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ABSTRACT

Towards realizing practically useful quantum devices, the sizes of quantum devices are
being scaled up. An imminent challenge to scalability is ensuring resource requirements
of learning tasks that occur as part of device characterization and execution of quantum
algorithms also scale favorably. Resource requirements in general grow exponentially with
the system size or the number of qubits and at the standard quantum limit (SQL) with
respect to the learning error. On the other hand, much is known about the quantum system,
which is of known construction with prior experience. A natural question is then, can we
accelerate learning of quantum systems using prior information? In this thesis, we describe
how prior information can be exploited to reduce resources over current baseline methods.

In the first part, we consider the problem of quantum state tomography and identify
a class of quantum states that are hard to simulate classically, to be learnable in sample
complexity growing polynomially in the number of qubits. Our learning algorithm can be
used to verify circuits commonly used in quantum advantage experiments. In the second
part, we consider the problem of discriminating quantum channels on a physical system un-
der experimental constraints of limited control and lack of direct readout. After introducing
an ancillary measurement system that weakly interacts with the physical system, we show
sequential protocols adapted to this setting outperform multi-shot and parallel protocols,
achieving learning rates faster than SQL. In the third part, we consider the common recur-
ring task of Hamiltonian learning during calibration. We introduce a batch-mode Hamilto-
nian active learner (HAL) that proposes informative queries adaptively during learning. In
our experiments on an IBM quantum device, HAL reduced resources by 95% compared to
standard methods and by 33% compared to a sequential active learner. In the fourth part,
we consider the problem of estimating the expectation value of a Hamiltonian with respect
to a quantum state, which features in many hybrid quantum-classical algorithms for ground
state energy estimation in quantum chemistry. To guide the selection of of measurement
methods designed for this problem, we propose a benchmark that assesses their performance
against a set of common molecular Hamiltonians and common states. Benchmarking on
IBM quantum devices reveal that decision diagrams are preferred for near-term quantum
hardware. Finally in the fifth part, we propose a quantum algorithm based on molecular
bootstrap embedding for ground state estimation of large molecular Hamiltonians that could
potentially take advantage of access to multiple smaller quantum computers.

Thesis supervisor: Isaac L. Chuang
Title: Professor of Physics, Professor of Electrical Engineering and Computer Science
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B.2 An example of a CR pulse schedule on the IBM Quantum device ibmq_boeblingen
considering to the query of x = (M,U, t) where M = σI ⊗ exp

(
−iπ

4
σX
)
,

U = σX ⊗ σI , and time duration t = 6 × 10−7s. The x-axis corresponds to
time normalized by dt = 2.22 × 10−10 (Eq. B.1). The different channels cor-
responding to each qubit (y-axis) are written as the type of channel (see plot
legend) followed by qubit number. Qubit 0 is set to be the control qubit and
1 to be the target qubit. The envelope of the different pulses are shown in
each channel. The rotations on the drive or control channels indicate virtual Z
gates. An equivalent representation of the quantum circuit is shown in Fig. 4.1.230
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Chapter 1

Introduction

1.1 Thesis motivation

Quantum computing promises to be a revolutionizing technology with potential speedups
over classical computing for simulating quantum dynamics [Fey82; Llo96; Chi+18], solv-
ing linear systems of equations [HHL09], factoring large numbers [Sho94], and optimiza-
tion [WBL12; BS17]. Quantum computers could also find practical utility in scientific com-
putation for solving classically intractable problems in computational chemistry [McA+20],
accelerating drug discovery [Kas+11], and solving linear differential equations [Ber+14;
Ber+17; Kro23]. In an effort to realize such a useful quantum computer, several compa-
nies have invested heavily in quantum computing [Bog+23] and the US government has
increased annual funding for quantum information science [Cas20] by hundreds of millions
of dollars. Just over the last decade, we have had significant advances [Bru+19; Kja+20] in
qubit coherence times reaching 100µs [Che+14; Ngu+19] on superconducting architectures,
gate fidelity [Bar+14; Hon+20] exceeding 0.99, device sizes [GCS17; Kel+15; Aru+19] in-
creasing upwards of 50 qubits and higher connectivity. In Figure 1.1, we show the trends
of the sizes of quantum computers in terms of the number of qubits with year. As per the
roadmap of IBM [22a], we can expect quantum computers of sizes up to thousands of qubits
by year 2025. These trends of current and projected quantum computer sizes suggest the
emergence of a quantum Moore’s law with quantum computers growing five times in size
every two years.

Today’s quantum computers however are marked by noise, no error correction, and lim-
ited number of sequential gates that can be applied in a circuit. This has led to the current
era of quantum computing to be dubbed as that of Noisy Intermediate Scale Quantum
(NISQ) computers [Pre18]. To transition from the current NISQ era to the pre-fault tolerant
era of large modular quantum computers albeit still without error correction [Ang+22; 22a]
and eventually to the era of quantum advantage, we will need to continue scaling the size
of quantum computers which presents multiple formidable challenges. One large obstacle
is overcoming experimental difficulties in controlling a large number of qubits and shielding
them appropriately from the surrounding environment. Outside of fabrication and hardware
design, there needs to be progress in the scalability of a dependable software stack, and
quantum compilation techniques along with development of more resource efficient quantum
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Figure 1.1: Trend of size of quantum computers (in number of qubits) with year. Source
of numbers: IBM Quantum roadmap [22a], Google Quantum AI roadmap [22b] and IonQ
roadmap [20].

algorithms for practical utility in the near-term.
A pressing challenge for scalability of quantum computers is that of quantum system

identification which has resource requirements that scale poorly. In quantum system iden-
tification, we aim to learn features (e.g., state description, dynamics, noise) of a quantum
system by carrying out experiments on the system, involving queries by applying signals and
taking measurements. Unfortunately, in general, the number of such experiments or queries,
also called query complexity, scales exponentially with the number of qubits [Haa+17; Leu00;
NC10]. This has implications for a host of learning tasks across quantum computation where
quantum system identification is carried out. For example, at the very start of the life of a
quantum computer after hardware design and manufacturing, we carry out characterization
to learn the quality of qubits implemented and learn the underlying Hamiltonian dictating
the dynamics of qubits [She+16]. This can then be used to devise strategies for driving
the Hamiltonian and implementing gates. Once a set of universal gates can be executed
on the device, it is important to carry out benchmarking to obtain device level metrics of
quality [Cro+19], speed [Wac+21] and reliability [McK+23]. This can then be used to sug-
gest the types of quantum algorithms that could be implemented on the quantum computer.
Moreover, quantum algorithms typically have learning tasks associated with them. Quantum
algorithms output quantum state encoded solutions but the goal may be to obtain relevant
classical information by performing measurements on the state. The learning task is then to
learn properties of the quantum state.

Quantum system identification is thus an outstanding problem that appears across the
operational life cycle of quantum computing from conceptualization of the quantum device to
its deployment for useful applications. Applicability of the quantum computer depending on
its power and reliability then has implications for the designs of future quantum computers.
While this is similar to the design process of classical computing as well, the main distinction
is that quantum devices are short-lived compared to classical devices. Due to noise from
the environment, quantum devices maintain their quantum behavior only for a certain time
duration during which we can execute quantum algorithms before quantum decoherence kicks
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in. Moreover, the state of a quantum system collapses after measurement. The functioning
of quantum devices is thus inherently cyclic, with the quantum computer having to be
reset after execution of an experiment and measurement. Quantum system identification is
also more challenging than classical system identification where complexity generally scales
polynomially with the underlying dimension.

To see how we could accelerate learning of quantum systems by reducing resource re-
quirements, we take inspiration from the classical setting. Just as in the case of quan-
tum computers (Figure 1.1), sizes of classical computers have been growing at the Moore’s
law [Moo98] over the past decades with the number transistors in an integrated circuit dou-
bling every two years. One relevant example of a classical system identification task that
grows exponentially with the size of classical computers is that of experimental verification
of transistor-level circuits [KSL95]. This task involves verification of the encoded Boolean
logic and the resource requirements grows exponentially with the size of circuits. However,
resource requirements of verification are brought down by using prior information available
due to design choices, access to structural information of the encoded Boolean logic and
symmetry of transistor-level circuits across the processor.

There are many such examples in classical system identification where resource require-
ments of learning algorithms have been reduced through the incorporation of different prior
information [Lin94; SM71; ÅE71; Joh96; Wah91] available. The prior information could
be knowledge of model structure, valid range of system parameters, physical constraints on
the system from conservation laws, and the system’s behavior in the frequency domain. In
learning classical systems from observations of its dynamics or behavior, prior information
about the expected structure of the system model is often imposed as constraints. This
could include information about the presence of certain dynamics (e.g., delays), and order
of interactions or even known interconnections between subsystems. Prior knowledge about
the range or approximate values of system parameters can be used to initialize the parameter
estimation in optimization algorithms to help them converge more quickly and find better
local minima. Further, one can use available knowledge from the underlying physics of the
system to restrict the feasible parameter space. For example, constraints on the positivity of
certain parameters (e.g., masses or damping coefficients in mechanical systems) or adherence
to physical laws (e.g., mass conservation, energy conservation, boundary conditions, etc.) can
be imposed. Finally, prior information about the system’s behavior in the frequency domain
can be utilized (e.g., dominant frequencies, resonant peaks, etc.). Algorithmically, Bayesian
methods have been used to incorporate prior information in a probabilistic framework and
regularization methods such as Tikhonov regularization have been used during learning to
incorporate prior beliefs about the simplicity of the system and improve robustness of the
learning algorithms.

1.1.1 Thesis question

This motivates the following thesis question which we will tackle throughout this thesis:

How can we exploit prior information to accelerate learning of quantum systems across the
life cycle of quantum computation?
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Let us parse the above question by first describing what prior information may be avail-
able and then what is meant to accelerate learning of quantum systems. As for classical
systems, prior information on quantum systems may be presented to us, the learners, in
different ways and at different stages of the life cycle of quantum computing. We may
have prior information on the structure of the quantum system, space of system parameters,
and physical constraints (e.g., symmetry, invariance, etc.). During the implementation of
quantum algorithms, we often need to learn properties of the outputted quantum state via
measurements of some observables. The prior information in such situations may be the
structure of these observables themselves.

To accomplish any learning task, we need to expend resources including the number of
queries to the quantum system (also called sample complexity) and classical processing (also
called computational complexity). To accelerate learning of quantum systems, the goal is to
then reduce the resource requirements of different learning tasks. This can be achieved by
improving the corresponding sample or computational complexities. Additionally, queries to
the quantum system may involve highly entangling operations which may be beneficial for
learning in terms of reduced sample complexity but generally comes at the cost of increased
classical computational complexity. This implies the appearance of quantum and classical
trade-offs. Lastly, even if prior information is not initially available during learning, we
might be able to build information about the system in real-time during learning and take
advantage of adaptivity as part of the learning algorithm to reduce resource requirements.

We now define the learning tasks across the life cycle of quantum computing that will be
of interest to us. We then describe the scope, methodology and contributions of this thesis.

1.2 Learning tasks across the life cycle of quantum com-
puting

Devices to Applications

Characterization Control Quantum program Quantum algorithm

Calibration
• Quantum state tomography
• Quantum process tomography
• Hamiltonian learning

• Circuit verification
• Benchmarking

Hybrid quantum-classical 
algorithms
• Estimation of expectation values
• Estimation of gradients

Precursor: Hardware design + building devices

Life
Cycle

Learning
tasks

Figure 1.2: Overview of different learning tasks as we move forward in the life cycle of quan-
tum computing starting from development of devices to deployment in useful applications.

In this section, we describe the life cycle of quantum computing alluded to earlier. The
life cycle of quantum computing involves several stages from conception to development,
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deployment and eventual decommissioning. In Figure 1.2, we show the stages of the life
cycle involved after development of the device and up to deployment in useful applications.
After building a quantum computer, it must be characterized to develop a description of low-
level operations. Learning tasks in this stage include quantum state tomography, quantum
process tomography and Hamiltonian learning which give us access to description of the
state, process and dynamics respectively. As part of the characterization step, we also seek
to learn local noise sources along with the underlying Hamiltonian and inform the next stage
of quantum control. As part of quantum control, we learn how to drive or modulate the
Hamiltonian evolution to implement various multi-qubit gates. The stages of characterization
and control may be executed alternately multiple times and we refer to these stages together
as calibration in Figure 1.2.

After having accomplished the step of calibration, the next stage of the quantum com-
puting life cycle is the implementation of quantum programs or subroutines. At this stage,
it may be desirable to perform benchmarks to ascertain the power or reliability of the de-
vice as well as verification to assess the correctness of implemented circuits. As tomography
protocols scale exponentially with the number of qubits, they cannot be used for these tasks
in general and different learning algorithms have to be developed. Finally, we will compose
different quantum programs to implement quantum algorithms. As part of these quantum
algorithms, we may need to carry out other learning tasks such as estimation of certain expec-
tation values and gradients in variational quantum eigensolvers (VQE) [Kan+17; McC+16].
Other learning tasks may involve learning properties of the prepared quantum state without
carrying out full tomography.

The list of learning tasks mentioned is not exhaustive but we have attempted to highlight
the most relevant ones. We note that in many texts, quantum system characterization
encompasses all protocols used for learning any feature of the quantum system or testing a
property of the system. Here, we present the operational viewpoint of system characterization
and where it features in the life cycle of quantum computing.

We are now in a position to delve deeper into each of these aforementioned learning tasks
at different stages of the life cycle and evaluate the types of prior information that may be
available for each learning task.

1.2.1 Quantum system characterization

In this section, we go through the different learning tasks typically considered as part of
characterization and calibration. We also give examples of quantum systems where prior
information was useful in accelerating the learning task.

Quantum state tomography. Quantum state tomography (QST) is the problem of learn-
ing a classical description ρ̂ of an unknown n-qubit quantum state ρ drawn from a specified
class of states by performing measurements on multiple copies of ρ, such that |ρ̂−ρ|≤ ϵ under
some metric |·| (e.g., infidelity or trace distance). The main figure of merit of a tomography
protocol is its sample complexity or the number of copies of ρ used to learn ρ̂. It is well
known that the number of copies required to learn general unknown quantum states grows
as Θ(exp(n)) [Haa+17; OW16].

QST is ubiquitous throughout system characterization and appears as a subroutine for
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other learning tasks. It can be used to assess the quality of quantum gates and the fidelity
of quantum operations. It is crucial for verifying quantum circuits and validating the per-
formance of quantum algorithms. Partial state tomography where one performs QST on a
subset of qubits appears as a subroutine in numerous quantum algorithms [BBO20; RBM18].

Given the prevalence of QST across the life cycle of quantum computation, it is imperative
to accelerate QST. One way to do this would be by exploiting prior information on the
structure of the unknown quantum state or the class of unknown quantum states. Known
examples of such n-qubit classes for which QST can be performed efficiently, i.e., the sample
complexity grows polynomially in n, include Matrix Product States [Cra+10], stabilizer
states [Mon17a], symmetric states invariant under qubit permutations [Tót+10], and Gibbs
states of local Hamiltonians [Ans+21; HKT21].

Quantum process tomography. Quantum process tomography (QPT) [CN97] is the
problem of learning the dynamics or operations that transform one quantum state into
another. Formally in QPT of n-qubit quantum unitary operators, given access to an unknown
unitary U , we aim to output a classical description Û that is ϵ-close to the unknown unitary
under some norm (e.g., diamond norm, Frobenius distance, etc.). QPT has applications in
the step of characterization to learn the quantum process being implemented by a control
and assess the fidelity of quantum gates. It is thus a useful tool in the calibration of quantum
control parameters for implementing gates. QPT is also used for verifying quantum circuits
implemented as part of quantum algorithms.

One way to solve this problem is via QST [NC10, Chapter 8.4.2]: prepare a basis of
quantum states, apply the unknown unitary U and perform QST on the results. More
sophisticated strategies including use of ancilla and adaptivity have been developed [MRL08;
Leu00; Car22; YRC20; Bis+10]. However, as was the case for QST, it has been established
that the query complexity (or the number of queries to U) of QPT is Θ(exp(n)) [Leu00;
Haa+23] which is prohibitive in practice.

We can ask here again as we did for QST if we can do better given prior information on
the structure of U? Indeed, we can. Examples of efficiently learnable quantum unitaries with
query complexity scaling polynomially in n include Clifford circuits [Low09], Clifford circuits
with one layer of the non-Clifford T = diag(1, exp(iπ/4)) gates [LC22], and O(poly(log n))-
junta quantum unitaries [CNY] i.e., n-qubit quantum unitaries that act non-trivially on a
subset of qubits.

In many cases such as circuit verification and quantum sensing, further prior information
may be available. We may know ahead of time that the unknown quantum process or
channel belongs to a finite ensemble E = {C1, C2, . . . , CM}. The problem of estimating a
quantum channel becomes that of quantum channel discrimination (QCD) where the goal is
to discriminate the unknown channel C in E given query access to C. Notably, the sample
complexity of QCD is now Õ(logM)) [Har+10; HW12] where we have hidden the dependence
on minimum distance between any pair of channels in E .

Prior information can be thus be useful in accelerating QPT and we will study another
scenario in this thesis.
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Hamiltonian learning. In Hamiltonian learning (HL), the goal is to learn the Hamil-
tonian governing system dynamics through experimental measurements and application on
prepared states. Formally, given access to the quantum unitary U = exp(−iHt) corresponds
to a unitary time evolution of an unknown Hamiltonian H for evolution time t, the goal is to
learn an estimate Ĥ that is close to H under some norm (e.g., Frobenius norm). If we have
access to a parametrized Hamiltonian model, Hamiltonian learning becomes the problem of
Hamiltonian parameters’ estimation where we seek to learn an estimate θ̂ of the true unkown
parameters θ under the ℓ2 norm. Hamiltonian learning is an important procedure in cali-
bration of quantum computers where it is used to characterize the underlying Hamiltonian
of the dynamics of a set of qubits and the estimated Hamiltonian can then be used to learn
how to drive it to implement multi-qubit gates [Inn+20; She+16]. Hamiltonian learning is
thus used around the clock for the successful operation of quantum computers and plays a
pivotal step in recalibrations to avoid drift.

The query complexity of HL, perhaps unsurprisingly at this stage, is Θ(exp(n)) [MRL08;
Car22]. Further, HL requires O(ϵ−2) queries in achieving learning error ϵ due to the standard
quantum limit (SQL) [GLM04a; GLM11a]. Given prior information on the structure of the
Hamiltonian, the query complexity can be reduced substantially for some instances and
learning can be made efficient. For example, we can learn k-local n-qubit Hamiltonians
i.e., Hamiltonians involving interactions between at most k qubits O(poly(n) queries given
access to Gibbs states [Aru+23; HKT22; Bak+23] and short-time unitary evolution [GCC22;
Fra+22; Hua+23] (as considered here). Hamiltonians which are sparse in the sense that
they contain at most s terms in a certain basis can also be learned efficiently in O(sn)
queries [Sha+11] if the basis is known and O(sn/ϵ4) queries [Yu+23] if the basis is unknown
but with strong assumptions on the support and magnitude of the Hamiltonian parameters.

All the HL approaches given prior information mentioned so far have query complexity of
SQL (O(1/ϵ2)) or worse except for [Hua+23] which is able to achieve the so called Heisenberg
limited scaling O(1/ϵ). However, this latter approach requires the ability to implement
interleaved single-qubit gates as part of the HL protocol which is not usually available in
practice as HL itself is typically used for gate design. When such control is not available
during HL, it has been shown that Heisenberg limited scaling cannot be achieved for general
n-qubit Hamiltonians [DOS23]. This does not rule out particular instances of Hamiltonian
models though where Heisenberg limited scaling could be achieved and we show how it may
be achieved in some regimes for a quantum hardware relevant Hamiltonian in this thesis.

1.2.2 Implementing quantum programs and algorithms

In the life cycle of quantum computing after system characterization and gate design as part
of quantum control, we are in a position to implement quantum programs i.e., a sequence
of layers of quantum gates, corresponding to building blocks (also called subroutines) of
quantum algorithms. In this section, we now consider some learning tasks that appear in
the stages of implementing quantum programs and executing quantum algorithms.

Benchmarking. After implementing a quantum program, we might want to learn the
various errors that accumulate during its runtime. This has implications for the types of
quantum algorithms (or compositions of different quantum programs) we may afford to
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run. The tomography protocols from each of the stages - characterization, calibration and
control - that have come before in the life cycle reveal very fine-grained information about
the quantum device and give us a complete description of quantum processes but they can
come at prohibitive cost for large-scale systems. They are thus only practical in general
for low-level operations such as assessing quality of qubits and gates over few qubits. It
is then desirable to have protocols that give us access to partial descriptions of error rates
without losing too much information, at a lower resource cost and higher scalability. Such
protocols include direct fidelity estimation [FL11], randomized benchmarking [MGE11], and
cycle benchmarking [Erh+19]. If we wanted to summarize the performance of the quantum
device as a whole, several metrics and approaches have been developed such as quantum
volume (QV) [Cro+19], volumetric benchmarks [BY20], circuit layer operations per second
(CLOPS) [Wac+21], and use of specific certain applications as estimation of performance
e.g., quantum chemistry [McC+19].

Quantum verification. Quantum verification [Eis+20] is the task of checking whether a
quantum device or implemented circuits behave as intended and produce the correct output
for a given set of inputs. Unlike benchmarking, the goal is to then verify correctness of the
functioning of the quantum device rather than assign a reproducible performance measure
to the quantum device. As current quantum computers are noisy and inherently error-prone,
errors can occur during the execution of circuits and verification aids in identifying them.

One way to accomplish different verification tasks would be to carry out tomography
but due to its impracticality on large-scale systems, various approaches have been developed
including cross-platform verification of quantum states [Car+21], blind quantum computa-
tion [GKK19], and self-testing protocols [ŠB20]. Consider the particular verification task of
quantum state certification, where the goal is to check if the state ρ̃ produced by a quantum
device is ϵ-close to a given quantum state ρ in infidelity. This could be accomplished via QST
but would be prohibitively expensive for large-scale systems. Instead, another approach is
to carry out direct fidelity estimation [KR21] and whose sample complexity can be further
improved for well-conditioned states.

Estimation of observables and state properties. We now discuss a learning task
encountered in quantum algorithms. In many hybrid quantum-classical algorithms and even
fault-tolerant algorithms, the output on the quantum computer is a quantum state encoded
solution but we need access to certain properties of this state or classical relevant information.
Let us describe two use cases. Consider the scenario of solving linear partial differential
equation (PDE) e.g., the heat equation [LMS22] using a quantum computer. One approach
is to use the HHL algorithm [HHL09] on the linear system of equations obtained after
discretizing the linear PDE spatially and temporally. This offers a potential exponential
speedup in the terms of the spatial resolution. However, the output of the HHL algorithm will
be quantum state encoding the solution to the PDE whereas classically relevant information
are the flux and energy over small regions in space. We could obtain this information via
QST but this would come at an exponential cost and we would lose any speedup. Given prior
knowledge of the target properties, [LMS22] shows that one can apply a quantum protocol
for numerical integration incorporating amplitude estimation and retain a quadratic speedup
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over the best classical algorithm for solving the PDE.
As a second illustrative scenario, we consider the application of ground state energy

estimation of a many-body molecular Hamiltonian using variational quantum eigensolvers
(VQE) [McA+20; McC+16]. In VQE, quantum states produced by parameterized quantum
circuits undergo frequent measurements with respect to H. The learning problem is that of
estimating Tr(ρH) efficiently. This can be accomplished by noting the Pauli decomposition
of H and performing suitable single-qubit Pauli measurements P . We then estimate Tr(ρH)
via estimation of local observables Tr(ρP ). Prior information that may be available to us in
such a scenario is the number of Pauli terms in the Pauli decomposition of H and the highest
weight (number of non-identity single-qubit Paulis in any Pauli term of H). For example,
qubit Hamiltonians of molecules have O(n4) Paulis [McA+20] in its decomposition and thus
this learning task can be performed in O(poly(n)) measurements. If we are given prior
information on the highest weight w, we can utilize classical shadows [HKP20; Elb+23] to
accomplish this in O(3w log n) Pauli measurements, which is efficient for w = O(poly(log n)).

1.3 Thesis contributions

We now discuss the contributions in this thesis towards answering the thesis question in
the context of the learning tasks identified in Section 1.2. To address the challenges for
each learning task, we will employ the common tools of statistical learning and asymptotic
analysis, while at the same time attempting to validate our learning algorithms through
numerical experiments or experimentals on quantum hardware. These contributions are
based on independent research articles by the author and the involvement of the author in
each of these articles is also mentioned simultaneously.

Quantum state tomography. We address the thesis question in the context of learning
quantum states in Chapter 2. This contribution is based on the paper [Aru+23] for which
the thesis author was the main contributing author (listed alphabetically).

Assuming that the prior information available is regarding the structure or the class of
unknown quantum states available to us, we ask the question: What are other classes of
n-qubit quantum states that can be learned efficiently, given access to copies of the unknown
quantum state? Particularly, could we learn states that cannot be efficiently simulated
classically?

It is well-known that Clifford circuits and states produced by these circuits (i.e., stabilizer
states) are learnable in polynomial time. Stabilizer states and Clifford circuits are also known
to be classically simulatable using the Gottesman-Knill framework which is crucial in these
learning procedures. To obtain a candidate of a class of states that are not classically
simulatable, we have to look no further than states produced by IQP circuits (Instantaneous
Quantum Polynomial-time) which are prevalent in quantum-advantage experiments [BJS11;
BMS17]. Specifically, we are interested in the question of efficient learnability of a subclass of
IQP states, which correspond to |ψf⟩ = 2−n/2

∑
x∈{0,1}n(−1)f(x)|x⟩ and where f is a degree-

3 Boolean polynomial [Mon17b]. These states are produced by n-qubit circuits with the
structure H⊗nV containing a layers of Hadamard H gates across all qubits followed by circuit
V containing internal gates in {Z,CZ,CCZ} (where CZ is the controlled-Z gate). We go a step

39



further and consider learning binary phase states produced by circuits with internal gates in
{Z,CZ,CCZ, . . . ,Cd−1Z} where Cd−1Z is a controlled-Z with controls over d−1 qubits. Binary
phase states can be expressed as |ψf⟩ = 2−n/2

∑
x∈{0,1}n(−1)f(x)|x⟩ where f is now a degree-d

Boolean polynomial. We also consider learning generalized phase states produced by the d-
th level of the diagonal Clifford hierarchy and can be expressed as |ψf⟩ = 2−n/2

∑
x ω

f(x)
q |x⟩

where q = 2d, ωq is qth root of unity, and f is a degree-d Boolean polynomial. The goal of
this work is to then show that phase states can be learned efficiently in O(poly(n)) samples
by exploiting the structure of these states and their correspondence to Boolean polynomials.

Apart from being natural states to learn, phase states have appeared in several recent
works: [JLS18; BS19] showed phase states are efficiently preparable and statistically indis-
tinguishable from a Haar random state (for a polynomial-time quantum algorithm), subse-
quently there have been followup works using phase states for cryptosystems [AQY21]; Irani
et al. [Ira+21] showed that in order to construct the witness to a QMA complete problem,
say the ground state |ϕ⟩ to a local-Hamiltonian problem, it suffices to consider a phase state
which has a good overlap to |ϕ⟩; level-3 phase states are universal for measurement based
quantum computing [Ros+13; TMH19].

It is widely open how to learn states or circuits beyond the Clifford group. In this
thesis, we give optimal algorithms for learning degree-d binary phase states using separable
measurements in O(nd) sample complexity and using entangled measurements in O(nd−1)
sample complexity. Our learning algorithms are optimal with regards to the dependence of
the sample complexity achieved on d and this is proved via lower bounds. These state learning
algorithms can in turn be used to learn the corresponding IQP like circuits and diagonal
unitaries of the Clifford hierarchy given query access in O(poly(n)) samples. Moreover, we
find that the sample complexity of learning binary phase states can be reduced by using
entangled measurements instead of separable measurements but this comes at an increase in
computational complexity of O(poly(n)) to O(exp(n)). While this is specific for our learning
algorithms, this showcases an instance of a trade-off in quantum resources and classical
computational runtime.

Quantum process tomography. We next address the thesis question in the context of
learning quantum channels in Chapter 3. This contribution is based on [Sug+23] for which
the thesis author was the second main contributing author.

In Section 1.2.1, we introduced the learning problem of quantum channel discrimination
(QCD) where we have prior information of the ensemble of valid unknown quantum channels.
Various protocols to solve QCD have been designed including sequential protocols, multi-
shot protocols and entanglement-enhanced parallel protocols [Har+10; DCS17]. However,
these protocols cannot be directly applied to many physical systems on which an unknown
channel is acting. Consider naturally occurring quantum systems such as those undergoing
chemical reactions [Kat+22]. Directly measuring the physical system of interest in this case
would disrupt the dynamics. There also have been proposals of engineered quantum systems
based on superconducting quantum circuits [Pec+21] to prevent overcrowding of qubits,
where qubits lack dedicated readout lines due to limited on-chip routing capabilities and to
ensure the number of control lines is not a limiting factor for scaling the system size.

Common restrictions on these quantum systems on which a channel is acting are: ar-
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bitrary control of the system is not possible, direct measurement is not allowed and initial
state preparation is unreliable. We call quantum systems with these restrictions as hidden
quantum systems and the associated channel discrimination problem as hidden quantum
channel discrimination (HQCD). We investigate if HQCD can be accomplished successful by
adapting protocols from conventional QCD and with fewer queries than classical methods.

In this thesis, we formally pose the problem of HQCD and study the limits of different
protocols in solving HQCD by considering the minimal two-qubit example of hidden binary
channel discrimination (HBCD) where the quantum channel C acting on a hidden qubit
is a single-qubit rotation C = exp(iθCσx) with the parameter θC being unknown and to
be discriminated. The initial state of the hidden qubit is assumed to be the maximally
mixed state. The true value of θC is either 0 or a given α ∈ (0, 2π) with equal probability.
The hidden qubit is accessed by a measurement apparatus consisting of a single (target)
qubit through a query that cannot directly manipulate the hidden system. A query involves
N serial applications of C on the hidden qubit, a tunable controlled-rotation gate on to
the target qubit, and single-qubit rotations on the target qubit. The figure of merit of a
protocol is the query complexity N or the number of interactions with the hidden system
required for accomplishing HBCD with error probability ϵ ∈ [0, 1/2). We then ask: Can we
discriminate the hidden quantum channel at the Heisenberg limited scaling O(ϵ−1) rather
than that allowed by the central limit theorem O(ϵ−2) and thereby accelerate learning?

In this work, we compare the performance of sequential, multi-shot and parallel protocols
for HBCD. In the sequential protocol, a query of length N is applied and the target qubit
is only measured once. In the multi-shot protocol, queries of fixed length d are applied and
the target qubit is measured multiple times. We show that (i) it is impossible to accomplish
HBCD using a non-sequential protocol (e.g., multi-shot and parallel protocols with queries
of length one) when the initial state of the hidden system is maximally mixed, and (ii) the
sequential protocol achieves Heisenberg limited learning N ∼ O(α−1) in HBCD whereas a
multi-shot protocol is only able to achieve the standard quantum limit (SQL) of N ∼ O(α−2).
We thus propose a general framework for learning physical processes on hidden quantum
systems.

Hamiltonian learning. We address the thesis question in the context of Hamiltonian
learning (HL) in Chapter 4. This contribution is based on [Dut+23a] for which the thesis
author was the first and main contributing author.

Current state-of-art HL approaches aim to accelerate learning by improving estimation
methods compatible with any set of queries [EHF19; Aru+20a], proposing engineered set
or sequence of queries to be made [Aru+20a; Fra+22; Hua+23] and introducing adaptiv-
ity [Gra+12; Gra+17]. The strategies proposed in [Gra+12; Gra+17] are not practical on
current and near-term quantum hardware as they propose new queries to be made one shot
at a time, requiring multiple accesses to the quantum computer. In this thesis, our goal is to
accelerate HL by introducing adaptivity in selection of queries (or experiments) but respect
limitations of access to quantum devices and latenices on current quantum hardware in the
NISQ era. At this same time, we want our resulting learning algorithm to be compatible with
any set of experiments and estimation strategies, so we can take advantage of advances in
estimation or experiment design. Towards this end, we introduce active learning, a machine
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learning tool for proposing informative queries, that operates in batch-mode and could be
used to achieve resource reduction in practice. The active learner can be viewed as a learning
algorithm that develops and utilizes prior information in real-time. Finally, we ask: Can we
discover regimes where we can beat standard quantum limit and achieve Heisenberg limited
scaling?

To obtain a reduction of quantum resources in practice, we introduce a batch-mode Hamil-
tonian active learner (HAL) that proposes informative queries adaptively during learning. In
our experiments on a 20-qubit IBM quantum device, HAL achieved a 95% query advantage
compared to standard methods, and a 33% query advantage over a sequential active learner.
In practice, this leads to an order of magnitude reduction in queries made during learning of
two-qubit cross-resonance gates to reach a desired accuracy during gate design or a reduction
of quantum wall-clock time in running experiments for learning from around 10 minutes to
5 seconds. This has significant implications for resource requirements of learning all the
two-qubit cross-resonance (CR) Hamiltonians on large devices such as the 1121-qubit IBM
quantum device Condor [22a] shown in Figure 1.3. Standard methods would require nearly
17 days in sequentially learning all the CR Hamiltonians within an error of 0.05. Whereas,
HAL would only need 3.5 hours. Moreover, with access to information from previous calibra-
tions, HAL can exceed the standard quantum limit and achieve the Heisenberg limit during
learning. (a)

(b)

(c)

Figure 1.3: Connectivity map of 1121-qubit IBM quantum device Condor with nodes denot-
ing different qubits and edges between pairs of qubits indicating direct connections. Edges
directly correspond to presence of cross-resonance Hamiltonian interaction between pairs of
qubits. Figure adapted from [Pat+23].

During operation of quantum devices, HAL could be utilized to reduce downtime and
enable frequent recalibrations to mitigate the effects of drift. More broadly, by employing
adaptivity in real-time for characterization and control, we could improve robustness to noise
and applicability to large-scale quantum systems.
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Estimation of physical observables. We consider the learning task of observable estima-
tion for the application of ground state energy estimation using near-term hybrid quantum-
classical algorithms in Chapter 5. This contribution is based on [Dut+23b] for which the
thesis author is the first and main contributing author.

A leading candidate application for showing practical quantum advantage is ground
state energy estimation [McA+20; Lee+23], even though a provable exponential speedup
is yet to be shown. On current near-term quantum hardware which are noisy and where
we are limited by circuit depth, hybrid quantum-classical algorithms such as variational
quantum eigensolvers (VQE) [Per+14; Kan+17], and quantum subspace expansion (QSE)
methods [McC+17; PM19] will be used for this application. A common subroutine across
these algorithms is that of observable estimation or estimating Tr(ρH) for an n-qubit molec-
ular Hamiltonian H and a quantum state ρ. Particular prior knowledge of molecular n-qubit
Hamiltonians H is also available: they contain O(n4) Paulis in their Pauli decomposition.

Various approaches for solving the observable estimation problem using local Pauli mea-
surements have thus been proposed such as randomized methods [HKP20; Had+22; Hil+21;
KG22; Elb+23], grouping methods [YVI20; VYI20; Wu+23; Shl+23] and derandomiza-
tion [Hua+23]. However, it is relatively unknown how these measurement methods perform
in practice and systematic benchmarking is lacking. The main performance metric that has
been used to compare different measurement methods has been accuracy achieved against
a fixed measurement budget. This does not account for the utilization of classical compu-
tational resources in generating measurement bases from these measurement methods (e.g.,
optimization, sampling, etc.) and post-processing of measurement outcomes acquired from
experiments on the quantum device. In this thesis, we ask: How do we systematically bench-
mark measurement methods for the common quantum computation of estimating Tr(ρH)
for molecular Hamiltonians H in hybrid quantum-classical algorithms?

In this thesis, we propose the benchmarking tool CSHOREBench: Common Systems and
Hamiltonians for ObseRvable Estimation Benchmark. Analogous to benchmarks in machine
learning and scientific computing, we assess the performance of our candidate algorithms
(measurement methods) on common states and common molecular Hamiltonians. Given a
Hamiltonian, the set of common states include the Hartree-Fock state which is often used as
an initialization in VQE, random quantum ansatz and the ground state. In CSHOREBench,
we use a heuristic to summarize utilization of both quantum and classical resources. In our
experiments on IBM Quantum devices for molecular Hamiltonians (up to 16 qubits), we find
that the methods of decision diagrams and derandomization are most amenable to near-term
quantum hardware.

Applications. We reconsider the application of ground state estimation but now with
access to entanglement during measurements and with a different viewpoint on the prior
information available on molecular Hamiltonians. This contribution is based on [Liu+23] for
which the thesis author was a contributing author but did not lead the research.

As we have emphasized throughout this introductory chapter, finding the ground state
of interacting fermionic systems is an outstanding challenge for quantum chemistry, ma-
terial science, and condensed matter physics. Numerically solving the time-independent
Schrodinger equation of a meaningfully large many-electron system in an exact fashion is
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a daunting task because the dimension of the underlying Hilbert space grows exponentially
as the number of electrons increases, making this classically intractable. To overcome this,
quantum algorithms to be run on quantum computers have been designed for this purpose.
Namely, these include fault-tolerant algorithms which require quantum error correction and
high-depth quantum circuits (e.g., quantum phase estimation [Kit95]). In the NISQ era and
pre-fault tolerant era, we will only be able to execute near-term hybrid quantum-classical
algorithms that use short-depth quantum circuits but are affected by noise e.g., variational
quantum eigensolvers (VQE) [Per+14; McC+16; Kan+17; Gri+19] and quantum subspace
expansion (QSE) methods [McC+17; Col+18a; PM19; Mot+20].

While being able to run these hybrid quantum-classical algorithm may appear encourag-
ing, we expect practical quantum advantage for chemistry Hamiltonians requiring upwards
of hundreds of thousands of qubits and assuming low qubit error rates [Goi+22]. We thus
still have a way to go before sizes of quantum computers reach those numbers. However,
we are likely to obtain multinode quantum computers in the near-future [Ang+22] where
smaller quantum computers are linked together akin to classical computing clusters (or dis-
tributed computing). How can we then take advantage of distributed quantum computing
for the problem of ground estimation? We do this by using ideas from domain decomposi-
tion prevalent in classical computational science [DJN15] and exploiting prior knowledge of
chemistry Hamiltonians.

To address this challenge, we present a distributed quantum algorithm called quantum
bootstrap embedding (QBE). Operationally, QBE decomposes the molecular Hamiltonian
for which we want to find the ground state into multiple overlapping fragment Hamiltonians
and to be solved on separate quantum computers or quantum computing nodes. To ob-
tain the ground state over the original Hamiltonian, we formulate a constraint optimization
problem for a composite Lagrangian where the constraint is constructed from matching con-
ditions on the qubit reduced density matrices and present an iterative algorithm to solve the
optimization problem using a quantum subroutine as an eigensolver to solve each fragment
Hamiltonian. An adaptive sampling scheduling and a quantum coherent matching algorithm
based on a quantum SWAP test are designed to dramatically improve the efficiency of the
algorithm as compared to the usual exponentially costly method of measuring every qubit
on the fragment edge to construct the reduced density matrix. Moreover, by using ampli-
tude amplification and a binary search algorithm, an additional quadratic speedup could be
realized. Current quantum computers are small, but QBE proves a potentially generalizable
strategy for harnessing such small devices, since it enables the stitching together of fragment
solutions to solve a quantum chemistry problem that is much larger than current quantum
computer capacities.

1.4 Thesis organization

The rest of the thesis is organized in the following chapters in the order of the learning tasks
as they appear in the life cycle of quantum computing and for which we give brief summaries.

Chapter 2. This marks our point of entry into quantum system characterization. We
consider the learning problem of quantum state tomography and the class of n-qubit quantum
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phase states as a class of quantum states that potentially can be learned efficiently but is
hard to simulate classically. A degree-d phase state is defined as a superposition of all 2n
basis vectors x with amplitudes proportional to (−1)f(x), where f is a degree-d Boolean
polynomial over n variables. We show that the sample complexity of learning an unknown
degree-d phase state is Θ(nd) if we allow separable measurements and Θ(nd−1) if we allow
entangled measurements. Our learning algorithm based on separable measurements has
runtime poly(n) (for constant d) and is well-suited for near-term demonstrations as it requires
only single-qubit measurements in the Pauli X and Z bases. We show similar bounds on the
sample complexity for learning generalized phase states with complex-valued amplitudes. We
further consider learning phase states when f has sparsity-s, degree-d in its F2 representation
(with sample complexity O(2dsn)), f has Fourier-degree-t (with sample complexity O(22t)),
and learning quadratic phase states with ε-global depolarizing noise (with sample complexity
O(n1+ε)). These learning algorithms give us a procedure to learn the diagonal unitaries of
the Clifford hierarchy and IQP circuits.

Chapter 3. We now turn our attention to the problem of learning quantum channels
under experimental constraints. In many natural and engineered systems, unknown quantum
channels act on a subsystem that cannot be directly controlled and measured, but is instead
learned through a controllable subsystem that weakly interacts with it. In this chapter, we
study quantum channel discrimination (QCD) under these restrictions, which we call hidden
system QCD (HQCD). We find that sequential protocols achieve perfect discrimination and
saturate the Heisenberg limit. In contrast, depth-1 parallel and multi-shot protocols cannot
solve HQCD. This suggests that sequential protocols are superior in experimentally realistic
situations.

Chapter 4. We continue our travel through the realm of quantum system characterization
and consider the problem of Hamiltonian learning which is an important step in calibration
and control. With the goal of efficiently and accurately estimating the Hamiltonian parame-
ters within learning error ϵ through minimal queries, we introduce an active learner based on
Fisher information that is given an initial set of training examples and the ability to inter-
actively query the quantum system to generate new training data. To ensure applicability
on near-term quantum hardware, the active learner operates in batch-mode as opposed to
sequentially, proposing batches of queries to be made during learning. We formally specify
and experimentally assess the performance of this Hamiltonian active learning (HAL) algo-
rithm for learning the six parameters of a two-qubit cross-resonance Hamiltonian on four
different superconducting IBM Quantum devices. Compared with standard techniques for
the same problem and a specified learning error, HAL achieves more than a 95% reduction
in queries required, and upwards of 33% reduction over a sequential active learner. More-
over, with access to prior information on a subset of Hamiltonian parameters and given
the ability to select queries with linearly (or exponentially) longer system interaction times
during learning, HAL can exceed the standard quantum limit and achieve Heisenberg (or
super-Heisenberg) limited convergence rates during learning.
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Chapter 5. One of the most promising applications of quantum computing is ground state
energy estimation. Many near-term hybrid quantum-classical algorithms designed for this
task involve estimation of the expectation value of observables through measurements on
the quantum device. With the goal of minimizing the number of measurements required to
compute the expectation value within some accuracy, various measurement methods have
been proposed based on randomization and derandomization. However, a systematic bench-
marking of these methods considering different performance metrics in addition to accuracy,
such as quantum resource usage and classical computational runtime, is currently missing.
In this work, we propose a simple benchmark based on a heuristic to assess and rank the per-
formance of these measurement methods in practice. This heuristic accounts for the hybrid
quantum-classical nature of these methods, weighing usage of quantum hardware, classical
computation, and latencies. We apply this benchmark to a variety of measurement methods
on a collection of molecular Hamiltonians (of size up to 16 qubits). Our discussion is aided
by using the framework of decision diagrams which provides an efficient data structure for
various randomized measurement methods and efficiently generating samples from them. In
our experiments on a simulator and on IBM quantum devices, we find that the methods of
compact decision diagrams and derandomization of decision diagrams are the most preferable
for algorithms on near-term quantum hardware.

Chapter 6. We continue our focus on the application of ground state estimation of molec-
ular Hamiltonians and propose a distributed quantum algorithm based on molecular boot-
strap embedding, which we call quantum bootstrap embedding (QBE). QBE can be used
to solve the ground state of a large molecule as an optimization problem over composite
Lagrangian governing fragments of the total system, in such a way that fragment solutions
can harness the capabilities of quantum computers. By employing state-of-art quantum sub-
routines including the quantum SWAP test and quantum amplitude amplification, we show
how a quadratic speedup can be obtained over the classical algorithm based on bootstrap
embedding, in principle. Utilization of quantum computation also allows the algorithm to
match – at little additional computational cost – full density matrices at fragment bound-
aries, instead of being limited to 1-RDMs. Current quantum computers are small, but QBE
provides a potentially generalizable strategy for harnessing such multiple small machines
through quantum fragment matching.

Finally, in chapter 7, we make concluding remarks to our thesis and propose future
directions of research.
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Chapter 2

Efficiently learning quantum phase states

2.1 Introduction

Quantum state tomography is the problem of learning an unknown quantum state ρ drawn
from a specified class of states by performing measurements on multiple copies of ρ. The pre-
eminence of this problem in verification of quantum experiments has motivated an in-depth
study of state tomography protocols and their limitations for various classes of quantum
states [Haa+17; OW16; Ape+22; Yue22]. The main figure of merit characterizing a state
tomography protocol is its sample complexity defined as the number of copies of ρ consumed
by the protocol in order to learn ρ. Of particular interest are classes of n-qubit quantum
states that can be learned efficiently, such that the sample complexity grows only polynomi-
ally with n. Known examples of efficiently learnable states include Matrix Product States
describing weakly entangled quantum spin chains [Cra+10], output states of Clifford cir-
cuits [Mon17a], output states of Clifford circuits with a single layer of T gates [LC22], and
high-temperature Gibbs states of local Hamiltonians [Ans+21; HKT21]. Apart from their
potential use in experiments, efficiently learnable quantum states are of great importance
for quantum algorithm design. For example, a quantum algorithm for solving the dihedral
hidden subgroup problem [BCD05] can be viewed as a tomography protocol for learning
so-called hidden subgroup states (although this protocol is efficient in term of its sample
complexity, its runtime is believed to be super-polynomial [BCD05]).

A natural question to then ask is: What are other classes of n-qubit quantum states
that are ubiquitous in quantum computing, which can be learned efficiently? In this work,
we consider the problem of state tomography for phase states associated with (generalized)
Boolean functions. Phase states are encountered in quantum information theory [HEB04],
quantum algorithm design [BCD05], quantum cryptography [JLS18; BS19], and quantum-
advantage experiments [BJS11; BMS17].

By definition, an n-qubit, degree-d phase state has the form

|ψf⟩ = 2−n/2
∑

x∈{0,1}n
(−1)f(x)|x⟩, (2.1)
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where f : {0, 1}n → {0, 1} is a degree-d polynomial, that is,

f(x) =
∑

J⊆[n], |J |≤d

αJ
∏

j∈J

xj (mod 2), (2.2)

for some coefficients αJ ∈ {0, 1}. Phase states associated with homogeneous degree-2 poly-
nomials f(x) coincide with graph states that play a prominent role in quantum information
theory [HEB04]. Such states can be alternatively represented as

|ψf⟩ =
∏

(i,j)∈E

CZi,j|+⟩⊗n,

where n qubits live at vertices of a graph, E is the set of graph edges, CZi,j is the controlled-Z
gate applied to qubits i, j, and |+⟩ = (|0⟩+ |1⟩)/

√
2. It is known that the output state of any

Clifford circuit is locally equivalent to a graph state for a suitable graph [Sch02]. Our results
imply that graph states can be learned efficiently using only single-qubit gates and measure-
ments. The best previously known protocol for learning graph states [Mon17a] requires en-
tangled measurements across two copies of |ψf⟩. Other examples of circuits producing phase
states include measurement-based quantum computing [Ros+13] and a subclass of IQP cir-
cuits (Instantaneous Quantum Polynomial-time), which correspond to degree-3 phase states
[Mon17b]. IQP circuits are prevalent in quantum-advantage experiments [BJS11; BMS17]
and are believed to be hard to simulate classically.

We also consider generalized degree-d phase states

|ψf⟩ = 2−n/2
∑

x∈{0,1}n
ωf(x)q |x⟩, ωq = e2πi/q (2.3)

where q ≥ 2 is an even integer and f : {0, 1}n → Zq is a degree-d polynomial, that is,

f(x) =
∑

J⊆[n], |J |≤d

αJ
∏

j∈J

xj (mod q). (2.4)

for coefficients αJ ∈ Zq = {0, 1, . . . , q − 1}. It is also known that generalized degree-d phase
states with q = 2d can be prepared from diagonal unitary operators [CGK17] in the d-th
level of the Clifford hierarchy [GC99]. Additionally, it is known that the output state of a
random n-qubit Clifford circuit is a generalized q = 4, degree-2 phase state with a constant
probability [BG16, Appendix D]. Binary and generalized phase states have also found ap-
plications in cryptography [JLS18; BS19], and complexity theory [Ira+21] (we discuss this
in the next section).

In this work, we consider learning phase states through two types of tomography protocols
based on separable and entangled measurements. The former can be realized as a sequence
of M independent measurements, each performed on a separate copy of |ψf⟩ (furthermore
our learning algorithms only require single qubit measurements). The latter performs a joint
measurement on the state |ψf⟩⊗M . Our goal is to then derive upper and lower bounds on
the sample complexity M of learning f , as a function of n and d. In the next section, we
state our main results. Interestingly, our protocols based on separable measurements require
only single-qubit gates and single-qubit measurements making them well suited for near-term
demonstrations.
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2.2 Our contributions

We first introduce some notation before giving an overview of our contributions. For every
n and d ≤ n/2, let P(n, d) be the set of all degree-d polynomials of the form Eq. (2.2). Let
Pq(n, d) be the set of all degree-d Zq-valued polynomials of the form Eq. (2.3). By definition,
P2(n, d) ≡ P(n, d). To avoid confusion, we shall refer to states defined in Eq. (2.1) as binary
phase states and in Eq. (2.3) as generalized phase states. Our learning protocol takes as
input integers n, d and M copies of a degree-d phase state |ψf⟩ with unknown f ∈ P(n, d)
(or f ∈ Pq(n, d)). The protocol outputs a classical description of a polynomial g ∈ P(n, d)
(or g ∈ Pq(n, d)) such that f = g with high probability.

The main result in this work are optimal algorithms for learning phase states if the
algorithm is allowed to make separable or entangled measurements. Prior to our work, we
are aware of only two works in this direction (i) algorithms for efficiently learning degree-1 and
degree-2 phase states; (ii) Montanaro [Mon12] considered learning multilinear polynomials
f , assuming we have query access to f , which is a stronger learning model than the sample
access model that we assume for our learning algorithm. In this work, we show that if
allowed separable measurements, the sample complexity of learning binary phase states and
generalized phase states is O(nd). If allowed entangled measurements, we obtain a sample
complexity of O(dnd−1) for learning binary phase states. We further consider settings where
the unknown function f we are trying to learn is known to be sparse, has a small Fourier-
degree and the setting when given noisy copies of the quantum phase state. In Table 2.1,
we summarize all our main results (except the first two rows, which include the main prior
work in this direction).

Before we give a proof sketch of these results and the intuition behind them, we first
discuss a couple of motivations for considering the task of learning phase states and corre-
sponding applications.

Quantum complexity. Recently, there has been a few results in quantum cryptogra-
phy [JLS18; AQY21; BS19] and complexity theory [Ira+21] which used the notion of phase
states.

Ji et al. [JLS18] introduced the notion of pseudorandom quantum states as states of the
form |ϕ⟩ = 1√

2n

∑
x∈{0,1}n ω

F (x)
N |x⟩ where F is a pseudorandom function.1 Ji et al. showed that

states of the form |ϕ⟩ are efficiently preparable and statistically indistinguishable from a Haar
random state, which given as input to a polynomial-time quantum algorithm. A subsequent
work of Brakerski [BS19] showed that it suffices to consider |ϕ′⟩ = 1√

2n

∑
x∈{0,1}n(−1)F (x)|x⟩

(where F again is a pseudorandom function) and such states are also efficiently preparable
and statistically indistinguishable from Haar random states. Subsequently, these states have
found applications in proposing many cryptosystems [AQY21]. Although none of these
works discuss the degree of the phase function F , our result shows implicitly that when
F is low-degree, then |ϕ⟩ is exactly learnable and hence distinguishable from Haar random
states, implying that they cannot be quantum pseudorandom states. In another recent
work, Irani et al. [Ira+21] considered the power of quantum witnesses in proof systems. In
particular, they showed that in order to construct the witness to a QMA complete problem,

1We do not discuss the details of pseudorandom functions here, we refer the interested reader to [JLS18].
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Sample complexity Time complexity Measurements

Binary phase state F2-degree-1 [BV97] Θ(1) O(n3) Separable

Binary phase state F2-degree-2
[Mon17a; Röt09] O(n) O(n3) Entangled

Binary phase state F2-degree-d Θ(nd)
Theorem 3, 5 O(n3d−2) Separable

Binary phase state F2-degree-d Θ(nd−1)
Theorem 4 O(exp(nd log 2)) Entangled

Generalized phase states degree-d Θ(nd)
Theorem 8 O(exp(nd log q)) Separable

Sparse Binary phase state
F2-degree-d, F2-sparsity s

O(2dsn)
Theorem 6 O(23ds3n) Separable

Binary phase state F2-degree-2
with global depolarizing noise ε

n1+O(ε)

Theorem 9
O(2n/logn) Entangled

Binary phase state F2-degree-2
with local depolarizing noise ε

Θ((1− ε)n)
Theorem 11 O(2n/logn) Entangled

Binary phase state Fourier-degree-d O(22d)
Theorem 7 O(exp(n2)) Entangled

Table 2.1: Upper and lower bounds of sample complexity for exact learning of n-qubit phase
states with degree-d. For precise statements of the bounds, we refer the reader to the theorem
statements.

say the ground state |ϕ⟩ to a local-Hamiltonian problem, it suffices to consider a phase state
1√
2n

∑
x(−1)F (x)|x⟩ which has a good overlap to |ϕ⟩. To this end, they show a strong property

that, for every state |τ⟩ and a random Clifford operator U (or, more generally, an element
of some unitary 2-design), the state U |τ⟩ has constant overlap with a phase state [Ira+21,
Lemma A.5]. Our learning result implicitly shows that, assuming QMA ̸= QCMA, then the
phase state that has constant overlap with the ground space energy of the local Hamiltonian
problem, cannot be of low degree.

Learning quantum circuits. Given access to a quantum circuit U , the goal of this learn-
ing task is to learn a circuit representation of U . The sample complexity for learning a general
n-qubit quantum circuit is known to be 2Θ(n) [CN97; MRL08], which is usually impractical.

If we restrict ourselves to particular classes of quantum circuits, there are some known
results for efficient learnability. Low [Low09] showed that an n-qubit Clifford circuit can be
learned using O(n) samples. However, this result was only an existential proof and requires
access to the conjugate of the circuit. Constructive algorithms were given in Low [Low09],
and Lai and Cheng [LC22], both of which showed that Clifford circuits can be learned using
O(n2) samples. Both these algorithms require entangled measurements with the former
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algorithm using pretty-good measurement [HW12], and the latter using Bell sampling. In
this work, we show that Clifford circuits producing degree-2 binary phase states, can be
learned in O(n2) samples, matching their result but only using separable measurements.
Moreover, Low [Low09] also gave an existential proof of algorithms for learning circuits
in the d-th level of the Clifford hierarchy, using O(nd−1) samples. In this work, we give
constructive algorithms for learning the diagonal elements of the Clifford hierarchy in O(nd)
samples using separable measurements. A direct result of this is that a subset of IQP circuits,
which are also believed to be hard to simulate classically [BJS11; BMS16], are shown to be
efficiently learnable. Our learning result thus gives an efficient method for verifying IQP
circuits that may be part of quantum-advantage experiments [BMS17; NBG21].

Learning hypergraph states. We finally observe that degree-3 (and higher-degree) phase
states have appeared in works [Ros+13; TMH19] on measurement-based quantum comput-
ing (MBQC), wherein they refer to these states as hypergraph states. These works show that
single-qubit measurements in the Pauli X or Z basis performed on a suitable degree-3 hy-
pergraph state are sufficient for universal MBQC. Our learning algorithm gives a procedure
for learning these states in polynomial-time and could potentially be used as a subroutine
for verifying MBQC.

2.3 The intuition

In this section, we provide intuition behind our main results and briefly sketch their proofs.

Binary phase states

As we mentioned earlier, Montanaro [Mon17a] and Roettler [Röt09] showed how to learn
degree-2 phase states using O(n) copies of the state. Crucial to both their learning al-
gorithms was the following so-called Bell-sampling procedure: given two copies of |ψf⟩ =
1√
2n

∑
x(−1)f(x)|x⟩ where f(x) = x⊤Ax (where A ∈ Fn×n2 ), perform n CNOTs from the first

copy to the second, and measure the second copy. One obtains a uniformly random y ∈ Fn2
and the state

1√
2n

∑

x

(−1)f(x)+f(x+y)|x⟩ = (−1)y⊤Ay√
2n

∑

x

(−1)x⊤(A+A⊤)·y|x⟩.

Using Bernstein-Vazirani [BV97] one can apply n-qubit Hadamard transform to obtain the
bit string (A + A⊤) · y. Repeating this process O(n log n) many times, one can learn n
linearly independent constraints about A, and along with Gaussian elimination, allows one
to learn A.2

Applying this same Bell-sampling procedure to degree-3 phase states does not easily learn
the phase function. In this direction, from two copies of the degree-3 phase state |ψf⟩ one
obtains a uniformly random y ∈ Fn2 and the state |ψgy⟩ = 1√

2n

∑
x(−1)gy(x)|x⟩ for a degree-2

2It remains to learn the diagonal elements of A, but one can learn those using an extra step, which we
discuss further in Theorem 9.
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polynomial gy(x) = f(x) + f(x + y). One might now hope to apply the degree-2 learning
algorithm from above, but since the single copy of |ψgy⟩ was randomly generated, it takes
Ω(
√
2n) copies of |ψf⟩ to obtain enough copies of |ψgy⟩. Our main idea is to circumvent this

Bell-sampling approach and instead propose two techniques that allow us to learn binary
phase states using separable and entangled measurements which we discuss further below.

Separable measurements, upper bound. Our first result is that we are able to learn
binary phase states using separable measurements with sample complexity O(nd). In order
to prove our upper bounds of sample complexity for learning with separable measurements,
we make a simple observation. Given one copy of |ψf⟩ = 1√

2n

∑
x(−1)f(x)|x⟩, measure qubits

2, 3, . . . , n in the computational basis. Suppose the resulting string is y ∈ {0, 1}n−1. The
post-measurement state of qubit 1 is then given by

|ψf,y⟩ =
1√
2

[
(−1)f(0y)|0⟩+ (−1)f(1y)|1⟩

]
.

By applying a Hadamard transform to |ψf,y⟩ and measuring, the algorithm obtains p1(y) =
f(0y) + f(1y) mod 2, which can be viewed as the derivative of f in the first direction
at point y. Furthermore observe that p1 is a degree ≤ d − 1 polynomial over (n − 1)
variables. Hence, the learning algorithm repeatedly measures the last (n − 1) qubits and
obtains y(1), . . . , y(M) for M = nd−1 and obtains (y(k), p1(y

(k))) for all k = 1, 2, . . . ,M using
the procedure above, which suffices to learn p1 completely. Then the algorithm repeats the
same procedure by measuring all the qubits except the second qubit in the computational
basis and learns the derivative of f in the second direction. This is repeated over all the n
qubits. Through this procedure, a learning algorithm learns the partial derivatives of f in
the n directions and a simple argument shows that this is sufficient to learn f completely.
This gives an overall sample complexity of O(nd). The procedure above only uses single
qubit measurements in the {X,Z} basis.

Separable measurements, lower bound Given the algorithm for learning binary phase
states using separable measurements, a natural question is: Is the upper bound on sample
complexity we presented above tight? Furthermore, suppose the learning algorithm was
allowed to make arbitrary n-qubit measurements on a single copy of |ψf⟩, instead of sin-
gle qubit measurements (which are weaker than single copy measurements), then could we
potentially learn f using fewer than O(nd) copies?

Here we show that if we allowed arbitrary single copy measurements, then a learning
algorithm needs Ω(nd) many copies of |ψf⟩ to learn f . In order to prove this lower bound,
our main technical idea is the following. Let f be a degree-d polynomial with n variables
sampled uniformly at random. Suppose a learning algorithm measures the phase state |ψf⟩
in an arbitrary orthonormal basis {U |x⟩}x. We show that the distribution describing the
measurement outcome x is “fairly" uniform. In particular,

E
f
[H(x|f)] ≥ n−O(1), (2.5)

where H(x|f) is the Shannon entropy of a distribution P (x|f) = |⟨x|U∗|ψf⟩|2. Thus, for
a typical f , measuring one copy of the phase state |ψf⟩ provides at most O(1) bits of
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information about f . Since a random uniform degree-d polynomial f with n variables has
entropy Ω(nd), one has to measure Ω(nd) copies of ψf in order to learn f . To prove Eq. (2.5),
we first lower bound the Shannon entropy by Renyi-two entropy and bound the latter by
deriving an explicit formula for Ef [|ψf⟩⟨ψf |⊗2].

Entangled measurements. After settling the sample complexity of learning binary phase
states using separable measurements, one final question question remains: Do entangled mea-
surements help in reducing the sample complexity? For the case of quadratic polynomials,
we know that Bell measurements (which are entangled measurements) can be used to learn
these states in sample complexity O(n). However, as mentioned earlier, it is unclear how to
extend the Bell measurement procedure for learning larger degree polynomials.

Here, we give a learning algorithm based on the so-called pretty-good measurements
(PGM) that learns |ψf⟩ for a degree-d polynomial f using O(nd−1) copies of |ψf⟩. In order
to prove this bound, we follow the following three step approach: (a) we first observe that
in order to learn degree-d binary phase states, the optimal measurement is the pretty good
measurement since the ensemble S = {|ψf⟩}f is geometrically uniform. By geometrically
uniform, we mean that S can be written as S = {Uf |ϕ⟩}f where {Uf}f is an Abelian group.
(b) We next observe a property about the geometrically uniform state identification problem
(which is new as far as we are aware): suppose S is a geometrically uniform ensemble,
then the success probability of the PGM in correctly identifying f , given copies of |ψf⟩,
is independent of f , i.e., every element of the ensemble has the same probability of being
identified correctly when measured using the PGM. (c) Finally, we need one powerful tool
regarding the the weight distribution of Boolean polynomials: it was shown in [ASW15] that
for any degree-d polynomial f , the following relation on wt(f) or the fraction of strings in
{0, 1}n for which f is non-zero holds:

|{f ∈ P(n, d) : wt(f) ≤ (1− ε)2−ℓ}|≤ (1/ε)Cℓ
4·( n−ℓ

≤d−ℓ),

for every ε ∈ (0, 1/2) and ℓ ∈ {1, . . . , d − 1}. Using this statement, we can comment on
the average inner product of |⟨ψf |ψg⟩| over all ensemble members with f ̸= g ∈ P(n, d).
Combining this with a well-known result of PGMs, we are able to show that, given M =
O(nd−1) copies of |ψf⟩ for f ∈ S, the PGM identifies f with probability ≥ 0.99. Combining
observations (a) and (b), the PGM also has the same probability of acceptance given an
arbitrary f ∈ S. Hence, we get an overall upper bound of O(nd−1) for sample complexity of
learning binary phase states using entangled measurements.

The lower bound for entangled measurement setting is straightforward: each quantum
sample 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩ provides n bits of information and the goal is to learn f

which contains O(nd) bits of information, hence by Holevo’s bound, we need at least nd−1

quantum samples in order to learn f with high probability.

Implications for property testing. We remark that our learning algorithm can also
be used in a naive way for property testing phase states. Let C = {|ψf⟩ : f ∈ P(n, d)}
be the class of degree-d phase states. The property testing question is: How many copies
of an unknown |ϕ⟩ is sufficient to decide if |ϕ⟩ ∈ C or min|ψf ⟩∈C∥|ϕ⟩ − |ψf⟩∥2≥ 1/3? As
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far as we are aware, the only prior work in this direction is when d = 1 (using Bernstein-
Vazirani [BV97]) and d = 2 (using [GNW21] which shows how to solve this task using 6
copies), but for larger d it is unclear what is the sample complexity. It is also unclear how
to perform the property testing task (even for d = 2) using just separable measurements.
Using our learning result, we get the following: take nd copies of |ϕ⟩ and run our learning
procedure using separable measurements.3 If |ϕ⟩ = |ψf⟩, then our algorithm learns f . If
|ϕ⟩ is not a phase state, the algorithm may fail, in which case the test classifies the state
as a non-phase state. The worst case is if the algorithm succeeds and learns some incorrect
phase state |ψf⟩ from the non-phase input state. So, after running the learning algorithm
and obtaining |ψf⟩, use O(1) more copies of |ϕ⟩ and run a swap test between |ϕ⟩ and |ψf⟩,
which succeeds with probability 1 if |ϕ⟩ = |ψf⟩ and rejects with probability at least Ω(1) if
min|ψf ⟩∈C∥|ϕ⟩ − |ψf⟩∥2≥ 1/3.

Generalized phase states

As far as we are aware, ours is the first work that considers the learnability of generalized
phase states (using either entangled or separable measurements). The sample complexity
upper bounds follow the same high-level idea as that in the binary phase state setting.
However, we need a few more technical tools for the generalized setting which we discuss
below.

Separable bounds. At a high-level, the learning procedure for generalized phase states
is similar to the procedure for learning binary phase states with the exception of a couple
of subtleties that we need to handle here. Suppose we perform the same procedure as in
binary phase states by measuring the last (n − 1) qubits in the computational basis. We
then obtain a uniformly random y ∈ Fn−1

2 , and the post-measurement state for a generalized
phase state is given by

|ψf,y⟩ =
1√
2
(ωf(0y)q |0⟩+ ωf(1y)q |1⟩).

This state is proportional to (|0⟩ + ωcq|1⟩)/
√
2, where c = f(1y) − f(0y) (mod q). In the

binary case, q = 2, the states associated with c = 0 and c = 1 are orthogonal, so that the
value of c can be learned with certainty by measuring |ψf,y⟩ in the Pauli X basis. However,
in the generalized case, q > 2, the states (|0⟩ + ωcq|1⟩)/

√
2 with c ∈ Zq are not pairwise

orthogonal. It is then unclear how to learn c given a single copy of |ψf,y⟩. However, we
observe that it is still possible to obtain a value b ∈ Zq such that b ̸= c with certainty.
To this end, consider a POVM whose elements are given by M = {|ϕb⟩⟨ϕb|}b∈Zq , where
|ϕb⟩ = 1√

2
(|0⟩−ωbq|1⟩). Applying this POVMM onto an unknown state (|0⟩+ωcq|1⟩)/

√
2 we

observe that c is the outcome with probability 0 and furthermore every other outcome b ̸= c
appears with non-negligible probability Ω(q−3).

Hence with one copy of 1√
2n

∑
x∈{0,1}n ω

f(x)
q |x⟩, we obtain uniformly random y ∈ {0, 1}n−1

and b ∈ Zq such that f(1y) − f(0y) ̸= b. We now repeat this process m = O(nd−1) many
times and obtain (y(k), b(k)) for k = 1, 2, . . . ,M such that f(1y(k)) − f(0y(k)) ̸= b(k) for all
k ∈ [M ]. We next show a variant of the Schwartz-Zippel lemma in the following sense: that

3We could also use nd−1 copies of |ϕ⟩ and run our learning procedure using entangled measurements.
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for every f ∈ Pq(n, d) and c ∈ Zq, then either f is a constant function or the fraction of
x ∈ Fn2 for which f(x) ̸= c is at least 2−d. Using this, we show that after obtaining O(2dnd−1)
samples, we can find a polynomial g ∈ Pq(n− 1, d− 1) for which f(1y)− f(0y) = g(y). We
now repeat this protocol for n different directions (by measuring each of the n qubits in
every iteration) and we learn all the n directional derivatives of f , which suffices to learn f
completely.

Entangled bounds. We do not give a result on learning generalized phase states with
entangled measurements. We expect the proof of the sample complexity upper bound for
learning generalized phase states using entangled measurements should proceed similarly to
our earlier analysis of learning binary phase states using entangled measurements. However,
we need a new technical tool that generalizes the earlier work on the weight distribution
[ASY20] of Boolean functions f : Fn2 → F2 to those of form f : Fn2 → Zq with q = 2d.

Learning with further constraints

Learning sparse and low-Fourier degree states. A natural constraint to put on top of
having low F2-degree in the polynomial is the sparsity, i.e., number of monomials in the F2

decomposition of f . Sparse low-degree phase states appear naturally when learning circuits
with few gates. In particular, suppose we are learning a quantum circuit U with s gates from
{Z,CZ, . . . ,Cd−1Z} (where CmZ is the controlled-Z gate with m controls), then the output
of U |+⟩⊗n is a phase state with sparsity-s and degree-d.

One naive approach to learn sparse F2 polynomials is to directly apply our earlier learning
algorithm for binary phase states but this ignores the F2-sparsity information, and doesn’t
improve the sample complexity. Instead, here we use ideas from compressed sensing [DM09]
to propose a linear program that allows us to improve the sample complexity to O(2dsn).
Finally we make an observation that, if the function has Fourier -degree d, then one can
learn f , given only O(2d log n) many copies of |ψf⟩, basically using the fact that there are
only 22

d many such functions, each having at least a 2−d distance between them.

Learning with depolarizing noise. One motivation for learning stabilizer states was
potential experimental demonstrations of the learning algorithm [Roc+19]. Here, we consider
a theoretical framework in order to understand the sample complexity of learning degree-2
phase states under global and local depolarizing noise. In this direction, we present two
results. Under global depolarizing noise, i.e., when we are given ρf = (1− ε)|ψf⟩⟨ψf |+ε · I,
then it suffices to take O(n1+ε) many copies ρf in order to learn f . The crucial observation is
that one can use Bell sampling to reduce learning ρf to learning parities with noise, which we
can accomplish using O(n1+ε) samples and in time 2n/(log logn) [Lyu05]. Additionally, however,
a simple argument reveals that under local depolarizing noise, the sample complexity of
learning stabilizer states is exponential in n.

Organization. In Section 2.4, we introduce phase states, discuss separable and entangled
measurements. In Section 2.5, we prove our upper and lower bounds for learning binary phase
states with separable and entangled measurements. In Section 2.6, we prove our results on
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learning sparse and low-Fourier-degree phase states. In Section 2.7, we prove our upper
bound for learning generalized phase states using separable and entangled measurements.
Finally, in Section 2.9 we explicitly discuss the connection between phase states, and the
diagonal unitaries in the d-th level of the Clifford hierarchy and IQP circuits.

2.4 Preliminaries

2.4.1 Notation.

Let [n] = {1, . . . , n}. Let ei be an n-dimensional vector with 1 in the ith coordinate and 0s
elsewhere. We denote the finite field with the elements {0, 1} as F2 and the ring of integers
modulo q as Zq = {0, 1, . . . , q − 1} with q usually being a power of 2 in this work. For a
Boolean function f : Fn2 → F2, the bias of f is defined as

bias(f) = E
x
[(−1)f(x)],

where the expectation is over a uniformly random x ∈ {0, 1}n. For g : Fn2 → Z2d , the bias of g
in the coordinate j ∈ F⋆

2d
is defined as biasj(g) = Ex[(ω2d)

j·g(x)]. For a function f : Fn2 → F2,
y ∈ Fn−1

2 and k ∈ [n], we denote (Dkf)(y) = f(yk=1) + f(yk=0), where yi=1, yi=0 ∈ Fn2 is
defined as: the ith bit of yi=1 equals 1 and yi=0 equals 0 and otherwise equals y.

2.4.2 Boolean functions

F2 representation. A Boolean function f : Fn2 → F2 can be uniquely represented by a
polynomial over F2 as follows:

f(x) =
∑

J⊆[n]

αJ
∏

i∈J

xi (mod 2), (2.6)

where αJ ∈ {0, 1}. Similar to Eq. (2.6), we can write Boolean functions f : Fn2 → Zq as

f(x) =
∑

J⊆[n]

αJ
∏

i∈J

xi (mod q) (2.7)

for some integer coefficients αJ ∈ {0, 1, . . . , q−1}. Throughout this chapter, unless explicitly
mentioned, we will be concerned with writing Boolean functions as a decomposition over F2

or Zq with q = 2d. The F2 degree of f is defined as

deg(f) = max{|J |: αJ ̸= 0}.

Similarly for polynomials over Z2d , we can define the degree as the size of the largest mono-
mial whose coefficient αJ is non-negative.

We will call g : Fn2 → F2 with g =
∏

i∈J xi as monic monomials over n variables of at
most degree-d, characterized by set J ⊆ [n], |J |≤ d. We will denote the set of these monic
monomials byM(n, d). Note that |M(n, d)|=∑d

j=0

(
n
j

)
= O(nd). We will denote the set of

polynomials over n variables of F2-degree d as P(n, d). Note that these polynomials are just
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linear combinations of monomials inM(n, d). We will denote the set of polynomials over n
variables of F2-degree d with sparsity s as P(n, d, s). Similarly, we will denote Pq(n, d) as
the set of all degree-d Boolean polynomials f : Fn2 → Zq with n variables. In particular, one
can specify any polynomial f ∈ Pq(n, d) by O(dnd) bits and |Pq(n, d)|≤ 2O(dnd).

Consider a fixed d, and any x ∈ Fn2 . Let the d-evaluation of x, denoted by evald(x),
be a column vector in F|M(n,d)|

2 with its elements being the evaluations of x under different
monomials g ∈M(n, d). This can be expressed as follows:

evald(x) =


 ∏

i∈J⊆[n],|J |≤d

xi




⊤

(2.8)

For a set of points x = (x(1), x(2), . . . , x(m)) ∈ (Fn2 )m, we will call the matrix in F|M(n,d)|×m
2

with its kth column corresponding to d-evaluations of x(k), as the d-evaluation matrix of x,
and denote it by Qx.

Fourier Decomposition A Boolean function f : Fn2 → F2 admits the following Fourier
decomposition

f(x) =
∑

J⊆[n]

ff̂JχJ(x), (2.9)

where J are subsets of [n] = {1, 2, . . . , n} and χJ(x) = (−1)xJ where xJ =
∑

i∈J xi. Addi-
tionally the Fourier coefficients are defined as ff̂J = Ex[f(x)χJ(x)]. The Fourier degree of
f is defined as maxJ{|J |: ff̂J ̸= 0}. Note that here all arithmetic operations use the field of
real numbers R, as opposed to the modular arithmetics used in the previous subsections.

2.4.3 Phase states

Binary Phase State For a Boolean function f : {0, 1}n → {0, 1}, we define a binary
phase state as the n-qubit state given by

|ψf⟩ =
1√
2n

∑

x∈{0,1}n
(−1)f(x)|x⟩. (2.10)

We use the subscript f since |ψf⟩ is characterized by f .

Generalized Phase State We will also consider degree-d generalized phase states of the
form

|ψf⟩ =
1√
2n

∑

x∈{0,1}n
ωf(x)q |x⟩, (2.11)

where ωq = e2πi/q and f : Fn2 → Zq, with q = 2d, is a degree-d polynomial. We consider
Zq = {0, 1, . . . , q − 1} to be the ring of integers modulo q.
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2.4.4 Useful lemmas

Let ei ∈ Fn2 denote the vector of all zeros except for a 1 in the ith coordinate.
Fact 1. Let d ∈ [n], s ≤ |M(n, d)|= ∑d

k=1

(
n
k

)
, and f ∈ P(n, d, s). There exists gi ∈

P(n, d− 1, s) such that gi(x) = f(x+ ei) + f(x) (mod 2) for all x ∈ {0, 1}n.
The proof of this fact is straightforward. Without loss of generality, consider i = 1. For

every f(x) =
∑

S αS
∏

i∈S xi, we can express it as

f(x) = x1p1(x2, . . . , xn) + p2(x2, . . . , xn),

where p1 has degree ≤ d− 1 and p2 has degree ≤ d. Observe that f(x+ e1)− f(x) is either
p1(x2, . . . , xn) or −p1(x2, . . . , xn) which has degree d− 1 and corresponds to the polynomial
g1 in the fact statements. This applies for every coordinate i.

Note that the polynomial gi above is also often called the directional derivative of f in
direction w and is denoted as Dif .
Fact 2. Let N, s ≥ 1 such that γ = s/N ≤ 1/2. Then we have

s∑

ℓ=1

(
N

ℓ

)
≤ 2Hb(γ)N ≤ 22γ log(1/γ).

where we used above that Hb(γ) = γ log 1
γ
+ (1− γ) log 1

1−γ ≤ 2γ log 1
γ

(for γ ≤ 1/2).
Lemma 1 (The Schwartz-Zippel Lemma). Let p(y1, . . . , yn) be a nonzero polynomial on n
variables with degree d. Let S be a finite subset of R, with at least d elements in it. If we
assign y1, . . . , yn values from S independently and uniformly at random, then

Pr[p(y1, . . . , yn) = 0] ≤ d

|S| . (2.12)

Lemma 2 ([NS94]). Let p(x1, . . . , xn) be a non-zero multilinear polynomial of degree d. Then

Pr
x∈{0,1}n

[p(x) = 0] ≤ 1− 2−d,

where the probability is over a uniformly random distribution on {0, 1}n.
We will also need the following structural theorem about Reed-Muller codes which com-

ments on the weight distribution of Boolean functions f : Fn2 → F2.
Theorem 1 ([ASY20, Theorem 3]). Let n ≥ 1 and d ≤ n/2. Define |f |=∑x∈{0,1}n [f(x) = 1]

and wt(f) = |f |/2n. Then, for every ε ∈ (0, 1/2) and ℓ ∈ {1, . . . , d− 1}, we have that

|{f ∈ P (n, d) : wt(f) ≤ (1− ε)2−ℓ}|≤ (1/ε)Cℓ
4·( n−ℓ

≤d−ℓ).

Fix w = (1− ε)2n−ℓ and we get

|{f ∈ P (n, d) : |f |≤ w}|≤ (1− w/2n−ℓ)−Cℓ4·(
n−ℓ
≤d−ℓ).

Lemma 3 (Fano’s inequality). Let A and B be classical random variables taking values in
X (with |X |= r) and let q = Pr[A ̸= B]. Then,

H(A|B) ≤ Hb(q) + q log(r − 1),

where H(A|B) is the conditional entropy and Hb(q) is the standard binary entropy.
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2.4.5 Measurements

Throughout this chapter we will be concerned with learning algorithms that use either sep-
arable or entangled measurements. Given |ψf⟩⊗k, a learning algorithm for f is said to use
separable measurements if it only measure each copy of |ψf⟩ separately in order to learn
f . Similarly, a learning algorithm for f is said to use entangled measurements if it makes
an entangled measurement on the k-fold tensor product |ψf⟩⊗k. In this direction, we will
often use two techniques which we discuss in more detail below: sampling random partial
derivatives in order to learn from separable measurements and Pretty Good Measurements
in order to learn from entangled measurements.

Separable Measurements

Below we discuss a subroutine that we will use often to learn properties about f : Fn2 → F2:
given a single copy of |ψf⟩ = 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩, the subroutine produces a uniformly

random y ∈ Fn−1
2 and f(1y) + f(0y) (mod 2). To this end, suppose we measure qubits

2, 3, . . . , n of |ψf⟩ in the usual Z basis. We denote the resulting string as y ∈ {0, 1}n−1. The
post-measurement state of qubit 1 is then given by

|ψf,y⟩ =
1√
2

[
(−1)f(0y)|0⟩+ (−1)f(1y)|1⟩

]
. (2.13)

We note that |ψf,y⟩ is then anX-basis state (|+⟩ or |−⟩) depending on the values of f(1y) and
f(0y). If f(1y) = f(0y), then |ψf,y⟩ = |+⟩ and if f(1y) = f(0y) + 1 (mod 2), then |ψf,y⟩ =
|−⟩. Measuring qubit 1 in the X-basis and qubits 2, 3, . . . , n in the Z-basis thus produces
examples of the form (y, b) where y ∈ {0, 1}n−1 is uniformly random and b = f(0y) + f(1y)
(mod 2). Considering Fact 1 with the basis of e1, we note that theses examples are of the
form (y,D1f(y)), where D1f(y) = f(1y)+f(0y) (mod 2) is the partial derivative of f along
direction e1. Changing the measurement basis chosen above to ZZ · · ·Xk · · ·Z such that
we measure all the qubits in the Z basis except for the kth qubit which is measured in the
X basis, will allow us to obtain random samples of the form (y,Dkf(y)). Accordingly, we
introduce a new subroutine.
Definition 1 (Random Partial Derivative Sampling (RPDS) along ek). For every k ∈ [n],
measuring every qubit of |ψf⟩ in the Z basis, except the kth qubit which is measured in the
X basis, we obtain a uniformly random y ∈ Fn−1

2 and (Dkf)(y).

Entangled Measurements

In general one could also consider a joint measurement applied to multiple copies of |ψf⟩,
which we refer to as entangled measurements. In this work, we will generally consider two
types of entangled measurements, Bell sampling and the pretty-good measurement (which
we discuss in more detail in the next section). Bell sampling is a procedure that involves
measuring a quantum state (or in this case, two copies of a quantum state) in the Bell basis.4
We will use the following version of Bell sampling that applies to the scenario where we are

4The Bell basis is the basis given by
{

1√
2
(|00⟩+ |11⟩), 1√

2
(|01⟩+ |10⟩), 1√

2
(|01⟩ − |10⟩), 1√

2
(|00⟩ − |11⟩)

}
.
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given noisy copies of degree-2 phase states (for global depolarizing noise), and covers the
core idea of standard Bell sampling.
Lemma 4 (Bell sampling). Let f : Fn2 → F2 be a degree-2 polynomial, i.e., f(x) = x⊤Ax
(for an upper triangular A ∈ Fn×n2 ). Using two copies of ρ = (1 − ε)|ψf⟩⟨ψf |+εI, there
exists a procedure that outputs a uniformly random z ∈ {0, 1}n and (A + A⊤) · z ∈ {0, 1}n.
Additionally, the same procedure, when given two copies of ψn, outputs a uniformly random
z ∈ {0, 1}n and wz ∈ {0, 1}n that satisfies:

wz =

{
(A+ A⊤) · z w.p. (1− ε)2
uniformly random v w.p. 1− (1− ε)2.

Proof. We first consider the case where ε = 0. Then, the following procedure produces
(z, (A+ A⊤) · z) for a uniformly random z. Take two copies of |ψ⟩

|ψf⟩ ⊗ |ψf⟩ =
∑

x,y∈Fn
2

(−1)x⊤Ax+y⊤Ay|x, y⟩

CNOT−→
∑

x,y

(−1)x⊤Ax+y⊤Ay|x, x+ y⟩

=
∑

x,z

(−1)x⊤Ax+(x+z)⊤A(x+z)|x, z⟩ =
∑

x,z

(−1)x⊤(A+A⊤)z+z⊤Az|x, z⟩

Measure the second register and suppose we obtain z̃, resulting state is

(−1)z̃⊤Az̃
(∑

x

(−1)x⊤(A+A⊤)z̃|x⟩
)
|z̃⟩ Hn

−→ |(A+ A⊤) · z̃⟩|z̃⟩,

where Hn is the n-qubit Hadamard transform. Let us now consider the case where ε > 0.
Given ρ⊗2, with probability (1− ε)2, we obtain (A+A⊤) · z̃ and it is not hard to see that on
input I⊗2 or |ψf⟩⟨ψf |⊗I, the output of the procedure above produces a uniformly random
bit string v ∈ Fn2 .

Pretty Good Measurements. Consider an ensemble of quantum states, E = {(pi, |ψi⟩)}i∈[m],
where p = {p1, . . . , pm} is a probability distribution. In the quantum state identification
problem, a learning algorithm is given an unknown quantum state |ψi⟩ ∈ E sampled ac-
cording to the distribution p and the learning algorithm needs to identity i with probability
≥ 2/3. In this direction, we are interested in maximizing the average probability of success
to identify i. For a POVM specified by positive semidefinite matrices M = {Mi}i∈[m], the
probability of obtaining outcome j equals ⟨ψi|Mj|ψi⟩ and the average success probability is
given by

PM(E) =
m∑

i=1

pi⟨ψi|Mi|ψi⟩.

Let P opt(E) = maxM PM(E) denote the optimal average success probability of E , where the
maximization is over the set of valid m-outcome POVMs. For every ensemble E , the so-called
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Pretty Good Measurement (PGM) is a specific POVM (depending on the ensemble E) that
does reasonably well against E . In particular, it is well-known that

P opt(E)2 ≤ P PGM(E) ≤ P opt(E).

We now define the POVM elements of the pretty-good measurement. Let |ψ′
i⟩ =

√
pi|ψi⟩,

and E ′ = {|ψ′
i⟩ : i ∈ [m]} be the set of states in E , renormalized to reflect their probabili-

ties. Define ρ =
∑

i∈[m]|ψ′
i⟩⟨ψ′

i|. The PGM is defined as the set of measurement operators
{|νi⟩⟨νi|}i∈[m] where |νi⟩ = ρ−1/2|ψ′

i⟩ (the inverse square root of ρ is taken over its non-zero
eigenvalues). We will use the properties of these POVM elements later on and will also need
the following theorems about PGMs.
Theorem 2 ([HW12]). Let S = {ρ1, . . . , ρm}. Suppose ρ ∈ S is an unknown quantum state
picked from S. Let maxi ̸=j∥√ρi√ρj∥1≤ F . Then, given

M = O((log(m/δ))/log(1/F ))

copies of ρ, the Pretty good measurement identifies ρ with probability at least 1− δ.
The above theorem in fact implies the following stronger statement immediately (also

stated in [BK02a]) that we use here.
Corollary 1. Let S = {ρ1, . . . , ρm}. Suppose ρ ∈ S is an unknown quantum state picked
uniformly from S. Suppose there exists k such that

1

m

∑

i ̸=j

∥
√
ρ⊗ki

√
ρ⊗kj ∥1≤ δ,

then given k copies of ρ, the Pretty good measurement identifies ρ with probability at least
1− δ.

2.5 Learning binary phase states

In this section, we consider the problem of learning binary phase states as given by Eq. (2.10),
assuming that f is a Boolean polynomial of F2-degree d.

2.5.1 Learning algorithm using separable measurements

We now describe our learning algorithm for learning binary phase states |ψf⟩ when f has
F2-degree d, using separable measurements. We carry out our algorithm in n rounds, which
we index by t. In the t-th round, we perform RPDS along et (Def. 1) in order to obtain
samples of the form (y,Dtf(y)) where y ∈ {0, 1}n−1. For an m ≥ 1 to be fixed later, we
use RPDS on m copies of |ψf⟩ to obtain {

(
y(k), Dtf(y

(k))
)
}k∈[m] where y(k) ∈ {0, 1}n−1 is

uniformly random. We now describe how to learn Dtf using these m samples.
Using Fact 1, we know that Dtf ∈ P(n − 1, d − 1). Thus, there are at most N =

|M(n − 1, d − 1)|= ∑d−1
k=1

(
n
k

)
= nO(d) monomials in the F2 representation of Dtf . Let

At ∈ Fm×N
2 be the transpose of the (d−1)-evaluation matrix (defined in Eq. (2.8)), such that

the kth row of At corresponds to the evaluations of y(k) under all monomials inM(n−1, d−1),
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i.e., (y(k)S )|S|≤d−1, where y(k)S =
∏

j∈S y
(k)
j , and let βt = (αS)|S|≤d−1 be the vector of unknown

coefficients. Obtaining {(y(k), Dtf(y
(k)))}k∈[m], allows one to solve Atβt = Dtf(y) for βt

(where y = (y(1), . . . , y(m)) and (Dtf(y))k = Dtf(y
(k))) and learn the F2-representation of

Dtf completely. Over n rounds, one then learns D1f,D2f, . . . , Dnf . The F2-representations
of these partial derivatives can then be used to learn f completely, as show in Fact 3. This
procedure is shown in Algorithm 1.
Fact 3. Let f : Fn2 → F2 be such that f ∈ P(n, d). Learning D1f, . . . , Dnf suffices to learn
f .

Proof. Let the F2-representation of the unknown f be

f(x) =
∑

J⊆[n],|J |≤d

αJ
∏

i∈J

xi. (2.14)

The F2-representation of Dtf for any t ∈ {1, 2, . . . , n} is then given by

Dtf(x) =
∑

J⊆[n]:
t∈J,|J |≤d

αJ
∏

i∈J\t

xi, (2.15)

where we notice thatDtf only contains those monomials that correspond to sets J containing
the component xt. Let the F2-representation of Dtf with the coefficient vector βt be given
by

Dtf(x) =
∑

S⊂[n],|S|≤d−1

(βt)S
∏

i∈S

xi. (2.16)

Suppose an algorithm learns D1f, . . . , Dnf . In order to learn f , we must retrieve the coef-
ficients αJ from the learned coefficients {βt}t∈{1,2,...,n}. We accomplish this by noting that
(βt)S = αS∪t or in other words, αJ = {βt}J\t, t ∈ J . However, there may be multiple val-
ues of t that will allow us retrieve αJ . For example, suppose f contains the monomial term
x1x2x3 (i.e., J = {1, 2, 3}) then α{1,2,3} could be retrieved from (β1){2,3}, (β2){1,3}, or (β3){1,2}.
When Dtf (or βt) for all t is learned with zero error, all these values coincide and it doesn’t
matter which learned coefficient is used. When there may be error in learning Dtf (or βt),
we can carry out a majority vote: αJ = Majority({(βt)J\t|t ∈ J}) for all J ⊆ [n], |J |≤ d.
The majority vote is guaranteed to succeed as long as there is no error in at least half of the
contributing βt (which is the case in our learning algorithm).

We now prove the correctness of this algorithm.
Theorem 3. Let n ≥ 2, d ≤ n/2. Algorithm 1 uses M = O(2dnd) copies of an unknown |ψf⟩
for f ∈ P(n, d) and with high probability identifies f using single qubit X,Z measurements.

Proof. Algorithm 1 learns f by learning D1f, . . . , Dnf and thereby learns f completely.
Here we prove that each Dtf can be learned with m = O(2dnd−1) copies of |ψf⟩ and an
exponentially small probability of error. This results in an overall sample complexity of
O(2dnd) for learning f and hence |ψf⟩. Let us consider round t in Algorithm 1. We generate
m constraints {

(
yk, (Dtf)(y

(k)
)
}k∈[m] where y(k) ∈ Fn−1

2 by carrying out RPDS along et on
m copies of |ψf⟩.

We learn the F2-representation of Dtf by setting up a linear system of equations using
these m samples: Atβt = Dtf(y), where At is the transposed (d − 1)-evaluation matrix
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Algorithm 1 Learning binary phase states through separable measurements
Input: Given M = O((2n)d) copies of |ψf⟩ where f ∈ P(n, d)
1: for qubit t = 1, . . . , n do
2: Set m =M/n
3: Perform RPDS along et to obtain {(y(k), Dtf(y

(k))}k∈[m] by measuring m copies of
|ψf⟩.

4: Solve the linear system of equations At · βt = Dtf(y) to learn Dtf explicitly.
5: end for
6: Use Fact 3 to learn f using D1f, . . . , Dnf (let f̃ be the output).

Output: Output f̃

in round t, evaluated over y = (y(1), y(2), . . . y(m)), and βt ∈ F|M(n−1,d−1)|
2 is the collective

vector of coefficients corresponding to the monomials in M(n− 1, d− 1). By construction,
this system has at least one solution. If there is exactly one solution, then we are done.
Otherwise, the corresponding system has a non-zero solution, that is, there exists a non-zero
degree-(d− 1) polynomial g : Fn−1

2 → F2 such that g(y(j)) = 0 for all j = 1, 2, . . . ,m.
Below we prove that the probability of this bad event can be bounded through the

Schwartz-Zippel lemma. Applying Lemma 2 and by noting that yj ∈ F(n−1)
2 are independent

and uniformly distributed, we have that

Pr[g(y(1)) = g(y(2)) = · · · = g(y(m)) = 0] ≤ (1− 2−d)m ≤ e−m2−d

(2.17)

Let Pnnz(n, d) be the set of all degree-d polynomials g : Fn2 → F2 which are not identically
zero. Define event

BAD(y1, . . . , ym) = [∃g ∈ Pnnz(n− 1, d− 1) : g(y1) = . . . = g(ym) = 0 (mod 2)]. (2.18)

We note that |Pnnz(n− 1, d− 1)|≤ 2N where N = O(nd−1). By union bound and Eq. (2.17),
we have

Pr[BAD(y(1), . . . , y(m))] ≤ |Pnnz(n− 1, d− 1)|·(1− 2−d)m ≤ 2n
d−1−m2−d(ln 2). (2.19)

Thus choosing m = O((2n)d−1) is enough to learn all coefficients {αJ}t∈J (through βt) in the
F2 representation of f with an exponentially small probability of error. We need to repeat
this over all the n qubits in order to learn D1f, . . . , Dnf and then use Fact 3 to learn f
completely. This gives an overall sample complexity of O((2n)d) for learning binary phase
states. Observe that the only measurements that we needed in this algorithm were single
qubit {X,Z} measurements.

Corollary 2. An n-qubit state |ψf⟩ with the unknown Boolean function f of given Fourier-
sparsity s can be learned with Algorithm 1 that consumes M copies of |ψf⟩ with probability
1− 2−Ω(n) provided that M ≥ O(snlog s).

The proof of this corollary simply follows from the following: for a Boolean function, the
Fourier sparsity s of f is related to the F2-degree d of f [BC99] as d ≤ log s. Along with
Theorem 3 we obtain the corollary.

63



2.5.2 Learning using entangled measurements

We now consider the problem of learning binary phase states using entangled measurements.
We have the following result.
Theorem 4. Let n ≥ 2, d ≤ n/2. There exists an algorithm that uses M = O((2n)d−1)
copies of an unknown |ψf⟩ for f ∈ P(n, d) and identifies f using entangled measurements
with probability ≥ 2/3. There is also a lower bound of Ω(nd−1) for learning these states.

Proof. In order to prove this theorem, we follow the following steps. We first observe that the
optimal measurement for our state distinguishing problem is the pretty good measurement
(PGM). Second we observe that the success probability of the PGM is the same for every
concept in the ensemble. We bound the success probability of the PGM using Corollary 1
we get our upper bound.

For f ∈ P(n, d), let Uf be the unitary defined as Uf = diag({(−1)f(x)}x), that satisfies
Uf |+⟩n = |ψf⟩. Observe that the set {Uf}f∈P(n,d) is an Abelian group. The ensemble we are
interested in is S = {Uf |+⟩n}f∈P(n,d) and such an ensemble is called geometrically uniform if
the {Uf} is an Abelian group. A well-known result of Eldar and Forney [EF01] showed that
the optimal measurement for state distinguishing a geometrically uniform (in particular S)
is the pretty-good measurement. We now show that the success probability of the PGM is
the same for every state in the ensemble. In this direction, for M ≥ 1, let σf = |ψf⟩⟨ψf |⊗M .
The POVM elements of the pretty good measurement {Ef : f ∈ P(n, d)} is given by the
POVM elements Ef = S−1/2σfS

−1/2 where S =
∑

f∈P(n,d) σf . The probability that the PGM
identifies the unknown σf is given by

Pr(f) = Tr(σfEf ) = ⟨ψ⊗M
f |S−1/2|ψ⊗M

f ⟩2.

Our claim is that Pr(f) is the same for every f ∈ P(n, d). Using the Abelian property of
the unitaries {Uf}f , observe that Uf |ψg⟩ = |ψf⊕g⟩ for every f, g ∈ P(n, d). Thus, we have
that (U⊗M

f )†SU⊗M
f = S, which implies that(U⊗M

f )†S−1/2U⊗M
f = S−1/2. Hence it follows that

Pr(f) = (⟨+|⊗M(U⊗M
f )†S−1/2U⊗M

f |+⟩⊗M)2 = (⟨+|⊗MS−1/2|+⟩⊗M)2 = Pr(0),

for every f ∈ P(n, d). Finally, observe that ⟨ψf |ψg⟩ = Ex [(−1)f(x)+g(x)] = 1− 2Prx[f(x) ̸=
g(x)]. Let P∗(n, d) be the set of non-constant polynomials in P(n, d). We now have the
following
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1

2(
n
≤d)

∑

f ̸=g:
f,g∈P (n,d)

∥
√
ρ⊗kf

√
ρ⊗kg ∥1 =

∑

g∈P ∗(n,d)

(1− 2Pr
x
[g(x) = 1])2k

=
∑

g∈P ∗(n,d)

(1− 2wt(g))2k

=
d−1∑

ℓ=1

∑

g∈P ∗(n,d)

(1− 2|g|/2n)2k ·
[
|g|∈ [2n−ℓ−1, 2n−ℓ − 1]

]

=
∑

g∈P ∗(n,d)

(1− 2|g|/2n)2k ·
[
|g|∈ [2n−2, 2n−1 − 1]

]

+
d−1∑

ℓ=2

∑

g∈P ∗(n,d)

(1− 2|g|/2n)2k ·
[
|g|∈ [2n−ℓ−1, 2n−ℓ − 1]

]

≤ 2n−12−2k+C( n−1
≤d−1) +

d−1∑

ℓ=2

(1− 1

2ℓ
)2k

∑

g∈P ∗(n,d)

[
|g|≤ 2n−ℓ

]
,

where the first equality used that the PGM has the same success probability for every f, g ∈
P(n, d), third equality used that |g|≥ 2n−d for any non-zero polynomial g ∈ P (n, d) [MS77]
and last inequality used Theorem 1. For k = O(nd−1) (by picking a sufficiently large constant
in O(·)), the first term is at most ≤ 1/100. To bound the second term, using Theorem 1 we
have

d−1∑

ℓ=2

(1− 1

2ℓ
)2k

∑

g∈P ∗(n,d)

[
|g|≤ 2n−ℓ

]
≤

d−1∑

ℓ=2

2n−ℓ exp(−2k/2ℓ + (n− ℓ)ℓ4
(
n− ℓ
≤ d− ℓ

)
).

Each term is exp(−nd−1) for k = O(nd−1), so the overall sum is ≤ 1/100. Corollary 1 implies
our desired upper bound.

In order to see the lower bound, observe that each state |ψf⟩ contains n bits of information
and the goal of the learning algorithm is to learn an unknown f , i.e., obtain O(nd) bits of
information. Hence by Holevo’s theorem [Hol73], one requires Ω(nd−1) copies of the unknown
state for state identification.5

2.5.3 Lower bounds

In the last section we saw that Θ(nd−1) many copies of |ψf⟩ with degree-d are necessary and
sufficient to learn f if we allowed only entangled measurements. Earlier we saw that O(nd)
many copies of |ψf⟩ sufficed to learn f using separable measurements. A natural question is:
Can we learn f using fewer copies if we are restricted to using only separable measurements?
In the theorem below, we provide a lower bound that complements our upper bound, thereby
showing Θ(nd) copies are necessary and sufficient to learn f using separable measurements.

5We refer the reader to Montanaro [Mon12, Proposition 1] for a detailed exposition of this lower bound
proof.
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Theorem 5. Let 2 ≤ d ≤ n/2. Suppose there exists an algorithm that with probability
≥ 1/10, learns an n-variate polynomial f ∈ P(n, d), given M copies of the phase state
|ψf⟩ = 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩, measuring each copy in an arbitrary orthonormal basis,

and performing an arbitrary classical processing. Then

M = Ω(log|P(n, d)|) = Ω(nd). (2.20)

Proof. Let U be an n-qubit unitary operator. Define the probability distribution

Pr
U
(x|f) = |⟨x|U |ψf⟩|2. (2.21)

Let HU(x|f) be the Shannon entropy of x sampled from PrU(x|f), i.e.,

HU(x|f) = −
∑

x

Pr
U
(x|f) log Pr

U
(x|f). (2.22)

Below we prove the following.

Lemma 5. Suppose d ≥ 2 and U is an n-qubit unitary. Then

Ef [HU(x|f)] ≥ n− 2, (2.23)

where the expectation is over a uniformly random f ∈ P(n, d)
We will assume the lemma now and prove the theorem statement. Below we assume that

f ∈ P(n, d) is picked uniformly at random. Suppose we measure the j-th copy of |ψf⟩ in
a basis {U †

j |x⟩}x for some n-qubit unitary Uj. Let x1, x2, . . . , xM ∈ Fn2 be the measured bit
strings. The joint probability distribution of f and x is given by

Pr(f, x) =
1

|P(n, d)|
M∏

j=1

Pr
Uj

(xj|f). (2.24)

The conditional entropy of x given f is

H(x|f) = 1

|P(n, d)|
∑

f∈P(n,d)

M∑

j=1

HUj
(xj|f) =

M∑

j=1

EfHUj
(xj|f) ≥M(n− 2), (2.25)

where the inequality used Lemma 5. It follows that the conditional entropy of f given x
obeys

H(f |x) = H(x|f)−H(x) +H(f) ≥M(n− 2)−H(x) +H(f). (2.26)

Since H(x) ≤ nM and H(f) = log|P(n, d)|, we get

H(f |x) ≥ log|P(n, d)|−2M. (2.27)

Assuming there exists a learning algorithm that given x learns f with probability ≥ 1/10,
by Fano’s inequality (Lemma 3), we know that H(f |x) ≤ Hb(1/10) + (1/10) · log|P(n, d)|.
It remains to prove Lemma 5.
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Proof of Lemma 5. It is known that the Shannon entropy of a distribution is lower bounded
by its Renyi entropy of order two. Thus we have

HU(x|f) ≥ − log [RU(x|f)], (2.28)

where
RU(x|f) :=

∑

x

(Pr
U
(x|f))2 =

∑

x

⟨x, x|U⊗2|ψf⟩⟨ψf |⊗2(U †)⊗2|x, x⟩. (2.29)

Taking the expected value of Eq. (2.28) and noting that the function − log (·) is convex, one
gets

Ef [HU(x|f)] ≥ −Ef [logRU(x|f)] ≥ − logEf [RU(x|f)]. (2.30)

Below we prove

Proposition 1. Let f ∈ P(n, d) be a uniformly random degree-d polynomial with d ≥ 2.
Then

Ef [|ψf⟩⟨ψf |⊗2] =
1

4n
(I+ SWAP) +

1

2n
|Φ+⟩⟨Φ+|− 2

4n

∑

x

|x, x⟩⟨x, x|, (2.31)

where SWAP swaps two n-qubit registers and |Φ+⟩ = 2−n/2
∑

x|x, x⟩ is the EPR state of 2n
qubits.

Combining the proposition and the bound |⟨Φ+|U⊗2|x, x⟩|2≤ 2−n gives

Ef [RU(x|f)] ≤
3

2n
≤ 1

2n−2
. (2.32)

Substituting this into Eq. (2.30) completes the proof. We now prove the proposition.

Proof of Proposition 1. Let

Q = Ef [|ψf⟩⟨ψf |⊗2] =
1

4n

∑

w,x,y,z

E(w, x, y, z)|w, x⟩⟨y, z|,

where
E(w, x, y, z) = Ef [(−1)f(w)+f(x)+f(y)+f(z)].

Our proof strategy uses a couple of lemmas from [Bra+19, Proposition 5] and [BMS16,
Lemma 11].

Claim 1. E(w, x, y, z) = 0 unless w + x+ y + z = 0n and at least two of the strings w, x, y
coincide.

Proof. We can write

f(v) =
n∑

p=1

Apvp +
∑

1≤p<q≤n

Ap,qvpvq + . . . (mod 2)

where Ap ∈ {0, 1} and Ap,q ∈ {0, 1} are picked uniformly at random and dots represents
higher order terms. Taking the expectation value over Ap gives

EAp

[
(−1)Ap(wp+xp+yp+zp)

]
= 0 unless wp + xp + yp + zp = 0 (mod 2).
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This proves the first part of the claim. Taking the expectation value over Ap,q gives

EAp,q

[
(−1)Ap,q(wpwq+xpxq+ypyq+zpzq)

]
= 0 unless wpwq + xpxq + ypyq + zpzq = 0 (mod 2).

Substituting zp = xp+yp+wp (mod 2) and zq = xq+yq+wq (mod 2) in the above expression
one concludes that E(w, x, y, z) = 0 unless w + x+ y + z = 0n (mod 2) and

(wpxq + xpwq) + (xpyq + ypxq) + (wpyq + ypwq) = 0 (mod 2). (2.33)

If w = x = y then we are done. Otherwise there exists an index p ∈ [n] such that exactly
two of the variables wp, xp, yp coincide. Since Eq. (2.33) is symmetric under permutations
of w, x, y we can assume wlog that xp = yp ̸= wp. Consider two cases:
Case 1: xp = yp = 0 and wp = 1. Then Eq. (2.33) gives xq = yq for all q ̸= p. Thus x = y.
Case 2: xp = yp = 1 and wp = 0. Then Eq. (2.33) gives wq + yq + xq + wq = 0 (mod 2) for
all q ̸= p. Thus xq = yq for all q ̸= p, that is, x = y.

Note that E(w, x, y, z) = 1 whenever w+ x+ y+ z = 0n (mod 2) and at least two of the
strings w, x, y coincide. For example, if w = x then one must have y = z and thus the sum
f(w) + f(x) + f(y) + f(z) is zero modulo two. This leads to

Q =
1

4n

∑

w,x,y,z

E(w, x, y, z)|w, x⟩⟨y, z|= 1

4n
(I + SWAP) +

1

2n
|Φ+⟩⟨Φ+|− 2

4n

∑

x

|x, x⟩⟨x, x|.

Here the last term is introduced to avoid overcounting.

This concludes the proof of the proposition and Lemma 5.

The proof of this lemma concludes the proof of Theorem 5.

2.6 Learning sparse and low Fourier-degree binary phase
states

In this section, we first consider the problem of learning binary phase states (Eq. (2.10)) using
separable measurements under the assumption that f is an s-sparse F2-degree d Boolean
function written as

f(x) =
∑

J⊆[n]

αJ
∏

i∈J

xi (mod 2) (2.34)

where |{J : αJ ̸= 0}|= s, i.e., there are s terms in the F2 representation of f .

2.6.1 Sparse learning algorithm

Our algorithm for learning sparse binary phase states and analysis of its sample complexity
is similar to that in Section 2.5.1. Similar to Algorithm 1 in the t-th round, for an m ≥ 1 to
be fixed later (where m is the sample complexity), we use RPDS along et on m copies of |ψf⟩
to obtain m samples {

(
y(k), Dtf(y

(k))
)
}k∈[m] where y(k) ∈ {0, 1}n−1 is uniformly random. We

now describe how to learn Dtf using these m examples.
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Let At ∈ Fm×|M(n−1,d−1)|
2 be the transposed (d−1)-evaluation matrix (defined in Eq. (2.8))

such that the kth row of At is given by the vector (y(k)S )|S|≤d−1, where y(k)S =
∏

j∈S y
(k)
j . We can

then write a system of linear equations Atβt = Dtf(y) where βt ∈ F|M(n−1,d−1)|
2 is the vector

of coefficients corresponding to monomials in M(n − 1, d − 1) and (Dtf(y))k = Dtf(y
(k)).

Instead of explicitly solving Atβt = Dtf(y) (which we did in Section 2.5.1), we propose
to estimate the unknown coefficients vector βt by solving the following linear program by
drawing connection to compressed sensing [DM09].

β̂t ∈ argmin ∥β∥1 such that Atβ = Dtf(y) (mod 2) over β ∈ F|M(n−1,d−1)|
2 . (2.35)

The solution vector β̂t produced by the above linear program corresponds to solving the
subset of coefficients αJ in the F2-representation of f corresponding to sets J which contain t.
Like in Section 2.5.1, we repeat the above procedure over n rounds to learnD1f,D2f, . . . , Dnf
and then eventually learn f using Fact 3. We give details of this algorithm in Algorithm 2.

Algorithm 2 Learning sparse binary phase states through separable measurements
Input: Access to M = O(2dsdn log n) copies of |ψf⟩ where f ∈ P(n, d, s)
1: for qubit t = 1, . . . , n do
2: Set m =M/n
3: Perform RPDS to obtain {(y(k), Dtf(y

(k))}k∈[m] by measuring m copies of |ψf⟩.
4: Solve linear program β̂t ∈ argmin ∥β∥1 s.t. Atβ = Dtf(y) for β ∈ F|M(n−1,d−1)|

2

(Eq. (2.35))
5: end for
6: Use Fact 3 to learn f using D1f, . . . , Dnf (let f̃ be the output).

Output: Output f̃

We now argue the correctness of the algorithm.
Theorem 6. An n-qubit state |ψf⟩ with the unknown Boolean function f of given F2-degree
d and F2-sparsity s ≤ |M(n − 1, d − 1)|/2 can be learned with an algorithm that consumes
M copies of |ψ⟩ with probability 1− 2−Ω(n) provided that M = O(2dsdn log n). Moreover the
algorithm only uses {X,Z} single-qubit measurements.

Proof. Algorithm 2 learns f by learning D1f, . . . , Dnf and thereby learns f completely. Here
we prove that each Dtf can be learned with with m = O(2dsd log n) copies of |ψf⟩ and an
exponentially small probability of error. This results in an overall sample complexity of
O(2dsdn log n) for learning f and hence |ψf⟩. Let us consider round t in Algorithm 2. We
generate m samples {y(k), Dtf(y

(k)} through RPDS. Using these m samples, we can solve
Eq. (2.35) and obtain the solution β̂t. An error occurs when β̂t ̸= β⋆t where we have denoted
the true solution by β⋆t .6 Probability of this error occurring is then given by

Pr[β̂t ̸= β⋆t ] = Pr[∃β ∈ {0, 1}N , β ̸= β⋆t | Atβ = Dtf(y) ∩ ∥β∥1 ≤ ∥β⋆t ∥1] (2.36)

6Note that the true coefficients (β⋆
t )S = αS∪t where αJ is the true coefficient in the F2-representation of

f , corresponding to set J .
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where we have denoted N = |M(n− 1, d− 1)|. Below we prove that the probability of this
bad event can be bounded through Schwartz-Zippel (Lemma 1). Define event

BAD(y(1), . . . , y(m)) = [∃β ∈ {0, 1}N , β ̸= β⋆t | Atβ = Dtf(y) ∩ ∥β∥1 ≤ ∥β⋆t ∥1]. (2.37)

Let us consider the kth row of At. We note that the corresponding equation can be rewritten
as

(At)k · β = (Dtf(y))k (mod 2) (2.38)
(At)k · β = (At)kβ

⋆
t (mod 2) (2.39)

(At)k · (β − β⋆t ) = 0 (mod 2) (2.40)

As β ̸= β⋆t , this means there exists a non-zero polynomial g ∈ P(n− 1, d− 1) corresponding
to the coefficients β − β⋆t (mod 2). Applying Lemma 2 and by noting that y(j) ∈ F(n−1)

2 are
independent and uniformly distributed, we have that

Pr[g(y(1)) = g(y(2)) = · · · = g(y(m)) = 0] ≤ (1− 2−d)m ≤ e−m2−d

(2.41)

Let Pnnz(n, d, s) be the set of all degree-d polynomials g : Fn2 → F2 with sparsity s which are
not identically zero. By union bound and Eq. (2.41), we have that

Pr[BAD(y1, . . . , ym)] ≤ |Pnnz(n− 1, d− 1, s)|·(1− 2−d)m (2.42)

=
∑

{β∈{0,1}N ,β ̸=β⋆
t :

∥β∥1≤∥β⋆
t ∥1}

(1− 2−d)m (2.43)

≤
∥β⋆

t ∥1∑

ℓ=1

|{β ∈ {0, 1}N : ∥β∥1 = ℓ}|2−m2−d(ln 2) (2.44)

=
s∑

ℓ=1

(
N

ℓ

)
2−m2−d(ln 2) ≤ 22s log(N/s)−m2−d(ln 2), (2.45)

where the final inequality used Fact 2. We can thus learn all the coefficients β⋆t with an
exponentially small probability of error by choosing m = O(2ds logN). We need to repeat
this over all the n qubits, giving an overall sample complexity of O(2dsdn log n) (by noting
thatN =M(n−1, d−1) = O(nd)) of learning sparse binary phase states using only separable
measurements. Using Fact 3, we can completely learn f . Observe that Algorithm 2 uses
only single qubit {X,Z} measurements.

2.6.2 Learning low Fourier-degree phase states

We conclude this section with a theorem about learning low Fourier-degree phase states.
Theorem 7. Consider binary phase states |ψ⟩ = 1√

2n

∑
x(−1)f(x)|x⟩ where f : {0, 1}n →

{0, 1} has Fourier-degree d. Then OÕ(22d) copies of |ψ⟩ are sufficient to identify f with
probability ≥ 2/3.
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Proof. The proof is a simple application of couple of results. Observe that the number of
degree-d Boolean functions is 22d2d . To see this, observe that [ODo14] for a degree-d Boolean
function, all the Fourier coefficients are integer multiple of 2−d, and since by Parseval’s
theorem

∑
S ff̂(S)

2 ≤ 1, the number of non-zero Fourier coefficients is ≤ 22d. Hence the
number of degree-d Boolean functions is (2d)22d = 22d2

d . Additionally, for degree-d functions
f, g we have that

⟨ψf |ψg⟩ = E
x
[(−1)f(x)+g(x)] = 1− 2Pr

x
[f(x) ̸= g(x)] ≤ 1− 2−d+1

where the final inequality uses the Schwartz-Zippel lemma (Lemma 2) and the fact that f−g
has degree at most d. Now, putting this together with Theorem 1 in [Mon19], we get that the
number of copies of |ψf⟩ sufficient to learn f is given by O(( log 22d2d)/2−d) = OÕ(22d).

2.7 Learning generalized phase states

In this section, we consider the problem of learning generalized phase states |ψf⟩ as given
by Eq. (2.11), assuming that f is a degree-d Zq-valued polynomial, f ∈ Pq(n, d). Note that
since our goal is to learn |ψf⟩ up to an overall phase, we shall identify polynomials which
differ only by a constant shift.
Definition 2. Polynomials f, g ∈ Pq(n, d) are equivalent if f(x)−g(x) is a constant function.

To simplify notation, here and below we omit modulo operations keeping in mind that
degree-d polynomials take values in the ring Zq. Thus all equal or not-equal constraints that
involve a polynomial’s value are modulo q.

2.7.1 Learning using separable measurements

Let q ≥ 2 and d ≥ 1 be integers. For technical reasons, we shall assume that q is even. Let
ωq = e2πi/q. Our main result is as follows.
Theorem 8. Let d ≤ n/2. There exists an algorithm that uses M = O(2dq3nd log q) = O(nd)

copies of a generalized phase state |ψf⟩ = 1√
2n

∑
x∈{0,1}n ω

f(x)
q |x⟩ with an unknown polynomial

f ∈ Pq(n, d) and outputs a polynomial g ∈ Pq(n, d) such that g is equivalent to f with the
probability at least 1 − 2−Ω(n). The quantum part of the algorithm requires only single-qubit
unitary gates and measurements in the standard basis.

Moreover, suppose there exists an algorithm that with probability ≥ 1/10, learns an n-
variate polynomial f ∈ Pq(n, d), given k copies of the phase state |ψf⟩, measuring each copy
in an arbitrary orthonormal basis, and performing an arbitrary classical processing. Then

M = Ω(nd). (2.46)

Before stating our learning algorithm and sample complexity, we need the following
lemmas.
Lemma 6. Choose any f ∈ Pq(n, d) and c ∈ Zq. Then either f(x) is a constant function or
the fraction of inputs x ∈ {0, 1}n such that f(x) ̸= c is at least 1/2d.

Proof. We shall use the following simple fact.
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Proposition 2. Consider a function f : {0, 1}n → Zq specified as a polynomial

f(x) =
∑

J⊆[n]

αJ
∏

j∈J

xj (mod q). (2.47)

Here αJ ∈ Zq are coefficients. The function f is constant if and only if αJ = 0 (mod q) for
all non-empty subsets J ⊆ [n].

Proof. If αJ = 0 (mod q) for all non-empty subsets J then f(x) = f(0n) (mod q) for all x,
that is, f is constant. Conversely, suppose f is constant. Choose a subset J ⊆ [n]. We can
consider J as an n-bit string with the Hamming weight |J | such that Ji = 1 if i ∈ J and
Ji = 0 otherwise. If |J |= 1 then f(J) = f(0n)+αJ (mod q) and thus αJ = 0 (mod q) for all
subsets J with |J |= 1. Suppose we have already proved that αJ = 0 (mod q) for any subset
with 1 ≤ |J |≤ w. If |J |= w + 1 then f(J) = f(0n) + αJ (mod q) and thus αJ = 0 (mod q)
for all subsets J with |J |= w + 1. Proceeding inductively proves the claim.

We shall prove Lemma 6 by induction in n. The base case of induction is n = d. Clearly,
a non-constant function f : {0, 1}d → Zq takes a value different from c at least one time,
that is, the fraction of inputs x ∈ {0, 1}d such that f(x) ̸= c is at least 1/2d.

Suppose n > d and f ∈ Pq(n, d) is not a constant function. Let d′ be the maximum degree
of non-zero monomials in f . Clearly 1 ≤ d′ ≤ d. Suppose f contains a monomial αS

∏
j∈S xj

where αS ∈ Zq \ {0} and |S|= d′. Since |S|< n, one can choose a variable xi with i ∈ [n] \S.
Let ga : {0, 1}n−1 → Zq be a function obtained from f by setting the variable xi to a constant
value a ∈ {0, 1}. Clearly, ga ∈ Pq(n − 1, d). The coefficients of the monomial

∏
j∈S xj in

g0 and g1 are αS and αS + αS∪{i} (mod q) respectively. However, αS∪{i} = 0 (mod q) since
otherwise f would contain a monomial xi

∏
j∈S xj of degree larger than d′. We conclude

that both g0 and g1 contain a non-zero monomial αS
∏

j∈S xj. By Proposition 2, g0 and g1
are not constant functions. Since g0 and g1 are degree-d polynomials in n− 1 variables, the
induction hypothesis gives

Pr
y
[ga(y) ̸= c] ≥ 1

2d
. (2.48)

Here y ∈ {0, 1}n−1 is picked uniformly at random. Thus

Pr
x
[f(x) ̸= c] =

1

2

[
Pr
y
[g0(y) ̸= c] + Pr

y
[g1(y) ̸= c]

]
≥ 1

2d
. (2.49)

Here x ∈ {0, 1}n is picked uniformly at random. This proves the induction step.

With this lemma, we are now ready to prove Theorem 8. In the section below we first
describe our learning algorithm and in the next section we prove the theorem by proving the
sample complexity upper bound.

Learning Algorithm in Theorem 8

We are now ready to state our learning algorithm. As in Section 2.5.1 for learning binary
phase states with separable measurements, we learn generalized phase states through exam-
ples containing information about the derivatives of f(x). The crucial difference between the
binary phase state learning algorithm and the generalized setting is, in the binary case, we
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obtained a measurement outcome by that corresponded to by = f(0y)−f(1y), however in the
generalized scenario, we obtain a measurement outcome b′y that satisfies f(0y)− f(1y) ̸= b′y.
Nevertheless, we are able to still learn f using such measurement outcomes which we describe
in the rest of the section.

We now describe the learning algorithm. We carry out the algorithm in n rounds, which
we index by t. For simplicity, we describe the procedure for the first round. Suppose we
measure qubits 2, 3, . . . , n of the state |ψf⟩ in the Z-basis. Let y ∈ {0, 1}n−1 be the measured
bit string. Note that the probability distribution of y is uniform. The post-measurement
state of qubit 1 is

|ψf,y⟩ =
1√
2
(ωf(0y)q |0⟩+ ωf(1y)q |1⟩) (2.50)

For each b ∈ Zq define a single-qubit state

|ϕb⟩ =
1√
2
(|0⟩ − ωbq|1⟩) (2.51)

Using the identity
∑

b∈Zq
ωbq = 0 one gets

I =
2

q

∑

b∈Zq

|ϕb⟩⟨ϕb| (2.52)

One can view Eq. (2.52) as a single-qubit POVM with q elements (2/q)|ϕb⟩⟨ϕb|. Let M
be the single-qubit measurement described by this POVM. Applying M to the state |ψf,y⟩
returns an outcome b ∈ Zq with the probability

Pr(b|y) := 2

q
|⟨ϕb|ψf,y⟩|2=

1

2q

∣∣1− ωf(1y)−f(0y)−bq

∣∣2 . (2.53)

Clearly, Pr(b|y) is a normalized probability distribution,
∑

b∈Zq
Pr(b|y) = 1. Furthermore,

f(1y)− f(0y) = b implies Pr(b|y) = 0, (2.54)

f(1y)− f(0y) ̸= b implies Pr(b|y) ≥ 2

q
sin2 (π/q) = Ω(1/q3). (2.55)

To conclude, the combined n-qubit measurement consumes one copy of the state |ψf⟩ and
returns a pair (y, b) ∈ {0, 1}n−1 × Zq such that

f(1y)− f(0y) ̸= b (2.56)

with certainty and all outcomes b satisfying Eq. (2.56) appear with a non-negligible proba-
bility. Define a function g : {0, 1}n−1 → Zq such that

g(y) = f(1y)− f(0y). (2.57)

We claim that g is a degree-(d − 1) polynomial, that is, g ∈ Pq(n − 1, d − 1). Indeed, it
is clear that g(y) is a degree-d polynomial. Moreover, all degree-d monomials in f(x) that
do not contain the variable x1 appear in f(1y) and f(0y) with the same coefficient. Such
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monomials do not contribute to g(y). A degree-d monomial in f(x) that contains the variable
x1 contributes a degree-(d− 1) monomial to g(y). Thus g ∈ Pq(n− 1, d− 1), as claimed.

From Eq. (2.56) one infers a constraint

g(y) ̸= b (2.58)

whenever the combined n-qubit measurement of |ψf⟩ returns an outcome (y, b). Suppose we
repeat the above process m times obtaining constraints

g(y(k)) ̸= b(k), k = 1, 2, . . . ,m. (2.59)

This consumes m copies of |ψf⟩. We claim that the probability of having more than one
polynomial g ∈ Pq(n − 1, d − 1) satisfying the constraints Eq. (2.59) is exponentially small
if we choose

m = O(q3 log (q)2dnd−1). (2.60)

Sample Complexity bound in Theorem 8

Define a probability distribution π(y⃗, b⃗) where

z⃗ = (y(1), . . . , y(m)) ∈ {0, 1}(n−1)m and b⃗ = (b(1), . . . , b(m)) ∈ (Zq)×m (2.61)

such that y(j) are picked uniformly at random and b(k) are sampled from the distribution
Pr(b(k)|y(k)) defined in Eq. (2.53). For each polynomial h ∈ Pq(n− 1, d− 1) define an event

BAD(h) = {(y⃗, b⃗) : h(y(k)) ̸= b(k) for all k ∈ [m]}. (2.62)

We claim that
Pr[BAD(h)] :=

∑

(y⃗,⃗b)∈BAD(h)

π(y⃗, b⃗) ≤
[
1− Ω(2−dq−3)

]m (2.63)

for any h ̸= g. Indeed, consider some fixed k ∈ [m]. The event b(k) ̸= h(y(k)) occurs
automatically if h(y(k)) = g(y(k)). Otherwise, if h(y(k)) ̸= g(y(k)), the event b(k) ̸= h(y(k))
occurs with the probability at most 1− Ω(1/q3) since b(k) = h(y(k)) with the probability at
least Ω(1/q3) due to Eq. (2.55). It follows that

Pr
y(k),b(k)

[h(y(k)) ̸= b(k)] ≤ Pr
y(k)

[h(y(k)) = g(y(k))] + Pr
y(k)

[h(y(k)) ̸= g(y(k))]
(
1− Ω(1/q3)

)
(2.64)

= 1− Pr
y(k)

[h(y(k)) ̸= g(y(k))] · Ω(1/q3). (2.65)

If h and g are equivalent then h(y) = g(y) + c for some constant c ∈ Zq. Note that c ̸= 0
since we assumed h ̸= g. In this case

Pr
y(k)

[h(y(k)) ̸= g(y(k))] = 1. (2.66)

If h and g are non-equivalent, apply Lemma 6 to a non-constant degree-(d− 1) polynomial
h− g. It gives

Pr
y(k)

[h(y(k)) ̸= g(y(k))] ≥ 1

2d−1
. (2.67)

74



In both cases we get
Pr

y(k),b(k)
[h(y(k)) ̸= b(k)] ≤ 1− Ω(2−dq−3), (2.68)

which proves Eq. (2.63) since the pairs (y(k), b(k)) are i.i.d. random variables.
As noted earlier in the preliminaries, observe that |Pq(n−1, d−1)|≤ qO(nd−1) = 2O(log (q)nd−1).

By the union bound, one can choose m = O(2dq3 log (q)nd−1) such that

Pr


 ⋃

h∈Pq(n−1,d−1)\g

BAD(h)


 ≤ 2O(log (q)nd−1)

[
1− Ω(2−dq−3)

]m ≤ 2−Ω(n). (2.69)

In other words, the probability that g is the unique element of Pq(n − 1, d − 1) satisfying
all the constraints Eq. (2.59) is at least 1 − 2−Ω(n). One can identify such polynomial g by
checking the constraints Eq. (2.59) for every g ∈ Pq(n − 1, d − 1). If the constraints are
satisfied for more than one polynomial, declare a failure.

At this point we have learned a polynomial g ∈ Pq(n−1, d−1) such that f(1y)−f(0y) =
g(y) for all y ∈ {0, 1}n−1. For simplicity, we ignore the exponentially small failure probability.
Applying the same protocol n times to copies of the quantum state |ψf⟩ by a cyclic shift of
qubits, one can learn polynomials g0, g1, . . . , gn−1 ∈ Pq(n− 1, d− 1) such that

f(Ci(1y))− f(Ci(0y)) = gi(y) for all i ∈ [n] and y ∈ {0, 1}n−1, (2.70)

where C is the cyclic shift of n bits. This consumes M = O(nm) = O(2dq3 log (q)nd) copies
of the state |ψf⟩. We can assume wlog that f(0n) = 0 since our goal is to learn f(x) modulo
a constant shift. Suppose we have already learned values of f(x) for all bit strings x with the
Hamming weight |x|≤ w (initially w = 0). Any bit string x with |x|= w+1 can be represented
as x = Ci(1y) for some y ∈ {0, 1}n−1 such that |y|= w. Now Eq. (2.70) determines f(x)
since |Ci(0y)|= |y|= w so that f(Ci(0y)) is already known and the polynomial gi(y) has
been learned. Proceeding inductively one can learn f(x) for all x.

It remains to note that the POVM Eq. (2.52) is a probabilistic mixture of projective
single-qubit measurements whenever q is even. Indeed, in this case the states |ϕb⟩ and
|ϕb+q/2⟩ = Z|ϕb⟩ form an orthonormal basis of a qubit, see Eq. (2.51). Thus the POVM
defined in Eq. (2.52) can be implemented by picking a random uniform b ∈ Zq and measuring
a qubit in the basis {|ϕb⟩, Z|ϕb⟩}. Thus the learning protocol only requires single-qubit
unitary gates and measurements in the standard basis.

The lower bound in the proof of Theorem 8 follows in a straightforward manner from the
lower bound for binary phase states. Indeed, suppose

f ′(x) =
∑

J∈[n]

αJ
∏

j∈J

xj (mod 2)

is an F2-valued degree-d polynomial, f ′ ∈ P(n, d). Suppose q = 2r for some integer r. Define
a polynomial

f(x) = rf ′(x) (mod q).

Clearly f ∈ Pq(n, d) and ωf(x)q = (−1)f ′(x) for all x, that is the binary phase state correspond-
ing to f ′ coincides with the generalized phase state corresponding to f . Using Theorem 5,
we obtain a lower bound of M = log|P(n, d)|= Ω(nd) for learning ψf . This concludes the
proof of Theorem 8.
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2.7.2 Learning stabilizer states

We now describe how the algorithm stated in Theorem 8 could be used to learn any n-
qubit stabilizer state (produced by a Clifford circuit applied to |0n⟩ state) using separable
measurements. Note that we can learn a subclass of stabilizer states called graph states
(which are simply binary phase states with d = 2) using Algorithm 1 with the sample
complexity of O(n2) (as shown in Theorem 3).

From a result in [DD03], we know that a stabilizer state can be represented as follows

|ψ⟩ = 1√
|A|
∑

x∈A

iℓ(x)(−1)q(x)|x⟩, (2.71)

where A is an affine subspace of Fn2 , ℓ : Fn2 → F2 is a linear function and q : Fn2 → F2 is
quadratic function. Clearly, an alternate form is a generalized phase state with degree-2

|ψf⟩ =
1√
|A|
∑

x∈A

if(x)|x⟩ (2.72)

where the summation is over A instead of the entire Fn2 , and the function f : Fn2 → Z4 has
its coefficients corresponding to the quadratic monomials take values in {0, 2}. We can now
learn this using separable measurements as stated in the following statement as opposed to
entangled measurements as required by Bell sampling [Mon17a].
Corollary 3. There exists an algorithm that uses M = O(n2) copies of a stabilizer state
|ψf⟩ = 1√

|A|

∑
x∈A

if(x)|x⟩ with an unknown polynomial f ∈ P4(n, 2) and outputs a polynomial

g ∈ P4(n, 2) such that g is equivalent to f with the probability at least 1 − 2−Ω(n). The
quantum part of the algorithm requires only single-qubit unitary gates and measurements in
the standard basis.

Proof. The subspace A of an unknown stabilizer state can be denoted as a + SA where
a ∈ Fn2 is a translation vector and SA is a linear subspace of Fn2 . To learn a and a basis
of the subspace SA, it is enough to measure O(n log n) copies of |ψf⟩ in the computational
basis. This in turn defines a subset of the n directions {ei} along which we need to search for
non-zero monomials in the partial derivatives of f . We can now use the learning algorithm
in Theorem 8 to learn the unknown stabilizer state using O(n2) copies with the desired
probability.

2.8 Learning phase states under depolarization

In this section, we consider learning algorithms in the presence of noise (in particular we
consider global depolarizing noise, local depolarizing noise and local depolarizing noise when
the phase state has additional graph structure).

2.8.1 Global depolarizing noise

Let
|ψf⟩ =

1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x⟩

76



where f : {0, 1}n → {0, 1} is a degree-2 polynomial in F2. For simplicity, we assume
f(x) = x⊤Ax (where A ∈ Fn×n2 is upper triangular). Suppose we are given noisy copies of
|ψ⟩ of the form

ψf = (1− ε) · |ψf⟩⟨ψf |+ε · I/2n

for some ε > 0, then how many copies of ψf are necessary and sufficient to learn f?
Below, we observe the following theorem:

Theorem 9. Let ε > 0 be a constant. Given 2n1+δ copies of ψf (with error ε) and n ·
2O(n/log logn) time (for some constant δ ∈ (0, 1) dependent on ε), there exists a procedure to
learn A.

Our argument crucially uses the result of Lyubashevsky.
Theorem 10 ([Lyu05]). We are given n1+δ ordered pairs (ai, ℓi) where ai are chosen uni-
formly and independently at random from the set {0, 1}n and for some c ∈ {0, 1}n,

ℓi =

{
c · ai (mod 2) w.p. 1/2 + η

1 + c · ai (mod 2) w.p. 1/2− η

If η > 2−(logn)δ for constant δ < 1, then there is an algorithm that can recover c in time
2O(n/log logn) with high probability.

We also use the following simple lemma. The procedure above is an application of Bell
sampling [Mon17a] to the pure state |ψf⟩⊗2 and mixed state ψ⊗2

f . We now prove our main
theorem statement.

Proof of Theorem 9. For simplicity let B = A + A⊤. One way to view Lemma 4 is that, it
uses two copies of ψn and produces a (z, wz) ∈ {0, 1}2n such that (wz)i = Bi · z (where Bi

is the i row of B) with probability (1 − ε)2 and is a uniformly random bit b ∈ {0, 1} with
probability 1− (1− ε)2. In particular,

(wz)i =

{
Bi · z w.p. 1/2 + (1− ε)2/2
1 +Bi · z w.p. 1/2− (1− ε)2/2.

Hence two copies of ψf can be used to obtain (z, (wz)1), . . . , (z, (wz)n). So the learning
algorithm first uses T = n1+δ many copies of ψf and produces

(z1, (wz1)1), . . . , (z
1, (wz1)n)

(z2, (wz2)1), . . . , (z
2, (wz2)n)

...
(zT , (wzT )1), . . . , (z

T , (wzT )n).

Each column above (i.e., (z1, (wz1)1), . . . , (z
T , (wzT )1)) can be now be given as input to

the algorithm of Theorem 10 where η = (1 − ε)2/2 is a constant (and δ > 0 is also a
tiny constant), which produces Bi with high probability.7 Hence feeding all the n different
columns to Theorem 10 allows the algorithm to learn B1, . . . , Bn explicitly. The overall

7The high probability in Theorem 10 is in fact inverse exponential in n.
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sample complexity is 2n1+δ and time complexity is n · 2O(n/log logn). Once we learn the off-
diagonal elements of A (since above we only obtain information of A+A⊤ which zeroes the
diagonal entries of A), a learning algorithm, applies the operation |x⟩ → (−1)xij |x⟩ if Aij = 1
for i ̸= j. Repeating this for all the n(n−1)/2 different i ̸= j, the resulting quantum state is∑

x(−1)
∑

i xiAii |x⟩ which is a linear phase state, and we can learn using Bernstein-Vazirani
algorithm.

2.8.2 Local depolarizing noise

Let us now show that learning phase states subject to a local depolarizing noise has an
exponential sampling complexity in the worst case.
Theorem 11. For every ε > 0, learning degree-2 phase states with ε-local depolarizing noise
has sample complexity Ω((1− ε)n).
Proof. Let D1 be a single-qubit depolarizing channel that implements the identity with
probability 1− ε and outputs a maximally mixed state with probability ε,

D1(ρ) = (1− ε)ρ+ εTr(ρ)
I

2
.

Let D = D⊗n
1 be the n-qubit depolarizing channel. Consider n-qubit GHZ-like states

|ϕ±⟩ = (|0n⟩ ± |1n⟩)/
√
2.

Using the identity D1(|0⟩⟨1|) = (1− ε)|0⟩⟨1| one gets

D(|ϕ+⟩⟨ϕ+|)−D(|ϕ−⟩⟨ϕ−|) = (1− ε)n(|ϕ+⟩⟨ϕ+|−|ϕ−⟩⟨ϕ−|)
which implies

∥D(|ϕ+⟩⟨ϕ+|)−D(|ϕ−⟩⟨ϕ−|) ∥1≤ 2(1− ε)n. (2.73)

It follows that the trace distance between k copies of the states D(|ϕ+⟩⟨ϕ+|) and D(|ϕ−⟩⟨ϕ−|)
is at most 2k(1 − ε)n. By Helstrom theorem, these states cannot be distinguished reliably
unless k = Ω((1 − ε)−n). Next we observe that |ϕ±⟩ are degree-two phase states modulo
single-qubit rotations Rx = ei(π/4)X . Indeed, suppose n = 1 (mod 4). Then a simple algebra
shows that

R⊗n
x |ϕ+⟩ = eiπ/4|ψf⟩ and R⊗n

x |ϕ−⟩ = e−iπ/4|ψg⟩, (2.74)

where ψf and ψg are n-qubit phase states associated with degree-two polynomials

f(x) =
∑

1≤i<j≤n

xixj (mod 2) and g(x) = f(x) +
n∑

i=1

xi (mod 2).

Since the depolarazing channelD commutes with single-qubit unitary operators, Eqs. (2.73,2.74)
give

∥D(|ψf⟩⟨ψf |)−D(|ψg⟩⟨ψg|) ∥1≤ 2(1− ε)n.
Thus k copies of the noisy phase states D(|ψf⟩⟨ψf |) and D(|ψg⟩⟨ψg|) cannot be distinguished
reliably unless k = Ω((1−ε)−n). We conclude that the sampling complexity of learning phase
states subject to local ε-depolarizing noise is at least Ω((1 − ε)−n), which is exponentially
large in n for any constant error rate ε > 0.
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2.8.3 Local depolarizing noise and small graph degree

Although learning phase states with local depolarizing is hard in general, a restricted class
of states is again easy to learn using the same technique from Section 2.8.1. Recall from that
section the notation f(x) = x⊤Ax and B = A + A⊤, where A is upper triangular and B is
symmetric. Interpreting B as the adjacency matrix of a graph, we define the graph-degree
of f to be gd(f) = maxi|Bi|, where Bi is the ith row of B. The graph-degree of f is also one
less than the maximum stabilizer weight of the stabilizer state |ψf⟩.

It is possible to learn phase states suffering from local depolarizing using only a few copies
if their graph degree is promised to be small.
Theorem 12. Let ε > 0 be a constant, D be local depolarizing noise on n qubits with strength
ε, and f(x) be a degree-2 polynomial with gd(f) < (log n)δ

′ for some constant δ′. Given 2n1+δ

copies of D(ψf ) and n2O(n/log logn) time (for some constant δ ∈ (0, 1) dependent on ε and δ′),
there exists a procedure to learn A.

Proof. Suppose we apply Bell-sampling, Lemma 4, to phase states suffering from local de-
polarizing noise D. Recall that this involves measuring the two-body operators Z ⊗ Z and
X ⊗X on corresponding pairs of qubits from two-copies of the state. Since these are two-
qubit operators, they are randomized by the noise with probability 1− (1− ε)2.

One use of Bell-sampling on two copies of the state gives (z, wz) ∈ {0, 1}2n, where each
of the 2n bits is correct (i.e. is the same as we would get without noise) with probability
(1 − ε)2 and uniformly random with probability 1 − (1 − ε)2. Therefore, (wz)i + Bi · z,
which is a sum of |Bi|+1 bits, is 0 (mod 2) with probability (1 − ε)2(|Bi|+1) and uniformly
random otherwise. Just as in the proof of Theorem 9, we can apply Theorem 10, now with
η = (1 − ε)2(gd(f)+1) > (1 − ε)2((logn)

δ′+1), to learn B. Once we learn B, we can learn the
diagonal elements of A, using the same procedure as in the proof of Theorem 9.

2.9 Applications

In this section, we describe how the algorithms for learning phase states (see Table 2.1) can
be used to learn the quantum circuits that produce binary phase states in Section 2.9.1 and
generalized phase states in Section 2.9.2. For each, we firstly describe the quantum circuits
that produce the phase states of interest followed by our results for learning these quantum
circuits.

2.9.1 Learning quantum circuits producing binary phase states

We consider a n-qubit circuit C produced from the set of gates S = {H,Z,CZ,CCZ, . . . ,Cd−1Z}
where H is the Hadamard gate and Cd−1Z denotes the controlled-Z gate with (d− 1) control
qubits. We will actually restrict ourselves to circuits C which start and end with a column
of Hadamard gates over all n-qubits, with its internal part C′ containing gates from S \ H.
We then have the following statement regarding the states produced by C
Proposition 3. Let C be an n-qubit quantum circuit, starting and ending with a column of
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Hadamard gates, with its internal part C′ only containing s gates from {Z,CZ,CCZ, . . . ,Cd−1Z}, then

|ψf⟩ = C′|+⟩⊗n =
1√
2n

∑

x∈{0,1}n
(−1)f(x)|x⟩, (2.75)

where the corresponding Boolean function f ∈ P(n, d, s).
Proof. We follow a proof strategy similar to that in [Mon07, Prop. 1] and [BMS16, Ap-
pendix B], which treated the case of d = 3. Let Zi1 be the Z gate acting on the i1th qubit,
CZi1,i2 be the controlled-Z gate with i1th qubit as the control, and similarly Cd−1Zi1,i2,...,id
with controls on (i1, . . . , id−1) qubits. We note that for any x ∈ Fn2 ,

⟨x|Zi1|x⟩ = (−1)xi1 , ⟨x|CZi1,i2|x⟩ = (−1)xi1xi2 , ⟨x|Cd−1Zi1,i2,...,id |x⟩ = (−1)xi1xi2 ...xid . (2.76)

As all these gates are diagonal, we can obtain an expression for ⟨x|C′|x⟩ by simply multiplying
the expressions of ⟨x|G|x⟩ for the different gates G in C′. To complete the proof, we note
that the F2-degree of f is k if and only if Ck−1Z is the gate with highest controls present in
C′ and the number of terms in f is at most the number of gates applied in C′.

Note that the states produced in Proposition 3 are exactly the binary phase states corre-
sponding to Boolean functions f given by Eq. (2.6). Some special classes of circuits included
in the above statement are Clifford circuits which produce graph states for d = 2, and IQP
circuits for d = 3. We observe from the above proposition that there can be more than one
quantum circuit C corresponding to a given polynomial f ∈ P(n, d, s). As the internal gates
of C′ in S commute, these gates can be reordered arbitrarily while still producing the same
Boolean function f .

To learn a circuit representation of C from samples, we have the following result.
Theorem 13. Let C be an unknown n-qubit quantum circuit, starting and ending with a col-
umn of Hadamard gates, with its internal part C′ only containing gates from {Z,CZ,CCZ, . . . ,Cd−1Z}.
A circuit representation of C can then be learned through O(nd) queries to C and using only
separable measurements. This can be improved to O(nd−1) queries to C and using entangled
measurements.

Proof. From Proposition 3, we note the correspondence between C′ and the binary phase
state |ψf⟩. From Theorem 3, we have that we can learn the F2 representation of f corre-
sponding to such a state, using O(nd) separable measurements. Given O(nd) uses of the
unknown C, we thus learn f from samples generated by applying H⊗nC on |0⟩⊗n followed
by separable measurements. We obtain a circuit representation of C′ (and hence C which is
H⊗nC′H⊗n) by inserting gates C|J|−1Zi1,i2,...,i|J| (where i1, i2, . . . , i|J | ∈ J) for each monomial∏

i∈J⊆[n] xi, characterized by set J , present in f . The result for entangled measurements is
obtained through application of Theorem 4.

2.9.2 Learning circuits containing diagonal gates in the Clifford hi-
erarchy

For any two n-qubit unitaries U, V ∈ U(n), let [U, V ] = UV U †V † denote the group commu-
tator, and let P (n) = ⟨iI,Xj, Yj, Zj : j ∈ [n]⟩ be the n-qubit Pauli group. The dth level of
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the Clifford hierarchy on n-qubits, denoted Cd(n), is defined inductively

C1(n) = P (n), (2.77)
Cd(n) = {U ∈ U(n) : [U, p] ∈ Cd−1(n), ∀p ∈ P (n)}. (2.78)

The second level C2(n) is the n-qubit Clifford group, while higher levels are not groups at
all, as they fail to be closed. In general, Cd(n) includes Cd−1(n) and more – for instance,
some gates that are in the set Cd(n) and not in any lower level of the hierarchy are Z1/2d−1

and the controlled-Z gate with d− 1 control qubits.
Let Dd(n) denote the subset of diagonal unitaries in Cd(n). In fact, Dd(n) are groups for

all d and n. Moreover, Dd(n) can be generated by Z1/2d−1 and C(i)Z1/2j with i + j = d− 1
[ZCC08]. In [CGK17], the authors characterize unitaries in the diagonal Clifford hierarchies
for qudits with prime power dimension. We reproduce one of these results for qubits.
Theorem 14. For d > 1, V ∈ Dd(n) if and only if, up to a global phase, V takes the form

exp


i

π

2d

∑

S⊆[n]
S ̸=∅

aSZ
S


 (2.79)

with ZS =
∏

j∈S Zj and aS ∈ Z for all S ⊆ [n]. We also have V ̸∈ Dd−1(n) if and only if at
least one aS is odd.

Proof. The reverse direction, that V in the form of Eq. (2.79) is in Dd(n), is easy to show
inductively.

The forward direction is a simple proof via contradiction. Suppose V ∈ Dd(n). Any
diagonal unitary can be written in the form of Eq. (2.79) if we allow the aS to be real
numbers.8 So assume that for some S0 ⊆ [n], S0 ̸= ∅ we have aS0 ̸∈ Z. Let i ∈ S0 and define
a Clifford unitary C to be a circuit of CX gates that maps ZS0 to Z(i) = Zi and any other
ZS, S ̸= S0, to some ZS′ with i ̸∈ S ′.

Now, define K0 = CV C†, Kj = [Kj−1, Xi]. Since V ∈ Cd(n), also CV C† ∈ Cd(n), and
we must have Kd = ±I. Calculating Kd however we have

K1 = [CV C†, Xi] = exp
(
−i π

2d−1
aS0Zi

)
, (2.80)

Kj = K2
j−1, j ≥ 2, (2.81)

Kd = exp (−iπaS0Zi) . (2.82)

We thus realize that Kd can only be proportional to identity if aS0 is an integer, from which
we get our contradiction.

We then have the following statement regarding the states produced by circuits V ∈
Dd(n).

8Suppose V =
∑

T e−iπϕT /2n |T ⟩⟨T |. Then we can choose the phases in Eq. (2.79) to be aS =
1
2N

∑
T (−1)S·TϕT (treating S, T ∈ {0, 1}n as bit strings). The inverse is of course ϕT =

∑
S(−1)S·TaS .
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Proposition 4. Let V be an n-qubit quantum circuit belonging to Dd(n), the subgroup of
diagonal unitaries in the d-th level of the Clifford hierarchy Cd(n). The state produced by the
action of V on |+⟩⊗n = H⊗n|0⟩⊗n (up to a global phase) is

|ψf⟩ = V |+⟩⊗n =
1√
2n

∑

x∈{0,1}n
ωf(x)q |x⟩, (2.83)

for some f ∈ Pq(n, d) with q = 2d, with the F2-representation

f(x) =
∑

T⊆[n]
1≤|T |≤d

cT
∏

j∈T

xj (mod 2d), cT ∈ 2|T |−1Z2d+1−|T | . (2.84)

Proof. Applying a unitary from Dd(n) to the state |+⟩⊗n, we obtain a generalized phase
state

V |+⟩⊗n =
1√
2n

∑

x∈{0,1}n
ω
g(x)

2d+1 |x⟩, (2.85)

g(x) =
∑

S⊆[n]
S ̸=∅

aS
∏

i∈S

(−1)xi , aS ∈ Z. (2.86)

We can also understand this phase state by converting g(x) to its F2-representation using
(−1)xj = 1−2xj (as x ∈ {0, 1}n). Since g(x) can be evaluated modulo 2d+1, monomials with
degree greater than d can be removed. We find

g(x) =
∑

T⊆[n]
|T |≤d

bT
∏

j∈T

xj (mod 2d+1), bT = (−2)|T |
∑

S⊇T
S ̸=∅

aS ∈ 2|T |Z. (2.87)

We note, from the b∅ term, that V introduces a phase of ωb∅
2d+1 to the basis state |0⟩⊗n.

Removing this, we obtain g̃(x) = g(x) − b∅, which is divisible by 2, i.e. f(x) = g̃(x)/2 is a
polynomial, because all bT for T ̸= ∅ are even. Therefore, Eq. (2.85) becomes

ω
−b∅
2d+1V |+⟩⊗n =

1√
2n

∑

x∈{0,1}n
ω
f(x)

2d
|x⟩, (2.88)

which are exactly the states from Eq. (2.11), since f(x) is the degree-d polynomial

f(x) =
∑

T⊆[n]
1≤|T |≤d

cT
∏

j∈T

xj (mod 2d), cT = bT/2 ∈ 2|T |−1Z. (2.89)

To learn a circuit representation of V from samples, we have the following result.
Theorem 15. Let V be an unknown n-qubit quantum circuit in Dd(n), the group of diagonal
unitaries in the d-th level of the Clifford hierarchy. A circuit representation of V can then
be learned through O(nd) queries to V and using only separable measurements.
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Proof. From Proposition 4, we note the correspondence between V and the generalized phase
state |ψf⟩. Using Theorem 8, we can learn the multi-linear representation of f (Eq. (2.84))
corresponding to such a state, using separable measurements on O(nd) copies of V H⊗n|0⟩⊗n.
We obtain a circuit representation of V by inserting appropriate gates corresponding to
monomials

∏
i∈T⊆[n] xi, characterized by set T , present in f . We now define these gates

with respect to the state |x⟩ where x ∈ {0, 1}n. For |T |≥ 2, we insert a controlled-diagonal
gate over qubits in T , that puts a phase of exp(iπcT/2d−1) if xj = 1, ∀j ∈ T and no phase
otherwise. For monomials corresponding to singletons xj for j ∈ [n] (i.e., |T |= 1), we insert
the phase gate ZcT /2

d−1
= |0⟩⟨0|+exp(iπcT/2

d−1)|1⟩⟨1| on qubit j.

2.10 Discussion

Our work leaves open a few interesting questions, some of which will be mentioned again in
Chap. 7.

Improving runtime. While our algorithms for learning phase states are optimal in terms
of the sample complexity, their runtime scales polynomially with the number of qubits only
in the case of binary phase states and separable measurements. It remains to be seen whether
a polynomial runtime can be achieved in the remaining cases of learning binary phase states
with entangled measurements and generalized phase states with separable measurements.

Quantum advantage. Suppose U is a polynomial size quantum circuit such that U |0n⟩
is a low-degree phase state associated with some Boolean function f : {0, 1}n → {0, 1}.
Our results imply there exists an efficient quantum algorithm that learns f given a classical
description of U . An interesting open question is whether the problem of learning f given
a description of U is classically hard. If this is the case, our results would imply a quantum
advantage for the considered learning task.

Property testing. What is the sample complexity of property testing phase states? Given
M copies of |ϕ⟩ with the promise that either |ϕ⟩ is a degree-d phase state or ε-far from the
set of degree-d phase states, what is an upper and lower bound on M? For d = 1, we can
learn the entire state using M = 1 copy and for d = 2, Gross et al. [GNW21] showed that
M = 6 copies suffice for this testing question. For larger d, understanding the complexity of
testing phase states is an intriguing open question left open by our work, in particular does
the sample complexity of testing n-qubit degree-d phase states scale as nd−2 (for d ≥ 2) or
does it scale as poly(cd, n) for some c > 1?

Learning more expressive quantum states. We leave as an open question whether our
learning algorithms can be extended to binary phase states with a small algebraic degree.
Such states have amplitudes proportional to (−1)trF (x), where F (x) =

∑d
i=0 aix

i is a degree-
d polynomial with coefficients ai ∈ F2n and tr : F2n → F2 is the trace function defined
as tr(x) =

∑n−1
j=0 x

2j . Here all arithmetic operations use the field F2n . What is the sample
complexity of learning n-qubit states produced by circuits containing non-diagonal unitaries
in the k-th level in the Clifford hierarchy, on the |+⟩n input? Similarly, what is the complexity
of learning a state which has stabilizer rank k?9 Similarly can we PAC learn these classes of

9We know how to learn stabilizer states and stabilizer-rank 2 states in polynomial time, what is the
complexity as a function of rank-k?
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quantum states in polynomial time?10

10For stabilizer circuits, we have both positive and negative results in this direction [Roc18; Lia23] but for
more generalized circuits, it remains an open question.
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Chapter 3

Heisenberg-limited hidden quantum
channel discrimination

3.1 Introduction

Discriminating between physical operations, often called quantum channel discrimination
(QCD) in quantum information science, is a fundamental task in experiments [Ací01; DFY07;
Cal+08; ZP20; Pir+19; WW19]. In QCD, an unknown physical operation is modeled as a
quantum channel C through a completely-positive trace-preserving map acting on the system
of interest [NC11]. The goal is to identify C from known alternatives using a discrimination
protocol. Discrimination protocols are considered efficient (1) when a desired error proba-
bility is achieved with fewer queries compared to classical methods [GLM04b; Bra+18] or
particularly successful (2) when the error probability is zero [Ací01; DFY07; DFY09]. For
example, sequential protocols [DFY07] involve an initial state ρm, and a positive operator-
valued measurement (POVM) M , and N queries, each consisting of the unknown channel C
and tunable unitary operations Vn (n = 1, . . . , N), as shown in Fig. 3.1(a). Protocols includ-
ing sequential and parallel protocols are able to achieve (1) and (2) when arbitrary operations
of Vn and measurements M are allowed on the system [Har+10; Pez+18a; Bra+18].

While conventional QCD considers a fully controllable system, experimental systems
often consist of a fully-controllable subsystem, which we call the measurement system M,
and an uncontrollable subsystem, which we call the channel system H [IHY85; GLP98;
Sch+05; Kat+22; Pec+21; Xia+13]. Here, M interacts with H to detect the action of C
on H. Such composite systems are used in quantum non-demolition measurements [IHY85;
GLP98], quantum logic detection [Sch+05; Kat+22], and occur in designs of superconducting
quantum devices [Pec+21].

These experiments motivate us to consider the following restrictions on system H in
QCD: arbitrary control of H is not possible, measurement on H is not allowed, and the
initialization of H is unreliable. The state on H thus evolves only under the dynamics C
on H. The separation between H and M motivates the third restriction as one no longer
has control over the state preparation on H and the initial state cannot be purified. We call
H probed under these three restrictions hidden, and the associated channel discrimination
problem Hidden system Quantum Channel Discrimination (HQCD). The effect of these
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Figure 3.1: Comparison between conventional quantum channel discrimination (QCD) and
hidden quantum channel discrimination (HQCD). Here the black boxes indicate the unknown
channels and state. In both cases, the action of unknown channel C is inferred by selecting
an input state ρm, applying controlled Vn operations (n = 1, . . . , N), and measuring with M
to minimize the error probability. (a) Conventional QCD, involving the direct manipulation
and measurement of the system. (b) HQCD, where the physical system H and measurement
systemM are explicitly distinguished.

restrictions on a conventional sequential QCD protocol is illustrated in Fig. 3.1(b). The
restrictions become crucial when the interactions between H andM have limited ability to
change the state in H 1. In a typical experiment, however, back-action on the channel is
avoided by using a high-impedance meter. Here, we model this meter as a controlled unitary
with the control on H and the unitary operation onM.

It is then natural to ask: Is discrimination with zero error probability or with fewer
queries than classical methods still possible under these restrictions? This is a difficult task
if conventional QCD techniques are employed. For example, discrimination of a unitary
channel is impossible when the input state is the maximally-mixed state in conventional
QCD [Hel76]. Nevertheless, we give an affirmative answer to this question by studying
Hidden Binary Channel Discrimination (HBCD), which is a minimal binary HQCD model
consisting of two qubits as shown in Fig. 3.2, and by constructing concrete measurement
protocols with the desired performance. The new protocols inherit ideas from conventional
QCD, including sequential, parallel, and multi-shot strategies [Har+10; DCS17]. Inspired
by studies showing that entanglement-free protocols can achieve performance comparable
to that of parallel protocols A, in our new sequential and multi-shot protocols the input
states are entanglement-free [DFY07; Bra+18; Hig+07a; Reh+18; RS21; KK22; DeB+23],
while our parallel protocol can utilize an entangled initial state. Nevertheless, surprising
performance differences arise.

In this chapter, we demonstrate that for the HBCD problem, sequential protocols out-
perform non-sequential protocols, including parallel and multi-shot protocols, in terms of
the number of queries required to achieve a desired error probability. Furthermore, we prove
that sequential protocols can achieve perfect discrimination with zero error. In contrast,
we show a case where non-sequential protocols fail to solve HBCD when C is applied once
before measurement. We extend the quantum metrology concepts of standard quantum limit

1When the universal gate set is available for interaction, one could use the SWAP gate between H and
M. The problem then becomes equivalent to conventional QCD.

86



(SQL) and the Heisenberg limit to HBCD.
The number of queries needed to solve the HBCD by sequential protocols is proven to be

asymptotically optimal using an information-theoretic bound and saturates the Heisenberg
limit, whereas non-sequential protocols achieve only the SQL. These advantages of sequential
protocols over parallel protocols in QCD are reported for the first time to the best of our
knowledge.

3.2 Hidden binary channel discrimination (HBCD)

In this section, we formally introduce the problem of HBCD, describe the type of queries
allowed in our learning model and finally the design of protocols involving these queries.

3.2.1 Problem statement

In our HBCD problem, we consider a two qubit system composed of a one-qubit hidden
system H on which the unknown channel C acts and a one-qubit measurement system M
used to learn C.
Definition 3. Unknown Channel C Let α ∈ (0, 2π), and θC be a Bernoulli random variable
taking values in {0, α} with probability PθC (0) = PθC (α) = 1/2. The unknown quantum
channel acting on H is then C = eiθCσx.
Definition 4. Query. A query Q(ψ, ϕ) is a unitary operation that acts on the two-qubit
system composed of H and M, and is parametrized by a pair of phases {ψ, ϕ}. The circuit
of Q(ψ, ϕ) is depicted in Fig. 3.2(a). It involves three components: (i) the unknown channel
C, (ii) a controlled rotation on M by ψ along the z-axis conditioned on the state of H, and
(iii) a single-qubit rotation on M by ϕ along the x-axis.

The query as defined above is inspired from quantum signal processing (QSP) [LC17]
and lends to the success of the constructed protocols. Connections to QSP are elaborated
in Appendix A.2. We now define our HBCD problem.
Definition 5. HBCD Problem. Suppose that ϵ ∈ [0, 1/2], and ρh is the initial one-qubit
mixed state on H. Let C be the unknown channel from Def. 3 with θC determined at
the start of the experiment and which remains constant for all subsequent queries. Then
HBCD(α, ϵ, ρh) defines the problem of learning an estimate θ̂C of the unknown θC with error
probability P (θ̂C ̸= θC) ≤ ϵ.

3.2.2 Protocols for HBCD

We would ideally like to solve an HBCD problem using as few queries as possible. In
addition to specifying these queries, we are allowed to specify the initial state ρm to M
and the POVM measurement M acting on M. Collectively, this is used to design a dis-
crimination protocol Σ to learn the unknown θC . The discrimination protocols considered
here involve N queries {Q1, . . . , QN}. We denote the corresponding vector of phases as
Φ ≡ (ψ1, . . . , ψN , ϕ1, . . . , ϕN) ∈ [0, 2π)2N .
Definition 6. Discrimination Protocols. Given a problem HBCD(α, ϵ, ρh), we define a dis-
crimination protocol Σ(N, d, Z, S) where N is the total number of the queries used, depth d

87



Figure 3.2: The query and sequential/multi-shot/parallel protocols. (a) Query Qn (Def. 4)
with phases ψn and ϕn specified independently. The upper (hidden) qubit undergoes unitary
evolution every round and at the end we measure the lower (measurement) qubit. (b-
d) Discrimination protocol S: (b) Sequential protocol, (c) Multi-shot protocol with depth
d = 2, (d) Parallel protocol. ρm can be a highly-entangled state for the parallel protocol.

is the number of concatenated queries before measurement, Z = (ρm,Φ,M) is the collection
of specified settings with Φ being the vector of phases specifying the N queries, and S defines
the type of protocol which can be sequential, multi-shot or parallel. The circuit corresponding
to Σ for different S is shown in Fig. 3.2(b)-(d).

Note that our discrimination protocols are designed using knowledge of ρh and α. The
depth d takes the value of N when S is sequential, N/m when S is a multi-shot protocol
using m shots and 1 when S is a parallel protocol over an N -qubit measurement systemM
interacting with N copies of H (see Fig. 3.2(d)). Our sequential protocol uses one probe
qubit 2, which is entanglement-free and has weaker discrimination performance compared to
parallel protocols in conventional QCD [PW09a; BCP19]. We compare their performances
in HBCD. The multi-shot protocol allows for adaptive choice of Z, but we do not explore it
in this chapter 3.

Let us now define the discrimination error associated with each protocol. Suppose
(y1, . . . , ym) is a set of m POVM outcomes, collectively denoted by the vector y ∈ {0, 1}m.
Given y, an estimator θ̂C(y) will output either 0 or α. The error probability of a protocol Σ
is then

P (θ̂C(y) ̸= θC ; Σ)

=
1

2

[
Pθ̂C(y)|θC (α|0; Σ) + Pθ̂C(y)|θC (0|α; Σ)

]
, (3.1)

where we have used the fact that the prior probabilities satisfy P (θC = 0) = P (θC = α) =
1/2. The estimator is designed such that θ̂C(0) = 0 and θ̂C(1) = α. Therefore, the error is

2We note that sequential feedback protocols with N qubit entangled input state are referred to as se-
quential protocols in some literature, and are strictly stronger than parallel protocols [Yua16; BMQ21].

3When d is fixed, we do not expect adaptivity to change the asymptotic scaling of N with α as observed in
the case of conventional QCD [CMW16; SHW22]. When d is allowed to adaptively change, a higher scaling
may be achieved. However, this is already captured by the sequential protocol.
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given by 1
2
(Py|θC (0|α)+Py|θC (1|0)). We now give an overview of the different estimators that

can be used in conjunction with the protocols.

3.2.3 Estimators

In this section, we describe the different estimators that can be used for solving HBCD with
different protocols. Let the measurement outcomes from applying any protocol be given
by yk ∈ {0, 1}, indexed by k. We collectively denote the vector of m binary outcomes as
y = (y1, . . . , ym) ∈ {0, 1}m. Suppose we set the phases Φ corresponding to the protocol such
that y = 1 with a high probability for θC = α and y = 0 with a high probability for θC = 0.
Some estimators that can then be used are as follows.

Majority Vote. A simple (albeit suboptimal) estimator for θ̂C uses the majority vote
(denoted by Maj) of the measurement outcomes:

θ̂C = α ·Maj(y). (3.2)

Likelihood Ratio Test. The likelihood ratio test (LRT) or the maximum likelihood esti-
mator is the optimal estimator for binary hypothesis testing.

Consider the log-likelihood function:

L(y; θC) =
m∑

k=1

log p(yk|θC) (3.3)

= Y1 log p(1|θC) + Y0 log p(0|θC), (3.4)

where Y1 =
∑

k y
k and Y0 = m− Y1

From maximum likelihood, we then have that

θ̂C =

{
α , L(y;α) > L(y; 0)

0 , L(y;α) ≤ L(y; 0)
(3.5)

3.3 Performance guarantees for protocols

Another metric of performance of the protocols is the scaling of the minimal number of
queries N required to solve HBCD(α, ϵ, ρh). As α becomes smaller, solving HBCD becomes
more difficult and hence N should grow. We can then define two scaling limits of N with α.

Definition 7 (Standard quantum limit and Heisenberg scaling in HBCD.). Suppose that
ϵ ∈ [0, 1/2), ρh, S, and d are given. For 0 < α ≪ 1, let N(α) be the number of queries
needed to solve HBCD(α, ϵ, ρh) by Σ(N, d, Z, S). We say that a depth-d S protocol achieves
the standard quantum limit (SQL) if N(α) = Θ(α−2) and Heisenberg scaling if N = Θ(α−1).

The SQL and the Heisenberg limit are defined in quantum metrology for parameter
estimation in terms of the number of access to an unknown physical system of interest. This
corresponds to the number of interactions N between H and M. In parameter estimation,
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a protocol is said to achieve SQL when the number of queries N required to achieve an
estimation error αPE scales as N ∼ α−2

PE and the Heisenberg limit when N ∼ α−1
PE [GLM11b;

Bra+18; Pez+18a]. Similarly, we can model the problem of discriminating the value of θC
from {0, α} in HBCD as estimating the value of θC . In this case, we succeed if the estimation
error is smaller than half of the angle difference (α/2). Definition 7 is then evident.

Perfect discrimination. We now discuss advantages of using sequential protocols in
HBCD.
Theorem 16 (Perfect discrimination in HBCD). Let α ∈ (0, 2π). Suppose there is a constant
j which takes the value of 1 for α ∈ [0, π

4
] ∪ [3π

4
, 5π

4
] ∪ [7π

4
, 2π), 2 for [3π

8
, 5π

8
] ∪ [11π

8
, 13π

8
] and

3 for the rest. There exists a sequential protocol Σ(N, d = N,Z, S = sequential) that solves
HBCD(α, ϵ = 0, ρh) with at most N = j⌈2π

β
⌉ queries.

Here, β is an effective rotation angle on the measurement qubit (to be shown soon). To
prove the theorem, we first make a diagonal unitary matrix with four query iterations. The
controlled rotation then becomes a single-qubit RZ gate onM with its rotation angle being
either −β for θC = 0 or β for θC = α. Using this rotation on M, we accumulate the phase
±β in the measurement qubit so that measurement qubit is |0⟩ for θC = 0 and |1⟩ for θC = α
[RC21; Mar+21a].

Proof of Theorem 16. Let us firstly consider α ∈ D1 = [0, π
4
] ∪ [3π

4
, 5π

4
] ∪ [7π

4
, 2π) and prove

that the perfect discrimination is possible in this case. Later, we will extend the results to
all α. Consider the following unitary matrix which involves four applications of queries

Q̌(θC , ψ) = Q4Q3Q2Q1, (3.6)

with ϕn = 0 and ψn = ψ for ∀n.
In this section we use computational basis {|00⟩, |01⟩, |10⟩, |11⟩} where the first qubit is

in H and the second qubit is inM. Then the matrix elements of Q̌ is given as follows:

Q̌ =




P1(x, a) 0 iR(x, a) 0
0 P2(x, a) 0 i 1

ak
R(x, a)

iR(x, a) 0 P3(x, a) 0
0 i 1

ak
R(x, a) 0 P4(x, a),


 , (3.7)

where we use parametrizations x ≡ cos θC and a ≡ exp(iψ), Pi(x, a) is a 4-degree polynomial
of x and a, which is even in θC ,

P1(x, a) = a2 − a(1 + a)(3 + a)x2 + (1 + a)3x4 (3.8)

P2(x, a) =
a− (1 + a)(1 + 3a)x2 + (1 + a)3x4

a3
(3.9)

P3(x, a) = a(a− (1 + a)(1 + 3a)x2 + (1 + a)3x4) (3.10)

P4(x, a) =
a2 − a(1 + a)(3 + a)x2 + (1 + a)3x4

a4
, (3.11)

and R(x, a) is a function that has a following form

R(x, a) = x
√
1− x2a(1− a)(−2a+ (1 + a)2x2). (3.12)
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An important observation for Q̌ is that all the off-diagonal elements share R(x, a). For a
given x there exists ã(x) such that

R(x, ã(x)) = 0, (3.13)

if and only if θC ∈ D1.
Now, we know that θC is a Bernoulli random variable in our HBCD, taking a value of 0

or α. Since we assume that α ∈ D1, we choose a = ã(α). Then we can readily show that Q̌
becomes diagonal both for θC = 0 and for θC = α:

Q̌ (0,−i log(ã)) =




1 0 0 0
0 1 0 0
0 0 e2iβ 0
0 0 0 e−2iβ


 , (3.14)

and

Q̌ (α,−i log(ã)) =




eiβ 0 0 0
0 e−iβ 0 0
0 0 eiβ 0
0 0 0 e−iβ.


 , (3.15)

where the rotation angle β is given by β = −i log(P1(cosα, ã)).
Now we can obtain an analytical solution that achieves the perfect discrimination between

θC = 0 and θC = α when α ∈ D. First, when β has the form of β = π
2n

(n ∈ N), we make a
n-th power of Q̌n.

Q̌n (θC = 0, ψ = −i log(asol)) =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , (3.16)

and

Q̌n (θC = α, ψ = −i log(asol)) =




i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i.


 , (3.17)

In this case, perfect discrimination is done with N = 4n queries with ρm = 1
2
(|0⟩ +

i|1⟩)(⟨0|−i⟨1|) and ϕ⃗sol ≡ {ϕ1, · · ·ϕ4n} = {0, 0, · · · , 0, π
4
}. The overall unitary matrix U =

Q4N · · ·Q1 reads:

U (θC = 0) =
1√
2




1 i 0 0
i 1 0 0
0 0 −1 −i
0 0 −i −1


 , (3.18)
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and

U (θC = α) =
1√
2




i 1 0 0
−1 −i 0 0
0 0 i 1
0 0 −1 −i


 . (3.19)

We can readily check that regardless the state in H the final state in M is |1⟩ for θC = 0
and |0⟩ for θC = α. Therefore this unitary achieves perfect discrimination. When π

2(n−1)
<

β < π
2n

, we can also construct the function that satisfies Eqs. (3.18) and (3.19) by choosing
the angles ϕn [Ros+22]. Therefore proof is done for α ∈ D1.

When α /∈ D1, we consider a process

S2 = Q2Q1 (3.20)

for α ∈ D2 = [3π
8
, 5π

8
] ∪ [11π

8
, 13π

8
] and

S3 = Q3Q2Q1 (3.21)

for the rest, i.e. α ∈ D3 = [π
4
, 3π

8
] ∪ [5π

8
, 3π

4
] ∪ [5π

4
, 11π

8
] ∪ [13π

8
, 7π

4
] . In both cases, we choose

ψn = ϕn = 0 for all n. Then we show that S has a form

Sn =




cos(nθC) i sin(nθC) 0 0
i sin(nθC) cos(nθC) 0 0

0 0 cos(nθC) i sin(nθC)
0 0 i sin(nθC) cos(nθC)


 , (3.22)

which is nothing but Rx(nθC) rotation gate on H. We can readily show that 2α ∈ D1 for
α ∈ D2, and 3α ∈ D1 for α ∈ D3. Therefore both cases reduce to the first case, α ∈ D1.

An important consequence of the fact that the polynomials Pi are even polynomials of
the unknown angle θC is that the discrimination protocol does not depend on the initial state
of the hidden system. First consider the situation that the initial state of the hidden system
is pure. Then it can be expressed in the eigenbasis of the channel Hamiltonian (i.e., σx)

|ψH⟩ =
√
α|+⟩+

√
1− α|−⟩. (3.23)

Applying the proposed composite protocol U(θC = 0) to this initial state then M does not
flip independently of |ψH⟩. Similarly, applying U(θC = 0) to the composite systems, we
see M is flipped independently of |ϕH⟩. As a result, when α ∈ D, then the discrimination
protocol is independent of the initial state.

Lastly, we briefly mention why this solution only achieves the SQL. The number of
query needs for this solution is characterized by β. Let us assume that α is small. Then
x = cos(α) = 1− α

2
+O)(α2). By solving R(x, a) = 0 and β = −i log(P1(cosα, ã)) for small

α, we obtain β = 2α2. This means that the solution in Theorem 16 obeys the SQL.

Although the above sequential protocol only achieves the SQL, our numerical results and
information-theoretic bound show that sequential protocols can be designed to attain the
Heisenberg limit.
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Weakness of the non-sequential protocol. Since any entanglement improves conven-
tional QCD [PW09a; BCP19], one may expect parallel protocols to be better than sequential
protocols. Indeed, this expectation is valid when the channel is noisy and error correction
is unavailable [Zho+18]. However, when the process is noiseless but the state is noisy, the
opposite is true; the sequential protocol outperforms the parallel protocol. When the query
depth d = 1 and the initial state in H is maximally mixed, we show that discrimination is
impossible for non-sequential protocols.
Theorem 17 (Impossible case for depth-1 non-sequential protocols). Suppose that ρh = I

2
,

and S is the multi-shot or parallel protocol. For any ϵ ∈ [0, 1/2) and α ∈ (0, 2π), the protocols
Σ(N, d = 1, Z, S) cannot solve HBCD(α, ϵ, ρh). That is, Σ does not obtain any information
on θC through M .

Proof. We show this by keeping track of the quantum state with each application of a query
in the circuit. After applying C, the state becomes ρh⊗ ρm. Notice that the rotation on the
hidden qubit does not change ρh because it is the maximally mixed state. Then we apply
the controlled rotation gate and eiϕ1σz , and obtain

1

2
(|0⟩⟨0|Rx(ϕ1)Rz(ψ1)ρmRz(−ψ1)Rx(−ϕ1) + |1⟩⟨1|Rx(ϕ1)ρmRx(−ϕ1)). (3.24)

This is independent of θC , and thus, the measurement outcome of the measurement qubit
does not determine θC at all. The situation does not change even when the parallel protocol is
used. Since Rx(θC)

⊗N1⊗NR†
x(θC)

⊗N = 1⊗N , the rotations on the hidden qubits do not change
the state of the hidden qubits through the controlled rotations. Thus, the measurement qubit
does not depend on whether θC = 0 ore α.

The key idea to the above proof is that the maximally mixed state remains invariant
under single qubit rotations. Therefore, the state (ρM) of M before measurement does not
depend on the value of θC . However, if d ≥ 2 queries are used, ρM correlates with θC through
the controlled interaction. Thus, protocols with d ≥ 2 queries are strictly better than non-
sequential protocols of d = 1. Next, we prove the asymptotic number of queries required to
solve the HBCD for d = 2. The multi-shot protocol with a fixed depth cannot achieve the
Heisenberg limit (Theorem 18), which is illustrated numerically later.
Theorem 18 (Standard quantum limit in HBCD by multi-shot protocol). For all ϵ ∈ [0, 1/2)
and ρh, depth-2 multi-shot protocol achieves the SQL.

Proof. Here, we compute the asymptotic scaling of a multi-shot protocol with constant query
depth i.e., d = const. Since the asymptotic scaling does not change for adaptive protocols
[CMW16], we consider non-adaptive protocols. Suppose the minimum error probability of a
single shot is ps. Assume that the minimization is done for ρi, ϕi,ψn, and M , we estimate
the lower bound for ps.

The minimum error probability to distinguish two pure states is given by the Helstrom
bound. In distinguishing two quantum channels, the minimum error probability of single-
shot measurement Ps is obtained by minimizing the Helstrom bound over possible input
states.

Suppose that we have a quantum circuit U to discriminate two channels. The action
of U is different for θC = 0 and for θC = α. Let Ui (i = 1, 2) be a unitary operator in
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the estimation protocol before measurement for θC = 0 and α, respectively. Then the error
probability of a one-shot measurement is given as follows.

Ps(θ̂C ̸= θC) = min
|ψ⟩

1−
√

1− |⟨ψ|U †
1U2|ψ⟩|2

2
, (3.25)

where |ψ⟩ is the initial state. Since |⟨ψ|U †
1U2|ψ⟩|≤ 1, this minimization is equivalent to:

Ps(θ̂C ̸= θC) =
1−

√
1−min|ψ⟩|⟨ψ|U †

1U2|ψ⟩|2
2

. (3.26)

Here, min|ψ⟩|⟨ψ|U †
1U2|ψ⟩| is nothing but the operator norm ∥U †

1U2∥. Therefore, we look for
the bound of ∥U †

1U2∥.
We use a known bound for the operator norm. Consider a K × L matrix

A =
(
a1 a2 · · · aL

)
, (3.27)

where am is K dimensional vector. Then the operator norm is bounded as follows. For all l,

∥A∥≥ ∥al∥ (3.28)

We apply (3.28) to ∥U †
1U2∥ for d = 2. Then we obtain

Ps ≥
1− 2α

2
. (3.29)

In the multi-shot protocol, the measurement is performed m times. An estimate θ̂C is
determined through LRT (Eq. 3.5) on these measurement outcomes. The probability of error
Pe is given by

Pe =
1

2

(
Pθ̂C |θC (0|α) + Pθ̂C |θC (α|0)

)
. (3.30)

This can be bounded as [Cov05]

2−mC(p0,pα) ≥ Pe ≥
1

4
exp (−mD(p0||pα)) , (3.31)

where m is the number of measurements, p0 (or pα) is the probability distribution over
measurements outcomes y when the truth is θC = 0 (or θC = α), C(·) is the Chernoff
information bound and D(·) is the KL divergence.

To achieve an error probability of at most ϵ, we can then show that

m = O

(
log(1/4ϵ)

4α2

)
(3.32)

This completes the proof.

The theorem implies that HBCD becomes challenging with decreasing α, and the mini-
mum distinguishable value of α scales as α ∼ N−1/2 with increasing N .

The advantages of sequential protocols over non-sequential protocols in HBCD are ev-
ident from Theorems 16-18. The sequential protocol alone enables perfect discrimination.
Additionally, non-sequential protocols with d = 1 cannot determine θC regardless of the
number of queries, while the sequential protocol can.
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3.4 Heisenberg-limited learning by sequential protocol

The possibility of achieving the Heisenberg limit (Def. 7) is still unanswered. We first derive
a lower bound on N required to solve HBCD.

3.4.1 Lower bound

Theorem 19 (Fundamental limit of HBCD). Any protocol Σ(N, d, Z, S) with N < 1√
2(1−cosα)

cannot solve HBCD(α, ϵ = 0, ρh).

Proof. Let Ui (i = 1, 2) be a unitary operator in the estimation protocol for θC = 0 and α,
respectively. For U1 and U2 to be perfectly discriminated, the following necessary conditions
must be satisfied.

D(U1, U2) = 0, (3.33)

where the distance is defined by

D(U1, U2) = min
η
|⟨η|U †

1U2|η⟩| (3.34)

and the minimization is done over all pure states [Ací01]. We evaluate (3.33) using the
spectral norm of a matrix with the help of its subadditivity:

∥A1A2 −B1B2∥≤ ∥A1 −B1∥+∥A2 −B2∥. (3.35)

Then, the upper bound of the distance between U1 and U2 is obtained:

∥U1 − U2∥≤
N∑

i=1

∥C(θC = 0)− C(θC = α)∥= N
√

2(1− cosα). (3.36)

It quantifies the distance between two unitary operators. Then we translate the distance of
operators to the distinguishability of them. Substituting the upper bound of the distance
into Eq. (3.33), we obtain

D(U1, U2) ≥ 1−N
√

2(1− cosα). (3.37)

Therefore, the necessary condition for (3.33) is

N ≥ 1√
2(1− cosα)

, (3.38)

i.e., this gives a lower bound of the query complexity for perfect discrimination shown in
Fig. 3.3. Here we can explicitly see that the bound for N is the Heisenberg limit for small α,

N ∼ 1

α
(3.39)

Expanding the bound on N in Theorem 19 around α ≪ 1 gives us that the Heisenberg
limit is indeed the optimal scaling, i.e., N = Ω(α−1).
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Figure 3.3: Number of queries N sufficient for solving HBCD(α, ϵ, ρh = I/2). For the sequen-
tial protocol (ΣS), we measure only once and use a phase sequence Φ of length N . For the
multi-shot protocol (ΣM), we use queries of depth d = 4 and measure multiple times. Trends
for different values of ϵ ∈ {0.005, 0.025, 0.05} are shown for ΣS and ϵ ∈ {0.025, 0.005} for
ΣM .

3.4.2 Numerical experiments

We now present numerical evidence that the Heisenberg limit is indeed achieved by the
sequential protocol while the multi-shot protocol using constant depth queries only achieves
the SQL. We solve the HBCD problem through measurements onM shown in Figure 3.2(b,c)
using a maximally mixed state (ρh = I

2
) on H. The state on M depends on the specified

phase sequence Φ. If some Φ of length N sets the state of M to be |1⟩ for θC = α and |0⟩
for θC = 0, then HBCD(α, ϵ = 0, ρh) is solved with one shot.

For the sequential protocol, we attempt to solve HBCD by measuring once and with
error probability ϵ ∈ [0, 1/2). The goal is to set the outcome y of measuring M in the
computational basis such that

Py|θC (1|α)− Py|θC (1|0) ≥ 1− 2ϵ, (3.40)

where we have used Eq. 3.1. To determine Φ that satisfies Eq. 3.40, we solve the following
optimization problem

argmin
Φ

(
1− Py|θC (1|α; Φ) + Py|θC (1|0; Φ)

)2
, (3.41)

with the additional constraint ψn = ψ,∀n ∈ [N ]. Details of the optimization is given in
A.3. We claim that Φ succeeds in HBCD(α, ϵ, ρh) if the solution to Eq. (3.41) satisfies
Eq. (3.40), i.e., R(Φ) ≤ 4ϵ2 where R(·) corresponds to the loss function defined inside
Eq. 3.41. Given α, we determine the minimal number of queries required by starting with
N = 1 and incrementing the value of N by one until the solution to Eq. 3.41 satisfies Eq. 3.40.

For the multi-shot protocol with constant depth-d queries, we use a phase sequence Φ of
length d but may measureM m ≥ 1 times to solve HBCD with error probability ϵ ∈ [0, 1/2).
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For a given value of α, we determine Φ of length d by solving the optimization problem of
Eq. 3.41. We determine m⋆ or the smallest number of shots required to achieve an error ϵ
by evaluating Eq. 3.1, considering the estimator based on the likelihood-ratio test over the
measurement outcomes A.3. The total number of queries required is then N = d ·m⋆.

In Fig. 3.3, we show the numerically determined trends of N required by the sequential
and multi-shot protocols to solve HBCD(α, ϵ, ρh = I/2). As expected, N increases as α
decreases and approaches zero for both protocols. In particular, we observe a scaling of SQL
for the multi-shot protocol but crucially a Heisenberg limited scaling N ∼ O(α−1) for the
sequential protocol.

3.5 Practical operation

We have commented so far on the performance of different discrimination protocols (Def. 6)
in terms of the number of queries N required to solve an HBCD problem HBCD(α, ϵ, ρh)
(Def. 5). In this section, we will comment on the performance of discrimination protocols in
terms of detection probability under constraints on the total number of queries allowed.

In classical binary hypothesis testing [Cov05], the performance of any estimator (or deci-
sion rule) can be specified fully in terms of the detection probability PD and the false-alarm
probability PF , defined as follows

PD = P
(
θ̂C(y) = α | θC = α

)
, (3.42)

PF = P
(
θ̂C(y) = α | θC = 0

)
. (3.43)

For an estimator, it is desired to have a high value of PD with a lower value of PF . There
may, of course, be additional criteria. For the sequential protocol, we want to achieve PD
higher than a certain value (say aD) while keeping PF below a certain threshold (say aF ) for
the minimal length of the phase sequence Φ. In the multishot protocol with constant query
depth d, we have the same goal but for the minimal number of shots m.

In Section 3.2.3, we noted that the estimator θ̂C(·) of choice for both the sequential and
multishot protocols is the likelihood ratio test (LRT, Eq. 3.5). We can rewrite this in the
following form for a discrimination protocol Σ (Def. 6)

θ̂C =




α ,

py|θC (y|α;Σ)

py|θC (y|0;Σ)
≥ η,

0 ,
py|θC (y|α;Σ)

py|θC (y|0;Σ)
< η,

(3.44)

where η ∈ [0,∞) is some threshold determined by the choice of prior probabilities and cost
criterion. Formerly in Eq. 3.5, this threshold had the value of 1 as we considered the prior
probabilities of θC to be uniform and the cost of making any decision to have equal risk. We
note that specifying the value of η specifies the decision rule in Eq. 3.44. In fact, we can
describe the decision regions in terms of the measurement outcomes y ∈ {0, 1}m as follows:

D(η) = {y : py|θC (y|α; Σ) /py|θC (y|0; Σ) ≥ η}, (3.45)
D̄(η) = {y : py|θC (y|α; Σ) /py|θC (y|0; Σ) < η}, (3.46)
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where D denotes the set of measurement outcomes y for which the LRT makes the decision
of θ̂C = α and D̄ denotes the complement of D or the set of measurement outcomes for which
the LRT makes the decision of θ̂C = 0.

Moreover, it is known that the LRT maximizes the detection probability for a given upper
bound on the false-alarm probability i.e., LRT is optimal under the Neyman-Pearson criterion
[Hel94]. Each value of η can thus be associated with a particular (PD, PF ) operating point.
Varying the value of η varies the decision regions (Eq. 3.46) and thus allows us to analyze
the trade-off between detection probability and false-alarm probability. The resulting curve
of (PD, PF ) points from varying η ∈ [0,∞) is called the operating characteristic.

We now adapt the operating characteristics to our quantum setting of HBCD in a similar
fashion to that of quantum detector operating characteristics (QDOC) in [Med+19] and will
also call them by the same name. For a given discrimination protocol Σ(N, d, Z, S) (see
Def. 6 for details on inputs) which includes specifying the type of protocol S and phase
sequence Φ, we generate QDOC by varying the decision regions (Eq. 3.46) i.e., the value of η
in LRT. Note that the phase sequence Φ and total number of queries N used are then fixed
a priori. Let us now analyze QDOCs for the sequential and multi-shot protocols in solving
HBCD for α = 0.1 in different scenarios.

Sequential protocol. In Figure 3.4, we plot QDOCs for the sequential protocol in solving
HBCD for α = 0.1 for increasing values of N . We observe the QDOCs are monotonically
increasing with PF as expected. There is only one intermediate point of (PD, PF ) in between
(0, 0) and (1, 1) as we only measure once in the sequential protocol. This operating point
corresponds to the value of η = 1. Values of operating points along the piece-wise linear
segments can be obtained through randomization [Cov05]. In Figure 3.4, as the number of
concatenated queries N is increased, the detection probability increases reaching PD > 0.95
for N = 16. This is expected but somewhat surprisingly, we obtain this higher detection
probability at a negligible increase in false-alarm probability.

0.0 0.2 0.4 0.6 0.8 1.0
PF

0.0

0.2

0.4

0.6

0.8

1.0

P
D

N=4
N=8
N=16

Figure 3.4: Quantum detector operating characteristics (QDOC) of the sequential protocol
in HBCD of θC = α = 0.1 from θC = 0 with increasing length N of phase sequence Φ.
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Multi-shot protocol. In Figure 3.5, we plot QDOCs for the mutli-shot protocol with
queries of constant depth d = 8 and increasing number of shots m. For higher values of
m, there are more number of intermediate operating points corresponding to values of η =(
py|θC (1|α)
py|θC (1|0)

)Y1 (py|θC (0|α)
py|θC (0|0)

)m−Y1
with Y1 ∈ {0, 1, . . . ,m} denoting the number of measurement

outcomes being one. Increasing the total number of queries N by increasing m allows higher
detection probabilities to be achieved and yet again at negligible increase in false-alarm
probability.

Fixed resource budget. We now consider the scenario where the total number of queries
allowed to be used by any protocol is fixed to N = 16. In Figure 3.6, we compare the
QDOC of the sequential protocol against various multi-shot protocols. We find that even
under constraints of experimental resources, it is advantageous to use a sequential protocol
to obtain a higher detection probability than any corresponding multi-shot protocol with
same resource constraints.

(a) (b)

Figure 3.5: Quantum detector operating characteristics (QDOC) of the multi-shot protocol
with a fixed query depth of d = 8 in HBCD of θC = α = 0.1 from θC = 0 with increasing
number of shots m. (a) Trend of PD with PF considering linear scales on both x-axis and
y-axis. (b) Trend of PD with PF for intermediate operating points obtained by each protocol
considering a log-scale on the x-axis to illustrate that PF remains orders of magnitude below
1 for all values of PD.
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(a) (b)

Figure 3.6: Quantum detector operating characteristics (QDOC) of a sequential protocol
(ΣS) and multi-shot protocol (ΣM) with a fixed budget of N = 16 in HBCD of θC = α = 0.1
from θC = 0. For the multi-shot protocol, we show OCs with increasing query depth d and
decreasing number of shots m such that N = d·m = 16. (a) Trend of PD with PF considering
linear scales on both x-axis and y-axis. (b) Trend of PD with PF for intermediate operating
points obtained by each protocol considering a log-scale on the x-axis to illustrate that PF
remains orders of magnitude below 1 for all values of PD.

3.6 Conclusion

In this chapter, we proposed the HQCD problem and analyzed the performance of different
protocols on HBCD. We showed sequential protocols outperform multi-shot and parallel pro-
tocols in HBCD. Notably, our work shows Heisenberg limited scaling (HLS) can be achieved
with a sequential protocol in HQCD for a single-qubit channel. We expect these results to
have interesting implications for other learning tasks on hidden quantum systems. Theo-
retically, one question is whether our results can be extended to problems of discriminating
multi-qubit channels on hidden systems or learning multi-qubit channels with continuous
parameters. If the hidden quantum channels correspond to unitary Hamiltonian evolution,
could we learn the Hamiltonian [Hua+23; Dut+23a] at HLS? Our results suggest the guiding
principle for measuring the properties of the hidden system requires transmitting information
through interactions between the hidden and measurement systems when they are separated.
The sequential protocol conveys information through repeated interactions and could achieve
HLS. Conversely, the parallel protocol fails to estimate the channel because the initial state
does not have entanglement across the two systems. We hope this interpretation could be
proved for other learning problems on hidden channels.

Code and data availability: Code for the different discrimination protocols in solving
HBCD numerically and data are available on GitHub 4.

4https://github.com/arkopaldutt/HiddenBCD
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Chapter 4

Active learning of quantum system
Hamiltonians

4.1 Introduction

Hamiltonian learning constitutes the problem of learning the Hamiltonian governing the
dynamics of a quantum system given finite classical and quantum resources. This is a funda-
mental problem encountered in identification of quantum systems [Col+05; Col+06; BY12],
operation of quantum information devices [Val+19; Wan+17], validation of theoretical phys-
ical models, and has implications for computational bounds on quantum algorithms [FG98;
DM15; Liu+16]. In the calibration of quantum computers alone, it is a significant step in
each of the following tasks: system characterization, learning device parameters, different
sources of noise, gate design [Inn+20] and control strategies for implementing robust quan-
tum gates with high fidelity. Moreover, a quantum computer typically requires frequent
recalibrations to account for drift in parameters over time requiring multiple iterations of
some Hamiltonian learning routine.

The resource requirements for learning a generic many-body Hamiltonian rise exponen-
tially with the system size [MRL08]. Even for a fixed system size, however, the achievable
learning error ϵ is fundamentally limited by the number of queries N made to the quan-
tum system. In particular, through repeated system queries, N in general scales as ϵ−2 as
a consequence of the central limit theorem. This is commonly referred to as the standard
quantum limit (SQL) or shot noise limited scaling. Using quantum resources, however, a
number of approaches have shown a much better Heisenberg limited scaling of N ∼ ϵ−1. The
Heisenberg limit is known to be fundamental [GLM04a; ZPK10; GLM11a; TA14; Pez+18b],
under a wide range of assumptions [IF07; Ber+15; SBD16; Gór+20], but it is typically only
saturated with the help of quantum resources.

This has been achieved using entanglement [GLM06] such as NOON states [Bol+96;
LKD02], but can also be accomplished without entanglement under certain circumstances.
For example in the problem of phase estimation [NC10], one has to estimate the phase ϕ in
an unitary operator of form U = exp(−iϕH) where H is a Hermitian operator and ϕ can
also be interpreted as the strength of coupling in a Hamiltonian. It has been shown that
Heisenberg limited scaling can be achieved using multi-round protocols using both adaptive
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measurements [Hig+07b; Wis+09] and predetermined non-adaptive measurement sequences
[Hig+09; KLY15]. In contrast, there has not been such a detailed study in the case of learning
a general many-body or a multi-parametric Hamiltonian. This motivates understanding how
might just classical resources be employed to solve the Hamiltonian learning problem with
a scaling which surpasses the SQL, and ideally achieves the Heisenberg limit.

Even if scalings higher than SQL cannot be achieved, it is still desirable to minimize
resource requirements. This may be accomplished by changing the estimation procedure
used for Hamiltonian learning in combination with engineered experiments. Fast Fourier
transform (FFT) and linear regression are some of the traditional estimation methods which
still form the powerhouse of modern Hamiltonian learning strategies [Aru+20a]. It has been
shown that adopting alternate estimation methods such as Bayesian estimation [EHF19],
stochastic estimation [Kra+19], and neural-network based Hamiltonian reconstruction [Val+19]
can reduce resource requirements and improve scalability. We will call the reduction in re-
source requirements achieved by replacing one Hamiltonian learning strategy with another
as query advantage. This will obviously depend on the two strategies being compared. We
will call the strategy being replaced as the baseline. The baseline and our proposed replace-
ments will be discussed in detail later. This brings us to the primary question we tackle in
this work: what is a common framework for Hamiltonian learning that can achieve query
advantage even if scalings higher than SQL are not achieved, just using classical resources?

One effective framework for surpassing central limit theorem bounds when possible and/or
achieving query advantage is active learning, e.g. using optimal experiment design. In
[KWR04], this idea was explored for quantum state tomography, process tomography and
Hamiltonian learning given a model, but in an offline manner. This has also been used to
reduce experiment budget and propose different control schemes [GR02]. Active learning of
a Hamiltonian is a more challenging problem than for quantum state tomography [Nun+10]
where one optimizes over different measurements and process tomography [GNS19] where
one additionally optimizes over initial states, due to the additional control parameter of sys-
tem time evolution. Active learning thus provides a general framework for making adaptive
queries to the quantum system, comprised of initial state, measurements and system time
evolution during Hamiltonian learning. In fact, [YF15] has shown that with adaptive feed-
back control, Heisenberg limited scaling can be reached in principle, but a recipe for this is
only given for estimation of a single Hamiltonian parameter and the procedure requires prior
information of the parameter. This was later extended to multi-parameter Hamiltonians by
[KU18]. A common ingredient of these works and the earlier mentioned multi-round proto-
cols for phase estimation, is trading the cost of using physical quantum resources for cost in
time resources [GLM06].

A sequential active learner for Hamiltonian learning based on the criteria of Bayes risk
was proposed as part of Robust Online Hamiltonian learning (ROHL) in [Gra+12] and later
Qinfer [Gra+17]. However, this active learner operates in a sequential manner, proposing a
query to be made one shot at a time. This limits its applicability to current hardware where
batching queries (or quantum circuits) is essential to overcome costs of typically expensive
computation of risk functions for different queries being considered, access over the cloud,
compilation, system queues, and latencies between classical electronics and the quantum
hardware. It is then necessary to ensure any active learner we introduce for Hamiltonian
learning operates in batch-mode.
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In this work, we introduce a Hamiltonian active learning algorithm (HAL) operating in
batch-mode based on the criteria of Fisher information, which is a way of measuring the
information content of different queries and naturally appears in the bound on the errors
achieved by a Hamiltonian learner. This resulting variant of HAL is called HAL-FI. We
also introduce another variant of HAL for the task of predicting queries to the Hamiltonian,
which uses the criteria of Fisher information ratio (FIR). We call the resulting active learning
algorithm HAL-FIR. We demonstrate the performance of HAL-FI experimentally on IBM
Quantum devices which are based on the superconducting cross-resonance (CR) gate. Com-
pared with passive learning which scales as SQL, we show that HAL-FI with a fixed space
of queries also has an asymptotic scaling of SQL but is able to achieve a constant reduction
of more than 96.9% in number of queries required for a desired learning error in learning
the two-qubit CR Hamiltonian on a 20-qubit IBM Quantum device. HAL-FI can achieve
more than 33% reduction in number of queries required when compared to current stan-
dard methods used for Hamiltonian learning such as the sequential active learner of Qinfer.
We finally show that queries involving exponentially growing system evolution time to the
quantum devices suffices during learning to achieve Heisenberg limited scaling with HAL-FI
when prior information is available. This is another example of trading physical quantum
resources with time resources as highlighted before.

The chapter is organized as follows. In Sec 4.2, we formally describe the problem of
Hamiltonian learning, and the concept of an active learner. In Sec. 4.3, we present the HAL
algorithms of HAL-FI and HAL-FIR. To illustrate the performance of HAL-FI, we consider
the example of calibrating CR gates on IBM Quantum devices. In Sec. 4.4, we describe
our experimental setup, provide a theoretical description of the Hamiltonian model of the
CR gate and physical models of the different noise sources affecting the quantum devices.
Further, we provide details of our experiments on evaluating the performance of HAL-FI.
Finally in Sec. 4.5, we compare the computational cost of different learners, describe the
amount of query advantage that can be obtained using HAL-FI and specify the conditions
under which Heisenberg limited rate of convergence or even super-Heisenberg limited rate of
convergence can be achieved. Specifically for CR gates, we show that HAL-FI can be used to
learn an accurate Hamiltonian using only a fraction of the queries required by currently used
methodologies, resulting in reduction of queries of around two or three orders of magnitude
over currently used methods for particular learning tasks.

4.2 Hamiltonian Learning

In this section, we present a description of the problem of Hamiltonian learning for a general
quantum system (Section 4.2.1), and in the presence of different noise sources (Section 4.2.2).
We will introduce the concept of an active learner in this context (Section 4.2.3). Notation
used for this work will be defined as introduced.

4.2.1 Problem Statement

This section of the chapter describes the unknown Hamiltonian of interest, specifies our query
setting, formally describes the different Hamiltonian learning tasks, and the estimators that
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are used for Hamiltonian learning.

Unknown Hamiltonian

Let H be a partially or fully unknown system Hamiltonian over n qubits. We can represent
H in terms of the n-qubit Pauli operators as H =

∑
P∈{σI ,σX ,σY ,σZ}⊗n

cPP with {σI , σX , σY , σZ}

representing the single-qubit Pauli operators and where cP ∈ R are the corresponding co-
efficients. We could also represent H as a Hermitian matrix in C2n×2n under the usual
computational basis.

We assume that we have a model for the unknown Hamiltonian denoted by H(θ),
parametrized by a real vector θ ∈ Θ ⊂ Rm of length m. We use Θ to denote the set
of all possible values over the Hamiltonian parameters. The model may be derived from
first principles based on the understanding of the physics of the quantum system or pro-
posed through empirical observations. We further assume that the system Hamiltonian is
time-independent.

Let the unknown Hamiltonian of the quantum system be H⋆ and the true Hamiltonian
parameters be θ⋆. We refer to the quantum system of whose Hamiltonian we wish to learn
as an oracle that we can query and which returns measurement outcomes upon querying.
We denote the random variable of query to the oracle by x and the resulting output by
the oracle as the measurement outcome random variable y corresponding to a single shot of
the qubits being readout in the standard computational basis. The pair of a query and its
corresponding output is called an example and is denoted by (x, y). The alphabet of query x
is referred to as the query space and we denote it by Q. The distribution from which queries
are sampled from Q is referred to as the query distribution and denoted by q. Commonly,
y ∈ Y = {0, 1}nr where nr is the number of qubits being readout. Our goal is to then learn
the parameters θ of the Hamiltonian with error ϵ from examples of the form {(x(i), y(i))}Ni=1

while minimizing the number of queries made to the oracle or the query complexity N .

Specifying a Query

We first describe what we mean by a query before specifying the different learning objec-
tives. The query comprises three parts: measurement operators M , initial state preparation
operators U , and control parameters t. A schematic of how the query is used in a quantum
circuit to evolve a quantum system is shown in Figure 4.1. In Figure 4.2, we show the oracle
of a quantum device receiving the input of queries of form x = (M,U, t) and returning the
corresponding outputs of a single shot of the qubits on the device being readout denoted by
a binary string of length nr: y ∈ {0, 1}nr .

Measurement Operators The measurement operators M ∈ M specify the admissible
set of unitary operators that can be applied after evolving the system Hamiltonian and
before measuring each qubit in the Z basis (as typical of current hardware). This in turn
specifies the basis set {|ψm⟩} used to generate the final measurement observation results.
The permissible set of M is typically constrained to be single-qubit operators or shallow
circuits, because it is experimentally realistic to implement these on current hardware with
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|0⟩⊗n
U e−iHt M

Figure 4.1: Quantum circuit picture of how the query x = (M,U, t) is used. The input to
the quantum circuit is the zero state |0⟩⊗n. Application of the preparation operator U on
|0⟩⊗n is used to create an initial state before interacting with the system Hamiltonian H for
time t. Finally, a measurement operator M is applied to the evolved state before measuring
in the usual computational basis denoted by the meter. The output is a single shot of qubits
being readout.

high fidelity. For our applications, we will consider M to correspond to single-qubit operators
corresponding to measuring under a Pauli basis.

Initial State Preparation Operators Together with the measurement operator, an ini-
tial state |ψ0⟩ must also be specified, in order to determine a measurement result from H.
This initial state can in principle be any unit vector in the Hilbert space, but much like for
measurement operators, we only allow a subset of possible states to be specified. We consider
|ψ0⟩ = |0⟩⊗n and allow for realistic single qubit unitary operators. A common initial state
specification is to provide a unitary operator U =

⊗n
i=1 Ui as a tensor product of single

qubit operators such as single-qubit Pauli operators and Hadamard gates acting on each of
the n qubits in the system. This then determines the U element of x. We denote the set of
all considered preparation operators as U

Control Parameters The control parameters are the last element of x, and are typically a
set of classical numbers. For example, one canonical control parameter is the time t for which
H should be applied. Other control parameters may modulate interactions between qubits.
In this work, we consider only the Hamiltonian evolution time t as a control parameter and
denote the set of all possible evolution times as T .

After defining the set of measurement operators M, the set of preparation operators
U , and the set of Hamiltonian evolution times T , the resulting query space is given by
Q = M × U × T . We require Q to be complete, i.e., there exist queries in Q that are
informative about each of the Hamiltonian parameters θi so that Hamiltonian learning can
succeed. As we will see later in our discussion on active learning in Section 4.2.3, completeness
of Q is equivalent to the condition of there existing a set of queries or query distribution for
which the resulting Fisher information matrix is full rank and invertible.

Learning Framework

Having fully described a query, we are now in a position to formalize the problem of Hamil-
tonian learning. While doing so, we draw parallels to and introduce language from machine
learning and statistical learning theory.

We are given a query space Q =M×U ×T constructed as discussed above and a space
over the measurement outcomes Y = {0, 1}nr . We consider the class of Hamiltonian models
H. A Hamiltonian H ∈ H defines a map from Q to the set of measurement outcomes taking
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X ∼ q̂
x = (M,U, t)

Queries Oracle

Y = {y ∈ {0, 1}nr}

Measurements Estimation Procedure

min
θ

L(θ;X,Y )

Active Learner
θ̂q̂

Figure 4.2: Schematic of Hamiltonian learning with an active learner: The oracle constitutes
the unknown Hamiltonian and noise sources, with the true parameter vector of θ⋆ which is
unknown and needs to be learned. Here, we show the device coupling map of the 20-qubit
IBM Quantum device ibmq_boeblingen. Learning is carried out on training examples of the
form (x, y) where x are queries inputted to the oracle specifying the measurement observable
M , preparation operator U and system time evolution t, and y are the corresponding mea-
surement outcomes outputted by the oracle. An illustrative quantum circuit picture of the
oracle in the noiseless case is shown in Figure 4.1. The set of queries inputted to the oracle is
denoted as X and the corresponding set of measurement outcomes outputted by the oracle
as Y . An estimation procedure is run on the training examples of (X, Y ) to learn a model
parameter estimate θ̂. The complete top row corresponds to how a passive learner operates
and is also called open-loop Hamiltonian learning. We add a feedback loop to introduce an
active learner which uses the current estimate of model parameters θ̂ to prescribe the distri-
bution q̂ from which queries to the oracle should be sampled from next. This process is then
repeated during learning until an accurate estimate θ̂ is obtained. The Hamiltonian Active
Learning (HAL) algorithm introduced in this work comprises the estimation procedure and
active learner shown in this schematic. The active learner is described in Section 4.2.3 and
the HAL algorithm in Section 4.3.

values in Y by Born’s rule. In particular we assume the availability of a model description
H = {H(θ)|θ ∈ Θ} ⊂ Rm parametrized by the vector θ and where Θ is considered to be the
space over the parameters. When no prior information is available to constrain the parameter
space, we can consider Θ = Rm. We denote the true Hamiltonian as H⋆ and assume that
H⋆ ∈ H i.e., it is realizable. We denote the parameter vector of the true Hamiltonian as θ⋆.
Our goal is to learn an estimate of θ⋆ which we denote by θ̂. With regards to notation, we
use θ whenever we make statements that are true for any parameter in Θ.

For the parameter vector θ, the label (or measurement outcome) y given query x =
(M,U, t) is produced with the conditional probability

py|x(y|x;θ) =
∑

z

∣∣〈yz|Me−iH(θ)tU |0⊗n
〉∣∣2 (4.1)

as per Born’s rule and assuming the absence of noise. The summation is over the hidden
measurement outcomes of the (n − nr) qubits that are not read out which we denote by z
and |·| is used to denote the absolute value.

Given the dataset of N training examples D = {(x(i), y(i))}i∈[N ], the goal is to learn the
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Hamiltonian parameter vector θ which characterizes the conditional probability (Eq. 4.1)
over measurement outcomes in Y given queries in Q. This is a supervised learning task for
which a suitable loss function is

Loss(θ;D) = L (D;θ) +R(θ) (4.2)

where L is a suitable error function for assessing the chosen model on the training dataset,
and R is a regularization function penalizing model complexity. The latter is chosen to incor-
porate prior information, enforce conditions such as sparsity through ℓ1-norm and generalize
to unseen data. The parameter estimate is determined by minimizing the loss function
θ̂ = argminθ∈Θ L(θ;D). After obtaining an estimate θ̂, it is common to evaluate the per-
formance against a testing dataset which includes examples not seen during training. This
testing dataset which we denote as Dtest = {(x(i), y(i))}i∈[Ntest] contains Ntest queries and their
corresponding outputs. The Ntest queries are sampled from the query space Q according to
a testing distribution which we denote by ptest. This allows us to further distinguish between
the problems of model inference and prediction against ptest.

Model inference The goal is to learn a parameter estimate θ̂ within a prescribed learning
error ϵ with the fewest queries N , without making special considerations for the testing
distribution ptest which may change or may be unknown. We use root mean squared error
(RMSE) as L in Eq. 4.2

RMSE(θ̂; ξ) =




m∑

i=1

E



(
θ̂i
ξi
− θ⋆i
ξi

)2





1/2

(4.3)

where θ⋆ is the parameter vector corresponding to the unknown Hamiltonian H⋆, and ξ
is the vector to non-dimensionalize and normalize θ. This is done to account for different
relative magnitudes of each parameter component θ⋆i and to ensure that the RMSE does
not explode due to contributions of few parameter components. These normalization factors
ξ can be obtained during estimation or be available through prior information. When an
unbiased estimator is used, L may be reduced to being the square root of the variance,[∑

j Var(θj/ξj)
]1/2

. It is typically hard to ensure that an estimator is unbiased, even though

this is desired. To find θ̂ that minimizes the RMSE given D, we use estimation methods
based on the asymptotically unbiased maximum likelihood estimator (MLE) and Bayesian
estimation, all of which we will discuss in Section 4.2.1.

Prediction against a testing distribution ptest The goal is to learn an estimate θ̂ that
will allow us to perform well on predicting the likelihood function of measurement outcomes
given queries sampled from ptest. In such a scenario, L is still the RMSE but the performance
of the estimate is assessed through the testing error:

Testing Error = Ex∼ptest,y∼py|x(·|x;θ⋆)[L(y|x; θ̂)− L(y|x;θ⋆)], (4.4)

where we have denoted the negative log-likelihood− log py|x (y|x;θ) in shorthand by L(y|x;θ)
for a general measurement outcome y and query x given model parameters θ. We have chosen
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the testing error as the expectation of the difference in negative log-likelihood when using
the estimate θ and truth θ⋆ with respect to the testing distribution ptest. This difference
in negative log-likelihood is also often called the log-likelihood ratio [Sou+17]. It is then
desired to learn θ̂ such that the testing error is lower than a given error ϵ. The error ϵ here
may need to be specified relative to how the negative log-likelihood scales which will depend
on the Hamiltonian of interest and the queries themselves.

Given N training examples, we then say that we have succeeded at model inference
(prediction) if we are able to produce an estimate θ̂ such that the RMSE (testing error)
is bounded by some error parameter ϵ. We want to accomplish these learning tasks by
minimizing the resource requirements or number of queries N .

We distinguish between the two problems of model inference and prediction against ptest
as the ideal training datasets for these two learning tasks may come from two different
distributions. This will influence how the training data is chosen when we introduce an
active learner into Hamiltonian learning, as we will discuss in Section 4.3. The performance
of the Hamiltonian learning algorithms in tackling the learning problem 4.2.1 will also be
useful for cross-validation and testing the robustness of these methods.

Estimators

We now discuss the different types of estimators that may be adopted for learning an estimate
θ of the Hamiltonian parameters from the N measurement outcomes Y = {y(i)}i∈[N ] obtained
from the quantum system upon N queries X = {x(i)}i∈[N ]. Collectively, we refer to them as
the training dataD = (X, Y ) = {(x(i), y(i))}i∈[N ]. The active learner for Hamiltonian learning
we introduce in this work will be designed for use with the following maximum likelihood
estimator (MLE) but is also compatible with the other estimators mentioned here.

Maximum Likelihood Estimation. The maximum likelihood estimator (MLE) deter-
mines an estimate of the parameters θ̂ from the data D through

θ̂ = argmin
θ∈Θ

1

N

N∑

i=1

− log py|x
(
y(i)|x(i);θ

)
, (4.5)

where − log py|x
(
y(i)|x(i);θ

)
is the negative log-likelihood of the measurement outcome y(i)

given the query x(i) and when considering the model parameters θ. The optimization problem
of Eq. 4.5 is typically non-convex and thus specific procedures may be required for avoiding
local minima and converging to the global minimum.

Regression. Estimation based on regression is used as a proxy for the MLE or sometimes
even as part of the first step in a procedure to solve the optimization of MLE (Eq. 4.5). Let
the empirical likelihood computed from measurement outcomes corresponding to query x be
given by p̂y|x. Suppose we have a model l(x;θ) (e.g, Gaussian or sinusoidal) of the likelihood
function for query x given parameters θ. We can then obtain an estimate by performing
least squares:

θ̂ = argmin
θ
||p̂Y |X − l(X;θ)||22, (4.6)

108



where we have denoted p̂Y |X as the empirical likelihood computed for different queries in
queries X using corresponding measurement outcomes in Y from D. Note that Eq. 4.6 could
be further improved by weighting the empirical likelihoods by their variances due to shot
noise.

Bayesian Estimation. Instead of the frequentist approach above, we can also adopt a
Bayesian approach during estimation. The Hamiltonian parameters θ are treated as a ran-
dom vector whose distribution is updated according to Baye’s rule:

p(θ|D) =
p(Y |θ, X)p(θ)

p(Y |X)
, (4.7)

where p(Y |θ, X) is the likelihood function over measurement outcomes Y given queries X
and parameter vector θ, p(θ) is the prior distribution of θ and p(θ|D) is the posterior
distribution after incorporation of training data D = (X, Y ). Often, we will use the Baye’s
rule iteratively and in that case the posterior from one step becomes the prior for the next
step. When a single point parameter estimate is desired, we will use the posterior mean
θ̂ = Eθ|D [θ] which is optimal for minimizing RMSE [KLY15].

Computing the denominator in Eq. 4.7 and the mean over the posterior distribution is
computationally expensive and usually intractable in practice. This computational burden is
reduced if structural information about the distributions in Eq. 4.7 are known (e.g., Gaussian)
or can be reliably enforced. This is done in Bayesian estimation methods such as the Kalman
filter [Jaz07] and Gaussian mixture model based filter [AS72]. For our applications, we will
consider sequential Monte Carlo methods (also called particle filtering) [DJ+09].

We note that Eq. 4.5 is an optimization problem that may be solved in several ways,
and similarly there may be different strategies to evaluate Eq. 4.7 in Bayesian estimation.
The different programs or algorithms to solve the optimization problem (or Baye’s rule)
are commonly called optimization procedures or estimation procedures. Different procedures
have different properties such as rate of convergence and optimality such as guarantee of a
local or global minimum. In order to improve convergence or search direction, it is common
for procedures to require first or second gradient information. The estimation procedure will
need to be specified along with the formulated optimization problem at hand for a complete
specification of the learning algorithm or learner.

4.2.2 Learning in the Presence of Noise

Previously, in Section 4.2.1, we gave formal statements of the Hamiltonian learning problem
in the absence of noise assuming an ideal oracle. However, the oracle is usually noisy due
to the presence of different noise sources affecting the quantum system. In this section, we
describe the problem of learning in the presence of these noise sources.

Common noise sources include readout noise, decoherence, and imperfect control of the
quantum system. State preparation and measurement (SPAM) errors are already accounted
for by considering these noise sources. Classical SPAM errors encountered are included in the
readout noise and the errors in implementing state preparation or measurement operators
fall under imperfect control.
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Readout Noise The readout line of the qubit measurement outcomes y is also a classical
communication channel and hence suffers from bit-flip errors. The readout noise can then be
modeled as a classical bit flip channel where the true measurement outcome yi ∈ {0, 1} of the
ith qubit may be flipped. We denote the observed measurement outcomes’ random variable
by ỹ which can be interpreted as a noisy observation of y. We denote the conditional proba-
bility of observing ỹ given measurement outcome y which is hidden from us as pỹ|y(ỹ|y). Note
that in general we expect the readout channel to be asymmetric i.e., pỹ|y(1|0) ̸= pỹ|y(0|1),
and this is accounted for in the readout noise model. The probability of observing a noisy
measurement outcome ỹi of the ith qubit given query x is then given by

pỹi|x(ỹi|x;θ) = pỹi|y(ỹi|ỹi)pyi|x(ỹi|x;θ) + pỹi|y(ỹi|1− ỹi)pyi|x(1− ỹi|x;θ) (4.8)

where py|x(y|x;θ) is given by Eq. 4.1.

Imperfect Control Strategies In general, a Hamiltonian can be decomposed as

H(t) = Hd +
K∑

k=1

Hk(t, uk(t)) (4.9)

where Hd is the drift/free part of the Hamiltonian that is internal to the system and cannot
be controlled externally. The terms Hk corresponds to the parts of the Hamiltonian that
can be controlled using the control function uk(t). Depending on the quantum architecture,
the control function can be realized as microwave pulses for superconducting qubits, optical
pulses for ion traps, etc.

Target operators Uf are then obtained starting from the identity matrix I by implement-
ing controls uk(t) over time duration [0, T ] as

Uf = T

[
exp

(
−i
∫ T

0

[
Hd +

K∑

k=1

Hk(t, uk(t))

]
dt

)]
(4.10)

where T is the time-ordering operator. These target operators Uf can be preparation opera-
tors, measurement operators or different gates e.g., the Clifford gates. Imperfections in these
pulses will lead to errors in Uf . For example, the strength of the qubit-qubit interactions is
sensitive to variations in the pulse amplitudes. Strong driving can lead to leakage of states
outside of the computational subspace. Moreover, bandwidth effects or dispersion can cause
leading or trailing edge distortions in the pulse shapes that can lead to errors in the unitary
operator implemented.

Decoherence Let us consider the unitary operator of U(t) = e−iHt. The application
of this unitary operator is accompanied by decoherence on a real quantum system due to
interactions with its environment. We model this as a depolarizing channel E

E(ρ(t)) = (1− pd(t))ρ(t) + pd(t)
I

2n
(4.11)

where ρ(t) = U(t)ρ(0)U(t)† is the state obtained on application of the unitary U(t) to the
initial state ρ(0), pd(t) is the probability of the state being depolarized and I/2n is the
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maximally mixed state. We have assumed the case of complete depolarization here. To
obtain a functional form of pd(t), we note that up to first order, depolarization events can be
assumed to arrive under a Poisson process with rate µ. By a depolarization event, we refer
to the occurrence of an error that completely randomizes the quantum state. As the time
between Poisson events follows an exponential distribution, we can write

pd(t) = 1− exp

(
−t− t0

µ

)
(4.12)

where t0 denotes the starting time of the experiment. Denoting the probability of measure-
ment outcomes y given a query x under depolarization errors as pE(y|x;θ), we have

pE(y|x;θ) = exp

(
−t− t0

µ

)
py|x(y|x;θ) +

1

2n

(
1− exp

(
−t− t0

µ

))
(4.13)

where py|x(y|x;θ) is the probability of measurement outcome y assuming no depolarization
given by Eq. 4.1. The rate µ can be related to the amplitude relaxation time T1 and dephasing
time T2 of the qubits on the quantum system. We will describe this in Section 4.4.3 for the
IBM Quantum devices considered for application of Hamiltonian learning.

Let the collective set of parameters associated with the different noise models so far
described be denoted by ζ. The measurement outcomes y from the oracle will then be a
function of the queries x and the true parameters (θ⋆, ζ⋆). In order to obtain estimates for
ζ̂ in addition to θ̂, we solve the following modified optimization problem over the training
examples

(
θ̂, ζ̂

)
= argmin

θ∈Θ,ζ∈Z

1

N

N∑

i=1

L
(
x(i), y(i);θ, ζ

)
+R(θ, ζ) (4.14)

However, this increases the computational cost of the estimation procedure due to the in-
crease in the number of parameters and the corresponding search space. In practice, prior
calibration data can be used to obtain estimates of ζ̂ which are then used in Eq. 4.2 to obtain
θ̂.

Hence, the Hamiltonian learning Problems 4.2.1 and 4.2.1 can be restated assuming
additional information of the noise model parameters ζ̂ when we have access to a noisy
oracle. When describing our application of Hamiltonian learning, we will describe both the
Hamiltonian of interest in Section 4.4.1 and the specific noise sources in Section 4.4.3.

4.2.3 Active Learning of Hamiltonians

This subsection introduces the concept of active learning and how an active learner can be
used in the context of Hamiltonian learning. We begin by giving a quick overview of different
types of learners, and describe how active learning differs from passive learning and online
learning. This is followed by an overview of the different active learning (AL) strategies that
have been proposed in the literature. We describe which AL strategy seems best suited for
Hamiltonian learning and particularly when using the maximum likelihood estimator (MLE)
(Eq. 4.2.1). AL strategies based on Fisher information (FI) for Problem 4.2.1 and Fisher
information ratio (FIR) for Problem 4.2.1 seem to be notably appropriate. In doing so, we
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establish criteria for evaluating the performance of an AL algorithm, and observe that AL
algorithms are known to solve some learning problems faster than passive learners. Moreover,
under some circumstances, AL algorithms can exceed the central limit theorem bounds.

Types of Learners

An overview of different learners often considered for learning tasks is given below. We
will use the passive learner as a baseline and the active learner is the focus of our work.
A description of an offline learner and online learner is given for completeness and to
distinguish an active learner from them.

Offline Learner In offline learning, all of the training data is given to the learner at
once and a model is learned. The training dataset may be made available to the learner or
collected by sampling queries from an arbitrary distribution and then obtaining outputs from
an oracle using these as inputs. This is the learning paradigm under which most machine
learning tasks operate in.

Online Learner In online learning, the training data is made available in a sequence,
typically one at a time by a referee. A query xt is made available to the learner at the t’th
round in a sequence after which the learner constructs an estimate of the output ŷt to this
query. The learner provides ŷt to the referee, and suffers a loss that depends on ŷt and the
actual output. The learner is then provided with feedback by the referee which the learner
can then use to update the model. In this case, the queries that are provided to the learner
by the referee may be adversarial or adaptive to the learner’s behavior. The learner has no
control over the query distribution from which these queries arrive.

Passive Learner In the learning problems described in Sec. 4.2.1, we did not specify the
distribution from which the queries x are sampled from. In open-loop Hamiltonian learning,
the query distribution remains fixed during learning and all the queries to the oracle are
sampled from this distribution. When no prior information is available, it is common to set
the query distribution to the uniform distribution over the query space Q. We will refer to
this setting as passive learning through out this chapter. Combined with a specification of
an estimation procedure, the passive learner will serve as a baseline to the active learner
which we introduce in the next section.

Active Learner In active learning (AL), the learner has access to the query space Q and
the ability to select queries or decide the query distribution during training using the current
estimates of the model parameters θ̂. This is accomplished by introducing a feedback into
the open loop Hamiltonian learning approach shown earlier in Figure 4.2. Based on the
current estimate θ̂ and the queries made so far combined with their respective outcomes,
the active learner proposes a query distribution from which queries should be selected from
to send to the oracle. These queries may be sent to the oracle in a sequential manner one at
a time or in batches. In Section 4.2.3, we discuss different criteria used for query selection
or proposing query distributions.
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Here, we distinguish a passive learner from an offline learner only in the number of rounds
of training data collection. An offline learner is given access to a complete training dataset
or is allowed to collect it through queries to an oracle in one round. On the other hand, a
passive learner has continued access to the oracle and is allowed to collect training data until
the learning task has been accomplished. The primary difference between the active learner
and the online learner is that the former has control over the query distribution from which
it will select queries to input to the oracle.

Query Criteria for Active Learner

There have been multiple criteria proposed for query selection but are usually subdivided
into the two categories of informativeness and representativeness. Criteria based on infor-
mativeness aim to select queries that will reduce the uncertainty of the statistical model
and include uncertainty sampling [LG94; Set09], query-by-committee [SOS92; BRK07], and
margin [BBZ07]. On the other hand, the goal of representativeness [YBT06; FAJ06] is to
ensure selection of queries that exploit the structure of the underlying distribution and are
diverse. There has also been exploration into combining the criteria of informativeness and
representativeness [Du+15; HJZ14].

Multiple query criteria used in active learning in practice are based on heuristics and
empirical evidence [Set12]. Here, we choose the informativeness criteria of Fisher information
(FI) and Fisher information ratio (FIR) as they have direct relationships with the different
learning problems we introduced in Sec. 4.2.1. This allows us to provide guarantees on the
performance of our AL strategy. Later, we discuss how we can ensure that representative
queries are also selected.

We introduce some notation before discussing the query criteria for our AL strategy. Let
us denote the Fisher Information matrix of a particular query x ∈ Q as Ix(θ) where the
(i, j)th element of the matrix is given by

Ix(θ)[i, j] = E
[
∂ log py|x(y|x;θ)

∂θi

∂ log py|x(y|x;θ)
∂θj

]
(4.15)

and where the expectation is taken with respect to p(y|x;θ). The Fisher Information matrix
is equivalently written as Ix(θ) = E[SST ] where S = ∂ log py|x(y|x;θ)/∂θ is commonly called
the score vector. Instead of selecting one query at a time, we often require the active learner
to select a distribution over the query space Q which we will call the query distribution. The
Fisher Information matrix corresponding to q will then be given by

Iq(θ) = Eq[Ix(θ)] =
∑

x∈Q

q(x)Ix(θ) (4.16)

where the summation can be replaced by an integral in the case of a continuous query space.
If the parameters describing the Hamiltonian model are θ ∈ Rm, then Iq(θ) ∈ Rm×m. Let
us now describe the different query criteria in the context of the different learning tasks.

RMSE of Parameters If the learning objective is to learn the parameters with small
RMSE (Problem 4.2.1), a natural query optimization strategy is obtained by noting the
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Cramer-Rao bound for unbiased estimators: [CT06]:

Cov(θ) ≥ 1

N
I−1
q (θ) (4.17)

∑

i

Var(θi) ≥
1

N
Tr(I−1

q (θ)) (4.18)

Combining the Cramer-Rao bound with the fact that the parameter estimates converges in
probability θ̂ → θ⋆ for an unbiased estimator such as MLE and the distribution converges in
law as

√
N(θ̂−θ⋆)→ N

(
0, I−1

q (θ⋆)
)

[LC06; Was13], we get that MLE is an asymptotically
efficient estimator with the efficiency equal to the Fisher information over the training ex-
amples [Sou+17]. An optimal query distribution can then be obtained through the following
query optimization:

q⋆ = argmin
q∈P

Tr(I−1
q (θ⋆)) (4.19)

where P is the family of all valid probability distributions over the query space Q. We also
note that for q⋆, Iq⋆ must necessarily be invertible and hence full rank. This ensures that the
queries inform us about all the Hamiltonian parameters of interest. Also for an unbiased and
consistent estimator, the Cramer-Rao bound is likely to be saturated in the limit of large
number of queries.

Testing accuracy against testing distribution When the learning objective is to min-
imize the expected log-likelihood error against a testing distribution ptest (learning prob-
lem 4.2.1), we use an active learning strategy based on Fisher Information ratio (FIR)
Tr(I−1

q (θ)Iptest(θ)). The name FIR comes from the scalar case where it can be viewed a
ratio of the Fisher information corresponding to the query distribution and that correspond-
ing to the testing distribution. The use of FIR for this learning task can be motivated by
noting the following inequality [Sou+17]

Ex∼ptest,y∼py|x(·|x;θ)[VarD∼q(x)py|x(y|x;θ)[L(θ̂D;x, y)− L(θ;x, y)]] ≤
1

N
Tr(I−1

q (θ)Iptest(θ)),
(4.20)

where the left hand side is the expected variance of the asymptotic distribution of the log-
likelihood ratio which can be viewed as a testing error and the right hand side involves the
FIR. Minimizing the upper bound would then allow us to control the testing error and hence
this suggests using the following query distribution:

q⋆ = argmin
q∈P

Tr(I−1
q (θ⋆)Iptest(θ⋆)). (4.21)

We note the Fisher information ratio is related to the Fisher information matrices of the
query distribution Iq and testing distribution Iptest through the following inequality:

Tr(I−1
q (θ)Ip(θ)) ≤ Tr(I−1

q (θ)) · Tr(Iptest(θ)). (4.22)

Thus, we recover the query optimization of Eq. 4.19 when the testing distribution is unknown.
In quantum tomography, such query criteria have been applied in optimal experiment

design (OED) or adaptive quantum tomography. Fisher information has been used as a query

114



criteria for offline OED in quantum state tomography [Nun+10]. Even earlier, an active
learner based on Shannon entropy aka maximum uncertainty sampling was considered in
[FKF00]. An AL strategy based on Shannon information combined with Bayesian estimation
was proposed in [HH12] for the selection of measurement operators during quantum state
tomography. Fisher information was again used in [GNS19] where OEDs were analyzed for
a family of qubit channels over different design problems. In Hamiltonian learning, Fisher
information has been used to comment on heuristic strategies for OED [FGC13] and has
been combined with Bayesian estimation to produce a sequential active learner [Gra+12].

Active Learning Strategy

Implicit in the above descriptions of the query criteria is the idea of proposing a query
distribution rather than selecting one query at a time during active learning. This demarcates
sequential active learning where one query is chosen at a time from batch mode active learning
where a batch of queries sampled from a query distribution are selected to be inputted to
the oracle. Moreover, combining FI/FIR query criteria with batch mode active learning
[Hoi+06] ensures that representative queries are chosen as well.

In what follows, we describe the batch-mode active learning scheme that forms the basis
of the AL algorithm for Hamiltonian learning that we discuss in Section 4.3. Given a budget
of N queries, the training is divided into multiple rounds. We index each round of the
training process as i and denote the batch size as Nb. The number of queries made till the
ith round (inclusive) is denoted as N (i)

tot . In each round, a batch of queries is sampled from
the optimal query distribution based on the current parameters’ estimate θ̂ and then this
estimate is updated using the measurement outcomes of the queries. This is then repeated
until all of the budget has been expended. We denote the estimate in the ith round by
θ̂(i) and the optimal query distribution in the ith round based on θ̂(i) by q(i). The query
distribution at the very beginning of the training process q(0) is determined from any available
prior information of the parameters or else set to be the uniform distribution over the query
space.

What should be the size of the initial set of queries N (0)
tot ? Some suggestions are given in

[Cha+15] based on a finite-sample analysis for logistic regression but these do not suffice for
the application considered in this chapter. Qualitatively, one hopes that N (0)

tot is high enough
such that the parameter estimate θ̂(0) lies close to the true parameter value θ⋆ and in a
convex basin of the asymptotic negative log-likelihood loss function. However, setting N (0)

tot

to a very high value may not allow us take advantage of the presence of an active learner
and the savings it can provide.

Additionally, it may be advantageous to adaptively change the query space for exploration
from one batch to the next. It is not necessary for the query space to remain static or
unchanged [Set12] during active learning. In fact, there is an element of adaptively changing
the search space in many prominent algorithms. In sparse fast Fourier transform [Has+12a;
Has+12b], the bins of frequencies are randomly chosen with each iteration in the algorithm.
In the related machine learning tool of reinforcement learning, action spaces are changed to
eliminate actions [Zah+18], and to generalize over time by parameterizing them [MRK16]
or embedding them in a continuous action space [Dul+15].

Adaptively changing the query space is particularly compelling for the application of
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active learning to the Hamiltonian learning problem, because evidence suggests that it may
result in so-called Heisenberg-limited scaling of the number of queries as we noted in Sec-
tion 4.1. We will also make a case for why we expect the active learner which we will
introduce for Hamiltonian learning in Section 4.3 to achieve Heisenberg-limited scaling when
possible.

The computational cost of the batch-mode AL scheme is determined by the number of
rounds of batches issued and the computational cost of solving the query optimization prob-
lems of Equations 4.19 and 4.21. Solving these directly can be challenging but fortunately,
the query optimizations can be reformulated as semidefinite programs (SDP) [Sou+17] un-
der the assumptions of differentiability of the log-likelihood function, and invertibility of the
Fisher information matrix for query distributions in a compact space around the optimal
query distribution and around the uniform distribution. When using the query criteria of
Fisher Information ratio (FIR) (Eq. 4.21), the optimization problem [Cha+15; Sou+17] is

arg min
α1,...,αd

m∑

i=1

αi such that
∑

x∈Q

q(x) = 1, and
[
Iq(θ) ej
eTj αj

]
≽ 0, j ∈ [m] (4.23)

where we have introduced m auxiliary variables α1, ..., αm, and ej are the eigenvectors of
Ip(θ̂). Recall that the parameter vector θ has m components. To obtain the SDP program
for the query optimization when using the query criteria of Fisher information (FI) (Eq. 4.19)
in our AL strategy, we replace ej by the eigenvectors of the identity matrix. In this case, ej
are m-dimensional canonical vectors with 1 in the jth component and zero elsewhere. The
computational cost of solving the above SDP programs with a barrier interior-point method
is O(n2

Qm
3 + nQm

4 +m5) where we have denoted nQ = |Q| as the size of the query space of
interest.

Query Advantage

To compare resource requirements of different Hamiltonian learning (HL) methods for accom-
plishing a learning task, we introduce the concept of query advantage. The query advantage
(QA) of an HL method in achieving a learning error of ϵ is:

QA = 1− number of queries required by method
number of queries required by baseline

(4.24)

As discussed before, QA measures the amount of query reduction obtained by selecting a HL
method over a baseline strategy. In this work, we consider the passive learner equipped with
an appropriately chosen estimation procedure as the baseline. We will specify the estimation
procedure when discussing a QA result or it will be clear from context.

The benefits of quantifying QA for an HL method are twofold. Firstly, it allows us
to comment on the performance boost obtained by using one HL method over another for
accomplishing a learning task. Moreover, we can comment on learning tasks that can be
achieved using one HL method but is unattainable by another. Secondly, it gives us a direct
way to select a particular HL method based on minimal resources required, from a set of
methods for a particular learning task by choosing the method with the highest QA.

As we will see in the next Section 4.3, an active learning strategy is a framework for
achieving query advantage and higher learning rates of convergence when possible.
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Related Work

Numerous methods exist for quantum Hamiltonian learning with different estimations and
admissible experiments (aka query space). This work is not intended to replace these Hamil-
tonian learning methods but propose a general framework for active learning (or adaptive
experiment design) that can replace the step of proposing experiments within these methods.

Active learning for Hamiltonian learning has not received as much attention as has quan-
tum state tomography and quantum process tomography. The only example we could find
in literature is that of robust online Hamiltonian learning (ROHL) [Gra+12] which has since
been used for scalable Bayesian estimation for Hamiltonian learning [EHF19] and has been
extended to Qinfer [Gra+17]. ROHL (or Qinfer) is a sequential active learner that proposes
experiments (or queries) one shot at a time by minimizing a risk that is a function of the
current estimate θ̂ and examples seen so far. The proposed query for the (k+1)th shot then
typically takes the form

x(k+1) = argmin
x∈Q

R
(
X(k), Y (k); θ̂(k)

)
, (4.25)

where X(k) is the set of all queries taken so far, Y (k) are the associated measurement out-
comes, and θ̂(k) is the current estimate of the Hamiltonian parameters. In the case of ROHL
and Qinfer, this is chosen to be Bayes risk given by

R
(
X(k), Y (k); θ̂(k)

)
= Ey|θ̂;Q

[
(θ − θ̂(X(k), Y (k)))TQ(θ − θ̂(X(k), Y (k)))

]
(4.26)

where the right right hand side can be interpreted as the expected posterior covariance
matrix weighted against Q which is a positive semi-definite matrix indicating the relative
scale between the unknown parameters in θ. In practice, minimizing the above risk function
is expensive and one may resort to different experimental design heuristics [Hin+18].

The main limitation of the above method is that it is very expensive to decide queries
one at a time during learning. This will be true irrespective of our progress in quantum
computers as this processing is done on a classical computer, and is especially an obstacle
on current hardware given the usual limited access, and latencies within electronics. It is
then desirable to batch up queries (or experiments), which has not been considered by earlier
work. This work which proposes an active learner operating in batch-mode thus fills this
gap.

4.3 Hamiltonian active learning algorithms

We are now in a position to describe how to adapt probabilistic pool-based batch-mode
active learning with query criteria of FI and FIR for Hamiltonian learning. The resulting
algorithms are collectively called Hamiltonian Active Learning algorithms. We call HAL
combined with the query criterion of Fisher Information as HAL-FI and that with Fisher
Information Ratio as HAL-FIR. We discuss how the resulting algorithms are expected to
achieve query advantage over a specified baseline.
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4.3.1 Algorithm

The HAL algorithm is summarized in Algorithm 3. We assume that the unknown Hamilto-
nian is time-independent and a model parameterized by θ⋆ for the oracle (i.e., Hamiltonian
with noise sources) is available to us. Inputs to the HAL algorithm include the initial
query distribution q(0) to be used for sampling the initial set of N (0)

tot queries and the query
optimization algorithm (QOA). When the query criterion is Fisher information (FI), the
corresponding QOA is given by Algorithm 4 which solves Eq. 4.19. Similarly when the query
criterion is Fisher information ratio (FIR), the corresponding QOA is given by Algorithm 5
which solves Eq. 4.21. Recall that the choice of query criteria and hence QOA depends on
the learning task at hand: we consider FI for learning Hamiltonian parameters with low
RMSE (Eq. 4.19) and FIR for minimizing the testing error (Eq. 4.21). Additional inputs
include the maximum number of batches imax that will be issued during learning which we
will denote by Nb and the total experimental budget available.

Using the notation for batch mode active learning as discussed in Sec. 4.2.3, we denote
the batch of queries that are sampled at the ith round with respect to the query distribution
q(i) as X(i)

q and the corresponding measurement outcomes from inputting these queries to the
oracle as Y (i)

q . The set of all queries made so far at any round is denoted by X(i) and their
corresponding measurement outcomes as Y (i). We note that |X(0)

q |= |Y (0)
q |= N

(0)
tot which is

typically larger than |X(i)
q |= |Y (i)

q |= Nb, when prior information about the parameters is not
available. The initial set of training examples is used to determine an initial value of the
parameters which is used for determining an informative albeit suboptimal query distribution
q(1) through the given QOA. Note that in the QOA of Algorithms 4,5, we modify the query
distribution q(i) obtained through solving Eq. 4.19 or Eq. 4.21, by mixing it with the uniform
distribution over the query space pU i.e., µq(i) + (1 − µ)pU where 0 ≤ µ ≤ 1 is the mixing
coefficient. This is done to encourage exploration and is analogous to epsilon-greedy policies
in reinforcement learning [SB18]. The value of µ typically depends on the number of queries
made so far, and we set it to µ = 1 − 1/|X(i)|1/6 as often used for such active learning
algorithms [Sou+17; Cha+15].

Deviating from a vanilla batch model AL scheme, we require an additional input of the
query space {Q(i)}i∈[imax] during training. We allow the query space to adaptively change
from one batch to the next. How do we decide how the query space changes from one batch
to the next? We remind ourselves that the query distribution in Iq is a joint probability
distribution over the measurement operators, preparation operators and evolution times.
Conditioned on a particular evolution time, we would not expect changing M or U to help
in reducing the query complexity. The query space is then adaptively grown by growing T
linearly or exponentially with each batch. We note that Q(1) ⊂ Q(2) ⊂ ... ⊂ Q(imax).

The output of the algorithm is an estimate θ̂ of the true Hamiltonian model parameters
θ⋆ learned through active learning using N queries. In the HAL algorithm as presented in
Algorithm 3, we use the maximum likelihood estimator in the HAL algorithm but this may
be replaced by other estimation methods such as regression or Bayesian estimation as we
show later in Section 4.5. HAL-FI produces an estimate θ̂ that has an RMSE lower than
what would be obtained without any active learning using a budget of N queries, and batches
of size Nb. Similarly, HAL-FIR produces an estimate θ̂ that performs well in prediction of
queries to the Hamiltonian against the testing distribution ptest.
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Algorithm 3 Hamiltonian Active Learning (HAL)

Input: Initial number of queries N
(0)
tot , Batch size Nb, Initial query distribution q(0), Maximum

number of batches imax, Adaptively growing query space {Q(i)}i∈[imax], oracle, query optimization
algorithm (QOA)
Output: θ̂

1: Sample N
(0)
tot queries X

(0)
q from Q(0) according to q(0)

2: Obtain measurement outcomes Y
(0)
q by sending queries X(0) to oracle

3: Set X(0) = X
(0)
q and Y (0) = Y

(0)
q

4: Compute MLE estimate: θ̂(i−1) = argmin
θ

L(θ;X(0), Y (0))

5: for i = 1 : imax do
6: Solve q(i) through QOA (Algorithm 4 or 5)
7: Sample Nb queries X

(i)
q from Q(i) w.p. q(i)

8: Update number of queries: N
(i)
tot = N

(i−1)
tot +Nb

9: Obtain measurement outcomes Y (i) by issuing queries X(i) to oracle
10: Set X(i) = X(i−1)

⋃
X

(i)
q and Y (i) = Y (i−1)

⋃
Y

(i)
q

11: Compute MLE estimate: θ̂(i) = argmin
θ

L(θ;X(i), Y (i))

12: end for
13: return θ̂(imax)

Algorithm 4 Query Optimization based on Fisher Information (FI)

Input: Number of queries made so far N (i−1)
tot , Batch size Nb, Query space Q(i), Current parameter

estimates θ̂(i)

Output: q(i)

1: Set N
(i)
tot = N

(i−1)
tot +Nb

2: Solve q(i) = argmin
q

Tr(I−1
q (θ̂(i))) subject to

∑
x∈Q(i)

q(x) = 1, and 0 ≤ q(x) ≤ 1,∀x ∈ Q(i)

3: Obtain uniform distribution over query space: pU = 1/|Q(i)|
4: Set mixing coefficient: µ = 1− 1/|N (i−1)

tot |1/6
5: Modify query distribution: q(i) = µq(i) + (1− µ)pU
6: return q(i)
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Algorithm 5 Query Optimization based on Fisher Information Ratio (FIR)

Input: Number of queries made so far N (i−1)
tot , Batch size Nb, Query space Q(i), Current parameter

estimates θ̂(i), Testing Distribution ptest
Output: q(i)

1: Set N
(i)
tot = N

(i−1)
tot +Nb

2: Compute model fisher information corresponding to ptest: Iptest(θ̂)
3: Solve q(i) = argmin

q
Tr
(
I−1
q (θ̂(i))Iptest(θ̂(i))

)
subject to

∑
x∈Q(i)

q(x) = 1, and 0 ≤ q(x) ≤ 1, ∀x ∈

Q(i)

4: Obtain uniform distribution over query space: pU = 1/|Q(i)|
5: Set mixing coefficient: µ = 1− 1/|N (i−1)

tot |1/6
6: Modify query distribution: q(i) = µq(i) + (1− µ)pU
7: return q(i)

4.3.2 Comment on Query Advantage and Heisenberg Limited Scal-
ing

In this section, we provide intuition as to why we expect HAL-FI to provide query advantage
and when Heisenberg limited scaling may be expected in experiment. The intuition and
claims made here are backed by empirical evidence in Section 4.5.

We start by comparing the performance of a passive learner LPL and an active learner
LHAL which uses HAL-FI. We assume that both of these learners use the same estimation
method to estimate θ̂ from the training examples generated. Consider the second round
of learning (i=2) with a fixed query space Q and where both learners have seen the same
data D(1) so far. LPL will uses queries uniformly sampled from Q and LHAL will use HAL-
FI to decide the query distribution to use for sampling from Q. The corresponding Fisher
information is IpU (θ̂(1)) (where pU is the uniform distribution) and Iq(θ̂(1)). From Eq. 4.19,
we know that Tr(I−1

q (θ̂(1))) ≤ Tr(I−1
pU

(θ̂(1))). We thus expect LHAL to require the fraction
of r(1) ≈ Tr(I−1

q (θ̂(1)))/Tr(I−1
pU

(θ̂(1))) ≤ 1 number of queries compared to LPL to achieve the
same variance reduction. This is compounded through the following learning rounds, leading
to an overall reduction in queries required (or gain in query advantage) by LHAL to reach the
same RMSE compared to LPL. Moreover, in latter rounds (i > 2), the fraction of queries
required by LHAL may further decrease due to more informative training examples available
to obtain θ̂(i) which is then used to obtain the query distribution.

We claim that HAL-FI with an appropriately chosen adaptively growing query space
by adaptively growing T can achieve Heisenberg limited scaling in Hamiltonian parameters
where possible. If the query space is not rich enough, it will not be possible to determine
a sequence of queries to achieve Heisenberg limited scaling. Without an adaptively growing
query space (i.e., with fixed query space), the scaling of the number of queries N with error
parameter ϵ is O(1/ϵ2) as is dictated by the Cramer-Rao bound. The query complexity by
using an active learner only improves by a constant factor in such a case. If one chose
to adaptively grow the query space during training without an active learning strategy
and chose for example an uniform distribution over the new query space (i.e., carry out
passive learning), Heisenberg limited scaling would not be expected as it would become
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exponentially more unlikely to sample an informative query. Moreover, Heisenberg limited
scaling is expected as long as the evolution time is below the decoherence time. Beyond the
decoherence time, the oracle will start losing its quantum behavior.

If the so chosen adaptively growing query space cannot be used to achieve Heisenberg
limited scaling, it should still be possible to achieve Heisenberg limited scaling for a subset
of the Hamiltonian parameters provided that the goal is to now learn these parameters and
we are provided information about the other parameters. This learning task often occurs
in practice during recalibrations of quantum devices when it is required to learn a subset
of parameters that are known to fluctuate significantly with time but information about
the other parameters can be used from previous calibrations during estimation. We provide
empirical evidence for this claim in Section 4.5 where we consider the application of the HAL-
FI to cross-resonance Hamiltonians. The results of HAL-FI for this particular application
are summarized in Table 4.1.

What distinguishes HAL-FI from other methods such as Floquet calibration [Aru+20a]
which have been shown to achieve Heisenberg limited scaling is that it does not require prior
specification of experiments and their order of implementation. This is decided by the HAL-
FI during learning. Moreover, HAL-FI utilizes single-shot outimes from queries, instead of
requiring expectation values. In practice, this can result in multiple orders of magnitude
reduction in queries required. Finally, HAL-FI can achieve query advantage over passive
learners for complete query spaces even when Heisenberg limited scaling cannot be achieved.

4.3.3 Computational Cost and Extensions

A consequence of adaptively growing the query space over rounds during learning is that
the SDP programs (Eq. 4.23) corresponding to the query optimizations of Eqs. 4.19 and
4.21 (with computational cost O(n2

Qm
3 + nQm

4 + m5)) become increasingly more compu-
tationally expensive to solve over rounds. If nQ grows exponentially, each iteration of the
query optimization problem becomes more exponentially expensive to solve. This can be
circumvented by reducing the number of queries to optimize over using uncertainty filtering
[WIB15], thereby effectively reducing the size of the query space nQ over which the query
optimization is carried out. Uncertainty filtering for our application of Hamiltonian learning
to the cross-resonance Hamiltonian is discussed in Appendix B.2.2.

The HAL-FI and HAL-FIR algorithms can be generalized to different experimental setups
or requirements. The HAL algorithm presented in Algorithm 3 uses the stopping criterion
of maximum number of batches of queries issued during learning but other stopping criteria
such as the ℓ2 norm of the differences in consecutive parameter values ||θ̂(i) − θ̂(i−1)||2 could
also be used.

4.4 Hamiltonian learning for a two-qubit superconduct-
ing cross-resonance gate: Model and setup

To assess the performance of the HAL algorithms described in Section 4.3 over a passive
learner and empirically verify our claims, we consider the application of learning cross-
resonance (CR) Hamiltonians on superconducting IBM Quantum devices. In this section,
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Adaptivity in Query Space Scaling of N Scaling of N (Recalibration)
None O(1/ϵ2) O(1/ϵ2)

Linearly growing T O(1/ϵ2) O(1/ϵ2/3)
Exponentially growing T O(1/ϵ2) > O(1/ϵ)

Table 4.1: Query complexity of HAL-FI for Hamiltonian learning (Problem 4.2.1) under
different conditions as observed on a real quantum device. The case of fixed query space
corresponds to adaptivity in query space being none.

we describe the model of the two-qubit cross-resonance Hamiltonian, and the set of queries
that we can make to it. This is followed by a description of the different noise sources
that affect the quantum system and the resulting likelihood of measurement outcomes given
queries. The evaluation of the likelihood is required by all of our estimators (Section 4.2.1).
In turn, we then describe different estimators used for Hamiltonian learning including MLE
and a Bayesian estimator. Finally, we describe our implementation of the HAL algorithms
in the context of numerical experiments for learning the CR Hamiltonians. A description of
the IBM Quantum devices employed for assessing the performance of the HAL algorithms
can be found in Appendix B.1.

4.4.1 Cross-Resonance Hamiltonian

The cross resonance (CR) gate is a two-qubit entangling gate for superconducting qubits re-
quiring only microwave control which allows for the use of fixed-frequency transmon qubits
[RD10; Cho+11]. Using appropriate pulse sequences such as multi-pulse echos and cancel-
lation tones [She+16], the CR gate can be transformed to a locally equivalent CNOT gate
[Zha+03]. Combined with arbitrary single qubit gates, this then forms a complete set of
gates for universal quantum computation.

The Hamiltonian of the cross-resonance (CR) gate has the following structure

HCR =
σZ ⊗ A

2
+
σI ⊗B

2
(4.27)

A = cZIσI + cZXσX + cZY σY + cZZσZ (4.28)
B = cIXσX + cIY σY + cIZσZ (4.29)

where {σI , σX , σY , σZ} are the single-qubit Paulis and cab ∈ R are real coefficients of the Pauli
product terms σa ⊗ σb. The above time-independent Hamiltonian description of the cross-
resonance gate can be obtained through theoretical models based on effective block-diagonal
Hamiltonian techniques [MG20]. In our experiments which we describe in Section 4.4.2,
the CR gate is implemented without using an echo [She+16] to refocus the σIσX , σZσZ
and σZσI terms. However, we measure only the target qubit through our queries and thus
effectively neglect the σZσI term. The target qubit is typically chosen to be qubit 1 in a (0, 1)
qubit pair and is specified for the different quantum devices we consider in Appendix B.1.1.
The effective removal of the σZσI term from Eq. 4.29 results in the following simplified CR
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Hamiltonian which we consider throughout the rest of our work:

H =
∑

a∈{I,Z}
b∈{X,Y,Z}

Jabσa ⊗ σb (4.30)

where we have used the parameter vector J = [JIX , JIY , JIZ , JZX , JZY , JZZ ]
T to denote

the non-zero coefficients of the corresponding Pauli product terms and have omitted the
subscript CR. Learning the unknown Hamiltonian of the two-qubit CR gate is then reduced
to estimating the unknown parameter vector J.

Noting the block-diagonal structure of H, we can express it in the usual computational
basis of (|00⟩, |01⟩, |10⟩, |11⟩) as

H =




a0 β⋆0 0 0
β0 −a0 0 0
0 0 a1 β⋆1
0 0 β1 −a1


 , where aj = JIZ + (−1)jJZZ

βj = (JIX + (−1)jJZX) + i(JIY + (−1)jJZY ) (4.31)

where the subscript j ∈ {0, 1} is used to refer to the two different blocks. The two blocks
have similar structure with their elements differing in the sign of JZX , JZY , and JZZ . Using
aj, and βj for j ∈ {0, 1} from Eq. 4.31, we define the following parameters

ωj =
√
a2j + |βj|2, δj = sin−1 aj

ωj
, ϕj = arg(βj) (4.32)

where the subscript j = 0 is used to denote the preparation operator U = σIσI and j = 1
to denote U = σXσI . We then arrive at an alternate parameterization (related to the
spectral decomposition of H) which turns out to be useful for simplifying expressions for
probability, likelihood and Fisher information: Λ = (ω0, δ0, ϕ0, ω1, δ1, ϕ1)

T . The unitary
operator U(t) = e−iHt in the usual computational basis is then given by

U(t) =


cos(ω0t)− i sin(δ0) sin(ω0t) −ie−iϕ0 cos(δ0) sin(ω0t) 0 0

−ieiϕ0 cos(δ0) sin(ω0t) cos(ω0t) + i sin(δ0) sin(ω0t) 0 0
0 0 cos(ω1t)− i sin(δ1) sin(ω1t) −ie−iϕ1 cos(δ1) sin(ω1t)
0 0 −ieiϕ1 cos(δ1) sin(ω1t) cos(ω1t) + i sin(δ1) sin(ω1t)


(4.33)

where we have used the parameter vector of Λ defined in Eq. 4.32. Moreover, the different
components of Λ can be bounded based on their definitions and these bounds will help us
later while solving the MLE problems. By construction, we have −π

2
≤ δ0,1 ≤ π

2
and ϕ0,1

can be bounded within any interval of size 2π e.g., −π ≤ ϕ0,1 ≤ π. Assuming δt is the
average time increment between distinct ordered values of evolution times t ∈ T , ω0,1 can
be bounded based on the Nyquist sampling theorem as 0 ≤ ω0,1 ≤ π

δt
.

To obtain the physical meaning of the parameter vector Λ, we consider Rabi oscillations.
For different measurement operators M ∈ M and preparation operators U ∈ U , the corre-
sponding Rabi oscillation is the difference in probability densities of the ground state and
excited state of the target qubit with time t ∈ T . A typical example of the Rabi oscillations
from querying the CR Hamiltonian on a noisy quantum system is shown in Figure 4.3. We
remark that ω0,1 defines the frequency of the Rabi oscillations for the two different prepara-
tion operators we consider. The parameters δ0,1 and ϕ0,1 define the offsets, amplitudes and
phase shifts of the Rabi oscillations. In Figure 4.3, we can see the effects of different noise
sources such as readout and depolarization which will be discussed in Section 4.4.3.
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Figure 4.3: Rabi oscillations obtained experimentally through queries to a CR Hamiltonian
on the IBM Quantum device (ibmq_boeblingen) for different measurement operators (rows),
preparation operators (markers) and evolution times t (x-axis). The set of measurement and
preparation operators will be described in Section 4.4.2. The experimental data is indicated
by markers and the model fit to the data by lines. The model fit was generated by learning
the CR Hamiltonian (Eq. 4.31) from experimental data using MLE and predicting values of
Rabi oscillations for the query space using the learned Hamiltonian.

4.4.2 Experimental Setup

In this section, we give a quick overview of the different IBM Quantum devices that we
employ for our application of Hamiltonian learning. This is followed by a description of the
query space considered for our application.

Quantum Devices

We will present data and results for four different IBM Quantum devices which we call A,
B, C, and D. All of these devices are based on superconducting architectures requiring only
microwave control [RD10; Cho+11] and consist of fixed-frequency transmon qubits with
shared quantum buses [Cho+14]. Device A is a two-qubit device. Device B is a four-qubit
device on which we will query only one of the CR gates that can be implemented between
two qubits. Device C is a five-qubit device with a bow-tie layout. Device D is the 20-
qubit ibmq_boeblingen which was accessed via the IBM Quantum cloud computing service.
See Figure B.1 in Appendix B.1.1 for the connectivity maps of all the devices. We give a
summary of the properties of the pairs of qubits involved in the cross-resonance Hamiltonians
we considered on these devices in Table B.1 in Appendix B.1.1.
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Query Space

To prepare the initial state, we consider the set of preparation operators U = {σI ⊗σI , σX ⊗
σI} applied to the pure state |00⟩. Assuming the first (left) qubit is the control and the second
(right) qubit is the target, the effect of the preparation operators is to place the control in
|0⟩ and |1⟩ respectively. We evolve the initial state |ψ(0)⟩ for time t ∈ T which we will
specify when discussing the results of our application of Hamiltonian learning in Section 4.5.
Finally after obtaining the final state |ψ(t)⟩, we apply the measurement operators in M =
{σI ⊗ exp

(
iπ
4
σY
)
, σI ⊗ exp

(
−iπ

4
σX
)
, σI ⊗ σI} and measure only the second qubit which we

have chosen as the target qubit. The query space is then Q =M×U × T .
Queries to the CR Hamiltonians between different qubit pairs on the IBM Quantum

devices are made through appropriate pulse sequences. These pulse sequences are constructed
and executed on the hardware using Qiskit-Pulse [Ale+20], which is a pulse programming
module within Qiskit [Abr+19a]. Description of how a query to the CR gate on a IBM
Quantum device is specified is given in Appendix B.1.2.

In our experimental setup, we obtain measurements of the single-shot signal (integrated
cavity amplitude) c from the IBM Quantum devices which is a function of the measurement
outcomes y which we have described earlier. In the following Section 4.4.3, we will discuss
how to model the different noise sources that affect our system and how they are determined
through experiments.

4.4.3 Estimates of Noise and Nonidealities for Experimental Sys-
tem

Using the noise models presented in Section 4.2.2, we give the specific relevant models for
readout noise, imperfect pulse shaping, and decoherence for the different IBM Quantum
devices which we study.

Let us introduce some notation that we will use in the following discussions. We use
the index k for the queries. The kth query is given by x(k) = (M (k), U (k), t(k)), and the
corresponding measurement outcome of the target qubit as y(k). The measurement outcome
y(k) is not directly observed but inferred from the corresponding signal c(k). We denote the
inferred value as ŷ(k).

Readout Noise

As discussed in Section 4.2.2, we assume the measurement noise model to be a bit-flip channel
with the input of unobserved measurement outcomes y and the output of readout ỹ observed
through signal c. For this inference task, we use calibration data of single qubits initially
prepared in states |0⟩ or |1⟩, and subsequently measured in the usual computational basis.
In Figure 4.4(a), we plot different realizations {y(k), c(k)}100k=1 from IBM Quantum device D
ibmq_boeblingen that were used for training a binary classifier. The classifier provides us
with the ability to predict y given c. Moreover, the misclassification errors pŷ|y(1|0) and
pŷ|y(0|1) can be used to approximate the properties of the bit-flip channel, in particular
the conditional probabilities of a bit-flip pỹ|y(1|0) and pỹ|y(0|1) respectively. As these are
independent of values of c here, we denote the conditional probabilities of a bit-flip as
r0 = pỹ|y(1|0) and r1 = pỹ|y(0|1). The MLE of the parameters incorporating this noise model
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is given by

θ̂ = argmin
θ
− 1

N

N∑

k=1

log
[
pỹ|x(ỹ

(k)|x(k);θ)
]

(4.34)

= argmin
θ
− 1

N

N∑

k=1

log
[
(1− ŷ(k))

(
(1− r0)py|x(y

(k) = 0|x(k);θ) + r1(1− py|x(y
(k) = 1|x(k);θ))

)
+ (4.35)

ŷ(k)
(
(1− r1)(1− py|x(y

(k) = 1|x(k);θ)) + r0py|x(y
(k) = 0|x(k);θ)

) ]
(4.36)

where py|x(y(k)|x(k);θ) is given by Eq. 4.1. Alternately, instead of assigning a deterministic
result ŷ(k) for each c(k), we can incorporate pc|y directly into the log-likelihood function which
could yield a more accurate model. This could be done through our choice of binary classifier
or by fitting a distribution to the training data. Noting that single qubit measurement
outcomes correspond to their energy levels, we fit Gaussian distributions to the training
data and hence obtain a parameteric form of pc|y in Figure 4.4(b). The MLE is now

θ̂ = argmin
θ
− 1

N

N∑

k=1

log
[
pc|y(c

(k)|0)py|x(y(k) = 0|x(k);θ) + pc|y(c
(k)|1)(1− py|x(y

(k) = 0|x(k);θ))
]
. (4.37)

A useful tool for calibration and diagnostics is Rabi oscillations which we denote by prabi(x).
Rabi oscillations are obtained from evaluating the difference in the population densities of
the ground state and excited state of the target qubit or prabi(x) = py|x(0|x)− py|x(1|x). We
can compute Rabi oscillations in two different ways, either through binary classification or
through fitting Gaussians. Using the misclassification errors from the binary classifier, we
can then write

p̂rabi(x) = pŷ|x(0|x)
(
1− r0 + r1
1− r0 − r1

)
− pŷ|x(1|x)

(
1 + r0 − r1
1− r0 − r1

)
, (4.38)

where we have denoted the computed Rabi oscillations as p̂rabi(x). While py|x(0|x) and
py|x(1|x) are guaranteed to be valid probability distributions, the above estimation does not
ensure that p̂rabi(x) is bounded by −1 and 1. To obtain more accurate estimates of the Rabi
oscillations, we can solve the following MLE problem

p̂rabi(x) = arg min
q∈[−1,1]

(
−
∑

k

1{x(k) = x} log
[
(1 + q)pc|y(c

(k)|0) + (1− q)pc|y(c(k)|1)
]
)
,

(4.39)
where we use the estimated conditional distributions pc|y from the Gaussian fits. The indi-
cator function 1{x(k) = x} is used to ensure that the summation is only over measurement
outcomes of given query x. We can write down the analytical expressions for prabi(x) for
each measurement operator M and preparation operator U noting that x = (M,U, t) as

M⟨X⟩ : prabi(x) = sin δj cos δj cosϕj + cos δj
√

1− cos2 δj cos2 ϕj cos(2ωjt+ αj), (4.40)

M⟨Y ⟩ : prabi(x) = sin δj cos δj sinϕj + cos δj

√
1− cos2 δj sin

2 ϕj cos(2ωjt+ γj), (4.41)

M⟨Z⟩ : prabi(x) = 1− 2 cos2 δj sin
2(ωjt) = sin2 δj + cos2 δj cos(2ωjt), (4.42)
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where we denote αj = arg((− sin δj cosϕj) + i(− sinϕj)) and γj = arg((− sin δj sinϕj) +
i cosϕj) in the above expressions. The subscript j = 0 is used to denote the preparation
operator U = σIσI and j = 1 to denote U = σXσI .

In Figure 4.5, we plot the Rabi oscillations for the different M ∈M and U ∈ U over the
time range of t ∈ T using the above two methods. We observe that the Rabi oscillations
are not bounded between −1 and +1 for the case of M⟨Y ⟩ in Figure 4.5(a) when using
misclassification error to compensate for the readout noise. The estimated Rabi oscillations
in Figure 4.5(b) do not suffer from the same issue.

As we will see later in Section 4.4.4, Rabi oscillations will also be used in our estimation
procedure for obtaining an initial guess for the parameter estimate θ̂ that is used as an input
to the optimizer for solving the MLE problem. It can also be used as a quantitative tool for
ascertaining how well the model fits the data. This will become apparent in the next few
sections where we discuss other noise models.

(a) (b)

Figure 4.4: Characterization of readout noise from calibration data of single qubit readouts
considering a bit-flip channel model using (a) a trained Bayesian naive classifier, and (b) fit-
ting Gaussian distributions. In (a)-(b), the experimental data points of the complex readout
signal c are shown as markers. In (a), the decision boundary is shown as a line. In (b), the
contours indicate the single standard deviation.

Imperfect Pulse Shaping

Another nonideality is introduced through the pulses used to control the Hamiltonian and
implement different unitary operators. It is convenient to think of cross-resonance control
pulses as rectangular pulses that modulate the sinusoidal control pulse. The modulated sig-
nal results in unitary operators of the form U(t1) = exp (−iHt1) which we would want to
implement in a quantum circuit. However, in practice, rectangular pulses cause significant
amounts of signal energy to be distributed above and below the frequency of the control
sinusoid. This distribution of energy can potentially excite higher energy states of the super-
conducting transmon being used as a qubit (i.e., |2⟩ and above) as well as excite neighboring
spectator transmon qubits. To minimize such effects, pulse shaping is employed to reduce
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(a) (b)

Figure 4.5: Examples of Rabi oscillations computed from experimental data collected from
IBM Quantum device D ibmq_boeblingen for different measurement operators M (rows),
preparation operators U (markers) and evolution times t (x-axis). These were computed (a)
using a binary classifier and (b) using Gaussian distribution fits. The difference between the
two approaches is negligible when the misclassification error of the binary classifier is low
(r0, r1 < 0.01) as is the case here.

this energy spread by smoothing the rising and falling edges of the pulse, which has the effect
of reducing the magnitudes of the frequency artifacts above and below the frequency of the
control sinusoid.

Pulse shaping is accomplished by taking a Gaussian-shaped pulse, splitting it in half, and
then inserting a rectangular pulse between the halves. This results in the GaussianSquare
pulse, described in further detail in Section B.1.2. Thus, we actually implement opera-
tors of the form Ũ(t1) = T exp (−i

∫ t1
0
H̃(t;θ)dt) where T is the time ordering operator and

H̃(t;θ) is the cross-resonance Hamiltonian due to imperfect control at any particular time
t with parameters θ. Up to a first-order approximation in t, we can model H̃(t;θ) as (see
Appendix B.1.3 for details)

H̃(t;θ) = v(t)H(θ), (4.43)

where H(θ) is the time-independent cross-resonance Hamiltonian and v(t) is a function of
the cross-resonance pulse amplitude. Using this, we can now derive an expression for the
unitary of Hamiltonian evolution. We denote ∆tr and ∆tf as the time durations of the rising
and falling edges of the shaped pulse. The central portion of v(t′) is a rectangular function;
i.e., for ∆tr ≤ t′ ≤ t − ∆tf , v(t′) = 1t′∈[∆tr,t−∆tf ] where t is the duration of the pulse. We
then have

Ũ(t) = exp

(
−iH(θ)

∫ t

0
v(t′)dt′

)
= exp

−iH(θ)

(t−∆tf −∆tr) +

∫ ∆tr

0
v(t′)dt′ +

∫ ∆tf

t−∆tf

v(t′)dt′︸ ︷︷ ︸
∆teff


 (4.44)

= exp (−iH(θ)(texpt +∆teff)), (4.45)

where in the last step, we set texpt = t−∆tf−∆tr which is the evolution time that is reported
in our experiments. It should be noted that this can change from one experimental setup to
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another. The value of ∆teff can be interpreted as an effective total edge duration that takes
the shapes of the rising and falling edges into account. This first-order pulse-shaping model
introduces another model parameter, namely ∆teff, that we need to estimate. We can do
this directly in our MLE:

[θ̂,∆t̂eff] = arg min
θ,∆teff

−
1

N

N∑
k=1

log

 ∑
y∈{0,1}

pc|y(c(k)|y) ∑
z∈{0,1}

∣∣∣〈yz|M(k)e−iH(θ)(t(k)+∆teff)U(k)|00
〉∣∣∣2
 (4.46)

While this can be certainly done while learning the Hamiltonian, one can also determine the
dependence of ∆teff on the different Hamiltonian parameters using prior calibration data.
We determined that ∆teff depends only on the parameters of ω0,1 as ∆t̂eff(θ) = a/(ω+ bω2).
In Figure 4.6, we plot the dependence of ∆t (short for ∆teff) on ω for the IBM Quantum
device D ibmq_boeblingen. The results for the other IBM Quantum devices A, B and C, are
shown in Figure B.7 (Appendix B.4). For the IBM Quantum device D (ibmq_boeblingen),
the values are a = 6.2774± 0.01502 and b = 1.5086× 10−9± 0.6104× 10−9s. How we arrived
at this dependence is discussed later in Section 4.5. Using this data-driven model allows us
to use reduce the number of parameters in the estimation and hence reduce the associated
computational cost of the optimization. In the following sections, we will denote this model
by ∆t̂eff(θ).
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a = 6.2774 ± 0.01502

b = 1.5086 × 10−9 ± 0.6104 × 10−9 (s)

Fit

Figure 4.6: Dependence of the time offset ∆t on parameters ω for IBM Quantum device D
ibmq_boeblingen. The plotted data points correspond to driving the device under different
conditions and hence different cross-resonance Hamiltonians. The imperfect pulse shaping
model extracted from these experimental data points is shown by a fit and this is later used
in the MLE.

Decoherence

Recalling our discussion in Sec.4.2.2, we model decoherence as a depolarization channel
acting on the quantum state ρ(t) = exp(−iHt)ρ(0) produced as a result of Hamiltonian
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evolution for a time duration t. The resulting state (from Eq. 4.11) was given by

E(ρ(t)) = (1− pd(t))ρ(t) + pd(t)
I

2n
(4.47)

One approach to obtain a description of pd(t) is to assume the functional form 1−exp(−(t−
t0)/µ), resulting from a Poisson process with rate µ as described in Sec. 4.2.2 and then
estimate µ from the training examples after incorporating this into the MLE. Here, we
describe a model for pd(t) using the measured device properties of T1 and T2 times of each
qubit.

We consider an independent noise model on each of the two qubits used for implementing
a cross-resonance gate. Let us denote the amplitude damping and phase damping of kth
qubit as Ea,k and Ep,k respectively. They have the following Kraus operators

Ea,k :
{[

1 0
0
√

1− γa,k

]
,

[
0
√
γa,k

0 0

]}
, Ep,k :

{[
1 0
0
√
1− γp,k

]
,

[
0 0
0
√
γp,k

]}
(4.48)

where

γa,k = 1− exp (−Γa,kt) , γp,k = 1− exp (−Γp,kt) (4.49)

with
Γa,k :=

1

2T1,k

, Γp,k :=
1

Tϕ,k

(4.50)

where T1,k is the T1 time of the kth qubit and Tϕ,k is the pure dephasing rate of the kth
qubit related to the T2 time of the kth qubit as

1

Tϕ,k

=
1

T2,k

− 1

2T1,k

(4.51)

The overall noise operator acting on the two qubits is then given by [Sun+20a]

E = ⊗2
k=1(Ea,k ◦ Ep,k) (4.52)

where ◦ indicates taking a composition of the two noise operators. The probability pd(t) can
be based on the unitarity [Wal+15] of the noise operator E which is a completely positive
linear map quantifying the coherence of the noise operator. The probability pd(t) is then
given by

1− pd(t) = 1 +
1

15
(γ2a,1(3γa,2(γp,2 − 2)− 4γp,2 + 7) (4.53)

+ 4γa,1(γp,1 − 2)(γ2a,2 + γa,2(γp,2 − 2)− γp,2 + 2)

+ γ2a,2(7− 4γp,1)− 4γa,2(γp,1 − 2)(γp,2 − 2) + 4γp,1γp,2 − 8γp,1 − 8γp,2)

This can be further generalized to n-qubit system (see Appendix G of [Sun+20a] for
details). Let the measurement of Hamiltonian evolution for time t followed by this noisy
depolarization channel be ỹ and the corresponding Rabi oscillation p̃rabi. Note that the Rabi
oscillations in this case are related to the noiseless case (from Eq. 4.42) as

p̃rabi = (1− pd(t))prabi (4.54)
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In Table 4.2, we give the RMSE betweeen Rabi oscillations obtained using different
decoherence models assuming we know the true Hamiltonian parameters and Rabi oscil-
lations inferred from data. For the single parameter model, we consider a prefactor of
(1− pd(t)) = exp(−(t− t0)/µ) with the single parameter µ on the Rabi oscillations obtained
using no decoherence model. This parameter µ is then estimated from the data and is found
to be (7.75±0.91)×10−5s. In the two parameter model, this is allowed to vary with the state
preparation operator U being applied. For U = σI ⊗ σI , we have µ = (5.52± 0.82)× 10−5s
and for U = σX⊗σI , µ = (2.51±0.59)×10−5s. It is advantageous to use such models due to
the low number of parameters present and when the T1 or T2 times of the different qubits are
not available. However, if these times are available, one can use the two-qubit decoherence
model or the two parameter model as we note from the values of RMSE in Table 4.2.

Decoherence Model Root Mean Squared Error KL Divergence
No decoherence 0.109321 0.012370
Single-qubit decoherence model 0.095903 0.007408
Single Parameter Model 0.091644 0.006515
Two-qubit decoherence model 0.090953 0.006392
Two Parameter Model 0.084289 0.005376

Table 4.2: Comparison of different decoherence models in fitting Rabi oscillations inferred
from experimental data collected from IBM Quantum Device D. Kullback-Leibler divergence
(KL divergence) is computed asDKL(pdata||pmodel) where pdata is the probability inferred from
data and pmodel is that predicted from the model.

4.4.4 Estimation Procedures for Learning CR Hamiltonians

We have so far described the likelihood of different measurement outcomes given different
queries (Sec. 4.4.2) to the two-qubit cross-resonance Hamiltonian (Eq. 4.30), and the different
noise sources or non-idealities on the IBM Quantum devices. We now describe our estimation
procedures for estimators described earlier in Section 4.2.1, which utilizes this likelihood
function for estimating the CR Hamiltonian parameters from the training data D = (X, Y )
generated during learning. While all the estimators described here can be adopted with HAL
algorithms (Section 4.3), it should be noted that the best performance is expected with the
maximum-likelihood estimator (MLE) due to the query criteria used in HAL-FI/HAL-FIR.

Regression

We perform regression on Rabi oscillations (Eq. 4.42) (which is just the difference in likeli-
hood for y = 0 and y = 1) inferred from the measurement outcomes. Let us consider the
parameterization of Λ. This is more useful to work with as the frequencies of oscillation in
e−iHt are determined by ω0 and ω1 unlike J where it is determined by all the parameters.
Instead of directly performing regression as described in Section 4.2.1, we divide our esti-
mation procedure into multiple steps. We create initial estimates of ω0,1 independent of the
other parameters through Fast Fourier Transform (FFT) before performing a full regression.

131



We compute the Rabi oscillations p̂rabi for each query x through the corresponding mea-
surement outcomes by solving the optimization problem of Eq. 4.39. Initial estimates of the
parameters ω0,1 are then obtained by applying a Discrete (Fast) Fourier Transform to the
Rabi oscillations. These initial estimates are then refined by fitting regression equations of
the form A cos(ωt)+B sin(ωt)+C to the Rabi oscillations, where the fit minimizes the total
L2 error, the coefficients A, B, and C for each Rabi oscillation are estimated using linear
least-squares regression, and a bracketed gradient-based search is performed to refine the
estimates of ω0,1. The corresponding optimization problem can be framed as minimizing the
following residual error

minE(A, ω0,1) =
∑

t∈T

(prabi(t)−AΩ(ωt))2 , (4.55)

where the coefficients A = (A,B,C) are known functions of δ0,1, ϕ0,1 through the analytical
forms of the Rabi oscillations for the query space considered (see Eq. 4.42) and Ω(ωt) is a
vector of cosines and sines (fully described in Appendix B.3). Thus, we can then obtain
estimates for δ0,1, ϕ0,1 from the A, B, and C coefficients of the regression equations for each
of the Rabi oscillations. Finally, we obtain an estimate Λ̂ by fixing the values of ω0,1 and
carrying out a gradient descent procedure using the same cost function. If desired, we output
the Hamiltonian parameter estimate Ĵ by transforming Λ̂ appropriately (Eq. 4.32).

Maximum-Likelihood Estimation

The MLE parameter estimate θ̂ obtained through solving Eq. 4.5 for the CR Hamiltonian
incorporating the Hamiltonian model description and presence of different noise sources is

θ̂ = argmin
θ

−
1

N

N∑
k=1

log

[ ∑
y∈{0,1}

(
pỹ|y(ỹ

(k)|y)
∑

z∈{0,1}

[(
1− pd

(
t(k)
)) ∣∣∣〈yz|M(k)e−iH(θ)(t(k)+∆t̂eff(θ))U(k)|00

〉∣∣∣2 +
1

4
pd

(
t(k)
)])]

, (4.56)

or

θ̂ = argmin
θ

−
1

N

N∑
k=1

log

[ ∑
y∈{0,1}

(
pc|y(c

(k)|y)
∑

z∈{0,1}

[(
1− pd

(
t(k)
)) ∣∣∣〈yz|M(k)e−iH(θ)(t(k)+∆t̂eff(θ))U(k)|00

〉∣∣∣2 +
1

4
pd

(
t(k)
)])]

, (4.57)

depending on how the readout noise is modeled. The imperfect pulse-shaping model ∆t̂eff(θ)
was discussed in Section 4.4.3 and pd(t) is the probability of depolarization associated with
the two-qubit decoherence model (Section 4.4.3). The choice of the MLE (Eq. 4.56 or
Eq. 4.57) for each IBM Quantum device will be specified in Section 4.5.

The MLE problem (Eq. 4.56 and Eq. 4.57) in either of the two different parameterizations
of J and Λ is nonlinear and non-convex. An example of the energy landscape of the log-
likelihood loss function for the IBM Quantum device ibmq_boeblingen is shown in Figure B.6
of Appendix B.3. The presence of multiple local minima makes the MLE problem in general
challenging to solve. To ensure that we converge to the global minimum and do not get
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stuck in a local minimum during estimation, we divide the estimation into multiple stages.
In the first stage, we obtain an initial estimate which is refined over subsequent stages. The
estimation procedure is summarized in Algorithm 6.

During learning, this initial estimate may be available from the previous round. When
such an initial estimate is not available, we use the estimation based on regression as discussed
earlier in Section 4.4.4, and summarized in lines 1-6 of Algorithm 6. This initial estimate
is then used as an initial condition to the MLE solve (Eq. 4.56). In Algorithm 6, we have
denoted the negative log-likelihood loss function which appears in the optimization problem
of Eq. 4.56 as L. We solve the MLE problem using the optimizer of stochastic gradient
method of ADAM [KB14] which encourages getting out of any local minima. The parameter
estimate produced by ADAM is then refined using the second-order quasi-Newton method
of L-BFGS-B [Zhu+97]. The computational complexity of our MLE estimation procedure is
dominated by ADAM. This motivates us to directly use L-BFGS-B for estimation for latter
batches during learning. The full description, computational details and extensions of the
estimation procedure is given in Appendix B.3.

Algorithm 6 MLE Estimation Procedure for Hamiltonian Learning
Input: Training examples of size m: D = {(X,Y )} = {(xi, yi)}i∈[m], initial condition Ĵ0 (optional)
Output: Ĵ

1: if no input of Ĵ0 then ▷ get an initial estimate through regression
2: Obtain Rabi oscillations prabi from D by solving Eq. 4.39
3: ω0,1 ← FFT(prabi) ▷ FFT of Rabi oscilations prabi over T , see App. B.3 for details
4: (δ0,1, ϕ0,1)← prabi(Ω(ω0,1t))

−1 ▷ Regression on Rabi oscillations given ω0,1

5: Refine estimate of Λ̂0 through gradient descent on E(A, ω0,1) in Eq. 4.55
6: Get Ĵ0 by transforming Λ̂0 (Eq. 4.32)
7: end if
8: Ĵ← argmin

J
L(J;X,Y ) ▷ using Ĵ0 as a guess

9: return Ĵ

Bayesian Estimation

For Bayesian estimation, we use a particle filtering algorithm [DJ+09], also called sequential
Monte Carlo (SMC) algorithm. In SMC, a distribution (say p(r)) is discretely approximated
with a distribution that has support only over a finite number of points (say np) called
particles:

p(r) =

np∑

k=1

wkδ(r − rk), (4.58)

where wk is the weight of the kth particle, and rk is the location of the kth particle. Note
that the vector of weights (wk) can also be thought of as a vector of probabilities, satisfying
0 ≤ wk ≤ 1 and

∑np

k=1wk = 1. An particle filter is then specified by weights and locations
{(wk, rk)}k∈[np] over the set of np particles. This can be used to compute the expectation
value of a function g as

∑np

k=1wkg(rk).
For learning the CR Hamiltonian, we will be interested in tracking the distribution p(J|D)

of the Hamiltonian parameters given the training data D being collected. It is then beneficial
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to think of the particle filter as {(wk,Jk)}k∈[np]. Considering the prior distribution as p(J),
the initial weights of the particles can be set as wk = 1/np and the locations as random
samples Jk, sampled from this prior. With this prior distribution, we can then carry out
Bayes rule (Eq. 4.7) to compute the posterior distribution p(J|D) over the Hamiltonian
parameters J described by particles {(w′

k,J
′
k)}k∈[np] by setting J′

k = Jk and

w′
k =

wkp(Y |X,Jk)∑
k p(Y |X,Jk)

. (4.59)

In practice, iteratively carrying out Baye’s rule as above leads to numerical instabilities
due to limited resolution and weights shrinking to zero. Increasing the number of particles
np obviously delays this while improving the accuracy of the evaluation of expectations of
functions using the particles and posterior distributions in the SMC algorithm. Stability
is ensured by resampling techniques which adaptively changes locations Jk of particles to
higher weight regions. In our implementation, we use the Liu-West algorithm [LW01].

Finally, we can output a point estimate from the posterior particles

Ĵ =

np∑

k=1

w′
kJ

′
k (4.60)

which is the mean of the posterior distribution (Section 4.2.1) and minimizes the RMSE.
We use the implementation of SMC in the Qinfer package [Gra+17] for our purposes.

We thus refer the reader to [Gra+12; Gra+17] for details on the SMC algorithm used for
Hamiltonian learning. We specify the prior distribution p(J) and the number of particles np
chosen for different IBM Quantum devices and learners in Section 4.5.

4.4.5 Implementation of HAL Algorithm for Learning CR Hamil-
tonians

We now discuss the details of the HAL-FI algorithm implemented for learning the CR Hamil-
tonian on the IBM Quantum devices. As the implementation of HAL-FIR for this application
is very similar, it is omitted. Moreover, we will consider the MLE estimator here but the
other estimators (Section 4.4.4) can also be adopted.

In our implementation of the HAL-FI algorithm in experiments on learning the CR
Hamiltonian, we consider the following inputs. The initial query space which may be changed
during the course of the HAl-FI algorithm during training is Q(0) =M×U × T (0) withM
and U as described in Section 4.4.2. Here, we explicitly denote the superscript on T which
is initially set to T (0) but may change during training if an adaptive query space strategy is
employed. We set T (0) to be the 81 equispaced times in the interval [10−7, 6 × 10−7]s. We
consider the initial number of queries as N (0)

tot = 2430 (or five times the number of different
queries in the initial query space Q(0)), a constant batch size Nb = 486 (or the number of
queries in the initial query space Q(0)), and the initial query distribution q(0) as the uniform
random distribution over Q(0).

The initial set of training examples (X(0), Y (0)) are obtained by sampling X(0) from
Q(0) with respect to q(0) in Line 1 of Algorithm 3 and collecting the corresponding set of
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measurement outcomes Y (0) through queries to the CR Hamiltonian on the IBM Quantum
device in Line 2. The set of training examples (X(i), Y (i)) is progressively increased (Line
10) during learning by adding Nb queries X(i)

q sampled from query distribution q(i) chosen
by HAL-FI in Line 6 and collecting the corresponding measurement outcomes Y (i)

q in Line 9.
The learning is continued until our query budget is expended or the desired learning error
is achieved.

To determine the initial parameter estimate θ̂(0) from the initial set of training examples
(Line 4) and subsequent θ̂(i) from (X(i), Y (i)) (Line 11), we solve the MLE (Eq. 4.5) for the
CR gate incorporating the Hamiltonian model description and presence of different noise
sources.

The parameter estimates θ̂ obtained after solving the MLE problem are used by HAL-FI
to construct the Fisher information matrices based on the model and obtain the query distri-
bution q(i) by solving the SDP program of Eq. 4.23 in Line 6. The expressions for the Fisher
information matrices for different queries (Section 4.4.2) considering the CR Hamiltonian
and noise models are given in Appendix B.1. The query space Q(i) used in Lines 6 and 7
depend on the querying strategy and hence the learning scenario we consider.

As described in Section 4.3.1, we can define four different learning scenarios based on the
presence of an active learner and how the query space is adaptively changed during learning.
In passive learning, an active learner is not present and we set the query distribution to the
uniformly random distribution over Q. In the case of active learning with fixed query space,
the query space remains fixed during training i.e., Q(i) = Q∀i, and the query distribution is
determined by solving Eq. 4.23 using the current estimate of the parameters θ̂ over this fixed
query space. When considering active learning with an adaptively growing query space, we
consider two different situations on the basis of how the query space is changed between
batches during learning. We consider two cases: (i) Q(i) grows linearly by linearly increasing
the T (i) between batches and (ii) Q(i) grows exponentially by doubling the allowed set of
system interaction time T (i). The query distribution is then determined by solving the
corresponding SDP problem of Eq. 4.23 over the query space Q(i) corresponding to the ith
batch. These different learning scenarios for HAL-FI are summarized in Table 4.3.

Learning Scenario Query Space Query Distribution
Passive Learning Fixed uniformly random

Active Learning with Fixed Query Space Fixed q through Eq. 4.19
Active Learning with Adaptive Query Space I Linearly growing T q through Eq. 4.19
Active Learning with Adaptive Query Space II Exponentially growing T q through Eq. 4.19

Table 4.3: Summary of different learning scenarios

4.5 Results

We now present the results of the experiments described in Section 4.4 and show that they
support the claims made in Section 4.2.1. In this section, we compare the active learner
HAL introduced in Section 4.3 against the passive learner (Section 4.2.3) equipped with
different estimators (Section 4.4.4) and the sequential active learner of Qinfer (Section 4.2.3)
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in learning the CR Hamiltonian through experiments on different IBM Quantum devices.
We finally analyze the results of these experiments to comment on the scaling behavior,
classical computational cost and query advantage of the different learners.

In Section 4.5.1, we first describe the datasets used for Hamiltonian learning, hyperpa-
rameters of the estimators (Section 4.4.4) used in experiments, and the experimental protocol
for evaluating the performance of the learners. In Section 4.5.2, we describe the implemen-
tation of the sequential active learner of Qinfer which is also used as a baseline for assessing
the performance of HAL-FI. In Section 4.5.3, we show results of the learners on these differ-
ent datasets. In Section 4.5.4, we describe how HAL-FI can be used to achieve Heisenberg
(or super-Heisenberg) limited scaling and evaluate the query advantage of HAL-FI over the
baseline considering different learning scenarios.

4.5.1 Data and Experiment Protocol

In this section, we describe the different kinds of datasets that were used in assessing the
performance of the HAL-FI algorithm and how they were collected. We then summarize
the parameters of the cross-resonance Hamiltonian and the noise sources discussed in Sec-
tion 4.4.3 for the different IBM Quantum devices (Section 4.4.2).

Datasets from IBM Quantum Devices

The different datasets that we use for Hamiltonian learning are a combination of experimental
data collected from the IBM Quantum devices described in Section 4.4.2 and that collected
from a simulator which we will describe in Section 4.5.1.

Experimental data is collected from the different IBM Quantum devices according to the
query space described in Section 4.4.2. The set of evolution times T is set to 81 equispaced
times in the interval T = [10−7, 6 × 10−7]s. For IBM Quantum devices A, B, and C, there
are 200 measurement outcomes (or shots) for each query x ∈ Q. For IBM Quantum device
D ibmq_boeblingen, there are 512 measurement outcomes for each query. Recall from our
discussion of the Hamiltonian learning framework in 4.2.1 and HAL algorithm in 4.3.2, the
outputs of our queries are not expectation values but rather single shot readouts of the target
qubit.

The experimental data is then collected and made available as an offline dataset that the
active learner can query. Unlike deploying an active learner in real-time where a particular
query can be made to the system unlimited number of times, using experimental datasets
imposes the additional constraint of the number of times a query can be made by the active
learner due to the limitation on the number of measurement outcomes available for each
query. In Appendix B.2, we discuss how we handle this constraint during query optimization.

Parameters of the CR Hamiltonian and Noise Sources for IBM Quantum Devices

Considering the entire collected experimental datasets for each IBM Quantum device (Sec-
tion 4.4.2) as training data, we compute the Hamiltonian parameters J/Λ, and that of the
different noise sources using the estimation procedure specified in Section 4.4.4 for the MLE.
We solve the MLE of Eq. 4.56 for IBM Quantum device D which has very low readout
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noise and use MLE of Eq. 4.57 for the other IBM Quantum devices. A summary of the
estimated parameters of the CR Hamiltonian and noise sources on IBM Quantum device D
ibmq_boeblingen is shown in Table 4.4 under different drive configurations. We summarize
the estimated parameters for the other devices in Appendix B.4.

Drive
Config.

CR Amp.
(arb. units)

Hamiltonian Parameters [×106s−1] Noise: Readout (L) & Time Offset (R)
J = (JIX , JIY , JIZ , JZX , JZY , JZZ) (ω0, ω1) (r0, r1) (∆teff,0,∆teff,1) [ns]

1 0.24 (-3.88, -1.08, -0.24, 5.44, 1.07, 0.21) (1.57, 9.58) (0.012, 0.025) (1965, 289)

2 0.30 (-4.57, -1.47, -0.29, 6.50, 1.39, 0.41) (1.94, 11.45) (0.0078, 0.033) (1581, 226)

3 0.36 (-5.12, -1.65, -0.23, 7.52, 1.66, 0.33) (2.40, 13.07) (0.0078, 0.035) (1267, 203)

4 0.42 (-5.42, -1.95, 0.37, 8.38, 1.90, 0.07) (2.97, 14.33) (0.0078, 0.039) (1016, 182)

5 0.48 (-5.72, -2.13, 0.03, 9.20, 2.15, 0.11) (3.48, 15.51) (0.0078, 0.023) (862, 166)

Table 4.4: Summary of estimated CR Hamiltonian parameters for the IBM Quantum device
D ibmq_boeblingen with different drive configurations (Config.) corresponding to amplitude
(Amp.) of CR pulse. We give the Hamiltonian parameters in the parameterization J and the
physically relevant frequency components in Λ. The readout noise is defined by the param-
eters of r0 and r1 which are the conditional probabilities of bit flip given the measurement
outcomes are y = 0 and y = 1 respectively (see Section 4.4.3).

Datasets from Simulation

The experimental datasets in Section 4.5.1 contain noise sources other than those modeled
even if negligible and may not span a long enough time range over T for testing different
learning scenarios. In order to understand the behavior of the HAL-FI and HAL-FIR algo-
rithms considering all the noise sources are known, we set up a simulator. The advantage
of using a simulator over experimental data is that it allows us to assess the limits of the
performance of the HAL-FI algorithm in the presence or absence of different noise sources
such as decoherence. Studies carried out on the simulator also allow us to test the robustness
of the active learner in the presence or absence of different noise sources.

The simulator imitates the different quantum devices but where all the different noise
sources are known and perfectly modeled, and which we can query. The Hamiltonian of
the simulator is set to that learned from the full set of training examples contained in
an experimental dataset collected from a particular quantum device. Thus, we can have
simulators for each of the IBM Quantum devices A, B, C, and D, under different drive
configurations. All the modeled noise sources of readout noise, imperfect pulse-shaping, and
decoherence as described in Section 4.4.3 are included. We apply HAL-FI in real-time on
the simulator as there is no limitation on the number of times we select a particular query
x ∈ Q.

In Figure 4.7, we compare Rabi oscillations computed from a subset of the experimental
data collected from IBM Quantum device D ibmq_boeblingen under drive configuration 2,
and training examples generated on the corresponding simulator. A set of 46800 training
examples are generated from both the experimental data and simulator assuming a uniform
query distribution over the query space. These training examples are then used to learn
Hamiltonian parameters in each case. The small difference in the predicted model Rabi
oscillations, computed using the analytical expressions of Eq. 4.42 and the Hamiltonian
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parameters learned from these two different datasets, further indicates that the simulator
faithfully represents the collected experimental data.

(a) (b) (c)

Figure 4.7: Comparison of Rabi oscillations computed from data (46800 queries) of IBM
Quantum device D ibmq_boeblingen from the (a) collected experimental data, and (b) sim-
ulator. In (c), we plot the difference in the model Rabi oscillations predicted from the
Hamiltonians learned in (a) and (b). In the subplots of (a)-(c), we plot Rabi oscillations (or
difference) for different measurement operators M (rows), preparation operators U (colors),
and evolution times t (x-axis), corresponding to the query space described in Section 4.4.2.

Hyperparameters of Estimators for Learning CR Hamiltonians

Among the different estimators (Section 4.4.4) we use for Hamiltonian learning, some of
them require the specification of some hyperparameters. In our estimation procedure for
MLE (Section 4.4.4), we set the learning rate for the ADAM solve as 10−3 and use only the
quasi-Newton method after 50 batches. In the Bayesian SMC method (Section 4.2.1), we
use np particles to track the distribution over p(J̃|D) where J̃ is the normalized version of
the Hamiltonian parameter vector J by 106. We choose this normalization factor as this is
the order of magnitude expected for these parameters under these drive conditions [MG20].
We then set the prior distribution over the parameters as p(J̃) as an uniform distribution
over [−10, 10]6. On the simulator, we set np = 104 and on the experimental data, we set
np = 105. These values were obtained by increasing the number of particles on each oracle
until we saw the expected convergence behavior with a passive learner equipped with the
SMC method as an estimator.

Protocol for Comparing Performance of Hamiltonian Learning Methods

Query complexity is used for comparing the performance of different learners on the simulator
or oracle with access to an experimental dataset. In particular, our main goal is to extract
the scaling of the query complexity with respect to the root mean square error (RMSE)
of Hamiltonian parameters J. On the simulator as we have access to the truth J⋆, we
can compute the RMSE directly. On the experimental data, we use the empirical RMSE,
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computed at each round of learning as
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, (4.61)

where we approximate the expectation by an average over parameter estimates from Nruns

runs and the true parameter values θ⋆ by the mean of these runs. The normalization factors
ξi are selected to be 106 s−1 for all i as the components of J with highest magnitude are
expected to the order of 106±1 [MG20] for these IBM Quantum devices under these drive
configurations. We implement the following experimental protocol. For each of the quantum
devices described in Section 4.4.2, we compute the empirical RMSE for the learners from 200
independent runs of the simulator and 500 independent runs on the experimental dataset.
These number of runs on each oracle were required to obtain accurate scalings of trends
in RMSE with number of queries and ensure the uncertainty (or two standard deviations)
of each scaling was at most 10%. In each run, we carry out the Hamiltonian learning
algorithm for the different learning scenarios as detailed in Section 4.4.5 and summarized in
Table 4.3. Additionally, we track the testing error of the learner with number of queries N .
The so obtained trends are used to comment on the robustness of the estimation procedure
used for MLE (Section 4.4.4) and the benefits of using the active learner HAL-FIR for
making predictions of queries to the Hamiltonian (Problem 4.2.1) over a baseline. The testing
error is computed empirically as well on a testing dataset collected from the simulator or
experimental dataset using ptest.

4.5.2 Sequential Active Learner: Qinfer

In this section, we describe the sequential active learner of Qinfer [Gra+12; Gra+17] that
was earlier introduced in Section 4.2.3 and how it is used in our numerical experiments on
learning the CR Hamiltonian.

The sequential active learner in [Gra+12; Gra+17] which we refer to simply as Qinfer
1 uses Bayes risk (Eq. 4.26) as a query criteria. In our implementation, the Bayes risk is
computed by running a hypothetical update over a set of risk particles in SMC (Section 4.4.4)
for each query in the query space Q. These risk particles are a separate set of particles than
those used to track the distribution p(θ|D) in SMC. The weights and locations of these risk
particles are set to the same values as those of the particles partaking in estimation however,
before computation of the Bayes risk over all queries and after every estimation step. Further
details of Bayes risk computation can be found in [Gra+17].

For a fair and systematic comparison of Qinfer against HAL-FI on the simulator and
experimental data, we run Qinfer sequentially over batches of queries. Running Qinfer
sequentially over ∼ 105 shots/queries would be computationally very expensive, as we would
need to update the particles in SMC after collecting just one measurement outcome and
then compute Bayes risk over all the queries in Q. Instead, we issue a batch of Nb queries,
all of which are the same query and the one with the lowest Bayes risk. The corresponding

1In [Gra+12; Gra+17], the package for statistical inference altogether is called Qinfer and the sequential
active learner is but just a part of it.
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measurement outcomes are then used to update the particles in SMC before computing Bayes
risk using the updated risk particles and issuing another batch of queries.

On experimental data, we also need to ensure that query constraints are respected due to
limited number of measurement outcomes available for each query. We do this by breaking
down a batch of queries into mini-batches if enough number of measurement outcomes is
not available for the request query with the lowest Bayes risk. Further details are given in
Appendix B.2.

Finally in Qinfer, we use the same prior distribution and same number of particles as in
the case of the passive learner equipped with the Bayesian SMC estimator (Section 4.4.4).
On the simulator, we set np = 104 and on the experimental data we set np = 105.

4.5.3 Performance of Hamiltonian Learning Methods

In this section, we assess the performance of the different Hamiltonian learning methods
introduced so far using the protocol described in Section 4.5.1 in tackling the learning prob-
lems posed in Section 4.2.1. We report results of the different Hamiltonian learning sce-
narios (Table 4.3): (i) passive learner with estimation based on FFT and linear regression,
(ii) passive learner with an estimation procedure to solve the MLE problem, (iii) active
learner in fixed query space, and (iv) active learner in an adaptively growing (linearly) query
space. Results of the exponentially growing query space are postponed to Section 4.5.4 where
we comment on the achievability of Heisenberg limited scaling. We use the HAL-FI algo-
rithm which was discussed in Section 4.2.3 in the latter active learning approaches. We also
show results of learners with different estimations based on FFT and linear regression (Lin.
Reg.), maximum-likelihood (MLE), and Bayesian estimation using the sequential Monte
Carlo (SMC) method. We additionally compare HAL-FI which proposes batches of queries
during learning against the sequential active learner Qinfer (Section 4.5.2) which proposes
queries one at a time using Bayes risk as a query criteria.

We present the convergence behavior of each algorithm during learning under different
regimes. For each scenario, we show trends of learning error (RMSE) with number of queries.
These trends indicate the performance of each learning algorithm, culminating in evidence
of query advantage. For brevity of presentation, we focus on the results obtained from IBM
Quantum Device D (ibmq_boeblingen) under the drive configuration 2.

We focus on the Hamiltonian learning task of model inference ( 4.2.1) and touch upon
prediction against a testing distribution ( 4.2.1) to show that HAL is a general framework for
tackling both problems when equipped with the appropriate query optimization. We show
results on the simulator for two different cases of time range T of the query space Q. The
time range T should be chosen such that you can estimate the Hamiltonian parameters of
interest θ̂. For a given T , the non-zero frequencies that can be successfully detected using
FFT [Coh89; PBV15] range from 1/∆T to Fs/2−1/∆T at increments of 1/∆T where ∆T is
the length of the time interval T and Fs is the sampling rate. Fs is decided according to the
Nyquist criterion to ensure that aliasing doesn’t occur. Accordingly, ∆T must be sufficiently
long to see a single cycle of the sinsusoid corresponding to the lowest frequency. We call this
as the minimum-frequency criteria (MFC). Note that when using other estimation methods
based on MLE or Bayesian estimation methods, T is not required to satisfy these properties.

We thus show results on the simulator where T is such that the MFC for frequency
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estimation (using FFT) is satisfied and when MFC is not necessarily satisfied. Moreover, in
Appendix B.3, we describe how standard FFT can be modified to detect lower frequencies
than MFC allows. This is a buildup to our comparison on the experimental dataset where
T is such that MFC is not necessarily satisfied. In the following results, we plot the learning
error (RMSE/testing error) versus number of queries made on a log-log scale so that the
slope s of the plotted lines can be directly interpreted as the scaling of learning error with
complexity ϵ ∼ N s.
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Figure 4.8: Scaling of RMSE with number of queries for different learners on a simulator
when MFC is satisfied. In (a), we compare the trends in RMSE of HAL-FI against the
passive learner with estimations based on MLE and linear regression (Lin. Reg.). In (b), we
compare the trends in RMSE of HAL-FI using the Bayesian estimator of sequential Monte
Carlo (SMC) against HAL-FI using MLE, Qinfer using Bayes risk as the query criteria and
passive learners equipped with different estimators. In (a)-(b), estimators of each learner are
indicated in brackets. Slopes indicate the scaling of RMSE with number of queries in the
finite sample and asymptotic sample regimes. Filled in areas indicate the respective errors
on trends for each learner. In (b), we do not show slopes and errors for learners shown earlier
in (a) on the left, and their trends are shown for visual reference.

Simulator and Minimum-Frequency criteria is satisfied We consider the query space
as defined in Section 4.4.2 with T set to be the 243 equispaced times in the interval of
[10−7, 18 × 10−7]s. A comparison of different learners for Hamiltonian learning considering
this query space is shown in Figure 4.8. For the passive learners (with any estimator), we
observe a scaling of ϵ ∼ 1/

√
N or N ∼ ϵ−2 in RMSE with number of queries. This is in

agreement with the SQL. The approximately constant gap between the passive learner when
using an estimator based on MLE and the passive learner when using an estimator based
on linear regression corresponds to a constant query reduction. This illustrates how a query
advantage can be obtained by changing estimation for Hamiltonian learning.

In Figure 4.8(a), we observe two different scalings for the HAL-FI algorithm with MLE,
an initial scaling which is higher than SQL and similar to Heisenberg limited scaling, and a
scaling of SQL in the asymptotic query regime. This shows that depending on the desired
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Figure 4.9: Scaling of testing error with number of queries for different learners on a simulator
when MFC is satisfied. In (a), we compare the trends in testing error of HAL-FIR against
the passive learner with estimations based on MLE and linear regression (Lin. Reg.). In
(b), we compare the trends in testing error of HAL-FIR using the Bayesian estimator of
sequential Monte Carlo (SMC) against HAL-FIR using MLE, and passive learners equipped
with different estimators. In (a)-(b), estimators of each learner are indicated in brackets.
Slopes indicate the scaling of testing error with number of queries in the finite sample and
asymptotic sample regimes. Filled in areas indicate the respective errors on trends for each
learner. In (b), we do not show slopes and errors for learners shown earlier in (a) on the left,
and their trends are shown for visual reference.

learning error, we can expect to see a higher rate of convergence. However, asymptotically
the number of queries N required by the active learner HAL-FI is a constant fraction of that
required by the passive learner.

We can also consider HAL-FI using Bayesian estimation for Hamiltonian learning. In
Figure 4.8(b), we show results comparing learners with the Bayesian estimator SMC, against
learners using alternate estimation. Among active learners, we show HAL-FI alongside Qinfer
using Bayes risk as a query criteria. Firstly, we note that HAL-FI with SMC outperforms all
other learners equipped with the Bayesian estimator including Qinfer. This indicates that
HAL-FI can be adopted with different types of estimators in practice, and a query advantage
can be obtained. Secondly, similar scaling behavior is seen for the different learners as earlier.

Additionally, we compare the passive learners and active learner HAL-FIR for tackling
Problem 4.2.1 in Figure 4.9. The testing error is computed using Eq. 4.21 on a testing
dataset of 105 i.i.d. samples. The testing distribution ptest is considered to be known and
set to be the uniform distribution over the query space Q. It is assumed that HAL-FIR
is given access to this testing distribution. We observe a scaling of ϵ ∼ 1/N for the the
passive learners which is expected as the log-likelihood loss function associated with θ̂ is
divergence-free in the asymptotic case [Sou+17]. As in the case of HAL-FI for Hamiltonian
learning, we observe a higher initial scaling for HAL-FIR and a a scaling of ϵ ∼ 1/N in the
asymptotic regime, consistent with that observed for the passive learner.

As discussed in Section 4.2.1, it is not typical for the testing distribution in Problem 4.2.1
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to be known and the result here can viewed as a validation of the Hamiltonian model learned
and hence the learners on a set of queries sampled using the testing distribution.

We note sudden peaks in uncertainty associated with the passive learner and HAL-FIR
using the MLE estimator for higher values of samples. This might be indicative of traveling
between multiple local minima in a larger convex hull when solving the MLE (Eq. 4.56).
The trends in testing error are not severely impacted by this in expectation indicating that
these are rare events and our learners (with their estimation) are robust.

Having made a case for the robustness of the learners and estimation used in this work
on the simulator considering a query case Q which satisfies MFC, we are now in a position
to compare the performance of the different learners when the Q is not guaranteed or known
to satisfy such a criteria. In the results that follow, the observations made here are used as
a basis for the behaviour to expect among the learners.

Simulator and Minimum-Frequency criteria is not necessarily satisfied In prac-
tice, the range of system evolution times T corresponding to the query space Q cannot be
known apriori to satisfy MFC for frequency estimation using FFT on Rabi oscillation data.
It is then crucial for learners equipped with estimation procedures to either: (i) succeed at
Hamiltonian learning given this query space or (ii) alert the user that a longer T is required
upon failure to learn a Hamiltonian model. Here, we ensure the former by modifying the
standard FFT routine as discussed earlier in Section 4.4.4. Further details are provided in
Appendix B.3. Note that this solve is also carried out as the first step in our estimation
procedure for obtaining initial conditions to the MLE solve.

A comparison of the different learners considering a T that does not satisfy Minimum-
Frequency criteria on the simulator is shown in Figure 4.10. We set T to be the set of 81
equispaced times in the interval of 10−7, 6×10−7]s. As obtained earlier on the simulator with
a longer T , we observe a SQL scaling of ϵ ∼ 1/

√
N or (N ∼ ϵ−2) in RMSE with number of

queries for the passive learners combined with estimation based on linear regression, MLE or
the Bayesian estimator of SMC. However, there is now a noticeably wider gap in between the
trends corresponding to around 80.6% reduction in queries when using the passive learner
with the MLE estimator over the passive learner with estimation based on linear regression.

For the HAL-FI algorithm with MLE, we consider cases of when the query space is fixed
and when it is adaptively grown by linearly growing the T . For both cases, we see an initial
scaling which is higher than SQL and similar to Heisenberg limited scaling, and a scaling of
SQL in the asymptotic query regime. This behaviour is expected from our observations on
the simulator earlier. We note that using HAL-FI combined with a linearly growing query
space does not show significant improvement over HAL-FI in the fixed query space. This
is due to the low rate at which we adaptively grow the query query space during learning
and the fact that growing the query space is only advantageous for learning a subset of the
Hamiltonian parameters. We discuss this further in Section 4.5.4.

As before, we can also consider HAL-FI using Bayesian estimation for Hamiltonian learn-
ing. In Figure 4.10(b), we show results comparing learners with the Bayesian estimator SMC,
against learners using alternate estimation. Firstly, we note that in a reversal of fortunes
from Figure 4.8(b), the passive learner with the Bayesian estimator SMC performs similarly
to the passive learner with MLE, and much better than the passive learner with estimation
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based on linear regression. Secondly, we note that while HAL-FI with SMC outperforms all
other learners equipped with Bayesian estimators including the sequential active learner of
Qinfer, this advantage has reduced from the case where the query space satisfied the MFC
criteria. Lastly, similar scaling behavior is seen for the different learners as earlier.
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Figure 4.10: Scaling of RMSE with number of queries for different learners on a simulator
when MFC is not satisfied. In (a), we compare the trends in RMSE of HAL-FI against the
passive learner with estimations based on MLE and linear regression (Lin. Reg.). In (b), we
compare the trends in RMSE of HAL-FI using the Bayesian estimator of sequential Monte
Carlo (SMC) against HAL-FI using MLE, Qinfer using Bayes risk as the query criteria and
passive learners equipped with different estimators. In (a)-(b), estimators of each learner are
indicated in brackets. Slopes indicate the scaling of RMSE with number of queries in the
finite sample and asymptotic sample regimes. Filled in areas indicate the respective errors
on trends for each learner. In (b), we do not show slopes and errors for learners shown earlier
in (a) on the left, and their trends are shown for visual reference.

Experimental Dataset We show a comparison of the performance of the different learn-
ers on the oracle with access to experimental data in Figure 4.11. As expected from our
observations on the simulator, we observe SQL like scalings in RMSE with N for the passive
learners. We observe around 82.2% query reduction when using the passive learner with the
MLE estimator over estimation based on linear regression, similar to that previously observed
on the simulator. This query reduction was computed by fixing the RMSE value at 0.2, and
comparing the number of queries required by the passive learner to achieve this RMSE value
versus the baseline. The trends themselves are remarkably similar to those obtained on the
simulator, supporting the fact that the main noise sources affecting the quantum device were
identified and the simulator is a good representation of the real quantum hardware.

For HAL-FI, we only show results for fixed query space as the results for the linearly
growing query space are very similar, as was also observed on the simulator. We also only
show results for HAL-FI with the MLE estimator as HAL-FI produces best results combined
with this estimation and we have already shown that HAL-FI is compatible with Bayesian
estimation earlier. We see an initial scaling of ϵ ∼ 1/N3/2 (or N ∼ ϵ−2/3) in RMSE with

144



(a) (b)

2×103 5×103 104 2×104 5×104 105

Number of queries

2×10−2

5×10−2

10−1

2×10−1

5×10−1

100

2×100
R
M
S
E

Passive (Lin. Reg.)
slope =-0.46± 0.03
slope =-0.44± 0.01
Passive (MLE)
slope =-0.48± 0.02
slope =-0.44± 0.01

HAL-FI(MLE)
slope =-1.58± 0.04
slope =-0.67± 0.02
Qinfer (SMC)
slope =-1.66± 0.04
slope =-0.41± 0.02

100 101 102 103

Number ofmini-batches

2×10−2

5×10−2

10−1

2×10−1

5×10−1

100

2×100

R
M
S
E

Passive (Lin. Reg.)
slope =-0.18± 0.01
slope =-0.44± 0.01
Passive (MLE)
slope =-0.19± 0.01
slope =-0.43± 0.01

HAL-FI(MLE)
slope =-0.62± 0.03
slope =-0.76± 0.02
Qinfer (SMC)
slope =-0.64± 0.05
slope =-0.39± 0.02

Figure 4.11: Scaling of RMSE for different learners on experimental data with (a) number of
queries made and (b) number of mini-batches requested. The time range T of the query space
is such that Minimum-Frequency criteria is not necessarily satisfied for frequency estimation
using FFT. We compare the trends in RMSE of HAL-FI using MLE, sequential active learner
of Qinfer using Bayes risk as the query criteria and passive learners equipped with different
estimators. Estimators of each learner are indicated in brackets. Slopes indicate the scaling
of RMSE with number of queries in the finite sample and asymptotic sample regimes. Filled
in areas indicate the respective errors on trends for each learner.

number of queries which is higher than SQL and Heisenberg limited scaling, and a scaling of
SQL in the asymptotic query regime. The performance of HAL-FI on the experimental data
is surprisingly better than that on the simulator. This behaviour is consistent across different
drive configurations on ibmq_boeblingen. The initially accelerated learning where we observe
super-Heisenberg limited scaling in HAL-FI and lower values of RMSE achieved for a smaller
number of N than on the simulator might be due to: (i) noise sources not included in our
model that do not contribute significantly to the noise affecting the quantum device but
encourage exploration by HAL-FI, and (ii) correlations between the samples collected in the
experimental data (e.g., due to thermal fluctuations).

For the sequential active learner Qinfer, we observe similar behavior in scalings as HAL-
FI with an initially accelerated scaling higher than Heisenberg limited scaling and a scaling
of SQL in the asymptotic query regime. The RMSE achieved by Qinfer is comparable to
HAL-FI for lower values of queries but HAL-FI outperforms Qinfer significantly for higher
values of queries (obtaining lower RMSE and with lower uncertainty). This is similar to what
was observed on the simulator earlier. Moreover, as Qinfer is a sequential active learner, it
requests more mini-batches of queries to reach a particular value of RMSE. This is illustrated
in Figure 4.11(b) where we compare the number of mini-batches of queries made by HAL-FI
against Qinfer. Note that the passive learners and HAL-FI request only one mini-batch for
every round during learning. A mini-batch in our numerical experiments directly corresponds
to a job containing multiple quantum circuits for execution on cloud based IBM Quantum
devices. Each mini-batch has an associated cost of compilation on the device, and latency
from classical electronics interfacing with the quantum hardware. Results of Figure 4.11(b)
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thus indicate that HAL-FI would be preferred over Qinfer on current hardware with a fixed
experimental budget.

We have already seen benefits of using HAL-FI over a passive learner and a sequential
active learner such as Qinfer through the lower values of RMSE that can be achieved for a
given number of queries. This is analyzed in terms of query advantage in Section 4.5.4.

4.5.4 Analysis

In this section, we analyze the results of the performance of the different learners from
Section 4.5.3. We firstly comment on the achievability of the Heisenberg limited scaling by
HAL-FI with an adaptively growing query space as claimed in Section 4.2.2. In the process,
we consider a different learning scenario motivated by recalibrations of quantum devices. We
then describe the query advantage of the active learner under different conditions over the
baseline strategy.

Heisenberg limited scaling

In Section 4.5.3, we did not observe Heisenberg limited scaling for HAL-FI (even with an
adaptively growing query space). This is due to the fact that the query space is not rich
enough to achieve Heisenberg limited scaling i..e., there is no sequence of queries even in
the adaptively growing query space to achieve Heisenberg limited scaling. We discuss when
Heisenberg limited scaling is achievable for Hamiltonians based on the CR Hamiltonian in
Appendix B.5. We show that the behavior of the learners observed so far is expected through
another set of experiments in Appendix B.4.

It should however be possible to achieve Heisenberg limited scaling for a subset of Hamil-
tonian parameters given the query space (see Section 4.4.2) when the task is to learn this
subset of Hamiltonian parameters and we are given access to information about the other
Hamiltonian parameters. This is exactly the setting of a recalibration where prior informa-
tion about the Hamiltonian parameters is available from previous calibrations and the goal
is to learn the subset of parameters which drift significantly with time while refining esti-
mates of those parameter that do not. Motivated by this, we consider the following learning
scenario on ibm_boeblingen under drive configuration 3 (see Table 4.4).

We have access to an estimate of the Hamiltonian parameters θ̂ from a previous cali-
bration during which Hamiltonian learning was run on a uniformly sampled set of queries
from Q (of size N = 2430). The goal is to then learn the parameters ω0,1 using the different
learners at our disposal. We plot comparisons of different learners (using Nb = 972) on this
recalibration task in Figure 4.12 considering the oracles of the simulator and experimental
data. We consider all the learners with estimation based on MLE or linear regression but
could also use a Bayesian estimator as we have already noted in Section 4.5.3. We will
call the passive learner with estimation based on linear regression as the baseline for these
studies.

We observe the SQL scaling in the baseline, passive learner and HAL-FI in the fixed
query space. There is nearly a constant gap between the baseline strategy and HAL-FI in
the fixed query space, indicating a constant query reduction in achieving a desired learning
error. We observe a super-Heisenberg limited scaling of RMSE ϵ ∼ N−3/2 in number of
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queries in HAL-FI with a linearly growing query space. This is also observed for HAL-FI
with an exponentially growing query space in the low sample regime. The deterioration in
the scaling of HAL-FI with an exponentially growing query space to the SQL is due to the
maximum evolution time corresponding to the growing query space eventually exceeding T1
and T2. This is shown in Figure 4.12(b). In fact, the bend in the trend of RMSE versus N for
HAL-FI with an exponentially growing query space occurs immediately after the maximum
evolution time in T exceeds T1. As T for HAL-FI with a linearly growing query space is
grown much more slowly, effects of decoherence are not yet felt and super-Heisenberg limited
scaling convergence rate in learning error is achieved.

Qualitatively, it is clear that much lower values of learning error can be achieved with
a given budget of queries using HAL-FI with an adaptively growing query space over the
baseline for recalibration. This is quantified in terms of query advantage in Section 4.5.4.
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Figure 4.12: (a) Trends of RMSE with number of queries for different learners in fixed or
growing query spaces (QS) on experimental data (Expt.) compared against simulator (Sim.).
Slopes indicate the scaling of RMSE ϵ with number of queries N in the low query/sample
and high query/sample regimes. Filled in areas indicate the respective errors on trends for
each learner on the simulator. Passive learner which has similar behavior to HAL-FI in fixed
query space is not shown for brevity. (b) Trends of the maximum evolution time associated
with query spaces of different learners.

Computational Cost

So far, we have assessed the performance of different learners in achieving a value of RMSE
with respect to the number of queries consumed. However, another relevant resource is
the classical computational time required for learning the Hamiltonian parameters during
estimation or that required in computing query criteria for active learners.

The main contribution to this classical computational time is the evaluation of the like-
lihood function for different queries, required during estimation and for evaluation of query
criteria for active learning. If an analytical expression for the likelihood function is not avail-
able, then one needs to carry out expensive quantum simulations. The computational cost
of using the SMC estimator in a round during learning scales as O(|Q|np) with the number
of particles. On the other hand, the cost (or number of likelihood evaluations) of using MLE
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in a round scales as O(|Q|niters) with the number of iterations niters within the estimation
procedure (e.g., number of gradient steps, etc.). In HAL-FI, we also account for the number
of likelihood evaluations in setting up the Fisher information matrices of different queries
for solving the SDP of Eq. 4.19. In Qinfer, we account for the number of likelihood calls in
hypothetical updates of the risk particles for evaluating Bayes risk (see Section 4.5.2). In
Figure 4.13, we compare the RMSE achieved for increasing computational cost for different
learners equipped with the MLE estimator or the Bayesian SMC estimator. Overall, we
find that learners equipped with MLE are less computationally expensive compared to those
equipped with the Bayesian estimator.

In our experiments, we observe that the number of iterations (e.g., of the quasi-Newton
solve) in the estimation procedure of MLE (Section 4.4.4) is lower than the number of
particles np required in SMC. This translates into about two orders of magnitudes of savings
in computational cost when comparing HAL-FI against the sequential active learner of Qinfer
on both the simulator and experimental data.

(a) (b)

Figure 4.13: Trends of RMSE with computational cost for different learners on (a) simulator
where MFC is not necessarily satisfied, and (b) experimental data. The computational cost
is measured in terms of the number of likelihood evaluations during learning.

Query Advantage

We have so far compared the trends and obtained the scalings of RMSE ϵ with number
of queries N for different learners for Hamiltonian learning (Section 4.5.3) and with prior
information (Section 4.5.4). To quantify the benefits of using HAL-FI over other learners,
we now evaluate its query advantage (QA), defined in Section 4.2.3 as a performance metric
that summarizes the reduction in resources required to achieve a desired learning error. We
restrict our attention to HAL-FI with the MLE estimator to simplify the discussion.

We plot the trend of QA as a function of RMSE for active learners HAL-FI and Qinfer over
baselines of passive learners equipped with different estimators as achieved on the simulator
in Figure 4.14 and as achieved on experimental data in Figure 4.15(a). Values of QA for
certain values of RMSE are tabulated in Tables 4.5 and 4.6 for different combinations of
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learners and baselines. We observe a QA of around 80% in HAL-FI on the simulator and
experimental data over the baseline of the passive learner with estimation based on linear
regression, for high values of RMSE. The initial accelerated learning observed for HAL-FI on
the simulator in Figure 4.10 and experimental data in Figure 4.11 translates to an accelerated
QA for high values of RMSE. The trend in QA for HAL-FI over the passive learner with
estimation based on linear regression on the simulator flattens to an asymptotic value of at
least 95.1% when the query space is fixed during learning and at least 96.3% when the query
space is grown linearly. The corresponding value for HAL-FI on the experimental data in
the fixed query space is 99.8% for low values of RMSE. Similarly, the QA of HAL-FI over a
passive learner with the MLE estimator is around 82.1% on the simulator and around 99.0%
on experimental data for low values of RMSE. In comparison, the sequential active learner of
Qinfer is only able to achieve a QA of around 62.7% on the simulator but performs better on
the experimental data achieving a QA of around 96.9% over the baseline of passive learner
with the MLE estimator.

For QA of other combinations of learners and baselines, we turn our attention to Ta-
bles 4.5 and 4.6. We note that HAL-FI can achieve up to a QA of 53.2% and 70.9% in
expectation over the baseline of Qinfer on the simulator and experimental data respectively
for the lowest value of RMSE achieved by HAL-FI in our numerical experiments in Fig-
ure 4.11. There is however a large uncertainty on the estimate of QA on the experimental
due to the fluctuations of the trend of Qinfer on the experimental data (Figure 4.11). In prac-
tice, we expect that HAL-FI would achieve a QA upwards of 33% (computed by considering
one standard deviation below the expected value of QA).
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Figure 4.14: Query advantage (QA) of different learners on the simulator when MFC
(minimum-frequency criteria) is not satisfied over the following baselines: (a) passive learner
with estimation based on linear regression and (b) passive learner with the MLE estimator.
In (a)-(b), the data points correspond to values of QA computed from the data points of
Figure 4.10 and the lines are the fits to these values of QA. The annotated text for the
different trends indicate the QA obtained for the corresponding learner over the baseline for
the lowest observed value of RMSE in our numerical experiments. Filled in areas indicate
the 95% confidence interval on the data points shown.

Similarly for the learning scenario of recalibration, we plot the QA of HAL-FI over
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Figure 4.15: Query advantage (QA) of different learners over specified baselines consider-
ing the problem of (a) Hamiltonian learning without prior information and (b) Hamiltonian
learning with prior information on subset of Hamiltonian parameters from previous calibra-
tions. In (a), we plot the QA of passive learners, HAL-FI, and Qinfer on experimental data
over two different baselines. In (b), we plot the QA of HAL-FI over the baseline of the
passive learner on the simulator for fixed and adaptively growing query spaces (QS). In (b),
the QAs obtained on the simulator closely match those obtained on the experimental data
and hence the latter is not shown. In (a)-(b), the data points correspond to values of QA
computed from the data points of Figures 4.11,4.12 and the lines are the fits to these values
of QA. The annotated text for the different trends indicate the QA obtained for the corre-
sponding learner over the baseline for the lowest observed value of RMSE in our numerical
experiments. Filled in areas indicate the 95% confidence interval on the data points shown.

the baseline of passive learner (with estimation based on linear regression or MLE) for
Hamiltonian learning when prior information is available in Figure 4.15(b). The trends shown
here correspond to that of the simulator as similar behavior is observed for experimental
data. The QA of HAL-FI in a fixed query space over the baseline is constant with RMSE
and around 99.6% i.e., HAL-FI requires only 0.4% of the queries required by the baseline.
For HAL-FI with a linearly growing query space, the query advantage for low values of
reported RMSE is around (100 − 3.2 × 10−3)%. Further, we note that the scaling of QA
of HAL-FI in a linearly growing query space with RMSE ϵ scales as QA ∼ (1 − O(ϵ−1/6))
until decoherence starts effecting the scaling. For HAL-FI with an exponentially growing
query space, the QA flattens to around (100− 5.4× 10−4)% for low values of RMSE. Under
this learning setting at low values of RMSE around 10−3, HAL-FI has a query space with
evolution times far exceeding T1 or T2 and thus this reported QA is expected for even lower
values of RMSE.

From the analysis of query advantage above, we observe that two orders of magnitude
reduction in queries can be obtained over a baseline of passive learner with estimation based
on linear regression by adopting HAL-FI. Moreover, during recalibrations, we observe three
orders of magnitude reduction when HAL-FI is used with a linearly growing query space and
five orders of magnitude reduction in queries when HAL-FI is used with an exponentially
growing query space.

Adopting HAL-FI not only allows us to achieve query reduction but it also allows us
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to save wall clock time taken to calibrate a quantum device. We again consider the query
space of 4.4.2 where a query on average takes 2400ns to run (accounting for time duration
of implementing measurement pulses). The repetition rate of current IBM Quantum devices
for executing circuits is 10kHz. We can then reduce the duration of Hamiltonian learning of
all CR Hamiltonians of directly connected qubit pairs on a 20-qubit IBM Quantum device
of ibmq_boeblingen to reach a RMSE of 5 × 10−2 from around 10 minutes to 5 seconds by
using HAL-FI instead of a passive learner with estimation based on regression [She+16].
These timings only take into account the time on the quantum hardware and not additional
latencies in classical electronics interfacing with the hardware.

Baseline
Learner Passive

(MLE)
Qinfer
(SMC)

HAL-FI
(MLE, Fixed QS)

HAL-FI
(MLE, Lin. Grow. QS)

Passive
(Lin. Reg.)

0.763± 0.034
(0.788± 0.024)

0.903± 0.092
(0.926± 0.043)

0.951± 0.018
(0.929± 0.011)

0.963± 0.031
(0.935± 0.029)

Passive
(MLE) – 0.627± 0.122

(0.668± 0.090)
0.821± 0.067

(0.750± 0.062)
0.867± 0.113

(0.811± 0.114)
Qinfer
(SMC) – – 0.532± 0.174

(0.416± 0.182)
0.658± 0.289

(0.572± 0.302)
HAL-FI

(MLE, Fixed QS) – – – 0.184± 0.091
(0.215± 0.081)

Table 4.5: Query advantage of various learners considering different baselines on a simulator
when MFC is not satisfied. Estimators of each learner are indicated in brackets. For each
combination of learner and baseline, we report query advantage at lowest value of RMSE
achieved by the learner (compared to extrapolated fit of baseline) and the query advantage
at lowest value of RMSE achieved by the baseline in brackets below. The errors represent
one standard deviation on the value of expected query advantage.

Baseline
Learner Passive

(MLE)
Qinfer
(SMC)

HAL-FI
(MLE, Fixed QS)

Passive
(Lin. Reg.)

0.802± 0.057
(0.809± 0.034)

0.993± 0.006
(0.953± 0.012)

0.997± 0.001
(0.957± 0.009)

Passive
(MLE) – 0.969± 0.046

(0.917± 0.056)
0.990± 0.011

(0.916± 0.046)
Qinfer
(SMC) – – 0.709± 0.373

(0.510± 0.169)

Table 4.6: Query advantage (QA) of various learners considering different baselines on ex-
perimental data. Estimators of each learner are indicated in brackets. For each combination
of learner and baseline, we report query advantage at lowest value of RMSE achieved by the
learner (compared to extrapolated fit of baseline) and the query advantage at lowest value
of RMSE achieved by the baseline in brackets below. The errors represent one standard
deviation on the value of expected query advantage and are underlined in cases where the
range of query advantage should be read as [QA-error,1) instead of [QA-error, QA+error].
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4.6 Conclusion

In this chapter, we proposed the active learning algorithms of HAL-FI for Hamiltonian learn-
ing and HAL-FIR for predictions of queries to a Hamiltonian, sampled from a testing distri-
bution. They both perform in batch-mode making them ideal for use on near-term quantum
hardware. The performance of HAL-FI/HAL-FIR was compared against different learners
for learning a CR Hamiltonian on the 20-qubit IBM Quantum device ibmq_boeblingen on a
simulator and experimental data. We showed that HAL-FI can achieve a query advantage of
around 99.7% over a passive learner with estimation based on linear regression, 99.0% over
a passive learner with MLE estimator, and upwards of 33% over the sequential active learner
of Qinfer (equipped with the query criteria of Bayes risk) for low values of learning error on
experimental data. Moreover, HAL-FI is able to achieve the same learning error at lower
computational cost than passive learners and Qinfer. During recalibration when learning the
Hamiltonian with access to information from previous calibrations, we observed that HAL-
FI can achieve query advantages of 99.5% over passive learners. Further, we showed that
we achieve Heisenberg limited rate of convergence where possible when an active learner is
used in conjunction with an adaptive query space during learning before the evolution time
of queries exceed qubit T1 or T2 and decoherence starts deteriorating information content
available in queries.

Overall, using the active learner HAL-FI operating in batch-mode can yield a reduction
in resources of up to two orders of magnitude during calibration and five orders of mag-
nitude during recalibration for low values of learning error. This improvement in query
complexity has multiple practical consequences besides accelerating Hamiltonian learning
during calibration and recalibrations of quantum computers.

Another important calibration step is determining controls to implement desired single
and multi-qubit quantum gates. This often relies on building a Hamiltonian model of the
true environment i.e., the quantum computer. This can be accomplished by HAL to ensure
minimal queries are used. Gates, once implemented, are characterized through quantum
process tomography which is not query efficient but could be accelerated with an active
learner. For the specific application of learning the CR Hamiltonian, more noise sources can
be included as they become relevant e.g., leakage errors which become pronounced under
strong driving. It would also be interesting to see if one can achieve asymptotic Heisen-
berg limited scaling even in the presence of noise such as decoherence by using appropriate
quantum error correction protocols. It should be noted that Hamiltonian learning and for
that matter quantum process tomography both suffer from an exponential scaling in the size
of the quantum device n and using an active learner only ensures a better scaling in ϵ or
query advantage. One could get a better scaling in n if additional information such as the
structure of the Hamiltonian was known to be a k-local Hamiltonian which can be learned
with a query complexity that scales as O(poly(n)) [Ans+21].

There are other calibration steps where Hamiltonian learning may not be required but
the concept of active learner can be introduced. This would particularly be advantageous
where a variety of experiments can be carried out but it is not clear which of them are
more informative for the learning task. For example, a query efficient method is desired for
learning cross-talk on a superconducting quantum device [Abr+19b; Dai+21].
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Additionally, there is room for improvement and extension in the algorithm itself. Cur-
rently, expert knowledge is required to specify a complete query space to HAL to ensure all
the Hamiltonian parameters can be learned and possibly with Heisenberg limited scaling. It
is desirable to remove this expert and replace them with a method to synthesize queries. The
current active learning strategy is also based on the query criterion of Fisher information but
this could be modified to incorporate cost of different queries and incentivize exploration.
Moreover, a more general query criteria could possibly be learned through reinforcement
learning as illustrated in recent work on classical applications [Pan+18].

Code and data availability

Code for the passive learner and the active learner HAL using estimators based on regression
and MLE is available at [Dut23a]. Code for the learners including Qinfer for the cross-
resonance Hamiltonian, all equipped with a Bayesian estimator is available at [Dut23b].
Data sets generated from the simulator are included in the above repositories. Please contact
the thesis author for access to the experimental data sets collected from the IBM quantum
devices and used in this chapter.
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Chapter 5

Benchmarking randomized
measurements of quantum chemsitry
Hamiltonians

5.1 Introduction

The electronic structure problem, and more specifically the problem of approximating ground
states, is one of the outstanding challenges in computational chemistry. Over nearly the past
century, an enormous amount of scholarship has gone into developing classical methods for
this task (Hartree-Fock [HJO00], MP2 [HJO00], configuration interaction [HJO00], coupled
cluster [HJO00], density functional theory [HK64; KS65], quantum Monte Carlo [HLR94],
and DMRG [CH02], to name some notable examples), and in recent decades a large propor-
tion of scientific HPC resources have been dedicated to solving it (see for example [Aus+]).
The computational intensiveness of the electronic structure problem has contributed to the
motivation for developing benchmarks for ranking algorithms across many scientific areas
including computational chemistry, including for example QM7 [BR09; Rup+12], QM9
[Rud+12; Ram+14], and W4-11 [KDM11]. Several of these listed benchmarks in computa-
tional chemistry involve datasets for tasks pertaining to molecular property prediction, but
there are also benchmarks that focus on algorithmic or methodological aspects without rely-
ing on specific datasets, for example, basis set benchmarking [KTM07; MBS11] for describing
electronic structure of molecules, conformal benchmarking [Fri+17] to assess algorithms for
exploring the low-energy conformational space of molecules, and reaction path benchmarking
[MH19] to compare optimization methods for finding chemical reaction pathways.

The classical computational chemistry benchmarks mentioned above share the idea of
testing algorithms against a common computation or prediction task on a set of common
objects. This idea is prevalent throughout benchmarking for not only comparing different
algorithms but also devices with respect to certain measures of performance. For example,
the LINPACK benchmark [Don+79; Don87], which was used to rank the top supercomputers
in the world, involves the common task of solving linear systems of equations Ax = b
where the input matrix A is a pseudo-random dense matrix. The common computation is
solving linear systems of equations in the case of LINPACK and molecular prediction tasks

154



for the computational chemistry benchmarks. Additionally, as part of the benchmark, the
performance of different algorithms is assessed on the chosen task by testing it on a set
of objects. In the case of LINPACK, these objects are pseudo-random dense matrices. In
the QM databases, the objects are small organic molecules [BR09; Rup+12; Rud+12]. The
hardness and generality of the set of objects in the benchmark determine how well it will
predict the performance of algorithms in practice. This has been particularly successful
in the context of machine learning for image classification (e.g., MNIST [Den12], CIFAR
[KH09], ImageNet [KSH12]) and object detection (e.g., MS COCO [Lin+14]). In MS COCO,
for example, algorithms for object recognition are assessed in the broader context of scene
understanding and are tested against images of complex everyday scenes containing common
objects in their natural context. By including typically occurring objects in practice as part
of the testing suite for benchmarking, there has been an improvement in the development of
state-of-art algorithms for object recognition [Kha+22; Min+22].

Returning our attention to the electronic structure problem, on a quantum computer
the primary challenge in the classical methods, that of representing highly entangled and
correlated wavefunctions, is removed in principle. This, together with the classical hard-
ness of the ground state problem and the enormous amount of resources dedicated to it,
has motivated the development of quantum algorithms for the task [McA+20; Lee+23], al-
though new challenges arise. Numerous methods have been designed, including near-term
quantum algorithms such as variational quantum eigensolvers (VQE) [Per+14; McC+16;
Kan+17; Gri+19], quantum approximate optimization algorithm (QAOA) [FGG14; Mol+18;
Far+22], and quantum subspace expansion (QSE) methods [McC+17; Col+18a; PM19;
Mot+20]. Fault-tolerant algorithms for ground state estimation, which are aimed at future
high-accuracy quantum computers, include quantum phase estimation (QPE) [Kit95], its
variants [AL99a; PW09b], algorithm in [GTC19] which uses linear combination of unitaries
(LCU) [CW12], and those using quantum signal processing [Gil+19; LT20; LT22; DL23]. On
currently existing and near-term quantum computers, without error correction, near-term
algorithms are preferred for use instead of fault-tolerant algorithms whose circuit depths
and qubit counts will require error correction. These near-term algorithms including VQE
are typically hybrid quantum-classical algorithms involving sequential rounds of measure-
ments of parametrized quantum circuits or short time Hamiltonian simulation and classical
post-processing along with classical optimization.

A common subroutine across many of these algorithms is that of observable estima-
tion or estimating Tr(ρH) (e.g., [Du+10; Lan+10; Wan+15; OMa+16; She+17; Pae+17;
Hem+18; San+18; Col+18b; Dum+18; Kok+19; Kan+19; Gan+19; Sag+19; McC+19;
SM19; Nam+20; Aru+20b; Kre+21; Löt+21; Kis+22]) for a given n-qubit quantum state ρ
resulting from a short depth quantum circuit and an n-qubit Hamiltonian H (or in general
any observable). Physical Hamiltonians H can be decomposed into a linear combination of
L n-qubit Pauli operators: they form a basis for the Hermitian operators, and local observ-
ables have polynomial-sized decompositions in the Pauli basis. Other decompositions of H
include LCU [CW12; Kir+22] or one-sparse matrices [AT03; Ber+07; CK11]) but these are
impractical in the near-term because of the relatively complex quantum circuits required to
estimate expectation values of the terms. In contrast for Pauli decompositions, we could
estimate Tr(ρH) simply by estimating Tr(ρQ) independently [Per+14] for each of the Pauli
terms Q in the Pauli decomposition of H.
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However, this procedure is typically inefficient as (in general) subsets of Pauli terms will
commute and thus be co-measurable. Generally, however, a commuting set of Paulis can
only be simultaneously measured by applying a depth-Θ(n) Clifford circuit to map them to
their common eigenbasis. In the near-term, when circuit depth is at a premium due to the
lack of error correction, it is desirable to use all of the circuit depth for the state preparation
instead of measurements. Locally commuting Pauli operators, i.e., operators that have all
non-identity single-qubit Pauli matrices in common are used instead. They can be measured
simultaneously in the same local basis by applying one layer of single-qubit gates followed by
measurement in the computational basis and these are the type of measurements we consider
access to in this chapter.

In recent years, two main approaches for the observable estimation problem using local
Pauli measurements have emerged: (i) randomized measurements [HKP20; Had+22; Hil+21;
LLB21; KG22; Elb+23] in which local Pauli measurement bases are drawn from a distribu-
tion over the n-qubit Pauli operators [HKP20; Had+22; Hil+21] or generated via a sampling
procedure that does not require explicit access to the distribution [Had21], and (ii) grouping
methods [Gok+20; YVI20; VYI20; Cra+21; Wu+23; YGI23; Shl+23], which combine Pauli
terms into locally compatible subsets for simultaneous measurement either systematically
[Cra+21; Wu+23] or using ad-hoc heuristics [Kan+17; Hem+18; VYI20]. There also other
approaches: [ASS21] uses a set of informationally complete positive operator-valued mea-
surements to solve the observable estimation problem and [HKP21] obtains deterministic
sequences of Pauli measurements to be made by derandomizing randomized measurements.
Notably, among the listed methods are those based on classical shadows [HKP20; Had+22;
Hil+21; Wu+23] which are asymptotically optimal [HKP20] requiring only O(3w logL) mea-
surements for a Hamiltonian with L Paulis in its Pauli decomposition and maximum number
of non-identity Paulis in any Pauli term being w. Despite the potential of these methods in
ideal scenarios, little is known about their behavior on quantum devices in presence of noise.
Experimental studies have only been carried out so far on small molecular Hamiltonians
[Str+21] or quantum states over few qubits [Zha+21].

Given the large suite of options, a natural question at this point is: How do we system-
atically select measurement methods for the common quantum computation of estimating
Tr(ρH) in hybrid quantum-classical algorithms? One way to tackle this is to follow the
classical approach and propose a benchmark. This is not without precedent on the quantum
side: recently a “quantum LINPACK” benchmark [DL21] was proposed for ranking compu-
tational power of quantum computers; in direct analogy to LINPACK, it involves solving
the quantum linear system problem. A challenge in designing benchmarks is to have predic-
tive power regarding the performance of the candidate algorithms beyond the dataset tested
against.

In this work, we take a similar approach to classical benchmarks by considering the
common quantum computation task of observable estimation Tr(ρH) on a set of common
chemistry Hamiltonians and quantum states. In analogy to classical computational chemistry
benchmarks [BR09; Rud+12], we consider sets of quantum states particular to the problem
of ground state estimation as well as those states that naturally occur during the runtime of a
hybrid quantum-classical algorithm. This culminates in the proposed benchmark in this work
called CSHOREBench: Common States and Hamiltonians for ObseRvable Estimation.

In addition to commenting on the objects considered as part of the data set of CSHOREBench,
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performance metrics used to rank measurement methods on these objects need to be defined.
An important aspect in designing or selecting the measurement method and estimator is the
amount of resources required. Considering the performance metric of accuracy, one selection
criterion is to minimize the number of measurements required on the quantum device in
achieving a given accuracy. However, this only takes into account the quantum resources
used and may come at a prohibitive computational cost on classical computers in setting up
the measurement methods or running the estimator on the data acquired from the experi-
ment step. To capture a representative performance metric for all of the costs associated to
a measurement procedure, classical and quantum, we propose a heuristic that incorporates
different resources’ utilization in the observable estimation problem.
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Figure 5.1: Prescription for benchmarking a candidate measurement protocol (measurement
method ΣM and estimator E) on a Hamiltonian H and state ρ against measurement budget
M . The benchmarking stages of setup (S), execution (E) and analysis (A) are shown for each
step of a general measurement protocol. General measurement protocols, to be discussed
in Section 5.2.4, can be divided into steps of classical pre-processing where measurement
samples are generated, experiments on a quantum device and classical post-processing on
data acquired. Each step has a benchmarking stage associated with it. As shown (left),
setup defines the testing dataset, candidate algorithms and experiment design. Execution
(right) defines the computational resources available for any step. Analysis (right) defines
the metrics associated with each step.

As part of benchmarking different measurement protocols on a given H and ρ, it will be
convenient to break up each measurement protocol into the steps of pre-processing where the
Pauli bases are generated using a measurement method, experiments where a state is mea-
sured in these bases on a quantum device and post-processing where an estimate is obtained
from the data acquired using an estimator. In the rest of this chapter, we will complete
the benchmarking process for each of these steps in CSHOREBench as commonly done
in machine learning and computational chemistry benchmarks, consisting of the following
stages: (i) setup, (ii) execution, and (ii) analysis. An illustration of this benchmarking pro-

157



cess (or prescription) is depicted in Figure 5.1. (i) Setup involves defining the test dataset
of Hamiltonians and states under consideration, candidate measurement methods, estima-
tors and the benchmarking experiment design. (ii) Execution defines the computational
resources available for executing the step such as classical computing (e.g., CPU, distributed
computing, parallelization, simulator, etc.) and quantum computing (e.g., QPU, modular
quantum devices etc.). (iii) Analysis defines the performance metrics and the methods (e.g.,
empirical, inferential, etc.) to evaluate the performance metrics. The main distinction of
CSHOREBench from classical computational chemistry benchmarks is the availability of
quantum devices for execution and as highlighted in the paragraph before, utilization of
this resource will be important to account for. Finally, it is desirable that a benchmark is
reproducible and reflects reality (or the performance obtained in experiment on quantum
hardware). We demonstrate this by including data and analysis of CSHOREBench from
experiments on IBM quantum devices.

This chapter is organized as follows. In Section 5.2, we first formalize the problem of
estimating Tr(ρH) for a given n-qubit Hamiltonian and access to an unknown n-qubit quan-
tum state ρ under the constraints of measuring in the Pauli basis. We then describe the
benchmarking strategy followed in CSHOREBench in Section 5.2.3 and then describe its
setup, execution and analysis in the context of a general measurement protocol for estimat-
ing Tr(ρH) in Section 5.2.4. This allows to kick off our discussion of different estimators
that may be employed with various measurement methods in Section 5.3. In Section 5.4, we
describe randomized and derandomized measurement methods using the framework of deci-
sion diagrams. In Section 5.5, we formally describe the data set of molecular Hamiltonians
and states considered as part of CSHOREBench before presenting the experimental protocol
we follow. In Section 5.6, we report our results from CSHOREBench on the convergence
behavior and resource utilization of various measurement methods. Finally in Section 5.7,
we comment on our benchmarking results and possible extensions of this work.

5.2 Background

In this section, we introduce the problem of observable estimation, i.e., estimating Tr(ρH)
via Pauli measurements, given an n-qubit quantum Hamiltonian (or observable) H and an
n-qubit quantum state ρ. This is followed by the description of our benchmarking strategy
for the observable estimation problem in Section 5.2.3. We then describe the different steps
of setup, execution and analysis of CSHOREBench through a presentation of the general
measurement protocol for estimating Tr(ρH).

A formal description of CSHOREBench is presented in Section 5.5 after describing the
measurement methods in Section 5.4 and estimators in Section 5.3. We now begin by intro-
ducing relevant notation.

5.2.1 Notation

We will denote the set of n-qubit Pauli operators as Pn = {I,X, Y, Z}⊗n, the set of n-
fold tensor products of the single-qubit Pauli matrices {I,X, Y, Z}. At times, it will be
convenient to consider the set of n-fold tensor products of non-identity single-qubit Pauli
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matrices, which we denote by Ωn = {X, Y, Z}n. For any n-qubit Pauli operator Q, we refer
to its action on the jth qubit as Qj and hence have Q =

⊗n
j=1Qj. We denote the support

of a Pauli operator as supp(Q) = {j|Qj ̸= I} and its weight as wt(Q) = |supp(Q)|.
We say that the n-qubit Pauli operator B covers n-qubit Pauli operator Q (or Q is

covered by B) if Q can be obtained from B by replacing some of the local Pauli matrices on
single-qubits with identity. We then write Q ▷ B. We extend the same notation to sets of
Pauli operators on the left hand side, e.g., S ▷ B if and only if all Pauli operators in S are
covered by B. For example, {XXI, IXX,XIX} ▷ XXX but {ZZI, IZZ,ZIZ} ▷̸ XXX.

5.2.2 Observable estimation: Learning problem of measuring quan-
tum Hamiltonians

Consider an n-qubit Hamiltonian decomposed as a linear combination of L Pauli terms

H =
L∑

j=1

αjQ
(j) (5.1)

where Q(j) ∈ Pn are n-qubit Pauli operators and αj ∈ R are the corresponding coefficients.
We call the set Q := {Q(j)}j∈[L] the target observables where we used the notation [L] =
{1, 2, ..., L}.

The observable expectation problem is then as follows. Given an n-qubit quantum state
ρ (prepared by some quantum circuit), the goal is to estimate E := Tr(ρH) within error
ϵ ∈ (0, 1/2) using as few prepare-and-measure repetitions as possible. Note that H can
represent any physical observable; an typical example would be the qubit representation of a
molecular Hamiltonian, as studied in the earliest papers to consider grouping of commuting
Pauli measurements [Kan+17; Hem+18]. In the process of obtaining an estimate Ê of E,
we will obtain estimates of the Tr(ρQ(j)), which will be denoted by ω̂(j). The true value of
Tr(ρQ(j)) will be denoted by ω(j).

The main constraint that we will impose on our learning problem is that once ρ has been
prepared on a quantum device, we are only allowed to use measurements corresponding to
n-qubit Pauli operators to learn values of Tr(ρQ(j)) and hence Tr(ρH). This ensures that
we do not have any access to quantum resources such as entanglement for learning, and
our measurement circuits are composed of single-qubit operators. As discussed above, this
is a reasonable constraint to impose on existing and near-term noisy quantum hardware
where one would want to prioritize depth in the state preparation circuit over depth in the
measurement circuit.

5.2.3 Strategy for CSHOREBench

The goal of CSHOREBench is to assess the performance of and rank different measurement
methods in estimating Tr(ρH) through local Pauli measurements on a quantum computer,
for n-qubit Hamiltonians H and n-qubit quantum states ρ prepared on a quantum computer.
To start the description of the benchmarking setup, we need to define the set of objects, i.e.,
types of Hamiltonians H and quantum states ρ considered as part of the test suite for our
candidate measurement methods.
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Analogous to classical benchmarks of MS COCO [Lin+14] and on QM datasets [BR09;
Rud+12] (described in Section 5.1), we consider the broader learning context of these mea-
surement methods when used in near-term hybrid quantum-classical algorithms, which is
typically ground state estimation. We thus consider objects from this natural context. The
set of Hamiltonians considered here include small molecular Hamiltonians of varying sizes
and with varying Pauli weight distributions. We consider different types of states that would
be expected during the runtime of a hybrid quantum-classical algorithm such as VQE. For
example, we benchmark against the Hartree-Fock (HF) state, which is classically simulat-
able and a possible initial state for many ground estimation algorithms. During the course
of a (successful) VQE run, one could also expect to see an approximate ground state at the
very end, but for the purpose of benchmarking such states are not desirable since they may
be difficult to prepare. Instead, we benchmark against quasi-random states prepared by a
typical low-depth ansatz with random parameter settings. These random states serve as a
proxy for typical intermediate states obtained in the middle of a VQE optimization, since
although in that case the parameter setting would not be random, it would not in general
bear any particular relation to the Pauli decomposition of the target observable. The overall
code base of CSHOREBench is designed such that any new Hamiltonian can be easily added
to the existing dataset and measurement methods benchmarked against it.

The most popular metric used so far is that of accuracy, i.e., root mean square error
(RMSE) in the estimate of Tr(ρH) for a given budget of measurements. However, a highly
accurate measurement method may not be useful in practice as the classical computational
runtime required for set up or optimization may be prohibitive and the quantum resources
required too demanding. It is thus imperative to analyze the resources utilized in obtaining
an accurate estimate through a measurement method. We further stress that we need to
account for both classical and quantum resources as the subroutine of obtaining expectation
values with respect to different quantum observables is inherently hybrid quantum-classical
in nature, requiring different experiments to be executed on the quantum device and classical
post-processing of the measurements in addition to pre-processing to decide the experiments
themselves.

In the next section, we discuss a general measurement protocol and comment on resource
utilization in the different steps of the protocol.

5.2.4 General measurement protocol

In this section, we describe the general procedure along with resource utilization for the
problem of estimating Tr(ρH) on n qubits, given measurement budget M . The measurement
budget is equivalent to the number of total shots we are allowed gather from the quantum
device or the number of times the device is queried.

The general procedure is schematically depicted in Figure 5.2 and involves three steps:
(i) pre-processing on a classical computer (CPU), (ii) experiments on a quantum device (or
QPU for quantum processing unit), and (iii) further post-processing of data acquired from
the quantum device on a classical computer. We now describe each of these steps in detail.
We will also explicitly state the benchmarking setup, execution, and analysis associated with
each step. First, we describe the experiments executed on the quantum device as this decides
the formulation of the pre-processing and post-processing steps.
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Figure 5.2: Schematic of estimation of Tr(ρH): The procedure is divided into three steps
of (i) pre-processing on a classical computer (CPU), (ii) experiments on a quantum device
or quantum processing unit (QPU), and (iii) post-processing on the CPU. In (i), the mea-
surement method plays the central role of deciding which measurement bases (denoted by
B here) to execute on the QPU given inputs of an n-qubit Hamiltonian and measurement
budget M . In (ii), experiments are executed on the QPU using the inputs of the Pauli
measurement bases output by step (i). A measurement circuit corresponding to an arbitrary
basis B is shown inset (Had denotes the Hadamard gate, and S† denotes the inverse phase
gate, which are used to transform the local measurement basis). Finally, in (iii) estimation
is carried out on measurement results of the form (B, y) where B are the Pauli measurement
bases and y are the corresponding measurement outcomes from the QPU.

Experiment. Each experiment on the quantum device involves the preparation of the n-
qubit quantum state of interest followed by a measurement circuit. In an arbitrary step of
VQE, this state would correspond to a parametrized quantum circuit or an ansatz with a
certain set of assigned parameters. In quantum Krylov methods, this state may correspond
to a certain time-evolved state. After the state is prepared, a measurement circuit is applied
which involves application of single-qubit unitaries ⊗ni=1Ui followed by a measurement in the
computational basis. We denote the outcome of a measurement which is an n-bit binary
string as y ∈ {0, 1}n. For any arbitrary qubit j, the single-qubit unitary Uj corresponds to
measuring qubit j in a non-trivial Pauli basis

Uj =





Had, Bj = X,

S†Had, Bj = Y,

I, Bj = Z,

(5.2)

where we have denoted the n-qubit Pauli basis as B, the subscript j denotes the Pauli matrix
on qubit j, Had is the Hadamard gate, and S = diag(1, i) is the phase gate. As discussed
earlier in Section 5.1, we restrict measurement circuits to involve measurements in the Pauli
basis due to depth limitations on currently available noisy quantum hardware and hence the
preference for shallow measurement circuits. In summary, the input to the experiment step
for a measurement budget M is a set of M Pauli measurement bases {B(k)}k∈[M ] correspond-
ing to the measurement circuits executed on the quantum device and the output from this
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step is a set of measurement outcomes with each one corresponding to a measurement basis
{(B(k), y(k))}k∈[M ]. This output is then later used in the post-processing step for obtaining
an estimate of Tr(ρH). This completes the description of the experiment step.

The benchmarking setup includes defining the state preparation circuit (either after com-
piling a classical description of a digital quantum circuit to be implemented or setting the
parameters in a parameterized quantum circuit), and the measurement circuits to be used
for the chosen measurement bases. As part of the benchmarking execution, we need to define
the type of quantum computing resource being utilized (e.g., QPU, modular, etc.) as well as
any classical computing resource (e.g., CPU, distributed, parallel, etc.) utilized for compila-
tion and error mitigation. Finally, as part of the benchmarking analysis, this step involves
the quantum wall-clock time over the experiments executed and the metric of computational
runtime associated with compilation or error mitigation.

Pre-processing. In this step, a measurement method is used to propose a set of Pauli
measurement bases {B(k)}k∈[M ] that is inputted to the experiment step. The inputs to the
measurement method are the n-qubit Hamiltonian H, measurement budget M , and any
available prior information of the quantum state ρ. Taking the measurement basis operator
on any particular qubit to be the identity I corresponds to not measuring that qubit, and
hence does not reveal any information about a target observable Q. Therefore, we consider
the alphabet of measurement bases as Q = {X, Y, Z}⊗n and call it the query space. We
denote a distribution over Q as β and call it the query distribution. The probability mass
associated with a Pauli operator P ∈ Q is given by β(P ).

The benchmarking setup includes defining the Hamiltonian H under consideration, quan-
tum state ρ to be measured (either through a classical description of the state preparation
circuit required to be implemented or parameters associated with a parameterized quantum
circuit), and measurement method ΣS to be used for generating the samples. As part of the
benchmarking execution, we need to define the type of computational resource being utilized
(e.g., CPU, distributed computing, parallelization, etc.). Finally, as part of the benchmark-
ing analysis, this step only involves the metric of computational runtime associated with the
measurement method generating M samples.

Post-processing. After measurement outcomes {(B(k), y(k))}k∈[M ] against M Pauli mea-
surement bases are acquired in the experiment step, they are passed on to an estimator E in
the post-processing step. Suppose there is a Pauli measurement basis B which is queried mB

times and the corresponding measurement outcomes are {y(k)B }k∈[mB ]. We can then compute
an estimate, which we denote by ω̂(B), of Tr(ρB) as follows:

ω̂(B) =
1

mB

mB∑

k=1

µ(k)(B) =
1

mB

mB∑

k=1

n∏

j=1

(−1)y
(k)
j , (5.3)

where µ(k)(B) =
∏n

j=1(−1)y
(k)
j is eigenvalue measurement of ρ in the basis B corresponding to

the outcome y(k). But, it turns out we can do even more with these measurements. Suppose
there is a target Pauli term Q in the decomposition of the Hamiltonian H (Eq. 5.1) which
is covered by B, i.e., all the non-trivial single-qubit Pauli matrices in the tensor product
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of Q coincide with those in B. The eigenvalue measurement of ρ in basis Q could then be
obtained from the measurement outcomes of measuring ρ in basis B.

Let us make this more concrete by introducing some relevant notation. For a full weight
Pauli operator B, we let µ(B, j) = (−1)yj denote the eigenvalue measurement when qubit
j is measured in the basis Bj and as corresponding to measurement outcome y. For for a
subset A ⊂ [n], we define µ(B,A) :=

∏
j∈A µ(B, i) =

∏
j∈A(−1)yj with the convention that

µ(B, ∅) = 1. The eigenvalue measurement of ρ in basis Q corresponding to measurement
outcome y(k) of measuring ρ in basis B is then given by µ(k)(B, supp(Q)). We thus note that
eigenvalue measurements of ρ in basis B can then be used to obtain estimates of not only
Tr(ρB) but also of Tr(ρQ) for all Q that are covered by B. These estimates can then be
combined to give an estimate Ê(ρ) of Tr(ρH). The goal of the estimator E is to do this in a
computationally efficient fashion while using the available measurements to come up with an
accurate estimate. Here, we have hinted at the Monte-Carlo estimator [RC99]. In Section 5.3,
we will give an overview of different estimators that can be used in the post-processing step.

The benchmarking setup includes defining the estimator E used. As part of the bench-
marking execution, we need to define the type of computational resource being utilized (e.g.,
CPU, distributed computing, parallelization, etc.). Finally, the benchmarking analysis in-
volves the accuracy metric of the output learning error (RMSE) and performance metric of
computational runtime associated with running the estimator on the acquired data.

A sequential algorithmic viewpoint of the general protocol for observable estimation dis-
cussed thus so far is presented in Algorithm 7. While benchmarking different measurement
methods, it will also be convenient to define the PEP-SEA matrix, used as an abbrevi-
ation of (P)re-processing (E)xperiment (P)ost-processing - (S)etup (E)xecution (A)nalysis
matrix, that summarizes the different stages of benchmarking for each step of the general
measurement protocol. The PEP-SEA matrix is summarized in Table 5.1.

We have noted that the design of estimators and measurement methods can be inter-
dependent. For example, a trivial estimator could be designed to estimate Tr(ρB) for a
measurement basis B that also occurs as a target Pauli term in the Hamiltonian H using the
corresponding measurement outcomes but not use the same measurement outcomes to esti-
mate Tr(ρQ) for a Pauli Q that is covered by B. This would put a severe restriction on sets
of useful measurement bases to the experiment and limit the flexibility of the measurement
methods. In this work, we only discuss estimators which are designed with compatibility of
different Pauli operators in mind, and discuss which of those estimators may be equipped
with the various measurement methods presented here.

In Section 5.3, we describe different estimators that can be used in post-processing. In
Section 5.4, we discuss various measurement methods that either construct a query dis-
tribution β in order to sample measurement bases B from it or use a routine to sample
measurement bases B without direct access to the underlying distribution. We will also
comment on the compatibility of different measurement methods with different estimators
in Section 5.4.
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Algorithm 7 Estimation of Tr(ρH) through different measurement methods
Input: Measurement budget M , Hamiltonian H, Measurement Method ΣS, Estimator E
1: for sample m = 1 :M do
2: Generate measurement basis B ∈ {X, Y, Z}⊗n using ΣS

3: for qubit k = 1 : n do
4: Measure qubit k in basis Bk

5: Save eigenvalue measurement µ(B, k) ∈ {−1,+1}
6: end for
7: Update observable expectation Ê using estimator E on acquired eigenvalue measure-

ments
8: end for

Output: Ê

Setup (S) Execution (E) Analysis (A)

Pre-processing (P)
Meas. budget: M
Objects: H, ρ
Meas. Method: ΣS

Classical computational
resource utilized
(CPU, distributed, parallel)

Classical runtime

Experiment (E)
State preparation circuit for ρ
Meas. circuit: {Uj}j∈[n]

from {Bj}j∈[n]

Quantum computing
resource utilized
(QPU, modular)

Quantum wall-clock time
Classical wall-clock time
(error mitigation, compilation)
Quantum coherence time

Post-processing (P) Estimator: E
Classical computational
resource utilized
(CPU, distributed, parallel)

Classical runtime
Output accuracy (RMSE)

Table 5.1: Definition of the PEP-SEA matrix.

5.2.5 Summary of performance metrics in CSHOREBench

To account for computational runtime in addition to the convergence of the algorithm at
hand, one common approach used across different classical computational chemistry pack-
ages is to measure the wall-clock time required to achieve some threshold accuracy. As
the learning task of estimating Tr(ρH) is a subroutine in many hybrid quantum-classical
algorithms, we need to account for the computational time spent on the quantum device,
computational time spent on the classical device, and any latencies in between the quantum
and classical hardware, to measure the overall wall-clock time. We refer to the total time
spent on a quantum device as quantum wall-clock time and this includes time duration asso-
ciated with experiment execution, measurements and resets. We refer to the total time spent
on a classical device as classical wall-clock time, which includes setting up different measure-
ment methods (e.g., optimization), post-processing of measurements (e.g., estimation), and
compilation of quantum circuits to the native set of gates of the quantum hardware.

A performance metric for resource utilization could thus simply be the sum of the quan-
tum wall-clock time and classical wall-clock time for a measurement method in reaching a
cutoff of accuracy. However, quantum computers are not yet a mature technology compared
to classical computers. This suggests that a stronger approach to benchmarking would be

164



to allow some flexibility in weighting the quantum and classical costs, since wall-clock time
may not all be equivalent across the classical and quantum phases of the experiment.

Towards this end, we propose a heuristic in Section 5.6 to rank different measurement
methods based on a weighted-sum of the quantum wall-clock time and classical wall-clock
time to reach an specified cutoff of chemical accuracy in RMSE of the resulting energy
estimates. We expect quantum devices to progress rapidly over the next few year, and so
for the benchmarks to be robust to this progress, the weights should vary with time and be
revised with new advances. A functional form of how these weights may change with time
may be useful but is outside the scope of the current chapter.

5.3 Estimators

In this section we discuss different estimators E , which take center stage in the post-
processing step of the general protocol for estimating Tr(ρH) (Figure 5.2) and that can
be used alongside measurement methods as shown in Algorithm 7. Suppose we generate a
set of M Pauli measurement bases through a specified measurement method. We will de-
note this set of measurements by B = {B(s)}s∈[M ] where B(s) ∈ Ωn = {X, Y, Z}⊗n ∀s ∈ [M ].
Recall that we denote the corresponding measurement outcomes as µ(B(s)) ∈ {−1,+1}⊗n
with µ(B(s), j) the measurement outcome on qubit j.

The goal is to use the M examples of {(B(s), µ(B(s)))}s∈[M ] to estimate Tr(ρH). We do
this by obtaining estimates of Tr(ρQ(j)) which we denote by ω̂(j), using one of three possible
estimators: a Monte Carlo (MC) estimator, a weighted Monte Carlo (WMC) estimator, and
a Bayesian estimator, which we introduce in the next subsection. Given the ω̂(j), an estimate
of Tr(ρH) is obtained as

ÊG =
L∑

j=1

αjω̂
(j). (5.4)

5.3.1 Monte-Carlo Estimator

Let us first define the hit function

h(Q(j);B) =
M∑

s=1

1{Q(j) ▷ B(s)} (5.5)

which counts the number of Pauli measurement bases that cover (hit) Q(j). The MC estimate
of ω̂(j) is then simply given by

ω̂(j) =

{
1

h(Q(j);B)

∑M
s=1 1{Q(j) ▷ B(s)}µ

(
B(s), supp(Q(j))

)
, h(Q(j);B) ≥ 1

0, h(Q(j);B) = 0.
(5.6)

This is merely the empirical average of the measurements corresponding to Q(j). As the
MC estimator does not require access to a query distribution β, it can be used with any
measurement methods, including those that generate measurement bases without giving us
direct access to an underlying query distribution. Finally, it can be readily verified that the
MC estimator is an unbiased estimator.
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Laplace smoothing. In any collected dataset D = {(B(s), µ(B(s)))}s∈[M ], there is a possi-
bility that there are no measurements covering an observable Q(ℓ) for some ℓ ∈ [L] and thus
the hit h(Q(ℓ);B) = 0. This happens when the query distribution β assigns very low proba-
bility to measurement bases covering Q(ℓ). For example, this occurs when the measurement
method is based on L1 sampling and the corresponding coefficient αℓ in the decomposition
of H has a low magnitude relative to the 1-norm of the coefficients

∑L
j=1|αj|.

Now suppose that in this situation where the probability of a measurement basis covering
Q(ℓ) is very low, we do get lucky and obtain a single measurement of it. When this occurs the
estimate ω̂(ℓ) will jump from the value 0 (prior to that shot) to the measurement outcome,
either +1 or −1. This may result in large contribution to the uncertainty in the overall
estimate of Tr(ρH) from αℓω̂

(ℓ) even when αℓ is small, if the true value of Q(ℓ) far from the
obtained measurement outcome (as for example is guaranteed if the true value is close to 0).
To avoid this, we artificially adjust the empirical probabilities via Laplace smoothing (also
called additive smoothing) [MRS08] as follows

P (λ(j) = 1) =
m

(j)
0 + γ

m
(j)
0 +m

(j)
1 + 2γ

, P (λ(j) = −1) = m
(j)
1 + γ

m
(j)
0 +m

(j)
1 + 2γ

, (5.7)

where γ is the smoothing parameter and m
(j)
0 (or m(j)

1 ) are the number of measurements in
D which cover Q(j) and correspond to an eigenvalue measurement of +1 (or −1). Formally,
we have

m
(j)
k =

1

2

M∑

s=1

1{Q(j) ▷ B(s)}
(
1 + (−1)kµ

(
B(s), supp(Q(j))

))
, k ∈ {0, 1}. (5.8)

The resulting MC estimate of ω̂(j) with Laplace smoothing is then

ω̂(j) = P (λ(j) = 1)− P (λ(j) = −1) = 1

hγ(Q(j);B)

M∑

s=1

1{Q(j) ▷ B(s)}µ
(
B(s), supp(Q(j))

)
,

(5.9)
where hγ(Q(j);B) is the smoothed hit function related to the original hit function as hγ(Q(j);B) =
h(Q(j);B) + 2γ. Note that for γ = 0, we have no smoothing and re-obtain the original MC
estimator (Eq. 5.6). The value of γ = 1 corresponds to the case when we assume the prior
probability of P (λ(j) = 1) = P (λ(j) = −1) = 1/2 are uniform. The value of γ = 0.5 corre-
sponds to the case when the prior probabilities are the Jeffrey’s prior. Typically, γ is set to
a value in (0, 1) or is treated as a hyperparameter to be fine-tuned later.

5.3.2 Weighted Monte-Carlo Estimator

In the MC estimator, all the eigenvalue measurements are weighted uniformly in computing
ω̂(j). This can be modified by weighting the different samples non-uniformly as follows:

ω̂(j) =
1

M

M∑

s=1

w(s)µ
(
B(s), supp(Q(j))

)
, (5.10)
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where we have introduced weights {w(s)}s∈[M ] that satisfy
∑

sw
(s) = 1. This is often desirable

to ensure stability of estimation [Cas+96], for incorporating prior information or for the
purpose of importance sampling when a proposal distribution is used instead of the query
distribution β for generating samples of measurement bases B.

Here we consider weights based on the query distribution, which can be interpreted as
a self-normalization. Let the probability of a Pauli operator Q being covered by a query
distribution β be denoted by ξ(Q, β). This is equal to the probability with respect to β of
generating a sample measurement basis B that covers Q:

ξ(Q, β) =
∑

B∈Ωn

1{Q ▷ B}β(B), (5.11)

where we have assumed that the alphabet of β is Ωn. The resulting WMC estimator from
setting the weights as w(s) = 1{Q(j)▷B(s)}/ξ(Q(j), β) (with w(s) set to 0 if 1{Q(j)▷B(s)} = 0)
is then given by

ω̂(j) =
1

M

M∑

s=1

1{Q(j) ▷ B(s)}
ξ(Q(j), β)

µ
(
B(s), supp(Q(j))

)
. (5.12)

We note that the expectation of the hitting function Eβ[h(Q(j);B] = Mξ(Q(j), β). We
can thus interpret the weighting in the WMC estimator as assigning a value to 1{Q(j) ▷
B(s)}/h(Q(j);B) according to β and not through the samples actually obtained, in contrast
to the MC estimator of Eq. 5.6.

The WMC estimator can be used when the measurement method has access to the query
distribution β and we can evaluate β(P ) for an n-qubit Pauli operator P . In literature, WMC
estimators have been used where β is a product distribution [HKP20; Had+22] as well as for
more general cases [Hil+21]. It is not immediately clear whether the MC or WMC estimator
would be preferred in practice. To answer this question, we compare the behavior of these
estimators in Section 5.6.1 in combination with various applicable measurement methods.

Remark. The MC estimator (Eq. 5.6) and WMC estimator (Eq. 5.12) may display differ-
ent behaviors for low number of samples. However, it can be shown they are asymptotically
equivalent.

5.3.3 Bayesian Estimator

We now take a Bayesian approach in obtaining estimates ω̂(j) of Tr(ρQ(j)). The estimates
ω(j) are obtained through single-shot measurements of ρ in a Pauli basis B that covers Q(j)

(i.e., Q(j) ▷B), which we denote by the random variable λ(j) which takes values in {+1,−1}.
Let the underlying probability of observing λ(j) to be +1 (−1) be θ(j)0 (θ(j)1 ). We then model
the random vector θ(j) = (θ

(j)
0 , θ

(j)
1 ) as a Dirichlet random variable of order 2 and with

hyperparameters a = (a1, a2), i.e., P (θ(j)) = Dir(2, a). We set a = (1, 1) which corresponds
to a uniformly distributed prior.

Given a data set of M measurements D = {(B(s), µ(B(s)))}s∈[M ] as follows, we can then
update the probability distribution over θ(j) as

P (θ(j)|D) =
P (D|θ(j))P (θ(j))

P (D)
(5.13)
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where we have denoted P (θ(j)) as the prior probability of θ(j), P (D|θ(j)) as likelihood or
conditional probability of obtaining the measurements in D given θ(j), P (D) as the evidence,
and P (θ(j)|D) as the posterior probability of θ(j) given D.

Typically, computing the posterior distribution through Bayes law (Eq. 5.13) is expensive
and one needs to resort to alternate approximate methods such as Markov Chain Monte Carlo
sampling and particle filter methods [Sär13]. However, in this case, the prior P (θ(j)) is a
conjugate prior to the likelihood distribution, which is given by

P (D|θ(j)) =
(
θ
(j)
0

)m0
(
θ
(j)
1

)m1

, mk =
1

2

∑

s∈[M ]

1{B(s) ▷Q(j)}
(
1 + (−1)kµ

(
B(s), supp(Q(j))

))
, k ∈ {0, 1}.

(5.14)
This means that our prior P (θ(j)) and posterior P (θ(j)|D) both belong to the same family

of distributions, which in this case are Dirichlet distributions. The posterior is simply given
by P (θ(j)|D) = Dir(2, a+m) where m = (m0,m1). Ultimately, the posterior distribution is
given by

P (θ(j)|D) =

(
θ
(j)
0

)m0
(
θ
(j)
1

)m1

B(m0 + a0,m1 + a1)
(5.15)

where B(k1, k2) = Γ(k1)Γ(k2)/Γ(k1 + k2) and Γ(z) =
∫∞
0
xz−1 exp(−x)dx is the gamma

function. In practice, we may receive datasets sequentially and the Bayes law (Eq. 5.13)
is then computed sequentially with the posterior becoming the prior for the next dataset.
Finally, an estimate of the expected value of ω(j) or its variance can be obtained as

E[ω(j)] = 2E[θ(j)0 ]− 1 =
m0 −m1

m0 +m1 + 2
(5.16)

Var[ω(j)] = 4E[θ(j)0 (1− θ(j)0 )] = 4
(m0 + 1)(m1 + 1)

(m0 +m1 + 2)(m0 +m1 + 3)
(5.17)

Thus, for carrying out Bayesian estimation of ω(j), it is enough to keep track of the
cumulative number of shots corresponding to measurements of Q(j) yielding values of +1
and −1. We also observe that the expected value of the estimate ω(j) coincides with our
MC estimate (Eq. ) with Laplace error correction of γ = 1. This is not pure coincidence as
Laplace error correction can be motivated through Bayesian estimation.

So far, we have shown how to carry out Bayesian estimation of ω(j), but in many instances
other quantities such as the covariance of estimates of two different target Pauli operators
may be of interest. For a discussion on Bayesian estimation in this latter case, we refer the
reader to [Shl+23, Appendix B].

5.4 Measurement Methods

In this section, we give an overview of different measurement methods ΣS that can be used
in the pre-processing step of the general protocol (Section 5.2.4). We will primarily focus on
randomized measurements where, as the name suggests, there is randomization involved in
producing the measurement bases. We also consider how these methods may be derandom-
ized. Among randomized measurements, there are some methods that involve the explicit
construction of a query distribution β (with respect to the alphabet Ωn = {X, Y, Z}⊗n) from
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which we can sample to produce our measurement bases, and other methods that involve a
routine that allows us to directly produce samples of measurement bases.

To guide our discussion on randomized measurements, we introduce decision diagrams
as an efficient data structure for representing query distributions and describe multiple mea-
surement methods. As we introduce these different measurement methods, we will also
mention their compatibility with the different estimators presented in Section 5.3.

5.4.1 Randomized Measurements
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Figure 5.3: Instances of different decision diagrams for H2 (4 qubits, sto3g basis, JW encod-
ing). We show (a) uniform classical shadows, (b) locally biased classical shadows (LBCS)
and (c) an optimized compact decision diagram.

We will start off by considering randomized measurement methods where the central
object is a query distribution β (with respect to the alphabet Ω = {X, Y, Z}⊗n) from which
Pauli measurement bases are sampled. We could describe a general β through the probability
assignments over 3n − 1 Pauli matrices in Ω. 1 However, this is exponentially expensive.
Moreover, molecular Hamiltonians have O(n4) Pauli terms [McA+20], and these are the
focus of this chapter. We could thus give probability assignments for β over Pauli operators
in Ω that cover the different Pauli terms in H. In fact, we can do better as many of the
Pauli terms in H can be grouped together, i.e., covered by a single Pauli measurement basis
B.

Decision diagrams [Hil+21] give us a compact way to represent a query distribution β that
takes advantage of this highlighted structure in H and represent probability assignments for
different B in Ωn efficiently. For our purposes, decision diagrams are acyclic directed graphs.
In Figure 5.3, we show different decision diagrams for an H2 Hamiltonian, corresponding

1The unassigned probability can be determined through the normalization
∑

x∈Ω β(x) = 1.
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to different measurement methods (to be discussed later). Common to all these decision
diagrams are that the parent node is set to be 0 and the last child node is denoted by −1.
Going from node 0 to −1, we have to take a path that takes n directed edges.

To generate a measurement basis from a decision diagram, we follow a path from node 0
to node −1, at each step choosing the next edge from the current node with probability given
by its weight. Each edge is also labeled X, Y , or Z, so each choice of an edge in the path
represents a choice of local Pauli basis for a corresponding qubit. Each qubit corresponds to
a layer in the decision diagram, so the path from node 0 to node −1 defines a choice of local
basis for each layer and thus each qubit. Thus decision diagrams can represent a very flexible
family of query distributions β in O(poly(n)) memory and allow us to efficiently generate
samples from β as well. We now describe how different randomized measurements that have
been proposed can be seen as instances of decision diagrams.

Classical shadows. The uniform classical shadows (CS) of [HKP20] considers the query
space Q = Ωn = {X, Y, Z}⊗n and the query distribution β(B) = 3−n,∀B ∈ Q. This
corresponds to uniformly randomly picking a measurement basis from {X, Y, Z} for each
qubit. Despite its simplicity, it was shown in [HKP20] that for a set of L Pauli observables
Q(j), using M = O(logL/ϵ2) (factors depending on weight of Q(j) hidden) samples generated
from this query distribution suffice to obtain estimates of the expectation values Tr(ρQ(j))
of all Q(j) up to additive error ϵ. It was also shown that this is asymptotically optimal. A
challenge with using CS in practice is the potentially many different circuits required to be
compiled and run, while current hardware favors repetitions of the same circuit. Moreover,
CS does not incorporate any available prior information of the Hamiltonian H or state ρ.
This led to the extension of CS to other randomized methods which we will discuss shortly.
We note that all the estimators (MC estimator, importance MC estimator and Bayesian
estimator) discussed in Section 5.3 are compatible with this measurement method.

Locally Biased Classical Shadows (LBCS). LBCS [Had+22] is a randomized mea-
surement method that incorporates prior information about the state ρ. In LBCS, the query
distribution β over Q = {X, Y, Z}⊗n is always a product distribution

β =
n∏

i=1

βi (5.18)

where βi is the marginal probability of the ith qubit Pauli matrix Bi, but unlike CS, the βi
are not required to be uniform. Instead, the query distribution β is optimized by minimizing
the one-shot variance of the estimate Ê with respect to a reference state, subject to the
constraint that it has the form (5.18). Ideally, the reference state would be the target state,
e.g., a ground state, but Ê is unknown a priori for that state. Next best would be to choose
a heuristic reference state in the same way one would choose an initial state for VQE or
other ground state preparation algorithms, e.g., the Hartree-Fock state, but this leads to a
non-convex optimization. LBCS overcomes this by instead minimizing the variance of the es-
timate against the maximally mixed state, which results in a convex optimization [Had+22].
It has been numerically shown that LBCS can yield more accurate estimates of Tr(ρH) than
CS on various chemistry Hamiltonians for the same measurement budget [Had+22]. Like
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CS, all the estimators (MC estimator, importance MC estimator, and Bayesian estimator)
presented in Section 5.3 are compatible with this measurement method.

Compact Decision Diagrams. Both of the above measurement methods are restricted
to β being a product distribution, i.e., the marginal distributions over each qubit are inde-
pendent of each other. However, in general, there will be correlations between measurements
of Tr(ρPj) and Tr(ρPk), so is desirable to allow the query distribution account for such cor-
relations. This is where general decision diagrams fit in by allowing us to represent general
non-product joint distributions efficiently for molecular Hamiltonians. We refer the reader
to [Hil+21; Mat+24] on how to construct compact decision diagrams given the Pauli decom-
position of Hamiltonian H (Eq. 5.1) and a qubit ordering.

Once an initial decision diagram is obtained, the edge weights of the DD can be further
optimized by minimizing the one-shot variance of the estimate Ê if we have some prior
knowledge on the quantum state ρ. In practice, we find that even optimizing against the
maximally mixed state is beneficial, like in LBCS. Unlike in LBCS, however, this does not
yield a convex optimization problem. A solution at the local minima is still advantageous,
yielding higher accuracy for the same measurement budget compared to LBCS as was shown
in [Hil+21].

We have so far seen how decision diagrams are useful in representing query distributions
β and how one can efficiently generate samples from β on them. In the following sections,
we discuss Adaptive Pauli Shadows (APS) and how derandomization of decision diagrams
may be performed.

5.4.2 Adaptive Pauli Measurements

We have so far focused on randomized measurement methods that involve construction of a
query distribution β that we can directly sample from to generate the samples. Moreover, β
remains unchanged during the sampling process. In contrast, Adaptive Pauli Shadows (APS)
method [Had21] allows us to sample from β that changes adaptively during the sampling
process.

As in Algorithm 7, we index samples by m. Each time we generate a measurement basis
B(m), we iteratively sample each single-qubit basis B(m)

j ∈ {X, Y, Z} in some qubit ordering,
which is chosen randomly. On the jth qubit in this ordering, we sample a measurement
Pauli matrix according to the probability distribution that is the solution to

minimize:
∑

Q(k)∈Ω

α2
k

β(Q
(k)
j )

(5.19)

subject to: 0 ≤ β(Bj) ≤ 1, for Bj ∈ {X, Y, Z}∑

Bj∈{X,Y,Z}

β(Bj) = 1

where the set Ω is defined as

Ω = {Q ∈ Q|Qj ∈ {X, Y, Z} and Qj′ ∈ {I, B(s)
j′ } ∀j′ < j} (5.20)
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and we have used β in place of βj. An analytical solution based on Lagrange multipliers can
be developed for this convex optimization problem. We point the reader to [Had21] for the
solution. Iterating over the qubits allows us to generate the sample B(s). The additional
cost of this sampling process is only O(n).

The idea of using a distribution solving (5.19) is to appropriately include the information
about choices of basis on the previous qubits (in the ordering) in the choice of basis on the
jth qubit. The key point to notice is the definition of the set Ω in (5.20): this contains all
Pauli operators that are (i) in the target observable (i.e., in the set Q), (ii) X, Y , or Z on
the qubit currently being decided, and (iii) compatible with the part of the basis chosen so
far.

Constraints (ii) and (iii) are the important ones, and what really separate APS from other
measurement methods. Constraint (ii) is used so that the choice on qubit j is independent
of operators that are I on qubit j, since these are compatible with any choice on qubit j.
Constraint (iii) is used so that the choice on qubit j is independent of operators that are
already incompatible with the basis given the choices on the previous qubits. Thus the choice
of basis for qubit j only depends on operators whose inclusion in the covered set actually
depends on that choice.

As we do not have access to the joint query distribution β for each sample, the Weighted-
MC estimator (Eq 5.12) cannot be used with this method. The MC and Bayesian estimators
can be used.

5.4.3 Derandomization

We have so far discussed randomized measurement methods that involve random generation
of measurement bases. Often, however, it is desirable to have a deterministic sequence of
measurement bases to make and that can be repeated across different experiments while
retaining the performance of randomized algorithms.

In this section, we introduce the idea of derandomizing the randomized measurements
that are obtained by sampling different query distributions β that may correspond to CS,
LBCS or in general a decision diagram. Derandomization of CS was proposed in [HKP21]
which we extend in a straight-forward fashion to derandomization of a general query distri-
bution β represented on a decision diagram. Notably, we show how relevant computations
carried out during derandomizing a general query distribution β can be implemented effi-
ciently when one has access to the corresponding decision diagram.

Let us now introduce some notation that will be relevant to our discussion on derandom-
ization. Recall that the target observables that we are interested in are Q = {Q(j)}j∈[L].
Departing slightly from the goal we have considered so far, consider the goal of estimating
Tr(ρQj) within error ϵ for any j ∈ [L]. We denote these estimates as ω̂(j) and denote the true
value of Tr(ρQ(j)) by ω(j). This is once again achieved through M single shot measurements
of the following Pauli operators: B = {B(s)}s∈[M ].

Through derandomization of a randomized algorithm, it is possible to come up with
a partially or fully fixed sequence of measurements to be carried out. The key idea is to
understand how estimates typically deviate from the truth in a randomized algorithm and
how this changes when conditioned upon previous measurements. One way to measure this
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deviation is through the confidence bound introduced in [HKP21]:

CONFϵ(Q;B) :=
L∑

j=1

exp

(
−ϵ

2

2
h(Q(j);B)

)
, (5.21)

where h(·) is the hit function (Eq. 5.5). It was shown in [HKP21, Lemma 1] that if the
confidence bound is upper bounded by δ/2 for some δ ∈ (0, 1) then each of the empirical
estimates ω̂(j) are within ϵ-distance of the truth ω(j), with probability at least 1− δ.

Derandomization of DD is then completed through the following steps: (i) obtain a
confidence bound on estimates for DD, (ii) analyze the confidence bound when conditioned
on prior measurements, and (iii) use this conditional expectation bound to design a cost
function that will be used for the derandomizing procedure. This procedure is outlined in
Appendix C.1. Here, we state the cost function in derandomization of DD.

To motivate the cost function for derandomization of DD, consider the following scenario.
Suppose we are given a measurement budget of M and that B# contains the assignments of
measurement bases for the first (m− 1) samples and first k qubits of the mth measurement
basis. That is, we have already generated the first (m− 1) samples and Paulis of the first k
qubits of the mth measurement basis. We then have the following conditional expectation
of the confidence bound (see Appendix C.1)

E
[
CONFϵ(Q;B)|B#

]
=
∑

j∈[L]

m−1∏

m′=1

(
1− η1{Q(j) ▷ B#(m′)}

)

×
(
1− η

k∏

k′=1

1{Q(j) ▷ B#(m′)}Pr
[
Q

(j)
k+1:n covered by DD|B#(m)

1:k

])

×
(
1− η Pr

[
Q(j) covered by DD

])M−m
,

where η = 1−exp(−ϵ2/2). To choose the assignment of the kth qubit of themth measurement
basis, we consider the following cost function

B#
k

(m)
= argmin

W∈{X,Y,Z}
C(W ) = argmin

W∈{X,Y,Z}
E
[
CONFϵ(Q;B)|B#, B

(m)
k = W

]
(5.22)

where B# now corresponds to the assignments of measurement bases over the first (m− 1)
samples and (k−1) qubits of the mth measurement basis. Note that the above cost function
requires the input of the experimental budget M .

An algorithm for derandomization of DD is given in Algorithm 8. Note that all the steps in
the algorithm can be computed efficiently on a decision diagram for molecular Hamiltonians.
Details are given in Appendix C.1.
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Algorithm 8 Derandomization of Decision Diagrams
Input: Measurement budget M , accuracy ϵ, target observables Q = {Q(j)}j∈[L], decision
diagram ΣDD

Output: Set of M measurement bases B#

1: for m = 1 :M do
2: for k = 1 : n do
3: for W ∈ {X, Y, Z} do
4: Compute C(W ) = E

[
CONFϵ(Q;B)|B#, B

(m)
k = W

]

5: end for
6: Set B#

k

(m) ← argminW∈{X,Y,Z}C(W )
7: end for
8: end for
9: return B#

The derandomized measurement procedure is compatible only with the MC estimator
(Section 5.3.1) and Bayesian estimator (Section 5.3.3) that we have described so far.

Remark. Both measurement methods of APS and derandomization attempt to bring in
adaptivity into the sampling process. However, there are qualitative differences besides
how these methods themselves are motivated and set up. Derandomization fixes the Pauli
operator for a qubit by solving an optimization problem while APS obtains an optimized
marginal distribution over Paulis on a qubit and then allows for a randomized Pauli sample.
Measurement history is taken into account of derandomization but not in APS.

5.5 CSHOREBench: Common States and Hamiltonians
for ObseRvable Estimation Benchmark

Having discussed different randomized and derandomized measurement methods at our dis-
posal for the learning problem of estimating Tr(ρH) (Section 5.2) in Section 5.4 and esti-
mators that can be used in conjunction with these methods in Section 5.3, we are now in a
position to compare the performance of these different measurements in practice.

In Section 5.2.3, we laid the inspiration and strategy for CSHOREBench. We now for-
mally describe the setup, execution and following analysis, discussed in the context of gen-
eral measurement protocols in Section 5.2.4, to be carried out as part of this benchmark.
CSHOREBench along with the implementation of all measurement methods (Section 5.4)
and estimators (Section 5.3) can be found in a Github repository 2.

2https://github.com/arkopaldutt/RandMeas
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5.5.1 Common quantum computation task and common objects

In Section 5.2.3, we mentioned the types of Hamiltonians and states that we would bench-
mark against to assess the performance of different measurement methods. We now explic-
itly state these objects. For CSHOREBench, we consider a set of small molecular electronic
Hamiltonians that have been encoded into qubit systems. The molecules that we specifically
consider as part of the benchmark here, are listed in Table 5.2. The qubit Hamiltonians
are obtained by first representing each molecule by a fermionic Hamiltonian in a particular
molecular orbital basis which is then mapped to a qubit Hamiltonian using the Jordan-
Wigner (JW) [JW93] encoding. In our experiments we found similar results against the
Bravyi-Kitaev [BK02b], and parity [BK02b; SRL12] encodings. We thus only report our
results for the JW mapping.

As mentioned earlier in Section 5.2.3, given a Hamiltonian H, the set of states consid-
ered are those which we expect during the runtime of a hybrid quantum-classical circuit
for ground state estimation such as VQE. These include a properly chosen initialization
(e.g., Hartree-Fock (HF) state), target state (e.g., ground state) and appropriately chosen
parametrized quantum circuits (also called quantum ansatz). For the purpose of the bench-
marking experiments in this chapter, we consider the HF state, ground state and a random
quantum ansatz. Another motivation for including random quantum ansatz as one of the
states to test on is simply because in most cases, the ground state is difficult to prepare on
a near-term quantum device and it is the state that the hybrid quantum-classical algorithm
is trying to optimize for.

An overview of the different molecules and the experiments carried out on them are given
in Table 5.2. These include tapered Hamiltonians [Bra+17] where qubit degrees of freedom
corresponding to exact Z2 symmetries of a Hamiltonian are removed. At least two qubits
can always be removed, corresponding to spin and electron number parity, and often more
Z2 symmetries are available, which can typically be attributed to the point group of the
molecule [Bra+17; Set+20].

We will describe the experimental protocol followed in the execution of CSHOREBench in
Section 5.5.3. It should be noted that while we consider a small set of Hamiltonians in this
work, CSHOREBench can be performed on any set of molecular Hamiltonians such as those
included in the QM databases [BR09; Rud+12].

Molecule Number of qubits Basis
H2 (tapered) 5 3-21g
HeH+ (tapered) 6 3-21g
HeH+ 8 6-31g
LiH 12 sto6g
N2 16 sto6g

Table 5.2: Molecules considered for benchmarking of measurement methods on the simulator
and quantum device. The Jordan Wigner encoding is considered. For each Hamiltonian, the
state is set to be the ground state on the simulator and a random ansatz on quantum devices.
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5.5.2 Performance metrics in CSHOREBench

In this section, we describe the different metrics considered as part of the analysis stage of
benchmarking different measurement methods in CSHOREBench. In Figure 5.1, we show-
cased two metrics of relevance, accuracy and runtime, which were later contextualized in
Section 5.2.4.

Accuracy. In assessing measurement methods, the main performance metric is the accu-
racy or learning error achieved given a measurement budget M . For various measurement
protocols, we track the root mean squared error (RMSE) with increasing values of mea-
surement budget. This also allows us to investigate the convergence behaviour of different
measurement methods and numerically determine their sample complexities.

Runtimes. As we identified in Section 5.2.4 and illustrated in Figure 5.1, each step of
the measurement protocol (pre-processing, experiment, and post-processing) has a compu-
tational runtime associated with it. For the pre-processing and post-processing steps, this
is the classical computational runtimes as these are executed on classical computing. For
experiments, this is a classical computational runtime when executed on a simulator and
the quantum wall-clock time when executed on a quantum device. Here, we keep track of
classical computational runtime as wall-clock time instead of number of FLOPS (floating
point operations). It should be noted that these computational runtimes are then specific
to our implementation of the measurement methods and estimators.

Classical latencies. To execute experiments on a quantum computer according to the
measurement bases generated on a classical computer, there are multiple latencies involved
such as compilation of circuits to the native gate set of the quantum computer, loading of
circuits through the control electronics interfacing with the quantum computer, and classical
post-processing associated with measurement error mitigation. On current control electron-
ics, it is more expensive to run any number of shots over many different circuits than the
same number of shots against the same circuit. Thus, we also track the number of unique
measurement circuits (or measurement bases) requested by different measurement methods
to reach a given value of accuracy and the distribution of shots across different circuits.

Summary of resource utilization. As suggested in Section 5.2.5, we attempt to sum-
marize resource requirements by answering the following question: How much classical and
quantum resources are utilized by a given measurement method ΣM to reach a cutoff of ac-
curacy 5 milli Hartree in estimating Tr(ρH) for a given Hamiltonian H and ρ?

Ideally, we would have chosen the cutoff to be chemical accuracy or 1.593 milli Hartree.
However, many of the candidate measurement methods considered here would require far
too high measurement budget to reach this cutoff and would not be possible to verify this
reasonably in experiment on quantum devices. In the above question, we have chosen 5
milli Hartree as a cutoff as this is achieved by various measurement methods on a simulator
and in experiments on a quantum device. The resource utilization at this cutoff should
be representative of that at chemical accuracy. In answering the above question, we will
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primarily account for classical and quantum runtimes. We will ignore classical latencies as
control electronics hardware is fast evolving.

As noted earlier, we cannot simply add the classical and quantum wall-clock times to
obtain a value associated with overall resource utilization due to the differing maturities of
classical and quantum computing technologies. Rather, we introduce a heuristic for resource
utilization that takes the form of a weighted sum of the wall-clock times:

R = wc ·Rclassical + wq ·Rquantum, (5.23)

where wc is the weight corresponding to classical computers, wq is the weight corresponding to
quantum computers and Rclassical (or Rquantum) is the resource utilization by the corresponding
type of computing and measured in wall-clock time here. The weights have units of s−1 to
make R dimensionless and can be interpreted as resources used per second.

The question then arises: How do we design these weights? We could consider a common
task for both classical and quantum computers, and then compare their performances. For
example, in comparing CPU-centric classical computers and those with access to GPUs,
a common task is solving pseudorandom dense linear systems. Towards this, LINPACK
has been extended for these computers [DLP03; Jo+15; Pet+18]. Here, as well, we could
consider the common task of solving random linear systems of equations on both classical
and quantum computers, albeit with different input and output models. However, there have
not been any experiments on quantum devices solving large-scale linear systems using the
HHL algorithm.

Another way to design these weights is to consider the rate of logical instructions. A nat-
ural metric for classical computers is that of FLOPS (floating point operations per second)
and for quantum computers is that of CLOPS (circuit layer operations per second) [Wac+21].
A general purpose classical computer has a speed of around 6 GFLOPS and the IBM quan-
tum computer (ibmq_mumbai) which we primarily used for our experiments had a speed of
around 2.4 KCLOPS during our experiments. Comparing these speeds gives us weights of
(wc, wq) = (1, 2.5× 106). However, designing weights in such a manner has flaws of neglect-
ing the finite coherence time of quantum computers, and not accounting for different energy
costs of these computing resources. To get around this, we instead suggest different regimes
for weights in Table 5.3 and which allows the user of the benchmark to incorporate their
own preferences.

Regime Weights (wc, wq)
A: Fast QPU (1, 1)
B: Medium Fast QPU (1, 1.5× 102)
C: Medium Slow QPU (1, 2× 104)
D: Slow QPU (1, 2.5× 106)

Table 5.3: Different regimes of weights for classical and quantum computers in our heuristic.

5.5.3 Experimental protocol for CSHOREBench

We have so far described the objects in CSHOREBench and the different performance metrics
considered as part of the analysis in CSHOREBench. Let us cross the rest of our SEAs. We
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will benchmark against the following candidate measurement methods, previously described
in Section 5.4, and included as part of the pre-processing setup: uniform classical shadows
(CS), locally biased classical shadows (LBCS), decision diagrams (DD), and derandomization
of these methods (Derand. CS, Derand. LBCS and Derand. DD) respectively. We do not
include APS (see Appendix C.2.3). In addition to these measurement methods, we will carry
out experiments with different estimators (Section 5.3).

We will now describe the experimental protocol followed for each combination of mea-
surement procedure and estimator on a given Hamiltonian. Experiments are executed on an
ideal classical simulator and IBM quantum devices. On the simulator, we assume that copies
of an unknown quantum state ρ are given to us. On the quantum device, we assume access
to a quantum circuit preparing the unknown quantum state ρ. This may be in the form of
an ansatz as one would have during a step of the VQE algorithm. In each experiment, the
goal is to then estimate the energy E = Tr(ρH) of the encoded n-qubit Hamiltonian H.

To compare the performance of the different measurement procedures, we use the metric
of root mean square error (RMSE) of the ground state energy against a budget of M Pauli
measurements. The measurement budget M will be specified for different cases later. We
compute RMSE by independently repeating each experiment with measurement budget M ,
N times so that we have access to N independent estimates of the energy {Ê(i)

G }i∈[N ]. RMSE
is then computed as

RMSE =

√√√√ 1

N

N∑

i=1

(
Ê

(i)
G − EG

)2
, (5.24)

where EG is the true energy. We have access to the true energy on the simulator. On the
devices, we replace this with the empirical mean computed over N runs.

Classical simulator The ground state and ground energy of each n-qubit molecular
Hamiltonian is determined through the Lanczos method [MT20]. The simulator is then
initialized with this ground state and this quantum circuit is provided to the measurement
procedure in lieu of ρ. As described in Section 5.2.4, depending on the Pauli measurement
basis, this quantum circuit is then appended with a measurement circuit and the qubits are
measured in computational basis to produce a single shot (of measurement outcomes). All the
simulator runs are executed on a cluster which has Intel Xeon Platinum 8260 (2.4 GHz)
nodes. The classical computational runtimes reported here correspond to these runs and
are specific to this CPU. A constraint from the cluster is that all simulations must be com-
pleted within four days of wall-clock time and this is imposed on our runs as well. This
sets a constraint for the measurement budget on some of the measurement methods being
considered.

Quantum device We also benchmark the different measurement methods on IBM quan-
tum devices which include the 16-qubit ibmq_guadalupe and 27-qubit ibmq_mumbai. Rather
than considering access to the ground state as on the simulator, we consider the state prepa-
ration circuit to be an excitation preserving ansatz [Bar+18] of depth 25 for our experiments.
We then compare the performance of different measurement procedures on the ansatz with
a set of (fixed) randomly assigned parameters. A relevant constraint from the hardware side
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is that each job on the IBM quantum devices are limited to have 300 different circuits and
105 shots each. Further, a sequence of jobs is given a maximum time allocation of 8 hours.
As we will see later, this constrains different measurement methods (e.g., CS and LBCS)
which generate many unique circuits, that can be benchmarked on the quantum device on
large molecules.

5.6 Results

In this section, we carry out a systematic comparison of the performance of different mea-
surement methods (Section 5.4) in CSHOREBench (Section 5.5). Previous comparisons
have largely focused on analytical single shot variances against different molecules [Had+22;
Hil+21] or small fixed measurement budgets [HKP21; Had21; Shl+23]. Moreover, measure-
ment methods are often equipped with different estimators, making it less clear how much
gain in performance one obtains by switching measurement methods.

We first pay special attention to the convergence of accuracy of these measurements. We
then evaluate different measures of classical and quantum resource utilization as discussed in
Section 5.5.2 for each measurement method. We use the experimental protocols as discussed
in Section 5.5.3. In Section 5.6.1, we evaluate the RMSE of a specified measurement method
when equipped with different estimators. This is to highlight the advantage one can gain in
terms of the number of shots required to achieve a desired accuracy in estimation of Tr(ρH)
by simply changing the estimator. In Section 5.6.2, we report results from CSHOREBench on
a simulator and in Section 5.6.3 on quantum devices for different molecular Hamiltonians
and states 5.2. Finally, we comment on the utilization of quantum and classical resources
with experiments on IBM quantum devices in Section 5.6.3.

5.6.1 Comparison of estimators

In Section 5.3, we noted that there are multiple different estimators — Monte Carlo (MC),
weighted MC (WMC) and Bayesian — that could be used with the various measurement
methods. We also noted that asymptotically with proper choice of parameters, all these
estimators give the same performance in terms of the expected value of Tr(ρH) for a given
Hamiltonian H. This has motivated the use of different estimators combined with different
measurement methods in previous comparison studies [Had+22; HKP21; Wu+23]. However,
this becomes problematic when the measurement budget (or the total number of shots) con-
sidered is very low as has been the case in these studies and we are not in the asymptotic
regime where the estimators are equivalent. The difference in performance of two combina-
tions of measurements methods with estimators cannot be then properly attributed to the
difference in estimators or the difference in measurement methods.

To highlight the advantage one can gain in terms of RMSE achieved in estimating Tr(ρH)
for a low measurement budget and how this apparent advantage disappears by increasing
the number of shots, we consider the problem of estimating the value of Tr(ρH) for a fixed
measurement method and different estimators. As an illustration, we set the Hamiltonian
H to be that of HeH+ cation (6-31g basis, JW encoding, 8 qubits) and ρ as its ground state.
In Figure 5.4(a), we plot the trends of RMSE achieved by the CS method with different
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estimators for HeH+. We observe that at a measurement budget of 103 shots (or samples),
the Bayesian estimator has a lower RMSE than the MC estimator (although this difference
can be removed by increasing the smoothing factor γ to 1), which in turn has a lower RMSE
than the WMC estimator. These differences however disappear after 105 shots. Similarly, in
Figure 5.4(b) for the LBCS measurement method, any advantage offered by one estimator
disappears after around 104 shots. This is also observed in Figure 5.4(c) for the case of
optimized decision diagrams (DD).

The implications of these results are twofold. Firstly, we need to be systematic in our
choice of estimator when comparing different measurement methods for low measurement
budgets so that we can properly attribute differences in performance to the measurement
method at hand. Secondly, for low measurement budgets, a Bayesian estimator or MC
estimator with Laplace smoothing is preferred. In the rest of the chapter, we will either
fix the estimator across all the measurement methods or state when different estimators
are chosen for different measurement methods. We can afford to do the latter as there is
negligible difference between any of the estimators for a given measurement method at the
high measurement budgets (> 106 shots) that we consider.
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Figure 5.4: Comparison of RMSE achieved by different estimators in numerical simulations
on HeH+ cation (8 qubits, 6-31g basis, JW encoding) with measurement methods of (a)
classical shadows (CS), (b) locally biased classical shadows (LBCS), and decision diagrams
(DD). The state is set to be the ground state of the Hamiltonian. A common legend is shown
for the subfigures. Trends of RMSE achieved by Monte Carlo (MC) with Laplace smoothing
of γ ∈ {0, 0.5, 1}, weighted Monte Carlo (WMC) and Bayesian estimators on the same sets
of measurements collected for each measurement method are shown. Averaged values over
200 independent runs are shown. Inset shows the standard deviation or uncertainty on these
expectation values for each estimator.

5.6.2 Experiments on classical simulator

We now turn our attention to comparing the performance of different measurement methods
in estimating Tr(ρH) on a classical simulator for molecular Hamiltonians (those given in
Table 5.2) and their ground states ρ. In all the following experiments, the estimator will
be set to be the Bayesian estimator with the exception of N2 where it is set to be the MC
estimator. The latter choice is made to reduce the classical post-processing runtime for N2.
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Figures 5.5 and 5.6 show convergence behaviour of RMSE achieved by different measure-
ment methods against measurement budget up to around 1.6×107 samples. In Table 5.4, we
summarize resource utilization by different measurement methods against different molecular
Hamiltonians considering metrics discussed in Section 5.5. We now describe our observations
for the set of molecular Hamiltonians in Table 5.2.

Tapered Hamiltonians. We show convergence results for the tapered Hamiltonian H2
(3-21g, JW, 5 qubits) in Figure 5.5(a) and tapered Hamiltonian HeH+ (3-21g, JW, 6 qubits)
in Figure 5.5(b). We observe that CS performs very similar to LBCS for these smaller sized
Hamiltonians. Derandomization methods also perform very similarly to decision diagrams
with Derand. LBCS narrowly improving on H2 and decision diagrams on HeH+.

8 to 16 qubit Hamiltonians. We show results for HeH+ (6-31g, JW, 8 qubits) in Fig-
ure 5.6(a), LiH (sto6g, JW, 12 qubits) in Figure 5.6(b), and N2 in Figure 5.6(c). Across all
these three molecular Hamiltonians, we find that optimized decision diagrams (Dec. Diag.)
and derandomization (Derand.) are best, achieving the same RMSE compared to CS or
LBCS with fewer shots. In particular for HeH+, decision diagrams are able to achieve chem-
ical accuracy of 1.6 milli-Hartree, and require around 22% fewer shots than LBCS. By using
LBCS itself, we obtain a constant query reduction (as observed after 2× 104 shots) of 40%
compared to CS.

Similarly, for LiH we notice a large gap in performance in between LBCS and CS versus
decision diagrams and any of the derandomized methods. Overall, in this case, Derand.
CS is the preferred measurement method, shaving off nearly two orders of magnitude of
shots required to reach high accuracy compared to CS, although it is extremely close to the
other derandomized methods and decision diagrams. On N2, we do not benchmark CS given
its poor performance on previous molecules and the high number of unique measurement
circuits needed to be evaluated on the simulator. On N2, we observe that Derand. LBCS is
the most accurate method followed by decision diagrams.

Resource utilization. In Table 5.4, we report the resource utilization for estimating
Tr(ρH) within an accuracy cutoff of 5 milli Hartree. While we have so far commented
on accuracy, let us consider the other metrics. We notice that across the board, Derand.
DD requires the least number of unique circuits to be executed. This has implications for
reduced time for quantum compilation of measurement circuits on quantum hardware. Re-
garding classical pre-processing runtime, generating samples from product distributions is
fast which makes CS and LBCS attractive in this respect. For decision diagrams (DD), the
largest contribution to the classical pre-processing runtime is the runtime taken to construct
and optimize the decision diagrams with time taken to generate samples for 5 milli Hartree
accuracy being 10s of seconds up to LiH and taking roughly 490s for N2. The runtimes for
constructing DDs are reported in Appendix C.2.2. For Derand DD, the largest contribution
to classical pre-processing runtime is the derandomization process itself. In terms of total
runtime on the simulator, decision diagrams and derandomization start becoming preferred
over CS and LBCS as we move to the larger molecules of LiH and N2.

In Table 5.5, we report estimated resource utilization for estimating Tr(ρH) within an
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(a)

(b)

Figure 5.5: Comparison of RMSE achieved in numerical simulations by different measure-
ment methods in estimating Tr(ρH) with ρ set as the ground state and H is the Hamiltonian
of (a) tapered H2 (5 qubits, 3-21g basis, JW encoding), and (b) tapered HeH+ (6 qubits,
3-21g basis, JW encoding). RMSE is shown with the number of samples (or shots) made.
The estimator for each measurement method is set to be the Bayesian estimator.

accuracy cutoff of 5 milli Hartree. The quantum runtimes are predicted assuming that most
of the quantum wall-clock time is due to delay between executions of circuits which is around
500µs on the quantum devices which we ran our experiments on. This is an example of how
CSHOREBench could be used as a tool for selecting measurement methods before running
any experiment on the quantum device.
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(a)

(b)

(c)

Figure 5.6: Comparison of RMSE achieved in numerical simulations by different measure-
ment methods in estimating Tr(ρH) with ρ set as the ground state and H is the Hamiltonian
of (a) HeH+ (8 qubits, 6-31g basis, JW encoding), (b) LiH (12 qubits, sto-6g basis, JW en-
coding), and (c) N2 (16 qubits, sto-6g basis, JW encoding). RMSE is shown with the number
of samples (or shots) made. The estimator for each measurement method is set to be the
Bayesian estimator in (a)-(b) and the MC estimator in (c).
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Measurement
Method

# shots
required

# unique
circuits

Median #
of shots per circuit

(all, top 5%, bottom 5%)

Classical
pre-process.
runtime [s]

Classical
post-process.
runtime [s]

Classical
simulator
runtime [s]

Total
classical

runtime [s]

H2, 5 qubits (3-21g, JW)
CS 4.75× 105 243 (1954, 1954, 1954) 1.21× 102 4.94 4.27 1.30× 102

LBCS 5.11× 105 243 (944, 12350, 94) 9.59× 101 7.13 3.73 1.07× 102

Dec. Diag. 1.79× 105 44 (1335, 15122, 36) 4.39× 101 1.59 0.91 4.64× 101

Derand. CS 1.46× 105 49 (4921, 5628, 1) 1.72× 103 1.52 0.88 1.72× 103

Derand. LBCS 1.16× 105 55 (18, 4462, 1) 2.31× 103 1.62 0.92 2.31× 103

Derand. DD 1.53× 105 32 (5453, 5461, 1) 1.86× 103 1.67 0.71 1.86× 103

HeH+, 6 qubits (6-31g, JW)
CS 8.25× 105 729 (1132, 1132, 1132) 1.52× 102 30.63 13.50 1.96× 102

LBCS 6.35× 105 729 (372, 4078, 37) 1.16× 102 18.19 11.40 1.46× 102

Dec. Diag. 2.13× 105 234 (253, 5718, 7) 5.63× 102 5.60 3.41 5.72× 102

Derand. CS 2.37× 105 188 (665, 2790, 1) 5.24× 103 8.80 2.59 5.25× 103

Derand. LBCS 3.11× 105 184 (950, 3616, 1) 7.13× 103 8.91 2.64 7.14× 103

Derand. DD 3.06× 105 123 (3589,3610, 1) 6.08× 103 8.04 2.10 6.09× 103

HeH+, 8 qubits (6-31g, JW)
CS 5.58× 106 6561 (850, 850, 850) 1.14× 103 575.43 2.06× 102 1.92× 103

LBCS 9.96× 105 6561 (81, 1001, 10) 2.47× 102 105.92 1.44× 102 4.97× 102

Dec. Diag. 2.92× 105 781 (99, 2907, 3) 3.57× 103 25.33 1.96× 101 3.61× 103

Derand. CS 2.56× 105 545 (43, 2345, 1) 9.16× 103 26.40 1.30× 101 9.20× 103

Derand. LBCS 2.05× 105 517 (24, 1869, 1) 7.52× 103 21.80 1.18× 101 7.55× 103

Derand. DD 2.34× 105 209 (1407, 1960, 1) 9.94× 103 20.30 7.13 9.97× 103

LiH, 12 qubits (sto6g, JW)
CS 2.32× 107 531441 (50, 58, 43) 8.81× 103 2910 2.24× 105 2.36× 105

LBCS 5.62× 105 128002 (2, 27, 1) 2.15× 102 204 1.71× 104 1.75× 104

Dec. Diag. 8.82× 104 802 (32, 693, 2) 2.56× 104 6.99 3.22× 102 2.59× 104

Derand. CS 7.13× 104 1814 (4, 433, 1) 7.13× 103 4.89 1.09× 102 7.25× 103

Derand. LBCS 8.78× 104 976 (11, 514, 1) 8.76× 103 4.55 7.86× 101 8.84× 103

Derand. DD 9.32× 104 243 (462, 468, 1) 3.17× 104 4.51 6.45× 101 3.18× 104

N2, 16 qubits (sto6g, JW)
Dec. Diag. 2.36× 106 1134 (536, 11084, 9) 1.39× 105 123 1.81× 104 1.57× 105

Derand. CS 3.88× 106 10015 (778, 35225, 1) 7.18× 105 310 7.84× 104 7.97× 105

Derand. LBCS 2.07× 106 5628 (73, 10274, 1) 3.91× 105 173 2.83× 104 4.20× 105

Derand. DD 3.48× 106 488 (8714, 9754, 2) 5.31× 105 140 5.95× 103 5.37× 105

Table 5.4: Comparison of resource utilization with experiments on a classical simulator by
different measurement methods in estimating Tr(ρH) to achieve an accuracy of 5 × 10−3

Hartree, with H set to be different different molecular Hamiltonians (Table 5.2) and ρ as
the ground state. Values shown are averages over 192 independent runs against different
metrics. Metrics shown are described in Section 5.5.2. Note that the contribution to classical
post-processing time is from the estimator which is set to be the Bayesian estimator for all
molecules except for N2 where it is set to be the MC estimator. Lowest values obtained for
each metric against a Hamiltonian is boldfaced.
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Measurement
Method

Predicted quantum
runtime [s]

log(R)
A B C D

H2, 5 qubits (3-21g, JW)
CS 2.4× 102 5.9 10.5 15.4 20.2

LBCS 2.6× 102 5.9 10.6 15.4 20.3

Dec. Diag. 9.0× 101 4.9 9.5 14.4 19.2

Derand. CS 7.3× 101 7.5 9.4 14.2 19.0

Derand. LBCS 5.8× 101 7.8 9.3 14.0 18.8

Derand. DD 7.6× 101 7.6 9.5 14.2 19.1

HeH+, 6 qubits (6-31g, JW)
CS 4.1× 102 6.4 11.0 15.9 20.8

LBCS 3.2× 102 6.1 10.8 15.7 20.5

Dec. Diag. 1.1× 102 6.5 9.7 14.6 19.4

Derand. CS 1.2× 102 8.6 10.0 14.7 19.5

Derand. LBCS 1.6× 102 8.9 10.3 15.0 19.8

Derand. DD 1.5× 102 8.7 10.3 14.9 19.8

HeH+, 8 qubits (6-31g, JW)
CS 2.8× 103 8.3 12.9 17.8 22.7

LBCS 5.0× 102 6.6 11.2 16.1 20.9

Dec. Diag. 1.5× 102 8.2 10.1 14.9 19.7

Derand. CS 1.3× 102 9.1 10.3 14.8 19.6

Derand. LBCS 1.0× 102 8.9 10.0 14.5 19.4

Derand. DD 1.2× 102 9.2 10.2 14.7 19.5

LiH, 12 qubits (sto6g, JW)
CS 1.2× 104 10.1 14.4 19.3 24.1

LBCS 2.8× 102 6.6 10.7 15.5 20.4

Dec. Diag. 4.4× 101 10.2 10.4 13.7 18.5

Derand. CS 3.6× 101 8.9 9.4 13.5 18.3

Derand. LBCS 4.4× 101 9.1 9.6 13.7 18.5

Derand. DD 4.7× 101 10.4 10.6 13.8 18.6

N2, 16 qubits (sto6g, JW)
Dec. Diag. 1.2× 103 11.9 12.7 17.0 21.8

Derand. CS 1.9× 103 13.5 13.8 17.5 22.3

Derand. LBCS 1.0× 103 12.9 13.2 16.9 21.7

Derand. DD 1.7× 103 13.2 13.6 17.4 22.2

Table 5.5: Comparison of predicted resource utilization on IBM Quantum devices by different
measurement methods in estimating Tr(ρH) to achieve an accuracy of 5 × 10−3 Hartree,
with H set to be different molecular Hamiltonians (Table 5.2) and ρ is the ground state.
Predicted quantum runtime or the wall-clock that would be spent by the quantum device in
executing experiments is shown for the different measurement methods based on the number
of shots required to achieve 5×10−3 Hartree (Table 5.4) and assuming the quantum runtime
would primarily be from delay between circuit executions. Estimates of resource utilization,
indicated by R, here account for classical and predicted quantum computing resources via
the heuristic in Eq. 5.23 and using the regimes of Table 5.3. Lowest values obtained for each
metric against a Hamiltonian is boldfaced.
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5.6.3 Experiments on quantum device

As in the case of our experiments on the classical simulator, we consider the molecular
Hamiltonians listed in Table 5.2. We set the quantum state ρ to be a random ansatz as
discussed in Section 5.5.3. This avoids the significant overhead of conducting a large VQE
experiment to simulate the ground state of the Hamiltonian, and instead is representative
of a typical state that might appear midway through a VQE optimization.

We carry out a comparison of all the candidate measurement methods for the smaller
tapered Hamiltonians (5.2), but consider a subset of the measurement methods for the
larger sized molecules. As the number of qubits n of the Hamiltonian H increases, the
number of unique measurement bases queried by uniform CS or LBCS can become as high
as our measurement budget which become too expensive to run in experiments on IBM
quantum devices given current classical latencies (Section 5.5.2) and experimental constraints
(Section 5.5.3). We thus limit the number of circuits by considering the methods of decision
diagrams and derandomization on the larger sized molecules.

Tapered Hamiltonians. We show convergence results for the tapered Hamiltonian H2
(3-21g, JW, 5 qubits) in Figure 5.7(a) and tapered Hamiltonian HeH+ (3-21g, JW, 6 qubits)
in Figure 5.7(b). In these experimental results, we find larger differences in performance of
the measurement methods than we observed earlier in the simulated results in Figure 5.5.
The notable change from our observations on the simulator is that derandomization methods
perform poorly compared to decision diagrams. This could be due to effects of measurement
noise and choosing hyperparameters for derandomization via tuning on the simulator instead
of the quantum device. Overall in the case of tapered H2, we can reduce the number of
samples required to achieve an accuracy of 5 milli Hartree by 57% by switching from Derand.
CS to DD, by 57% as well by switching from LBCS to DD, and by around 85% by opting
for DD instead of CS. In the case of tapered HeH+, the resource reduction in the number of
samples achieved by DD is more than 83% compared to CS, 57% compared to LBCS, and
more than 30% compared to any derandomization method.

8 to 16 qubit Hamiltonians. We show results for HeH+ (6-31g, JW, 8 qubits) in Fig-
ure 5.8(a), LiH (sto6g, JW, 12 qubits) in Figure 5.8(b), and N2 in Figure 5.8(c). Note that as
mentioned earlier, we benchmark the more frugal methods against these molecular Hamilto-
nians to keep the number of quantum compilations required during experiments reasonable
and latencies incurred from circuit loading low. Across the three molecular Hamiltonians,
we again find that optimized decision diagrams (Dec. Diag.) outperform derandomization
(Derand.) methods. In particular for LiH, decision diagrams are able to achieve an accuracy
of 5 milli-Hartree with around 40% fewer shots than Derand. LBCS. On N2, the difference
between DD and derandomization reduces from before with DD achieving a resource reduc-
tion of only 25% at 5 milli Hartree. Overall, DD consistently requires fewer measurements
compared to derandomization methods.

Resource utilization. In Table 5.6, we report the resource utilization for estimating
Tr(ρH) within an accuracy cutoff of 5 milli Hartree. We notice that across the board,
Derand. DD requires the least number of unique circuits to be executed, as expected from
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(a)

(b)

Figure 5.7: Comparison of empirical RMSE achieved in experiments on quantum device by
different measurement methods in estimating Tr(ρH) with ρ set as a randomly fixed ansatz
and H is the Hamiltonian of (a) tapered H2 (5 qubits, 3-21g basis, JW encoding), and (b)
tapered HeH+ (6 qubits, 3-21g basis, JW encoding). RMSE is shown with the number
of samples (or shots) made. The estimator for each measurement method is set to be the
Bayesian estimator.

our results on the simulator. Taking into account both quantum and classical computational
resource utilization, decision diagrams are preferred over derandomization. It requires fewer
shots to reach the same accuracy in experiments on the device and less classical compu-
tational runtime in generating samples. This is also supported by the weighted resource
utilization reported in Table 5.6 based on the heuristic and different regimes introduced in
Section 5.5.2.
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Figure 5.8: Comparison of empirical RMSE achieved in experiments on a quantum device by
different measurement methods in estimating Tr(ρH) with ρ set as a randomly fixed ansatz
and H is the Hamiltonian of (a) HeH+ (8 qubits, 6-31g basis, JW encoding), (b) LiH (12
qubits, sto-6g basis, JW encoding), and (c) N2 (16 qubits, sto-6g basis, JW encoding). RMSE
is shown with the number of samples (or shots) made. The estimator for each measurement
method is set to be the Bayesian estimator.
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Measurement
Method

# shots
required

# unique
circuits

Median # shots per circ.
(all, top 5%, bottom 5%)

Classical runtime [s] Quantum
runtime [s]

log(R)
pre-process. post-process. latencies A B C D

H2, 5 qubits (3-21g, JW)
CS 1.2 × 106 243 (4917, 5056, 4788) 2.3 × 102 6.5 8.7 × 104 6.1 × 102 6.7 11.4 16.3 21.1

LBCS 4.2 × 105 243 (769, 10081, 76) 8.0 × 101 3.3 3.0 × 104 2.1 × 102 5.7 10.4 15.3 20.1

Dec. Diag. 1.8 × 105 43 (1371, 15526, 37) 4.3 × 101 1.1 1.3 × 104 9.3 × 101 4.9 9.5 14.4 19.3

Derand. CS 4.3 × 105 49 (15740, 16442, 1) 9.7 × 103 10.1 3.1 × 104 2.2 × 102 9.2 10.6 15.3 20.1

Derand. LBCS 4.1 × 105 55 (28, 15887, 1) 9.9 × 103 9.3 3.0 × 104 2.1 × 102 9.2 10.6 15.3 20.1

Derand. DD 4.9 × 105 32 (17429, 17441, 1) 8.5 × 103 8.7 3.5 × 104 2.5 × 102 9.1 10.7 15.4 20.2

HeH+, 6 qubits (6-31g, JW)
CS 1.8 × 106 729 (2525, 2731, 2347) 3.5 × 102 6.4 1.4 × 105 9.3 × 102 7.2 11.8 16.7 21.6

LBCS 7.1 × 105 728 (418, 4566, 42) 1.4 × 102 3.9 5.3 × 104 3.6 × 102 6.2 10.9 15.8 20.6

Dec. Diag. 3.0 × 105 234 (355, 8071, 10) 5.7 × 102 1.4 2.2 × 104 1.5 × 102 6.6 10.0 14.9 19.7

Derand. CS 4.3 × 105 189 (1009, 5071, 1) 9.8 × 103 10.1 3.2 × 104 2.2 × 102 9.2 10.7 15.3 20.1

Derand. LBCS 5.0 × 105 185 (1796, 5824, 1) 1.2 × 104 9.8 3.8 × 104 2.6 × 102 9.4 10.8 15.5 20.3

Derand. DD 4.4 × 105 124 (5157, 5179, 1) 8.5 × 103 8.7 3.3 × 104 2.2 × 102 9.1 10.6 15.3 20.1

HeH+, 8 qubits (6-31g, JW)
Dec. Diag. 5.5 × 105 787 (181, 5392, 4) 3.6 × 103 5.3 4.1 × 104 2.8 × 102 8.3 10.7 15.5 20.4

Derand. CS 1.0 × 106 548 (59, 9254, 2) 3.5 × 104 41.5 7.5 × 104 5.1 × 102 10.5 11.6 16.1 21.0

Derand. LBCS 1.0 × 106 518 (25, 9125, 2) 3.5 × 104 34.1 7.5 × 104 5.1 × 102 10.5 11.6 16.1 21.0

Derand. DD 7.2 × 105 210 (3971, 6042, 1) 2.3 × 104 28.7 5.4 × 104 3.7 × 102 10.1 11.3 15.8 20.6

LiH, 12 qubits (sto6g, JW)
Dec. Diag. 3.2 × 105 811 (112, 2504, 7) 2.6 × 104 12.8 2.4 × 104 1.6 × 102 10.2 10.8 15.0 19.8

Derand. LBCS 7.0 × 105 979 (23, 4090, 2) 6.9 × 104 13.0 5.2 × 104 3.5 × 102 11.1 11.7 15.8 20.6

Derand. DD 7.5 × 105 284 (3715, 3727, 1) 7.4 × 104 13.0 5.6 × 104 3.8 × 102 11.2 11.8 15.9 20.7

N2, 16 qubits (sto6g, JW)
Dec. Diag. 8.9 × 106 1137 (15298, 40070, 480) 1.4 × 105 516 6.5 × 105 4.5 × 103 11.9 13.6 18.3 23.1

Derand. DD 1.2 × 107 488 (33477, 94988, 2) 1.6 × 106 369 8.8 × 105 6.2 × 103 14.3 14.7 18.6 23.5

Table 5.6: Comparison of resource utilization with experiments on IBM Quantum devices
by different measurement methods in estimating Tr(ρH) to achieve an accuracy of 5× 10−3

Hartree, with H set to be different molecular Hamiltonians (Table 5.2) and ρ is a random
ansatz. Values shown are averages over 192 bootstrapped runs against different metrics.
Metrics shown are described in Section 5.5.2. Number of unique circuits run contribute to
classical latencies such as compilation. Number of shots per circuit (all, top 5%, bottom
5%) summarizes shot distribution across circuits and is an indication of latencies due to
circuit loading on control electronics. Classical pre-processing runtime is the wall-clock time
spent by measurement methods in constructing a query distribution and generating samples.
Classical post-processing runtime is the wall-clock time spent by the Bayesian estimator in
computing an estimate from acquired measurement outcomes. Quantum runtime is the
wall-clock spent by the quantum device in executing experiments. Estimates of resource
utilization, indicated by R, account for both classical and quantum computing resources via
the heuristic in Eq. 5.23 and using the regimes of Table 5.3. Lowest values obtained for each
metric against a Hamiltonian is boldfaced.

5.7 Conclusion

In this chapter, we propose CSHOREBench(Common States and Hamiltonians for ObseRv-
able Estimation Benchmark) for benchmarking measurement methods designed to solve the
problem of estimating the expectation value Tr(ρH) of a quantum Hamiltonian H with re-
spect to a quantum state ρ. We presented the various evaluation criteria and explained
the importance of considering utilization of both quantum and classical resources for these
hybrid measurement methods in addition to the performance metric of accuracy achieved in
estimating Tr(ρH). In practice, CSHOREBench is empirically efficient to run on states of
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random quantum ansatz with fixed depth. This makes it an attractive tool to select mea-
surement methods for a given Hamiltonian before experiments are executed on a quantum
device. In numerical simulations on molecular Hamiltonians, we found that compact deci-
sion diagrams (DD) along with derandomization are the most competitive methods. In our
experiments on IBM quantum devices, we observed that decision diagrams achieved a given
accuracy with fewer quantum measurements than derandomization. However, derandomiza-
tion of decision diagrams may be preferred if a low number of unique circuits is the most
important consideration.

The improvement in query complexity by using compact decision diagrams or deran-
domized decision diagrams for estimating Tr(ρH) has multiple practical implications besides
accelerating steps of variational quantum eigensolvers (VQE). For example, in the hybrid
quantum-classical algorithm of Krylov subspace methods [PM19; Mot+20], the measurement
problem appears when estimating matrix elements for the generalized eigenvalue problem
and DDs may be advantageous in that setting as well, albeit optimized differently.

There is still room for improvement in the design of measurement methods themselves.
Randomized measurement methods could be improved by incorporating adaptive strategies
during learning by building information about the quantum state ρ under consideration
in real-time in addition or instead of prior information. One tool to introduce adaptivity
would be active learning which has been shown to be useful in practice for the learning tasks
of quantum state tomography [Nun+10] and Hamiltonian learning [Dut+23a]. The query
complexity of randomized measurement methods could also be improved by allowing low-
depth and locally-entangling measurements [Ipp23]. It is known that the query complexity
is significantly improved [HKP20] when global Clifford measurements are allowed but these
require deeper circuits than one would typically want to expend on the measurement part
of a near-term quantum algorithm.

Aside from improving the measurement methods themselves, there is still potential for
improving the benchmarking introduced here. We have proposed a heuristic comprising
different regimes to summarize utilization of quantum and classical resources. Recommen-
dations of heuristics for other platforms would aid in providing further guidance on which
measurement methods to prefer for these platforms. Moreover, the list of measurement
methods being benchmarked here could be extended to include grouping methods and other
approaches [GK23]. As for the instances considered as examples of common computations,
future benchmarks would benefit from extending beyond minimal bases. We used mini-
mal bases in this work in order to reduce the computational cost on the quantum side as
far as possible, but these are not physically representative, so using correlation consistent
bases would be preferable as we advance toward practically relevant quantum algorithms for
chemistry.
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Chapter 6

Quantum Bootstrap Embedding: A
distributed quantum algorithm for
ground state energy estimation

6.1 Introduction

Determining the ground state of large-scale interacting fermionic systems is an important
challenge in quantum chemistry, materials science, and condensed matter physics. Just as
electronic properties of molecules underpin their chemical reactivity [FYS52; PY84; GNM02],
phase diagrams of solid state materials are also determined to a large degree by their ground
state electronic structure [LeB+15; ZW15; Kot+06]. However, exact solution to the time-
independent Schrodinger equation of a practical many-electron system remains a daunting
task because the dimension of the underlying Hilbert space grows exponentially with the
number of orbitals, and the computational resources required to perform calculations over
such a large space can quickly exceed the capacity of current classical or quantum hardware.

One promising approach to fit a large electronic structure problem into a limited amount
of computational resources is to break the original system into smaller fragments, where
each fragment can be solved individually from which a solution to the whole is then ob-
tained [Gor+12; Jon+20; SC16]. Efforts along this direction have successfully led to various
embedding schemes that significantly expand the complexity of the systems solvable us-
ing classical computational resources, such as density-based embedding theories [WSZ15;
LHC14], density-matrix embedding theories (DMET) [KC12; KC13; Wou+16; WAK17;
Fau+22], various Green’s function embedding theories [Het+00; Ma+21; LZ17; Rus+18;
BAG03; Kot+06] and the bootstrap embedding theory [WTV16; Ye+19; YTV21]. The
essence of such embedding-based methods is to add an additional external potential to each
fragment Hamiltonian and then iteratively update the potential until some conditions on
certain observables of the system are matched. Nevertheless, due to the significant cost in
solving the fragment Hamiltonian itself as the fragment size increases, the applicability of
such methods are limited to relatively small fragments, which may lead to incorrect predic-
tions in systems with long-range correlations [Zhe+17]. While approximate fragment solvers
such as the coupled-cluster theory or many-body perturbation theory have greatly enhanced
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the applicability of such embedding methods at a reduced cost [Zhu+19; SZ19; LKB21],
these approximations tend to fail for strongly correlated systems due to limited treatment
of electron correlation. In addition, because of limitations on computing k-electron reduced
density matrices (k-RDMs for k > 2), embedding and observable calculations beyond 2-RDM
are difficult in general.

Quantum computers are believed to be promising in tackling electronic structure prob-
lems more efficiently [Bau+20], despite evidence for an exponential advantage across chemical
space has yet to be found [Lee+22]. One natural idea to circumvent the problems of classical
eigensolvers is to use a quantum computer to treat the fragments. By mapping each orbital
to a constant (small) number of qubits, the exponentially large (in the number of orbitals)
Hilbert space of an interacting fermionic system can be encoded in only a polynomial number
of qubits and terms. Indeed, quantum eigensolvers such as the quantum phase estimation
(QPE) [AL99b] algorithm has been proposed to achieve an exponential advantage given a
properly prepared input state [Asp+05] with non-exponentially small overlap with the ex-
act ground state. More recently, various variants of the variational quantum eigensolver
(VQE) [Per+14; Til+22; WHB19; Gri+19; Gri+22] have been demonstrated experimentally
on NISQ devices to achieve impressive performance as compared to classical methods. More-
over, k-RDMs (for any k) can be measured through quantum eigensolvers [Cra+10; ZRM21]
that may circumvent the difficulty encountered on classical computers. Current quantum
computers are small, but quantum embedding provides a way to tailor fragment sizes to fit
into such small quantum machines to achieve a solution to the entire problem.

To take the full advantage of these quantum eigensolvers within the embedding frame-
work [Ott+22; Vor+22; MM22; Li+22; MGG20; Ma+21], two open questions immediately
arise as a result of the intrinsic nature of quantum systems. Firstly, the wave function of a
quantum system collapses when measured. This means any measurement of the fragment
wave function is but a statistical sample (akin to Monte Carlo methods), and many mea-
surements are needed to obtain statistical averages with sufficiently low uncertainty in order
to achieve a good matching condition for the embedding. Secondly, the best way to perform
matching between fragments using results from quantum eigensolvers is not clear, and most
likely a new approach needs to be formulated to match fragments. Admittedly, it would
be straightforward to first estimate the density matrices by collecting a number of quantum
samples and then use the estimated density matrices to minimize the cost function as in
classical embedding theories [WTV16; KC12]. But this approach would be very costly es-
pecially given the increasing number of elements in qubit reduced density matrices (RDMs)
that need to be estimated [Qua+20]. Could there be a quantum method for matching, as
opposed to a statistical sampling-based classical approach?

We address the two challenges by providing a quantum coherent matching algorithm and
an adaptive sampling schedule, leading to a quantum bootstrap embedding (QBE) method
based on classical bootstrap embedding [WTV16]. Instead of matching the RDM element-
by-element, the quantum matching algorithm employs a SWAP test [Bar+97; Buh+01] to
match the full RDM between overlapping regions of the fragments in parallel. Moreover,
the quantum amplitude estimation algorithm [Bra+02; Mar+21b] allows an extra quadratic
speedup to reach a target accuracy on estimating the fragment overlap. In addition, the
adaptive sampling changes the number of samples as the optimization proceeds in order to
achieve an increasingly better matching conditions.
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It is important to compare the cost of quantum algorithms to classical algorithms carefully
to claim any quantum advantage [Lee+22]. Toward this end, to highlight the advantage of the
new QBE algorithms, we systematically compare their cost against classical BE algorithms
with a biased stochastic eigensolver (the variational Monte Carlo, VMC) and the exact solver
(full configuration interaction, FCI) as baselines. Different versions of the QBE algorithms
using either QPE or VQE as eigensolvers with classical or quantum (coherent) matching
algorithms are also compared among themselves for clarity.

The present work invites a viewpoint of treating quantum computers as coherent sampling
machines which have three major advantages, as compared to their classical counterparts.
First, the exponentially large Hilbert space provided by a quantum computer allows more
efficient exact ground state solver (QPE) than their classical counterpart (exact diagonal-
ization). Second, in the case of truncation for seeking approximate solutions, the abundant
Hilbert space of quantum computers enable more flexible and expressive variational ansatz
than classical computers, leading to more accurate solutions. Third, the coherent nature of
quantum computers allows sampling to be performed at a later stage, e.g. after quantum
amplitude amplification of matching conditions to extract just the feedback desired, instead
of having to read out full state of a system.

The rest of the chapter is organized as follows. Sec. 6.2 overviews bootstrap embedding
method at a high level and analyzes its scaling on classical computers, in order to motivate
the need for bootstrap embedding on quantum computers. This section serves to set the
notation and baseline of comparison for the rest of the chapter. Sec. 6.3 presents the
theoretical framework of quantum bootstrap embedding in detail as constraint optimization
problems. In Sec. 6.4, we give details of the QBE algorithm to solve the optimization
problem. In Sec. 6.5, we apply our methods to hydrogen chains under minimal basis where
both classical and quantum simulation results are shown to demonstrate the convergence
and sampling advantage of our QBE method. We conclude the chapter in Sec. 6.6 with
a summary of comparisons between classical and quantum BE discussed in the chapter, as
well as prospects and future directions.

6.2 Ideas of Bootstrap Embedding

The idea of Bootstrap Embedding (BE) for quantum chemistry has recently led to a promis-
ing path to tackle large-scale electronic structure problems [WTV16; Ye+19; YTV20]. In
this section, we establish the terminology and framework that will be used in the rest of the
chapter. We first briefly review BE and outline the main framework of BE for computation
on a classical computer in Sec. 6.2.1 and 6.2.2 for non-chemistry readers, to set up the
notation. We then begin presenting new material by discussing typical behavior and com-
putational resource requirements for BE on classical computers in Sec. 6.2.3, which leads to
the quest for performing BE on a quantum computer in Sec. 6.2.4.

6.2.1 Fragmentation and Embedding Hamiltonians

To provide a foundation for a more concrete exposition of the bootstrap embedding method,
we first establish some rigorous notation for discussing molecular Hamiltonians and their
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associated Hilbert spaces. We will work with the molecular Hamiltonian under the sec-
ond quantization formalism. Specifically, given a particular molecule of interest, define
O = {ϕµ | µ = 1, . . . , N} to be an orthonormal set of single-particle local orbitals (LOs),
where N is the total number of orbitals; in this work, these LOs are generated through
Löwdin’s symmetric orthogonalization method [Löw50]. The full Hilbert space H for the
entire molecular system is thus given by H = F(O), where F(O) denotes the Fock space
determined by the LOs in the set O. Further define the creation (annihilation) operator
c†µ (cµ) which creates (annihilates) an electron in the LO ϕµ, the molecular Hamiltonian is
written in the second-quantized notation

Ĥ =
N∑

µν=1

hµνc
†
µcν +

1

2

N∑

µνλσ=1

Vµνλσc
†
µc

†
νcσcλ (6.1)

where hµν and Vµνλσ are the standard one- and two-electron integrals.
Note that the number of terms in the full molecular Hamiltonian Ĥ scales polynomially

with the total number of orbitals N , but the dimension of H scales exponentially with N .
Clearly, for large N , it will become prohibitively expensive to directly compute the exact
full ground state. To circumvent this issue, we divide the full molecule into multiple smaller
fragments, each equipped with its own “embedding Hamiltonian” which contains a number of
terms that only scales polynomially with the number of orbitals in the fragment. Given that
there are potentially far fewer orbitals in each fragment than in the whole molecular system,
computing the ground state of each fragment’s embedding Hamiltonian can be significantly
less expensive than computing the ground state of the full system. Furthermore, using
the bootstrap embedding procedure to be described later, the ground states of individual
fragments can, to a high degree of accuracy, be algorithmically combined to recover the
desired electron densities prescribed by the exact ground state of the full system. Thus, this
combination of fragmentation and bootstrap embedding can be used to reconstruct the full
molecular ground state more efficiently than by direct computation alone.

We now briefly review the construction of embedding Hamiltonians for each fragment.
Consider a single fragment associated with a label A, without loss of generality, define
O(A) = {ϕµ | µ = 1, . . . , NA} with NA ≤ N to be the set of LOs contained in fragment A;
we will refer to O(A) as the set of fragment orbitals. Note that O(A) ⊆ O, the set of LOs
for the entire molecular system. The construction of the embedding Hamiltonian Ĥ(A) for
fragment A begins with any solution of the ground state of the full system Ĥ. For simplicity,
the Hartree-Fock (HF) solution |ΦHF⟩ is often used because it is easy to obtain on a classical
computer. By invoking a Schmidt decomposition, we can write |ΦHF⟩ with the following
tensor product structure for ∀ A

|ΦHF⟩ =
(

NA∑

i=1

λ
(A)
i |f (A)

i ⟩ ⊗ |b(A)i ⟩
)
⊗ |Ψ(A)

env⟩. (6.2)

In the above decomposition, |f (A)
i ⟩ represent single-particle fragment states contained in the

Fock space F(O(A)) of fragment orbitals. On the other hand, |b(A)i ⟩ and |Ψ(A)
env⟩ represent

Slater determinants contained in the “environment” Fock space F(O \ O(A)) of the N −NA
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orbitals not included in the fragment. The key difference between the single environment
state |Ψ(A)

env⟩ and the various “bath” states |b(A)i ⟩ is that the bath states |b(A)i ⟩ are entangled
with the fragment states |f (A)

i ⟩ while |Ψ(A)
env⟩ is not; this entanglement is quantified by the

Schmidt coefficients λ(A)i . Crucially, since the HF solution is used, the sum in Eq. (6.2)
only has NA terms (as opposed to 2NA for a general many-body wave function). Denote the
collection of the NA entangled bath orbitals as O(A)

bath = {βµ |µ = 1, . . . , NA}, where each
of the LOs βµ are linear combinations of the original LOs not included in the fragment,
βµ ∈ Span{O \ O(A)}. Furthermore, we denote the Fock space that corresponds to this set
of entangled bath orbitals as F(O(A)

bath).
This tensor product structure of |ΦHF⟩ allows us to naturally decompose the Hilbert space

H for the full molecular system into the direct product of two smaller Hilbert spaces, namely

H = H(A) ⊗H(A)
env, (6.3)

where

H(A) = F(O(A))⊗F(O(A)
bath) (6.4)

is the active fragment embedding space and H(A)
env contains the remaining states, including

|Ψ(A)
env⟩. Note that since both sets O(A) and O

(A)
bath have size NA, the fragment Hilbert space

H(A) is a Fock space spanned of just 2NA single-particle orbitals. The core intuition mo-
tivating this decomposition is that, in the exact ground state of the full system, states in
H(A)

env are unlikely to be strongly entangled with the many-body fragment states (consider the
approximate HF ground state in Eq. (6.2), where they are perfectly disentangled); therefore,
in a mean-field approximation, it is reasonable to entirely disregard the states in H(A)

env when
calculating the ground state electron densities on fragment A. Following this logic, we can
define an embedding Hamiltonian Ĥ(A) for fragment A only on the 2NA LOs in H(A), which
will have the form

Ĥ(A) =

2NA∑

pq

h(A)pq a
(A)†
p a(A)q +

1

2

2NA∑

pqrs

V (A)
pqrsa

(A)†
p a(A)†q a(A)s a(A)r , (6.5)

given some creation and annihilation operators a(A)†p and a
(A)
p , which respectively create

and annihilate electrons in orbitals from the combined set O(A) ∪ O(A)
bath for H(A). The new

one- and two- electron integrals h(A)pq and V
(A)
pqrs can be computed by projecting Ĥ into the

smaller Hilbert space H(A) (consult the Supporting Information (SI) Sec. D.1 for details on
constructing h(A)pq and V

(A)
qprs). Note that since we can choose 2NA ≪ N , the ground state of

this embedding Hamiltonian can be solved at a significantly reduced cost when compared to
that of the full system Hamiltonian.

We are hence prepared to generate an embedding Hamiltonian for any arbitrary frag-
ment of the original molecular system. However, the ground state electron densities of the
fragment embedding Hamiltonian are unlikely to exactly match those of the full system
Hamiltonian because, as mentioned above, the embedding process may neglect some small
(but nonzero) entanglement of the fragment orbitals with the environment. Because we can
expect interactions in the molecular Hamiltonian to be reasonably local, we anticipate that
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the electron densities on orbitals near the edge of the fragment (those closest to the “en-
vironment”) will deviate most significantly from their true values, while electron densities
on orbitals toward the center of the fragment will be most accurate. Note that the uneven
distribution of entanglement in molecular systems may likely lead to the potential sensitivity
of the BE results to particular choices and partitions of fragments [CM19; WWG21; YV19;
Kni13; LKB21; NB22], while how quantum computers may help to reduce such dependence
is an open problem.

To improve the accuracy of the fragment ground state wave function near the fragment
edge, we employ the technique of bootstrap embedding. Broadly speaking, we first divide the
full molecule into overlapping fragments such that the edge of each fragment overlaps with
the center of another. Fig. 6.1i illustrates this fragmentation strategy: for example, we see
that the edge of fragment A (labeled as orbital 3) coincides with the center of fragment B.
We then apply additional local potentials to the edge sites of each fragment to match their
electron densities to those on overlapping center sites of adjacent fragments. Because we
expect the electron densities computed on the center sites to be closer to their true values,
these added local potentials should improve the accuracy of each fragment wave function
near the edges. In the next section, we will formalize this edge-to-center matching process
rigorously and discuss its implementation on a classical computer.

Figure 6.1: Schematic of bootstrap embedding on classical (left, blue arrows) and quantum
(right, red arrows) computers. The arrows indicate BE iterative loops that are used to op-
timize the corresponding objective functions. Starting from panel (i) (upper center), the
original system is first broken into overlapping fragments (Fragmentation), where each frag-
ment is solved using a classical (iic) (upper left) or quantum eigensolver (iiq) (upper right).
In classical matching, the 1-electron reduced density matrices (1-RDM) on the overlapping
sites of adjacent fragments are used to obtain the matching condition (iiic) (lower left), while
in the quantum case a coherent matching protocol based on SWAP tests of overlapping sites
combined with a single qubit measurement (iiiq) (lower right). The matching results are
then used by classical computers to generate the bootstrap embedding potential VBE (iv)
(lower center) and the updated fragment embedding Hamiltonian Hemb+VBE (back to panel
(i) in order to minimize a target objective function L in both classical and quantum case.
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6.2.2 Matching Electron Densities: an Optimization Problem

As mentioned in the previous section, we intend to correct the electron density error near
a fragment’s edge by applying a local potential to the edge; this local potential serves to
match the edge electron density of the fragment to the center electron density of an adjacent
overlapping fragment, which we expect to be more accurate. In principle, to achieve an
exact density matching, all k-electron reduced density matrices (k-RDM, for any k) on
the overlapping region have to be matched. However, in practice, such matching beyond
the 2-RDM is difficult on a classical computer due to the mathematical challenge that the
number of terms in k-RDM in general increases exponentially as k. In addition, almost
all electronic structure codes available on classical computers are programmed to deal with
only 1- and 2-RDMs, despite the importance of k-RDMs (k > 2) for computing observables
such as entropy and other multi-point correlation functions [PA18]. Due to this reason,
the discussion of density matching process in classical BE in this section will be based on
1-RDMs. We note that the matching process applies similarly if k-RDMs are matched.

We begin by introducing some rigorous notation. Recall that a fragment A is defined by
a set of local orbitals O(A) which constitute the fragment. We partition this set of LOs into
a subset of edge sites (or orbitals), denoted E(A), and a subset of center sites, denoted C(A),
such that E(A) ∪ C(A) = O(A) and E(A) ∩ C(A) = ∅. Given the ground state wave function
|Ψ(A)⟩ of the embedding Hamiltonian, we further define the 1-electron reduced density matrix
(1-RDM) P(A) according to

P (A)
pq = ⟨Ψ(A)|a(A)†p a(A)q |Ψ(A)⟩ (6.6)

where p, q = 1, . . . , 2NA and the operators a(A)†p and a(A)q are defined in the previous section.
Suppose, for example, that the edge of fragment A overlaps with the center of another

fragment B so that E(A) ∩ C(B) ̸= ∅. On a high level, the goal of bootstrap embedding is to
find a ground state wave function |Ψ(A)⟩, perturbed by local potentials on the edge sites of
A, such that |P (A)

pq − P (B)
pq |→ 0 for indices p and q that correspond to orbitals in the set of

overlapping sites E(A) ∩C(B). More generally, and more rigorously, the goal is to find a wave
function which minimizes the fragment Hamiltonian energy

|Ψ(A)⟩ = argmin
Ψ(A)
⟨Ĥ(A)⟩A (6.7)

subject to the constraints

⟨a(A)†p a(A)q ⟩A − P (B)
pq = 0 (6.8)

for all other fragments B with E(A) ∩ C(B) ̸= ∅ and for all p, q corresponding to orbitals in
E(A) ∩C(B). Here, we explicitly write the expectation ⟨·⟩A = ⟨Ψ(A)|·|Ψ(A)⟩ in terms of |Ψ(A)⟩
to indicate that the optimization is over the wave function of A.

We can formulate this constrained optimization problem as finding the stationary solution
to a Lagrangian by associating a scalar Lagrange multiplier (λ(A)B )pq to Eq. (6.8). Since Eq.
(6.8) has to be satisfied for any p, q and B that overlaps with A, these constraint can be

rewritten in a more compact vector form λ
(A)
B ·Q1-RDM(Ψ(A);P(B)) where the dot product

conceals the implicit sum over p, q, and each component of the vector Q1−RDM(Ψ
(A);P(B))pq
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represents the constraint associated with Lagrange multiplier (λ(A)B )pq, given by the left hand
side of Eq. (6.8). With this notation, we arrive at the following Lagrangian with the
constraint added as an additional term

L(A) =⟨Ĥ(A)⟩A + E (A)
(
⟨Ψ(A)|Ψ(A)⟩ − 1

)

+
∑

B

λ
(A)
B ·Q1-RDM(Ψ(A);P(B)), (6.9)

where once again the B are fragments adjacent to A with E(A)∩C(B) ̸= ∅ and p, q are indices
of orbitals contained in the overlapping set E(A) ∩C(B). Here, the additional constraint with
Lagrange multiplier E (A) is also included to ensure normalization of the ground state wave
function |Ψ(A)⟩. Solving for the stationary solution of the Lagrangian in Eq. (6.9) will only
result in a ground state wave function for fragment A whose 1-RDM elements at the edge
sites match those at the center sites of adjacent overlapping fragments. However, we would
instead like to solve for such a ground state for all fragments in the molecule simultaneously.
Toward this regard, we can combine all individual fragment Lagrangians (of the form of Eq.
(6.9)) into a single composite Lagrangian for the whole molecule, given by

L =

Nfrag∑

A=1

L(A) + µP (6.10)

where Nfrag is the number of fragments in the molecule. Observe that we have added one
additional constraint

P =



Nfrag∑

A=1

∑

p′∈C(A)

⟨a(A)†p′ a
(A)
p′ ⟩A


−Ne (6.11)

with Lagrange multiplier µ to restore the desired total number of electrons in the molecule,
Ne. Note in Eq. (6.11) that p′ is summed over indices corresponding to orbitals only in C(A);
this is to ensure that there is no double-counting of electrons in the whole molecule. By
self-consistently finding ground states |Ψ(A)⟩ for A = 1, . . . , Nfrag which make the composite
Lagrangian in Eq. (6.10) stationary, we will have completed the density matching procedure
for all fragments, and the process of bootstrap embedding will be complete.

We can gain insight into which wave functions |Ψ(A)⟩ will make the composite Lagrangian
L stationary by differentiating L with respect to |Ψ(A)⟩ for some fixed fragment A and setting
the resulting expression equal to zero. Upon some algebraic manipulation, we can recover
the eigenvalue equation

(Ĥ(A) + VBE)|Ψ(A)⟩ = −E (A)|Ψ(A)⟩, (6.12)

where VBE, the local bootstrap embedding potential, is given by

VBE =
∑

B

∑

p,q

(λ
(A)
B )pqa

(A)†
p a(A)q + µ

∑

p′

a
(A)†
p′ a

(A)
p′ (6.13)
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where the p, q are indices of orbitals in the overlapping set E(A)∩C(B), and the p′ are indices
of orbitals in the fragment center C(A). We see that, when the composite Lagrangian is
made stationary with respect to the fragment wave functions, the bare fragment embedding
Hamiltonians become dressed with a potential VBE that contains a component local to the
edge sites of each fragment (see the left term of Eq. (6.13)). This observation confirms our
intuition that adding a local potential to the edge of one fragment will allow the edge site
electron density to be matched to that of a center site on an overlapping neighbor. Note that
VBE also contains an additional potential on the center sites of each fragment (see the right
term of Eq. (6.13)); this is simply to conserve the total electron number in the molecule.
Moreover, VBE as in Eq. (6.13) only contains one-body terms because only 1-RDM is used
for density matching. In general, VBE will contain up to k-body terms if k-RDMs are used
for matching.

On a classical computer, the composite Lagrangian in Eq. (6.10) is made stationary
through an iterative optimization algorithm [WTV16] until the edge-to-center matching con-
dition for all fragments is satisfied by some criterion. One possible criterion is to terminate
the algorithm when the root-mean-squared 1-RDM mismatch, given by

ϵ =


 1

Nsites

Nfrag∑

A

∑

B

∑

p,q

(P (A)
pq − P (B)

pq )2




1
2

, (6.14)

drops below some predetermined threshold. Note again that p, q are indices corresponding to
orbitals in the overlapping set E(A)∩C(B); also, Nsites denotes the total number of overlapping
sites in the whole molecule, equal to Nsites =

∑Nfrag

A

∑
B

∑
p,q 1. The final set of density-

matched fragment wave functions {|Ψ(A)⟩} for A = 1, . . . , Nfrag which solve the composite
Lagrangian can then be used to reconstruct the electron densities and other observables for
the full molecular system, as desired.

6.2.3 Resource Requirement and Typical Behavior of BE on Clas-
sical Computers

Given the notation established for classical BE, we now begin presenting new material. We
discuss the computational resource requirement and typical behaviors of performing BE on
classical computers to set the stage for a quantum BE theory. The details of the classical BE
algorithms are omitted for succinctness, and we refer the reader to Ref. [WTV16; Ye+19;
YTV20; YTV21] for details.

The space and time resource requirement to perform the classical BE can be broken
down into two parts: a) the number of iteration steps to reach a fixed accuracy for ϵ (Eq.
(6.14)); b) the runtime of the fragment eigensolver. For a), numerical evidence suggests an
exponentially fast convergence on total system energy as the number of bootstrap iteration
increases (black trace in Fig. 6.2 for FCI), while a proof of the convergence rate has yet to
be established.

We focus on resource requirement in b) in the following. Admittedly, an exact classical
eigensolver such as full configuration interaction (FCI) can be used to solve the embedding
Hamiltonian in Eq. (6.5). However, both the storage space and time requirement scales
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exponentially as the the number of orbitals (see blue symbols and dashed line in Fig. 6.3 for
the runtime scaling of FCI). Even with the state-of-the-art classical computational resources,
exact solutions using FCI are only tractable for systems up to 20 electrons in 20 orbitals
[Vog+17].

As a result, classical computation of BE resorts to approximate eigensolvers with only
polynomial cost in practice, by properly truncating or sampling from the fragment Hilbert
space. One example for truncation is the coupled-cluster singles and doubles (CCSD) [BM07],
which scales with N6 with N being the number of orbitals. Alternately, different flavors of
stochastic electronic structure solvers can be employed as fragment solvers in BE. Depending
on implementation, these stochastic solvers can be biased or unbiased (if unbiased, with a cost
of introducing the phase problem in general) [Mor+21; LPR22; She+19; LCR18]. Collecting
each sample on a classical computer usually has similar cost as a mean field theory (roughly
O(N3)), while the overall target accuracy ϵ on observable estimation can be achieved with a
sampling overhead of roughly O( 1

ϵ2
) with a constant prefactor depending on the severity of

the sign problem.
Importantly, the sampling feature of these stochastic electronic structure methods on

classical computers are strikingly similar to the nature of quantum computers where mea-
surement necessarily collapses the wave function. As a result, only a classical sample (in
terms of measurement results) can be obtained from a quantum computer. This similarity
suggests a general strategy that many sampling techniques in stochastic classical algorithms
can be deployed to design better quantum algorithms. For example, sophisticated impor-
tance sampling techniques [NU98; Fou+01] can be employed to greatly improve the sampling
efficiency in both classical [LCR18] and quantum cases [HKP20].

Due their shared feature on sampling between classical stochastic algorithm and quantum
eigensolvers, we shall use one approximate sign-problem-free flavor of stochastic electronic
structure method, the variational Monte Carlo (VMC), to serve as an additional baseline
scenario for comparison with quantum BE in later sections. In addition to BE convergence
behavior with a FCI solver, Fig. 6.2 also shows, for a VMC eigensolver with single Slater-
Jastrow type wave function with two-body Jastrow factors [WM07; Whe+21], the density
mismatch converges exponentially fast initially as iteration number increases with varying
number of samples. However, partially due to the statistical noise on estimating the 1-RDM
(thus the gradient for the optimization), the final density mismatch plateaus to a finite
biased value. Comparing the VMC results across different numbers of samples, we can see
that the bias improves as the number of samples increases (dashed horizontal lines). It is
also evident that the orange trace (640k samples) has smaller fluctuation as compared to
blue (160k samples) and grey (40k samples). Strictly speaking, an increase of sample size
by a factor of 16 would decrease the statistical fluctuations by a factor of 4. However, our
numerical data in Fig. 6.2 only shows qualitative but not quantitative agreement with this
statement. We attribute part of the bias in the plateau to the intrinsic truncation of the
VMC ansatz in addition to statistical fluctuations.

The increasing accuracy of density mismatch with respect to BE iteration also suggests
an increasing number of samples are needed. Thus, an optimal number of samples at each
BE iteration must be determined to achieve the desired accuracy in the matching conditions.
A careful design of such a sampling schedule can potentially save a large amount of compu-
tational resources. We defer a thorough discussion of this point to later sections on quantum
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Figure 6.2: Typical convergence of density mismatch with respect to the number of eigen-
solver calls in classical bootstrap embedding with a deterministic eigensolver (FCI, black
circle) and a stochastic eigensolver (VMC) with different number of samples (grey, blue,
and orange solid lines). The horizontal dashed lines shows the final plateaued value of the
density mismatch for VMC, while the FCI data converges to 10−6 after 700 eigensolver calls
(not shown on the figure). The discrete jumps around 200 and 300 eigensolver calls are due
to switching to the next BE iteration. The data is obtained for an H8 linear chain under
STO-3G basis. See SI Sec. D.9.2 for computational details.

BE.

6.2.4 The Quest for BE on Quantum Computers

By employing the coherent superposition and entanglement of quantum states, the limita-
tion of an exact classical solver can be overcome by substituting it with an exact quantum
eigensolver such as the quantum phase estimation (QPE) algorithm [AL99b]. This section
directly compares the cost between the two exact eigensovlers on quantum and classical
computers, the QPE and the FCI solvers, using hydrogen chains where the initial trial state
with a non-vanishing overlap with the exact eigenstate for QPE can be efficiently prepared
on classical computers.

Fig. 6.3 compares the runtime (gate depth) of FCI and QPE for finding the ground state
of linear hydrogen chain Hn for different system size n. Clearly, the QPE runtime scales only
polynomially as the system size increases as expected [Asp+05; Lee+22], while its classical
counterpart (FCI) has an exponentially increasing runtime. Note the runtime is normalized
to the case of n = 1 for each solver separately (see SI Sec. D.9). The dramatic advantage
in the runtime scaling of quantum over classical eigensolvers demonstrated above suggests
formulating BE on a quantum computer can bring significant benefits.

One might think that the eigensolver at the heart of the classical BE algorithm could
simply be replaced with a quantum one. However, as mentioned before, there are two
outstanding challenges for such a quantum bootstrap embedding (QBE) method. First, just
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Figure 6.3: Runtime (normalized) as a function of system size n for finding the ground state
of a linear hydrogen chain Hn at STO-3G basis, comparing an exact classical solver (FCI,
blue square) and an exact quantum solver (QPE, red circle) on real classical and quantum
devices. Red (blue) dashed line shows a polynomial (exponential) fit to the QPE (FCI)
runtime. Note the crossover at large system size.

as in classical stochastic methods, the results of a quantum eigensolver need to be measured
for later use, but quantum wave functions collapse after measurement. Therefore, sampling
from the quantum eigensolver is required, and the optimal sampling strategy is unclear.
Secondly, with quantum wave function from quantum eigensolvers, it is not wise to achieve
matching between fragments in the same way as classical BE, as many incoherent samples are
needed to obtain a good estimation of the 1-RDM elements. Clearly, performing matching
in a quantum way is desired.

In the next two sections (Secs. 6.3 and 6.4), we present how we address these two
challenges by an adaptive quantum sampling scheduling algorithm and a quantum coherent
matching algorithm in detail.

6.3 Quantum Bootstrap Embedding Methods

In previous sections, we have seen potential advantages of performing bootstrap embedding
on quantum computers, and discussed two major challenges of doing so. In this section,
we present the theoretical formulation of our bootstrap embedding method on a quantum
computer that addresses these challenges.

Sec. 6.3.1 first set up notations and discuss a few aspects of locality and global sym-
metry on performing embedding of fermions on quantum computers. Sec. 6.3.2 discuss a
naive extension of the classical BE algorithm on quantum computers by matching individ-
ual elements of the RDMs directly, and highlight the disadvantage of doing so. Sec. 6.3.3
introduces the SWAP test circuit and show that it achieves the matching between two RDMs
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coherently. In 6.3.4, we discuss some subtleties on why it is impossible to incorporate this
coherent matching condition into the Lagrange multiplier optimization method, and present
an alternative quadratic penalty method to perform the optimization.

6.3.1 Fermion-Qubit Mapping - Global Symmetry vs. Locality

When mapping electronic structure problem to qubits on quantum computers, it is well-
known that the global anti-symmetric property of fermionic wave functions necessarily leads
to an overhead in operator lengths or qubit counts [Tra+18]. On the other hand, chemi-
cal information is usually local if represented using localized single-particle orbitals [ER63;
Wan62]. In the case of performing bootstrap embedding, this tension between locality of
chemical information and global fermionic anti-symmetry is more subtle. Because bootstrap
embedding intrinsically uses the fermionic occupation number in the local orbitals (LOs) to
perform matching, it is therefore convenient to preserve such locality when constructing the
mapping. Throughout the discussion, without loss of generality, we assume a mapping that
preserves fermionic local occupation number, such as the Jordan-Wigner mapping where
each spin-orbital is mapped to one qubit. Our discussion equally applies to cases where a
non-local mapping is used (such as parity mapping). In that case, a unitary transformation
from the non-local mapping to a local mapping will be required before actually computing
the matching conditions.

It is possible to formulate QBE using matching conditions on either qubit reduced density
matrices (RDMs) [NC10] or k-electron RDMs [Maz12] for all k, both with an exponential
number of matrix elements. For simplicity, in the present work we use qubit RDMs in our
QBE and leave an efficient formulation in terms of fermionic k-electron RDMs for future
work. The full density matrix of fragment A is thus provided by ρ(A) = |ΨA⟩⟨ΨA|. Given
an orbital set R ⊂ O(A) for O(A) being set of orbitals in fragment A. Let ρ(A)R signify the
RDM obtained from ρ(A) by tracing out the set of qubits not in R. Specially, if R only
contains orbitals on the edge (center) of fragment A, then ρ(A)R represents information about
the density information (for example the occupation number) on the edge (center) of A.

These RDMs can be expanded under an arbitrary set of orthonormal basis {Σα} as follows

ρ
(A)
R =

I +
∑4m−1

α=1 ⟨Σα⟩A Σα

2m
(6.15)

where ⟨Σα⟩A = ⟨ΨA|Σα|ΨA⟩ = Tr[ρ(A) Σα], ∀α ∈ [1, 4m − 1], and m = |R| is the number
of orbitals in the set R. One convenient orthonormal basis set is the generalized Gell-Mann
basis [BK08]. In the special case of a 1-qubit RDM, {Σα} (α = x, y, z) is the familiar Pauli
matrices.

6.3.2 Naive RDM Linear Matching and its Disadvantage

A naive implementation of BE on a quantum computer is to simply replace 1-RDM in
Eq. (6.6) with the qubit RDM in Eq. (6.15) on the fragment overlapping regions. Such
an extension imposes matching constraints on each elements of the RDMs, resulting the
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following constraint vector in analogous to Eq. (6.8)

Qlin(ρ
(A)
R ; ρ

(B)
R ) =




⟨Σ1⟩A − ⟨Σ1⟩B
...

⟨Σ4m−1⟩A − ⟨Σ4m−1⟩B


 = 0. (6.16)

It is obvious that ρ(A)R − ρ(B)
R = 0, if and only if all the (4m − 1) components in the above

constraint are satisfied.
Similarly, we can associate a scalar Lagrange multiplier to each constraint in Eq. (6.16)

and use this linear RDM constraint in place of the 1-RDM constraint Q1-RDM(Ψ(A);P(B))
in Eq. (6.9). Finding the stationary point of this new Lagrangian gives the same eigenvalue
equation as Eq. (6.12) with a new BE potential given by

VBE =
∑

B ̸=A,CB∩EA ̸=∅

λ
(A)
B · [I ⊗Σr ⊗ I] (6.17)

where Σr =
[
Σ1, · · · ,Σα, · · · ,Σ4m−1

]
is a (4m − 1)-dimensional vector of the orthonormal

basis in Eq. (6.15), and λ
(A)
B is the Lagrange multipliers now modulating the local potentials

on each qubit basis, and n is the number of overlapping sites between A and B.
To perform the optimization, the eigenvalue equation Eq. (6.12) with the above new

BE potential in (6.17) can be solved on a quantum computer to obtain an updated wave
function for fragment A. By iteratively solving the eigenvalue equation and updating the
Lagrange multipliers {λ, µ} using either gradient-based or gradient-free methods [CSV09],
an algorithm can be formulated to solve the optimization problem. For completeness, we
document the algorithm from the naive linear matching of RDMs in Sec. D.8 of the SI.

The above is a convenient way to impose the constraint on quantum computers, but it
is computationally costly as the number of constraints in (6.16) increases exponentially as
the number of overlapping sites n on neighboring fragments. For each constraint equation,
the expectation values ⟨Σα⟩ has to be measured on the quantum computer, which therefore
introduces an exponential overhead on the sampling complexity.

In the next section, we introduce a simple alternative to evaluate the mismatch between
two RDMs on a quantum computer much faster based on a SWAP test.

6.3.3 Coherent Quantum Matching from SWAP Test

The wave functions of two overlapping fragments are stored coherently as many amplitudes
that suppose with each other. The beauty of quantum computers and algorithms lies at the
ability to coherently manipulating such amplitudes simultaneously. We may naturally ask:
are there quantum algorithms or circuits that can coherently achieve matching between an
exponentially large number of amplitudes, without explicitly measuring each amplitude?

In quantum information, there is a class of quantum protocols to perform the task of
estimating the overlap between two wave functions or RDMs under various assumptions
[Fan+20]. Among these protocols, the SWAP test is widely used [HM13; Buh+01]. Such a
SWAP test on a quantum computer can also be naturally implemented by simple controlled-
SWAP operations as in Fig. 6.4, showing a SWAP test between two qubits. The essence of a
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SWAP test is to entangle the symmetric and anti-symmetric subspaces of the two quantum
states (|ϕ⟩ and |ψ⟩) to a single ancillary qubit, such that the quantum state of the system
before the final measurement is

|Ψ⟩ = 1

2

[
|0⟩
(
|ϕ⟩|ψ⟩+ |ψ⟩|ϕ⟩

)
+ |1⟩

(
|ϕ⟩|ψ⟩ − |ψ⟩|ϕ⟩

)]
. (6.18)

By measuring the top single ancillary qubit in the usual computational Z-basis (collapsing
it to either the |0⟩ or |1⟩ state), the overlap of the two qubit wave function, |⟨ϕ|ψ⟩|, can be
directly obtained from the measurement outcome probability:

Prob[M = 0] =
1 + |⟨ϕ|ψ⟩|2

2
, (6.19)

without requiring explicit estimation of the density matrix elements of each individual qubit.

Figure 6.4: Quantum circuit of a SWAP test between two qubits (lower, with state |ϕ⟩ and
|ψ⟩). The circuit is composed of two Hadamard gate (H), a controlled-SWAP operation in
between, and a final Z-basis measurement M on an additional ancilla qubit (top), where
M = 0, 1.

Can we recast the linear matching conditions as linear combination of several SWAP tests?
Observe that an equivalent condition alternative to Eq. (6.16) is the following quadratic
matching condition

Qquad(ρ(A)R ; ρ
(B)
R ) = Tr[

(
ρ
(A)
R − ρ

(B)
R

)2
] = 0. (6.20)

Interestingly, the above quadratic constraint can be rewritten as a linear combination of three
different multi-qubit generalization of the SWAP tests (with each repeated multiple times),
regardless of the number of overlapping sites (Fig. 6.1iiiq). Two of the SWAP tests are to
estimate the purity of ρ(A)R and ρ

(B)
R each, while the third one is to estimate the overlap

between ρ
(A)
R and ρ

(B)
R . See SI Sec. D.3 for a proof of the equivalence between the two

quantum matching conditions) and Sec. D.4 on how to generalize the SWAP test on two
qubits to a multi-qubit setting and how to relate the SWAP test results to the quadratic
constraint.

The reformulation of the quadratic constraint allows us to estimate the mismatch be-
tween two fragments by measuring only a single ancilla qubit (estimating three different
amplitudes). As compared to the linear constraint case where an exponentially large num-
ber of constraints have to be estimated individually (4m− 1 where m = |R| is the number of
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overlapping sites again), the quadratic matching based on SWAP tests achieves an exponential
saving in the types of measurements required.

Furthermore, the reduction of the mismatch to the estimation of only a few (three)
amplitudes in SWAP tests allows an additional quadratic speedup by amplifying the amplitude
of the ancilla qubit before measure it. We will discuss more details on how to achieve the
quadratic speedup in Sec. 6.4.3. Admittedly, such amplitude amplification algorithm may
be applied even to the naive linear RDM matching by boosting individual RDM amplitude,
but the resulting quantum circuit will be much more complicated.

6.3.4 Optimization Using the Quadratic Penalty Method

With an efficient way to estimate the quadratic penalty constraint established in Eq. (6.20),
it now appears feasible to use this new constraint in Eq. (6.9) as in the case of linear
constraint. However, the nature of the quadratic matching in Eq. (6.20) makes the same
Lagrange multiplier optimization method used in the linear case invalid. We first discuss
in more detail why this approach fails, in Sec. 6.3.4; we then describe an alternative way
of treating the quadratic constraint as a penalty term to optimize the resulting objective
function in Sec. 6.3.4.

Violation of the Constraint Qualification

A necessary condition to use the Lagrange multiplier method for constraint optimization is
that the gradient of the constraint itself with respect to system variables has to be non-
zero at the solution point (this guarantees a non-zero effective potential to be added to the
original Hamiltonian), a.k.a., constraint qualification [MF67; Ber16]. Specifically, we require
∇Qquad(ρ(A)R ; ρ

(B)
R ) ̸= 0 when ρ(A)R = ρ

(B)
R .

Unfortunately, in the quadratic case, we have

∇Qquad(ρ(A)R ; ρ
(B)
R ) ∝ ρ

(A)
R − ρ

(B)
R = 0 (6.21)

when ρ
(A)
R and ρ

(B)
R matches, which violates the above condition. Note that any high-order

constraint other than linear order will violate the constraint qualification. The existence of
such constraint qualification makes sense also from a physical point of view. Because the
gradient ∇Qquad(ρ(A)R ; ρ

(B)
R ) enters the eigenvalue equation (6.13) as the BE potential VBE

modulated by the Lagrange multipliers. The vanishing of this potential near the solution
point means there is no way to modulate VBE by adjusting the Lagrange multipliers, and
therefore will lead to failure of convergence of the Lagrange multiplier.

Alternatively, the quadratic constraint can be treated as a penalty by using λ(A)B Qquad(ρ
(A)
R ; ρ

(B)
R )

to substitute the constraint λ
(A)
B ·Q1-RDM(Ψ(A);P(B)) in Eq. (6.9). We can then employ

the quadratic penalty method [Sta+10] to minimize this cost function. To highlight the
distinction of quadratic penalty method from the Lagrange multiplier method, we use “cost
function" instead of “Lagrangian" to refer to the objective function in the quadratic penalty
case.
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Details of the Quadratic Penalty Method

The idea of the penalty method is to use the constraint as a penalty where the magnitude
of λ(A)B serves as a weight to the penalty. Initially, λ(A)B is set to a small constant, and then
we treat the resulting cost function as an unconstrained minimization where its minimum
is found by varying the wave functions. The next step is to increase λ(A)B to a larger value
leading to a new Lagrangian, which is then minimize again by varying the wave function
parameters. This procedure is repeated until the penalty parameter λ(A)B is large enough to
guarantee a small mismatch Qquad(ρ(A)r ; ρ

(B)
r ). In our case, we choose all λ(A)B = λ for all pairs

of adjacent fragments.
It is helpful to note that optimization of the wave function is done again using the

eigenvalue equation as in Eq. (6.12) by tuning the BE potential VBE. In other words, for a
fixed penalty parameter λ, the fragment Lagrangian LA({VBE}) is minimized with respect
to VBE. For a particular parametrization in terms of local potentials {vα} on the edge sites
of fragment A

VBE({vα}) =
M∑

α=0

vα I ⊗ Σα ⊗ I, (6.22)

where {Σα} is a set of Hermitian generator basis of size M on the edge sites of fragment A
(can be Pauli operators for a single edge site), and {vα} is the corresponding local potential
(real numbers). Note that M in Eq. (6.22) can be much smaller than the total number of
generators (4m) on the edge sites, because in each bootstrap embedding iteration, only a
small local potential is added to the Hamiltonian. This perturbative nature of the bootstrap
embedding iteration allows us to expand the BE potential VBE in each iteration under the
Hermitian generator basis from the previous iteration, such that the BE potential in each
iteration is diagonal dominant, i.e., M ≪ 4m where n is the number of edge sites on any
fragment A.

To update {vα}, we derive the following gradient (SI Sec. D.5)

dL(A)

dvα
=
∑

n′ ̸=0

[
C†(I⊗W

(n′)
ff ⊗ I)C(n′)

]
×
[
C(n′)†

(
H(A) + E(A)

0 + 2λ (I⊗ (æEA
−æCB

)⊗ I)
)
C
]

(6.23)

∀α ∈ [0,M ], that can, in principle, be used to perform the updating of VBE to minimize
L(A). In the above, C(n) is the eigenvector of the n-th eigenstate (n ≥ 1) while C is the
eigenvector of the ground state, W(n′)

ff is a perturbation matrix between ground state and
the n′-th eigenstate for the α-th Pauli basis at the edge site of fragment A, whereas ρEA

and
ρCB

are the RDM at the edge and center sites of fragment A and B, respectively.
The above gradient in Eq. (6.23) is only formally useful, but computing it exactly requires

all the eigenstates to be known (not only the ground state) which is clearly very costly if
possible. Nevertheless, it serves as a good starting point to develop approximated updating
scheme or to perform bootstrap embedding for excited states. We leave such topics for future
investigation. In the present work, instead of using Eq. (6.23) to update VBE, we employ
gradient-free schemes to update {vα} and measure the required expectation values using
SWAP test to obtain the mismatch to evaluate the cost function L(A).

We note that one additional advantage of this quadratic penalty method is that it can
be easily integrated with variational eigensolvers [Til+22] by treating the quadratic penalty
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as an additional term in the VQE cost function [KN21]. The drawback is that the optimized
wave function only exactly equals to the true wave function when the penalty goes to infinity
λ → ∞. Practically, we find that choosing the penalty parameter large enough is sufficient
to obtain satisfactory results.

6.4 Quantum Bootstrap Embedding Algorithms

Given the theoretical formulation of QBE method in Sec. 6.3, we present a general hybrid
quantum-classical algorithm in this section that can be practically used to solve the BE
problem on quantum computers to find the BE potentials VBE that satisfies the matching
condition.

In our quantum bootstrap embedding algorithm, the electronic structure problem of the
total system is formulated as a minimization of a composite objective function with a penalty
term constructed from the matching conditions on the full qubit RDMs on overlapping re-
gions of adjacent fragments. We then design an iterative hybrid quantum-classical algorithm
to solve the optimization problem, where a quantum subroutine as an eigensolver is employed
to prepare the ground state of fragment Hamiltonian. The quantum matching algorithm em-
ploys a SWAP test [Bar+97; Buh+01] between wave functions of two fragments to evaluate
the matching conditions, which is a dramatic improvement as compared to the straightfor-
ward method of measuring an exponential number (with respect to the number of qubits
on the fragment edge) of RDM elements. Additionally, the quantum bootstrap embedding
framework is internally self-consistent without the need to match fragment density matrices
to external more accurate solutions. The adaptive sampling changes the number of samples
as the optimization proceeds in order to achieve an increasingly better matching conditions.
We note that the SWAP test adds only little computational cost to quantum eigensolvers
which can be readily performed on current NISQ devices. The amplitude amplified coherent
quantum matching requires iterative application of eigensolvers multiple times which are
more suitable for small fault-tolerant quantum computers.

The rest of this section is organized as follows. Sec. 6.4.1 gives an outline of the QBE al-
gorithm with the quadratic penalty method. Sec. 6.4.2 discusses possible choices of quantum
eigensolvers with an analysis on sampling complexities. We then present a way to achieve
an additional quadratic speedup by using coherent amplitude estimating algorithm in Sec.
6.4.3.

6.4.1 The Algorithm

We present a high-level framework of the main algorithm in this section. As a comparison,
the QBE algorithm with naive linear matching can be found in SI Sec. D.8. Code for the
algorithms and data for generating the plots are available as open source on github [Liu+22].

To quantify the mismatch across all fragments, we define ∆ρ to be the root mean square
density matrix mismatch averaged over all the overlapping sites of all the fragments according
to

∆ρ =

√
1

Nsites

∑

A,B

∑

r∈E(A)∩C(B)

Tr[
(
ρ
(B)
r − ρ(A)r

)2
] (6.24)
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where Tr[
(
ρ
(B)
r − ρ(A)r

)2
] = Qquad(ρ(A)r ; ρ

(B)
r ) as in Eq. (6.20), which may also be recognized

as the Frobenius norm of (ρ(B)
r −ρ(A)r ). Nsites is the total number of terms in the double sum

in Eq. (6.24), Nsites =
∑

A ̸=B|E(A) ∩ C(B)|, with |S| denoting the number of elements in set
S.

The cost function L(A)(λ) being optimized is discussed in Sec. 6.3.4. For clarity, we write
it explicitly here

L(A)(λ) =⟨Ĥ(A)⟩A +
∑

B

λQquad(ρ(A)R ; ρ
(B)
R ), (6.25)

with Qquad given by Eq. (6.20). We have omitted the term E (A) for simplicity since the
normalization of the wave function is guaranteed for a fault-tolerant quantum computer.
However, this term can be important on a noisy quantum computer where the purity of the
wave function can be contaminated. Note the expectation value in Eq. (6.25) has to be
estimated by collecting samples on a quantum computer.

The quantum bootstrap embedding algorithm with quadratic penalty method is presented
below in Alg. 9. The algorithm takes as its input the total Hamiltonian of the original system,
and then perform the fragmentation and parameter initialization, followed by the main
optimization loop to achieve the matching. Finally, it returns the optimized BE potential
V

(A)
BE for any fragment A and the final mismatch ∆ρ. Inside the main loop (line 9 of Alg. 9),

the cost function L(A)(λ) for each fragment A is minimized for a fixed penalty parameter λ
(line 10 and 11). The penalty λ is then increased geometrically (line 12) until the mismatch
criteria is met, i.e., ∆ρ ≤ ε.

Algorithm 9 Quantum bootstrap embedding algorithm: quadratic penalty method
Input: Geometry of the total molecular system and the associated ab initio Hamiltonian.
Output:

(
H(A) + V

(A)
BE

)
for all A

1: for A = 1 to Nfrag do ▷ Initial fragmentation: Divide the full molecular system into Nfrag overlapping
fragments

2: Generate H(A) using Eq. (D.1) of Appendix D.1
3: Set V

(A)
BE = 0

4: end for
5: Set initial penalty factor λ = 1; set initial mismatch ∆ρ > ϵ. ▷ Parameter initialization
6: while ∆ρ > ε do ▷ Main loop
7: for A = 1 to Nfrag do
8: Minimize L(A)(λ) as in Eq.(6.25): Repeatedly generate V (A)

BE and estimate the penalty loss function
L(A)(λ) using SWAP test.

9: end for
10: λ← γλ, for some fixed γ > 1 ▷ Increase penalty parameter
11: for A = 1, Nfrag do ▷ Update mismatch
12: Estimate Qquad(ρ

(A)
r ; ρ

(B)
r ) using NSWAP

samp (Eq. (6.27)) samples for each SWAP test.
13: end for
14: Classically compute the mismatch ∆ρ using Eq. (6.24).
15: end while
16: return

(
H(A) + V

(A)
BE

)
for all A, ∆ρ.

A key step of the algorithm is the minimization of L(A)(λ) at line 11, which consists of
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repeatedly generating the BE potential V (A)
BE and estimate the mismatch using SWAP test.

BE potentials V (A)
BE are generated differently for different optimization algorithms. In our

implementation, a quasi-Newton method, the L-BFGS-B [Byr+95] algorithm, is used at line
11 for minimizing L(A)(λ), where V (A)

BE is proposed by the optimizer in order to estimate the
inverse Hessian matrix to steer the optimization properly. Alternatively, if derivative-free
methods such as Nelder-Mead [NM65] is used, V (A)

BE will be generated in a high-dimensional
simplex defined by the coefficients {vα} in Eq. (6.22), which is repeatedly refined.

Once V (A)
BE is generated, the first term in the cost function in Eq. (6.25) is estimated by

invoking the quantum eigensolver for the Hamiltonian
(
H(A) + V

(A)
BE

)
. The second term, the

mismatch in Eq. (6.25) can be estimated by measurement outcomes of the ancilla qubit in
the SWAP test (Sec. 6.3). The mismatch estimation at line 13 is performed in the same way
as those in line 11. Note that the number of samples NSWAP

samp (Eq. (6.27)) for the SWAP test
estimation can be changed adaptively in different BE iterations for different accuracy, which
we discuss in detail in the next section.

6.4.2 Eigensolver Subroutines and Sampling Complexity

Two major quantum eigensolvers, QPE [SHF13] and VQE [Til+22] can be used in line
11 and 14 of Alg. 9 to estimate the cost function. QPE is an exact eigensolver, where
the system wave function collapses to the exact ground state regardless of the number of
evaluation qubits used. In contrast to QPE, VQE is an approximate eigensolver and the
results depends on the choice of ansatz and the optimization algorithm used.

A crucial feature of a quantum eigensolver is its probabilistic nature, in a sense that
any measurement collapses the entire quantum state. This perspective allows us to treat a
quantum eigensolver as a sign-problem-free sampling oracle for correlated electronic structure
problems where Ref. [Hug+22] provides a concrete example.

The stochastic nature also means a more careful treatment on the number of samples is
required to fully quantify any potential quantum speedup. In general, for typical iterative
mixed quantum-classical algorithms, some parameters are usually passed from one iteration
to the next, where the parameters are estimated by repeatedly sampling from a quantum
eigensolver oracle through proper measurement. This means the uncertainty on these pa-
rameters estimated from one iteration has to be small enough to avoid a divergence of the
algorithm as iteration continues.

In particular in the bootstrap embedding case, the sampling accuracy on the fragment
overlap of each iteration has to be good enough such that the uncertainty of the mismatch
passed to the next iteration will not spoil the iteration and lead to diverging results as
iterations continue. In the following, sampling complexities of classical matching and SWAP-
test-based quantum matching are compared.

When estimating the overlap S to an accuracy ϵ naively by density matrix tomography
(TMG) of individual RDM elements, it is shown under mild assumptions that the total
number of samples required (Sec. D.6 of SI)

NTMG
samp (S, ϵ, n) = O(en)

(
D

ϵ2

)
, (6.26)
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where n is the number of qubits on the overlapping region, and D is a system-dependent
constant as a function of the two RDMs. In contrast, the quantum matching based on SWAP

test costs

NSWAP
samp(S, ϵ) =

(
1− S2

8

)
1

ϵ2
, (6.27)

which is independent of the size n of the overlapping region of two fragments. This demon-
strates that our quadratic quantum matching achieves an exponential speedup compared to
naive tomography of density matrices. This dramatic speedup is perhaps not that surpris-
ing because we only care about one particular observable (the overlap) instead of the full
subsystem RDMs. Therefore, if the observable can be mapped to measurement outcome of
few qubits by some quantum operations (SWAP test in this case), advantages are expected in
general.

Moreover, the dependence of NSWAP
samp(S, ϵ) on the overlap S and estimation accuracy ϵ

allows an adaptive sampling schedule to be implemented for line 11 and 14 of Alg. 9. For
example, we may use the overlap S estimated from the previous BE iteration to compute
the required NSWAP

samp in the current BE iteration. The accuracy ϵ can also be dynamically
tuned according to the error of the first term in Eq. (6.25), as well as the value of the
penalty parameter λ. For example, at the beginning BE iterations, the mismatch (∆ρ or
more precisely Qquad(ρ(A)r ; ρ

(B)
r )) is large so that a moderate ϵ suffices. As the BE iteration

proceeds, the overlap converges exponentially, therefore an exponentially decreasing ϵ has to
be used as well. A numerical value of ϵ needs be determined from case to case.

In addition, Eq. (6.27) suggests an interesting behavior. As the QBE algorithm proceeds
and the overlap S increases, fewer samples are needed to achieve a target accuracy. If S
approaches 1 exponentially fast as S ∼ 1 − e−γ·niter for some constant γ, then the required
number of samples for SWAP will decrease exponentially as BE iteration niter goes NSWAP

samp ∼
e−γ·niter/ϵ2. In practice, the overlap of two subsystem can never approach 1 but saturates
to a constant 0 < c < 1 when matching is achieved, and therefore NSWAP

samp ∼ (1 − c)/ϵ2 still
obeys the 1/ϵ2 scaling generally. This, on the other hand, suggests that a larger overlapping
region is advantageous to reduce NSWAP

samp because the RDM of a larger subsystem of a pure
state will have greater purity (hence larger c) in general.

6.4.3 Additional Quadratic Speedup

The core of many quantum speedups over classical algorithms lie at the ability of quantum
computers to directly manipulate the probability amplitude instead of probability itself, while
classical computers only have access to probability. With this idea, the above perspective
of treating a quantum eigensolver as an oracle where some amplitude is estimated through
proper measurements allows us to achieve an additional quadratic speedup in our quantum
bootstrap embedding algorithm. This section compares two different versions of quantum
matching algorithms in QBE, the SWAP and the SWAP+AE algorithms. However, the same
argument of quadratic speedup applies to classical sampling based eigensolvers such as VMC
as discussed in detail at the end of this section.

The intuition is that instead of directly measuring a small quantum amplitude to ac-
cumulate enough counts to reduce the error bar, we may use quantum algorithms to first
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amplify the amplitude before the measurement. One way of understanding this is that Eq.
(6.27) contains an overlap-dependent prefactor (1−S2) as discussed above. If the overlap S
(as a probability amplitude) can be manipulated on the quantum computer easily such that
(1 − S2) is on the order of ϵ, then NSWAP

samp will be proportional to only 1/ϵ instead of 1/ϵ2.
There are well-established ways of performing such amplitude amplification task via coher-
ent quantum algorithms [Bra+02]. See SI Sec. D.7 for the construction of the amplitude
amplification and binary search quantum algorithm.

In particular, in each iteration of the algorithm, it can be shown that by combining
oblivious amplitude amplification and a binary search protocol, estimating the overlap up to
precision ϵ between adjacent fragments takes NSWAP+AE

samp samples (state preparation and SWAP

tests)

NSWAP+AE
samp =

√
2

2 ln(2)ϵ
ln2(

1

ϵ
), (6.28)

regardless of the overlap S.
Comparing (6.28) with (6.27), the above analysis suggests that our coherent quantum

matching algorithm achieves a quadratic speed up (up to a factor of polylog(1
ϵ
)) as com-

pared to the SWAP test based quantum matching algorithm, which is consistent with typical
behavior of a Grover-type of search algorithm. Moreover, in contrast to (6.26), an exponen-
tial advantage is present with respect to the size of the overlapping region, indicating the
benefit of using our quadratic QBE algorithm for fragment matching in the presence of large
overlapping region.

In the above, we leverage amplitude amplification to achieve a quadratic speedup of
a quantum subroutine based on SWAP test. More generally, such amplitude amplification
technique can be utilized to achieve a general quadratic speedup in the required number of
samples for any Monte Carlo classical algorithms [WA08; YA12; Mon15]. This can be under-
stood by realizing that classical probability distributions may be encoded in the amplitudes
of the quantum state of a quantum computer, where measurements performed after some
unitary quantum computation is similar to sample from the quantum computer to extract
the probability distributions. When treating the unitary quantum computation part as a
quantum blackbox, it is then easier to understand the quadratic speedup in the number of
samples as compared to classical Monte Carlo methods. In our case, the quantum blackbox
is the quantum eigensolver used to find the ground state for each fragment, while the classical
blackbox is the stochastic classical eigensolvers such as VMC.

6.5 Results and Discussions

With the theoretical foundation and algorithms discussed in previous sections, we present
numerical results in this section using a typical benchmark system in quantum chemistry,
hydrogen chains under minimal basis. In Sec. 6.5.1, we demonstrate the convergence of the
QBE algorithm with an exact solver (at infinite sampling limit) using an H8 molecule with
STO-3G basis. In Sec. 6.5.2, we present numerical evidence for the sampling advantages
of the QBE algorithm in terms of overlapping fragment size (non-interacting H4 molecule
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with STO-3G basis) and target precision over incoherent estimation and classical VMC sam-
pling (H8 molecule under STO-3G basis). Numerical results using approximate variational
quantum eigensolvers (VQE) on a random spin model and a perturbed H4 molecule are docu-
mented in Sec. D.9.5 of SI for interest readers, where a similar BE convergence is established
at the beginning iterations but later plateaus, likely due to intrinsic VQE ansatz truncation
errors. A detailed discussion of BE+VQE goes beyond the scope of this work which we leave
for future investigation.

6.5.1 Convergence of QBE in Infinite Sampling Limit

Figure 6.5: Convergence of the quantum bootstrap embedding algorithms on (a) density
mismatch and (b) energy error for the linear constraint (pink) and quadratic penalty method
(red) in the infinite sample limit for an H8 molecule. The dashed trend lines in both panels
indicate an exponential fit.

We focus on demonstrating the convergence of QBE in the infinite sampling limit by using
exact deterministic solver with the quadratic constraint in Eq. (6.20) and linear constraint
in Eq. (6.16). As a standard benchmark system for electronic structure, we perform QBE
on a H8 chain under a minimal STO-3G basis, which is fragmented into six overlapping
fragments each with six embedding orbitals. Fig. 6.5a shows the exponential convergence of
the density mismatch for an H8 molecule in both linear and quadratic constraint cases. This
convergence behavior of QBE matches the convergence of classical BE in Fig. 6.2 with exact
classical solver (FCI), demonstrating the correctness of the new constraints. The agreement
on the convergence with classical BE in Fig. 6.2 is expected since at infinite sampling limit,
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the outer iterations in both classical and quantum BE are the same classical optimization
routine.

To quantify how much energy error the final converged result has, Fig. 6.5b shows the
absolute value of the error in energy using the energy in the last (11th) iteration as a reference.
We can see that the energy errors from both the linear and quadratic constraint algorithm
exhibit similar exponential convergence as the density mismatch. Moreover, the energy in
both cases converge to the same value within 10−6 in the last iteration (not shown in the
figure). We note that the linear constraint case shows a slightly oscillatory convergence,
while the quadratic case is free of such oscillatory behavior. The fact that quadratic appears
to converge slightly faster than linear may be coincidence for the system investigated, and
the convergence rate in general depends on the optimization algorithm chosen. See Sec.
D.9.4 of the SI for a detailed description on definition of the energy.

6.5.2 Sampling Advantage of Coherent Quantum Matching

In the previous section, we have seen that our quantum bootstrap embedding algorithm
convergence as expected in the infinite sampling limit. It is also seen (in the SI) that the
approximate VQE leads to biased behavior on the density matching. In practice, only a
finite number of samples can be collected on a quantum computer, and we will focus on theis
scenario in this section. In particular, we present numerical data demonstrating the sampling
advantage of our coherent quantum matching algorithm. Sec. 6.5.2 discusses the sampling
advantage of the quantum matching algorithm for an overlapping region of increasing size,
echoing the analytical sampling complexity derived in Sec. 6.4.2. In Sec. 6.5.2, the additional
quadratic speedup in estimating the overlap via amplitude amplification and binary search
(AE) is presented, which agrees with the theoretical sampling complexity in Sec. 6.4.3.

Advantage in Fragment Overlap Size

To perform bootstrap embedding, it is usually advantageous to partition the system into
fragments with large overlapping region to increase the convergence rate, because a large
overlapping region necessarily means more information is provided to update the local po-
tential for the following BE iteration. However, as is seen in Eq. (6.26) of Sec. 6.4.2, a
larger overlapping size also lead to a potentially exponentially higher sampling complexity
versus the number of qubits in the overlapping region if estimating the overlap naively from
density matrix tomography (TMG). The quantum matching algorithm implemented by a
SWAP test (Fig. 6.1iiiq) bypass the need for density matrix tomography, and therefore leads
to a sample complexity as in Eq. (6.27) independent of the size of the overlapping region.

To validate our theoretical sample complexity, a simulation of the quantum matching
algorithm with QPE as an eigensolver for two identical H4 chain is performed using a noiseless
Qiskit AerSimulator (see SI Sec. D.9.3 for more details) for an increasing overlap region
ranging from 2 to 4, 6, and 8 qubits (schematic in Fig. 6.6). In the simulation, we first
use QPE to prepare the ground state for two non-interacting H4 molecules separately. A
SWAP test is then performed on relevant qubits in the overlapping region between the two
H4 molecules. The evaluation qubits for QPE and the ancilla qubit for SWAP test are all
measured afterwards. Post-selection on the QPE evaluation qubits are performed in order to
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select the ground states of H4 molecules. The SWAP test results are processed and converted
to the estimation on the overlap S.

Figure 6.6: Sampling complexity ratio of naive density matrix tomography (TMG) and
SWAP test versus number of qubits in the overlapping region for a target precision ϵ = 0.001
on overlap S. The inset shows a simulated convergence of overlap (S) estimation using
quantum matching (SWAP) for the case of two overlapping qubits. Data are obtained from a
non-interacting chain of H4 (see SI Sec. D.9.3 for details).

The inset of Fig. 6.6 shows the estimated overlap S as a function of sample size (number
of eigensolver calls) in the case of two overlap qubits. The estimated overlap converges
to the exact value (black dashed horizontal line) for roughly four million samples within
5 × 10−4 (error bar invisible for the last data point). This demonstrates the correctness of
our quantum matching algorithm.

By repeating similar estimation as described above for increasingly larger overlapping
regions, the exponential sampling advantage of the quantum matching algorithm over naive
density matrix tomography is evident in Fig. 6.6. As we can see, to achieve a constant
target precision of ϵ = 0.001 on the overlap S, the ratio between the SWAP test estimation
and the naive tomography estimation for the required number of eigensolver calls increases
exponentially as the number of qubits.

We note that in general, overlaps between density matrices are not low-rank observables,
so the sampling complexity of estimating it is likely to be high. However, more efficient
sampling schemes may exist than the naive density matrix tomography as presented in Eq.
(6.26). For example, by sampling the differences in the RDMs between the current and the
previous BE iterations, the sampling complexity could be much better than exponential. We
leave this for future investigation.
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Additional Quadratic Speedup in Accuracy

We have seen in the previous section that the quantum matching implemented by a SWAP test
shows a potentially exponential sampling advantage in terms of the size of the overlapping
region as compared to naive density matrix tomography (compare Eqs. (6.27) to (6.26)).
However, the sample complexity in the estimation accuracy ϵ follows the same scaling of
1/ϵ2 as classical sampling based eigensolvers such as VMC. As is derived in Sec. 6.4.3, we
see that the sample complexity can be reduced to roughly 1/ϵ with a coherent quantum
matching algorithm (SWAP+AE), by combining amplitude estimation and a binary search
protocol, thus achieving a quadratic speedup. In this section, we present concrete numerical
data demonstrating this quadratic speedup.

Figure 6.7: Number of eigensolver calls required as a function of target precision at overlap
S = 0.4, comparing SWAP or VMC (blue) and SWAP+AE (red) estimation for the H8 chain with
STO-3G basis. The blue dashed line shows the number of samples (eigensolver calls) needed
in SWAP test as derived in Eq. (6.27), while the red dashed line plots a more accurate version
of Eq. (6.28) (Sec. D.7.3 of SI) with red circles highlighting a few data points spanning low
to high target precisions. The blue scatter points are the number of VMC eigensolver calls
required to achieve the corresponding target precision on the 1-RDM overlap estimation for
the same H8 molecule. The inset plots the number of eigensolver calls as a function of the
overlap S for a fixed target precision ϵ = 0.001. Note the crossover in both plots.

Fig. 6.7 shows that for a single BE iteration, the required number of samples (eigensolver
calls) on estimating the RDM overlap S between two adjacent fragments as a function of the
required precision on the overlap, comparing the SWAP test based quantum matching (blue)
and the coherent overlap estimation combining the SWAP test and amplitude estimation
(SWAP+AE) (red). We can see that the required number of samples increases quadratically
as the accuracy ϵ increases for the SWAP test based estimation. In contrast, the slope of the
SWAP+AE sample complexity is reduced to roughly half of the SWAP test, demonstrating the
quadratic speedup.
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To compare the classical VMC sampling convergence with the quantum overlap estima-
tion method, we also overlay the number of VMC eigensolver calls (blue marks) versus target
precision on estimating the overlap on top of the SWAP test sampling complexity for the same
H8 molecule. The general agreement between the VMC eigensolver calls and the derived
SWAP test eigensolver calls highlights the similarity of a classical stochastic electronic struc-
ture methods and a quantum incoherent matching algorithm in terms of blackbox sampling
complexity, echoing the idea of treating quantum computers as coherent sampling machines.
It is worthwhile noting that this quadratic speedup is only advantageous in the high precision
(small ϵ) limit, as is evident from the existence of a crossing point in Fig. 6.7 (between 10−4

and 10−2), which defines a critical ϵ∗. For ϵ < ϵ∗, SWAP+AE is favored whereas the SWAP test
wins when ϵ > ϵ∗.

Moreover, in addition to the dependence on estimation accuracy ϵ, the sampling complex-
ity also depends on the value of the overlap S. The inset of Fig. 6.7 compares the number
of eigensolver calls using SWAP (blue) and the SWAP+AE estimation (red) for estimating the
overlap during quantum matching. In more detail, the sample complexity for the SWAP test
decreases quadratically as the overlap S approaches 1 (Eq. (6.27)). As a comparison, the
SWAP+AE stays roughly a constant for the coherent quantum matching ((6.28)), because
the amplitude amplification process used in the present work is agnostic to the value of the
amplitude (overlap S), i.e., oblivious amplitude amplification [YLC14; Ber+14]. The slight
drop in sample complexity in the SWAP+AE approach (red line, inset of Fig. 6.7) is due to
the discrete bit representation of S (Sec. D.7.2 of SI). The different scaling on S between
these two algorithms leads to a crossover of the sampling complexity at roughly S = 0.8
for a target precision of ϵ = 0.001. This crossover suggests that the plain SWAP test is ad-
vantageous for large overlaps, while amplitude estimation works better for small overlaps
S.

In addition, as mentioned in the previous section, as the bootstrap embedding iteration
proceeds, the exponential convergence of the density mismatch (overlap S) suggests the need
for an exponentially increasing accuracy ϵ on the overlap estimation. This further means
the number of samples per iteration in the SWAP test should increases exponentially as the
the number of iterations. Similarly, SWAP+AE achieves a square-root speedup in the total
sample numbers (remains exponential). We note that there may exist ways of sampling the
overlap in the current BE iteration normalized by the previous BE iteration to accelerate
this requirement on a large number of samples, which we leave for future investigation.

6.6 Conclusion

In conclusion, we have developed a general quantum bootstrap embedding method to find
the ground state of large electronic structure problems on a quantum computer by taking
advantage of quantum algorithms. We formulated the original electronic structure problem as
a optimization problem using a quadratic penalty to impose matching condition of adjacent
fragments. A coherent quantum matching algorithm based on the SWAP test achieves efficient
matching with an exponential sampling advantage compared to naive RDM tomography.
By estimating the amplitude that encodes the overlap information combing an amplitude
amplification and binary search protocol, an additional quadratic speedup is achieved. In
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addition, an adaptive sampling scheme is used based on previous overlap information and
the desired target accuracy to improve the sampling efficiency.

We demonstrate the performance of the QBE algorithm using a linear hydrogen molecule
under minimal basis. Our QBE algorithm is shown to achieve exponential convergence
in density mismatch and energy error similar to classical bootstrap embedding. However,
instead of the exponential cost of an exact classical solver (full configuration interaction),
quantum eigensolvers such as quantum phase estimation can solve the fragment electronic
structure exactly without incurring the exponential cost. Approximate quantum eigensolvers
(QES) are likely to achieve exponential speedup compared to FCI. However, such exponential
speedup depends on detailed implementation and the easy of input state preparation.

We have also compared sampling advantage of different versions of quantum match-
ing algorithms over classical BE+VMC 1-RDM matching for achieving the same accuracy,
where QBE+TMG (full RDM matching) is potentially exponentially slower than classical
BE+VMC (1-RDM matching) because the exponentially large number of full RDM elements
to estimate (Sec. 6.4.2 and 6.5.2). QBE+SWAP+AE achieves quadratic speedup as compared
to classical BE+VMC and QBE+SWAP (Sec. 6.4.3 and 6.5.2). Different choices of quantum
eigensolvers and matching algorithms are summarized in the flow chart in Fig. 6.8, where
accuracy and speedups are labeled for each method.

Figure 6.8: Summary of different choices of quantum eigensolvers (QES) and matching
algorithms discussed in the present work, with speedup and cost labeled on each arrow
accordingly. Overall, the best algorithm (QBE+SWAP+AE with exact QES) is highlighted
in red. Note that approximate QES are likely to achieve exponential speedup as compared
to classical FCI solver. It is however not guaranteed and depends on specific implementation
and the ease of input state preparation. We therefore use "possible exponential speedup"
for it.
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While we have made progress toward solving electronic structure problems employing
quantum resources in bootstrap embedding, there are several open questions to explore in
the future. One immediate task is to perform more thorough benchmark comparing differ-
ent versions of QBE and classical BE algorithms in terms of both speedup and accuracy
quantitatively. Beyond benchmark, at the algorithmic level, it is important to reconstruct
[QR21; NIB22] the total system density matrices from subsystem ones in order to compute
observables other than the energy. Ideally, quantum algorithms that can perform the re-
construction process would be desired. Moreover, we have established how the bootstrap
embedding potential can affect the system energy including the excited states in Eq. (6.23).
Future works on developing a QBE algorithm targeting excited states [Mit+21] or finite
temperature electronic structures [Zha99; LCR18; Sun+20b] would be of great interest. Al-
ternative constraint optimization methods such as the augmented Lagrangian method can
also be explored to achieve potentially better convergence [Fau+22].

In addition, the idea of quantum matching proposed in the present work could also be
exploited further in other embedding theories to harness quantum computers and resources,
including but not limited to embedding schemes based on wave functions, density matrices,
and Green’s functions [SC16]. In these contexts, it is likely that more sophisticated quantum
primitives and algorithms could accomplish quantum matching more efficiently than the
simple SWAP test we employ. For example, it is possible that higher order matching, or
matching of derivatives, could be accomplished quantum-mechanically, thus side-stepping
sampling noise.

More broadly, these quantum embedding theories and algorithms enabled by quantum
computation resources open new possibilities in chemistry, physics, and quantum informa-
tion. In the near term, molecules with more complex valence electronic structures such as
polyacetylene or polyacene chains beyond minimal basis can be treated with QBE on current
noisy quantum computers with a few hundred qubits. In the longer term, large molecular
systems in catalysis [FKB19; ZLY12] and protein-ligand binding complexes [War14; Pro+20]
likely can be simulated at a much higher accuracy by combining state-of-the-art quantum
and classical computational resources in embedding properly. In condensed matter and ma-
terial science, quantum bootstrap embedding may be adapted to periodic systems [PHG19;
Rus+18; Chi+16] for quantum material design [Hea+20] and probing phase diagrams of
various lattice models [Qin+22] close to the thermodynamic limit.

Finally, from a viewpoint of quantum information, the concept of embedding is closely
related to entanglement. Understanding the connection between the performance of quan-
tum embedding algorithms and fragment-bath entanglement entropy may provide a general
way to describe and understand the complexity of chemical and physical problems from a
quantum information perspective [Din+20; DS20; Wil13]. Current quantum computers are
small – we believe our quantum bootstrap embedding method provides a general strategy
to use multiple small quantum machines to solve large problems in chemistry and beyond
[Har20; Son+21]. We look forward to future development in these directions.
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Chapter 7

Conclusion and Outlook

In this thesis, we set out to tackle one of the biggest challenges of the scalibility of quantum
computers, learning of quantum systems during device characterization and execution of
quantum algorithms. We showcased how resource requirements of learning tasks across the
life cycle of quantum computing could be reduced by exploiting available prior information.
This prior information was presented to us in different ways: prior knowledge on the structure
or class of quantum states (Chap. 2) or channels (Chap. 3), locality of Hamiltonians, prior
knowledge of system parameters (Chap. 4), and structure in addition to sparsity of target
observables in a given basis (Chap. 5,6). Of course, the question remains: How much more
can we do with prior information in reducing resource requirements of learning tasks across
the life cycle of quantum computing?

I would like to conclude with an outlook for some of the learning tasks considered in this
thesis. I state questions for different learning tasks considering a particular type of prior
information being available i.e., structure of the quantum system being learned, and how we
might accelerate learning of different quantum systems to achieve Heisenberg limited scaling.
Furthermore, as the size of quantum devices increase, we can expect new architecture designs
to be proposed. It then becomes relevant to consider how current learning methods for device
characterization may be adapted to such architectures and the possibility of new approaches.
I thus state some questions that arise in the context of characterizating modular quantum
devices.

Role of structure in learning and testing. In the context of learning quantum states,
stabilizer states are notable as they are known to be efficiently learnable in O(n) samples
and O(n3) computational time complexity [Mon17a]. Additionally, in the PAC learning
model introduced by Aaranson [Aar07], stabilizer states can be efficiently learned in O(n4)
computational complexity [Roc18]. In Chap. 2 of this thesis, we identified quantum phase
states as an another class of states that can be learned efficiently in the exact learning model
but notably include states that are hard to simulate classically. This raises the question:

Can we learn quantum phase states in the PAC learning model in O(poly(n)) computational
complexity?

Further, what can we say regarding the learnability of other structured quantum states
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e.g., low-rank stabilizer decompositions [Bra+19] in the exact and PAC learning models?
In many situations, prior information is not always available but we have now at hand a

set of efficient learning algorithms given prior information. We thus can choose to test if our
learning algorithm is applicable. For example, in the context of quantum state tomography,
given access to copies of an unknown quantum state but with no prior information, we can
test if these unknown quantum states satisfy a property (e.g., being stabilizer states) which
we can then exploit during learning (e.g., by utilizing learning algorithms applicable for
unknown stabilizer states). This constitutes the question of property testing. The classes of
stabilizer states [GNW21] and matrix product states [SW22] are known classes of quantum
states that can be tested efficiently in sample complexity growing at most polynomially in
n. This motivates the following question.

Can we test if a given unknown quantum state |ψ⟩ is a degree-d quantum phase state or
ϵ-far away? What is the corresponding sample complexity?

It should be noted that there exists a separation in the sample complexity of learning and
testing stabilizer states. While, learning can be accomplished in O(n) samples, the testing
algorithm only requires 6 copies [GNW21]. Could there then be classes of quantum states
that are efficiently testable but not efficiently learnable?

Achieving Heisenberg limited scaling. The last few years have been exciting for Hamil-
tonian learners with new approaches [Fra+22] and results on efficient learning algorithms for
k-local Hamiltonians [Yu+23; Hua+23; Bak+23; HKT22]. It was shown that one can learn
k-local Hamiltonians at the Heisenberg limited scaling [Hua+23] when single-qubit control
is allowed. In general, however, it was shown that Heisenberg limited learning cannot be
achieved if control is not available [DOS23].

Another physically relevant class of quantum Hamiltonians is that of sparse Hamiltonians.
While we have learning algorithms [Yu+23] that can learn s-sparse Hamiltonians in O(sn)
sample complexity, the total interaction time with the quantum system over these queries,
scales as the standard quantum limit or worse. This raises the question:

Can we learn s-sparse Hamiltonians at the Heisenberg limited scaling while retaining a
query complexity with a linear dependence on n and s?

Of particular interest is then when the Hamiltonian dynamics U = exp(−iHt) acts on a
hidden quantum system as studied in Chap. 3 for the problem of channel discrimination. In
this case, not much is known about the classes of Hamiltonians that are efficiently learnable.

Can we learn s-sparse Hamiltonians and k-local Hamiltonians on hidden quntum systems
efficiently with query complexity O(poly(n)) and at the Heisenberg limited scaling?

Answering the above question would have interesting implications for learning dynam-
ics of systems undergoing chemical reactions or involving collisions without disrupting the
system dynamics severely.
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Characterization of modular quantum devices Recently, there have been many pro-
posals to scale the size of quantum devices through modular or distributed designs. In such
architectures, multiple small quantum devices (or nodes) are linked together to create one
large multinode quantum computer (MNQC) [Ang+22]. The interlinks between different
nodes may be classical in the very beginning but are eventually be expected to be quantum
interlinks. It then becomes relevant to consider how these MNQCs may be characterized
and calibrated. One approach is to apply current learning methods for device characteri-
zation and perhaps exploit prior information on connectivity and sparsity in the MNQC.
The quantum subsystems or individual quantum nodes forming the MNQC would then be
calibrated individually and then the internode quantum gates calibrated.

However, there is potentially another alternative approach that may require less resources
and be easier to scale. If we can dare to imagine simulating quantum systems with quantum
devices, we might as well dare to consider learning quantum systems with other quantum
devices.

Could we calibrate smaller quantum subsystems which constitute the MNQC using a fully
calibrated quantum computer which is also a part of the MNQC?

Just as we had introduced an ancillary measurement system to learn hidden quantum
channels on a physical system with limited control in Chap. 3, we could now consider us-
ing a fully calibrated quantum node to calibrate quantum nodes through weak internode
interactions. This is distinct from the setting of [Wie+14a; Wie+14b] which would rely on
using noisy SWAP gates between the calibrated and uncalibrated quantum nodes. Instead,
as in Chap. 3, we could use protocols inspired from quantum signal processing for learning
the Hamiltonian on the uncalibrated device or even learn how to drive the Hamiltonian
on the uncalibrated quantum node to implement a desired multi-qubit gate and in a more
principled manner. Quantum signal processing has been highly successful in algorithm de-
sign [Mar+21b; Gil+19] and there seems to be hints that it may be useful for even learning
of quantum systems [Sug+23; DGN22].

Overall, the future seems exciting for new larger quantum computers as well as new
principled approaches for learning such systems.
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Appendix A

Appendix to Chapter 3

In Section A.1, we describe prior work on protocols designed for accomplishing conventional
quantum channel discrimination. In Section A.2, we give motivation for the query used in
our discrimination protocols for solving the HBCD problem. In Section A.3, we give details
on the numerical experiments on assessing the performance of the sequential and multi-shot
protocols on different HBCD problems.

A.1 Perspective on measurement protocols for conven-
tional QCD

The field of QCD has witnessed a plethora of studies aimed at exploring various aspects of
this important area. We refer to Ref.[BMQ21] and references therein for the overview of
progress in QCD. Here, we summarize perspectives provided by prior work that study the
performance of different measurement protocols employed in conventional QCD. Comparison
between different strategies has also been studied in quantum channel estimation (QCE),
which is also referred to as quantum metrology. Therefore, we connect to studies in both
fields in this section of the appendix.

Among many measurement protocols, the most relevant protocols for our study are
entanglement-free protocols [DFY07; Bra+18; Hig+07a; Reh+18; RS21; KK22; DeB+23].
These protocols have garnered interest due to their simplicity in preparing probe states,
which offers practical advantages in experimental implementations [Hig+07a; DeB+23].
In these studies, entanglement-free sequential protocols were shown to perform as well as
entanglement-assisted protocols in QCD [DFY07; Reh+18; DeB+23] and in QCE [Hig+07a;
KK22; RS21]. However, there is no study that has shown entanglement-free protocols can
outperform entanglement-assisted ones.

More generally, hierarchies among protocols have also been studied under the assumption
that the use of any operation and any state is allowed for QCD [CDP08; Har+10; BMQ21]
and for QCE [GLM11b; KD13; DM14]. In QCE, it is shown that the maximum performance
of entanglement-free protocols is equivalent to that of entanglement-assisted protocols for
unitary channels, and is conjectured to be no better than those for general channels [DM14].
In QCD, a hierarchy among entanglement-assisted protocols has been shown [BMQ21]. How-
ever, no study showing an advantage given by entanglement-free protocols has been reported
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in these studies either.
Prior studies suggest that despite the ease of probe state preparation and the potential

merits of entanglement-free protocols offer in terms of experimental simplicity, it is unknown
whether they exhibit an advantage over entangled protocols in the context of quantum
channel discrimination and channel estimation. This observation raises interesting questions
regarding the limitations and practical implications of entanglement-free protocols, which
warrant further investigation to gain deeper insights into their potential optimization and
applicability in quantum information processing tasks.

A.2 Relation to Quantum Signal Processing

The query (Def. 4) as used in our discrimination protocols to solve HBCD is inspired from
Quantum Signal Processing (QSP). The qubit in the measurement systemM (see Fig. 3.2)
can be viewed as the ancilla qubit typically used in QSP [LC17] with the rotations of
exp(iϕnσx) for any n ∈ [N ] as the processing operators. The signal operators then in-
volve the application C on H, and the controlled interaction on the composed system of H
and M. Note that the signal operator in this case looks different from that typically used
in QSP.

Moreover in connection to QSP, tracing out the hidden system H of the query results
in a Completely Positive Trace-Preserving map with non-Markovian process, which can be
interpreted as a noisy channel. In the sequential protocol, the query involves the application
of a tunable X-rotation gate and a noisy channel alternately, which has a structure of QSP.
However, it is not expected that the number of the query used to solve the HBCD saturates
the Heisenberg limit with a noisy channel.

The result changes when partial information in H is known. In particular, it is noted
that although the initial state and rotation angle of C are still unknown, it is known that C
is the X-rotation gate and that the interaction between H and M is a controlled rotation.
In this scenario, the result shows that the Heisenberg limit and perfect discrimination can
be achieved using Quantum Signal Processing (QSP). This is an interesting finding as it
suggests that even with partial information, QSP can be utilized to achieve highly precise
measurements and accurate discrimination.

A.3 Numerical Experiments

In our numerical experiments for solving the problem of HBCD using the sequential protocol
or multi-shot protocol, we consider the circuit of Figure A.1, shown with a phase sequence
of length K. Let us describe how this compares to the corresponding circuits described in
Figure 3.2. Here, ρh = I/2 and ρm are prepared through the action of the single qubit gate
of Rx(ϕ0) on the zero state |0⟩. In a simplification from Figure 3.2(a), we consider the phase
of the controlled gate to be the same across multiple applications i.e., ψ1 = . . . = ψK = ψ.
We then denote the overall phase sequence as Φ = {ϕ0, ϕ1, . . . , ϕK , ψ}, which now includes
ϕ0. Note that in the main text, we typically denote the length of the phase sequence K as
N for the sequential protocol as we measure only once, and as d for the multi-shot protocol
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with constant depth queries.

Figure A.1: Quantum circuit used in numerical experiments for HBCD using the sequential
or multi-shot protocols

Having described the circuit to be used in our protocols, we are now in a position to
describe how a phase sequence Φ is optimized for the problem of HBCD and further details
of our experimental procedures for the sequential and multi-shot protocols.

Optimization of phase sequences. Given length K, we obtain a numerically optimized
phase sequence Φ̂ by solving the optimization of Eq. 3.41 using the quasi-Newton method of
L-BFGS with a particular choice of initial conditions. Denoting the initial condition as Φ0,
we set its first K + 1 components as

Φ0
1:K+1 =

{
ϕ0
0, ϕ

0
1, . . . , ϕ

0
K−1, ϕ

0
K

}
=
{π
4
, 0, . . . , 0,

π

4

}
. (A.1)

This choice of initial conditions for the phases was inspired by work on optimization of phases
in quantum signal processing [Don+21; WDL22], using gradient-based methods. The last
component Φ0

K+2 = ψ0 is set randomly by sampling from a normal distribution with zero
mean and unit variance. We prepare nreps such initial conditions and then run the L-BFGS
algorithm to solve Eq. 3.41. This results in nreps different phase sequence solutions from
which we select the one with the lowest loss. In our numerical experiments on HBCD with
the sequential and multi-shot protocols, we found that choosing nreps = 10, this choice of
initial conditions and optimization method yielded solutions at the global minima of the loss
function in Eq. 3.41.

Sequential protocol. In our numerical experiments with the sequential protocol, we as-
sume that we only measure once. The goal is to then determine the length N of the phase
sequence Φ at which we are able to discriminate θC = α from θC = 0. As described in the
main text, we do this by starting at N = 1 and increasing the value of N by one until we
determine a numerically optimized phase sequence Φ (through the optimization procedure
described above) that yields a probability of error less than equal to a given error parameter
ϵ ∈ [0, 1/2) or probability of success greater than equal to 1 − ϵ. In Figure A.2, we show
how the probability of success varies with N for α = 0.1. As illustrated in the figure, the
probability of success increases with N , reaching a value of > 0.95 for N = 16.

Multi-shot protocol. In our numerical experiments with the multi-shot protocol with
constant depth d queries, we fix the length of phase sequence to d and measure m times.
The goal is to then determine the minimal number of shots m⋆ required to solve HBCD of
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Figure A.2: Probability of success of the sequential protocol in HBCD of θC = α = 0.1 from
θC = 0 with increasing length N of phase sequence Φ.

θC = α from θC = 0 with an error probability below ϵ with a numerically optimized phase
sequence Φ of length d. This needs to be done empirically as an analytical expression of
the error probability over m shots is not available to us. We now describe our experimental
procedure for determining the value of m⋆ for a given value of α and d. Such experimental
procedures are common in the statistical learning community [Lok+18].

For a given value of α, we first determine a numerically optimized phase sequence Φ
of length d to solve HBCD using the optimization procedure described earlier. We then
generate L ≥ 1 independent sets (indexed by t) of m measurement outcomes by sampling
θtC uniformly from {0, α} for each set and using Φ. The likelihood ratio test (LRT) (Eq. 3.5)
is then used to determine the estimate θ̂C on each of the L sets of measurement outcomes
yielding L estimates: {θ̂tC}t∈[L]. If all the estimates θ̂tC correctly match the corresponding
truth θtC for all t ∈ {1, 2, . . . , L}, we say that the multi-shot protocol succeeded in HBCD
within a given error probability ϵ.

We now describe how to obtain the value of L given the error probability ϵ, required in our
numerical experiments to guarantee that the multi-shot protocol succeeds with a probability
above 1− ϵ with confidence at least 95%. Let the probability of success on any of the L sets
i.e., P (θ̂tC = θtC) be equal to p. Note that the outcome of θ̂tC being equal to θtC through the
course of our numerical experiment is then equivalent to generating flips of an unfair coin
with the probability of success equal to p. Assuming a uniform initial prior on p, let us denote
Ppost(p|L) as the posterior probability over p after a series of L successful estimations, which
is given by the Beta distribution for this Bernoulli process. We then have the probability of
confidence pconf in the value of p given successive Lsucc successful estimations as

pconf =

∫ 1

1−ϵ
Ppost(p|Lsucc = L)dp. (A.2)

We require that pconf ≥ 0.95, which is obtained first for L = 59 for ϵ = 0.05, L = 119 for
ϵ = 0.025, and L = 598 for ϵ = 0.005. These values of L were used in all our numerical
experiments with the multi-shot protocol in this work.
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Appendix B

Appendix to Chapter 4

B.1 Details of Cross-Resonance Hamiltonian

In this section of the Appendix, we firstly give details of the different IBM Quantum devices
employed for assessing the performance of the HAL algorithms (HAL-FI and HAL-FIR)
proposed in Section 4.3 for learning cross-resonance (CR) Hamiltonians (Eq. 4.31). In Sec-
tion B.1.2, we discuss how the queries from Section 4.4.2 are implemented in practice on the
devices. In Section 4.4.3, we stated a model for the noise source of imperfect pulse-shaping.
Here in Section B.1.3, we describe how this model was obtained. This is then followed by rel-
evant analytical expressions of likelihood and Fisher information in Section B.1.4 considering
the query space in Section 4.4.2.

B.1.1 Description of IBM Quantum Devices

We consider CR Hamiltonains on the four different IBM Quantum devices described in
Section 4.4.2. The connectivity maps of these devices are shown in Figure B.1. We consider
CR gates on particular qubit pairs on each device which are summarized in Table B.1. In
Table B.1, we describe the properties of each qubit involved in the CR gate including their
T1 or T2 times and the average infidelity of single-qubit gates.
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(a)

(b)

(c)(d)

Figure B.1: Connectivity maps for (a) IBM Quantum device A, (b) IBM Quantum device B,
(c) IBM Quantum device C, and (d) IBM Quantum device D ibmq_boeblingen. Each node
represents a physical qubit on the chip and the presence of an edge between two nodes in
the connectivity map indicates that a CR gate can be applied between these two nodes.

Device
Qubit Qubit Freq. (GHz) T1 (µs) T2 (µs) Error per gate (×10−4)

Ctrl Targ Ctrl Targ Ctrl Targ Ctrl Targ Ctrl Targ
A 1 0 5.0593 4.8441 65.4± 10.8 32.9± 9.5 71.1± 5.9 57.7± 9.2 5.65± 0.13 8.85± 0.46

B 3 0 5.1482 4.9273 63.2± 11.7 78.1± 24.9 73.9± 9.9 124.3± 21.5 5.92± 0.30 6.29± 0.23

C
0 1 5.3613 5.2910 34.2± 2.5 45.0± 19.1 39.2± 3.3 63.1± 7.6 18.3± 1.0 20.6± 1.3

0 2 5.3613 5.2543 34.2± 2.5 45.0± 19.1 35.8± 0.7 52.4± 4.2 18.3± 1.0 9.23± 0.26

1 2 5.2910 5.2543 39.2± 3.3 63.1± 37.6 35.8± 0.7 52.4± 4.2 20.6± 1.3 9.23± 0.26

D 0 1 5.0466 4.8468 94.0± 6.0 75.7± 17.0 177.2± 44.8 128.1± 29.7 2.39± 0.12 3.12± 0.11

Table B.1: Relevant parameters of IBM Quantum devices. The qubit used as the control
or target qubit is indicated by its number in the device connectivity map shown in Fig B.1.
Error per gate refers to the average infidelity of single-qubit gates implemented on that qubit.

B.1.2 Experimental Implementation of Query Space

Queries to the CR Hamiltonians between different qubit pairs on the IBM Quantum devices
are made through appropriate pulse sequences. These pulse sequences are constructed and
executed on the hardware using Qiskit-Pulse [Ale+20], which is a pulse programming
module within Qiskit [Abr+19a] and serves as a front-end implementation of the OpenPulse
interface [McK+18]. Each Qiskit-Pulse [Ale+20] program consists of pulses, channels and
instructions. Here, we describe a Qiskit-Pulse program and describe how a query to a CR
gate on a IBM Quantum device is specified.

A pulse is a time-series of complex-valued amplitudes with maximum unit norm and
which we denote as ak where k ∈ [n − 1] corresponds to the time stamp. The difference
between these time-stamps is considered to be dt which is typically the sample rate of the
waveform generator. The output signal thus has an amplitude of

Ak = Re
[
ei2πfkdt+γak

]
(B.1)
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at time kdt where f and γ are a modulation frequency and phase. A pulse is specified
in Qiskit-Pulse by specifying the individual amplitudes ak and the phase ϕ. Alterna-
tively, one can use parametric pulse shapes that are offered by the library such as Gaussian,
GaussianSquare, etc. These pulses are then implemented on the hardware via channels
which label signal lines used for transmitting and receiving signals between the control elec-
tronics, and the hardware. In particular, these are implemented on the PulseChannel and
are used to control the system Hamiltonian to implement different gates.

To implement a query to a quantum device, we need an equivalent description of the
quantum circuit shown in Fig. 4.1 in the form of a pulse schedule. We discuss this here in
parallel with a description of the query space Q considered for learning CR Hamiltonians.
To prepare the initial state, we consider the set of preparation operators U = {σI ⊗σI , σX ⊗
σI} applied to the pure state |00⟩. The single-qubit gates are implemented as a sequence
of Gaussian pulses of the appropriate amplitude and duration [Ale+20]. Assuming the
first (left) qubit is the control and the second (right) qubit is the target, the effect of the
preparation operators is to place the control in |0⟩ and |1⟩ respectively. We evolve the initial
state |ψ(0)⟩ for time t ∈ T which we will specify when discussing the results of our application
of Hamiltonian learning in Section 4.5. This is done by switching the CR interaction on
for time duration t which is done in practice by implementing a GaussianSquare pulse of
duration t. A GaussianSquare pulse is a square pulse with truncated Gaussian-shaped rising
and falling edges. We discuss later in Section 4.4.3 how using this pulse may introduce non-
idealities in the system evolution. Finally after obtaining the final state |ψ(t)⟩, we apply the
measurement operators inM = {σI ⊗ exp

(
iπ
4
σY
)
, σI ⊗ exp

(
−iπ

4
σX
)
, σI ⊗σI} and measure

only the second qubit which we have chosen as the target qubit. The query space is then
Q = M× U × T . An example of a pulse schedule is shown in Fig. B.2 highlighting the
different parts of the query. Moreover, in our experimental setup, we obtain measurements of
the single-shot signal (integrated cavity amplitude) c which is a function of the measurement
outcomes y which we have described earlier.

B.1.3 Modeling Pulse Shapes

We now describe how the imperfect pulse-shaping model stated in Section 4.4.3 was obtained.
We consider cross-resonance control pulses (also called GaussianSquare) whose time-varying
amplitudes are rectangular-shaped envelopes with tapered rising and falling edges, where the
tapering is designed to minimize the signal energy that falls above and below the frequency
of the sinsoid that is being modulated by the pulse envelope. The resulting unitary operators
thus have the form Ũ(t) = T exp (−i

∫ t
0
H̃(t′)dt′), where T is the time ordering operator, H̃ is

the Hamiltonian at any particular time given by H̃(t′) = H(t′, v(t′)), H is the cross-resonance
Hamiltonian (with the dependence on parameters θ not shown), and v(t′) is the time-varying
pulse envelope.

Let ∆tr and ∆tf be, respectively, the durations of the rising and falling edges of the
shaped pulse envelope. The central portion of v(t′) is then a rectangular function such that,
for t′ ∈ [∆tr, t − ∆tf ], v(t′) = Vmax1t′∈[∆tr,t−∆tf ] where t is the total duration of the pulse,

229



Figure B.2: An example of a CR pulse schedule on the IBM Quantum device ibmq_boeblingen
considering to the query of x = (M,U, t) where M = σI ⊗ exp

(
−iπ

4
σX
)
, U = σX ⊗ σI , and

time duration t = 6×10−7s. The x-axis corresponds to time normalized by dt = 2.22×10−10

(Eq. B.1). The different channels corresponding to each qubit (y-axis) are written as the
type of channel (see plot legend) followed by qubit number. Qubit 0 is set to be the control
qubit and 1 to be the target qubit. The envelope of the different pulses are shown in
each channel. The rotations on the drive or control channels indicate virtual Z gates. An
equivalent representation of the quantum circuit is shown in Fig. 4.1.

and Vmax is the amplitude of this central rectangular portion. We thus have

Ũ(t) = exp

(
−iT

∫ t

0

H̃(t′)dt′
)

(B.2)

= exp

(
−iT

∫ t

t−∆tf

H(t′, v(t′))dt′
)
exp

(
−iT

∫ t−∆tf

∆tr

H(t′, Vmax)dt
′
)
exp

(
−iT

∫ ∆tr

0

H(t′, v(t′))dt′
)

(B.3)

= exp

(
−iT

∫ t

t−∆tf

H(t′, v(t′))dt′
)
exp

(
−iHmax

∫ t−∆tf

∆tr

dt′
)
exp

(
−iT

∫ ∆tr

0

H(t′, v(t′))dt′
)

(B.4)

= exp

(
−iT

∫ t

t−∆tf

H(t′, v(t′))dt′
)
exp (−iHmaxtexpt) exp

(
−iT

∫ ∆tr

0

H(t′, v(t′))dt′
)

(B.5)

where texpt = t − ∆tf − ∆tr and Hmax = H(t′, Vmax) which is constant assuming that any
signal distortions that are introduced by the control electronics and/or along the signal path
to the quantum device are negligible.

The above equation decomposes Ũ(t) into the time evolution of the Hamiltonian that
corresponds to the central rectangular-pulse portion of the control pulse with pre- and post-
rotations that are determined by the tapered rising and falling edges of the pulse. In general,
there is a nonlinear relationship between the shapes of these edges and the resulting pre- and
post-rotations. However, based on the results reported in [She+16] and shown in Figure B.3,
the cross-resonanace Hamiltonian parameters tend to vary fairly linearly with respect to the
overall pulse amplitude. The pre- and post-rotations can thus be approximated by assuming
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Figure B.3: Hamiltonian parameters J as a function of the amplitude of the control pulse or
drive as reported in [She+16].

a first-order model for the time-varing Hamiltonian parameters given by

J(t′) ≈ v(t′)

Vmax
Jmax (B.6)

where Jmax is the vector of parameters for the Hamiltonian Hmax of the central recetangular
portion of the pulse envelope. The time-varying Hamiltonian is then approximated by

H(t′, v(t′)) ≈ v(t′)

Vmax
Hmax . (B.7)

The overall unitary operator Ũ(t) is then approximated by

Ũ(t) ≈ exp

(
−iHmax

1

Vmax

∫ t

t−∆tf

v(t′)dt′

)
exp (−iHmaxtexpt) exp

(
−iHmax

1

Vmax

∫ ∆tr

0

v(t′)dt′
)

(B.8)
= exp (−iHmax(texpt +∆teff)) (B.9)

where

∆teff =
1

Vmax

(∫ ∆tr

0

v(t′)dt′ +

∫ t

t−∆tf

v(t′)dt′

)
. (B.10)

B.1.4 Likelihood Function and Fisher Information Matrix for the
CR Hamiltonian

In this section, we give the expressions for the likelihood function of py|x(y|x;θ) and the
Fisher information (FI) matrix. We consider the experimental setup as described in Sec-
tion 4.4 and query space Q as described in Section 4.4.2.
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Recall from Section 4.2.3, the FI matrix of a query x is given by

Ix(θ)[i, j] = E
[
∂ log py|x(y|x;θ)

∂θi

∂ log py|x(y|x;θ)
∂θj

]
(B.11)

where log p(y|x;θ) is the log-likelihood of the measurement outcome y given the query x.
In most cases in practice, the Fisher information matrix must be computed empirically in
a Monte Carlo fashion. However, here we have a model of the CR Hamiltonian and models
of the different noise sources affecting the quantum system available to us. We can thus
evaluate the FI matrix analytically for different queries and in the presence or absence of
noise.

In Absence of Noise

Likelihood In the noiseless case, the likelihood function of different measurement outcomes
y ∈ {0, 1} given query x = (M,U, t) ∈ Q is

py|x(y|x;θ) =
∑

z∈{0,1}

∣∣〈yz|Me−iH(θ)t)U |00
〉∣∣2 (B.12)

Evaluating this for the different queries in the query space as described in Section 4.4.2, we
obtain

py|x(0|x;θ) =
{

1
2
((cos(ωjt) + sin(ϕj) cos(δj) sin(ωjt))

2 + (sin(δj) sin(ωjt) + cos(ϕj) cos(δj) sin(ωjt))
2) , x = (M⟨X⟩, Uj , t)

1
2
((cos(ωjt) − cos(ϕj) cos(δj) sin(ωjt))

2 + (sin(δj) sin(ωjt) + sin(ϕj) cos(δj) sin(ωjt))
2) , x = (M⟨Y ⟩, Uj , t)

1 − (cos(δj) sin(ωjt))
2 , x = (M⟨Z⟩, Uj , t)

(B.13)

where we have used the index j ∈ {0, 1} to refer to the different preparation operators
U0 = σIσI and U1 = σXσI . The measurement operators are: M⟨X⟩ = σI ⊗ exp

(
iπ
4
σY
)
,

M⟨Y ⟩ = σI ⊗ exp
(
−iπ

4
σX
)
, and M⟨Z⟩ = σI ⊗ σI .

Fisher Information Matrix Noting that the measurement outcome y ∈ {0, 1}, we have

Ix(θ)[i, j] =
∑

y∈{0,1}

1

py|x(y|x;θ)
∂py|x(y|x;θ)

∂θi

∂py|x(y|x;θ)
∂θj

(B.14)

=
1

py|x(0|x;θ)(1− py|x(0|x;θ))
∂py|x(0|x;θ)

∂θi

∂py|x(0|x;θ)
∂θj

(B.15)

where in the second step, we have used the fact that py|x(1|x;θ) = 1 − py|x(0|x;θ) and
∂py|x(1|x;θ)

∂θi
= −∂py|x(0|x;θ)

∂θi
.

The FI matrix elements can also be expressed using the Rabi oscillation of a query
prabi(x;θ) as follows

Ix(θ)[i, j] =
1

1− p2rabi(x;θ)
∂prabi(x;θ)

∂θi

∂prabi(x;θ)

∂θj
(B.16)

The FI matrices Ix(θ) for the different queries x = (M,U, t) (Section 4.4.2) depend on
the parameterization of choice. We denote the FI matrix considering the parameterization
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of Λ as Ix(Λ). Note that the Fisher information matrices Ix(J) for the parameterization of
J is related to the former through the jacobian of Λ with respect to J.

DΛ,J =




Re(β0)
ω0

−Re(β0)a0
|β0|a0 − Im(β0)

|β0|2
Re(β1)
ω1

−Re(β1)a1
|β1|a1 − Im(β1)

|β1|2
Im(β0)
ω0

− Im(β0)a0
|β0|a0

Re(β0)
|β0|2

Im(β1)
ω1

− Im(β1)a1
|β1|a1

Re(β1)
|β1|2

a0
ω0

|β0|
ω2
0

0 a1
ω1

|β1|
ω2
1

Re(β0)
ω0

−Re(β0)a0
|β0|a0 − Im(β0)

|β0|2 −Re(β1)
ω1

Re(β1)a1
|β1|a1

Im(β1)
|β1|2

Im(β0)
ω0

− Im(β0)a0
|β0|a0

Re(β0)
|β0|2 − Im(β1)

ω1

Im(β1)a1
|β1|a1 −Re(β1)

|β1|2
a0
ω0

|β0|
ω2
0

0 − a1
ω1

− |β1|
ω2
1




(B.17)

where the (i, j)th element is given by ∂Λj/∂Ji with a0,1 and β0,1 as defined as in Eq. 4.31.

Note that Ix(Λ) is of rank-1 for each query and takes a block form of
[
I0 0
0 0

]
for U =

σI ⊗ σI and
[
0 0
0 I1

]
for U = σX ⊗ σI . This indicates that queries involving U = σI ⊗ σI are

informative about the Hamiltonian parameters (ω0, δ0, ϕ0) and those involving U = σX ⊗ σI
are informative about (ω1, δ1, ϕ1).

In Presence of Noise Sources and Nonidealities

In Section 4.4.3, we modeled the effect of different noise sources and nonidealities on the
quantum system. In particular, we discussed the effect of imperfections in control in Sec-
tion 4.4.3, effect of decoherence in Section 4.4.3 and how the observed measured outcome is
subject to readout noise in Section 4.4.3. We consider the two-qubit decoherence model from
Section 4.4.3, and the readout noise model of a bit-flip channel based on binary classification
from Section 4.4.3. We denote the noisy observed measurement outcome as ỹ and the hidden
measurement outcome before the effect of the bit-flip channel as y.

Likelihood The likelihood function in the presence of the noise sources of readout noise,
imperfect-pulse shaping, and decoherence, is then given by

pỹ|x(ỹ|x;θ) = pỹ|y(ỹ|y)
∑

z∈{0,1}

[
(1− pd(t)) pyz|x (yz|(M,U, t+∆teff(θ)) ;θ) +

1

4
pd(t)

]
(B.18)

= (1− pd(t))
[
(1− r1−ỹ)py|x(ỹ|(M,U, t+∆teff(θ));θ) + rỹpy|x(1− ỹ|(M,U, t+∆teff(θ));θ)

]

+
1

2
pd(t) (1− r1−ỹ + rỹ) (B.19)

with the probability of the two-qubit string yz given by

pyz|x (yz|(M,U, t) ;θ) =
∣∣〈yz|Me−iH(θ)t)U |00

〉∣∣2 (B.20)

and the probability py|x(y|x) given by Eq. 4.1 (the noiseless case). In the expressions above,
we have used the tuple representation of the query x, pd(t) which is the depolarization
probability associated with the two-qubit decoherence model as discussed in Section 4.4.3
and (r0, r1) which are the readout noise parameters as introduced in Section 4.4.3.
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Fisher Information Matrix The FI matrix for a given query x is given by

Ix(θ)[i, j] =
1

pỹ|x(0|x;θ)(1− pỹ|x(0|x;θ))
∂pỹ|x(0|x;θ)

∂θi

pỹ|x(0|x;θ)
∂θj

(B.21)

where
∂pỹ|x(0|x;θ)

∂θi
= (1− r0 − r1) (1− pd(t))

∂py|x(0|x;θ)
∂θi

(B.22)

and
∂py|x(0|x;θ)

∂θi
=

{
∂p(y=0|(M,U,t+∆teff(θ));θ)

∂θi
, θi /∈ {ω0, ω1}

∂p(y=0|(M,U,t+∆teff(θ));θ)
∂(θi∆teff(θ))

∂(θi∆teff(θ))
∂θi

, θi ∈ {ω0, ω1}
(B.23)

Note that special attention has to be given when taking the derivative with respect to ω0,1

as ∆teff(θ) (Section 4.4.3) actually only has a dependence on these two components in Λ
and appears in the effective evolution time t with a prefactor of ω0,1 in the likelihood (see
Eq. B.13).

B.2 Computational Details of Query Optimization

In Section 4.5.1, we pointed out that the number of shots available for each query in the
experimental datasets collected from the IBM Quantum devices are limited. In this section
of the Appendix, we describe how the query optimizations for HAL-FI (Eq. 4.19) and HAL-
FIR (Eq. 4.21) are solved under shot constraints for each query. We then describe how the
computational cost of query optimization can be reduced through uncertainty filtering of the
query space.

B.2.1 Different Query Optimizations and Strategies for Handling
Query Constraints

We describe how constraints can be handled for the query optimization (Eq. 4.19) in HAL-FI
(Algorithm 4) but the same approach can also be used for HAL-FIR. Let us consider the
ith round in active learning. The Hamiltonian parameter estimate in this round is θ̂(i). Let
us denote the number of shots available for each query x ∈ Q in the ith round as N (i)

shots(x).
The number of shots available before learning has started is then N

(0)
shots(x). Let the total

number of shots that have already been made against query x by the ith round (inclusive) be
denoted as N (i)

tot(x). We will denote the total number of shots made over all queries inputted
to the oracle by the ith round (inclusive) as N (i)

tot.
We can frame the query optimization problem under shot constraints in two different

ways, motivated by the asymptotic optimal query distribution associated with HAL-FI:

q⋆ = arg min
q∈P(Q)

Tr(I−1
q (θ⋆)) (B.24)

where P(Q) is the family of all probability distributions over the specified query space Q. As
discussed in Section 4.2.3, we cannot solve for this distribution in practice as this requires
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us to have access to the true parameters θ⋆, and hence we solve for a sub-optimal query
distribution q(i)(θ̂(i)) given the current parameter estimates θ̂. During active learning, we
can solve for q(i)(θ̂(i)) by viewing it as the query distribution over all the queries that have
inputted to the oracle (i.e., including from previous rounds) or as the query distribution
associated with the current ith batch of queries that will be issued. These two viewpoints
lead us to two different approaches of how the shot constraints are handled and how the
queries to be inputted to the oracle are sampled from the query distribution.

Firstly, consider the following query optimization problem

q(i) = argmin
q

Tr(I−1
q (θ̂(i))) (B.25)

subject to
∑

x∈Q(i)

q(x) = 1, and
N

(i−1)
tot (x)

N
(i)
tot

≤ q(x) ≤ min

{
1,
N

(i)
shots(x)

N
(i)
tot

}
∀x ∈ Q(i) (B.26)

with corresponding sampling of queries in that batch as:

Sample Nb queries X(i)
q from Q(i) w.p. q(i)b (B.27)

where q(i)b (x) = q(i)(x)−N
(i−1)

tot (x)

N
(i)

tot
. The query optimization in this case considers all the queries

that have been sampled from earlier batches during active learning. The query distribution
q(i) is then the distribution over all the queries made so far and q(i)b is the query distribution
for the batch to be issued. Further, the Fisher information matrix associated with q(i) is
guaranteed to be invertible but that associated with q(i)b may be non-invertible. This suggests
that the outcomes of queries made in this round of the active learning procedure may not
be informative about all the Hamiltonian parameters.

In order to ensure that the query distributions for each batch are informative about all
the Hamiltonian parameters, one may alternately solve the following query optimization
problem

q(i) = argmin
q

Tr(I−1
q (θ̂(i))) (B.28)

subject to
∑

x∈Q(i)

q(x) = 1, and 0 ≤ q(x) ≤ min

{
N

(i)
shots(x)

N
(i)
b

, 1

}
,∀x ∈ Q(i) (B.29)

where N (i)
b is the size of the batch of queries being issued to the oracle in the ith round.

Queries of the issued batch are then sampled as

Sample Nb queries X(i)
q from Q(i) w.p. q(i) (B.30)

where q(i) is now the query distribution for each batch. This query optimization can be
viewed as a greedy approach of query selection. The Fisher information matrix associated
with q(i) is guaranteed to be invertible and hence informative about all the Hamiltonian
parameters. We thus solve the query optimization considering shot constraints on each
query according to Eq. B.29 for our application.

As we sample queries randomly according to q(i) and not proportional to q(i), the resulting
Xq might not satisfy query constraints exactly and an additional pruning step is required.
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Moreover, to reduce the computational cost of the query optimization solve, we consider a
subset of queries Q(i)

filtered ⊂ Q(i) for which shots are still available.
In Algorithm 10, we summarize the steps taken to handle query constraints during query

optimization for HAL-FI. It takes the inputs of the query space Q(i) of the current ith round
of active learning, number of shots available for each query and the size of the batch of
queries to be issued. The inputted query space is first filtered by retaining only those queries
for which shots are available. The resulting filtered query space is denoted by Q(i)

filtered, and
we then compute the query distribution q(i) according to Eq. B.29. We then sample queries
for the batch Xq according to this distribution after mixing and with incorporation of a
pruning step. Note that lines 4 and 5 were also used in the original query optimization
algorithms of HAL-FI (Algorithm 4) and HAL-FIR (Algorithm 5) to encourage exploration.
An illustration of the operation of the query optimization and handling of query constraints
is shown in Figure B.4 for a particular run of the HAL-FI learner.

Algorithm 10 Handling query constraints during query optimization in HAL-FI
Input: Current query space Q(i), number of shots available for each query N

(i)
shots(x), size of batch

of queries requested N
(i)
b , total number of queries made so far N

(i−1)
tot

Output: Query set Xq of size N
(i)
b

1: Filter Q(i) by retaining queries for which shots are available: Q(i)
filtered = {x ∈ Q(i)|N (i)

shots(x) > 0}
2: Obtain HAL-FI query distribution q(i) by solving the query optimization of Eq. B.29 with input

of Q(i)
filtered

3: Obtain uniform distribution over filtered query space: pU = 1/|Q(i)
filtered|

4: Set mixing coefficient: µ = 1− 1/|N (i−1)
tot |1/6

5: Modify query distribution: q(i) = µq(i) + (1− µ)pU

6: Sample Xq from Q(i)
filtered according to q(i)

7: Prune queries from Xq that cannot be made and randomly assign valid queries
8: return Xq
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(a) (b)

Figure B.4: Visualization of queries being selected for each batch during a particular run
of HAL-FI for N0 = 2000 and 25 batches of size Nb = 5000. In (a), we plot the available
number of shots for each query after batches of queries are made during active learning. In
(b), we plot the query distribution for each batch during active learning. The number of
shots available for each query before learning starts is N (0)

shots(x) = 512∀x. Half the total
number of shots available in this dataset is exhausted by the end of learning. Note that the
different parameter values considered for HAL-FI are for stress testing the query constraints’
handling procedure and are not tuned for the HAL-FI algorithm.

B.2.2 Uncertainty Filtering of Query Space

Uncertainty filtering becomes a crucial step during query optimization when we consider
HAL-FI with an adaptively growing query space. We noted in Section 4.2.3 that the com-
putational cost of query optimization (Eq. 4.19) scales as O(n2

Qm
3 + nQm

4 + m5) where
nQ = |Q| is the number of queries in the query space, and m is the length of the parameter
vector θ. This computational cost is alleviated through filtering of the query space based
on entropy S(x). The entropy of the different queries can be computed from the model
probability expressions available to us (see Appendix B.1) given the current Hamiltonian
parameter estimate θ̂. The filtered query space based on entropy is determined as follows:

QS = {x|x ∈ Q, S(x) > τ ×max
x′∈Q

S(x′)} (B.31)

where we set the threshold τ = 0.95 i.e., we only consider queries with entropy that is at
least 0.95 times the highest entropy. This value of τ was chosen to ensure that at most only
half of the queries are retained after uncertainty filtering of the query space. An illustration
of uncertainty filtering of a query space is given in Figure B.5.
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Figure B.5: Uncertainty filtering of Q as defined in Section 4.4.2 with T set to be a sequence
of 243 linearly equispaced evolution times in [10−7, 18× 10−7]s. The The x-axis corresponds
to the system evolution times t ∈ T . The y-axis indicates the different combinations of
measurement operators and preparation operators available for each query in Q. The dif-
ferent preparation operators are denoted as U0 = σIσI and U1 = σXσI . We consider the θ⋆

corresponding to IBM Quantum device D ibmq_boeblingen under drive configuration 2, with
the different noise sources of readout noise, imperfect pulse-shaping, and decoherence being
accounted for. Queries colored as dark blue are retained in the filtered query space and rest
is filtered out.

B.3 Estimation Procedure for Learning Cross-Resonance
Hamiltonians

In this section of the Appendix, we discuss in detail the estimation procedures of Section 4.4.4
for the estimator based on regression (Section 4.4.4) and the MLE estimator (Section 4.4.4),
used for learning cross-resonance Hamiltonians (Eq. 4.31). These estimators can be used by
both the passive learner and the active learners of HAL-FI/HAL-FIR (Section 4.3). Addi-
tionally, we can also use Bayesian estimators such as the sequential Monte Carlo method
discussed in Section 4.2.1. In the following discussion, we consider the experimental setup
from Section 4.4. We will also discuss how these estimation procedures can be improved or
extended to other Hamiltonians.

Let us recall the notation introduced in Section 4.3 and Section 4.4.4. The different
rounds of active learning are indexed by i ∈ [imax]. In each round of active learning, we use
an estimation procedure divided into multiple steps. We index each of these fractional steps
by k. The Hamiltonian parameter estimate at the kth fractional step in the ith round of
learning will then be denoted by θ̂(i,k) with the parameter estimate in the ith round at the
end of the estimation procedure denoted simply by θ̂(i). The training examples available at
the ith round is given by (X(i), Y (i)).

We now discuss the estimation procedures for (i) regression and (ii) maximum-likelihood
estimation (MLE).
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B.3.1 Regression

As mentioned in Section 4.4.4, the first step of our estimation procedure involves frequency
estimation followed by a nonlinear regression solve combined with a gradient descent proce-
dure on the Rabi oscillations inferred from data (Eq. 4.39). We denoted these inferred Rabi
oscillations by p̂rabi(t).

Estimates are obtained by fitting nonlinear regression equations of the form A cos(ωt) +
B sin(ωt) + C to the Rabi oscillations, where the fit minimizes the sum of the weighted L2

errors across the corresponding time series. For a given value of ω, the coefficients A, B,
and C are estimated using weighted linear least-squares regression. Fast Fourier Transforms
(FFTs) [DR93] are used to perform an efficient grid search over these weighted least-squares
fits to obtain initial estimates of ω. Bracketed gradient-based search is then used to refine the
estimates. The resulting coefficients A, B, and C for each Rabi oscillation are subsequently
used to obtain estimates of the corresponding δ and ϕ Hamiltonian parameters. We note
this analysis in general assumes periodic signals. In order to successfully estimate the Rabi
frequencies using standard FFT, the set of time points T should span at least the time
duration established by the minimum-frequency criterion defined in Section 4.5.3.

For each Rabi oscillation, the following weighted least-squares normal equations are
solved to estimate the A,B,C coefficients for a given value of ω, where the summations
are performed over time points t ∈ T , and where the wt’s are weighting factors



∑
twt cos

2(ωt)
∑

twt cos(ωt) sin(ωt)
∑

twt cos(ωt)∑
twt cos(ωt) sin(ωt)

∑
twt sin

2(ωt)
∑

twt sin(ωt)∑
twt cos(ωt)

∑
twt sin(ωt) sin(ωt)

∑
twt





A
B
C


 =



∑

twtp̂rabi(t) cos(ωt)∑
twtp̂rabi(t) sin(ωt)∑

twtp̂rabi(t)




(B.32)

The weights wt are equal to one over the estimation variance of p̂rabi(t) for the corresponding
time points t. The purpose of the weights is to account for the heteroskedasticity of the
estimation errors in p̂rabi(t).

If we write Eq. B.32 in the form Ra = b, where a is the vector of A,B,C coefficients
that satisfies Eq. B.32, then the residual weighted squared error is given by

E2 =
∑

t

wtp̂
2
rabi(t)− aTRa . (B.33)

For a group of Rabi oscillations that share the same frequency ω, the optimization prob-
lem is to find the ω that minimizes the sum of the weighted squared errors E2 across those
time series. Fourier techniques are used to make the initial search computationally efficient
by noting that Eq. B.32 can be rewritten as



1
2

∑
twt +

1
2

∑
twt cos(2ωt)

1
2

∑
twt sin(2ωt)

∑
twt cos(ωt)

1
2

∑
twt sin(2ωt)

1
2

∑
twt − 1

2

∑
twt cos(2ωt)

∑
twt sin(ωt)∑

twt cos(ωt)
∑

twt sin(ωt)
∑

twt





A
B
C


 =



∑

twtp̂rabi(t) cos(ωt)∑
twtp̂rabi(t) sin(ωt)∑

twtp̂rabi(t)




(B.34)
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which simplifies to



1
2F{wt}(0) + 1

2Re(F{wt}(2ω)) −1
2 Im(F{wt}(2ω)) Re(F{wt}(ω))

−1
2 Im(F{wt}(2ω)) 1

2F{wt}(0)− 1
2Re(F{wt}(2ω)) −Im(F{wt}(ω))

Re(F{wt}(ω)) −Im(F{wt}(ω)) F{wt}(0)





A
B
C




=




Re(F{wtp̂rabi(t)}(ω))
−Im(F{wtp̂rabi(t)}(ω))
F{wtp̂rabi(t)}(0)


 , (B.35)

where

F{x(t)}(ω) =
∑

t

x(t)e−iωt, (B.36)

is the discrete-time Fourier transform of x(t) over t ∈ T , x(t) ∈ {wt, wtp̂rabi(t)}. Standard
FFTs allow us to efficiently calculate the various Fourier coefficients in Eq. B.35 at fixed
intervals in the spectrum using

F{x( n
Fs

+ t0)}(k) =
N−1∑

n=0

x(
n

Fs
+ t0)e

−i 2π
N
kn (B.37)

The Fourier coefficients calculated via the above equation can then be used in Eq. B.35 to per-
form a computationally efficient grid search over possible values of ω ∈ {12πFs

N
, 22πFs

N
, 32πFs

N
, ..., πFs},

with an initial estimate for ω obtained by minimizing Eq. B.33 summed over the correspond-
ing Rabi oscillations. Bracketed gradient-based search can then be performed using Eq. B.32
directly at a higher computational cost to refine these grid-search estimates.

For grid search purposes, we have also found it useful to sample frequency amplitudes at
intermediate half steps to better avoid local minima, particularly when T does not satisfy
the minimum-frequency criteria. Such intermediate sampling is accomplished by multiplying
signals of the form x(

n

Fs
+ t0) by a rotating exponential frequency and then computing a

second FFT:

G{x( n
Fs

+ t0)}(k) = F{x( n
Fs

+ t0)}(k +
1

2
) =

N−1∑

n=0

[
x(
n

Fs
+ t0)e

−i π
N
n

]
e−i

2π
N
kn (B.38)

For general multi-parameter Hamiltonians, the above initial estimation procedure must
be modified to ensure that all the frequency components in a Rabi oscillation corresponding
to (M,U) can be faithfully extracted. The model must then assume that each Fourier
series has up to K modes. Normal equations for the same can then be setup. Such an
approach has been employed in Bayesian spectral analysis [Bre13] and non-stationary time-
series estimation [LBK21; She+21].

B.3.2 Maximum Likelihood Estimation

The estimation procedure for MLE (Section 4.4.4) requires an initial estimate θ̂(i,0) which
ideally lives in the same convex basin as the global minimum of the MLE. This allows
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for a more localized search to be carried out and a stochastic gradient descent procedure
should allow us to jump out of any smaller local minima here if present. When an initial
estimate cannot be provided by the learner, the estimates obtained through regression as
just discussed is used as an initial guess to the MLE.

We solve the MLE 4.5 through a combination of SGD applied on different parameteriza-
tions and the quasi-Newton method for further refinement. Addition of the latter step helps
us in saving computationally expensive hyperparameter tuning that is required.

1. SGD solve using ADAM considering the Λ parameterization and learning rate of ηiΛ
using the input of θ̂(i,0). This returns the output of θ̂(i,1).

2. SGD solve using ADAM considering the J parameterization and learning rate of ηiJ
using the input of θ̂(i,1). This returns the output of θ̂(i,2).

3. MLE solve considering the J parameterization using LFBGS-B using the input of θ̂(i,2).
This returns the output of θ̂(i,3).

We set the learning rate ηi for ADAM [KB14] in the ith round of active learning according
to the number of queries already made. We consider the learning rate to be ηi ∝ 1√

|X(i)|
i.e.,

the learning rate is reduced inversely to the square root of the number of training examples.
This ensures a more localized search as we progress in the learning. We consider η0 = 10−3.
We found that carrying out step 2 after step 1 gave us more accurate estimates of θ̂ than just
carrying out step 1. Moreover, after the first few rounds of HAL, we can skip steps 1 and 2.
We can carry out step 3 directly using an initial condition of θ̂(i,0) from initial estimation or
θ̂(i−1) from the previous round.

B.3.3 Energy Landscapes of Negative Log-Likelihood Loss for Cross-
Resonance Hamiltonian

We ascertain the efficacy of the estimation procedure by visualizing the energy landscapes
of the negative log-likelihood loss function (Eq. 4.56) and inspecting the location of the θ̂ in
the landscape. In Figure B.6, we plot the energy landscape obtained from an experimental
dataset, for the two different parameterizations J and Λ. The energy landscapes indicate
the nonlinear and non-convex nature of the MLE of Eq. 4.56. These energy landscapes also
indicate why solving the MLE in the parameterization of Λ using ADAM is carried out
before solving the MLE in the parameterization of J. The slices along specific components
of Λ display more convex like nature than those along components of J. It should also be
noted that there is a global minimum present in the energy landscapes which we are able to
identify using our estimation procedure.
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(a) (b)

Figure B.6: Slices of energy landscapes of the log-likelihood loss function along the different
parameter components considering experimental data collected from IBM Quantum device
D ibmq_boeblingen under drive configuration 3 (Table 4.4) (a) using parameterization J,
and (b) using parameterization Λ. In each slice of θi (x-axis), we fix the values of the other
components as obtained through estimation and evaluate the negative log-likelihood loss
(y-axis) by changing the value of θi. We indicate the Hamiltonian parameter estimate θ̂i as
obtained through our estimation procedure by a dashed red line.

B.3.4 Incorporating uncertainty from shot noise

The inferred Rabi oscillations prabi(t) used for estimation are sensitive to the number of shots
made for a given query x = (M,U, t). This variability in the Rabi oscillations leads to a
variability in the estimates of θ̂(i,0) produced. This variability is particularly high during
the initial rounds of HAL when there are only a few shots of each query present in the set
of training examples. In order to accurately account for this variability and hence include
the uncertainty in our estimates of the Hamiltonian parameters, we consider the following
procedure. Let us consider the initial estimation of Algorithm 6 as the procedure applied
on a particular realization of the Rabi oscillations. We construct nrep realizations of the
Rabi oscillations considering the observed Rabi oscillation data and sampling according to
the binomial distribution associated with the number of shots for each query. For each of
these realizations, we obtain frequency estimates of ω0,1 through the initial estimation as
described above. We then fit the parametric distributions of log-normal distributions to
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frequency estimates from each each realization. We then continue with the initial estimation
procedure and MLE considering each of these realizations.

Other ways of incorporating uncertainty in the Hamiltonian parameter estimates during
the estimation procedure would be to adopt a Bayesian learning framework or stochastic
process regression (e.g., Gaussian process regression). This is left for future work.

B.4 Learned Hamiltonian Parameters and Learning Er-
ror on IBM Quantum Devices

In this section of the Appendix, we give a summary of the estimated cross-resonance Hamilto-
nian parameters on different IBM Quantum devices not already discussed in Section 4.5 and
lend further support to the performance of different learners on the 20-qubit IBM Quantum
device D ibmq_boeblingen under drive configuration 2 (Table 4.5.1).

B.4.1 Summary of Model Parameters on IBM Quantum Devices

In Section 4.5.1, we described the estimated Hamiltonian parameters and the noise model pa-
rameters for the IBM Quantum device D ibmq_boeblingen. Here, we give a similar summary
for the other IBM Quantum devices (A, B, and, C).

Considering the entire experimental datasets collected for each of these IBM Quantum
devices (Section 4.4.2) as training data, we compute the Hamiltonian parameters using our
estimation procedure (Section 4.4.4), and that of the different noise sources (Section 4.4.3).
We summarize these parameters for the different devices in Table B.2. These Hamiltonian
parameters serve as approximations of the true parameters J⋆. Here, the readout noise
parameters (r0, r1) are given to indicate the amount of readout noise possible in these devices
and serve as a proxy for the conditional distributions of the readout given the measurement
outcome used in the final MLE (Eq. 4.56). The time offset ∆teff,i introduced due to imperfect
control is also specified and where the subscript i indicates dependence on the preparation
operator U0 = σIσI and U1 = σXσI .
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Device
Drive

Config.
Hamiltonian Parameters [×106s−1] Noise: Readout and Time Offset

J = (JIX , JIY , JIZ , JZX , JZY , JZZ) (ω0, ω1) (r0, r1) (∆teff,0,∆teff,1) [ns]

A

0 (58.47, 3.68,−5.00, 10.76, 2.29,−0.52) (69.71, 47.94) (0.160, 0.215) (15, 101)

1 (38.93, 2.34, 0.26, 11.15,−3.30,−0.30) (50.09, 28.36) (0.150, 0.210) (97, 187)

2 (19.35, 0.12, 0.69, 10.80,−0.66, 0.24) (30.17, 8.60) (0.220, 0.150) (178, 699)

3 (−0.21,−1.68, 0.20, 10.47, 1.50,−0.86) (10.28, 11.20) (0.145, 0.150) (579, 532)

4 (−20.11,−1.35, 0.73, 10.55, 0.94,−1.13) (9.58, 30.80) (0.190, 0.185) (594, 174)

B

0 (30.03, 3.62, 0.49, 1.75,−0.16,−0.31) (31.97, 28.54) (0.110, 0.140) (149, 175)

1 (15.34, 1.85, 0.19, 1.81,−0.75,−0.59) (17.19, 13.80) (0.090, 0.070) (318, 407)

2 (0.89, 0.72, 0.24, 1.82,−0.54,−0.34) (2.72, 1.67) (0.120, 0.160) (2235, 3712)

3 (−13.71,−2.31,−0.54, 1.78, 0.09, 0.09) (12.15, 15.69) (0.130, 0.160) (472, 353)

4 (−28.45,−2.19,−1.20, 1.56, 2.15, 0.27) (26.91, 30.35) (0.110, 0.100) (187, 161)

C/CR01

0 (−8.52,−2.15,−0.26, 10.93, 0.85, 0.32) (2.74, 19.69) (0.200, 0.160) (2280, 286)

1 (−3.88,−2.26,−0.35, 10.88, 1.46, 0.43) (7.04, 15.24) (0.120, 0.160) (869, 376)

2 (0.58,−1.81,−0.45, 10.81, 0.83, 1.24) (11.46, 10.70) (0.080, 0.070) (518, 563)

3 (4.86,−1.66, 0.08, 10.85, 0.44,−0.14) (15.75, 6.35) (0.070, 0.110) (369, 966)

4 (9.53,−0.17, 0.29, 10.76,−0.17,−0.32) (20.29, 1.36) (0.070, 0.120) (276, 4835)

C/CR02

0 (9.42,−0.71, 0.27, 12.21,−0.71,−0.25) (21.67, 2.84) (0.070, 0.060) (255, 2123)

1 (6.17,−0.46, 0.09, 11.96,−0.59,−0.26) (18.16, 5.81) (0.070, 0.110) (311, 1038)

2 (2.59, 0.05,−0.26, 11.90,−1.66,−0.17) (14.58, 9.46) (0.050, 0.090) (397, 629)

3 (−1.03,−0.10,−0.16, 11.99,−0.63,−0.18) (10.99, 13.03) (0.090, 0.060) (541, 445)

4 (−4.53, 0.10,−0.31, 12.04,−0.18, 0.39) (7.50, 16.59) (0.100, 0.110) (811, 344)

Table B.2: Summary of estimated CR Hamiltonian parameters for the IBM Quantum de-
vices A, B, and C. We give the Hamiltonian parameters in the parameterization J and the
physically relevant frequency components in Λ. The readout noise is defined by the param-
eters of r0 and r1 which are the conditional probabilities of bit flip given the measurement
outcomes are y = 0 and y = 1 respectively (see Section 4.4.3). We show the results for CR
Hamiltonians between two different pairs of qubits on Device C, specified as (control qubit,
target qubit): (0, 1) (CR01) and (0, 2) (CR02).

As mentioned earlier in Section 4.4.3, we fit the estimated values of ∆teff to the Hamil-
tonian parameters to obtain a model for the time-offset. This is shown in Figure B.7 and is
used in the MLE (Eq. 4.56).
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(a) (b)

(c) (d)

Figure B.7: Dependence of the time offset ∆t on parameters ω for IBM Quantum devices
(a) A, (b) B, (c) C CR01, and (d) C CR02. The plotted data points correspond to driving
the device under different conditions and hence different cross-resonance Hamiltonians. The
imperfect pulse shaping model extracted from these experimental data points is shown by a
fit and this is later used in the MLE.

B.4.2 Expected trends of learning error

In Section 4.5.3, we assessed the performance of the HAL-FI and HAL-FIR algorithms in
different learning scenarios on IBM Quantum device D ibmq_boeblingen under drive config-
uration 2, where the query distribution was learned in real-time. Here, we lend support that
the trends observed in Figures 4.10–4.12 are expected.

To determine the behavior of the learners in an idealized setting, we consider the case
where we have access to the optimal query distribution during learning. In Figure B.8, we
show the trend of RMSE for HAL-FI with a fixed query space assuming access to the query
distribution q(θ⋆) during training and that the Cramer-Rao bound is saturated. We follow
the same protocol from Section 4.5.1 as we did for our earlier experiments. For the baseline
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strategy and a passive learner, the query distribution corresponds to an uniform distribution
over the query space. As expected, using a passive learner does not change the scaling in
the finite query nor the asymptotic query regimes. A scaling of ϵ ∼ 1/

√
N or N ∼ ϵ−2 is

observed which is in line with the standard quantum limit (SQL). For HAL-FI, we observe
an initial scaling in RMSE with number of queries which is higher than SQL but this reduces
to SQL in the asymptotic query regime. Thus, our results from Section 4.5.3 is in agreement
with what we observe here. Asymptotically, we expect a constant savings in the number
of queries or resources required when employing an active learner with a fixed query space
compared to a passive learner.
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Figure B.8: Scaling of learning testing error with number of queries for Hamiltonian learning
considering access to the asymptotic optimal query distribution q(θ⋆) of HAL-FI or HAL-
FIR. We show trends of (a) RMSE and (b) testing error obtained upon analysis of the lower
Cramer-Rao bounds. We consider the Hamiltonian parameters of θ⋆ as determined from the
experimental dataset of IBM Quantum device D ibmq_boeblingen under drive configuration
2. We plot the trends of learning error with number of queries for HAL-FI/HAL-FIR against
the passive learner which uses the uniform distribution over Q.

Likewise for Hamiltonian learning with prior information, we can compute the RMSE
with number of queries for HAL-FI with an adaptively growing query space and access to
q(i)(θ⋆) for each ith batch during learning. In Figure B.9, we show the trend of RMSE with
number of queries for HAL-FI with a linearly growing query space and an exponentially
growing query space. We observe that the passive learner has a scaling of the SQL in
the asymptotic query regime. HAL-FI in the linearly growing query space achieves super-
Heisenberg scaling. We note that this supports the trend of RMSE achieved during the
experiments in Section 4.5.4.

As noted in Section 4.5.4, HAL-FI with an exponentially growing query space also
achieves Heisenberg limited scaling until the evolution times being included in the query
space reach the magnitude of the decoherence time T1 and T2. In this case, HAL-FI avoids
selecting higher evolution times as the information gained from these measurement outcomes
will tend to zero. Thus, we expect that the Heisenberg limit to be achieved for the finite
query setting.
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Figure B.9: Hamiltonian learning with acess to prior information of subset of parameters
during recalibration: Scaling of RMSE with Number of Queries. We assume access to
the asymptotic optimal query distribution q(θ⋆) of HAL-FI and analysis of the Cramer-Rao
Bounds. We consider the Hamiltonian parameters of θ⋆ as determined from the experimental
dataset of IBM Quantum device D ibmq_boeblingen under drive configuration 3.

B.4.3 Sparse Query Distributions

Another consequence of using HAL-FI is the sparsity of the asymptotic query distribution
during learning. This is confirmed by visualizing the optimal query distribution of HAL-FI
with the fixed query space (Section 4.4.2) considering IBM Quantum device ibmq_boeblingen
under drive configuration 2 in Figure B.10. It is interesting to note that this was achieved
even though sparsity was not incorporated into the learning problem. This can be explained
by realizing that the most informative queries are in fact sparse over the query space. It
should be noted however that this is typically not the query distribution that HAL-FI has
access to during learning as the true parameters θ⋆ are not available and the query distri-
bution obtained through optimization (Eq. 4.19) is modified by mixing with the uniform
distribution (see Section 4.3.1).

B.5 Heisenberg Limited Scaling in Cross-Resonance Type
Hamiltonians

In this section of the Appendix, we discuss if Heisenberg limited scaling (HLS) can be
achieved in different quantum systems with simplified cross-resonance Hamiltonians. The
simplified cross-resonance Hamiltonians are obtained by removing particular Pauli product
terms from the cross-resonance (CR) Hamiltonian (4.4.1) that we have studied so far. We
give examples of such Hamiltonians (equipped with the query space described in Section 4.4)
in Appendix B.5.1 where HLS is achieved for all the parameters and examples where HLS
is not achieved for all the parameters during Hamiltonian learning in Section B.5.2. For
examples of HLS, we describe query distributions obtained by HAL-FI and relate them to
query distributions obtained through zero crossings of Rabi oscillations or maximum entropy.

In the following examples, we consider reduction to a single interaction in the two qubit
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Figure B.10: Asymptotic optimal query distribution q(θ⋆) for HAL-FI with a fixed query
space (Section 4.4.2) on ibmq_boeblingen under drive configuration 2 (Table 4.4). We con-
sider different noise sources of readout noise, imperfect pulse-shaping, and decoherence. The
y-axis indicates the different combinations of measurement operators and preparation op-
erators available for each query in Q. The different preparation operators are denoted as
U0 = σIσI and U1 = σXσI . The x-axis corresponds to T which is set to 81 equispaced
evolution times in [10−7, 6× 10−7]s. The query distribution is color-coded according to the
colormap on the right.

system and a three interaction example which we call the simplified cross-resonance (SCR)
Hamiltonian. This reduction from the full CR Hamiltonian is achieved by setting the ap-
propriate Hamiltonian parameters to zero and introducing the matrix R that denotes which
parts of the CR Fisher information matrix are involved in the estimation of these respective
Hamiltonian parameters. Suppose the reduced set of parameters are collected into the vector
θR, then the Cramer-Rao bound is now

∑

i

Var((θR)i) ≥
1

N
Tr(I−1

q (θR)) =
1

N
Tr(R−TI−1

q (θ)R−1) (B.39)

where Iq(θR) is the reduced Fisher information matrix corresponding to the query distribu-
tion q. In the last step, we noted the relation of the reduced Fisher information matrix with
the full Fisher information matrix as Iq(θR) = RIq(θ)RT .

B.5.1 Examples

Single Interaction Two-Qubit System

The Hamiltonian of interest in this case is

H = JZXσZ ⊗ σX (B.40)

This may be obtained by considering the parameter set of J = (0, 0, 0, JZX , 0, 0)
T and

R = [0, 0, 0, 1, 0, 0]. The values of the parameters in the alternate parameterization of
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Λ = (ω0, δ0, ϕ0, ω1, δ1, ϕ1)
T = (JZX , 0, 0, JZX , 0, π) where we have assumed JZX > 0. The

Rabi oscillations for different queries in this case are as follows:

(M⟨X⟩, Uj, t) : prabi(x) = 0 (B.41)
(M⟨Y ⟩, Uj, t) : prabi(x) = sin(2ωjt) (B.42)
(M⟨Z⟩, Uj, t) : prabi(x) = cos(2ωjt) (B.43)

where the index j ∈ {0, 1} corresponds to different preparation operators U0 = σIσI and
U1 = σXσI . We note that the measurement operator of M⟨X⟩ is not informative about the
frequency ω0 = JZX for this system and can also be noted from considering the corresponding
Fisher information. In order to learn the parameter of interest ω0, it is enough to consider
one of the queries in {M⟨Y ⟩,M⟨Z⟩} × {σIσI , σXσI} and a suitable time range T .

Let us select the query of (M⟨Z⟩, σIσI , t) and suppose our query distribution over the
time range is based on the zeros the Rabi oscillations. Given a time range T , we consider
values of tk = π

4ω0
+ kπ

2ω0
where k ∈ N. Queries with these system evolution times have the

maximum entropy for the considered (M,U).
Note that the Fisher information of a query in this case is given by Ix(ω0) = 4t2. Through

the Cramer-Rao bound, we then have

ϵ2 = Var(ω0) ≥
N∑

k=1

1

4t2k
≈
{

1
2
ω2

Nπ2 , Fixed space of zero crossings
3
4

ω2

N3π2 , Linearly spaced zero crossings
(B.44)

where we have set the learning error to be achieved as ϵ. We can thus expect to achieve a
scaling of N ∼ ϵ−3/2 when using linearly spaced zero crossings. For exponentially spaced
zero crossings of the Rabi oscillations, the variance approaches zero at an increasing rate.

Two Interaction Systems

Consider the following Hamiltonian

H = JIXσI ⊗ σX + JZXσZ ⊗ σX (B.45)

The reduced set of parameters is then ΛR = (ω0, ω1) = (|JIX +JZX |, |JIX −JZX |). As in the
earlier single interaction example, we can choose the queries that contain the zero crossings
of the Rabi oscillations. The Rabi oscillations are given by

(M⟨X⟩, Uj, t) : prabi(x) = 0 (B.46)
(M⟨Y ⟩, Uj, t) : prabi(x) = sin(2ωjt) (B.47)
(M⟨Z⟩, Uj, t) : prabi(x) = cos(2ωjt) (B.48)

where j ∈ {0, 1} is used as an index to denote the preparation operators U0 = σIσI and
U1 = σXσI . A complete set of queries to estimate (ω0, ω1) with Heisenberg limited scaling
would then be

Q =
{
(M⟨Z⟩, σIσI , tk) : tk =

π

4ω0
+

kπ

2ω0
, k ∈ N

}⋃{
(M⟨Z⟩, σXσI , tk) : tk =

π

4ω1
+

kπ

2ω1
, k ∈ N

}

(B.49)
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The set of evolution times chosen here also correspond to those with maximum entropy.
The Fisher information of a query made through either set of measurement or preparation
operators in the query space is given by Ix(ω0, ω1) = 4t2. Thus, through the argument
we made in the previous section, we can also learn the parameters of unitary here with
Heisenberg limited scaling.

B.5.2 Examples of non-HLS scaling during Hamiltonian learning

So far, we have given examples of Hamiltonians obtained through simplification of the CR
Hamiltonian, that can be learned with HLS scaling. We now give examples of Hamiltonians,
which cannot be learned with HLS scaling using the query space described in Section 4.4.2.

Two Interaction Systems

Now, let us consider the following alternate Hamiltonian (modified slightly from the previous
example discussed)

H = JIY σI ⊗ σY + JZXσZ ⊗ σX (B.50)

where a complete reduced set of parameters is ΛR = (ω0, ϕ0) =
(√

J2
ZX + J2

IY , tan
−1
(
JIY
JZX

))
.

This set of parameters contains a frequency in addition to a phase. Fisher information
matrices in the ΛR parameterization considering queries of the form (M,σIσI , t) where we
select one particular preparation operator is given by

M⟨X⟩ : I =
1

1− sin2(ϕ0) sin
2(2ω0t)

[
4t2 sin2(ϕ0) cos

2(2ω0t)
1
2
t sin(2ϕ0) sin(4ω0t)

1
2
t sin(2ϕ0) sin(4ω0t) cos2(ϕ0) sin

2(2ω0t)

]
(B.51)

M⟨Y ⟩ : I =
1

1− cos2(ϕ0) sin
2(2ω0t)

[
4t2 cos2(ϕ0) cos

2(2ω0t) −1
2
t sin(2ϕ0) sin(4ω0t)

−1
2
t sin(2ϕ0) sin(4ω0t) sin2(ϕ0) sin

2(2ω0t)

]
(B.52)

M⟨Z⟩ : I =

[
4t2 0
0 0

]
(B.53)

Fisher information matrices in JR is given by

IJ =



J2
IY

ω2
0
I11 + 2JIY JZX

ω3
0
I12 + J2

ZX

ω4
0
I22 JZX

ω3
0
I12 − JIY

ω3
0
I12 + JIY JZX

ω2
0

(I11 − I12)
· J2

ZX

ω2
0
I11 − 2JIY JZX

ω3
0
I12 + J2

IY

ω4
0
I22


 (B.54)

where we have related them to elements of I as given above in Eq. B.53. We observe that
in order to obtain HLS in (JIY , JZX), it is necessary to set I22 = 0 and I12 ̸= 0 to ensure IJ
is full rank and there is an explicit dependence on the variable t that we can take advantage
of, for HLS. However, the required conditions cannot be achieved simultaneously here. This
suggests that the current set of queries cannot be used to achieve HLS.

Three Interaction Simplified Cross-Resonance Gate

The Hamiltonian of interest in this case is

H = JIXσI ⊗ σX + JIY σI ⊗ σY + JZXσZ ⊗ σX (B.55)
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This may be obtained by considering the parameter set of J = (JIX , JIY , 0, JZX , 0, 0)
T .

Defining R is a bit more tricky in this case compared to the previous example. Let us first
look at the alternate parameterization of

Λ =




√
(JIX + JZX)2 + J2

IY

0

tan−1
(

JIY
JIX+JZX

)
√
(JIX − JZX)2 + J2

IY

0

tan−1
(

JIY
JIX−JZX

)




. (B.56)

Note that the reduced parameterization of ΛR is an over-parameterization with four non-
zero components compared to JR which only has three non-zero components. The Rabi
oscillations in this case are given by

(M⟨X⟩, Uj, t) : prabi(x) = sin(ϕj) sin(2ωjt) (B.57)
(M⟨Y ⟩, Uj, t) : prabi(x) = cos(ϕj) sin(2ωjt) (B.58)
(M⟨Z⟩, Uj, t) : prabi(x) = cos(2ωjt) (B.59)

The Fisher information matrices can be obtained by looking at the CR Fisher information
matrices (Appendix B.1) and simplifying them.

M⟨X⟩ : Ij =
1

1− sin2(ϕj) sin
2(2ωjt)

[
4t2 sin2(ϕj) cos

2(2ωjt)
1
2
t sin(2ϕj) sin(4ωjt)

1
2
t sin(2ϕj) sin(4ωjt) cos2(ϕj) sin

2(2ωjt)

]
(B.60)

M⟨Y ⟩ : Ij =
1

1− cos2(ϕj) sin
2(2ωjt)

[
4t2 cos2(ϕj) cos

2(2ωjt) −1
2
t sin(2ϕj) sin(4ωjt)

−1
2
t sin(2ϕj) sin(4ωjt) sin2(ϕj) sin

2(2ωjt)

]
(B.61)

M⟨Z⟩ : Ij =
[
4t2 0
0 0

]
(B.62)

If we were to consider the zero crossings of the Rabi oscillations as in the previous example,
the queries and their corresponding Fisher information matrices are of the following form

M⟨X⟩ : tk(M⟨X⟩) =
π

2ωj
+
kπ

2ωj
, Ij =

[
4t2k sin

2(ϕj) 0
0 0

]
(B.63)

M⟨Y ⟩ : tk(M⟨Y ⟩) =
π

2ωj
+
kπ

2ωj
, Ij =

[
4t2k cos

2(ϕj) 0
0 0

]
(B.64)

M⟨Z⟩ : tk(M⟨Z⟩) =
π

4ωj
+
kπ

2ωj
, Ij =

[
4t2k 0
0 0

]
(B.65)

where k ∈ N. It should be noted that the evolution times tk(M) being selected are a func-
tion of the measurement operator involved in the query which is made explicit through the
argument M . As ΛR is an over-parameterization, let us look at the query Fisher information
matrix Iq(JR) for the above set of queries.

Iq(JR) =
∑
k

∑
M∈{M⟨X⟩,M⟨Z⟩}

4t
2
k(M)


(

∂ω0
∂JIX

)2
+

(
∂ω1

∂JIX

)2 (
∂ω0

∂JIX

∂ω0
∂JIY

+
∂ω1

∂JIX

∂ω1
∂JIY

) (
∂ω0

∂JIX

∂ω0
∂JZX

+
∂ω1

∂JIX

∂ω1
∂JZX

)
(

∂ω0
∂JIY

)2
+

(
∂ω1

∂JIY

)2 (
∂ω0

∂JIY

∂ω0
∂JZX

+
∂ω1

∂JIY

∂ω1
∂JZX

)
(

∂ω0
∂JZX

)2
+

(
∂ω1

∂JZX

)2

 (B.66)
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where we have only given the upper-triangular part of the symmetric matrix. It can be
shown that for these queries, Iq(JR) is rank deficient and thus non-invertible. This was
foreshadowed by the fact that Iq(Λ) was informative in ω0 and ω1 but not one of the phases

ϕ0,1. Hence, it is more appropriate to consider R =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
for these set of

queries. It can be verified through an analysis similar to the single interaction system that
we can achieve a scaling of N ∼ O(ϵ−3/2) and hence make improvements over than SQL.

If we wish to learn JIY as well, it is necessary to introduce other queries such that
the Fisher information matrix is non-zero for the corresponding parameter of interest. Let
us start by changing our learning task to the simpler challenge of learning the parameters
(ω0, δ0). In this case, it is enough to consider only queries of the form (M⟨X⟩, σI⊗σI , t) where
the time range t ∈ T needs to be determined. We immediately observe that

Iq(ΛR)
−1 ∝

∑

k

1

1− sin2(ϕ0) sin
2(2ω0tk)

[
cos2(ϕj) sin

2(2ωjt) −1
2 t sin(2ϕj) sin(4ωjt)

−1
2 t sin(2ϕj) sin(4ωjt) 4t2k sin

2(ϕj) cos
2(2ωjt)

]
(B.67)

and the variance of parameter ϕ0

Var(ϕ0) ≥
1

N

N∑

k=1

1− sin2(ϕ0) sin
2(2ω0tk)

cos2(ϕ0) sin
2(2ω0tk)

(B.68)

where the term inside the sum on the right hand side is fixed for any periodic or equi-spaced
set of evolution times tk and thus HLS cannot be achieved using such a set of queries. One
key to ensure achieving Heisenberg limited scaling is to introduce an explicit dependence on
the variable of system evolution time t into the corresponding Fisher information. We note
that this is not followed by the different set of measurement operators considered here.
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Appendix C

Appendix to Chapter 5

In Section C.1, we give details of the measurement method derandomization of decision
diagrams which was introduced in Section 5.4.3 of the main paper. Specifically, we show
how the associated cost function is obtained and how it may be computed efficiently on
decision diagrams corresponding to molecular Hamiltonians. In Section C.2, we give details
of the molecular Hamiltonians from Table 5.2 including their Pauli weight distributions and
the query distributions obtained for these molecular Hamiltonians via LBCS or decision
diagrams. Finally, we also comment on the convergence behavior of Adaptive Pauli Shadows
(APS) as observed on the simulator.

C.1 Details of derandomizing decision diagrams

In this section of the Appendix, we give the technical details of derandomizing decision
diagrams (Derand DD) which was proposed in Section 5.4.3 of the main paper. We will
first show how the cost function for Derand DD is obtained by considering the general query
distribution of the decision diagram to be β and then show how the cost function can be
computed efficiently on a decision diagram. As discussed in Section 5.4.3, our starting point
is the confidence bound introduced in [HKP21]. For completeness, we show the proof in
[HKP21, Lemma 2] to motivate the confidence bound and then proceed to obtain the cost
function for Derand DD.

Confidence bound on estimates. Recall that we denote the estimates Tr(ρQ(j)) as ω̂(j)

and their true value as ω(j). We analyze the probability of a large deviation of the estimates
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obtained from post-processing on the measurement outcomes against bases B

Pr

[
max
j∈[L]
|ω̂(j) − ω(j)|≥ ϵ

]
= Pr


 ⋃

j∈[L]

|ω̂(j) − ω(j)|≥ ϵ


 (C.1)

≤
∑

j∈[L]

Pr
[
|ω̂(j) − ω(j)|≥ ϵ

]
(Union bound) (C.2)

≤ 2
∑

j∈[L]

exp

(
−ϵ

2

2
h(Q(j);B)

)
(Hoeffding’s inequality) (C.3)

= 2
∑

j∈[L]

∏

s∈[M ]

exp

(
−ϵ

2

2
1{Q(j) ▷ B(s)}

)
(C.4)

= 2
∑

j∈[L]

∏

s∈[M ]

(
1− η1{Q(j) ▷ B(s)}

)
, (C.5)

where η = 1 − exp(−ϵ2/2). We see that the probability of the estimate ω̂(j) deviating from
the truth reduces exponentially with the number of measurement bases that hit/cover the
target observable Q(j). We will call the upper bound without the constant factor (as derived
above) of this probability as the confidence bound:

CONFϵ(Q;B) =
∑

j∈[L]

∏

s∈[M ]

(
1− η1{Q(j) ▷ B(s)}

)
. (C.6)

Expectation of the confidence bound. To obtain the cost function for derandomization,
it is desirable to compute the expectation of the confidence bound which is given by

E [CONFϵ(Q;B)] =
∑

j∈[L]

∏

s∈[M ]

E
[(
1− η1{Q(j) ▷ B(s)}

)]
(C.7)

=
∑

j∈[L]

(
1− ηE

[
1{Q(j) ▷ B(s)}

])M
(C.8)

=
∑

j∈[L]

(
1− ηξ(Q(j), β)

)M
, (C.9)

where the expectation is with respect to the query distribution β, we have used the fact that
each B(s) is sampled independently and identically from the distribution β for all s ∈ [M ],
and where ξ(Q(j), β) = Pr[Q(j) covered by β] denoting the coverage probability (notation
introduced in Section 5.3.2). If the query distribution β =

∏
k∈[n] βk is a product distribution

(with the marginal distribution the kth qubit dented as βk) as in the case of CS and LBCS,
we have the following simplified expression

E [CONFϵ(Q;B)] =
∑

j∈[L]

(
1− η

n∏

k=1

βk(Q
(j)
k )1{Q

(j)
k ̸=I}

)M

. (C.10)
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Cost function for derandomization. Let us now discuss how a cost function for de-
randomization of decision diagrams may be obtained using the confidence bound. Suppose
B# contains the assignments of measurement bases for the first (m− 1) samples and first k
qubits of the mth measurement basis. We then have the following conditional expectation

E
[
CONFϵ(Q;B)|B#

]
=
∑

j∈[L]

m−1∏

m′=1

(
1− η1{Q(j) ▷ B#(m′)}

)
(C.11)

×
(
1− η

k∏

k′=1

1{Q(j) ▷ B#(m′)}Pr
[
Q

(j)
k+1:n covered by β|B#(m)

1:k

])

×
(
1− η Pr[Q(j) covered by β]

)M−m
,

where we have denoted B#(m) as the mth measurement basis in B#, B#(m)
k as the kth qubit

Pauli of the mth measurement basis, used the sub-scripted Pauli operator Q(j)
k+1:n to denote

Q
(j)
k+1:n = ⊗nℓ=k+1Q

(j)
ℓ and similarly B#(m)

1:k = ⊗kℓ=1B
#(m)
ℓ . In the above expression, we also

have Pr
[
Q

(j)
k+1:n covered by β|B#(m)

1:k

]
= ξ(⊗kℓ=1B

#(m)
ℓ ⊗nℓ′=k+1 Q

(j)
ℓ′ , β).

In the special case of the query distribution β being a production distribution (e.g., as
in LBCS), we have the following expression for the conditional expectation of the confidence
bound

E
[
CONFϵ(Q;B)|B#

]
=
∑

j∈[L]

m−1∏

m′=1

(
1− η1{Q(j) ▷ B#(m′)}

)
(C.12)

×
(
1− η

k∏

k′=1

1{Q(j) ▷ B#(m′)}
n∏

k′=k+1

βk′(Q
(j)
k′ )

1{Q(j)

k′ ̸=I}

)

×
(
1− η

n∏

k=1

βk(Q
(j)
k )1{Q

(j)
k ̸=I}

)M−m

.

To choose the assignment of the kth qubit of themth measurement basis, we then consider
the following cost function

B#
k

(m)
= argmin

W∈{X,Y,Z}
C(W ) = argmin

W∈{X,Y,Z}
E
[
CONFϵ(Q;B)|B#, B

(m)
k = W

]
(C.13)

where B# now corresponds to the assignments of measurement bases over the first (m− 1)
samples and (k−1) qubits of the mth measurement basis. Note that the above cost function
requires the input of the experimental budget M . As was done in [HKP21] for derandomizing
CS, we can remove the dependence on the measurement budget in the cost function by
removing the third term in the product of Eq. C.12.

Derandomization of a general query distribution β is then given by Algorithm 8 shown
in the main part of the paper.

Fast computation of the cost function on decision diagrams. As part of computing
the cost function C.13 quickly, we need to be able to perform quick computation of the
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conditional probability Pr
[
Q

(j)
k+1:n covered by β|B#(m)

1:k

]
in Eq. C.12. We will refer to this as

the conditional probability of coverage.
To compute the conditional probability of coverage, let us now introduce some relevant

notation and useful routines. We will refer to the decision diagram using its graph G = (V,E)
where we have denoted the set of nodes as V and edges as E. We will refer to the directed
edge from node u to node v as E(u, v). As we mentioned in Section 5.4, each edge has a label
associated with it, namely the Pauli decision being taken. This will be denoted by P (u, v).

For each node v ∈ V , we define the coverable set Cv as the non-identity Pauli terms
in H that can be covered by measurements starting from the root of the decision diagram
(which we denote as r and for example, corresponds to node 0 in the decision diagram of
Figure 5.3(c)). For example, in Figure 5.3(c), the target observable ZIII will be a part of
the coverable set C9 as the first qubit Pauli Z is covered by the edge E(0, 9). We compute
the coverable sets for each node recursively.

The coverable sets at the root node r (or node 0 in Figure 5.3) and at the terminal
node t (or node −1 in Figure 5.3) are set to be all the non-identity Pauli operators in
the decomposition of the Hamiltonian H i.e., Cr = Ct := Q \ I⊗n. Suppose node u is
the child of node r, then Cu = {Q|Q ∈ Cr, Q1 ∈ {P (r, u), I}}. We can do this for the
nodes corresponding to the children of the root node but generally, nodes may have multiple
parents. To obtain coverage for a general node v, we move down the decision diagram one
layer of edges at a time and update the coverage of a node v in layer ℓ based on its parents
in the previous layer ℓ− 1 as Cv =

⋃
u∈Parents(v){Q|Q ∈ Cu, Qℓ ∈ {P (u, v), I}}.

Now, given that the current state of a measurement basis being proposed is at node
v, we can compute the conditional probability Pr[Qk+1:n covered by DD |v] (where we have
denoted the query distribution β in Eq. C.12 by its DD) of covering any Q ∈ Cv in a recursive
fashion as

Pr[Qk:n covered by DD |v,Q ∈ Cv] =
∑

w∈Children(w)

1{Qk ▷ P (v, w)} (C.14)

× Pr[P (v, w)] Pr[Qk+1:n covered by DD |w,Q ∈ CW ],

where we have used Pr[P (v, w)] to denote the probability of taking the decision of Pauli
measurement P (v, w) that is available to us from the DD. We should note that there at most
three children for any node v corresponding to the three decisions of the single-qubit Paulis
{X, Y, Z}. Finally, to compute the conditional coverage probability Pr

[
Q

(j)
k+1:n covered by β|B#(m)

1:k

]
,

it is enough to note that making the sequence of measurements in B#(m)
1:k will place us at a

node v in the DD. This node v will be unique. We can argue this by noting that if taking
the decisions in B#(m)

1:k starting from the root node took us down to two different nodes, then
these two nodes would have been merged from the initialization of the DD.

Overall, as part of the fast computation of the cost function in derandomization on DDs,
we firstly move from the root node downwards to the terminal node to determine the node
coverages Cv, and then secondly move from the terminal node upwards to the root node
determine the conditional probabilities of coverage.
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C.2 Details of molecules and measurement methods

In this section of the Appendix, we describe the Pauli distributions of the different molecular
Hamiltonians considered in Table 5.2 and illustrate query distributions obtained for these
molecules via LBCS or DD. The Pauli decompositions of the Hamiltonians considered in this
paper are available in our code repository.

C.2.1 Pauli weight distributions

The sample complexity of classical shadows [HKP20] is known to be O(3w logL) where w
is the maximum weight of any Pauli term in the Pauli decomposition of H. However, in
practice, the dependence of the sample complexity on w may be better for some measure-
ment methods depending on mass of the query distribution on higher weight Paulis and the
coefficients of higher weight Paulis in H.

Thus, it might be desirable to include Hamiltonians of the same size but with differ-
ent Pauli weight distributions as part of benchmarking measurement methods. Here, in
Figure C.1, we visualize the Pauli weight distributions of the Hamiltonians from Table 5.2
which range from unimodal to skewed to bimodal.

1 2 3 4 5
weight

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

fra
ct

io
n

of
P

au
lis

2 4 6 8 10 12
weight

0.00

0.05

0.10

0.15

0.20

0.25

0.30

fra
ct

io
n

of
P

au
lis

1 2 3 4 5 6
weight

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

fra
ct

io
n

of
P

au
lis

1 2 3 4 5 6 7 8
weight

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

fra
ct

io
n

of
P

au
lis

0 2 4 6 8 10 12 14 16
weight

0.00

0.05

0.10

0.15

0.20

fra
ct

io
n

of
P

au
lis

(a) (b)

(c) (d) (e)

Figure C.1: Pauli weight distributions across non-identity target Paulis in Hamiltonians of
different molecules. Molecules correspond to those in Table 5.2 and as shown are (a) H2(5
qubits, 3-21g, JW), (b) HeH+ (6 qubits, 3-21g, JW), (c) HeH+ (8 qubits, 6-31g, JW), (d)
LiH (12 qubits, sto6g, JW), and (e) N2 (16 qubits, sto6g, JW).
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C.2.2 Query distributions for different molecules

We now visualize different instances of query distributions as obtained from the measure-
ment methods of LBCS and decision diagrams. In Figure C.2, we show the product query
distributions obtained in LBCS by optimizing the variance of the energy estimate considering
the state to be a maximally mixed state (Section 5.4).

Instead of showing illustrations of the decision diagrams (DD), we present relevant details
of the optimized compact decision diagrams for different molecules in Table C.1. It should be
noted that the number of paths for each DD corresponds to the maximum number of unique
measurement circuits that are being considered for each molecule. For example, the DD of
LiH only considers 810 unique measurement circuits in contrast to CS for LiH which would
consider 312 ≈ 5.3 × 105 measurement circuits for high measurement budgets. Reducing
the unique number of measurement circuits can help in reducing classical latencies as we
mentioned in Section 5.5 and as observed in Section 5.6.3. As in the case of LBCS, the
decision diagrams for each molecule are optimized by minimizing the variance of the energy
estimate considering the state to be the maximally mixed state. We refer to resulting cost
obtained from the optimized DD as the diagonal cost and is shown in Table C.1 with that for
LBCS given as a reference. Finally, constructing and optimizing the decision diagram can
be expensive. Hence, we report the classical computational runtimes required in obtaining
the decision diagrams used in this work and in computing the classical pre-processing times
as part of resource utilization (Tables 5.4,5.6).
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Figure C.2: Query distributions in LBCS for Hamiltonians of different molecules. As the
query distribution in LBCS is a product distribution, the marginal probability distribution
over single-qubit Paulis are shown for each qubit. Molecules correspond to those in Table 5.2
and as shown are (a) H2(5 qubits, 3-21g, JW), (b) HeH+ (6 qubits, 3-21g, JW), (c) HeH+

(8 qubits, 6-31g, JW), (d) LiH (12 qubits, sto6g, JW), and (e) N2 (16 qubits, sto6g, JW).
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Molecule | Nodes | | Edges | | Paths | Diagonal cost
of Dec. Diag.

Diagonal cost of LBCS
(for reference)

Computational runtime
of constructing DD [s]

H2, 5 qubits
(3-21g, JW)

40 81 43 14.63 26.59 2.88× 101

HeH+, 6 qubits
(3-21g, JW)

75 155 174 17.11 35.56 5.45× 102

HeH+, 8 qubits
(6-31g, JW)

168 337 792 16.69 42.14 3.54× 103

LiH, 12 qubits
(sto6g, JW)

348 600 810 25.45 42.44 2.56× 104

N2, 16 qubits
(sto6g, JW)

1118 1551 1137 10836.12 12121.62 1.39× 105

Table C.1: Details of decision diagrams for different molecular Hamiltonians (Table 5.2).
Number of paths in a decision diagram correspond to number of unique measurement cir-
cuits and contributes to classical latencies such as compilation time and circuit loading.
Diagonal cost of a query distribution corresponds to the one-shot variance of the energy esti-
mate considering ρ to be the maximally mixed state. The reported computational runtimes
account for both initialization and optimization of the decision diagrams.

C.2.3 Convergence behavior of Adaptive Pauli Shadows

In Figure C.3, we plot the trend of RMSE in estimating ground state energy of the ta-
pered Hamiltonians from Table 5.2 in numerical simulation, considering for the measure-
ment method of Adaptive Pauli Shadows (APS) and other measurement methods. It has
been shown earlier in [Had21] that APS outperforms other measurement methods at the
low measurement budget of 103 shots and this is observed here as well. However, this does
not continue for higher measurement budgets and we instead observe a weird convergence
behavior for APS. Such behavior has been reported earlier in [Shl+23]. Hence, APS was not
included as a candidate measurement method in CSHOREBench.
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Figure C.3: Comparison of RMSE achieved in numerical simulations by different measure-
ment methods including APS in estimating Tr(ρH) with ρ set as the ground state and H
is the Hamiltonian of (a) tapered H2 (5 qubits, 3-21g basis, JW encoding), and (b) tapered
HeH+ (6 qubits, 3-21g basis, JW encoding). RMSE is shown with the number of samples
made. The estimator for each measurement method is set to be the Bayesian estimator.
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Appendix D

Appendix to Chapter 6

D.1 Construction of the Embedding Hamiltonians

The one- and two-electron integrals h(A)pq and V (A)
pqrs of the embedding Hamiltonian for a chosen

fragment A in Eq. (6.5) of the main text can be obtained from transforming the original
integrals of the total system by a projector T (A)

h(A)pq =
N∑

µν

T (A)
µp F

(env,A)
µν T (A)

νq

V (A)
pqrs =

N∑

µνλσ

T (A)
µp T

(A)
νq VµνλσT

(A)
λr T

(A)
σs , (D.1)

where F (env,A) is the Fock matrix of the environment and T (A) is a projection matrix that
transform the one- and two-electron integrals in Eq. (6.1) to the EO basis. In practice, T (A)

can be obtained by performing an SVD of the off-diagonal Hartree-Fock density matrix P (A)
µν ,

P (A)
µν = UAΣAV

†
A (D.2)

T (A) =

[
I

UA

]
. (D.3)

The integral transformations in Eq. (D.1) can be performed efficiently on classical computers.

D.2 Basis Transformation Unitary from Localized to Canon-
ical Molecular Orbitals

Bootstrap embedding requires spatially local information on overlapping sites of a quantum
system to match, whereas this local basis may not be the same as the most convenient
computational basis. For example, many state preparation ansatz on a quantum computer
is designed to work the best under the canonical molecular orbitals (delocalized, obtained
from a Hartree-Fock calculation) as the computational basis, where a basis transformation
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to local atomic basis are required afterwards to extract spatially local information. In this
section, we give a unitary that can achieve such a basis transformation from MOs to LOs on
a quantum computer, from an early result due to Thouless [Tho60] which is also employed
in a recent work [Qua+20].

Given two set of single-particle orbitals, {ψp} and {ϕq} to represent the MOs and the
LOs, respectively. Furthermore, denote the basis rotation between the two as

ϕp =
n∑

q=1

[eih]pq ψq (D.4)

where h is an n × n hermitian matrix, [eih]pq is the (p, q)-th element of the orbital rotation
unitary. For notation purpose, we also associate each MO ψq with a creation and annhilation
operator a†p, ap.

This orbital rotation from the MOs to the LOs will induce a unitary transformation on
the Slater determinants written under these two set of orbitals. More concretely, suppose
|Ψ⟩ and |Φ⟩ are representation of the same mean-field state using orbitals {ψp} and {ϕq},
respectively, then it can be shown [Tho60] that the transformation between |Ψ⟩ and |Φ⟩ is
essentially a unitary operator generated by a 1-body operator in the MO basis

|Φ⟩ = Uh|Ψ⟩ (D.5)

where

Uh = ei
∑n

pq=1 hpqa
†
paq . (D.6)

The above results on the transformation between two Slater determinants can be easily
generalized to two arbitrary many-body quantum states |Φ⟩ and |Ψ⟩ that represent the
same underlying quantum state using the two different orbital sets, as we will show in the
following. We can always write |Φ⟩ as a linear combination of many Slater determinants
constructed from the orbibital set {ϕp}

|Φ⟩ =
∑

α

Cα|Φα⟩. (D.7)

Using the unitary transformation Uh for each Slater determinant in |Φ⟩, we have

|Φ⟩ =
∑

α

Cα|Φα⟩ =
∑

α

CαUh|Ψα⟩ = Uh|Ψ⟩, (D.8)

where we have defined a new many-body state |Ψ⟩ using the same many-body coefficients Cα
but with the old MO Slater determinants |Ψα⟩. Equivalently, this means the transformation
of a many-body state under orbital rotations follows the same unitary Uh.

On a quantum computer, in the case of Jordan-Wigner mapping, there is a direct one-
to-one correspondence between Slater determinants and qubit states. Therefore the unitary
transformation on a quantum computer to transform a state from MO to LO representation
is to write Uh in its Jordan-Wigner form using

a†p = σ+
p ⊗ Z→

p−1, aq = σ−
q ⊗ Z→

q−1, (D.9)
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where

Z→
j = Zj ⊗ Zj−1 ⊗ · · · ⊗ Z1 ⊗ Z0. (D.10)

Note that the hermitian matrix h can be obtained from standard quantum chemistry package
such as PySCF [Sun+18].

D.3 Proof of Equivalence of the Linear and Quadratic
Constraint

In this section, we prove the equivalent of the linear and the quadratic constraints in Eqs.
(6.16) and (6.20).

Recall that in the main text (Eq. (6.15)), in a general case of m overlapping qubits, the
mixed state reduced density matrices ρ(A)R can be written as

ρ
(A)
R =

I +
∑4m−1

α=1 ⟨Σα⟩A Σα

2m
. (D.11)

In the special case of m = 1, we recover the usual expression for a single-qubit density
matrix.

The forward direction of deriving Eq. (6.20) from (6.16) is trivial, because if ⟨Σα⟩A =

⟨Σα⟩B for all α, this means ρ(A)R = ρ
(B)
R which leads to Eq. (6.20).

Now we focus on showing the reverse is true by deriving Eq. (6.16) from (6.20). Substitute
(D.11) into (6.20), we obtain

Tr[(ρ(A)R − ρ
(B)
R )2] =

1

2m

4m−1∑

α,β=1

(⟨Σα⟩A − ⟨Σα⟩B)(⟨Σβ⟩A − ⟨Σβ⟩B)Tr[ΣαΣβ]. (D.12)

Choose a convenient basis for the Hermitian generators Σα by express then as tensor product
of m SU(2) Paulis {σαm}

Σα = σα1 ⊗ σα2 ⊗ · · · ⊗ σαm , (D.13)

we immediately see that

Tr[ΣαΣβ] = Tr[(σα1σβ1)⊗ (σα2σβ2)⊗ · · · ⊗ (σαmσβm)] (D.14)

=
m∏

s=1

Tr[σαsσβs ] (D.15)

=
m∏

s=1

(2δαs,βs) (D.16)

= 2mδαβ (D.17)

where we define a composite index (bold font) α = (α1α2 · · ·αk) and β = (β1β2 · · · βk).
Substitute (D.17) into (D.12) and note that δαβ = δαβ, we obtain

Tr[(ρ(A)R − ρ
(B)
R )2] =

4m−1∑

α=1

(⟨Σα⟩A − ⟨Σα⟩B)2 . (D.18)
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Given ⟨Σα⟩’s as real numbers in usual implementation of electronic structure problems, then
(D.18) guarantees each individual term in the sum being zero, i.e.,

⟨Σα⟩A − ⟨Σα⟩B = 0, ∀ i ∈ [1, 4m − 1]. (D.19)

This is equivalent to ρ(A)R = ρ
(B)
B . This completes the proof.

D.4 Estimating Quadratic Penalty from Subsystem SWAP

Test

In this section, we present details of the subsystem SWAP test and discuss how it can be used
to estimate the quadratic penalty mismatch in (6.20) of the main text.

D.4.1 Quantum Circuit of the SWAP Test

The SWAP test as shown in Fig. 6.4 of the main text between two qubits can be directly
generalized to a SWAP test between two quantum registers each of which contains multiple
qubits. The idea is to use the upper ancilla qubit to perform multiple controlled-SWAP
operations between all pairs of qubits in the two registers. For example, Fig. D.5 performs
a SWAP test between two pairs of qubits using a single ancilla qubit.

In our case, instead of performing SWAP test on the entire wave function of two fragments,
we are interested to apply it to a subsystem of each fragment. In particular, denote qubits
corresponding to the entire embedding orbitals as X1 X0 for fragment X = A,B, where A0

and B0 are the subsystem on the overlapping region, whereas A1 and B1 are the rest of the
embedding orbitals. Then a SWAP test between A0 and B0 can be performed in Fig. D.1.

Figure D.1: Subsystem SWAP test between the overlapping regions of fragment A and B,
where a controlled SWAP operation is performed on A0 and B0. The measurement probability
of the top ancilla qubit encodes information of the overlap.

D.4.2 Ancilla Measurement Probability

In the following, we show that the measurement probability of M in the upper ancilla qubit
can be directly related to the overlap between the reduced density matrices on region A0 and
B0. This derivation can be performed in an arbitrary computational basis. For simplicity,
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we derive the results in the Schmidt basis of A0 and A1 (likewise for B). Interest readers are
encouraged to perform the derivation in an arbitrary basis as an exercise.

From Schmidt decomposition, the total wave function for fragment A and B can be
written as

|ΨA⟩ =
∑

j

aj|A1,j⟩|A0,j⟩, (D.20)

|ΨB⟩ =
∑

k

bk|B0,k⟩|B1,k⟩. (D.21)

Denote the measurement outcome of the ancilla in Fig. D.1 as M , it can be shown that

Prob[M = 0] =
1

2
[1 +

∑

j,k

|aj|2 |bk|2 |⟨A0,j|B0,k⟩|2], (D.22)

regardless of their environment A1 and B1.
The above result can be understood as the overlap of the two reduced density matrix

of fragments A and B in their overlapping region, as we can explicitly compute this in the
following. From Eq. (D.20) and (D.21), the reduced density matrices of each is calculated
to be

ρA0 =TrA1 [|ΨA⟩⟨ΨA|]
=TrA1 [

∑

jj′

aja
∗
j′ |A1,j⟩|A0,j⟩⟨A1,j′|⟨A0,j′ |]

=
∑

k

∑

jj′

aja
∗
j′⟨A1,k||A1,j⟩|A0,j⟩⟨A1,j′ |⟨A0,j′||A1,k⟩

=
∑

k

∑

jj′

aja
∗
j′δjk|A0,j⟩⟨A0,j′|δj′k

=
∑

j

|aj|2|A0,j⟩⟨A0,j|, (D.23)

similarly,

ρB0 = TrB1 [|ΨB⟩⟨ΨB|] =
∑

k

|bk|2|B0,k⟩⟨B0,k|. (D.24)

Then the overlap S2 between the above two reduced density matrices are

S2(ρA0 , ρB0) = Tr[ρA0ρB0 ]

=Tr[
∑

jk

|aj|2|bk|2|B0,k⟩⟨B0,k||A0,j⟩⟨A0,j|]

=
∑

l

∑

jk

|aj|2|bk|2⟨A0,l||B0,k⟩⟨B0,k||A0,j⟩⟨A0,j||A0,l⟩

=
∑

jk

|aj|2|bk|2|⟨A0,j|B0,k⟩|2, (D.25)
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which agrees with the second term in the measurement probability in Eq. (D.22). Therefore,
we can reconstruct the overlap in (D.25) using the measurement probability as

S2(ρA0 , ρB0) = 2 Prob[M = 0]− 1. (D.26)

In the special case of ρA0 = ρB0 , the overlap as defined above reduces to evaluating the
purity of a density matrix

S2(ρA0 , ρA0) =Tr[ρ2A0
]

=
∑

jk

|aj|2|ak|2|⟨A0,j|A0,k⟩|2

=
∑

jk

|aj|2|ak|2δjk

=
∑

j

|aj|4 (D.27)

Since
∑

j|aj|2= 1, and therefore S2(ρA0 , ρA0) ≤ 1. When ρA0 corresponds to a pure state,
there will be only one non-zero coefficient a0 = 1 and the rest being zero, leading to
S2(ρA0 , ρA0) = 1. This agrees with the definition of purity.

D.4.3 Connection to Quadratic Penalty

In our quantum bootstrap embedding algorithm, the quadratic constraint can be rewritten
using the definition of overlap in the previous section as

Tr[(ρA0 − ρB0)
2] = Tr[(ρA0)

2] + Tr[(ρB0)
2]− 2Tr[ρA0ρB0 ]

= S2(ρA0 , ρA0) + S2(ρB0 , ρB0)− 2S2(ρA0 , ρB0). (D.28)

It is seen that the RHS of the above equation contains three SWAP tests: one for the overlap
between ρA0 and ρB0 in (D.25), and the other two for the purity of ρA0 and ρB0 respectively
as in (D.27).

D.5 Eigenvalue Equations for the Quadratic Penalty Method

In Sec. 6.3.4 of the main text, we have seen that the quadratic constraint at the solution
point has zero gradient with respect to the wave function parameters, and therefore does not
satisfy the constraint qualification condition to use the Lagrange multiplier method for the
optimization. Instead, we use a quadratic penalty method to perform the optimization of the
loss function where an inherent eigenvalue equation with an effective bootstrap embedding
potential VBE is solved using a quantum eigensolver. The goal is to adjust VBE such that two
overlapping fragments match. In this section, we derive a rigorous expression for updating
VBE by taking the parameters in VBE instead of the wave function as fundamental variable.
For clarity, we keep the notation λ

(A)
B to refer to the penalty for fragment A and B, but all

the penalty parameters are kept the same, λ(A)B = λ, as is also mentioned in the main text.
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This can be achieved by taking the functional variation δVBE and find the stationary
point of LA. At the stationary point, we have

δLA =
∑

aiµ

∂LA
∂Caiµ

∂Caiµ
δVBE

δVBE +
∑

aiµ

∂LA
∂C∗

aiµ

∂C∗
aiµ

δVBE

δVBE = 0 (D.29)

for any δVBE. This implies the equation of motion
∑

aiµ

∂LA
∂Caiµ

∂Caiµ
δVBE

+
∑

aiµ

∂LA
∂C∗

aiµ

∂C∗
aiµ

δVBE

= 0. (D.30)

In the following, we derive separately ∂LA

∂Caiµ
(Sec. D.5.1) and ∂Caiµ

δVBE
(Sec. D.5.2), and then

combine everything together in Sec. D.5.3 to obtain the overall gradient on how to updating
the BE potential in the eigenvalue equation.

D.5.1 Derivative ∂LA

∂Caiµ

Consider the derivative of ∂LA with respect to Caiµ:

dLA
dCaiµ

=
d

dCaiµ


⟨H(A)⟩A − E(⟨I⟩A − 1) +

Nfrag∑

B ̸=A

λ
(A)
B Tr[(ρEA

− ρCB
)2]


 . (D.31)

Let’s evaluate this term by term. The linear terms are easy:

d⟨H(A)⟩
C∗
bjν

=
∑

aiµ

Caiµ⟨bjν|H(A)|aiµ⟩, (D.32)

dE(⟨I⟩ − 1)

C∗
bjν

= E
∑

aiµ

Caiµ(I ⊗ I ⊗ I)aiµ,bjν , (D.33)

dTr[ρEA
ρCB

]

dC∗
bjν

=
∑

i

Cbiν

(∑

aµ

DjaµD
∗
iaµ

)
=
∑

i

(ρCB
)jiCbiν . (D.34)

While the derivative involving quadratic term
dTr[ρ2EA ]

C∗
ckδ

is a little tricky. First, note that

(ρEA
)2 =

∑

ii′,jj′

(∑

aµ

CaiµC
∗
ai′µ

)(∑

bν

CbjνC
∗
bj′νδi′j|i⟩⟨j′|

)
, (D.35)

from which we obtain

Tr[(ρEA
)2] =

∑

ij

(∑

aµ

CaiµC
∗
ajµ

)(∑

bν

CbjνC
∗
biν

)
(D.36)

=
∑

ij,ab,µν

(CaiµCbjν)
(
C∗
ajµC

∗
biν

)
(D.37)

=
∑

ij,ab,µν,i ̸=j||a̸=b||µ̸=ν

(CaiµCbjν)
(
C∗
ajµC

∗
biν

)
+
∑

iaµ

(CaiµCaiµ)
(
C∗
aiµC

∗
aiµ

)
. (D.38)
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Note in order to take the derivative of the above with respect to C∗
ckδ, we have separated the

summation as two different terms because depending on whether the conditon of a ̸= b||j ̸=
i||µ ̸= ν is met or not, the derivative will be different. Now evaluate the derivative of the
above two terms separately, we have

dTr[ρ2EA
]

dC∗
ckδ

=
∑

ij,ab,µν,i ̸=j||a̸=b||µ̸=ν

(CaiµCbjν)
(
C∗
ajµδbcδikδνδ + C∗

biνδacδjkδµδ
)

+
∑

iaµ

(CaiµCaiµ)
(
2C∗

aiµδacδjkδµδ
)

(D.39)

=
∑

jaµ,k ̸=j||a̸=c||µ̸=δ

(CakµCcjδ)C
∗
ajµ +

∑

ibν,i ̸=k||b̸=c||ν ̸=δ

(CciδCbkν)C
∗
biν + 2C2

ckδC
∗
ckδ.

(D.40)

Now in each of the above terms, combine a C and a C∗ we can recover some elements of
ρEA

. For example, in the first term we have

∑

jaµ,k ̸=j||a̸=c||µ ̸=δ

(CakµCcjδ)C
∗
ajµ =

∑

j,k ̸=j||a̸=c||µ ̸=δ

(∑

aµ

CakµC
∗
ajµ

)
Ccjδ (D.41)

=
∑

j,k ̸=j||a̸=c||µ ̸=δ

(
ρ
(aµ)
EA

)
kj
Ccjδ, (D.42)

where in the last line the superscript (aµ) on ρ
(aµ)
EA

simply means the implicit summation is
over dummy variables aµ.

With this notation, we can collect all terms in
dTr[ρ2EA ]

C∗
ckδ

and write it as

dTr[ρ2EA
]

dC∗
bjν

= 2
∑

i,k ̸=i||b ̸=c||ν ̸=δ

(
ρ
(bν)
EA

)
ki
Cciδ + 2 (ρA)ckδ,ckδ Cckδ, (D.43)

which consists of two terms. With the derivative of Tr[ρ2EA
], we can combine this with the

derivative of Tr[ρEA
ρCB

] to get

dTr[(ρEA
− ρCB

)2]

dC∗
ckδ

=
dTr[(ρEA

)2]

C∗
ckδ

− 2
dTr[ρEA

ρCB
]

C∗
ckδ

= 2
∑

i,k ̸=i||b̸=c||ν ̸=δ

(
ρ
(bν)
EA
− ρ(bν)CB

)
ki
Cciδ + 2 [(ρA)ckδ,ckδ − (ρB)kcδ,kcδ]Cckδ.

(D.44)

Notice the subscripts of ρB on the last term of RHS is in different order as compared to ρA
due to the distinction between center and edge sites.

Combine this with the derivative of the other terms, we obtain the following eigenvalue
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equation

dLA
dC∗

ckδ

=
∑

aiµ

Caiµ⟨ckδ|H(A)|aiµ⟩+ E
∑

aiµ

Caiµ(I ⊗ I ⊗ I)ckδ,aiµ

+ 2λ
(A)
B


 ∑

i,(a,i,µ)̸=(c,k,δ)

(
ρ
(aµ)
EA
− ρ(aµ)CB

)
ki
Cciδ + [(ρA)ckδ,ckδ − (ρB)kcδ,kcδ]Cckδ


 = 0, ∀c, k, δ.

(D.45)

This equation seems to be difficult to rewrite into matrix notation, but actually they are
easy if written under the full density matrix of fragment A and B. In terms of full density
matrices of the fragments, the first term in the effective potential is

∑

i,(a,i,µ)̸=(c,k,δ)

(
ρ
(aµ)
EA
− ρ(aµ)CB

)
ki
Cciδ =

∑

aiµ,(a,i,µ)̸=(c,k,δ)

[(ρA)akµ,aiµ − (ρB)kaµ,iaµ]Cciδ. (D.46)

It can also be recognized that the second term in the effective potential is essentially

[(ρA)ckδ,ckδ − (ρB)kcδ,kcδ]Cckδ =
∑

aiµ,(a,i,µ)=(c,k,δ)

[(ρA)akµ,aiµ − (ρB)kaµ,iaµ]Cciδ. (D.47)

Substitute the above two equations into Eq. (D.45), we have

dLA
dC∗

ckδ

=
∑

aiµ

Caiµ⟨ckδ|H(A)|aiµ⟩+ E
∑

aiµ

Caiµ(I ⊗ I ⊗ I)ckδ,aiµ

+ 2λ
(A)
B




 ∑

aiµ,(a,i,µ)̸=(c,k,δ)

+
∑

aiµ,(a,i,µ)=(c,k,δ)


 [(ρA)akµ,aiµ − (ρB)kaµ,iaµ]Cciδ


 = 0, ∀c, k, δ

=
∑

aiµ

Caiµ⟨ckδ|H(A)|aiµ⟩+ E
∑

aiµ

Caiµ(I ⊗ I ⊗ I)ckδ,aiµ + 2λ
(A)
B

∑

aiµ

Cciδ [(ρA)akµ,aiµ − (ρB)kaµ,iaµ]

(D.48)

=
∑

aiµ

⟨ckδ|H(A)|aiµ⟩Caiµ + E
∑

aiµ

(I ⊗ I ⊗ I)ckδ,aiµCaiµ + 2λ
(A)
B

∑

i

(ρEA
− ρCB

)kiCciδ = 0, ∀c, k, δ

(D.49)

D.5.2 Derivative ∂Caiµ

δVBE

In this section, we focus on deriving ∂Caiµ

δVBE
or ∂C∗

aiµ

δVBE
.

Use wave function perturbation theory on the following eigenvalue equation

(H(A) + VBE)|ψA,n⟩ = −E (A)n |ψA,n⟩, (D.50)

where n labels different eigenstates. Now given a small variation of VBE, the eigenstates
and eigenenergies will change. To 1st-order perturbation, we can write the change of each
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eigenstate as

δ|ψA,n⟩ =
∑

n′ ̸=n

⟨ψA,n′|(δVBE)|ψA,n⟩
E (A)n − E (A)n′

|ψA,n′⟩. (D.51)

This is a change on the eigenstate, and not yet exact what we want (we want change on the
coefficients in front of basis vector, C(n)

aiµ, note the superscript labels the n-th eigenstate). To
do this, let’s further write the eigenstates in terms of all the coefficients,

|ψA,n⟩ =
∑

aiµ

C
(n)
aiµ|aiµ⟩, (D.52)

then the above equation becomes an array of coupled-system of equations:
∑

aiµ

dC
(n)
aiµ|aiµ⟩ =

∑

n′ ̸=n

∑

a′′i′′µ′′,a′i′µ′,aiµ

C
(n′)∗
a′i′µ′C

(n)
aiµ

⟨a′i′µ′|(δVBE)|aiµ⟩
E (A)n − E (A)n′

C
(n′)
a′′i′′µ′′ |a′′i′′µ′′⟩. (D.53)

Multiply both sides with ⟨a′′′i′′′µ′′′|, we arrives at the following equation on the coefficients
after relabeling the aiµ index

dC
(n)
aiµ =

∑

n′ ̸=n

∑

a′′i′′µ′′,a′i′µ′

C
(n′)∗
a′′i′′µ′′C

(n)
a′i′µ′
⟨a′′i′′µ′′|(δVBE)|a′i′µ′⟩

E (A)n − E (A)n′

C
(n′)
aiµ , (D.54)

for any index (a, i, µ).
To further simplify the above equation, we introduce parametrization of δVBE as linear

combination of local potentials on the edge sites VBE =
∑4m

α=0 vα I ⊗Σα ⊗ I, where the first
and the last identity operators act on the center and the bath sites by definition. Therefore,
a functional variation of VBE can be parametrized as a small change in the scalar coefficients
vα

δVBE =
4m∑

α=0

dvα I ⊗ Σα ⊗ I, (D.55)

and the matrix elements are

⟨a′′i′′µ′′|(δVBE)|a′i′µ′⟩ = δa′a′′δµ′µ′′
4m∑

α=0

⟨i′′|Σα|i′⟩dvα. (D.56)

This leads to the simplifed expression for dC(n)
aiµ/δVBE

dC
(n)
aiµ

δVBE

=
4m∑

α=0

dC
(n)
aiµ

dvα
=
∑

n′ ̸=n

∑

i′′,a′i′µ′

C
(n′)∗
a′i′′µ′C

(n)
a′i′µ′

∑4m

α=0⟨i′′|Σα|i′⟩
E (A)n − E (A)n′

C
(n′)
aiµ . (D.57)

In particular, for the ground eigenstate, we have (omitting the superscript (0))

dC∗
ckδ

δVBE

=
4m∑

α=0

dC∗
ckδ

dvα
=
∑

n′ ̸=0

∑

i′,aiµ

C
(n′)
ai′µC

∗
aiµ

∑4m

α=0⟨i|Σα|i′⟩
E (A)0 − E (A)n′

C
(n′)∗
ckδ . (D.58)
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D.5.3 Gradient of Cost Function versus BE Potential

Now we are ready to put everything together to obtain a final expression for the gradient of
the cost function versus the BE potential.

Substitute Eq. (D.58) and Eq. (D.49) into (D.30), we obtain

∑

ckδ

dLA

dC∗
ckδ

dC∗
ckδ

δVBE
=
∑

ckδ


∑

aiµ

⟨ckδ|H(A)|aiµ⟩Caiµ + E(A)
0

∑

aiµ

(I ⊗ I ⊗ I)ckδ,aiµCaiµ + 2λ
(A)
B

∑

i

(ρEA
− ρCB

)ki Cciδ




×


∑

n′ ̸=0

∑

i′,aiµ

C
(n′)
ai′µC

∗
aiµ

∑4m

α=0⟨i|Σα|i′⟩
E(A)
0 − E(A)

n′

C
(n′)∗
ckδ


 = 0. (D.59)

Writing this in matrix form,
∑

ckδ

{
(H(A)C)ckδ + (E (A)

0 C)ckδ + 2λ
(A)
B [(I⊗ (æEA

−æCB
)⊗ I)C]ckδ

}

×
[∑

n′ ̸=0

[C†(I⊗
4m∑

ff=0

W
(n′)
ff ⊗ I)C(n′)]C(n′)∗

]

ckδ

= 0. (D.60)

or

∑

n′ ̸=0

[
C†(I⊗

4m∑

ff=0

W
(n′)
ff ⊗ I)C(n′)

]
×
[
C(n′)†

(
H(A) + E(A)

0 + 2λ
(A)
B (I⊗ (æEA

−æCB
)⊗ I)

)
C
]
= 0.

(D.61)

where W
(n′)
ff ii′ =

⟨i|Σα|i′⟩
E(A)
0 −E(A)

n′
. Writing this with respect to each parameter vα in VBE, we have

dLA
dvα

=
∑

n′ ̸=0

[
C†(I⊗W

(n′)
ff ⊗ I)C(n′)

]

×
[
C(n′)†

(
H(A) + E(A)

0 + 2λ
(A)
B (I⊗ (æEA

−æCB
)⊗ I)

)
C
]
, ∀α ∈ [0, 4m]. (D.62)

From this gradient, we may update all the fundamental parameters {λ(A)B , vα} using gradient
descent (or other update scheme) to minimized the Lagrangian, as is typically performed in
optimization. However, to compute this gradient exactly in (D.62), it is required that all the
eigenstates are known (not only the ground state) which is clearly very costly and not that
useful. Nevertheless, it serves as a good starting point to develop approximated updating
scheme. One possible approximation is to truncate the summation over n′ to only a low
energy subspace. More efficient approximations are left for future investigation.

D.6 Sample Complexity for Estimating the Overlap from
Tomography

We have seen that the linear and quadratic constraints are equivalent in Sec. D.3, and
presented that an efficient quantum circuit based on SWAP test in Sec. D.4. In this section,

270



we derive the sample complexity of estimating the RDM mismatch by naively sampling
individual RDM element from tomography, to demonstrate the advantage of using the SWAP

test in quadratic matching.
Recall that the quadratic mismatch between two RDMs reduces to the sum of element-

wise distance (squared) of their individual RDM elements from (D.18)

S2(ρA, ρB) =
4m−1∑

α=1

(⟨Σα⟩A − ⟨Σα⟩B)2 . (D.63)

where m is the number of qubits in the overlapping region.
Let’s denote the true value of

lim
sample size→∞

⟨Σα⟩X = R(X)
α (D.64)

for X = A,B. Then, in tomography the estimate uncertainty of {R(A)
α , R

(B)
α } will propagate

to the uncertainty of S2 via

var(S2) = J ·
[
C{R(A)

α }
C{R(B)

α }

]
· JT , (D.65)

where J = ∇{R(A)
α ,R

(B)
α }S

2 = [ ∂S2

∂R
(A)
1

, ∂S2

∂R
(A)
2

, · · · , ∂S2

∂R
(A)
4m−1

, ∂S2

∂R
(B)
1

, ∂S2

∂R
(B)
2

, · · · , ∂S2

∂R
(B)
4m−1

] is the Jaco-

bian, C{R(A)} and C{R(B)} are the co-variance matrix of the RDM elements. var(·) denotes
the variance.

Note that C{R(A)} and C{R(B)} will be system-dependent, and for now let us assume there is
not co-variance between individual elements of ρA and ρB, and therefore C{R(A)} and C{R(B)}
will be diagonal with diagonal elements being the variance of each RDM element.

Moreover, by substituting (D.63) into J , we can explicitly evaluate

JA,α =
∂S2

∂R
(A)
α

= 2
(
R(A)
α −R(B)

α

)
,

JB,α =
∂S2

∂R
(B)
α

= −2
(
R(A)
α −R(B)

α

)
. (D.66)

This gives

var(S2) = 4
4m−1∑

i=1

(
R(A)
α −R(B)

α

)2 [
var(R(A)

α ) + var(R(B)
α )
]
. (D.67)

Now assume that each element of the RDM is estimated by the same amount of samples
Nsamp,0, then from binomial distribution, the variance of each R(A)

α and R(B)
α is

var(R(X)
α ) =

R
(X)
α (1−R(X)

α )

Nsamp,0

, ∀X = A,B. (D.68)
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Substitute this into (D.67), we have

var(S2) =
4DS2

Nsamp,0

, (D.69)

where D is a system-dependent constant

D =

∑4m−1
α=1

(
R

(A)
α −R(B)

α

)2 (
R

(A)
α (1−R(A)

α ) +R
(B)
α (1−R(B)

α )
)

∑4m−1
α=1

(
R

(A)
α −R(B)

α

)2 (D.70)

Given a target accuracy ϵ on S, then var(S2) = (2Sϵ)2, from the above equation we can solve
to obtain the required number of samples as for each individual RDM elements

Nsamp,0 =
D

ϵ2
. (D.71)

There are 4n − 1 elements for n-qubit overlapping region, leading to an overall sampling
complexity of

NTMG
samp = O(en) ·Nsamp,0 = O(en)

D

ϵ2
, (D.72)

for estimating the overlap to ϵ accuracy from density matrix tomography. The reason why
O(en) instead of naive 4n − 1 is because there are commuting Pauli operators that can
be estimated simultaneously. However, the exponential scaling in terms of the number of
overlapping qubits n remains.

As is mentioned in the main test, overlaps between density ma- trices are not low-rank
observables, so the sampling com- plexity of estimating it is likely to be high. However,
more efficient sampling schemes may exist. For example, by sampling the differences in the
RDMs between the current and the previous BE iterations, the sampling complexity could
be much better than exponential. One simple way of doing this is to use the diagonal basis
of the previous iteration as the measurement basis in the current iteration to perform the
RDM sampling. We leave this for future investigation.

D.7 Details of Quantum Amplitude Estimation and Quadratic
Speedup

In this section, we describe in detail how a quantum amplitude estimation can be imple-
mented by combining an oblivious amplitude amplification (Sec. D.7.1) with a binary search
algorithm (Sec. D.7.2). We then outline how a binary search derive the sample complexity
needed to achieve a constant precision ϵ in the overlap in our coherent matching algorithm
and compare that with a classical incoherent sampling estimation scheme, demonstrating a
quadratic speedup of the former (Sec. D.7.3).
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D.7.1 Amplitude Amplification

From Theorem 2 of Ref. [Mar+21b], it is shown that given a state preparation process U
from an initial state |B0⟩, the overlap a of this prepared state with another state |A0⟩, i.e.,
a := ⟨A0|U |B0⟩, can be transformed by a d-degree polynomial P (a) such that |1− P (a)|< δ
using rotations Aϕ = eiϕ|A0⟩⟨A0| and Bϕ = eiϕ|B0⟩⟨B0| by the following quantum circuit

P (a) = ⟨A0|



d/2∏

j=1

UBϕ2j−1
U †Aϕ2j


U |B0⟩, (D.73)

where d = O( 1
a
log(1/δ)), and the rotation angles ϕ2j and ϕ2j−1 can be efficiently computed

classically. This is a generalization of Grover’s search algorithm where the rotation Bϕ is
similar to the diffusion operator (reflection about the average), and Aϕ is analogous to the
Grover’s reflection about the target state. The difference is that the rotation angles ϕ’s
can be fractions of π and is thus more general which combines the optimality of Grover’s
algorithm for unstructured search and the fixed-point property [YLC14].

In our case, denote S = |⟨ΨE|ΦC⟩| as the overlap of the edge of the first fragment and
center of the second fragment in their ground states, and choose the following for state |A0⟩
and |B0⟩

|A0⟩ =
1√

2(1 + S2)
|0⟩
(
|ΨĒ⟩|ΨE⟩|ΦC⟩|ΦC̄⟩+ |ΨĒ⟩|ΦC⟩|ΨE⟩|ΦC̄⟩

)
(D.74)

|B0⟩ = |0⟩|ΨĒ
T ⟩|ΨE

T ⟩|ΦC
T ⟩|ΦC̄

T ⟩, (D.75)

where |B0⟩ is the input trial states (thus the subscript “T") for the quantum eigensolver,
while |A0⟩ is the symmetric subspace of the SWAP test. Let U be the state preparation circuit
(in our case the two quantum eigensolver + the SWAP test) given by Fig. D.2.

Figure D.2: Quantum circuit to estimate the ground state overlap between subsystems of
two fragments, composed of two quantum eigensolver (QES) for two fragments ground state
wave function followed by a SWAP test. The circuit in the dashed box is U in Eq. (D.73)
which will be repeated multiple times during the amplitude amplification process as will be
discussed in the following.
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Given these choices, it can be verified that the

U |B0⟩ = a|A0⟩+
√
1− a2|A⊥⟩ (D.76)

where

a = ⟨A0|U |B0⟩ =
√

1 + S2

2
, (D.77)

and

|A⊥⟩ =
1√

2(1− S2)
|1⟩
(
|ΨĒ⟩|ΨE⟩|ΦC⟩|ΦC̄⟩ − |ΨĒ⟩|ΦC⟩|ΨE⟩|ΦC̄⟩

)
. (D.78)

Note the choice of |A⊥⟩ has a lot of degrees of freedom, as long as it is normalized and
orthogonal to |A0⟩. In particular, |A⊥⟩ = |1⟩|Ψ⟩ for any |Ψ⟩ (with support on the two
system registers) will work as long as the ancilla qubit is at state |1⟩.

Moreover, we choose |B⊥⟩ such that

U |B⊥⟩ = −a|A⊥⟩+
√
1− a2|A0⟩ (D.79)

which leads to an explicit expression for |B⊥⟩

|B⊥⟩ = −aU−1|A⊥⟩+
√
1− a2U−1|A0⟩

=
1

2
|0⟩⊗

[
−
√

1 + S2

1− S2

(
|ΨĒ

T ⟩|ΨE
T ⟩|ΦC

T ⟩|ΦC̄
T ⟩ − |ΨĒ

T ⟩|ΦC
T ⟩|ΨE

T ⟩|ΦC̄
T ⟩
)

+

√
1− S2

1 + S2

(
|ΨĒ

T ⟩|ΨE
T ⟩|ΦC

T ⟩|ΦC̄
T ⟩+ |ΨĒ

T ⟩|ΦC
T ⟩|ΨE

T ⟩|ΦC̄
T ⟩
)]

. (D.80)

It then follows that {|A0⟩, |A⊥⟩} and {|B0⟩, |B⊥⟩}, each forms a 2-dimensional subspace
where U can be expanded upon

U =a|A0⟩⟨B0|+
√
1− a2|A⊥⟩⟨B0|

− a|A⊥⟩⟨B⊥|+
√
1− a2|A0⟩⟨B⊥| (D.81)

=

[
a

√
1− a2√

1− a2 −a

]
. (D.82)

Given access to Aϕ and Bϕ, the rest of amplitude amplification follows the same as Ref.
[Mar+21b] by using Eq. (D.73).

We should note that the rotation Bϕ is easy to construct from

Bϕ = eiϕ|B0⟩⟨B0| = UT e
iϕ|0⟩⊗⟨0|⊗U †

T , (D.83)

because UT is a known unitary that can prepare the initial trial state (for example Hartree-
Fock state) from the zero state

|0⟩ ⊗ |ΨĒ
T ⟩|ΨE

T ⟩|ΦC
T ⟩|ΦC̄

T ⟩ = UT |0⟩⊗. (D.84)
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At first glance, the rotation Aϕ seems to be more difficult and it requires an oracle to
prepare |A0⟩ from the zero state

|A0⟩ = V |0⟩⊗, (D.85)

such that Aϕ = eiϕ|A0⟩⟨A0| = V eiϕ|0⟩
⊗⟨0|⊗V †. However, because the SWAP test entangles the

symmetric and anti-symmetric subspace of the two system register separately with |0⟩ and
|1⟩ state of the ancilla, we can simply choose

Aϕ = eiϕ(|0⟩⟨0|−|1⟩⟨1|)⊗I⊗ = eiϕZ⊗I
⊗
, (D.86)

which is just a single-qubit Z rotation on the ancilla, and the identity operator I⊗ has
support on the two system registers. It can be readily verified that when applying Aϕ to a
linear combination of |A0⟩ and |A⊥⟩ that

Aϕ(c0|A0⟩+ c1|A⊥⟩) = eiϕ(|0⟩⟨0|−|1⟩⟨1|)⊗I⊗(c0|0⟩ ⊗ |ΨA0⟩+ c1|1⟩ ⊗ |ΨA⊥⟩)
= c0e

iϕ|0⟩ ⊗ |ΨA0⟩+ c1e
−iϕ|1⟩ ⊗ |ΨA⊥⟩

= eiϕc0|A0⟩+ e−iϕc1|A⊥⟩, (D.87)

which imposes a relative phase of 2ϕ between the target state |A0⟩ and the unwanted state
|A⊥⟩ as desired.

With these construction, the overall quantum circuit for the amplitude amplification is
given in Fig. D.3. with the state prep circuit U given in Fig. D.2, and the rotation Aϕ2j

Figure D.3: Quantum circuit for fixed-point oblivious amplitude amplification of the coherent
quantum matching. The quantum gates in dashed box corresponds to the gates in bracket
of Eq. (D.73) which needs to be repeated by d/2 times, where d will be determined by the
slope of the amplification polynomial 1

∆k
(more about this in the next section).

and Bϕ2j−1
defined in Eq. (D.86) and (D.83) respectively. Note that this circuit requires

U † which means the two quantum eigensolvers in U has to be run in backwards, which is
certainly possible for solvers such as QPE and VQE.

D.7.2 Estimate the Amplitude from Binary Search

The above amplitude amplification can be combined with a binary search algorithm to
estimate the magnitude of the amplitude a =

√
1+S2

2
up to precision ϵ = 1

2n
in a bit-by-bit

fashion.
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Denote a binary representation of the amplitude a as

a := [bn−1bn−2 · · · b1b0] =
1

2n
(
bn−12

n−1 + bn−12
n−1 + · · ·+ b0

)
. (D.88)

We perform the following two steps repeatedly to determine bk for k = n− 1, n− 2, · · · , 1, 0:
1. Perform a fixed-point amplitude amplification using a polynomial in Ref. [Mar+21b]

with slope 1
∆k

(this determines the depth of the circuit d as in Fig. D.3) and precision
ϵ, where ∆k is determined from all previous estimations on bn−1, · · · , bk+1 by

∆k =

√
2

2n

(
n−1∑

l=k+1

bl2
l + 2k

)
. (D.89)

2. Measure the ancilla of the SWAP test by collecting Nϵ = ⌈2ϵ ⌉ samples and then set bk
to the expectation value of the estimated outcome, bk = ⟨M⟩.

It can be verified that this protocol works because each time after the amplitude amplifica-
tion, if ⟨M⟩ = 1, then the amplitude is in the interval [0.bn−1bn−2 · · · bk+11, 0.bn−1bn−2 · · · bk+11+

1
2n−k ]; otherwise if ⟨M⟩ = 0, then the amplitude is in [0.bn−1bn−2 · · · bk+10, 0.bn−1bn−2 · · · bk+11].
We choose Nϵ to be large enough such that it is sufficient to tell if the amplified amplitude
is within the range of [1 − ϵ, 1] with high probability. For a Bernoulli distribution with
p ∈ [(1 − ϵ)2, 1], we require the standard deviation of the estimation for amplitude to be
roughly ϵ, i.e.

∆a = |da
dp
|∆p = 1

2

√
(1− p)
Nϵ

= ϵ, (D.90)

which gives

Nϵ =
(1− p)
4ϵ2

=
1− (1− ϵ)2

4ϵ2
=

1

2ϵ
− 1

4
. (D.91)

Therefore, a choice of Nϵ = ⌈ 1
2ϵ
⌉ suffices.

D.7.3 Quadratic Speedup

We demonstrate the quantum speedup due to amplitude amplification (AA) by estimate the
sample complexity required to achieve a constant precision on estimating a.

We first estimate the total number of samples in the SWAP test + amplitude estimation
(AE) approach by combining AA and binary search. For each digit bk, each sample takes
a total of 1

∆k
log(1

ϵ
) queries to the eigensolver in the amplitude amplification for ∆k in Eq.

(D.89), and we need Nϵ (Eq. (D.91)) samples to estimate whether the amplified amplitude
is within the range of [1− ϵ, 1], which gets us to the number of queries to the eigensolver for
estimating bk to be Nϵ · 1

∆k
log(1

ϵ
). Therefore, the total number of queries to the eigensolver

will be the sum of the cost of estimating each bit of a, given by

NSWAP+AE
samp =

1

2ϵ
ln(

1

ϵ
)
n−1∑

k=0

1

∆k

≤
√
2

2ϵ
ln(

1

ϵ
) log2(

1

ϵ
) =

√
2

2 ln(2)ϵ
ln2(

1

ϵ
), (D.92)
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where we have used the following inequalities on

∆k ≥ ∆n−1 =

√
2

2n
bn−12

n−1 =
1√
2
,∀ k (D.93)

derived from Eq. (D.89) and the fact that bn−1 = 1 from the definition of a =
√

1+S2

2
. This

gives us

n−1∑

k=0

1

∆k

≤ n∆n−1 =
√
2n =

√
2 log2(1/ϵ). (D.94)

Note the above query complexity is independent of the amplitude a (or the overlap S) because
our estimation algorithm is constructed using fixed-point oblivious amplitude amplification.

As a comparison, in the case of only using SWAP test (no AA), the total number of samples
NSWAP
samp required to estimate a to precision ϵ has to satisfy

ϵ = ∆a = |da
dp
|∆p = 1

2

√
(1− p)
NSWAP
samp

, (D.95)

leading to

NSWAP
samp =

(
1− S2

8

)
1

ϵ2
(D.96)

after substituting p = a2 = 1+S2

2
. Comparing (D.96) and (D.92), we observe a quadratic

speedup up to a polylog factor.

D.8 QBE Algorithm Using Naive RDM Linear Matching

In this section, for completeness, we present a QBE algorithm to perform bootstrap embed-
ding on quantum computers by naively matching all the RDM matrix elements one by one.
This scheme is inefficient as discussed in the main text due to the exponential measurement
overhead. For concreteness, the algorithm as written here uses gradient descent to perform
the optimization of the Lagrangian (with constraint added by Lagrange multipliers), but
other gradient-based or gradient-free optimization can be used as well. We ignore the final
step of tuning the global chemical potential.
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Algorithm 11 Algorithm for QBE with naive linear constraint
Input: Geometry of the total molecular system and the associated ab initio Hamiltonian.
Output:

(
H(A) + V

(A)
BE

)
for all A

1: for A = 1 to Nfrag do ▷ Initial fragmentation: Divide the full molecular system into Nfrag overlapping
fragments

2: Generate H(A) using Eq. (D.1) in Appendix D.1
3: Compute the initial full ground state density matrix: ρ(A) ← eigensolver(H(A))

4: Compute the single-qubit reduced density matrices ρ
(A)
r for all r ∈ O(A)

5: Set V
(A)
BE = 0

6: end for
7: Compute the initial value of the average mismatch ∆ρ;
8: Set λ

(A)
B = 0 for ∀A,B; iter = 0, gd_step = 0 ▷ Parameter initialization

9: Set the Lagrange multiplier convergence thresholds ϵ∆ρ and ϵ∆µ to their desired initial values.
10: while ∆ρ > ϵ∆ρ do ▷ Main loop
11: for A = 1 to Nfrag do
12: Set the current learning rate η ← lr_schedule(iter)
13: for gd_step = 0; gd_step ++; gd_step < Nsteps do
14: for B = 1 to Nfrag do
15: if E(A) ∩ C(B) ̸= ∅ then State Estimate the vector ∆˘

(A)
B (ρ(A), ρ(B)) as defined in Eq.

(6.16) by using Nsamp,0 (Eq. (D.71)) quantum samples to estimate each RDM element in Eq. (6.16).
16: Update the Lagrange multiplier vector ˘

(A)
B using gradient descent: λ

(A)
B ← λ

(A)
B −

η∆λ
(A)
B .

17: Generate the BE potential V (A)
BE as defined in Eq. (6.17)

18: Update the Hamiltonian matrix for fragment A classical: H(A) ← H(A) + ηV
(A)
BE

19: end if
20: end for
21: Reduce the learning rate η according to η ← η · [1− (gd_step/Nsteps)]
22: end for
23: Update the mismatch error ∆ρ by estimating it using quantum samples
24: end for
25: for A = 1 to Nfrag do
26: Update the full ground state density matrix: ρ(A) ← eigensolver(H(A))

27: Compute the single-qubit reduced density matrices ρ
(A)
r for all r ∈ O(A)

28: Increment iter by one: iter← iter+ 1
29: end for
30: end while
31: return H(A) for all A, ∆ρ.

In the above algorithm, eigensolver(H(A)) denotes the quantum eigensolver is called
to find the ground state of Hamiltonian H(A). Moreover, lr schedule(iter) is a learning
rate (step size) schedule to improve convergence in gradient-descent algorithms. It returns
a value for the learning rate corresponding to the iter-th BE iteration. One typical choice
of a learning rate schedule is lr schedule(iter) ∝ 1/iter. One crucial step of the above
algorithm is to estimate the mismatch ∆ρ as defined in Eq. (6.24). Here in the naive linear
matching algorithm, this is accomplished by perform tomography on each RDM element as
described in Sec. D.6, and then classically compute the mismatch (Eq. (6.24)) using the
estimated RDM elements.
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D.9 Computational Details

D.9.1 FCI and QPE Eigensolver Runtime Benchmark

Full configuration interaction (FCI) is chemists’ version of exact diagonalization. In FCI,
the full Hamiltonian is expanded under Slater determinant basis (i.e., configurations), and
then a restricted Hilbert space of interest (for example, with fixed particle number and spin
multiplicity) is exactly diagonalized to find the eigenstate state of interest. In the present
work, we perform FCI calculation using PySCF [Sun+18] on Hn (n = 2, 4, 6, 8, 10, 12, 14)
under STO-3G basis with a fixed distance of 1 Å. The real runtime is recorded for different
n and then normalized according to the runtime of H2.

Quantum phase estimation (QPE) is a quantum algorithm to estimate the eigenstate
energy and prepare the eigenstate wave function of a given Hamiltonian, whose accuracy
can be systematically improved to the exact result. We give a brief overview here and refer
the readers to Ref. [SHF13] for more details on QPE including improved versions.

In QPE, the exact ground state |ΨA
0 ⟩ (or an excited state) can be prepared on a quantum

computer using the quantum phase estimation algorithm followed by post-selection, given a
trial state |ΨA

in⟩ is taken as the input quantum state as follows

Figure D.4: Schematic for quantum phase estimation.

Analysis shows that the success probability of the post-selection process is

Prob[success] = |⟨ΨA
in|ΨA

0 ⟩|2
(
sin(πξ)

πξ

)2

≥ |⟨ΨA
in|ΨA

0 ⟩|2
(

4

π2

)
, (D.97)

where 0 < ξ < 1
2

is the distance between the measurement outcome x (in the upper register
in Fig. D.4) and the true ground state energy θ02n − x.

In the present work, for QPE runtime, Hn (n = 1, 2, 3, 4, 5) under STO-3G basis with
Jordan-Wigner mapping are used as benchmark systems. We use one evaluation qubit due to
device constraint. Note the number of evaluation qubits only introduces a constant scaling
factor in the absolute gate depth and will not change the scaling behavior of the QPE solver.
The quantum phase estimation circuit for different hydrogen molecules is transpiled using
a Fake_Mumbai backend available in Qiskit [Abr+19a] with a basis gate set composed of
Rx, Ry, Rz, and CNOT gates. The resulting total gate depth is recorded as an estimation to
the runtime of the QPE circuit. To account for the non-unity success probability of the QPE
due to the finite overlap between the initial Hartree-Fock trial state and the exact ground
state, the element of the CI vector corresponding to the Hartree-Fock contribution to the
FCI ground state is extracted. The QPE gate depth is then rescaled by the square of the
overlap amplitude. Due to the stochastic nature of the classical transpilation algorithm, the
QPE circuit of each molecule is repeatedly transpiled 5 times and the smallest gate depth is
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used in our data. We believe this procedure results in good estimation of the real runtime
of the QPE eigensolver, which includes the number of repetition required to account for the
failure probability of QPE.

D.9.2 Classical Bootstrap Embedding with VMC and FCI as Eigen-
solver

We implement a classical BE algorithm using variational Monte Carlo (VMC) as a stochastic
eigensolver to generate the VMC data in Fig. 6.2 of the main text. A gradient-descent
algorithm is used for the optimization. The real-space formulation of VMC with single
determinant two-body Jastrow factor wavefunction as implemented in the PyQMC package
[Whe+21] is used to obtain the 1-RDM of each fragment for the H8 molecule. The analytical
form of the two-body Jastrow term is given in Ref. [WM07] which is applied to the single
Slater determinants as the VMC trial wave function. The 1-RDMs of the adjacent fragments
are then matched as described in Sec. 6.2 of the main text.

In the calculation of H8 (6 fragments in total), for each BE iteration, the VMC eigen-
solver is called 10 times for matching all overlapping sites. Each time the VMC is called,
optimization of the Jastrow factors is first performed using roughly 10k MC samples, and
then additional MC samples are accumulated in the production run to evaluate the 1-RDM.
In the production run, the Monte Carlo (MC) sampling process is performed for Nblocks

blocks. By default of PyQMC, there are 10 steps per block and 1000 configurations. We run
the BE with VMC eigensolver with three different choice of Nblocks = 4, 16, 64, leading to a
total number of 40k, 160k, 640k MC samples in each BE iteration. We run a total of 200 BE
iterations in each of the three case and plot the first 80 iterations in Fig. 6.2. In the case
of FCI as eigensolver, we the only difference is that the 1-RDM is computed using the FCI
solver, and the rest of BE iteration follows from Sec. 6.2. A step size of 0.05 is used for both
VMC and FCI solver to perform the gradient descent based optimization in the two cases.

The density mismatch from BE with FCI and VMC eigensolver is plotted against each
other. Note that since a first-quantized real space formulation of VMC is used, the VMC and
FCI (second-quantized) calculation are performed in slightly different Hilbert space. This
leads to different values of density mismatch from FCI and VMC in the initial BE iteration.
For ease of comparison, the FCI density mismatch is rescaled by a factor of 3.8 to match the
initial mismatch of the VMC.

In Fig. 6.2, an initial exponential convergence on the density mismatch is observed
for both VMC and FCI solver. The VMC solver later plateau at a mismatch of roughly
2 × 10−3, due to the statistic fluctuation on the estimated 1-RDM matrix elements from
finite number of MC samples. The plateaued value of the density mismatch is calculated
by taking an average of all BE iterations after iteration 30. It can be seen that as the
number of MC samples increased from 40k to 640k, the fluctuations as well as the plateaued
values of the density mismatch are reduced. Note since the energy is roughly quadratic in
1-RDM elements, therefore an error bar of 2× 10−3 on 1-RDM elements will propagate to a
reasonable accuracy (mH) on the energy.
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D.9.3 SWAP Test Circuit in Quantum Bootstrap Embedding

Two H4 molecules each with a bond length of 0.5 Å under STO-3G basis is used to generate
Fig. 6.6 of the main text. For ease of classical simulation, the two-body terms are ignored
resulting in an non-interacting Hamiltonian. An overall circuit for the SWAP estimation
composed of two QPE eigensolver is given in Fig. D.5 which uses 27 qubits overall. Each
QPE circuit is further displayed in Fig. D.6 for clarity. The resulting histogram of the
QPE estimation is shown in Fig. D.7, which is proportional to the probability given in
Eq. (D.97). The highest peak with a measurement outcome of “11011" on the 5 evaluation
qubits corresponds to the many-body ground state of H4. Post-selection is performed with
this peak to ensure SWAP test is indeed estimating the overlap between the ground state.
In our example, the success probability of this post-selection is roughly 0.7. Therefore, the
overall post-selection success probability for two QPE solvers is 0.72 ≈ 0.5.

D.9.4 Quantum Bootstrap Embedding Calculation

In this section, we give more computational details of the QBE calculation in infinite sampling
limit as in Fig. 6.5 of the main text.

QBE Iterations. For the quadratic penalty optimization, we set the penalty parameter
λ = 1 initially. In each BE iteration, the penalty parameter λ is increased by a factor of 25.
For the linear constraint optimization, a gradient descent algorithm as described in Alg. 11
is used, where the initial step size of the gradient descent is set to 1.

Calculation of Total System Energy One important step after BE calculation con-
verges is to reconstruct the total system observables. One common observable is the total
system energy. In classical BE (CBE), the total system energy can be reconstructed from 1-
and 2-RDM of each fragment projected to the center sites. To be concrete, the classical BE
energy is defined as

ECBE =

Nfrag∑

A

∑

p∈CA

[
2NA∑

q

(
h(A)pq −

1

2
G(A),env
pq

)
P (A)
pq +

1

2

2NA∑

qrs

V (A)
pqrsΓ

(A)
pqrs

]
, (D.98)

where G(A),env is the Coulomb-exchange part of the Fock matrix in the embedding basis, h(A)
and V (A) are the fragment 1- and 2-electron integrals, P (A) and Γ(A) are the fragment one-
and two-electron reduced density matrices, respectively.

In quantum bootstrap embedding (QBE), one can certainly perform fermionic 1- and
2-RDM tomography on a quantum computer for the fragments, and then use Eq. (D.98) to
compute the total system energy. In our case, for simplicity, we define a similar notion of
QBE energy which is used in Fig. 6.5 of the main text to compute the energy

EQBE =

Nfrag∑

A=1

Tr[ρ(A)H(A)
C ], (D.99)
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Figure D.5: SWAP test circuit between two H4 molecule with one overlapping site. Note that
each QPE uses 8 system qubits and 5 evaluation qubits. The top qubit is the control ancilla
for SWAP test. The overall circuit is composed of 27 qubits.

where ρ(A) is the full density matrix of fragment A, and H(A)
C is a projected version of H(A)

that involves the center site and interaction between center and the rest sites on fragment
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Figure D.6: A QPE circuit with for H4 molecule, where a Hartree-Fock initial trial state
preparation circuit is also showed at the beginning. The circuit block labelled as “Hamilto-
nian" after the four initial Pauli X are a basis transformation unitary from canonical MO
basis to localized orbitals (LOs).

A. More concretely, we write H(A)
C as a sum of one- and two-body terms

H
(A)
C = H

(A)
1,C +H

(A)
2,C ,

H
(A)
1,C =

1

2
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q

h(A)pq +
∑
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2NA∑
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]
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∑

q∈CA

2NA∑

prs

V (A)
pqrs +

∑

r∈CA

2NA∑

pqs

V (A)
pqrs +

∑

s∈CA

2NA∑

pqr

V (A)
pqrs

]
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†
qasar.

(D.100)
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Figure D.7: Histogram of the measurement outcome of the 5 evaluation qubits for estimating
the H4 ground state energy with 1024 shots. Post-selection is performed on the highest peak
“11011".

Note that EQBE as defined in Eq. (D.100) does not exactly equal to ECBE as used in
classical BE calculation. There may be better ways to reconstruct ECBE on a quantum
computer without using fermionic density matrix tomography, and we leave this for future
investigation.

D.9.5 Details of VQE Eigensolver

In this section, we discuss how the Variational Quantum Eigensolver (VQE) can be applied as
a subroutine in the Quantum Bootstrap Embedding (QBE) method for computing the ground
state energy and ground state vector of different fragment Hamiltonians. Our simulations
with VQE were carried out on a noiseless simulator provided in Qiskit [Abr+19a].

VQE is a hybrid quantum-classical algorithm for computing the ground state (and excited
states) of a Hamiltonian H, using the variation principal ⟨ψ|H|ψ⟩ ≥ Eg where |ψ⟩ is the
normalized quantum state and Eg is the true ground state energy of H. In QBE, we may use
VQE to find the ground state energy and ground state vector of the fragment Hamiltonians.
Given an n-qubit fragment Hamiltonian H(A) of fragment A and appropriately chosen ansatz
circuit UA(θ) parameterized by θ, the steps of VQE are:

1. Prepare the state |ψ(θ)⟩ = UA(θ)|ψ0⟩ on the quantum device where |ψ0⟩ is an initial
state. |ψ0⟩ is typically chosen such that it can be prepared classically efficiently and
has a non-vanishing overlap with the exact ground state of the fragment Hamiltonian
(e.g., Hartree-Fock state of H(A)).

2. Measure the expectation value ⟨ψ(θ)|H(A)|ψ(θ)⟩ given a budget of nshots shots (which
we will specify later). We do this using the largest-degree first (LDF) algorithm [WP67]
considering the Pauli decomposition of H(A).

3. Update ansatz parameters θ through a classical optimizer, that will minimize the
expectation value. The classical optimizer may involve computation of gradient steps
or be a gradient-free method.
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4. Repeat the above steps 1-3 until convergence or stopping criteria (e.g., maximum
number of iterations, norm of gradient, etc.) is met.

5. Output |ψ(θ)⟩ as the ground state vector and ⟨ψ(θ)|H(A)|ψ(θ)⟩ as the ground state
energy, using the final values of the ansatz parameters θ.

The example considered using a VQE solver in this work is a 4-qubit random spin model
and a perturbed H4 linear molecule with open boundary condition under STO-3G basis. The
Hamiltonian for the H4 molecule is generated first by using a H-H bond length of 1 Å(with
atom labeled as 1, 2,3, 4 from left to right). The H4 molecule is then fragmented into two
fragments, where fragment A has atom 1,2,3 with atom 4 as a bath site. Similarly, fragment
B has atom 2,3,4 and uses atom 1 as the bath site. Since the native H4 is too small to
perform any meaningful bootstrap embedding (the two fragment already matches initially),
we manually perturb atom 3 on both fragment A (right edge site) and fragment B (center
site) by adding a chemical potential of +1 and -0.5, respectively.

The initial qubit Hamiltonian of each fragment is then obtained considering the Jordan-
Wigner encoding. The fragment Hamiltonians are stored as set of tuples {(αQ, Q)} corre-
sponding to its Pauli decomposition Hf =

∑
Q αQQ where Q ∈ {I,X, Y, Z}⊗n is a distinct

Pauli operator and αQ is the corresponding non-zero coefficient. This allows for a more
compact storage rather than holding the entire matrices corresponding to the Hamiltonians
in memory as there are only a polynomial in n number of non-zero coefficients αQ for each
fragment Hamiltonian. Moreover, from one iteration to the next in QBE with linear con-
straints, this set of tuples can be efficiently updated by updating a coefficient or appending
a new Pauli operator Q′ along with its coefficient αQ′ according to Eq. (6.17), where αQ′ is
one component of λ(A)

B , and Q′ is one-component of I ⊗Σr ⊗ I.
The ansatz of each fragment in the 4-qubit random spin model is considered to be the

two-local ansatz and the initial state is chosen to be |+⟩⊗3 state. The ansatz of each fragment
in the H4 chain is considered to be the UCCSD ansatz and the initial state is chosen to the
Hartree-Fock state. We use the classical optimizer of the quasi-Newton method L-BFGS.
The learning rate in QBE for all models is fixed to a constant value of 0.1 across iterations.

Fig. D.8 shows the convergence of the density mismatch for the 4-qubit spin model as
the number of eigenvalue calls (note BE iteration number is roughly proportional to the
number of eigensolver calls), comparing the VQE results (blue symbols) and exact classical
eigensolver (green symbols). As is expected, the mismatch converges exponentially as the
number of eigensolver calls increases, and the VQE results closely follow the exact results for
large to intermediate density mismatch values. As the mismatch is reduced to roughly 10−4

at about 500 eigensolver calls, the VQE results start to deviates from the exact results. The
shaded area shows the uncertainty of the VQE results. The inset (red symbols) plots the
deviation of the expected density mismatch (averaged over 100 independent runs) obtained
from VQE with respect to the exact results, which plateaus around 10−5. We tentatively
attribute this deviation from the exact result to the intrinsic ansatz truncation error of VQE.

In Fig. D.9(a), we show the convergence of the density mismatch on the H4 chain as a
number of eigenvalue calls, comparing the VQE results (blue symbols) and exact classical
eigensolver (green symbols). As observed earlier for the random spin model, the mismatch
converges exponentially as the number of eigensolver calls increases, and the VQE results
closely follow the exact results up to around 30 eigensolver calls. As the mismatch is reduced
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Figure D.8: Quantum bootstrap embedding convergence of the density mismatch for the
4-qubit spin model versus the number of eigenvalue calls, comparing VQE simulation (blue
cross) and classical exact diagonalization (green circle). The blue shaded area shows the
standard deviation from VQE estimations. The inset shows the absolute error from the VQE
estimation of the mismatch to the exact value from exact diagonalization, versus number
of eigenvalue calls. The number of shots considered in each step of VQE for measuring the
ansatz is fixed at 104.

below 10−2, the VQE results start to deviate from the exact results. We tentatively attribute
this deviation from the exact result to the intrinsic ansatz truncation error of VQE. To get
a finer-grained undertanding, in Fig D.9(b), the difference in the updates between the exact
solver and the VQE solver at each QBE iteration is plotted. We can see that this difference
is small throughout. This difference decreases as BE iteration goes, because the absolute
value of the update also decrease due to increasingly better mismatch.
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(a) Convergence behavior of density mismatch (b) Comparison of updates in fragment Hamilto-
nians with QBE iterations

Figure D.9: Quantum bootstrap embedding on H4 chain. (a) We compare the convergence of
the density mismatch versus the number of eigenvalue calls, comparing VQE simulation (blue
cross) and classical exact diagonalization (green circle). The inset shows the absolute error
from the VQE estimation of the mismatch to the exact value from exact diagonalization,
versus number of eigenvalue calls. The number of shots considered in each step of VQE for
measuring the ansatz is fixed at 104. (b) We compare the difference in the magnitude of
the updates of the Pauli terms (being updated or appended during QBE) in the fragment
Hamiltonians between the exact solver and the VQE solver, for each pair of fragment f and
neighbor nb with number of iterations. For each pair of (f, nb), we indicate the Pauli term
for each trend in the legend.
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