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Abstract: We give a review of the B-type Kadomtsev–Petviashvili (BKP) hierarchy and find all
polynomial tau-functions of the n-th reduced BKP hierarchy (=n-th Sawada–Kotera hierarchy). The
name comes from the fact that, for n = 3, the simplest equation of the hierarchy is the famous
Sawada–Kotera equation.
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1. Introduction

The three most famous hierarchies of Lax equations on one function u are the Korteweg–
de Vries (KdV) hierarchy, the Kaup–Kupershmidt hierarchy, and the Sawada–Kotera hierar-
chy. The Lax operators are, respectively,

L = ∂2 + u, (1)

L = ∂3 + u∂ +
1
2

u′, (2)

L = ∂3 + u∂. (3)

Let t = (t1, t2, t3, . . .) and t̃ = (t1, t3, t5, . . .). Recall that the Kadomtsev–Petviashvili
(KP) hierarchy is the following hierarchy of Lax equations on the pseudodifferential opera-
tor L(t, ∂) = ∂ + u1(t)∂−1 + u2(t)∂−2 + · · · in ∂ = ∂

∂t1
[1]:

∂L(t, ∂)

∂tk
=

[(
L(t, ∂)k

)
≥0

, L(t, ∂)

]
, k = 1, 2, . . . . (4)

The KdV hierarchy is the second reduced KP hierarchy, meaning that one imposes the
following constraint on L(t, ∂):

L(t, ∂) = L(t, ∂)2 is a differential operator. (5)

In this case, the operator L is defined by (1), with u(t) = 2u1(t), and the KP hierarchy (4)
reduces to the KdV hierarchy

∂L(t, ∂)

∂tk
=

[(
L(t, ∂)

k
2

)
≥0

,L(t, ∂)

]
, k = 1, 3, 5, . . . . (6)

For even k, this equation is trivial; for k = 3, Equation (6) is the KdV equation [2].
Recall that in order to construct solutions of the KP hierarchy and the reduced KP

hierarchies, one introduces the tau-function τ(t), defined by [1,2]:

L(t, ∂) = P(t, ∂) ◦ ∂ ◦ P(t, ∂)−1, (7)
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where P(t, ∂) is a pseudodifferential operator, with the symbol

P(t, z) =
1

τ(t)
exp

(
−

∞

∑
k=1

z−k

k
∂

∂tk

)
(τ(t)). (8)

The tau-function has a geometric meaning as a point on an infinite-dimensional Grass-
mannian, and in [1], Sato showed that all Schur polynomials are tau-functions of the KP
hierarchy. Recently, all polynomial tau-functions of the KP hierarchy and its n-reductions
have been constructed in [3] (see also [4]).

The CKP hierarchy (KP hierarchy of type C) can be constructed by making use of the
KP hierarchy, and assuming the additional constraint L(t̃, ∂)∗ = −L(t̃, ∂) (see, e.g., [5] for
details). Its 3-reduction is defined by the constraint that L(t̃, ∂) = L(t̃, ∂)3 is a differential
operator, and the corresponding hierarchy is

∂L(t̃, ∂)

∂tk
=

[(
L(t̃, ∂)

k
3

)
≥0

,L(t̃, ∂)

]
, k = 1, 3, 5, . . . , k ̸∈ 3Z, (9)

where L is given by (2). For k = 5, we obtain the Kaup–Kupershmidt equation, the sim-
plest non-trivial equation in this hierarchy. All polynomial tau-functions of (9) (and all n
reductions of the CKP hierarchy) have been constructed in [5].

In the present paper, we construct all polynomial tau-functions of the n-reduced
BKP hierarchies (KP hierarchy of type B). These are hierarchies of Lax equations on the
differential operator

L(t̃, ∂) = ∂n + un−2(t̃)∂n−2 + · · ·+ u1(t̃)∂, (10)

satisfying the constraint
L(t̃, ∂)∗ = (−1)n∂−1L(t̃, ∂)∂. (11)

The n-th reduced BKP hierarchy is

∂L(t̃, ∂)

∂tk
=

[(
L(t̃, ∂)

k
n

)
≥0

,L(t̃, ∂)

]
, k = 1, 3, 5, . . . , k ̸∈ nZ. (12)

We call it the n-th Sawada–Kotera hierarchy, since, for n = 3, L is given by (3), and for
k = 5, Equation (12) is the Sawada–Kotera equation [6] (see Equation (33)).

In the present paper, using the description of polynomial tau-functions of the BKP
hierarchy [4,7] (see Theorem 1), we find all polynomial tau-functions for the n-th Sawada–
Kotera hierarchies (see Theorem 2), and, in particular, for the Sawada–Kotera hierarchy
(see Corollary 1).

2. The BKP Hierarchy and Its Polynomial Tau-Functions

In this section, we recall the construction of the BKP hierarchy [8] and description of
its polynomial tau-functions from [4,7].

Following Date, Jimbo, Kashiwara, and Miwa [8] (see also [7] for details), we introduce
the BKP hierarchy in terms of the so-called twisted neutral fermions ϕi, i ∈ Z, which are
generators of a Clifford algebra over C, satisfying the following anti-commutation relation:

ϕiϕj + ϕjϕi = (−1)iδi,−j. (13)

Consider the right (resp., left) irreducible module F = Fr (resp., Fl) over this algebra by the
following action on the vacuum vector |0⟩ (resp., ⟨0|):

ϕ0|0⟩ =
1√
2
|0⟩, ϕj|0⟩ = 0

(
resp., ⟨0|ϕ0 =

1√
2
⟨0|, ⟨0|ϕ−j = 0

)
, for j > 0. (14)
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The quadratic elements
ϕjϕk − ϕkϕj for j, k ∈ Z, j > k,

form a basis of the infinite-dimensional Lie algebra so∞,odd over C. Let SO∞,odd be the
corresponding Lie group. We proved in ([9], Theorem 1.2a) that a non-zero element τ ∈ F
lies in this Lie group orbit of the vacuum vector |0⟩ if and only if it satisfies the BKP
hierarchy in the fermionic picture, i.e., the following equation in F ⊗ F:

∑
j∈Z

(−1)jϕjτ ⊗ ϕ−jτ =
1
2

τ ⊗ τ. (15)

Non-zero elements of F, satisfying (15), are called tau-functions of the BKP hierarchy
in the fermionic picture.

The group SO∞,odd consists of elements G leaving the symmetric bilinear form

(ϕj, ϕk) = (−1)jδj,−k (16)

on F invariant, i.e.,
(Gϕj, Gϕk) = (ϕj, ϕk). (17)

Stated differently,

GϕkG−1 = ∑
j∈Z

ajkϕk (finite sum) with ∑
j∈Z

(−1)jajka−jℓ = (−1)kδk,−ℓ. (18)

The group orbit of the vacuum vector is the disjoint union of Schubert cells (see
Section 3 of [7] for details). These cells are parametrized by the strict partitions λ =
(λ1, λ2, . . . , λk), with λ1 > λ2 > . · · · > λk > 0. Namely, the cell, attached to the partition λ
is

Cλ = {v1v2 · · · vk−1vk|0⟩| vj = ∑
i≥−λj

aijϕi (finite sum) with a−λj ,j ̸= 0}. (19)

An element τ ∈ Cλ corresponds to the following point in the maximal isotropic Grassman-
nian (i.e., a maximal isotropic subspace of V =

⊕
j∈ZCϕj):

Ann τ = {v ∈ V| vv1v2 · · · vk−1vk|0⟩ = 0}. (20)

For instance, Ann |0⟩ = span{ϕ1, ϕ2, . . .}.
Using the bosonization of Equation (15), one obtains a hierarchy of differential equa-

tions on τ ([4,7,8,10], Section 3). This bosonization is an isomorphism σ between the spin
module F and the polynomial algebra B = C[t̃] = C[t1, t3, t5, . . .]. Explicitly, we introduce
the twisted neutral fermionic field

ϕ(z) = ∑
j∈Z

ϕjz−j,

and the bosonic field

α(z) = ∑
j∈Z

α2j+1z−2j−1 =
1
2

: ϕ(z)ϕ(−z) :,

where the normal ordering : : is defined by

: ϕjϕk := ϕjϕk − ⟨0|ϕjϕk|0⟩;
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equivalently: : ϕjϕk := ϕjϕk if j ≤ k and = −ϕkϕj if j > k, except when j = k = 0, then
: ϕ0ϕ0 := 0. The operators αj satisfy the commutation relations of the Heisenberg Lie
algebra

[αj, αk] =
j
2

δj−k, αi|0⟩ = ⟨0|α−i = 0, for i > 0, (21)

and its representation on F is irreducible ([9], Theorem 3.2). Using this, we obtain a vector
space isomorphism σ : F → B, uniquely defined by the following relations:

σ(|0⟩) = 1, σαjσ
−1 =

∂

∂tj
, σα−jσ

−1 =
j
2

tj, for j > 0 odd. (22)

Explicitly ([9], Section 3.2):

σϕ(z)σ−1 =
1√
2

exp
∞

∑
j=1

t2j−1z2j−1 exp
∞

∑
j=1

−2
∂

∂t2j−1

z−2j+1

2j − 1
. (23)

Since (15) can be rewritten as

Resz ϕ(z)τ ⊗ ϕ(−z)τ
dz
z

=
1
2

τ ⊗ τ,

under the isomorphism σ, Equation (15) turns into:

Resze∑∞
j=1(t2j−1−t′2j−1)z

2j−1
e

∑∞
j=1 2

(
∂

∂t′2j−1
− ∂

∂t2j−1

)
z−2j+1

2j−1
τ(t̃)τ(t̃′)

dz
z

= τ(t̃)τ(t̃′), (24)

where t̃ = (t1, t3, t5, . . .) and t̃′ = (t′1, t′3, t′5, . . .). Therefore, τ(t̃) is the vacuum expectation
value

τ(t̃) = στσ−1 = ⟨0|e∑∞
j=1 t2j−1α2j−1 τ. (25)

Furthermore, by making a change of variables, as in [10] (p. 972), viz. t2k−1 = x2k−1 − y2k−1
and t′2k−1 = x′2k−1 − y′2k−1, and using the elementary Schur polynomials sj(r), which are
defined by

exp
∞

∑
k=1

rkzk =
∞

∑
j=0

sj(r)zj, (26)

we can rewrite (24), where we assume x2k = y2k = 0:

∞

∑
j=1

sj(−2ỹ)sj(2∂̃y)τ(x̃ − ỹ)τ(x̃ + ỹ) = 0, (27)

where ỹ = (y1, 0, y3, 0, . . .) and ∂̃y = ( ∂
∂y1

, 0, 1
3

∂
∂y3

, 0, 1
5

∂
∂y5

, . . .). Using Taylor’s formula, we
thus obtain the BKP hierarchy of Hirota bilinear equations [10] (p. 972):

∞

∑
j=1

sj(−2ỹ)sj(2∂̃u) exp
∞

∑
j=1

y2j−1
∂

∂u2j−1
τ(x̃ − ũ)τ(x̃ + ũ)

∣∣∣
ũ=0

= 0. (28)

Using the notation p(D) f · g = p( ∂
∂u1

, ∂
∂u2

, . . .) f (x̃ + ũ)g(x̃ − ũ)
∣∣∣
ũ=0

, this turns into

∞

∑
j=1

sj(−2ỹ)sj(2D̃)e∑∞
j=1 y2j−1D2j−1 τ · τ = 0. (29)

The simplest equation in this hierarchy is ([10], Appendix 3):

(D6
1 − 5D3

1D3 − 5D2
3 + 9D1D5)τ · τ = 0. (30)
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If we assume that our tau-function does not depend on t3, then this gives

(D6
1 + 9D1D5)τ · τ = 0. (31)

Letting x = t1, t = 1
9 t5, and

u(x, t) = 2
∂2 log τ(x, t)

∂x2 , (32)

and viewing the remaining tj as parameters, Equation (31) turns into the famous Sawada–
Kotera equation [6]:

ut + 15(uuxxx + uxuxx + 3u2ux) + uxxxxx = 0. (33)

Another approach is by using the wave function; see [8] (p. 345),

w(t̃, z) =
1

τ(t)
exp

∞

∑
j=1

t2j−1z2j−1 exp−
∞

∑
j=1

2
∂

∂t2j−1

z−2j+1

2j − 1
τ(t)

= P(t̃, z)e∑∞
j=1(t2j−1)z2j−1

,

(34)

where P(t̃, z) = 1 + ∑∞
j=1 pj(t̃)z−j, and, in particular,

p1(t̃) = −2
∂ log τ(t̃)

∂t1
. (35)

Letting P(t̃, ∂) be the pseudodifferential operator in ∂ = ∂
∂t1

with the symbol P(t̃, z), Equa-
tion (24) turns into

ReszP(t̃, ∂)P(t̃′, ∂′)e∑∞
j=1(t2j−1−t′2j−1)z

2j−1 dz
z

= 1. (36)

Now, using the fundamental lemma, Lemma 1.1 of [2] or Lemma 4.1 of [11], we deduce
from (36):

P(t̃, ∂)∂−1P(t̃, ∂)∗∂ = 1,

∂P(t̃, ∂)

∂t2j−1
= −(P(t̃, ∂)∂2j−1P(t̃, ∂)−1∂−1)<0∂P(t̃, ∂), j = 1, 2, . . . .

(37)

Next, introducing the Lax operator

L(t̃, ∂) = P(t̃, ∂)∂P(t̃, ∂)−1 = ∂ + u1(t̃)∂−1 + u2(t̃)∂−2 + · · · ,

we deduce from (37) that L satisfies [8]

L(t̃, ∂)∗ = −∂−1L(t̃, ∂)∂,

∂L(t̃, ∂)

∂t2j−1
=

[(
L(t̃, ∂))2j−1

)
≥0

, L(t̃, ∂)

]
, j = 1, 2, . . . .

(38)

Note that, since u1(t̃) = − ∂p1(t̃)
∂t1

and the fact that p1(t) is given by (35), we find that

u1(t̃) = 2
∂2 log τ(t̃)

∂t2
1

, (39)

which explains the choice (32) of u(x, t) to obtain the Sawada–Kotera equation from the
Hirota bilinear Equation (31).
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To obtain the second equation of (38), we use (37) and the first equation of (38), which
is equivalent (see [8], (p. 356)) to the fact that L(t̃, ∂)2j−1, for j = 1, 2, . . ., has zero constant
term. Let us prove that the first equation of (38) indeed implies this fact. We have

Lk∂−1 = (−∂−1L∗∂)k∂−1 = (−1)k∂−1L∗k = (−1)k+1(Lk∂−1)∗.

Now, using the fact that the constant term of Lk is equal to

Res∂Lk∂−1 = −Res∂(Lk∂−1)∗ = Res∂(−1)k+1(Lk∂−1)∗ = (−1)kRes∂Lk∂−1,

we find that the constant term of Lk is zero whenever k is odd.

Remark 1. Note that this also means that we can replace the second equation of (38) by, cf. [12],

∂L(t̃, ∂)

∂t2j−1
=

[(
L(t̃, ∂))2j−1

)
≥1

, L(t̃, ∂)

]
, j = 1, 2, . . . .

In the formulation of Kupershmidt [12], this means that L satisfies not only the KP equation for the
odd times, but also his formulation of the modified KP hierachy (only for the odd times).

Next, we describe polynomial tau-functions τ(t1, t3, . . .) of the BKP hierarchy obtained
in ([7], Theorem 6) (see also [4]). For that, given integers a and b, a > b ≥ 0, let

χa,b(t, t′) =
1
2

sa(t′)sb(t) +
b

∑
j=1

(−1)jsa+j(t′)sb−j(t),

χb,a(t, t′) = −χa,b(t, t′), χa,a(t, t′) = 0,

(40)

and let χa,b(t, t′) = 0 if b < 0. Then

Theorem 1 ([7], Theorem 6). All polynomial tau-functions of the BKP hierarchy (24), up to a
scalar multiple, are equal to

τλ(t̃) = P f
(

χλi ,λj(t̃ + ci, t̃ + cj)
)

1≤i,j≤2n
, (41)

where P f is the Pfaffiann of a skew-symmetric matrix, λ = (λ1, λ2, . . . , λ2n) is an extended strict
partition, i.e., λ1 > λ2 > · · · > λ2n ≥ 0, t̃ = (t1, 0, t3, 0, . . .), ci = (c1i, c2i, c3i, . . .), cij ∈ C.

Remark 2. The connection between the set of strict partitions and the extended strict partitions is
as follows. If λ = (λ1, λ2, . . . , λk) is a strict partition and k is even, then this partition is equal to
the extended strict partition λ. However, if k is odd, the Pfaffian of a k × k anti-symmetric matrix is
equal to 0, hence, in that case, we extend λ by the element 0, i.e., the corresponding extended strict
partition is then (λ1, λ2, . . . , λk, 0).

3. The n-th Sawada–Kotera Hierarchy and Its Polynomial Tau-Functions

As we have seen in Section 2, a necessary condition for a tau-function to give a solution
of the Sawada–Kotera equation is that ∂τ(t̃)

∂t3
= 0. This means that the tau-function lies

in a smaller group orbit of the vacuum vector |0⟩. Instead of the SO∞,odd orbit of the

vacuum vector |0⟩, we consider the twisted loop group G(2)
3 , corresponding to the affine Lie

algebra sl(2)3 , to obtain the 3-reduced BKP hierarchy [8]. More generally (see also [8]), when
n = 2k + 1 > 1 is odd, the 2k + 1-reduced hierarchy is related to the twisted loop group
G(2)

2k+1 corresponding to the twisted affine Lie algebra sl(2)2k+1. When n = 2k > 2 is even, one

has the twisted loop group G(2)
2k corresponding to the affine Lie algebra so(2)2k [9,13] (see [14]

(Chapter 7) for the construction of these Lie algebras). Elements G in this twisted loop
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group not only satisfy (18), which implies ∑j∈Z(−1)jakjaℓ,−j = (−1)kδk,−ℓ, but also the
n-periodicity condition ai+n,j+n = aij. This means that these group elements also commute
with the operator

∑
i∈Z

(−1)pn−iϕi ⊗ ϕpn−i, for p = 1, 2, 3, . . . ,

namely

(G ⊗ G) ∑
i∈Z

(−1)pn−iϕi ⊗ ϕpn−i = ∑
i∈Z

(−1)pn−iGϕiG−1 ⊗ Gϕpn−iG−1G

= ∑
i,j,k∈Z

(−1)pn−iajiak,pn−iϕjG ⊗ ϕk G

= ∑
i,j,k∈Z

(−1)pn−iajiak−pn,−iϕjG ⊗ ϕk G

= ∑
j∈Z

(−1)pn−jϕjG ⊗ ϕpn−jG

= ∑
j∈Z

(−1)pn−jϕj ⊗ ϕpn−j(G ⊗ G).

Since ∑i∈Z(−1)pn−iϕi|0⟩ ⊗ ϕpn−i|0⟩ = 0, we find that the elements τ in the orbit of the
vacuum vector of this twisted loop not only satisfy (15), but also satisfy the conditions

∑
j∈Z

(−1)pn−jϕjτ ⊗ ϕpn−jτ = 0, p = 1, 2, . . . . (42)

This means that τ(t̃) = σ(τ) not only satisfies (24), but also the conditions

Reszzpn−1e∑∞
j=1(t2j−1−t′2j−1)z

2j−1
e

∑∞
j=1 2

(
∂

∂t′2j−1
− ∂

∂t2j−1

)
z−2j+1

2j−1
τ(t̃)τ(t̃′)dz = 0, p = 1, 2, . . . . (43)

From (43), one deduces, using the fundamental Lemma ([11], Lemma 4.1) and the first
equation of (37), that

(P(t̃, ∂)∂pn−1P(t̃, ∂)∗)<0 = (P(t̃, ∂)∂pnP(t̃, ∂)−1∂−1)<0 = 0.

Thus, the Lax operator L(t̃, ∂) satisfies

(L(t̃, ∂)pn)≤0 = 0, p = 1, 2, . . . . (44)

Hence, L(t̃, ∂) = L(t̃, ∂)n is a monic differential operator with zero constant term. Moreover,
L(t̃, ∂) is equal to (10), and, by the first formula of (37), we have the relation (11).

Now, if n is odd, one can use the the Sato–Wilson equation, i.e., the second equation
of (37), to find that

∂P(t̃, ∂)

∂t(2j−1)n
= 0, j = 1, 2, . . . .

From this we find that the tau-function satisfies

∂τ(t̃)
∂t(2j−1)n

= λjτ(t̃), λj ∈ C, for j = 1, 2, . . . . (45)

Since we consider only polynomial tau-functions, we find that for odd n:

∂τ(t̃)
∂t(2j−1)n

= 0, j = 1, 2, . . . . (46)
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If n is even, there is no such restriction, because the Sato–Wilson Equation (37) is only de-
fined for odd flows. However, the additional Equation (43) still holds and gives additional
constraints on the tau-function.

Proposition 1. For n odd, Equation (46) for j = 1 and the BKP hierarchy (24) on τ(t̃) are
equivalent to (24) and (43).

Proof. We only have to show that (46) for j = 1 and (24) imply (43). For this, differenti-
ate (24) by tn and use (46); this gives Equation (43) for p = 1. Next, differentiate (43) for
p = 1 again by tn and use again (46); this gives (43) for p = 2, etc.

Remark 3. If n is odd, Proposition 1 gives that a polynomial BKP tau-function is n-th Sawada–
Kotera tau-function if and only if τ satisfies ∂τ

∂tn
= 0.

Since L satisfies the BKP hierarchy, L = Ln also satisfies the BKP hierarchy. For
n = 3, assuming the constraint that L is a differential operator, L is given by (3) and ∂L

∂t3
=

[(L 5
3 )≥0,L] is the Sawada–Kotera equation (33). This leads to the following definition.

Definition 1. Let L = ∂n + un−2∂n−2 + · · ·+ u1∂ be a differential operator, satisfying (11). The
system of Lax equations

∂L(t̃, ∂)

∂t2j−1
=

[(
L(t̃, ∂)

2j−1
n

)
≥0

,L(t̃, ∂)

]
, j = 1, 2, . . . , (47)

is called the n-th reduced BKP hierarchy or the n-th Sawada–Kotera hierarchy. For n = 3, it is
called the Sawada–Kotera hierarchy.

The geometric meaning of Equation (42) is that the space Ann τ is invariant under the
shift Λn, where

Λn(ϕi) = ϕi+n. (48)

As in the SO∞,odd case, all polynomial tau-functions in this n-reduced case lie in some
Schubert cell. Such a Schubert cell has a “lowest” element wλ, for λ a certain strict partition.
This element can be obtained from the vacuum vector by the action of the Weyl group
corresponding to G(2)

n . The element

wλ = ϕ−λ1 ϕ−λ2 · · · ϕ−λk |0⟩ (49)

lies in the Weyl group orbit of |0⟩, corresponding to SO∞,odd, (see [15]), however, not all

such elements lie in the Weyl group orbit of |0⟩ for G(2)
n . For this, consider

Ann wλ = span{ϕ−λ1 , ϕ−λ2 , . . . , ϕ−λk} ⊕ span{ϕi| i > 0, i ̸= λj, j = 1, . . . , k}. (50)

The element wλ lies in the G(2)
n Weyl group orbit if and only if Ann wλ is invariant under

the action of Λn, which means that the (λ1 + 1 shifted) set

Vλ = {λ1 + λi + 1|, i = 1, . . . , k} ∪ {λ1 − j + 1| 0 < j < λ1, j ̸= λi for i = 1, . . . , k}, (51)

must satisfy the −n shift condition, i.e.,

if µj ∈ Vλ, then µj − n ∈ Vλ or µj − n ≤ 0. (52)

Only the elements wλ, for which the corresponding Vλ satisfies condition (52), lie in the
G(2)

n group orbit.



Mathematics 2024, 12, 681 9 of 13

Example 1. (a) For n = 2, the only strict partition λ that satisfies condition (52) is λ = ∅.
(b) For n = 3, the only strict partitions λ that satisfy condition (52) are

(3m + 1, 3m − 2, 3m − 5, . . . , 4, 1) and (3m + 2, 3m − 1, 3m − 4, . . . , 5, 2), m ∈ Z≥0.

Remark 4. Note that (52) means that λ is a strict partition that is the union of strict partitions
(nm+ ai, n(m− 1)+ ai, , . . . , n+ ai, ai), with 1 ≤ ai < n and 1 ≤ i < n, such that aj −n ̸= −aℓ.
In other words, aj + aℓ ̸= n. Hence there are at most

[ n
2 − 1

]
such ai.

To a strict partition λ that satisfies condition (52), the corresponding Schubert cell is
then obtained through the action on a wλ by an upper-triangular matrix in the group G(2)

n .
This produces, up to a constant factor, elements

vλ = v1v2 · · · vk|0⟩, where vj = ϕ−λj + ∑
i≥1−λj

aijϕi (finite sum), (53)

and
(vj, vℓ) = 0, for j, ℓ = 1, . . . , k, and if λi = λj − n, then vi = Λn(vj). (54)

We first express the constants aij in terms of other constants by letting

aij = si+λj(cλj
), where the si are elementary Schur polynomials.

Here, we use that

1 +
∞

∑
i=1−λj

aijz
i+λj = exp

(
∞

∑
k=1

ck,λj
zk

)
,

hence, for every λj, one can recursively obtain the ck,λj
. Since aij = 0 for i >> 0, one only

has a finite number of ck,λj
. Thus,

vj = ϕ−λj + ∑
i>−λj

si+λj(cλj
)ϕi, (55)

where cλj
= (c1,λj

, c2,λj
, c3,λj

, . . .). Here, λj = λj mod n, which means that there are at most[ n
2 − 1

]
of such infinite series of constants (see Remark 4) and the vj satisfy the condition

if λi = λj − n, then vi = Λn(vj). (56)

We can now use the isomorphism σ to calculate the bosonization of elements vλ. For this,
we use formula (25) and apply this to vλ (which is given by (53) with vj given by (55)).
Now, using (22) and (23) and the fact that

e
∑∞

j=1 t2j−1
∂

∂s2j−1 e∑∞
j=1 s2j−1z2j−1

= e∑∞
j=1(t2j−1+sj−1)z2j−1

e
∑∞

j=1 t2j−1
∂

∂s2j−1

we find that
e∑∞

j=1 t2j−1α2j−1 ϕ(z)e−∑∞
j=1 t2j−1α2j−1 = e∑∞

j=1 t2j−1z2j−1
ϕ(z).
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Thus, using (55), we find that

vj(t̃) :=e∑∞
j=1 t2j−1α2j−1 vje

−∑∞
j=1 t2j−1α2j−1

=e∑∞
j=1 t2j−1α2j−1(ϕ−λj + ∑

i≥1−λj

si+λj(cλj
)ϕi)e

−∑∞
j=1 t2j−1α2j−1

=e∑∞
j=1 t2j−1α2j−1Res

∞

∑
ℓ=0

sℓ(cλj
)zℓ−λj ϕ(z)e−∑∞

j=1 t2j−1α2j−1 dz
z

=Res
∞

∑
ℓ=0

sℓ(cλj
)zℓ−λj ϕ(z)e∑∞

j=1 t2j−1z2j−1 dz
z

=Res z−λj e
∑∞

i=1 ci,λj
zi+∑∞

j=1 t2j−1z2j−1

ϕ(z)
dz
z

=Res z−λj
∞

∑
k=0

sk(t̃ + cλj
)zk ∑

i∈Z
ϕiz−i dz

z

=ϕ−λj + ∑
i≥1−λj

si+λj(t̃ + cλj
)ϕi.

Since e∑∞
j=1 t2j−1α2j−1 |0⟩ = 0, we find that the corresponding tau-function is equal to the

vacuum expectation value

τ(t̃) = ⟨0|v1(t̃)v2(t̃) · · · vk(t̃)|0⟩. (57)

If k = 2m, then this is the Pfaffian of a 2m × 2m skew-symmetric matrix. If k = 2m − 1, we
use the fact that

⟨0|v1(t̃)v2(t̃) · · · vk(t̃)|0⟩ = 2⟨0|v1(t̃)v2(t̃) · · · vk(t̃)ϕ0|0⟩

and again we find a Pfaffian. We thus arrive at the main theorem.

Theorem 2. All polynomial tau-functions of the n-th Sawada–Kotera hierarchy are, up to a scalar
factor, equal to the Pfaffian

τλ(t̃) = P f
(

χλi ,λj(t̃ + cλi
, t̃ + cλj

)
)

1≤i,j≤2m
, (58)

where λ = (λ1, λ2, . . . , λ2m), m = 0, 1, . . ., is an extended strict partition, which satisfies
the −n shift condition (52) for (51). The polynomials χa,b are given by (40). Here, as before,
t̃ = (t1, 0, t3, 0, . . .), and cλi

= (c1,λi
, c2,λi

, c3,λi
, . . .) are arbitrary constants, where we replace,

recursively, for all j = 1, 2, . . . 2m (respectively, for all j = 1, 2, . . . 2m − 1), when λ2m ̸= 0 (resp.,
λ2m = 0), the constants cλj+λℓ,λj

, for j ≤ ℓ ≤ 2m (resp., j ≤ ℓ < 2m) as follows:

(1) If λj ̸= λℓ, then

cλj+λℓ ,λj
= −(−1)λj+λℓ×

sλj+λℓ
(c1,λℓ

− c1,λ1
, c2,λℓ

+ c2,λ1
, . . . , cλj+λℓ−1,λℓ

+ (−1)λj+λℓ−1cλj+λℓ−1,λj
, cλj+λℓ ,λℓ

).
(59)

(2) If λj = λℓ and λj + λℓ is even, then

cλj+λℓ,λj
= −1

2
s λj+λℓ

2

(2c2,λj
, 2c4,λj

, · · · , 2cλj+λℓ−2, 0). (60)
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Proof. We still need to use the fact that all vectors vi, for i = 1, . . . , k, form an isotropic
subspace. So, assume that 1 ≤ j ≤ ℓ ≤ k and that vj and vℓ are given by (55). Then

0 = (vj, vℓ) =(−1)λj

λj+λℓ

∑
i=0

(−1)isi(cλj
)sλj+λℓ−i(cλℓ

)

=(−1)λj sλj+λℓ
(ci,λℓ

+ (−1)ici,λj
).

(61)

Here, we have used the fact that the coefficient of zm of

e∑∞
i=1 xizi+yi(−z)i

= e∑∞
i=1 xizi

e∑∞
i=1 yi(−z)i

is equal to sm(xi + (−1)iyi) = ∑m
j=0(−1)m−jsj(x)sm−j(y).

So, we need to investigate condition (61). Here we have two possibilities, viz. λj ̸= λℓ

and λj = λℓ. If λj ̸= λℓ, then using the fact that si(x) = xi+ terms not containing xi, we
find (59). If λj = λℓ, then notice that sλj+λℓ

only depends on the ci,λj
with i even. Thus,

all elementary Schur polynomials s2i+1 in only the even variables are equal to zero. This
means that if λj + λℓ is odd, there is no restriction on the constants, but if λj + λℓ is even,
we find that

cλj+λℓ,λj
= −1

2
sλj+λℓ

(0, 2c2,λj
, 0, 2c4,λj

, 0, 2c6,λj
, . . . , 0, 2cλj+λℓ−2,λj

, 0, 0).

Note that this restriction coincides with (60).

Remark 5. Since χλj ,λℓ
is given by (40), the constant c2λ1,λ1

does not appear in (58) and the
substitution (60) for c2λ1,λ1

is void.

For n = 3, see Example 1(b), we only have one infinite series of constants ci,λ1
, which

means that we only have the substitutions (60). We therefore find:

Corollary 1. All polynomial tau-functions of the Sawada–Kotera hierarchy are, up to a non-zero
constant factor,

τλ(t̃) = P f
(

χλi ,λj(t̃ + c, t̃ + c)
)

1≤i,j≤2m
, (62)

where λ is one of the following extended strict partitions:

1. (6m + 1, 6m − 2, 6m − 5, . . . , 4, 1);
2. (6m − 2, 6m − 5, 6m − 8, . . . , 4, 1, 0);
3. (6m + 2, 6m − 1, 6m − 4, . . . , 5, 2);
4. (6m − 1, 6m − 4, 6m − 7, . . . , 5, 2, 0),

where m = 0, 1, . . ., and c = (c1, c2, c3, . . .) are arbitrary constants in which we substitute
recursively, c2 = 0, and c8, c14, c20, . . . , c12m−4 in case 1; c2 = 0, and c8, c14, c20, . . . , c12m−10 in
case 2; c4, c10, c16, . . . , c12m−2 in case 3; and c4, c10, c16, . . . , c12m−8 in case 4, respectively, by the
following formula

c2k = −1
2

sk(2c2, 2c4, . . . 2c2k−2, 0) for k > 1. (63)

Remark 6. If we choose c = c̃ = (c1, 0, c3, 0, c5, . . .), then the corresponding Sawada–Kotera
tau-function τλ(t̃) is equal, up to a non-zero constant factor, to a Schur Q-function Qλ(t̃ + c̃)
(cf. [15]).
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Example 2. All the Sawada–Kotera tau-functions related to the partition λ = (5, 2) are given,
up to a multiplicative constant, by

c7
1 + 1120c7 + 7c6

1t1 − 280c3
2t1 − 280c5t2

1 + 140c2
2t3

1 + t7
1 ++35c3

1(2c2 + t2
1)

2+

+ 7c1t5
1(2c2 + 3t2

1) + 35c4
1(2c2t1 + t3

1)− 280t2
1t5 − 7c2

1(40c5 − 60c2
2t1 − 20c2t3

1 − 3t5
1 + 40t5)+

+ 14c2(120c5 + t5
1 + 120t5)− 7c1(40c3

2 − 60c2
2t2

1 − 10c2t4
1 + t1(80c5 − t5

1 + 80t5)) + 1120t7,

with ci ∈ C, arbitrary. (We have eliminated c4 by the substitution c4 = −c2
2; all the other constants

that do not appear, disappear automatically).

4. Conclusions

Three classes of solutions of soliton equations have been extensively studied in the
literature: rational solutions, soliton solutions, and theta function solutions. Soliton so-
lutions are constructed by making use of vertex operators [2,6,10,11,13,14,16,17]. Theta
function solutions are obtained by Krichever’s method [18,19]. Rational solutions are ob-
tained by constructing polynomial tau-functions using the group transformations method,
introduced by Sato [1]. In the present paper, we describe all polynomial tau-functions for
the n-th Sawada–Kotera hierarchy, and, in particular, for the Sawada–Kotera equation.
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