-
formed the best across all problem sizes, yielding speedups
ranging from 7% to 25% relative to MPI and 35% to 50%
relative to MPI+OpenMP. Pure’s speedups were due to its
reduced message and collective latency. The MPI+OpenMP
version underperformed the MPI version.

5.2.1 Imbalanced CoMD Benchmark. We also imple-
mented a statically imbalanced version of CoMD, inspired by

[42]. The modi�ed application does this by eliding atoms that
exist within spheres upon initialization of the mesh, thereby
varying the amount of force calculation work that each rank
must perform. By pro�ling theMPI baseline with this change,
we found that the majority of the time spent in the original
CoMD application was in the eamForce function. After intro-
ducing load imbalance, this remained the case for the ranks
that didn’t have atoms removed from their part of the mesh,
but the ranks that did have atoms removed spent a signi�-
cant amount of time waiting on incoming messages during
the halo exchange step. We extracted the core computation
code in the eamForce function into a Pure Task, breaking two
main for loops into chunks, as shown previously. Figure 5b
shows the end-to-end runtimes. Pure outperforms MPI on all
sizes ranging from 8 to 2,048 cores, with speedups ranging
from 1.6⇥ to 2.1⇥, largely due to how ranks stole chunks of
the force calculations while waiting on communication.

5.2.2 Dynamic Load Imbalance with AMPI Compar-
ison. AMPI [33], described more in Section 6, is an MPI-
compliant runtime system built on top of Charm++ [32].
It can reduce load imbalance between ranks by over-de-
composing an MPI program (i.e., running more application
ranks than processors) and trying to e�ciently migrate and
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schedule these virtualized ranks to reduce load imbalance.
AMPI has multiple modes (i.e., "non-SMP" and "SMP" modes)
and programmers can manually vary the number of "virtual
ranks" per core.
Figure 5c shows the results of CoMD with dynamic load

imbalance, where the work allocated to each rank varies
throughout the simulation. Here we compare Pure to MPI
and MPI+OpenMP, plus six di�erent AMPI variations. For
the "SMP AMPI" version, we allocated one non-rank worker
thread per NUMA node, and so the AMPI SMP con�guration
got extra hardware (e.g., for a 64 ranks, we ran with one node
for MPI and Pure, but 2 nodes for AMPI SMP). The fastest
AMPI variation outperformed MPI version for all sizes. The
SMP AMPI version with two virtual ranks per physical core
performed best up to 64 cores (i.e., within one node) and the
SMP AMPI version with no overdecomposition performed
best on multiple nodes. Pure outperforms all alternatives.
Compared to AMPI, Pure has a speedup over the fastest AMPI
version of 25% on a single node and 2⇥ the fastest version
on multiple nodes. We attribute Pure’s outperformance to
its e�cient and �ne-grain work stealing scheduler, relative
to AMPI’s more coarse-grain virtual rank migration strategy.
Pure can steal a small or large amount of work naturally
during communication latency, and e�ciently adapts to both
transient and persistent load imbalance.

5.3 miniAMR Benchmark
miniAMR is an open-source MPI benchmark that applies a
stencil calculation on a unit cube computational domain and
is a compact proxy for octree-based AMR, which is used by
many larger AMR applications. miniAMR consists of 10,000
lines of code, making over 100 MPI calls throughout the ap-
plication. It primarily uses nonblocking point-to-point mes-
sages and all-reduce, both with small and large payload sizes.
It also uses communicators other than the default “world”
one. Migrating the messaging and collective calls to Pure was
mostly automatic, and took less than a day of programmer
e�ort. Pro�ling revealed no signi�cant load imbalance for
our con�guration, which was the default, running for 10,000
iterations and using weak scaling from 2 to 4,096 ranks with
64 ranks per node. Figure 5d shows the end-to-end results.

5.4 Intra-Node Message Microbenchmark
Figure 6 shows the Pure Speedup for intra-node point-to-
point messaging for various core placements (10M iterations).
We pinned the ranks to share the same hardware core, same
NUMA node, and di�erent NUMA nodes, and varied pay-
loads from 4B to 16MB, for which Pure used a PureBu�er-
Queue and PureEnvelopeQueue (Section 4). Pure achieves a
speedup over MPI ranging from a few percent to over 17⇥,
depending on payload size and rank placement. Pure showed
the greatest speedup with a small message sent from two
threads on the same core.

5.5 Collective Benchmarks
Figure 7 shows that Pure outperformedMPI andMPIDMAPP’s
8B all-reduce up to 16k cores, with speedups ranging from
11% to over 3.5⇥ (Figure 7a). The Pure barrier outperforms
all other barriers, ranging up to 16k cores with speedups
from 2.4⇥ to over 5⇥ over MPI and up to 8⇥ speedup over
OpenMP. See Appendix A for more collective results.

6 Related Work
6.0.1 MPI. Many MPI projects have strived to leverage
shared memory within multicore nodes to improve perfor-
mance [12, 36, 50]. XPMEM [30], enabled in our MPI base-
line experiments, signi�cantly improves performance within
nodes and is used in Cray MPICH. MPI’s ch4 network library
has improved MPI’s shared memory performance [48] and
[10] explored other approaches to fast intranode communi-
cation. [35] shows how modern MPI implementations use
shared memory improve performance. Much work has also
been done to optimize MPI collectives [34], including the
MPI DMAPP library [27]. However, DMAPP only supports a
subset of MPI collectives and only for 8B payloads, unlike
Pure’s which are fast for all collectives and sizes. [17] opti-
mized large scale all-to-all collectives with large task counts
per node using the matrix block all-to-all algorithm.
MPI’s “one-sided” message APIs [19, 22] decouple data

movement with process synchronization. Ranks read and
write part of other ranks’ memories directly, and later syn-
chronize. Pure, though, provides a higher level mechanism
for overlapping communication and computation.
MPI has long supported multithreading within its ranks

via the MPI_THREAD_MULTIPLE mode [22, 49], which allows
any thread of a parent MPI process to make MPI calls at any
time. Because MPI was designed as a process-level interface,
most MPI implementations support thread-safety using a
global lock, e�ectively serializing the threads within the MPI
runtime. Despite these challenges, most HPC programmers
surveyed in 2022 [29] indicated it was important tomakeMPI
calls within multithreaded code. The MPI 4.0 Standard [23]
has an enhanced focus on support for threading within MPI
through a hierarchical, MPI+X approach [40]. MPI_COMM_-
TYPE_SHARED splits an MPI communicator into subcommu-
nicators, each of which can create an MPI shared memory
region. This mechanism o�ers extended programmingmodel
but unclear if this helps performance and programmability
relative to other hybrid programming approaches.

MPI Fine-points [25] and MPI Endpoints [20] outline inde-
pendent approaches to introducing the concept of threading
and “MPI+X” directly into MPI. Fine-points introduces a new
MPI calls that express howmultiple threads can concurrently
work to enact single larger communication operations; End-
points allows threads within an MPI process to concurrently
send and receive their own small messages. As with Pure,
MPI Endpoints allows threads to be addressed and for each

142



Pure: Evolving Message Passing To Be�er Leverage Shared Memory Within Nodes PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

0

4

8

12

16

4 B 8 B 16
 B

32
 B

64
 B

12
8 B

25
6 B

51
2 B 1 k

B
2 k

B
4 k

B
8 k

B
16

 kB

Payload Size

Pu
re

 S
pe

ed
up

 o
ve

r M
PI

MPI Pure Different NUMA nodes Pure Hyperthread siblings Pure Shared L3

0.0

0.5

1.0

1.5

2.0

32
 kB

64
 kB

12
8 k

B
25

6 k
B

51
2 k

B
1 M

B
2 M

B
4 M

B
8 M

B
16

 M
B

Payload Size

Pu
re

 S
pe

ed
up

 o
ve

r M
PI

MPI Pure Different NUMA nodes Pure Hyperthread siblings Pure Shared L3

Figure 6. Pure speedup for intra-node point-to-point messaging, with payloads from 4 B–16 MB
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thread to have its own rank. However, both Fine-points and
Endpoints introduce additional complexity to the application
code. Unlike Pure, both of these models are fundamentally
hybrid, treating threads and processes hierarchically. [20]
rightly pointed out the tradeo� between utilization of the
network hardware interfaces (e.g., NICs) and using many
threads per MPI process. To mitigate this, Pure provides a
Make�le setting to adjust the number of processes per node
(and, inversely, threads).

Also, while Pure uses MPI_THREAD_MULTIPLE mode, as any
Pure rank can make MPI calls at any time, in many situa-
tions (e.g., Pure collectives) only a single leader thread is
actively making an MPI call at a time and therefore there is
no lock contention. Pure’s application-level performance out-
performedMPI running in single-threaded mode, its best per-
forming communication mode, in spite of the performance
issues with its multithreaded mode.
We sincerely hope our work inspires future versions of

the MPI standard. There are, however, some constraints on
MPI that may make it di�cult to directly incorporate some
of these ideas. MPI is fairly wedded to the idea of being
multi-language (C, FORTRAN), and that makes it di�cult
to take advantage of modern C++. Pure’s use of modern
C++ is important to cleanly allow its runtime system to e�-
ciently execute chunks of application computation. Relatedly,
MPI currently focuses on communication, not execution of
computation. Secondly, there is an expectation that every
MPI rank operates in its own address space, typically im-
plemented with OS processes. However, inter-process com-
munication (even XPMEM) typically entails more overhead
than two threads communicating via shared memory.

6.0.2 MPI+X. Many other projects [47, 51] have explored
the MPI+X approach, usually using a shared memory pro-
gramming model such as OpenMP [14], TBB [45], or CUDA
[39] within nodes and MPI across nodes. These hybrid ap-
proaches require the programmer to manually orchestrate
two distinct programming models. Moreover, it is both our
experience and that of others in the literature that getting
hybrid schemes to even match, let alone surpass, the per-
formance of MPI-everywhere often requires signi�cant ef-
fort [47, 51]. This is because on an =-core node, the program-
mer speci�es howmany threads: to run in OMP regions, and
how many processes ? , with = = ? ⇤ : . In non-OMP sections
of the application, only ? = =/: threads are active. Because
of Amdahl’s Law, the programmer must aggressively use
OMP throughout the code to leverage available cores.

In contrast, Pure’s ranks are non-hierarchical and one rank
is allocated per core. This allows more application ranks to
�t on a node, which bene�ts from improved intra-node com-
munication. Programmers can run with no tasks and get a
performance win; they can also annotate just a small section
of the code with tasks (e.g., a load-imbalanced loop). Fur-
thermore, Pure’s runtime has access to all threads running
on that node (not just :) and can “recruit” them to do work
when they are idle. This ability to access all tasks is enhanced
by the e�ciency of switching between progressing intra-
node communication and stealing work, which takes only
a handful of assembly instructions and 1-3 cache misses in
Pure’s runtime. Note that for the CoMD benchmark, we used
the unmodi�ed MPI+OpenMP source code from the Man-
tevo project and presented results for the best-performing
OMP_NUM_THREADS value. Further, note that in our experience,
improving performance by adding optional Pure Tasks to
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an existing MPI application is simpler than converting an
entire application to hybrid MPI+OpenMP or a higher level
programming model. In our Pure CoMD port, for example,
we added 3 Pure Tasks in total, whereas the MPI+OpenMP
version had 15 OMP blocks. In summary and in contrast to
MPI+OpenMP, Pure lets the programmer work with a �at
uni�ed programming model, where tasks can be introduced
where they are needed. With Pure there is no penalty for not
using tasks, the way there is in MPI+OpenMP for not using
threads in every loop.

[37] proposes a new level of MPI thread support for user-
level threads to better overlap communication and computa-
tion, while adding programming complexity. [16] integrates
the Habanero-C dynamic task-parallel programming model
with MPI via a new data-�ow programming model, and uses
dedicated worker threads for the runtime system. Most of
these systems use custom syntax and tasking constructs,
whereas Pure uses standard C++ lambdas [1], bene�ting
from their standardized syntax and future improvements.
[8] also supports shared memory communication with a
di�erent programming model.

6.0.3 AMPI. Charm++ [32] is a popular C++ framework
o�ering higher-level parallel programming abstractions; mi-
grating from MPI to it, though, is often a signi�cant un-
dertaking. As mentioned in Section 5.2, AMPI [33] is an
MPI-compliant library that builds on top of Charm++. Pure
outperformed AMPI in our experiments. We speculate that
this is because of Pure’s optimized messaging and collectives,
as well as Pure’s load balancing strategy, which occurs at a
�ner granularity and with less overhead than AMPI.
Like Pure, AMPI o�ers performance gains for MPI pro-

grams with no or minimal source code changes. Pure takes a
di�erent approach to improve performance. Firstly, as shown
in our microbenchmarks, Pure achieves signi�cant perfor-
mance improvement due solely to its optimized messaging
and collective routines. This �rst contribution improves per-
formance even when there is no load imbalance. Pure’s sec-
ond approach to improve performance does mitigate load
imbalance but in a more �ne-grained manner than AMPI’s
virtual process migration approach, as shown in Section 5.2.
Pure breaks up work into tiny chunks using standard C++
lambdas that are stolen with low overhead. AMPI SMP is also
thread-based but, unlike Pure, requires at least one worker
thread per node. As many applications and cores-per-node
naturally come in powers of two, we found it challenging
to e�ciently map some applications to nodes. AMPI users
must experimentally determine which version, SMP or non-
SMP, performs best for their application and experimentally
determine the best-performing number of virtual ranks for
the application and input.

6.0.4 HPC Languages and Parallel Frameworks. PGAS
languages constitute an alternative programming model
where the runtime system creates the illusion of a global

memory address space that is logically partitioned. PGAS
models are similar to Pure in that they also employ the SPMD
programming style, provide a uni�ed programming model
both within and across nodes, and aim to improve perfor-
mance via locality of reference. Examples include Coarray
Fortran, UPC/UPC++ [52], Coarray C++ [38], DASH [24], and
SHMEM [41]. Chapel [13] and X10 [15] extend the PGAS
approach with local and remote asynchronous task creation,
centered on forking and joining tasks and less so on PGAS-
sytle RMA operations. Communication libraries such as MPI
and GASNet-EX [7] are often used for the transport layers
of PGAS languages. HPX [31] is another parallel runtime
system o�ering a global address space abstraction that ex-
tends the modern C++ standard to facilitate distributed op-
erations. Some parallel programming systems o�er implicit
parallelism, where the programmer is responsible for par-
titioning the program into units of work and data. Legion
[4] is a data-centric parallel programming system targeted
at distributed heterogeneous architectures.
Frameworks, like Kokkos [21], STAPL [11] and BCL [9],

provide a layer of abstraction between the application and
the machine. Like Pure, these libraries often leverage modern
C++ features, but using them usually requires major rewrites
of existing applications.

7 Conclusion
Message passing has remained the de facto standard paral-
lel programming model for decades because of its relative
simplicity and performance. Nevertheless, as shown in this
paper, message passing is not incompatible with shared mem-
ory. In fact, with suitably designed libraries, one can exploit
shared memory without giving up on most of the bene�ts of
message passing.
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