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Abstract—Adding fiducial markers to a scene is a well-known
strategy for making visual localization algorithms more robust.
Traditionally, these marker locations are selected by humans
who are familiar with visual localization techniques. This paper
explores the problem of automatic marker placement within a
scene. Specifically, given a predetermined set of markers and
a scene model, we compute optimized marker positions within
the scene that can improve accuracy in visual localization. Our
main contribution is a novel framework for modeling camera
localizability that incorporates both natural scene features and
artificial fiducial markers added to the scene. We present opti-
mized marker placement (OMP), a greedy algorithm that is based
on the camera localizability framework. We have also designed a
simulation framework for testing marker placement algorithms
on 3D models and images generated from synthetic scenes. We
have evaluated OMP within this testbed and demonstrate an
improvement in the localization rate by up to 20 percent on four
different scenes.

Index Terms—Localization, Computer Vision for Automation,
Landmark Deployment, Fiducial Markers.

I. INTRODUCTION

V ISUAL localization is a foundational technique for
AR/VR, autonomous driving, and robotic navigation and

manipulation. A typical problem in visual localization is to
estimate the camera pose of a query image, provided a pre-
built map. While the problem has long been investigated in
many fields [1], visual localization still suffers due to challeng-
ing scenes such as textureless walls and repetitive structures
(e.g., Rooms A and B in Fig. 1). One common solution to
these challenges is to place fiducial markers as additional
texture and identifiers in the scene [2], [3]; however, placing
fiducial markers in larger environments is a time consuming
process and the resulting performance improvement depends
on marker positions. Thus, optimizing marker placement is
valuable for robust visual localization.

This work proposes an automatic approach to optimizing
marker placement such that 1) the resulting marker positions
yield improved accuracy in visual localization and 2) a human
user will be able to place markers at positions planned by
the approach (e.g., no markers on the ceiling). Specifically,
the approach computes optimized marker positions, given a
predetermined set of markers and a scene model. The key
contributions of this work include:

1Computer Science and Artificial Intelligence Lab, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA{hqq,
jleonard}@mit.edu.

2Microsoft, Redmond, WA 98052, USA{jodegol,
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Qiangqiang and John were partially supported by ONR grant N00014-18-1-
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Room A Room B Textureless Wall

Optimized Marker Placement

Similar 
appearance

Fig. 1. Three challenging examples for visual localization. The images on
the left and middle show two almost identical rooms in the scene, whereas
the image on the right depicts a very weakly textured surface. Marker
placements1in this scene guided by our optimized marker placement approach
led to improved visual localization on these examples.

1) This is the first work that optimizes marker placement
for visual localization based on scene features and
fiducial markers.

2) We propose a novel framework that models localizability
of camera poses in a scene and computes localizability
scores.

3) We develop a greedy algorithm that optimizes marker
positions with the goal of increased localizability scores.

4) We design a simulation framework for testing marker
placement algorithms on 3D scene models that enables
others to reproduce and build on our work.

5) We demonstrate that optimized marker placement by our
approach can improve the localization rate by up to 20
percent on four different scenes.

II. RELATED WORK

We briefly review some recent work related to mapping
and localization with fiducial markers and marker/landmark
placement optimization. Examples of fiducial markers include
tag families with explicit IDs (e.g., ArUco markers [5], April-
Tag [4], ChromaTag [6]) and emerging learning-based marker
designs [7]. Fiducial markers are widely recognized as an
effective approach for improving localization and mapping
accuracy. DeGol et al. [3] demonstrate that marker IDs are
useful in image matching and resectioning for structure from
motion (SfM), leading to improvements in reconstruction
results. The UcoSLAM system [2] integrates marker detection
with a bag-of-words approach and presents more robust track-
ing and relocalization than SLAM techniques with no marker
detection [8], [9]. However, marker placements in these SfM

1Fiducial markers in the examples are AprilTags [4] but our algorithm is
general and can be used with any existing family of fiducial markers.
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Fig. 2. An overview of our approach. We first create a set of feasible camera
poses and marker poses by discretizing space in the 3D model. Then we
evaluate localizability scores of the feasible camera poses and update the
scores once a feasible marker pose is selected to place a marker. The marker
placement is selected by a greedy algorithm as the best trial out of trial
placements in the vacancies (unselected marker poses). These trial placements
are ranked by gains of localizability scores.

or SLAM systems are manually determined and not planned
by algorithms.

Existing work about marker deployment focuses on robotic
localization without considering scene features [10]–[12].
Beinhofer et al. [13] explore optimal placement of artificial
landmarks such that a robot equipped with range and/or
bearing sensors repeatedly follows predetermined trajectories
in planar environments with improved accuracy. Meyer-Delius
et al. [14] introduce a measure that defines the uniqueness
of robot poses in the context of Monte Carlo localization
using laser scanners and then propose a greedy algorithm
to incrementally select landmark locations for maximizing
the measure. While we find the greedy algorithm is similar
to ours, it is not straightforward to apply the measure to
visual localization using images and scene features. Lei et al.
[15] investigate landmark deployment for poses on SE(3) and
demonstrate placing fiducial markers in a cubic environment;
however, features in the scene are not involved in optimizing
the marker placement.

III. METHODS

We aim to compute k 3D locations in the scene for placing k
fiducial markers such that after marker placement, the camera
localization performance improves for query images from
anywhere within the scene. In summary, we solve the global
search of optimal k locations by a greedy algorithm that seeks
one marker placement each time.

A. Assumptions

This work makes two assumptions: 1) A textured 3D model
of the scene is available, and 2) markers and cameras are
located on a 3D plane parallel to the ground plane at roughly
the eye level of a person with average height. Note that the
textured model can be a 3D simulation environment or a dense
reconstruction of scenes. We will collect images (e.g., RGB,
depth, and surface normal) and corresponding camera poses
from the model and take them as input to our approach for
optimizing marker placement. The second assumption ensures
that our marker placement will be reachable to a human user
and constrains the number of feasible camera and marker
locations for computational efficiency.

  

Feasible Marker Pose 

Feasible Camera Location

Discretization by occupancy grid mapping

3D Model

Fig. 3. Discretization of a model from the Habitat-Matterport 3D dataset
[16]. We select a ground plane in the 3D model at roughly eye level of a
human user. The discretized space of the ground plane consists of feasible
marker poses (red arrows), which are sampled from scan points on the ground
plane perimeter, and feasible camera locations (blue dots), which are centers
of unoccupied cells in the 2D discrete grid.

B. Key Elements of Proposed Approach

Fig. 2 shows an overview of our approach, which is com-
posed of three key elements: 1) discretization, 2) evaluation of
camera localizability, and 3) a greedy algorithm for selecting
marker placements.

1) Discretization: We first convert the ground plane in
the 3D model to a discretized space of camera and marker
poses, as shown in Fig. 3. The conversion is implemented
by occupancy grid mapping. Centers of unoccupied grid cells
are designated as feasible camera locations (dots in Fig. 3)
while scan points form the perimeter of the free space (lines in
Fig. 3). We uniformly downsample the scan points to generate
a set of feasible marker posesM (arrows in Fig. 3) whose ori-
entations are determined by surface normals in the 3D model.
Note that one can choose other ways to select feasible marker
poses and then still apply our marker placement algorithm. For
example, the feasible marker poses can be further refined by
incorporating semantics and physical constraints. It is possible
that the algorithm could produce a marker placement in an
infeasible location, although we found this was rare. Even so,
we have done a sensitivity study showing that we can place
the marker nearby the exact location and still get most of the
gain2. We derive a set of feasible camera poses C from the
feasible camera locations. Each of the camera locations yields
n camera poses whose optical axes are parallel to the ground
plane and evenly spaced in [0, 2π] (e.g., the default n = 8).

2) Camera localizability score: We compute camera local-
izability scores by evaluating uncertainty in localizing feasible
camera poses. Specifically, for any feasible camera pose c ∈ C
(the corresponding random variable is C), we synthesize mea-
surements z to create a camera localization problem, estimate

2A sensitivity study about the influence of position and size deviations of
markers on localization performance is available in Sec.X.
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Fig. 4. Evaluation of localizability scores and the information gain brought by a marker placement. On the left we show a grid of feasible camera poses.
Feasible camera poses are positioned at cell centers with orientations shown as the red arrows. The field of view of camera pose c covers points p1, p2, and
p3 in the 3D model and a marker placement on the discretized perimeter of the level set of the ground plane. We synthesize measurements z of the points to
create a camera localization problem using scene features. The problem is represented by factor graph 1 and distribution p(C|z) by which we can compute
the entropy as well as the localizability score of the camera pose seeing no markers. We penalize contributions of repetitive structures on the localizability
score via the analysis of feature similarity. With additional measurements m to the marker, we create another localization problem which is represented by
factor graph 2 and distribution p(C|z,m). The new problem leads to a new entropy and a new localizability score.

(a) (b) (c)

Fig. 5. Results of localizability scores: (a) no markers, (b) a trial marker placement (red arrow), and (c) the information gain. The score (or gain) at a
dot is the mean score (or gain) of camera poses at the dot with all feasible orientations. Darker dots stress low localizability scores in (a) and (b) and high
information gains in (c). This trial turns out to be the first marker in the optimized placement (see the Apartment in Fig. 9).

the distribution of the camera pose p(C|z), and define the
localizability score of the camera pose l(c) as the negation of
the entropy of the distribution, as shown in

l(c) = −H(p(C|z)) = E[ln p(C|z)]. (1)

If a new fiducial marker is added in the field of view (FOV)
and range of the camera pose, the new synthetic measure-
ment regarding the marker will change the entropy of the
camera pose distribution, resulting in an information gain
that quantifies the impact of the marker placement. Fig. 4
summarizes steps for evaluating the localizability score and
the information gain. These steps are explained in detail in
following paragraphs.

Synthesized data for computing the localizability score:
The leftmost part of Fig. 4 illustrates 3D points and a feasible
marker pose (i.e., trial marker placement) that are in the
FOV/range of a feasible camera pose3. We collect RGB and
depth images at the camera pose in the 3D model. These
images will be used to compute 3D points and descriptors
of features (e.g., SIFT [17]). We use these known poses and
points to synthesize measurements and estimate probability
density functions (PDFs) of the camera pose variable. Mea-
surements z in Fig. 4 contain the camera pose, the 3D points,
and bearings between them. Thus the PDF p(C|z), which
is represented by factor graph 1, expresses the distribution

3In practice, one can further refine marker poses in the FOV by considering
marker sizes and rejecting corner cases that may fail the detection of markers.
The cases include marker poses that are too close to the boundary of the view
frustum of the camera.

of the camera pose constrained by the 3D points. Placing
a marker in the FOV/range of the camera leads to new
synthetic measurements m of the marker pose and the relative
pose between the marker and the camera. As a result, the
camera pose is further constrained by measurements m thus
is described by a new PDF p(C|z,m) represented by factor
graph 2 in Fig. 4. We use an approach that is similar to the
one proposed by Stachniss et al. [18] to define the information
gain of a marker placement. The information gain is defined
as the change of entropy that the marker placement m yields
at the camera pose c, as seen in

I(m, c) = H(p(C|z))−H(p(C|z,m)). (2)

Fig. 5a shows localizability scores of camera poses in the
original ground plane with no marker placement. Note that the
score at a dot in the figure is the mean score of camera poses
with all feasible orientations. Fig. 5b shows localizability
scores after adding a marker (the arrow) to the ground plane
perimeter. The scores increase in the region around the marker,
indicated by the brighter dots in the region in Fig. 5b and the
information gain in Fig. 5c.

Analysis of feature similarity of 3D points: Repetitive
structures in scenes cause similar features across RGB images
and can result in localizing to a wrong location. To reduce
the contribution of repetitive structures to localizability scores,
we penalize the localizability score if similar features appear
in the FOV of the camera. Specifically, when modeling 3D
points with similar features in factor graphs, we set greater
uncertainty in noise models of 3D point factors to encode the
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Algorithm 1: Optimized Marker Placement (OMP)
Input: The number of markers k, the list of feasible marker poses

M, the ground plane space S
Output: k marker poses

1 Initialize an empty list for storing selected marker poses O
2 repeat k times
3 Initialize the best marker pose T ? = ∅
4 Initialize the highest localizability gain g? = − inf
5 Evaluate localizability scores L? of camera poses in space S
6 for Pose T in M do
7 Place a marker at pose T in space S
8 Evaluate localizability scores L of camera poses
9 Compute information gains I = L − L?

10 Evaluate localizability gain g of the marker by (6)
11 if g > g? then
12 T ? = T
13 g? = g

14 Remove the marker from space S
15 Push T ? to O
16 Place a marker at pose T ? in space S
17 Remove T ? from M
18 return List of marker poses O

(a) (b)

Histogram
Cumulative
10th Percentile

Histogram
Cumulative
99.76th Percentile

0.24 25.21

Fig. 6. Histograms for the HM3D apartment model: (a) percentage of
affected camera poses and (b) information gains at camera poses yielded by a
marker. The most visible 90% markers (i.e., v = 90) means 10th percentile
in (a), determining the percentile q = 99.76 by (9). The 99.76th percentile
in (b) indicates a localizability gain 25.21 of the marker by (6).

fact that similar 3D points are ambiguous and less informative.
(3) shows the 3D point factor that formulates the difference
between the noisy 3D location p̃ and true 3D location p using
a Gaussian distribution

p(p̃|p) = N (p̃− p;0,Σp) (3)

where Σp is the covariance we set for modeling noise. For
example, in the leftmost part of Fig. 4, points p1 and p3 are
visually similar, so we set big covariances in 3D point factors
of p1 and p3. Informally, factors with big covariances impose
loose constraints on the camera pose distribution, leading to
lower contributions on the localizability score.

We perform an analysis of feature similarity of 3D points to
determine noise models in 3D point factors (i.e., Σp in (3)), as
shown in the flow chart in Fig. 4. The analysis is to count the
number of similar 3D points to any 3D point. The resulting
covariance Σp is formulated as

Σp = (1 + np)Σ0 (4)

where Σ0 is a base covariance (e.g., diag(2.5, 2.5, 2.5) ×
10−3 m2 in our experiments) and np denotes the number of
similar 3D points to the query point p. 3D points observed by
all feasible camera poses are filtered to select similar ones of
the query point. The selection is determined by two criteria: 1)
the selected points have similar descriptors to the query point
and 2) the selected points are not too close to the 3D location
of the query point. The intuition is that, if two areas in the

scene look similar but they are far away from each other, a
wrong place recognition would incur a huge localization error.

Estimation of camera pose distributions: We use the
Laplace approximation [19, Ch. 4.4] to estimate a Gaussian
distribution that approximates the camera pose distribution
encountered in the synthetic localization problem. The mean
of the Gaussian is the known feasible camera pose so the
covariance Σ is the only unknown. The covariance can be
approximated by an estimated Hessian of the negative log-
arithm of the camera pose distribution at the mean (see
[20, Sec. 2] for the estimation of the covariance). Thus the
entropy encountered in the synthetic localization problem can
be approximated by

H(p(C|·)) ≈ 1

2
ln |Σ|+ d

2
(1 + ln(2π)) (5)

where the dimensionality d is 6 for 6DOF poses.
3) The greedy algorithm4: The algorithm sequentially se-

lects k poses from feasible marker posesM (see Algorithm 1).
The algorithm executes k loops to search the best k poses. In
each loop, we update localizability scores, tentatively place a
marker at any feasible marker pose, and compute localizability
gains of trial marker placements. The best pose that earns
the highest localizability gain will be removed from feasible
marker poses and be permanently occupied by a marker. The
marker will influence future updates of localizability scores.

We summarize information gains at all feasible camera
poses in the scene, using a single scalar quantity that we
refer to as localizability gain. Informally, one could think of
the localizability gain as the reward for placing an additional
marker at a specific position. The localizability gain of any
marker placement m is defined as the qth percentile of
information gains that marker m yields at all feasible camera
poses C, as seen in

g(m) = inf{i ∈ R : FI(i) ≥ q

100
}, (6)

where FI(·) is the cumulative distribution function (CDF) after
sorting the information gains at all camera poses

I = {I(m, c) : c ∈ C}. (7)

The choice of percentile q ∈ [0, 100] is crucial and dependent
on environments (i.e., the ground plane). For example, in
a large environment where any marker is only visible to a
small fraction of feasible camera poses, a low percentile q
would likely incur zero localizability gains for all markers
since camera poses seeing no markers receive zero information
gains and constitute a great portion of the information gain
distribution I.

We use an adaptive approach to determine the percentile
q before computing the localizability gain. The approach
introduces a hyperparameter v ∈ [0, 100] and ensures that the
most visible v percent of markers earn nonzero localizability
gains. A high v allows more markers, even the ones stuck
in corners, to effectively join in the selection of best marker
while a low v favors the most visible ones among feasible

4Discussion about the complexity of the algorithm and the possibility of
generalizing the greedy algorithm is available in Sec. VII.
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Scene A with no marker Scene B with markers

Camera poses of test images

Test images in scene A Test images in scene B

Estimated poses in scene A Estimated poses in scene B

Localization module

Fig. 7. The flowchart of our system for performing camera localization
experiments. Scenes with different marker placements share the same set of
camera poses for acquiring test images and the same localization module.

marker poses. In the ground plane space, for any marker m, we
can find a set of affected camera poses Cm that are supposed
to see the marker (i.e., nonzero info. gain). We can derive a
CDF FP (p) using percentages of affected camera poses for
all markers

P =

{
|Cm|
|C|
× 100 : m ∈M

}
. (8)

To ensure only the most visible v percent of markers earn
nonzero localizability gains, the percentile q is determined by
the (100 − v)th percentile in percentages of affected camera
poses, as seen in

q = 100− inf

{
p ∈ [0, 100] : FP (p) ≥ 100− v

100

}
. (9)

(9) indicates q is a non-decreasing function of v. When v
approaches 100, q approaches 100 as well so only markers
that earn a greater maximum in information gains will be
considered in the best marker selection (see (6)); when v
approaches 0, q approaches 0 as well so the best marker
will only be selected from markers that influence large areas.
Thus the choice of hyperparameter v can reflect the trade-off
between helping the worst single camera pose and influencing
the most camera poses.

Fig. 6 shows an example for computing the percentile
q and the localizability gain for the marker placement in
Fig. 5. We set v = 90 as the default setting so the most
visible 90% markers receive nonzero localizability gains and
are effective best marker candidates. This setting results in a
marker placement strategy that tends to support worst camera
poses instead of area coverage, as shown in the optimized
marker placement for the apartment model in Fig. 9. No
markers are placed in the two big rooms on the right of
the apartment since (i) camera poses in these rooms already
enjoyed good localizability scores (see Fig. 5a) and (ii) a large
hyperparameter v does not emphasize area coverage.

IV. EXPERIMENTAL SETUP

A. Implementation

We implemented all three key elements and Algorithm 1 in
Sec. III-B in Python with assistance of a few open source

software packages. We used the Unreal Engine 4.27 [21]
and the AirSim library (v1.8.1) [22] to simulate and collect
images from 3D models. We used the Open3D library [23]
to downsample scan points to get candidate marker locations.
We used the GTSAM library [24] to create factor graphs and
estimate covariances in Gaussian approximations of camera
pose distributions. The SIFT feature [17] was used throughout
our experiments.

Additionally, we implemented a simulation system for test-
ing marker placement algorithms and a camera localization
module for estimating camera poses of test images. Fig. 7
presents a flowchart of the system. The system adds markers
to a scene model at positions planned by marker placement
algorithms and then generates test images from the same set of
camera poses for different marker placements for the fairness
in comparison. We stress three advantages of the simula-
tion system over real world pipelines for performing camera
localization experiments: 1) reproducible data collection by
other researchers for future development of marker placement
algorithms, 2) a large number of test images that cover the
scene, 3) consistent camera poses for generating test images
in scenes with different marker placements.

B. Evaluation

1) Methods for comparison: We compare our algorithm
OMP with 1) no marker placement, 2) random marker place-
ments, 3) uniform marker placements, and 4) markers placed
by a human. Random marker placements refer to uniformly
weighted samples from feasible marker poses. Uniform place-
ments distribute the markers roughly uniformly along the
perimeter of the environment (see [14] for details). We gen-
erated 5 versions of random and uniform placements for each
scene and all placements were manually inspected in scene
models to ensure reasonable quality. The comparison with
humans is only conducted in the real experiment. The human
prioritizes centers in less textured areas.

2) Scenes: The method comparison is performed on four
scenes: apartment, studio, office, and room, as seen in Fig. 9.
The first two are pre-built dense maps of realworld spaces, pro-
vided by the Habitat-Matterport 3D (HM3D) Research Dataset
[16], while the third model is an Unreal Engine simulation
environment that resembles typical realworld offices5. The first
three are for simulated experiments. The last one is a motion
capture room at MIT for the real experiment (see Sec. IX).
The textured mesh of the room was created by fusing RGB-D
images from groundtruth poses, using the volumetric fusion
[25] and marching-cubes algorithms and the screened Poisson
surface reconstruction [26]. Table I lists specifics of these
models.

3) The localization module: Fig. 8 presents the flowchart of
our localization module. The localization module is similar to
standard approaches [27] but with an extra function of fiducial

5The serial number of the apartment model is 00770-NBg5UqG3di3 in the
HM3D dataset and that of the studio model is 00254-YMNvYDhK8mB. We
inspected all scenes in the dataset and chose these two as representatives
of medium and large scenes with textureless areas and potential perceptual
aliasing. The office model is the ThreeDee Office project in the Unreal Engine
Marketplace.

https://aihabitat.org/datasets/hm3d/00770-NBg5UqG3di3/index.html
https://aihabitat.org/datasets/hm3d/00254-YMNvYDhK8mB/index.html
https://www.unrealengine.com/marketplace/en-US/product/threedee-office
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TABLE I. Specifics of scenes

Model Area (m2) # of map images # of test images

Apartment 339.3 10856 10000
Studio 149.6 2832 3000
Office 108.3 1768 2000
Room 21.0 250 200

Mapping images

1. Marker detection

2. VLAD

Camera Poses & 3D Points

3. Feature extraction

Test image

4. Marker detection

5. VLAD

Map Data

Test Data

Coarse localization

6. Feature extraction

7. Find M marker matches

8. Find max(N-M,0) VLAD matches 

Pose Estimation

9. Feature matching 
for 2D-3D correspondences

10. P3P with RANSAC & Optimization

11. 6DOF Pose

N matched mapping images

Fig. 8. The localization module using fiducial marker detection. The num-
bers indicate the order of different operations.

marker detection, provided by the AprilTag library [4]. The
tag detection and VLAD descriptors [28] were sequentially
employed to find matched images in the map data. Camera
poses were estimated using P3P [29] with RANSAC [30]
followed by Levenberg-Marquardt optimization [31]. The ro-
tation error δR is defined as the angular distance between the
estimated rotation matrix R̂ and the groundtruth rotation R
while the translation error δt is defined as the Euclidean dis-
tance between the estimated translation t̂ and the groundtruth
translation t, as seen in

δR =
∣∣arccos

( tr(R̂TR)− 1

2

)∣∣, (10)

δt =
∥∥t̂− t∥∥

2
. (11)

4) The map and test data: In simulated experiments, the
camera was set to a FOV of 90 degrees and a range of
10 meters (RGB res. 600×450, depth res. 300×225). The
camera poses for collecting the map data are the same as
the feasible camera poses in the ground plane space. The
camera poses for collecting test images are sampled from the
feasible camera poses with weights and then perturbed by
translation and rotation noises that are subject to a uniform
distribution in [−0.5, 0.5]. We intend to sample more densely
from the difficult areas, which are of our interest, so the
weights in the sampling correlate with localizability scores
for generating more test images around low-scoring camera
poses6. Let L = {l(c) : c ∈ C} be the set of localizability
scores of feasible camera poses in the ground plane space
with no markers. The weights are defined as

W = {2l? − l − l(c) : c ∈ C}, (12)

where l? is the maximal score in L and l is the mean of
all scores. Thus all weights will be non-negative and a lower
score incurs a greater weight. In the real experiment, we
used the Realsense L515 camera for RGB-D data (image res.
1280×720) and the OptiTrack system for groundtruth poses.
The map and test data were sampled along two lawn-mower
paths around feasible camera poses (see Sec. IX).

6Results on test images uniformly sampled are available in Sec. VIII.

V. RESULTS

We present two sections of results. In the first section, we
present results comparing different marker placement methods.
Next, we show a parameter study about factors that can affect
our algorithm and the localization performance. The main
metric we analyze is the recall, which is defined as the percent
of test images localized within certain thresholds of errors: (5
cm, 5 deg) for simulated experiments and (30 cm, 10 deg) for
the real experiment considering errors in the dense map, sensor
noise, and large textureless areas. The default hyperparameter
v is 90.

A. Comparison of Marker Placement Methods

As optimized marker placements in Fig. 9 show, our
algorithm focuses on placing markers around low-scoring
areas and improves mean localizability scores by a large
margin. For example, the largest room in the studio model
only receives a single marker (marker 9 on the top right of the
studio) since the room already possesses good localizability
scores even with no markers.

Optimized marker placements consistently outperform
no marker placement, random placements, and uniform
placements on the recall. After placing 20 markers, our
algorithm improves the recall by over 1.5 percentages for the
apartment model, 3.0 percentages for the studio model, 20.0
percentages for the office model, and over 20.0 percentages
for the room scene. Note that the area of the apartment model
is very big and the model has attained a high recall 85%
with no assistance of markers so the increment of recall for
the apartment model was expected to be lower than that for
the other models. The real experiment in the room scene
shows that our algorithm is on par with markers placed by
a human. Although our experiment demonstrates the efficacy
of optimizing marker placements in 3D models for realworld
applications, we emphasize that the efficacy relies on the
similarity between rendered and real images. Vision features
in rendered images can be affected by many factors including
mesh quality and lighting. For example, we covered the glass
door in the room by a well-textured poster to reduce the
difficulty in 3D reconstruction. In addition, if one has quality
real RGB-D data at feasible camera poses, the textured mesh
is not needed for using our marker placement algorithm.

B. Parameter Study

We design four experiment groups and change one of the
default parameters in each experiment group. The experiment
groups are 1) different values of v in the greedy algorithm, 2)
enabling/disabling marker detection in the localization module,
3) low-scoring/uniform test data and 4) enabling/disabling the
analysis of feature similarity, as seen in Table II. The default
setting is with v = 90, marker detection enabled, the low-
scoring test data that has more test images in low-scoring areas
in the ground plane, and the similarity analysis where similar
3D points are downweighted in the localizability score. For
the parameter study, we use the office model.

Too large or small values of hyperparameter v in-
cur lower improvements of the recall. As explained in
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Fig. 9. Results for all scenes: (a) 3D models, (b) ground plane space with no markers where darker dots indicate lower localizability scores, (c) optimized
marker placements where the red arrows represent optimized marker placements and the numbers beside the arrows indicate the order of marker placements,
and (d) the recall in camera localization experiments. We exclude camera poses near the bottom of the room where a table occupies.

TABLE II. Parameter study about the hyperparameter v, the test data,
enabling/disabling marker detection, and enabling/disabling the similarity
analysis.

Experiment group Recall of test images with k markers (%)
k = 0 5 10 15 20

v = 90 (df.) 48.6 55.5 62.1 65.7 69.2
v = 99 48.6 55.5 60.4 64.5 67.4
v = 70 48.6 54.8 61.1 63.2 66.6
v = 50 48.6 54.3 57.6 63.9 66.8

Marker detect. on (df.) 48.6 55.5 62.1 65.7 69.2
Marker detect. off 48.6 55.2 60.7 64.2 67.5

Low-scoring data (df.) 48.6 55.5 62.1 65.7 69.2
Unif. test data 57.4 63.7 68.4 72.1 74.8

Similarity analysis (df.) 48.6 55.5 62.1 65.7 69.2
Sim. analysis disabled 48.6 55.4 61.8 65.0 67.8

Sec. III-B3, lower v favors markers that cover larger areas
while greater v tends to stress the worst single camera pose.
Table II shows that the default value (v = 90) consistently
outperforms small value 50 and large value 99, indicating that
the default attains a good balance between area coverage and
helping the worst cases.

The localizability score can be a good indicator of
localization errors. Table II shows that uniform test samples
enjoy greater recall than test samples that stress low-scoring
areas by at least 5 percentages. Fig. 10b indicates a statisti-
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Fig. 10. Parameter study: (a) the optimized marker placement after disabling
the similarity analysis and (b) scatter plot of the localizability score and the
log of estimation error of test images. The error is computed as the double
Geodesic distance,

√
δ2R + δ2t . To avoid outliers, samples are admitted to

the plot only if the translation and rotation errors are within (50cm, 50deg).
The Pearson correlation coefficient and p-value for testing non-correlation is
(−0.41, 2.4× 10−55).

cally significant, negative correlation between the localizability
score and the localization error.

Both the visual appearance and decoded label of mark-
ers are helpful for localization. We disable marker detection
in the localization module (Fig. 8) to investigate its impact
on the recall. Table II shows that markers still improve the
recall even though the detector is turned off. The reason is
that the visual appearance of markers is still helpful for coarse
localization and pose estimation in the localization module.
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Deactivating the analysis of feature similarity decreases
the recall. Fig. 10a presents the marker placement after
disabling the similarity analysis (i.e., no scaling in (4)). The
first five markers remain in the same positions as those guided
by the similarity analysis (Fig. 9c). Thus the recall does not
change significantly until placing 10 markers, as shown in
the last group in Table II. The decrease in the recall with
no similarity analysis justifies the efficacy of downweighting
similar features in the computation of the localizability score.

VI. CONCLUSION AND FUTURE WORK

This work provides a promising foundation for optimizing
and evaluating marker placement for improved visual local-
ization. Our OMP algorithm defines localizability scores for
different areas in the scene and uses a greedy algorithm to find
the best marker placements in the sense of increased localiz-
ability scores. We applied the OMP algorithm to four scenes
and demonstrated that OMP consistently improves camera
localization recall compared to random and uniform marker
placements. We believe that our marker placement approach
is also useful for SLAM. However, our approach could be
further extended to compute optimal marker placement for
specific tasks in SLAM. One potential idea involves extending
the localizability score to a trackability score that incorporates
uncertainty propagation along a robot path while restricting
feasible camera poses to the operating area of the robot.

The OMP algorithm only considers placing markers in
a scene model (i.e., mapped areas in the scene), however,
regions in the scene which are challenging for mapping are
also likely to be good locations for placing markers. Thus,
it would be worth exploring ways to extend the algorithm to
prioritize marker placements in regions that are either partially
or inadequately mapped. Further research is also needed to
compute more accurate localizability scores and explore more
efficient optimization methods beyond the greedy algorithm,
including: (1) joint optimization of marker poses and sizes, (2)
extending the single-layer ground plane to multi-layer planes
for deploying markers in multi-storey structures, (3) using
non-Gaussian distribution estimation techniques to compute
localizability scores, and (4) applying submodular optimiza-
tion to jointly select multiple best markers together with fewer
iterations.
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Supplementary Material

VII. DISCUSSION ABOUT THE OMP ALGORITHM

The crux of computation in Algorithm 1 is evaluating local-
izability scores. To avoid redundant computation, we update
the localizability score of a camera pose only if the newly
added marker is covisible to the camera pose. The complexity
of Algorithm 1 is O(|C| + k|M|maxm(|Cm|)) where O(1)
is the complexity for evaluating the localizability score of a
camera pose. maxm(|Cm|) denotes the maximal number of
covisible camera poses to a marker so it generally increases
with the FOV and range of the camera. The first term |C|
indicates the cost for initializing localizability scores over all
feasible camera poses while maxm(|Cm|) in the second term
bounds the cost for evaluating the localizability gain brought
by a marker. For each of the k loops, we evaluate localizability
gains of all |M| markers. Note that the time complexity can
be further reduced because it is not necessary to re-evaluate
localizability gains for all markers in each loop (lines 8-10 in
Algorithm 1). For example, if the covisible camera poses of
an unselected marker have not been affected by all selected
markers, we do not need to re-compute the localizability gain
of that unselected marker.

We discuss the possibility of generalizing the greedy algo-
rithm by re-defining the localizability score. For example, one
can use the pose estimation error from a visual localization
system (e.g., Fig. 8) to replace the localization score and keep
the rest of the algorithm the same. The new marker placement
based on the error may enjoy advantages in localization
experiments using the same localization system since the
marker placement is directly optimized for the system. How-
ever, updating the error along with trial marker placements
is computationally much more expensive than evaluating the
localization score since we need to add markers to the 3D
scene model, generate new map and test images, update the
map in the localization system, estimate camera poses of test
images using the system, and compute the pose estimation
error. In contrast, updating the localizability score just needs
to re-estimate camera pose distributions, as shown in Fig. 4.

VIII. UNIFORMLY SAMPLED TEST IMAGES

We show recall of uniformly sampled test images in Table
III.

IX. SETUPS IN THE REAL EXPERIMENT

The motion capture room for the real world experiment is
shown in Fig. 11. Fig. 11b shows the lawn mower paths for
collecting the map and test data.

X. SENSITIVITY STUDY OF MARKER SIZES AND POSITIONS

It is quite likely that a user will not be able to place
fiducial markers exactly at the positions computed by the
OMP algorithm; meanwhile, different users may print fiducial
markers with different sizes. Thus we investigate the impact
of position deviations and marker sizes on the recall. For the
sensitivity study, we used the office model.

TABLE III. Recall (%) of test images that are uniformly sampled. Rand.
refers to random marker placements and Unif. refers to uniform marker
placements.

Scene
(NoMarker)

Method Mean±STD with k markers
k = 5 k = 10 k = 15 k = 20

Apt.
(88.2)

Ours 88.6 88.8 89.2 89.5
Rand. 88.5±0.1 88.8±0.1 89.0±0.1 89.1±0.2
Unif. 88.4±0.1 88.6±0.1 88.7±0.1 88.9±0.1

Studio
(80.3)

Ours 81.4 82.7 83.0 83.1
Rand. 80.8±0.3 81.4±0.4 81.2±0.4 81.4±0.7
Unif. 80.9±0.2 81.2±0.3 81.6±0.5 81.8±0.2

Office
(57.4)

Ours 63.7 68.4 72.1 74.8
Rand. 60.7±0.7 63.0±1.0 66.7±1.5 69.1±1.8
Unif. 60.0±0.6 63.0±0.7 67.6±0.9 69.9±1.3

(a)

(a)

(b)

Fig. 11. Real experiment: (a) the motion capture room and (b) paths for
collecting data.

(a) (b)

Fig. 12. Sensitivity study: (a) re-sizing tags and (b) applying different
position deviations to marker poses planned by the OMP algorithm.

Enlarging markers up to a certain size keeps increasing
the recall. Fig. 12a shows that, under 50 cm, larger tag
widths lead to greater recall (note that the threshold 50 cm
should correlate with environments). Excessively large sizes
can degrade the recall because the markers become too big to
be detected from nearby views.

Mild position deviations slightly degrade the perfor-
mance of the optimized marker placement. All 20 markers
planned by the OMP algorithm were moved left or right by
certain distances to implement position deviations. Fig. 12b
shows the recall can decrease by 2% in the presence of ±0.25
meters position deviations and by 5% in the presence of ±1
meter position deviations, compared with zero position devia-
tion. However, marker placements with the position deviations
still outperform no marker placement by a large margin (∼ 15
percentages in the recall).
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