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ABSTRACT  

 

Human beings are experiencing man-made climate change due to the emission of greenhouse 

gases, among which methane is a highly potent one, with a 20-year global warming potential 80 

times higher than that of carbon dioxide. A systematic approach is needed to evaluate, monitor, 

and mitigate methane emissions such as those from the oil and gas (O&G) industry (22% of total 

anthropogenic emissions). In this thesis, I addressed three critical challenges to control such 

emissions, namely, (i) the uncertainty in a potential O&G methane emission pathway via the 

groundwater system, (ii) the large population of potential leaking infrastructural elements 

making routine inspection inefficient and expensive, and (iii) the intermittent emissions that 

cannot be captured via periodic surveys. To address (i), groundwater samples were collected 

from more than 300 sites in O&G-producing Northern Appalachia. Dissolved methane 

concentration was negatively correlated with the distance to O&G well in one of our study 

regions, but such correlation was confounded by topographic variation. Furthermore, dissolved 

sulfate concentration was negatively correlated with methane concentration and with distance to 

coal mine, and these correlations were robust even when considering topographic confounding. 

In conclusion, groundwater methane could be attributed to natural geological sources and 

sulfate-mediated biogeochemical processes, rather than O&G development. To investigate (ii), 

Machine Learning (ML) models were used to predict O&G well integrity issues related to 

methane leakage to guide prioritized sensor allocation. Different ML models (e.g., Random 

Forrest, XGBoost, and Logistic Regression) were compared on a dataset consisting of 1,250 

O&G wells, and a test F-1 score above 65% was achieved. Furthermore, the most important 

physical parameters for the prediction were identified, and the geospatial clustering of integrity 

issues was observed and analyzed. These findings could enable prioritized sensor allocation near 

O&G facilities with high emission risk and inform better design of future O&G wells. To study 

(iii), inexpensive continuous methane sensors are needed, but such sensors can suffer from signal 

interferences. Given such, an ML signal deconvolution strategy was proposed and an 

experimental apparatus, consisting of mass flow controllers, a gas chamber, and a data logging 

system, had been built to collect data for ML model training and testing. In addition, preliminary 

tests were conducted to study the influence of humidity and gas flow rate on the performance of 

the sensors. Lastly, the apparatus is being upgraded to integrate commercially available methane 
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sensors and temperature control system. Overall, the research of this thesis deepens our 

understanding of O&G methane emissions and enhances our capability to monitor and mitigate 

those contributions. 
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ABSTRACT 

 

Methane, a greenhouse gas absorbing 80 times more heat than carbon dioxide over 20 years, has 

short-term climate impact. Therefore, reducing methane would be one of the fastest ways to slow 

down climate change over the next decades. The oil and gas (O&G) industry is one of the biggest 

sources of methane emissions and reducing such emissions requires a systematic effort 

combining evaluation, prediction, and monitoring. This chapter outlines the climate and public 

health impact of methane emissions and then defines several major research challenges in 

addressing O&G methane emissions. These include: (1) knowledge gaps in emission pathways 

via the groundwater system, (2) the intractably large number of potential emitters to monitor, and 

(3) temporal intermittency of emissions. For (1), the potential climate and safety implications of 

groundwater methane emission are discussed. In Chapter 2&3, I leveraged field sample 

analyses to evaluate the influences of O&G extraction on groundwater methane. For (2) and (3), 

I proposed a proactive monitoring strategy to first predict high-risk emitters and then prioritize 

them for monitoring (Chapter 4). In addition, I proposed a machine learning-enabled signal 

deconvolution approach to improve the accuracy and selectivity of prototype chemiresistive 

sensors for continuous monitoring (Chapter 5). Finally, an overview of each chapter is provided 

together with a brief summary of the main conclusions and implications of the thesis. 

 

Climate and public health impact of oil and gas methane emission 

 

Human beings are experiencing man-made global warming due to the emission of greenhouse 

gases (GHGs), among which carbon dioxide is the biggest contributor.1 Some suggested that the 
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window to restrain climate change requires full elimination of GHG emission by 2030 to avoid 

climate disasters.2 Besides carbon dioxide, methane is a much more potent GHG, whose 20-year 

and 100-year global warming potential is around 80 times and 30 times higher than that of 

carbon dioxide.3 Moreover, methane emissions by human activities (about half of total global 

methane emissions4,5) contributed to about 0.5 °C of global temperature rise comparing between 

2010 -2019 and 1850 -1900, where the total temperature rise due to human activities was about 

1 °C (considering the cooling effect of aerosols).1 It has been estimated that up to 45% of man-

made methane emissions can potentially be eliminated by 2030, which would avoid 0.3 °C 

global warming from 2040 to 2070 and serve as a cost-effective solution to meet the 1.5 °C goal 

of the Paris Agreement together with the reduction of other climate forcer emissions.4 According 

to the Global Methane Pledge signed by 122 countries, methane emission reduction should 

become a prioritized task to slow climate change.6,7 

 

In addition to its negative climate impact, methane poses a public health threat as a precursor of 

tropospheric ozone. Tropospheric ozone can cause damage to the human respiration system, 

causing issues such as coughing, chest pain, inflammation, and asthma.8 The ozone production 

due to anthropogenic methane emission can cause approximately half a million premature deaths 

globally per year.4 In addition, the produced ozone can suppress the growth of crops such as 

wheat, rice, maize, and soybeans thus threatening the global food security.4 As such, reducing 

methane emissions could have great benefits in terms of public health and food security: a 45% 

reduction in global anthropogenic methane emission by 2030 would transfer to 255,000 avoided 

ozone-induced death, 775,000 avoided asthma related emergency room visits, 73 billion hours 

avoided work hour lost, and 26 Mt avoided crop lost per year.4 
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Around 128 teragrams (Tg; 1 Tg = 1012 g) methane was emitted from fossil fuel production and 

utilization (sum of Oil & Gas (O&G), Coal Mining, Industry, and Transport; bottom-up 

estimation; Fig. 1), which accounts for 35% of the 366 Tg / year total anthropogenic methane 

emissions, and O&G emitted around 80 Tg methane per year (over 60% of fossil fuel emissions) 

5 In the US, O&G accounts for 67% of the total energy production and 68% of total energy 

consumption.9,10 Since the early 2000s, unconventional oil and gas (UOG) production has been 

growing rapidly. Horizontal drilling with hydraulic fracturing (HDHF) have enabled 79% of dry 

natural gas production and 65% of crude oil production in the US.11,12 Furthermore, the 

intermittency of solar and wind supplies along with other considerations currently necessitate the 

use of fossil energy and this remains the case in the near term - the critical time horizon for 

climate action. Thus, failure to reduce methane emissions and impacts associated with O&G 

production has a direct translation to delayed climate benefits. Fortunately, methane, the main 

component of natural gas, is a valuable commodity, so cutting methane leakage can recover 

revenue for O&G firms. Thus, unlike cutting CO2 emissions, which typically requires time- and 

resource-consuming transition to clean energy or restricting economic growth, reducing O&G 

methane emissions are considered “lower hanging fruit” for climate mitigation. It was estimated 

that about 25% to 50% of O&G methane emissions can be reduced at a net profit.4 In addition, 

the GHG benefit per unit carbon captured for methane is larger and the atmosphere responds 

more quickly than that for CO2 controls. That is, cutting methane emission is the faster way to 

slow down the progress of global warming now and in the near future. Finally, because many 

methane leaks are poorly accounted, there is uncertainty surrounding the magnitude of GHG 

benefit that should come with a transition to natural gas.  
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Figure 1. Global annual methane emissions from different sources averaged over 2008 to 2017 

(bottom-up estimation).5 The annual emission rate from each source is represented as percentage of the 

total emission rate, with their absolute value (Tg CH4 year-1) shown in the bracket.  

 

Research challenges 

 

Overview of challenges 
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To successfully reduce methane emissions from O&G infrastructures, a systematic approach is 

needed with three key components: (i) evaluating emission, (ii) monitoring emission, and (iii) 

mitigating emission. First, various pathways of methane emissions should be thoroughly 

evaluated as prerequisites for effective monitoring and mitigation. In the O&G industry, 

components that can leak methane include above-ground ones such as pipelines, compression 

stations, storage tanks, and well heads, and underground ones such as well casing and 

cementation. While the above-ground components directly release methane into the atmosphere, 

underground ones first release methane into environmental media such as groundwater and soil, 

and then this methane can transport across media and eventually reach the atmosphere. 

Estimating the scale, as well as spatial and temporal distribution of emission from both above- 

and underground pathways would serve as necessary preparation for the subsequent emission 

mitigation efforts. (Also note that at the start of this thesis, home owners living near O&G 

extraction were concerned about methane in their water exceeding warning level (i.e., 10 mg/L) 

13, which I was able to explicitly evaluate).  Second, methane emission monitoring aims at 

identifying the exact location and timing of emission events, and guiding the following fixation 

and mitigation measures. Methane plumes in the air are invisible to human eyes but can be 

detected by instruments such as infrared camera, open path laser sensors, and chemiresistive 

sensors based on catalytic oxidation of methane. In order to monitor methane migration in the 

underground environment, groundwater or soil samples can be collected so that the dissolved or 

adsorbed methane in these samples can be quantified by gas chromatography (GC). Third, after 

methane emission sources and their emission pathways are identified, mitigation measures 

should be taken to stop the emissions or reduce their rate. Such measures include fixing or 

replacing the leaky component (e.g., broken natural gas pipelines and faulty valves), improving 
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operational procedures (e.g., avoiding gas flaring), and methane removal or conversion (e.g., 

catalytic oxidation of methane to carbon dioxide). The last measure is suitable to mitigate 

emissions that are difficult to avoid and cannot be addressed by the first two measures, such as 

diluted methane below limit of flammability (i.e., 4%) released by O&G well pads, coal mines, 

and enteric fermentation of ruminant animals.  

 

Although great advancements have been made in research and in practice to reduce methane 

emissions from O&G infrastructures in the past decade, there are still some key challenges in the 

first two steps of the evaluation-monitoring-mitigation chain, which have delayed the elimination 

(or minimization) of O&G methane emissions (Table 1). For the “evaluation” step, the 

understudied emission pathway via groundwater system may introduce uncertainty to our 

estimation of the total O&G emission rate. Numerous studies have focused on the above-ground 

methane emission, but few have characterized the potential methane transport from O&G wells 

to groundwater aquifer, and then to surface water body and eventually the atmosphere. If such a 

pathway was found to be substantive, then total O&G methane emissions would be 

underestimated. For the “monitoring” step, the large number of O&G facilities that can become 

potential methane emitters result in high cost of leak monitoring programs. Moreover, the 

temporal intermittency of methane leaks can cause underestimation by traditional leak detection 

programs, such as those conducted by hand-held sensors. Taken together, these challenges in 

understanding and monitoring methane emissions will ultimately affect our ability and efficiency 

in mitigating emissions. In the following sections, I will discuss the details of each challenge, 

and outline the key research questions that were addressed in this thesis.    
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Table 1. Research challenges addressed in this thesis 

Topic Key Challenges Solutions Corresponding 

Chapter 

Evaluate 

emission 

Large uncertainty in the 

methane emission pathway via 

groundwater 

Analysis of groundwater 

methane field samples  

2 & 3 

Monitor 

emission 

Intractably large number of 

potential methane leaking 

sources  

Prediction of methane emission 

risk to guide prioritized 

monitoring 

4 

Monitor 

emission 

Temporal intermittency of 

methane emissions 

Continuous methane sensors with 

signal deconvolution (apparatus 

and preliminary results) 

5 

 

 

Knowledge gap in methane emission via groundwater pathway 

 

1. Uncertainties in groundwater methane emission pathway 

 

HDHF is an unconventional extraction technique that injects high pressure fluid to crack tight 

shales and release the natural gas and/or oil trapped in their pores. Such industrial processes raise 

concern that it may cause methane contamination in groundwater aquifer, and that wellbores 

might provide methane migration pathways (Fig. 2).14–17 There has not been a consensus in 

literature regarding whether the HDHF process causes methane migration into groundwater 

aquifers. If such migration to groundwater is possible, and if this methane is ultimately released 
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into the air, there would be risk of accelerated climate change. Methane, after entering 

groundwater aquifer, can eventually reach the atmosphere following the natural hydrological 

circle: groundwater dissolved methane can be brought into surface water bodies such as lakes 

and streams by groundwater discharge (Fig. 2),16,18 and then enter the atmosphere at the air-water 

interface.19–22 In addition, groundwater extracted from aquifers for human use also releases 

dissolved methane to the air.20,21,23 The first step of such potential groundwater methane 

emissions pathways would be the O&G induced intrusion of methane into the groundwater 

aquifers, which would alter the concentration and isotopic signatures of the groundwater-

dissolved methane. Therefore, assessing how these properties of dissolved methane were or are 

influenced by O&G development is an important first step to evaluate the entire groundwater 

methane emission pathway.  

 

Figure 2. Potential methane migration pathways into groundwater aquifer and atmosphere under 

the influence of HDHF. UOG-induced methane migration pathways to groundwater aquifer were 
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uncertain (red arrows). Pathways from groundwater to surface water and subsequently to the atmosphere 

are confirmed pathways (blue arrows). Aboveground methane emissions at the UOG wells and water 

wells (i.e., by groundwater extraction and degassing) are also well-known source terms (blue arrows).  

 

Whether or not UOG development introduced additional methane into groundwater aquifer has 

been debated over the last decade. On the one hand, earlier studies attributed elevated methane 

concentrations to UOG development based on spatial correlation and supporting isotopic 

signatures.14,15 On the other hand, later studies did not observe such spatial correlation between 

groundwater methane concentration and UOG development, or only observed local correlation in 

small sub-regions. These latter studies were based on analyzing pre-drilling datasets whose sizes 

were much larger compared to those of the earlier works.24–29 However, existing studies were 

limited by the timing of data collection or the comprehensiveness of their data, thus leaving 

uncertainty surrounding the question of UOG induced methane intrusion into groundwater. Such 

uncertainty would limit our understanding of the potential groundwater methane emission 

pathways and eventually lead to inefficiency in designing mitigation strategies for O&G methane 

emissions. Moreover, the regions of conventional fossil fuel extractions, including conventional 

oil and gas (COG, mostly with vertically drilled wells) and coal mining are typically overlapping 

the UOG development regions in the US. These conventional fossil fuel extractions are also 

potential sources of groundwater methane, and thus, they should be taken into account for 

groundwater methane source attribution. In addition, natural biogeochemical processes such as 

methanogenesis and anaerobic methane oxidation can also alter groundwater methane 

concentrations and these need to be evaluated as well. This thesis undertook a new study to give 
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an updated evaluation of the sources and migration of groundwater methane with rigorous 

methods and a holistic consideration of multiple anthropogenic and natural factors.  

 

2. Climate and safety implication of groundwater methane 

 

Several previous studies have estimated regional methane emission rates from groundwater.20–23 

For example, Gooddy and Darling estimated the maximum methane emission by groundwater 

abstraction from the four major aquifers of the United Kingdom to be 3.30× 10−4 Tg CH4/year.21 

The climate impact of such emission was equivalent to that of carbon dioxide emitted by about 

6,000 passenger vehicles (assuming each vehicle emits 4.6 tons CO2 per year,30 and methane’s 

20-year global warming potential is used). Kulongoski and McMahon estimated the annual 

methane emission by ground water pumping from principal aquifers in the US to be 4.4 × 10−2 

Tg CH4 / year, and the global groundwater pumping methane emission to be 0.53 Tg CH4 / 

year.23 These numbers correspond to equivalent carbon dioxide emission from 800,000 and 

9,000,000 passenger vehicles, respectively. It is worth noting that such calculation did not 

include the methane carried by groundwater discharge to surface water and eventually emitted to 

the air. Moreover, gas phase migration of methane (e.g., bubbles) in groundwater was not 

considered in these estimations. Previous studies have shown that gas phase methane could be 

released into groundwater by problematic O&G wells,31–33 and omitting the gas phase migration 

would lead to underestimation of the total groundwater methane emission. Noticeably, gas phase 

methane could increase the dissolved methane concentration in the surrounding groundwater 

body by phase partitioning of methane molecules from gas to water. Therefore, gas phase 
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methane migration in groundwater should be indicated by elevated dissolved methane 

concentrations. 

      

The public safety impact of groundwater dissolved methane is also important. The US 

Department of the Interior has set a warning level and immediate action level at 10 and 28 mg/L 

dissolved methane, respectively.13 When the methane concentration exceeds the 10 mg/L 

warning level, residents should be warned and any ignition sources should be removed. When 

the methane concentration further exceeds the 28 mg/L immediate action level (equivalent to the 

methane solubility at 15 °C), there is immediate risk of fire or explosion due to degassing and 

immediate ventilation is needed. There are some reported cases of fire and explosions caused by 

groundwater dissolved methane in the O&G production regions in the US. For example, methane 

migrated along a water well caused explosion in the basement of a house in Chagrin Falls, 

Ohio.34,35 The explosion cracked the house’s foundation and peeled paint off its wall and the 

incident was attributed to the poorly cemented casing of a gas well. Note that while the impacts 

to the home are obvious, the impacts to the neighborhood property values are non-zero. Finally, 

although localized cases of O&G induced stray gas migration were linked to fire and explosion 

incidents, it has been unclear if O&G development systematically elevated groundwater methane 

concentration in regional scale (e.g., county level).  

 

Difficulties in monitoring methane leaks from O&G facilities 

 

1. Number and intermittency of methane emitters 
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The successful detection of above-ground fugitive emissions from leaky O&G infrastructures 

(e.g., well pads, compressor stations, and transmission pipelines) is the prerequisite for efficient 

leak fixation and will translate to improved safety, climate, and economics. In US states such as 

California36 and Pennsylvania37, quarterly leak detection and repair (LDAR) practice is required 

for O&G facilities, and such inspections are typically conducted using hand-held instruments 

such as infrared camera, thermal conductivity detector (TCD), or laser detector. Such manual 

inspections cost about $100 to $600 USD per well site per inspection,38–40 and there are about 

one million producing O&G wells in the US.41 Therefore, quarterly inspection of all wells can 

cost $400M to $2.4B per year, and such high cost could negatively affect O&G companies 

incentives to stop methane leaks. In addition, if each O&G well is treated equally during leak 

detection (e.g., deploying the same number of sensors or applying the same inspection 

frequency), the monitoring resources allocated to each well will be diffused and may be 

insufficient to effectively identify the leaks.  

In addition to the large number of potential emitting facilities, the temporal intermittency of 

methane emissions is another major challenge for the emission monitoring efforts.42–46 For 

example, the episodic activities such as manual liquid uploading can contribute to a significant 

portion of the total O&G methane emission,45 and the traditional discontinuous survey methods 

can leave much of the emission undetected. As shown by a recent airborne methane emission 

study in California,46 point source methane emitters often appear intermittently, with a mean 

persistence of about 30% (defined by the number of observed plumes divided by the number of 

overflights for a given emitter). This suggests that as many as 70% of point sources may be 

missed by a one-time screening. Given the low frequency of traditional LDAR program (i.e., 

every quarter), much of the intermittent sources could be undetected, and this would lead to 
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significant underestimation of the total emission rate and inefficiency to fix leaks. In recent 

years, remote sensing-based methane sensors, including airplane and satellite-mounted sensors, 

can screen large geospatial areas in a shorter period of time, increasing the frequency of leak 

monitoring.47–49 However, the remote-sensing tools still cannot overcome the intermittency issue 

of emitters: screening by airplane (where revisit time depends on the mission logistics) and 

satellites (where revisit time ranges from several days to two weeks50) is discontinuous. 

Consequently, the methane emission events not captured by these visits would still be un-fixed.  

One possible solution to the intermittency challenge is to deploy continuously monitoring 

sensors in close distance to potential emitters. In order to make this strategy economically and 

technically feasible, two related strategies can be pursued: first, the total number of sensors could 

be reduced. The large number of O&G facilities would require an intractable number of sensors 

and huge cost of maintenance if we treat each facility as equally possible to emit methane. Thus, 

a prioritization strategy is needed to focus the sensor allocation on a subset of high-risk facilities, 

reducing the total number of sensors required and enhancing the monitoring efficiency. Second, 

continuous sensors with compact size, low cost, and low energy consumption should be 

developed. Existing continuous methane sensors such as infrared cameras, open path laser 

detectors, and cavity ring-down spectrometers are relatively expensive and consume large 

amount of energy. As such, they are not suitable for large-scale deployment among O&G 

facilities. Instead, very low cost, low power, compact chemiresistive methane sensors could 

become a better candidate for the tasks. 

 

2. Proactive emission monitoring enabled by prediction of risky emitters 
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Given the intermittent occurrence and heterogeneous distribution of methane leaks, improved 

strategies to allocate the limited resources of leakage monitoring and fixation are required. So 

far, a reactive approach has been used to deal with methane leaks: leaks are first identified via 

inspection and screening, and then repairs can be made. However, if we could adapt a more 

proactive approach to predict those facilities (e.g., well pads) at higher risk of methane leakage, 

we could concentrate our sensing resources to this subset of facilities. This would increase the 

efficiency in detecting methane leaks. In particular, one could increase fly-over frequency of 

airplanes and satellites for a subset of high-risk emitters and deploy stationary sensors near those 

emitters that suggest a need for continuous monitoring, or even repair/replace vulnerable 

components before leaks occur. Moreover, the number of sensors and the fly-over frequency 

allocated to emitters with lower risk could be reduced, decreasing the total monitoring cost.  

Fortunately, the recent advancement in machine learning (ML), especially supervised learning 

algorithms, opens opportunities for predicting the risk of methane leakage from a given facility. 

My research will explore different ML algorithms for such prediction task.  

 

The main challenges to predict methane emission risk are (i) to find an appropriate target 

variable (y) which captures the emission risk of a given facility, (ii) to find features (X) that are 

predictive of y, and (iii) to find efficient predicting algorithms. For (i), GHG emission 

inventories such as the U.S. Environmental Protection Agency’s Greenhouse Gas Inventory 

(EPA GHGI) were first considered. These inventories apply unified emission factors for each 

component of the same type (e.g., valves and pipelines), but lack explicit measurements of 

emission rate for each individual emitter (or group of emitters). As such, they could not provide 

the target variable (y) for ML training. In addition, the inventories can largely underestimate the 
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total emission compared to estimations based on bottom-up measurements of facility-scale 

emissions.51 A second potential source of the target variable could be remote sensing 

measurement data. Although numerous remote sensing measurements of methane emissions 

have been published,46,52,53 the discontinuous nature of such measurements prevents them from 

correctly capturing all emissions thus leads to underestimation of the emission risk. Moreover, 

the remote sensing tools have difficulty to distinguish emission plumes from nearby emitters 

especially under complex metrological conditions, which largely limits the data’s value as ML 

target variable. As such, an ideal target variable should be specific to individual facility, stable 

over time (i.e., having small temporal intermittency), and reflecting the underlying physical 

phenomenon relevant to the emission. For (ii), basic information of O&G well has been 

published in several states, including well completion date, surface elevation, well orientation 

and so on.54–57 However, such public data does not contain rich physical information on how the 

wells are constructed. Thus, these have limited predictive power for physical mechanisms 

leading to methane leakage. More detailed physical data, especially on well casing and cement is 

needed to make the models predictive of integrity failures. For (iii), multiple state-of-the-art ML 

models should be compared in order to achieve the best performance in predicting methane 

emission risk. 

 

3. Novel chemiresistive methane sensor: selectivity issue 

 

Recently, researchers reported a compact, low-cost, and low-power prototype chemiresistive 

methane sensor which operates at room temperature.58 This prototype sensor has a small size 

(about 2.5 cm long and 1.5 cm wide), which allows it to be deployed in various types of 



 32 

environments. Moreover, the material cost of each sensor is below $10, and the power 

consumption can be smaller than 0.1 mW. This gives the sensor a distinct advantage over other 

continuous sensors such as infrared cameras, open path laser detectors, and cavity ring-down 

spectrometers, whose costs are typically well above $1,000 and power input above 5 W. The 

method of fabricating the novel chemiresistive sensor has been reported previously:58 briefly, 

researchers combined single-walled carbon nanotubes (SWCNTs) with poly(4-vinylpyridine) 

(P4VP), and then added a platinum-polyoxometalate (Pt-POM) catalyst for methane oxidation. 

The catalytic methane oxidation reaction changes the resistance of the material and, thus, a signal 

can be detected using a potential stat applying fixed potential or fixed current. However, one 

critical drawback of this prototype sensor, and many sensors, is the interference from other gas 

species. Besides methane, the sensor can be responsive to species like water vapor and hydrogen 

sulfide (H2S). In other words, this signal is a combination of responses to different species when 

they are all present in the environment. Given that water vapor is always present in ambient air, 

and H2S can co-occur in natural gas before refining, the interferences cannot be avoided for the 

sensor. Therefore, data science or ML tools59 can be used to extract the signal of methane from 

the combined signal of all species (i.e., signal deconvolution). Such signal deconvolution is a 

necessary step before the prototype sensor can be used for real-world methane emission 

detection.  Here, I note that there is broad utility of this approach for a wide array of sensor 

modalities.  

 

Research questions addressed in this thesis 
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Research Question I: Does UOG development increase groundwater dissolved methane 

concentration?  

  If UOG development is leaking methane into the groundwater aquifer, it can lead to 

environmental and climate consequences. The stray methane migration, either from stimulated 

shale or from problematic wellbores into the groundwater aquifer, would serve as the first step of 

a complete methane emission pathway (i.e., methane enters an aquifer and then migrates to 

surface water prior to atmospheric release). Therefore, finding evidence for groundwater 

methane contamination caused by UOG development would be an important first step to 

evaluate this emission pathway. Moreover, various natural factors can also shape the distribution 

of groundwater methane concentration thus require examination I have answered the following 

sub-questions to address Research Question I: 

 

 Is there spatial correlation between groundwater methane concentration and location of 

UOG extraction? 

 What does the isotopic signature imply about the origin of groundwater methane?  

 What is the relationship between geochemistry of bulk groundwater and dissolved 

methane concentration? 

 How does topography variation affect groundwater methane concentration? 

 Are there changes in groundwater methane concentrations before and after nearby UOG 

drilling takes place?  

 

These questions are addressed in Chapter 2.  
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Research Question II: What are the contributions of traditional fossil fuel extraction, including 

COG and coal mining, and of natural biogeochemical processes to groundwater methane 

concentration? 

Traditional fossil fuel extraction activities, including COG and coal mining, have a long 

history and often overlap UOG activities over productive shales in the US. It is important to 

include traditional fossil fuel extractions in groundwater methane source attribution study. In 

addition, biogeochemical cycles of methane, involving methanogenesis and anaerobic methane 

oxidation, can alter groundwater methane concentration, and possibly interact with the fossil fuel 

extraction processes. To understand how traditional fossil fuel extraction and biogeochemical 

processes affect groundwater methane concentration, I have investigated the following sub-

questions: 

 

 What is the contribution of COG to the distribution of groundwater methane 

concentration?  

 Does coal mining influence groundwater methane concentration?  

 How does microbial methanogenesis and methanotroph alter groundwater methane 

concentration and interact with fossil fuel extraction activities? 

 

These questions are addressed in Chapter 3.  

 

Research Question III: How can ML predict the risk of fugitive methane emission from O&G 

facilities?  
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 The complete programming pipeline to make prediction on emission risk will require 

three key components: the target variable, the predictors, and the ML estimators. Interpretation 

of the prediction results may provide insights into some important questions such as what factors 

have the strongest impact on emission risk, and whether emission risk is geospatially correlated. 

I break down Research Question III into the following sub-questions: 

 

 What is the appropriate target variable to capture methane emission risk from a given 

O&G facility (e.g., well pad)? 

 What physical information of O&G facilities can serve as predictors of the target 

variable? 

 What ML models can achieve the most accurate prediction of the target variable? 

 Is there geospatial correlation between facilities with high risk of methane emission? If 

yes, what factors drive such geospatial correlation? 

 How can the prediction results inform prioritized allocation of methane sensors? 

 How can future O&G operators and regulators learn from the prediction results to 

improve O&G well quality and design policy for emission reduction? 

 

These questions are addressed in Chapter 4. 

 

Research Question IV: What is the concept and experimental set-up for chemiresistive methane 

sensor signal deconvolution? 

 A ML framework is used to pave the way for addressing the signal deconvolution 

challenge. The ultimate goal of this work is to predict the true concentrations of gas species 
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(including methane and other interfering species) given the sensor readings as input. This thesis 

focused on the experimental set up for collecting the data for ML training and testing, while 

some preliminary results of sensor characterization were also obtained. However, it is beyond the 

scope of the thesis to fully execute the ML training and optimization program. Nevertheless, the 

following sub-questions were addressed:  

 

 What is the experimental apparatus to collect data for training and testing ML models? 

 What is the influence of relative humidity on chemiresistive sensors’ ability to detect 

methane? 

 What is the influence of flow rate on chemiresistive sensors’ ability to detect methane? 

 

These questions were addressed in Chapter 5. 

  

Thesis overview 

 

This thesis aims at providing a better understanding to the problem of methane emissions from 

the O&G industry and developing tools to facilitate the monitoring of such emissions. Reducing 

O&G methane emissions requires a systematic approach combining evaluation, prediction, and 

monitoring. First, there is a knowledge gap on methane emission pathways other than the direct 

air emission. For example, the pathway through groundwater system was very uncertainty and 

needed to be carefully evaluated before this work commenced. My evaluation of this pathway 

relies on answering whether groundwater methane concentration is elevated by O&G drilling, as 

opposed to other natural or anthropogenic factors. Second, a new proactive strategy of 
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monitoring methane emissions requires the prediction of methane emission risk associated with 

specific facilities and the improvement on chemiresistive methane sensors for continuous 

monitoring. I addressed these questions in the following chapters: 

 

In Chapter 2, I analyzed water samples collected from 94 domestic wells or springs in 

Northeastern Pennsylvania. I measured the concentration of dissolved methane, ethane, and 

propane using a head-space extraction method followed by GC quantification. The spatial 

correlation between methane concentrations and the locations of UOG wells was computed to 

examine possible impact of UOG development. Moreover, I leveraged the δ13C and δ2H isotopic 

signatures of methane as well as the ratio of methane concentration over the sum of ethane and 

propane concentrations to determine the origin of measured groundwater methane. To further 

assess the likelihood of UOG induced contamination, the isotopic signatures of measured 

methane were compared to those of production gas samples, and the methane concentrations 

were compared to their pre-drilling levels. As an alternative to UOG-induced migration pathway, 

a pathway controlled by topography and geology was used to explain the observed distribution of 

groundwater methane concentration. Finally, the methane emission rate by groundwater 

discharge in the study region was estimated.  

 

In Chapter 3, 217 domestic wells and springs were sampled in Ohio and West Virginia, where 

intense COG development and coal mining accompanied UOG extraction. I analyzed these 

additional samples to include the potential impact of traditional fossil fuel extraction in my 

analysis framework. Geospatial metrics, including proximity and site density, were used to 

evaluate the influence of fossil fuel extraction on groundwater methane concentration. In 
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addition, correlations between the concentration of methane and important biogeochemical 

indicators such as sulfate were studied to delineate the contribution of microbial activities on 

methane concentration. I analyzed isotopic signatures of these new methane samples to serve as 

evidence for the possible biogeochemical processes. Lastly, the influences of confounding 

factors such as topography on the observed correlations between methane concentration and 

fossil fuel extractions were examined. 

 

In Chapter 4, I demonstrated how ML could predict the occurrences of O&G well integrity 

failures as proxy of the risk of fugitive methane emissions. Physical parameters of O&G well 

casing and cement were manually extracted from well completion reports to serve as basic 

predictors, and geospatial metrics capturing the integrity statuses of neighboring wells were used 

as additional predictors. I built a complete programming pipeline for ML training and testing, 

whose steps include data preprocessing, feature selection, hyperparameter and model selection, 

and final evaluation using test set. Different ML algorithms were explored to select for the best 

prediction performance, and feature importance was studied to gain physical insights of well 

integrity failures. Furthermore, I examined the geospatial correlations between integrity failures 

and explored different factors that could drive such correlations. Finally, recommendations were 

given regarding prioritized sensor placement, better data reporting practice, and strategies to 

reduce well integrity failures.  

 

In Chapter 5, I introduced the concept and experimental apparatus for methane sensor signal 

deconvolution using ML. First, multiple chemiresistve sensors were fabricated (by collaborators) 

and each sensor underwent different treatments so that they had different selectivity toward the 
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same gas species (e.g., CH4, H2O, and H2S). Second, these sensors were installed in a custom-

made gas chamber where the gas composition could be controlled via mass flow control array 

and automated experimentation. Third, the signals of each sensor responsive to the current gas 

compositions were recorded. Lastly, the experiment was repeated for different gas compositions. 

The signals recorded for each sensor (predictors) and the true gas composition inside the 

chamber (target variable) will be used to train and test ML models. A gas-tight chamber was 

built to accommodate the chemiresistive sensors, and the specific gas composition inside the 

chamber could be controlled by mass flow controllers. The sensors’ responses were recorded by 

a potential stat and exported as data in .csv format. Using this apparatus, I tested the 

chemiresistive sensors’ tolerance to relative humidity and gas flow rate (i.e., above which 

humidity level and flow rate did the sensors stop responding to methane). At the time of this 

writing, the experimental set-up is also being upgraded to accommodate additional commercial 

methane sensors, and allow the internal temperature inside the chamber to be adjustable. This 

work will be continued by a colleague. The preliminary work here provides a platform to 

generate data upon which ML models will be trained and tested to achieve signal deconvolution 

of chemiresistive methane sensors.   

 

Through the work presented in the above chapters, I was able to shed light on the motivating 

research question of my thesis. Principle findings included: (1) There was no systematic 

correlation between groundwater methane concentration and UOG development over our study 

regions in Pennsylvania, Ohio, and West Virginia. Instead, correlations between methane 

concentration and natural topographical and geochemical features suggested a natural migration 

mechanism of groundwater methane. (2) Groundwater methane concentration was higher closer 
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to COG well, but such correlation was confounded by topography variation. Moreover, lower 

methane concentration was observed with higher sulfate concentration, which was associated 

with closer distance to coal mine. I hypothesized that that methanogenesis was suppressed and 

methanotroph was facilitated by groundwater sulfate likely introduced by coal mining. (3) O&G 

well integrity failures were predictable by physical parameters of well casing and cement, and 

the most important parameters for the prediction were identified. Moreover, there existed 

significant geospatial correlation among well integrity failures. (4) A complete experimental set-

up, including mass flow controllers, a gas tight chamber, and a data logging system were built. 

Preliminary data on the chemiresistive sensors’ tolerance on humidity and flow rate were 

collected. To better understand, predict, monitor, and mitigate methane emission, the following 

products were generated during my dissertation work:  

 

1. A framework to predict what groundwater is more vulnerable to natural methane 

intrusion. This can be used to distinguish natural methane migration from potential 

methane contamination caused by O&G drilling or coal mining. 

2. A dataset of O&G well casing and cement physical parameters, which can be leveraged 

to further study the physical mechanisms driving integrity failures and become part of a 

larger training dataset for prediction of integrity failures. 

3. Trained ML models for predicting O&G well integrity failures. These models can be used 

by O&G operators to predict which wells would have integrity issues related to fugitive 

methane emission, and prioritize them for emission monitoring. The number of sensors 

can be reduced, and the detection efficiency can be improved by taking this proactive 

monitoring approach. 
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4. An experimental apparatus for testing different types of chemiresistive methane sensors 

responding to controlled gas composition. This can be a useful tool for either evaluating, 

validating, and calibrating sensors, or collecting data for ML applications including 

signal deconvolution. Future researchers can also use this platform for their customized 

research projects.   
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ABSTRACT 

 

Conflicting evidence exists as to whether or not unconventional oil and gas (UOG) development 

has enhanced methane transport into groundwater aquifers over the past 15 years. In this study, 

recent groundwater samples were collected from 90 domestic wells and 4 springs in Northeastern 

Pennsylvania located above the Marcellus Shale after more than a decade of UOG development. 

No statistically significant correlations were observed between groundwater methane level and 

various UOG geospatial metrics, including proximity to UOG wells and well violations, as well 

as number of UOG wells and violations within particular radii. The δ13C and methane-to-higher 

chain hydrocarbon signatures suggested that the elevated methane levels were not attributable to 

UOG development, nor could they be explained by simple biogenic-thermogenic end-member 

mixing models. Instead, groundwater methane levels were significantly correlated with 

geochemical water type and topographical location. Comparing a subset of contemporary 

methane measurements to their co-located pre-drilling records (n = 64 at 49 distinct locations) 

did not indicate systematic increases in methane concentration, but did reveal several cases of 

elevated concentration (n=12) across a spectrum of topographies. Multiple lines of evidence 

suggested that the high-concentration groundwater methane could have originated from shallow 

thermogenic methane that migrated upward into groundwater aquifers with Appalachian Basin 

Brine.  

 

Keywords: groundwater, unconventional oil and gas, methane, hydraulic fracturing, 

geochemistry 
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SYNOPSIS STATEMENT 

Geochemical evidence illustrated elevated concentrations of groundwater methane associated 

with topographical lows, Appalachian Basin Brine, and shallow thermogenic methane.  

 

Introduction 

 

The fast growth of unconventional oil and gas (UOG) development in the United States has 

provided reliable domestic energy, but there is persistent concern regarding the impacts of the 

extraction process on groundwater. A unique feature of the UOG boom in the United States is 

that it is often collocated within residential areas, which has created a concern for chemical 

impacts, such as explosion risk if groundwaters become impacted by fugitive methane 

(accumulating above 10 mg/L1). Considering that natural gas is playing an important role in 

meeting society’s energy needs today and is projected to remain so through at least 20502, efforts 

to understand and mitigate environmental impacts from natural gas extraction are imperative.  

 

The impact of UOG development on groundwater methane levels has been debated for over a 

decade. Following the onset of rapid UOG growth (circa 2007), Osborn et al.3 (n=68) and 

Jackson et al.4 (n=141) found that groundwater samples in proximity to gas wells in Northeastern 

Pennsylvania (NE PA) contained elevated methane concentrations and used isotopic tracing to 

suggest that such methane likely originated from thermogenic sources. Ultimately, these studies 

attributed those elevated groundwater methane concentrations to UOG extraction from the 

Marcellus Shale. Nevertheless, several later investigations contradicted those findings based on 

analyses of large amounts of pre-drilling measurements.  Here, “pre-drilling” means 

measurements made before a specific proposed conventional or unconventional gas well was 
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drilled near the groundwater sample location, but likely with some older gas wells already drilled 

in the vicinity due to the long history of drilling in PA extending back to circa 1850.  Thus, while 

there is no undisturbed baseline data available, it is possible to analyze impacts associated with 

local drilling.  Molofsky et al.5,6 (sample size over 1,000) and Siegel et al.7 (sample size greater 

than 10,000) found no statistically significant correlation between dissolved methane 

concentrations in groundwater and the distance to gas wells in NE PA. Li et al.8,9 and Wen et 

al.10 applied sliding window data mining techniques on large pre-drilling datasets (n over 1,000 

and 10,000, respectively) and found that methane concentrations were primarily influenced by 

geologic features (i.e., faults and anticlines) as well as surface topography in NE PA, except in a 

few cases where UOG proximity exerted influence. Another study by Wen et al.11 identified no 

regional systematic impact of UOG development on groundwater methane concentrations using 

a machine learning model. Unfortunately, many of these large-scale, pre-drilling analyses lacked 

the methane isotopic information essential for source apportionment.  

 

Considering the reliance on pre-drilling datasets5–10 or relatively early analyses3,4, the possibility 

remains that sufficient UOG activity and/or transport times had not passed in order to observe 

systematic effects on groundwater composition. More than a decade has passed since the onset of 

UOG extraction activities, allowing time for possible subsurface transport of methane and other 

geochemical indicators related to UOG development to adjacent groundwaters. In addition, 

intense expansion of gas extraction has taken place over this time period; of the 5533 UOG wells 

permitted in Bradford, PA and surrounding counties, 2705 were drilled between 2007 and 2011, 

and 2780 were drilled 2011-2018.12 As such, impacts on groundwater methane associated with 

the oil and gas boom warrant renewed exploration. 
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In addition to providing insights of geochemical mechanisms, accounting for methane migration 

to groundwater can inform health and climatological risk assessments. Health concerns derive 

from exceedances of warning levels, which are set at 10 mg/L by the US Department of the 

Interior1 as the threshold where warning should be provided to the well owner that there is a risk 

for flammability. In addition, shale gas extraction in Appalachian basin could have climate 

impacts.13 Climate impacts are seldom estimated in groundwater transport schemes, but could be 

important. Natural gas utilization that offsets coal or oil combustion confers a greenhouse gas 

(GHG) benefit on a region or corporation’s emissions inventory14–16, but fugitive emissions of 

methane via the groundwater system associated with gas extraction are poorly accounted in those 

budgets. After entering an aquifer, methane could migrate to surface water bodies such as 

streams, rivers, and lakes via groundwater discharge17,18 and subsequently release into the 

atmosphere19–22. In addition, groundwater extraction by human activities also results in methane 

degassing.20,21,23 Thus, identifying potentially enhanced methane transport into groundwater 

aquifers from UOG is an important first step to understand methane emissions via 

hydrogeological pathways and determine the true GHG benefit of natural gas utilization. 

 

The objectives of this study were to understand the sources and migration pathways of 

groundwater dissolved methane in NE PA, evaluate the potential impacts of UOG development 

on groundwater methane level, and move toward better understanding of the environmental, 

safety, and climatic impacts of shale gas extraction. In this investigation, we collected a large 

number of groundwater samples in NE PA (90 domestic water wells and 4 springs; Fig. S2), over 

one of the most productive shale plays in the United States (US), the Marcellus Shale. Methane 
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levels, isotopic signatures, and higher-chain hydrocarbons were evaluated to reveal potential 

methane sources. These analyses were complemented with geochemical characteristics, 

including major ion and trace metal concentrations. In combination with topographical 

information, these data revealed potential migration mechanisms of methane. These important 

indicators were examined alongside geospatial indicators, such as distance to nearest UOG well 

or UOG violation, as well as UOG well intensity within particular radii about a groundwater 

well. Finally, each measured methane concentration was compared with its pre-drilling 

concentration(s) from the same location, in cases where the latter was available. Using these 

multiple lines of evidence, we determined the dominant origin and transport mechanisms of 

groundwater methane in these samples in NE PA and extended the analysis to constrain the 

potential contributions of UOG development to groundwater methane emissions over gas-rich 

shale formations.  

 

Materials and methods 

 

Water samples for dissolved hydrocarbon (methane, ethane, and propane) analysis were 

collected from 90 domestic wells and 4 springs (89 in Bradford County and 5 in Tioga County) 

in NE PA as part of the Yale Water and Energy Resources Study (see various refernces24–27). 

Sample locations were the outcome of recruitment efforts (semi-random), election to 

participation (which is impossible to fully randomize), and eligibility. First, we applied multiple 

recruitment methods, including newspaper advertisements, flyers posted at local businesses, 

social media, and mailed informational postcards to zip codes in the study region to reach a 

broad population. Then, prospective participants who responded to these solicitations were 
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deemed eligible for the study based on these criteria: (1) they were the head of house older than 

21; (2) they spoke English (a requirement for participation considering the interview and onsite 

access needs); and (3) they lived in a home served by private groundwater well or spring. Thus, 

we made every effort to recruit a broad pool of participants. 

 

Water samples were collected upstream of any residential water treatment devices, filled into 

serum bottles with sodium azide added for sample preservation, and sealed with rubber stoppers 

and crimpers (see SI methods for extensive sample collection details). Dissolved hydrocarbon 

species were accessed using a headspace extraction method and analyzed using an SRI 8610C 

Gas Chromatography with a Flame Ionization Detector (see SI methods for details on 

hydrocarbon quantification and yield test). Methane isotopes were analyzed by UC Davis Stable 

Isotope Facility. The measurement of dissolved ion species, the construction of spatial metrics 

and topographical classes, and the collection of pre-drilling data are also discussed in the SI and 

presented in other publications24–27. Any referenced pre-drilling data were acquired from the 

Shale Network database10,28 and matched with our sampling locations, or provided by the 

homeowners. 

 

Results and discussion 

 

Groundwater methane levels  

 

The majority of groundwater samples contained low levels of dissolved methane, while about 

5% of samples were above the 10 mg/L warning level recommended by U.S. Department of the 
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Interior1 (Fig. 1). Methane levels ranged from 3.9 x 10-5 to 32 mg/L, where the mean 

concentration was 1.5 mg/L (n=94) and seven samples were below detectable limits (2.3  10-5 

mg/L; limit of detection (LOD)). The correlation between dissolved methane concentrations and 

distances to the nearest UOG well borehole (drilled on or before sampling campaign start date) 

was not statistically significant (Fig. 1A, Spearman correlation  = 0.026, p-value = 0.80). 

Distances to vertical boreholes instead of horizontal wellbore segments were considered because 

previous studies have documented stray gas migration through improperly cased or cemented 

vertical sections of the borehole (i.e., in accidents or violations)6,29–31, whereas evidence for long-

distance vertical methane migration directly from production shale depths to shallower 

groundwater aquifers is lacking31. Our analysis included any UOG well; the insignificant 

correlation persisted for horizontally-drilled UOG wells (i.e., a subset of all UOG) (Fig S3A) and 

when all oil and gas (O&G) wells (UOG and conventional) were included (Fig S3B). The finding 

that there is no statistically significant correlation between distance to nearest UOG well and 

groundwater methane levels stands in contrast with earlier work from Osborn et al.3 and Jackson 

et al.4, but is consistent with these conclusions of later studies by Molofsky et al.5,6, Siegel et al.7, 

and Wen et al.10. There are two possible explanations for the apparent disparity of our work and 

earlier studies: first, the spatiotemporal variability in samples could have given rise to apparently 

distinct findings. In particular, the observation of elevated methane near gas extraction wells 

could have been temporally transient or a happenstance consequence of the spatial distribution of 

study participant wells and dissolved methane content at those particular loci. Later studies 

leveraged very large sample sizes associated with state-mandated pre-drilling methane 

assessments, and these studies would not have been as sensitive to the stochastic spatiotemporal 

variability (due to sheer number and broad distribution). Second, possible analytical errors giving 
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rise to disproportionately elevated methane in the highest-methane samples (e.g., from a dilution 

and/or calculation error) could have resulted in a false positive correlation with proximity to 

nearest UOG well reported in the earlier studies3,4. It is difficult to validate this possibility due to 

scarcity of experimental details, but it is noteworthy that the earlier observations included several 

samples that had methane concentrations well over the methane saturation limit (about 22 mg/L 

at 25 °C), up to approximately 70 mg/L. Such values are not impossible; one can super-saturate a 

water via methane over-pressurization in the subsurface. Nevertheless, if these values were 

affected by a quantification error, especially one disproportionately affecting highest-methane 

samples, it may have given rise to the surprisingly high levels of methane observed in the near-

gas-well region.  If erroneous, those skewed-high values would have contributed to a finding that 

methane levels were statistically higher within a kilometer of hydraulic fracturing wells.  Our 

results (with rigorous quality assurances; see SI) stand in contrast to this earlier finding.  Last, we 

emphasize that if all the data are trustworthy, then the Jackson et al.4 and Osborn et al.3 findings 

considered in light of our more recent investigation would imply temporal transience in methane 

releases to groundwaters, underscoring the importance of frequent evaluation and/or deeper 

understanding of transport mechanisms driving transience.    

 

To evaluate the possibility that well integrity violations could augment methane migration, we 

investigated the correlation between the distance to such violations (inspected on or before 

sampling campaign start date) and groundwater methane levels. Our analysis showed no 

statistically significant correlation between methane concentration and the distance to the nearest 

well integrity violations (Fig. 1B, Spearman correlation  = -0.078, p-value = 0.45) and the 

insignificant correlation persisted when violations of all kinds, including spillage of flowback 
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water, were included (Fig. S3C). Extending this analysis to other geospatial metrics yielded the 

same conclusion: there was no statistically significant correlation between methane levels in 

groundwater and the O&G or UOG well or violation intensity within radii of 1km, 2km, 5km or 

10km centered at the sampled water well (Fig. S4). Furthermore, the nearest gas well having 

integrity violation, other violation, or no violation did not result in statistically significant 

difference in dissolved methane levels of water wells (Fig. S5).  

 

The lack of a significant correlation between methane levels and UOG spatial metrics either 

indicates the deficiency of using spatial metrics to anticipate UOG-related impacts or provides 

evidence for a lack of systematic contamination events derived from the extraction wells 

themselves. In any scenario, there is a need for more detailed geochemical analysis to elucidate 

methane migration pathways to the high methane-containing groundwater wells.  
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Figure 1. Dissolved methane concentrations and distances to (A) the nearest UOG well and (B) the 

nearest well integrity violation lack statistically significant correlation. The warning level 

recommended by the U.S. Department of the Interior1 is shown (10 mg/L, dashed line). The symbols 

represent methane concentrations above the limit of quantification (LOQ) (filled circles, n=62; LOQ = 2.7 

 10-4 mg/L, the lowest concentration at which a calibration standard was run); concentrations below 

LOQ but above the limit of detection (LOD) (open circles, n=25; LOD = 2.3  10-5 mg/L); concentrations 

below LOD (crosses, n=7; see SI for detail on LOQ and LOD). All are the average of duplicate samples 

(except three); error bars are omitted for clarity and can be found in Fig. S6. 
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Geochemical indicators 

  

While UOG proximity and intensity metrics do not support a UOG-derived methane source, 

isotopic tracers may help delineate the origins of the methane. Thermogenic methane generated 

by decomposition of organic matter is relatively enriched in heavier isotopes and exhibits higher 

δ13C and δ2H signatures, whereas biogenic methane produced by anaerobic methanogenesis is 

depleted in heavier isotopes and exhibits lower δ13C and δ2H signatures. Among our samples 

with the highest methane concentrations (n=18 over 0.5 mg/L), the majority (n=14) had isotopic 

signatures consistent with thermogenic methane ranges (delineated by literature29,32), whereas one 

sample fell in the CO2 reduction biogenic region, and a few samples showed signs of mixed 

biogenic and thermogenic sources (Fig. 2). Of note, most groundwater samples were isotopically 

more depleted than previous groundwater samples reported in Sugar Run, Bradford County29 and 

Dimock, Susquehanna County30 (Fig. 2). These earlier analyses suggested that groundwater 

samples were impacted by drilling based on dissolved methane δ2H-δ13C signatures reflecting 

signatures of nearby annular gas. This was attributed to stray gas migration due to improper 

cementation and excessive annular pressure in several nearby gas wells.29 While we did not 

sample those same locations, groundwater samples within 4 km of the earlier Sugar Run study29 

(marked A and B in Fig. 2 and Fig. S7) had much lighter δ 13C values and did not reflect direct 

impacts from annular gas methane. In response to PADEP’s citation in 2011, the gas company 

remediated the problematic Sugar Run gas wells (e.g., cement squeezes and plugs)29 and the 

apparent disparity between our analyses and the earlier measurements could result from multiple 

spatial, temporal, or geochemical factors. Only one groundwater methane sample from our study 
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enriched in δ13C (-31.9 ‰, as one might expect from thermogenic annular gas) but exhibited 

heavily enriched δ2H (-76.9 ‰), outside the range of typical thermogenic sources. We postulate 

that this sample underwent significant microbial oxidation based on the large enrichment of δ2H, 

as microbial oxidation is known to increase δ2H-CH4
33,34.  

 

Figure 2. The methane carbon and hydrogen isotopic signatures of dissolved methane. For the 

majority of samples assayed in this study (blue squares), the methane δ13C and δ2H signatures were 

depleted relative to the production/annular gas and impacted water dissolved gas from previous studies 

(all other symbols). The symbols represent groundwater samples with dissolved methane concentration 

greater than 0.5 mg/L (n = 18) collected in Bradford and Tioga County in 2018 (this study; blue squares); 

previous production gas (light gray triangles), annular gas (light gray circles), and impacted groundwater 

(light gray squares) collected in Dimock, Susquehanna County, PA in 200930; and previous annular gas 

(red circles) and impacted groundwater (red squares) collected in Sugar Run, Bradford County from 2010 

to 201229. The approximate isotope ranges for microbial gases (CO2 reduction in brown outline, 

fermentation in gray outline) and thermogenic gas (yellow outline) are adapted from literature29,32.  
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Samples A and B were collected near the sampling locations of prior Sugar Run samples29 (see Fig. S7). 

VSMOW stands for Vienna Standard Mean Ocean Water and VPDB stands for Vienna Pee Dee 

Belemnite, the standard materials against which the isotopic values were measured.  

 

It is possible that the δ13C and δ2H of groundwater methane fall in the thermogenic range due to 

post-genic alteration of biogenic methane by microbial oxidation. Starting with previously 

reported average δ13C of biogenic methane by marine CO2 reduction or freshwater fermentation 

(δ13CVPDB = -68‰ or -59‰, respectively;)35, we calculated that median initial methane 

concentrations would have to be 27 g/L or 1.4 g/L, respectively, in order for microbial oxidative 

fractionation of methane to account for the observed δ13CVPDB values (see SI). These numbers are 

outside the realm of known maximum dissolved methane concentrations for over 10,000 pre-

drilling groundwater records in Bradford County (max 72.1 mg/L)10. A sensitivity analysis over 

reasonable ranges of initial δ13C and kinetic isotopic fractionation factors, 𝜖, confirmed that 

unreasonably high initial methane concentrations would be necessary to explain the observed 

isotopic values (Fig. S8). Thus, the paired δ13C and δ2H suggest a source of dissolved methane 

that was thermogenic or mixture of biogenic and thermogenic in origin (possibly with moderate 

degree of microbial oxidation), rather than purely biogenic methane undergoing microbial 

oxidation.  

 

Since microbial methanogenesis selectively produces methane (C1) over ethane and propane (C2 

+ C3), biogenic gas has high molar ratios of C1 -to- C2 + C3. In comparison, thermogenic gas 

contains higher levels of higher chain hydrocarbons (e.g., ethane and propane) and consequently 

lower C1-to-C2 + C3 ratios (Fig. 3). All of samples with elevated ethane and/or propane (n = 8 

above LOQ, Fig. 3) had enriched methane δ13C values and also high C1-to-C2 + C3 ratios. That 
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is, these indicators did not imply distinctly thermogenic or biogenic methane sources. Mixing 

lines connecting thermogenic and biogenic extremes (corners of shaded areas, Fig. 3) could not 

explain the observations, suggesting that mixing between biogenic and thermogenic gases was 

not responsible for the apparently conflicting δ13C values and C1-to-C2 + C3 ratios. Reconciling 

the relatively enriched δ13C values with elevated C1-to-C2 + C3 ratios of our gas samples 

compared to the range of typical thermogenic gas (Fig. 3) requires a mechanism that results in 

preferential enrichment of methane (relative to ethane and propane) without affecting the δ13C-

CH4 values substantially. Gas-water fractionation has small impacts on δ13C-CH4 values (on the 

order of a few permil), but can influence molar ratios of molecules. Indeed, others have invoked 

equilibrium partitioning fractionation to explain increases in the hydrocarbon ratios,36,37 but this 

model is difficult to justify experimentally and especially in the absence of supporting noble gas 

data. The observation of high C1-to-C2 + C3 ratios have been reported by other researchers 

working in the Northern Appalachian Basin (δ13C between -30 and -50 ‰ while C1-to-C2+ above 

1,000)4,36–38. As such, it is possible that the relatively high hydrocarbon ratios could also be a 

distinguishing characteristic of the formations themselves. 
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Figure 3. The C1-to-C2 + C3 ratio vs. δ13C-CH4 of high methane concentration samples. The shaded 

areas represent typical biogenic and thermogenic gas ranges adapted from literature4,39. High-methane 

groundwater samples with dissolved ethane or propane concentration above LOQ (n = 8, blue squares) 

and calculated mixing lines (dashed lines) are illustrated. 

 

Reexamining the dissolved methane δ13C signatures (-53.8 to -35.3 ‰, excluding the microbially 

oxidized outlier) in this context, we find these values were similar to those of Upper Devonian 

gases from Catskill and Lockhaven formations overlying the Marcellus shale (n = 238, mean = -

42.1 ± 6.3 ‰)39, which were depleted compared to the Middle Devonian Marcellus production 

gases (-30.0 to -27.6 ‰)30. Further, the dissolved methane δ13C signatures were not correlated 

with distances to the nearest UOG well or concentrations of dissolved methane (Fig. S9). Taken 

together, the evidence presented here is consistent with groundwater dissolved methane 

originating from the Upper Devonian thermogenic gas. 

 

Geochemical fingerprinting of water masses 

 

To further understand the origin of groundwater dissolved methane in the context of fluid 

transport, we leveraged an inorganic geochemical fingerprinting framework developed by 

Warner et al.40. In this framework, low-salinity Water Types A and B were defined by Cl 

concentration lower than 20 mg/L; among samples with Cl concentration greater or equal to 

20mg/L, Type C was defined by low Br-to-Cl molar ratios (Br/Cl below 0.001), while Type D 

waters contained high Br-to-Cl ratios (Br/Cl greater than or equal to 0.001) and low Na-to-Cl 

ratios (Na/Cl below 5). Br-to-Cl ratios have served as important indicators for the source of 

groundwater salinity. For example, Br-to-Cl ratios less than or equal to 0.001 suggest 



 63 

anthropogenic sources (e.g., road salts, sewage and animal waste),41 whereas Br-to-Cl ratios 

greater than or equal to 0.001 are consistent with Appalachian Basin Brine40. Applying this 

classification scheme, the water type with the highest dissolved methane concentrations was 

Type D water (n = 12), followed by Type C (n = 6), and then Type A and B (n=75; Fig. 5A), 

where the methane concentrations were statistically distinguishable. A Welch’s ANOVA test and 

Games-Howell post-hoc tests confirmed the statistically significant differences between 

population means of log-transformed methane concentrations within water types AB and D 

(assuming methane concentrations within each water type followed lognormal distribution; 

Welch’s ANOVA p-value = 2.3  10-4; post hoc pairwise adjusted p-values were: 2.7  10-5 

(Type AB and D), 0.12 (Type C and D), and 0.76 (Type AB and C)). 

 

Topographical location plays an important role in groundwater transport phenomenon and the 

influence from deeper formation water signatures, and these have a corresponding impact on 

methane concentrations in groundwater.5,6,10,42 Classifying groundwater sampling locations as 

associated with either peaks (n = 1), upper slopes (n = 32), lower slopes (n = 33), or valleys (n = 

28), we found that Type D water samples were located mostly in topographical lows (i.e., valleys 

and lower slopes) (Fig. 4) and methane concentrations were generally higher in valleys as 

compared to upper slope topographies (Fig. 5B). These results were statistically robust: 

population means of log-transformed methane concentrations between valley and upper slope, 

and between lower slope and upper slope, were statistically different (Welch’s ANOVA test on 

log-transformed concentrations had p-value of 6.7  10-4, where peaks were excluded due to 

insufficient sample size; Post hoc pairwise adjusted p-values were: 1  10-3 (valley and upper 

slope), 2.2  10-2 (lower slope and upper slope), and 3.3  10-1 (valley and lower slope)).  
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Figure 4. Water type and topography of sampling location are related to measured methane 

concentration. Type D water has the highest methane concentration among water types and is mostly 

occurring in topographically lower locations (i.e., valley and lower slope). Symbol colors distinguish 

groundwater samples of Type AB (blue), Type C (deep yellow) and type D (red), where there is one 

unclassified sample (grey). The samples labeled with letters and numbers are discussed in detail in the 

text. Topographical distinction of valley (circle), upper slope (upward triangle), lower slope (downward 

triangle), and peak (diamond) is indicated. Warning level set by the U.S. Department of the Interior is 

shown (dashed line; 10 mg/L). 
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Figure 5. The distribution of methane concentration among different (A) water types and (B) 

topographical groups. Each box extends from the lower quartile (Q1) to the upper quartile (Q3) of the 

data, the horizontal bar is the median, and flier points are data that extend past the whiskers. Median 

methane concentrations increase from low saline water type (AB) to high saline and Br/Cl ratio water 

type (D) and increase with lowering topographical location (from upper slope to valley).  
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The co-occurrence of high groundwater dissolved methane concentration, saline Type D 

groundwater, and low topographical feature can be explained by the upward migration of 

thermogenic methane and deep Appalachian Basin Brine. Warner et al. previously illustrated that 

the saline Type D water reflects fingerprints of Appalachian Basin Brine, especially that from 

Middle Devonian and lower formations;40 we confirmed this in the inorganic signatures of our 

water samples (Fig. S10). These brine fingerprints are a consequence of phenomena that occur 

over geological time, facilitated by the specific geology of NE PA.10,40,42,43 Although the 

relatively shallow thermogenic methane and deep Appalachian Basin Brine originated from 

different geological formations, geological features (e.g., bedding plane partings, faults, and 

joints), can serve as preferential pathways for the upward migration of methane,10,29 as well the 

deep brine to shallow groundwater aquifers. Those geological features have increased density 

under topographical lows or valleys,44–48 and this potentially explains the co-enrichment of Type 

D water fingerprints and groundwater methane in those loci. Others have postulated additional 

potential mechanisms, such as groundwater discharging flow from uplands to valleys converging 

methane and brine tracers to topographical lows,10,46 and shorter vertical distances between the 

valley water well bottoms and the underlying brine and thermogenic methane46,49. Such 

mechanisms could also explain the co-occurrence of Upper Devonian gas with Appalachian 

Basin Brine at topographical lows.  

 

The association of Type D water, reflective of Appalachian Basin Brine, with elevated methane 

levels does not necessarily indicate those methane levels were derived from dissolved methane in 

deep formation fluids alone. Indeed, dilution factor analysis (based on median Cl- levels) 

indicated a more than 1200-fold dilution of formation brine to generate Type D groundwaters. 
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This would correspond to brine formation fluids with methane concentrations on the order of 

5,000 and 40,000 mg/L (median and maximum, respectively; note this calculation assumes 

groundwater methane originated from brine fluid alone, excluding shallow sources of biogenic 

methane). However, methane solubility of the lower Appalachian Basin Brine is estimated to be 

on the order of 1,100 mg/L (see SI; bottom hole temperature of 37 °C and pressure of 124 

bars50), so diluted lower Appalachian Basin Brine alone cannot explain the elevated methane 

levels in Type D water samples. Instead, other methane sources such as Upper Devonian 

thermogenic gases and/or biogenic gases must also contribute to groundwater methane levels in 

NE PA. In addition, gas phase migration (e.g., gas bubbles) could also be a contributor to the 

groundwater methane. 

 

There were several Type AB and Type C water samples (AB1 – AB5, C1 and C2; Fig. 4) that 

had relatively high methane concentrations (around or above 1 mg/L) but were not classified as 

brine-impacted water. Four of the Type AB samples (AB1, AB2, AB4, and AB5) were located in 

valleys and had relatively high Cl concentrations (10.2, 11.9, 14.4, and 16.1 mg/L, respectively, 

compared with median of 4.4 mg/L). Moreover, the Br/Cl ratio for AB1, AB2, and AB5 (0.001, 

0.006, and 0.004, respectively) were all greater than the 0.001 threshold for Type D water. (We 

note that AB4 had non-detectable Br concentration). Thus, although these four samples were 

classified as Type AB water by the 20mg/L Cl concentration cut-off value defined by Warner et 

al.40, they were still likely impacted by the same lower brine as in the Type D water based on 

their Br-to-Cl signature. Two saline Type C water samples (C1 and C2) with high methane 

concentrations were also located in valleys, which increased their vulnerability to be impacted by 

natural methane and brine migration. Both C1 and C2 had 50-150 feet (15 to 46 meters) self-
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reported depth, which was relatively shallow among all sampled wells (Fig. S11). If correct, this 

shallow well depth might increase the probability of contamination by surface salinity source 

(e.g., road salt and animal waste), which could decrease their Br/Cl ratios down to the Type C 

range. Somewhat anomalously, sample AB3 had a relatively low Cl concentration (3.0 mg/L), 

high methane concentration (3.5 mg/L), an upper slope topography, and a relatively enriched 

isotope values (δ13C of -39.32‰ and δ2H of -175.4‰). This combination of characteristics is 

inconsistent with the natural methane migration mechanism explained by brine traces and 

topography. However, there is a relatively large distance between sample AB3 and the nearest 

O&G well and the nearest violation (1.4 km and 2.3 km, respectively). One possible explanation 

could be that the methane in sample AB3 originated from a shallow gas-bearing formation 

connected with fresh groundwater cycle and independent from brine migration. However, it is 

not entirely clear why sample AB3 has a high methane level, and this may underscore the 

importance of explicit measurement in addition to topographical or hydrogeological, or 

geochemical prediction alone. 

 

In spite of such unusual occurrences, surface topography plays an important role in where 

groundwater characteristics, such as elevated methane or signatures of deep formation brines, 

can be observed. The sampling size, distribution of samples, and analysis of a large suite of 

geochemical indicators are necessary to deconvolute these controlling factors of methane level, 

and this may explain why debate has persisted on the origins of methane in this region, even after 

decades of study. Here, our near comprehensive geochemical analysis allows us to uncover 

dominant methane transport mechanisms and prioritize regions of risk near and about UOG 

activities. 
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Comparison with predrilling records 

 

Comparing pre-industrial- and post-industrial-activity groundwater composition can provide 

compelling evidence of direct industrial impacts where they exist.51 While there are no 

groundwater methane records predating all oil and gas extraction in Pennsylvania (onset circa 

1850s), there are ample methane records before nearby proposed UOG wells were drilled (i.e., 

pre-drilling records). We accessed 64 pre-drilling methane measurements made between 2009 

and 2016 at 49 locations which were again sampled as part of our 2018 sampling effort. The pre-

drilling data were acquired from the Shale Network database10,28 and matched with our sampling 

locations, or provided by the homeowners. Comparing the pre- and post-drilling methane levels 

indicated there was no systematic or statistically significant increase following installation and 

operation of UOG wells (Fig. 6; p-value = 0.17; Welch’s t-test between log-transformed above-

LOD pre-drilling concentrations (n=23) and the corresponding post-drilling concentrations). 

Some locations (n = 12) experienced a degree of increase from pre-drilling to post-drilling 

methane concentration, but such increases were mostly within a factor of two (e.g., 10.7 to 18.0 

or 25.2 to 32.1 mg/L, Fig. 6B). Here, it is important to note the possibility that quantitative 

differences are a consequence of the variable measurement techniques or natural temporal 

fluctuations of methane level51. Notably, the water well with the highest post-drilling 

concentration (32.1 mg/L in 2018) was sampled in November 2010 and contained no detectable 

methane (presumably below 0.02 or 0.03 mg/L methane, marked as “2010-11”, Fig. 6A). 

However, only two months later, the concentration was recorded at 25.2 mg/L (marked as “2011-

01”, Fig. 6A). Interestingly, this groundwater well belongs to lower slope topographic class and 
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had a Type D geochemical signature in our analysis, which could make it more vulnerable to 

elevated methane irrespective of industrial activity. Overall, a comparison between the recent 

methane concentration measurements and historical pre-drilling measurements of a subset of 

sampled locations supported that methane occurrence was a natural phenomenon in NE PA that 

largely predates the UOG installations in this region. 
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Figure 6. Comparison between pre-drilling and post-drilling methane concentrations. (A) Log-scale 

pre- and post-drilling methane measurements (n=64 at 49 distinct locations). These pre-drilling 

measurements were from the years of 2009 (n=3), 2010 (n=16), 2011 (n=35), 2012 (n=7), 2014 (n=1), 

and 2016 (n=1), with one measurement missing a date. Post-drilling measurements’ LOD and LOQ (this 
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study, 2018 samples) are indicated with black and purple horizontal dashed lines, respectively; LODs of 

pre-drilling analyses were not always explicit but might be evident as vertically aligned values (below-

LOD pre-drilling measurements are shown as gray crosses aligned on four vertical lines at 0.005, 0.02, 

0.026 and 2.5 mg/L, see SI for the treatment of pre-drilling measurements below LODs). Above-LOD 

pre-drilling measurements are marked by colors and shapes the same as in Fig. 4 (water type: type AB in 

blue, type C in deep yellow, type D in red, and unclassified type in grey; topography: valley in circle, 

upper slope in upward triangle, lower slope in downward triangle, and peak in diamond). (B) Linear scale 

plot reflecting samples above LOD only. Post-drilling concentration equaling one and two times of pre-

drilling concentration are represented by the red and orange line, respectively. 

 

Estimation of natural methane emission  

 

Methane emissions associated with groundwater discharge represents a potential contribution to 

GHG over geological time. Thus, we sought to estimate the methane emission caused by 

discharge of methane-containing groundwater to surface-water bodies in NE PA to bound the 

contribution of this understudied source term. Using the long-term mean groundwater recharge 

rate in Bradford County (0.198 m/year)52,53 and assuming this represents total groundwater 

discharge (including extraction), the area of Bradford County (2972 km2)54, and the median 

measured dissolved methane concentration of 2.8  10-3 mg/L (or 1.4  10-4 – 5.2  10-2 mg/L, 

representing the 25th and 75th percentile of the concentration distribution, respectively; n= 94), 

we estimated groundwater discharge methane emission in this one county to be on the order of 2 

(or 0.08 – 30) tonnes CH4 /year. As a comparison, the median dissolved methane concentration 

in Bradford County reported by Wen et al.10 (more than 10,000 pre-drilling values) was 0.026 

mg/L, which equaled one of the detection limits in the pre-drilling dataset. Using this 
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groundwater methane limit, the county-level groundwater discharge emission was estimated to 

be around 15 tonnes CH4/year. For further comparison, methane emission from non-wetland 

surface water bodies in Bradford County was estimated to be on the order of 1000 (200 – 2500) 

tonnes CH4 / year. (This number reflects an estimate derived from considering areal methane 

fluxes from inland waters55 and the total area of inland waters in Bradford County56, see SI). As 

another reference, the total bottom-up estimation of methane emission (fugitive and engineered 

vent emission) by active O&G wells in Bradford County was on the order of 400 tonnes 

CH4/year. (Briefly, this estimate is based on PA statewide emission rate averages per gas well, 

derived by Ingraffea et al. from measured annulus flow rates,57 and the number and type of active 

gas wells in Bradford County; see SI). Noticeably, the estimated groundwater discharge methane 

emission was much smaller than the estimated non-wetland surface water emission or O&G well 

emission. While methane emissions through groundwater releases (i.e., discharge to surface 

water) in these methane-rich areas could help delineate a more rigorous construction of the 

global methane budget, more important terms may occur in regions where groundwater 

withdrawals are dominated by human population development, including industrial groundwater 

withdrawals. In these cases, there may be value in assessing the presence of an unanticipated 

methane emission source to the atmosphere.  

 

Implications 

 

Since the 2005 Energy Policy Act, domestic natural gas extraction in the US has disrupted the 

global energy economy, dramatically changed the US electricity source portfolio, and allowed 

the US to become a net exporter of oil and gas. Furthermore, in accounting of GHG budgets, 
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natural gas utilization that displaces coal or oil-derived hydrocarbons comes with a GHG credit. 

This higher energy-per-unit CO2 equivalent of the energy source - rather than a sweeping 

transition from fossil energy to renewable solar or wind-derived energy- is dominantly 

responsible for the US’ progress toward meeting Paris Agreement targets. However, fugitive 

emissions from methane associated with natural gas extraction are not included in this credit. 

Howarth et al.58 and others sounded an early warning to encourage constraint of the contribution 

of fugitive methane emissions from gas extraction processes to the atmosphere that might reduce 

the net climate benefits of natural gas utilization. Osborn et al.3 and Jackson et al.4 highlighted 

early concerns that gas extraction might augment releases of methane into groundwater and also 

identified the need to protect the domestic water supply with respect to flammability limits.  

In this work, we revisited those considerations following an intensified installation of gas 

extraction wells and allowing for longer temporal evolution to alleviate kinetic limitations on 

observing the impacts of gas extraction in field-based groundwater samples. Here, based on a 

large groundwater sample size (n=94) of methane and important geochemical indicators, we 

analyzed a combination of various UOG geospatial metrics, topographical information, and pre- 

and post-drilling comparison of same locations. We demonstrated that methane transport to 

groundwater over the Marcellus Shale is arguably natural and has not been systematically 

augmented by unconventional oil and gas extraction, although localized incidents of UOG-

induced methane migration do occur (e.g., the stray gas migration incident in Sugar Run, 

Bradford County)29. 

 

Importantly, even if through natural processes, our finding that groundwater methane levels are 

sometimes elevated has important implications. In particular, topographical features and 
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underlying geological structures can influence the likelihood that thermogenic methane will 

accumulate in groundwaters. This information can be used to prioritize regions of investigation, 

but also underscores the need of evaluating methane in groundwater on a shale-by-shale basis. 

Indeed, it is not at all clear groundwater impacts will scale uniformly across entire shale plays 

and certainly not between different plays. Thus, evaluating methane migration in a 

heterogeneous suite of geographies is necessary to constrain methane fluxes writ large and 

understand the role of domestic gas extraction on the global climate.  
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Supporting information for Chapter 2 

 

Geological setting of the study area 

 

The geological strata underlaying Bradford County and the surrounding Northeastern 

Pennsylvania (NE PA) area can be summarized as follows1–3: the surface geology is mainly 

characterized by unconsolidated glacial drift deposits (glacial till and outwash) and postglacial 

deposits (Quaternary alluvium). The postglacial deposit forms the Alluvium aquifer which 

consists of materials such as sands, gravel and silts. This deposit layer is generally thicker in 

valleys than in uplands.1,2 The surface stratum is underlain by Pennsylvanian through Upper 

Devonian age rock formations, among which the Upper Devonian Catskill and Lock Haven 

formations are the two most common bedrock aquifers. These two aquifers mainly consist of 

sandstone, siltstone or shale and are the major water source for local water wells. Network of 

faults, joints and fractures existing in the Upper Devonian formations enhance the bedrock 

permeability as they serve as conduits for groundwater flow. Throughout the geologic history, 

the fracturing intensity has been enhanced by stress-relief and isostatic rebound effect caused by 

the glaciation-deglaciation cycles.3 Beneath the Upper Devonian formations, the Middle 

Devonian formations include the Tully limestone, the Mahantango formation and the Marcellus 

Shale. The Marcellus Shale, which is the main target of shale gas development in the region, is 

approximately 1,500 to 2,500 m deep below the surface.2 Formations in different strata are likely 

inter-connected by geological pathways such as  joints and thrust faults.3 Furthermore, the gentle 

folding of the underlying strata is expressed on the surface by the alternating synclines and 

anticlines.3 
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Supplemental methods 

 

Sample locations 

 

Water samples were collected from 90 domestic wells and 4 springs (89 in Bradford County and 

5 in Tioga County with their zip codes intersecting with Bradford County) in NE PA (Fig S2). 

The study area was Bradford County, which had the second highest number of unconventional 

oil and gas (UOG) wells and the highest number of “water supply determination letters” (i.e., PA 

DEP determines a water supply to be impacted by O&G drilling) in NE PA upon sampling 

began.4,5 We applied a participant-recruitment strategy for the determination of sampling 

locations. In order to maximize the number of participants, we applied multiple recruiting 

approaches, which included newspaper advertisements, flyers at local businesses, social media 

postings, and mailed informational postcards. We screened interested residents who responded to 

our recruitment methods based on the criteria that an eligible participant should be a head of 

household at least 21 years old, should speak English (for the necessity of collecting informed 

consent and completing interview-based questionnaires), and should live in a home served by 

private groundwater well or spring. Among the resulted 94 participating homes (Fig. S2), the 

minimum, mean, and maximum distance to the nearest UOG wells were 0.1 km, 1.1 km, and 4.0 

km respectively; and the minimum, mean, and maximum count of UOG wells within a radius of 

1 km centered at each home were 0, 1.8, and 22 respectively. 
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Sample collection 

 

Water samples were collected upstream of any residential water treatment devices. The well 

spigot was purged to reach stabilized pH, dissolved oxygen, temperature, and specific 

conductance in three consecutive measurements at 3 min time intervals (measured by YSI 556 

Handheld Multiparameter Instrument or YSI Pro Plus & flow cell) before sample collection. 

Water samples for dissolved hydrocarbon (methane, ethane, and propane) analysis were 

collected using either small (volume equals 57 mL with septum installed) or large (volume 

equals 157 mL with septum installed) serum bottles (Wheaton). Sodium azide tablets (from 

Sigma Aldrich, each tablet consists of 8 mg sodium azide and 92 mg sodium chloride) were 

added to the serum bottles before sample collection (2 tablets for small bottle or 5 tablets for 

large bottle). The serum bottle was filled with water sample and then capped with rubber stopper 

and sealed with a crimper. We stored the serum bottles at room temperature for analysis. For 

each drinking water well, we collect a triplicate of water samples for hydrocarbon (methane, 

ethane, and propane) analysis: two were used for gas chromatography (GC) measurement of 

dissolved concentrations, while the other one was reserved for isotope analysis. Water samples 

for measuring geochemical indicators, including major anion, major cation and trace metal, 

were filtered with a 0.45 μm filter and collected in HDPE bottles pre-washed with HCl and 

HNO3. Major anion samples were frozen immediately after collection for preservation, while 

major cation and trace metal samples were acidified with 3 mL of 50% v/v hydrochloric acid and 

stored on ice or at 4 °C until analysis. We also collected field blanks for each type of samples 

using MilliQ water on each sampling day.   
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Dissolved hydrocarbon measurement 

 

For measuring dissolved hydrocarbon concentrations,  we used a simple headspace extraction 

method adapted from Magen et al.6. To create a headspace in the water-filled serum bottle, we 

first pierced through its septum using two 17-gauge needles (Hamilton Company) connected to 

two 10 mL gas-tight syringes with shut-off valve (SGE). One syringe was filled with 8 mL ultra-

high purity helium gas (UHP300 HE, Air Gas), while the other syringe was empty (plunger 

pushed to the end). The helium gas was pushed into the serum bottle while the same volume of 

water was simultaneously withdrawn. The serum bottle was then inverted and stored overnight. 

 

Before headspace extraction, additional 8 mL of helium gas was injected to the serum bottle to 

increase the headspace pressure, which allowed us to extract enough volume of headspace gas 

easily. The serum bottle was then vigorously shaken for 2 min to reach equilibrium between the 

water and gas phase. We then extracted 8 mL of headspace gas using a gas-tight syringe. The 

collected headspace gas was analyzed using an SRI 8610C FID Gas Chromatography. Five-point 

calibration (with one point being a repeat) was performed daily before sample analysis using 

calibration gas standards (MESA, Inc.). 

 

Converting headspace measurements to dissolved hydrocarbon concentrations 

 

Headspace concentrations can be converted to dissolved concentrations of a compound, i (i.e., 

methane, ethane, or propane), according to the following equations: 
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𝐶𝑤,𝑖
0 𝑉𝑤 =  𝐶𝑤,𝑖𝑉𝑤 + 𝐶ℎ𝑠,𝑖𝑉ℎ𝑠    (equation 1) 

 

where 𝐶𝑤,𝑖
0  is the initial dissolved concentration before phase equilibrium; 𝐶𝑤,𝑖 is the water phase 

concentration after equilibrium; 𝑉𝑤 is the volume of water after headspace creation; 𝐶ℎ𝑠,𝑖 is the 

gas phase concentration in the headspace after equilibrium; and 𝑉ℎ𝑠 is the volume of headspace. 

We can derive the dissolved concentration of compound i as follows: 

 

𝐶𝑤,𝑖
0 =

𝐶𝑤,𝑖𝑉𝑤+ 𝐶ℎ𝑠,𝑖𝑉ℎ𝑠

𝑉𝑤
                   (equation 2) 

 

And we define Kaw,i as the dimensionless headspace-water partitioning constant for compound i:  

 

𝐾𝑎𝑤,𝑖 =  
𝐶ℎ𝑠,𝑖

𝐶𝑤,𝑖
                                (equation 3) 

 

By substituting equation 3 into equation 2 we obtain: 

 

𝐶𝑤,𝑖
0 = 

𝐶ℎ𝑠,𝑖
𝐾𝑎𝑤,𝑖

𝑉𝑤+ 𝐶ℎ𝑠,𝑖𝑉ℎ𝑠

𝑉𝑤
               (equation 4) 

 

And we can rearrange equation 4 to derive: 

 

𝐶𝑤,𝑖
0 = 𝐶ℎ𝑠,𝑖

1
𝐾𝑎𝑤,𝑖

𝑉𝑤 + 𝑉ℎ𝑠

𝑉𝑤
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        = 𝐶ℎ𝑠,𝑖  (
1

𝐾𝑎𝑤,𝑖
+  𝑟ℎ𝑠/𝑤)   (equation 5) 

 

where 𝑟ℎ𝑠/𝑤 =  
𝑉ℎ𝑠

𝑉𝑤
 is the ratio of headspace volume to water volume. Using equation 5 we can 

calculate 𝐶𝑤,𝑖
0  given 𝐶ℎ𝑠,𝑖 (measured by GC), 𝐾𝑎𝑤,𝑖 (based on literature, see below) and 𝑟ℎ𝑠/𝑤 

(pre-determined).  

 

The dimensionless headspace-water partitioning constant Kaw,i can be derived from the well-

known Henry’s law constant (H[M/atm]) by a unit conversion: 

 

𝐾𝑎𝑤,𝑖 =  
105[

𝑃𝑎

𝑎𝑡𝑚
]

𝐻[
𝑀

𝑎𝑡𝑚
]∗𝑅∗𝑇[𝐾]∗103 [𝐿/𝑚3]

        (equation 6) 

 

The Henry’s Law constant under different temperature T is given by the fitted relationship7:  

 

ln(HO [M/atm]) = A + B/T + C ln(T)     (equation 7) 

where HO represent Henry’s Law constant not influenced by salinity (i.e., of pure water). A, B, 

and C are fitted parameters, their values are shown in table S1: 

 

Table S1. Fitted parameters for Henry’s Law constant calculation7 

Compound A B C 

CH4 -194.7 9750 27.274 

C2H6 -240.2 12420 33.744 

C3H8 -281.1 14510 39.652 
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In order to adjust the Henry’s law constant H to account for salinity, we have the following 

relationship8: 

 

Log(Ho/H) = Σ (hs + hi) cs     (equation 8) 

hi =hi,0 +hi,T (T–298.15K)             (equation 9) 

In equation 8, hs is the parameter capturing the contributions of salt ions, while hi is specific to 

hydrocarbon species. In equation 9, hi,T is the hydrocarbon specific temperature effect 

coefficient. For simplification, we assume the salinity of water samples were dominated by 

sodium chloride introduced by the azide tablets (92% sodium chloride and 8% sodium azide), 

which we assume is 100% sodium chloride. The tablets added over 2,900 mg/L sodium chloride 

to our samples while the explicitly measured sodium and chloride concentrations in our samples 

(without adding tablet) had maximum values of 290 mg/L and 385 mg/L, thus rendering our 

assumption acceptable. The values of these parameters are summarized in Table S2 and S3: 

 

Table S2 Salt Ion Specific Parameters8 

 

Species hs (m
3 kmol-1) 

Na+ 0.1143 

CI- 0.0318 

 
 

Table S3 Hydrocarbon Specific Parameters8 

 

Hydrocarbon hi,0 (m
3 kmol-1) 103 x hi,T m3 kmol-1 K1 

CH4 0.0022 -0.524 

C2H6 0.0120 -0.601 

C3H8 0.0240 -0.702 
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Yield test for dissolved hydrocarbon measurement 

 

In order to test the accuracy of our experimental method and apparatus for 𝐶𝑤,𝑖
0  measurements, 

we made a series of artificial water samples containing known dissolved concentrations of all 

three hydrocarbons (methane, ethane, and propane). Then, we measured their concentrations 

using our described method and compare the calculated 𝐶𝑤
0  with their expected values. We 

created the artificial samples from serial dilution of hydrocarbon-saturated water. Specifically, 7 

g sodium chloride was dissolved in 2000 mL MiliQ water to simulate the salinity introduced by 

sodium azide tablet. This solution was then purged by ultra-high purity helium for 3 hours to 

remove any dissolved gases. Then, 500 mL of the solution was purged with a 98% methane, 1% 

ethane, and 1% propane mixture gas (from Airgas) for 2 hours at steady bubble-forming rate to 

achieve hydrocarbon saturation. This hydrocarbon-saturated solution was then serially diluted for 

eight times to give decreasing concentrations by repeating these steps: 8 mL of hydrocarbon 

solution was injected into a 57-mL serum bottle which was pre-filled with helium-purged water 

but left with an 8 mL helium headspace. The 8 mL headspace helium was pushed out 

simultaneously. The serum bottle was then vigorously shaken for 1 min to fully mix the solution 

so that the injected solution was diluted by a factor of 57/8. Then, we injected 8 mL helium into 

the serum bottle to recreate its headspace, which facilitated the following GC analysis, and 

simultaneously collected 8 mL of diluted hydrocarbon solution to be used for the next dilution 

cycle. We made triplicates of artificial water samples for each dilution level. The results of the 

yield test are shown in Figure S1. 
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Figure S1. Yield tests demonstrated high measurement accuracy of dissolved concentration of (A) 

methane, (B) ethane, and (C) propane. Symbols represent: artificial water sample triplicates (blue 

circles, error bars represent standard errors of mean); measurement equaling expected values (solid red 

line); and the lower and higher end of the range of equivalent dissolved concentrations of our GC 

calibration standards (pink stars). 

 

Accurate measurement of dissolved methane, ethane, and propane concentrations were achieved 

over wide concentration ranges (Fig. S1). For methane and ethane measurements, the measured 

concentrations were greater than expected values when the concentrations were very low. This 

might inform the method’s limit of quantification (LOQ), which will be discussed below. 
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Although some detectable propane measurements were slightly lower than expected values, the 

differences were generally within one order of magnitude. In addition, propane was rarely 

detected in this study (only four out of 94 water samples contained small amount of detectable 

propane < 0.0001 mg/L), thus had minimum influence on the results of our analysis. Overall, 

these yield test results were deemed acceptable.   

 

In addition to the measurement accuracy of our method, we can also derive our method’s limit of 

detection (LOD) from the yield test results. For ethane, the left-most blue circle (Fig. S1B) 

corresponds to expected concentration of 4.5  10-6 mg/L (its x-coordinate). The next (further 

diluted) expected concentration was set to be 6.2  10-7 mg/L, but the triplicates had no 

detectable ethane. Thus, we selected 4.5  10-6 mg/L as the LOD for ethane. Similarly, the LOD 

for propane was set to be the expected concentration (x-coordinate) of the left-most blue circle 

(Fig. S1C), which was 3.8  10-5mg/L (concentrations lower than that were not detected).  

 

For methane, the lowest expected concentration in the serial dilution was detected, which was 

3.2  10-6 mg/L. However, we suspected that the GC analysis was possibly affected by the low-

concentration atmospheric methane: a tiny amount of ambient air containing methane (around 2 

ppm) could escape into the GC column when we made a sample injection, which could result in 

a tiny methane peak even if the sample itself didn’t contain methane. This was reflected by the 

mean methane concentration resulted from testing the MilliQ water blanks (7.6  10-5 mg/L, 

black horizontal line, Fig. S1A). Because the lowest measured concentration in the serial dilution 

was close to the water blank concentration, it’s possible that the former actually reflected 
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atmospheric methane contamination. Thus, the second lowest expected concentration in the 

serial dilution was accepted as the LOD for methane, which was 2.3  10-5 mg / L.  

 

The limit of quantification (LOQ) is a different concept from LOD: it’s the minimum dissolved 

concentration above which the measurements are accurate to the true values. Reflected in the 

Figure S1, all blue circles above the LOQ should fall close to the 1:1 red line (measured = 

expected). Another convention is to use the lower end of the range of equivalent dissolved 

concentrations of GC calibration standards (lower purple stars, Fig. S1) as the LOQ. Since the 

blue circles above the lower purple stars were close to the red line, we used the lower purple 

stars’ concentrations as our LOQs (2.7  10-4 mg/L, 5.6  10-4 mg/L, and 7.5  10-4 mg/L for 

methane, ethane, and propane, respectively). The LODs and LOQs are summarized in table S4. 

 

Table S4 limit of detection (LOD) and limit of quantification (LOQ) of hydrocarbons 

Hydrocarbon Limit of detection [mg/L] Limit of Quantification [mg/L] 

Methane 2.3  10-5 2.7  10-4 

Ethane 4.5  10-6 5.6  10-4 

Propane 3.8  10-5 7.5  10-4 

 

Dissolved ion species measurement and isotopic analysis 

 

We used ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) 

to measure major anions and trace metals, respectively, at the Yale Analytical and Stable Isotope 

Center (YASIC). Meanwhile, we measured major cations and iron by inductively coupled 
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plasma - optical emission spectrometry (ICP-OES) at the Cary Institute for Environmental 

Sciences. 13C-CH4 and 2H-CH4 were analyzed by the UC Davis Stable Isotope Facility. Samples 

were prepared by transferring equilibrated headspace into an evacuated 12 mL exetainer (Labco, 

Model 839W), resulting in slight over-pressure. The results were reported in the form of 

δ13CVPDB-CH4 (‰) and δ2HVSMOW-CH4 (‰).  

 

Spatial metrics and topographical information 

 

The locations of O&G wells (including both conventional and unconventional wells) in Bradford 

County and five neighboring counties in Pennsylvania (Lycoming, Sullivan, Susquehanna, Toga, 

and Wyoming) were obtained from the Pennsylvania Department of Environmental Protection 

database (PADEP)4,9. O&G well locations in four New York State counties neighboring our 

study region (Steuben, Chemung, Tioga, and Broome) were obtained from the New York 

Department of Environmental Conservation (NYDEC)10. Only O&G wells drilled on or before 

the start date of our field campaign (SPUD date on or earlier than 2018-07-29) were considered. 

The number of conventional and unconventional wells included are 397 and 5481 respectively in 

the Pennsylvania counties, and 1840 and 52 respectively in the New York counties. Pennsylvania 

well violation reports (inspection date from 2000-01-01 to 2018-07-29) were from the Oil and 

Gas Compliance database of PADEP11, and we filter for well integrity violations, especially 

those related to well casing and cementation issues, that could potentially lead to stray gas 

migration using a list of violation code (Table S5). Each Pennsylvania violation record included 

an American Petroleum Institute (API) number which mapped the violation to an O&G well. No 

violation records from New York State had been included in this study so far. The distances 



 93 

between water samples and O&G wells in all ten Pennsylvania and New York State counties, 

and the distances between water samples and O&G wells associated with reported violations in 

six Pennsylvania counties were calculated based on longitude/latitude coordinates using the 

Haversine formula, and the number of wells and violations whose distance to water samples 

were smaller than certain radii (i.e., 1, 2, 5, and 10 km) were counted. Topographical position 

was adapted from the landform classification system of Theobald et al.12 that is based on the 

multi-scale topographic position index (mTPI) derived from the 10-m resolution National 

Elevation Dataset. The system distinguishes four positions along the hillslope: summits (ridges, 

peaks), upper slopes (shoulders), lower slopes (foot slopes), and valleys (toe slopes). 

 

Predrilling data collection and processing 

 

Domestic groundwater wells sampled in 2018 were paired with industry-collected pre-drill 

geochemistry data for the same wells released by the PADEP and published online by Penn State 

University’s Shale Network13 using Generate Near Table (Analysis) in ArcGIS 10.4. Each 

pairing of groundwater wells (this study and pre-drill samples) was confirmed or invalidated 

manually using aerial imagery and the coordinates of the two wells (via Google Earth Pro, 2018). 

Additional geochemistry corresponding to pre-drill measurements was provided by homeowners 

for select wells. 

 

When plotting Fig 5, we assigned below-LOD pre-drilling methane concentrations to be the 

values of the corresponding LODs and marked them with gray crosses. For records with methane 

concentration fields being ‘< 2.5’ and ‘< 0.02’ in the pre-drilling dataset, we assigned them 
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values of 2.5 and 0.02 mg/L, respectively. In the pre-drilling dataset, many records shared 

methane concentration values of 0.005 and 0.026 mg/L, and we inferred these values to indicate 

their LODs. We treated all pre-drilling methane measurement of 0.005 and 0.026 mg/L as below-

LOD. Furthermore, we assigned 0.026 mg/L to pre-drilling records saying ‘ND’ (methane was 

not detected but LOD was unknown), since 0.026 mg/L was a frequently used LOD. 

Violation code for well integrity violations that could potentially lead to stray gas 

migration 

 

We collected all violation codes associated with violated wells in five Northeastern Pennsylvania 

(NE PA) counties (Bradford, Lycoming, Sullivan, Susquehanna, Toga, and Wyoming) from 

PADEP11. Then we used key words “cement”, “cas” (standing for case or casing), “water”, 

“pressure”, “gas”, and “integrity” to search through every code and determine if it could 

potentially lead to stray gas migration into groundwater aquifers. The resulted violation codes are 

shown in Table S5.  

 

Table S5 violation code related to well integrity issues that could potentially lead to stray 

gas migration 

 

Index violation_code (source: PADEP11) 

1 

“78a81(a)2 - CASING AND CEMENTING - GENERAL PROVISIONS - Operator 

conducted casing and cementing activities that failed to prevent migration of gas or other 

fluids into sources of fresh groundwater.” 

2 

“78.85(a)5 - CASING AND CEMENTING - CEMENT STANDARDS - The operator 

failed prevent gas flow in the annulus.  In areas of known shallow gas producing zones 

gas block additives and low fluid loss slurries shall be used.” 
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3 “78.83COALCSG - Improper coal protective casing and cementing procedures” 

4 

“78.86_ - CASING AND CEMENTING - DEFECTIVE CASING OR CEMENTING - 

Operator failed to plug a well under 25 Pa. Code Sections 78.91 and 78.98 after the 

defect could not be corrected or an alternate method was not approved by the 

Department.” 

5 

“78.86 - CASING AND CEMENTING - DEFECTIVE CASING OR CEMENTING - 

Operator failed to report defect in a well that has defective insufficient or improperly 

cemented casing to the Department within 24 hours of discovery.  Operator failed to 

correct defect or failed to submit a plan to correct the defect for approval by the 

Department within 30 days.” 

6 

“78a86 - CASING AND CEMENTING - DEFECTIVE CASING OR CEMENTING - 

Operator failed to report defect in a well that has defective insufficient or improperly 

cemented casing to the Department within 24 hours of discovery.  Operator failed to 

correct defect or failed to submit a plan to correct the defect for approval by the 

Department within 30 days.” 

7 

“78.81D2 - Failure to case and cement properly through storage reservoir or storage 

horizon” 

8 

“78a85(a)5 - CASING AND CEMENTING - CEMENT STANDARDS - Operator failed 

to prevent gas flow in the annulus and use gas block additives and low fluid loss slurries 

in areas of known shallow gas producing zones.” 

9 

“78.83(c) - CASING AND CEMENTING - SURFACE AND COAL PROTECTIVE 

CASING AND CEMENTING PROCEEDURES - Operator failed to drill to 

approximately 50 feet below the deepest fresh groundwater or at least 50 feet into 

consolidated rock whichever is deeper and immediately set and permanently cement a 

string of surface casing to that depth.” 

10 “207B - Failure to case and cement to prevent migrations into fresh groundwater” 

11 

“78.86* - Failure to report defective insufficient or improperly cemented casing w/in 24 

hrs or submit plan to correct w/in 30 days” 

12 

“78a85(a)4 - CASING AND CEMENTING - CEMENT STANDARDS - Operator failed 

to protect the casing from corrosion from and degradation by the geochemical lithologic 

and physical conditions of the surrounding wellbore while cementing surface or coal 

protective casing.” 

13 

“OGA3217(B) - PROTECTION OF FRESH GROUNDWATER AND CASING 

REQUIREMENTS - CASING -Failure to prevent migration of gas or fluids into sources 

of fresh water causing pollution or diminution.  Failure to properly case and cement well 

through a fresh water-bearing strata in regulated manner or depth.” 

14 

“78a85(c)2 - CASING AND CEMENTING - CEMENT STANDARDS - After casing 

cement was placed and cementing operations were completed the operator disturbed 

casing within 8 hours by nippling up on or in conjunction to the casing.” 
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15 

“78.81(a)3 - CASING AND CEMENTING - GENERAL PROVISIONS - Operator 

conducted casing and cementing activities that failed to prevent pollution or diminution 

of fresh groundwater.” 

16 

“78a85(c)4 - CASING AND CEMENTING - CEMENT STANDARDS - After casing 

cement was placed and cementing operations were completed operator disturbed casing 

within 8 hours by running drill pipe or other mechanical devices into or out of the 

wellbore.” 

17 

“78a81(a)3 - CASING AND CEMENTING - GENERAL PROVISIONS - Operator 

conducted casing and cementing activities that failed to prevent pollution or diminution 

of fresh groundwater.” 

18 

“78.81(a)2 - CASING AND CEMENTING - GENERAL PROVISIONS - Operator 

conducted casing and cementing activities that failed to prevent migration of gas or other 

fluids into sources of fresh groundwater.” 

19 “78.85 - Inadequate insufficient and/or improperly installed cement” 

20 

“78.81(b) - CASING AND CEMENTING - GENERAL PROVISIONS - The operator 

failed to drill through fresh groundwater zones with diligence and as efficiently as 

practical to minimize drilling disturbance and commingling of groundwaters.” 

21 “78.83GRNDWTR - Improper casing to protect fresh groundwater” 

22 

“78.73(c) - GENERAL PROVISION FOR WELL CONSTRUCTION AND 

OPERATION - Operator failed to prevent excessive surface shut-in pressure and surface 

producing back pressure inside the surface casing or coal protective casing after a well 

has been completed recompleted reconditioned or altered.” 

23 “78.84 - Insufficient casing strength thickness and installation equipment” 

24 

“78.73(b) - GENERAL PROVISION FOR WELL CONSTRUCTION AND 

OPERATION - Operator failed to prevent gas oil brine completion and servicing fluids 

and any other fluids or materials from below the casing seat from entering fresh 

groundwater and prevent pollution or diminution of fresh groundwater.” 

25 “78.73B - Excessive casing seat pressure” 

26 

“78a73(b) - GENERAL PROVISION FOR WELL CONSTRUCTION AND 

OPERATION - Operator failed to prevent gas oil brine completion and servicing fluids 

and any other fluids or materials from below the casing seat from entering fresh 

groundwater and prevent pollution or diminution of fresh groundwater.” 

27 

“78.81D1 - Failure to maintain control of anticipated gas storage reservoir pressures 

while drilling through reservoir or protective area” 

28 

“78.73A - Operator shall prevent gas and other fluids from lower formations from 

entering fresh groundwater.” 

29 

“78a73(a) - GENERAL PROVISION FOR WELL CONSTRUCTION AND 

OPERATION - Operator failed to construct and operate the well in accordance with 25 
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Pa. Code Chapter 78a and ensure that the integrity of the well is maintained and health 

safety environment and property are protected.” 

30 

“78.73(a) - GENERAL PROVISION FOR WELL CONSTRUCTION AND 

OPERATION - Operator failed to construct and operate the well in accordance with 25 

Pa. Code Chapter 78 and ensure that the integrity of the well is maintained and health 

safety environment and property are protected.” 

 

Calculating initial concentrations of biogenic methane undergoing microbial 

oxidation  

 

If we assume that the dissolved methane detected in each water sample is the product of biogenic 

methane being oxidized by anaerobic microbial activity, then the resulted 𝐶 
13  enrichment can be 

expressed by the following equation14: 

 

𝛿 
13

𝑡 =  𝛿 
13

𝑖 − 𝜖𝐶ln (𝑓)   (equation 10) 

 

where 𝛿 
13

𝑡 is the δ13C signature of methane after oxidation (i.e., detected methane in water 

samples), and 𝛿 
13

𝑖 is the signature of methane before oxidation (i.e., initial biogenic methane). 

𝜖𝐶 is the kinetic isotopic fractionation factor, and f stands for the residual methane fraction. We 

can rewrite equation 10 to equation 11 and calculate f: 

 

𝑓 = exp [
𝛿 

13
𝑡− 𝛿 

13
𝑖

−𝜖𝐶
]   (equation 11) 

 

The kinetic 𝐶 
13  fractionation factor under anaerobic condition 𝜖𝐶 = 3 was reported in literature.14 

For sensitivity analysis, we varied 𝜖𝐶 from 0.3 to 30, and varied 𝛿 
13

𝑖 over the typical range of 
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biogenic methane (-80 to -55‰ adapted from literature14). Note, for any sample whose 𝛿 
13

𝑡  is 

smaller than 𝛿 
13

𝑖 , we treat it as not being oxidized thus its residual fraction f equals 100%. 

Finally, we divided the observed methane concentration by the corresponding residual fraction f 

to obtain the initial methane concentration. 

 

Dilution calculation and estimated methane solubility of deep Appalachian Basin 

Brine 

 

The median Cl concentrations of type D water samples (n = 12; red circles in Fig S10) and of 

Middle Devonian and lower brine samples (n = 69 with Cl concentration available; orange 

diamonds in Fig. S10) are 58 mg/L and 7.3 104 mg/L respectively, rendering a dilution factor of 

1252. If the dissolved methane in type D water came from diluted dissolved methane in the 

brine, we could multiply the methane concentrations of type D water (median = 3.9 mg/L; max = 

32.1 mg/L) by this dilution factor to obtain that the dissolved methane concentrations of the 

corresponding brine were expected to have median of around 4.9  103 mg/L and maximum of 

around 4.0  104 mg/L. 

 

To test if such expected dissolved methane concentrations were realistic for the deep 

Appalachian Basin Brine, we estimated the methane solubility of the brine. The median O&G 

well bottom hole temperature (37 °C) and the estimated median bottom hole pressure (124 bars 

or 122 atm) in the Appalachian Basin15 were used as the surrogates for the shale in-situ 

temperature and pressure. The NaCl concentration of deep brine was assumed to equal the 

median Cl concentration of Middle Devonian and lower brine samples (7.3 104 mg/L). Based 
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on the temperature and NaCl concentration, the local Henry’s law constant was estimated by 

equation 7, 8, and 9 to be 5.8  10-4 M/atm. Then, based on the 122 atm pressure (assuming pure 

methane in the gas phase), the methane solubility of brine (i.e., dissolved methane concentration 

in equilibrium with the gas phase) was calculated to be on the order of 1.1 103 mg/L. The 

methane solubility was smaller than the expected methane concentrations above, suggesting that 

the expected concentrations were unrealistically high for the deep Appalachian Basin Brine.   

 

Estimation of methane emission from inland waters and O&G wells 

 

Methane emission by non-wetland inland surface water bodies within Bradford County can be 

estimated by multiplying the methane flux from a water body type and the area of that type, and 

then summing over all types of water bodies. The global methane fluxes of different surface 

water bodies (mg CH4 m
-2d-1, median (lower quartile – upper quartile)) are: 21.6 (7.9 – 81.1) for 

rivers and streams, 46.4 (11.7-129.0) for lakes, and 136.1 (12.7 – 247.5) for freshwater 

aquaculture ponds.16 The areas of corresponding water bodies within Bradford County (km2) are: 

41.7 for riverine, 6.1 for lake, and 11.2 for freshwater pond.17 The estimated total emission was 

986.84 (198.16 – 2531.14) tonne CH4 / year. Note that this estimation didn’t include emission 

from freshwater wetlands, which could account for about half of the total inland water methane 

emission on the global scale16.  

 

The PA-statewide average methane emission rates for different types of active O&G wells (the 

second column of table S6) were estimated by Ingraffea et al.18 based on extrapolation of 

operator-reported flow rates from annuli and wellheads of a subset of active wells. Ingraffea et 
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al. assumed a gas composition of 83.5% methane and methane density of 656 g/m3.18 We 

multiplied the average emission rates by the number of active wells (not plugged nor in 

regulatory inactive status) in Bradford County under each well type and calculated the total 

emission to be on the order of 400 t CH4/year. Ingraffea et al. reported that the methane emission 

estimated by this component-based (bottom-up) method could be much smaller than the total 

emission measured by top-down approach due to factors such as super emitters that are not fully 

accounted in the bottom up approach.18,19  

 

Table S6.  Estimation of methane emission from active O&G wells in Bradford County 

Well Type Avg. flow (m3/year per well)18 Bradford well count Total Emission (t CH4/year) 

Conventional gas 828.8 10 4.54 

Unconventional gas 588.0 1285 413.88 

Conventional combined oil & gas 540.0 2 0.59 

Unconventional combined oil & gas 638.3 1 0.35 

Sum   419.36 
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Supplemental figures 

 

Figure S2. The topographical map of the study region. Symbols represent: sampled water wells or 

springs (blue circles) and UOG wells (red dots). Note that multiple UOG wells on the same well pad may 

not be distinguished from each other due to close distances. Topography is shown with shaded color, 

where darker shades indicate higher topographical features. 
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Figure S3.  Spearman tests indicated the lack of correlation between methane concentration and 

(A) distance to the nearest horizontally drilled unconventional (HDU) well (a subset of 

unconventional well;  = 0.049, p-value = 0.64), (B) distance to the nearest O&G well (either 

conventional or unconventional;  = 0.033, p-value = 0.76) and (C) distance to the nearest well 

violation (can be any type of violation;  = -0.013, p-value = 0.90). Symbols represent: samples above 

LOQ (filled circles); samples below LOQ but above LOD (open circles); samples below LOD (crosses); 

and the 10 mg/L warning level by the US Department of the Interior20 (yellow dashed line) (as in Figure 

1). 
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Figure S4. Spearman tests indicated the insignificant correlations between dissolved methane 

concentrations (y-axes) and counts of O&G wells or violations (x-axes) within selected radii 

centered at the water wells. The rows, from top to bottom, represent the counts of unconventional O&G 

wells, horizontally drilled unconventional (HDU) O&G wells, all O&G wells, well integrity violations, 

and all type of violations, respectively. The columns, from left to right, represent counting within the 

radius of 1km, 2km, 5km, and 10km centered at the water well, respectively. The Spearman correlation 
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coefficient () and p-value (pval) for each correlation are printed below the sub-figures. Symbols 

represent: samples above LOQ (filled circles); samples below LOQ but above LOD (open circles); 

samples below LOD (crosses); and the 10 mg/L warning level by the US Department of the Interior20 

(yellow dashed line) (as in Fig. 1). 

 

 

Figure S5. Dissolved methane concentration was not impacted by whether there was violation in the 

nearest (A) UOG well or (B) O&G well (either conventional or unconventional) to the water 

sample. The methane concentration distribution for samples whose nearest gas well had no violation, had 
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well integrity violation, or had other types of violation were represented by box plots. Each box extends 

from the lower quartile (Q1) to the upper quartile (Q3) of the data, the horizontal bar is the median, the 

lower whisker is at the lowest datum above Q1 – 1.5  (Q3 - Q1), the upper whisker is at the highest 

datum below Q3 + 1.5  (Q3 - Q1), and flier points are data that extend past the whiskers. The population 

means of log-transformed methane concentrations in different violation scenarios were not statistically 

distinguishable (p-values: 0.64 (A) and 0.87 (B); Welch’s ANOVA on log-transformed concentrations) 

 

 

Figure S6. Error bars of dissolved methane concentrations versus distances to the nearest UOG 

well. Error bar represents minimum and maximum concentration measured for each water sample. One 

sample was measured in triplicate, and two samples only had single measurement, while the rest were 

measured in duplicate, so most error bars essentially show the values of the two measurements. The error 

bar heights for samples with higher methane concentrations (>0.1 mg/L) are very small or negligible. 
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Figure S7. Subset of our sampling region that includes the sampling location of Llewellyn et al. in 

Sugar Run, Bradford County21. Symbols represent: the approximate location of the center of the water 

well clusters sampled by Llewellyn et al. during 2010 to 201221 (blue star); water type AB (circles); water 

type C (square); water type D (thin diamond); and UOG well pad locations (black dots; with black 

numbers being the earliest SPUD years among all individual wells drilled on the same well pad). The 

color scale indicates methane concentrations, and topography is shown with shaded color, where darker 

shades indicate higher topographical features. 
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Figure S8. Sensitivity of inferred initial methane concentrations to different values of 𝝐𝑪 and initial 

δ13C – CH4,  if the detected dissolved methane originated from biogenic methane undergoing 
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microbial oxidation. (A) The 25th percentile of inferred initial methane concentrations, (B) the median of 

inferred initial methane concentrations, and (C) the 75th percentile of inferred initial methane 

concentrations. Average δ13CVPDB signature of marine (-68‰) and freshwater (-59‰) biogenic methane22 

(used as starting point of microbial oxidation) are shown as black and grey star, respectively, at the  

reported 𝜖𝐶  value (𝜖𝐶 = 3) in literature14. 

 

 

Figure S9. Spearman tests indicated a lack of significant correlation between 13C ratio of methane 

and (A) distance to the nearest UOG well ( = -0.26, p-value = 0.29) and (B) dissolved methane 

concentration ( = 0.14, p-value = 0.57). High methane concentration (> 0.5 mg/L) samples are 

represented by blue circles, and samples falling in the yellow and green shaded areas are within the 

δ13CVPDB ranges of thermogenic methane and biogenic methane, respectively. 
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Figure S10. Inorganic species of water samples show the fingerprints of Appalachian Basin Brine in 

our water samples. The inorganic ratios are shown as (A)Br, (B)Na, (C)Mg, (D)Ca, (E)Sr, and (F)Ba 
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versus Cl. Symbols represent: water type AB (blue circles); water type C (deep yellow circles); water type 

D (red circles); unclassified water type (grey circles); and brine samples from Middle Devonian and lower 

formations (i.e., Middle Devonian, Lower Devonian, Lower Silurian, and Ordovician; orange diamond) as 

well as Upper Devonian and higher formations (i.e., Upper Devonian and Lower Mississippian; green 

diamonds)1. Linear regressions (with intercept equaling zero) on Middle Devonian and lower formation 

brine data points (orange diamonds) were performed to serve as their dilution lines (orange lines). 

Compared with other water types, the Br/Cl, Na/Cl, Mg/Cl, and Ca/Cl ratios of type D water samples 

were more similar to those of the Appalachian Basin Brine (sub-figure A through D), therefore type D 

water samples were the groups containing the most abundant Appalachian Basin Brine tracers. Moreover, 

type D water samples’ Sr/Cl and Ba/Cl ratios were more similar to the ratios of brine from Middle 

Devonian and lower formations (orange diamonds) than those of brine from Upper Devonian and higher 

formations (green diamonds) (sub-figure E and F), indicating that the former was more likely to be the 

source of observed brine tracers in type D water samples. 
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Figure S11. Number of sampled domestic wells falling in each topographical class, divided by 

household self-reported well-depth. Depths of springs were not reported. According to the self-reported 

well depths, upper slope had larger percentage of deep wells (> 150 feet) than valley. However, the well 

depths self-reported by homeowners might have large uncertainty, and it is not clear that the well depth in 

valleys were systematically smaller than the well depths in upper slopes in our study.   
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ABSTRACT 

 

The production of fossil fuels, including oil, gas, and coal, retains a dominant share in US energy 

production and serves as a major anthropogenic source of methane, a greenhouse gas with a high 

warming potential. In addition to directly emitting methane into the air, fossil fuel production can 

release methane into groundwater, and that methane may eventually reach the atmosphere. In 

this study, we collected 311 water samples from an unconventional oil and gas (UOG) 

production region in Pennsylvania, and an oil and gas (O&G) and coal production region across 

Ohio and West Virginia. Methane concentration was negatively correlated to distance to the 

nearest O&G well in the second region, but such a correlation was shown to be driven by 

topography as a confounding variable. Furthermore, sulfate concentration was negatively 

correlated with methane concentration and with distance to coal mining in the second region, and 

these correlations were robust even when considering topography. We hypothesized that coal-

mining enriched sulfate in groundwater, which in turn inhibited methanogenesis and enhanced 

microbial methane oxidation. Thus, this study highlights the complex interplay of multiple 

factors in shaping groundwater methane concentrations, including biogeochemical conversion, 

topography, and conventional fossil extraction.  

 

Keywords: methane, groundwater, oil and gas, coal, emissions, sulfate 

 

Synopsis Statement 

 

Apparent relationships between higher groundwater methane concentration and conventional oil 

and gas development are shown to be confounded by topographic variation, while 
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biogeochemical processes associated with coal mining lowered groundwater methane in 

Northern Appalachia. 

 

Introduction 

 

Methane is a highly potent greenhouse gas whose global warming potential is instantaneously 

120 times stronger than CO2’s.1 The climatic impact of anthropogenic methane release has 

received broad attention both in the United States (US) and around the world. The recent 

Inflation Reduction Act imposes a waste emission charge of methane for oil and gas (O&G) 

producers, which starts at $900 per metric ton of methane in 2024 and grows to $1,500 by 2026.2 

At the Conference of Parties (COP) 26 meeting in November 2021, the Global Methane Pledge 

was issued to prioritize methane emission reduction to slow climate change;3 to date, it has been 

signed by 122 countries.4  

 

Roughly 35% of anthropogenic methane emission comes from fossil fuel production and 

utilization (or 17% of total emissions; based on bottom-up estimation from 2008 to 2017).5 In the 

US, O&G accounts for 67% of  total energy production and 68% of total energy consumption.6,7 

Since the shale gas boom in the early 2000s, unconventional oil and gas production (UOG; i.e., 

tight O&G development typically enabled by horizontal drilling with hydraulic fracturing) has 

been growing rapidly and is now the main driving force of US fossil energy production (79% of 

dry natural gas production and 65% of crude oil production).8,9 Coal mining has had a declining 

share in the US energy portfolio, but its contribution remains nontrivial (12% of total energy 

production, 11% of total energy consumption, and 8% of total energy export).6,10 However, coal 
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is experiencing a recent surge due to global energy shifts.11 Based on the important roles O&G 

and coal mining are playing in the US, minimizing methane release from these sources is a key 

step to slow down climate change in the next decade. Numerous studies have focused on 

detecting and quantifying the aboveground fugitive methane emissions directly into the 

atmosphere from O&G infrastructures and coal mining sites.12–14 Similarly, elevated 

groundwater methane concentrations have been reported near dominantly UOG wells above the 

Marcellus Shale and raised concerns of groundwater methane contamination by UOG 

extraction.15,16 Dissolved methane in groundwater could enter surface water bodies (e.g., streams 

and lakes) through groundwater discharge and subsequently enter the atmosphere by mass 

transport at the water-air interface.17–23 Earlier work from Li et al. (2021) suggested that this 

contribution was comparatively small in Northeastern Pennsylvania (NE PA).23 More 

expansively, Northern Appalachia has other legacy and active fossil fuel extraction technologies 

that may introduce additional methane into groundwater. For example, coal mining could be an 

important contributor of dissolved methane in streams in these regions.18 Thus, understanding the 

origins and fundamental controls on groundwater methane across regions of Northern 

Appalachia that have multiple possible methane mobilization activities is valuable for identifying 

methane mitigation strategies. 

 

There is some debate regarding the impact of shale gas extraction on groundwater dissolved 

methane in literature: earlier studies by Osborn et al. and Jackson et al. reported that groundwater 

methane concentration increased with shorter distance to the nearest gas well in NE PA.15,16 

However, several later studies found no statistically significant correlation between groundwater 

methane concentration and distance to gas wells24 or no significant difference in methane 
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concentration between samples closer or farther than 1 km from the nearest gas well,25,26 based 

on large datasets of predrilling groundwater samples (i.e., samples taken before certain nearby 

proposed gas wells were drilled, but possibly with other gas wells already drilled in the 

surrounding area). Using a similar approach, others found methane concentration increased near 

gas wells only in some small sub regions.27–29 Such studies are often limited by the nature of the 

predrilling dataset (lack of isotopic information, and lack of direct postdrilling comparison). An 

analysis of 94 recently collected water samples in NE PA showed that groundwater methane 

concentration was not systematically correlated with UOG extraction23 and was instead 

dominantly controlled by natural migration processes driven by topography (e.g., topographical 

lowlands had higher groundwater methane concentration), consistent with several previous 

studies in the region.25,26,29–32  However, it is unclear if this finding holds across various 

geographies or if distinct local geography, geobiology, and anthropogenic activities can lead to 

different outcomes. Thus, a study with wider geographical coverage and a broader variety of 

extraction processes is needed. Specifically, few prior studies have evaluated coal mining’s 

impact on groundwater methane in Northern Appalachia,33 and many of the previous studies 

focused on regions where the number of UOG wells largely outnumbered that of conventional oil 

and gas (COG) wells or lacked substantial coal mining activities (e.g., NE PA). Additionally, 

biogeochemical processes such as anaerobic methane oxidation have been found to alter 

groundwater methane concentrations,34,35 and such factors (e.g., oxidant levels) can be 

influenced by fossil fuel extraction activities themselves.  

 

In this analysis, we evaluated the distribution of groundwater methane in two study regions 

across Northern Appalachia. Region I was located in NE PA where UOG was the dominant type 
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of fossil fuel extraction, while Region II was located across Southeastern Ohio (SE OH) and 

Northern West Virginia (N WV) where UOG coexisted with a substantial amount of COG 

extraction as well as coal mining. Correlations between methane concentrations and geochemical 

and topographical indicators as well as spatial metrics of UOG, COG, and coal mine were 

analyzed, and isotopic signatures were measured to inform source attribution. Such work enables 

the delineation of methane mobilization routes and suggests fundamental mechanisms of 

methane biogeochemistry that can inform important environmental responses. 

 

Materials and methods 

 

Sample locations 

A total of 311 groundwater samples (Figure S1; 279 collected from domestic wells; 31 collected 

from springs; 1 sample undetermined) were collected across the North Appalachian region. Of 

these, 94 samples were located in Region I (majority in Bradford County, PA, collected from 

July to September 2018) and 217 samples were located in Region II (Belmont and Monroe 

Counties, OH, collected from May to August 2019; and Marshall, Wetzel, Tyler, Ritchie, and 

Doddridge County, WV, collected in October 2020). Region I was dominated by UOG 

development (about 1500 UOG wells and 60 COG wells), while Region II had significant 

numbers of both UOG and COG wells (about 4,000 and 50,000, respectively), as well as coal 

mining. Thus, the contrast was suitable for evaluating the combined impact of UOG, COG, and 

coal extraction. Note that the regions of study (PA, OH, and WV) were selected to represent a 

distribution across Appalachia and were grouped as Region I and Region II following data 

interpretation (i.e., the importance of UOG, COG, and coal was made evident by the data 
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analysis and was not a foregone conclusion or study design element).  The methods for recruiting 

participant households were described in Li et al.;23 briefly, we advertised the study via flyers, 

newspaper advertisements, postcards, and social media and accepted applicants who lived in our 

study areas, were head of households older than 21, spoke English, and had water supplied by 

private groundwater wells or springs. 

 

Sample collection 

Methods for sample collection were detailed in Li et al.23 Briefly, water samples were collected 

upstream of any domestic water treatment equipment. Samples for dissolved hydrocarbon 

(methane, ethane, and propane) measurements were sealed in serum bottles (Wheaton, 57 or 157 

mL) with rubber stoppers and crimp caps. Triplicate samples were preserved by sodium azide 

tablets (Sigma-Aldrich) and stored at room temperature. All samples were analyzed for dissolved 

hydrocarbons in at least duplicate (except for n = 4 out of 311 samples with lost or wasted 

bottles), whereas the third sample was sometimes reserved for isotopic analysis.  The collection 

and analysis of other geochemical indicators (e.g., major anion, major cation, and trace metal) 

was detailed in Li et al.23 

 

Dissolved hydrocarbon measurement 

The approach for measuring dissolved hydrocarbons was detailed previously23 following Magen 

et al.36 Briefly, headspace was created in a serum bottle by removing 8 mL of water and 

simultaneously injecting the same volume of ultrahigh-purity helium gas (Air Gas) using gastight 

syringes. After storing the serum bottle overnight, another 8 mL of helium gas was injected into 

the headspace (i.e., to create overpressure in the headspace) and the bottle was shaken vigorously 
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for 2 min. Finally, 8 mL of equilibrated headspace gas was extracted with a syringe and analyzed 

via an SRI 8610C Gas Chromatograph (GC) with flame ionization detection (FID) to quantify 

methane, ethane, and propane. We performed GC calibration using analytical gas standards 

(MESA, Inc.) each day when we analyzed water samples. The limits of detection (LODs; lowest 

observable concentration in serial-dilution yield test) in the dissolved phase were 2.3  10-5, 0.45 

 10-5, and 3.8  10-5 mg/L for methane, ethane, and propane, respectively, while the limits of 

quantification (LOQs, the minimum concentration in calibration standards) for dissolved gases 

were 2.7  10-4, 5.6  10-4, and 7.5  10-4 mg/L for methane, ethane, and propane, respectively. 

Equations and further details are available in Li et al.23   

 

Isotopic analysis and other dissolved species 

See Li et al.23 and Siegel et al.37 for the measurement of other geochemical indicators (e.g., major 

anion, major cation, and trace metal). Isotopic analysis (13C-CH4 and 2H-CH4) was conducted at 

the UC Davis Stable Isotope Facility for selected samples collected from headspace gas into 12-

mL exetainers (Labco, model 839W).  

 

Geospatial and topographical Information 

We obtained the geographical location information on O&G wells and coal mining extents from 

publicly available data sources documented in Table S1. We filtered the underground coal 

mining extents based on mine status indicator or permit information for active underground coal 

mining extents. We also filtered the datasets to only include O&G wells drilled before our 

sample collection and coal mine extents added before sample collection. Note that the coal 

mining extents represented the entire permitted areas and did not necessarily reflect the actual 
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longwall (i.e., working face) mining sections at a given point of time. Topographical categories 

(i.e., peaks, upper slopes, lower slopes, and valleys) of groundwater sample locations were 

adapted from the classification system of Theobald et al.38 based on multi-scale topographic 

position index (mTPI). 

 

Results and discussion 

Across the Northern Appalachian region, 311 groundwater samples were analyzed, including 94 

previously discussed samples in Region I (NE PA)23 and 217 in Region II [SE OH (n=161) and 

N WV(n=56)) (Fig. S1). Most measured dissolved methane concentrations were below the 10 

mg/L warning level given by the U.S. Department of the Interior,39 in spite of the expansive 

fossil energy extraction in these regions (Fig. 1, Fig. S2). There were some exceedances above 

the warning level (4% of all samples), which presents a flammability risk rather than a 

toxicological concern.39 The 50th, 75th and 90th percentiles of methane concentrations in all 

samples ranged over several orders of magnitude from 0.00066, 0.050, to 1.9 mg/L, respectively, 

and the median methane concentration within Region I (2.8 10-3 mg/L) was nearly one order of 

magnitude higher than that within Region II (3.5 10-4 mg/L; a histogram of concentration 

distribution for each region is available in Fig. S3). There was no statistically significant 

correlation (Spearman test) between methane concentration and distance to the nearest UOG well 

(Fig. 1A) or UOG well density (i.e., the number of UOG wells within a given radius of a 

groundwater sample (Fig. S4); this finding held in both study regions independently and in 

combination.  This is consistent with prior results suggesting that linear transport distance to gas 

well in the UOG-dominated NE PA is not predictive of dissolved methane concentration.24–29 As 

noteworthy counterexamples, Osborn et al.15 and Jackson et al.16 did find a negative correlation 
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between methane concentration and distance to gas well with n = 68 and n = 141 in 2011 and 

2013, respectively, in NE PA. The contrast between these select earlier findings and this 

investigation could reflect a difference in temporal evolution of methane with increased time 

since the onset of UOG (ca. 2008), changes in gas well construction stemming, in part, from the 

tightening of regulations, or stochastic sampling effects associated with sample size and spatial 

distribution.  
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Figure 1. Groundwater methane concentrations in Region I (NE PA) and Region II (SE OH and N 

WV) as a function of distance to the nearest (A) UOG or (B) O&G well (i.e., conventional and 

unconventional).  The warning level set by the U.S. Department of the Interior is 10 mg/L methane 

(dashed line).39 Average groundwater methane from Region I (blue) and Region II (red) above the LOQ 

of 2.7  10-4 mg/L (filled symbols), between the LOQ and the LOD of 2.3  10-5 mg/L (open symbols), or 

below the LOD (crosses) are shown, where error bars on these measures are given in Fig. S2.  For UOG 

only, Spearman correlations were not significant in either region (coefficients of 0.026, -0.050, and -0.037 

and p-values of 0.81, 0.47, and 0.51 for Region I, Region II, and both regions combined, respectively).  

For O&G wells (UOG and conventional wells), Spearman correlations were significant for Region II only 

(coefficients of 0.032, -0.23, and -0.099 with p-values of 0.76, 0.00083, and 0.082 for Region I, Region 

II, and both regions combined, respectively). Note that confounding factors, such as topography, may be 

important drivers for these relationships.   

 

The expansive coverage of this study enabled investigation of the impact of COG extraction on 

groundwater methane. Compared to the UOG-dominated Region I (around 60 COG wells and 

1,500 UOG), Region II had a larger proportion of COG wells (around 50,000 COG wells and 

4,000 UOG wells). In Region I, methane concentration was not correlated with distance to the 

nearest O&G well (conventional and unconventional wells; p=0.76; Fig. 1B), or the count of 

O&G wells within different radii (Fig. S5). In contrast, Region II methane concentrations were 

negatively correlated to the distance to the nearest O&G well with statistical significance (i.e., 

methane concentration was higher with closer distance to the well; p=0.00083; Fig. 1B) and 

positively correlated to the count of O&G wells within different radii with statistical significance 

(Fig. S5). Combining Region I and Region II data gave a near significant negative correlation 

between methane concentration and distance to O&G well (p=0.082, Fig. 1B), and significant 



 125 

positive correlations between methane concentration and count of O&G wells within radius of 2 

km (Fig. S5), reflecting the influence of Region II’s high proportion of COG well composition. 

These findings suggest that the large number of COG wells in Region II could have introduced 

additional methane into the groundwater aquifer and emphasized the importance of evaluating 

COG activities alongside UOG activities; critically, it is possible that the apparent relationships 

between fossil energy development and enhanced groundwater methane concentration are the 

consequence of confounding factors such as topography (see later discussion). Furthermore, 

many COG wells in Region II are old (e.g., drilled in the 1920s), and well integrity issues have 

been reported to worsen with age (e.g., faulty well casing and annular cementation) in a previous 

study40 but the effect was unclear in another,41 and these issues could lead to stray gas migration 

that augmented groundwater methane in aquifers.42–44 Indeed, methane concentration was 

positively correlated with the age of the nearest O&G well in Region II (p = 0.002), while the 

correlation was not statistically significant in Region I (p = 0.26, Fig. S6); confounding factors, 

such as topography, must also be considered (see later discussion).  Further efforts may be 

needed to inspect COG wells (abandoned and active), identify key strategies for prioritizing 

those inspections, and eliminate associated methane emissions.  

 

Other fossil energy extraction activities were prevalent in Region II, such as coal mining, which 

could influence groundwater methane via the mobilization of coal seam methane. Perhaps 

counterintuitively, groundwater methane was less abundant in proximity to active underground 

coal mining activities (Fig 2A). Exploring other geochemical indicators revealed that sulfate 

concentrations were elevated near coal mines (i.e., negatively correlated to the distance to active 
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underground coal mines). Note that distances to both surface and abandoned underground coal 

mines show a persistent negative correlation with groundwater sulfate concentrations (Fig. S7). 

 

 

Figure 2. (A) In Region II, groundwater dissolved methane concentration (blue circles, left axis) 

increased while sulfate concentration (orange triangles, right axis) decreased with increasing 

distance to the nearest active underground coal mine. The Spearman correlation coefficients between 
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methane concentration and distance, between sulfate concentration and distance, and between methane 

concentration and sulfate concentration were 0.29 (p-value of 1.1 10-5), -0.38 (p-value of 7.3 10-9), 

and -0.46 (p-value of 1.4 10-12), respectively. In order to show distance = 0 (i.e., sample overlapping 

with coal mines) in the logscale, distances equal to or smaller than 1 m were treated as 1 m. (B) 

Correlation between dissolved methane and sulfate concentrations in Region II. The distance to the 

coal mine is represented by the color of each marker. 

 

Simultaneously, dissolved methane concentrations were correlated to the topographical location 

of the groundwater well (Fig. 3). The median methane concentration increased with lower 

topographical position [i.e., peaks had the lowest median methane, followed by upper slopes, 

lower slopes, and the highest methane concentrations in valleys; Welch’s ANOVA p-value of 1.8 

10-11, and pairwise adjusted p-values by Games-Howell post-hoc test were significant between 

lower slope and upper slope (4.0  10-3), lower slope and valley (5.2  10-5), peak and valley (2.6 

 10-4), and upper slope and valley (9.1  10-14)]. Also, high salinity and high Br-to-Cl ratio 

waters (type D and unclassified; see Fig. S8, Fig. S9, and SI text) were associated with high 

dissolved methane concentration (Fig. S8) and had a stronger tendency to appear in valleys than 

samples of other water types (Fig. S10), and the correlation between the water type and 

topographical class was confirmed to be statistically significant by a chi-squared test (simulated 

p-value of 1  10-3 based on 2,000 replicates). These correlations between methane concentration, 

topography, and water type hold in each study region (Fig. S11). 
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Figure 3. Groundwater dissolved methane concentration increased in topographical lows. 

Each rectangular box represents the distribution of methane concentrations within a certain 

topographical class, where the orange horizontal bar gives the median, and the upper and lower 

edges of the box represent the upper and lower quartiles (e.g., 75th and 25th percentile, 

respectively). The whiskers indicate variability outside the quartiles and individual datum (black 

dots) are only visible in the extrema outside these ranges.  

 

The elevated dissolved methane concentration associated with valley topography and brine-

impacted water type may be explained by the enhanced connectivity between the groundwater 

aquifer and underlying geological strata through fracture networks,29,31,42 which have enhanced 

density beneath valleys. Valley topography often corresponds to higher density of underlying 

geological fractures than surrounding uplands because fractures such as faults, joints, and 

bedding partings generated by basement movement can increase lithologic weakness, which 

facilitate the formation of valleys by corrosion.32,45,46 Further, existing valleys can accelerate the 
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formation of fractures. For example, river erosion of rocks releases horizontal stress in a valley 

wall and vertical stress in the valley bottom, causing deformation that increases the fracture 

density.47,48 The secondary permeability created by these fractures may form pathways for the 

localized upward migration of methane and possibly Appalachian brine into the groundwater 

aquifer under valley topography,29,42,45,49 explaining the occurrence of high methane 

concentration in brine-type groundwaters. Besides increased fracture density, other theories on 

the elevated methane concentration in valleys include: (i) the topographically driven 

groundwater flow from hilltop to valley entraining the migrating methane and brine into the 

valley bottom29,32 and (ii) valley bottoms have the deepest incision into the bedrock and the 

smallest vertical distance to the buried thermogenic methane as well as the subterranean 

boundary between fresh groundwater and brine-impacted groundwater.32  

 

Incidentally, the topographic location of the groundwater samples was correlated with the sample 

location’s distance to the nearest O&G well and distance to the nearest active underground coal 

mine in Region II (Fig. S12), where samples in the valleys had smaller distances to O&G wells 

and larger distances to coal mines, compared to samples on the slopes. Thus, apparent 

correlations between methane levels and distances to coal mine or O&G well may be driven by 

topography as a confounding factor. To evaluate this possibility, we performed multiple linear 

regressions to predict groundwater methane concentration, 𝐶𝑚𝑒𝑡ℎ𝑎𝑛𝑒, as a function of the key 

variables (𝑑𝑂&𝐺, distance to the nearest O&G well; 𝑑𝑐𝑜𝑎𝑙, distance to the nearest active 

underground coal mine; and 𝐶𝑠𝑢𝑙𝑓𝑎𝑡𝑒 , sulfate concentration) and topography (𝑇𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦, 

converted to integers 1-4 for the valley, lower slope, upper slope, and peak, respectively) (Eqn 1; 

Table 1).  
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𝐶𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 𝑎𝐴𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑏𝑇𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦 + 𝑐,    (Eqn 1) 

where 𝐴𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 was 𝑑𝑂&𝐺, 𝑑𝑐𝑜𝑎𝑙, or 𝐶𝑠𝑢𝑙𝑓𝑎𝑡𝑒, the distance to the nearest O&G well, distance to 

the nearest active underground coal mine, or sulfate concentration, respectively. The linear 

models were fitted on the ranks of the variables (rank increases with variable value) to account 

for the nonlinearity in their correlations and standardize the variable spans. After adding 

topography to the model, associations between methane concentration and distance to the nearest 

O&G well and distance to the nearest active underground coal mine were no longer statistically 

significant, while the association between methane concentration and topography was 

significant. Similarly, samples located in valleys had more O&G wells within a 1 km radius, and 

the age of the nearest O&G well was older compared to samples on the slopes (Fig. S13).  After 

accounting for topography as a confounding factor, the associations of methane concentration to 

the count of O&G wells within different radii (Table S2), and to the age of the nearest O&G well 

(Table S3) were not statistically significant. Taken together, these analyses indicate that the 

correlation between methane concentration and O&G extraction depended on the topographical 

variation in Region II, rather than the causal relationship between gas drilling and elevated 

methane level. Interestingly, higher sulfate concentration was still a significant predictor of lower 

methane concentration with topography present. Note that a shorter distance to a coal mine was a 

significant predictor of higher sulfate concentration when topography or methane concentration 

was considered as a potential confounder (Eqn 2, Table 2).  

𝐶𝑠𝑢𝑙𝑓𝑎𝑡𝑒 = 𝑎𝐴𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑏𝑑𝑐𝑜𝑎𝑙 + 𝑐,     (Eqn 2) 

where 𝐴𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 was 𝑇𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦 or 𝐶𝑚𝑒𝑡ℎ𝑎𝑛𝑒, the topographical designation or the methane 

concentration, respectively. Higher sulfate concentrations were reliably related to the distance to 

the nearest coal mine, even when including topography or methane concentration as potential 

confounder. These results are consistent with a mechanism in which groundwater sulfate 
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concentration affects methane concentration and in which coal mining elevates sulfate 

concentration.   

 

Table 1. Regression outputs for the prediction of methane concentration as a function of 

variables of interest and topography as a confounder (Eqn 1).  

𝑨𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆 a p-value of a b p-value of b c 

𝑑𝑂&𝐺 -0.083  0.16 -0.57  <2 10-16* 180 

𝑑𝑐𝑜𝑎𝑙 0.056 0.38 -0.57  2.1 10-14* 165 

𝐶𝑠𝑢𝑙𝑓𝑎𝑡𝑒 -0.29 2.2 10-6* -0.48  2.2 10-12* 192 

*statistically significant at the 5% threshold. 

 

Table 2. Regression outputs for the prediction of sulfate concentration as a function of 

distance to coal mine and another potential confounding variable (Eqn 2).  

𝑨𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆 a p-value of a b p-value of b c 

𝑇𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦 0.30   9.0 10-5* -0.26  2.2 10-4* 105 

𝐶𝑚𝑒𝑡ℎ𝑎𝑛𝑒 -0.38  2.8 10-9* -0.27   1.6 10-5* 180 

*statistically significant at the 5% threshold. 

 

To interpret the negative correlation between sulfate and the distance to the nearest coal mine 

(Fig. 2A) and the negative correlation between sulfate and methane (Fig. 2B), we note that 

groundwater can be enriched in sulfate due to coal mining (e.g., via acid mine drainage50,51) and 

acknowledge the known importance of sulfate in geo-biochemical methane cycling.34,52,53 

Increased sulfate concentrations can lower methane concentrations in groundwater through two 
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possible mechanisms: (i) inhibiting methanogenesis and (ii) methane oxidation coupled with 

sulfate reduction. First, in order for methanogenesis to occur, carbonate can serve as an electron 

acceptor for organic matter oxidation, producing methane (Reaction 1). However, sulfate is often 

a thermodynamically preferred electron acceptor due to both the favorable energy gain (larger 

|∆𝐺0|) and abundance of sulfate (i.e., the organic matter is oxidized without the production of 

methane; Reaction 2). Second, in anaerobic environments, sulfate can promote methane 

oxidation via microbial reactions (e.g., by methanotrophs and sulfate reducing bacteria), thereby 

reducing methane abundance (Reaction 3).52  As such, recognizing that coal mining often 

mobilizes dissolved sulfate provides multiple mechanistic pathways that ultimately reduce 

dissolved methane concentrations. (See SI Fig. S14, Table S4, and associated text for further 

discussion of dissolved Fe and Mn concentrations that support the importance of sulfate cycling 

in these groundwaters).  

 

CH3COO- + HCO3
- + H2O  CH4 + 2 HCO3

-
 , ∆𝐺0 = -14.7 kJ mol-1 

(Reaction 1, Methanogenesis54) 

 

CH3COO- + SO4
2-  HS- + 2 HCO3

-, ∆𝐺0 = -47.4 kJ mol-1                

(Reaction 2, Sulfate reduction with organic matter oxidation54)  

                  

CH4 + SO4
2-  HCO3

- + HS- + H2O, ∆𝐺0 = -16.6 kJ mol-1                   

(Reaction 3, Sulfate reduction with methane oxidation55)    
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Isotopic characterization (e.g., δ13C and δ2H) can provide some further indication of the 

biogeochemical processes of methane formation and conversion. Specifically, methane generated 

by thermal decomposition of organic matter buried deep underground (i.e., thermogenic 

methane) typically has enriched 13C and 2H relative to methane generated by methanogenesis 

(i.e., biogenic methane). This is due to a difference in the activation energies of light and heavy 

isotopologues, where the reaction of light isotopologues has a lower energetic barrier; this effect 

is more pronounced in enzymatically catalyzed biological processes (i.e., due to enzymatic 

stabilization of the transition state).56,57 Similarly, microbial oxidation of methane can result in 

enriched δ13C and δ2H signatures of the residual methane (e.g., apparently more thermogenic), 

and the enrichment in δ2H is usually much greater than that in δ13C.35,58 

 

In Region I, the majority of dissolved methane samples fell within the thermogenic δ13C - δ2H 

range, whereas in Region II, a few samples were classified as thermogenic or CO2 reduction 

biogenic gas (Fig. 4A).  More than half of the Region II samples fell close to or outside the 

traditionally defined thermogenic or biogenic ranges. Some Region II samples had δ13C ratios 

similar to those of Region I samples, but with elevated δ2H ratios. This was consistent with the 

effect of microbial oxidation, supporting the hypothesis of anaerobic methane oxidation coupled 

with sulfate reduction in Region II. Further, the δ13C isotopic ratios of thermogenic methane in 

Region I were relatively depleted compared to Marcellus production gas, annular gas, and 

dissolved gas in shale gas drilling-impacted groundwater collected from Sugar Run, Bradford 

County42 and Dimock, Susquehanna County43 in PA (see detailed discussion in Li et al.23), but 

similar to those of Upper Devonian gases from Catskill and Lockhaven formations above the 

Marcellus shale (δ13C mean = -42.1 ± 6.3 ‰ of 238 samples, error bars in Fig. 4A)59. This 
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suggested that the sampled methane did not originate from shale gas drilling and was consistent 

with the lack of correlation between methane concentration and proximity to UOG wells 

observed in Region I. In addition, the isotopic ratios of groundwater methane in Region II were 

depleted relative to production gas samples from Ordovician age formations (to which the Utica 

Shale belongs) in Cottontree field, Roane County, WV,60,61 supporting the influence of other 

processes on methane groundwater concentrations in the region. Lastly, for high-methane 

outliers in each topography and geochemical groups (black dots beyond the whiskers in Fig. 3 

and Fig. S8), the δ13C ratios varied between -30 to -90 ‰ and distance to the nearest gas well 

varied between 0 to 4 km (Fig. S15), and neither the δ13C nor the proximity were significantly 

enhanced compared to the median values of the groups (when the number of outliers exceeded 

5). Therefore, it was unlikely for these outliers to be affected by O&G gas derived methane 

contamination.  
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Figure 4. (A) δ13C and δ2H signatures of groundwater methane collected in Region I and Region II 

and of reference samples. The δ13C and δ2H signatures of methane are expressed in δ13CVPDB (‰) and 

δ2HVSMOW (‰), where VPDB indicates Vienna Pee Dee Belemnite and VSMOW indicates Vienna 

Standard Mean Ocean Water. Groundwater samples (squares) with high methane concentrations (> 0.5 

mg/L) were selected for isotopic analysis and are shown for Region I (blue) and Region II (red). Samples 
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collected near reported stray gas contamination sites (light gray symbols in Dimock, Susquehanna 

County, PA,43 brown symbols in Sugar Run, Bradford County, PA,42 and black symbols in Cottontree 

field, Roane County, WV60,61) are shown for comparison. The isotopic ranges of Upper Devonian 

methane (for δ13C, mean = -42.1‰, standard deviation = 6.3‰; for δ2H, mean = -229.0‰, standard 

deviation = 35.8‰) are shown (error bars centered at means showing standard deviations).59 The 

approximate methane isotopic ranges of thermogenic gas (orange outline), CO2 reduction biogenic gas 

(brown outline), and fermentation biogenic gas (gray outline) were adapted from literature.42,66 The effect 

of microbial oxidation is shown by the arrow. (B) C1-to-C2 + C3 ratio vs. δ13C-CH4 of groundwater 

samples. Groundwater samples with δ13C-CH4 analyzed and above-LOQ ethane or propane concentration 

are shown. The typical extents of biogenic and thermogenic gas (gray shaded areas) are adapted from 

literature.67 The mixing between typical biogenic and thermogenic gases is represented by the dashed 

lines. Reference gas samples (light gray symbols in Dimock and black symbols in Cottontree field) are 

also shown.  

 

Methanogens primarily produce methane without higher-chain hydrocarbons (e.g., ethane and 

propane), resulting in high ratios of methane concentration to the sum of ethane and propane 

concentration (“C1-to-C2+C3” ratio) in biogenic gas. Thermogenic gas has a larger proportion of 

higher-chain hydrocarbons and correspondingly lower C1-to-C2+C3 ratios. In Region II, the 

methane δ13C ratios and dissolved gas compositions of some samples fell within the thermogenic 

range, while the rest were explained by mixing biogenic and thermogenic gas (Fig. 4B). The 

Region I samples indicated a thermogenic 13C profile (-30 to -55 ‰) but were depleted in C2 

and C3 hydrocarbons (C1-to-C2+C3 ratios greater than 100). This phenomenon was previously 

observed in PA,16,62,63 and researchers have proposed equilibrium partitioning fractionation 

(albeit with some tenuous assumptions) to explain the higher hydrocarbon ratio.62 Similarly, 
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others have suggested preferential C2 and C3 oxidation that might explain elevated C1 to C2+C3 

ratios,64,65 but there is little evidence to support this claim. It is possible that the unique and 

reproducible signature could simply be characteristic of the local geological formations.23  

 

Based on the observed correlation between methane concentration and topographical, 

geochemical, and geobiological indicators, we propose that the following mechanisms governed 

the spatial distribution of groundwater methane: first, the fracture network beneath valley 

topography enhanced the secondary permeability and facilitated the migration of thermogenic 

methane from reservoirs overlying the producing shales (e.g., Upper Devonian reservoirs) 

upward to groundwater aquifers. The Appalachian basin brine could originate from much deeper 

formations than the methane and migrated on different time scales, and it is uncertain whether 

the brine shared the same migration pathway as methane. Nevertheless, brine tracers (e.g., type 

D water) were observed in valleys coincident with the enriched methane. Second, sulfate 

released by coal mining operations entered groundwater aquifers, and the data are consistent with 

the oxidation of organic matter using sulfate as an electron acceptor outcompeting the utilization 

of organic matter by methanogenesis, thus reducing biogenic methane production. The microbial 

oxidation of existing biogenic or thermogenic methane in the groundwater coupled with 

microbial sulfate reduction could also reduce the dissolved methane concentration. Taken 

together, dissolved methane concentration was lower closer to coal mining regions and elevated 

in topographical lows influenced by brine intrusion; this indicates that there will be a great deal 

of complexity in predicting vulnerability to methane intrusion to domestic wells associated with 

colocated fossil energy extraction.  
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Implications     

   

This large (n=311) groundwater study across Northern Appalachia revealed the contribution of a 

variety of fossil fuel extraction technologies, natural biogeochemical factors, and topographical 

features on the groundwater methane distribution. In order to evaluate the climatic impact of the 

observed groundwater methane, we approximated the total methane emission rate of 

groundwater discharge in Region II by multiplying the mean groundwater recharge rate (0.20 

m/year68,69) by the geographical area (9,400 km2), and then by the median dissolved methane 

concentration of 3.5  10-4 mg/L (or 1.3  10-4 - 4.3  10-2 mg/L, representing the 25th and 75th 

percentile of the concentration distribution, respectively) to be on the order of 0.7 (or 0.2 - 80) 

tonnes CH4 / year. This estimation assumed that the groundwater recharge rate was equivalent to 

the discharge rate over the annual time scale and that all dissolved methane eventually degassed 

into the atmosphere. Using the same approach, the total emission rate in Region I was previously 

estimated to be on the order of 2 (or 0.08 - 30) tonnes CH4 /year.23 For comparison, each active 

unconventional gas well in PA leaked 588 m3 natural gas / year on average by fugitive emission 

or engineered venting,70 which equates to 0.35 tonnes CH4 /year assuming the composition of 

natural gas is 83.5% methane. Considering there are approximately 1,500 O&G wells across 

Region I, the estimated groundwater emission rates are small compared to losses at the well 

head. 

 

There are several important environmental implications of this study’s findings. First, methane 

emissions from O&G development via the groundwater pathway should have a relatively small 

climate impact. The correlation between groundwater methane concentration and the distance to 
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O&G well was not significant in Region I and, after controlling for the confounding effect of 

topography in Region II, was not significant there. Therefore, it was unlikely that O&G 

development systematically altered groundwater methane concentrations in the study region. 

Moreover, the estimated total emission from groundwater discharge was small. Future efforts to 

reduce O&G methane emissions should focus on the above-ground methane emissions from well 

pads or pipelines using monitoring measures such as satellite or aerial survey (note that this 

study didn’t explicitly evaluate extreme events such as well blow-outs, which could be large 

methane sources).35 Second, this work provided a framework for predicting the public health and 

safety risks associated with elevated groundwater methane concentrations in regions with fossil 

fuel production.  For example, residents living in valleys may have a higher risk of methane 

exposure. Residents living closer to O&G wells may also see higher methane in their 

groundwater (despite the fact that proximity to O&G is not necessarily the cause of high 

methane). Third, the interaction between groundwater methane and groundwater sulfate likely 

emitted by coal mining exemplified the complex influences of industrial processes on local 

biogeochemistry. A future study could leverage additional information such as δ34S – SO4
2-, δ18O 

– SO4
2-, and δ13C – DIC isotopic signatures and HS- concentration to gain deeper insight into the 

proposed biogeochemical processes. Finally, there is an important role of topography in affecting 

the correlations among geochemical indicators, illustrating the important interplay between 

biology, chemistry, and physics in environmental systems.  As such, confounding factors are 

implicit in all environmental studies, and computational tools to address this complexity are 

important for a fundamental understanding of the relative contributions of each.  
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Supporting information for Chapter 3. 

    

Supplementary tables 

 

Table S1. Data sources for geographical information 

Dataset Sub-

region  

Data Source References 

Location of Oil and 

Gas wells 

PA Pennsylvania Department of 

Environmental Protection 

 

1,2 

OH Ohio Department of Natural Resources 3 

WV West Virginia Department of 

Environmental Protection  

  

4 

Coal Mine Extent - 

Active Underground 

Mine 

OH Ohio Department of Natural Resources 5 

WV 

West Virginia Geological and 

Economic Survey and West Virginia 

Department of Environmental 

Protection 

6 

7 

Coal Mine Extent - 

Abandoned 

Underground Mine 

OH Ohio Department of Natural Resources 5 

WV 

Not included due to lack of complete 

public dataset 

 

OH Ohio Department of Natural Resources 5 
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Coal Mine Extent - 

Surface Mine 

WV West Virginia Geological and 

Economic Survey 

(No WV surface mine extents within 10 

km away from the boundary of our 

sampling counties) 

6 

 

 

 

Table S2. Linear regression on the rank of methane concentration and O&G well count 

metrics in Region II (Eqn S1) 

𝐶𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 𝑎𝑁𝑂𝐺𝑥𝑟𝑎𝑑 + 𝑏𝑇𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦 + 𝑐,    (Eqn S1) 

where 𝑁𝑂𝐺𝑥𝑟𝑎𝑑 is the number of O&G wells within an x kilometer radius.  

𝑁𝑂𝐺𝑥𝑟𝑎𝑑 a p-value of a b p-value of b c 

𝑁𝑂𝐺1𝑟𝑎𝑑 0.061 0.30 -0.58  <2 10-16* 166 

𝑁𝑂𝐺2𝑟𝑎𝑑 0.097 0.099 -0.57   <2 10-16* 161 

𝑁𝑂𝐺5𝑟𝑎𝑑 0.12 0.051 -0.56   5.710-16* 158 

𝑁𝑂𝐺10𝑟𝑎𝑑 0.10 0.087 -0.57 <2 10-16* 160 

*statistically significant at the 5% threshold. 

 

Table S3. Linear regression on the rank of methane concentration and age of the nearest 

O&G well in Region II (Eqn S2) 

𝐶𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 𝑎𝐴𝑔𝑒 + 𝑏𝑇𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦 + 𝑐,    (Eqn S2) 

where 𝐴𝑔𝑒 is the age of the nearest O&G well.  

𝑨𝒈𝒆 a p-value of a b p-value of b c 
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𝐴𝑔𝑒 0.071 0.34 -0.54  4.3 10-10* 113 

*statistically significant at the 5% threshold. 

 

Table S4. Linear regressions on the rank of ion concentrations and O&G / coal spatial 

metrics in Region II (Eqn S3)  

𝐶𝑖 = 𝑎𝐴𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑏𝑇𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦 + 𝑐,    (Eqn S3) 

where 𝐶𝑖  is the concentration of a species, i, and  𝐴𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 is 𝑑𝑂&𝐺 or 𝑑𝑐𝑜𝑎𝑙, the distance to the 

nearest O&G well, or distance to the nearest active underground coal mine, respectively.  

i 𝑨𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆 a p-value of 

a 

b p-value of b c 

Fe 𝑑𝑐𝑜𝑎𝑙 0.23 5.8 10-4* -0.36 6.1 10-7* 124 

Fe 𝑑𝑂&𝐺 -0.098 0.11 -0.44 2.2 10-10* 168 

Mn 𝑑𝑐𝑜𝑎𝑙 -0.037 0.61 -0.38  1.8 10-6* 154 

Mn 𝑑𝑂&𝐺 0.066 0.32 -0.38  2.5 10-7* 143 

NO3
- 𝑑𝑐𝑜𝑎𝑙  -0.064  0.36 0.39  9.9 10-7* 74 

NO3
- 𝑑𝑂&𝐺  0.024  0.72 0.41  2.7 10-8* 62 

 

Supplementary figures 
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Figure S1. Geographical information of (A) the extent of Marcellus and Utica Shale; (B) Region I 

(NE PA); and (C) Region II (OH and WV). Boundaries of study areas are outlined by black frames in 

(A). Approximate locations of previous studies where isotopic information of production gas, annular gas, 

or dissolved gas was collected were marked by stars (gray star: Dimock, PA;8 brown star: Sugar Run, 

PA;9 black star: Cottontree field, WV10,11); Water samples, UOG wells, and COG wells’ locations are 

shown in blue squares, black dots, and grey dots, respectively. Extent of active underground coal mines, 

abandoned underground coal mines, and surface coal mines are shaded in pink, blue, and orange, 

respectively. In Region II, we only include O&G wells and coal mine extents within 10 km away from the 

boundary of our sampling counties. There were not any eligible surface coal mine extents in WV within 

this distance range. Abandoned underground coal mines in WV were also not included due to lack of 

complete and updated public data.  
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Figure S2. Error bars of dissolved methane concentration versus (A) distance to the nearest UOG 

well and (B) distances to the nearest O&G well. Error bar represents minimum and maximum 

concentration measured for each water sample, while the marker (filled symbol for concentration above 

LOQ, open symbol for concentration between LOQ and LOD, and cross for concentration below LOD) is 

placed at the mean concentration. All samples were analyzed for dissolved methane concentration in at 

least duplicate (except for n < 10 out of 311 samples with lost or wasted bottles), whereas the third 

sample was sometimes reserved for isotopic analysis.   
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Figure S3. Distribution of dissolved methane concentrations in each study region 

 

To examine the effect of UOG well density, methane concentrations were compared to the 

number of UOG wells within a radius of 1, 2, 5, or 10 km centered at the sample. The maximum 

number of UOG wells within increasing radii across both study regions was 22, 49, 145, and 

371, respectively. In spite of this drilling intensity, there was no statistically significant 

correlation between methane concentration and UOG well density (Fig. S4).   
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Figure S4. Correlation between groundwater dissolved methane concentration and count of UOG 

wells within certain radii centered at the water sample. The rows represent water samples collected in 

Region I, Region II, and both regions combined, while the columns represent radii applied: 1 km, 2 km, 5 

km, and 10km. Spearman correlation coefficients () and p-values are shown below each subplot. The 

warning level (10 mg/L, dashed line) provided by the U.S. Department of the Interior12 is also shown.  

 

When counting O&G wells (UOG and COG) within the same radii, groundwater methane 

concentration in Region I was not statistically correlated with the O&G well count (Fig. S5). In 

Region II, methane concentration was statistically higher with higher well count for all radii, and 

the correlation conserved when considering Region I and Region II together for radius = 2 km 
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(Fig. S5). The maximum counts of O&G wells within increasing radii across both study regions 

were 86, 434, 1309, and 3565, respectively. 

 

Figure S5. Correlation between groundwater dissolved methane concentration and count of all 

O&G wells (conventional and unconventional) within certain radii centered at the water sample. 

The rows represent water samples collected in Region I, Region II, and both regions combined, while the 

columns represent radii applied: 1 km, 2 km, 5 km, and 10km. Spearman correlation coefficients () and 

p-values are shown below each subplot. The warning level (10 mg/L, dashed line) provided by the U.S. 

Department of the Interior12 is also shown.  
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Figure S6. Methane concentration compared to the age of the nearest O&G well. Groundwater 

methane concentrations from Region I (blue) and Region II (red) above the limit of quantification (LOQ) 

of 2.7  10-4 mg/L (filled symbols), between the LOQ and the limit of detection (LOD) of 2.3  10-5 mg/L 

(open symbols), or below the LOD (crosses) are shown. The well age was calculated as the difference 

between the permit issue date of each well and a chosen date (Jan 1st, 2023).  

 

 

Figure S7. Groundwater dissolved methane concentration in OH water samples decreased with 

increasing sulfate concentration, and sulfate concentration increased with decreasing distance to 
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the nearest (A) abandoned underground coal mine and (B) surface coal mine in OH. Distance to the 

coal mine is represented by the color of each marker. In order to show samples with distance = 0 (i.e., 

overlapping with coal mines) in the logscale color bar, distances equal to or smaller than 1 m were treated 

as 1 m in color mapping. For both subplots, the spearman correlation coefficient between methane 

concentration and sulfate concentration was -0.25 (p-value = 1.2  10-3). For (A), the coefficient between 

sulfate concentration and distance was -0.45 (p-value = 2.3  10-9) and that between methane 

concentration and distance was 0.047 (p-value = 0.56); for (B) the coefficient between sulfate 

concentration and distance was -0.33 (p-value = 2.4  10-5) and that between methane concentration and 

distance was 0.022 (p-value = 0.78). Due to the incomplete dataset of abandoned coal mines in WV and 

the lack of eligible WV surface coal mines near our study area, these mines and water samples in WV 

were not included in the analyses.   

 

To understand the origin of bulk fluid migration and associated dissolved methane, we used 

geochemical indicators (i.e., conservative tracers), classifying water according to the criteria 

given by Warner et al.13: groundwaters with dissolved chloride (Cl) less than 20 mg/L were 

classified as type A and B; those with dissolved Cl greater than or equal to 20 mg/L and molar 

Br-to-Cl ratio smaller than 0.001 were classified as type C; and those with Cl greater than 20 

mg/L, Br-to-Cl ratio larger than or equal to 0.001, and Na-to-Cl ratio smaller than 5 were 

classified as type D. (Note that groundwaters with Cl greater than or equal to 20 mg/L, Br-to-Cl 

larger than or equal to 0.001,and Na-to-Cl greater than or equal to 5 were not explicitly classified 

by Warner et al.). In this classification framework, Cl concentration serves as an indicator of the 

salinity of water samples.  The low-salinity type AB water represents dilute groundwater which 

is less likely to be influenced by natural and anthropogenic salinity sources. Among the high-

salinity water samples, there are generally two possible sources of salinity: first, contamination 
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by anthropogenic salinity sources such as road salt, animal waste, and domestic sewage which 

result in low Br-to-Cl ratio (type C water);14 second, intrusion of deep Appalachian brine into 

shallow groundwater, which result in high Br-to-Cl ratio (type D and unclassified water).13 The 

occurrence of brine tracers in groundwater is a natural phenomenon.13,15–17 Water typing can also 

be compared on a Cl/Br vs. Cl plot (Fig. S9B) and this is consistent with the Warner 

classification analysis: type AB samples closely matched the signatures of dilute groundwater, 

type C samples indicated mixing between diluted groundwater, halite, and domestic sewage, and 

type D samples (including unclassified samples) indicated mixing between basin brine and dilute 

groundwater (with influence of sewage).  

 

Among tested water samples from both study regions, high salinity and high Br-to-Cl ratio 

waters (type D and unclassified type) contained the highest dissolved methane concentration 

(Fig. S8). The difference in dissolved methane concentrations among water types was 

statistically significant (Welch’s ANOVA test; p-value = 4.5  10-14, test performed on log-

transformed concentrations), and Games-Howell post-hoc tests (pairwise adjusted p-values were 

significant for between type AB and type D (4.0  10-10),  type AB and unclassified type (1.3  

10-6), type C and type D (1.2  10-10), and type C and unclassified type (9.7  10-9); tests 

performed on log-transformed concentrations). Thus, samples containing enriched methane were 

associated with intrusion of Appalachian brines in shallow groundwater (and this holds for both 

study regions; Fig. S11).  
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Figure S8. Groundwater dissolved methane concentration increased in water types 

influenced by Appalachian brine intrusion Each rectangular box represents the distribution of 

methane concentrations within a certain water type, where the orange horizontal bar gives the 

median, and the upper and lower edges of the box represent the upper and lower quartiles (e.g., 

75th and 25th percentile, respectively).  The whiskers indicate variability outside the quartiles and 

individual datum (black dots) are only visible in the extrema outside these ranges. See Figure S9 

for alternative brine representation.  
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Figure S9. Cl/Br ratio against Cl concentration for methane concentration (A) and 

geochemical water source attribution (B). For (A) water samples with both Cl and Br 

concentrations measured above detection limits are shown in colors representing their methane 

concentrations. For (B), the same water samples are shown in colors representing their water 

types (blue for type AB, brown for type C, red for type D, and pink for unclassified). Reference 

range of dilute groundwater and domestic sewage are shown in grey shaded areas.18 The 

endmembers used for constructing the mixing lines include: diluted groundwater endmember (a 

Methane concentration (mg/L) A 

B 
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water sample collected by this study, Cl/Br = 22, Cl = 0.33 mg/L), domestic sewage endmember 

from Jagucki and Darner, 2001,18 halite endmember from Mullaney et al., 2009,14 and 

Appalachia Basin Brine lower and upper bound endmember from Poth, 1962.19  

 

 

Figure S10. Geochemical water type of groundwater sample in correlation with topographical class 

of sample location among all water samples. Number of samples falling in each water type is 

represented by the height of each column. Within each column, the number of samples whose location 

belong to a specific topographical class is represented by the height of the color block: red for valley, pink 

for lower slope, light blue for upper slope, and blue for peak.  
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Figure S11. Distribution of groundwater methane concentrations among different water types and 

different topographical locations within Region I (A and C) and Region II (B and D) separately. The 

Welch’s ANOVA p-value for each subplot was (A) 2.4 10-4 (unclassified type excluded), (B) 6.2 

10-14, (C) 6.5 10-4 (peak excluded), and (D) < 2.2 10-16.  
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Figure S12. Region II samples collected from valley topography had (A) smaller distance to the 

nearest O&G well but (B) larger distance to the nearest active underground coal mine, when 

compared to slope topography samples. For (A), Welch’s ANOVA p-value = 0.0044, and pairwise 

adjusted p-values by Games-Howell post-hoc test were significantly different between valley and lower 

slope (0.030) and valley and upper slope (0.004). For (B), Welch’s ANOVA p-value = 8.1  10-8, and 

pairwise adjusted p-values by Games-Howell post-hoc test were significant between valley and lower 
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slope (1.0  10-3) and valley and upper slope (2.3  10-13). Each rectangular box represents the distribution 

of distances for samples from a certain topographical class, where the orange horizontal bar gives the 

median, and the upper and lower edges of the box represent the upper and lower quartiles (e.g., 75th and 

25th percentile, respectively).  The whiskers indicate variability outside the quartiles and individual datum 

(black dots) are only visible in the extrema outside these ranges. 
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Figure S13. Samples collected from valley topography had (A) higher number of O&G wells within 

1 km radius and (B) older well age for the nearest O&G well compared to samples on the slopes in 

Region II. For (A), Welch’s ANOVA p-value = 5.3  10-4, and pairwise adjusted p-values by Games-

Howell post-hoc test were significant between valley and lower slope (2.8  10-5) and valley and upper 

slope (0.021). For (B), Welch’s ANOVA p-value = 6.6 10-5 (with the Peak class excluded for 

insufficient sample size), and pairwise adjusted p-value by Games-Howell post-hoc test was significant 

between valley and upper slope (1.4  10-5). The well age is calculated as the difference between the 

permit issue date of each well and a chosen date (Jan 1st, 2023). Note that the permit issue data 

information is not available for some of the nearest wells, resulting in a smaller sample size n for each 

box in (B). 

 

In addition to sulfate, other electron acceptors in the groundwater, including the oxide of iron 

and manganese20–23 as well as nitrate,24 can be coupled with microbiological anaerobic methane 

oxidation (Reactions S1 to S3).25 The dissolved Mn and Fe concentrations were statistically 

lower with higher sulfate and lower methane concentration (Fig. S14), and Fe concentration was 

lower with smaller distance to coal mine after controlling the confounding effect of topography 

(Table S4). This was possibly due to that stronger methane oxidation enabled by higher sulfate 

concentration near the coal mine produced more reduced sulfur (Reaction 2 and 3) which could 

combine with Mn2+ and Fe2+ to form the insoluble solid of MnS and FeS. Another explanation 

could be that the extra sulfate introduced by coal mining would drive methane concentration to 

below its natural equilibrium level, which reduced the production rate of dissolved Mn and Fe by 

reaction S1 and S2. Moreover, the dissolved nitrate concentration was positively correlated with 

sulfate concentration while negatively correlated with methane concentration (Fig. S14). There 

was abundant agricultural land cover in Region II, and fertilization and animal waste could add 
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to the groundwater nitrate concentration.26 One hypothesis for the positive correlation between 

sulfate and nitrate could be that agricultural activities contributed to the sources of both species 

through using fertilizer and gypsum (CaSO4 ·2H2O) soil amendments simultaneously.27 Lastly in 

Region II, none of the concentrations of iron, manganese, and nitrate were correlated with 

distance to O&G well after controlling the confounding effect of topography (Table S4). 

 

CH4 + 4MnO2 + 7H+  4Mn2+ + HCO3
- + 5H2O (S1, Mn reduction with methane oxidation23,25) 

CH4 + 8Fe(OH)3 + 15H+  8Fe2+ + HCO3
- + 21H2O (S2, Fe reduction with methane 

oxidation21,22,25) 

CH4 + 4NO3
-  4NO2

- + HCO3
- + H2O + H+ (S3, Nitrate reduction with methane oxidation24,25) 
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Figure S14. The correlation between other redox agents and sulfate and methane concentration as 

well as active underground coal mine and O&G spatial metrics among Region II water samples. 

Subplots on the same row share the same y-axis while those on the same column share the same x-axis. 

Spearman correlation coefficients () and p-values are shown on each subplot. The LOD for the 

measurement of each redox agent could be different between OH samples and WV samples due to 

separate sampling campaigns.  

 



 167 

 

Figure S15. Comparing δ13C – CH4 and distance to the nearest O&G well for the outlier data in 

Fig. 3 and Fig. S8. Subplots on the top row match the four boxes in Fig. S8 while subplots on the lower 

row match the four boxes in Fig. 3 (the title of each subplot indicating the matching box). The vertical 

and horizontal dashed lines represent the median values of O&G distance and δ13C ratio, respectively, 

within each water type or topography class. Note that only samples with methane concentrations above 

0.5 mg/L were selected for δ13C isotopic analysis.  
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ABSTRACT 

 

The oil and gas (O&G) industry is a major contributor to anthropogenic emissions of methane, a 

highly potent greenhouse gas. The large number of O&G well pads makes routine inspection or 

spatiotemporally adequate measurement of methane leaks expensive and sometimes intractable.  

Machine Learning (ML) algorithms with the ability to predict O&G well integrity issues 

connected to methane leakage could help prioritize allocation of sensors. For the first time, we 

manually extracted well characteristics from 1,250 O&G well completion reports in Bradford 

County, PA, appended geospatial metrics, and used them to predict well integrity issues (i.e., 

sustained casing pressure and/or casing vent flow) reported by literature.  Different ML models 

(e.g., Random Forrest, XGBoost and Logistic Regression) were compared, and the best model, 

XGBoost, achieved a 66% F-1 score on test data. Important predictive features were identified 

by the XGBoost model, such as the length of casings, amount of cement, and well operator. 

Moreover, the wells with integrity issues were geospatially clustered in our study region. Such 

clusters could be explained by the clusters of important predictors and topographic variation. 

Overall, the predictions would help prioritize sensor allocation, improve well design, and choose 

well location.  

 

Synopsis 

 

This work compiled a new dataset characterizing oil and gas wells and used it to predict integrity 

issues. Such prediction can guide the prioritized allocation of sensors to detect methane leaks 

from vulnerable wells.  
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Introduction 

 

Methane is a powerful greenhouse gas (GHG) with a short average atmospheric lifetime of 

around 12 years. As a result, methane’s warming potential exhibits a time-dependency, where the 

20- and 100-year global warming potential (GWPs) are 80 and 30 times higher than the reference 

case of carbon dioxide.1  The high, short-term warming effect of methane suggests that its 

emission reduction can uniquely alter the warming rate of the Earth over the next several 

decades, where 57% reduction by 2030 translates to 0.5oC savings by 2100.2  Indeed, all climate 

change scenarios that limit global temperature rise to 4°C  or less require reduction in methane 

emissions.3  Methane emissions from oil and gas (O&G) contribute to around 20% of the total 

anthropogenic emissions,4 and these emissions are thought to be the most technically feasible 

and cost-effective opportunity for immediate emissions reduction.  Indeed, reducing methane 

leakage from O&G infrastructure could feasibly recover revenue for the operators, and models 

estimated that roughly 25% to 50% of the methane emission reduction in the O&G industry 

could be achieved with negative cost.5    

 

A key first step in implementing emission reduction practice from O&G infrastructure is to 

identify accurately leaking components. For this purpose, various monitoring technologies have 

been developed to detect fugitive methane emissions.6,7 Traditionally, manual inspection of well 

sites with tools such as Optical Gas Imaging have been utilized, and the total cost of survey per 

site ranged from $100 to $600 USD.8–10 Considering the large amount of producing O&G wells 

in the U.S. (roughly one million in 202111), and the number of inspections required (assuming 
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once per quarter12), inspecting all O&G wells manually could require $400M-$2.4B annually. 

Remote sensing technologies such as satellite and airborne sensors have gained broad interest 

recently for their ability to scan a large area for methane leakage. However, remote sensing is 

limited by its scanning frequency (e.g., satellite revisit time ranges from several days to two 

weeks13) and resolution (e.g., 30m14) is not sufficient to distinguish methane plumes emitted by 

wells located close to each other, especially under complex surface meteorological conditions). 

For example, an intermittent methane emitter was seen only 30% of the time on average in an 

airborne survey in California.15 One solution might be deploying sensors such as open-path laser 

sensors, infra-red cameras, and cavity ring-down spectrometers in close distance to potential 

emitters and perform continuous monitoring, but the cost of this remains high when deployed 

over vast infrastructure. As such, identifying a subset of O&G facilities with higher risk of 

fugitive methane emission would allow prioritization of sensor allocation or inspection to reduce 

cost, enhance monitoring efficiency, and enable higher chances of meaningfully reducing 

methane leaks.   

  

Supervised Machine Learning (ML) models could be useful for prioritization of O&G wells 

vulnerable to fugitive leakage. Currently, large datasets of direct continuous measurement of 

methane emissions on single O&G well level are lacking or not publicly available. However, large 

publicly available datasets exist for the inspection results of well integrity failures that could lead 

to fugitive methane emissions. These datasets also provided multiple historical inspections of the 

same wells, enhancing their reliability even considering potentially intermittent failures. Therefore, 

the well integrity inspection results could serve as appropriate proxies of the methane emission 

risk. The ML models will predict which wells have integrity issues so that they should be given 
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priority for the close monitoring of methane leaks. Logically, the ability to predict integrity issues 

would require common characterizations of wells that could be related to such know vulnerabilities. 

Physical information on well construction, especially casing and cement, would be promising 

predictor candidates, both because they are plausibly related to integrity failures and because they 

are known quantities.  Lackey et al. used 13 predictors including O&G well parameters such as 

well depth, depth of surface casing, well drilling density, wellbore deviation, and the percentage 

of the production casing cemented to fit logistic regression models to predict over-pressurized 

surface casings among O&G wells in the Wattenberg Test Zone in Colorado.16 However, this 

earlier work didn’t evaluate the models’ prediction performance on a separate dataset not used for 

training (i.e., test set) and it lacked more detailed physical information of well construction, such 

as diameter, length, and grade of different casing strings, and type and amount of cement used.  

 

In general, there is a lack of consistency in required or regulated data collection of O&G well 

physical information among different states, but as a starting point, we explored the utility of 

Pennsylvania’s Exploration and Development Well Information Network (EDWIN) database 

considering the large growth of O&G wells in the region since 2008. EDWIN maintains 

completion reports of O&G wells, including detailed physical information regarding casing and 

cement. Casing and cement make up the functional structures that comprise an O&G well: 

concentric casings (i.e., tubes) include inner casing inserted inside the outer casing, and the space 

between casing (i.e., annulus) is sealed with cement. Sometimes, the annular space is uncemented 

or the cement is faulty (e.g., fractured), which creates a pathway for the upward migration of 

natural gas from geologic formations or leaky casing.16–18 Such migrated gas can accumulate in 

the top part of the annulus beneath a venting valve and gradually increase the annular pressure to 
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form what is annotated as “sustained casing pressure” (SCP). As the SCP builds up, there is 

possibility that the annulus gas escapes through a section of annulus not protected by casing or 

cement. Furthermore, the SCP can be released by open the venting valve on top of the annulus so 

that natural gas (and possibly trapped liquid) is released to the open air via “casing vent flow” 

(CVF). Because SCP and CVF are well integrity issues closely related to methane emissions,16,17 

they are regularly monitored by O&G operators in states including Pennsylvania, New Mexico, 

and Colorado.17 Further, they may be excellent indicators of methane emission risks, and building 

ML models to predict SCP and CVF could help prioritize identification and inspection that helps 

reduce or arrest methane emissions. 

 

In this work, we manually extracted data from EDWIN scanned completion reports so that it was 

ready for ML training. Note that EDWIN reports are not machine readable, and they are stored as 

scanned copy of paper forms, and have inconsistencies in the approach for data entry that require 

human data extraction. Due to the constraints on time and labor, we digitalized well completion 

information of all O&G wells that had casing and/or cement parameters and were tested for SCP 

and/or CVF (n=1250) in Bradford County, PA. This county is located in the Northeastern part of 

Pennsylvania with a high intensity of O&G drilling, and the proportion of wells tested for integrity 

issues is higher than the state-wide average (77 and 36%, respectively).17 Additionally, among 

tested wells in the county, 47% exhibited SCP and/or CVF before 2018, which was higher than 

the state-wide average of 14%.17 As such, the abundance of integrity tests and observed integrity 

issues in Bradford County make it a suitable study region for applying ML methods to predict well 

integrity issues. Using this dataset, we compared the performance of different ML models to help 
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guide prioritization of monitoring for potential methane leaks, ultimately supporting methane 

emission reduction.  

 

Methods 

 

Data collection and processing  

 

The well integrity test results for Pennsylvania O&G wells during 2014 to 2017 were published 

by Lackey et al.17 and summarized in a single variable “SCP_and_or_CVF” defined as follows: 

If the annular pressure exceeds a critical threshold of 50 psi in two consecutive tests or in one 

test but no following tests were conducted, the pressure was labeled as SCP, and measurable gas 

or liquid flow from an annulus outside the production casing was labeled as CVF. For an O&G 

well exhibiting SCP and /or CVF issue at some point during 2014 to 2017, the well was labeled 

as faulty (SCP_and_or_CVF = 1), otherwise it was labeled as nonfaulty (SCP_and_or_CVF = 0). 

This label was used as the target variable of the ML prediction task undertaken here. The well 

construction physical information we used to predict the target variable were extracted from well 

completion reports from the EDWIN database managed by Pennsylvania Department of 

Conservation and Natural Resources Bureau of Geological Survey (accessed via an educational 

subscription;19). The completion reports were scanned files (i.e., photocopies of paper reports), 

and the relevant information (e.g., parameters of casing and cement construction) was extracted 

manually. For data quality control, a second analyst conducted manual verification and 

correction of the logged data. Out of the 1,284 wells tested for integrity issues in Bradford 

County, 1,250 had completion reports containing physical parameters of casing and/or cement in 

the EDWIN database, and this subset of wells were used as samples for our analysis. The 
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EDWIN well completion information was paired to the inspection results dataset (including the 

SCP_and_or_CVF variable) for the 1,250 wells. Note that the completion reports linked cement 

information to the type of casing (e.g., Conductor, Surface, Intermediate, and Production) outside 

which the cement was applied. However, other casing parameters were reported in rows ordered 

by descending casing diameter, without specifying the type of casing. Given such, the casings 

were grouped into four Ranks based on their diameters (see SI method for details). In addition, 

geospatial metrics (e.g., distance to the nearest faulty well and count of faulty wells within a 

certain radius) were constructed to serve as additional predictors. To prevent data leakage, any 

wells in the test set were excluded from the construction of geospatial metrics (see SI method for 

details). A summary of all features used for ML training and evaluation was given in Table S1. 

Among all features except the calculated geospatial features, the median percentage of missing 

value was 25% (Fig. S1). The data processing was implemented using the “pandas” library of 

Python, and the geospatial metrics were constructed using the “sklearn.neighbors” module.   

 

Training and evaluation of ML models  

 

The workflow of training and testing ML models (Fig. S2) began by dividing the whole dataset 

randomly into training dataset (80%) and test dataset (20%) with stratification. A Grid Search 

technique was used to find the optimal hyperparameters, and with each combination of 

hyperparameters, the performances of ML models were evaluated using 5-fold cross-validation 

(CV) on the training dataset. Note that involves splitting the training set into five data bins, and 

iteratively using each bin as CV-validation set (i.e., where the trained models are evaluated) and 

the other four bins as CV-training set (where the models are trained). The “F-1 Score” metric 

was used as the validation score. For each run of cross validation, we built a pipeline consisting 
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of four steps: data preprocessing, feature scaling, feature selection, and model fitting. First, the 

data preprocessing step imputed missing values in numeric features using their medians; in the 

case of categorical values one-hot encoding was employed. Second, each feature was scaled to 

unit variance by subtracting the mean and dividing by the standard deviation. Third, the ANOVA 

F values between the features and the target variable were calculated. A certain number (or 

percentile) of features with the highest F values were selected to stay in the model, and this 

number (or percentile) was treated as a model hyperparameter being tuned.  Fourth, ML models 

were trained on the selected features and their performances were evaluated by the CV-

validation sets, and for each ML model, the best hyperparameters that resulted in the highest 

mean validation score were selected for that model. Then, we compared all ML models and 

selected the one with the highest mean score. Lastly, the selected model was evaluated on the test 

set to produce the test scores, which characterized the model’s generalizability on unseen data. 

The model training and evaluation procedures were implemented using the sklearn library of 

Python.  

 

Performance metrics of ML models  

 

The performance of ML models on our binary classification task (i.e., whether the well was 

faulty or not) can be evaluated via several different metrics. Recall is calculated by Equation 1, 

where positives indicate faulty wells and negatives indicate nonfaulty wells. It equals the number 

of correctly predicted faulty wells divided by the total number of actually faulty wells. Recall 

serves as a proxy for the models’ ability to identify as many faulty wells as possible. High Recall 

would transfer to less faulty wells being missed (i.e., false negative), thus minimizing the 

undetected fugitive methane emissions which could be released from those wells. Precision is 
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calculated by Equation 2. It equals the number of correctly predicted faulty wells divided by the 

total number of predicted faulty wells.  Functionally, a model with higher precision is less likely 

to predict faulty wells when they are actually nonfaulty (i.e., false positive). High Precision 

would lead to fewer resources wasted in conducting high-cost close monitoring of wells without 

integrity failure (e.g., by placing multiple sensors around the wells). An F-1 score is the 

harmonic mean of Recall and Precision (Equation 3), and equally values a model’s Recall and 

Precision. The F-1 score was used as the criteria for choosing the best hyperparameters and 

models.    

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 =  
2 ×  𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 

 

Results and discussion 

 

Prediction performance of ML models 

 

Prediction performance of different ML models were compared using 5-fold CV on the training 

dataset (Fig. 1). We included six ML classification models for the comparison: Random Forrest 

(RF) and XGBoost (XGB) were tree-based classifiers that are known for good performance on 
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mixed numeric and categorical predictors. They grow ‘trees’ by repeatedly splitting samples into 

two ‘branches’ over selected features that minimize sample diversity within each branch. The 

sequential ‘branching’ over multiple features can also leverage the interaction between features; 

Logistic Regression (LR) mimics Linear Regression: the log-odds of an event (e.g., well integrity 

failure) is predicted by a linear combination of predictive features. In addition, a Logistic 

Regression with Interaction (LR-IA) model was also introduced to add interaction terms of all 

features (i.e., the multiplication product of each pair of features, including the product of each 

feature and itself); Support Vector Machine (SVM) uses a decision boundary to separate samples 

of different labels; and K-Nearest Neighbor (KNN) makes prediction based on the labels of 

neighbors in the feature space. When all features (i.e., well features from EDWIN database and 

Lackey et al., as well as calculated geospatial features, Table S1) were used to predict the 

integrity issues of O&G wells, the mean CV F-1 scores of different models ranged from 62% to 

65%. While geospatial features were excluded, the mean F-1 scores ranged from 61% to 65%. 

Although the scores of different models were similar, the XGB model exhibited a small 

advantage with 65% F-1 score in both scenarios. Among compared models except KNN, 

including the geospatial features could slightly increase the mean F-1 scores. Such increase 

suggested that the faulty statuses of other tested O&G wells in the neighborhood could add 

useful information for predicting integrity failures, and spatial correlation of O&G well’s faulty 

status possibly existed in the tested samples.  
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Figure 1. CV F-1 scores of different ML models. The scores of models built on all features and of those 

built on features excluding the geospatial ones are shown by blue and orange bars, respectively. The mean 

of F-1 scores in 5-fold CV was represented by the height of each bar, and the standard deviation of F-1 

scores was shown as each error bar. Note that the models’ hyperparameters had been tuned (i.e., 

hyperparameters corresponding to the highest mean F-1 score had been selected for each model). 

 

The XGB model was re-trained on the entire training set and used to predict the hold out test set 

as a final evaluation of its performance (Fig. 2). When using all features, the model predicted 

70% of the nonfaulty wells in the test set correctly, and 66% of the faulty wells correctly (Fig. 

2A). When excluding geospatial features, 62% of nonfaulty wells were predicted correctly while 

65% of the faulty wells were predicted correctly (Fig 2B). Since the model using all features 

correctly identified more nonfaulty wells and faulty wells than the model excluding geospatial 

features, its Recall (66%) and Precision (66%) were both higher than the other model (65% and 

61%, respectively). As a result, the F-1 score using all features (66%) was higher than that 
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excluding geospatial features (63%). Importantly, the F-1 scores of XGB model on the hold out 

test set were similar to their CV F-1 scores, suggesting that the models had good generalizability 

on unseen data from the same geographical region. This can be very useful since the regional 

proportions of O&G wells tested for integrity failures were low in the U.S. (36% in 

Pennsylvania, 25% in Colorado, and 27% in New Mexico17), and the faulty statuses of the 

untested wells in the these regions can become the targets of ML prediction.  
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Figure 2.  Proportions of test samples predicted as nonfaulty and faulty by the XGB model using 

(A) all features and (B) all features except the geospatial ones. The percentage values in each row sum 

up to 100%. The number of nonfaulty and faulty samples in the test set were 132 and 118, respectively. 

The Recall, Precision, and F-1 Score were 66%, 66%, and 66%, respectively for all features (panel A) and 

65%, 61%, and 63%, respectively for all features excluding the geospatial ones (panel B).  
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Feature importance analysis 

 

SHapley Additive exPlanations (SHAP) value is a useful tool to represent the feature importance 

in a ML model. The SHAP values of the XGB model were used for demonstrating the 

importance of the features in this dataset because (i) the XGB model exhibited relatively high F-

1 scores (Fig. 1), and (ii) XGB models approximate SHAP values (i.e., TreeSHAP) which are 

much more tractable to compute compared to regular SHAP values. SHAP values of the XGB 

models trained on all features (Fig. 3A) and features excluding the geospatial ones (Fig. 3B) 

were shown. Among the 15 most important features in the first scenario, eight were geospatial 

features (including longitude and latitude; Fig. 3A). Well integrity issue was associated with 

smaller distance to the nearest faulty wells and greater distance to the nearest nonfaulty wells. 

These findings supported the clustering of faulty wells in this dataset and necessitated a spatial 

correlation analysis to evaluate the clustering. 

 

When features excluding the geospatial ones were used to train the model (Fig. 3B), the amounts 

in well (i.e., length) of Rank 1, 2, and 3 casings (casing with higher rank has smaller diameter; 

see SI) were the most important features. O&G wells with smaller lengths of these casings were 

more likely to be predicted as faulty by the model. Moreover, smaller hole size for Rank 1 casing 

was linked to faulty well status. Wells with smaller amounts of cement outside the conductor and 

production casing were also likely to be predicted as Faulty. A hypothesis to explain these 

observed SHAP values could be that longer casing and larger amount of cement provided better 

protection to the integrity of O&G wells. When the well was built by a specific operator, C 

(name anonymized), it was less likely to be predicted as faulty. This operator owned the greatest 
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number of wells (44% of total), while the 2nd, 3rd, and 4th biggest operators owned 24%, 11%, 

and 10% of wells, respectively. It was possible that operator C had higher quality standard for 

building wells or better maintenance practice. Furthermore, wells built at locations with smaller 

surface elevation were more likely to be predicted as faulty. This suggested that well integrity 

could be influenced by natural geographical and/or geological features.  
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Figure 3. For XGB predictor using (A) all features and (B) all features excluding geospatial ones, 

the top 15 important features were selected by SHAP values. Samples in the training dataset are 

shown as dots in each row. The SHAP value of each sample is shown by its horizontal location (x-axis 

value), with the color scale representing the normalized value of the concerned feature. A SHAP value 

greater than 0 indicates that the feature value is contributing to the prediction of positive label (i.e., faulty 

well). The absolute value of SHAP value indicates relative importance of the feature. The features are 

ordered by descending importance. Note that categorical features were preprocessed using one-hot 

encoding, which created a binary dummy feature for each class. For example, the feature ‘well operator 

encoded C’ took value of one if the operator was C, or zero if the operator was not C.   

 

Geospatial clustering of well integrity issue 

 

The importance of geospatial features in predicting integrity failures would support a probable 

geospatial clustering of faulty wells within the study region. An overall trend of spatial clustering 

of faulty wells (i.e., faulty wells located closer to each other than nonfaulty wells) was confirmed 

by the Join Counts statistic20–22: Join Counts for ‘black-black’ (i.e., faulty well neighboring 

another faulty well) was 8,410 (simulated p-value = 0.001) compared to its expected mean of 

6,406 assuming random spatial distribution. The geospatial distribution of the clusters were 

shown by the Local Join Counts statistic23,24 (Fig. 4). This statistic only captured clusters of 

faulty wells while ignoring any clusters of nonfaulty wells, and larger values indicated higher 

degrees of clustering between faulty wells (see Fig 4, where the value of the statistic is given by 

the marker color where the clustering was statistically significant). There were two major 

clusters of faulty wells on the Western and Eastern side of our study region in Bradford County, 

PA, and the clustering on the Western side was more substantial than that on the Eastern side 

(Fig. 4). To understand whether such clustering pattern was driven by the spatial distribution of 
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important predictive features, the clustering of four important physical features (selected from 

Fig. 3B) was characterized by Getis and Ord’s Gi* statistics.22,25 Briefly, Getis and Ord’s Gi* 

statistic is a measure of the clustering of high values (warm color) and that of low values (cold 

color). The Western cluster of faulty wells (Fig. 4) overlapped clusters of low values in Rank 3 

casing amount (Fig. S3A), Rank 2 casing amount (weak clustering; Fig. S3C), and cement 

amount outside conductor casing (Fig. S3D). These findings were consistent with the correlation 

between faulty well status and smaller amounts of casing and cement indicated by SHAP values 

(Fig. 3B). However, the Western cluster of faulty wells did not overlap with clusters of smaller 

amounts of Rank 1 casing (Fig. S3B). In addition, the Eastern cluster of faulty wells, which was 

less substantial, did not overlap with the clusters of low values in any of these four features. 

Lastly, the clusters of wells whose operator was not C (Fig. S4, by Local Join Counts) almost 

perfectly overlapped the Western and Eastern clusters of faulty wells, which emphasized the 

impact of this specific operator. Overall, the spatial clustering of faulty wells was correlated with 

the clustering of important predictive features. 
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Figure 4. Spatial clustering of faulty wells characterized by the Local Join Counts statistics. Faulty 

wells that were clustered with statistical significance were shown by warmly colored circles. Warmer 

color indicated higher degree of clustering. Other wells (i.e., nonfaulty wells, and faulty wells that were 

not in statistically significant clusters) are shown by grey-colored circles. To calculate the Local Join 

Counts, the spatial weights were constructed using a distance band equaling the maximum nearest 

neighbor distance among the wells. Local topography is also represented by color scale, with deeper color 

indicating higher topographical positions.  

 

It is possible that natural geological factors could also influence the clustering of faulty wells. 

For example, geological fractures could provide preferential pathways for underground methane 

migration, and if such methane entered the anulus of O&G wells through faulty casing or 

cementation, SCP or CVF may arise. Valleys were known to have higher density of geological 

fractures beneath them due to lithologic weakness and erosion effect,26–30 and geological folds 
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(e.g., synclines and anticlines) could also facilitate the development of certain fractures (e.g., 

joints).31 In our dataset, the Local Join Counts of faulty wells with significant clustering were 

higher in topographic lows (i.e., valley and lower slope) than in the topographic highs (i.e., upper 

slope and peak), and such difference was statistically significant by Welch’s ANOVA and 

Games-Howell post-hoc test (Fig. S5). This suggested that topographic lows could facilitate the 

clustering of integrity issues, and was consistent with the finding that smaller surface elevation 

was linked to faulty well status (Fig. 3B). Moreover, multiple geological folds extend across our 

study region (Fig. S6). The mean distance to the nearest geological fold for faulty wells, 

nonfaulty wells, and all wells were not statistically different, while clustered faulty wells had 

statistically larger mean distance to the nearest geologic fold (Welch’s ANOVA and Games-

Howell post-hoc test; Fig. S7). This suggested that geological folds were unlikely to enhance the 

clustering of well integrity issues.  

 

Implication  

 

According to the recent data survey conducted in 2021,17 only a fraction of O&G wells were 

tested for SCP and/or CVF in three U.S. states (36% in Pennsylvania, 25% in Colorado, and 27% 

in New Mexico by 2018), and many other states lack any kind of data on such tests. This will 

certainly change under new legislation, and the untested wells open the opportunity for using ML 

models to predict well integrity weaknesses in them, potentially allowing for correction prior to 

catastrophic failure or on a more metered timeframe. In this study, the best performing ML 

model, XGB, achieved a 66% F-1 score on the hold out test set. The prediction results of well 

integrity issues can have the following applications: First, these results can guide prioritized 
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allocation of sensors and other Leak Detection and Repair (LDAR) efforts to monitor methane 

leaks. Although the predictions of our ML models were not perfectly accurate, such information 

was already useful for optimizing the monitoring strategy. For example, if the model had a 66% 

F-1 score, the monitoring team would still place sensors on the wells predicted as nonfaulty, 

since they knew that a fraction of those wells could be mistakenly predicted. However, they 

would place a smaller amount of sensors on each of those wells than on each of the wells 

predicted as faulty. This could decrease the total number of sensors needed than uniformly 

placing sensors around each well. Prioritized placement of sensors can translate to a lower total 

cost, better detection, and a more accurate fee structure under the new IRA tax. Second, an 

improved understanding of how features are correlated with integrity issues can improve 

guidelines for future well construction. For example, wells with shorter Rank 1, 2, and 3 casings 

were more likely to be predicted as faulty, and smaller amount of cement outside conductor and 

production casing were also associated with faulty status. Future well designers should take these 

into account and improve their strategy to make more reliable wells. In addition, well operator C 

was linked to lower chance of integrity failure. This emphasized that operators were not equal in 

terms of maintaining well integrity and such inequality should be noticed by the regulators and 

or leveraged to promote best practices among the industry. Third, the algorithm and underlying 

understanding may support identification of poor and strong locations to build new wells. 

Operators should avoid drilling new wells near existing clusters of faulty wells and choose 

topographical highlands, as they tended to show a less degree of faulty well clustering.   

 

The implications of this work on regulated data collection are numerous. The difficulty and cost 

of extracting information from the completion reports can be a major challenge for the large-
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scale application of our approach and threatens implementation at scale. For example, in 

Pennsylvania, most of the completion reports were photocopies of paper documents, and 

manually extracting information from them would cost a large amount of time and human labor 

(there are over 150,000 O&G wells in PA by 2018).17 In addition, the variation in the format of 

the report (i.e., what fields were included in the tables) was substantial and resulted in large 

portion of missing values in some features (Table. S1 and Fig. S1). A facile solution would be to 

enforce the digitalization of information logging using standardized formatting. For example, 

O&G operators should upload the well completion information by filling out web-based forms or 

uploading electronic spreadsheets, instead of submitting paper forms. These will make the 

information immediately available for ML training or statistical analysis and solve many of the 

issues associated with file-to-file variation. Alternatively, tools can be developed to 

automatically digitalize the already uploaded photocopies. However, it should be noted that the 

heterogeneities in the way the forms are filled out required human interpretation in our study.  

Nevertheless, technologies such as Computer Vision and Natural Language Processing could 

potentially provide useful solutions if better homogenization or field enforcement was applied. 

Critically, another substantial challenge regarding data availability is that many states in the US 

haven’t required SCP and/or CVF test or haven’t made the test results publicly available. Lackey 

et al. searched for SCP and/or CVF test records in 33 US states and only found useful publicly 

available data in Pennsylvania, Colorado, and New Mexico.17 Therefore, we urge that more US 

states and nations with O&G production to enforce regular well integrity investigation and 

publish the results as more data can improve the ML model performance and lead to higher 

efficiency in monitoring and mitigating O&G methane emissions.  Moreover, SCP and/or CVF 

test was not required for plugged or abandoned wells even in the three data-reporting states.17 As 
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wells are transitioned from active to retired, they may continue emitting methane due to integrity 

failures so tests of these wells should be required under new legislation.  

 

Furthermore, we highlight that Bradford County was dominated by unconventional O&G wells 

(roughly 95% wells were horizonal or deviated). In other words, this training dataset was biased 

toward unconventional wells, and this could limit the generalization of the current results. This is 

particularly true considering unconventional wells exhibited higher frequency of SCP and/or 

CVF than conventional wells in Pennsylvania and Colorado.17 Given such, the ML models 

trained on this Bradford County dataset are most suitable to make predictions in other 

unconventional well-dominated regions. In the future, when more digitalized well construction 

data become available in other parts of Pennsylvania or other parts of the world, which covers a 

more balanced distribution of conventional versus unconventional wells, the ML models can be 

retrained to improve performance on both well types. Last but not the least, due to the 

correlational nature of SHAP values (and of ML models), the feature importance demonstrated in 

this study could only imply correlations between the features and the model output (i.e., faulty 

status of O&G wells), instead of determining the causal relationship between them. A good 

strategy would be to modify well designs using these correlations as guidelines (e.g., increasing 

the length of certain casings) and observe their impacts on well integrity by periodic survey.  
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Supporting information for Chapter 4 

 

Supplementary methods 

 

Details of processing casing and cement information 

 

The EDWIN completion reports usually reported the parameters of each casing in a separate row 

and ordered the rows by descending casing diameter, but didn’t specify the casing type (e.g., 

Conductor, Surface, Intermediate, and Production) for each row. In order to align the casings of 

similar diameters from different wells, we grouped the casings into several Ranks according to 

their diameters. First, we noticed that four pipe sizes (i.e., diameters, in inches) were most 

common throughout the dataset: 20, 13.375, 9.625, and 5.5. This implied that the diameters of 

casings followed some industrial standards. We further assigned each casing to one of four 

Ranks using their diameters in inches: Rank 1 (diameter >= 16), Rank 2 (16 > diameter >= 

11.75), Rank 3 (11> diameter >= 7.625), and Rank 4 (7.625 > diameter >= 4.5). The length of 

the casing increased from Rank 1 to Rank 4. In fact, the diameter ranges of Rank 1 to 4 matched 

the common diameters of Conductor, Surface, Intermediate, and Production casing, 

respectively.1,2 

 

When the completion reports didn’t include a dedicated table for cement information, they often 

reported cement information under the name ‘material behind pipe’ in the rows of casing 

parameters. Specifically, type and amount of ‘material behind pipe’ were reported in each row. 

We consolidated such information (e.g., amount of cement behind Rank 1 casing) into the 



 198 

cement information which was reported together with a casing type (e.g, amount of cement 

behind Conductor casing). Particularly, we assumed a matching relationship between the casing 

Rank and casing type, such that we moved ‘material behind pipe’ of Rank 1 casing to be 

Conductor casing cement, that of Rank 2 casing to be Surface casing cement, that of Rank 3 

casing to be Intermediate casing cement, and that of Rank 4 casing to be Production casing 

cement.  

 

In most reports, the unit of cement amount was sacks, which can be abbreviated as ‘sks’ or ‘sx’. 

However, other units were also used. We applied the following unit conversion ratios: one barrel 

(‘BBLs’) equals four sacks, one cubic yard (‘yds’) equals 27 sacks, and one pound (‘lbs’) equals 

0.01 sack.3–5 In addition, if the type of cement indicated no cement was used (e.g., ‘uncemented’, 

‘driven in’, or ‘screwed in’), the amount of cement was set to be zero. Lastly, the cement outside 

of production casing consisted of two parts in the majority of reports: lead and tail. For the 

reports that didn’t specify whether the cement was lead or tail (and for material behind Rank 4 

casing), we assigned the data to the lead category.  

 

Details of data cleaning and processing 

 

For different types of features, we adopted the following processing approaches: First, date 

features in the dataset (e.g., drilling start date) were converted to the number of days between 

that date and a fixed benchmark date, December 31st, 2023, in order to be utilized by ML 

models. Second, categorical features including thread/weld type of casing, grade of casing, and 

type of cement could have a large number of possible values (e.g., greater than 20). In such 
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cases, the one-hot encoder would create an intractable number of dummy columns which greatly 

expanded the dimension of the feature space and harmed the stability of ML models. However, 

we noticed that several popular values accounted for most of the samples (e.g., > 90%) and the 

rest values only had small counts in the dataset. Therefore, we kept the popular values and 

grouped the rest values into a single class ‘other’. Third, some reports gave ‘yes or no’ answer to 

whether gas blocking measures were applied for each casing type, while others had long 

descriptions of the specific measures taken, which were difficult to categorize and to be handled 

by one-hot encoding. To consolidate these two types of information, we only kept a binary 

column indicating whether the report had documented gas blocking measures or not, and used it 

as a predictive feature. Fourth, there were two types of total well depth (i.e., the sum of vertical 

depth and horizontal depth): the one measured by driller and the one measured by logger, and we 

used both as predictive features. If the total depth didn’t specify which type it belonged to (e.g., 

it was simply called “total measured depth”), we assumed it was measured by driller.  

 

Details of constructing geospatial metrics to avoid data leakage  

 

The construction of geospatial metrics (e.g., count of faulty/nonfaulty wells within a radius, and 

distance to the nearest faulty/nonfaulty well) required knowing the faulty statuses of the 

neighboring wells. However, the dataset was divided into a training set (or Cross-Validation 

(CV) training set) with known labels (i.e., faulty status) during model training, and a test set (or 

CV validation set) reserved for evaluating the trained model, whose information was ‘invisible’ 

during model training. Given such, the faulty statuses of the wells in the test set should not be 

used for model training to avoid the so-called ‘data leakage’. In this study, the geospatial metrics 
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were only calculated using the geospatial coordinates and faulty statuses of wells in the training 

set (or CV training set), excluding any wells in the test set (or CV validation set). For example, 

when we counted the number of faulty wells in the neighborhood of a given well during model 

training, we only counted those wells in the training set whose faulty statuses were known to us. 

And during model evaluation, we also only counted the number of faulty wells in the training set 

in the neighborhood of each well in the test set (we assumed that each test sample was 

independent, so it didn’t know the location and faulty status of other test samples). The same 

principle applied to the calculation of distance to the nearest neighboring well.  

 

Topography and geological folds  

 

We constructed four topographical classes (i.e., valley, lower slope, upper slope, and peak) by 

adapting the classification system of Theobald et al.,6 which was based on a multi-scale 

topographic position index (mTPI). The locations of geological folds within our study region 

were downloaded from Pennsylvania Department of Conservation and Natural Resources.7 We 

calculated the distance between O&G wells and geological folds using the distance() method of 

the GeoPandas module of Python.  

 

Supplementary tables 

 

Table S1. List of feature names, data source, percentage of missing values, and note 

 Feature Data 

Source 

Missing 

(%) 

Note 
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1 api EDWIN8 0  

2 well_type EDWIN 2  

3 well_orientation EDWIN 35  

4 1st_drill_method EDWIN 7  

5 2nd_drill_method EDWIN 11  

6 days_passed_since_drilling_start_date EDWIN 2  

7 days_passed_since_drilling_complete_date EDWIN 3  

8 ground_water_depth_ft EDWIN 83  

9 depth_of_deepest_fresh_ground_water_ft EDWIN 52  

10 true_vertical_depth_ft EDWIN 67  

11 surface_elevation_ft EDWIN 2  

12 total_depth_by_driller_ft EDWIN 3  

13 total_depth_by_logger_ft EDWIN 68  

14 cement_returned_on_surface_casing EDWIN 4  

15 cement_returned_on_intermediate_casing EDWIN 38  

16 cement_type_conductor_casing EDWIN 24  

17 cement_total_amount_conductor_casing_sks EDWIN 26  

18 cement_slurry_temperature_fahrenheit_conductor_casing EDWIN 89  

19 cement_WOC_Hrs_conductor_casing EDWIN 84 WOC stands for 

Wait for 

Cement. It is the  

time spent “to 

suspend drilling 

operations 

while allowing 

cement slurries 

to solidify, 

harden and 
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develop 

compressive 

strength”.9 

20 cement_Wt_PPG_conductor_casing EDWIN 86 Wt_PPG stands 

for weight in 

pounds per 

gallon. 

21 cement_Yld_ft3/sk_conductor_casing EDWIN 87 Yld_ft3/sk 

stands for yield 

in cubic feet per 

sack. It is “the 

volume 

occupied by one 

sack of dry 

cement after 

mixing with 

water and 

additives to 

form a slurry of 

a desired 

density”.10 

22 gas_block_documented_conductor_casing EDWIN 0  

23 cement_type_surface_casing EDWIN 25  

24 cement_total_amount_surface_casing_sks EDWIN 25  

25 cement_slurry_temperature_fahrenheit_surface_casing EDWIN 73  

26 cement_WOC_Hrs_surface_casing EDWIN 68  

27 cement_Wt_PPG_surface_casing EDWIN 68  

28 cement_Yld_ft3/sk_surface_casing EDWIN 68  

29 gas_block_documented_surface_casing EDWIN 0  
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30 cement_type_intermediate_casing EDWIN 6  

31 cement_total_amount_intermediate_casing_sks EDWIN 6  

32 cement_slurry_temperature_fahrenheit_intermediate_casing EDWIN 73  

33 cement_WOC_Hrs_intermediate_casing EDWIN 68  

34 cement_Wt_PPG_intermediate_casing EDWIN 68  

35 cement_Yld_ft3/sk_intermediate_casing EDWIN 68  

36 gas_block_documented_intermediate_casing EDWIN 0  

37 cement_lead_type_production_casing EDWIN 11 Lead cement is 

the upper 

section of 

cement. 

38 cement_tail_type_production_casing EDWIN 52 Tail cement is 

the lower 

section of 

cement. 

39 cement_lead_slurry_temperature_fahrenheit_production_casi

ng 

EDWIN 73  

40 cement_tail_slurry_temperature_fahrenheit_production_casin

g 

EDWIN 82  

41 cement_lead_total_amount_production_casing_sks EDWIN 14  

42 cement_tail_total_amount_production_casing_sks EDWIN 53  

43 gas_block_documented_lead_production_casing EDWIN 0  

44 gas_block_documented_tail_production_casing EDWIN 0  

45 cement_lead_WOC_Hrs_production_casing EDWIN 73  

46 cement_lead_Wt_PPG_production_casing EDWIN 69  

47 cement_lead_Yld_ft3/sk_production_casing EDWIN 69  

48 cement_tail_WOC_Hrs_production_casing EDWIN 82  

49 cement_tail_Wt_PPG_production_casing EDWIN 73  
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50 cement_tail_Yld_ft3/sk_production_casing EDWIN 73  

51 well_operator_encoded EDWIN 1  

52 thread_weld_rank_1_casing EDWIN 44  

53 grade_casing_tubing_type_rank_1_casing EDWIN 69  

54 country_of_origin_rank_1_casing EDWIN 75  

55 Recycled_rank_1_casing EDWIN 80  

56 hole_size_inch_rank_1_casing EDWIN 25  

57 pipe_size_inch_rank_1_casing EDWIN 6  

58 weight_lbs/ft_rank_1_casing EDWIN 41  

59 amount_in_well_ft_rank_1_casing EDWIN 6  

60 days_passed_since_date_run_rank_1_casing EDWIN 8  

61 thread_weld_rank_2_casing EDWIN 28  

62 grade_casing_tubing_type_rank_2_casing EDWIN 36  

63 country_of_origin_rank_2_casing EDWIN 75  

64 Recycled_rank_2_casing EDWIN 75  

65 hole_size_inch_rank_2_casing EDWIN 25  

66 pipe_size_inch_rank_2_casing EDWIN 25  

67 weight_lbs/ft_rank_2_casing EDWIN 26  

68 amount_in_well_ft_rank_2_casing EDWIN 25  

69 days_passed_since_date_run_rank_2_casing EDWIN 25  

70 thread_weld_rank_3_casing EDWIN 7  

71 grade_casing_tubing_type_rank_3_casing EDWIN 35  

72 country_of_origin_rank_3_casing EDWIN 75  

73 Recycled_rank_3_casing EDWIN 75  

74 hole_size_inch_rank_3_casing EDWIN 3  

75 pipe_size_inch_rank_3_casing EDWIN 3  

76 weight_lbs/ft_rank_3_casing EDWIN 4  
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77 amount_in_well_ft_rank_3_casing EDWIN 4  

78 days_passed_since_date_run_rank_3_casing EDWIN 4  

79 thread_weld_rank_4_casing EDWIN 9  

80 grade_casing_tubing_type_rank_4_casing EDWIN 35  

81 country_of_origin_rank_4_casing EDWIN 75  

82 Recycled_rank_4_casing EDWIN 75  

83 hole_size_inch_rank_4_casing EDWIN 6  

84 pipe_size_inch_rank_4_casing EDWIN 5  

85 weight_lbs/ft_rank_4_casing EDWIN 6  

86 amount_in_well_ft_rank_4_casing EDWIN 6  

87 days_passed_since_date_run_rank_4_casing EDWIN 6  

88 latitude Lackey et 

al.11  

0  

89 longitude Lackey et 

al. 

0  

90 well_status Lackey et 

al. 

0  

91 scp_and_or_cvf Lackey et 

al. 

0 This is the 

target variable 

to be predicted. 

92 distance_to_nearest_well_km Calculated 0  

93 count_well_within_0.005km Calculated 0  

94 count_well_between_0.005_and_0.01km Calculated 0  

95 count_well_between_0.01_and_0.1km Calculated 0  

96 count_well_between_0.1_and_1km Calculated 0  

97 count_well_between_1_and_2km Calculated 0  

98 count_well_between_2_and_5km Calculated 0  
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99 count_well_between_5_and_10km Calculated 0  

100 distance_to_nearest_faulty_well_km Calculated 0  

101 count_faulty_well_within_0.005km Calculated 0  

102 count_faulty_well_between_0.005_and_0.01km Calculated 0  

103 count_faulty_well_between_0.01_and_0.1km Calculated 0  

104 count_faulty_well_between_0.1_and_1km Calculated 0  

105 count_faulty_well_between_1_and_2km Calculated 0  

106 count_faulty_well_between_2_and_5km Calculated 0  

107 count_faulty_well_between_5_and_10km Calculated 0  

108 distance_to_nearest_nonFaulty_well_km Calculated 0  

109 count_nonFaulty_well_within_0.005km Calculated 0  

110 count_nonFaulty_well_between_0.005_and_0.01km Calculated 0  

111 count_nonFaulty_well_between_0.01_and_0.1km Calculated 0  

112 count_nonFaulty_well_between_0.1_and_1km Calculated 0  

113 count_nonFaulty_well_between_1_and_2km Calculated 0  

114 count_nonFaulty_well_between_2_and_5km Calculated 0  

115 count_nonFaulty_well_between_5_and_10km Calculated 0  

 

 

Supplementary figures 
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Figure S1. Distribution of the percentage of missing values among features. Calculated geospatial 

features are excluded. The rectangular box represents the statistical distribution, where the orange 

horizontal bar gives the median (25%), and the upper and lower edges of the box represent the upper and 

lower quartiles (69% and 5.5%, respectively).  The whiskers indicate variability outside the quartiles. The 

percentage of missing values for each feature was represented by a red circle.  
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Figure S2. workflow of training and testing machine learning models  
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Figure S3. Clusters of high and low values of four important continuous features: (A) amount of 

Rank 3 casing, (B) amount of Rank 1 casing, (C) amount of Rank 2 casing, and (D) total amount of 

cement outside conductor casing. The standardized Getis and Ord’s Gi* statistics of the features are 

represented by the color scale: a warmer color indicates clustering of high feature values, while a colder 

color indicates clustering of low feature values, and wells without statistically significant clustering are 

colored in grey. Local topography is also represented by color scale, with deeper color indicating higher 

topographical positions.  
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Figure S4. Clustering of wells whose operators were not C. Statistically significant clusters of wells 

whose operator were not C were shown by warmly-colored circles. Warmer color indicated higher degree 

of clustering. Other wells (i.e., wells that belonged to operator C, and wells that didn’t belong to operator 

C but were not in statistically significant clusters) are shown by grey-colored circles. To calculate the 

Local Join Counts, the spatial weights were constructed using a distance band equaling the maximum 

nearest neighbor distance among the wells. Local topography is also represented by color scale, with 

deeper color indicating higher topographical positions. 

  



 211 

 

Figure S5. The clustering of faulty wells (represented by Local Join Counts) were more substantial 

in topographical low-lands. Only wells with statistically significant Local Join Counts were included in 

the comparison. The orange horizontal bar of each box gives the median, and the upper and lower edges 

of the box represent the upper and lower quartiles (e.g., 75th and 25th percentile, respectively).  The 

whiskers indicate variability outside the quartiles. The statistically significant difference in the mean 

Local Join Counts among topographical groups was indicated by Welch’s ANOVA test (p-value = 6  10-

5) and Games-Howell post-hoc test (pairwise adjusted p-values were significant between Valley and 

Upper Slope (4  10-2) and between Lower Slope and Upper Slope (1 10-5)).  
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Figure S6. The locations of clustered faulty wells and geological folds in the study region. Faulty 

wells that were clustered with statistical significance were shown by warmly-colored circles. The color 

scale indicated degree of clustering. Other wells (i.e., nonfaulty wells, and faulty wells that were not in 

statistically significant clusters) are shown by grey-colored circles. To calculate the Local Join Counts, 

the spatial weights were constructed using a distance band equaling the maximum nearest neighbor 

distance among the wells. The geological folds are shown in blue lines.7 Local topography is also 

represented by color scale, with deeper color indicating higher topographical positions. 
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Figure S7. Clustered faulty wells (with statistically significant Local Join Counts) had slightly 

larger distances to the nearest geological fold compared to faulty wells, nonfaulty wells, and all 

wells. The orange horizontal bar of each box gives the median, and the upper and lower edges of the box 

represent the upper and lower quartiles (e.g., 75th and 25th percentile, respectively).  The whiskers indicate 

variability outside the quartiles and individual datum (black dots) are only visible in the extrema outside 

these ranges. The statistically significant difference in the mean distance to fold among well groups was 

indicated by Welch’s ANOVA test (p-value = 1  10-2) and Games-Howell post-hoc test (pairwise 

adjusted p-values were significant between clustered faulty wells and all wells (4  10-2) and between 

clustered faulty wells and Nonfaulty wells (1 10-2)). 
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ABSTRACT 

 

Continuous monitoring is a powerful strategy to address the intermittency issue of oil and gas 

methane emissions. Prototype chemiresistive methane sensors with compact size, low cost, and 

low energy consumption had been developed for large-scale continuous monitoring. However, 

such sensors suffer from the interference signals of other gas species such as water vapor. In this 

chapter, a machine learning (ML) framework is proposed to achieve signal deconvolution for the 

prototype sensors. An apparatus consisting of mass flow controllers, a gas chamber, and a data 

logging system was built to collect data for ML model training and testing. In addition, 

preliminary tests were conducted to study the influences of humidity and gas flow rate on the 

performance of the sensors. Lastly, ongoing equipment upgrades integrate additional commercial 

sensors and temperature control systems into the apparatus.   

 

Introduction 

 

To mitigate methane emissions from Oil and Gas (O&G) infrastructures, efficient leakage 

monitoring tools are desired. Remote sensing instruments (e.g., those mounted on satellites and 

airplanes) offer a solution to monitor methane leakage in large geographical regions. However, 

due to the discontinuous nature of remote sensing monitoring, intermittent methane emissions 

were still not well accounted for and led to an underestimation of the total emission rate. 

Therefore, continuous monitoring tools are important to fill this gap. Optical sensors are widely 

used for continuous methane leakage monitoring. Examples of these sensors are infrared 

cameras, open-path laser detectors, and cavity ring-down spectrometers. However, these sensors 
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are typically expensive and have intense energy consumption. There are about one million 

producing O&G wells in the US,1 and about 14% of them have integrity issues that could lead to 

methane emissions (based on data from Pennsylvania, Colorado, and New Mexico).2 Even if 

only wells with integrity issues are to be continuously monitored (and if these wells can be 

identified with 100% accuracy), about 140 thousand continuous sensors are still needed 

assuming each well is monitored by one sensor. Therefore, the expensive optical sensors are not 

suitable for such a large-scale deployment. Instead, sensors with low cost, low energy 

consumption, and compact size are better candidates for this task. Recently, Bezdek et al.3 

reported a novel chemiresistive methane sensor based on catalytic methane oxidation. This 

prototype sensor is printed on a glass substrate 2.5 cm long and 1.5 cm wide, costs less than $10, 

and can operate using 0.1 mW of energy. Its small size will enable its placement in narrow or 

confined spaces that cannot be reached by other sensors, and its low cost and low energy 

consumption will facilitate massive production and deployment. However, this prototype sensor 

responds not only to methane but also to other interfering species such that it is difficult to 

separate methane’s signal from those of other species. Given such, a signal deconvolution 

program is needed for this prototype sensor before it can be utilized for real-world methane 

emission monitoring. 

 

In this chapter, a machine learning (ML) framework is proposed for signal deconvolution of the 

prototype chemiresistive sensors. A gas chamber was built to collect signals from a sensor array, 

and the gas concentrations inside the chamber were controlled by mass flow controllers (MFCs). 

The sensor signals served as predictive features, while the gas concentrations were target 

variables for ML training and testing. Since the work is still ongoing, this chapter focuses on 
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introducing the apparatus for collecting ML data as well as the preliminary results characterizing 

the prototype sensors. Specifically, the influences of relative humidity (RH) and total flow rate 

on the sensors’ ability to detect methane are discussed. Moreover, the ongoing efforts to integrate 

commercially available MQ-series sensors into the sensor array, and to add temperature control 

capacity to the apparatus are described. Finally, the future steps of the project and the research 

implications are briefly discussed.  

 

Material and method 

 

Concept of machine learning for signal deconvolution 

 

The goal of signal deconvolution is to obtain the concentration (i.e., gas phase mixing ratio) of 

each gas component in the gas mixture (e.g., ambient air polluted by natural gas leakage). The 

ML models take the signal from each sensor as predictive features, and predict the true gas 

concentration of each component as target variables. Specifically, if an array of n sensors is used 

to measure a gas mixture containing m components, the predictive features will be x1, x2, …, xn 

with xi being the signal of the ith sensor, and the target variables will be y1, y2, …, ym with yj 

being the true concentration of gas component j. In a simplified scenario, we can assume that the 

underlying relationships between the predictive features and the target variables are linear, and 

we can use linear regressions to predict the y variables (Eqn. 1). The coefficient kji represents the 

contribution of sensor signal xi on the predicted value of yj. The coefficients are fitted using a 

training dataset consisting of data points (x1, x2, …, xn, y1, y2, …, ym). Each data point 

corresponds to one experiment, where the true gas concentrations y1 through ym are manually set 



 219 

by controlling gas mixing ratios, and the sensor signals x1 through xn are recorded. The 

experiment is repeated for different gas concentrations. Eventually, the trained ML model is 

evaluated in a held-out test dataset obtained using the same approach. The underlying 

relationship between the predictive features and the target variables can be nonlinear. In those 

cases, more complex nonlinear models such as neural networks (Fig. 1) can replace the linear 

regression model.  

 

Equations 1, using sensor readings to predict true concentrations of gases 

𝑦1 = 𝑘11 ∙  𝑥1 + 𝑘12 ∙  𝑥2 + 𝑘13 ∙  𝑥3 + ⋯ +  𝑘1𝑛 ∙  𝑥𝑛 

𝑦2 = 𝑘21 ∙  𝑥1 + 𝑘22 ∙  𝑥2 + 𝑘23 ∙  𝑥3 + ⋯ +  𝑘2𝑛 ∙  𝑥𝑛 

𝑦3 = 𝑘31 ∙  𝑥1 + 𝑘32 ∙  𝑥2 + 𝑘33 ∙  𝑥3 + ⋯ +  𝑘3𝑛 ∙  𝑥𝑛 

… 

𝑦𝑚 = 𝑘𝑚1 ∙  𝑥1 + 𝑘𝑚2 ∙  𝑥2 +  𝑘𝑚3 ∙  𝑥3 + ⋯ +  𝑘𝑚𝑛 ∙  𝑥𝑛 

 

 

Figure 1. Concept of using advanced machine learning algorithms (e.g., Neural Network) to predict 

gas concentrations. The input layer, hidden layer, and output layer of the neural network are represented 

by blue, yellow, and orange circles, respectively. 
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Sensing material 

 

The method to fabricate the prototype chemiresistive sensors was reported by Bezdek et al.3 

Briefly, single-walled carbon nanotubes (SWCNTs) were combined with poly(4-vinylpyridine) 

and subsequently with a platinum-polyoxometalate (Pt-POM) catalyst. Such material was 

deposited between gold electrodes printed on a glass substrate. The Pt-POM catalyzed the 

oxidation of CH4 to CH3OH, HCHO, or CH3CHO, and this redox process changed the carrier 

density inside the SWCNT network thus modifying its resistance. The change of resistance then 

created an electrical signal measured by a potential stat connected to the sensor. Bezdek et al. 

reported that exposing the sensor to 0.5% methane at room temperature and 10 ± 5% RH could 

reduce its resistance by about 0.8%.3 A fabricated sensor device consisted of four sensing 

channels, which were four individual chemiresistive sensors sharing a common counter-electrode 

on the same piece of glass substrate. The four sensing channels could undergo different surface 

treatments so that they would produce distinguishable signals to be utilized by ML prediction 

(i.e., x1, x2, x3, and x4 as in Eqn. 1). The size of the device was about 2.5 cm long and 1.5 cm 

wide, and its material cost was below $10. The sensors could operate at a fixed potential of 0.1 

V, thus the power consumption of one device (four channels; the resistance of each greater than 

500 Ω) would be smaller than 0.1 mW. The compact size, low cost, and small energy 

consumption of this prototype device make it suitable for massive deployment to monitor a large 

number of Oil and Gas (O&G) facilities.  

 

Experimental set-up 
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The apparatus to collect ML data for signal deconvolution is shown in Fig. 2. On the right-hand 

side of the apparatus, a Mass Flow Controller Array for Nanostructure Growth Optimization 

(MANGO) was used to control the flow rate of each gas component. The output gas flow of the 

first MFC on the right side of MANGO went through a gas bubbler to pick up water vapor and 

then converged with the output flow of other MFCs to enter a gas chamber in the middle of the 

set-up. Two prototype chemiresistive sensor devices were installed in a holder platform inside 

the gas chamber to produce signals responding to the gas concentrations in the chamber. Jumper 

wires were used to transmit the signals to a potential stat and then to a laptop computer. The 

effluent gas of the gas chamber was collected by a snorkel. In addition, a hygrometer was used to 

measure the RH inside the gas chamber. Finally, the prototype sensor devices were stored in a 

desiccator while not in operation.   
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Figure 2. Experimental set-up to collect data for ML signal deconvolution 

 

The MANGO system was designed to control multiple MFCs either manually or automatically 

through programming. I used four MFCs (Aalborg) with the MANGO system: the first and 

second one for supplying air, the third one for increasing air flow rate precision, and the fourth 

one for supplying methane. The first and second MFC both had a maximum flow of 5,000 

standard cubic centimeters (sccm) for air. However, the precision of each MFC was 1% of its 

maximum flow rate, thus they could not change flow rates by any increments smaller than 50 

sccm. To improve the precision of the air flow rate, the third MFC had a 69 sccm maximum flow 
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rate for air (it was originally calibrated for 100 sccm helium; I converted its flow rate using the 

K-factor ratio between air and helium). For example, a total air flow rate of 1,010 sccm was 

created by setting the second MFC at 1,000 sccm and the third MFC at 10 sccm. In addition, the 

fourth MFC had a maximum flow rate of 337 sccm for 10% methane in nitrogen (the MFC was 

originally calibrated for 500 sccm helium).  Lastly, a Totalizer-Input/Output Flow 

Monitor/Controller (TIO; Aalborg) was paired with each MFC as an additional valve to turn on / 

off the MFC output gas flow. 

 

The output air flow of the first MFC entered a gas bubbler filled with MilliQ water. The bubbler 

used a quartz air stone which dispersed the air flow into small bubbles to make them saturated 

with water vapor. This saturated wet air flow was then converted with the output of the second 

MFC (dry air). By controlling the flow rate ratio between the first and second MFC, a desired 

RH level could be set. For example, 2,000 sccm of saturated wet air and 2,000 sccm of dry air 

could be combined to 4,000 sccm of air with an expected 50% RH. The actual RH of the gas 

flow was measured by a hygrometer (Traceable) installed inside the gas chamber and used for 

ML training.  

 

A computer software, Ansari (v2.7.9, Aerogel Technologies, LLC), was used to control the 

MANGO system. The software could be run in either manual mode or automation mode. In the 

manual mode, the TIOs were first switched on, and then the desired flow rates were manually set 

for the MFCs. After the experiment was completed, the flow rates were set back to zero and the 

TIOs were switched off. In automation mode, a script written in .txt format specified the steps to 

run the experiment. For example, it could automatically turn on methane gas and set its flow rate 
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to 100 sccm 30 minutes after the program started, and turn it off after another 10 min. In 

addition, the steps could be repeated for a desired number of times using a for-loop in the script. 

Lastly, Ansari generated log files (in .txt format) after the script finished running. One log file 

documented the timestamps of each action taken (e.g., turning a certain MFC on or off), and 

another documented the time-series flow rate data of each MFC during the experiment.  

 

Combined gas flow from the MANGO system then entered a gas chamber where the 

chemiresistive sensors were installed (Fig. 3 and Fig. 4). The chamber consisted of a transparent 

quartz tube (35.6 cm long, 12 cm inner diameter; Technical Glass Products, Inc.), two aluminum 

end caps (DPM Solutions Inc.), and a platform for holding the sensors (MIT Machine Shop) 

mounted on two quartz rods (McMaster-Carr). The inlet gas tubing was connected to the front 

end cap by an ¼ inch NPT fitting. On the rear end cap, the outlet gas exited the chamber through 

another ¼ inch NPT fitting, and electrical wires went through either ¼ inch or ½ inch NPT 

fittings. In a typical experiment, two prototype chemiresistive sensor devices were installed in 

the chamber (Fig. 4). Each device had five electrodes (four sensing channels and one shared 

counter electrode) connected to the potential stat via five jumper wires. These jumper wires went 

through one of the ½” NPT fittings on the rear end cap, and the wire of the hygrometer went 

through the other ½” fitting. The two ¼” NPT fittings on the rear end cap were reserved for 

future applications. The gap between the end cap and the quartz tube was sealed by an O-ring 

(Dash 352 Viton O-ring, McMaster-Carr). The internal volume of the chamber was 4,026 cm3, 

and the desired total gas flow rate was set to 4,000 sccm, which resulted in a gas retention time 

of about one minute. Lastly, the gas chamber was leveraged to about 10 cm above the bench 

surface by a customized aluminum racket made by the MIT Machine Shop.  
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Figure 3. Schematic of the test chamber design 
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Figure 4. Chemiresistive sensors installed inside the gas chamber 

 

A potential stat (34970a, Agilent Technologies, Inc) was used to continuously measure the 

resistance of chemiresistive sensors. Upon interacting with methane gas in the gas chamber, the 

sensors’ resistance would change thus forming measurable signals. The sampling frequency of 

the potential stat was 1 Hz. The signals were recorded by the BenchLink Data Logger 3 (v 4.3) 

software (Agilent Technologies, Inc), and exported to .csv format. A Python script was used to 

calculate the percentage change of resistance and visualize the data.  

 

Preliminary sensor test results 

 

Before constructing the ML dataset for sensor signal deconvolution, some preliminary tests were 

conducted to understand the sensors’ tolerance to RH and total flow rate (i.e., the ranges of RH 

Chemiresistive Sensors

Probe of Hygrometer
(measuring RH and Temp)

Gas Flow Direction
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and flow rate where methane signal could be observed). These ranges would also determine the 

boundaries of the parameter space of the ML dataset. First, the responses to 0.5% methane (the 

highest methane concentration tested by Bezdek et al.3) were tested at different RH levels for 

three types of sensors: default chemiresistive sensor reported by Bezdek et al.,3 chemiresistive 

sensor coated with Pentypcene dialkoxy (Pentyp),4 and chemiresistive sensor coated with 

Spirobifluorene-triptycene (SBF).5 Pentyp and SBF polymers had good hydrophobicity such that 

they could potentially discourage water vapor penetration into the SWCNT-Pt-POM sensing 

material thus improving its RH tolerance. Duplicates of each sensor were tested simultaneously. 

At 2.5% RH, the resistance of three types of sensors had a sudden decrease immediately after 

0.5% methane gas was turned on, and continued to decrease until methane gas was turned off 

after 10 min (Fig. 5). After the methane gas was turned off, the resistance of the sensors 

increased but eventually reached a plateau lower than the initial resistance. During the methane 

exposure experiment, the normalized resistance of the default sensors had the largest decrease 

(2.2%), followed by the SBF-coated sensor (1.2%) and the Pentyp-coated sensor (1%). These 

results indicated that (i) all three sensors were responsive to methane with a decrease in 

resistance, (ii) the change in resistance was reversible when the methane gas was turned off, and 

(iii) the default sensors had a stronger response than the coated sensors.  
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Figure 5. Change in sensors’ resistances responsive to 0.5% methane at 2.5% RH. The 

timing of the onset and offset of methane gas are marked by the green and red vertical line, 

respectively. The responses of default sensors, sensors coated with Pentyp, and sensors coated 

with SBF are shown by black, red, and blue curves respectively (duplicate sensors were tested 

for each sensor type). The resistance baseline (R0) was chosen at 10 min before the methane 

onset, and the resistance values were normalized using the baseline (R/R0; R = R- R0).   

 

Furthermore, the same sensors were exposed to 0.5% methane at different RH levels (Fig. 6). 

When RH was lower than 10%, the responses were decreases of resistance among all sensors, 

and the default sensors had stronger responses than the sensors coated by SBF and Pentyp. 

Interestingly, when the RH exceeded 10%, the responses transformed into increases in 
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resistance, and the maximum increases were achieved between 30% and 40% RH. For example, 

at 37% RH (Fig. 7), the sensors’ resistance suddenly increased after the methane gas was turned 

on, and decreased after it was turned off. The responses of all sensors became weaker after the 

RH exceeded 40%, and then diminished to zero after RH exceeded 50%. In conclusion, the 

optimal RH for sensor operation would be 30-40%, and the sensors were intolerant of RH above 

50%. This could cause some limitations to the real-world application of these prototype sensors 

since the morning RH can easily exceed 50% in the US.6 Therefore, new material designs or 

strategies should be developed to improve the sensors’ tolerance to humidity, and full-scale ML 

training for signal deconvolution should come after that.  

 

 

Figure 6. The influence of RH on chemiresistive sensors’ responses to 0.5% methane. The 

baseline resistance (R0) was the resistance right before methane onset for each methane exposure 

experiment. The biggest change in resistance between methane onset and offset (R) was then 
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divided by the baseline resistance (R/ R0) to characterize the sensor response (y-axis). The 

responses of default sensors, sensors coated with Pentyp, and sensors coated with SBF are shown 

by black, red, and blue curve respectively (mean responses of duplicate sensors of each type are 

shown). 

 

 

Figure 7. Sensor signals responsive to 0.5% methane at 37% RH. The timing of the onset and 

offset of methane gas are marked by the green and red vertical line, respectively. The responses 

of default sensors, sensors coated with Pentyp, and sensors coated with SBF are shown by black, 

red, and blue curve respectively (duplicate sensors were tested for each type).  
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In addition to RH, the chemiresistive sensors’ sensitivity to methane could also be influenced by 

the total gas flow rate (Fig. 8). When the total gas flow rate (including air and methane) in the 

chamber was at 600 sccm, the resistance of all three sensor types decreased when exposed to 

0.5% methane, with the SBF-coated sensor showing the biggest resistance change. When the 

flow rate was raised to 1,000 sccm, the responses were still decreases in resistance but the signal 

magnitudes were much lower. When the total flow rate was further raised to 2,000 sccm, all 

sensors stopped responding to methane. These unexpected results suggested that gas flow rate 

had an impact on the sensors’ capability to detect methane. The faster the gas flow rate was, the 

shorter the gas retention time would be for the test chamber (e.g., a 4,000 sccm flow rate 

corresponds to a retention time of one minute, while a 600 sccm flow rate corresponds to a 

retention time of seven minutes). When experiments were run in sequence (e.g., exposure to gas 

mixture A followed by gas mixture B), a waiting period was needed for the previous composition 

(A) to be fully replaced by the next composition (B), and this period is determined by the gas 

retention time (e.g., waiting period equals three times of the retention time). Therefore, a faster 

total flow rate would translate to a shorter time required to finish the experiments. Future sensor 

design should improve the sensors’ tolerance to higher gas flow rates to reduce the total amount 

of time required to construct the ML dataset.  
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Figure 8. The influence of total flow rate in the gas chamber on chemiresistive sensors’ 

responses to 0.5% methane at <0.5% RH. The responses of default sensors, sensors coated 

with Pentyp, and sensors coated with SBF are shown by black, red, and blue curves respectively 

(mean responses of duplicate sensors of each type are shown). The zero response is shown by a 

grey horizontal line. 

 

Summary and implication of preliminary results 

 

An apparatus consisting of MANGO-MFCs, a gas chamber, and a data logging system was built 

to collect chemiresistive sensors’ signals for given gas concentrations. Before the formal start of 

data collection for training ML models, the sensors’ responses to methane were verified and their 

tolerances to RH and flow rate were tested. Only if the sensors could operate in an 

environmentally relevant RH range, it would be meaningful to implement the full-scale ML 
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signal deconvolution. In other words, since the ML models should be re-trained for different 

sensor designs, only the final stable version of sensors would be worth full-scale training. 

Through the preliminary tests, the chemiresistive sensors (default, coated with SBF, and coated 

with Pentyp) were intolerant of RH greater than 50% and total flow rate greater than 1,000 sccm. 

Because the environmental RH (e.g., 70%-90%) can easily exceed this operational RH limit, the 

chemiresistive sensors were not ready for the ML signal deconvolution procedure. Potential 

solutions to improve the chemiresistive sensors’ RH tolerance include (i) new overcoat chemical 

structures, (ii) surface modification, (iii) surface immobilization of the POM co-oxidant in the 

Pt-POM catalyst, (iv) alternative co-oxidant, and (v) enclosing the sensors in hydrophobic 

membrane materials. In parallel to these modifications, commercially available methane sensors 

could also be tested for (a) their RH tolerance could be better than the prototype sensors, and (b) 

they could offer a proof-of-concept of the ML signal deconvolution framework. While the 

sensors’ intolerance of flow rate higher than 1,000 sccm was not prohibitive for ML signal 

deconvolution, it could make data collection much more time-consuming. Therefore, potential 

improvements to the flow rate tolerance by measures (i) to (v) should also be evaluated.  

 

Ongoing Investigations 

 

One of the ongoing improvements to the apparatus is the integration of commercially available 

sensors. These sensors use mature technology and have been on the market, so it is reasonable to 

expect them to function under environmentally relevant conditions, including the RH level. 

Moreover, these commercial sensors can be used for a proof-of-concept of our ML signal 

deconvolution framework, while the improvements are being made to the prototype sensors in 
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parallel. 10 MQ-series sensors were purchased from SparkFun Electronics (Table 1). These 

sensors are also based on chemiresitive sensing mechanism: metal oxides (e.g., SnO2) catalyze 

the oxidation of methane and result in a change of resistance. All of these MQ sensors have 

compact sizes (with about 20 mm diameter and 25 mm height), so multiple sensors could be 

tested simultaneously in our gas chamber. Moreover, different MQ sensor models targeted 

different gas species. For example, MQ-2 targets hydrocarbon and hydrogen, while MQ-131 

targets NOx, Cl2, and O3. Though some models such as MQ-131 are not explicitly designed to 

detect methane, due to their catalytic oxidation sensing principle, they are expected to show 

some degree of methane response. Importantly, different MQ models have different sensitivities 

toward given gas species (i.e., for gas species i, the fitted coefficients ki1, ki2, …, kin would be 

distinguishable for sensors 1, 2, …, n), therefore an array of MQ sensors were ideal to solve the 

ML signal deconvolution problem.  

 

Table 1. Commercial MQ-series sensors7,8  

Model Detection 

range* 

Reported target 

species 

Heating power 

consumption 

Preheat time 

MQ-2 

 

5000-20000 

ppm methane 

 

Methane, 

propane, i-

butane, 

hydrogen, 

Liquefied 

petroleum gas 

< 800mw 

 

> 24 hours 
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(LPG), alcohol, 

smoke  

 

MQ-3 

 

About 100 -

10,000 ppm 

methane 

 

Methane, 

benzine, hexane, 

carbon 

monoxide, 

alcohol, LPG  

< 750mw 

 

> 24 hours 

MQ-4 

 

200-10000ppm 

methane 

 

Methane, 

hydrogen, carbon 

monoxide, 

alcohol, smoke, 

LPG 

< 750mw 

 

> 24 hours 

MQ-6 

 

200-10000 ppm 

LPG, iso-butane, 

propane, and 

liquified natural 

gas (LNG) 

Methane, carbon 

monoxide, 

hydrogen, 

alcohol, LPG 

< 750mw 

 

>24 hours 

MQ-7 

 

about 40 - 2,000 

ppm methane 

 

Carbon 

monoxide, 

hydrogen, LPG,  

alcohol 

about 350 mw 

 

>= 48 hours 
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MQ-8 

 

about 200 to 

10,000 ppm 

methane 

 

Methane, carbon 

monoxide, 

hydrogen, LPG, 

alcohol 

< 800mw 

 

> 24hours 

MQ-9 

 

500 -10000ppm 

methane 

 

Methane, carbon 

monoxide, LPG  

< 340 mw 

 

>= 48 hours 

MQ-131 

 

Not reported for 

methane 

Nitrogen oxides, 

chlorine, ozone 

< 1100mw 

 

> 24 hours 

MQ-136 

 

Not reported for 

methane 

Carbon 

monoxide, 

ammonia, 

hydrogen sulfide 

< 800mw 

 

> 24 hours 

MQ-137 

 

Not reported for 

methane 

Ammonia, carbon 

monoxide, 

ethanol 

 

< 800mw 

 

> 24 hours 

 

* Some of the detection ranges are concentration ranges used for sensor calibration, thus they 

don’t necessarily infer the sensors’ true detection limitation  
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The MQ sensors can output analog or digital signals through their pins and printed circuit boards 

(PCBs) were made to extract their signals (Fig. 9). Each PCB could accommodate three MQ 

sensors on its front side (facing up) and two sensors on its back side (facing down). The PCB 

also provides a slot on its front side for installing a prototype chemiresistive sensor device, which 

includes 5 sensors printed on the glass substrate (each sensor has an independent counter-

electrode).  In gas exposure experiments, two PCBs can be installed in the gas chamber, thus a 

total of 10 MQ-series sensors and 10 prototype chemiresistive sensors can be tested 

simultaneously (Fig. 9). The signals of the PCBs are then transmitted to the signal process board 

and data acquisition board, which are connected to a laptop computer for data logging and 

processing using the LabVIEW 2023 software.  

 

 

Figure 9. The modified gas chamber to accommodate both prototype chemiresistive sensors 

and commercial sensors. The process of installing MQ-series commercial sensors and prototype 

chemiresistive sensors on the PCBs is shown (note that the prototype sensors shown in the 
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picture were for demonstration only and not the updated design with independent counter 

electrodes). The front side of the PCB could accommodate three MQ-series sensors and one 

prototype device of 10 chemiresistive sensors; the back side could accommodate two MQ-series 

sensors.   

 

Another important ongoing improvement to the experimental apparatus is to enable temperature 

control. Two separate set-ups will be used for cooling and heating (Fig. 10 and Fig. 11). For 

cooling, the output gas from the MANGO system goes through a coiled tubing submerged in a 

water bath and then goes into the gas chamber. The gas chamber and the water bath beaker are 

wrapped by cooling blankets (FLUX05 Fluxwrap, Powerblanket), which are connected to a 

circulating chiller to cool the gas inflow and the gas inside the chamber. This system can lower 

the internal temperature of the chamber from 20 °C to about 5°C. On the other hand, for heating 

purposes, the cooling blanket around the chamber is substituted for a silicone rubber heating tape 

with adjustable thermostat control (XtremeFLEX MSTAT, BriskHeat Corporation), and a 

heating plate (Fisher Scientific) is used to heat the water bath. The temperature inside the 

chamber can be increased to about 50 °C. This temperature control system can simulate the 

environmentally relevant temperature range except for Winter temperatures below 5°C. 

Temperature is an important factor that can alter the sensors’ responses to given gas 

compositions. In future ML model training, the exposure experiment for each gas composition 

will be repeated for a range of temperatures, and temperature will be used as a separate 

predictive feature in the ML model.  
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Figure 10. Design diagram of gas temperature control system (minor modifications to the original 

figure provided by Ruifeng Song) 
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Figure 11. Photo of the gas temperature control system (photo credit: Ruifeng Song) 

 

Future steps for ML signal deconvolution and expected outcomes 

 

Currently, the data logging system and temperature control system are being tested and adjusted. 

Upon the completion of such preparation, the following steps will be taken to implement ML 

signal deconvolution: first, the methane responses of MQ-series sensors (and possibly improved 

prototype chemiresistive sensors as well) will be tested at different RH levels and flow rates. 

This will imply the tolerance of the new sensor array to RH and flow rate. If the tolerance is 

satisfying (e.g., RH > 90%; flow rate >= 4,000 sccm), the apparatus can be used for ML dataset 

Chiller Jacket 1 Jacket 2 Bath Heating Plate
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construction. Second, a small parameter space consisting of methane concentration, RH, flow 

rate, and temperature will be used to construct a preliminary dataset for ML model training and 

testing. This small training set only requires one MANGO box (with four MFCs) to implement 

and can serve as a proof-of-concept for the ML signal deconvolution method. The goal is to 

accurately predict the true methane concentration using the signals of each sensor together with 

environmental parameters including RH, flow rate, and temperature. Third, based on successful 

preliminary signal deconvolution experiments, the parameter space will be expanded by 

including additional MFCs for more interfering gas species, including H2S, CO, H2, ethane, and 

so on. Finally, different ML models will be trained and tested using this expanded dataset and 

inter-model comparison will be conducted to search for optimal prediction accuracy.  

 

The outcome of this project will be the following: first, a trained ML model that deconvolutes 

the signals of a methane sensor array. The input of such a model will be the signal of each sensor 

in the array (i.e., relative changes in their resistance upon gas exposure), and the output will be 

the predicted concentration of each gas component, including methane and other interfering gas 

species. Such an ML model will greatly increase the useful information that can be extracted 

from methane sensors. Without signal deconvolution, the signals of methane sensors essentially 

reflect a combination of responses to different gas species, and relying on such signals will lead 

to inaccurate estimation of true methane concentration. However, the ML model would provide a 

more accurate estimation of methane concentration, which would be useful for the continuous 

monitoring of gas leakage from O&G facilities and other methane sources, and lead to a better 

evaluation of the climate impact of these sources. In addition, knowing the concentration of other 

gas species could have significant public health and safety benefits, for these gases are toxic 
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(e.g., H2S and CO) or flammable (e.g., H2). Second, an apparatus for automatically constructing 

an ML dataset for signal deconvolution of gas sensors in general. The experimental set-up, 

including MFCs, gas chamber, and data logging system, can be easily adapted for other compact 

or portable gas sensors that can be fitted inside the chamber. One of the major advantages of this 

apparatus is the automatic data collection function: the sequential changes of gas compositions 

are enabled by the Ansari program, and automatic data logging is enabled by the LabVIEW 

software. In other words, the users only need to install the sensors in the chamber and start the 

programs, and then the sequential gas exposure experiments and data logging can be conducted 

automatically. Such a procedure would largely enhance the efficiency of the signal 

deconvolution method and prepare it for broad application.  
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Conclusions 

 

Human-made methane emissions are responsible for about 0.5 °C global temperature rise 

compared to the 19th century, making it the second largest contributor to climate forcing  

following carbon dioxide.1 Reducing anthropogenic methane emissions can be one of the fastest 

ways to slow down climate change because the global warming potential of methane is 80 times 

higher than that of carbon dioxide over the next 20 years.2 Particularly, methane emissions from 

the Oil and Gas (O&G) industry (22% of total anthropogenic emissions3) is considered a ‘low 

hanging fruit’ for climate mitigation, since it has high technical feasibility and theoretically 

recovers revenue for O&G companies. The reduction of O&G methane emissions requires a 

systematic approach involving evaluating, monitoring, and mitigating the emissions. However, 

there are still major knowledge gaps and technical difficulties in evaluating and monitoring O&G 

methane emissions; these threaten to delay emission reduction. First, when this thesis 

commenced, there was great uncertainty on the O&G methane emission pathway via 

groundwater systems. A critical question was whether elevated groundwater methane 

concentration was attributable to O&G development or other anthropogenic sources (e.g., coal 

mining) and natural sources (e.g., geological migration and methanogenesis). Second, the 

exceedingly large number of O&G facilities imposes a heavy logistical and economic burden if 

sufficient monitoring (in space and time) is to be conducted. This could result in shortage of 

resources for non-selective monitoring of all facilities. In addition, if sensors were distributed 

evenly among all facilities without knowledge of which facilities have a higher risk of emitting 

methane, the monitoring efficiency would be low and sensing resources could be wasted. Third, 

the intermittent nature of methane emissions requires large-scale deployment of low-cost 
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continuous sensors, but such sensors suffered from signal interferences of gas species other than 

methane. This thesis addressed these critical challenges by (i) evaluating the impact of O&G 

extraction on groundwater methane concentration, and explaining how methane migrated and 

transformed in the underground environment (Chapters 2 and 3); (ii) training ML models to 

predict O&G well integrity issues related to methane leakage, thus enabling prioritized 

monitoring (Chapter 4); (iii) building an apparatus to collect data for sensor signal deconvolution 

using machine learning (Chapter 5). Overall, my thesis deepens the understanding of methane 

emissions by O&G development and seeks to improve the likelihood of mitigating such 

contributions. 

 

Summary of thesis contributions 

 

My first research question centered at evaluating the potential methane emission pathway of 

unconventional oil and gas (UOG) extraction through groundwater systems (Chapter 2). If UOG 

released methane into groundwater aquifers, such methane would be carried by groundwater 

discharge to surface water bodies, and then enter the atmosphere. Given such, evaluating whether 

UOG development increased groundwater dissolved methane concentration would be an 

important first step to evaluate the whole pathway. By analyzing groundwater samples collected 

from 94 homes in Bradford County, Pennsylvania, I came to the following conclusions: first, 

dissolved methane concentration was not statistically correlated to the distance to the nearest 

UOG well, nor was it correlated to the number of UOG wells within a certain distance. Second, 

the δ13C and δ2H isotopic ratios of concentrated groundwater methane did not reflect the 

signature of shale gas, but instead reflected that of thermogenic methane that likely originated 
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from Upper Devonian strata. Third, valley topography had the highest groundwater methane 

concentration. This could have resulted from enhanced permeability by the geological fracture 

network below the valleys. Lastly, post-drill groundwater methane concentrations showed no 

systematic increase compared to pre-drill concentrations. Taking these together, I demonstrated 

that groundwater methane concentration was dominantly influenced by topography-driven 

natural migration pathways rather than UOG activities in the regional scale. This implied that 

UOG activities were unlikely to systematically emit methane via the groundwater system in 

Northeastern Pennsylvania. I further estimated the total rate of methane emission from 

groundwater discharge and degassing in the study region (approximately 3000 km2) to be on the 

order of 2 (or 0.08 – 30) tonnes CH4 /year, which was much smaller than the regional emission 

rate from O&G wells (400 tonnes CH4 /year). Another implication of these findings was that 

water wells in the valleys were more vulnerable to groundwater methane intrusion than wells in 

the upper lands (i.e., elevated topologies). Thus, extra safety precautions or prioritized inspection 

can be undertaken in those locations. 

 

Considering that traditional fossil fuel extraction activities, including conventional oil and gas 

(COG) and coal mining, overlap UOG extraction in many parts of the US, the influence of these 

activities on groundwater methane was also evaluated (Chapter 3). Groundwater samples from 

217 homes in Southeastern Ohio and Northern West Virginia (Region II) were collected to 

expand the original Northeastern Pennsylvania (Region I) sample set. With the expanded sample 

set, I made the following discoveries: first, in Region II, dissolved methane concentration was 

statistically higher when the sample was located closer to the nearest O&G well (i.e., either UOG 

or COG well). However, such trend was not found in Region I. (Note that the grouping of states 
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into Region I and II was not an artifact of sampling time, but was systematically tested as a 

parameter of sensitivity. Also note that the study area of Southeastern Ohio and Northern West 

Virginia lie in very close proximity). Second, in Region II, the dissolved methane correlation 

was lower when there was a higher concentration of dissolved sulfate. In addition, higher sulfate 

concentration was found within closer distance to the nearest active underground coal mine. 

Third, similar to Region I, topographical lowlands had higher methane concentration in Region 

II. Interestingly, topography served as a confounding factor behind the correlation between 

methane concentration and distance to O&G well. Particularly, distance to O&G well became an 

insignificant predictor of methane concentration after including topography as a second 

predictor. However, the correlation between methane concentration and sulfate concentration, 

and the correlation between sulfate concentration and distance to coal mine were robust even 

when considering the presence of topography as a potential confounder. Fourth, I proposed the 

following hypotheses to explain the influence of sulfate on methane concentration: coal mining 

introduced additional sulfate into the groundwater aquifer, and the elevated sulfate concentration 

inhibited methanogenesis and enhanced anaerobic methane oxidation, therefore reducing the 

dissolved methane concentration. Overall, I found that the distribution of groundwater methane 

concentration in Region II was not controlled by O&G extraction, but could be shaped by the 

interactions between anthropogenic factors (e.g., sulfate released by coal mining) and natural 

factors (e.g., topographic variation and biogeochemistry processes). 

 

With these findings, the contributions of Chapter 3 can be summarized as: first, I demonstrated 

that O&G extraction (both UOG and COG) did not systematically increase groundwater methane 

concentration in the O&G producing region of Northern Appalachia. This confines the climate 
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risk associated with O&G groundwater methane emissions. Second, I revealed the influence of 

geochemical agents on groundwater methane distribution. Particularly, sulfate which likely 

originated from coal mining, could alter methane concentration through biogeochemical 

mechanisms. Third, I provided a framework to predict the public safety risk associated with high 

groundwater dissolved methane concentration. The risk of fire or explosion caused by 

groundwater dissolved methane could be predicted using the observed correlations between 

methane concentration and fossil fuel extraction location, topography, and concentrations of 

sulfate and other geochemical indicators. Governments should prioritize safety inspections over 

regions with high risk of elevated groundwater methane concentration and educate residents on 

how to mitigate such risk. Lastly, I demonstrated an example of the importance of confounding 

factors in environmental studies. Before any conclusions were drawn using observed 

correlations, researchers should examine whether such correlations were reliable with the 

presence of potential confounding factors.  

 

The second focus of this thesis is on monitoring O&G methane emissions. One major challenge 

is to identify a subset of O&G facilities with higher risk of methane emissions, so that prioritized 

sensor allocation can be achieved to enhance the monitoring efficiency and reduce total cost. I 

addressed this challenge by predicting well integrity issues related to methane emissions, namely 

sustained casing pressure (SCP) and/or casing vent flow (CVF), as proxies of emission risk 

(Chapter 4). O&G well completion reports (n=1,250) containing well physical parameters in 

Bradford County, Pennsylvania, were manually digitalized to serve as the dataset for ML 

training and evaluation. I found that during cross-validation, all ML models achieved similar F-1 

scores (on the 60% level), while the XGBoost model (XGB) was selected as the best model. 



 250 

Furthermore, the XGB model achieved a good prediction performance (F-1 score = 66%) on the 

held-out test set which demonstrated good generalizability of the model. Note that this is not a 

universal finding (i.e., XGB will not be the best model in every application). I leveraged the 

SHAP values to show the impact of important predictive features on the model outcome. 

Geospatial features such as distance to the nearest faulty well were among the most important 

features. Physical features such as casing length and amount of cement contributed to the 

prediction of faulty status, and whether the well was built by a specific O&G operator also had 

important impact. Lastly, I observed geospatial clustering of well integrity issues in the study 

region, and such clustering was correlated to the clustering of important predictors as well as 

topographic variation.  

 

The main contributions of Chapter 4 can be summarized as the following: first, the trained ML 

models provided a tool for guiding prioritized sensor allocation and/or inspection schedule. 

Remote sensing tools (e.g., satellites and airplanes) can scan relatively large geographical 

regions for potential methane emissions. For example, the MethaneSAT satellite can scan 90% 

of the O&G fields in the world using 300 ‘targets’ (i.e., each ‘target’ is 200 km by 200 km 

square), but it takes about a week before revisiting each target.4 This low frequency of revisit 

would lead to substantial underestimation of emissions due to their intermittent nature. With the 

help of ML prediction models, the satellite could prioritize ‘targets’ with higher emission risks 

and increase their revisit frequencies. This also applies to airplane-based surveys, which could 

have lower revisit frequency than the satellites. In addition, for other methane sensors and survey 

methods with lower special coverage, including vehicles, small drones, and hand-held 

instruments, their total required number would be intractably large if each potential methane 
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emitter is assigned equal importance without knowing the relative emission risk. Moreover, 

allocating sensors evenly among a large number of emitters could diffuse the limited resources 

and reduce the chance of detecting actual methane leaks. Using the results of ML prediction, a 

larger number of sensors or a higher frequency of inspections can be allocated for high-risk 

emitters, and a smaller sensor number or a lower inspection frequency for low-risk emitters. This 

could transfer to a higher probability of capturing methane emissions and/or a smaller total 

number of sensors and inspections required.  

 

Second, the well construction physical parameters that played important roles in ML prediction 

can inform better well design and maintenance practice. For example, greater lengths of certain 

casings were associated with lower risk of integrity issues. Moreover, the fact that certain 

operators were associated with lower integrity failure risk should raise the attention of regulators 

or imply that best-practices exist and could be transferred between operators. Third, the observed 

clustering of well integrity issues suggested that future well drilling should avoid being located 

near existing clusters to lower the chance of new integrity failures. Lastly, manual digitalization 

of well completion reports cost enormous time and would be difficult to apply on larger dataset. 

Thus, it’s suggested that future regulators require fully-digitalized data reporting with 

standardized format (e.g., through web-based forms) to facilitate inspection of the data. Finally, 

the data should be publicly available and not behind a paywall if maximum benefit and leak 

prevention strategies are desired.   

 

Once a prioritized sensor allocation strategy is enabled by ML models, the next step is to acquire 

suitable sensors for continuously monitoring the potential methane emitters. In Chapter 5, an 
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apparatus was built for signal deconvolution of the prototype chemiresistive methane sensors 

developed by Bezdek et al..5 The apparatus consisted of mass flow controllers, a gas chamber, a 

data logging system and other parts. It will be used to construct a complete ML dataset with 

sensor signals being predictive features and true gas concentrations being target variables. In 

order to test the readiness of the prototype sensors for data collection, I conducted preliminary 

experiments to test the sensors’ tolerance to humidity and gas flow rate. I found that the sensors 

stopped responding to methane when relative humidity exceeded 50% and flow rate exceeded 

1,000 sccm. Such relative low tolerances suggested that the tested version of prototype sensors 

was not suitable for full-scale ML data collection, and further improvements were required for 

the sensor. Meanwhile, commercially available alternative sensors were purchased and integrated 

to the apparatus, with the goal to improve the tolerances to humidity and flow rate and identify 

the best possible solution on the market today. In addition, a temperature control system was 

integrated to the apparatus to simulate various temperatures in the real-world operation 

environments of the sensors. Because the project is still ongoing, the contributions of Chapter 5 

are mainly on the experimental design and apparatus building. Beside methane sensors, my 

experimental apparatus can also be adapted for other types of gas sensors which will benefit 

from ML signal deconvolution. Most importantly, the apparatus is able to collect data in an 

automatic and sequential manner so that it makes signal deconvolution experiments faster and 

more convenient. Eventually, the expected outcomes of the work described in this chapter is an 

array of compact, low-cost, and low-energy consumption sensors which detect methane and co-

existing gas species such as water vapor, H2S, and CO with high accuracy and resolution.   
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Criticisms and opportunities 

 

This thesis addressed key research challenges in evaluating and monitoring O&G methane 

emissions. Due to the constraints on time and resources, there are some limitations on the results 

and implications. However, there are also opportunities for future work to address those 

limitations and enhance our ability to monitor and mitigate O&G methane emissions. In the 

groundwater methane analysis (Chapter 2 & 3), I proposed several hypotheses on the sulfate-

mediated biogeochemical transformation of dissolved methane. Particularly, I hypothesized that 

sulfate inhibited methanogenesis and enhanced anaerobic methane oxidation. Such mechanisms 

would involve sulfate reducing bacteria as an important biological agent. Unfortunately, I 

couldn’t verify the presence of this bacteria using our water samples. For the purpose of sample 

preservation, sodium azide was added to all groundwater samples used for methane analysis, 

which essentially killed microbes in those samples. Therefore, it was not possible to extract 

microbes from those water samples and incubate them to search for sulfate-reducing bacteria. 

Metagenomics could be another tool to analyze the microbial population. However, samples for 

metagenomic analysis would follow specific protocols (e.g., samples might need to be frozen 

during transport and storage) and were not collected in the sampling campaigns. Therefore, there 

was a lack of direct microbiological evidence for the hypothetical biogeochemical processes 

involving methane and sulfate, although they were supported by the correlation between methane 

and sulfate concentration, as well as the δ13C and δ2H isotopic ratios indicating methane 

oxidation. Future field studies should consider collecting microbial and metagenomics samples 

to better understand possible biogeochemical processes affecting groundwater methane. In 

addition, the microbial methane oxidation and sulfate reduction reactions can also cause 
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fractionation in the isotopic ratios of relevant chemical compounds, such as δ34S – SO4
2-, δ18O – 

SO4
2-, and δ13C – DIC, which could provide additional evidence for the hypotheses. Due to 

logistic limitations, no water samples were reserved for these additional isotopic analyses in my 

study, but they should be included in future work as well.  

 

My groundwater methane analyses evaluated the influence of O&G activities on groundwater 

methane concentration from a systematic and statistical perspective. That said, individual cases 

of O&G-induced groundwater methane contamination might not be captured by my system-level 

analysis. A few incidents of O&G induced methane migration in groundwater had been reported 

in my selected study regions,6 and the public safety risk posed by these incidents should not be 

neglected. To address this issue, documents of groundwater quality complaints should be 

reviewed to search for potential O&G-induced incidents, and sampling of groundwater and soil 

in close distance to the homes and gas wells will be required. Such investigations can also be 

conducted by third-party consulting companies hired by the complaining households or the 

government to determine whether O&G development was responsible for the incidents.  

 

For ML prediction of O&G well integrity issues (Chapter 4), Bradford County, PA was chosen 

as the study region for (i) the proportion of wells tested for integrity issues in the county was 

higher (77%) than state-wide average (36%) and (ii) the proportion of tested wells with integrity 

issues (47%) was also higher than state-wide average (14%). However, one limitation associated 

with this study region was that its O&G well population was biased toward unconventional wells 

(95% of all wells). Given such, the trained ML models resulted from this study would be most 

suitable to predict failures in other regions similarly dominated by UOG wells. In the future 
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when integrity test results become publicly available in other regions with a more balanced 

percentage between UOG and COG wells (e.g., the OH and WV regions investigated by 

Chapter 3, where the data is not currently available), the ML models will be retrained on the 

new dataset. Another limitation of the ML models resulted from their correlational nature. 

Specifically, the SHAP values didn’t infer causal relationship between predictive features (i.e., 

physical parameters) and the target variable (i.e., integrity failure status). Future studies can 

consider conducting rigorous causal inference using Bayesian models to determine the causes of 

integrity failures. This effort may require a much larger dataset, which can be obtained by 

mandatory digitalization of data reporting or digitalization of existing paper reports by computer 

vision and natural language processing tools.  

 

 

In Chapter 5, I built the apparatus for signal deconvolution of prototype chemiresistive sensors, 

and those sensors may someday be deployed in large number to continuously monitor O&G 

methane emissions (Chapter 5). One concern over the ML signal deconvolution methodology is 

that the trained ML models are specific to the sensors used in training. If the sensor design is 

modified, the model training process would need to be repeated. This would be less problematic 

if the sensors’ properties (e.g., sensitivity and selectivity to different gases) are consistent across 

individual sensors of the same model/design, because only one training would be necessary to 

represent the model/design. However, some degree of variation can be expected between 

individual sensors of the same model/design. Future research efforts need to convert the variation 

in individual sensors to well defined uncertainties attached to the ML output (e.g., the predicted 

methane concentration being a probability distribution rather than a single fixed value).   
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Closing remarks and looking forward 

 

Reducing methane emissions from O&G infrastructures is one of the fastest ways to slow down 

climate change over the next few decades. Throughout this thesis, I have evaluated the risk to 

drinking water in O&G-rich regions and developed methods to better monitor atmospheric 

methane emissions by predicting emission risk and deconvoluting signals in novel methane 

sensors. I illustrated that a systematic and interdisciplinary approach can be applied to solve key 

challenges in controlling O&G methane emissions. By combining the knowledge and tools in 

geoscience (e.g., gas chromatography, methane isotopes, and topographical analysis), data 

science (e.g., ML, geospatial analysis, and statistical hypothesis test), and material science (e.g., 

chemiresistive methane sensors), I was able to deepen the understandings of how methane was 

emitted to the environment and to develop novel tools for predicting and monitoring methane 

emissions. An overarching implication of my thesis for future research is that in order to address 

complex problems like climate change, we need to cross the borders of disciplines and leverage 

every available tool to create innovative solutions. 

 

Looking forward, there is opportunity for more accurate estimations of O&G methane emission 

risks through combing the ML prediction results (Chapter 4) with real-world measurements by 

remote sensing tools such as satellite, airplane, and drone. In Chapter 4, well integrity issues 

(i.e., SCP and/or CVF) were used as proxy of methane emission risk. However, the inspections 

of integrity issues are different from direct measurements of methane leaks, and the direct 

measurements could serve as an independent verification and enhance the confidence of methane 
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emission risk estimates. As such, I propose the following approach for future studies: first, ML 

models can predict integrity issues in O&G facilities using their physical parameters and/or 

geospatial metrics as predictive features. These prediction results could then be used to construct 

a prior estimation of the emission risks. Second, remote sensors should be deployed to scan for 

methane emission plumes among the O&G facilities. The detected methane emissions are used to 

construct a posterior estimation of the emission risks by inverse modelling. The posterior 

estimation updates the prior estimation (based on integrity prediction) using the information from 

direct emission measurements, thus serving as a more accurate estimation. Third, continuing 

flyovers of the remote sensors will provide new emission measurements that can be used to 

update the posterior risks. This overcomes the limitation of a single flyover, which is a snap-shot 

in time and cannot handle intermittent emitters. Lastly, the ML models can be re-trained on the 

updated posterior risks, and then be applied to new geographical regions where emission risks 

need to be predicted. From there, the circle of ML prediction and remote sensing measurement 

can be repeated.   

 

There are several other future research directions that would stem from the work discussed in 

this thesis: first, a smart methane monitoring framework combining novel sensing technology 

and artificial intelligence can be developed. Such frame work will utilize a tired-monitoring 

system consisting of ‘top sensors’ with wide spatial coverage but relatively low spatial and 

temporal resolution (e.g., satellite and airplane) as well as ‘bottom sensors’ with narrow coverage 

but high resolution (e.g., stationary sensors). This system will continuously provide emission 

data to a cloud-based computation platform that optimizes leak fixation strategy and predicts 

future emissions. In addition to monitoring methane emissions from fossil sources, the smart 
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monitoring can be leveraged to better understand and quantify emissions from important 

biogenic sources that have not been well studied. For example, wetland methane emissions are 

estimated to be approximately 40% of total natural emissions,3 but such estimation has great 

uncertainty due to the insufficient number of monitoring stations around the globe. Given such, 

data fusion efforts can be taken to combine data from various remote sensing and local sensing 

measurements to fill the gap, and ML algorithms can be leveraged to predict wetland emission 

rates using ancillary environmental parameters such as temperature, water table depth, and solar 

radiation.7,8In addition, experimental tools, such as gas chromatography, flux chambers, and 

eddy flux towers, can be used to independently verify the predicted emissions. As another 

example, emissions from urban wastewater transport and treatment system are poorly understood 

and quantified. The tiered monitoring system, including vehicle mounted sensors, can be 

deployed in the cities to detect wastewater emission. Mitigation strategies, such as wastewater 

aeriation, can be explored to reduce the biogenic methane production by methanogenesis. 

Overall, the methodologies involved in this thesis can be applied to solve additional exciting 

problems in the field of methane emission detection and mitigation. Ultimately, this work can 

inform science and strategies to slow down the pace of climate change.  
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