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Abstract: We give a review of the B-type Kadomtsev—Petviashvili (BKP) hierarchy and find all
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1. Introduction

The three most famous hierarchies of Lax equations on one function u are the Korteweg-
de Vries (KdV) hierarchy, the Kaup-Kupershmidt hierarchy, and the Sawada-Kotera hierar-
chy. The Lax operators are, respectively,

L=0+u, 1)
£:83+u8+%u’, )
L =09+ uo. 3)

Lett = (t1,t2,t3,...) and f = (#1,t3,t5,...). Recall that the Kadomtsev—Petviashvili
(KP) hierarchy is the following hierarchy of Lax equations on the pseudodifferential opera-
tor L(£,9) = 9 + u1 (1) +ua()9 2+ --- ind = - [1]:

aL(t,d)

= {(L(t,a)k>20,L(t,a)}, k=1,2,.... (4)

The KdV hierarchy is the second reduced KP hierarchy, meaning that one imposes the
following constraint on L(t,0):

L(t,0) = L(t,0)* is a differential operator. )

In this case, the operator £ is defined by (1), with u(t) = 2u;(t), and the KP hierarchy (4)
reduces to the KdV hierarchy

AL(t,9)

50 = {(g(t,a)é)m,,c(t,a)}, k=1,3,5,.... (6)

For even k, this equation is trivial; for k = 3, Equation (6) is the KdV equation [2].
Recall that in order to construct solutions of the KP hierarchy and the reduced KP
hierarchies, one introduces the tau-function 7(t), defined by [1,2]:

L(t,d) = P(t,0) 090 P(t,0) "}, ?)
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where P(t,d) is a pseudodifferential operator, with the symbol

o _—k
Pt 2) = T(lt) exp (-k_zl Zka?k> ((t)). 8)

The tau-function has a geometric meaning as a point on an infinite-dimensional Grass-
mannian, and in [1], Sato showed that all Schur polynomials are tau-functions of the KP
hierarchy. Recently, all polynomial tau-functions of the KP hierarchy and its n-reductions
have been constructed in [3] (see also [4]).

The CKP hierarchy (KP hierarchy of type C) can be constructed by making use of the
KP hierarchy, and assuming the additional constraint L(f,0)* = —L(%,9) (see, e.g., [5] for
details). Its 3-reduction is defined by the constraint that £(,d) = L(f,9)? is a differential
operator, and the corresponding hierarchy is

OL(ED) _ [( iz 1k " _
= [(g(t,a) )Zo,ﬁ(t,a)], k=1,3,5,...,k¢3Z, 9)

where L is given by (2). For k = 5, we obtain the Kaup—Kupershmidt equation, the sim-
plest non-trivial equation in this hierarchy. All polynomial tau-functions of (9) (and all n
reductions of the CKP hierarchy) have been constructed in [5].

In the present paper, we construct all polynomial tau-functions of the n-reduced
BKP hierarchies (KP hierarchy of type B). These are hierarchies of Lax equations on the
differential operator

L(£,0) = 0" +u, 23" 2+ +uy(F)a, (10)
satisfying the constraint
L(£3)* = (=1)"a71L(F,9)0. (11)
The n-th reduced BKP hierarchy is
oL(F,0) 2k . _
o = {(c(t,a) )Zo,ﬁ(t,a)}, =1,3,5,...,k & nZ. (12)

We call it the n-th Sawada-Kotera hierarchy, since, for n = 3, L is given by (3), and for
k =5, Equation (12) is the Sawada—Kotera equation [6] (see Equation (33)).

In the present paper, using the description of polynomial tau-functions of the BKP
hierarchy [4,7] (see Theorem 1), we find all polynomial tau-functions for the n-th Sawada—
Kotera hierarchies (see Theorem 2), and, in particular, for the Sawada—Kotera hierarchy
(see Corollary 1).

2. The BKP Hierarchy and Its Polynomial Tau-Functions

In this section, we recall the construction of the BKP hierarchy [8] and description of
its polynomial tau-functions from [4,7].

Following Date, Jimbo, Kashiwara, and Miwa [8] (see also [7] for details), we introduce
the BKP hierarchy in terms of the so-called twisted neutral fermions ¢;, i € Z, which are
generators of a Clifford algebra over C, satisfying the following anti-commutation relation:

Gip; + @i = (—1)6; ;. (13)

Consider the right (resp., left) irreducible module F = F; (resp., F;) over this algebra by the
following action on the vacuum vector |0) (resp., (0|):

1 1 .
wl0) = 510}, 90} =0 (resp, ©Olgn = 501, Ol =0), forj>0. (14
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The quadratic elements
(P](Pk - (Pk(l)] forj,keZ, j>k

form a basis of the infinite-dimensional Lie algebra 50,44 over C. Let SO 044 be the
corresponding Lie group. We proved in ([9], Theorem 1.2a) that a non-zero element T € F
lies in this Lie group orbit of the vacuum vector |0) if and only if it satisfies the BKP
hierarchy in the fermionic picture, i.e., the following equation in F ® F:

Y (-1)igr@¢_iT= Lo (15)
jez 2

Non-zero elements of F, satisfying (15), are called tau-functions of the BKP hierarchy
in the fermionic picture.
The group SO 44 consists of elements G leaving the symmetric bilinear form

(05, Px) = (—=1)16; & (16)
on F invariant, i.e.,
(G, Gox) = (), Pr)- 17)
Stated differently,
GGl = Z ajx Py (finite sum) with Z(—l)jajka,]-g = (—1)k(5k’,g. (18)
jeZ JEZL

The group orbit of the vacuum vector is the disjoint union of Schubert cells (see
Section 3 of [7] for details). These cells are parametrized by the strict partitions A =
(A, A, o Ag), with Ap > Ay > .-+ > Ap > 0. Namely, the cell, attached to the partition A
is

Cr = {0102 - 0k 19%[0) | v; = Z a;;¢; (finite sum) with a_p,j #0}. (19)

ZZ—)L]‘

An element T € C, corresponds to the following point in the maximal isotropic Grassman-
nian (i.e., a maximal isotropic subspace of V = @jcz C¢)):

Annt = {v € V|vv10; - - - vx_170¢|0) = 0}. (20)

For instance, Ann |0) = span{¢1, ¢, ...}

Using the bosonization of Equation (15), one obtains a hierarchy of differential equa-
tions on 7 ([4,7,8,10], Section 3). This bosonization is an isomorphism ¢ between the spin
module F and the polynomial algebra B = C[f] = C[#, t3, t5, . . .]. Explicitly, we introduce
the twisted neutral fermionic field

$(z) =Y. ¢z,

jEZ

and the bosonic field

w(2) = ¥ mgjz ¥ = 2 p(2)p(—2)

j€Z
where the normal ordering : :is defined by

itk = ipr — (09 |0);
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equivalently: : ¢;¢ := @iy if j < kand = —¢¢; if j > k, except when j = k = 0, then
: popo := 0. The operators «a; satisfy the commutation relations of the Heisenberg Lie
algebra

[aj, 0] = %(5]-_;(, «;|0) = (0la_; =0, fori>D0, (21)

and its representation on F is irreducible ([9], Theorem 3.2). Using this, we obtain a vector
space isomorphism ¢ : F — B, uniquely defined by the following relations:

a0y =1, oao = i, oa_io ! = it-, for j > 0 odd. (22)
j o j 5t J
Explicitly ([9], Section 3.2):
o(z)o! 1 it 2j-1 i , 0 z Y+l 23
op(z)o " = —=ex 2i—127 7 ex 2.
V2 pj:l ! pj:l dtzj1 2j —1

Since (15) can be rewritten as

Res; ¢(z)T® (])(—Z)T% = %T ®T,

under the isomorphism ¢, Equation (15) turns into:

" 29012< I )Z’z”l d
0 Lot - = /. Oty 2j—-1 ~ ~ - ~
Res,eti1(2-178-0)27 7 77 A\ % 7201 )Y T(t)T(t’)?z =t(H(f), (4
where I = (t1,13,t5,...) and ' = (], 1}, £, . ..). Therefore, T(f) is the vacuum expectation
value .

7(F) = oo ! = (0]ebim1 2121 g, (25)

Furthermore, by making a change of variables, as in [10] (p. 972), viz. ty,_1 = Xok—1 — Yok—1
and ty, | = X% 1 — Y4, and using the elementary Schur polynomials s;(r), which are
defined by

exp ) rzt = ) sj(r)zj, (26)
k=1 =0

we can rewrite (24), where we assume xy; = Y = 0:
D 5i(=29)s;(29,) (2 — ) T(¥ + ) =0, (27)
j=1

where 7 = (y1,0,y3,0,...) and éy = (B%,O, %f%,o, %ai%, ...). Using Taylor’s formula, we

thus obtain the BKP hierarchy of Hirota bilinear equations [10] (p. 972):

_9 .
dupj_1

=0. (28)

5i(—27)sj(20u) exp Y Y21
j=1 j=1

Using the notation p(D)f - ¢ = p(aa71, %, .. )f(¥+1d)g(% —1)| , this turns into
fi=
Z sj(—Zy)sj(Zﬁ)ezfil VoD 1 — g, (29)
j=1

The simplest equation in this hierarchy is ([10], Appendix 3):

(D$ — 5D3D3 —5D3 + 9D Ds5)T- T = 0. (30)
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If we assume that our tau-function does not depend on f3, then this gives

(D¢ +9D,Ds5)T- T =0. (31)
Lettingx =1, t = %t5, and

u(x, t) = %, 32)

and viewing the remaining {; as parameters, Equation (31) turns into the famous Sawada—
Kotera equation [6]:

ur + 15(uuxxx + Uxlxx + 3u2ux) + tUyxxxx = 0. (33)

Another approach is by using the wave function; see [8] (p. 345),

B 1 P} 72]+l
w(t, z) = =0 epotz] 127 Vexp — Z T 2]71 -
— P(t,z)e2f=1(f2f—1) 2271
where P(f,z) =1+ }72, pj(f)z~ J, and, in particular,
- dlogt
pu(p) = 22870, (35)
1

Letting P(f,d) be the pseudodifferential operator in 0 = a% with the symbol P(¥, z), Equa-
tion (24) turns into
7 2 A I (b 1~y )2¥1dZ
Res.P(F, ) P(F,3/)eb 151 7)™ = — . (36)

Now, using the fundamental lemma, Lemma 1.1 of [2] or Lemma 4.1 of [11], we deduce
from (36):

P(f,0)0"'P(£,9)*0 =
3 - ; ~ - 37
aat(t 9) _ (P(t,8)82]_1P(t,8)_18_1)<08P(t,8), i=12.... (37)
2j-1
Next, introducing the Lax operator
L(F,9) = P(£,9)9P(£,0) ' =9 +uy (o L +up(Ho 2+ ---,
we deduce from (37) that L satisfies [8]
L(£0)* = =0 'L(f,0)0,
oL(f,0) 21 . . (38)
T [(L(t,a)) )ZO,L(t,a) L i=12....
Note that, since uq(f) = — apal—f) and the fact that p;(t) is given by (35), we find that
. 0?log (¥
w(f) =221870, (39)
1

which explains the choice (32) of u(x, t) to obtain the Sawada—Kotera equation from the
Hirota bilinear Equation (31).
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To obtain the second equation of (38), we use (37) and the first equation of (38), which
is equivalent (see [8], (p. 356)) to the fact that L(¥, 8)2] —1 for j=1,2,..., has zero constant
term. Let us prove that the first equation of (38) indeed implies this fact. We have

Lot = (—a7'L* )kt = (—1)f o7 L* = (-1 (LFa ).
Now, using the fact that the constant term of Lkis equal to
ResyL¥07! = —Res,(LF071)* = Resy(—1)F1(L5071)* = (—1)FResyLF0 71,
we find that the constant term of L is zero whenever k is odd.

Remark 1. Note that this also means that we can replace the second equation of (38) by, cf. [12],

IL(F,9) _ [(L(f,a))Zjl)

dtyj 1

>1,L(t,8)], i=12....

In the formulation of Kupershmidt [12], this means that L satisfies not only the KP equation for the
odd times, but also his formulation of the modified KP hierachy (only for the odd times).

Next, we describe polynomial tau-functions 7(#, t3, . . .) of the BKP hierarchy obtained
in ([7], Theorem 6) (see also [4]). For that, given integersaand b, a > b > 0, let

b

Xanlt ) = 350()58(0) # =D (-0, W)

Xb,a(t/ t,) = _Xu,b(t/ t/)/ Xﬂ,ﬂ(t/ t/) =0,

and let x,;(t,t') = 0if b < 0. Then

Theorem 1 ([7], Theorem 6). All polynomial tau-functions of the BKP hierarchy (24), up to a
scalar multiple, are equal to

T\(f) = Pf(XAi,A,(er ci, F+ Cj)) (41)

1<ij<2n’
where Pf is the Pfaffiann of a skew-symmetric matrix, A = (A, Ay, ..., Ayy) is an extended strict
partition, i.e., Ay > Ay > -+ > Ay, >0, F = (#1,0,43,0,...), ¢; = (c1i, €21, 30/ - - -), cij € C.

Remark 2. The connection between the set of strict partitions and the extended strict partitions is
as follows. If A = (A1, Ay, ..., Ay) is a strict partition and k is even, then this partition is equal to
the extended strict partition A. However, if k is odd, the Pfaffian of a k x k anti-symmetric matrix is
equal to 0, hence, in that case, we extend A by the element O, i.e., the corresponding extended strict
partition is then (A1, Ay, ..., Ay, 0).

3. The n-th Sawada—Kotera Hierarchy and Its Polynomial Tau-Functions

As we have seen in Section 2, a necessary condition for a tau-function to give a solution

at(f)
dt3

in a smaller group orbit of the vacuum vector |0). Instead of the SOy 44 Orbit of the

)

of the Sawada—Kotera equation is that = 0. This means that the tau-function lies

vacuum vector |0), we consider the twisted loop group G2

algebra sléz) , to obtain the 3-reduced BKP hierarchy [8]. More generally (see also [8]), when

n =2k +1 > 1is odd, the 2k + 1-reduced hierarchy is related to the twisted loop group

Géi)H corresponding to the tv(vi)sted affine Lie algebra sléﬂl.
2

has the twisted loop group G,,’ corresponding to the affine Lie algebra sog) [9,13] (see [14]
(Chapter 7) for the construction of these Lie algebras). Elements G in this twisted loop

, corresponding to the affine Lie

When n = 2k > 2 is even, one
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group not only satisfy (18), which implies Zjez(—l)jakja&_j = (=1)k6 _, but also the
n-periodicity condition a1, = a;;. This means that these group elements also commute
with the operator ‘

Y (1) @ ppy—i, forp=1,2,3,...,

icZ

namely

(GRG) Y ()P i@ pui = Y (~1)"'GHiG ' ® GppyiG'G
i€ i€Z
= Z (_1)pn71ajiak,pn—i4)jc & P G
i,jkeZ

= Y (1P a5 py -G @ ¢ G
i,j,k€Z

Z(_l)rm*]’(i)],c ® (Ppn—jG
jEZ

= LD @ ppu—(GR G).
JEL

Since Y ez (—1)P""¢;|0) @ ¢pn—il0) = 0, we find that the elements 7 in the orbit of the
vacuum vector of this twisted loop not only satisfy (15), but also satisfy the conditions

Y (1) TRy T =0, p=12,.... (42)
jeZ

This means that 7(f) = ¢(7) not only satisfies (24), but also the conditions

. Z{XJ 2( 9 _ _ 9 ) 27_2j+1

Res, 2"~ LeEim (i1 =02 7\ M1 ) T (a2 =0, p=1,2,.... (43)

From (43), one deduces, using the fundamental Lemma ([11], Lemma 4.1) and the first
equation of (37), that

(P(F,0)0P"1P(1,0)*) o = (P(F,9)P"P(£,0) 107 1) o = 0.
Thus, the Lax operator L(f, ) satisfies
(L)) =0, p=12,.... (44)

Hence, £(#,0) = L(f,9)" is a monic differential operator with zero constant term. Moreover,
L(F,9) is equal to (10), and, by the first formula of (37), we have the relation (11).
Now, if n is odd, one can use the the Sato-Wilson equation, i.e., the second equation
of (37), to find that
oP(f,9)

—> =0, j=1,2,....
9t (2j_1)n J
From this we find that the tau-function satisfies
L(t):)\j”f(f), )\]’E(C, fOI‘jZl,Z,.... (45)
ot (:
(2j=1)n

Since we consider only polynomial tau-functions, we find that for odd n:

at(f)

2 =0, j=1,2.... (46)
9t (2j—1)n
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If n is even, there is no such restriction, because the Sato—Wilson Equation (37) is only de-
fined for odd flows. However, the additional Equation (43) still holds and gives additional
constraints on the tau-function.

Proposition 1. For n odd, Equation (46) for j = 1 and the BKP hierarchy (24) on t(¥) are
equivalent to (24) and (43).

Proof. We only have to show that (46) for j = 1 and (24) imply (43). For this, differenti-
ate (24) by t, and use (46); this gives Equation (43) for p = 1. Next, differentiate (43) for
p = 1 again by t, and use again (46); this gives (43) for p = 2, etc. O

Remark 3. If n is odd, Proposition 1 gives that a polynomial BKP tau-function is n-th Sawada—
Kotera tau-function if and only if T satisfies aaTTn =0.

Since L satisfies the BKP hierarchy, £ = L" also satisfies the BKP hierarchy. For
n = 3, assuming the constraint that £ is a differential operator, £ is given by (3) and % =

[(E% )>0, L] is the Sawada—Kotera equation (33). This leads to the following definition.

Definition 1. Let £ = 9" + u,,_20" "2 + - - - + 110 be a differential operator, satisfying (11). The
system of Lax equations

L(ED) _ [ [y a2t ) -
by 1 —{(ﬁ(t,a) )Zolﬁ(t,a)], i=12,..., (47)

is called the n-th reduced BKP hierarchy or the n-th Sawada—Kotera hierarchy. For n = 3, it is
called the Sawada—Kotera hierarchy.

The geometric meaning of Equation (42) is that the space Ann 7 is invariant under the
shift A,, where

An(¢i) = Pitn- (48)

As in the SO 444 case, all polynomial tau-functions in this n-reduced case lie in some
Schubert cell. Such a Schubert cell has a “lowest” element w,, for A a certain strict partition.
This element can be obtained from the vacuum vector by the action of the Weyl group

(2)

corresponding to G;’. The element

wy =P P-n, P2 10) (49)

lies in the Weyl group orbit of |0), corresponding to SO 044, (see [15]), however, not all
such elements lie in the Weyl group orbit of |0) for G,(f). For this, consider

Annw) =span{¢p_,, ¢ _r,, ..., Pz} Dspan{¢;|i > 0,i #Aj, j=1,...,k}. (50)

(2)

The element w, lies in the G,;”” Weyl group orbit if and only if Annw, is invariant under
the action of A,;, which means that the (A1 + 1 shifted) set

Vi ={A1+A;+1], i:1,...,k}U{)\1—j+1|0<j</\1,j#)\l’forl.ZL...,k}, (51)
must satisfy the —n shift condition, i.e.,
if]/l]'EV)\, then],tj—neV;\ oryj—ngo. (52)

Only the elements w), for which the corresponding V) satisfies condition (52), lie in the

G,(lz) group orbit.
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Example 1. (a) For n = 2, the only strict partition A that satisfies condition (52) is A = @.
(b) For n = 3, the only strict partitions A that satisfy condition (52) are

(Bm+1,3m—2,3m—5,...,4,1) and (3m +2,3m —1,3m —4,...,5,2), m € L.

Remark 4. Note that (52) means that A is a strict partition that is the union of strict partitions
(mm+a;,n(m—1)+a;,,...,n+a;,a;),withl <ag; <nandl1 <i< n, such that a; —n # —ay.
In other words, aj + a, # n. Hence there are at most (5 — 1] such a;.

To a strict partition A that satisfies condition (52), the corresponding Schubert cell is
(2)

then obtained through the action on a w) by an upper-triangular matrix in the group G,
This produces, up to a constant factor, elements

vy = 010; - - - U;|0), where vj = ¢ At Z ajj¢; (finite sum), (53)
l>17/\j
and
(v]-, vy) =0, forj,f=1,...,k andif A; = Aj—n, thenv; = An(v]-). (54)

We first express the constants 4;; in terms of other constants by letting

ajj = Sit),; (ch), where the s; are elementary Schur polynomials.

Here, we use that
1+ 2 al] f-exp(chAz>

hence, for every /\], one can recurswely obtain the ¢; y e Since a;; = 0 for i >> 0, one only

has a finite number of ¢, ; . Thus,
A

(P Aj + Z SH—)\ CA )(Pl/ (55)
i>— ]
where c5 py (61 A Cy) Py Cs, VAR .). Here, Xj = Aj mod #n, which means that there are at most

[f - 1] of such 1nf1n1te series of constants (see Remark 4) and the v; satisfy the condition
if A; = /\] —n, thenv; = An(vj)- (56)

We can now use the isomorphism ¢ to calculate the bosonization of elements v,. For this,
we use formula (25) and apply this to v, (which is given by (53) with v; given by (55)).
Now, using (22) and (23) and the fact that

Z}?il(fzj'—lﬁj—l)zzj*lez?il f2j-1 ﬁ

d .
Y hj g YO s 721
e 17— asp; g 82,=152,—1Z =

we find that . . . vt
e t2j71“2j71¢(z)e* LiZatoj1j1 _ L2 tojz ¢ (2).



Mathematics 2024, 12, 681

10 of 13

Thus, using (55), we find that
Uj(f) =i 12j-102j-1 Uje_ T2 tj102j1

:eZ;“;ltz,-_1az]-_1(¢7Aj+ Y Si+A]-(CXj)¢i)efz?iltzf_mf_l

21\
Y b1 = 0—A S Y b gy 02
=¢~j=1 27172~ 1Res ZSK(CX,)Z “lg(z)e ==V I —
j z
=0
(o] .
(=M YOty qzH 1 dz
=Res ) s/(cy. )z "p(z)e==1"% —
; 6( /\j) 4’( ) Z
/=0
A, LRy ox 2L by 2! dz
=Resz Mg "7t =171 cp(z)?

2 ;dz
—R —A; _\k i
=Resz kzosk(t—l-cAj)z E ¢iz -
= ic€Z

¢+ Y. sipa(f+ 1)
1217)\]'

Since e=i-1"2-1°2-10) = 0, we find that the corresponding tau-function is equal to the
vacuum expectation value

T(F) = (0lv1(F)o2(F) - - 0 ()]0). (57)

If k = 2m, then this is the Pfaffian of a 2m x 2m skew-symmetric matrix. If k = 2m — 1, we
use the fact that

(0lv1(B)oa(F) - - - 0k (F)[0) = 2(0v1 (F)oa(F) - - - vi(E)po|0)

and again we find a Pfaffian. We thus arrive at the main theorem.

Theorem 2. All polynomial tau-functions of the n-th Sawada—Kotera hierarchy are, up to a scalar
factor, equal to the Pfaffian

T\ (F) = Pf (XAi,/\j({ +ox B+ Cx].)) (58)

1<i,j<am’
where A = (A, A, ..., Ag), m = 0,1,..., is an extended strict partition, which satisfies
the —n shift condition (52) for (51). The polynomials x,} are given by (40). Here, as before,
t=(t1,0,t3,0,...), and cx. = (¢4 1., Cy 7., C3 7., - - ) are arbitrary constants, where we replace,
recursively, forall j =1,2,. ..2m (réslpecfiz}ely,' for allj =1,2,...2m — 1), when Ay, # 0 (resp.,
Agam = 0), the constants cAj+A£’Xj,forj <0 < 2m(resp., j < £ < 2m) as follows:

(1) IfX] #+ Xg, then

Ajit+Ay
c 5 = —(=1)"T"x
Aj+A/,Ai ( ) (59)
)\H»/\;;*l

sy (Cx, = e x, G, T CrA-1E T (=1) CM“/*LX;"CM*M'L)'

() IfAj = Agand Aj + Ay is even, then

1
C)\j+/\/er = *ES AjtAg (zczllezczllle T /2C/\]-+)\572r 0) (60)
2
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Proof. We still need to use the fact that all vectors v;, fori = 1,...,k, form an isotropic
subspace. So, assume that 1 < j < ¢ < k and that v; and vy are given by (55). Then

\ /\]'+/\[ )
0= (vj,v¢) =(=1)" z;) (=1)'si(ex Jsaea,-i(ex,) 1)

A; j
:(—1) ]s/\]‘-i-/\g (Ci,X[ + (_1>lci,X]-)'

Here, we have used the fact that the coefficient of z™ of

el iz Y (-2)' = L i X2 ' (—2)

is equal to sy (x; + (—1)'y;) = Lo(=1)"s;(x)sm—; ().

So, we need to investigate condition (61). Here we have two possibilities, viz. X]- £ Ay
and X]- = Xg;If ijé Ay, then using the fact that s;(x) = x;+ terms not containing x;, we
find (59). If A; = Ay, then notice that s Py only depends on the Ci %, with i even. Thus,
all elementary Schur polynomials sy; ;1 in only the even variables are equal to zero. This
means that if )\j + Ay is odd, there is no restriction on the constants, but if )\j + Ay is even,
we find that

1
C/\/-+A4,X,- = — ESAf+/\£ (0, ZCZ,X]-’ 0, 2C4,X]" O, 2C6,Xj’ ooy 0, ZC/\/+/\4_2'X]J O, 0)
Note that this restriction coincides with (60). O

Remark 5. Since XA is given by (40), the constant 0T does not appear in (58) and the
substitution (60) for c, At is void.

For n = 3, see Example 1(b), we only have one infinite series of constants Cixys which
means that we only have the substitutions (60). We therefore find:

Corollary 1. All polynomial tau-functions of the Sawada—Kotera hierarchy are, up to a non-zero
constant factor,

T (F) = Pf(xAi,Aj(f+ o+ c))

where A is one of the following extended strict partitions:

1. (em+1,6m—2,6m—>5,...,4,1);

2. (6m—2,6m—56m—38,...,4,1,0);

3. (em+2,6m—1,6m—4,...,572);

4 (6em—1,6m—4,6m—7,...,52,0),

where m = 0,1,..., and ¢ = (c1,¢p,¢3,...) are arbitrary constants in which we substitute
recursively, c; = 0, and cg, ¢14,C20, - . ., C1om—4a in case 1; co = 0, and cg, c14,¢20, . - ., C12m—10 N
case 2; ¢4,€10,C16, - - - , Cl2m—2 i1 case 3; and cy, c19, C16, - - -, C12m—8 N case 4, respectively, by the
following formula

(62)

1<ij<2m’

1
Cop = —Esk(ZCZ, 2¢cy,. .. 2C2k—2r0) fOV k>1. (63)

Remark 6. If we choose ¢ = ¢ = (c1,0,¢3,0,¢s5,...), then the corresponding Sawada—Kotera
tau-function T, (f) is equal, up to a non-zero constant factor, to a Schur Q-function Q, (¥ + ¢)

(cf. [15]).
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Example 2. All the Sawada—Kotera tau-functions related to the partition A = (5,2) are given,
up to a multiplicative constant, by

¢f +1120c7 + 7c§t; — 2803t — 280cstt + 140c3t3 + ] + +35¢5 (2c2 + £5)%+
+ 7185 (2c3 4 3t2) + 35¢F (2coty + 13) — 280£3t5 — 7¢3(40c5 — 60c3t; — 20cxt3 — 3t; + 40t5) +
+ 145 (1205 4 £5 + 120t5) — 7cq (403 — 60c3t3 — 10cot] + t1(80c5 — £ + 80t5)) -+ 1120¢;,

with ¢; € C, arbitrary. (We have eliminated c4 by the substitution cy = —c%; all the other constants
that do not appear, disappear automatically).

4. Conclusions

Three classes of solutions of soliton equations have been extensively studied in the
literature: rational solutions, soliton solutions, and theta function solutions. Soliton so-
lutions are constructed by making use of vertex operators [2,6,10,11,13,14,16,17]. Theta
function solutions are obtained by Krichever’s method [18,19]. Rational solutions are ob-
tained by constructing polynomial tau-functions using the group transformations method,
introduced by Sato [1]. In the present paper, we describe all polynomial tau-functions for
the n-th Sawada—Kotera hierarchy, and, in particular, for the Sawada—Kotera equation.
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