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Abstract

Airlines plan their aircraft and crew schedules using operations research methods.
However, these schedules are often disrupted due to the irregular nature of flight
operations. Airline recovery is the process in which airlines take various actions to
adjust and repair their aircraft routes, crew schedules, and passenger itineraries. This
process has a sequential structure in practice, where aircraft recovery is followed by
crew and then passenger recovery. Although recovery problems are smaller in scope
than their planning counterparts, limited solution timeframes prevent airlines from
using a full-scale optimization approach.

This thesis proposes fast solution methods that combine mixed-integer optimiza-
tion and supervised machine learning techniques to find better solutions to large-scale
airline recovery problems than those found with other exact and heuristic approaches.
Our approach reduces the solution space for a given disruption by adding constraints
(cuts) based on the patterns discovered in the solutions to historical disruptions. The
model with the added cuts is solved using mixed-integer optimization solvers.

During the day of flight operations, the available time for airlines to handle dis-
ruptions may vary. The overall solution process we propose allows parameter tuning
to match the extent of solution space reduction with the available solution time. This
feature helps the proposed methods to effectively navigate the trade-off between solu-
tion quality and runtime. Our computational studies are conducted using real flight
and crew schedules from major US airlines with more than 2,500 daily flights. Exper-
iments demonstrate that our approach can generate solutions of significantly higher
quality than benchmark methods.

We use tree-based classification methods to predict recovery decisions. Due to
their interpretable structures, we are able to discover insights into the attributes of
effective recovery decisions. We demonstrate that these insights can be incorporated
into currently used heuristic-based airline recovery processes to improve solution qual-
ity by up to 15%.
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Chapter 1

Introduction

1.1 Motivation

Airline recovery refers to the process by which airlines take action to adjust their

aircraft routes, crew schedules, and passenger itineraries in response to disruptions.

This process typically follows a sequential structure, even though solutions of each

step are highly dependent on other steps. The complexity of integrating aircraft,

crew, and passenger recovery steps and the solution time constraints during the day

of operations prevent airlines from solving the integrated problem.

Airline recovery problems are among the most complex integer optimization prob-

lems encountered regularly by the industry practitioners. What makes them partic-

ularly challenging is the solution time limitation on the day of flight operations.

When a disruption occurs, airlines must act quickly to recover their resources so that

the consequences of the disruption do not significantly propagate to their network.

Limited time availability prevents airlines from adapting optimization-based solution

methods, especially for large-scale problem instances. Heuristic methods based on

expert judgments or rules of thumb are common, potentially leading to low-quality

solutions, resulting in flight delays and cancellations, some of which may be avoid-

able. These disruptions can cost an airline millions of dollars per day. The total cost

of flight delays in 2007 was estimated to be $33 billion in the US alone (Ball et al.,

2010). More recently, the annual cost of flight delays worldwide was predicted to be

17



around $60 billion (Wang & Vaze, 2016).

One of the primary objectives of this research is to develop recovery methods that

airlines can implement in practice. We believe that there are four major require-

ments for an efficient and practical recovery system: quality, speed, flexibility, and

interpretability. Our objective in this thesis is to develop a set of solution methods

that can meet all these requirements.

1. Quality

The recovery method should generate high-quality recovery solutions. The main

objective of disruption management is to minimize the effects of disruptions on

flight operation costs, including crew and passenger costs. In this context, a

high-quality solution corresponds to a low-cost solution. Airlines would like to

find the highest possible quality (optimal) solution for every disruption. Since

this is rarely attainable, they instead seek applicable (feasible) solutions with

relatively good quality.

2. Speed

The recovery method should be fast because, on the day of flight operations,

solutions to disruptions must be generated within limited timeframes. This is

important because waiting for a recovery solution itself can cause further delays.

In this thesis, we assume that the practical solution time limit is five minutes

for individual steps and ten minutes for the entire recovery process. We develop

methods that can generate recovery solutions within these limits.

3. Flexibility

The recovery method should be flexible enough to easily be tuned to adapt to

the available solution time limit. The disruptions that airlines experience have

wide ranges with respect to scope, severity, and urgency. Severe disruptions,

such as an airport closure for several hours, correspond to very large problems

that may potentially affect the entire flight network. On the other hand, minor

disruptions, such as a crew calling out sick, would not have the same scope and

severity. Airlines would be inclined to spend a longer time looking for a solution
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to the former problem than to the latter. Therefore, it is important to ensure

that the recovery approach being used for each disruption type has a run-time

that is consistent with the airline’s practical needs for that type of disruption.

4. Interpretability

Airlines use decision support systems to help recovery staff handle the disrup-

tions during the day of operations. Whether it is based on heuristic solution

approaches or optimization-based methods, when a Decision Support System

(DSS) recommends a solution, it is still up to the recovery teams to decide

whether or not to follow the recommendation. In practice, many experienced

staff may be inclined to follow their own instinct rather than applying the DSS

recommendation if its rationale is not clear. In such a setting, the DSS sugges-

tions must be interpretable so that decision-makers can understand the reasons

for the recommendation. That would help build trust in the DSS and lead to

better overall recovery performance for the airline.

Machine learning (ML) methods, or artificial intelligence (AI) in general, have

recently been incorporated into many aspects of our lives. From customer-specific

shopping suggestions to image recognition tasks, ML/AI has shown tremendous suc-

cess in many fields. Recently, generative AI models, like ChatGPT, have initiated

discussions on whether human-level artificial general intelligence (AGI) is possible.

Many even argue that progress in AI developments should be slowed down and reg-

ulated to avoid unintended consequences.

On the basis of these success stories and recent developments, one may be tempted

to believe that AI/ML methods alone might be sufficient to tackle some of the most

complex problems, such as combinatorial optimization (CO) problems. Although

some studies have tried to pursue this idea, methods lacking any optimization in-

tegration usually fail to generate viable solution approaches on a consistent enough

basis to be usable in practice. A recent survey paper by Bengio et al. (2020) reviews

studies that use ML to solve CO problems. They argue that the major drawback

of using only ML is the difficulty of ensuring the feasibility of the solution. Airline
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recovery problems are examples of CO problems. They involve huge numbers of con-

straints modeling aircraft, crew, and passenger rules. Therefore, even with recent

progress, handling airline recovery problems by relying solely on AI/ML does not

seem possible. Such efforts fail to meet the most essential requirement of an airline

recovery system: generating feasible and high-quality solutions.

In this research, we show that combining ML and optimization helps develop so-

lution methods that meet all the major requirements listed above: quality, speed,

flexibility, and interpretability. ML accelerates the solution process by identifying

a solution space tailored for a given disruption and thus helps meet the speed re-

quirement. The selected ML method, classification trees, meets the interpretability

requirement due to the tree structure of the resulting classification models. Optimiza-

tion methods help achieve the quality requirement by creating a realistic model of the

problem and ensuring solution feasibility. The flexibility of the proposed methods is

achieved by tuning some key hyper-parameters of the presented overall approach for

different solution time limits.

1.2 General Framework

The general framework in this study is based on the idea that, under similar dis-

ruptions, the solution characteristics that lead to high-quality solutions can also be

similar. Therefore, to find high-quality solutions in limited timeframes, we can use

ML methods to discover the similarities between the current disruption and previ-

ous disruptions, solutions of which are generated in advance. Although ML methods

cannot predict the entire solution, partial predictions of recovery decisions help to

significantly accelerate the solution process.

Figure 1-1 summarizes the general flowchart of the solution methodology. The

main objective is to find a solution for the disruption on the day of operations. We

call this the online phase. The dots inside the online phase box represent alternative

solutions to the same disruption. Due to the time limitations, it is not practical to

consider all solution alternatives in the optimization model. Therefore, we filter the
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Figure 1-1: General flowchart of the solution approach

solution alternatives using ML predictions and determine the solution space for the

recovery problem by adding the corresponding constraints (cuts) to the model. The

regions of the solution space that are deemed not suitable for the given disruption are

removed by these cuts. When all cuts are added, we use a mixed-integer optimization

solver to find a high-quality solution within this reduced solution space.

The solution methodology also involves an offline phase to set up the methods

for online use. It starts with generating the disruption scenarios for the day of op-

erations based on historical delay data. After scenario generation, all scenarios are

solved with an optimization-based solution approach. The next step is to train ML

classification models to learn the relationship between disruption characteristics and

certain recovery decisions. The resulting classification models, also called classifiers,

are used in the online phase to filter the solution alternatives.

Solution spaces that lead to high-quality solutions may vary for different disrup-

tions (Figure 1-2). For example, alternative solutions to a disruption corresponding

to airport closure for a certain airport would not share too many similarities with so-

lution alternatives to address a minor disruption, such as a crew member not showing

up for duty.
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Figure 1-2: Efficient solution spaces for different disruptions

Figure 1-3 demonstrates the expected relationship between the average solution

quality (measured in terms of the recovery cost) and the size of the solution space

being considered, under different solution time limits. With shorter time availability,

e.g., 1 minute, a smaller solution space with fewer alternatives makes it easier to find

a higher-quality solution. If the available solution time is longer, e.g., 5 minutes,

it is better to include more solution alternatives in the model. Our solution process

allows tuning its hyper-parameters that govern the solution space reduction and aligns

it with the available solution time. This ability allows our proposed methods to

effectively navigate the trade-off between the solution quality and run time.

We argue above that the most effective solution space for a given disruption is a

function of the disruption characteristics and the available solution time limit. ML

methods help us to learn this mapping between the historical disruption scenarios

and their corresponding offline solutions.
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Figure 1-3: Relationship between available solution time and optimal size of the
reduced solution space
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1.3 Thesis Outline

Chapter 2: Crew Recovery with Aircraft and Passenger Considerations

We introduce a mixed-integer linear optimization model for crew recovery with air-

craft and passenger considerations. We represent a disruption as the set of primary

delay predictions for the flights in the network.

We follow the general framework presented in Section 1.2 and propose fast solu-

tion methods that combine optimization and ML methods to find solutions to crew

recovery problems within limited timeframes that are better than existing benchmark

approaches.

We conduct a computational study using actual flight and crew schedule infor-

mation from a major US airline with 2,870 daily flights to evaluate the performance

of our proposed solution approaches. The disruption scenarios are generated using

actual delay and cancellation data. Our experiments demonstrate that we can gener-

ate recovery solutions in 3 minutes with a 3% higher cost than the baseline solutions,

which are generated by optimization-based methods that require up to 2 hours. This

corresponds to a solution quality that is more than two times better than other prac-

tical benchmark methods.

To predict recovery decisions, we use tree-based classification methods that pro-

vide interpretable results, allowing us to discover insights into effective recovery de-

cisions. For example, our ML models allow us to identify the disruption conditions

under which a specific flight connection should be used. These types of insights can

enhance manual recovery processes by building the recovery team members’ trust in

the ML-based decision support systems.

Our ML-based approach generates more robust solutions to inaccurate delay pre-

dictions than those generated by optimization-only approaches. Compared to the

optimization-only method, our approach, using a combination of optimization and

ML, reduces the extent to which the solutions are overfitted to individual disruption

events. By generating solutions suitable for a wider range of disruptions than those

generated by optimization-only approaches, our approach ensures that the solutions
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perform relatively well even when the actual primary delays are somewhat different

than their predicted values.

Chapter 3: Integrated Aircraft, Crew, and Passenger Recovery

We introduce a tractable integrated recovery model that captures the major aspects

of schedule, aircraft, crew, and passenger recovery steps. It is based on a modeling

approach first presented by Bertsimas and Patterson (1998) that provides tractability

due to the way the main decision variables are defined.

We follow the general framework presented in Section 1.2 and propose fast so-

lution methods that combine optimization and ML techniques to find solutions to

integrated recovery within limited timeframes that are better than existing bench-

mark approaches.

We conduct a computational study using real flight and crew schedule information

from a major US airline with 3,706 daily flights to evaluate the performance of the

proposed methods. Our experiments demonstrate that the presented model improves

the tractability of the integrated problem, and the overall solution approach can

generate integrated recovery solutions in 8 minutes within 5% of the baseline solutions,

which are generated by an exact optimization-based solution method in 2 hours.

Compared to other practical benchmark methods that we tested, solutions generated

by our proposed method, under identical run-time budgets, are 2-3 times better in

terms of solution quality difference measured relative to the baseline solutions.

The interpretable structure of tree-based classification methods allows us to dis-

cover valuable insights into the decisions that lead to effective and trustworthy inte-

grated recovery strategies.

Chapter 4: Rule-based Improvements to Recovery Heuristics

We propose simple modifications to heuristic solution methods based on rules of

thumb discovered using ML methods. Our results show that it is possible to improve

the performance of the existing recovery processes to some extent and reap some of the

benefits of the ML-based methods, without undertaking the complex implementation
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efforts required to adopt full-fledged ML-based methods.

Our benchmark solution approach uses a common matheuristic for crew recovery

problems and for integrated recovery problems. It relies on a solution space reduction

mechanism that keeps some of the planned aircraft and crew schedules intact while

allowing modifications to others to create a recovery solution to a given disruption.

The aircraft and crew schedules that are allowed to be modified are determined based

on the number of swap opportunities with disrupted aircraft routes and crew sched-

ules. We show that by incorporating simple rules into the process of determining the

schedules to keep, we can improve the solution quality by up to ∼15%.

Finally, in Chapter 5, we summarize the thesis and discuss future research direc-

tions.
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Chapter 2

Crew Recovery with Aircraft and

Passenger Considerations

2.1 Introduction

For decades, operations research methods have been successfully applied to airline

scheduling. A wide range of airline scheduling problems have been formulated as

integer or mixed integer optimization problems, and various solution algorithms and

heuristics have been developed to solve them. Due to the complex structure of

scheduling problems and the massive scale of flight networks, major airlines use opti-

mization tools, developed in-house or provided by software vendors, to optimize their

primary resources, namely, aircraft and crew.

However, optimized aircraft and crew schedules are rarely operated precisely as

planned due to operational disruptions, such as weather impacts, aircraft malfunc-

tions, crew absences, etc. While incorporating robustness into schedules can help

reduce recovery costs (Barnhart & Vaze, 2015b), airlines still need to closely monitor

their flight operations and take actions to repair disrupted aircraft and crew schedules

and passenger itineraries to minimize the effects of disruptions. This process is called

airline disruption management. The operational recovery decisions include delaying

or canceling flights, re-routing or swapping aircraft, re-scheduling crews, calling in

reserve crews, using spare aircraft, rebooking passengers, etc.
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In theory, jointly optimizing the recovery of the flight schedules and aircraft,

crew, and passenger itineraries, should generate the best solutions. However, the

complexity of the integrated problems and practical time limitations during the day

of operations prevent airlines from adopting such an approach. Instead, many major

airlines follow a sequential recovery process in which the joint problem of aircraft

and schedule recovery is solved first, followed by crew recovery and then passenger

recovery. This study focuses on the crew recovery problem, which attempts to repair

disrupted crew schedules during the day of operations while ensuring aircraft recovery

solution feasibility and indirectly accounting for passenger disruption costs.

Although recovery problems are smaller than their planning counterparts, the

limited time availability makes it more challenging to use optimization approaches to

solve recovery problems to an acceptable solution quality. Instead, airlines usually

adopt methods based on a combination of simplified optimization problems, heuristic

solutions, and expert judgment to find solutions in limited timeframes. These solu-

tions tend to be selected from a smaller set of alternatives than available, and hence

can result in increased recovery costs. These recovery costs can add up to significant

amounts. According to Ball et al. (2010), the total delay cost in the US airline in-

dustry in 2007 was around $33 billion, more than $8 billion of which were additional

fuel, crew, and maintenance expenses. The worldwide annual cost of flight delays was

predicted to be around $60 billion (Wang & Vaze, 2016).

The airline industry is known to have low profit margins (Doganis, 2005). The

average profit margin since 2006 is less than 2% (IATA, 2023b). During the most

profitable years within that period, 2015-2019, it was around 4.2%. In 2023, despite

exceeding the initial forecasts, the net profit margin in the airline industry is expected

to be 1.2% (IATA, 2023a). Due to the large magnitudes of recovery costs, efficient

re-planning of expensive resources, such as aircraft and crew, plays a vital role in

maintaining profitability. With the increasing complexity associated with expanding

network sizes and growing passenger demand, it has become increasingly difficult

for airlines to use manual or heuristic-based simplified recovery processes to find

high-quality recovery solutions. Consequently, there is a growing need for fast and
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automated optimization-based methods to handle increasing complexity and generate

low-cost recovery solutions.

Some airlines and software vendors have undertaken initiatives to develop au-

tomated recovery systems with optimization capabilities. A common philosophy in

these initiatives is to reduce the size of the problem by considering only a limited

number of flights, aircraft, and crews. For example, when recovering crews associated

with one crew base, a common way to reduce the size of the problem is to exclude

changes to crew schedules for crews at other bases. Another common approach is to

exclude from optimization all aircraft and crews that are not themselves disrupted and

not seen as a direct swap opportunity for the disrupted aircraft and crews. However,

these size reduction heuristics may worsen the recovery costs. By not exploring the

entire available solution space, promising but non-obvious recovery alternatives may

go unnoticed. Specifically, a promising yet underutilized opportunity lies in learning

from the solutions to similar recovery problems that succeeded in lowering the recov-

ery costs in previous instances or offline settings. By identifying similarities across

disruption instances using data-driven methods, such as machine learning (ML) tech-

niques, to guide the online optimization approach, it may be possible to accelerate

the solution process without sacrificing solution quality. That is the main idea behind

the methods developed in this research.

Specifically, we propose a new mixed-integer optimization model for crew recovery

while accounting for aircraft and crew considerations, enabling partial integration of

these other recovery aspects into crew recovery optimization. We then propose a

new solution approach leveraging similarities across disruption instances to accelerate

the process of generating solutions to the optimization model. Our computational

experiments, performed using some of the largest recovery instances found in existing

literature, demonstrate that our method achieves near-optimal solutions within much

shorter runtimes than all benchmarks tested for such highly challenging instances.

The remainder of this chapter is organized as follows. In this section, we review

prior literature, discuss the motivation behind this study, and list its contributions.

Section 2.2 presents the modeling approach, discusses our disruption representation,

29



and provides a mathematical formulation for crew recovery. In Section 2.3, we present

the solution methodology, including how we leverage ML techniques. Section 2.4 is

dedicated to the computational study, including the experimental setup, results, and a

discussion of the insights gathered from the experiments. Section 2.5 presents further

improved results obtained using an extended version of our solution method, and

also demonstrates the robustness of our solutions in the face of inaccuracies in delay

predictions used when making the recovery decisions. Finally, Section 2.6 summarizes

the chapter and discusses future research directions.

2.1.1 Literature Review

Early studies in airline disruption management primarily focused on the aircraft re-

covery problem (Teodorović and Guberinić (1984), Teodorović and Stojković (1990)).

Since then, many others have studied aircraft recovery, often modeling the problem

as an integer optimization problem (Clarke (1998), Rosenberger et al. (2003)).

From a mathematical perspective, the crew recovery problem is similar to the

aircraft recovery problem but has additional constraints concerning crew legality rules

due to government regulations and collective bargaining agreements. Stojković et al.

(1998), Nissen and Haase (2006), and Medard and Sawhney (2007) formulated the

crew recovery problem assuming that the flight schedule is recovered first. Stojković

and Soumis (2001), Abdelghany et al. (2004), and Zhao et al. (2007) are some of the

first crew recovery studies that took flight delays into account. Johnson et al. (1994),

Lettovskỳ et al. (2000), and Yu et al. (2003) extended crew scheduling formulations

with additional variables to represent flight cancellations. Considering that the crew

recovery problem is usually handled after the aircraft recovery problem, the modeling

strategy that avoids further cancellations in the crew recovery step better reflects the

airline practices.

There are two main types of recovery formulations: an arc-based multicommodity

network flow model and a string-based set-covering model. In the arc-based model,

the underlying network consists of flight nodes, and arcs connect nodes whose corre-

sponding flights could be consecutively assigned to the same crew. This type of model
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includes an elaborate set of constraints to ensure that the crew duties in the solution

are feasible. A crew duty is a set of consecutive flights that can be operated by a

crew on a given day. In a string-based set covering model, alternative crew duties

(also called strings) that individual crews can operate are generated in advance. In

this modeling approach, binary decision variables are introduced to reflect whether

or not a string is included in the solution.

Many previous recovery studies that employ set-covering models introduce flight

copies to model flight delay decisions. Each flight copy is defined as a combination

of flight departure and arrival time, and different copies of the same flight represent

different extents to which a flight is delayed. The main downside is that this signif-

icantly increases the size of the problem. Consequently, these flight delay modeling

approaches may lead to tractability issues in larger problem instances.

Liang et al. (2018) used an alternative set-covering-based modeling approach to

airline recovery. Specifically, they model the aircraft recovery problem as a set-

covering problem with continuous delays instead of the time-increment-based discrete

delays approach used by the models adapting a flight copies approach. Liang et al.

(2018) present a column generation heuristic that considers delay propagation to cal-

culate the aircraft rotation durations. Rotation is defined as the sequence of flights

assigned to an aircraft. The flight delays in the final solution can take any continuous

values rather than being restricted to a discrete set, and thus offer greater solution

flexibility. Crew duty and rotation are similar concepts as they both correspond to

a sequence of flights assigned to a crew and an aircraft, respectively. Therefore, the

continuous delay approach is also viable for the crew recovery problem.

An essential requirement for any recovery method is the ability to generate solu-

tions in limited timeframes. A recent airline disruption management survey (Hassan

et al., 2021) argues that the time available for a recovery solution generation can

sometimes be as low as 1-2 minutes. Some past studies have tested their airline re-

covery ideas and methods on small and synthetic problems, where it is possible to

generate solutions in a reasonable time. However, they often do not scale well to real-

life instances. Other studies that try to tackle relatively larger problems usually allow
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solution times to be extended, for example, to 10-30 minutes. Some studies reduce

the problem size to generate solutions within available solution time by limiting mod-

ifications to planned aircraft and/or crew schedules. These rule-based restrictions,

while easy to use, do not consider disruption characteristics. For example, Stojković

and Soumis (2001) and Abdelghany et al. (2004) limit the delay of a flight to 60

minutes, while Lettovskỳ et al. (2000) and C.-H. Chen and Chou (2016) limit the

number of crew swap alternatives. These restrictions are applied across all flights and

across instances regardless of the disruption attributes, potentially eliminating good

solutions.

The idea of applying ML to aviation operations is not new. Rebollo and Bal-

akrishnan (2014), Kim et al. (2016), Choi et al. (2016), Wang and Vaze (2016) and

Gopalakrishnan and Balakrishnan (2017) use data related to flight operations, such

as weather events and declared airport capacities, and apply a wide range of ML and

statistical methods to capture delay propagation mechanisms and predict flight delay

distributions. Gopalakrishnan et al. (2016), Kuhn (2016) and Gorripaty et al. (2017)

leverage ML techniques to analyze the airspace system, identify patterns, and classify

days based on their disruption characteristics. However, none of the aforementioned

studies directly tackle the problem of minimizing airline recovery costs.

Airline recovery problems, like their planning counterparts, are combinatorial in

nature. Recent years have seen considerable interest in using ML for combinatorial

optimization (CO) problems, for example, for developing better branching and cutting

plane techniques. Alvarez et al. (2017) approximate branching decisions using decision

trees and supervised ML, while Gasse et al. (2019) use graph neural networks (GNN)

to learn an offline approximation for branching decisions. Tang et al. (2020) use

reinforcement learning to select good cutting planes, while Baltean-Lugojan et al.

(2018) use a neural network to approximate the lower bound improvement generated

by cutting planes.

Some researchers have recently been developing ML-based methods specifically

for solving certain classes of airline recovery problems, which are specialized mixed-

integer and combinatorial optimization formulations. Hondet et al. (2018) experiment
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with using reinforcement learning methods for aircraft recovery decisions without re-

lying on optimization. Rashedi et al. (2023) present a hybrid approach that leverages

offline optimization solutions to train supervised ML techniques, to expedite the so-

lution of the aircraft recovery problem.

A recent survey paper by Bengio et al. (2020) classifies the studies that combine

ML and optimization for solving CO problems based on their learning methods and

algorithmic structures. They consider two learning methods — imitation, based on

supervised ML methods, and experience, based on reinforcement learning methods —

and three classes of algorithmic structures. The first algorithmic structure is end-to-

end learning, which uses ML to predict and create the solution to a problem without

using optimization. The second is learning-to-configure, which uses ML and opti-

mization sequentially to initiate, partially generate, or complete the solution. The

last class, ML alongside optimization, involves an iterative use of ML and optimiza-

tion within the same algorithm. Studies that replace existing branching mechanisms

with the faster, ML-based branching methods fall into this last category. The proce-

dures developed in this chapter follow a supervised ML approach, and an algorithmic

structure that falls within the learning-to-configure category.

Studies employing ML for combinatorial optimization usually aim to accelerate the

solution process, in a way that is not directly informed by the available solution time,

by replacing some of the computationally heavy tasks with ML procedures (Alvarez

et al. (2017), Balcan et al. (2018), Alabi et al. (2019) and Morabit et al. (2021)). A

crucial, yet often neglected, desirable property of solution approaches is the ability

to adjust to the available solution time. This is especially important in the airline

recovery context because airlines may face varying time constraints when searching

for solutions to address different types of disruptions. Some disruptions, such as a

sudden equipment failure delaying a flight departure, require a quick solution within

just a few minutes, while others may allow for several minutes, such as an airport

likely to experience capacity reduction later in the day. Running the same solution

procedure for as long as time availability allows is not an ideal approach. Instead,

there is value in developing methods that can be tuned to the computational needs.
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When employing ML for combinatorial optimization, one faces a clear trade-off.

On the one hand, delegating less work to ML can lead to higher quality solutions,

at the expense of potentially longer run-times. On the other hand, delegating more

can provide faster solution convergence, but at the expense of potentially greater

suboptimality. Our experiments showed that, especially with shorter solution time

availability, the size of the solution space can be too large to find even a feasible

solution, let alone a high-quality one. The extent of solution space reduction that

leads to the best solution varies with varying solution time availability. For the best

performance, the recovery method should be adjustable to the available solution time

and should be able to identify the best possible solution quality for each run-time

budget. In this study, we develop methods that help find the highest possible quality

solution for a given solution time limit, by tuning some of the hyper-parameters of our

solution approach and demonstrating their stability through out-of-sample tests. This

helps the proposed methods to adjust to the available solution time, thus effectively

navigating the trade-off between solution quality and run-time.

2.1.2 Contributions

A major challenge in using ML for recovery problems is ensuring the feasibility of the

generated solutions. ML-only methods do not provide a feasibility guarantee (Bengio

et al., 2020), thus necessitating a combination of optimization and ML.

We develop and employ effective ML-driven solution space reduction strategies

before running optimization, and then solve the reduced optimization problem using

state-of-the-art optimization solvers. ML accelerates the solution process by quickly

evaluating recovery decision alternatives as a function of the disruption scenario at-

tributes, fixing some of them in advance, and thus limiting the solution space. Our

results show that this method provides a more effective alternative to the common

solution space reduction methods used in practice and reported in the literature, such

as adding only a limited number of candidate crews to the solution space.

The major contributions of this research are listed below.

1) Model: We introduce a new modeling approach for the crew recovery problem
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with aircraft and passenger considerations that accounts for the various types of

propagation of delays through the network. The model, partly based on the set-

covering model, uses continuous delay modeling (instead of flight copies) similar to

the aircraft recovery model by Liang et al. (2018). To accurately reflect the airline

recovery processes in practice, our model does not allow additional flight cancellations

beyond those decided in the aircraft recovery step. Instead, it ensures the feasibility of

aircraft rotations under crew-based propagation of flight delays. Disrupted passenger

recovery considerations are added as approximate cost components to the objective

function to incentivize the model to seek more passenger-friendly solutions.

2) Solution Method: We present a data-driven and ML-guided approach to

reduce solution space for crew recovery optimization. We define the set of decisions

corresponding to a small portion of the overall recovery solution as a micro-solution

and train ML models to predict the use of these micro-solutions as part of the over-

all crew recovery solutions. The feature set used in ML model training includes

disruption information and a feature representing the use of the corresponding micro-

solution in the aircraft recovery solution. Note that the aircraft recovery solution is

obtained before the crew recovery process begins and hence it can be used as an input

to the crew recovery process. This feature representing the use of the corresponding

micro-solution in the aircraft recovery solution is needed because our crew recov-

ery optimization model ensures the feasibility of the aircraft recovery solution and

micro-solutions in aircraft and crew recovery solutions are expected to be correlated.

Unlike other approaches that use decision variable-based predictions (Furian et al.,

2021) or try to predict the entire solution (Bertsimas & Stellato, 2022), our micro-

solution predictions focus on a smaller portion of the overall solution. Specifically,

each micro-solution corresponds to a follow-on (F/O) pair, defined as two consecutive

flights in an assigned crew duty. The proposed solution method fixes the F/Os that

have a high probability of being in the overall solution, based on the ML predictions.

Fixing an F/O corresponds to adding constraints (cuts) to the model that require

that either the flights in the F/O are assigned to the same crew duty or at least one

of the flights in the F/O is assigned to high-cost reserve crews (which are deemed as
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last resort recovery actions). Each such cut eliminates from the model some recovery

decisions that are unlikely to be in an optimal or near-optimal solution.

3) Recovery Cost Reduction: Our fast and tunable solution methods, com-

bining optimization and ML tools, generate solutions with recovery costs that are

consistently lower than the solutions generated with other heuristics and state-of-the-

practice solution approaches. Moreover, we generate these solutions within limited

timeframes of under 5 minutes. Recovery costs for solutions generated with our ap-

proach in under 5 minutes of runtime are also compared with those generated using a

direct optimization approach, allowing for run-times of up to 2 hours. Our solutions

found in 5 minutes are within ∼3% of the cost of the direct optimization solutions,

while the best benchmark method generates solutions with a ∼6% cost above the

direct optimization solutions.

4) Efficient Setup for Offline Training: The primary objective of this research

is to develop practical methods that airlines can adopt. The proposed methods require

that an offline training phase be completed before the day of operations. The time

and computational resources required during this offline process may be a bottleneck

for some airlines. To reduce the resources needed for our approach, we introduced

procedures to significantly accelerate even the offline phase while still generating high-

quality solutions. This is accomplished by a) generating tailored solution databases

for different disruption types, b) defining a concise feature set for each micro-solution,

and c) accepting the use of lower-quality solutions, with a 20% optimality gap target,

for generating the database and for training the ML models.

5) Improved Solution Robustness: We show that our methods can yield

solutions that are as robust or more robust to uncertain delay predictions than those

found by the direct optimization approach. Our experiments show that the recovery

costs for the direct optimization solutions are ∼3% lower than those for our ML-based

optimization solutions when the recovery cost is calculated assuming perfect delay

information. However, the costs of our ML-based optimization solutions are about

the same as those of the direct optimization solutions, when the delay predictions

are imperfect. We observed that the F/Os used in ML-based optimization solutions
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occur more frequently in operations than those used in the direction optimization

solutions, suggesting that the former are suitable for a broader range of disruptions

and thus enhance the solution robustness.

6) Interpretability: We use tree-based classification methods so that the result-

ing classifier structures can be easily interpreted. These interpretable classifiers can

not only improve the level of trust among human decision-makers towards the auto-

mated ML-driven decision support tools, but they can also be used to guide manual

rule-of-thumb-based recovery processes.

2.2 Problem Statement and Mathematical Model

2.2.1 Crew Recovery Problem

Broadly speaking, crew recovery is the process by which airlines modify their crew

schedules to minimize the effects of disruptions. Major crew recovery decisions include

re-scheduling crews, calling in reserve crews, and re-scheduling flights. The decisions

taken by airlines must comply with crew scheduling and recovery regulations pub-

lished by government agencies, such as the Federal Aviation Administration (FAA)

in the United States. Crew recovery solutions must comply with numerous rules and

regulations (Barnhart & Smith, 2012). We considered some of the most important

crew recovery rules in our model. However, our model also allows considering many

other crew recovery rules due to our string-based modeling approach.

A critical regulation concerns flight duty period (FDP) limits. FAA defines FDP

as “a period that begins when a pilot is required to report for duty with the intention

of conducting a flight or series of flights and ends when the aircraft is parked after

the last flight with no intention for further aircraft movement by the same pilot.” A

crew is deemed to be on duty from the check-in time for the first flight in the assigned

duty until the arrival time of the last flight. The sequence of flights assigned to a

crew within an FDP is called a crew duty. The actual FDP duration is affected by

flight delays and their propagation through crew duties. It is crucial to keep track of
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the actual FDP values because it is illegal for a crew to operate a flight if the legal

FDP limit is exceeded.

In addition to the maximum FDP time, other rules should be followed when

generating a crew duty, like the minimum connection times between two consecutive

flights in the duty. If the flights are assigned to the same aircraft, the connection

time should be greater than or equal to the minimum aircraft turnaround time to

allow flight preparation activities such as unloading and reloading baggage and cargo,

refueling, cleaning and maintenance of the aircraft, and boarding and disembarking

passengers. Although the minimum turn-around time scheduled by different airlines

may vary, values of around 25 to 30 minutes are common in practice for narrow-body

aircraft, and those ranging from 45 to 90 minutes are common for wide-body aircraft.

If there is an aircraft change in the duty, that is, if the consecutive flights in a crew

duty are assigned to different aircraft, an additional time (usually around 15 minutes)

is needed for the crew to connect to the new aircraft.

Another important rule is the minimum duty rest time, which specifies the mini-

mum off-duty time that crews are entitled to after completing a duty. This rule en-

sures that crews are well-rested and can perform their duties effectively, even during

long and demanding schedules. Our model ensures that FDP limits are not exceeded

by computing delay propagation through the crew duty strings. Moreover, it also

ensures that the legality rules on the minimum connection time between the flights

(with and without aircraft change), and the minimum rest time between consecutive

duties are satisfied.

2.2.2 Disruption Definition

Since disruption information is a key input to the mathematical model, before sharing

the details of the model, we present the disruption definition used in this study and

discuss the underlying assumptions.

Since, in practice, the crew recovery problem is usually addressed after the sched-

ule and aircraft recovery steps, we define the disruptions from a crew recovery perspec-

tive. A major issue in crew recovery is the extension of crew duty duration resulting
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from flight delays. As discussed in Section 2.2.1, it is against regulations to operate

crew duties that exceed FDP limits. Additionally, many other problems can also arise

due to flight delays. For example, minimum duty rest time requirements could be

violated, rendering the planned crew schedules illegal for the next day. The passen-

ger itineraries can get significantly impacted by the flight delays. Some passengers

may miss their connections, while others may experience extensive delays, resulting

in inconvenience and loss of passenger goodwill. Taking into account the impacts of

flight delays on the crew recovery problem, as well as on passenger itineraries, we

characterize the disruption of a given day of flight operations as a set of expected

flight delays in the entire network.

However, not all types of flight delays can be used to characterize disruptions. A

flight delay could occur because its aircraft or the crew did not arrive on time due

to a delay on a previous flight. This kind of delay is called propagated delay. It

does not occur because of an external disruption event for the current flight that the

airline cannot control. For example, the propagated delay for the current flight may

be avoided if the airline decides to use a backup aircraft or reserve crew instead, thus

preventing the delay from the previous flight from propagating.

Similar to Lan et al. (2006), we assume that the total delay of a flight 𝑑𝑖 is the

sum of two components: propagated delay and non-propagated delay, described as:

• Propagated delay (𝑝𝑖): The delay of flight 𝑖 caused by the late arrival of the

flight immediately before flight 𝑖 on the same aircraft rotation, crew duty or

passenger itinerary. The propagated delay of a flight depends on the operated

aircraft rotations, crew duties, and realized passenger itineraries.

• Non-propagated delay (𝑁𝑃𝑖): The delay of flight 𝑖 caused by external sources of

disruptions such as air traffic conditions, equipment failures, or other unforeseen

factors. This type of delay is also called independent delay (Lan et al., 2006), as

it does not depend on the operated aircraft rotations, crew duties, or realized

passenger itineraries.

Let 𝑖 and 𝑗 be consecutively assigned flights to a crew and 𝑆𝐶𝑖𝑗 be the slack time
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Figure 2-1: Delay propagation mechanism through operated aircraft rotations, crew
duties and realized passenger itineraries

between the flights, which is the difference between the planned connection time and

the minimum turnaround time. Minimum turnaround time for crew is defined as the

minimum time required between the arrival of the previous flight and the departure

of the next flight assuming both are assigned to the same aircraft. The planned

connection time is the time planned between the arrival of the earlier flight and the

departure of the later flight. The total delay of flight 𝑗, denoted 𝑑𝑗, equals 𝑝𝑗 +𝑁𝑃𝑗,

where 𝑝𝑗 = 𝑚𝑎𝑥(𝑑𝑖−𝑆𝐶𝑖𝑗, 0). The delay propagation mechanism through aircraft ro-

tations and passenger itineraries, which the model decides to be kept intact, is similar

where the corresponding slack time values are defined as 𝑆𝑅𝑖𝑗 and 𝑆𝑃𝑖𝑗, respectively.

Slack time for passengers, 𝑆𝑃𝑖𝑗, depends on minimum passenger connection times

rather than minimum turnaround time.

Figure 2-1 shows an example of a flight connection where the planned connection

time is 60 minutes, the minimum turnaround time is 30 minutes, and hence the

slack time between flights 𝑖 and 𝑗, 𝑆𝐶𝑖𝑗, is 30 minutes. The delay of flight 𝑖, 𝑑𝑖, is

45 minutes, and the non-propagated delay of the flight 𝑗, 𝑁𝑃𝑗, is 40 minutes. To

calculate the total delay of flight 𝑗, 𝑑𝑗, we first calculate the propagated delay, 𝑝𝑗, as

15 minutes, 𝑝𝑗 = 𝑚𝑎𝑥(𝑑𝑖−𝑆𝐶𝑖𝑗, 0) = 𝑚𝑎𝑥((45− 30), 0). Thus, 𝑑𝑗 equals 55 minutes,

the sum of the propagated departure delay of 15 minutes, and the non-propagated

delay of 40 minutes.

𝑁𝑃𝑖 is defined by the scope and magnitude of the actual disruption but does
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not depend on the operated aircraft rotations, crew duties, or realized passenger

itineraries. Therefore, we mainly characterize the disruptions in terms of the 𝑁𝑃𝑖

values for individual flights. The total delay of a flight, 𝑑𝑖, and the propagated delay,

𝑝𝑖, are introduced as decision variables and calculated as described above, within

the mathematical model formulation. In contrast, the 𝑁𝑃𝑖 values are defined by the

current disruption scenario and are provided as input to the model.

This approach to defining disruptions provides three practical benefits. First, it

accounts for a wide variety and combination of issues in the airline network that may

disrupt flight operations, instead of focusing narrowly on each disruption. Due to the

interconnected nature of flight networks, even small disruptions may have network-

wide propagation impacts. Therefore, it is crucial to consider all forecasted flight

delays and disruptions when optimizing recovery plans. Second, this definition not

only considers problematic flights but also takes the predicted early arrivals (repre-

sented as negative 𝑁𝑃𝑖s) into account to discover and exploit the flexibility provided

by them. For example, by creating a crew duty in which a flight that is predicted

to arrive early due to a block time slack is assigned immediately after a problem-

atic flight, it may be possible to reduce or even prevent the propagation of the delay

further downstream. This is particularly relevant since many airlines have increased

block time buffers in recent years to further pad their schedules. Finally, this defi-

nition offers a comprehensive set of features, which makes it convenient for the ML

model to detect similarities between different disruption scenarios.

2.2.3 Modeling Approach

As discussed in Section 2.1.1, our model uses a set-covering formulation with continu-

ous delay modeling (instead of requiring flight copies) that calculates the propagation

of flight delays through the network. To achieve this, we first generate a large set

of crew duty strings based on the planned flight schedules. This set also includes

crew duty strings that are infeasible with respect to minimum connection time rules

if the flights are operated as scheduled. We allow our mathematical optimization

model to determine the departure and arrival times for each flight in the crew duty
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by introducing a set of constraints to calculate delay propagation. These constraints

ensure that the flight departure time is no earlier than the earliest time when the

crew operating the flight is available, the earliest time when the aircraft assigned

to the flight is available, the earliest time when all the passengers whose itineraries

are decided to be kept intact are available or the flight’s scheduled departure time,

whichever happens last.

2.2.4 Crew Recovery Model with Aircraft and Passenger Con-

siderations

The Crew Recovery Model with Aircraft and Passenger Considerations (CRM-APC)

minimizes crew recovery costs and approximate passenger delay and disruption costs,

while ensuring that the aircraft recovery solution remains feasible. It assumes that

the aircraft recovery problem is solved first, and its output is used as an input to

the CRM-APC. The recovery decisions captured by the CRM-APC model include

delaying flights, re-scheduling crews, using reserve crews, and breaking passenger

itineraries.

A passenger itinerary is deemed broken when passengers cannot fly at least one of

the original flights in their itinerary due to delay-induced missed connections. Pas-

sengers on such an itinerary are considered disrupted. The CRM-APC approximates

the passenger disruption cost from broken itineraries. It only considers itineraries

broken due to delay decisions taken by the CRM-APC model. Broken itineraries due

to cancellations in the aircraft recovery step are not considered.

In this formulation, a crew corresponds to a cockpit crew consisting of one captain

and one first officer. Normal reserve crews are those who have no active duties planned

during the recovery period, but are tasked with being ready during the recovery period

to fly if called in. In the event of insufficient availability of normal reserve crews,

airlines may, as a last resort, call in crews on their off-days or vacations. We call

these crews as high-cost reserve crews because they are paid at a higher rate than

other crews.
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In addition to the crew duties generated to cover the flights in the network, the

model also uses a set of dummy crew duties, 𝑆𝐷, that correspond to crew staying

where they are if their next day’s duty starts at the same airport or transferring the

crew to the airport where their next day’s duty starts, by some other means than the

scheduled flights in the network, such as deadheading on another airline’s scheduled

flight and using a mode of transportation other than flights. Deadheading corresponds

to a crew flying as passengers.

Notation

Sets

𝐼: the set of flights

𝐾: the set of crews, including normal reserves

𝑆: the set of crew duties, also called crew strings

𝑆𝐷: the set of dummy crew duties

𝑅: the set of aircraft rotations selected in the aircraft recovery step

𝑃 : the set of planned passenger itineraries

𝐹𝑠: the set of consecutive flight pairs (𝑖, 𝑗) ∈ 𝐼 in crew string 𝑠 ∈ 𝑆

𝐹𝑝: the set of consecutive flight pairs (𝑖, 𝑗) ∈ 𝐼 in passenger itinerary 𝑝 ∈ 𝑃

𝐹𝑟: the set of consecutive flight pairs (𝑖, 𝑗) ∈ 𝐼 in aircraft rotation 𝑟 ∈ 𝑅

𝑆𝑘 : the set of crew strings 𝑠 ∈ 𝑆 that can be assigned to crew 𝑘 ∈ 𝐾

𝐾𝑠 : the set of crews 𝑘 ∈ 𝐾 that can be assigned to crew string 𝑠 ∈ 𝑆

Data

𝑁𝑃𝑖: non-propagated delay of flight 𝑖 ∈ 𝐼

𝐶𝐶𝑘
𝑠 : cost of assigning string 𝑠 ∈ 𝑆 to crew 𝑘 ∈ 𝐾

𝑊𝐶𝑘
𝑠 : crew delay cost per minute when string 𝑠 ∈ 𝑆 is assigned to crew 𝑘 ∈ 𝐾

𝑍𝐶𝑖: cost of assigning flight 𝑖 ∈ 𝐼 to a high-cost reserve crew

𝑄𝐶𝑝: approximate cost associated with broken passenger itinerary 𝑝 ∈ 𝑃

𝑉 𝐶𝑝: passenger delay cost per minute of arrival delay for itinerary 𝑝 ∈ 𝑃
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𝑆𝐶𝑖𝑗: planned slack time between flights 𝑖, 𝑗 ∈ 𝐼 for a crew connection

𝑆𝑅𝑖𝑗: planned slack time between flights 𝑖, 𝑗 ∈ 𝐼 for an aircraft connection

𝑆𝑃𝑖𝑗: planned slack time between flights 𝑖, 𝑗 ∈ 𝐼 for a passenger connection

𝑎𝑖𝑠: 1 if crew string 𝑠 ∈ 𝑆 contains flight 𝑖 ∈ 𝐼; 0 otherwise

𝐿𝑆𝑠: last flight in crew string 𝑠 ∈ 𝑆

𝐿𝑅𝑟: last flight in aircraft rotation 𝑟 ∈ 𝑅

𝐿𝑃𝑝: last flight in passenger itinerary 𝑝 ∈ 𝑃

𝐿𝐷𝑟: maximum allowable delay of the last flight in aircraft rotation 𝑟 ∈ 𝑅 (con-

sidering both the maintenance requirements and the start time of the next rotation).

𝐿𝐷𝑘
𝑠 : maximum allowable delay of the last flight in crew string 𝑠 ∈ 𝑆 when

assigned to crew 𝑘 ∈ 𝐾 (considering the legality of that duty and the start time of

the next duty)

𝑀 : an arbitrarily large number.

Decision Variables

𝑦𝑘𝑠 : 1 if crew string 𝑠 ∈ 𝑆𝑘 is assigned to crew 𝑘 ∈ 𝐾; 0 otherwise

𝑤𝑘
𝑠 : delay of crew string 𝑠 ∈ 𝑆𝑘 when assigned to crew 𝑘 ∈ 𝐾

𝑧𝑖 : 1 if flight 𝑖 ∈ 𝐼 is assigned to a high-cost reserve crew; 0 otherwise

𝑑𝑖 : total arrival delay of flight 𝑖 ∈ 𝐼

𝑝𝑖 : propagated departure delay of flight 𝑖 ∈ 𝐼

𝑞𝑝 : 1 if the passenger itinerary 𝑝 ∈ 𝑃 becomes broken; 0 otherwise

𝑣𝑝 : arrival delay of passenger itinerary 𝑝 ∈ 𝑃
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Formulation

min
∑︁
𝑘∈𝐾

∑︁
𝑠∈𝑆𝑘

(𝐶𝐶𝑘
𝑠 𝑦

𝑘
𝑠 +𝑊𝐶𝑘

𝑠𝑤
𝑘
𝑠 ) +

∑︁
𝑖∈𝐼

𝑍𝐶𝑖𝑧𝑖 +
∑︁
𝑝∈𝑃

(𝑄𝐶𝑝𝑞𝑝 + 𝑉 𝐶𝑝𝑣𝑝) (2.1)

s.t. 𝑧𝑖 +
∑︁
𝑘∈𝐾

∑︁
𝑠∈𝑆𝑘

𝑎𝑖𝑠𝑦
𝑘
𝑠 ≥ 1 ∀𝑖 ∈ 𝐼 (2.2)

∑︁
𝑠∈𝑆𝑘

𝑦𝑘𝑠 = 1 ∀𝑘 ∈ 𝐾 (2.3)

∑︁
𝑘∈𝐾𝑠

𝑦𝑘𝑠 ≤ 1 ∀𝑠 ∈ 𝑆 ∖ 𝑆𝐷 (2.4)

𝑁𝑃𝑖 + 𝑝𝑖 ≤ 𝑑𝑖 ∀𝑖 ∈ 𝐼 (2.5)

𝑑𝑖 − 𝑆𝐶𝑖𝑗 −𝑀(1−
∑︁
𝑘∈𝐾𝑠

𝑦𝑘𝑠 ) ≤ 𝑝𝑗 ∀(𝑖, 𝑗) ∈ 𝐹𝑠,∀𝑠 ∈ 𝑆 (2.6)

𝑑𝑖 − 𝑆𝑅𝑖𝑗 ≤ 𝑝𝑗 ∀(𝑖, 𝑗) ∈ 𝐹𝑟, ∀𝑟 ∈ 𝑅 (2.7)

𝑑𝑖 − 𝑆𝑃𝑖𝑗 −𝑀𝑞𝑝 ≤ 𝑝𝑗 ∀(𝑖, 𝑗) ∈ 𝐹𝑝,∀𝑝 ∈ 𝑃 (2.8)

𝑑𝐿𝑅𝑟 ≤ 𝐿𝐷𝑟 ∀𝑟 ∈ 𝑅 (2.9)

𝑑𝐿𝑆𝑠 −𝑀(1− 𝑦𝑘𝑠 ) ≤ 𝑤𝑘
𝑠 ∀𝑠 ∈ 𝑆𝑘,∀𝑘 ∈ 𝐾 (2.10)

𝑤𝑘
𝑠 ≤ 𝐿𝐷𝑘

𝑠 ∀𝑠 ∈ 𝑆𝑘, ∀𝑘 ∈ 𝐾 (2.11)

𝑑𝐿𝑃𝑝 −𝑀𝑞𝑝 ≤ 𝑣𝑝 ∀𝑠 ∈ 𝑆𝑘, ∀𝑘 ∈ 𝐾 (2.12)

𝑦𝑘𝑠 , 𝑧𝑖, 𝑞𝑝 ∈ {0, 1} ∀𝑠 ∈ 𝑆𝑘,∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼,∀𝑝 ∈ 𝑃 (2.13)

𝑤𝑘
𝑠 , 𝑝𝑖, 𝑑𝑖, 𝑣𝑝 ∈ Z+ ∀𝑠 ∈ 𝑆𝑘,∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼,∀𝑝 ∈ 𝑃 (2.14)

The objective function (2.1) minimizes the total recovery costs, including those due

to modifications to planned crew duties, 𝐶𝐶𝑘
𝑠 , crew delays, 𝑊𝐶𝑘

𝑠 , high-cost reserve

crew use, 𝑍𝐶𝑖, disrupted passenger costs, 𝑄𝐶𝑝, and passenger delay costs, 𝑉 𝐶𝑝.

𝐶𝐶𝑘
𝑠 corresponds to the additional crew pay incurred when duty 𝑠 ∈ 𝑆 is assigned

to crew 𝑘 ∈ 𝐾 compared to that crew’s planned duty. 𝑊𝐶𝑘
𝑠 calculates the additional

crew pay incurred due to the extension of duty 𝑠 ∈ 𝑆 when assigned to crew 𝑘 ∈ 𝐾.

𝑍𝐶𝑖 is the total crew pay for assigning flight 𝑖 ∈ 𝐼 to high-cost reserve crew. 𝑄𝐶𝑝

is an approximate cost of a disrupted passenger that was originally scheduled to
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take itinerary 𝑝 ∈ 𝑃 . It covers the costs of passenger accommodation, passenger

inconvenience and loss of passenger goodwill. 𝑉 𝐶𝑝 is the cost of delay to all non-

disrupted passengers scheduled to take itinerary 𝑝 ∈ 𝑃 . It may account for passengers

inconvenience and loss of passenger goodwill costs.

These recovery costs are only those in excess of the planned ones. The CRM-APC

does not allow additional cancellations beyond those in the aircraft recovery solution.

Flights that the existing crews cannot cover are assigned to high-cost reserve crews.

Constraints (2.2) ensure that each flight is assigned to at least one crew. Crew

strings correspond to duties that can be assigned to crews, including normal reserve

crews. If more than one crew is assigned to a flight, then all additional crews fly

as passengers, i.e., they are deadheaded. Constraints (2.3) model that each crew

must be assigned to exactly one actual or dummy duty. Constraints (2.4) ensure

that a duty, except for dummy duties, is assigned to at most one crew. Assignment of

multiple crews to the same duty is not allowed for the non-dummy duties. Constraints

(2.5)-(2.8) calculate the total delay for each flight and the delay propagation through

crew duties, aircraft rotations, and unbroken passenger itineraries. The model can

delay flights to ensure the feasibility of duties, rotations, and unbroken itineraries.

Passenger itineraries are also allowed to be broken, but the CRM-APC model cannot

break aircraft rotations. Constraints (2.9) ensure that the aircraft will be ready on

time for the next day’s rotation. Constraints (2.10)-(2.11) calculate the crew delay

while ensuring that the duty will remain legal with respect to the FDP limits and

that the crew will be ready on time for the next duty. Constraints (2.12) calculate

the delay in reaching the final destinations for passengers whose itineraries are not

broken. Constraints (2.13)-(2.14) define the domains of the decision variables.

As discussed in Section 2.2.3, CRM-APC is a string-based model with continuous

delay modeling instead of flight copies. This modeling approach entails a key trade-off.

On the positive side, this modeling approach makes it possible to overcome memory

limitations for large-scale problems and significantly improves tractability due to the

lack of flight copies. On the other hand, it requires that the delay propagation

mechanism be explicitly defined in the form of constraints. Implementing some logical
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dependencies necessitates big-M type of constraints (namely, (2.6), (2.8), (2.10), and

(2.12)) which may make the model less tractable. We partly mitigate this effect by

carefully determining the values of each M in these constraints. Specifically, we set

the M to 16 hours, so that the corresponding constraints would allow any practically

possible flight delays, up to 16 hours, while keeping the added complexity at minimum.

2.3 Solution Methodology

2.3.1 General Framework

In our CRM-APC mathematical model, the assignments of feasible crew duties to

crews are represented by binary decision variables, and the final solution consists of

the set of assignments whose corresponding decision variables are set to 1. Each as-

signment can be seen as a separate recovery decision, collectively forming the solution,

like pieces of a puzzle.

To generalize this idea, we present the concept of a micro-solution that is defined

as a set of decisions corresponding to a small portion of the overall recovery solution.

Aside from the assignment decisions, there are other types of micro-solutions for

the given formulation, like the crew duty strings, and the consecutive flight pairs in

a string — called follow-on (F/O) pairs. A recovery solution can be characterized

as a set of micro-solutions of a certain type. An important research question is:

which micro-solutions should be utilized to build the best possible solution given the

characteristics of the current disruption? When there are no computational time

limitations, solving the problem optimally by considering all micro-solutions is the

best way to find the minimum-cost solution. This corresponds to solving the model

without any reduction in solution space. However, due to the limited timeframes in

recovery operations, it is not possible. Therefore, we need a faster and more practical

method to help us find the best solution within the available solution time limit.

The general framework in this study is based on the idea that, under similar

disruption conditions, the micro-solutions leading to high-quality solutions will likely
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Figure 2-2: General flowchart of the solution approach

also be similar. Therefore, to find high-quality solutions in limited timeframes, we

leverage ML methods to discover the similarities between the current disruption and

previous disruptions, solutions of which are already available.

Figure 2-2 summarizes the general flowchart of the solution methodology. The

main objective is to find a solution for the disruption faced during the day of opera-

tions, that is, during the online phase. The dots inside the box on the right represent

alternative solutions to the same disruption. Due to the time limitations, it is not

practical to consider all alternative solutions in the optimization model. Hence, we

filter the alternative solutions using ML predictions and determine the solution space

for the recovery problem at hand by adding constraints (cuts) to the model and fixing

some micro-solutions to be included in the solution. The overall solutions that do

not include these fixed micro-solutions are removed from the solution space by these

cuts. After adding all cuts, we use a mixed-integer optimization solver to find a good

solution within this reduced solution space.

Unlike what some prior studies have proposed for simpler online optimization

problems (Bertsimas & Stellato, 2022), it is not possible to predict the entire solution

of recovery problems due to their complex combinatorial nature. In comparison,
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optimizing over a reduced solution space is a more viable method. Some other studies

for other problem contexts (Furian et al., 2021) have proposed decision-variable-based

predictions. In our experiments, the proposed micro-solution-based prediction and

solution space reduction approach yielded better solutions for the CRM-APC recovery

problem than using these decision-variable-based predictions, due to the increased

flexibility provided by predicting and fixing smaller parts of the solutions than fixing

a decision variable. See Appendix A.3 for more details on these results.

The overall solution methodology involves an offline phase to set up the methods

for online use. This offline phase starts with generating disruption scenarios based

on historical delay data. Then a solutions database is created by solving recovery

problems for the disruption scenarios with an optimization-based solution approach.

The next step is to train ML classification models for a subset of micro-solutions. It

is not practical to train models for all micro-solutions because there are usually too

many. Furthermore, it is difficult to train accurate ML models for micro-solutions that

are rarely included in the solutions, due to the resulting imbalance in training data.

On the other hand, if a micro-solution is included in all of the solutions, there is no

need to train classifiers since we fix all such micro-solutions. Therefore, we train ML

models for those micro-solutions that are not included in all solutions but in more than

a specific fraction of them in the solutions database, which is determined considering

the computational resources available. Training inputs consist of disruption scenario

features, as well as an additional binary feature reflecting whether that micro-solution

is in aircraft recovery solution for that scenario, and binary labels reflecting whether

the micro-solution is in the crew recovery solution for that scenario. In the next

section, we discuss the offline steps in more detail.

2.3.2 Scenario Generation

Disruption scenarios are generated using the 𝑁𝑃𝑖 distributions for each flight, which in

turn are derived from historical data. The first step involves clustering the historical

days into clusters of similar disruption profiles. A disruption profile is defined as a

class or label that characterizes the state of the airspace system, and it affects the 𝑁𝑃𝑖
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Figure 2-3: Scenario generation procedure

delay for each flight. For example, a disruption profile may represent the inclement

weather conditions in the Northeast, decreasing the capacities of the airports in the

region. The reduced capacities would result in congestion, consequently leading to

delays and cancellations for flights arriving and departing from the congested airports,

as well as for other airports due to delay propagation. Appendix A.1 provides the

details and results of the clustering process.

In addition to the disruption profiles, the expected delay behavior of a specific

flight also depends on the departure and arrival airports. Therefore, after the histor-

ical days are clustered into disruption profiles, we group flights by disruption profile

and origin-destination information (OD). Then, a log-normal distribution is fit to the

𝑁𝑃𝑖 values in each group. Prior research shows that the log-normal distribution is a

suitable candidate for delay distributions (Lan et al., 2006). We sample 𝑁𝑃𝑖 values

for each flight from the distribution corresponding to that particular combination of

disruption profile, origin, and destination. Figure 2-3 includes an overview of the

scenario generation procedure.

2.3.3 Solutions Database

The next step in the offline phase is to generate solutions for the disruption scenarios

to create a solutions database. The mathematical model presented in Section 2.2.4

is solved for each disruption scenario with a selected optimality gap target, and the

solutions are saved to the database.

The optimality gap target affects the time an optimization run takes. Generat-

ing an optimal solution or setting the target gap very low (e.g., 0.1%) significantly
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increases the runtime, thus making it more time-consuming to generate the solu-

tions needed for the ML training process. In our experiments, we noted that most

of the micro-solutions in the optimal solutions were also included in the sub-optimal

solutions generated by the optimization approach with a larger target gap. More

importantly, for many of the micro-solutions, lower quality solutions with optimal-

ity gap targets of 10% to 20% were good indicators of whether they should be used

in solving the recovery problem for the corresponding disruption. Ultimately, we

chose an optimality gap target of 20% to limit the time and computational resources

needed for the offline phase to populate the solutions database. This decision speeds

up database generation by ten times, on average, compared to setting the gap to 1%.

Details on a comparison between different optimality gap targets and their impact on

run time and F/O classifier precision are provided in Appendix A.7.

2.3.4 Micro-solution Prediction

We train and use ML models to predict whether or not a micro-solution is in the recov-

ery solution for a given disruption scenario. These problems are called classification

problems, where the objective is to decide the class or label of each observation, from

a discrete set of two or more labels, based on a set of features (Dodge, 2008). Since a

micro-solution is either in the recovery solution or not, this is a binary classification

task and these types of classification models are called binary classifiers.

The input used in binary classifier training is generated using the solutions database.

It includes the disruption feature set for each data point in the training input and a

feature representing the usage of that particular micro-solution in the aircraft recov-

ery solution. The label, which we train the classifiers to predict, reflects the presence

of the corresponding micro-solution in the crew recovery solution. Appendix A.2

provides a more detailed view of how disruption information is combined with the

scenario solutions to create the training input.

As discussed above, there are alternative types of micro-solutions, like crew duties,

duty string assignments or F/Os, that one may consider fixing. The F/O is a smaller

micro-solution type than crew duties and duty string assignments, because an F/O
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corresponds to exactly two flights assigned consecutively, while there are many crew

duties and assignments corresponding to two or more flights. Classifiers can be trained

to predict whether a specific F/O will be in the solution of a given disruption or not.

There may be several crew duties and assignments that contain a given F/O. When

that F/O is fixed by adding the corresponding constraints to the model, the optimizer

decides which crew duties and assignments containing that fixed F/O would be used

in the final solution.

The number of possible crew duties and duty string assignments is much larger

than the number of possible F/Os. Therefore, compared to crew duties and duty

string assignments, a lot fewer F/Os need to be predicted in order to predict a sizable

subset of the overall solution, and thus a lot fewer classifiers are needed. This suggests

that F/Os are a more practical type of micro-solution than the crew duties or the duty

string assignments. Additionally, because the same F/O can be a part of several crew

duties and duty string assignments, fixing F/Os rather than fixing duties or assigning

crews to duty strings gives the optimization approach more options to construct the

best crew duties and duty string assignments. Furthermore, our experiments show

that, among all three micro-solutions types considered by us, the F/O classifiers pro-

vide a greater prediction performance improvement compared to database frequency

statistics. The improvement in prediction performance is calculated as the precision

of the classifier minus the database frequency of the corresponding micro-solution.

Precision or positive predictive value (PPV) is the ratio of true positives to all posi-

tive predictions (Dodge, 2008).For example, for an F/O used in 70% of the database

solutions, an ML model with 90% precision would provide a prediction improvement

of 20% over the database frequency. Therefore, we selected F/Os as the type of

micro-solutions to focus on for predictions. A more detailed comparison is presented

in Appendix A.3.

An efficient way to solve airline scheduling and recovery problems is to follow

branch-and-bound based solution methods (Vance et al., 1997). Branch-and-bound

methods are tree-based search methods that partition the set of feasible solutions

into smaller subsets and systematically evaluate the subsets to find the best solution
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(Bertsimas & Tsitsiklis, 1997). Partitioning to subsets is performed using a certain

set of rules, called branching rules. In the crew scheduling and recovery context,

a common rule of branching is called branch-on-follow-on or F/O branching, which

partitions the feasible set of solutions based on forbidding an F / O on one branch

and fixing it on the other (Vance et al., 1997). Thus, our selection of F/O as the

preferred type of micro-solutions to fix can be considered a special type of greedy

branch-and-bound based solution method using the F/O branching rule, where only

one branch — the one that fixes the follow-on — is considered.

The classifier output is an estimate of the conditional probability (PRB) of the

micro-solution being in the recovery solution for the given disruption. PRB indicates

whether a micro-solution is a good fit for the corresponding disruption. A PRB value

close to 1 implies that using at least one crew duty covering the corresponding F/O

has a strong potential of leading to a good solution.

A crucial hyper-parameter for classifier training is the training criterion, the per-

formance metric the classifier is trained to maximize. The selected training criterion

impacts the performance of the adopted methods. We selected precision or positive

predictive value (PPV) as the training criterion. Precision is chosen instead of accu-

racy, the ratio of all correct predictions to all predictions, because we consider fixing

a micro-solution only when the predicted probability of the micro-solution being in a

high-quality solution is high. Therefore, the proposed solution approach focuses only

on positive predictions.

Feature selection is crucial for training meaningful ML models, and should reflect

the nature of the classification task. Setting the feature set size too large may ren-

der the classification task too time-consuming. In Section 2.2.2, we characterized a

disruption scenario as the 𝑁𝑃𝑖 values for the flights in the entire network. Assuming

that this characterization accurately reflects the disruptions, using the entire defini-

tion of the disruption scenario as part of the feature set (in addition to the feature

reflecting the usage of the F/O in the corresponding aircraft recovery solution), can

give accurate predictions, at least in theory, as it uses the entirety of the available

information. However, this approach can significantly slow down the classifier train-
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ing. During our experiments, we found that we could effectively reduce the number

of flights whose 𝑁𝑃𝑖 values are considered for each micro-solution through careful

filtering. For example, for predicting an F/O micro-solution, the relevant 𝑁𝑃𝑖 val-

ues could be restricted to only those flights which can connect to at least one of the

flights in the F/O. This method of focusing on a subset of flights instead of the entire

network significantly accelerates the training process.

Such acceleration of the training process is achieved by focusing on the flights that

are temporally and spatially close to the F/O in question. We define a neighborhood

network, shown in Figure 2-4, with F/O pairs as nodes and feasible connections to

other F/Os as edges and determine the flights in the 1, 2, or 3 hop neighborhoods

of each F/O. A feasible connection between F/Os is nothing but a pair of F/Os

that share a flight. A 3-hop neighborhood of an F/O includes all flights at most

three edges away from that F/O (node in the center). This set is sufficiently large

to include almost all flights that may be part of a crew duty that also includes the

given F/O, since the number of flights in a crew duty for the flight network used in

the computational study was at most 5. The average 1-, 2-, and 3-hop neighborhood

sizes for our case study network with 2,780 flights are 25.1, 125.3, and 576.8 flights,

respectively — a significant reduction compared to the size of the entire network.

Experiments showed that classifier training with the 3-hop neighborhood feature set

is at least five times faster than that with the full feature set while the loss in average

classifier precision is less than 1%. We call the feature set based on the 1-, 2-, or 3-hop

neighborhood flights, the local feature set, and the feature set including all flights the

full feature set.

It is typically not practical to train classifiers for each of the potential micro-

solutions because there are many such micro-solution candidates, and because not all

candidates are suitable for training high-precision classifiers. A more practical ap-

proach is to focus on micro-solution candidates with a frequency in database solutions

that justifies the prediction effort. For instance, if a micro-solution is included in less

than 5% of the database solutions, training a reliable classifier would be difficult due

to the limited number of positive observations since classification methods struggle
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Figure 2-4: Local neighborhoods of an F/O

with unbalanced data. On the other hand, for a micro-solution included in more

than half but less than all of the database solutions, it would be relatively easier to

train a high-precision classifier. The database frequency interval, which determines

the micro-solutions for which we choose to train classifiers, can be selected during the

offline phase considering the available computational resources.

Even for micro-solutions in the database frequency interval, there is no guarantee

that a high-precision classifier can be trained. There may not be a discoverable

pattern justifying the selection of the micro-solution. Specifically, our experiments

showed that, in any given solution, up to about half of the micro-solutions in the

chosen database frequency interval demonstrated some kind of pattern that can be

learned by the classifiers. The remaining showed little to no relationship with the

input features. They seemed to be selected only to finalize the solution, that is,

to cover flights that are not covered otherwise. Our solution method reflects these

characteristics of different micro-solutions. Rather than having classifiers to generate

predictions for all micro-solution alternatives, we discover patterns wherever possible,
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fix the corresponding set of micro-solutions, and run the optimization model to create

the final solution that includes the remaining micro-solutions making up that overall

solution.

Training a single classifier per micro-solution alternative helps reap most of the

benefits of our approach. However, it is additionally beneficial to train multiple classi-

fiers for the same micro-solution, since differently structured classifiers may be able to

capture different aspects of the same classification task. Indeed, there may be several

ways to describe why a specific observation belongs to a particular class. Different

classification models can discover different unique explanations for the same label

prediction — e.g., one classifier may discover a pattern in flights that can connect

to the first flight in the F/O, while another classifier may find an alternative expla-

nation involving only the flights which the second flight in the F/O can connect to.

Hence, training multiple classifiers for a given micro-solution increases the chance of

discovering better patterns and making more accurate predictions for different types

of disruptions. A more detailed discussion of the approach involving the usage of

multiple classifiers, and the corresponding results, are included in Appendix A.4.

The required number of disruption scenarios, i.e., the size of the training input,

increases with the size of the selected feature set. While having a very large number of

disruption scenarios may improve prediction accuracy, that is not feasible due to the

time constraints in the offline phase. Furthermore, since the feature set size is not too

large especially when the local neighborhood feature sets are used, the performance

improvement with additional training data beyond a certain point is minimal. We

found that depending on the size of the feature set, a training input size as small as

200 may be sufficient. See Appendix A.6 for a detailed discussion on the effects of

training input.

2.3.5 ML-guided Solution Space Reduction

After generating the solutions database, one can use simple aggregate statistics to

analyze the solutions, determine the usage frequency of the different alternative types

of micro-solutions, and reduce the feasible solution space accordingly to accelerate the
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solution process. However, the benefits of such an approach are limited as indicated by

our results in Section 2.4.3. We do use database statistics to guide our solution space

reduction procedure. But, more importantly, we also utilize ML predictions for micro-

solutions to enhance the process further. Specifically, we first remove a specific type of

micro-solutions, crew duty assignments that correspond to main decision variables, 𝑦𝑘𝑠
in the CRM-APC model, which are never used in database solutions or used extremely

rarely (controlled by a parameter, called 𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). This significantly improves

the solution time, with negligible effects on the solution quality. We do not remove

any F/O micro-solutions, instead we use classifiers to evaluate a subset of them to

examine whether they are suitable candidates for the current disruption. This step

is where we leverage the ML predictions.

While evaluating the predictions for a micro-solution, in addition to the condi-

tional probability (PRB) calculated by the classifier, we also consider the out-of-

sample precision (PPV) performance. Taking only one of these metrics into account

yields undesirable results. If only the PRB is considered, it may lead to fixing a

micro-solution with a high prediction probability, but calculated by a low PPV clas-

sifier, implying that the prediction may not be reliable. On the other hand, if only

the PPV is considered, it may lead to fixing a micro-decision with a low PRB, imply-

ing that the probability of this micro-solution being in a high-quality overall solution

might not be very high. Instead, we introduce a new metric called prediction confi-

dence (PC) which is calculated for each classifier prediction as 𝑃𝐶 = 𝑃𝑃𝑉 𝛼 * 𝑃𝑅𝐵,

where 𝛼 determines the relative importance of 𝑃𝑃𝑉 and 𝑃𝑅𝐵. When evaluating the

predictions, we compare the PC values against the prediction confidence threshold

value (𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), which is a pre-specified value that determines whether the

constraints corresponding to a prediction should be added to the model. It is defined

as a multiplication because what we are interested in is a compound probability of the

final prediction. The 𝛼 value was set to 1 after evaluating a set of candidate values

(Appendix A.8), which implies that for our experiment setup, 𝑃𝑃𝑉 and 𝑃𝑅𝐵 are of

similar importance. In general, the 𝛼 value may be airline-specific and may need to

be tuned separately for each airline. For different airlines and flight networks, 𝛼 can
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be different than 1.

Now, we present the main steps and the added constraints in the process of creat-

ing a solution space tailored to the given disruption. The main decision variables in

our model are the assignment variables, 𝑦𝑘𝑠 , which equal 1 if the crew string 𝑠 ∈ 𝑆 is

assigned to the crew 𝑘 ∈ 𝐾, 0 otherwise. Hence, the added constraints are defined in

terms of 𝑦𝑘𝑠 , even though some of them are related to F/O micro-solution predictions.

1. Remove low-frequency assignments from the solution space by adding,

𝑦𝑘𝑠 = 0 ∀𝑦𝑘𝑠 ∈ 𝑌0 (2.15)

where 𝑌0 is the set of crew assignments with a low frequency in the database

solutions. The low frequency assignment threshold, 𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, to filter such

assignments is determined in the offline phase, considering the characteristics of the

problem instance.

2. For each F/O candidate that is included in all database solutions or has a

trained classifier, if the PC for F/O for the current disruption, is at least equal to the

𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then fix the F/O by adding,

∑︁
𝑖∈𝑓

𝑧𝑖 +
∑︁
𝑌 𝑓

𝑦𝑘𝑠 ≥ 1 ∀𝑓 ∈ 𝐹1 (2.16)

Here, 𝐹1 is the set of F/Os with PC of at least 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑌 𝑓 is the set

of assignment variables that contain the F/O 𝑓 . Recall that each F/O is an ordered

pair of flights and hence the first summation in Constraints (2.16) is always over two

terms. We denote the 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value of an F/O 𝑓 by 𝑃𝐶(𝑓). We set 𝑃𝐶(𝑓) to

be equal to 100% for the F/Os that are included in all database solutions and 0% for

F/Os that are neither included in all database solutions nor have trained classifiers.

The first summation in Constraints (2.16) is added to provide the model the flexibility

to consider assigning one or both of the flights in the F/O to a high-cost reserve crew

instead of forcing them both to be consecutively assigned in at least one crew duty.
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The version of Constraints (2.16) without this first summation,
(︁∑︀

𝑌 𝑓 𝑦𝑘𝑠 ≥ 1
)︁
, led

to infeasibilities or low-quality recovery solutions.

3. The CRM-APC model (2.1-2.13), with the added constraints (2.15)-(2.16), is

solved using a mixed-integer optimization solver. Algorithm 1 summarizes the overall

flow of the solution method.

Algorithm 1 CRM-APC Solution Approach
1: Initialize:

2: 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 ← {𝑁𝑃𝑖,∀𝑖 ∈ 𝐼}
3: Load the aircraft recovery solution
4: Load the CRM-APC
5: Set the 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value
6: for 𝑦𝑘𝑠 ∈ 𝑌0 do

7: add the constraint 𝑦𝑘𝑠 = 0 to CRM-APC
8: end for

9: for 𝑓 ∈ 𝐹 do

10: if 𝑃𝐶(𝑓) ≥ 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

11: add the constraint
∑︀

𝑖∈𝑓 𝑧𝑖 +
∑︀

𝑌 𝑓 𝑦𝑘𝑠 ≥ 1 to CRM-APC
12: end if

13: end for

14: Solve the CRM-APC with the added constraints

The 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, which is used to evaluate the classifier predictions, affects the

run time and solution quality. Setting it too low can lead to lower-quality solutions due

to the inclusion of less accurate predictions. On the other hand, setting it too high can

cause the feasible solution space to remain too large to solve quickly. The threshold

values for different available solution time limits are tuned in the offline phase. Details

of this process are provided in Section 2.4.2. By tuning the 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value, the

user can adjust the solution approach to maximize solution quality generated within

a given computational time limit.

59



2.4 Computational Experiments and Results

2.4.1 Data Sources, Network Description and Pre-processing

The computational experiments are based on operational data from the US domestic

flight network with over 2,800 daily flights from a major US carrier. Flight sched-

ules and historical flight delay information were obtained from the airline on-time

performance (AOTP) database from the Bureau of Transportation Statistics (BTS,

2020). The training set consists of the disruption scenarios used in classifier training

and it was generated using the historical delay data for 15 winter months (December,

January, and February) spanning from December 2012 to February 2017 following

the procedure outlined in Section 2.3.2. For this research, the airline provided to us

the planned crew schedules, including the reserve assignments. See Appendix A.5 for

more information on the data pre-processing steps.

2.4.2 Offline Phase

The offline phase is time- and resource-intensive. However, we developed and imple-

mented multiple techniques to accelerate the offline process without compromising

performance, which is particularly important when airlines have limited time and

resource availability. In particular, we made three major practical decisions that

accelerated offline runtimes.

The first decision is related to the selected solution quality level for the solutions

database, as expressed in terms of the optimality gap target. In these experiments,

the optimality gap target was selected as 20% as discussed in Section 2.3.3.

The second decision was to generate a single consolidated solutions database and

a single set of classifiers spanning all ten disruption profiles instead of generating

separate databases and training separate classifiers for each. As mentioned in Section

2.3.2, the flight operation days in the historical database are clustered into ten distinct

disruption profiles (shown in Appendix A.1). Instead of generating N disruption

scenarios for each disruption profile and creating separate databases and classifiers,
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we generated N/10 scenarios for each profile and then used the resulting N scenarios

to generate a single consolidated solutions database and train a single set of classifiers,

involving both interpretable and non-interpretable classifiers, for a subset of micro-

solutions to predict their usage in high-quality recovery solutions. The resulting

classifiers can be used effectively for any real disruption scenario, regardless of the

disruption profile. This decision also leads to a 10-fold acceleration as compared to

generating separate databases for each disruption profile. Taking into account the

computational requirements to solve each scenario and the fact that using 1,000 or

1,500 scenarios provided a less than 1% improvement in precision, we decided to set

the number of disruption scenarios, N, to 500 in the computational study. Details are

provided in Appendix A.6

The last decision concerns the feature set used in classifier training. We need

a feature set comprehensive enough to contain the most relevant information, but

also relatively small to train classifiers fast enough to meet the time constraints in

the offline phase. This is achieved by using the n-hop neighborhood feature sets,

introduced in Section 2.3.4. Classifiers based on n-hop neighborhood feature sets

yield only slightly lower precision results compared to classifiers trained with the full

feature sets (Appendix A.6). The size of the neighborhood of the local feature set, n,

is set to 2 in the computational study.

We used the Optimal Classification Tree (OCT) method, a decision tree classifier

with parallel splits provided in the module developed by InterpretableAI (2020), as

one of the classification methods for the computational study because they provided

precision values at least as good as any other method and because tree classifiers

provide interpretable results, as will be discussed in Section 2.4.5. We also use Ran-

dom Forest and XGBoost, which are tree-based ensemble methods in which multiple

decision trees are trained to build more accurate prediction models.

As argued in Section 2.3.4, the presented framework can additionally benefit from

training multiple classifiers for each candidate F/O to decide whether to fix it. This

can increase the probability of capturing different aspects of the classification task.

The set of classifiers trained for each F/O included two parallel tree models (differ-
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Figure 2-5: Classifier precision performance w.r.t. DB frequency intervals

ing in the maximum tree depth parameter, set to 5 and 10), one Random Forest,

and one XGBoost classifier. Tree classifiers are included for their interpretable struc-

tures, while the Random Forest and XGBoost methods are chosen for their precision

performance (Breiman, 2001, T. Chen & Guestrin, 2016).

Figure 2-5 shows the classifier precision performance for F/Os with a precision

greater than 50%, as a function of the database frequencies. For higher values of

database frequencies, e.g. >90%, the precision improvement over the DB frequency

is limited. But for the F/Os with lower DB frequencies, e.g. <50%, the precision

improvement becomes more significant. For a subset of F/Os with a DB frequency

between 10% and 20%, trained classifiers provide a precision of ∼65% which is a 45

percentage point improvement. These strong results justify the use of our ML-based

approach.

The last step of the offline phase is the calibration of the prediction confidence

threshold, 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, and low-frequency assignment threshold, 𝐿𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, for

the day of flight operations. The best threshold values depend on the available so-

lution time. We focused on time durations of 5 minutes and shorter as solution

time limits in our experiments. Our experiments demonstrated a one-to-one match

between solution time availability and the most appropriate specific threshold val-
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ues to achieve the best solution. The longer the solution time, the higher the best

threshold value for 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 since it allows considering a larger set of solution

alternatives. On the other hand, the longer the solution time, the lower the best

threshold value for 𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 since it allows considering a larger set of solution

alternatives. The threshold values to be used under different solution time limits are

determined in the offline phase based on a set of out-of-sample disruption scenarios,

called the calibration set and evaluated for their performance using the online test

instances. In computational study, assignments included in less than <0.5% or less

than 1.5% of the solutions are removed depending on the solution time limit. See

Appendices A.9 and A.10 for more details.

2.4.3 Results

The disruption scenarios used for calibration and testing are based on actual January

flight operation days from the years 2018 and 2019, respectively. Thus, we have 31

scenarios in the calibration set and a separate set of 31 scenarios as the test set. Each

disruption scenario maps into an individual day of flight operations, and the recovery

period spans from the scheduled departure time of the first flight in the current day’s

schedule until right before the scheduled departure of the first flight in the next day’s

schedule. All experiments are carried out on a desktop computer equipped with an

Intel i9-13000K CPU and 64 GB of memory using Gurobi 10.0 (Gurobi Optimization

Inc., 2020) as the integer and mixed-integer optimization solver. We compared the

solutions found by the following five methods.

1. Default : The CRM-APC model is sent directly to the Gurobi optimizer with the

specified solution time limit, without any a priori reduction in solution space.

2. Reduced : All 0-frequency assignments are removed from the solution space be-

fore sending it to the Gurobi optimizer.

3. Swap: Inspired by a common solution space reduction heuristic (Yu et al., 2003),

this method limits optimization to include: A) all broken crew schedules; plus
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B) two unbroken crew schedules with swap opportunities with each of the broken

crew schedules. All remaining crew schedules are left untouched to make the

problem tractable. The number of swap opportunities between two crew duties

is defined as the cardinality of the set of ordered pairs of flights that can connect

with each other where each flight belongs to one of the two crew duties and the

two flights belong to different crew duties from each other.

4. Freq : It starts with the reduced solution space defined in the Reduced method,

and further reduces the solution space on the basis of F/O frequencies in the

database. The F/Os occurring in the database with a frequency above a certain

threshold are fixed. This threshold is tuned for each solution time limit.

5. ML: It also starts with the reduced solution space defined in the Reduced

method, and further reduces the solution space based on PC values calculated

by the trained classifiers, as described in Section 2.3.5. The threshold above

which the F/Os are fixed 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is tuned for each solution time limit.

The cost parameters used in the experiments are given in Table 2.1. The cost

of deadheading crews to the next day’s duty start location is based on the values

used in prior recovery studies (Petersen et al., 2012). The cost of crew delay per

minute is derived from the average crew duty costs as estimated by the FAA (2020).

Regular and high-cost reserve crew pay per hour is assumed to be 25% and 50%

higher than standard crew duty pay rate. The overall passenger delay and disruption

cost estimates were obtained from the cost of passenger delay per minute, planned

passenger itinerary flow information and aircraft seat configuration information. Of

these, the cost of passenger delay per minute is based on the analysis conducted by

Cook and Tanner (2011). The aircraft seat capacity configuration information was

obtained from the airline’s website. The estimated passenger itinerary information

was obtained from Barnhart et al. (2014).

Figure 2-6 compares the solution quality achieved by the methods listed above.

The underlying network corresponds to a Saturday in January 2019. It has 2,870

flights, ten crew bases, and 1,200 daily crews. All flights belong to the same fleet
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Parameter Value

Cost of a crew deadheading to the next day’s duty start location $2,000

Cost of passenger delay per minute $30

Cost of crew delay per minute $12

Table 2.1: Cost parameters used in the computational study

Figure 2-6: Solution quality comparison

family and hence all crew are certified to operate all flights in the network. This

makes our problem instances more challenging to solve, compared to other airlines

where the crew cannot be used interchangeably across the flight networks of different

fleet types. Crew recovery instances for these other airlines allow decomposing the

overall problem instances into multiple, smaller separable instances, one for each

fleet family, and solving them separately. We had access to the actual planned crew

schedules and reserve crew information provided by the airline. Table 2.2 shows the

average recovery cost differences with respect to the baseline solutions under different

solution time limits. Baseline solutions are defined as those given by the default

approach with an optimality gap target of 0.1% and a run time limit of 2 hours. The

average optimality gap target achieved was ∼1%.

With the Default approach, which sends the optimization problem directly to the
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Solution time limit (minutes) Default Reduced Swap Freq ML

1 N/A 32.17% 23.78% 15.85% 11.35%

2 N/A 15.86% 18.44% 11.18% 6.89%

3 N/A 13.44% 15.54% 8.47% 4.80%

4 N/A 11.92% 13.36% 6.87% 3.89%

5 N/A 10.08% 12.80% 5.90% 2.70%

Table 2.2: Average recovery cost difference with respect to the baseline solutions (31
test scenarios)

Gurobi solver, it was not possible to generate even a feasible solution in 5 minutes.

The Reduced method generates feasible solutions but has much higher costs than

the other database-driven Freq and ML methods. The Reduced method achieves

its lowest-cost solution at the end of 5 minutes with a ∼10% average recovery cost

difference.

The Swap method is found to be suitable for generating fast solutions. Notably,

it produces better solutions than the Reduced method for a 1-minute runtime limit.

However, the average solution quality achieved in longer time limits does not improve

as quickly as it does for the Reduced method making it perform worse than the Reduced

method for time limits of 2 minutes and longer. The FO-based methods, Freq and

ML, perform significantly better. A key difference between the Swap method and

the FO-based methods, Freq and ML, is that the Swap method fixes larger micro-

solutions, like crew duty assignments, and hence loses a lot of flexibility, while the

F/O based methods also reduce the solution space, but retain a lot more flexibility,

allowing for improved performance.

The Freq method outperforms Default, Reduced and Swap methods for all five

tested solution time limits (1, 2, 3, 4 and 5 minutes). When the solution time limit

is 1 minute, it fixes many low-frequency F/Os to sufficiently accelerate the solution

process. Those low-frequency F/Os lead to poor solution quality in many disruption

scenarios producing an average recovery cost difference of over 15%. The solution

quality improves with longer runtime limits, because only the relatively higher fre-
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quency F/Os are fixed, and achieves under 6% recovery cost difference at 5 minutes

limit.

Our ML-based method outperforms all other methods for all tested solution time

limits. The ML method finds solutions with recovery cost differences of below 12%

in 1 minute and below 3% in 5 minutes. In fact, the ML-based solutions are around

two times better than the next best-performing method for all solution time limits of

2 minutes and longer.

We calculated an approximate monthly savings estimate for the network above to

quantify the recovery cost savings our ML-based approach could provide over other

approaches. Assuming a solution time limit of 5 minutes for all methods, the annual

savings over the next two best-performing methods, Freq and Swap, are ∼$5.5 million

and ∼$21 million, respectively. When the solution time is limited to 2 minutes for all

methods, the annual savings over the next two best-performing methods, Freq and

Swap, are ∼$8 million and ∼$20.5 million, respectively. These figures are adjusted

for inflation to 2019 dollars.

2.4.4 Solution Analysis

We conducted an F/O overlap analysis to understand some of the factors that de-

termine the quality of the solution generated by the ML method. The performed

analysis includes ML-based and baseline solutions to 62 disruption scenarios (com-

bining the calibration and test sets). ML-based solutions were generated under a

5-minutes solution time limit. The diagram in Figure 2-7 shows the relative solution

quality and F/O overlap of individual solutions, which are represented by dots. A

50% overlap means that half of the F/Os in the baseline solution are also in the final

solution obtained using the combination of optimization and ML. There seems to be a

linear relationship (indicated by the dashed line) between the solution quality and the

F/O overlap. As the F/O overlap increases, the recovery cost difference with respect

to the baseline decreases. It is interesting to see that in our experiments, an F/O

overlap of around 50-60% was sufficient to generate similarly high-quality solutions as

the baseline solutions. This is due to the combinatorial nature of the airline recovery
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Figure 2-7: F/O overlap vs. solution quality analysis

problems. While certain F/Os are crucial for maintaining the solution quality for a

given disruption, there are also many F/O alternatives that complement the solution

without affecting the solution quality significantly.

There were many cases in which the quality of the solution found by the ML

method was superior to the baseline. This is due to the fact that the baseline solutions

have an average optimality gap of ∼1%, which means that there is still room for

improvement in the quality of the solution. The ML method seems to leverage this,

due to its accuracy in solution space reduction and the resulting acceleration in the

solution process.

To understand the differences between the baseline and ML solutions, we analyzed

their solutions focusing on certain aggregate statistics of the individual F/Os used

in the solutions. All F/Os used in at least one of the baseline or ML solutions are

included in this analysis. The frequency of the corresponding F/Os in the solutions

database is retrieved. Figure 2-8 shows, on average, how many F/Os within a given

database frequency interval are used in the corresponding recovery solutions created

by each method — Default and ML. The average F/O frequencies in the baseline

68



Figure 2-8: F/O frequency distribution with respect to solutions database statistics

and ML solutions are 41.6% and 46.2%, respectively. The results show that the ML

solutions rely more on the more frequent F/Os as compared to the baseline solutions.

The Default method considers all F/Os and uses those most suited for the given

disruption. This leads to solutions that include rarely used F/Os. The ML method,

on the other hand, prioritizes high-precision F/Os, which usually do not have very

low database frequencies.

One could argue that a solution is more flexible if it has more F/Os with higher

database frequency or fewer F/Os with lower database frequency. A higher database

frequency indicates that the corresponding F/Os can be used for a broader range of

disruptions. In comparison, a lower database frequency suggests suitability for only

a limited range of disruptions. From this perspective, we expect the ML solutions

to be more robust than the baseline solutions. The solution robustness is explored

further in Section 2.5.2.

2.4.5 Classifier Insights

One benefit of using tree-based classification methods is that they provide inter-

pretable results. Solution space reduction based on classifier predictions does not

necessarily require interpretability, but having interpretable classifiers offers practi-
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cal insights into why certain recovery decisions are made. By only considering the

flight delay information in the local neighborhood of the F/O, the trained classifiers

help to discover and understand some of the latent factors that may affect the delay

performance of the entire network. Without adequate optimization-based recovery

tools, airlines often resort to manual recovery approaches, leveraging decision support

systems. In such a setting, high-precision classifiers can be used to develop guidelines

for specific recovery measures during the day of operations.

The solution method presented in Section 2.3 involves both interpretable and

non-interpretable classifiers. It was designed in this way to maximize the extent of

solution space reduction. ∼95% of all F/Os suggested to be fixed by our ML-based

crew recovery solution method have readily available interpretable classifiers that

explain the rationale behind fixing the F/O. Moreover, we also conducted experiments

exclusively using interpretable classifiers. We focused on the solution quality achieved

by the ML method in 5 minutes. With the presented structure of the solution method,

we generate recovery solutions with 2.70% higher cost than the baseline solutions as

presented in Section 2.4.3. With exclusively interpretable classifiers, the ML method

can generate recovery solutions with 2.91% higher cost than the baseline solutions.

These results suggest that by only using interpretable classifiers, the presented ML

method can still generate high-quality recovery solutions.

Figure 2-9 shows a simple tree classifier example. A tree classifier is a supervised

learning-based classification method that has a hierarchical tree-like structure consist-

ing of nodes and branches to classify observations. Relevant information on the flights

considered by the classifier is given in Table 2.3. The topmost node is the root node

where the algorithm starts. The numbers 0 and 1 correspond to the prediction label

at that node. The nodes with no outgoing branches are the leaf nodes corresponding

to the predictions and are shaded red or blue for 0 and 1 predictions, respectively.

The remaining nodes are internal nodes. All non-leaf nodes are shaded white. The

percentage values on the nodes are the prediction probabilities for the leaf nodes and

the node composition ratios for the others. The saturation of the red or blue shades

on the leaf nodes reflects the prediction probabilities, such that the darker the shade,
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Figure 2-9: Classifier trained for the OMA-MDW-MCA follow-on pair

the higher the prediction probability. The thickness of the lines connecting the nodes

represents the fraction of observations from the parent nodes that fall into the child

nodes.

The database frequency of this specific F/O, representing the consecutive as-

signment of flights 411 (OMA-MDW) and 844 (MDW-MCA), is 84.80%, while the

classifier achieves a precision of 94.51%. When we analyze the resulting classifier, we

see that the only disruption-related information considered is the 𝑁𝑃𝑖 information

of the flights in the F/O. It also checks whether the F/O is included in the aircraft

(AC) recovery solution. If the flights in the F/O, 411 and 844, do not delay beyond

65.5 and 82.5 minutes, respectively, the classifier suggests connecting 411-844 in the

recovery solution to the current disruption regardless of whether the same connection

is being utilized in the aircraft recovery solution. If the first flight is delayed beyond

65.5 minutes, the connection is still considered to be a good option for the cases where

it is included in the aircraft recovery solution.

Flight ID Origin Destination Departure_time
(in UTC minutes)

Arrival_time
(in UTC minutes)

411 OMA MDW 855 945

844 MDW DCA 980 1075

Table 2.3: Flight information for the classifier example in Figure 2-9
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Different classifiers focus on different types of information. Figure 2-10 and the

corresponding Table 2.4 demonstrate a classifier that focuses on flights that are not

part of the F/O but disregards the aircraft recovery solution. It is trained to pre-

dict whether the 1971-2770 connection (OAK-MDW-MEM) should be used in the

recovery solution. This classifier achieves a precision of 100% despite the fact that

the database frequency is 48.73%, indicating strong predictive performance. Inter-

estingly, the classifier does not use the disruption information of the first flight, but

focuses on flights 2224 (SLC-MDW) and 2788 (MDW-CLT). The classifier strongly

suggests avoiding the 1971-2770 connection (with 100% predicted probability) if the

delay of 2224 exceeds roughly 2.5 hours. If that is not the case, the classifier implies

that the 1971-2770 connection becomes the best option (with 94.87% predicted prob-

ability) when 2788 is delayed beyond 34.5 minutes and if the delay of 2770 is less than

5.5 minutes. One possible interpretation is that for the 1971-2770 connection to be

utilized, it has to be efficient in terms of additional time beyond the minimum con-

nection time between flights during the day of operations. If the second flight, 2770,

does not have an NP delay beyond 5.5 minutes, the time between the arrival of the

first flight, 1971, and the departure of the second flight, will be a very short, unless

1971 arrives significantly early. This is because the slack time between the flights,

based on the planned schedule, is already negative, as the minimum connection time

required is 30 minutes while the connection time based on the planned schedule is 20

minutes.

Flight ID Origin Destination Departure_time
(in UTC minutes)

Arrival_time
(in UTC minutes)

1971 OAK MDW 1315 1555

2770 MDW MEM 1615 1715

2224 SLC MDW 1390 1565

2788 MDW CLT 1620 1720

Table 2.4: Flight information for the classifier example in Figure 2-10

Finally, there are classifiers that consider disruptions to flights in the F/O as
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Figure 2-10: Classifier trained for the OAK-MDW-MEM follow-on pair

well as other flights, while also considering the aircraft recovery solution. Figure 2-

11 includes such an example. The corresponding information is provided in Table

2.5. The database frequency is 86.13% while the precision is 92.31%. What we are

trying to predict is the usage of the connection 1783-2543 (DAL-LGA-MDW) in the

crew recovery solution. The classifier suggests connecting 1783-2543 as long as the

corresponding flights are not delayed significantly. If the second flight, 2543 (LGA-

MDW), is delayed beyond 69.5 minutes, the usage of the F/O in the aircraft recovery

solution determines the classifier suggestion.

Flight ID Origin Destination Departure_time
(in UTC minutes)

Arrival_time
(in UTC minutes)

1783 DAL LGA 1260 1455

2543 LGA MDW 1495 1655

749 DTW MDW 950 1020

2132 LGA MDW 1360 1515

Table 2.5: Flight information for the classifier example in Figure 2-11

What makes the above classifier examples interpretable is the relatively simple

structure of the resulting models. There is a trade-off between classifier interpretabil-
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Figure 2-11: Classifier trained for the DAL-LGA-MDW follow-on pair

ity and precision performance. Figure 2-12 shows the average classifier precision values

with different classification methods including Optimal Classification Trees (OCT),

Random Forest (RF), and XGBoost (XG). OCT-5 and OCT-10 are OCT classifiers

using tree depth parameter values of 5 and 10 respectively. XG and RF methods do

not create interpretable models. OCT-5 generates more interpretable models than

OCT-10, since a tree with a depth of 10 is more difficult to interpret than simpler

trees such as those shown in Figures 2-9, 2-10, and 2-11.

The variable importance analysis of the F/O classifiers with high precision re-

vealed that many relied on information from flights that were not in the correspond-

ing F/Os. Information about the delays related to the flights in the F/O and the

remaining flights have an importance of 16.4% and 81%, respectively. The informa-

tion on whether the corresponding F/O was included in the aircraft recovery solution

has, on average, 2.6% importance.
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Figure 2-12: Classifier precision performance with different classification methods

2.5 Extensions

2.5.1 Multi-Threshold Search

When a disruption occurs, airline recovery teams act quickly to resolve the issue as

soon as possible. For moderate to severe disruptions, considerable resources, including

multiple staff members and computers, are often allocated to tackling the most urgent

problem. Our proposed approach performs even better under such circumstances.

Depending on the number of machines/processors dedicated to the recovery effort,

two or more 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values can be selected. Each value corresponds to a

separate optimization run with the same solution-time limit. We can run two or more

optimization instances in parallel with different threshold values and pick the best

solution. We call this the Multi-Threshold Search (MTS) method. Our experiments

show that this method could improve solution quality even when only two parallel

runs are performed, because the threshold values that lead to high-quality solutions

for different disruptions can also be different. Picking two or more threshold values

and running the optimization jobs in parallel increases the probability of finding the
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Figure 2-13: MTS method solution quality performance comparison

most effective solution space reduction strategies.

The results shared in Section 2.4.3 reflect the case in which a single threshold value

is used. When multiple processors or threads are available on the day of operations,

we can apply the MTS method and run parallel instances with different threshold

values. Figure 2-13 shows the effects of running 2 to 4 parallel instances on the

solution quality for the network with 2,870 flights used in Section 2.4.3. The resulting

solution quality levels are given in Table 2.6. Compared to the best performance of

2.70% provided by the ML method using a single threshold, the MTS method using 4

parallel runs generated solutions with a recovery cost difference of 1.78% with respect

to the baseline solutions that took up to 2 hours to generate.

2.5.2 Stochastic Evaluation

The results presented in Section 2.4.3 correspond to the cases where the recovery ac-

tion is taken once for the disruption period and not modified again. This is reasonable

only when we have accurate delay predictions and can make our decisions accordingly.

But in practice, the recovery solutions are updated several times a day, because the

predictions are never 100% accurate. Therefore, we developed a simulation procedure
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Solution time limit (minutes) ML MTS-2 MTS-3 MTS-4)

1 11.35% 10.99% 10.71% 10.45%

2 6.89% 6.52% 6.07% 5.81%

3 4.80% 4.21% 3.91% 3.72%

4 3.89% 3.24% 2.81% 2.76%

5 2.70% 2.12% 1.87% 1.78%

Table 2.6: Average recovery cost difference for the MTS method with respect to the
baseline solutions

to investigate the performance of the proposed methods in a more realistic manner.

We now relax the strong assumption of accurate delay predictions, and respond to

the updated delay information by allowing the recovery decisions to be altered several

times during the day of operations. The objective is to simulate the actual recov-

ery processes and evaluate the performances of the baseline and ML-generated initial

solutions under uncertainty and recurring updates.

Figure 2-14 depicts the iterative process for delay predictions and recovery decision

updates. The day of operations is divided into six stages with each stage being four

hours long. First, an initial recovery solution is created based on the predictions

available at the start of the day, i.e., at node 0. Then, at the end of each stage,

airlines update their delay predictions for the remaining flights that day and then

modify the recovery solutions accordingly. There are five update points after the

initial recovery solution. We expect airlines to have more accurate delay predictions

for flights departing within a short time period, and the accuracy of the predictions to

decrease for the flights that are further out into the future. We also assume that the

delay predictions for the flights departing during the first half of each four-hour stage

are more accurate than those for the flights departing in the second half. This reflects

the fact that, while airlines may receive continuous updates regarding the disruptions,

they may still want to avoid re-scheduling operations too frequently. We implemented

a parameter, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒𝑅𝑎𝑡𝑖𝑜, to quantify the inaccuracy in delay predictions

at each update point for flights departing in the future.
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Figure 2-14: Rolling horizon recovery simulation

Predicted 𝑁𝑃𝑖 values are calculated as a weighted average of the actual realized

delay value and a noise term, where weights are determined based on the remaining

time until the flight’s scheduled departure time. Let us define the notation needed for

defining the formula for predicted 𝑁𝑃𝑖 before providing the formula. Let 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑𝑁𝑃𝑖

be the actual realized NP delay value of flight 𝑖 on that day, and let 𝑁𝑜𝑖𝑠𝑒𝑁𝑃𝑖 be the

NP delay for that flight obtained from a randomly selected day in the historical data

(for the same day-of-week). Let 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒𝑅𝑎𝑡𝑖𝑜 be the weight that determines

the extent of added noise. Finally, let 𝐿𝑜𝑜𝑘𝐴ℎ𝑒𝑎𝑑 be how far each time period is from

the recovery update point and is measured in number of 2-hour periods. Then the

formula for calculating noisy 𝑁𝑃𝑖 values is 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑𝑁𝑃𝑖*(1−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒𝑅𝑎𝑡𝑖𝑜*

𝐿𝑜𝑜𝑘𝐴ℎ𝑒𝑎𝑑) +𝑁𝑜𝑖𝑠𝑒𝑁𝑃𝑖 * 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒𝑅𝑎𝑡𝑖𝑜 * 𝐿𝑜𝑜𝑘𝐴ℎ𝑒𝑎𝑑.

Figure 2-14 provides an example. When the prediction noise ratio is set to 5%,

the 𝑁𝑃𝑖 predictions at the recovery update point 1 (i.e., node 1) for the individual

flights scheduled to depart between 8:00 and 10:00 hours (i.e., the first half of the time

period between nodes 2 and 3 in Figure 2-14) will be calculated as 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑𝑁𝑃𝑖 *

(1 − 0.05 * 3) + 𝑁𝑜𝑖𝑠𝑒𝑁𝑃𝑖 * 0.05 * 3 since the period between 8:00 to 10:00 is three

2-hour periods away from the update point 1 (𝐿𝑜𝑜𝑘𝐴ℎ𝑒𝑎𝑑 = 3).

In the implemented simulation, the flights assigned to a crew and scheduled to
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depart within the first 4-hour period cannot be unassigned during any of the later

recovery updates. When a crew duty becomes infeasible due to the crew duty legality

rules within the first 4-hour period, a high-cost reserve crew is assumed to cover the

corresponding flights.

We run the simulation with the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒𝑅𝑎𝑡𝑖𝑜 value of 5% for the 2,870

flight network used in the computational study after five recovery updates. At each

point, the method used to update the recovery decisions is the same method (it

involves solving the CRM-APC directly using the Gurobi optimizer with an optimality

gap target of 2%) for default and ML-based solutions so that we can compare the

initial solutions’ performance fairly. The Default method for the initial solution is

run with a two-hour runtime limit and with a target optimality gap of 0.1% while the

ML method is run with a runtime budget of 5 minutes.

The results show that even though the initial baseline solution was 2.70% better

than the initial solution found by the ML-based approach, the final recovery costs

calculated after completing the simulation procedure are very similar. In this set of

experiments, the average final recovery cost of the solutions generated by our ML-

based method was actually ∼0.5% less than that of the baseline solutions. This is an

interesting result considering that the Default approach runs for almost two hours on

average, while the ML-based approach runs only for 5 minutes. One of the reasons

for this performance difference is that, since the Default approach includes the entire

feasible solution space, it generates solutions highly specific to the disruption input,

which is the initial set of 𝑁𝑃𝑖 predictions. Since the realized 𝑁𝑃𝑖 values differ from

the predictions, solutions are more severely affected, resulting in higher actual costs.

The ML-based approach, on the other hand, relies on probabilities; hence the resulting

solutions are not over-optimized for the given disruption input, making the resulting

solutions more flexible. Consequently, the difference between the 𝑁𝑃𝑖 predictions and

the realized 𝑁𝑃𝑖 values does not increase the actual costs as significantly.
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Figure 2-15: Relationship between recovery cost and solution space reduction.

2.6 Conclusion

Airlines that incorporate optimization methods into their recovery processes generally

adopt an approach that reduces the size of the problem by only including a limited

number of flights and crews in the solution space. However, these procedures typically

use simple heuristic rules for reducing the problem size. Consequently, the resulting

solutions can be far from optimal. Our experiments confirm that reducing the feasible

solution space significantly speeds up the optimization process. More importantly, our

results demonstrate that ML techniques can reduce the size of the problem without

sacrificing significantly the solution quality. We determine a solution space tailored

for the given disruption by predicting and fixing some of the micro-solutions. Our

methods can create high-quality solutions in under 1 to 5 minutes, depending on the

size of the underlying flight network.

For each problem instance and the available solution time T, there appears to

be a relationship between the solution quality and the database (DB)-guided & ML-

guided solution space reduction. A conceptual depiction of this general behavior is
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given in Figure 2-15. Empirical evidence suggests that when T is sufficiently large,

solution space reduction does not help, but for most practical cases, there exists a

reduction strategy that provides the best solution quality. The framework presented

in this study relies on finding good solution space reduction strategies, and it also

has the capability to adapt to the available solution time limit, a property that other

heuristic approaches lack.

The time and other resources required for the offline phase is a drawback of the

presented framework. To ensure the practicality of the approach, we developed pro-

cedures to significantly accelerate the offline phase without sacrificing the quality of

the solutions.

Our experiments showed that classifiers trained for follow-on (F/O) pairs achieve

higher precision levels than those trained for crew duty assignments, helping to find

better solutions in limited timeframes. Consequently, we picked F/Os as the type of

micro-solutions to predict and fix in this framework.

The best threshold value for a given solution time differed for individual disrup-

tions. This fact motivated a Multi-Threshold Search (MTS) method, in which several

instances of the same problem are solved in parallel with different threshold values

to filter and fix F/Os. Even with only two parallel runs, the MTS approach demon-

strated considerable improvements. This method is consistent with airline practices

because, in many cases, multiple computers and recovery personnel are dedicated to

solving the given disruption.

We evaluated the performance of the ML-based solutions under incomplete infor-

mation settings with a simulation-based approach to better reflect real-life recovery

operations and quantify the impacts. Our experimental results using our ML-based

approach were found to be similarly (in fact slightly more) robust to inaccurate flight

delay predictions compared to the baseline solutions generated by the default opti-

mization approach. They perform similarly or better when delay predictions change

and solutions need to be modified multiple times during the day of operations.

Variable importance analysis showed that most high-precision F/O-based classi-

fiers use information from flights that are not part of the F/O. This is an interesting
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and practical discovery that, together with the interpretable structure of the resulting

tree classifiers, provides actionable insights about which F/Os to consider or rule out

under certain operational conditions.
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Chapter 3

Integrated Aircraft, Crew, and

Passenger Recovery

3.1 Introduction

Operations research methods have greatly benefited airline scheduling problems, such

as fleet assignment, aircraft maintenance routing, and crew scheduling. These prob-

lems are handled during the planning phase, usually weeks or even months in advance.

Therefore, they cannot consider disruptions during the day of operations, such as

those due to weather conditions or mechanical failures.

Disruptions can significantly affect operational performance, leading to undesir-

able economic and passenger-related consequences. Passenger delays have become

increasingly problematic, especially since the growth of air transportation demand

has outpaced the capacity of major airports (Barnhart et al., 2012). The total cost of

flight delays in 2007 was estimated to be $33 billion in the United States alone (Ball

et al., 2010). More recently, the annual cost of flight delays worldwide was predicted

to be around $60 billion (Wang & Vaze, 2016).

The process through which airlines intervene to mitigate the effects of disrup-

tions is called disruption management or airline recovery. The main objective of

this process is to minimize recovery costs, including those due to changes in fuel and

crew requirements, delays, passenger re-accommodation, and loss of passenger good-

83



will. Recovery decision alternatives include delaying and canceling flights, rerouting

or swapping aircraft, using backup aircraft, rescheduling planned crews or calling in

reserve crews, and re-accommodating disrupted passengers.

The airline recovery process consists of flight schedule, aircraft, crew, and passen-

ger recovery steps. These steps are similar to their scheduling counterparts, but in

practice, their solution processes are further complicated due to limited time avail-

ability. Consequently, airline recovery is usually tackled sequentially with limited

feedback from later stages. However, this lack of interaction between stages can

lead to low-quality or even infeasible solutions. Integrating multiple recovery stages

presents complex challenges, which some studies address using decomposition tech-

niques (Petersen et al., 2012). However, solution time requirements remain a major

bottleneck for such efforts.

Solving a fully integrated recovery model considering all aspects of the problem

and including all solution alternatives could, in theory, create the best possible so-

lution, but this is impossible for most real-world cases. The combinatorial nature of

decisions involving schedule, aircraft, crew, and passenger recovery makes it imprac-

tical to rely solely on optimization-based approaches. Therefore, airline disruption

management processes generally do not involve a full-scale optimization-based so-

lution approach that considers all solution alternatives. A common approach is to

reduce the size of the recovery problem by considering only a limited number of flights,

aircraft, and crews (Clausen et al., 2010) before utilizing optimization methods. How-

ever, these problem-size reduction approaches often rely on heuristics that produce

far-from-optimal solutions.

Timing plays a crucial role during the day of operations. Since decisions are made

in real time at the operations control centers, solutions to recovery problems must

be achieved within a limited timeframe (for example, 10 minutes) after a disruption

in most cases (Hassan et al., 2021). This leads to the use of fast heuristic-based

solution approaches in practice, even though they do not guarantee the generation of

high-quality solutions.

While many researchers have presented integrated recovery models, the practi-
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cal implementation of these ideas has been limited. The airlines would benefit from

a comprehensive approach that can generate high-quality solutions in limited time-

frames while accounting for the most critical aspects of all recovery steps. This study

presents such an approach and develops fast methods for the integrated airline re-

covery problem, incorporating the recovery steps for schedule, aircraft, crew, and

passengers.

Although the actual details of the disruptions change from one operational day to

another, several key disruption patterns occur repeatedly. In this sense, the disrup-

tions on a given day can often resemble the disruptions that occurred on some of the

past days. Therefore, instead of solving similar problems each time from scratch, one

can discover patterns in suitable recovery actions to historical disruptions with the

help of machine learning (ML) methods and utilize them as a means of accelerating

the solution process without significantly sacrificing solution quality. In Chapter 2,

we showed that this approach performs better than other practical approaches in the

context of crew recovery. In this chapter, we present a framework for the integrated

recovery problem and develop practical solution methods.

The remainder of this chapter is organized as follows. In this section, we review

the prior literature and present the contributions of this study. Section 3.2 presents

an original airline recovery optimization model, discusses our representation of dis-

ruptions, and provides the mathematical formulations. In Section 3.3, we present the

solution methodology, including how we leverage ML techniques. Section 3.4 is dedi-

cated to the computational study, focusing on the experimental setup and providing

results. Section 3.5 contains a solution analysis and discusses the insights gathered

from the experiments. Finally, Section 3.6 concludes with a summary and future

research directions.

3.1.1 Literature Review

Many existing studies on airline recovery have focused on individual steps in the

process, including aircraft recovery (Teodorović & Guberinić, 1984, Teodorović &

Stojković, 1990, Jarrah et al., 1993), crew recovery (Song et al., 1998, Wei et al.,

85



1997, Stojković et al., 1998) or passenger recovery (Thengvall et al., 2000, Bratu

& Barnhart, 2006), due to the complexity of real-world problems and computational

limitations. See Clausen et al. (2010) and Hassan et al. (2021) for more comprehensive

reviews of studies that focus on individual recovery steps.

Handling the recovery steps individually leads to a sequential approach, which

often results in high recovery costs due to the solutions that get fixed at earlier stages.

With improvements in both the combinatorial optimization solution algorithms and

the computational power available to researchers, there has been a recent increase in

efforts to integrate two or more steps. These studies can be classified into three groups

with respect to the recovery steps that are integrated. The first group integrates the

aircraft and crew recovery steps, while the second integrates the aircraft and passenger

steps. The studies in the last group consider all three steps. Aircraft recovery is

the common step included in all groups. It should be noted that decisions related

to schedule recovery, such as delaying and canceling flights, are usually considered

together with the aircraft recovery step.

Aircraft and crew are two of the most critical and expensive airline resources.

Although aircraft and crew recovery problems share some similarities, the latter is

further complicated due to the crew duty legality rules that need to be satisfied. A

crew duty is a set of consecutive flights that can be operated by a crew. An aircraft

recovery solution that does not consider the implications for the crew recovery step can

significantly increase crew recovery costs and hence the overall recovery cost. Studies

that integrate aircraft and crew recovery steps aim to avoid such an outcome. One

such study is by Maher (2016) that develops a solution approach following a column-

and-row generation framework. Zhang et al. (2015) present a heuristic method in

which an aircraft recovery model with crew considerations and a crew recovery model

with aircraft considerations are run iteratively as long as the solution continues to

improve.

The primary indicators of success for airline recovery operations are the amount

of flight delays and the number of cancellations. On-time performance (OTP) is a

widely used metric in air travel and other transportation services, reflecting how well
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a service provider operates with respect to its published schedules. In the context of

air travel, a flight is considered on-time if it arrives at its destination no more than

15 minutes after its scheduled arrival time. The U.S. Department of Transportation

has been publishing airline on-time performance data since 1987 (BTS, 2020).

It is crucial to manage both delays and cancellations to minimize the effects of

disruptions on passengers. Extended delays and many cancellations can result in

loss of passenger goodwill and damage the brand image of the airline. However,

not all flight delays and cancellations have similarly severe impacts on passengers.

Several factors determine the impact of flight delays and cancellations on passengers,

including the number of connecting passengers, connection times, load factors, and

flight frequencies (Barnhart et al., 2014).

In order to deal with passenger delay costs in a holistic way, some studies inte-

grate aircraft and passenger recovery steps by considering passenger itineraries when

making schedule and aircraft recovery decisions. A passenger itinerary corresponds to

the travel plan of a passenger consisting of one or more flights. Bisaillon et al. (2011)

present a large neighborhood search based heuristic to obtain fast solutions for inte-

grated aircraft and passenger recovery problems, using data sets from the ROADEF

2009 challenge organized by the French Operational Research and Decision Support

Society. For detailed information about the challenge, see Palpant et al. (2009). The

approach used by Bisaillon et al. (2011) is a multi-phase one in which an initial solu-

tion is generated, repaired, and improved through a large neighborhood search. Marla

et al. (2017) incorporate flight planning related recovery actions, like increasing the

flight cruise speeds, into schedule and aircraft recovery. Their modeling approach

employs flight copies for departure-time decisions and cruise-speed alternatives.

Both sets of integration approaches discussed above leave either crew or passen-

ger recovery out of consideration. Few studies have tried to integrate all three steps.

Lettovsky (1997) was an early study to present such a solution approach with com-

plete integration of schedule, aircraft, crew, and passenger recovery using a Benders’

decomposition approach. This framework was improved by Petersen et al. (2012).

They evaluate their solution approach in response to major disruptions, achieving

87



run times of less than 30 minutes for selected scenarios. Maher (2015) extends the

column-and-row generation framework developed in Maher (2016) by incorporating

passenger recovery decisions. These methods have been applied to networks with

fewer than 800 daily flights and restricted to a limited number of flight modifica-

tions to keep the solution space manageable. The 30-minute solution time limit is

longer than the preferred solution times in practice. Additionally, due to the com-

binatorial nature of recovery problems, these methods are unlikely to scale well for

larger instances. A more tractable modeling approach is needed for the practical

implementation of the developed methods.

Due to the solution time limitations on the day of operations, academic researchers

and industry professionals commonly follow two main methods to reduce the solution

space and accelerate the recovery optimization process (Clausen et al., 2010). In the

first method, called the time window technique, only a portion of the flight schedule

is used in the recovery problem, spanning from the time of the disruption to a specific

number of hours into the future. Depending on the problem context and network size,

the time window length can range from a couple of hours to the entire day. In the

second method, the number of aircraft and crew schedules that can be modified during

the recovery process is limited in advance (Petersen et al., 2012). We call this method

the candidate resource limitation technique, because the candidate aircraft and crew

to consider when tackling the disruption are limited. Although these methods help

accelerate the solution process, they are not designed to specifically consider the

characteristics of the disruption. Consequently, they may lead to solutions that are

not suitable or feasible for some disruptions.

3.1.2 Contributions

In this chapter, we present a multi-stage modeling and solution framework for the

integrated recovery problem that involves an aggregate and tractable integrated for-

mulation, followed by post-processing steps for repairing and refining the aircraft,

crew, and passenger recovery solutions. For each step, we develop original optimiza-

tion models as well as a fast and tunable solution method by combining optimization
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and ML. We accelerate the solution process by determining a restricted solution space

tailored for each disruption. The trained classifiers provide insights into recovery de-

cisions.

We now list the key contributions.

1) Model: We propose a tractable integrated recovery model that captures key

decisions about the schedule, aircraft, crew, and passenger recovery steps. It is based

on the modeling approach with facet-type constraints introduced in the context of

air traffic flow management by Bertsimas and Patterson (1998). We show that it

can generate solutions that are up to 50% better than those generated by a fully

sequential approach.

2) Process Acceleration: The developed methodology accelerates both the

offline and online solution phases due to the way the solution space is reduced based

on classifier predictions and the definition of the feature set. The offline phase refers to

a set of steps that must be completed in advance to make the solution methods ready

for the online phase, while the online phase corresponds to generating solutions on the

day of operations. The reduction in solution space is achieved by reducing the number

of copies for individual flights by predicting the maximum allowable delay limits,

instead of creating the same number of copies for all flights in all disruption instances.

The feature set used in the prediction to describe the schedules and disruptions has

four types of information: disruption, flight, crew, and passenger. This feature set

allows classifier training to be performed for a group of flights instead of individual

flights, which reduces the total model training time.

3) Crew vs Passenger Recovery Trade-off: Our solution method has an in-

herent exploration-exploitation trade-off, which allows insights into the relative impor-

tance of crew and passenger considerations in an integrated recovery approach. The

integrated recovery model includes the major decisions related to crew and passenger

recovery, namely infeasible crew duties and missed passenger connections, rather than

including all crew and passenger-related decisions. The approximate costs of crew and

passenger recovery are included in the objective function and the corresponding cost

coefficients are calibrated to achieve the minimum recovery cost after completing the
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post-processing steps. The calibrated cost coefficient values show that it is more chal-

lenging to repair infeasible crew duties, possibly due to crew duty feasibility rules;

hence, it guides the solution to the appropriate balance between passenger and crew

infeasibilities in the solution.

4) Interpretability: The variable importance analysis conducted on the maxi-

mum allowable flight delay limit classifiers yielded some insightful results. Disruption

information, which consists of airport capacities and planned number of operations,

was the most important information in determining the maximum allowed flight de-

lay. Passenger-related information was found to be more important than crew-duty-

related information for training the ML classifiers. Our findings imply that while

passenger itineraries are easier to repair than crew schedules, passenger information

is still more important in deciding the maximum allowable flight delay limits. This

may be due to the fact that the average number of passengers on each itinerary is

much lower than the average number of passengers on each flight and the delay on

a single flight may affect a significant number of passenger itineraries. In contrast,

each flight is operated by a single crew member, which limits the extent to which the

rest of the network gets disrupted through crew-based propagation of delays.

3.2 Problem Statement and Mathematical Model

3.2.1 Disruption Definition

From an airline perspective, the main external factors that disrupt flight operations

are airport closures and airport and airspace capacity reductions due to severe weather

conditions. If a flight is not allowed to depart from or arrive at an airport within a time

period, a delay or cancellation may be inevitable. However, reduced capacities alone

do not necessarily result in disruptions. The extent of disruptions is correlated with

congestion levels rather than actual capacities. If there are only five flights departing

from an airport during a particular time period where the capacity is reduced to 10

departures, no flight would be affected. On the other hand, if the number of planned

90



departures exceeds 10 by a significant margin, many flights will inevitably experience

delays or cancellations.

Many prior studies have considered airport capacity limitations as the main types

of disruptions that need to be addressed in the airline recovery context. Petersen et

al. (2012) and Maher (2016) present integrated recovery formulations with airport

capacity constraints. The disruption scenarios they use reflect capacity reductions or

closures at a single airport for a limited number of hours.

In this study, we also focus on reductions in airport capacity levels as the main

source of disruptions. Our way of defining the scope of disruptions addressed in

this study has two major advantages. First, the disruption instances correspond to

disruptions during all hours of the day at the top 15 airports in the airline’s network,

covering ∼90% of the flights, instead of only focusing on a single airport and a limited

time window. This definition provides a more comprehensive representation of the

disruption state of the entire network. Second, in addition to the airport capacities,

the disruption definition also includes the number of scheduled flight departures and

arrivals by all airlines for a given airport and time period to calculate the congestion

levels. As argued above, if there is no congestion, then reduced airport capacity may

not lead to delays or cancellations. Information related to hourly airport capacities

and the scheduled number of departures and arrivals is retrieved from the Aviation

System Performance Metrics (ASPM) database published by FAA (2021).

We assume that the reduction in airport capacity affects all airlines operating at

the airport in a proportional way. For example, suppose that the departure capacity

during a specific time period is reduced by 50% in a case where the scheduled num-

ber of flight departures was already equal to the capacity. In that case, all airlines

must delay or cancel half of their flights originally scheduled to depart within the

corresponding time period.

3.2.2 Airline Recovery Problem

In practice, airline recovery usually follows a sequential process with limited feedback

mechanisms, as illustrated in Figure 3-1. The first two steps, schedule and aircraft
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Figure 3-1: Sequential airline recovery process

recovery, are usually handled in a more integrated manner than the rest of the pro-

cess. Schedule recovery aims to repair disrupted flight schedules mainly by delaying

or canceling flights, while aircraft recovery involves determining suitable routes for in-

dividual aircraft to accommodate the revised flight schedules while satisfying aircraft

availability and maintenance requirements. The next step is crew recovery, which

ensures that each flight that is to be flown has a crew assigned to it by rescheduling

planned crews or using reserve crews as needed, while meeting crew legality require-

ments. The last step is passenger recovery, which reassigns disrupted passengers to

alternative itineraries to enable them to reach their destinations.

Due to the lack of full integration, the resulting sequential process requires exten-

sive collaboration among operation controllers, crew planners, and passenger service

coordinators to assess the feasibility of the recovery solutions and anticipate the sever-

ity of the potential consequences.

Aircraft Recovery Problem

The aircraft recovery problem aims to reroute the aircraft or use backup aircraft to

minimize the effects of disruptions. The set of flights that are assigned to a single

aircraft is called a rotation. Available rerouting options include ferrying, diverting,

and swapping aircraft. Ferrying refers to flying the aircraft without any passengers,

and swapping refers to reassigning flights between two aircraft. Any modification to

planned rotations must satisfy maintenance requirements, airport curfew restrictions,

and aircraft balance requirements. All aircraft must be positioned at their scheduled
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locations at the end of the recovery period for operations to continue as planned. The

evaluation of alternative recovery decisions should consider operational restrictions

and preferences.

Government regulatory agencies, such as the FAA in the United States, require

the operated aircraft to undergo regular maintenance checks to ensure the safety of

air travel (Barnhart & Vaze, 2015a). There are different types of maintenance checks

depending on their required frequencies, ranging from 3-5 days to 10 years. Airlines

schedule the near-term maintenance checks in advance to ensure continuous operation.

However, these schedules may also be disrupted during the day of operations. Hence,

they need to be tracked and rescheduled when needed.

The most important type of check is called the line check, which must be completed

every 24 to 60 hours of accumulated flight time, depending on the type of aircraft

(NAA, 2022). The actual frequency of line checks depends on the characteristics of

the airline network and aircraft utilization policies. For some airlines, each aircraft on

average undergoes a line check every 4 days, while for others, every 7 days (Heinold,

2008). The line check is the most relevant maintenance check in the recovery context,

since the recovery period is usually limited to 1 or 2 days. Maintenance checks that are

required every few months or years do not need to be addressed within the recovery

period.

During a line check, the aircraft is refueled, and all critical instruments are checked

for defects. Although the duration of a line check can also differ from airline to airline,

it usually takes 1 to 3 hours. Line checks are usually performed at the gates (NAA,

2022). Some airlines call them overnight checks, as they frequently schedule them

after the last arrival of the aircraft on a given day. Although line checks are easy

to perform and do not require much time, ensuring that all aircraft meet the line

maintenance requirements can be challenging, especially when the flight schedule has

many overnight red-eye flights.
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Crew Recovery Problem

The schedule and aircraft recovery decisions made in the previous step often result

in crew disruptions due to flight cancellations, delays, diversions, and aircraft swaps.

These issues are handled in the crew recovery step, which involves generating new

schedules for disrupted crews, reassigning crews to alternative schedules, utilizing re-

serve crews, and deadheading crew members while adhering to union agreements and

civil aviation regulations, to cover all flights. The objective is to minimize incremen-

tal crew costs to operate the modified schedule while returning to the plan within a

specified time window.

One of the most important civil regulation rules relates to the flight duty period

(FDP) limits. FDP is defined as “a period that begins when a pilot is required to report

for duty with the intention of conducting a flight or series of flights and ends when the

aircraft is parked after the last flight with no intention for further aircraft movement

by the same pilot” by the Federal Aviation Administration (FAA). The sequence of

flights assigned to a crew within an FDP is called a crew duty and from the check-in

time for the first flight of the duty until the arrival time of the last flight, crew is

considered on-duty. The actual duration of the FDP is affected by flight delays, and

hence it needs to be tracked for every crew duty during the recovery operations.

In addition to the maximum FDP time, other relevant rules include the minimum

connection times between two consecutive flights in a crew duty and the minimum

duty rest time between two duties assigned to the same crew. For a more detailed

description of these rules, see Chapter 2 - Section 2.2.1. Our model ensures that

FDP limits are not exceeded and that the recovery solutions satisfy the minimum

connection and rest time rules.

Our model ensures that the FDP limits are not exceeded and that the legality

rules on the minimum connection time between the flights and the minimum rest

time between consecutive duties are satisfied.
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Passenger Recovery Problem

The earlier decisions made in the sequential recovery process can cause significant

disruptions for passengers. When flights are canceled or delayed, passengers may

need to be rebooked on different itineraries. This step is called passenger recovery.

The appropriate recovery actions depend on various factors, including the number of

alternative itineraries available, the number of passengers affected, and the availability

of seats on alternative flights. Minimizing flight delays may not always minimize

passenger delays, indicating the importance of factoring in passenger disruption costs

when making recovery decisions.

Decision support systems for airline recovery usually focus on addressing one of

these steps at a time due to the complexity of the integrated problem. However,

this sequential decision-making process often lacks comprehensive information on the

resources affected in the subsequent steps and their potential impacts. Recovery

decisions should consider the cost associated with passenger recovery when performing

the aircraft and crew recovery steps, because decisions that may be considered optimal

from the perspective of aircraft or crew recovery can be costly or even infeasible when

all three factors are considered jointly.

3.2.3 Modeling Approach

In this section, we present an integrated recovery approach in which we first solve

an integrated model that focuses on schedule recovery decisions while capturing the

most important aspects of the aircraft, crew, and passenger recovery steps. The

integrated model ensures that there exists a feasible flow of aircraft for the set of

delay and cancellation decisions being made while also considering the approximate

costs of crew misconnections, crew duty infeasibilities, and passenger disruptions due

to cancellations and misconnections.

The proposed solution method involves post-processing steps in which the in-

tegrated solution is repaired and refined by handling detailed aircraft, crew, and

passenger recovery steps using simpler integer optimization models. The aircraft

95



Figure 3-2: Integrated schedule, aircraft, crew, and passenger recovery

recovery post-processing step ensures that operated rotations are feasible while min-

imizing aircraft operations costs and the passenger costs resulting from limited seat

capacity. The crew recovery post-processing step repairs disrupted crew schedules via

crew rescheduling, deadheading, and reserve crew utilization. Passengers who cannot

reach their final destination on their original itinerary or an alternative itinerary are

considered stranded and need to be provided accommodation by the airline for the

night. The passenger recovery post-processing step minimizes the number of stranded

passengers by assigning them to alternative itineraries. Using this approach, depicted

in Figure 3-2, we generate solutions with up to 50% lower costs than a fully sequential

approach.

A key modeling idea in the integrated model is similar to that used by Bertsimas

and Patterson (1998) for the air traffic flow management problem with enroute capac-

ities. Their definitions of decision variables and the corresponding constraints allow

their model to remain tractable even for large networks with several thousand flights.

Inspired by their formulation, we have developed a novel integrated recovery model
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that uses binary flight departure (arrival) variables for each time period, 𝑡, indicating

whether the flight has already departed (arrived) by time 𝑡.

The logic behind the definitions of the departure and arrival decision variables is

demonstrated in Figure 3-3. Each cell represents a time period for departure or arrival

events. The flight is not allowed to depart or arrive during any of the time periods

corresponding to white-shaded cells. The blue and red-shaded cells correspond to the

first and last allowable departure (and arrival) times, respectively. All other time

periods in between, shaded gray, correspond to the other departure and arrival time

alternatives. Arrows represent flight copies that correspond to different departure-

time (arrival-time) decisions for the same flight. The model determines how much

each flight will be delayed by setting the values of the decision variables as those

dictated by the departure and arrival time periods.

In our computational study, the duration of the time periods (that is, the time

increment for flight copies) is set to 15 minutes, similar to that used by Petersen et

al. (2012) and several other researchers. For our primary computational experiments,

we assume that the flight times are fixed. This means that if the departure of a

flight is delayed by a certain duration, then the arrival should also be delayed by

the same duration. However, our model allows for changes in cruise speeds with a

slight modification to the corresponding constraints. Details are discussed in the next

section (Section 3.2.4).

The modeling approach described above leads to strong formulations, since some

constraints are facets of the convex hull of the set of feasible integer solutions. Inter-

ested readers are referred to Bertsimas and Patterson (1998) for more details on this

modeling idea and the strength of the resulting formulation.

3.2.4 Integrated Recovery Model

This section provides a mathematical formulation of the integrated recovery model,

IRM, with the corresponding notation. Recovery decisions captured by the model

include flight delays and cancellations, and which planned crew duty schedules and

passenger itineraries to maintain and which to disrupt. The objective function is to
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Figure 3-3: Flight departure and arrival time periods

minimize recovery costs, including crew and passenger delay costs, approximate costs

of crew and passenger recovery, and cancellation savings reflecting fuel and other costs

avoided by not operating the flight. The cost of cancellations is included in passenger

recovery costs and crew infeasibility costs. Approximate crew and passenger recov-

ery cost components are added to the objective function to guide the optimization

toward crew and passenger recovery-friendly solutions. Constraints cover departure

and arrival time modeling, flight time consistency, airport capacity limits, aircraft

flow balance, passenger disruptions due to cancellations and misconnections, crew

misconnections, crew duty limits, and aircraft maintenance requirements.

Several concepts need to be described before sharing the notation and formulation.

First is a flight connection pair (follow-on) that corresponds to a pair of consecutively

assigned flights in an aircraft rotation, crew duty, or passenger itinerary. Aircraft,

crew, and passenger follow-ons are generated as separate sets, because for example,

two flights assigned consecutively in an aircraft rotation may not be assigned consec-

utively in a crew duty or in a passenger itinerary.

Certain minimum connection time rules must be satisfied for two flights to be

assigned consecutively. Minimum connections times for aircraft, crew and passenger

follow-ons depend on a variety of factors including airline type, network structure,

airport characteristics, scheduling practices, and so on. Note that, for the crew follow-

ons, a higher minimum connection time is needed when the aircraft operating the

flights in the crew follow-on are not the same. Additional time is needed to accom-

modate the crew moving from one aircraft to another. These rules are followed to
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determine the feasibility of aircraft rotations, crew duties, and passenger itineraries.

A passenger itinerary is deemed broken if one or more flights in the itinerary are

canceled and/or the available passenger connection time is reduced below the mini-

mum needed. The IRM includes an estimate of the costs of these broken itineraries

and an estimate of delay costs to passengers due to late arrival of the last flight in

their itinerary. However, IRM does not take into account the costs associated with

spilled passengers when fleet assignment changes reduce flight capacity.

Crew duties are sets of flights that can be sequentially operated by a crew. In

crew scheduling problems, a large set of alternative crew duties is included in the

solution space, and the optimization model selects a subset of crew duties to generate

the planned crew schedules, usually for the entire month. The crew duties considered

in the IRM correspond to the subset of planned crew duties that overlap with the

current day of flight operations.

One of the objectives of the IRM is to minimize the number of crew duties that

become infeasible due to the FDP limits. To ensure this, we calculated the latest

legal end time (𝑑𝑡𝑙𝑠) for crew duties considering the duty start time, the legal FDP

limits, and the next day’s duty start time for the assigned crew.

In this study, it is assumed that delays occur when the aircraft is on the ground.

Therefore, the effects of flight delays on the costs of crew duties are completely cap-

tured by considering the extension to the crew duty time, which in turn equals the

arrival delay to the last flight in that crew duty. Additionally, the IRM ensures that

the crew duty extensions do not violate the next day’s crew duty. This maintains the

feasibility of the crew pairing, where crew pairings are defined as one- or multi-day

flight schedules for crews that start and end at the crew’s home base.

Airlines often have different types of aircraft in their fleets. There are two main

aircraft body types: narrow-body single aisle-aircraft, and wide-body two-aisle air-

craft. The major aircraft manufacturers, Boeing and Airbus, produce different types

of aircraft to meet the commercial requirements of the airlines. Having aircraft with

different seat capacities provides airlines with the flexibility to schedule flights that

reflect the demand for flights. The downside is that they need to train and certify
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separate sets of pilots for each fleet due to the differences in the aircraft cockpits.

This is especially important in the recovery context, as assigning a flight to another

type of aircraft than the one originally planned would require finding a new crew to

operate the flight. The IRM model ensures that there exists a feasible flow for each

aircraft group and that maintenance requirements are met.

In IRM, we define an aircraft group 𝑎 ∈ 𝐴 using distinct attributes, including

the type of the fleet, as defined by crew and maintenance requirements. Each set of

aircraft requiring the same fleet type and with the same maintenance requirement

(specifically, line maintenance not required during the recovery period or line main-

tenance required during the recovery period) is considered an aircraft group. Con-

straints in the model ensure the feasiblity of the aircraft flow for each type and will

ensure that aircraft requiring maintenance will arrive at their planned maintenance

airport before the end of the recovery period.

The main decision variables in the model are 𝑑𝑎,𝑡𝑖 and 𝑟𝑎,𝑡𝑖 , corresponding to flight

departure and arrival decisions and aircraft group assignment decisions. The variable

𝑑𝑎,𝑡𝑖 equals 1 if the flight 𝑖 ∈ 𝐼 assigned to the aircraft group 𝑎 ∈ 𝐴 has departed by

the end of time period 𝑡 ∈ 𝑇 , 0 otherwise. The variable 𝑟𝑎,𝑡𝑖 equals 1 if the flight 𝑖 ∈ 𝐼

assigned to the aircraft group 𝑎 ∈ 𝐴 has arrived by the end of time period 𝑡 ∈ 𝑇 , 0

otherwise.

The modeling logic behind the variables 𝑑𝑎,𝑡𝑖 and 𝑟𝑎,𝑡𝑖 was presented in Figure 3-3.

Let us consider a simple example to demonstrate how the values of individual variables

corresponding to different time periods are related to each other. Assume that the

arrow in Figure 3-4 corresponds to the flight departure and arrival time decisions made

by the model. Then, all the decision variables 𝑑𝑎,𝑡𝑖 corresponding to time periods prior

to the actual departure time, and all the decision variables 𝑟𝑎,𝑡𝑖 corresponding to time

periods prior to the actual arrival time are set to 0. Similarly, all the decision variables

𝑑𝑎,𝑡𝑖 corresponding to time periods equal to and after the actual departure time, and

all the decision variables 𝑟𝑎,𝑡𝑖 corresponding to time periods equal to and after the

actual arrival time are set to 1.
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Figure 3-4: Flight departure and arrival time decision variables

Notation

Sets

𝐼: the set of flights that depart and arrive during the recovery period 𝑇

𝐴: the set of aircraft groups. Each fleet is divided into multiple groups with

all aircraft in 𝑎 ∈ 𝐴 having the same maintenance requirements and the same crew

qualification requirements

𝑃 : the set of airports

𝑇 = {1, 2, 3, ....|𝑇 |}: the set of (15-minute) time periods in the recovery period

𝐼𝐷𝑝 ⊆ 𝐼: the subset of flights scheduled to depart from airport 𝑝 ∈ 𝑃 during the

recovery period

𝐼𝑅𝑝 ⊆ 𝐼: the subset of flights scheduled to arrive at airport 𝑝 ∈ 𝑃 during the

recovery period

𝐹 : the set of planned passenger itineraries on flights in 𝐼

𝑆: the set of planned crew duty strings covering flights in 𝐼

𝐶𝑋𝑠 ⊆ (𝐼 × 𝐼): the set of flight connection pairs in planned crew duty 𝑠 ∈ 𝑆

𝐶𝑋𝑓 ⊆ (𝐼 × 𝐼): the set of flight connection pairs in planned passenger itinerary

𝑓 ∈ 𝐹

Data
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𝐷𝐶𝑓 : approximate passenger delay cost for itinerary 𝑓 ∈ 𝐹 , in dollars per (15-

minute) time period

𝑃𝐶𝑓 : approximate cost associated with broken passenger itinerary 𝑓 ∈ 𝐹

𝐶𝐶𝑠: approximate cost associated with a crew duty 𝑠 ∈ 𝑆 becoming infeasible

𝐸𝐶𝑠: crew duty extension (delay) cost for duty 𝑠 ∈ 𝑆, in dollars per (15-minute)

time period

𝑍𝑆𝑖: savings associated with canceling flight 𝑖 ∈ 𝐼

𝐴𝐶𝑎
𝑖 : cost of assigning flight 𝑖 ∈ 𝐼 to aircraft of group 𝑎 ∈ 𝐴

𝑓𝑡𝑖: actual block time of flight 𝑖 ∈ 𝐼 measured in number of time periods

𝑡𝑑𝑝𝑖 : scheduled departure time period of flight 𝑖 ∈ 𝐼 as per the planned flight

schedule

𝑡𝑑𝑙𝑖: latest allowed departure time period of flight 𝑖 ∈ 𝐼

𝑡𝑟𝑝𝑖 : scheduled arrival time period of flight 𝑖 ∈ 𝐼 as per the planned flight schedule

𝑡𝑟𝑙𝑖: latest allowed arrival time period of flight 𝑖 ∈ 𝐼

𝑁𝐵𝑎,𝑡
𝑝 : planned number of aircraft of group 𝑎 ∈ 𝐴 at airport 𝑝 ∈ 𝑃 available for

recovery operations beginning in time period 𝑡 ∈ 𝑇 . Additional aircraft arrive during

the recovery period when an aircraft completes its planned flight or maintenance task

that was ongoing at the beginning of the recovery horizon.

𝑁𝐸𝑎,𝑡
𝑝 : planned number of aircraft of group 𝑎 ∈ 𝐴 at airport 𝑝 ∈ 𝑃 , required to

operate flights that depart during time period 𝑡 ∈ 𝑇 (but do not arrive until after

the recovery period). We let 𝑁𝐸
𝑎,|𝑇 |+1
𝑝 equal the planned number of aircraft of group

𝑎 ∈ 𝐴 at airport 𝑝 ∈ 𝑃 at the end of the recovery period.

𝐶𝑅𝑡
𝑝: arrival capacity at airport 𝑝 ∈ 𝑃 during the time period 𝑡 ∈ 𝑇

𝐶𝐷𝑡
𝑝: departure capacity at airport 𝑝 ∈ 𝑃 during the time period 𝑡 ∈ 𝑇

𝑆𝑅𝑝,𝑎: minimum turnaround time for aircraft group 𝑎 ∈ 𝐴 at airport 𝑝 ∈ 𝑃 (in

time periods)

𝑆𝑃𝑖,𝑗: minimum passenger connection time between flights 𝑖, 𝑗 ∈ 𝐼 (in time peri-
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ods)

𝑆𝐶𝑖,𝑗: minimum crew connection time between flights 𝑖, 𝑗 ∈ 𝐼 (in time periods)

𝑁𝐹𝑠: number of flights in the planned crew duty 𝑠 ∈ 𝑆

𝐿𝑆𝑠: the last flight of the planned crew duty 𝑠 ∈ 𝑆

𝐿𝐹𝑓 : the last flight of the passenger itinerary 𝑓 ∈ 𝐹

𝑑𝑡𝑙𝑠: the latest legal end time period for the planned crew duty 𝑠 ∈ 𝑆

Decision Variables

𝑑𝑎,𝑡𝑖 : 1 if flight 𝑖 ∈ 𝐼 assigned to aircraft group 𝑎 ∈ 𝐴 has departed by the end of

time period 𝑡 ∈ 𝑇 , 0 otherwise. Let 𝑑𝑎,0𝑖 = 0,∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼.

𝑟𝑎,𝑡𝑖 : 1 if flight 𝑖 ∈ 𝐼 assigned to aircraft group 𝑎 ∈ 𝐴 has arrived by the end of

time period 𝑡 ∈ 𝑇 , 0 otherwise. Let 𝑟𝑎,0𝑖 = 0,∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼.

𝑞𝑓 : 1 if the passenger itinerary 𝑓 ∈ 𝐹 becomes infeasible (i.e., broken), 0 otherwise.

𝑢𝑠: 1 if the planned crew duty 𝑠 ∈ 𝑆 becomes infeasible, 0 otherwise.

𝑧𝑖: 1 if flight 𝑖 ∈ 𝐼 is canceled; 0 otherwise.

Formulation

min
∑︁
𝑓∈𝐹

(︂
𝑃𝐶𝑓 · 𝑞𝑓 +

∑︁
𝑎∈𝐴

∑︁
𝑡𝑟𝑝𝐿𝐹𝑓

<𝑡≤𝑡𝑟𝑙𝐿𝐹𝑓

𝐷𝐶𝑓 · (𝑡− 𝑡𝑟𝑝𝐿𝐹𝑓
) · (𝑟𝑎,𝑡𝐿𝐹𝑓

− 𝑟𝑎,𝑡−1
𝐿𝐹𝑓

)

)︂

+
∑︁
𝑠∈𝑆

(︂
𝐶𝐶𝑠 · 𝑢𝑠 +

∑︁
𝑎∈𝐴

∑︁
𝑡𝑟𝑝𝐿𝑆𝑠

<𝑡≤𝑡𝑟𝑙𝐿𝑆𝑠

𝐸𝐶𝑠 · (𝑡− 𝑡𝑟𝑝𝐿𝑆𝑠
) · (𝑟𝑎,𝑡𝐿𝑆𝑠

− 𝑟𝑎,𝑡−1
𝐿𝑆𝑠

)

)︂

+
∑︁
𝑖∈𝐼

∑︁
𝑎∈𝐴

𝐴𝐶𝑎
𝑖 · 𝑑

𝑎,𝑡𝑑𝑙𝑖
𝑖 −

∑︁
𝑖∈𝐼

𝑍𝑆𝑖 · 𝑧𝑖 (3.1)
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s.t. 𝑑𝑎,𝑡𝑖 − 𝑑𝑎,𝑡−1
𝑖 ≥ 0 ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴,∀𝑡 ∈ {𝑡𝑑𝑝𝑖 , .., 𝑡𝑑𝑙𝑖} (3.2)

𝑟𝑎,𝑡𝑖 − 𝑟𝑎,𝑡−1
𝑖 ≥ 0 ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴, ∀𝑡 ∈ {𝑡𝑟𝑝𝑖 , .., 𝑡𝑟𝑙𝑖} (3.3)

𝑟𝑎,𝑡+𝑓𝑡𝑖
𝑖 − 𝑑𝑎,𝑡𝑖 = 0 ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴,∀𝑡 ∈ {𝑡𝑑𝑝𝑖 , .., 𝑡𝑑𝑙𝑖} (3.4)

𝑧𝑖 +
∑︁
𝑎∈𝐴

𝑑
𝑎,𝑡𝑑𝑙𝑖
𝑖 = 1 ∀𝑖 ∈ 𝐼 (3.5)

∑︁
𝑎∈𝐴

(︂∑︁
𝑖∈𝐼𝐷𝑝

(𝑑𝑎,𝑡𝑖 − 𝑑𝑎,𝑡−1
𝑖 ) +𝑁𝐸𝑎,𝑡

𝑝

)︂
≤ 𝐶𝐷𝑡

𝑝 ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (3.6)

∑︁
𝑎∈𝐴

(︂∑︁
𝑖∈𝐼𝑅𝑝

(𝑟𝑎,𝑡𝑖 − 𝑟𝑎,𝑡−1
𝑖 ) +𝑁𝐵𝑎,𝑡

𝑝

)︂
≤ 𝐶𝑅𝑡

𝑝 ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (3.7)

∑︁
1≤𝑡≤𝑡′

(𝑁𝐵𝑎,𝑡
𝑝 −𝑁𝐸𝑎,𝑡

𝑝 ) +
∑︁
𝑖∈𝐼𝑅𝑝

∑︁
𝑆𝑅𝑝,𝑎+1≤𝑡<𝑡′

(𝑟
𝑎,𝑡−𝑆𝑅𝑝,𝑎

𝑖 − 𝑟
𝑎,𝑡−𝑆𝑅𝑝,𝑎−1
𝑖 )

−
∑︁
𝑖∈𝐼𝐷𝑝

∑︁
1≤𝑡<𝑡′

(𝑑𝑎,𝑡𝑖 − 𝑑𝑎,𝑡−1
𝑖 ) ≥ 0 ∀𝑎 ∈ 𝐴,∀𝑝 ∈ 𝑃, ∀𝑡′ ∈ 𝑇 ∪ {|𝑇 |+ 1} (3.8)

𝑆𝑃𝑖,𝑗 −
∑︁
𝑎∈𝐴

∑︁
𝑡≤𝑡𝑑𝑙𝑗

(𝑟𝑎,𝑡𝑖 − 𝑑𝑎,𝑡𝑗 ) ≤ |𝑇 | · 𝑞𝑓 ∀𝑓 ∈ 𝐹, ∀(𝑖, 𝑗) ∈ 𝐶𝑋𝑓 (3.9)

𝑧𝑖 + 𝑧𝑗 ≤ 2 · 𝑞𝑓 ∀𝑓 ∈ 𝐹, ∀(𝑖, 𝑗) ∈ 𝐶𝑋𝑓 (3.10)

𝑆𝐶𝑖,𝑗 −
∑︁
𝑎∈𝐴

∑︁
𝑡≤𝑡𝑑𝑙𝑗

(𝑟𝑎,𝑡𝑖 − 𝑑𝑎,𝑡𝑗 ) ≤ |𝑇 | · 𝑢𝑠 ∀𝑠 ∈ 𝑆,∀(𝑖, 𝑗) ∈ 𝐶𝑋𝑠 (3.11)

∑︁
𝑖∈𝑠

𝑧𝑖 ≤ 𝑁𝐹𝑠 · 𝑢𝑠 ∀𝑠 ∈ 𝑆 (3.12)

∑︁
𝑎∈𝐴

∑︁
𝑡≤𝑡𝑟𝑙𝐿𝑆𝑠

(𝑡− 𝑑𝑡𝑙𝑠) · (𝑟
𝑎,𝑡
𝐿𝑆𝑠
− 𝑟𝑎,𝑡−1

𝐿𝑆𝑠
) ≤ |𝑇 | · 𝑢𝑠 ∀𝑠 ∈ 𝑆 (3.13)

𝑧𝑖, 𝑞𝑓 , 𝑢𝑠, 𝑟
𝑎,𝑡
𝑖 , 𝑑𝑎,𝑡𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼,∀𝑓 ∈ 𝐹, ∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴,∀𝑡 ∈ 𝑇 (3.14)

The objective function (3.1) has six cost components: approximate costs of pas-

senger disruptions, 𝑃𝐶𝑓 , 𝑓 ∈ 𝐹 ; passenger delay cost, 𝐷𝐶𝑓 , 𝑓 ∈ 𝐹 ; approximate

104



costs of crew recovery, 𝐶𝐶𝑠, 𝑠 ∈ 𝑆; crew delay cost, 𝐸𝐶𝑠, 𝑠 ∈ 𝑆; cost of assigning a

flight to an aircraft group, 𝐴𝐶𝑎
𝑖 , 𝑖 ∈ 𝐼, 𝑎 ∈ 𝐴; and cancellation savings, 𝑍𝑆𝑖, 𝑖 ∈ 𝐼.

The cost of crew delay, 𝐸𝐶𝑠, corresponds to the cost of a 15-minute extension of

crew duty 𝑠 ∈ 𝑆 (i.e., the additional crew pay) due to propagated delay. Consistent

with practice at many airlines, it is assumed that with any crew duty extension

during the day of flight operations, the crew needs to be paid extra, as it is an

additional duty on top of the originally planned and notified duty schedule. The cost

of passenger delay, 𝐷𝐶𝑓 , calculates the cost per 15-minute delay for all passengers

on the itinerary 𝑓 ∈ 𝐹 . For any itinerary, the passenger delay is calculated as the

delay of the last flight on the itinerary. The cost of assigning a flight to an aircraft

group, 𝐴𝐶𝑎
𝑖 , represents the change in operating cost associated with assigning that

flight to a different aircraft group than originally planned and is equal to zero if

the assigned aircraft group is the same as the planned one. The cost coefficients,

𝐶𝐶𝑠, correspond to the approximate cost of crew recovery for crew duty 𝑠 ∈ 𝑆, if it

becomes infeasible in the IRM solution. Similarly, the cost coefficients, 𝑃𝐶𝑓 , reflect

the approximate cost of passenger recovery for the passenger itinerary 𝑓 ∈ 𝐹 which

becomes broken in the IRM solution. These values of costs of broken crew duties

and broken passenger itineraries are approximate, rather than being exactly equal

to the actual cost figures. That is because the IRM model considers the fact that

some of these crew duty infeasibilities and the broken passenger itineraries will be

fixed in the post-processing phase. The process to calculate the approximate values

is discussed in Section 3.5.3. Cancellation savings, 𝑍𝑆𝑖, reflect the cost savings in fuel

and maintenance due to canceling a flight. Recall that, as stated at the beginning

of this section, IRM does not take into account the costs associated with spilled

passengers when fleet assignment changes reduce flight capacity.

Constraints (3.2)-(3.3) model that when a flight departure (respectively, arrival)

time variable is set to 1, all subsequent departure (respectively, arrival) time variables

for that flight should be set to 1 (see Figure 3-4 for a concrete example). These are

the facet-defining constraints mentioned in Section 3.2.3.

Constraints (3.4) ensure that flight departure and arrival times are consistent

105



Figure 3-5: The flight time is a function of the cruise speed

with the flight time. We assumed the flight time to be fixed, but it is also possible to

allow changes in cruise speed during the flight. Let 𝑓𝑡𝑚𝑖𝑛
𝑖 and 𝑓𝑡𝑚𝑎𝑥

𝑖 be the minimum

and maximum possible values of the actual block times, as dictated by the allowable

range of cruise speeds. If we replace Constraints (3.4) with Constraints (3.15), the

model considers different arrival time periods for a flight departing in a given time

period, as shown in Figure 3-5, and is allowed to modify the cruise speed. The

blue and red arrows correspond to flight copies with increased and decreased cruise

speeds, respectively, of the same flight. The cost of increasing or the savings from

decreasing the cruise speed can be incorporated into the objective function by adding

the objective cost component given by expression (3.16) where 𝐶𝑆𝐶𝑎
𝑖 is defined as

the cost of increasing the cruise speed to reduce the actual block time of flight 𝑖 by

15 minutes when assigned to aircraft group of 𝑎 ∈ 𝐴.

𝑑𝑎,𝑡𝑖 −
∑︁

𝑚𝑎𝑥(𝑡+𝑓𝑡𝑚𝑖𝑛
𝑖 ,𝑡𝑟𝑝𝑖 )≤𝑡′≤𝑚𝑖𝑛(𝑡+𝑓𝑡𝑚𝑎𝑥

𝑖 ,𝑡𝑟𝑙𝑖)

(𝑟𝑎,𝑡
′

𝑖 − 𝑟𝑎,𝑡
′−1

𝑖 ) = 0 ∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼,∀𝑡 ∈ {𝑡𝑑𝑝𝑖 , .., 𝑡𝑑𝑙𝑖}

(3.15)

∑︁
𝑖∈𝐼

∑︁
𝑎∈𝐴

𝐶𝑆𝐶𝑎
𝑖 ·

(︂
𝑓𝑡𝑖 −

∑︁
𝑡𝑑𝑝𝑖<𝑡≤𝑡𝑟𝑙𝑖

(𝑟𝑎,𝑡𝑖 − 𝑑𝑎,𝑡𝑖 )

)︂
(3.16)

Constraints (3.5) ensure that a flight is canceled if it cannot be assigned to any

aircraft group. Using arrival variables, 𝑟𝑎,𝑡𝑖 , instead of departure variables, 𝑑𝑎,𝑡𝑖 , in

106



these constraints would have the same effect, because Constraints (3.4) ensure that a

flight can have an arrival time if and only if it has a departure time.

Constraints (3.6) and (3.7) model departure and arrival airport capacities, respec-

tively. They count departures and arrivals for each time period 𝑡 and ensure that they

do not exceed the airport capacities.

Constraints (3.8) are modeled to maintain the consistency of aircraft flow with

departure and arrival decisions. They ensure that the number of departures in time

period 𝑡 ∈ 𝑇 of aircraft of group 𝑎 ∈ 𝐴 at airport 𝑝 ∈ 𝑃 is less than or equal to the

number of aircraft of group 𝑎 ∈ 𝐴 on the ground — at time 𝑡 ∈ 𝑇 and at airport 𝑝 ∈ 𝑃

— for at least the minimum aircraft turn time. These constraints also ensure that

only aircraft available at the start of the recovery period or made available during

the recovery period are used. Furthermore, these constraints ensure that aircraft are

positioned at the end of the recovery period as planned. This ensures that planned

operations can resume after the recovery period and that maintenance requirements

are satisfied. Finally, Constraints (3.8) ensure the availability of the aircraft needed

for flights that depart but do not end during the recovery period.

Figure 3-6 includes a simple example of how Constraints (3.8) work. Assume

that the airline has four flights scheduled to depart in the time period 𝑡 (blue-shaded

aircraft) and that an aircraft has been available on the ground at this airport since the

beginning of the recovery period (gray-shaded aircraft). If an aircraft arrives during

the time period 𝑡 − 3 and another during the time period 𝑡 − 2, then there would

be three aircraft available for four flights during the time period 𝑡. The minimum

turnaround time is assumed to be 30 minutes, which corresponds to two time periods.

In this case, at least one of the scheduled flights should be delayed or canceled.

Decision variables in the model select the passenger itineraries to be broken. This

is achieved by Constraints (3.9)-(3.10) that force 𝑞𝑓 for passenger itinerary 𝑓 ∈ 𝐹 to

take on value 1, indicating that itinerary 𝑓 is infeasible (or broken), because one or

more flights in 𝑓 are canceled and/or passenger connection time is reduced below the

minimum needed. The minimum passenger connection times between flights 𝑖, 𝑗 ∈ 𝐼,

𝑆𝑃𝑖,𝑗, are defined in 15-minute time increments by rounding the actual values to the
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Figure 3-6: Aircraft flow modeling

nearest integer. For example, the minimum connection times of 25 and 35 minutes

are considered as 2 time increments.

Similarly, the model includes decision variables that determine which duties are

infeasible or broken. From Constraints (3.11)-(3.13), a planned crew duty 𝑠 ∈ 𝑆

becomes infeasible if any of its flights are canceled, if the crew connection time is

reduced below the minimum needed, or if the duty duration becomes infeasible due

to the arrival time of the last flight on the duty exceeding the latest legal duty end

time. Minimum crew connection times between flights 𝑖, 𝑗 ∈ 𝐼, 𝑆𝐶𝑖,𝑗, are also defined

in 15-minute time increments similar to 𝑆𝑃𝑖,𝑗 above.

Constraints (3.14) define the variable domains. All decision variables are binary.

Therefore, the IRM model, (3.1)-(3.14), is a binary integer optimization model.

3.2.5 Post-processing Models

Aircraft Recovery Model

The IRM solution sets aircraft departure and arrival times, makes cancellation deci-

sions, and assigns flights to aircraft groups to ensure satisfaction of maintenance re-

quirements and conversation of aircraft flows (that is, feasible aircraft rotations) while

minimizing approximate recovery costs. In the aircraft recovery post-processing step,

we solve an aircraft recovery model, ARM(a), for each IRM aircraft group 𝑎 ∈ 𝐴. We

classify the aircraft in group 𝑎 ∈ 𝐴 into types 𝑒 ∈ 𝐸𝑎, with each type distinguished

by the number of seats (i.e., the capacity) of the aircraft. The ARM decisions include
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assignment to each flight of an aircraft with specific capacity, ensuring flight coverage

and feasible aircraft rotations that minimize approximate passenger recovery costs

resulting from passengers being spilled when insufficient aircraft capacity is assigned.

In other words, the ARM refines the decisions of the IRM to also account for approxi-

mate spill costs, without compromising feasibility of flight coverage, aircraft rotations,

or crew duties, and without creating any additional broken itineraries.

With departure times, arrival times, and cancellation decisions fixed, the air-

craft recovery problem becomes a multi-commodity network flow problem. Multi-

commodity network flow problems arise in various real-life settings where different

types of item (that is, commodities) sharing the same underlying network are trans-

ported from the source nodes to the sink nodes (Ahuja et al., 1988). For example,

traffic flow in an urban environment can be cast as a multi-commodity network flow

problem, because vehicles with different origins and destinations use the same net-

work for their travel. In this example, vehicles correspond to commodities, origins

and destinations correspond to source and sink nodes, and roads correspond to arcs

in the underlying network. In an aircraft recovery context, the different types of

aircraft (varying in seating capacity and in maintenance due requirements) are the

commodities, the airports at the beginning and end of the day are the source and

sink nodes, and the flight legs and connections between them are the arcs.

The set of all nodes includes two types of nodes — flight nodes and source/sink

nodes. There are two nodes for each flight that is not canceled in the IRM solution

(a flight-start node and a flight-end node), and a source node and a sink node for

each airport-aircraft group combination in the network. The set of all arcs includes

four sets of arcs. Every potential flight connection is represented by an arc from the

flight-end node of the first flight to the flight-start node of the second flight in the

connection. There are flight arcs (denoted as 𝑓𝑙𝑖𝑔ℎ𝑡𝑎𝑟𝑐𝑠), one from the flight-start

node to the flight-end node for each flight. There are day-start arcs from each source

node to the flight-start node of each flight that originates at that airport and can be

flown by that aircraft group. Finally, there are day-end arcs from the end-flight node

of each flight ending at an airport and that can be operated by a particular aircraft
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group to the sink node of that airport for that aircraft group.

All flight-start and flight-end nodes have zero demand/supply values but an upper

and lower bound of 1 to ensure coverage. Each source node has a supply equal to the

available number of aircraft of the associated aircraft type (or commodity) at that

node, and all sink nodes have a demand equal to the required number of aircraft of

that type at that node. Arc costs for flight arcs correspond to the sum of the flight

operating costs and the passenger spill costs due to insufficient seat capacity, and the

arc costs are zero for all other types of arcs in the network. Note that two aircraft

may be in different aircraft groups due to differences in their seat capacities, aircraft

operating costs, or simply because they are available/needed at different times of the

day.

Figure 3-7 depicts the nodes and arcs in an underlying network with a single

airport, eight flights, and two aircraft types. Blue and red-shaded nodes correspond

to the source and sink nodes where 𝑠1 and 𝑠2 are the number of available aircraft

of different types at the beginning of the day, while 𝑑1 and 𝑑2 are the number of

required aircraft of different types at the end of the day. The grey-shaded nodes are

flight nodes. Each flight has two nodes, a flight-start node 𝑖 and a flight-end node

𝑖
′ , to ensure that it will be covered by setting the lower and upper bounds of the arc

between the nodes to 1. At each node, the total inbound flow should be equal to the

total outbound flow. Positive arc flow values in the solution correspond to aircraft

assigned to flights, assigned to connections between flights or to aircraft waiting on

the ground. (The dashed line arcs correspond to ground arcs reflecting the case of

some of the available aircraft waiting idle at the airport until the end of the day).

Paths from the source nodes to the sink nodes correspond to aircraft rotations.

Notation for ARM(a)

Sets

𝐸𝑎: the set of all aircraft types

𝑁𝑜𝑑𝑒𝑠: the set of all nodes, representing airport locations in time or supply and

demand nodes or flight-start and flight-end nodes for commodity 𝑒 ∈ 𝐸𝑎.
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Figure 3-7: Network representation of the multi-commodity network flow formulation
for the aircraft recovery model with two commodities

𝐴𝑟𝑐𝑠: the set of all arcs.

𝐴𝑟𝑐𝑠𝑓𝑙𝑖𝑔ℎ𝑡: the set of arcs, one for each flight assigned to any aircraft group 𝑎 ∈ 𝐴

in the IRM solution.

𝑖𝑛(𝑛): the set of all inbound arcs (m,n) to node 𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠 from any node

𝑚 ∈ 𝑁𝑜𝑑𝑒𝑠

𝑜𝑢𝑡(𝑛): the set of all outbound arcs (n,m) from node 𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠 to any node

𝑚 ∈ 𝑁𝑜𝑑𝑒𝑠

Data

𝑏𝑛(𝑒): the number of aircraft of type 𝑒 ∈ 𝐸𝑎 available (𝑏𝑛(𝑒) > 0) or required (𝑏𝑛(𝑒)

< 0) at node 𝑛(𝑒) ∈ 𝑁𝑜𝑑𝑒𝑠. Note, 𝑏𝑛(𝑒) = 0 for all nodes other than source and sink

nodes.

𝑐𝑒𝑚,𝑛: approximate spill cost associated with assigning aircraft of type 𝑒 ∈ 𝐸 to

arc (𝑚,𝑛) ∈ 𝐴𝑟𝑐𝑠.

Decision Variables

𝑓 𝑒
𝑚,𝑛: Flow of aircraft of type 𝑒 ∈ 𝐸 on arc (𝑚,𝑛) ∈ 𝐴𝑟𝑐𝑠.

ARM(a) Formulation
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min
∑︁
𝑒∈𝐸𝑎

∑︁
(𝑚,𝑛)∈𝐴𝑟𝑐𝑠𝑓𝑙𝑖𝑔ℎ𝑡

𝑐𝑒𝑚,𝑛 · 𝑓 𝑒
𝑚,𝑛 (3.17)

s.t.
∑︁

(𝑛,𝑚)∈𝑜𝑢𝑡(𝑛)

𝑓 𝑒
𝑛,𝑚 −

∑︁
(𝑚,𝑛)∈𝑖𝑛(𝑛)

𝑓 𝑒
𝑚,𝑛 = 𝑏𝑛(𝑒) ∀𝑒 ∈ 𝐸𝑎, ∀𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠 (3.18)

∑︁
𝑒∈𝐸𝑎

𝑓 𝑒
𝑚,𝑛 = 1 ∀(𝑚,𝑛) ∈ 𝐴𝑟𝑐𝑠𝑓𝑙𝑖𝑔ℎ𝑡 (3.19)

𝑓 𝑒
𝑚,𝑛 ∈ Z+ ∀𝑒 ∈ 𝐸𝑎,∀(𝑚,𝑛) ∈ 𝐴𝑟𝑐𝑠 (3.20)

The objective function (3.17) is to minimize the approximate cost of spilled pas-

sengers. The cost coefficients, 𝑐𝑒𝑚,𝑛, consider the number of passengers that are spilled

if the flight corresponding to the arc (𝑚,𝑛) is assigned to an aircraft of type 𝑒 ∈ 𝐸

using the scheduled number of passengers on the flight and the seat capacity of each

aircraft.

Constraints (3.18) ensure conversation of flow of each aircraft type at each node.

Constraints (3.19) require that active flights be covered by exactly one aircraft. Con-

straints (3.20) define variable domains.

Crew Recovery Model

The crew recovery model (CRM) used in post-processing is based on the model (2.1)-

(2.14) presented in Chapter 2. The major difference is that it holds the flight schedule

fixed and does not allow for delay propagation or flight cancellations. Flights that

existing crews cannot cover are assigned to high-cost reserve crews. Therefore, con-

straints (2.5)-(2.12) are not included. The resulting model CRM, which is presented

below, minimizes the cost of crew recovery, including those due to crew delays and

high-cost reserve crew use.

In addition to the crew duties generated to cover the flights in the network, the

model also uses a set of dummy crew duties, 𝑆𝐷, that correspond to crew staying

where they are if their next day’s duty starts at the same airport or transferring the
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crew to the airport where their next day’s duty starts, by some other means than the

scheduled flights in the network, such as deadheading on another airline’s scheduled

flight and using a mode of transportation other than flights. Deadheading corresponds

to a crew flying as passengers.

Notation for CRM

Sets

𝐼: the set of flights

𝐾: the set of crews, including normal reserves

𝑆: the set of crew duties, also called crew strings

𝑆𝐷: the set of dummy crew duties

𝑆𝑘: the set of crew strings 𝑠 ∈ 𝑆 that can be assigned to crew 𝑘 ∈ 𝐾

𝐾𝑠: the set of crews 𝑘 ∈ 𝐾 that can be assigned to crew string 𝑠 ∈ 𝑆

Data

𝐶𝐶𝑘
𝑠 : cost of assigning string 𝑠 ∈ 𝑆 to crew 𝑘 ∈ 𝐾

𝑍𝐶𝑖: cost of assigning flight 𝑖 ∈ 𝐼 to a high-cost reserve crew

𝑎𝑖𝑠: 1 if crew string 𝑠 ∈ 𝑆 contains flight 𝑖 ∈ 𝐼; 0 otherwise

Decision Variables

𝑦𝑘𝑠 : 1 if crew string 𝑠 ∈ 𝑆𝑘 is assigned to crew 𝑘 ∈ 𝐾; 0 otherwise

𝑧𝑖: 1 if flight 𝑖 ∈ 𝐼 is assigned to a high-cost reserve crew; 0 otherwise

CRM Formulation

min
∑︁
𝑘∈𝐾

∑︁
𝑠∈𝑆𝑘

𝐶𝐶𝑘
𝑠 𝑦

𝑘
𝑠 +

∑︁
𝑖∈𝐼

𝑍𝐶𝑖𝑧𝑖 (3.21)

s.t. 𝑧𝑖 +
∑︁
𝑘∈𝐾

∑︁
𝑠∈𝑆𝑘

𝑎𝑖𝑠𝑦
𝑘
𝑠 ≥ 1 ∀𝑖 ∈ 𝐼 (3.22)

∑︁
𝑠∈𝑆𝑘

𝑦𝑘𝑠 = 1 ∀𝑘 ∈ 𝐾 (3.23)

∑︁
𝑘∈𝐾𝑠

𝑦𝑘𝑠 ≤ 1 ∀𝑠 ∈ 𝑆 ∖ 𝑆𝐷 (3.24)

𝑦𝑘𝑠 , 𝑧𝑖 ∈ {0, 1} ∀𝑠 ∈ 𝑆𝑘,∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼 (3.25)

The objective function (3.21) minimizes the total recovery costs, including those
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due to modifications to planned crew duties, 𝐶𝐶𝑘
𝑠 , and high-cost reserve crew use.

𝐶𝐶𝑘
𝑠 corresponds to the additional crew pay incurred when duty 𝑠 ∈ 𝑆 is assigned

to crew 𝑘 ∈ 𝐾 compared to that crew’s planned duty. 𝑍𝐶𝑖 is the total crew pay for

assigning flight 𝑖 ∈ 𝐼 to high-cost reserve crew.

Constraints (3.22) ensure that each flight is assigned to at least one crew. Crew

strings correspond to duties that can be assigned to crews, including normal reserve

crews. If more than one crew is assigned to a flight, then all additional crews fly

as passengers, i.e., they are deadheaded. Constraints (3.23) model that each crew

must be assigned to exactly one actual or dummy duty. Constraints (3.24) ensure

that a duty, except for dummy duties, is assigned to at most one crew. Assignment of

multiple crews to the same duty is not allowed for the non-dummy duties. Constraints

(3.25) define the domains of the decision variables.

Passenger Recovery Model

The passenger recovery model (PRM) corresponds to the last post-processing step.

It minimizes the number of stranded passengers and changes in passenger delay costs

by re-assigning spilled passengers and those on broken itineraries to other itineraries

when possible. It takes as input the solutions to the IRM and ARM models regard-

ing broken passenger itineraries, canceled flights, flight departure and arrival times,

and numbers of spilled passengers due to insufficient seat capacity. Recovery ac-

tions include assigning passengers to alternative itineraries and identifying stranded

passengers at the end of the recovery period.

Notation for PRM

Sets

𝐼𝑎𝑐𝑡𝑖𝑣𝑒: the set of flights 𝑖 ∈ 𝐼 that are not canceled in the IRM solution.

𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = (𝐹 𝑏𝑟𝑜𝑘𝑒𝑛
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, 𝐹

𝑠𝑝𝑖𝑙𝑙
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒): the set of broken passenger itineraries, 𝐹 𝑏𝑟𝑜𝑘𝑒𝑛

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒,

and the set of spilled itineraries, 𝐹 𝑠𝑝𝑖𝑙𝑙
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, containing flights with spill from the ARM

solutions. Note that passengers on broken itineraries are excluded when calculating
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the amount of spill (the number of booked passengers minus aircraft seating capacity),

for each flight.

𝐹𝑓 : the set of passenger itineraries that the passengers on itinerary 𝑓 ∈ 𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

can be directed to.

𝐹 𝑖: the set of passenger itineraries that include flight 𝑖 ∈ 𝐼

Data

𝐴𝑆𝑖: number of available seats on flight 𝑖 ∈ 𝐼. This equals the assigned capacity

of flight 𝑖 from ARM solution minus the number of passengers on all non-broken

itineraries containing 𝑖. For flights 𝑖 with assigned capacity from ARM insufficient to

accommodate all booked passengers on 𝑖, excluding passengers on broken itineraries,

the number of available seats 𝐴𝑆𝑖 is negative, with a magnitude that is equal to the

spill from 𝑖.

𝑁𝑃𝑓 : number of scheduled passengers on passenger itinerary 𝑓 ∈ 𝐹

𝑁𝐼𝑓 : number of flights on passenger itinerary 𝑓 ∈ 𝐹

𝑃𝐷𝐶𝑓,𝑓 ′ : per passenger change in delay cost when reassigned from planned itinerary

𝑓 ∈ 𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 to itinerary 𝑓
′ ∈ 𝐹𝑓

𝑆𝑃𝐶𝑓 : cost of a passenger from itinerary 𝑓 ∈ 𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 being stranded at the end

of the recovery period.

𝑄: penalty multiplier applied to costs 𝑃𝐷𝐶𝑓,𝑓
′ and 𝑆𝑃𝐶𝑓 to ensure that passenger

are not spilled from their planned itineraries by a reassigned passenger in a broken

itinerary. This ensures that booked passengers always have priority on their planned

flights over other reaccommodated passengers.

We let 𝑄 ≥ max
𝑓∈𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

(︂
𝑁𝐼𝑓 * max

𝑓 ′∈𝐹𝑓

(
𝑆𝑃𝐶𝑓

𝑃𝐷𝐶𝑓,𝑓 ′
)

)︂

Decision Variables

𝛾𝑓,𝑓 ′ : number of disrupted passengers reassigned from their planned itinerary

𝑓 ∈ 𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 to itinerary 𝑓
′ ∈ 𝐹𝑓 .
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𝛿𝑓 : number of passengers from itinerary 𝑓 ∈ 𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 stranded at the end of the

recovery period.

PRM Formulation

min
∑︁

𝑓∈𝐹 𝑏𝑟𝑜𝑘𝑒𝑛
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

(︂
𝑆𝑃𝐶𝑓 · 𝛿𝑓 +

∑︁
𝑓 ′∈𝐹𝑓

𝑃𝐷𝐶𝑓,𝑓 ′ · 𝛾𝑓,𝑓 ′

)︂

+
∑︁

𝑓∈𝐹 𝑠𝑝𝑖𝑙𝑙
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

(︂
𝑄 · 𝑆𝑃𝐶𝑓 · 𝛿𝑓 +

∑︁
𝑓 ′∈𝐹𝑓

𝑄 · 𝑃𝐷𝐶𝑓,𝑓 ′ · 𝛾𝑓,𝑓 ′

)︂
(3.26)

s.t. 𝛿𝑓 +
∑︁
𝑓 ′∈𝐹𝑓

𝛾𝑓,𝑓 ′ = 𝑁𝑃𝑓 ∀𝑓 ∈ 𝐹 𝑏𝑟𝑜𝑘𝑒𝑛
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 (3.27)

𝛿𝑓 +
∑︁
𝑓 ′∈𝐹𝑓

𝛾𝑓,𝑓 ′ ≤ 𝑁𝑃𝑓 ∀𝑓 ∈ 𝐹 𝑠𝑝𝑖𝑙𝑙
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 (3.28)

∑︁
𝑓∈𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

∑︁
𝑓 ′∈(𝐹 𝑖∩𝐹𝑓 )

𝛾𝑓,𝑓 ′ −
∑︁

𝑓∈(𝐹 𝑠𝑝𝑖𝑙𝑙
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒∩𝐹 𝑖)

∑︁
𝑓 ′∈(𝐹 𝑖∩𝐹𝑓 )

𝛾𝑓,𝑓 ′

−
∑︁

𝑓∈(𝐹 𝑠𝑝𝑖𝑙𝑙
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒∩𝐹 𝑖)

𝛿𝑓 ≤ 𝐴𝑆𝑖 ∀𝑖 ∈ 𝐼𝑎𝑐𝑡𝑖𝑣𝑒 (3.29)

𝛿𝑓 , 𝛾𝑓,𝑓 ′ ≥ 0 ∀𝑓 ∈ 𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, 𝑓
′ ∈ 𝐹𝑓 (3.30)

The objective function (3.26) is to minimize the costs of passengers on infeasible

itineraries from being stranded at the end of the recovery period and/or by delays

caused by being spilled to or reaccommodated on other itineraries. It should be

noted that the objective function does not correspond to the true cost due to the

penalty multiplier 𝑄. When calculating the actual costs in the computational study,

we divide the costs of the spilled passengers by 𝑄. Only passengers on infeasible

itineraries can be reassigned to other itineraries and booked passengers cannot be

displaced by passengers booked on other itineraries. Constraints (3.27) ensure that

passengers on a broken itinerary are directed to another itinerary or are considered

stranded at the end of the recovery period. Constraints (3.28) ensure that the number

of spilled passengers on an itinerary do not exceed the number booked. Constraints

(3.29) ensure that the net change in the number of passengers on flight 𝑖 ∈ 𝐼 cannot
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Figure 3-8: General Framework

exceed the remaining available seats on that flight. (Note that the remaining number

of seats for 𝐹 𝑠𝑝𝑖𝑙𝑙
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 is negative). Constraints (3.30) define variable domains.

3.3 Solution Methodology

3.3.1 General Framework

Our solution methodology determines a solution space tailored for each disruption,

using trained ML classifiers, so that the optimization methods can efficiently find a

good solution within the available solution time. The general framework is summa-

rized in Figure 3-8. The online phase corresponds to the day of operations, where

trained prediction models are used to reduce the solution space by eliminating some

of the alternative solutions. The problem is then solved with the help of integer

optimization solvers over the reduced solution space.

The solution approach requires an offline phase in which solutions to several

disruption scenarios are generated using optimization methods and ML prediction

models are trained to discover patterns in the solutions. The Offline phase starts with
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the generation of scenarios based on historical flight operations data. Each disruption

scenario corresponds to a specific day and is solved by a direct optimization approach

with an optimality gap target and non-reduced solution space. Solutions to disruption

scenarios are used to generate the training input for the ML model training step.

The approach summarized above builds on the framework presented in Chapter

2. There are some notable differences in all three steps of the offline phase — scenario

generation, offline optimization, and classifier training. The scenario generation step

is still based on the historical disruption data, but the scenarios correspond to indi-

vidual days in history rather than sampling from fitted distributions. Significantly

fewer disruption scenarios are required due to each ML prediction model being trained

for a set of flights instead of a single recovery decision as in Chapter 2. As a result

of fewer scenarios, the optimality gap target in the offline optimization step is lower,

resulting in a database with higher quality solutions. Finally, each classifier is trained

for a subset of flights in the network instead of individual follow-on pairs.

3.3.2 Limiting the Number of Copies for Individual Flights

The modeling approach presented in Section 3.2.3 uses flight copies to model delay

decisions. The number of copies for each flight depends on the selected time increment

duration and the maximum allowed delay limit. For example, if the time increment

duration is set to 15 minutes and flights are allowed to be delayed by up to 10 hours,

then there will be 41 copies for each flight (40 delay alternatives plus 1 non-delay

alternative). The flight copies approach is often used in the airline recovery context.

The typical approach in the existing literature is to set a time increment and a single

maximum allowed delay limit applied to all flights included in the recovery problem.

Maher (2016) sets the time increment duration to 30 minutes and the maximum

allowed delay limit to 3 hours, resulting in 7 copies for each flight.

The number of flight copies is expected to affect the tractability of the resulting

problem. Due to the combinatorial nature of recovery problems, the number of solu-

tion alternatives, and hence the solution space, increases rapidly with the number of

flight copies. Therefore, past studies typically limit the number of copies by imposing
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fixed and identical limits to all flights. However, this approach does not consider

disruption characteristics and cannot differentiate between different flights.

To consider the disruption and flight characteristics, we propose using classifier

predictions to limit the number of copies, instead of creating the same number of

copies for all flights in all disruption instances. One way to achieve that is to predict

and fix the cancellation decisions, which would eliminate all copies of the canceled

flights from the solution space. However, this approach retains the same number

of copies for the remaining flights. The resulting reduction in the total number of

flight copies is limited since the average number of flight cancellations is usually in

the range of ∼2-3% and typically in single-digit percentages even on days of irregular

operations.

A more effective approach is to determine the number of copies for individual

flights separately. In the proposed solution methods, we use classifier predictions

to determine each flight’s maximum allowed delay limit and create flight copies ac-

cordingly. Consider a case where the time increments are set to 15 minutes and the

network-wide maximum delay is set to 6 hours. Here, the network-wide maximum

delay is the maximum delay limit that is applied to all flights in the network to main-

tain the tractability of the model while avoiding the elimination of most high-quality

solutions. If the delay to a particular flight is predicted to not exceed 1 hour, only

5 flight copies would need to be included instead of 25. Even if we can make such

predictions for only 25% of all flights, we can achieve a 20% reduction in the total

number of flight copies.

These arguments are supported by our experiments (see Appendix B.1 for more

details), which showed that limiting the number of flight copies based on the maxi-

mum allowed delay limit predictions for individual flights has a significantly greater

potential to accelerate the solution process than using cancellation predictions. Fur-

thermore, leaving the cancellation decisions to the model provides more flexibility

and leads to higher-quality solutions.

ML models are trained to discover patterns in the disruption characteristics and

flight characteristics that can affect the resulting flight delay in the corresponding
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Figure 3-9: Disruption information range included in the feature set

solution. Thus, the disruption characteristics and flight characteristics serve as the

set of features for training the ML models.

Our feature set has 80 features belonging to four different information groups.

The first group includes information related to disruptions, such as airport capacities

and the planned number of departures and arrivals, while the second group consists of

information related to the flight schedules, such as fleet type, frequency information,

and departure time. The third group is related to the planned crew duties, such as

the number of flights in the duty. The last group includes information related to

passengers, such as seat capacity and the number of passengers connecting to and

from the corresponding flight. Overall, the first group reflects the characteristics of

the disruption, while the three later groups include other relevant information so that

the same set of classifiers can be used for a wide range of flights. An exhaustive list

of all the information included in the feature set for each flight is given in Table 3.1.

To capture the conditions that affect the delay of a flight, we should consider the

disruption information that is spatially and temporally relevant. The features in the

disruption group cover all the considered departure and arrival time periods, current

hour plus 6 hours, as well as an additional 3-hour period before the range and a 2-hour

period after the range. Overall, this corresponds to a 12-hour (1+6+3+2) period for

each flight. Figure 3-9 shows the included ranges, with the dark-shaded time periods

corresponding to the allowed departure and arrival ranges.

Features 59-80 in Table 3.1 reflect the itinerary characteristics of the connecting
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Feature
id

Information
Group

Description

1-24 Disruption Hourly arrival/departure capacity for a period that contains
the relevant range of departure and arrival times for the cor-
responding airports (ranges from 0 to 30 flight operations per
hour).

25-48 Disruption Number of planned flight arrivals/departures for a period that
contains the allowed range of departure and arrival times for
the corresponding airports (ranges from 0 to 30 flight opera-
tions per hour).

49 Schedule Total daily frequency of the flight’s Origin-Destination (OD)
(ranges from 1 to 15)

50 Schedule Frequency order (The first flight of the day etc., ranges from
1 to 15)

51 Schedule Departure time

52 Schedule Flight duration in minutes (in 15-minute time periods, ranges
from 3 to 32)

53 Crew Slack time before the next flight in the crew duty (in 15-
minute time periods, ranges from 0 to 16)

54 Crew Buffer time at the end of the crew duty (calculated as the
difference between the maximum legal duty duration and the
planned duty duration in 15-minute time periods, ranges from
0 to 48)

55 Crew Number of legs in the crew duty (ranges from 1 to 5)

56 Passenger Number of passengers on this flight (ranges from 10 to 175)

57 Passenger Number of passengers with connection to other flights (ranges
from 0 to 175)

58 Passenger Number of passengers with connection from other flights
(ranges from 0 to 175)

59-80 Passenger Total number of connecting passengers to other flights with
respect to planned connection time (ranges from 0 to 175)

Table 3.1: Feature set

121



passengers on the current flight. Planned passenger connection time refers to the time

between the scheduled departure of the next flight on a passenger’s itinerary and the

scheduled arrival of the current flight. For example, if all connecting passengers had

more than four hours before their next flight, delaying the current flight by two hours

would have less impact on passengers compared to the case where all connecting

passengers had only one hour before their next flight. We define an encoding where

we bin connection times into 15-minute-long intervals, count how many passengers

belong to each interval, and include the set of counts in the feature set. Let us say

that we have 60 passengers in total connecting to other flights. If 10 of are connecting

in 1 hour, 20 in 2 hours and 30 in 3 hours, this part of the feature set would look

something like the following: 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30,... etc. The feature

set includes the number of passengers with respect to their planned connection times

ranging from 2 time periods (30 minutes) to 23 time periods (5.45 hours).

Based on the information provided in the feature set, classification models are

trained to estimate the conditional probability (denoted as PRB) of a flight being

delayed less than or equal to a specified limit, called the delay limit separator, in a

high-quality solution to the given disruption. Each flight is evaluated using two sets

of classifiers, one each focusing on departures and arrivals.

Since the delay of a flight either exceeds the specified limit or not, the classification

task has a binary structure, and the resulting classifiers are called binary classifiers.

They separate the flights into two groups. Figure 3-10 illustrates an example where

the delays for ten flights are evaluated based on a delay limit separator value of one

hour. The delays of the flights in the first group, with label 1, are predicted to be

less than the separator; therefore, their maximum allowed delay is set to 1 hour in

the optimization run. The flights in this group have 5 flight copies corresponding to

one non-delay copy, as well as four delayed copies with up to 1 hour delay. On the

other hand, for the flights in the second group, with label 0, which are predicted to

be delayed more than the separator, the number of flight copies is not reduced.

The training criterion is selected as the precision or Positive Predictive Value

(PPV), which is the ratio of true positive predictions to all positive predictions. This
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Figure 3-10: Binary classification of maximum allowed flight delays

is because we only reduce the solution space when the label is 1 (positive prediction),

by limiting the number of copies for individual flights based on the predictions of the

delay exceeding the corresponding delay limit separator value. Details on classifier

training are provided in Section 3.4.2. Due to our modeling approach and the way we

reduce the feasible solution space, classifier training is less time-consuming compared

to the methods proposed in Chapter 2.

3.3.3 ML-guided Solution Space Reduction

As discussed earlier, our solution space reduction procedure in the online phase is

guided by using ML predictions for flight delays and setting a delay limit specific to

each flight. Following a process similar to that outlined in Chapter 2, both the PRB

and the out-of-sample PPV performance of the corresponding classifiers are consid-

ered when reducing the solution space. Prediction confidence (PC), is calculated for

each classifier prediction as, 𝑃𝐶 = 𝑃𝑃𝑉 𝛼*𝑃𝑅𝐵. The evaluation of the predictions is

similar as well. The PC values are compared against a prediction confidence thresh-

old value (𝑃𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), which is a pre-specified value that determines whether the

constraints corresponding to a prediction should be added to the model. The value

of 𝛼, which determines the relative importance of PPV and PRB, is set to 2 after

evaluating a set of candidate values (Appendix B.6). It implies that for the inte-

grated recovery experiment setup, overall classifier precision performance, 𝑃𝑃𝑉 , is
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more crucial than the prediction probabilities, 𝑃𝑅𝐵, in reducing the solution space

effectively without sacrificing the solution quality.

Here are the main steps in the solution process.

1. The values of the parameters delay limit separator, network-wide maximum

delay, and PC_threshold are set.

2. For each flight 𝑖, the classifier prediction regarding whether or not flight 𝑖’s

delay would remain under the delay limit separator value, and the corresponding PC

values, are calculated.

3. If the PC value for the flight 𝑖, 𝑃𝐶(𝑖), is at least equal to the the prediction

confidence threshold (PC_threshold) value, the maximum allowed delay limit for the

flight is set to the delay limit separator ; otherwise, it is set to the network-wide

maximum delay.

4. The set of time periods for which each flight 𝑖 is not allowed to arrive (𝑇 𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖 )

due to the newly introduced limit is populated.

5. Constraints (3.31) are added to the model so that flights do not arrive during

the time periods in 𝑇
𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖 , thus removing the flight copies that are not allowed.

𝑟𝑎,𝑡𝑖 − 𝑟𝑎,𝑡−1
𝑖 = 0 ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖 (3.31)

6. The IRM model (3.1-3.14) with the added constraints (3.31) is solved using a

integer optimization solver. The resulting flight delay and cancellation decisions are

fixed, and the post-processing steps are completed to calculate the final recovery cost.

Algorithm 2 summarizes the overall flow of the solution method.

The model can delay a flight up to the network-wide maximum delay value if no

other limit is imposed based on the ML predictions. It can also decide to cancel the

flights irrespective of the imposed limits.

The PC_threshold affects the run time and solution quality. Setting it too low

accelerates the optimization process, but may lead to lower-quality solutions due to
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Algorithm 2 IRM Solution Approach with Post-processing
1: Initialize:

2: Load the disruption
3: Load the IRM
4: Set the network-wide maximum delay
5: Set the 𝑑𝑒𝑙𝑎𝑦_𝑙𝑖𝑚𝑖𝑡_𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟, 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values
6: for 𝑖 ∈ 𝐼 do

7: if 𝑃𝐶(𝑖) ≥ 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

8: Determine the set 𝑇
𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖

9: for 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇
𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖 do

10: add the constraint 𝑟𝑎,𝑡𝑖 − 𝑟𝑎,𝑡−1
𝑖 = 0 to IRM

11: end for

12: end if

13: end for

14: Solve the IRM with added constraints
15: Complete the post-processing steps

less accurate predictions. On the other hand, setting it too high is not helpful in

finding the best solution in the available solution time, because the feasible solution

space likely remains too large to handle. The set of threshold values for different

available solution time limits is determined in the offline phase.

3.4 Computational Study

3.4.1 Network Description and Pre-processing

The selected problem instances are based on a network with 3,706 daily flights from

a major US carrier. Training data include solutions to disruptions from 2012 to 2016.

The test scenarios are based on disruptions from 2017. The network-wide maximum

delay parameter for flight delays in the experimental setup has a considerable impact

on the solution time and quality. We set it to 6 hours based on an out-of-sample

analysis provided in Appendix B.4.

The airline in our case study does not operate overnight flights. Therefore, it
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is assumed that the line checks mentioned in Section 3.2.2 are handled overnight.

Furthermore, the entire fleet of this airline belongs to a single fleet family ensuring

that the same set of crews can operate all flights. Consequently, the number of

aircraft groups in this network is 1 for the IRM model. Although all aircraft are

in the same fleet family, there are two different types of aircraft with 143- and 175-

seat configurations, respectively. These differences are considered by the ARM in the

post-processing phase. The passenger itineraries used in the computational study are

estimated using the method by Barnhart et al. (2014).

3.4.2 Offline Phase

In the offline phase, a solutions database is generated based on the selected disruptions

from 2012 to 2016, from the months of January and February. 48 disruptions, with

the most delays and cancellations, are selected as the training set. They correspond

to 16.16% of all days during these 10 months (297). There are more than 100,000

flight observations in the 48 selected disruptions.

Training inputs are generated from the solutions database. Thirty separate clas-

sifiers are trained, corresponding to groups of flights departing from and arriving at

the 15 airports in the network with the highest level of flight traffic. Each classifier’s

training input has around 7,000 instances on average, which was found to be sufficient

to train high-precision classifiers if discoverable patterns exist. Binary classifiers are

trained to separate the data points into two groups based on a selected delay limit

separator value. Positive predictions correspond to observations with a delay value

less than or equal to the delay limit separator. Negative predictions correspond to

observations with a delay value greater than the delay limit separator. The tested set

of separation limits ranged from 15 minutes to 3 hours.

The classification methods used in training included Optimal Classification Trees

(OCT), Random Forest (RF), XGBoost (XG), and Logistic Regression (LR). OCT

was selected for the interpretable structures of the resulting models. LR was selected

as it provides an alternative type of interpretable results based on feature weights. RF

and XG are both tree-based classifiers. Although they do not provide interpretable
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results, they were included because of their precision performance (Breiman, 2001,

T. Chen & Guestrin, 2016).

Figure 3-11 presents the average classifier precision performance of different meth-

ods and delay separator values. The red line corresponds to the real frequency of the

observations. OCT and XG performed consistently better than RF and LR. There-

fore, we used classifiers trained by the OCT and XG methods while determining the

delay limits for each flight. For classifier insight analysis, we only used classifiers

trained by the OCT method because of their interpretable structure.

For all delay limit separator settings, the binary classifiers provided improvements

over the actual database frequencies. This means that whichever delay limit separator

is selected, classifiers can be used to predict whether the flight delay would be less than

the limit in a way that is more accurate than directly using the database statistics.

However, from a solution acceleration point of view, not all separator limit settings

have similar advantages. For instance, if the separator limit is set to 3 hours, even

though we can accurately predict the flights that should have a delay limit of 3 hours,

the solution space would remain large, due to the limited number of flight copies

removed, which would consequently prevent finding high-quality solutions quickly.

During the offline phase, we evaluated alternative separator limits in terms of both

their precision and their solution process acceleration potential. The best settings

turned out to be 30 and 45 minutes. Details of this analysis are provided in Appendix

B.5. During the experiments presented in the next section, the separator limit is set

to 45 minutes. The binary classifiers predict the flights that do not need to be delayed

beyond 45 minutes. The maximum allowed delays for such flights are limited to 45

minutes, and the remaining flights are allowed to be delayed by up to 6 hours. In

other words, the former group of flights have 4 flights copies, 1 non-delay and 3 delay

copies, while the latter group of flights have 25 flight copies, 1 non-delay and 24 delay

copies.

The 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values, described in Section 3.3.3, are determined in the offline

phase based on a set of out-of-sample disruption scenarios, called the calibration set.

The specific values depend on the available solution time limit. See Appendix B.7 for
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Figure 3-11: Average classifier precision performance

128



more details.

3.4.3 Results

The scenarios used for calibration and testing are based on actual flight operation

days from January 2017 and February 2017 respectively. The underlying network

corresponds to a Wednesday in January 2019. All predicted disruptions throughout

the day are considered in the model and the recovery period spans from the scheduled

departure time of the first flight in the current day’s schedule until right before the

scheduled departure of the first flight in the next day’s schedule. We compared the

quality of the IRM solutions found by the following five methods in under 3 and 5

minutes. All experiments are carried out on a desktop computer equipped with an

Intel i9-13000K CPU and 64 GB of memory using Gurobi 10.0 (Gurobi Optimization

Inc., 2020) as the integer and mixed-integer optimization solver.

1. Default : The IRM model is sent directly to the Gurobi optimizer with the spec-

ified solution time limit. There is no solution space reduction in this method.

2. Swap: This method resembles the methods used in practice. It focuses on

repairing the broken rotations. A rotation is considered broken if it becomes

infeasible due to disruptions. In addition to the broken planned rotations, the

algorithm picks two feasible planned rotations based on the number of swap

opportunities with the broken rotations and adds them to the solution space.

The number of swap opportunities between two aircraft rotations is defined as

the cardinality of the set of ordered pairs of flights in these two aircraft rota-

tions that can connect with each other where each flight belongs to a different

aircraft rotation. The remaining feasible planned rotations are kept intact. The

delays of the flights in the rotations kept intact are limited to the delays of the

corresponding flights in the solution. The resulting IRM with reduced solution

space is sent to the Gurobi optimizer.

3. Sequential : This is the same as the default method, except that the underlying

integrated model does not have crew and passenger considerations. Unlike the
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swap method, this approach does not fix any planned rotations. See Appendix

B.2 for the complete model.

4. DB stats : Flight delay limits are determined using the database statistics, and

the resulting IRM with reduced solution space is sent to the Gurobi optimizer.

Details of the method are provided in Appendix B.3.

5. ML: Flight delay limits are determined based on ML predictions, and the re-

sulting IRM with reduced solution space is sent to the Gurobi optimizer.

The cost parameters used in the computational study are given in Table 3.2. The

cancellation cost and the cost of deadheading a crew member to the crew base are

based on the values used in other prominent studies (Petersen et al., 2012). The cost

of crew delay per hour, fuel & oil, and maintenance costs per block hour for each

sub-fleet type are based on the estimates in the benefit-cost analysis conducted by

FAA (2020). The latter two are used to calculate the savings from flight cancellations.

Regular and high-cost reserve crew costs are assumed to be 25% and 50% higher than

standard crew duty costs, respectively. These values are based on discussions with

airline practitioners from the specific airline in our case study. The passenger delay

cost per hour per passenger is based on the analysis conducted by Cook and Tanner

(2011). The cost of a stranded passenger includes delay, accommodation, and loss of

passenger goodwill costs. The value, $1,000, is estimated based on the values used

by other studies in the literature (including, Vink et al. (2020)).

As discussed in Section 3.2.3 the solution approach requires post-processing steps

for aircraft, crew, and passenger recovery to be completed which are formulated as

described in Section 3.2.5. Figures 3-12 and 3-13 compare the solution qualities before

and after these steps have been completed, respectively. The default method could

not find feasible solutions within the available solution time limits. Therefore, no

results for the default method were included in the comparisons. Note that the x-axis

of both figures lists the IRM runtime, which excludes the post-processing time. The y-

axis of Figure 3-12 lists recovery cost differences calculated based on the approximate

costs of the IRM objective function while the y-axis of Figure 3-13 lists recovery cost
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Parameter Value

Fuel & oil operating cost per block hour (B737-700) $1,750

Fuel & oil operating cost per block hour (B737-800) $2,050

Maintenance operating cost per block hour $750

Cost of a crew member deadheading to the location of the next day’s duty start $2,000

Cost of crew delay per hour $720

Cost of a stranded passenger $1,000

Cost of delay per hour per passenger $20

Table 3.2: Cost parameters used in the computational study

differences calculated based on the actual realized total recovery costs according to

those obtained after running all the post-processing steps. Post-processing steps are

identical for all compared methods, and the post-processing time is around 3 minutes.

The same information as in Figures 3-12 and 3-13 regarding the average recovery

cost differences with respect to the baseline solutions under different solution time

limits are provided in Tables 3.3 and 3.4. All the recovery cost differences for any

given method are calculated as the recovery cost obtained by that method minus the

recovery cost obtained using a baseline method, and then the difference is reported as

a percentage of the recovery cost obtained using the baseline method. The baseline

method refers to sending the IRM model directly to Gurobi with a 0.1% optimality

gap target and a 2-hour run time limit. The average optimality gap target achieved

was ∼2%.

IRM solution time limit (minutes) Default Sequential Swap DB stats ML

3 N/A 20.93% 13.94% 6.40% 2.67%

5 N/A 20.93% 11.88% 6.39% 2.50%

Table 3.3: Average recovery cost difference of the final solution before the post-
processing steps with respect to the baseline solutions

The solution quality improvement gained by extending the solution time limit from

3 to 5 minutes was limited for all methods. The sequential recovery method provides

131



Figure 3-12: Solution quality comparison (before post-processing)

an acceleration over the default method, due to the simplified mathematical model,

but its solution quality is worse than other methods. The swap method consistently

finds better solutions than the sequential approach.

Data-driven methods, DB stats, and ML, perform significantly better than oth-

ers. Despite relying on the same solutions database, the ML method generated 2-3

times better solutions than the DB stats method based on recovery cost differences

with respect to the baseline solutions. These results show that while a straight-

forward data-driven approach such as flight-based analysis in the DB stats method

can achieve improvements, training ML prediction models using the same solutions

database provides significantly better results.

There are three aspects of our ML solution method that contribute to its supe-

rior performance. First is the integration of crew and passenger considerations into

the main IRM model. This helps to achieve significant solution quality improve-

ment over the sequential method. Second is reducing the solution space considering
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Figure 3-13: Solution quality comparison (after post-processing)

the disruption characteristics (as opposed to keeping some of the planned rotations

based on simple heuristics as in the Swap method). Third is the integration of ML,

and the flight-specific classification of likely delay. This contributes to the quality

improvement as compared to the other data-driven method, DB stats.

We calculated approximate monthly savings for this airline’s network to quantify

the recovery cost savings our ML-based approach could provide over other approaches.

Annual savings over the next best-performing method, DB stats, were found to be

around ∼$15.5 million and ∼$15 million for 3- and 5-minute solution time limits,

respectively. These figures are adjusted for inflation to 2019 dollars.
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IRM solution time limit (minutes) Default Sequential Swap DB stats ML

3 N/A 27.40% 23.75% 18.99% 5.81%

5 N/A 27.40% 19.18% 17.31% 5.22%

Table 3.4: Average recovery cost difference of the final solution after the post-
processing steps with respect to the baseline solutions

3.5 Discussion

3.5.1 Solution Analysis

To understand why the solutions generated by the ML method have a higher qual-

ity than those from other methods, we analyzed the solutions produced by the ML

method and the next best-performing benchmark, the DB stats method. The results

show that for ∼8% of the flights, the delay limits imposed by the DB stats method

are 3 hours longer than the limits imposed by the ML method. These higher delay

limits set by the DB stats method make the corresponding solution space reduction

efforts less efficient than those performed by the ML method.

We also compared the solutions generated by both methods with the baseline

solutions. The comparison result shows that, in the baseline solutions, ∼5.4% of

the flights were delayed beyond the delay limit determined by the DB stats method,

and ∼3.8% of the flights were delayed beyond the delay limit specified by the ML

method. These results imply that our ML-based approach allows selecting the overall

delay limits in a smarter, more accurate way than the DB stats method, leading to

higher quality solutions. The main contributor to this performance is the fact that

the ML method considers the disruption and individual flight characteristics while

determining the solution space, but the DB stats method relies on aggregate flight

statistics of the solutions database.

Due to the effectiveness of solution space reduction and the higher accuracy of

delay limit predictions, the ML method generates higher-quality solutions than the

DB stats method.
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3.5.2 Classifier Insights

An advantage of the selected tree-based classifier methods is that they provide in-

terpretable models that help explain the reasons for recovery decision predictions.

Airline flight operation controllers are usually reluctant to apply suggestions made

by the decision support systems if the rationale is unclear. If integrated into such

systems, the interpretable structure of the trained classifiers helps build user trust

and allow the controllers to make more informed decisions.

The solution method presented in Section 3.3 considered both interpretable and

non-interpretable classifiers, but in 100% of the cases, the classifiers chosen by our

ML-based integrated recovery solution ended up being the interpretable ones.

Figure 3-14 shows a classifier example that focuses on flight arrivals. It is trained

to predict whether the delay of a flight arriving at LAX should be limited to 1

hour. The topmost node is the root node where the algorithm starts. The numbers

0 and 1 correspond to the prediction labels at that node. The label is 1 if the

classifier suggests that the flight delay is limited to 1 hour, 0 otherwise. Nodes

without outgoing branches are the leaf nodes corresponding to predictions and are

shaded red or blue, depending on the label. The remaining nodes are internal nodes.

All non-leaf nodes are shaded white. The percentage values on the nodes are the

prediction probabilities for the leaf nodes and the node composition ratios for the

others. The node composition ratio refers to the ratio of the number of observations

with the dominant label in the node to the number of all observations in the node.

The thickness of the lines connecting the nodes represents the fraction of observations

from the parent nodes that fall into the child nodes.

One of the interpretations of the classifier structure in Figure 3-14 is that, in

addition to the disruption characteristics, the decision to delay a flight beyond 1 hour

should also consider the number of passengers on the flight. The lower the number

of passengers, the higher the probability of delay exceeding the 1-hour limit. For

example, if the arrival capacity at the scheduled arrival time is low during the 0𝑡ℎ

and the -1𝑡ℎ hours, and the number of passengers is less than 82.5, the classifier
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predicts that the flight delay will exceed 1 hour with 89.29% probability. It should

be noted that while the labels on the leaf nodes reflect the classifier prediction, our

solution method also uses the predicted probabilities as described in Section 3.3.3. We

can limit the delay to 1 hour with confidence if the flight falls into one of the high-

probability leaf nodes, such as those with 99.24% and 100% probability in Figure

3-14. We would not have the same confidence for flights that fall into the node that

corresponds to a probability of only 64.27%.

Figure 3-15 shows a classifier example that focuses on flight departures. It is

trained to predict whether the delay of a flight departing from LAX should be limited

to 1 hour. When the departure and arrival capacities at scheduled times are higher

than a certain threshold, the classifier suggests limiting the flight delay to 1 hour.

For the cases where the arrival capacity is low and the planned number of arrivals

before the scheduled arrival time is high, the classifier suggests allowing the flight to

be delayed beyond 1 hour.

A variable importance analysis is performed, including for all trained classifiers.

The results show that the most important information group is the disruption-related

one with 79% importance, which includes airport capacities and the planned number

of flight operations (Figure 3-16). This result is as expected and it confirms the strong

dependence of the recovery decisions on disruption conditions, which helps us discover

predictive signals in the training data. Further analysis revealed that the disruption

and planned flight operation information corresponding to the arrival time periods is

more important than the information corresponding to the departure time periods.

The second most important information group is the passenger related one with

14% average importance. The numbers of non-stop and connecting passengers seem

to be crucial in determining the delay of a flight. Classifiers suggest keeping the delay

of a flight low when too many passengers are impacted.

The schedule and planned crew duty-related information have 5% and 2% im-

portance, respectively. These results indicate that the crew duty-related information

included in the feature set, such as the slack time before the next flight in the crew

duty, does not provide much value for predicting the flight delays.

136



Figure 3-14: Classifier example for LAX arrivals
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Figure 3-15: Classifier example for LAX departures
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Figure 3-16: Variable importance distribution among information groups

3.5.3 Crew vs. Passenger Recovery Trade-off

The variable importance analysis conducted in the previous section provides some

insights into which type of information is more relevant in predicting the delay of a

flight. A related, but different, set of questions include: what are the relative costs

of crew and passenger recovery components? Also, what is the relative difficulty

associated with recovering crews and passengers? These types of questions are the

focus of this section.

The presented integrated solution method has an inherent exploration-exploitation

trade-off that allows evaluating the relative importance of crew and passenger consid-

erations in an integrated recovery approach. This is due to the fact that the integrated

model includes major crew and passenger recovery considerations, such as infeasible

crew duties and broken passenger itineraries. In our context, exploitation refers to

trying to minimize infeasible crew duties and broken passenger itineraries in the IRM,

whereas exploration refers to leaving some of the crew duties infeasible and passenger

itineraries broken intentionally in the IRM, assuming that some of them would be

recovered in post-processing. These are the two opposite recovery strategies that need

to be balanced.

The objective function (3.1) has two components that reflect the approximate costs

of the broken passenger itineraries
(︀∑︀

𝑓∈𝐹 𝑃𝐶𝑓 · 𝑞𝑓
)︀

and of the crew duties becoming

infeasible
(︀∑︀

𝑠∈𝑆 𝐶𝐶𝑠 · 𝑢𝑠

)︀
. Since our solution method involves post-processing steps

to finalize the solution, we cannot be sure whether passengers on broken itineraries

139



or crews on infeasible duties can be feasibly reassigned in the post-processing steps.

Therefore, the corresponding cost coefficients, 𝑃𝐶𝑓 and 𝐶𝐶𝑠, in the objective function

reflect approximate values rather than actual values. The actual recovery cost of the

solution is calculated after the completion of the post-processing steps and is based

on the actual passenger itinerary costs and actual crew duty costs.

It is crucial to carefully select the values of 𝑃𝐶𝑓 and 𝐶𝐶𝑠 so that the overall

solution method can strike the right balance between avoiding infeasibilities up front

and allowing them to be handled in post-processing. Setting these cost estimates

higher results in a solution that has fewer infeasibilities to be handled in the post-

processing steps, but the resulting total recovery cost can be too high. On the other

hand, setting them lower would generate many infeasibilities to repair in the post-

processing step, which may not be possible, and thus produces a higher cost solution.

𝑃𝐶𝑓 , 𝑓 ∈ 𝐹𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 and 𝐶𝐶𝑠, 𝑠 ∈ 𝑆 values are calibrated in the offline phase to

achieve the overall minimum recovery cost after completing the post-processing steps.

The ratio of 𝑃𝐶𝑓 to the actual cost of the broken itinerary 𝑓 and the ratio of 𝐶𝐶𝑠 to

the actual cost of the crew duty 𝑠 becoming infeasible are measures of how difficult

it is to recover passengers and crew in the post-processing steps. Based on calibrated

values, these ratios were in the ranges of [0.6, 0.9] and [0.3, 0.5] for crew and passenger

cost components, respectively. These results imply that it is more challenging to repair

infeasible crew duties than passenger itineraries, likely due to crew duty feasibility

rules. Therefore, it is better to allow passenger infeasibilities in the main IRM model’s

solutions rather than crew infeasibilities. This also coincides with practice, because

passenger recovery is almost always addressed after crew recovery.

3.6 Conclusion

The objective of this study was to develop a framework that would help find high-

quality solutions for integrated recovery problems within limited timeframes. To

achieve this goal, we combined optimization and machine learning methods.

We presented a novel and tractable mathematical model for the integrated recov-
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ery problem that integrates major recovery decisions, inspired by a modeling idea

introduced by Bertsimas and Patterson (1998) in the context of air traffic flow man-

agement. As shown by Bertsimas and Patterson (1998), their modeling approach can

lead to strong formulations and improved tractability.

The primary recovery actions available to airlines are delaying and canceling

flights. The underlying mathematical formulation uses flight copies to model these

decisions. Predictions regarding the delay and cancellation decisions can be used to

reduce the number of flight copies. We demonstrated that the former has greater

potential for accelerating the solution process. Therefore, we used predictions of the

maximum allowed delay limits for individual flights to reduce the solution space.

We created a feature set for training ML prediction models that contains informa-

tion on disruption characteristics as well as schedule, crew duty, and passenger-related

information. This feature set allows training classifiers applicable to a large subset of

flights instead of one classifier per flight.

We highlighted the advantages of incorporating ML techniques for solving this

model and conducted a wide range of experiments to analyze the performance of

the presented approach. Our findings indicated that reducing the feasible solution

space significantly speeds up the optimization process, and ML techniques are able

to reduce the problem size without significantly compromising solution quality. We

developed solution methods that determine a restricted solution space tailored to

each disruption by removing some regions of the feasible solution space based on ML

predictions. Our approach created near-optimal solutions in less than 5 minutes for

large-scale flight networks. The flight networks handled in this study were among the

largest in the literature.

Our experiments further revealed a relationship between solution quality and the

database and ML-guided solution space reduction for each problem instance and

available solution time. We observed that solution space reduction does not have

an impact when the available solution time is sufficiently large. However, for most

practical cases, a reduction strategy exists that provides the best solution quality. Our

framework relies on finding good solution space reduction strategies for each problem
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instance and adapts to the available solution time limit. Such adaptive ability is not

found in existing solution space reduction heuristics in prior studies.

The modeling approach, the solution space reduction strategy, and the feature set

definition for ML training help to increase the practicality of our approach. Although

the proposed solution approach requires an offline phase for each flight network, we

showed that solving less than 50 disruption scenarios and using the resulting solutions

database is sufficient to reap significant benefits of our approach.

The variable importance analysis showed that the disruption information is the

most relevant information in predicting the maximum allowed delay for each flight.

Disruption information includes features related to airport departure and arrival ca-

pacities and the planned number of operations. The latter is also crucial because it

determines the level of congestion, which limits arrivals and departures. Our results

of the analysis showed that among the four groups of information included in the fea-

ture set, the second-most important group of information is passenger-related, with

greater importance than crew and schedule-related information combined.

Our integrated recovery model which includes crew and passenger recovery consid-

erations has trade-off mechanisms between avoiding crew and passenger infeasibilities

in the main model and allowing them to be handled in the post-processing step.

Trade-off mechanisms are regulated by coefficient values reflecting approximate crew

and passenger recovery costs. The ratios of approximate and actual crew and passen-

ger recovery costs imply that recovering from crew infeasibilities is more challenging

than recovering from passenger infeasibilities. This result is consistent with airline

practices in which crew recovery is typically solved before passenger recovery.
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Chapter 4

Rule-based Improvements to

Recovery Heuristics

4.1 Introduction

In previous chapters, we developed fast solution methods using optimization and ML

tools to tackle airline recovery problems that can generate high-quality solutions in

limited timeframes. We also demonstrated that it is practical for airlines to use these

methods in their recovery processes. However, their implementations may require

significant modifications to airline recovery systems. Implementing these changes

can be costly and time consuming for some airlines. In such cases, it may be more

practical to improve existing systems than to completely replace them.

Key contributions of the previous two chapters are the practical insights offered

by the tree-based classifiers. In both chapters, classifiers are trained to discover the

relationship between disruption characteristics and certain recovery decisions. The

interpretable structures of the resulting models lead to actionable rules-of-thumb for

crew and integrated recovery problems.

The general guidance derived from the trained classifiers and the experimental

results can be summarized with the following three principles. First, the rules that

constitute the basis of the heuristic and manual solution approaches should consider

disruption characteristics. Second, the solution alternatives should be selected based
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on a multi-perspective evaluation of the flights, aircraft, and crew resources, as well as

planned passenger itineraries, rather than relying on simple rules like filtering based

on a time period. Third, the recovery method should seek solutions suitable for a

wider range of disruptions, and avoid unconventional solutions overly optimized for

a particular delay prediction, to improve robustness against uncertainties.

In addition to providing general guidance, trained classifiers can also help uncover

additional actionable insights tailored to specific recovery problems. The interpretable

structure of the resulting models allows for determining rules of thumb that otherwise

are not easily discoverable. For example, the (follow-on) F/O classifiers trained in

Chapter 2 showed that for some F/Os, the most relevant disruption information to

consider when deciding whether or not to fix the F/O does not include the flights

in the F/O. This is a rather counter-intuitive result that may not be obvious to

practitioners.

These types of insights can also help manual recovery processes by providing

recovery staff with the ability to understand the rationale behind the suggested solu-

tions, as demonstrated in previous chapters. They also have the potential to improve

various existing heuristic-based recovery methods. A common approach adopted by

heuristic-based solution procedures in practice and in the literature is to rely on a

set of rules of thumb or expert judgments to generate solutions quickly. These rules

can be replaced or enhanced with guidance based on the insights provided by the

classifiers.

In this chapter, we first examine the classifiers trained in previous chapters. Then,

we train higher-level classifiers to discover more generalizable insights. Finally, we sug-

gest ways to utilize these insights to enhance existing heuristic methods and demon-

strate performance improvements.

The remainder of this chapter is organized as follows. In this section, we review

the previous literature and present the scope and contributions of this study. Section

4.2 focuses on the crew recovery problem with aircraft and passenger considerations,

presented in Chapter 2, and proposes ways to discover rules of thumb and improve

common heuristics. Section 4.3 follows a similar path of rule discovery and heuris-
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tic improvements, focusing on the integrated aircraft, crew, and passenger recovery

problem presented in Chapter 3. Finally, Section 4.4 concludes the chapter with a

summary and with future research directions.

4.1.1 Literature Review

Due to time constraints, researchers and practitioners frequently adopt heuristic solu-

tion approaches when solving airline recovery problems. Some studies use well-known

meta-heuristics such as the Greedy Randomized Adaptive Search Procedure (GRASP)

(Hu et al., 2016), Simulated Annealing (Gao et al., 2010), and Genetic Algorithm

(Yang & Hu, 2019). Others implement problem-specific heuristic approaches.

To address the crew recovery problem, Yu et al. (2003) develop a depth-first search

tree algorithm which was also implemented in practice. Zhao et al. (2007) follow a

grey programming modeling approach coupled with a local search heuristic. Guo

(2005) present a hybrid heuristic using genetic algorithms and local search methods.

Novianingsih et al. (2015) develop a heuristic based multi-stage method which is based

on construction and improvement heuristics. C.-H. Chen and Chou (2016) propose an

approach using combinatorial optimization formulations and a non-dominated sorting

genetic algorithm.

The integrated problem is more challenging than tackling any individual recov-

ery step. Therefore, researchers have typically developed heuristic-based, rather than

exact, solution approaches for the integrated problem. Aguiar et al. (2011) use a

combination of different meta-heuristics, including a genetic algorithm for the air-

craft recovery problem and a simulated annealing algorithm for the crew recovery

problem. Jozefowiez et al. (2013) develop a three-phase shortest path-based heuris-

tic. The first phase generates an initial feasible solution. The second and third phases

recover passengers by reassigning to alternative itineraries and generating new flights,

respectively. Zhu et al. (2016) follow a sampling-based algorithmic framework. Their

approach involves two separate modules. The first module is focused on schedule and

fleet assignment, while the second is focused on crew and passenger recovery. Bisaillon

et al. (2011) present a large neighborhood search for aircraft and passenger recovery,
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which won the ROADEF 2009 challenge (Palpant et al., 2009), a competition to de-

velop fast solutions for integrated aircraft and passenger recovery problems organized

by the French Operational Research and Decision Science Society. Their approach is

a multi-phase one, in which an initial solution is generated, repaired, and improved

through a large neighborhood search. It relies on solving shortest-path problems for

broken aircraft rotations and passenger itineraries.

With recent improvements in mixed-integer optimization solver algorithms and

the availability of computational power, many scholars have been developing heuris-

tic solution methods involving mathematical optimization models. These types of

approaches are defined as math-heuristics or matheuristics (Boschetti et al., 2009).

For further information on matheuristics developed for different problem contexts,

see Archetti and Speranza (2014) and Maniezzo et al. (2021).

The complexity of airline recovery problems makes matheuristic based methods

suitable solution alternatives. There is recent interest among researchers in using

mathematical optimization as part of a recovery heuristic. Mansi et al. (2012) de-

velop a matheuristic method that solves aircraft and passenger recovery problems

simultaneously. Zhang et al. (2016) presents a three-stage matheuristic for the inte-

grated schedule, aircraft, and passenger recovery problem.

4.1.2 Outline

In this chapter, we focus on a special type of matheuristics, commonly used in the

airline recovery context. We call it fix-and-dive matheuristics, where some of the

decision variables are fixed before solving the optimization model. Fixing refers to

setting the values of a subset of decision variables, and diving refers to looking for

a solution by setting the values of the remaining decision variables (Bixby et al.,

1999). Past studies have suggested fix-and-dive type of heuristics for different kinds

of mixed-integer programming problems (Danna et al. (2007), Salvagnin (2016)).

Figure 4-1 presents a high-level overview of a generic fix-and-dive matheuristic

in the airline recovery context. When a disruption occurs, the objective is to find a

recovery solution within the overall set of all solution alternatives. This overall set
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Figure 4-1: Fix-and-dive matheuristic solution approach for recovery problems

of solutions can be extremely large. However, the available solution time does not

allow all solution alternatives to be evaluated. This is the main reason why exact

optimization methods are not practical for recovery problems. Instead of considering

all alternatives, a fix-and-dive matheuristic follows a candidate selection procedure

and determines a subset of alternatives to include in the solution space, effectively

eliminating many of the solution alternatives, before running the optimization model.

Figure 4-1 is almost identical to the online part of the general framework presented

in Figure 1-1. This is because, at a high level, the two solution methods are very

similar in the sense that both reduce the solution space by picking a subset of solution

alternatives. The main difference relates to how the subset of the solution space is

selected. A generic fix-and-dive matheuristic determines a reduced solution space by
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fixing the decision variables corresponding to a subset of solution alternatives. In our

approach, we determine the reduced solution space using ML-based filtering and add

constraints to the solution space, in addition to fixing some of the decision variables.

The similarity of these two approaches makes it easier to incorporate ML-derived

insights into the candidate selection step of a fix-and-dive matheuristic.

4.1.3 Contributions

The main contributions of this chapter are listed below.

1) We introduce a new approach for incorporating ML methods into airline re-

covery processes. Instead of developing new solution methods that may require con-

siderable implementation efforts by airlines, we investigate how existing recovery ap-

proaches can be improved by minor modifications without any major changes in the

overall solution process.

2) We train high-level classifiers for crew and integrated recovery problems to

discover rules of thumb that can replace or enhance the rules used in practice and

literature.

3) The discovered crew recovery rules focus on whether or not the F/O is included

in the aircraft recovery solution, with additional focus on slack times and the non-

propagated delay to the first flight in the F/O.

4) The discovered integrated recovery rules are based on the simple idea that a

flight should not be delayed beyond a specific limit if the number of passengers is

higher than a threshold value, and this threshold value is found to be different for the

flights in the first and second half of the day.

5) We propose methods to integrate the discovered rules into common heuristic-

based recovery approaches followed by researchers and practitioners.

6) We demonstrate that the solution quality of such approaches can be improved

by up to ∼9% and ∼17%, for crew and integrated problems, respectively, with as few

as two rules considered.

7) The sensitivity analysis results demonstrate that the key insights obtained

from our ML analysis relate to the general structure of the rule, rather than the exact
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threshold values. Given the low dependence of these rules on the exact thresholds,

the rule structures might be portable relatively easily across schedules and networks,

and can still lead to the bulk of the performance improvements even if the thresholds

are not tuned for those particular schedules and networks.

4.2 Crew Recovery with Aircraft and Passenger

Considerations

4.2.1 SWAP Matheuristic

A common solution approach for crew recovery problems is to keep the planned crew

schedules intact as much as possible. Yu et al. (2003) presents a solution methodology

based on this idea that was implemented by Continental Airlines. They keep intact

all crew schedules that are still feasible after the disruption and recover from the

disruption by fixing the broken crew schedules, generating new crew schedules to cover

open flights, and using reserve crew. It was one of the first automated decision support

systems implemented for crew recovery in the US. Many airlines followed Continental

in implementing similar systems. This heuristic method involves repeatedly solving

shortest-path problems instead of an optimization model for the recovery problem.

Since then, due to the increase in computational power available to airlines and ad-

vances in optimization algorithms, more sophisticated solution methods that involve

solving a reduced optimization problem have been developed. An improved version

of the Yu et al. (2003) method is based on the general idea of solution space reduc-

tion by adding a few candidate crew members to the solution space, in addition to

the disrupted crew, and then solving the resulting optimization problem using mixed

integer optimization solvers. Candidate crew members are selected based on swap

opportunities between the disrupted crew schedule and the candidate crew schedule.

The result is a fix-and-dive type of matheuristic discussed in Section 4.1.2. We call

this method the "SWAP matheuristic".

The computational study presented in Section 2.4 shows that the SWAP method
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generates ∼13% higher costs than the baseline solutions in 5 minutes. In comparison,

our ML-based methods generated solutions with only ∼3% higher recovery costs

than the baseline. In this section, we use the SWAP matheuristic as the benchmark

heuristic solution method and improve its performance by incorporating the rules of

thumb discovered with the help of tree-based classifiers.

A swap opportunity refers to swapping flights between two crew duties and creating

new feasible crew duties. A crew duty is a set of consecutive flights that can be

operated by a crew. Between two crew duties with multiple flights, there may be

several swap opportunities. We quantify the actual number of opportunities to swap

flights between a given pair of crew duties, as the cardinality of the set of all unique

ordered pairs of flights in these two crew duties that form a connection and are in

different duties. Figure 4-2 shows a simple example of how swap opportunities are

calculated. It is a Gantt chart based representation of the flights covered by two-leg

crew duties. The boxes represent the flights, the capital letters in the boxes represent

the departure and arrival airports of each flight, and the lengths of the boxes represent

the scheduled flight duration. Let the minimum connection time be 30 minutes. Duty

1 and duty 2 in the example consist of two flights, B-C and C-D, and A-C and C-E,

respectively. B-C in duty 1 can connect to C-E in duty 2, since the connection time

is longer than 30 minutes. Similarly, A-C in duty 2 can connect to C-D in duty 1,

since the connection time is exactly 30 minutes. The result is two new alternative

duties, B-C→C-E and A-C→C-D. In this example, we say that there are two swap

opportunities.

A high-level overview of the SWAP matheuristic is provided in Figure 4-3. We

define a crew assignment as a specific crew duty operated by a specific crew. The

heuristic separates the planned crew assignments into two sets: the set (1) of feasible

assignments and the set (2) of broken assignments. Then, all assignments in Set 1

are ranked based on the number of swap opportunities with the assignments in Set 2.

Finally, a predetermined number of high-ranking assignments in Set 1 are included

in the solution space, the rest of the assignments in Set 1 are fixed, and the resulting

optimization model is solved using mixed-integer optimization solvers.

150



Figure 4-2: Crew swap opportunities determined based on connection alternatives

The crew recovery model used in these experiments is the one presented in Chapter

2 (Model (2.1)-(2.13)). Fixing the assignments corresponds to adding Constraints

(4.1) to the model before sending it to the mixed integer optimization solver. 𝑌1

refers to the set of remaining crew duty assignments in Set 1 to keep as planned.

Algorithm 3 summarizes the overall flow of the solution method.

𝑦𝑘𝑠 = 1 ∀𝑦𝑘𝑠 ∈ 𝑌1 (4.1)

4.2.2 Classifier Insights

In Chapter 2, we trained classifiers to predict follow-on (F/O) micro-solutions. The

resulting classifiers provide valuable insights into recovery decisions, but are tailored

to the underlying network. The proposed methods require an offline phase in which

a solutions database is generated and classifiers are trained. This process needs to be

rerun for each day.
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Algorithm 3 SWAP Matheuristic for Crew Recovery
1: Initialize:

2: disruption ← {𝑁𝑃𝑖,∀𝑖 ∈ 𝐼}
3: Load the CRM-APC
4: Determine the set of planned assignments to keep (𝑌1)
5: for 𝑦𝑘𝑠 ∈ 𝑌1 do

6: add the constraint 𝑦𝑘𝑠 = 1 to CRM-APC
7: end for

8: Solve the CRM-APC with the added constraints

Figure 4-3: High-level overview of the SWAP matheuristic for crew recovery
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In contrast, in this chapter, we are interested in discovering high-level generalizable

insights or rules of thumb. Therefore, we trained a new type of classifier that covers

all F/Os instead of focusing on individual F/Os.

The data used for classifier training includes ∼1.2 million data points correspond-

ing to the usage of ∼2,500 F/Os in solutions to 500 disruption scenarios. The Optimal

Classification Trees (OCT) method is selected because it can provide interpretable

results. The maximum tree depth parameter is limited to 5 to keep the resulting

model structures interpretable. The trained classifiers are then reviewed to deter-

mine common patterns that help derive generalizable rules of thumb.

The training data is separated into four similar-sized groups, quarters, based on

the planned UTC arrival time of the first flight in the F/O. This increases the accu-

racy of the resulting classifiers by focusing on flights during a given time of the day

and helps discover insights specific to different time periods. The results of our ex-

periments showed that there are considerable differences in recovery decisions during

different parts of the day, such as the first and last quarters of the day.

The feature set is defined to provide aggregate-level schedule and disruption in-

formation. It contains 15 attributes from 4 main information groups; disruption,

schedule, connections, and A/C solution (here A/C is short for aircraft). The disrup-

tion and schedule information groups contain only F/O-related information, and are

included in the feature set to provide a high-level description of the disruption and

schedule characteristics of the F/O. The connections group provides aggregate-level

information for the flight connection alternatives. It is added to the feature set to

consider the connectivity of the F/O and the relevant disruption conditions. Finally,

the A/C solution is also a type of F/O level information reflecting the usage of the

F/O in the aircraft recovery solution. It is included in the feature set to investigate

the correlation between A/C and crew recovery solutions.

An exhaustive list of attributes and their descriptions is given in Table 4.1. Flight

block time refers to the time between the scheduled departure and arrival times of a

flight. Crew slack time between a pair of flights is the additional duration available

between the scheduled arrival time of the first flight and the scheduled departure
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Feature
id

Information
Group

Description

1 Schedule Flight block time of the first flight.

2 Schedule Flight block time of the second flight.

3 Schedule UTC arrival time of the first flight.

4 Schedule Crew slack time between flights.

5 Disruption Non-propagated (NP) delay of the first flight.

6 Disruption NP delay of the second flight.

7 Connections Number of flights in connection group 1.

8 Connections Average NP delay of flights in connection group 1.

9 Connections Number of flights in connection group 2.

10 Connections Average NP delay of flights in connection group 2.

11 Connections Number of flights in connection group 3.

12 Connections Average NP delay of flights in connection group 3.

13 Connections Number of flights in connection group 4.

14 Connections Average NP delay of flights in connection group 4.

15 A/C solution 1 if the F/O is used in any rotation in the A/C recovery
solution.

Table 4.1: Feature set attributes for crew recovery

time of the second flight beyond the minimum connection or turnaround time of the

crew, assuming that the aircraft and crew stay together. The minimum connection or

turnaround time is the minimum time required from the arrival of the previous flight

to the departure of the next flight to allow consecutive operation of the two flights by

the same aircraft or crew. This minimum connection or turnaround time is required

for a set of activities including cleaning the aircraft, off-boarding and on-boarding

passengers, and for crew getting ready to operate the next flight. Training input also

includes a binary label for each data point, reflecting the usage of the corresponding

F/O in the crew recovery solution. The label is 1 if the F/O is used, 0 otherwise.

There are four different connection groups depending on the timing of the connec-
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Connection group Description

1 Flights that can connect to the first flight.

2 Flights that the first flight can connect to.

3 Flights that can connect to the second flight.

4 Flights that the second flight can connect to.

Table 4.2: Flight connection groups

tion and the flight in the F/O. Group descriptions are provided in Table 4.2. These

groups are introduced in order to have a generalizable set of features to represent the

connectivity characteristics of each F/O. Smaller connection group sizes mean that

the corresponding F/O has fewer alternatives and hence may still be the best viable

option in case of disruptions. On the other hand, larger connection group sizes mean

that there are many alternative connections to the current F/O. Therefore, the F/O

can be more easily replaced even under minor disruptions.

An example of a classifier for the first quarter of the day is provided in Figure

4-4. The classifier identifies that, for this case, whether or not the F/O is in the A/C

recovery solution is the most crucial piece of information in determining the usage of

the F/O for crew recovery. If the F/O is in the A/C solution, the classifier considers

the NP delay 1, NP delay 2, and slack time information to decide whether to suggest

the usage of the corresponding F/O for crew recovery. The main takeaway from the

classifier is that more efficient connections with shorter slack times are preferred.

Classifier examples for the other quarters of the day are presented in Appendix

C.2. They suggest that for the connections in the second half of the day, some extra

information becomes relevant in addition to the information used in the classifiers for

the first half of the day. The quarter label for a connection is determined based on the

planned UTC arrival time of the first flight in the connection. The flight durations

and arrival time of the first flight are the additional pieces of information considered

by the third and fourth quarter classifiers, respectively.

We conducted a variable importance analysis to understand the relative impor-
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Figure 4-4: Crew classifier example for connections in the first quarter of the day

tance of these information groups. The results are provided in Table 4.3. The most

important information is whether the F/O is included in any of the rotations in

the A/C recovery solution. The reason for the significant improvement in importance

compared to the F/O specific classifiers in Chapter 2 could be that with the absence of

detailed F/O specific disruption information, whether the F/O being included in the

A/C recovery solution becomes more critical. Connectivity characteristics, reflected

by the connection group features, have the second highest importance, reflecting the

importance of the connection alternatives for a given F/O.

Four different rulesets are created, ranging from more complex to simplified. The

complexity of a ruleset is quantified in terms of the number of rules it contains and

the number of features each rule uses. The experiments showed that simpler rule-

sets provide greater improvement than more complex ones. The tested rulesets are

provided in Appendix C.1.

The best-performing ruleset had only two simple rules (Table 4.4). The first rule
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Information group Importance

Schedule 14.19%.

Disruption 13.81%

Connections 28.53%

A/C solution 43.47%

Table 4.3: Variable importance distribution

Rule id Quarter Description

1 Any Prefer an F/O, if it is in the A/C recovery solution and the
crew slack time is less than 30 minutes.

2 Any Avoid an F/O, if it is not in the A/C recovery solution and
the NP delay of the first flight is greater than 90 minutes.

Table 4.4: Simplified ruleset for crew recovery

says that if the F/O is included in the A/C recovery solution, prefer the F/O in

the crew recovery solution if the slack time between the two flights is less than 30

minutes. The second rule says that if the F/O is not included in the A/C recovery

solution, avoid using that F/O in the crew recovery solution if the NP delay of the

first flight is greater than 90 minutes. Here, the slack time is found to be relatively

less important than in the case of Rule 1. One possible explanation is that Rule 2

detects F/Os to avoid, hence focusing on disruptions, while Rule 1 detects F/Os to

prefer, hence focusing on efficiency.

The first rule of this ruleset can be interpreted as a suggestion to prefer the

efficient F/Os (i.e., the F/Os with short slack times of less than 30 minutes) that

are also included in the A/C recovery solution. In cases where the F/O is not in

the A/C recovery solution, the ruleset does not automatically suggest avoiding the

corresponding F/O. According to the second rule of this ruleset, such connections

can still be included in the solution unless the NP delay of the first flight exceeds 90

minutes.
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4.2.3 Rule-based Modifications

The benchmark heuristic (SWAP matheuristic) defined in Section 4.2.1 selects can-

didate crew members for each broken crew duty and includes them in the solution

space. To demonstrate the improvements obtained by the ML-insight-based heuristic

rules, we incorporated the simplified ruleset presented in Table 4.4 into the step where

candidates are selected. The rest of the SWAP matheuristic is kept the same.

The original SWAP matheuristic looks for candidates among the feasible planned

crew duties based on the number of swap opportunities with the broken crew duties

and adds them to the solution space. It breaks any ties arbitrarily. Instead, the

ML-insight-based rules break ties based on the extent to which the feasible planned

crew duties involved in the ties satisfy the rules. With these ML enhancements, the

heuristic follows a two-level sorting procedure. First, the feasible planned crew duties

are sorted in decreasing order of the number of swap opportunities, and all ties are

broken based on a measure reflecting the level of conformity to the ML-insight-based

rules. The level of conformity to the ML-insight-based rules for a crew duty is defined

as the number of F/Os in the crew duty that satisfy these rules. With this sorting, if

two candidate duties have the same number of swap opportunities, the one that has

a lower level of conformity is selected to be added to the solution space. This leads to

keeping intact the feasible planned duties that have a higher level of conformity with

the rules. The rationale is that if a crew duty satisfies the rules, then it is a preferred

duty; hence, it should be kept as planned.

Figure 4-5 demonstrates how rule-based modifications affect the candidate selec-

tion step in the SWAP matheuristic. Each row represents the sorting of the feasible

planned crew duties to fix for the default and modified SWAP heuristics. The blue

and gray-shaded cells correspond to the fixed duties and the duties included in the

solution space by the default SWAP matheuristic, respectively. The red dashed line

reflects the predetermined number of planned duties to fix. For both methods, all

cells to the left of the dashed line correspond to the fixed crew duties and the ones

on the right correspond to the feasible planned crew duties that are included in the
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Figure 4-5: Rule-based modifications affect the candidate selection step

solution space of the optimization model. For the modified SWAP method (denoted

as SWAP w ML in the figure), some of the feasible planned duties selected to be fixed

by the default SWAP matheuristic are no longer fixed. The duties with high ranks

(those to the left of the figure) are fixed by both methods since the ML-insights-based

rules are used purely as tie-breakers, and such second-order sorting does not affect

the overall ranking of such high-rank duties. However, the moderate-ranked to low-

ranked duties may get sorted differently by the modified SWAP method, as shown in

the figure.

4.2.4 Results and Sensitivity Analysis

The set of disruption scenarios and the underlying network are the same as those used

in Chapter 2. All experiments are carried out on a desktop computer equipped with an

Intel i9-13000K CPU and 64 GB of memory using Gurobi 10.0 (Gurobi Optimization

Inc., 2020) as the integer and mixed-integer optimization solver.

Figure 4-6 demonstrates the solution quality improvements achieved by enhancing

the heuristic using ML-based insights. The y-axis is the recovery cost difference

with respect to the cost of the baseline solution. Baseline solutions are obtained by

directly sending the CRM-APC optimization model to a Gurobi solver until a target

optimality gap of 0.1% is achieved or the solution time exceeds 2 hours. Lower values

of the recovery cost difference correspond to higher solution quality.

To evaluate the sensitivity of performance improvements to small variation in

the ruleset, we performed a sensitivity analysis by changing the values of the two

main parameters in the ruleset: the slack time threshold in Rule-1 and the NP delay
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Figure 4-6: Results of the rule-based improvements to the default SWAP matheuristic
for crew recovery

threshold for the first flight in Rule-2. Table 4.5 shows the parameter values used in

the different versions of the tested ruleset. The ruleset version-0 corresponds to the

original ruleset given in Table 4.4.

The results of the sensitivity analysis provided in Figure 4-7 demonstrate a consis-

tent performance improvement of around 7% to 9% over the default SWAP matheuris-

tic, due to the incorporation of these ML-discovered rules of thumb. The y-axis shows

the solution quality gain achieved with the ML-insight-based rules (𝐺𝐴𝐼𝑁) over the

default SWAP matheuristic. It is calculated considering the cost avoided compared

to the best solution quality that was achieved in the computational study presented

in Chapter 2. It was generated by our proposed solution method combining optimiza-

tion and ML. The equation used for the 𝐺𝐴𝐼𝑁 calculation is provided in 4.2 where

𝐶𝑜𝑠𝑡𝑆𝑊𝐴𝑃
𝑑𝑒𝑓𝑎𝑢𝑙𝑡 and 𝐶𝑜𝑠𝑡𝑆𝑊𝐴𝑃

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 are the recovery costs achieved by the default and im-

proved versions of the SWAP matheuristic, while 𝐶𝑜𝑠𝑡𝑀𝐿 is the recovery cost achieved

by our ML-based method for crew recovery presented in Chapter 2. Higher value of

solution quality gain corresponds to a greater improvement in the solution quality.
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𝐺𝐴𝐼𝑁 = 1−
𝐶𝑜𝑠𝑡𝑆𝑊𝐴𝑃

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 − 𝐶𝑜𝑠𝑡𝑀𝐿

𝐶𝑜𝑠𝑡𝑆𝑊𝐴𝑃
𝑑𝑒𝑓𝑎𝑢𝑙𝑡 − 𝐶𝑜𝑠𝑡𝑀𝐿

(4.2)

Ruleset versions with the slack threshold set to 20 minutes or the first flight’s NP

delay threshold set to 80 minutes seem to perform worse than others. The former

parameter is related to the first rule, and the latter to the second. The results imply

that, for an F/O being included in the A/C recovery solution, having a slack time

of 20 minutes or less does not provide the same level of confidence in the suggestion,

compared to having a slack time of 30 minutes or less. Similarly, for an F/O not

being included in the A/C recovery solution, the greater the value of the NP delay

of the first flight, the stronger the suggestion to avoid the F/O for the crew recovery

solution.

Despite these differences, all tested versions of the ruleset were found to have a

performance improvement in the range from 6% to 9%. These results demonstrate

that the key insights obtained from our ML analysis relate to the general structure

of the rule, rather than the exact threshold values, and this general structure drives

the performance improvements rather than the specific values determined. This find-

ing can have significant implications for the generalizability of this modified SWAP

matheuristic approach. Given the low dependence of these rules on the exact thresh-

olds, the rule structures might be portable relatively easily across schedules and net-

works and can still lead to the bulk of the performance improvements even if the

thresholds are not tuned for those particular schedules and networks.
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Version Slack time (Rule-1) NP delay of the first flight (Rule-2)

0 30 90

1 30 80

2 30 100

3 20 90

4 40 90

5 20 80

6 40 100

7 40 80

8 20 100

Table 4.5: Simplified ruleset versions for crew recovery

Figure 4-7: Sensitivity analysis of the rule-based improvements to the default SWAP
matheuristic for crew recovery
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4.3 Integrated Aircraft, Crew, and Passenger

Recovery

4.3.1 SWAP Matheuristic

Airline recovery problems are rarely solved in a fully integrated fashion. For most

major airlines, it is not practical to do so. Instead, airlines usually solve recovery

problems sequentially with some feedback mechanisms. In such an approach, low-

quality solutions generated in earlier steps can prevent good solutions in the following

steps, resulting in high-cost overall recovery solutions.

Chapter 3 presented a multi-step solution approach in which an integrated recov-

ery model, called IRM, is solved first. The aircraft, crew, and passenger solutions are

repaired and finalized subsequently as part of the post-processing steps. Although

the IRM model also includes crew and passenger considerations, its primary focus

is schedule and aircraft recovery. The main recovery actions included in the IRM

model correspond to deciding the flight departure times, arrival times, and cancella-

tions. It also ensures that we can find a feasible aircraft flow for the flight schedules

and cancellations decided by the IRM. The benchmark solution methods included in

the computational study (Section 3.4.3) were also focused on solving the main IRM

model. The solution methods used in the post-processing steps were kept identical for

all benchmarks. The computational study in this section focuses on solving the main

IRM model and evaluates the performance of the improvements to the benchmark

heuristics accordingly.

The benchmark heuristic we focus on in this section also follows an approach sim-

ilar to the one used for crew recovery in the previous section. It reduces the solution

space by adding a few feasible planned aircraft rotations to the solution space in addi-

tion to the disrupted aircraft rotations. These feasible planned aircraft rotations are

selected based on swap opportunities between them and the disrupted aircraft rota-

tions. Swap opportunities between aircraft rotations are determined in the same way

as the swap opportunities between crew duties in the SWAP matheuristic for crew
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Figure 4-8: High-level overview of the SWAP matheuristic for integrated recovery

recovery, as shown in Figure 4-2. The result is a fix-and-dive type of matheuristic

similar to that discussed in Section 4.1.2. For consistency, we also call this heuristic

"SWAP matheuristic" for integrated recovery.

The computational study presented in Chapter 3 shows that this method generates

∼19% higher costs than the baseline solutions in 8 minutes (5 minutes for the main

model and 3 minutes for the post-processing steps). In comparison, our ML-based

methods generated solutions with only ∼5% higher costs within the same time limits

(viz., 5 minutes for the main model and 3 minutes for the post-processing steps).

In this section, we improve the solution quality of the "SWAP matheuristic" for

integrated recovery by incorporating rules of thumb discovered with the help of tree-

based classifiers.

A high-level overview of the heuristic is provided in Figure 4-3. The heuristic

separates the planned aircraft rotations into two sets: the set (1) of feasible rotations

and the set (2) of broken rotations. Then, all the rotations in Set 1 are ranked in

decreasing order of the number of swap opportunities with the rotations in Set 2.

Finally, a predetermined number of rotations with the highest ranks are included in

the solution space, and the rest of the rotations in Set 1 are fixed.

The integrated recovery model used in these experiments is the one presented in

Chapter 3 (3.1)-(3.14). Fixing the rotations corresponds to adding Constraints (4.3)

to the model before sending it to the mixed integer optimization solver. 𝑇
𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖

refers to the set of time periods for which the flight 𝑖 is not allowed to arrive. These
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sets are determined for each flight included in the fixed rotations (Set 1), based on the

departure and arrival times of the flights in those rotations. Algorithm 4 summarizes

the overall flow of the solution method.

𝑟𝑎,𝑡𝑖 − 𝑟𝑎,𝑡−1
𝑖 = 0 ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖 (4.3)

Algorithm 4 SWAP Matheuristic for Integrated Recovery
1: Initialize:

2: Load the disruption
3: Load the IRM
4: Set the network-wide maximum delay
5: Determine the set of planned rotations to fix (Set 1)
6: Determine the set of flights covered by the rotations in Set 1 (𝐼𝑓𝑖𝑥𝑒𝑑)
7: for 𝑖 ∈ 𝐼𝑓𝑖𝑥𝑒𝑑 do

8: Determine the set 𝑇
𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖

9: for 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇
𝑟𝑛𝑜𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑖 do

10: add the constraint 𝑟𝑎,𝑡𝑖 − 𝑟𝑎,𝑡−1
𝑖 = 0 to IRM

11: end for

12: end for

13: Solve the IRM with the added constraints

4.3.2 Classifier Insights

In Chapter 3, we trained classifiers to predict the maximum allowed delay limits for

flights. Even though our training approach enables the classifiers to handle large

collections of flights, they are still primarily tailored to the underlying network. This

is because the feature set includes an extensive list of information for each flight and

the classifiers focus on arrivals at or departures from a single airport.

In this chapter, our objective is to discover generalizable rules of thumb for inte-

grated recovery problems. Therefore, we trained a new type of classifier that covers
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all departures and arrivals instead of the airport-specific classifiers trained in Chapter

3. This is a binary classifier trained to separate flights into two classes based on the

expected delays and the selected delay separator limit. The classifier predicts whether

or not the flight delay exceeds the specified delay limit.

The data used for classifier training includes ∼100,000 data points corresponding

to individual flight delays in solutions to 48 disruption scenarios. The Optimal Classi-

fication Trees (OCT) method is selected because it can provide interpretable results.

The maximum tree depth parameter is limited to 5 to keep the resulting model struc-

tures interpretable. The trained classifiers are then reviewed to determine common

patterns that would help derive generalizable rules of thumb.

Overfitting refers to the behavior of ML models that provide accurate predictions

for training data, but fail to do so for other data inputs (Mitchell, 1997). If overfitting

occurs during the training process, the resulting model cannot generate generalizable

insights. A concise feature set is defined to avoid overfitting to the training input.

The feature set has 13 features, including information related to schedule and

airport capacities, and the number of passengers on that flight. The latter was added

to the feature set because it is the most critical passenger-related information that

airlines consider when making delay decisions. Schedule information was included

to provide a high-level description of different flights. It contains the OD frequency,

departure time, and duration. Airport capacity information was added to the feature

set to provide a snapshot of the disruption conditions surrounding the departure

and arrival times of the flight. Provided information corresponds to hourly capacities

covering the planned departure (respectively arrival) time spanning from the previous

hour (hour -1) to two hours ahead (hour +2) including the capacities for the planned

departure (respectively arrival) time (hour 0). More detailed descriptions of the

attributes included in the feature set are provided in Table 4.6. The training input

also includes a binary label for each data point or observation, reflecting the flight

delay in the disruption solution. The label is 1 if the delay does not exceed the delay

separator limit and 0 otherwise.

Binary classifiers are trained with different values for the maximum tree length
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Feature
id

Information
Group

Description

1 Schedule OD frequency, i.e., the number of daily flights in
this airport OD pair.

2 Schedule OD frequency order, i.e., starting from the be-
ginning of that day how many flights (including
the current one) have been flown until the cur-
rent flight in this airport OD pair.

3 Schedule Departure time in UTC time increments.

4 Schedule Flight duration in time increments.

5 Passengers Number of passengers on this flight.

6 Airport capacity Departure capacity during hour -1 at origin air-
port.

7 Airport capacity Departure capacity during hour 0 at origin air-
port.

8 Airport capacity Departure capacity during hour 1 at origin air-
port.

9 Airport capacity Departure capacity during hour 2 at origin air-
port.

10 Airport capacity Arrival capacity during hour -1 at destination air-
port.

11 Airport capacity Arrival capacity during hour 0 at destination air-
port.

12 Airport capacity Arrival capacity during hour 1 at destination air-
port.

13 Airport capacity Arrival capacity during hour 2 at destination air-
port.

Table 4.6: Feature set attributes for integrated recovery
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Figure 4-9: Binary tree classifier example with one-hour delay separator limit and
maximum tree length of 3

and delay separator limit parameters. The set of values used for the former parameter

include 3,4 and 5, and for the latter parameter, 30 minutes, 45 minutes, and 1 hour.

An example classifier is given in Figure 4-9 with a one-hour delay separator limit and

a maximum tree length of 3. Label 1 corresponds to limiting the delay to 1 hour. The

predicted probability values that reflect the strength of the prediction are given in

the nodes. Although the labels for all leaf nodes are 1, the corresponding prediction

probabilities are different. The main takeaway of this classifier is that the number of

passengers that would justify limiting the flight delay to 1 hour depends on the time

of the flight. Flights in the roughly first half of the day have a lower threshold value

(40.5 passengers) than flights in the second half (61.5 passengers).

We conducted a variable importance analysis to understand the relative impor-

tance of these information groups. The results are provided in Table 4.7. The impor-

tance distribution is consistent with the one provided in Section 3.5.2 for classifiers

focused on individual airports.

The resulting classifiers contained many alternative rules of thumb. We generated

different rulesets, ranging from complex to simpler, where the complexity is quantified

in terms of the number of rules and attributes involved. As in the case of crew
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Information group Importance

Schedule 11.66%.

Passengers 16.16%

Airport Capacity 72.18%

Table 4.7: Variable importance distribution for aggregate classifiers for integrated
recovery

Rule
id

Delay limit
(minutes)

Description

1 60 Limit the flight delay if the departure time ≥ 70 and the
number of passengers > 75.

2 60 Limit the flight delay if the departure time < 70 and the
number of passengers > 55.

Table 4.8: Simplified ruleset for integrated recovery

recovery, simpler rulesets usually performed better. The tested rulesets are provided

in Appendix C.3.

The best performing ruleset has only two simple rules (Table 4.8) based on de-

parture time and number of passengers. The delay separator limit is set to 1 hour.

The first rule says that the delay of a flight departing during roughly the first half

of the day should not exceed 1 hour unless the number of passengers is less than or

equal to 55. For the flights departing in the second half of the day, delay should be

limited to 1 hour for flights with more than 75 passengers. A classifier example with

two features is given in Appendix C.4.

4.3.3 Rule-based Modifications

The benchmark SWAP matheuristic defined in Section 4.3.1 selects planned feasi-

ble aircraft rotations with most swap opportunities with broken aircraft rotations

and includes them in the solution space of the optimization model. To demonstrate

the improvements from using ML-insight-based heuristic rules, we incorporated the
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rulesets presented above into the candidate selection step. The rest of the SWAP

matheuristic was kept the same.

The heuristic modifications we propose are similar to those discussed in Section

4.2.3. The original candidate selection step shown in Figure 4-8 involves ranking

the feasible planned aircraft rotations in Set 1 based on the swap opportunities with

the rotations in Set 2, with ties broken arbitrarily. Instead, we introduced another

ranking level based on the determined rules, in order to break the ties, to make the

algorithm lean towards fixing the planned rotations that satisfy the rules. If a feasible

planned aircraft rotation satisfies the rules, then it is a preferred rotation; hence, it

should be kept intact as planned.

4.3.4 Results and Sensitivity Analysis

The set of disruption scenarios and the underlying network are the same as those used

in Chapter 3. All experiments are carried out on a desktop computer equipped with an

Intel i9-13000K CPU and 64 GB of memory using Gurobi 10.0 (Gurobi Optimization

Inc., 2020) as the integer and mixed-integer optimization solver.

Figure 4-10 demonstrates the solution quality improvements achieved by enhanc-

ing the SWAP matheuristic using ML-based insights. The y-axis is the recovery cost

difference with respect to the baseline solution cost, and the x-axis corresponds to the

solution time limit imposed for solving the main IRM model. Baseline corresponds

to sending the full IRM model (without any solution space reduction) directly to a

Gurobi optimizer and allowing it to run until the optimality gap is reduced to 0.1%

or lower or the run time exceeds 2 hours. Ultimately, the recovery cost is calculated

by performing all post-processing steps required to generate full solutions to the air-

craft, crew and passenger recovery problems. The post-processing steps take around

3 minutes regardless of the solution method used for solving the IRM model. Lower

values of recovery cost differences correspond to higher solution quality.

To evaluate the sensitivity of performance improvements to different versions of

the simple ruleset, we performed a sensitivity analysis by changing the values of the

three main threshold parameters in the ruleset: departure time separator used in both
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Figure 4-10: Results of the rule-based improvements to the default SWAP matheuris-
tic for integrated recovery

rules, the threshold number of passengers used in Rule-1, and the threshold number of

passengers used in Rule-2. Table 4.9 shows the details of the different tested versions

of the ruleset. The ruleset version-0 corresponds to the original ruleset given above

in Table 4.8.

The results provided in Figure 4-11 demonstrate a consistent performance im-

provement over the default SWAP matheuristic, due to the incorporation of the ML-

discovered rules of thumb. The solution time limit for solving the IRM model is set

to 5 minutes. The y-axis is the solution quality gain achieved with the ML-insight-

based rules (𝐺𝐴𝐼𝑁) with respect to the default SWAP matheuristic. It is calculated

considering the cost avoided compared to the best solution quality that was achieved

in the computational study presented in Chapter 3. It was generated by our proposed

solution method combining optimization and ML. The equation used for the 𝐺𝐴𝐼𝑁

calculation is same as provided in 4.2 for crew recovery:

𝐺𝐴𝐼𝑁 = 1−
𝐶𝑜𝑠𝑡𝑆𝑊𝐴𝑃

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 − 𝐶𝑜𝑠𝑡𝑀𝐿

𝐶𝑜𝑠𝑡𝑆𝑊𝐴𝑃
𝑑𝑒𝑓𝑎𝑢𝑙𝑡 − 𝐶𝑜𝑠𝑡𝑀𝐿

In this section, 𝐶𝑜𝑠𝑡𝑀𝐿 refers to the recovery cost achieved by our ML-based

method for integrated recovery presented in Chapter 3. Higher value of solution
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Version Departure time separator
(in time increments starting
from midnight UTC)

Rule-1 # pax Rule-2 # pax

0 70 75 55

1 60 75 55

2 60 90 75

3 60 100 50

4 80 75 55

5 80 90 75

6 80 100 50

7 90 75 55

8 90 90 75

9 90 100 50

Table 4.9: Simplified ruleset versions for integrated recovery

quality gain corresponds to a greater solution quality improvement.

All tested versions of ruleset were found to have a performance improvement in the

range from 12% to 17%. Once again, as in the crew recovery context discussed earlier

in this chapter, these results demonstrate that the key insights obtained from our ML

analysis relate to the general structure of the rule, rather than the exact threshold

values, and this general structure drives the performance improvements rather than

the specific values determined. As mentioned in the crew recovery case, the low

dependence of these rules on the exact thresholds imply that the rule structures

might be portable relatively easily across schedules and networks, and can still provide

much of the performance improvements even if the thresholds are not tuned for the

particular schedules and networks.

4.4 Conclusion

In this chapter, we investigate how existing heuristic-based solution approaches can

be improved without significant implementation efforts. We showed that simple rules
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Figure 4-11: Sensitivity analysis of the rule-based improvements to the default SWAP
matheuristic for integrated recovery

derived from the interpretable structure of the tree classifiers can be directly incorpo-

rated into the commonly used airline recovery heuristics to improve solution quality.

In crew recovery experiments, two simple rules concerning F/Os were determined.

Both rules focus on whether or not the F/O is included in the A/C recovery solution,

with additional focus on slack times and the non-propagated delay to the first flight.

All of these criteria make intuitive sense, which is important to build trust with

the recovery staff. The results show that by incorporating these simple rules into

the SWAP matheuristic, we can improve the solution quality performance by ∼9%.

Sensitivity analysis showed that the performance improvements are stable regardless

of the exact values of the threshold parameters used by the rules, thus enhancing

their generalization potential. These experiments were conducted assuming that the

non-propagated delay predictions are accurate. Further experimentation is needed to

evaluate the robustness of the results to inaccurate non-propagated delay predictions.

In the integrated recovery experiments, the selected ruleset is based on the sim-

ple idea that a flight should not be delayed beyond a specific limit if the number of

passengers is higher than a threshold value, which is discovered to be different for the

flights in the first and second half of the day. Experiments showed that an improve-

ment of ∼15% can be achieved by integrating these rules into the SWAP matheuristic
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solution method. These rules also proved to be quite robust, such that changing the

values of the threshold parameters did not significantly affect the performance.

Although this chapter focuses on one type of recovery heuristic, SWAP matheuris-

tic, a similar approach can be followed to improve other types of heuristics, including

meta-heuristic or domain-specific heuristic solution methods. For a greedy heuristic

approach, we can redefine what makes a solution alternative appealing to the algo-

rithm at each stage. For a genetic algorithm, we can update the rules followed in

the crossover and mutation steps, which are the mechanisms to iteratively gener-

ate better solutions. For local neighborhood search heuristics, we can enhance the

rules that define a solution’s neighborhood based on ML-derived insights. Similarly,

for other meta-heuristics and domain-specific heuristic methods, we can analyze the

structure of the algorithms and improve their performances using the insights from

the classifiers.
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Chapter 5

Conclusion and Future Research

5.1 Concluding Remarks

In this research, we introduce a general framework that helps develop fast and tunable

airline recovery methods by combining optimization and ML tools. This framework

can allow airlines to meet the major practical requirements of a recovery system:

quality, speed, flexibility, and interpretability. The main idea behind the framework

is that, under similar disruption conditions, recovery decisions that lead to high-

quality solutions can also be similar. It relies on an offline phase, where solutions to

historical disruption scenarios are generated, and ML methods are used to discover

patterns in recovery decisions. Then, on the day of operations, the trained classifiers

are used to determine a restricted solution space for a given disruption, within which

the optimization model searches for a high-quality solution. An important feature

of the framework is that it leverages interpretable ML methods so that the rationale

behind the suggested recovery decisions is clearer to human decision-makers, thus

building trust in the automated decision-support tools.

In Chapter 2, we first formulate the crew recovery problem as a string-based set-

covering model that assumes that an aircraft recovery solution is available from a

previous step in the recovery process. The crew solution maintains the cancellation

decisions and the aircraft rotations decided in the previous step, and determines

crew duties and potentially altered flight schedules that minimize crew costs plus
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approximate passenger disruption costs associated with the crew recovery decisions.

We define a disruption feature set that allows us to characterize different kinds of

disruptions. We create a recovery solutions database using hundreds of disruption

scenarios generated based on historical flight delay and cancellations data. We train

classifiers to discover patterns in the solutions. Classifiers help predict whether a

specific flight-connection pair (follow-on) should be used in the crew recovery solution

for a given disruption. We use the trained classifiers in our experiments to find high-

quality solutions in limited timeframes, for recovery problems involving a ∼3000-flight

network. In less than 5 minutes, our proposed methods can generate solutions that

are within 3% of the baseline solutions. The baseline solutions, which have a ∼1%

optimality gap on average relative to the true optimal solution value of the crew

recovery model, are obtained by direct optimization and require ∼2 hour run time.

In Chapter 3, we develop a tractable integrated model that recovers flight sched-

ules while considering the most important aspects of the airline recovery process,

namely ensuring aircraft flow and reducing crew infeasibilities and passenger dis-

ruptions. The solution approach includes three post-processing steps to finalize the

recovery solutions for aircraft, crew, and passengers, respectively. The computational

case study focuses on major disruptions caused by airport closures and airport ca-

pacity reductions. In the offline phase, solutions to historical disruption scenarios are

generated, and ML classification models are trained to discover patterns in the flight

delays associated with the obtained solutions. Classifiers help predict how much each

of the flights in the network should be allowed to be delayed for a given disruption.

We use trained classifiers in our computational experimentation to find high-quality

solutions in limited timeframes, for recovery problems involving a ∼3,700-flight net-

work. In less than eight minutes, our proposed methods can generate solutions that

are within 5% of the baseline solutions. The baseline solutions, which have a ∼2%

optimality gap on average relative to the true optimal solution value of the integrated

recovery model, are obtained by direct optimization and require ∼2 hour run time.

In Chapter 4, we demonstrate that reaping partial benefits of the presented frame-

work does not require significant changes in the existing recovery processes of airlines.
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The interpretable structure of the trained classifiers helps to discover simple rules of

thumb that can be used to improve existing solution approaches. We train general-

izable classifiers, at an aggregate level, for crew and integrated recovery problems to

discover simple rules that can be incorporated into existing solution approaches. One

of the most commonly used solution space reduction methods are the matheuristics,

which include for broken crew duties or aircraft rotations, a number of candidate

non-broken duties or rotations, that can be used in the solution to repair broken

duties and rotations. We run a mixed-integer optimization model over this reduced

solution space and show that the candidate selection step of these matheuristics can

easily be improved using the simple rules of thumb discovered with the help of our

trained classifiers. Improvements of the order of ∼9% and ∼15% were obtained for

the crew and integrated recovery experiments, respectively. Moreover, these improve-

ments were found to be stable and robust to changes in the parameter values of the

ML-derived rules, indicating the potential to apply them effectively across different

schedules and airline networks.

5.2 Future Research Directions

In Chapter 2, follow-on pairs are selected as the micro-solutions to predict. This

requires hundreds of disruption scenarios to be solved in the offline phase. Our ex-

periments showed that such classifiers may not generalize very well to other flight

schedules. Therefore, we recommend that the process be repeated before each day

to achieve maximum benefits. More research is needed to develop enhanced proce-

dures that would allow training generalizable classifiers, hence reducing the time and

computational resources airlines would need to implement such a system.

In Chapter 3, the developed solution method uses classifiers trained to predict

whether the delay of a flight should be allowed to exceed a specified limit. The

underlying mathematical optimization model includes many other recovery decisions,

such as canceling a flight, breaking a crew duty, or breaking a passenger itinerary.

Additional classifiers can potentially be trained to predict these multiple decisions.
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In Chapter 4, we used simple rules of thumb derived from trained classifiers to

improve the performance of a commonly used matheuristic that selects candidate

resources to be included in the solution space to accelerate the solution process.

There are many different heuristic approaches in the literature that researchers have

developed based on intuitive rules and expert judgments. Further research would be

helpful in determining whether ML-derived rules can consistently improve these other

heuristic solution approaches as well.

The presented framework was created to meet the major requirements for a prac-

tical and efficient airline recovery system. The primary focus was speed as airlines

prefer solutions be found in less than 5 minutes. The algorithmic structure called

learning to configure algorithms was followed since it was the most suitable structure

in the recovery context. However, a similar framework can also be developed for

airline scheduling problems where solution time limitations are not as strict. In the

scheduling phase, the quality of the solutions is more important than how quickly

they can be generated. In other words, while accelerating the solution process would

make the scheduling process more efficient, solution quality remains the priority. In

this context, another algorithmic structure, called ML alongside optimization, can be

a better approach to incorporate ML into the solution process. Predicting branching

decisions in a Branch-and-Bound based solution process or predicting columns to be

added in a column generation-based solution approach fall into this category. Al-

though other studies have tried these ideas for general integer optimization models,

there are many research opportunities to use these ideas within the airline scheduling

context.

178



Appendix A

Computational study details for

Chapter 2: Crew Recovery with

Aircraft and Passenger

Considerations

A.1 Disruption Profile Clustering

A comprehensive analysis of historical disruptions is crucial for generating realistic

disruption scenarios and ensuring the success of the proposed framework. A widely

used method to analyze disruptions is clustering, an unsupervised ML approach that

aims to partition a given data set into groups based on similarities (Mitchell, 1997).

Some applications of clustering to the national airspace system (NAS) disruptions by

other researchers are mentioned in Section 2.1.1. A common approach is to use a list

of network characteristics to identify disruption patterns and day types in the NAS.

In our study, we cluster historical flight operation days into disruption profiles based

on the NP delay characteristics using a commonly used approach, namely, k-means

clustering.

Clustering of the disruption profiles is the first step in the scenario generation
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Figure A-1: A disruption profile for the airline used in the computational study

procedure (Section 2.3.2-Figure 2-3). The network used in our experiments is based

on flight operation days in the winter season; therefore, we used five years (2013 to

2017) of winter flight operation data (December, January, and February) as input.

We first clustered 451 winter days with respect to their disruption profiles. The

information used as features in the clustering process includes the average delay of

each Origin-Destination (OD) pair that has at least two non-stop flights on average

each day. There are 559 such OD pairs in the network. There were ten distinct

disruption profiles. In this process, the value of k was set to 16 motivated by analysis

for another airline network in which k was set to 16 and the analysis resulted in 10

disruption profile clusters.

The disruption profile in Figure A-1 corresponds to one of the disruption profile

clusters, where the disruptions originate from multiple airports in the south and

midwest of the United States. The size of the circles represents the level of disruptions

measured in terms of the average delays of flights that touch the corresponding airport.

Creating another cluster for days that do not fall into any other clusters, we ended

up with ten disruption profile classes.
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A.2 ML Training Input Generation

We generate the input for training the classifiers for each micro-solution selected for

classifier training using the optimization solutions to the disruption scenarios. Figure

A-2 describes how the training input with a full feature set is created for a network

with 2,870 flights. Each row in the training input corresponds to a disruption scenario.

The first 2,870 columns are the NP delays of the flights in the network representing

the disruption characteristics. The next two columns reflect whether or not the

corresponding F/O is used in the aircraft and crew recovery solutions respectively.

The former is part of the feature set because we assume that the aircraft recovery

problem has already been solved. The latter is the output or label that we are trying

to predict using the information included in the feature set.

The process is slightly different when the local neighborhood feature sets are used

instead of the full feature sets. As described in Section 2.3.4, with local feature sets,

we only consider the NP delays of the flights in the neighborhood of the F/O. NP

delay information for flights outside the neighborhood is discarded. Therefore, the

set of columns corresponding to the disruption characteristics contains different sets

of flights for different F/Os. The last two columns are included in all training inputs.

The resulting dataset is provided as input to classifier training. In the ML training

step, the training input is divided into training, validation, and test subsets, with a

2/1/1 ratio, consistent with the standard training approach used in ML practice and

literature (Mitchell, 1997). Each subset has the same distribution of disruptions from

10 distinct disruption profile clusters. These sets are parts of the input used in clas-

sifier training and, hence, are different from the sets used in the computational study

for calibration and testing. The InterpretableAI package (InterpretableAI, 2020) is

used for the classifier training adopting a single-fold validation approach. It internally

tunes two hyper-parameters while training the classifiers: complexity parameter (cp)

which has a continuous range from 0 to 1, and tree depth, which has a discrete range

from 1 to the maximum tree depth parameter we set during the training. The values

used were 5 and 10 to allow training classifiers with different structures.
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Figure A-2: Input generation and classification model training
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A.3 Micro-solution Prediction

The binary decision variables of the underlying model represent the assignment of a

crew duty to a specific crew member. Naturally, these variables can be deemed as

micro-solutions since they correspond to a smaller portion of the solution, and the set

of variables selected (i.e., those with values equal to 1 in the solution) form the entire

solution. Therefore, classifiers can be trained to predict whether a specific assignment

would be in the solution to a given disruption.

There are alternative candidates to use as micro-solutions, like crew duties and

F/Os. The latter is the smallest micro-solution type suitable for the provided math-

ematical formulation, in terms of the number of flights represented by the micro-

solution types. An F/O has only two flights by definition, while crew duty and

assignment micro-solutions may correspond to several flights (up to five flights in

our computational experiments) assigned consecutively. Classifiers can be trained to

predict whether a specific F/O will be in the solution of a given disruption. If such

an F/O is fixed, meaning that the corresponding constraints are added to the model

in advance, the optimizer decides the crew duty selection and assignment to crew

members.

The number of possible crew duties and the number of possible assignments are

much higher than the number of possible F/Os, making F/Os the better micro-

solution choice for practical purposes since fewer classifiers would have to be trained.

Additionally, it provides more flexibility for the model. This is so because there may

be several different crew duties and assignments corresponding to a given F/O. The

model can choose those that minimize the objective function.

The network used in this analysis has 1,403 flights. It is different from the net-

work used in the computational study. This is to prevent the developed solution

methods from being specifically tailored to a single network. Table A.1 includes av-

erage database (DB) frequency and precision for the 710 assignment classifiers and

the 350 F/O classifiers trained using a training input of 2,000 scenarios. The results

show that the F/O classifiers also provide a greater average precision improvement

183



over database frequency statistics than the assignment classifiers.

Micro-solution Avg. DB frequency Avg. precision Improvement over DB frequency

Assignment 81.0% 84.9% 3.9%

Follow-on 82.6% 87.8% 5.2%

Table A.1: Micro-solution classifier performance comparison

We also performed experiments to compare the use of different combinations of

assignment and F/O classifiers in the developed framework. Using only F/O classifiers

performed consistently better than using only assignment classifiers or both F/O and

assignment classifiers. When an assignment is suggested to be fixed based on classifier

predictions, the value of the corresponding decision variable, 𝑦𝑘𝑠 is fixed to 1. When

an F/O is suggested to be fixed based on classifier predictions, the model is enforced

to pick at least one assignment 𝑦𝑘𝑠 that contains the F/O. The analysis includes 100

disruption scenarios and each point on the figure represents a set of runs using a

𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value of 70%, 80%, 90%, or 95%. A summary of the performance

of these alternative approaches can be seen in Figure A-3. Being closer to the axes

implies better performance, since the goal is to find the best possible solution in the

shortest possible time. On the basis of these results, we selected F/Os as the micro-

solution to predict and fix in advance for the remaining part of the experiments.

A.4 Multiple Classifiers

As argued in Section 2.3.4, developed solution methods benefit from training multi-

ple classifiers for the same F/O micro-solution. For an F/O representing two flights,

𝑖 and 𝑗, being assigned consecutively in any crew duty string, other upstream and

downstream flights might help explain why 𝑖 - 𝑗 is a good (or bad) micro-solution

for the given disruption. For example, if all upstream flights that can connect to 𝑖

are expected to be significantly delayed, connecting 𝑖 and 𝑗 would cause the delay

to propagate to 𝑗 and other downstream flights. Further delays may be avoidable if
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Figure A-3: Micro-solution alternatives and solution approach performance

𝑖 and 𝑗 are not connected. Similarly, if some of the upstream flights 𝑗 can connect

to are expected to not have any non-propagated delays (or expected to have nega-

tive non-propagated delays), connecting 𝑖 and 𝑗 would be a good choice regardless

of the expectation of delays for the upstream flights. One of the classifiers can fo-

cus on the upstream flight legs, while the other can focus on the downstream flight

legs. An upstream-focused classifier would use the NP delay information for earlier

flights, which can connect to 𝑖, while the downstream-focused classifier would use the

corresponding information for the later flights to which flight 𝑗 can be connected.

The procedure followed to fix a micro-solution in the case of multiple classifiers

is summarized in Figure A-4. Let us assume that we trained N classifiers for each

micro-solution that are different from each other in terms of the classification method

or maximum tree depth parameter used during training. Before initiating the op-

timization run to find a solution for the given disruption, the 𝑃𝐶 values for each

micro-solution are calculated using the corresponding classifiers. If any of the 𝑃𝐶

values is greater than or equal to the threshold value selected for the run, the micro-
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Figure A-4: The procedure to fix a micro-solution.

solution is fixed in advance, meaning that the corresponding constraints are added

to the model. Otherwise, it is kept in the solution space, so the optimizer can decide

whether to include it in the final solution. The resulting problem with the reduced

solution space is sent to the optimizer after the entire subset of micro-solution alter-

natives with trained classifiers is evaluated.

If we continue with the previous example, in the case that we have two classifiers

for an F/O, one of which focuses on upstream flight legs while the other focuses on

downstream flight legs, we should consider the predictions from both classifiers to

discover the latent factors governing the use of the micro-solution so that we can add

the corresponding constraints to the model. In essence, we consider the maximum of

the 𝑃𝐶 values across all classifiers for a given micro-solution to maximize the extent

of solution space reduction.

A.5 Pre-processing Details

Several pre-processing steps need to be conducted before the actual experimentation.

The first step is to populate the feasible crew duty strings that satisfy the crew legality

rules. The set of parameters that we used in this process includes the maximum crew

duty duration, the minimum connection time between two flight legs in a crew duty,

and the maximum connection time between two flight legs in a crew duty. Since the

186



model allows delays to propagate, it can assign two consecutive flights to the same

crew even if they do not have sufficient connection time between them and hence such

duties are also generated.

In this study, the minimum connection time used for the delay propagation calcu-

lation is 30 minutes, which is also a generally applied setting in practice for narrow-

body aircraft. This duration tends to be longer for wide-body aircraft, but the vast

majority of domestic US flights are operated by narrow-body aircraft; hence, the se-

lection of 30 minutes as a single value is justified. It is important to note that when

there is an aircraft change in a crew duty, the minimum connection time requirement

increases to accommodate the additional time needed for the crew to travel to the

second aircraft, which was set to 15 minutes in this study.

To ensure that each flight has a sufficient number of alternative crew duty strings

to cover it, we followed an adaptive maximum connection time algorithm when gen-

erating the crew duty strings. The string generation procedure determines the maxi-

mum connection time for each flight, 𝑚𝑎𝑥_𝑐𝑛𝑥_𝑡𝑖𝑚𝑒(𝑖), to ensure a predetermined

number of connection alternatives, target_num_cnxs. The 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑎𝑥_𝑐𝑛𝑥_𝑡𝑖𝑚𝑒

is the highest connection time that is set for any flight. The general flow of the

algorithm is given in Algorithm 5.

The third step is to determine the set of assignments for each crew. Several

conditions must be met to assign a duty to a specific crew member during the day

of operation. The feasibility of a crew duty assignment is determined by the location

of the crew at the beginning and end of the day, the earliest possible start time and

the latest possible end time for an assigned duty, which are set by the crew duties on

the previous and the next day. Figure A-5 is a Gantt chart view that demonstrates

a case with a single crew duty and three crew members with the same day start

and end locations. The gray bars represent the time duration for which the crew

members cannot be assigned to any duty due to the duties of the previous and the

next day and the time required to rest between two consecutive duties. It is easy

to see that the crew duty can only be assigned to crew members 1 and 2 but not

to 3 since the scheduled duty end time violates that crew’s latest duty end time.
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Algorithm 5 Adaptive Maximum Connection Time
1: For each flight 𝑖

2: Initialize:

3: 𝑚𝑎𝑥_𝑐𝑛𝑥_𝑡𝑖𝑚𝑒(𝑖)← 30

4: 𝑛𝑢𝑚_𝑐𝑛𝑥(𝑖)← 0

5: while 𝑛𝑢𝑚_𝑐𝑛𝑥(𝑖) < 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑢𝑚_𝑐𝑛𝑥𝑠 and

6: 𝑚𝑎𝑥_𝑐𝑛𝑥_𝑡𝑖𝑚𝑒(𝑖) ≤ 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑎𝑥_𝑐𝑛𝑥_𝑡𝑖𝑚𝑒 do

7: for flight 𝑗 ∈ 𝐼 do

8: if (𝑖, 𝑗) or (𝑗, 𝑖) is a feasible connection then

9: 𝑛𝑢𝑚_𝑐𝑛𝑥(𝑖)← 𝑛𝑢𝑚_𝑐𝑛𝑥(𝑖) + 1

10: end if

11: end for

12: 𝑚𝑎𝑥_𝑐𝑛𝑥_𝑡𝑖𝑚𝑒(𝑖)← 𝑚𝑎𝑥_𝑐𝑛𝑥_𝑡𝑖𝑚𝑒(𝑖) + 15

13: end while

14: return 𝑚𝑎𝑥_𝑐𝑛𝑥_𝑡𝑖𝑚𝑒(𝑖)

In the computational study, we generate the set of feasible crew duty assignments,

which correspond to the decision variables 𝑦𝑘𝑠 in the model, using the monthly crew

schedules provided to us by the airline for this research.
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Figure A-5: Assignment generation in pre-processing
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Figure A-6: Classifier performance comparison between local and full feature sets

A.6 Feature Set and Training Input Size Selection

In Section 2.3.4, we proposed a way to define the disruptions for each F/O micro-

solution to reduce the amount of information needed for classifier training and accel-

erate the training process. It relies on focusing on the local neighborhoods of each

F/O and using the corresponding disruption information.

Using these local neighborhood feature sets in classifier training can decrease clas-

sifier precision performances, because some of the delay information from flights not

in the local neighborhood can also potentially affect the selection of an F/O. However,

our experiments showed that this loss in precision performance is not significant. In

most cases, local feature sets seem to cover most of the vital information.

This analysis was performed for a network with 1,403 flights to analyze the effects

of different feature set and training input sizes on the overall classifier precision. This

network is different from the one used in the computational study, which helps us to

build methods suitable for different networks rather than tailoring an algorithm for
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a given network. Figure A-6 compares the average precision of 327 classifiers, with

maximum tree lengths of 3, 6, and 9, trained for 109 F/Os using local feature sets

and full feature sets with different input sizes. The numbers on the x-axis correspond

to the total number of scenarios used in classifier training (excluding the test set),

which is divided into training and validation sets in a 2 to 1 ratio. To ensure a fair

comparison, the number of test scenarios was set to 500 for all cases. The results show

that the loss in average precision performance is at most 0.5% when the local feature

set is used instead of the full feature set. Furthermore, classifier training with the

local feature set is more than five times faster, making it the more practical feature

set.

Increasing the input size has a positive impact on the average precision. But the

marginal improvement seems to be decreasing. The results of the analysis show that

increasing the training input size has marginal impact on the precision performance

especially when local feature sets are used. Motivated by this observation, we decided

to use the local feature set approach and generated 500 scenarios for the solutions

database.
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A.7 Optimality Gap Target for Solutions Database

As discussed in Section 2.3.3, the value selected for the optimality gap target for

generating the solutions database can have a significant impact on the computational

requirements for the offline phase. During the algorithm development phase, we

performed an analysis to understand the effects of different optimality gap targets

on the effectiveness of the trained set of classifiers. Table A.2 includes the results of

a comparison of scenario run times and classifier precision statistics between setting

the optimality gap to 0.1%, 10%, 20% and 30% for a network with 1,403 flights.

The feature set used during classifier training is the full feature set for the 0.1%

database, and the local neighborhood feature set for the other databases. The full

feature set includes NP delay information for all flights in the network, while the local

neighborhood feature set only includes NP delay information for flights in the local

neighborhood, as described in Section 2.3.4. The optimality gap target was set to

20% in the computational study, because it provides a ten-fold solution acceleration

compared to the 0.1% setting and generates 311 high-precision classifiers (≥ 70%)

compared to 353 for the 0.1% solutions database, corresponding to only ∼ 15.5%

fewer high precision classifiers.

Optimality Gap Target 0.1% 10% 20% 30%

Feature Set Full Local Local Local

Run time (minutes) 14.6 2.85 1.41 1.16

number of F/Os with precision ≥ 50% (out of ∼ 800) 502 463 448 433

number of F/Os with precision ≥ 70% (out of ∼ 800) 353 319 311 308

Overlap with ≥ 70% precision classifiers in database
with 0.1% optimality gap solutions

- 85.21% 84.46% 81.70%

Table A.2: Classifier performance comparison

Motivated by the observations above, we decided to use the optimality gap target

to 20%, for the solution database for the network with 2,870 flights used in the

computational study.
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Figure A-7: Prediction confidence 𝛼 parameter calibration: Recovery cost differences
w.r.t. baseline solutions achieved under different solution time limits

A.8 Prediction Confidence Calculation

As described in Section 2.3.4, prediction confidence is calculated for each F/O for a

given disruption during the evaluation process before an optimization run. The value

𝛼 in the given formula was selected from a set of alternatives (0.1, 0.5, 1, 2, 3) based

on the resulting solution quality performances. The results for the network with 2,870

flights used in the computational study are presented in Figure A-7. They show that

the 𝛼 value 1 outperforms other candidates for the set of disruption scenarios used for

calibration. Based on these results, the value of the parameter 𝛼 was set to 1 during

the computational study presented in Section 2.4.
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Solution time limit (in minutes)

𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1 2 3 4 5

0% N/A N/A N/A ≥ 6% ≥ 6%

0.5% N/A N/A 5.39% 4.46% 3.32%

1.5% 12.54% 8.34% 6.92% 6.13% 5.52%

2.5% ≥ 15% ≥ 10% ≥ 10% ≥ 10% ≥ 10%

Table A.3: Low-frequency threshold calibration: Recovery cost differences w.r.t. base-
line solutions achieved under different solution time limits

A.9 Low-frequency Assignment Threshold

Due to the size of the network used in the computational study, even after fixing some

of the F/Os, the solution space can still remain large to find high quality solutions

in solution time limits of up to 2 minutes. For such cases, an additional solution

space reduction measure that removed low-frequency assignments was implemented

as described in Section 2.3.5. It filters the assignment decision variables based on

the value of 𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 calibrated for different solution time limits. The value

of 𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was selected from a set of alternatives (0%, 0.5%, 1.5%, 2.5%)

based on the resulting solution quality performances. Results on the calibration

set are summarized in Table A.3. The best solution quality levels achieved for each

solution time limit are presented in bold font. We determined that for 1 and 2 minute

solution time limits 𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 should be set to 1.5%. Below that threshold, the

method is unable to generate feasible solutions for at least half of the scenarios while

setting it to 2.5% decreases the solution quality. For longer solution time limits

𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value 0.5% outperforms other candidates. Lower and higher values

decrease the solution quality. Therefore, the value of the parameter 𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

is set to 1.5% for 1 and 2 minute solution time limits, and to 0.5% for longer solution

time limits in the computational study presented in Section 2.4.
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Solution time limit (in minutes)

𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1 2 3 4 5

30% 13.89% 9.02% 6.25% 5.41% 4.33%

35% 12.17% 8.55% 5.62% 4.82% 3.83%

40% 12.54% 8.34% 5.39% 4.46% 3.46%

45% 12.96% 9.48% 5.82% 4.67% 3.32%

50% 13.24% 10.31% 6.01% 4.83% 3.42%

Table A.4: PC threshold calibration: Recovery cost differences w.r.t. baseline solu-
tions achieved under different solution time limits

A.10 Prediction Confidence Threshold

The primary solution time reduction technique used by our solution approach involves

evaluating classifier predictions for a subset F/Os and adding the corresponding con-

straints to the model. Evaluation requires a 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value to be set for each

solution time limit. These values are selected from a set of alternatives (30%, 35%,

40%, 45%, 50%) using a calibration set. Table A.4 includes the achieved solution

quality levels with each of these alternatives under different solution time limits on

the calibration set. Results show that the value 35% and 45% performs best for the

1 minute and 5 minute solution time limits respectively. For the remaining solution

time limits 40% is the best choice. It should be noted that these results are based

on the 𝐿𝐹_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 set for the solution time limit as described in Appendix A.9

The value of the parameter 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set to the best threshold values given

in Table A.4 for each solution time limit during the computational study presented

in Section 2.4. The best solution quality levels achieved for all solution time limits

are presented in bold font.
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Appendix B

Computational study details for

Chapter 3: Integrated Aircraft, Crew,

and Passenger Recovery

B.1 Limiting the Number of Flight Copies

The solution method presented in Chapter 3 limits the number of copies for individual

flights using classifier predictions. We evaluated two alternative ways of reducing the

number of flight copies: predicting the maximum allowed delay limits for individual

flights and predicting cancellation decisions. Solving recovery problems in limited

timeframes requires significant acceleration in the solution process. Therefore, we

analyzed these alternatives with respect to their solution acceleration potential. To

achieve this, we reduce the solution spaces based on the optimal solutions, instead

of ML predictions, which ensures the solution to remain optimal and helps us focus

exclusively on the runtime acceleration. This analysis was carried out to pick between

predicting maximum allowed delays and predicting cancellations. The network used

in this analysis is different from the one used in the computational study, to prevent

the developed methods from being tailored to a specific network.

Figure B-1 and B-2 include the results of the comparison for a network with
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Figure B-1: Solution acceleration performance when predicting delay-related decisions

∼1,400 flights. The y-axes in both figures correspond to the extent of acceleration

in the solution time. Lower values are better. In this analysis, we focus only on the

solution times. To evaluate the potential acceleration, we consider the case where the

predictions are 100% accurate. Classifiers predict the probability that an outcome

is in the optimal/near-optimal solution. The optimal/near-optimal solutions provide

∼100% accuracy. Therefore, we used 0.1% optimality gap solutions as predictions in

this analysis. Consequently, in this analysis, we have a different delay limit for each

flight, as the optimal solutions have different delays for different flights.

For the analysis of the maximum allowed delay limit, we tested various values of

the maximum allowed delay limit calculated by adding buffers to flight delays from the

0.1% optimality gap solutions that are generated by solving the IRM without reducing

the solution space and as long as necessary to achieve the target optimality gap. The

x-axis in Figure B-1 corresponds to the added buffer durations. For example, if a

flight is delayed by 1 hour in the 0.1% optimality gap solution, we set the limit to

1, 2, 3, 4, and 5 hours in different runs. All flight delay limits are set in a similar
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Figure B-2: Solution acceleration performance of predicting cancellation-related de-
cisions

manner. In this analysis, the network-wide limit for the maximum allowed delay was

5 hours (20 time periods). Adding 5 hours of buffer to each delay in the optimal

solution is equivalent to solving the original model, the baseline, with only network-

wide limits. Therefore, the solution times are also equal (the ratio is 100%). The

results show that limiting flight delays can accelerate the solution process by up to

10 times, which happens when all flight delay limits are set based on the optimal

solution without any additional buffer.

For cancellation-related decisions, we randomly fixed a specific number of decisions

from the 0.1% optimality gap solutions corresponding to the ratio given on the x-axis

in Figure B-2. It should be noted that both cancellations and non-cancellations are

considered for this analysis. For example, if a flight is not canceled in the 0.1%

optimality gap solution, fixing this decision means that cancellation is not allowed for

that flight, and if a flight is canceled in the 0.1% optimality gap solution, fixing this

decision means that such flight must be canceled. The x-axis value 0% is equivalent to
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solving the original model. Therefore, the solution times are also equal (the ratio on

the y-axis is 100%). The results shows that even if 100% of the cancellation-related

decisions are fixed, the acceleration of the solution process is less than two-fold.

Based on this analysis, we adopted the approach that uses the maximum allowed

delay limit predictions for individual flights to limit the number of flight copies in-

cluded in the solution space.

B.2 Schedule Recovery with Aircraft Considerations

The sequential method described in Section 3.4.3 solves the model (B.1)-(B.9) —

a simplified version of the IRM — before post-processing. It minimizes the cost

associated with flight delays and cancellations without considering the impacts crew

schedules and passenger itineraries. The calculation of cancellation and delay costs

takes the number of passengers on each flight into account. It also eliminates some

of the constraints from the IRM. The retained constraints, (B.2)-(B.8), are the same.

The additional notation beyond what is described in Section 3.2.4 and the complete

model are presented below.

Notation

𝑍𝐶𝑖: cost of canceling flight 𝑖 ∈ 𝐼

𝐷𝐶𝑖: cost of delay in flight 𝑖 ∈ 𝐼, per (15-minute) time period

Formulation

min
∑︁
𝑖∈𝐼

(︂
𝑍𝐶𝑖 · 𝑧𝑖 +

∑︁
𝑎∈𝐴

(︂
𝐴𝐶𝑎

𝑖 · 𝑑
𝑎,𝑡𝑑𝑙𝑖
𝑖 +

∑︁
𝑡𝑟𝑝𝑖 <𝑡≤𝑡𝑟𝑙𝑖

𝐷𝐶𝑖 · (𝑡− 𝑡𝑟𝑝𝑖 ) · (𝑟
𝑎,𝑡
𝑖 − 𝑟𝑎,𝑡−1

𝑖 )

)︂)︂
(B.1)
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s.t. 𝑑𝑎,𝑡𝑖 − 𝑑𝑎,𝑡−1
𝑖 ≥ 0 ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴, ∀𝑡 ∈ {𝑡𝑑𝑝𝑖 , .., 𝑡𝑑𝑙𝑖} (B.2)

𝑟𝑎,𝑡𝑖 − 𝑟𝑎,𝑡−1
𝑖 ≥ 0 ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴,∀𝑡 ∈ {𝑡𝑟𝑝𝑖 , .., 𝑡𝑟𝑙𝑖} (B.3)

𝑟𝑎,𝑡+𝑓𝑡𝑖
𝑖 − 𝑑𝑎,𝑡𝑖 = 0 ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴, ∀𝑡 ∈ {𝑡𝑑𝑝𝑖 , .., 𝑡𝑑𝑙𝑖} (B.4)

𝑧𝑖 +
∑︁
𝑎∈𝐴

𝑑
𝑎,𝑡𝑑𝑙𝑖
𝑖 = 1 ∀𝑖 ∈ 𝐼 (B.5)

∑︁
𝑎∈𝐴

(︂∑︁
𝑖∈𝐼𝐷𝑝

(𝑑𝑎,𝑡𝑖 − 𝑑𝑎,𝑡−1
𝑖 ) +𝑁𝐸𝑎,𝑡

𝑝

)︂
≤ 𝐶𝐷𝑡

𝑝 ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (B.6)

∑︁
𝑎∈𝐴

(︂∑︁
𝑖∈𝐼𝑅𝑝

(𝑟𝑎,𝑡𝑖 − 𝑟𝑎,𝑡−1
𝑖 ) +𝑁𝐵𝑎,𝑡

𝑝

)︂
≤ 𝐶𝑅𝑡

𝑝 ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (B.7)

∑︁
1≤𝑡≤𝑡′

(𝑁𝐵𝑎,𝑡
𝑝 −𝑁𝐸𝑎,𝑡

𝑝 ) +
∑︁
𝑖∈𝐼𝑅𝑝

∑︁
𝑆𝑅𝑝,𝑎+1≤𝑡<𝑡′

(𝑟
𝑎,𝑡−𝑆𝑅𝑝,𝑎

𝑖 − 𝑟
𝑎,𝑡−𝑆𝑅𝑝,𝑎−1
𝑖 )

−
∑︁
𝑖∈𝐼𝐷𝑝

∑︁
1≤𝑡<𝑡′

(𝑑𝑎,𝑡𝑖 − 𝑑𝑎,𝑡−1
𝑖 ) ≥ 0 ∀𝑎 ∈ 𝐴,∀𝑝 ∈ 𝑃, ∀𝑡′ ∈ 𝑇 ∪ {|𝑇 |+ 1} (B.8)

𝑧𝑖, 𝑟
𝑎,𝑡
𝑖 , 𝑑𝑎,𝑡𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼,∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇 (B.9)

B.3 DB-Stats Method

The DB-Stats method relies on database statistics to determine flight-specific delay

limits. Each limit is calculated by adding up the average delay of the flight in the

solutions database plus four times the standard deviation of the delay. More than

99.5% of the flight delays in the solutions database satisfy these limits.
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B.4 Network-Wide Maximum Allowed Delay Limit

The network-wide limit on the maximum allowed delay is a crucial hyperparameter

that governs the tractability of the problem. It is the main parameter determining the

number of copies to include for each flight. Even in the case of limiting the number of

copies based on ML classifier predictions, as discussed above, network-wide maximum

allowed delay limit affects many flights that do not have high-probability predictions.

Setting the maximum allowed network-wide delay limit to a low value, e.g., 2

hours, would accelerate the solution process but result in a low-quality solution as

many suitable flight copy alternatives would be omitted. On the other hand, setting it

to a very high value, e.g., 12 hours, would help find a better solution, but the runtime

could increase significantly, due to the huge number of flight copies, rendering the

model intractable for practical purposes.

We analyzed the effects of different values of this parameter on the solution qual-

ity and time. Figure B-3 compares the values from 5 to 8 hours for the 3,706-flight

network used in the computational study. The left axis is the average recovery cost

reflecting the solution quality, and the right axis is the average solution time for the

tested disruption scenarios. In this analysis, the runtime is limited to 1 hour, and

the solution method is the default method presented in Section 3.4.3, which solves

the IRM without limiting the number of flight copies other than by the network-wide

maximum allowed delay limit. When the network-wide limit is set to 8 hours, the

problem becomes too large and results in high-cost solutions to many of the scenar-

ios. This explains the cost difference between the 7- and 8-hour settings. When we

compare the 6- and 7-hour settings, we see that the runtime is increased considerably

for the 7-hour setting as compared to the 6-hour setting without a significant cost

reduction. Based on these results, we set the network-wide limit for the maximum

allowed delay limit to 6 hours in our experiments.
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Figure B-3: Network-wide maximum allowed delay limit vs. solution time and quality.
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B.5 Delay Separator Limit

The delay separator limit used in the classifiers affects the precision performance of the

classifiers and the extent of the solution space reduction. For example, when we use 3

hours as the separator limit in the predictions, we can train high-precision classifiers

more easily (Section 3.4.2-Figure 3-11), since most flights have a delay of less than

3 hours. However, the solution acceleration can be limited, considering the fact that

only a small number of flight copies are removed from the solution space. On the

other hand, a significant acceleration is possible with very low values, like 15 minutes.

However, this would also remove many suitable flight copies from the solution space

and lead to low-quality solutions. Additionally, the precision performance of the

classifiers is lower (Section 3.4.2-Figure 3-11).

We conducted an analysis to determine the delay separator limit to use for the

network with 3,706 flights in the computational study. For each delay limit separa-

tor and prediction confidence threshold value, we calculated a delay separator limit

(DSL) score using the formula (B.10) below to estimate the acceleration potential

of the solution process without significantly affecting the quality of the solution. It

is a multiplication of three numbers as we are trying to measure the compound im-

pact. The first 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 reflects how confident we are in a prediction with an

individual 𝑃𝐶 value of at least 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 𝑁𝑈𝑀>𝑃𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 is the number of

predictions that have a 𝑃𝐶 value greater than the 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value. The last

number, (6 − 𝑑𝑒𝑙𝑎𝑦_𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟), calculates how many hours the allowed delay is re-

duced by for the corresponding flight. The unit of the 𝑑𝑒𝑙𝑎𝑦_𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟 value is also

hours. By multiplying all these numbers, we get an aggregated measure of the effec-

tiveness of each combination of delay limit separator value and prediction confidence

threshold value.

𝐷𝑆𝐿𝑠𝑐𝑜𝑟𝑒 = 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ·𝑁𝑈𝑀
≥𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 · (6− 𝑑𝑒𝑙𝑎𝑦_𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟) (B.10)

Figure B-4 shows the results of the analysis. Darker green shaded cells correspond
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Figure B-4: Delay limit separator prediction confidence scores

to higher scores, while yellow to red shaded cells correspond to lower scores. The area

depicted with thick borders contains the top 15 combinations with the highest score.

Based on this analysis, we decided to set the delay separator limit value to 45 minutes

for the classifiers.

B.6 Prediction Confidence Calculation

As described in Section 3.3.2, we limit the number of flight copies for each flight

using the classifier predictions. Before solving a disruption using a mixed-integer

optimization solver, the prediction confidence (PC) value is calculated for each flight.

The value 𝛼 in the formula was selected from a set of alternatives (0.1, 0.5, 1, 2, 3)

based on the resulting solution quality performances on a set of disruption scenarios

used for calibration. Figure B-5 includes the results of this analysis for the network

with 3,706 flights used in the computational study. Since the 𝛼 value 2 outperforms

other candidates, the value of the parameter 𝛼 was set to 2 during the computational

study presented in Section 3.4.
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Figure B-5: Prediction confidence 𝛼 parameter calibration: Recovery cost differences
w.r.t. baseline solutions achieved under different solution time limits
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Solution time limit (in minutes)

𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 3 5

80% 11.78% 11.76%

85% 9.87% 9.86%

90% 8.25% 7.78%

95% 5.66% 4.96%

99% N/A N/A

Table B.1: PC threshold calibration: Recovery cost differences w.r.t. baseline solu-
tions achieved under different solution time limits

B.7 Prediction Confidence Threshold

Our method relies on reducing the number of copies of each flight based on classifier

predictions for flight delay limits. These flight delay limit predictions are evaluated

against a 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value as described in Section 3.3.3. These values are selected

for each solution time limit from a set of alternatives (80%, 85%, 90%, 95%, 99%)

using a calibration set. Table B.1 shows the achieved solution quality levels with each

of these alternatives under different solution time limits. The best solution quality

levels achieved for each solution time limits are presented in bold font. The results

show that the value 95% performs best for both solution time limits. The value

of the parameter 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set 95% for each solution time limit during the

computational study presented in Section 3.4. The value "N/A" in the table shown

for the 𝑃𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value 99%, refers to the fact that, the solution was infeasible

in one fourth of scenarios. For the remaining three fourth of scenarios, the solution

quality was quite low (> 25% difference w.r.t. baseline).
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Appendix C

Computational study details for

Chapter 4: Rule-based Improvements

to Recovery Heuristics

C.1 Alternative Crew Recovery Rulesets

Tables C.1, C.2, C.3 and C.4 summarize the rulesets tested. C.1 corresponds to the

most complex ruleset with 4 distinct rules. C.2, C.3 and C.4 are subsets of C.1, which

includes the rules that are the most frequently observed in trained classifiers. The

rulesets C.2 and C.4 have only positive rules, which means that rules that suggest

avoiding an F/O in certain circumstances are not included. The rulesets C.1 and C.3

have both positive and negative rules. In our experiments, the simpler rulesets C.3

and C.4 were the best-performing rulesets in that order, implying that it is better to

consider only the most generalizable positive and negative rules for a cost-effective

candidate ranking.
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Rule id Quarter Description

1 Any Prefer an F/O, if it is in the A/C solution and slack < 30
minutes.

2 1 Prefer an F/O, if it is in the A/C solution and NP 2 < 60
minutes.

3 Any Avoid an F/O, if it is not in the A/C solution and NP 1 > 80
minutes.

4 3-4 Avoid an F/O, if it is not in the A/C solution and NP 2 >
100 minutes.

Table C.1: Ruleset-1 for crew recovery

Rule id Quarter Description

1 Any Prefer an F/O, if it is in the A/C solution and slack < 30
minutes.

2 1 Prefer an F/O, if it is in the A/C solution and NP 2 < 60
minutes.

Table C.2: Ruleset-2 for crew recovery

Rule id Quarter Description

1 Any Prefer an F/O, if it is in the A/C solution and slack < 30
minutes.

2 Any Avoid an F/O, if it is not in the A/C solution and NP 1 > 80
minutes.

Table C.3: Ruleset-3 for crew recovery

Rule id Quarter Description

1 Any Prefer an F/O, if it is in the A/C solution and slack < 30
minutes.

Table C.4: Ruleset-4 for crew recovery
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Figure C-1: Crew recovery F/O classifier example for the second quarter of the day

C.2 Crew Recovery Classifier Examples

Figure C-1 shows the connection classifier trained for the second quarter of the day.

There are two takeaways from this classifier. First, being in the corresponding A/C

recovery solution increases the probability of the F/O being in the crew recovery so-

lution. Second, large NP delay values for the flights in the F/O, lead to circumstances

where the F/O should be avoided.
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Figure C-2: Crew recovery F/O classifier example for the third quarter of the day

Figure C-2 shows the connection classifier trained for the third quarter of the day.

The main takeaway is that for cases where the F/O is included in the A/C solution,

the higher the NP delay of the flights in the F/O, the stronger the suggestion to avoid

the F/O in the crew solution.

212



Figure C-3: Crew recovery F/O classifier example for the fourth quarter of the day

Figure C-3 shows the connection classifier trained for the fourth quarter of the day.

The takeaway is that when the F/O is included in the A/C solution, shorter slack

times lead to a stronger suggestion to utilize the F/O in the crew recovery solution.
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Rule
id

Delay limit
(minutes)

Description

1 30 Limit the flight delay if the departure time < 90 and the
number of passengers > 40.

2 30 Limit the flight delay if the departure time < 76 and the
number of passengers > 67.

3 30 Limit the flight delay if the frequency < 8

4 45 Limit the flight delay if the departure time > 70 and the
number of passengers > 60.

5 45 Limit the flight delay if the departure time < 100 and the
number of passengers > 60.

6 45 Limit the flight delay if the frequency > 10, the departure
time < 70 and the number of passengers > 40.

7 60 Limit the flight delay if the departure time > 70 and the
number of passengers > 75.

8 60 Limit the flight delay if the departure time < 70 and the
number of passengers > 55.

9 60 Limit the flight delay if the frequency < 7 and the number
of passengers > 40.

Table C.5: Ruleset-1 for integrated recovery

C.3 Alternative Integrated Recovery Rulesets

Tables C.5, C.6, and C.7 summarize the rulesets tested. C.5 corresponds to the most

complex ruleset with nine distinct rules. C.6 and C.7 are subsets of C.5. They are

created by filtering out rules that are less frequently observed in trained classifiers. In

our experiments, the simplest ruleset C.7 performed better than others. With simpler

sets, it seems possible to perform a more accurate ranking of the candidates, because

the rules are more generalizable. With complex rulesets, some rules are only satisfied

by very few candidates, affecting the ranking estimations.
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Rule
id

Delay limit
(minutes)

Description

1 30 Limit the flight delay if the departure time < 90 and the
number of passengers > 40.

2 30 Limit the flight delay if the frequency < 8

3 45 Limit the flight delay if the departure time > 70 and the
number of passengers > 60.

4 45 Limit the flight delay if the frequency > 10, the departure
time < 70 and the number of passengers > 40.

5 60 Limit the flight delay if the departure time > 70 and the
number of passengers > 75.

6 60 Limit the flight delay if the departure time < 70 and the
number of passengers > 55.

Table C.6: Ruleset-2 for integrated recovery

Rule
id

Delay limit
(minutes)

Description

1 60 Limit the flight delay if the departure time > 70 and the
number of passengers > 75.

2 60 Limit the flight delay if the departure time < 70 and the
number of passengers > 55.

Table C.7: Ruleset-3 for integrated recovery
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Figure C-4: Integrated recovery maximum allowed delay limit classifier example

C.4 Integrated Recovery Classifier Examples

Figure C-4 shows a 1-hour delay separator limit classifier trained using two features:

departure time and number of passengers. Label 1 reflects that the delay of the

corresponding flight should be limited to 1 hour. The probabilities, reflecting the

confidence in the prediction, are given inside the nodes. The classifier structure

demonstrates a behavior that overlaps with the ruleset determined in Table 4.8. With

the increasing number of passengers, the classifier suggests limiting the flight delay to

1 hour, and the threshold for the number of passengers to determine the delay limit

depends on the departure time.
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