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1 Introduction

First-principles studies of three-hadron physics from Quantum Chromodynamics (QCD)
are finally becoming possible after a number of theoretical, numerical, and algorithmic
developments [1–34]. While, so far, only simple three-meson systems at maximal isospin
have been studied using lattice QCD [35–48], it is to be expected that more complicated
ones will be investigated soon. The scattering of three generic pions constitutes a potential
next milestone for lattice QCD since some relevant low-lying resonances, such as the ω(782),
can be found in these processes.

The extraction of three-particle scattering amplitudes from lattice QCD utilizes the
three-particle finite-volume formalism, which connects finite-volume energies obtained in
lattice QCD to the three-particle scattering amplitude. Mainly following three different
approaches, formalism has been developed for a number of relevant three-hadron systems.
The approach that we will consider in this work, the so-called relativistic-field-theory (RFT)
three-particle formalism [5, 6], has been frequently used in the literature for numerical
studies [38, 41, 42, 46]. In the RFT formalism, the central object parametrizing short-range
three-particle interactions is the divergence-free three-particle K-matrix, Kdf,3.

The interface between lattice QCD and Chiral Perturbation Theory (ChPT) has proven
to be a valuable source of insights for first-principles predictions of multi-pion quantities.
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A recent example is the comparison between lattice QCD results and ChPT predictions
for three pions [49], which has provided a useful understanding of the chiral dependence of
three-pion quantities. In particular, in ref. [49], we computed the three-pion maximum-isospin
K-matrix at next-to-leading order (NLO) in ChPT. We showed that the previously observed
tension between leading-order (LO) ChPT predictions and lattice QCD results for Kdf,3 was
significantly reduced when compared against the NLO prediction. This improved agreement
was also an important check of the RFT formalism itself.

In the present work, we generalize the NLO ChPT results of ref. [49] to the case of three
pions in any possible isospin channel. This result will be useful for prospective lattice QCD
calculations, either by providing constraints in the near-threshold energy region of Kdf,3 or by
inspiring parametrizations of the three-particle K-matrix. Note, however, that the presence
of resonances when the isospin is not maximal will reduce the energy range of validity with
respect to the maximal-isospin case, especially for heavier-than-physical pion masses.

The strategy followed in this work is similar to that used for the computation at maximal
isospin [49]. We make use of the six-pion amplitude computed in refs. [50, 51] at NLO in
ChPT. We relate this amplitude to the K-matrix of the three-pion generalization of the RFT
formalism, derived in ref. [20]. Several complications due to the presence of nonidentical
pions are present in this calculation. These include additional structures in the threshold
expansion of Kdf,3, the presence of odd partial waves in certain channels, a more complicated
symmetrization procedure needed to account for all diagrammatic contributions, and the
presence of an s-channel diagram of the form 3π → π → 3π, which contributes to the
isospin-1 three-pion K-matrix.

With these results in hand, several important issues can be addressed. The first is the
convergence of the chiral expansion, which we can address by comparing the sizes of LO and
NLO terms. The second is how quickly the threshold expansion converges to the true answer
for the various contributions to the three-particle K-matrix. And the third is the sensitivity
of the results to the form of the cutoff function intrinsic to the formalism. In general terms,
we find qualitatively similar results to those we obtained for maximal isospin [49], but with
some exceptions, to be discussed below.

This paper is organized as follows. In section 2, we briefly summarize the theoretical
background and proceed to describe the various isospin channels and the form of the threshold-
expanded K-matrix. In section 3, we describe the calculation, first at LO and then at NLO.
Lastly, we present and analyze the results in section 4, and close up with some conclusions in
section 5. This paper contains three appendices detailing the bull’s head subtraction and
the resulting cutoff dependence of the K-matrix (appendix A), deriving the number of terms
at each order in the threshold expansions by group-theoretical means (appendix B), and
detailing the kinematic configurations used to evaluate numerically Kdf,3 (appendix C).

A preliminary version of this work appears in Mattias Sjö’s doctoral thesis [52].
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−
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2

MNLO,s-OPE

Figure 1. Sketch of eq. (2.1) (cf. figure 2 in ref. [49]). Solid lines represent on-shell pions, while
dotted lines are off-shell propagators. The incoming particles are on the right, outgoing on the left.
Square boxes indicate fully on-shell amplitudes, while oval boxes have one leg off shell (factors of G∞

ensure only on-shell amplitudes are needed in D). Finally, blue and pink fillings indicate, respectively,
LO and NLO quantities. For the OPE and s-OPE contributions, there are additional diagrams, not
shown, in which the LO and NLO amplitudes are exchanged. We leave implicit that only the real
parts of all quantities are to be taken.

2 Theoretical background

2.1 The three-particle K-matrix from ChPT

In order to compute Kdf,3 at NLO, we use the same master equation as in ref. [49],
Kdf,3 = Re Mdf,3, with the main novelty being that quantities are matrices in flavor space, as
described in the next section. We denote such matrix quantities using boldface throughout
the paper, even if the matrices are one-dimensional, which is the case for I = 0, 3. We
also stress that, following the usual index convention in the RFT formalism, rows (columns)
label final (initial) states. In the case of generic three-pion isospin, the calculation can be
split into several parts:

Re Mdf,3 = Re Mnon-OPE
df,3 − Re DBH +

(
Re MOPE

df,3 − Re DNLO,OPE
)

+ Re Ms-OPE
df,3 . (2.1)

This decomposition, schematically shown in figure 1, is similar to the one in ref. [49], except
that now we explicitly account for the ‘s-channel one-particle exchange’ (s-OPE) contribution,
which is only present for I = 1 since the entire 3-particle isospin is transferred to a single pion.
The other contributions are, respectively, the non-OPE part, the real part of which does
not require subtraction, the bull’s head subtraction, and the OPE part with its subtraction,
which are labeled accordingly.
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2.2 States and channels

Single pion states are typically described in the charge basis, as they are readily combined
into multi-pion states of definite isospin using Clebsch-Gordan coefficients. However, one
usually needs to relate single-pion states to those in the flavor basis (in which the matrix of
pseudo-Nambu-Goldstone boson states is |ϕ⟩ =

∑
i σi|i⟩, with σi the Pauli matrices) in order

to determine scattering amplitudes from effective models. The two bases are related through

|π±⟩ = ∓ |1⟩ ± i|2⟩√
2

, |π0⟩ = |3⟩ , (2.2)

where we use the Condon-Shortley sign convention.
To study three-pion states, we will follow the approach presented in ref. [20] and use states

with zero electric charge since these occur for all three-particle isospins. Assuming isospin is
an exact symmetry, the same results would be obtained from states of different charge within
the same isospin multiplet.1 In the charge basis, we order the seven zero-charge states as

|πππ⟩C =



|π−π0π+⟩
|π0π−π+⟩
|π−π+π0⟩
|π0π0π0⟩
|π+π−π0⟩
|π0π+π−⟩
|π+π0π−⟩


. (2.3)

The three particles have different momenta, respectively k1, k2, and k3 in the initial state and
p1, p2, and p3 in the final state. All quantities appearing in this derivation, unless otherwise
stated, are 7 × 7 matrices in the space of three-pion states.

In many parts of the calculation, it is more useful to rotate to a basis of states with
definite three-particle isospin. This rotation is not unique; the choice made for the most part
in ref. [20] is to let the first two particles form states of definite two-particle isospin, Iππ,
which we label |σ⟩ (Iππ = 0, the channel where the σ resonance is present), |ρ⟩ (Iππ = 1,
where the ρ resonance is present), and |Π⟩ (Iππ = 2, with no resonances). In this isospin basis,

|πππ⟩I =



|Ππ⟩3

|Ππ⟩2

|ρπ⟩2

|Ππ⟩1

|ρπ⟩1

|σπ⟩1

|ρπ⟩0



=



1√
5

(
|Π+π−⟩ +

√
3|Π0π0⟩ + |Π−π+⟩

)
1√
2

(
|Π+π−⟩ − |Π−π+⟩

)
1√
6

(
|ρ+π−⟩ + 2|ρ0π0⟩ + |ρ−π+⟩

)
1√
10

(√
3|Π+π−⟩ − 2|Π0π0⟩ +

√
3|Π−π+⟩

)
1√
2

(
|ρ+π−⟩ − |ρ−π+⟩

)
|σπ0⟩

1√
3

(
|ρ+π−⟩ − |ρ0π0⟩ + |ρ−π+⟩

)



, (2.4)

1We have used higher-charge states for some cross-checks, including, of course, the maximum-isospin
|π+π+π+⟩ state studied in ref. [49].
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where the subscripts indicate three-particle isospin, and the specific two-pion states are

|σ⟩= |π+π−⟩+|π−π+⟩−|π0π0⟩√
3

, |Π0⟩= |π+π−⟩+|π−π+⟩+2|π0π0⟩√
6

,

|ρ0⟩= |π+π−⟩−|π−π+⟩√
2

, |Π±⟩= |π±π0⟩+|π0π±⟩√
2

, |ρ±⟩=±|π±π0⟩−|π0π±⟩√
2

.

(2.5)
Kdf,3 and all other relevant quantities block-diagonalize in this basis, as is described in
detail in ref. [20].

Yet another basis, which relates more directly to the threshold expansion, aligns the states
with irreps of the S3 group describing permutations of the three particles, still with definite
isospin. States are denoted |χs⟩ for the trivial (symmetric) irrep, |χa⟩ for the alternating
irrep, and |χ1⟩, |χ2⟩ for the two-dimensional standard irrep; the details of the irreps are given
in appendix C of ref. [20]. Of these irreps, I = 3 is in the trivial, I = 0 in the alternating,
I = 2 in the standard, and I = 1 in a direct sum of the trivial and the standard. Thus, only
for I = 1 does the isospin basis differ from this symmetric basis, where2

|πππ⟩S =



|χs⟩3

|χ1⟩2

|χ2⟩2

|χs⟩1

|χ1⟩1

|χ2⟩1

|χa⟩0


=



|Ππ⟩3

|Ππ⟩2

|ρπ⟩2
2
3 |Ππ⟩1 +

√
5

3 |σπ⟩1

−
√

5
3 |Ππ⟩1 + 2

3 |σπ⟩1

|ρπ⟩1

|ρπ⟩0


. (2.6)

The rotation matrices needed to transform from the charge to the isospin and symmetric
bases are denoted by CI and CS, respectively (the former stated in eq. (2.60) of ref. [20], with
eq. (2.59) of that work explaining the precise action of the rotation matrices), and are given by

CI = C



1 1 1 2 1 1 1
−1 −1 0 0 0 1 1
−1 1 −2 0 2 −1 1
3 3 −2 −4 −2 3 3√
3 −

√
3 0 0 0 −

√
3
√

3
0 0 2 −2 2 0 0
−1 1 1 0 −1 −1 1


, CS = C



1 1 1 2 1 1 1
−1 −1 0 0 0 1 1
−1 1 −2 0 2 −1 1
2 2 2 −6 2 2 2
−1 −1 2 0 2 −1 −1√

3 −
√

3 0 0 0 −
√

3
√

3
−1 1 1 0 −1 −1 1


, (2.7)

with C = diag
(

1√
10 , 1

2 , 1√
12 , 1√

60 , 1√
12 , 1√

12 , 1√
6

)
pulling out common coefficients.

2.3 The threshold expansion

Here, we write down the parametrization of the threshold expansion for each isospin channel
in terms of different kinematic operators that have the correct transformation properties under
the action of S3. We thus work in the symmetric basis. In addition to the initial and final

2This summarizes eqs. (C.11) to (C.19) of ref. [20], while eq. (2.4) corresponds to eqs. (C.1) to (C.7).
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momenta, {ki} and {pi}, respectively, and the total momentum P = p1 +p2 +p3 = k1 +k2 +k3,
the fundamental building blocks of this parametrization are, following ref. [14],

∆ ≡ P 2 − 9M2
π

9M2
π

, ∆i ≡
(P − ki)2 − 4M2

π

9M2
π

, t̃ij ≡ (pi − kj)2

9M2
π

, (2.8)

plus ∆′
i, which is the analogue of ∆i obtained by substituting ki → pi. (Throughout the

following, a prime always refers to this substitution.) All of these are considered to be O(∆)
in the expansion. They are related through

∆ = −1
2
∑
i,j

t̃ij , ∆j = ∆ +
∑

i

t̃ij , ∆′
i = ∆ +

∑
j

t̃ij , (2.9)

where all sums, both here and in the remainder of this section, run from 1 to 3.
The threshold expansions were derived in refs. [14, 20], working up to quadratic order

for I = 2, 3, linear order for I = 1, and cubic order for I = 0. We have extended the
expansion for I = 1 to quadratic order. In addition, we have checked the enumeration of
operators using a group-theoretic method described in appendix B, finding one additional
operator at cubic order for I = 0. As in ref. [49], we somewhat simplify the notation for the
K coefficients. Furthermore, we depart from ref. [20] in defining all building-block operators
(∆, ξ⃗, etc.) to be dimensionless.

2.3.1 Iπππ = 3

Here, the flavor space is one-dimensional. Through quadratic order in ∆, we have the five
terms computed in ref. [49],

M2
πK[I=3]

df,3 = K0 + K1∆ + K2∆2 + KA∆A + KB∆B + O(∆3) , (2.10)

where
∆A ≡

∑
i

(
∆2

i + ∆′2
i

)
− ∆2 , ∆B ≡

∑
i,j

t̃ 2
ij − ∆2 . (2.11)

2.3.2 Iπππ = 2

This channel involves a two-dimensional flavor space, so all operators need to be doublets
that transform under the standard representation of S3. Following the basis choice of ref. [20],
the initial-state doublet at linear order in momenta is

ξ⃗ µ =
(
ξµ

1 , ξµ
2
)

, where ξ1 ≡ 2k3 − k1 − k2√
6Mπ

, ξ2 ≡ k2 − k1√
2Mπ

. (2.12)

Still following ref. [20], quadratic order introduces three Lorentz-tensor doublets, of which
only the following two are relevant here,

ξ⃗(S)µν ≡ ξ⃗ µP ν + ξ⃗ νP µ

Mπ
, ξ⃗(S̄)µν ≡

(
ξµ

2 ξν
2 − ξµ

1 ξν
1 , ξµ

1 ξν
2 + ξµ

2 ξν
1

)
, (2.13)

and one Lorentz-scalar doublet,

ξ⃗ (2) =
(
ξ

(2)
1 , ξ

(2)
2
)

, where ξ
(2)
1 ≡ 2∆3 − ∆1 − ∆2√

6
, ξ

(2)
2 ≡ ∆2 − ∆1√

2
, (2.14)

– 6 –
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which has the property ξ⃗ (2) = − 2
9Mπ

ξ⃗ µPµ. The ξ’s and their primed counterparts form
four independent tensors in isospin space (one at linear order and three at quadratic); to
simplify the notation, we label these using

Ξ1 ≡ ξ⃗ ′µ ⊗ ξ⃗µ , Ξ2 ≡ ξ⃗ ′(2) ⊗ ξ⃗ (2) ,

Ξ3 ≡ 1√
6
[
ξ⃗ ′(S̄)µν ⊗ ξ⃗(S)µν + ξ⃗ ′(S)µν ⊗ ξ⃗(S̄)µν

]
, Ξ4 ≡ ξ⃗ ′(S̄)µν ⊗ ξ⃗(S̄)µν ,

(2.15)

where ⊗ indicates a tensor product like

ξ⃗ ′µ ⊗ ξ⃗µ =
(

ξ′1 · ξ1 ξ′1 · ξ2
ξ′2 · ξ1 ξ′2 · ξ2

)
= Ξ1 , (2.16)

and we have pulled out a factor of
√

6 in the definition of Ξ3 since this would otherwise
appear in all our results. This allows the threshold expansion to be written as

M2
πK[I=2]

df,3 =
(
KT

0 + KT
1 ∆

)
Ξ1 +

∑
n=2,3,4

KT
n Ξn + O(∆3) , (2.17)

where the ‘T’ superscript stands for ‘isotensor’.

2.3.3 Iπππ = 1

Here, the flavor space is three-dimensional. Following ref. [20], we decompose the states into
a singlet and a doublet, transforming under the trivial and standard representations of S3,
respectively, and put the singlet as the first component. Thus, in block form, we have

K[I=1]
df,3 =

K[I=1,SS]
df,3 K[I=1,SD]

df,3
K[I=1,DS]

df,3 K[I=1,DD]
df,3

 . (2.18)

The singlet-singlet (SS) sector is similar to the I = 3 case, eq. (2.10),

M2
πK[I=1,SS]

df,3 = KSS
0 + KSS

1 ∆ + KSS
2 ∆2 + KSS

A ∆A + KSS
B ∆B + O(∆3) , (2.19)

whereas the doublet-doublet (DD) sector is similar to the I = 2 case, eq. (2.17),

M2
πK[I=1,DD]

df,3 =
(
KDD

0 + KDD
1 ∆

)
Ξ1 +

∑
n=2,3,4

KDD
n Ξn + O(∆3) . (2.20)

At O(∆), the sole operator that fits the singlet-doublet-mixing (SD) sector is ξ⃗ (2), defined in
eq. (2.14). At O(∆2), new operators are needed that are not included in ref. [20]. They are
constructed by taking the following building blocks, which are singlets under permutations
of the final-state momenta,

∆∆i , ∆i∆j ,
∑

i

t̃ij t̃ik , (2.21)

– 7 –
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and forming doublets under permutations of the initial-state momenta. From ∆∆i, we simply
obtain ∆ξ⃗ (2), while ∆i∆j and

∑
i t̃ij t̃ik yield the following operators:3

ξ⃗ (4,n) =
(
ξ

(4,n)
1 , ξ

(4,n)
2

)
, where n = 2, 3, 4 and



ξ
(4,2)
1 ≡ 2∆2

3 − ∆2
1 − ∆2

2√
6

, ξ
(4,2)
2 ≡ ∆2

2 − ∆2
1√

2
,

ξ
(4,3)
1 ≡

∑
i

(t̃i1 + t̃i2)t̃i3 − 2t̃i1t̃i2√
6

, ξ
(4,3)
2 ≡

∑
i

(t̃i2 − t̃i1)t̃i3√
2

,

ξ
(4,4)
1 ≡

∑
i

2t̃ 2
i3 − t̃ 2

i1 − t̃ 2
i2√

6
, ξ

(4,4)
2 ≡

∑
i

t̃ 2
i2 − t̃ 2

i1√
2

.

(2.22)

Thus,
M2

π√
30

K[I=1,SD]
df,3 =

(
KSD

0 + KSD
1 ∆

)
ξ⃗ (2) +

∑
n=2,3,4

KSD
n ξ⃗ (4,n) + O(∆3) . (2.23)

K[I=1,DS]
df,3 is obtained from this by exchanging pi ↔ ki and taking the transpose. We have

pulled out a factor of
√

30 in the definition of K[I=1,SD]
df,3 since this would otherwise appear in

all our results. The counting of operators — in particular, the appearance of four of them at
O(∆2) — is confirmed by the group-theoretic analysis in appendix B.

2.3.4 Iπππ = 0

Here, flavor space is one-dimensional. All operators must be totally antisymmetric under
permutations of the momenta, which puts the leading order at O(∆2) and makes O(∆3)
contributions simple enough to include, unlike in the other channels (see appendix B). The
threshold expansion is

M2
πK[I=0]

df,3 =
(
KAS

0 + KAS
1 ∆

)
∆(2)

AS + KAS
3 ∆(3)

AS + KAS
4 ∆(4)

AS + O(∆4) , (2.24)

where ‘AS’ stands for ‘antisymmetric’ and the operators are

∆(2)
AS ≡

∑
i,j,k

m,n,r

ϵijkϵmnr t̃imt̃jn ,

∆(3)
AS ≡

∑
i,j,k

m,n,r

ϵijkϵmnr t̃imt̃jnt̃kr , ∆(4)
AS ≡

∑
i,j,k

m,n,r

ϵijkϵmnr t̃imt̃jn
(
t̃im + t̃jn

)
,

(2.25)

of which ∆(4)
AS was missed in the analysis of ref. [20].

3 Calculation of Kdf ,3

Here, we describe the calculation of Kdf,3. It largely follows the same lines as that performed
in ref. [49], and we refer the reader there for most of the procedural details.

3It is also possible to form the analog of ξ⃗ (4,3) using ∆i∆j , but that is equal to ξ⃗ (2)∆ − ξ⃗ (4,2) and is
therefore redundant.
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k3

k1

k2

p1

p2

p3

b

(a) OPE diagram.

k1

k2

k3

p1

p2

p3

(b) Contact diagram.

k1

k2

k3

p1

p2

p3

P

(c) s-channel OPE diagram.

Figure 2. Feynman diagrams contributing to M3 at LO. For diagram (a), there are an additional
eight diagrams corresponding to the symmetrization of initial and final momenta. Diagram (c) only
contributes at I = 1.

3.1 Leading-order calculation

We start with the calculation at LO. The bull’s head subtraction in eq. (2.1) is absent at
LO, so we thus split the calculation into three parts: the OPE contribution, the s-channel
OPE contribution, and the non-OPE part.

3.1.1 OPE contribution

At LO, the OPE contribution comes from the symmetrization of figure 2(a) and from the
corresponding subtraction term. Thus, we require the four-particle amplitude with a single
leg potentially off shell, corresponding to the intermediate propagator. In terms of flavor
indices, the four-pion amplitude for ϕa(k1)ϕb(k2) → ϕc(p3)ϕd(b) decomposes as

M2(s, t, u) = δabδcdA(s, t, u) + δacδbdA(t, u, s) + δadδbcA(u, s, t) , (3.1)

where
s ≡ (k1 + k2)2 , t ≡ (k1 − p3)2 , u ≡ (k2 − p3)2 (3.2)

are the usual Mandelstam variables, and the function A(s, t, u) is symmetric in its last two
arguments. The leg with momentum b may be off shell, in which case we use the off-shell
convention of ref. [50] to express A; the explicit form is given in eqs. (17), (18), and (23)
of that work. Due to its symmetries, we can abbreviate A(s) ≡ A(s, t, u), and similarly
for A(t) and A(u).

The OPE contribution to the unsymmetrized and divergence-free amplitude, M(u,u)
df,3 ,

is then

M(u,u),OPE
df,3 = −M2,off

TG

b̄2 + iϵ
M2,off +

∑
ℓ′ℓ

Mℓ′
2,onTGG∞

ℓ′ℓMℓ
2,on , (3.3)

where b̄2 ≡ b2 − M2
π , and Mℓ

2,on is the partial-wave-projected on-shell scattering amplitude.4

Note that in this equation, the momentum dependence of the four-pion amplitudes is left
implicit: the amplitudes to the left5 depend on the outgoing {pi} momenta and those to the
right on the incoming momenta {ki}. We also emphasize that in M2,off , the momentum of
the exchanged particle b is in general off shell, while in M2,on, everything is kept on shell.

4We refer to pages 5–6 of ref. [49] for a concise definition of G∞
ℓ′ℓ and other standard RFT notation.

5Strictly speaking, they should appear transposed in eq. (3.3), but we have chosen our bases such that it is
symmetric.
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We now explain the bold-face quantities appearing in eq. (3.3). First, M2 contains the
two-to-two scattering amplitudes that contribute to allowed transitions between three-pion
states, considering the third particle as the spectator. In the charge basis, eq. (2.3), it
has a block-diagonal form,

M2 =

M+
2

M0
2

M−
2

 , with (3.4)

M+
2 = M−

2 =
(

A(t) A(u)
A(u) A(t)

)
, M0

2 =

A(s) + A(t) −A(s) A(s) + A(u)
−A(s) A(s) + A(t) + A(u) −A(s)

A(s) + A(u) −A(s) A(s) + A(t)

 .

Second, the matrix TG indicates valid exchanges between states; in the charge basis, it is

TG =



□ □ □ □ □ □ ■
□ □ □ □ ■ □ □
□ □ □ □ □ ■ □
□ □ □ ■ □ □ □
□ ■ □ □ □ □ □
□ □ ■ □ □ □ □
■ □ □ □ □ □ □


, □ = 0 , ■ = 1 , (3.5)

using squares rather than numbers for legibility.
Expanding A to leading order in ChPT, we find

MLO
2 = k0 + k1s̄ + k2(t + u) + k3(t − u) , (3.6)

where s̄ ≡ s − 4M2
π , and the coefficients ki are straightforward to compute in the charge

basis for a given amplitude A.
In the subtraction, we need to separate the on-shell four-pion amplitude into partial

waves. At LO, only s and p waves appear. The separation can thus be performed simply
by dividing the amplitude into symmetric and antisymmetric parts,

Ms
2(s, t, u) = 1

2
[
M2(s, t, u) + M2(s, u, t)

]
= k0 + k2s̄ + k2(t + u) ,

Mp
2(s, t, u) = 1

2
[
M2(s, t, u) − M2(s, u, t)

]
= k3(t − u) .

(3.7)

At both LO and NLO in ChPT, the p-wave amplitude is proportional to t − u, which can
be expanded using the addition theorem for spherical harmonics:

t − u = 4p∗
k · a∗

k = 4p∗kq∗2k

[4π

3
∑
m

Y ∗
1m(â∗

k)Y1m(p̂∗
k)
]

; (3.8)

see section 2 of ref. [49] for the definitions of the kinematic quantities used here and below.
In our off-shell prescription, this implies that — as is the case for d-waves [49]—the difference
between the on- and off-shell p-wave amplitudes is entirely given by barrier factors:

Mp
2,off({ki}) = Mp

2,on({ki})
(

p∗k
q∗2k

)
, Mp

2,off({pi}) = Mp
2,on({pi})

(
k∗

p

q∗2p

)
. (3.9)
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In order to compute the subtracted result, we separate the s-wave part into on-shell and
off-shell parts, the latter being proportional to b̄2, as can be seen by applying the off-shell
relation t + u = 4M2

π − s + b̄2. Taking this into account, we write

M2,off = Ms
2,on + Mp

2,off + b̄2 δMs
2 . (3.10)

The unsymmetrized divergence-free OPE amplitude is then

M(u,u),OPE,LO
df,3 = −b̄2δMs

2
1
b̄2 TGM2,off − M2,off

1
b̄2 TG b̄2δMs

2 + b̄2δMs
2

1
b̄2 TG b̄2δMs

2 . (3.11)

Although we do not show this intermediate result, it can be computed easily.
To obtain the complete LO OPE contribution, the symmetrization procedure must be

performed. In the case of general three-pion isospin, it is slightly more complicated than
in ref. [49], since it must be done for momentum and flavor simultaneously, as discussed
in ref. [20]. This is achieved by using

Mdf,3 =
2∑

m=0

2∑
n=0

(
Rm)TM(u,u)

df,3
(
Rm{pi}, Rn{ki}

)
Rn , (3.12)

where R{p1, p2, p3} = {p2, p3, p1} is a cyclic permutation (due to the symmetry of the
interacting pair, only the cyclic subgroup of S3 needs to be considered) and R is the
representation of that permutation on the space of three-pion states. Its form in the charge
basis is [20]

R =



□ □ □ □ ■ □ □
□ □ □ □ □ □ ■
□ ■ □ □ □ □ □
□ □ □ ■ □ □ □
□ □ □ □ □ ■ □
■ □ □ □ □ □ □
□ □ ■ □ □ □ □


, □ = 0 , ■ = 1 . (3.13)

In the symmetric basis, it instead takes the block-diagonal form

R = diag
(
1, R2, 1, R2, 1

)
, R2 = 1

2

(
−1 −

√
3

+
√

3 −1

)
, (3.14)

corresponding to the distribution of one- and two-dimensional irreps.
After symmetrization and conversion of the kinematic variables to t̃ij , we can identify

the terms in the threshold expansion. At LO, this can be done by inspection since there is
only one term per order in the threshold expansion in each isospin sector; at higher orders,
it requires solving systems of equations. The LO results are listed in table 1. Note that
most of the contributions are purely s-wave; all pure p-wave contributions cancel, and only
KT

0 and KDD
0 get contributions from mixed s- and p-wave diagrams (amounting to 9 out

of the total 21/2 in both cases).
We have checked these results (and also those for the s-channel OPE and some of the

non-OPE contributions, both at LO and NLO) using an alternative method in which sym-
metrization is implemented in the charge basis by simply including all possible exchanged pions,
allowing all pions in the states to be the spectator. One then rotates to the symmetric basis.
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3.1.2 s-channel OPE contributions

The s-channel OPE diagram, figure 2(c), needs no subtraction since the exchanged momentum
P = k1 + k2 + k3 is off shell in the kinematic range of interest. This contribution appears
only in the I = 1 channel. For zero-charge states, the exchanged particle must be a π0. Thus,
the s-channel OPE amplitude can be factorized as

Ms-OPE,LO
df,3 = −vLO

(
{pi}

) 1
P 2 − M2

π

v†
LO
(
{ki}

)
, (3.15)

where v is a column vector of the πππ → π0 amplitudes from all seven states in the charge
basis, with the exchanged π0 off shell. It can be computed from the amplitude introduced
in eq. (3.1), which gives

F 2
πMLO

2 [π0(k1)π0(k2)π0(k3) → π0(P )] = s12 + s23 + s13 − 3M2
π ,

F 2
πMLO

2 [π+(k1)π0(k2)π−(k3) → π0(P )] = M2
π − s13 ,

(3.16)

where sij ≡ (ki + kj)2. After taking the relevant permutations, rotating to the symmetric
basis, and converting to threshold expansion parameters, we get in the I = 1 sector of
the symmetric basis

vLO
(
{ki}

)
= M2

π

F 2
π


−3

√
15 (1 + ∆)

81 ξ
(2)
1 /

√
2

81 ξ
(2)
2 /

√
2

 , (3.17)

where ξ⃗ (2) is given in eq. (2.14). We also need the threshold expansion of the single-particle
propagator:

1
P 2 − M2

π

= 1
M2

π(8 − 9∆) = 1
8M2

π

[
1 − 9

8∆ + 81
64∆2 + O(∆3)

]
. (3.18)

Note that this expansion formally sets the radius of convergence of the threshold expansion
at |∆| ≤ 8/9. This effect will be numerically explored below.

Using these expressions, we can directly identify the coefficients in the threshold expansion.
The results up to quadratic order are listed in table 1. Note that some terms will appear
at higher orders in the threshold expansion, but we will not consider them; we only check
their effect numerically in section 4.1.

3.1.3 Non-OPE contributions

At leading order, the non-OPE part constitutes the remainder of the six-pion amplitude
once the OPE and s-OPE parts have been singled out and subtracted; see also refs. [49, 50]
for details. It thus includes the contribution from the contact diagram in figure 2(b) and
has a simple form given in ref. [50]. In the charge basis, the amplitude matrix follows
by crossing from

M3[π0π0π0 → π0π0π0] = 27M2
π ,

M3[π0π0π0 → π+π0π−] = 5M2
π − 3s′13 − t12 − t22 − t32 ,

M3[π+π0π− → π+π0π−] = −6M2
π + s13 + s′13 + t11 + 2t22 + t33 ,

(3.19)
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Total OPE s-channel OPE non-OPE

I
=

3 F 4
π

M4
π
K0 18 36 0 −18

F 4
π

M4
π
K1 27 63 0 −36

I
=

2 F 4
π

M4
π
KT

0
9
2

21
2 0 −6

I
=

1

F 4
π

M4
π
KSS

0 −111
8 −54 −135

8 57
F 4

π
M4

π
KSS

1 −1137
64 −27 −945

64 24
F 4

π
M4

π
KSS

2 −135
512 0 −135

512 0
F 4

π
M4

π
KSD

0 −3
8 −9 −27

8 12
F 4

π
M4

π
KSD

1
27
64 0 27

64 0
F 4

π
M4

π
KDD

0
1
2

21
2 0 −10

F 4
π

M4
π
KDD

2 −81
4 0 −81

4 0

I
=

0

(there are no I = 0 contributions at this order)

Table 1. LO contributions to Kdf,3 and the contributions from different parts. There is no bull’s
head subtraction or cutoff dependence at this order. Note that ‘s-channel OPE’ is not a part of ‘OPE’
but a separate contribution.

where the momenta are k1, k2, k3 → p1, p2, p3 (in that order), and

sij = (ki + kj)2 , s′ij = (pi + pj)2 , tij = (ki − pj)2 . (3.20)

The result is not divergent, and no subtraction is needed. Rotating to the symmetric basis and
identifying the coefficients of the threshold expansion yields the results collected in table 1.6

3.2 Next-to-leading-order calculation

Unlike at LO, the NLO amplitude depends on the low-energy constants (LECs) of ChPT.
The four LECs that are relevant to our calculations are denoted ℓr

i, i = 1, 2, 3, 4, with
the ‘r’ indicating that they are renormalized, as described in more detail in ref. [49]. The
renormalization scale µ appears through the quantity L ≡ κ log(M2

π/µ2), with κ ≡ 1/(16π2).
As in the LO calculation, as a cross-check the results in this section have also been obtained
using an alternative method, keeping the flavors throughout and projecting onto the symmetric
basis at the end.

3.2.1 OPE contributions

These contributions are calculated in a similar way to that described in section 3.1.1, except
that one of the ππ scattering amplitudes is promoted to NLO. This amplitude can be

6Note that there was a typo in eq. (4.18) of ref. [49]; the correct contribution to K1 is proportional to −36
(rather than the −26 quoted in ref. [49]). This typo did not propagate into final results.
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expressed in a similar fashion to eq. (3.6),

MNLO
2 = a1 + b1s̄ + b2(t + u) + b3(t − u)

+ c1s̄2 + c2s̄(t + u) + c3s̄(t − u) + c4(t + u)2 + c5(t + u)(t − u) + c6tu

+ d1s̄3 + d2s̄2(t + u) + d3s̄2(t − u) + d4s̄(t + u)2 + d5s̄(t + u)(t − u)
+ d6s̄tu + d7(t + u)3 + d8(t + u)2(t − u) + d9(t + u)tu + d10(t − u)tu
+ O(s̄4, t4, u4) .

(3.21)

All the coefficients ai, bi, ci, di can be computed analytically from ref. [53]. The central
equation for this computation is eq. (3.3), inserting the incoming amplitude at LO and the
outgoing amplitude at NLO, and vice versa:

M(u,u),OPE,NLO
df,3 = −MNLO

2,off
TG

b̄2 + iϵ
MLO

2,off +
∑
ℓ′ℓ

MNLO,ℓ′

2,on TGG∞
ℓ′ℓM

LO,ℓ
2,on + (LO ↔ NLO). (3.22)

For simplicity, we will subdivide the calculation into multiple parts based on their contributions
to different partial waves, including up to ℓ = 3. As for other quantities, primed Mandelstam
variables refer to the final state.

Terms with a1, b1, and c1 are completely on-shell and purely s-wave. The only con-
tribution that survives after subtraction comes from the (t + u) part of the LO amplitude;
specifically,

M(u,u)
df,3 ⊃ −

(
a1 + b1s̄′ + c1s̄′2

)
G k2b̄2 + (in ↔ out) , (3.23)

where, for brevity, G = 1
b̄2−iϵ

TG.
Terms with b2, c2, and d2 contain both on- and off-shell parts and are purely s-wave. All

terms in the LO amplitude contribute, but the cubic term d2 only survives in combination
with k0. Specifically,

M(u,u)
df,3 ⊃−

(
b2 + c2s̄′

)
b̄2 G

(
k0 + k1s̄ + k3(t − u)

)
−
(
b2 + c2s̄′

)
G k2b̄2(b̄2 − s̄′ − s̄

)
− d2s̄′2b̄2 G k0

+ (in ↔ out) .

(3.24)

Terms with b3, c3, and d3 are purely p-wave, and no off-shellness remains after accounting
for barrier factors. Terms with d3 do not contribute at quadratic order, and those with
b3 and c3 contribute only in combination with k2 leading to contributions with s–p wave
mixing; specifically,

M(u,u)
df,3 ⊃−

(
b3 + c3s̄′

)
(t′ − u′) G k2b̄2 + (in ↔ out) . (3.25)

The term with c4 contains both on- and off-shell parts, and is purely s-wave, with all
terms in the LO amplitude contributing. Terms with d4 and d7 are purely s-wave and have
off-shell parts that contribute only in combination with k0. Specifically,

M(u,u)
df,3 ⊃− c4b̄2(b̄2 − 2s̄′) G

(
k0 + k1s̄ + k3(t − u)

)
− c4 G k2b̄2((b̄2)2 − b̄2s̄ + 2s̄′s̄ − 2s̄′b̄2 + s̄′2

)
− d4s̄′b̄2(b̄2 − 2s̄′) G k0 − d7b̄2((b̄2)2 − 3b̄2s̄′ + 3s̄′2

)
G k0 + (in ↔ out) .

(3.26)
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Terms with c5, d5, and d8 are purely p-wave and they contain off-shell parts even after
accounting for barrier factors. They contribute as

M(u,u)
df,3 ⊃− c5b̄2(t′ − u′) G

(
k0 + k1s̄ + k3(t − u)

)
− c5(t′ − u′)b̄2 G k2(b̄2 − s̄′ − s̄)

−
(
d5s̄′ + d8(b̄2 − 2s̄′)

)
b̄2(t′ − u′) G k0 + (in ↔ out) .

(3.27)

Terms with c6, d6, and d9 contain s- and d-waves and contribute

M(u,u)
df,3 ⊃− c6b̄2

(1
4 b̄2 − 1

3 s̄′ − 1
48 s̄′b̄2

)
G
(
k0 + k1s̄ + k3(t − u)

)
− c6[t′u′]s G k2(b̄2 − s̄) + c6[t′u′]on

s G k2(−s̄)

− c6[t′u′]d G k2(b̄2) − d9[t′u′]d (b̄2) G k0 − d6s̄′b̄2
(1

4 b̄2 − 1
3 s̄′
)

G k0

− d9b̄2
(1

4(b̄2)2 − 7
12 s̄′b̄2 + 1

2 s̄′2
)

G k0 + (in ↔ out) ,

(3.28)

where tu = [tu]s + [tu]d,

[tu]s = 1
4(s̄ − b̄2)2 − 4

3q∗2
2,pk∗2

p , [tu]d = q∗2
2,pk∗2

p

8π

15
∑
m

Y ∗
2m(â∗

p)Y2m(k̂∗
p) , (3.29)

and [tu]on
s = 1

4(s̄)2 − 4
3q∗4

2,p.
The term with d10 is cubic, so it only contributes in combination with k0, and since

k0 terms are on shell, only the off-shellness of the d10 term survives after subtraction. It
contains both p- and f -waves (ℓ = 3), which requires the decomposition

(a∗
p · k∗

p)3 = q∗3
2,pk∗3

[3
5

4π

3 Y ∗
1m(â∗

p)Y1m(k̂∗
p) + 2

5
4π

7 Y ∗
3m(â∗

p)Y3m(k̂∗
p)
]

, (3.30)

which is the f -wave counterpart of eq. (3.8). Guided by this, we split the coefficient as
(t − u)ut = [(t − u)ut]p + [(t − u)ut]f , of which the latter cancels exactly in the subtraction.
The remaining p-wave part is

[(t − u)ut]p = 1
4

(
(s̄ − b̄2)2 − 48

5 q∗2
2,pk∗2

)
q∗2,pk∗ 16π

3 Y ∗
1m(â∗

p)Y1m(k̂∗
p) . (3.31)

Analogously to eq. (3.9), the on-shell version is obtained by setting b̄ = 0 and multiplying by a
factor of k∗

p/q∗2p, which the G in the subtraction changes to (k∗)2. Thus, the subtracted result is

M(u,u)
df,3 ⊃1

4d10

(
b̄2 − 4

5 s̄′
)

b̄2(t − u) G k0 + (in ↔ out) . (3.32)

Lastly, the cubic-order terms for I = 0 require only the p-wave part of the LO amplitude,
namely k3(t − u), and we likewise require only the part of the NLO amplitude that is
proportional to (t − u), namely

MNLO
2 ⊃ d3s̄2(t − u) + d5s̄(t + u)(t − u) + d8(t + u)2(t − u) + d10(t − u)ut , (3.33)

of which d3 vanishes after subtraction, and the coefficient d5 is found to be zero at NLO.
The contributions from d5 and d8 are simple to evaluate,

M(u,u)
df,3 ⊃ −

[
(d5s̄′ + d8(b̄2 − 2s̄′)

]
b̄2(t′ − u′) G k3(t − u) + (in ↔ out) , (3.34)
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while for d10 we obtain, after similar manipulations to those above,

M(u,u)
df,3 ⊃ 1

4d10

(
b̄2 − 4

5 s̄′
)

b̄2(t′ − u′) G k3(t − u) + (in ↔ out) . (3.35)

After computing the full M(u,u)
df,3 , we symmetrize it using eq. (3.12) and rotate to the

symmetric basis, where the different coefficients are identified. The complete NLO OPE
contributions, including those of cubic order for I = 0, are listed in table 2.

3.2.2 s-channel OPE contributions

This calculation is done as described in section 3.1.2, but instead of eq. (3.15) we use

Ms-OPE,NLO
df,3 = −v†

NLO
(
{pi}

) 1
P 2 − M2

π

vLO
(
{ki}

)
+ (LO ↔ NLO) , (3.36)

where, in the I = 1 sector of the symmetric basis,

vNLO
(
{ki}

)
= M2

π

F 2
π


cS

0 + cS
1∆ + cS

2∆2 + cS
A∆A

cD
1 ξ

(2)
1 + cD

21∆ξ
(2)
1 + cD

22ξ
(4,2)
1

cD
1 ξ

(2)
2 + cD

21∆ξ
(2)
2 + cD

22ξ
(4,2)
2

 , (3.37)

and
1√
15

cS
0 = −1

2(19κ − 19L + 16ℓ1 + 16ℓ2 + 4ℓ3 + 12ℓ4) ,

1√
15

cS
1 = − 1

12(181κ − 168L + 288ℓ1 + 144ℓ2 + 72ℓ4) ,

1√
15

cS
2 = 201

16 κ + 9L − 27ℓ1 −
27
2 ℓ2 ,

1√
15

cS
A = 405

16 κ + 27
2 L − 27ℓ1 − 27ℓ2 ,

1√
2

cD
1 = 125

4 κ + 42L − 72ℓ1 − 36ℓ2 − 18ℓ4 ,

1√
2

cD
21 = −9

2κ + 27L − 81ℓ2 ,

1√
2

cD
22 = 513

8 κ − 162ℓ1 + 81ℓ2 .

(3.38)

Combining these results and expanding the propagator, the contributions up to quadratic
order in the threshold expansion have been computed. They are summarized in table 3.

3.2.3 Non-OPE contributions

At NLO, the non-OPE contribution encompasses the large number of diagrams not covered
by the OPE or s-channel OPE parts, including the “bull’s head” triangle diagrams shown in
figure 3. These contributions are all regular in the real part, so they can be added directly to
M(u,u)

df,3 without any additional treatment regarding the subtraction. The highly nontrivial
threshold expansion of the loop integral functions is described in section 4.2 of ref. [49];
it is done in the same way here, although a larger number of cases must be considered.
The complete contributions are summarized in table 4. We have also checked the results
numerically. For this purpose, the kinematic configurations listed in appendix C can be used.
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J
H
E
P
0
3
(
2
0
2
4
)
0
4
8

I
=

3

F 6
π

M6
π
K0 25κ + 78L − 576ℓr

1 − 432ℓr
2 − 72ℓr

3 + 144ℓr
4

F 6
π

M6
π
K1

6831
20 κ + 372L − 1332ℓr

1 − 1206ℓr
2 + 252ℓr

4
F 6

π
M6

π
K2

230 481
280 κ + 576L − 1080ℓr

1 − 1188ℓr
2

F 6
π

M6
π
KA −53 199

560 κ + 45L + 189ℓr
1 − 459

2 ℓr
2

F 6
π

M6
π
KB

54 171
140 κ + 216L − 648ℓr

1 − 324ℓr
2

I
=

2

F 6
π

M6
π
KT

0
207
40 κ − 2L − 210ℓr

1 − 15ℓr
2 + 42ℓr

4
F 6

π
M6

π
KT

1
351 251

3360 κ + 125
2 L − 483

2 ℓr
1 − 267

4 ℓr
2

F 6
π

M6
π
KT

2 −47 109
160 κ − 387

2 L + 837
2 ℓr

1 + 1485
4 ℓr

2
F 6

π
M6

π
KT

3
138 043
20 160 κ + 27

4 L − 45
4 ℓr

1 − 117
8 ℓr

2
F 6

π
M6

π
KT

4
2693
630 κ + 11

3 L − 17ℓr
1 − 5

2ℓr
2

I
=

1

F 6
π

M6
π
KSS

0 −1475
6 κ + 303L − 96ℓr

1 − 312ℓr
2 − 132ℓr

3 − 216ℓr
4

F 6
π

M6
π
KSS

1 −12 773
40 κ + 362L − 522ℓr

1 − 501ℓr
2 − 108ℓr

4
F 6

π
M6

π
KSS

2
304 767

560 κ + 516L − 1170ℓr
1 − 963ℓr

2
F 6

π
M6

π
KSS

A
489 117

1120 κ + 1365
4 L − 1917

2 ℓr
1 − 1089

2 ℓr
2

F 6
π

M6
π
KSS

B
95 097

280 κ + 351L − 648ℓr
1 − 729ℓr

2

F 6
π

M6
π
KSD

0
154
5 κ + 59L − 72ℓr

1 − 33ℓr
2 − 36ℓr

4
F 6

π
M6

π
KSD

1 −53 775
896 κ − 99

4 L − 171
8 ℓr

1 + 1359
16 ℓr

2
F 6

π
M6

π
KSD

2
24 123

224 κ + 237
4 L − 837

4 ℓr
1 − 585

8 ℓr
2

F 6
π

M6
π
KSD

3
3729
320 κ + 75

4 L − 351
4 ℓr

1 − 99
8 ℓr

2
F 6

π
M6

π
KSD

4 −61 143
1120 κ − 3

2L − 351
4 ℓr

1 + 387
8 ℓr

2

F 6
π

M6
π
KDD

0 −857
120κ − 18L − 126ℓr

1 − 9ℓr
2 + 42ℓr

4
F 6

π
M6

π
KDD

1
926 543
10 080 κ + 305

6 L − 309
2 ℓr

1 − 301
4 ℓr

2
F 6

π
M6

π
KDD

2 −134 797
1120 κ − 93

2 L − 405
2 ℓr

1 + 963
4 ℓr

2
F 6

π
M6

π
KDD

3
398 287
60 480 κ + 149

36 L + 13
4 ℓr

1 − 337
24 ℓr

2
F 6

π
M6

π
KDD

4
37 577
7560 κ + 13

3 L − 17ℓr
1 − 9

2ℓr
2

I
=

0

F 6
π

M6
π
KAS

0
693
20 κ + 54L − 324ℓr

1
F 6

π
M6

π
KAS

1 0
F 6

π
M6

π
KAS

3 −1215
32 κ

F 6
π

M6
π
KAS

4 −26 487
1120 κ

Table 2. All NLO OPE contributions (excluding the s-channel OPE) up to quadratic order in the
threshold expansion. The cubic-order contributions to I = 0 are also included.
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0
3
(
2
0
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)
0
4
8

I
=

1

F 6
π

M6
π
KSS

0 −855
8 κ + 855

8 L − 90ℓr
1 − 90ℓr

2 − 45
2 ℓr

3 − 135
2 ℓr

4
F 6

π
M6

π
KSS

1 −10005
64 κ + 9225

64 L − 1035
4 ℓr

1 − 495
4 ℓr

2 + 45
16ℓr

3 − 945
16 ℓr

4
F 6

π
M6

π
KSS

2
75525
512 κ + 49455

512 L − 9045
32 ℓr

1 − 4725
32 ℓr

2 − 405
128ℓr

3 − 135
128ℓr

4
F 6

π
M6

π
KSS

A
18225

64 κ + 1215
8 L − 1215

4 ℓr
1 − 1215

4 ℓr
2

F 6
π

M6
π
KSS

B 0

F 6
π

M6
π
KSD

0
33
32κ + 423

16 L − 36ℓr
1 − 45

2 ℓr
2 − 9

4ℓr
3 − 27

2 ℓr
4

F 6
π

M6
π
KSD

1 −2073
256 κ + 1521

128 L − 27
2 ℓr

1 − 513
16 ℓr

2 + 81
32ℓr

3 + 27
16ℓr

4
F 6

π
M6

π
KSD

2
1539
64 κ − 243

4 ℓr
1 + 243

8 ℓr
2

F 6
π

M6
π
KSD

3 0
F 6

π
M6

π
KSD

4 0

F 6
π

M6
π
KDD

0 0
F 6

π
M6

π
KDD

1 0
F 6

π
M6

π
KDD

2
1125

8 κ + 189L − 324ℓr
1 − 162ℓr

2 − 81ℓr
4

F 6
π

M6
π
KDD

3 0
F 6

π
M6

π
KDD

4 0

Table 3. NLO s-OPE contributions up to quadratic order in the threshold expansion for the I = 1
channel. These contributions are not present in the other channels.

k1

k2

k3

p1

p2

p3

r

(a) The “bull’s head” diagram.

k1

k2

k3

p1

p2

p3

r

(b) The “crossed bull’s head” diagram.

Figure 3. Two configurations of the triangle-loop diagrams. There are a total of 15 diagrams with
the triangle topology, of which 9 correspond to the configuration (a) [so their sum corresponds to the
symmetrization of (a)] and 6 to the configuration (b). Neither diagram is singular in the real part,
and only (a) is singular in the imaginary part, which cancels against Im DBH.

3.2.4 Bull’s head subtraction

The bull’s head subtraction term, shown schematically in figure 1 and corresponding to the
topology in figure 3(a), is given by

D(u,u)BH(p3, k3) =
∫

r
MLO

2,on(p3)TGG∞(p3, r)MLO
2,on(r)TGG∞(r, k3)MLO

2,on(k3) , (3.39)

where
∫

r ≡
∫

d3r/[2ωr(2π)3] is the Lorentz-invariant integral over the on-shell loop momentum
r, with ωr =

√
r2 + M2

π , and partial-wave indices are implicitly summed over. We recall
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J
H
E
P
0
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(
2
0
2
4
)
0
4
8

I
=

3

F 6
π

M6
π
K0 14κ + 33L + 288ℓr

1 + 36ℓr
3 − 72ℓr

4
F 6

π
M6

π
K1 −35

2 κ + 12L + 720ℓr
1 + 36ℓr

2 − 144ℓr
4

F 6
π

M6
π
K2 −9747

50 κ − 216L + 648ℓr
1 + 324ℓr

2
F 6

π
M6

π
KA

576
5 κ − 54L − 162ℓr

1 + 243ℓr
2

F 6
π

M6
π
KB −13 797

50 κ − 162L + 486ℓr
1 + 243ℓr

2

I
=

2

F 6
π

M6
π
KT

0
85
12κ + 2L + 120ℓr

1 + 6ℓr
2 − 24ℓr

4
F 6

π
M6

π
KT

1 −988
25 κ − 36L + 144ℓr

1 + 36ℓr
2

F 6
π

M6
π
KT

2
2052
25 κ + 108L − 324ℓr

2
F 6

π
M6

π
KT

3
501
50 κ

F 6
π

M6
π
KT

4
451
150κ − 2L + 12ℓr

1

I
=

1

F 6
π

M6
π
KSS

0
1522

3 κ − 1129
2 L + 528ℓr

1 + 840ℓr
2 + 126ℓr

3 + 228ℓr
4

F 6
π

M6
π
KSS

1 545κ − 888L + 1440ℓr
1 + 1656ℓr

2 + 96ℓr
4

F 6
π

M6
π
KSS

2 −30 441
25 κ − 846L + 1728ℓr

1 + 1674ℓr
2

F 6
π

M6
π
KSS

A −22 461
20 κ − 459L + 1188ℓr

1 + 783ℓr
2

F 6
π

M6
π
KSS

B −63 039
100 κ − 387L + 756ℓr

1 + 783ℓr
2

F 6
π

M6
π
KSD

0 −23
2 κ − 84L + 144ℓr

1 + 36ℓr
2 + 48ℓr

4
F 6

π
M6

π
KSD

1
597
10 κ + 108ℓr

1 − 54ℓr
2

F 6
π

M6
π
KSD

2 −1041
10 κ − 54L + 270ℓr

1 + 27ℓr
2

F 6
π

M6
π
KSD

3
231
20 κ + 108ℓr

1 − 54ℓr
2

F 6
π

M6
π
KSD

4 −4179
100 κ − 18L + 162ℓr

1 − 27ℓr
2

F 6
π

M6
π
KDD

0 −239
4 κ + 46L + 72ℓr

1 − 54ℓr
2 − 40ℓr

4
F 6

π
M6

π
KDD

1 −21 158
225 κ − 20

3 L + 80ℓr
1 − 20ℓr

2
F 6

π
M6

π
KDD

2 −7607
25 κ − 204L + 1152ℓr

1 + 36ℓr
2

F 6
π

M6
π
KDD

3 −7897
1350κ + 64

9 L − 64
3 ℓr

1 − 32
3 ℓr

2
F 6

π
M6

π
KDD

4 −6409
1350κ − 14

9 L + 44
3 ℓr

1 − 8
3ℓr

2

I
=

0

F 6
π

M6
π
KAS

0
1017

5 κ − 54L + 162ℓr
1 + 81ℓr

2
F 6

π
M6

π
KAS

1 −972
5 κ

F 6
π

M6
π
KAS

3 −14 499
70 κ

F 6
π

M6
π
KAS

4
88 371
2240 κ

Table 4. All NLO non-OPE contributions up to quadratic order in the threshold expansion, including
cubic order for I = 0. Note that the non-OPE contributions do not include the bull’s head subtraction.
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that TG is defined in eq. (3.5), while G∞ is defined in eq. (2.12) of ref. [49]. Unlike the OPE
contributions, the bull’s head part lacks singularities in the real part, so there is no need
to cancel DBH against a matching off-shell expression.

Eq. (3.39) can be rewritten as

D(u,u)BH(p3, k3) = 1
F 6

π

∫
r

H2(xr)D(p3, k3, r)N(p3, k3) , (3.40)

D(p3, k3, r) ≡ 1[
(P − p3 − r)2 − M2

π + iϵ
][

(P − k3 − r)2 − M2
π + iϵ

] , (3.41)

where xr ≡ (P − r)2/(4M2
π) and H(x) is a smooth cutoff function that is 0 when x ≤ 0 and

1 when x ≥ 1; it is discussed further in appendix A.1.7 The numerator matrix N(p3, k3)
captures the isospin dependence. Its elements can be expressed in terms of the quantities

nijk ≡ n
(p3)
i n

(r)
j n

(k3)
k , i, j, k ∈ {0, 1, 2} , (3.42)

where each n
(q)
i incorporates one component of MLO

2,on(q) and the associated barrier factors com-
ing from G∞. Following eqs. (3.4) and (3.6), n

(q)
0 comes from A(sq), n

(q)
1 from A(tq) − A(uq),

and n
(q)
2 from A(tq) + A(uq);8 see below for their explicit forms. In the symmetric basis, the

components of N in each sector are [cf. eqs. (2.10), (2.17), (2.18), and (2.24)]

N[I=3] = n222 , (3.43a)

N[I=2] = 1
4

(
n222 + 3n212

√
3(n221 − n211)√

3(n122 − n112) n111 + 3n121

)
, (3.43b)

N[I=1,SS] = n222 + 5
3
(
n000 + n010 + n200 + n002 + 2n020 + n220 + n022 + n202

)
, (3.43c)

N[I=1,SD] =
(√

5
3 N1 −1

2

√
5
3N2

)
, N[I=1,DS] =

 √
5

3 N ′
1

−1
2

√
5
3N ′

2

 , (3.43d)

N1 ≡ 2n000 − n002 + 2n010 + 3
2n012 + 4n020 + 1

2n022 + 2n200 − n202 + 2n220 ,

N2 ≡ 2n001 + n011 − n021 + 2n201 ,

N[I=1,DD] =

N11 + N ′
11 − 1√

3N12

− 1√
3N ′

12 N22

 , (3.43e)

N11 ≡ 2n000 − 2n002 + 2n010 + 3n012 + 4n020 + n022 + 1
2n202 + 3

8
(
3n212 + n222

)
,

N12 ≡ 2n001 + n011 − n021 − n201 + 3
4
(
n211 − n221

)
,

N22 ≡ n101 + 1
4
(
n111 + 3n121

)
, (3.43f)

N[I=0] = n111 , (3.43g)

where, as in section 2.3, a prime like that on N ′
1 indicates swapping p and k, i.e., nijk → nkji.

7We stress that at this order, DBH is the only part of Kdf,3 that depends on this cutoff.
8Note that the subscript on n

(q)
i denotes neither partial-wave index (since n

(q)
2 is s-wave) nor two-particle

isospin (since n
(q)
0 is not purely Iππ = 0), but is simply constructed for convenience.
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Being s-wave, n
(q)
0,2 lack barrier factors, and are therefore simply n

(q)
0 = sq − M2

π and
n

(q)
2 = tq + uq − 2M2

π ; that is,

n
(p3)
0 = (p1 + p2)2 − M2

π , n
(r)
0 = (P − r)2 − M2

π , n
(k3)
0 = (k1 + k2)2 − M2

π , (3.44)

n
(p3)
2 = −2p1 · p2 , n

(r)
2 = 2M2

π − (P − r)2 , n
(k3)
2 = −2k1 · k2 . (3.45)

The p-wave n
(q)
1 is proportional to tq − uq, which can be re-expressed using the on-shell

version of eq. (3.8):

(t − u)q = 4a∗
q · a′∗

q = 4
(
q∗2q

)2[4π

3
∑
m

Y ∗
1m(â∗

q)Y1m(â′∗
q )
]

. (3.46)

After including the relevant parts of G∞, (q∗2q)2 cancels the denominators of the barrier factors,
and the sum rule for spherical harmonics leaves expressions of the kind p∗

q ·k∗
q for some p, k. In

n
(p3)
1 and n

(k3)
1 , where one of p and k remains a pair momentum, this can be evaluated using

a∗
k3 · r∗

k3 = 1
2(k∗

1 − k∗
2) · r∗

k3 = 1
2(k∗

10 − k∗
20)r∗k30 −

1
2(k1 − k2) · r = −1

2(k1 − k2) · r , (3.47)

and similarly for p3. However, this does not work for n
(r)
1 , where we get p = p3 and k = k3,

neither of which is a pair momentum with r as spectator. There, we must instead use the
general formula for the product of 3-momenta in a given rest frame, leaving9

n
(p3)
1 = −2(p1 − p2) · r , n

(k3)
1 = −2(k1 − k2) · r ,

n
(r)
1 = 4

[
p3 · (P − r) k3 · (P − r)

(P − r)2 − p3 · k3

]
.

(3.48)

Following eq. (3.43), we can write D(u,u)BH [and DBH, fully symmetrized using eq. (3.12)]
in terms of the 27 integrals

Iijk(p, k) ≡ 1
F 6

π

∫
r

H2(xr)D(p, k, r)nijk(p, k) , i, j, k ∈ {0, 1, 2} , (3.49)

which can be evaluated using the methods of ref. [49], where only the single integral that is
needed at maximum isospin (essentially, I222) was treated. The only substantial difference
here is the inclusion of 1/(P − r)2 factors due to n

(r)
1 . After threshold expansion and the

change of integration variable to z such that ωr = Mπ(1 + 2z2), this leaves a power series in
1/x where x ≡ 1 − 3z2. Thus, the class of integrals needed here is extended to

Hm,n,p ≡ 1
π2

∫ 1/
√

3

0
dz

√
1 + z2

zmxp

dn

dxn

[
H2(x)

]
, (3.50)

where Hm,n,0 correspond to the Hm,n of ref. [49]. The Hadamard finite-part prescription
can still be used to regularize the integrals, leaving

Hm,n,p ≡


1
π2

∫ 1/
√

3

0
dz

√
1 + z2

zmxp

dn

dxn

[
H2(x)

]
, n > 0 ,∫ 1/

√
3

0
dz 6zfm,p(z) d

dx

[
H2(x)

]
, n = 0 ,

(3.51)

9Note that nij1 and n1jk are antisymmetric in the initial and final pair momenta, respectively, while the
other nijk are symmetric. This makes the symmetry properties of N relatively manifest.
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where now

d
dz

fm,p(x) = 1
π2

√
1 + z2

zmxp
. (3.52)

The resulting expressions can be simplified by using the algebraic relations

Hm,n,p = 3Hm−2,n,p + Hm,n,p−1 = 1
3
(
Hm+2,n,p − Hm+2,n,p−1

)
, (3.53)

and also the integration-by-parts relations derived in ref. [49] when p = 0.
As a last step in ref. [49], the Hm,n,p were approximated by setting H(x) = 1, reducing

all Hm,n,0 to fm,0(1/
√

3)δn,0 and allowing analytic evaluation of the results. This analytic
approximation becomes more complicated here, since Hm,n,p with H(x) = 1 does not converge
if p > 0 due to the pole at x = 0 in the upper integration limit.10 Regularizing this divergence
with the Hadamard finite-part prescription is equivalent to simply dropping terms containing
p > 0.11 Thus, we effectively let

Hm,n,p = H̃m,n,p + fm,0(1/
√

3)δn,0δp,0 , (3.54)

where only H̃m,n,p is cutoff-dependent; setting H(x) = 1 corresponds to H̃m,n,p = 0. fm(1/
√

3)
can be expressed entirely in terms of rational numbers and log 3. Thus, each coefficient in
the threshold expansion can be separated like

KX = K[H̃m,n,p=0]
X −DX , (3.55)

where the cutoff-independent K[H̃m,n,p=0]
X can be expressed similarly to the OPE and other

contributions. The cutoff-dependent term DX must be evaluated numerically, but is well-
behaved and typically small, even in most of the cases where p > 0 is present. The
contributions from the bull’s head subtraction are listed in table 5 decomposed as in eq. (3.55),
and in table 8 in terms of Hm,n,p. The cutoff dependence of DX is studied in appendix A.1.

As in ref. [49], we have verified these results using direct numerical integration of eq. (3.40),
which also allows D(u,u)BH to be studied further away from threshold, as is used in section 4.1.
Unlike in ref. [49], it is no longer well-defined to set H(x) = 1 globally, so the analytic
approximation cannot be studied, at least using the prescription described above.

4 Results

Our full results are stated in table 6, supplemented by tables 1 and 5 for the LO contributions
and cutoff-dependent remainders, respectively. A numerical comparison of the different
contributions to Kdf,3 is given in table 7. The results are plotted as functions of Mπ/Fπ at a
scale µ ≈ 4πFπ,phys, as was done in ref. [49], in figures 4 and 5. The former shows the region

10Physically, the x = 0 pole corresponds to P − r becoming a lightlike momentum, rendering quantities like
p∗

r , which appears in n
(r)
1 , ill-defined.

11It is also conceivable to approximate H(x) = xp to remove these divergences, where p can either be set to
different values as needed in each term or fixed throughout the entire expression. However, all variants of
this approach we have tried result in a worse approximation, in the sense that |DX | as defined in eq. (3.55)
become larger in all but a few cases.

– 22 –



J
H
E
P
0
3
(
2
0
2
4
)
0
4
8

I
=

3

F 6
π

M6
π
K0 −κ ( 144 + 36 log 3 ) + 0.056 347 6589

F 6
π

M6
π
K1 −κ ( 424 + 96 log 3 ) − 0.129 589 681

F 6
π

M6
π
K2 −κ ( 9801

50 + 621
10 log 3 ) − 0.432 202 370

F 6
π

M6
π
KA κ ( 3303

10 − 135
8 log 3 ) − 0.000 907 273 890

F 6
π

M6
π
KB κ ( 909

50 − 189
40 log 3 ) − 0.000 162 394 747

I
=

2

F 6
π

M6
π
KT

0 −κ ( 9883
324 + 1009

144 log 3 ) + 0.007 042 111 64
F 6

π
M6

π
KT

1 −κ ( 714497
16200 + 989

480 log 3 ) + 0.095 869 747 4
F 6

π
M6

π
KT

2 κ ( 140449
3600 − 5641

320 log 3 ) + 0.264 963 303
F 6

π
M6

π
KT

3 −κ ( 58169
3600 + 317

960 log 3 ) − 0.021 650 723 1
F 6

π
M6

π
KT

4 −κ ( 31069
10800 + 59

960 log 3 ) + 0.001 531 207 94

I
=

1

F 6
π

M6
π
KSS

0 −κ ( 399 + 369
4 log 3 ) − 1.213 748 64

F 6
π

M6
π
KSS

1 −κ ( 1333
2 + 993

8 log 3 ) − 4.737 727 30
F 6

π
M6

π
KSS

2 κ ( 7169
50 − 33957

320 log 3 ) − 2.098 947 60
F 6

π
M6

π
KSS

A κ ( 142983
160 − 19575

128 log 3 ) + 2.393 448 70
F 6

π
M6

π
KSS

B κ ( 158139
800 − 13419

640 log 3 ) + 1.089 982 49
F 6

π
M6

π
KSD

0 κ ( 95
2 − 255

8 log 3 ) − 0.060 539 453 1
F 6

π
M6

π
KSD

1 κ ( 1283
16 − 3543

64 log 3 ) − 0.558 130 406
F 6

π
M6

π
KSD

2 κ ( 7503
160 + 513

128 log 3 ) + 0.105 910 881
F 6

π
M6

π
KSD

3 κ ( 10179
160 − 3699

128 log 3 ) + 0.135 426 533
F 6

π
M6

π
KSD

4 κ ( 46377
400 − 11097

320 log 3 ) + 0.349 051 891
F 6

π
M6

π
KDD

0 κ ( 26585
324 + 1259

144 log 3 ) − 0.048 482 775 8
F 6

π
M6

π
KDD

1 κ ( 433507
16200 + 4279

480 log 3 ) + 0.316 388 524
F 6

π
M6

π
KDD

2 κ (2975701
3600 − 11869

320 log 3 ) + 1.906 375 12
F 6

π
M6

π
KDD

3 κ ( 5071
400 + 449

320 log 3 ) − 0.034 410 564 7
F 6

π
M6

π
KDD

4 κ ( 27919
10800 + 83

320 log 3 ) + 0.017 668 886 1

I
=

0

F 6
π

M6
π
KAS

0 −κ ( 102 + 81
2 log 3 ) + 0.301 063 917

F 6
π

M6
π
KAS

1 κ ( 1632
5 ) − 0.881 880 013

F 6
π

M6
π
KAS

3 κ ( 27459
280 + 2187

32 log 3 ) − 0.607 228 425
F 6

π
M6

π
KAS

4 κ ( 54459
1120 − 3645

128 log 3 ) + 0.227 122 084

Table 5. Contributions from the bull’s head subtraction up to quadratic order in the threshold
expansion, including cubic order for I = 0. The contributions are separated into a cutoff-independent
analytic part (containing κ and log 3) and a cutoff-dependent numerical part according to eq. (3.55).
The latter is computed using the standard cutoff choice, shown in eq. (A.3).
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close to the physical pion mass, while the latter shows an extended region that includes
Mπ/Fπ values used in recent three-pion lattice calculations.

At fixed Mπ/Fπ, there are two sources of uncertainty in the results: the LECs of ChPT
and higher-order corrections. We make no attempt to estimate the latter, so the errors shown
in table 7 and figures 4 and 5 are entirely due to the LECs; see ref. [49] for details and the
specific values that we use. Note in figures 4 and 5 that some lines lack error bands since they
do not depend on the LECs (see table 6). Other error bands are too narrow to make out.

In ref. [49], we found, for maximal isospin, poor convergence of the chiral expansion
for pion masses near the upper end of the displayed range (Mπ ≈ 350 MeV). This can be
seen from the results for K0 and K1 in the top left panels of the figures. We find here
that this result is generic, with large corrections seen for most of the coefficients in the
threshold expansion. Convergence at the physical pion mass is, however, reasonable in all
cases, with the exception of KDD

0 .

4.1 Range of validity of the threshold expansion

In this section, we compare the threshold-expanded results with the full Kdf,3, the latter
numerically evaluated using the single-parameter kinematic configurations described in
appendix C. This allows us to verify the validity of the threshold expansion. We use
Mπ = 340 MeV throughout, which is the heaviest of the masses used in ref. [46]; for
brevity, we omit physical-mass results, which are qualitatively similar and typically converge
slightly better.

Figure 6 (cf. figure 6 in ref. [49]) shows the convergence for six of the 15 nonzero
components of Kdf,3.12 The remaining components (i.e., K[I=1,DS]

df,3 , the second component
of K[I=1,SD]

df,3 , etc.) are related to these via permutations of the initial and final states and
are qualitatively similar. The plots show very good convergence across all components for
∆ ≲ 1, and, in many cases, the convergence of the total K-matrix is significantly better
than that of the individual parts (non-OPE, BH, etc.). In particular, the formal failure of
the convergence of the s-OPE contribution beyond ∆ = 8/9 (recall section 3.1.2) does not
seem to notably affect the overall convergence: The s-OPE contribution is relatively small
and converges poorly rather than diverging.

For the NLO OPE contribution, we also study the relative contribution of higher partial
waves of the interacting pair, as shown in figure 7 (cf. figure 7 in ref. [49]). We see that the
result is dominated by the lowest partial waves, with negligible contributions from those
above ℓ = 3, the highest that appears in our threshold expansion. This partly motivates
the good convergence seen in figure 6.

5 Conclusions and outlook

We have computed the NLO ChPT result for the three-particle K-matrix, Kdf,3, in all
three-pion isospin channels, thereby extending the maximum-isospin results of ref. [49]. The

12Namely, one component for I = 3, four for I = 2, nine for I = 1 (one for SS, four for DD, and two each
for SD and DS), and one for I = 0.

– 24 –



J
H
E
P
0
3
(
2
0
2
4
)
0
4
8

I
=

3
F 6

π
M6

π
K0 −κ

(
105 + 36 log 3

)
+ 111L − 288ℓr

1 − 432ℓr
2 − 36ℓr

3 + 72ℓr
4

F 6
π

M6
π
K1 −κ

( 1999
20 + 96 log 3

)
+ 384L − 612ℓr

1 − 1170ℓr
2 + 108ℓr

4
F 6

π
M6

π
K2 κ

( 605061
1400 − 621

10 log 3
)

+ 360L − 432ℓr
1 − 864ℓr

2
F 6

π
M6

π
KA κ

( 196281
560 − 135

8 log 3
)
− 9L + 27ℓr

1 + 27
2 ℓr

2
F 6

π
M6

π
KB κ

( 90423
700 − 189

40 log 3
)

+ 54L − 162ℓr
1 − 81ℓr

2

I
=

2

F 6
π

M6
π
KT

0 −κ
( 59113

3240 + 1009
144 log 3

)
− 90ℓr

1 − 9ℓr
2 + 18ℓr

4
F 6

π
M6

π
KT

1 κ
( 9486697

453600 − 989
480 log 3

)
+ 53

2 L − 195
2 ℓr

1 − 123
4 ℓr

2
F 6

π
M6

π
KT

2 −κ
( 1248031

7200 + 5641
320 log 3

)
− 171

2 L + 837
2 ℓr

1 + 189
4 ℓr

2
F 6

π
M6

π
KT

3 κ
( 23833

33600 − 317
960 log 3

)
+ 27

4 L − 45
4 ℓr

1 − 117
8 ℓr

2
F 6

π
M6

π
KT

4 κ
( 332981

75600 − 59
960 log 3

)
+ 5

3L − 5ℓr
1 − 5

2ℓr
2

I
=

1

F 6
π

M6
π
KSS

0 −κ
( 1955

8 + 369
4 log 3

)
− 1237

8 L + 342ℓr
1 + 438ℓr

2 − 57
2 ℓr

3 − 111
2 ℓr

4
F 6

π
M6

π
KSS

1 −κ
( 191089

320 + 993
8 log 3

)
− 24 439

64 L + 2637
4 ℓr

1 + 4125
4 ℓr

2 + 45
16ℓr

3 − 1137
16 ℓr

4
F 6

π
M6

π
KSS

2 −κ
(34274101

89600 + 33957
320 log 3

)
− 119 505

512 L + 8811
32 ℓr

1 + 18 027
32 ℓr

2 − 405
128ℓr

3 − 135
128ℓr

4
F 6

π
M6

π
KSS

A κ
( 1102239

2240 − 19575
128 log 3

)
+ 273

8 L − 297
4 ℓr

1 − 261
4 ℓr

2
F 6

π
M6

π
KSS

B −κ
( 521271

5600 + 13419
640 log 3

)
− 36L + 108ℓr

1 + 54ℓr
2

F 6
π

M6
π
KSD

0 κ
( 10853

160 − 255
8 log 3

)
+ 23

16L + 36ℓr
1 − 39

2 ℓr
2 − 9

4ℓr
3 − 3

2ℓr
4

F 6
π

M6
π
KSD

1 κ
( 643087

8960 − 3543
64 log 3

)
− 1647

128 L + 585
8 ℓr

1 − 9
8ℓr

2 + 81
32ℓr

3 + 27
16ℓr

4
F 6

π
M6

π
KSD

2 κ
( 166953

2240 + 513
128 log 3

)
+ 21

4 L − 63
4 ℓr

2
F 6

π
M6

π
KSD

3 κ
( 27783

320 − 3699
128 log 3

)
+ 75

4 L + 81
4 ℓr

1 − 531
8 ℓr

2
F 6

π
M6

π
KSD

4 κ
( 109539

5600 − 11097
320 log 3

)
− 39

2 L + 297
4 ℓr

1 + 171
8 ℓr

2

F 6
π

M6
π
KDD

0 κ
( 49121

3240 + 1259
144 log 3

)
+ 28L − 54ℓr

1 − 63ℓr
2 + 2ℓr

4
F 6

π
M6

π
KDD

1 κ
(11178103

453600 + 4279
480 log 3

)
+ 265

6 L − 149
2 ℓr

1 − 381
4 ℓr

2
F 6

π
M6

π
KDD

2 κ
(27345737

50400 − 11869
320 log 3

)
− 123

2 L + 1251
2 ℓr

1 + 459
4 ℓr

2 − 81ℓr
4

F 6
π

M6
π
KDD

3 κ
( 150229

11200 + 449
320 log 3

)
+ 45

4 L − 217
12 ℓr

1 − 593
24 ℓr

2
F 6

π
M6

π
KDD

4 κ
( 212299

75600 + 83
320 log 3

)
+ 25

9 L − 7
3ℓr

1 − 43
6 ℓr

2

I
=

0

F 6
π

M6
π
KAS

0 κ
( 2721

20 − 81
2 log 3

)
− 162ℓr

1 + 81ℓr
2

F 6
π

M6
π
KAS

1 κ
(

132
)

F 6
π

M6
π
KAS

3 −κ
( 164673

1120 − 2187
32 log 3

)
F 6

π
M6

π
KAS

4 κ
( 28863

448 − 3645
128 log 3

)
Table 6. The full NLO results for Kdf,3 up to quadratic order in the threshold expansion (cubic
for I = 0), combining the OPE, s-OPE, non-OPE, and bull’s head contributions, i.e., tables 2–5.
The corresponding LO results are given in table 1. For compactness, we omit the cutoff-dependent
remainders DX ; they are given in table 5 and further studied in appendix A.1.
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Total LO× F 4
π

M4
π

NLO× F 6
π

M6
π

NLO×F 6
π /M6

π︷ ︸︸ ︷
OPE s-OPE non-OPE BH

I
=

3

K0 61.6(3.0) 18 −2.65(26) 0.50(53) −2.04(28) −1.11
K1 33.4(5.3) 27 −9.04(46) −1.8(1.0) −3.75(61) −3.48
K2 −67.4(2.8) −5.79(24) −5.11(58) 1.43(37) −2.11
KA 25.77(18) 2.21(2) −2.76(15) 3.00(14) 1.97
KB 1.4(1.1) 0.12(9) −0.22(37) 0.25(28) 0.08

I
=

2

KT
0 26.12(88) 4.5 0.26(8) 1.05(18) −0.56(10) −0.23

KT
1 −0.28(67) −0.02(6) 0.16(14) 0.02(9) −0.20

KT
2 −8.2(3.0) −0.70(26) 1.33(23) −2.42(7) 0.39

KT
3 −1.72(7) −0.147(6) −0.085(6) −0.064 −0.13

KT
4 −0.10(3) −0.008(3) −0.01(1) 0.014(7) −0.02

I
=

1

KSS
0 −81.2(2.8) −13.88 −0.85(24) −9.21(63) −3.06(20) 15.81(72) −4.38

KSS
1 −116.0(4.8) −17.77 −2.12(41) −9.10(42) −3.52(22) 20.32(82) −9.82

KSS
2 −4.5(1.8) −0.26 −0.27(15) −4.80(65) −0.29(16) 6.75(94) −1.93

KSS
A 45.25(48) 3.88(4) −1.77(55) −0.83(17) −0.51(67) 6.99

KSS
B 9.31(72) 0.80(6) −4.19(35) 2.80(41) 2.20

KSD
0 −2.77(30) −0.38 −0.07(3) −0.99(11) −0.52(4) 1.42(16) 0.02

KSD
1 −3.65(54) 0.42 −0.50(5) 0.40(3) −0.31(1) −0.16(7) −0.44

KSD
2 5.39(4) 0.463(4) 0.11(12) 0.45(4) −0.53(17) 0.43

KSD
3 −1.48(28) −0.13(2) −0.00(5) −0.46(7) 0.34

KSD
4 4.59(51) 0.39(4) 0.13(6) −0.58(10) 0.84

KDD
0 −1.97(35) 0.5 −0.39(3) 1.00(14) −1.92(13) 0.53

KDD
1 −3.48(47) −0.30(4) −0.04(9) −0.81(5) 0.55

KDD
2 −59.8(5.2) −20.25 3.80(44) 1.51(16) −2.51(30) −2.09(72) 6.88

KDD
3 −1.82(11) −0.16(1) −0.087(5) −0.12(1) 0.06

KDD
4 −0.31(2) −0.027(2) −0.002(10) −0.06(1) 0.04

I
=

0

KAS
0 19.6(1.3) 1.68(11) 0.36(20) 1.95(9) −0.63

KAS
1 −0.54 −0.046 −1.231 1.19

KAS
3 −12.38 −1.063 −0.240 −1.312 0.49

KAS
4 5.090 0.437 −0.150 0.250 0.34

Table 7. Numerical values of the expressions given in tables 1–6. Note that only the “Total” column
depends on the ratio Mπ/Fπ (here evaluated at the physical point, Mπ/Fπ ≈ 1.50), and only the “BH”
(bull’s head) column depends on the cutoff [here using the standard choice, eq. (A.3)]. Note also that
the “BH” column shows KBH

df,3 = −DBH. Numbers in parentheses indicate errors inherited from the
LECs (see the main text); entries without errors are exact up to rounding. The small uncertainty in
Fπ/Mπ is not taken into account. Identically zero entries are left blank.
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Figure 4. LO+NLO ChPT predictions for Kdf,3 as functions of (Mπ/Fπ)4, with the physical point
(Mπ/Fπ)4 ≈ 5.25 shown as a vertical line. Colored bands represent uncertainties inherited from the
LECs (see the main text), and thin lines represent LO-only contributions when present. The legends
unambiguously indicate whether uncertainty bands and LO contributions are absent or just too small
to see. The coefficients are grouped by isospin, and the lines are drawn so that the number of dots
reflects the numeric index on KX when applicable. Some coefficients have been rescaled for legibility.
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Figure 5. The same quantities as in figure 4 but shown over the much wider range of Mπ/Fπ used in
ref. [49]; the top left panel corresponds to figures 3 and 4 in that work, although no fits to lattice data
are shown. The regions covered in figure 4 are shown as gray boxes.
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Figure 6. The convergence of the threshold expansion at Mπ = 340 MeV, shown for various
components of KNLO

df,3 (LO is omitted) in the symmetric basis using the kinematic configuration
described in appendix C. Lines represent the full KNLO

df,3 , obtained numerically. Note that the “BH”
contribution is KBH

df,3 = −DBH. Colored bands show the difference between these and the corresponding
results obtained from the threshold expansion, up to the order calculated in this work. Thus, a narrow
band indicates good convergence of the threshold expansion, whereas a wide one shows how much
and in which direction it differs from the full KNLO

df,3 values. The dashed vertical line indicates the 5π

threshold.
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Figure 7. Comparison of contributions to KNLO,OPE
df,3 from different interacting-pair partial waves in

MNLO
2 , numerically evaluated at Mπ = 340 MeV using the same kinematic configuration as in figure 6.

Lines are drawn so that the number of dots equals ℓ. Partial waves that are identically zero, as well
as the negligibly small ℓ > 3 contributions, have been omitted.

– 30 –



J
H
E
P
0
3
(
2
0
2
4
)
0
4
8

LO result is given in table 1, while the NLO expressions are provided in table 6. Numerical
values of the LO and NLO three-pion K-matrix at the physical point are given in table 7.

In order to gain insight in the behavior of the K-matrix, we have performed numerical
investigations of its convergence. In figures 4 and 5, we observe that NLO contributions are not
necessarily small compared to LO contributions, especially not at larger-than-physical pion
masses. Thus, the poor convergence of the chiral expansion for the three-particle K-matrix,
previously observed at maximal isospin [49], appears to be generic for all three-pion systems.

On a more positive note, we find that the threshold expansion, truncated at quadratic
order (cubic order for I = 0), provides a good description of the full NLO result up to the
five-pion inelastic threshold. This is illustrated in figure 6. We also find that the OPE
contribution to Kdf,3 is largely dominated by s-, p- and d-waves, as shown in figure 7.

With the list of K-matrix components now complete for three-pion systems up to the
given orders, it will be interesting to compare future lattice results to these predictions;
currently, no results exist beyond those already discussed in ref. [49]. We also note that,
although the technical complexity of the calculation has increased compared to that at
maximum isospin, there have been no new hurdles that could not be dealt with effectively
using the techniques developed in ref. [49].

This work provides an encouraging outlook towards further developments within the
program of multi-hadron dynamics at the interface of lattice QCD and effective theories. Next
steps involve the inclusion of particles other than pions. In particular, consideration of systems
with kaons and pions would allow comparison with available lattice results [48]. Another
generalization would be to use ChPT to determine the form of the intermediate short-distance
K → 3π decay quantity, APV

K3π, introduced in ref. [33]. This quantity plays an analogous role
in three-pion decays to that of Kdf,3 in three-to-three scattering. This connection to ChPT
has already been exploited at LO in another version of the three-body formalism [54].
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A Details on the bull’s head subtraction

In section 3.2.4, we presented the results of the bull’s head calculation using the analytic
approximation, resulting in the compact but highly scheme-dependent values of tables 5
and 6. Without using the approximation, the exact results can be stated in terms of the
following 14 cutoff-dependent integrals, defined in eq. (3.51):

H0,0,0 , H0,1,0 , H0,2,0 , H2,0,0 , H4,0,0 , H6,0,0 ,

H−4,0,0 , H−2,0,0 , H0,0,1 , H0,0,2 , H0,0,3 , H0,1,1 , H0,1,2 , H0,2,1 ;
(A.1)

only those in the first line are present at maximum isospin. The result is presented in terms
of the Hm,n,p (and Hm,n ≡ Hm,n,0, corresponding to the notation of ref. [49]) in table 8.
Note that this form is reached by applying eq. (3.53) as well as the integration-by-parts
relation derived in ref. [49], namely,

Hm,n+1 + Hm−2,n+1 = 1
6
[
(2 − m)Hm,n,0 − (m + 1)Hm+2,n

]
, (A.2)

which [unlike eq. (3.53)] is made invalid by setting H(x) = 1. Therefore, table 5 is not obtained
directly from table 8, but from longer intermediate expressions (see ref. [49] for details).

A.1 Cutoff dependence

The cutoff function H(x) is arbitrary as long as it smoothly interpolates between H(x ≤ 0) = 1
and H(x ≥ 1) = 0, with the standard choice for Kdf,3 being

H(x) = exp
[
−1

x
exp

(
− 1

1 − x

)]
, 0 < x < 1 . (A.3)

A generalization corresponds to the replacement [7]

x → 1 + 4
3 − α

(x − 1) , −1 ≤ α < 3 , (A.4)

with α = −1 recovering eq. (A.3). Another choice is the symmetric function introduced
in ref. [49],

H(x) =
[
1 + exp

(1
x
− 1

1 − x

)]−1
, 0 < x < 1 . (A.5)

The numerical bull’s head remainders DX defined in eq. (3.55) are the only cutoff-dependent
terms in the threshold expansion of Kdf,3. Figure 8 shows their dependence on the choice of
cutoff; the upper left panel displays similar information to figure 11 in ref. [49].
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I
=

3
F 6

π
M6

π
K0 −27

2 H0,0 + 9
4H2,0

F 6
π

M6
π
K1 −117

4 H0,0 − 189
4 H0,1 + 21

8 H2,0 − 3
4H4,0

F 6
π

M6
π
K2 −243

160H0,0 − 5751
64 H0,1 − 567

8 H0,2 − 2241
320 H2,0 + 423

160H4,0 + 369
1280H6,0

F 6
π

M6
π
KA

891
64 H0,0 − 1161

128 H2,0 + 45
64H4,0 + 9

128H6,0
F 6

π
M6

π
KB − 81

320H0,0 − 297
640H2,0 − 27

160H4,0 + 27
640H6,0

I
=

2

F 6
π

M6
π
KT

0
13
2 H−4,0 + 85

24H−2,0 − 857
288H0,0 + 4

9H0,0,1 + 83
128H2,0 − 1

128H4,0
F 6

π
M6

π
KT

1 −62
5 H−4,0 + 19

24H−2,0 − 3407
2880H0,0 + 7

9H0,0,1 − 4
9H0,0,2 − 259

144H0,1 + 4
9H0,1,1

+ 2783
2304H2,0 − 623

2560H4,0 + 9
2560H6,0

F 6
π

M6
π
KT

2 −1341
40 H−4,0 − 5289

160 H−2,0 − 1193
640 H0,0 − 4H0,0,1 − 8469

2560H2,0 − 423
2560H4,0

+ 27
1280H6,0

F 6
π

M6
π
KT

3
9
10H−4,0 − 1

8H−2,0 − 539
640H0,0 + 473

1536H2,0 + 39
1280H4,0 − 7

7680H6,0
F 6

π
M6

π
KT

4 − 3
40H−4,0 − 47

160H−2,0 − 109
640H0,0 + 349

7680H2,0 − 11
3840H4,0 + 1

7680H6,0

I
=

1

F 6
π

M6
π
KSS

0 −36H0,0 − 45
2 H0,0,1 + 207

32 H2,0
F 6

π
M6

π
KSS

1 −249
8 H0,0 − 225

4 H0,0,1 + 45
2 H0,0,2 − 4437

32 H0,1 − 45
2 H0,1,1 + 3

64H2,0 − 69
32H4,0

F 6
π

M6
π
KSS

2
243
40 H0,0 − 1215

32 H0,0,1 + 1665
32 H0,0,2 − 45

2 H0,0,3 − 50463
512 H0,1 − 1665

32 H0,1,1
+ 45

2 H0,1,2 − 13671
64 H0,2 − 45

4 H0,2,1 − 41733
2560 H2,0 + 44001

5120 H4,0 + 8487
10240H6,0

F 6
π

M6
π
KSS

A
135
16 H0,0 − 23895

1024 H2,0 − 171
64 H4,0 + 207

1024H6,0
F 6

π
M6

π
KSS

B
27
160H0,0 − 13851

5120 H2,0 − 7047
2560H4,0 + 621

5120H6,0

F 6
π

M6
π
KSD

0
45
8 H−2,0 − 3H0,0 − 3H0,0,1 − 57

32H2,0 + 9
64H4,0

F 6
π

M6
π
KSD

1 −54
5 H−2,0 − 489

640H0,0 − 69
16H0,0,1 + 3H0,0,2 − 1383

64 H0,1 − 3H0,1,1 − 20193
2560 H2,0

+ 1665
1024H4,0 − 81

1024H6,0
F 6

π
M6

π
KSD

2
459
80 H−2,0 + 189

80 H0,0 + 189
5120H2,0 − 729

1280H4,0 + 27
1024H6,0

F 6
π

M6
π
KSD

3 −243
320H−2,0 − 351

160H0,0 − 2673
1024H2,0 + 297

2560H4,0 + 27
1024H6,0

F 6
π

M6
π
KSD

4
81
320H−2,0 − 513

320H0,0 − 2241
640 H2,0 − 27

80H4,0 + 27
640H6,0

F 6
π

M6
π
KDD

0 −5
2H−4,0 + 139

24 H−2,0 + 1825
288 H0,0 + 4

9H0,0,1 − 153
128H2,0 + 11

128H4,0
F 6

π
M6

π
KDD

1
47
10H−4,0 − 859

120H−2,0 + 12343
2880 H0,0 + 7

9H0,0,1 − 4
9H0,0,2 − 259

144H0,1 + 4
9H0,1,1

− 25541
11520H2,0 + 813

2560H4,0 − 99
2560H6,0

F 6
π

M6
π
KDD

2
441
40 H−4,0 + 11721

160 H−2,0 + 17329
640 H0,0 − 13H0,0,1 − 24849

2560 H2,0 − 11907
2560 H4,0

− 297
1280H6,0

F 6
π

M6
π
KDD

3 − 9
20H−4,0 + 33

40H−2,0 + 1913
1920H0,0 − 1471

7680H2,0 + 13
3840H4,0 + 77

7680H6,0
F 6

π
M6

π
KDD

4
3
40H−4,0 + 23

160H−2,0 + 191
1920H0,0 − 31

7680H2,0 − 139
3840H4,0 − 11

7680H6,0

I
=

0

F 6
π

M6
π
KAS

0 −27
2 H−2,0 − 27

2 H0,0
F 6

π
M6

π
KAS

1
3321
80 H−2,0 + 4563

320 H0,0 − 621
320H2,0

F 6
π

M6
π
KAS

3 −729
560H−4,0 + 26 811

1120 H−2,0 + 87 399
4480 H0,0 + 8343

4480H2,0
F 6

π
M6

π
KAS

4
2187
2240H−4,0 − 243

2240H−2,0 − 7047
2240H0,0 − 4617

2240H2,0

Table 8. Exact expressions for the bull’s head contribution KBH
df,3 = −DBH; cf. table 5, and also

eq. (4.31) in ref. [49]. The Hm,n,p are defined in eq. (3.51), and Hm,n ≡ Hm,n,0.
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10−2

10−1

100

101

D0 D1

D2 DA

DB

10−2

10−1

100

101
DT

0 DT
1

DT
2 DT

3

DT
4

10−1

100

101

DSS
0 DSS

1

DSS
2 DSS

A

DSS
B

10−1

100

101

102
DSD

0 DSD
1

DSD
2 DSD

3

DSD
4

α
−1.0 −0.5 0.0 0.5 1.0 1.5

10−1

100

DDD
0 DDD

1

DDD
2 DDD

3

DDD
4

α
−1.0 −0.5 0.0 0.5 1.0 1.5

10−1

100

101

DAS
0 DAS

1

DAS
3 DAS

4

Figure 8. Illustration of the size of the numerical bull’s head remainders DX . Each line shows
|DX/KBH

X |, where KBH
X is the complete bull’s head contribution to KX , plotted logarithmically as

a function of the parameter α defined in eq. (A.4). The standard cutoff, eq. (A.3), is recovered at
α = −1; the result using eq. (A.5) is shown to the left of that. The coefficients are grouped and
displayed similarly to figure 5. Horizontal lines are drawn at the ratio 1, roughly indicating the border
between ‘small remainders’ and ‘large remainders’. Positive spikes indicate KBH

X = 0, and negative
spikes indicate DX = 0.
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Class 1 (12) (231)

Dim 1 3 2

1 1 1 1
−1 1 −1 1
D 2 0 −1

Table 9. Character table of S3.

B Group-theoretical enumeration of operators

In this appendix, we describe how group-theoretical considerations can be used to determine
the number of kinematic operators at each order in the threshold expansion.

It follows from eqs. (2.8) and (2.9) that operators in this expansion can be written as
products of the quantities tij = (pi−kj)2, where we recall that {pi} and {kj} are, respectively,
the final and initial momenta. We are interested here in operators that are linear, quadratic
and cubic in the tij . Such products can be decomposed into irreps of the group S′

3×S3, where
S′

3 and S3 act, respectively, on the outgoing and incoming particle momenta. As explained in
ref. [20], and recalled in the main text, operators of a given isospin lie in (in general a sum of)
particular irreps of S′

3×S3. By counting the number of different irreps that appear in products
of the tij , we can determine the number of independent operators for each isospin at each order
in the threshold expansion. This is a more systematic approach than an explicit enumeration,
and, indeed, has led to the discovery of additional operators, as noted in the main text.

In fact, there is an additional symmetry that must be considered, namely the PT
symmetry that interchanges initial and final momenta (and which holds exactly in QCD).
Thus the operators must be decomposed into irreps of the group G ≡ (S′

3 × S3) ⋊ Z2, which
involves a semidirect product. To see this, we consider the defining representation, which
acts on the vectors {k1, k2, k3, p1, p2, p3}. The matrices forming the individual subgroups
are, in block form,

S3 →
(

S3 0
0 1

)
, S′

3 →
(

1 0
0 S3

)
, Z2 →

(
0 1
1 0

)
. (B.1)

Thus, we have (
0 1
1 0

)(
S3 0
0 1

)(
0 1
1 0

)
=
(

1 0
0 S3

)
, (B.2)

showing that the Z2 acts nontrivially. Our tasks are thus to determine the character table
of G, and then to decompose operators of a given order in the tij into irreps using the
standard character decomposition.

We first recall some results for the permutation group. The character table of S3 is
given in table 9. Here, we label the irreps 1, −1 (the sign or alternating irrep), and D, the
standard or doublet irrep. The character table of S′

3 × S3 is then given in the standard
way for tensor products, leading to 9 classes and 9 irreps. Classes are given simply by
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Class 1′, 1 (12)S (231)S (12)′, (12) (12)(231)S (231)′, (231) z1 z2 z3

Dim 1 6 4 9 12 4 6 18 12

1+
+ 1 1 1 1 1 1 1 1 1

1−+ 1 1 1 1 1 1 −1 −1 −1
1+
− 1 −1 1 1 −1 1 1 −1 1

1−− 1 −1 1 1 −1 1 −1 1 −1
2+

+ 2 0 2 −2 0 2 0 0 0
SD+

+ 4 2 1 0 −1 −2 0 0 0
SD+

− 4 −2 1 0 1 −2 0 0 0
DD+

+ 4 0 −2 0 0 1 2 0 −1
DD−

+ 4 0 −2 0 0 1 −2 0 1

Table 10. Character table of (S′
3 × S3) ⋊ Z2.

combining classes for the individual S3s, e.g., {(12)′, (231)}, while irreps are products of the
individual irreps, e.g., (−1)′ ⊗ D. Characters or product irreps are simply the products of
the characters of the individual irreps.

The inclusion of Z2, which interchanges S′
3 and S3, leads to some of the conjugacy classes

of S′
3 × S3 being combined, and introduces additional classes. The combined classes are

(12)S = {(12)′, 1} + {1′, (12)} , (B.3)
(231)S = {(231)′, 1} + {1′, (231)} , (B.4)

(12)(231)S = {(12)′, (231)} + {(231)′, (12)} , (B.5)

which reduces the 9 classes of S′
3 × S3 down to 6. There are three additional classes, which

involve the Z2 element in combination with other transformations. In the defining irrep,
these are represented by elements of the form

z1 =
{(

0 S3
S−1

3 0

)}
, (B.6)

z2 =
{(

0 even
odd 0

)
,

(
0 odd

even 0

)}
, (B.7)

z3 =
{(

0 even1
even−1

2 0

)
,

(
0 odd1

odd−1
2 0

)}
. (B.8)

Here, S3 means any element of the group, “even” and “odd” refer to an arbitrary even and
odd element. In particular, in the class z3, “even1” and “even2” are arbitrary but different
even elements, and similarly for “odd1” and “odd2.” These three classes have 6, 18, and
12 elements, respectively.

The character table of G is given in table 10. The notation for irreps is as follows: SD is
a combination of a singlet from S′

3 and doublet from S3, together with the PT-conjugate;
DD is the combination of two doublets; the superscript ± indicates the sign obtained under
the action of Z2; and the subscript ± indicates the sign obtained if the combined parity of
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the S′
3 × S3 permutation is odd. The notation SD and DD mirrors that used in the main

text, while the singlet (here called “1”) is denoted as SS in the main text.
The mapping from isospin irreps to those of G has been explained in ref. [20], and is

recalled in section 2.3. Operators with I = 3 lie in the singlet irrep, 1+
+, those with I = 2

lie in the DD+
+ irrep, those with I = 1 lie in the singlet, SD+

+ and DD+
+ irreps, and those

with I = 0 lie in the 1+
− irrep.

We now decompose operators composed of the tij . At linear order, there are 9 such
operators, and the character vector is {9, 3, 0, 1, 0, 0, 3, 1, 0}, which decomposes as

(1+
+) + (SD+

+) + (DD+
+) . (B.9)

It follows that, at this order, there is a single contribution to I = 3 [that given by the K1 term
in eq. (2.10)], a single contribution to I = 2 [that given by the KT

0 term in eq. (2.17)], and
three contributions to I = 1 [given by the KSS

1 term in eq. (2.19), the KDD
0 term in eq. (2.20),

and the KSD
0 term in eq. (2.23)]. There are no contributions to I = 0 at this order.

Moving now to quadratic order, there are 9 × 10/2 = 45 distinct terms of the form tijtkℓ.
We find the character vector to be {45, 9, 0, 5, 0, 0, 9, 1, 0} , which decomposes as

3(1+
+) + (1−+) + (1+

−) + 4(SD+
+) + 4(DD+

+) + (SD+
−) + (DD−

+) . (B.10)

Thus there are three singlets, leading to the K2, KA, and KB (I = 3) terms in eq. (2.10), and
the corresponding three I = 1 SS terms in eq. (2.19). Similarly, there are four DD terms in
I = 2 and I = 1, given by the KT

1,2,3,4 terms in eq. (2.17), and the corresponding terms in
eq. (2.20). There are four SD terms in I = 1, given by the KSD

1,2,3,4 terms in eq. (2.23). Terms
of this order were not considered in ref. [20]. Finally, there is a single I = 0 contribution,
with coefficient KAS

0 in eq. (2.24).
Moving lastly to cubic order, there are 9 × 10 × 11/6 = 165 distinct terms that are cubic

in the tij . With some effort, one finds that the character vector is {165, 19, 3, 5, 1, 3, 19, 1, 1}.
For example, in the class (12)(231)S , picking the element (12)′(231), only the term t31t32t33
is invariant. The most tricky case is the class z3. Picking the element where even = 1 and
even′ = (231), the single invariant term is t12t31t23.

The decomposition of this character vector is

7(1+
+) + 3(1−+) + 3(1+

−) + 4(2+
+) + 12(SD+

+) + 12(DD+
+) + 6(SD+

−) + 6(DD−
+) . (B.11)

Given the large numbers of irreps, we focus on the I = 0 case, for which we learn that there
are three independent 1+

− irreps, and thus three coefficients at this order. These correspond
to the coefficients KAS

1 , KAS
3 , and KAS

4 , in eq. (2.24). The final coefficient was missed in the
enumeration of ref. [20]. As a side note, we observe that there are seven independent 1+

+
irreps, one less than the eight explicit cubic forms given in ref. [14]. We have confirmed that
there is one linear relation between these eight forms.

C Families of single-parameter kinematic configurations

In ref. [49], we performed numerical checks using several families of single-parameter kinematic
configurations described in appendix D of that paper. These families have symmetries that
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lead to vanishing results when combined with the momentum-exchange antisymmetry present
in some non-maximal isospin channels. Therefore, different families are needed for the
analysis carried out here in section 4.1 and numerical cross-checks of the non-OPE and
bull’s head subtraction results.

A simple way to choose three incoming momenta satisfying k1 + k2 + k3 = 0 with all
|ki| different is, for n > 2,

k1 = p (1, 0, 0) , k2 = p

(
−1 + 1

n
, 1, 0

)
, k3 = p

(
− 1

n
,−1, 0

)
, (C.1)

where p is the single continuous parameter that governs the kinematics. The outgoing
momenta pi can be generated similarly and then rotated using some orthogonal matrix
U . This matrix can also include reflections, e.g., swapping the y and z components of the
momenta. Various choices of n and U result in a range of families that are sufficiently distinct
and non-symmetric to study all components of Kdf,3 as functions of p.

To obtain figures 6 and 7, we used the kinematic configuration obtained with n = 4 and

U =


1
2 −

√
3

2 0
3
4

√
3

4 −1
2

√
3

4
1
4

√
3

2

 ; (C.2)

this reads

k1 = p (1, 0, 0) , p1 = p

(
1
2 ,

3
4 ,

√
3

4

)
,

k2 = p

(
−3

4 , 1, 0
)

, p2 = p

(
−
√

3
2 − 3

8 ,

√
3

4 − 9
16 ,−3

√
3

16 + 1
4

)
, (C.3)

k3 = p

(
−1

4 ,−1, 0
)

, p3 = p

(√
3

2 − 1
8 ,−

√
3

4 − 3
16 ,−

√
3

16 − 1
4

)
.

This configuration is rather general since the outgoing momenta do not lie in the same
plane as the incoming ones.

On the other hand, to numerically calculate the threshold expansion at NLO as a
cross-check, three or four independent configurations need to be used, depending on the
isospin channel. It is rather straightforward to obtain two additional independent sets of
momenta by changing a sign in the y component or swapping the y and z components of
the incoming momenta,

k′
2 = p

(
−3

4 ,−1, 0
)

, k′′
2 = p

(
−3

4 , 0, 1
)

,

k′
3 = p

(
−1

4 , 1, 0
)

, k′′
3 = p

(
−1

4 , 0,−1
)

,

(C.4)

while keeping p1, p2, p3, and k1 as in eq. (C.3). Naturally, the resulting three configurations
will have many kinematic variables in common. To extract all the threshold parameters, these
need to be complemented with another configuration that generates a set of invariants that
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does not overlap with the rest to such an extent. We thus used a variant of the n = 3 case
with U being simply the rotation by 30◦ around the z-axis, which, for completeness, reads

k1 = p (1, 0, 0) , p1 = p

(√
3

2 ,
1
2 , 0

)
,

k2 = p

(
−1

3 , 1, 0
)

, p2 = p

(
−1

2 − 1
2
√

3
,−1

6 +
√

3
2 , 0

)
, (C.5)

k3 = p

(
−2

3 ,−1, 0
)

, p3 = p

(
1
2 − 1√

3
,−1

3 −
√

3
2 , 0

)
.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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