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ABSTRACT

In combustion kinetic model calibration, researchers usually use experimental data to
reduce the uncertainty of kinetic parameters, and Bayesian inference is the most common ap-
proach to do inverse calibration. This thesis explores two interconnected aspects of Bayesian
approaches in the context of combustion kinetics models: how to utilize high-resolution
species profiles in Bayesian inference and how to identify the most informative experimen-
tal conditions to collect data. In the first part, we investigated the impact of the effective
independent-data number and target selection on Bayesian inference of kinetic parameters
using species time-histories obtained from shock tube experiments. Neural networks serve
as response surfaces. Maximum a posteriori estimation and Markov chain Monte Carlo sam-
pling are employed to determine optimal parameters as well as their uncertainty. Three
optimization strategies are employed: utilizing the entire species time-history curve with ef-
fective independent-data numbers of 1 (C-1) and 160 (C-160), and using only the last point of
each curve (LastP). All three improved models fit experimental data better. Comparing C-1
with C-160 reveals that increasing the number of targets improves prediction accuracy but
may lead to overtuning. Comparing C-1 with LastP, LastP exhibits comparable or slightly
better agreement with measurements, suggesting that focusing on critical points is effective
for point estimation. However, C-1 shows different posterior uncertainty from LastP in both
parameters and predictions, despite their similarity in the point estimation.

Experimental data obtained at different experimental conditions (e.g., pressure, temper-
ature, equivalence ratio, etc.) is not equally informative when it is used to calibrate kinetic
parameters. Thus, experimental design becomes an important topic in combustion kinetics,
where the most informative condition can be identified by algorithms. In the second part,
we propose an efficient Bayesian experimental design algorithm that integrates Laplacian
approximation-based experimental design with gradient-based design optimization, employ-
ing sophisticated neural network response surfaces for mapping kinetic parameters to target
prediction at a wide range of thermodynamic conditions. The algorithm demonstrates effi-
ciency and robustness against local maxima. Additionally, to meet various needs in kinetic
experiments, we develop various experimental design targets based on the posterior covari-
ance matrix, including model-oriented, parameter-oriented, target-oriented, and parallel ex-
perimental design. The proposed method, utilizing a full posterior covariance matrix without
fixing any parameter of insensitive reactions, achieves significant acceleration compared to
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previous methods, demonstrating effectiveness in reducing parameter and target uncertainty
as well as designing multiple experiments simultaneously.

Thesis supervisor: Sili Deng
Title: Assistant Professor of Mechanical Engineering

4



Acknowledgments

I express my sincere gratitude to Professor Sili Deng, my advisor, for her unwavering guidance
throughout this project and her continuous support throughout my academic journey at MIT.
I learned a lot from her in the perspectives of academic knowledge, group management,
networking etc., or in a nutshell, how to be an excellent PI in a top-tier university.

Special thanks to Dr. Weiqi Ji, whose invaluable assistance played a pivotal role in my
transition from a combustion physics researcher to one integrating combustion with machine
learning. I extend my appreciation to my undergraduate advisors, Professors Liguang Li,
Peng Zhao, Fei Qi and Xi Xia, for introducing me to the field of combustion and provid-
ing invaluable guidance from academic, career, and life perspectives. Their support was
instrumental in my admission to MIT.

I am grateful to the members of the machine learning subgroup in the Deng Energy and
Nanotechnology group—Dr. Qiaofeng Li, Benjamin Koenig, Stefan Borjan, and Edoardo
Ramalli—for their weekly discussions, advice, and support. I also acknowledge the broader
DENG group, including Maanasa Bhat, Suyong Kim, Valerie Muldoon, Gwendolyn Tsai,
Dr. Yuesen Wang, Chuwei Zhang, and Dr. Jianan Zhang, for fostering a collaborative and
friendly work environment over the past two years.

The work included in this thesis received support from Weichai Holding Group Co.,
Ltd. and the National Science Foundation under Grant No. CBET-2143625. I extend my
appreciation to Prof. Peng Zhao at the University of Tennessee, Prof. Liming Cai at Tongji
University, Dr. Qiaofeng Li, Dr. Qinghui Meng at the University of Minnesota, and Mr.
Wendi Dong at Stanford University for their insightful discussions.

Finally, heartfelt thanks to my parents Mr. Xiangyang Chen and Mrs. Jian Zhang, for
their enduring support and love. Their efforts to create a warm family environment and
guide me in decision-making, while respecting my opinions, have left an indelible mark on
my journey. Every place I have been to bears the footprints of my parents. This Master’s
thesis is dedicated to them on the eve of their arrival in the United States next month.

5



6



Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

1 Background 13
1.1 Uncertainty Quantification of Combustion kinetics . . . . . . . . . . . . . . . 14
1.2 Algorithms for Kinetic Uncertainty Quantification . . . . . . . . . . . . . . . 17

1.2.1 Solution Mapping Method . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Bound-to-Bound Data Collaboration . . . . . . . . . . . . . . . . . . 18
1.2.3 Spectral Expansion Method . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Bayesian Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Response Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 Polynomial Chaos Expansion . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 High Dimensional Model Representation . . . . . . . . . . . . . . . . 25
1.3.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Experimental Design for Efficient Uncertainty Quantification . . . . . . . . . 26
1.4.1 Non-Bayesian Approaches . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.2 Bayesian Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Utilization of Species Profiles in Bayesian Inference 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Neural Network Response Surfaces . . . . . . . . . . . . . . . . . . . 34

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Comparison of Optimized Mechanisms with the Original Mechanism . 36
2.3.2 The Influence of Effective Independent-Data Numbers . . . . . . . . . 37
2.3.3 The Influence of Target Selection . . . . . . . . . . . . . . . . . . . . 44

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7



3 Gradient-Based Experimental Design 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Algorithms and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Gradient-Based D-Optimality Experimental Design . . . . . . . . . . 52
3.2.2 Task Setup and Data Generation . . . . . . . . . . . . . . . . . . . . 55
3.2.3 Neural Network Response Surfaces . . . . . . . . . . . . . . . . . . . 57

3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 Model-Oriented Experimental Design . . . . . . . . . . . . . . . . . . 61
3.3.2 Parameter-Oriented Experimental Design . . . . . . . . . . . . . . . . 65
3.3.3 Target-Oriented Experimental Design . . . . . . . . . . . . . . . . . . 70
3.3.4 Parallel Experimental Design . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Future Work 79

A Additional Tables 81

B Additional Figures 85

References 95

8



List of Figures

1.1 The prediction uncertainty of the original USC Mech II and the version with
all uncertainty factors set as 1.15. . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 The schematic of UQ interpretation of the model proliferation problem. . . . 15
1.3 The flowchart of uncertainty quantification for combustion kinetics. . . . . . 17
1.4 The comparison of posteriors obtained by MCMC, Laplacian approximation

and unnormalization density. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 The auto-correlation of three chains of MCMC for C-1. . . . . . . . . . . . . 35
2.2 The auto-correlation of three chains of MCMC for LastP. . . . . . . . . . . . 35
2.3 The structure of the neural network used as surrogate models. . . . . . . . . 36
2.4 The comparison of the MAP predictions of C-1, C-160, original model and

experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 The xi of the most tuned reaction rates in C-1 and C-160. . . . . . . . . . . 40
2.6 The inferred parameters of five synthetic data sets sharing the same ground

truth but with different Gaussian noise. . . . . . . . . . . . . . . . . . . . . . 42
2.7 The value of averaged NE for different effective independent-data number n. 43
2.8 The schematic of posterior distribution of C-1 and C-160. . . . . . . . . . . . 44
2.9 The xi of top 10 highly-tuned reaction rates in C-1 and LastP. . . . . . . . . 45
2.10 The comparison of posterior distributions of eight selected parameters in C-1,

LastP and prior models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.11 The comparison of posterior predictions of eight species at 1250K for C-1,

LastP, and prior models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12 Top 10 sensitivity coefficients of pC3H4 concentration at 1.6 ms and 0.4 ms. . 50

3.1 The structure schematic of 3-hidden-layer ResNet. . . . . . . . . . . . . . . . 58
3.2 The loss values versus training epochs for LFS and IDT. . . . . . . . . . . . 59
3.3 The scatter plot of prediction versus ground truth for the response surface of

IDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 The scatter plot of prediction versus ground truth for the response surface of

LFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 The trajectories of gradient ascent for the model-oriented design of LFS. . . 62
3.6 The EIG contours of the model-oriented design of LFS. . . . . . . . . . . . . 63
3.7 The prior and posterior uncertainty for the model-oriented design of LFS. . . 64
3.8 The trajectories of gradient ascent for the model-oriented design of IDT. . . 65
3.9 The EIG contours of the model-oriented design of IDT. . . . . . . . . . . . . 66

9



3.10 The prior and posterior uncertainty for the model-oriented design of IDT. . . 67
3.11 The trajectories of gradient ascent for the parameter-oriented design of LFS. 68
3.12 The EIG contours of the parameter-oriented design of LFS. . . . . . . . . . . 68
3.13 The prior and posterior uncertainty of parameters 153 and 188. . . . . . . . 69
3.14 The trajectories of gradient ascent for the parameter-oriented design of IDT. 70
3.15 The EIG contours of the parameter-oriented design of IDT. . . . . . . . . . . 70
3.16 The prior and posterior uncertainty of parameters 18, 71, and 175. . . . . . 71
3.17 The trajectories of gradient ascent for the target-oriented design of IDT. . . 72
3.18 The EIG contours of the target-oriented design of IDT. . . . . . . . . . . . . 72
3.19 The prior and posterior uncertainty for the target-oriented design of IDT. . . 73
3.20 The trajectories of gradient ascent for the target-oriented design of LFS. . . 74
3.21 The EIG contours of the target-oriented design of LFS. . . . . . . . . . . . . 74
3.22 The prior and posterior uncertainty for the target-oriented design of LFS. . . 75
3.23 The prior and posterior uncertainty of parameters 18, 71, and 175. . . . . . . 76
3.24 The prior and posterior uncertainty for the parallel target-oriented design of

LFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.1 The comparison between the prediction of neural networks and Cantera for
eight species at 1250K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.2 The comparison between the prediction of neural networks and Cantera for
eight species at 1290K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.3 The comparison between the prediction of neural networks and Cantera for
eight species at 1330K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.4 The comparison between the prediction of neural networks and Cantera for
eight species at 1370K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.5 The comparison between the prediction of neural networks and Cantera for
eight species at 1410K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.6 The evolution loss function versus iteration for C-1, C-160 and LastP. . . . . 91
B.7 The comparison of the species evolution of C-160 and C-1 for cases with

obvious differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.8 The comparison of the species evolution of LastP and C-1 for cases with

obvious differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.9 Comparison of eight species profiles predicted by posterior mean and MAP

parameters for LastP, C-1 and prior models at 1250K. . . . . . . . . . . . . . 94

10



List of Tables

2.1 Comparisons of the averaged normalized errors (NEs) and normalized errors
at the last points (NELPs). . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Differences between the NEs of C-1 and those of C-160. . . . . . . . . . . . . 38
2.3 Influence of the number of effective independent data on |xi|. . . . . . . . . . 40
2.4 Differences between the NEs of LastP and those of C-1. . . . . . . . . . . . . 45
2.5 Inner product of the normalized sensitivity vectors at 1.6 ms and at 0.4 ms/0.8

ms/1.2 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 The design space for IDT and LFS. . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 The requirement of the accuracy of response surfaces proposed by Zhang et

al. CnF 251. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 The accuracy of our response surface for IDT. . . . . . . . . . . . . . . . . . 59
3.4 The accuracy of our response surface for LFS. . . . . . . . . . . . . . . . . . 60
3.5 The selected experimental conditions and EIG for each iteration of the model-

oriented design of LFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 The selected experimental condition and EIG for each iteration of model-

oriented design of IDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 The selected experimental condition and EIG for each iteration of the parameter-

oriented design of LFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8 The selected experimental condition and EIG for each iteration of the parameter-

oriented design of IDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.9 The selected experimental condition and uncertainty reduction factor for each

iteration of the target-oriented design of IDT. . . . . . . . . . . . . . . . . . 71
3.10 The selected experimental condition and URF for each iteration of the target-

oriented design of LFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.11 The selected experimental conditions and EIG for each iteration of the parallel

parameter-oriented design of IDT. . . . . . . . . . . . . . . . . . . . . . . . . 76
3.12 The selected experimental conditions and URF for each iteration of the par-

allel target-oriented design of LFS. . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 The cosine similarity of the sensitivity directions computed by Cantera and
neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.2 The relative errors of the length of sensitivity vectors computed by neural
networks compared with that computed by Cantera. . . . . . . . . . . . . . . 82

11



A.3 The differences between NEs of original mechanism and NEs of LastP. Nega-
tive differences are in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.4 The differences between NEs of original mechanism and NEs of C-1. Negative
differences are in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.5 The differences between NEs of original mechanism and NEs of C-160. Neg-
ative differences are in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.6 Inner product of the normalized sensitivity vectors of pC3H4 for 1370K at 1.6
ms and at 0.4 ms/0.8 ms/1.2 ms. Values below 0.9 are in bold. . . . . . . . . 83

A.7 Inner product of the normalized sensitivity vectors of pC3H4 for 1330K at 1.6
ms and at 0.4 ms/0.8 ms/1.2 ms. Values below 0.9 are in bold. . . . . . . . . 84

A.8 Inner product of the normalized sensitivity vectors of pC3H4 for 1290K at 1.6
ms and at 0.4 ms/0.8 ms/1.2 ms. No Value is below 0.9. . . . . . . . . . . . 84

A.9 Inner product of the normalized sensitivity vectors of pC3H4 for 1250K at 1.6
ms and at 0.4 ms/0.8 ms/1.2 ms. No Value is below 0.9. . . . . . . . . . . . 84

12



Chapter 1

Background

With the development of computer hardware and computational fluid dynamics (CFD) tech-
niques, simulation plays an increasingly important role in combustion science and engineer-
ing. In academia, CFD is generally used to unravel combustion physics and discover new
phenomena [1], especially for scenarios where it is hard, or expensive, to conduct experiments
[2]. In industry, CFD is widely used to guide new designs of engines and has been able to
substitute a large amount of experiments [3].

However, combustion CFD still has large uncertainty even for most detailed simulations.
First, due to the unsteady, chaotic, and multiscale nature of turbulence, direct numerical sim-
ulation (DNS) is computationally expensive and only can be conducted in limited scenarios.
Either Reynolds averaged Navier-Stokes (RANS) or Large-Eddy Simulation (LES) cannot
resolve Kolmogorov scales, and relies on closure models, which introduce fluid modelling
uncertainty [4]. Second, the computation of chemistry requires a chemical kinetic model (or
“mechanism” in some literature). In turbulent combustion simulations, chemical models are
usually highly reduced, having lumped reactions or missing reactions and species; even if
detailed models are used, the kinetic parameters usually have large uncertainty, which can
greatly influence the accuracy and reliability of simulation results [5]. Third, in turbulent
combustion simulation, fluids and chemistry are highly coupled. Due to the nonlinearity of
the Arrhenius equation, the chemical source term cannot be directly averaged along with
velocities. The coupling between fluid and chemistry also needs modelling, such as flamelet
models, probability density function (PDF) approaches, and multiple mapping conditioning
(MMC) [1]. This further introduces assumptions, and hence uncertainty, into simulations.
Fourth, in order to reduce computational budgets, heat and mass transport are usually
simplified, such as mixture-averaged diffusion models and unity Lewis number assumption,
which introduces uncertainties in heat and mass transport modelling [6]. These uncertain-
ties from different sources may never be rooted out. Thus, how to quantify the uncertainty
of simulations, and how to reduce the uncertainty in models at specific scenarios, become
important topics in the combustion community, and there are many recent works focusing
on this problem [7]. In this thesis, we focus on the uncertainty quantification (UQ) from
chemical kinetic models, and the uncertainty from other sources is beyond our scope.

UQ usually includes two tasks. First is propagating the uncertainty of parameters into
the model’s prediction (hence informing the downstream decision making), which is called
forward problems. In order to reduce the uncertainty of models, a common practice is to
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experimentally measure the quantity of interest (QoI) that can be predicted by models,
and infer parameter uncertainty from experimental data. In this case, the uncertainty is
propagated from experimental measurements to parameters, which is called inverse problems
or model calibration. In this thesis, we deal with the inverse UQ, or to be specific, Bayesian
inference of kinetic parameters given experimental measurements. In the first part, we
investigate how to utilize time series data of shock tube species profiles. In the second part,
we study how to efficiently design experimental conditions so that the gathered data can
optimally inform parameters. In the first chapter, we briefly overview relevant background
knowledge and recent advances.

1.1 Uncertainty Quantification of Combustion kinetics

A combustion kinetic model includes the species, reaction pathways, and parameters de-
scribing the reaction rate of each elementary reaction. Generally, there are three ways to
determine the reaction rate constants: direct measurement by experiments, quantum chem-
istry calculation, and calibration against global experimental data. Unfortunately, all of
them possess intrinsic uncertainty: experimental data can be affected by a systematic error
in instruments and random signal noise [8]; the inputs of quantum chemistry calculation,
such as potentials, electronic wavefunctions, and geometry always have uncertainties, and
high-level theory is usually computationally prohibitive, especially for large molecules [9].
As pointed out by Wang and Sheen [5], perfect kinetic models will never exist. Even for
hydrogen combustion kinetics, which includes only 20 elementary reactions and 8 species,
the uncertainty space is too large to “pin” the reaction rate constants at a fixed point without
considering uncertainties [5]. The uncertainty of kinetic parameters can have a large impact
on model predictions. Fig. 1.1 illustrates the impact of the kinetic uncertainty on the species
profile predictions of ethylene oxidation. The left panel is done by USC Mech II [10], which
shows a large uncertainty range. Even if we decreased the uncertainty factors to 1.15 (it
means the 1-σ multiplicative uncertainty bound is the nominal value times or divided by
1.15), as shown by the right panel, the uncertainty in prediction is still obvious. Note that
even nowadays, 16 years after the development of USC Mech II, the uncertainty factors of
most kinetic parameters are still larger than 1.15. Given that an perfect representation of
actual physics does not exist, the focus of kinetic model development should shift to quanti-
fying the uncertainty in the model from finding the exact values for each kinetic parameter.
This measurement of imprecision relates the level of "trust" attributed to the simulation
outcomes when employed for decision-making.

Another important application of UQ in chemical kinetics is solving the model prolifera-
tion problem. Before combustion engineers start to conduct UQ, there usually exist several
models with different reaction rate constants. For example, before high-pressure laminar
flame speeds are available, there are several models for hydrogen combustion with different
reaction rate constants, and all of them can make good predictions against experimental
data. However, they show quite different predictions of the laminar mass burning rate at
elevated pressure [17], as shown by Fig. 1.2. In fact, after the assessment of uncertainty,
denoted by the shadow region of Fig. 1.2, we can find that the predictions from different
models are within the prediction uncertainty. Thus, different models can be considered as
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Figure 1.1: Monte Carlo sampling of species trace prediction for ethylene oxidation in air
in a perfectly stirred reactor (phi=0.5, p=30 bar, and T=1200K) within the uncertainty of
USC Mech II [10]. The left panel represents the original uncertainty, while the right panel
shows the prediction after setting all the uncertainty factors into 1.15. Red lines represent
the prediction of nominal values of parameters. This figure is adopted from [5].

Figure 1.2: Uncertainty range of trial model of [11] (denoted by shadow area and dashed
black lines for 2-σ bounds) overlapped by the predictions of different models [11]–[16], and
experimental measurements (dots with 2-σ error bar). This figure is adopted from [5].

different statistical samples from the uncertainty space [5]. Since no high-pressure laminar
flame data was available, the uncertainty at high pressure is far larger compared with that at
low pressure. With a careful assessment of uncertainty, the controversy of models with dif-
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ferent parameters does not exist anymore. Meanwhile, in the development of kinetic models,
the uncertainty associated with the model is highly needed.

In UQ of combustion kinetics, we have a parametric model describing the reaction path-
ways with kinetic parameters assigned to each elementary reaction. For a forward elementary
reaction

N∑
i=1

v′iMi

kf→
N∑
i=1

v′′i Mi, (1.1)

where Mi is species i, N is the number of species, v′i and v′′i are the stoichiometric coeffi-
cients for reactants and products respectively (for species not involved in this reaction, the
coefficients are just 0), kf is the reaction rate constant. The reaction rate of each elementary
reaction is described by the Law of Mass Action [6]:

ω = kf (T )
N∏
i=1

c
v′i
i , (1.2)

where T is temperature, ci is the concentration of species i. Furthermore, the reaction rate
constant can be expressed by Arrhenius Law [6]:

k(T ) = Ae−Ea/RoT , (1.3)

where A is the pre-exponential factor, Ea is the activation energy, Ro is the universal gas
constant. For some elementary reactions, A is found to be temperature-dependent, so a
modified Arrhenius law is used [6]:

k(T ) = AT be−Ea/RoT , (1.4)

where b is the temperature exponent. Based on the reaction pathways and kinetics parame-
ters, chemical kinetics can be mathematically formulated as a group of ordinary differential
equations (ODEs). The chemical and energy source terms in species and energy conservation
equations of CFD can be computed by integrating the ODE system. Due to the huge differ-
ence in the reaction rate for different reactions, the time scales of different species are quite
different. Mathematically, this is manifested by the strong stiffness of this ODE system.
Hence, the integration of such ODE systems requires a small step size and many iterations
[18]. In UQ of combustion kinetics, the forward problem refers to assessing the impact of un-
certainty of kinetics parameters Ea, A, and b on the accuracy of prediction, while the inverse
problem refers to how to calibrate the uncertainty of these parameters based on some global
experimental targets, such as laminar flame speeds, ignition delay time, and species profiles
in shock tubes, etc. In order to eliminate the uncertainty from sources other than chemical
kinetics, these experiments are usually done in well-isolated and homogeneous environments
and are hardly influenced by fluid transport.

The general workflow for UQ of combustion kinetics is shown in Fig. 1.3. In UQ algo-
rithms, we usually need to repeatedly evaluate the physical model; sometimes the derivatives
of target with respect to parameters are needed. Thus, we usually build a surrogate model
(i.e., response surface) mapping the kinetic parameters to model predictions. Such an ap-
proximate function is cheap to evaluate and make derivatives accessible. Different types of
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surrogate models will be introduced in Section 1.3. After replace the physical model by a
surrogate model, we can efficiently implement forward or inverse UQ algorithms. For for-
ward problems, the uncertainty of parameters will be propagated into the uncertainty of
predictions; for inverse problem, the uncertainty of measurements would be propagated into
parameters (sometimes combined with prior distributions). For forward problems, as long as
a surrogate model has been built, the uncertainty from parameters can be propagated into
targets using Monte Carlo simulation (for polynomial chaos expansion, a special type of sur-
rogate models, some statistical properties of targets can be directly computed by coefficients
in this surrogate model). Thus, the main focus for forward problems is building surrogate
models, which will be introduced in details in Section 1.3. In Section 1.2, we will introduce
the algorithms for UQ of combustion kinetics, mainly for inverse problems.

Figure 1.3: The flowchart of uncertainty quantification for combustion kinetics.

1.2 Algorithms for Kinetic Uncertainty Quantification

We define k as the vector of all kinetic parameters in a model. It is a common practice that
only the pre-exponential factors are considered in UQ of combustion kinetics, while other
parameters are frozen [19], [20]. We also adopt this convention in this thesis unless addition-
ally indicated. We define M (k;d) as the prediction of the kinetic model at experimental
condition d when the kinetic parameters are k. Here, the experimental condition is the one
used to initiate an experiment, such as pressures, initial temperatures, and the composition
of initial mixtures. In many literature, the kinetic parameters are normalized to xi by its
corresponding uncertainty factor fi, which reflects its prior uncertainty or bounds:

xi =
ln(ki/ki,0)

ln fi
, (1.5)

where ki,0 is the nominal value of parameters, and fi represents the multiplicative uncertainty
of ki, as mentioned in Fig. 1.1.
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1.2.1 Solution Mapping Method

The history of kinetic UQ can date back to the pioneering works by Frenklach and coworkers
[21], [22], where solution mapping method is used to calibrate the parameter uncertainty
from experimental data. They first conducted sensitivity analysis for a specific target to
determine the active parameters of a target, and then learned a surrogate model (here
referred as "solution mapping") from these active parameters to the prediction of the model
for a target to replace the expensive computation of ODE systems:

fi(k) ≈ M(k; di), (1.6)

where i is the index for different experimental targets. Please notice that here only active
parameters are selected for the construction of solution mapping, but we still use notation
k. According to the principle of effective sparsity [23], only a small amount of parameters
will influence the model’s prediction at a specific target, and their correlation can be at
most second order. Thus, in [21] and [22] they use second-order polynomials to construct
the solution mapping. As introduced in the end of Section 1.1, response surface techniques
have became an essential procedure of UQ nowadays, and we usually separate the following
UQ algorithms with surrogate models. However, since the authors of [21], [22] call their
algorithms "solution mapping method", and their works are the first attempt to conduct
UQ of combustion kinetics, "solution mapping" can refer to both the surrogate model and
the entire procedure presented in [21], [22]. After having a cheap approximation of physical
models, they optimize the kinetic parameters by minimizing sum-of-square errors between
the model’s prediction and experimental data:

k∗ = argmin
k

Φ(k) = argmin
k

T∑
i=1

(
fi(k)− yi

σi

)2

, (1.7)

where T is the number of experimental data, yi is the i-th experimental data point, σi is
the experimental uncertainty of i-th data points, and ϕ(k) is the objective function. As
for the uncertainty of parameters, the two papers used different methods. In [21], the 95%
confidence region is obtained by F distribution:

Φ (k) = Φ (k∗)

{
1 +

p

n− p
F5%(p, n− p)

}
, (1.8)

where n is the number of experimental data point, p is the number of parameters, F5% is the
probability density function (PDF) of F distribution corresponding to top 5% cumulative
density. In [22], since they calibrate the kinetic parameters using data points less than
number of parameters, the parameter hypersurface where the model can exactly predict the
experimental measurements are given and plotted (see Fig. 6 of [22]) combined with the
constraints of prior bound for each parameters.

1.2.2 Bound-to-Bound Data Collaboration

Based on solution mapping techniques (second-order polynomials), Frenklach and coworkers
developed GRI-Mech [24], the first kinetic model using systematic approaches of optimization
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and uncertainty quantification. They further developed a deterministic data collaboration
framework called bound-to-bound data collaboration (B2BDC) [25], where parameters are
required to lie in both the prior intervals and the ranges where the model’s prediction are
within uncertainty bounds of experiments:

F = {k|k ∈ H, yi − σi ≤ fi (k) ≤ yi + σi, i = 1, 2, . . . , n} , (1.9)

where H is the set of prior hypercube defined by the upper and lower bounds of each pa-
rameter

H = {k|lbi ≤ ki ≤ ubi, i = 1, 2, . . . , p} . (1.10)

The posterior bounds of parameters and predictions are obtained by maximizing and mini-
mizing prediction or parameters within the feasible set F . For example, the posterior bounds
of prediction at di are: [

min
k∈F

fi (k) , max
k∈F

fi (k)

]
. (1.11)

For the forward problem, one just needs to replace F with H in Eq. 1.11. After that, a
series of papers have been published dealing with the data inconsistency [26], model dis-
crimination [27] and model error [28] etc. In fact, B2BDC already shows the features of
Bayesian statistics, where the parameters are estimated based on both prior understanding
and observations [29], but as a deterministic framework, it is still different from the Bayesian
analysis we will introduce in the following part.

1.2.3 Spectral Expansion Method

With the development of polynomial chaos expansion (PCE), i.e., spectral expansion, and
its application in combustion science, Wang and coworkers developed a method for inversion
of kinetic parameters based on PCE [30]. The details of PCE will be shown in Section
1.3. In [30], the parameters are first normalized by Eq. 1.5, and hence xi ∼ N(0, 1

2
), then

distributions of experimental data and parameters are both expanded as polynomial chaos:

x = x(0) +

p∑
i=1

αiξi +

p∑
i=1

p∑
j≥i

βijξiξj + · · · , (1.12)

yr(ξ) = yr,0 +
n∑

i=1

σrδirξi, (1.13)

where αi, βij and x are p dimension vectors, p is the number of active parameters, δir is Kro-
necker product. Before model optimization against experimental data, [α1,α2, · · · ,αp] =
1
2
Ip, where Ip is an p× p identity matrix. βij is zero vector. Then they connect inputs and

outputs by second-order polynomial response surfaces

fr(x) = fr.0(x) +

p∑
i=1

ar,ixi +

p∑
i=1

p∑
j≥i

br,ijxixj. (1.14)
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Plugging Eq. 1.12 into Eq. 1.14, we can get the PCE of the model’s prediction

fr(ξ) = fr
(
x(0)
)
+

p∑
i=1

α̂r,iξi +

p∑
i=1

p∑
j≥i

β̂r,ijξiξj + · · · , (1.15)

where α̂r = 1
2
Ipar, β̂r = 1

4
IT
p brIp before model optimization. Match the PCEs of experi-

mental data and model’s prediction by minimizing the sum-of-square loss, i.e., Eq. 1.7, and
optimize the PCE coefficients of kinetic parameters:

Φ
(
x(0)∗,α∗,β∗) = min

x(0),α,β

n∑
r=1

{[
yr,0 − fr

(
x(0)

)]2
+

p∑
i=1

[σrδir − α̂r,i]
2

+

p∑
i=1

p∑
j=i

β̂r,ij + · · ·

}
/σobs2

r .

(1.16)

Then substituting the optimized PCE coefficients Eq. 1.12 and Eq. 1.15, we can get the
posterior parameters and prediction distributions, respectively.

1.2.4 Bayesian Approaches

Until now, all the methods except B2BDC try to optimize kinetic parameters in a least-square
manner. This is the typical Frequentist school in statistics [29], where the parameters are
tried as a deterministic constant. As a parallel school, Bayesian statistics treat parameters
as random variables, and the observation would help update the belief of variables based on
prior knowledge of them. The key difference between the two schools of statistical inference is
whether prior information is utilized. Bayesian inference has been used in model calibration
in the last century [31]–[33], but its application in the combustion community is relatively
late. Kraft and coworkers [34] applied Bayesian inference to the hydrodynamic model of a
rotating disc contactor. In 2009, Najm et al. [35] applied Bayesian inference in combustion
chemistry for the first time, where the activation energies and pre-exponential factors of
a single-step methane combustion scheme is calibrated. Braman, Oliver and Raman [19]
quantified the uncertainty of a hydrogen combustion model involving 20 elementary reactions,
while Miki et al. [36], [37] used Bayesian inference to calibrate A, b, Ea of H+O2 → OH+O
reaction. In the recent ten years, Bayesian analysis has become more and more popular in
the combustion community [5].

The continuous Bayes Theorem argues that

p(k|y) = p(y|k)p(k)
p(y)

=
p(y|k)p(k)∫

K
p(y|k)p(k)dk

, (1.17)

where p(k) is the prior distribution of kinetic parameter, p(y|k) is the likelihood function,
p(y) is the the probability density of obtaining measurement y, also called evidence function,
K is the support of k, and p(k|y) is posterior distribution. By introducing measurement
y, one can update the distribution from prior to posterior. Thus, Bayesian inference is a
natural way of continuous learning [19]. In Bayesian analysis, prior distribution reflects
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one’s previous understanding or belief of the parameters. In combustion kinetics, prior
distributions are usually obtained from direct measurements or theoretical calculations of
kinetic parameters. Likelihood function p(y|k) provides the probability density of obtaining
measurement y given kinetic parameter k. In model calibration, likelihood usually represents
the noise, or uncertainty of a measurement. We usually assume that the measurement is
generated from model prediction at "ground truth" parameters plus measurement noise:

y = M(k0;d) + ϵ, (1.18)

where k0 is the ground truth of physical parameters. Although we may never know the
ground truth, we usually assume that it exists. ϵ is the measurement noise following a
certain probabilistic distribution. For example, for a Gaussian noise N(0,Σ), the likelihood
function can be written as

p(y|k) = 1

(2π)n/2 det(Σ)1/2
exp

{
−1

2
[y −M(k, d)]⊤Σ−1[y −M(k, d)]

}
, (1.19)

where n is the number of measurements, also the dimension of this multivariate Gaussian
distribution. The likelihood also measures the distance between the model’s prediction and
measurements. The likelihood achieves its maximum value when model’s prediction can
perfectly meet with experimental data. A special case is that the noise of different measure-
ments is independent of each other, which means Σ is a diagonal matrix. In this case, the
likelihood can be written as

p(y|k) = 1∏n
i=1

√
2πσ2

i

exp

[
−1

2

n∑
i=1

(
yi −M(k, di)

σi

)2
]
, (1.20)

where σi is the standard deviation of each measurement. Eq. 1.20 is for additive Gaussian
noise. For multiplicative noise, just replace yi, M(k, di) and σi by ln yi, lnM(k, di) and lnσ′

i,
respectively, where lnσ′

i is the multiplicative noise level similar to fi in Eq. 1.5. Note that
likelihood measurement the distance between model prediction and measurement weighted
by experimental uncertainty, and maximizing the likelihood function is exactly the same
as minimizing least-square error in Eq. 1.7 and Eq. 1.16. In fact, maximum likelihood
estimation (MLE) is the same as least-square regression [38].

Although we can express posterior distribution by Bayes Theorem, in most of the time we
cannot obtain the posterior distribution analytically, and drawing samples from the posterior
is not an easy task. The reason is that the evidence function p(y) in Eq. 1.17 is unknown.
Due to the high-dimensional nature of many parametric physical models, p(y) cannot be
accurately computed by numerical integration. Thus, different methods have been developed
to draw samples from or approximate posterior distributions.

Markov Chain Monte Carlo

For sampling the posterior distribution, Markov chain Monte Carlo (MCMC) is the most
widely used algorithm. The basic idea of MCMC is to construct a Markov chain so that the
steady distribution of the chain is exactly the posterior distribution. It can be theoretically
proven that MCMC asymptotically converges to the target posterior distribution [38]. The
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original version for MCMC is called Metropolis-Hastings (M-H) algorithm developed in the
1950s [39] and extended in 1970s[40]. Currently, in the combustion community M-H algo-
rithms are the most generally used MCMC algorithm [19], [20], [35], [41]. Duane et al. [42]
combined the Metropolis algorithm with Hamiltonian dynamics to mitigate random walks
and hence accelerate the convergence. Li et al. [43] utilized this hybrid Monte Carlo (HMC)
algorithm to sample the uncertainty of chemical reaction neural networks (CRNN) [44].

The Methods of Uncertainty Minimization Using Polynomial Chaos Expansion

However, MCMC is computational prohibitive. Another widely used Bayesian framework in
kinetic community called the method of uncertainty minimization using polynomial chaos
expansion (MUMPCE) [45] linearizes polynomial response surfaces around maximum poste-
rior point, so that the posterior distributions are Gaussian and can be analytically derived.
Specifically, the parameters are normalized by Eq. 1.5, where ln fi represents double of
the standard deviation for Gaussian prior distribution, or half length of uniform prior dis-
tribution. For parameters with uniform prior distribution, the optimal parameters can be
obtained by

Φ (x∗) = min
−1<xi<1

n∑
r=1

[
fr(x)− yr

σr

]2
, (1.21)

and for Gaussian prior distributions, the optimal parameters are

Φ (x∗) = min
x

{
n∑

r=1

[
fr(x)− yr

σr

]2
+

k∑
j=1

4x2
j

}
. (1.22)

Here, obviously, they assume Gaussian, independent measurement noise. The authors de-
rived these objective function by plugging polynomial chaos into second order polynomial
response surfaces. In fact, it can be directly obtained by taking the logarithm of numerator
part of Eq. 1.17 and maximize it. Eq. 1.21 is pretty similar to least-square regression in Eq.
1.7, but with bounds for parameters, indicating the impact the uniform prior distribution.
Eq. 1.22 is same as least-square regression with l2 regularization [38]. In statistical inference,
Eq. 1.21 and Eq. 1.22 are called maximum a posteriori (MAP) estimation. Then linearizing
the response surface, the covariance matrix for uniform prior is

Σ∗ =

[
n∑

r=1

Jr(x
∗)Jr(x

∗)T

(σr)
2

]−1

, (1.23)

and for Gaussian prior distribution the covariance matrix is

Σ∗ =

[
n∑

r=1

Jr(x
∗)Jr(x

∗)T

(σr)
2 + 4I

]−1

. (1.24)

Here Jr(x
∗) is the k × n Jacobian matrix of model response evaluated at x∗, where k

is the number of parameters, n is the number of experimental data points. In Bayesian
statistics, the technique of approximating posterior distribution by linearizing models around
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MAP point is called Laplacian approximation, which provides a Gaussian distribution whose
logarithm of PDF has the same curvature with real posterior distributions. Fig. 1.4 adopted
from [46] compares the results of Laplacian approximation, MCMC and the unnormalized
density. It is clear that Laplacian approximation can capture the peak mode of posterior
distribution and has similar "width" around MAP point (please note that the the peak values
are not necessary the same, although looks same in this figure). MCMC can capture all the
modes while Laplacian approximation only can capture the MAP mode.

Variational Inference

Another popular way of Bayesian computation in the computer science community is vari-
ational inference [47], where a parametric distribution is specified and parameters are opti-
mized to decrease the K-L divergence of parametric distribution and posterior distribution.
This is used in [43] and [48] and integrated into a chemical kinetic inference toolkit [49].

Figure 1.4: The comparison of MCMC, Laplacian approximation and unnormalization den-
sity. This figure is adopted from [46].

For other methods of UQ for combustion kinetics, please refer to [5].

1.3 Response Surfaces

As mentioned in Section 1.1, the model needs to be evaluated repeatedly and gradient
information is usually needed for optimization. Thus, it is a common practice to build
a surrogate model which can be evaluated very fast. In this section we briefly introduce
different types of response surfaces that have been used in the combustion community.
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1.3.1 Polynomials

Solution mapping method utilizes second order polynomials as response surfaces [22]. The
data is generated based on factorial design, which means all the combinations of xi = 1 or
−1 are used. For p active parameters, the physical model needs to be evaluated for 2p times.
Although effective sparsity shows that only a small portion of parameters are active for a
specific target, for large model factorial design is still very time-consuming. Davis et al.
[50] proposed a sensitivity-based method of constructing polynomials. The first-order and
second-order derivatives at nominal values are computed by a central difference scheme. In
this approach, the number of model evaluation scales with the number of active parameters
in a polynomial relation, instead of exponentially increasing in factorial design. In addition,
they find that using polynomials up to the degree of two is accurate enough.

1.3.2 Polynomial Chaos Expansion

At the same time, in the engineering mechanics community, polynomial chaos expansions
(PCE) method was developed as an efficient way to represent stochastic processes [51].
Then, it was applied in the UQ of combustion chemistry [35], [52], [53]. PCE also utilizes
polynomials to approximate input-output relations of parametric physical models. Different
from the solution mapping method, however, physical models are evaluated at quadrature
points, while solution mapping uses data generated using factorial design [22], sensitivity-
based design [50] or randomly generated data [54] to conduct polynomial regression. Thus,
PCE enjoys high accuracy with low computational cost. Generally speaking, as long as
a response surface has been built, the forward propagation can be done by Monte Carlo
sampling within parameter uncertainty space and passing them through the response surface
[54]. For PCE, however, the statistics of prediction can be directly computed from polynomial
coefficients and hence no Monte Carlo simulation is needed. Suppose we have an infinite set
of zero means, unit variance random variables ξ = {ξi}∞i=1, it can be proven that any finite
variance random variable X can be expanded as [51]:

X =
∞∑
k=0

αkΨk (ξ1, ξ2, . . .) , (1.25)

where αk are deterministic coefficients, Ψk are a series of orthogonal polynomials with respect
to the PDF of ξ, i.e.:

⟨ΨiΨj⟩ ≡
1√
2π

∫ ∞

−∞
Ψi(ξ)Ψj(ξ)p(ξ)dξ = δij

〈
Ψ2

i

〉
. (1.26)

If ξ is Gaussian, then Hermite polynomials should be used; if ξ is a uniform distribution,
then Legendre polynomials should be used [55]. In practice, the number of random variables
and degree of polynomials should be truncated within a finite number. The coefficients αk

can be determined by Galerkin projection:

αk =
⟨XΨk⟩
⟨Ψ2

k⟩
. (1.27)
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According to the different methods of doing Galerkin projection, PCE can be divided into
intrusive and non-intrusive PCE. The former first represents both model inputs and model
outputs as polynomial chaos, and then substitutes both inputs and outputs into the governing
equations, where αk for inputs are known while αk for outputs are unknown. Due to the
linearity of inner product operation in Eq. 1.26, eventually the governing equation would be
transformed to the inner product operation between ξ and polynomial coefficients αk. The
inner product operation between ξ can be computed in advance, and then by substituting
the inner product and solving the deterministic governing equation, we can obtain αk of
outputs. Then the statistics of outputs can be directly computed from αk. The details of
this process are shown in [56]. For non-intrusive PCE, Eq. 1.27 is computed by numerical
quadrature, where the forward physical model needs to be evaluated at different values of
ξ [52]. In order to reduce the number of physical model evaluations, Gaussian quadrature
points are usually adopted.

1.3.3 High Dimensional Model Representation

Another response surface technique steaming from the chemistry community is high dimen-
sional model representation (HDMR) [57], [58]. Here we only give a brief overview. For
details, readers should refer to [57] and [58]. The mapping function of parameters to model
outputs can be decomposed into hierarchical correlation functions:

f(x) =f0 +
n∑

i=1

fi (xi) +
∑

1≤i<j≤n

fij (xi, xj) +
∑

1≤i<j<k≤n

fijk (xi, xj, xk) + . . .

+
∑

1≤i1<...<il≤n

fi1i2···il (xi1 , xi2 , . . . , xil) + . . .+ f12...n (x1, x2, . . . , xn) ,

(1.28)

where x is parameters, f0 is the mean value of f(x), fi describes the contribution of each
individual parameters to the variation of f(x), fij describes the correlated contribution of two
parameters to the variation of f(x), and so on. Due to the principle of effective sparsity [23],
in practice correlation functions with order higher than two are usually truncated. HDMR,
from the perspective of function forms, is a generalized version of PCE, since each correlation
function is not necessarily orthogonal polynomials of the given form. Different from non-
intrusive PCE where physical models are evaluated at quadrature points, HDMR relies on
evaluation at Monte Carlo samples and then conducts analysis of variance (ANOVA).

1.3.4 Neural Networks

In Recent years, deep learning has achieved great success in image recognition [59], natural
language processing [60] and control in complex tasks [61]. Indeed, for these complex tasks
without physical models, they by nature are high-dimension problems. Even for the data set
of small pictures, CIFAR-10 [62], whose resolution is 32 × 32, the dimension is 1024. Deep
learning can recognize even larger figures with good accuracy, while other machine learning
algorithms cannot handle such a high-dimensional regression or classification problem. In-
spired by the success of deep learning in complex tasks, many studies have been done to use
neural networks (NN) as response surfaces in UQ [63], [64]. Many deep learning frameworks
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for scientific computing are also developed [65], [66]. In the combustion community, Wang
et al. [20] is the first work to use NN as response surfaces. They showe that multi-layer
perceptron (MLP) response surfaces need fewer training samples to achieve the same accu-
racy compared with HDMR and PCE. Zhang et al. [67] utilize MLP as response surfaces
to conduct UQ for FFCM-2 models with more than 1000 reactions. They indicate that the
NN response surface can include all the parameters as inputs without doing dimensionality
reduction first. They also demonstrate generalized response surfaces where experimental
conditions, such as temperatures, pressures, and equivalence ratios, are also included as the
inputs of response surfaces. This can avoid repeated procedures of constructing response sur-
faces for different conditions. Besides MLP, other types of NN are also used for combustion
kinetic UQ. In our group, DeepONet-type NN is generally used for response surfaces [68],
[69]. Deep operator neural network(DeepONet) has two separate nets and merge on the last
layer to give the final prediction. In [68], parameters are inputted into the first net, while the
mixture fraction is inputted into the second net to provide a prediction of temperature at
a given mixture fraction under different kinetic parameters. In [69], non-linear independent
dual systems (NIDS) [70], a structure based on DeepONet is used. Time is inputted into the
second net to give a prediction of 8 species time series parameterized by kinetic parameters.

1.4 Experimental Design for Efficient Uncertainty Quan-
tification

As is shown in Section 1.2, many algorithms have been developed to reduce the uncertainty
of kinetic parameters based on experimental measurements of global combustion properties,
such as laminar flame speeds, ignition delay times, species profiles, etc. Obviously, not all
measurements are equally informative: some would be very helpful to reduce the posterior
uncertainty, while others are not. Then an important question is how to pick these more in-
formative experimental conditions. Empirically, we can have two simple principles to assess
the amount of information provided by an experiment. First is always picking experimental
conditions where the model prediction for this target is very sensitive to the parameters we
want to infer. The second is picking one with small measurement uncertainty. In fact, these
two principles are used by experimentalists in the kinetic community all the time. The first
principle is manifested by the fact that direct measurements of rate constants are usually
conducted at conditions where model prediction is very sensitive and only sensitive to one
or two reaction rate constants [71]. The second principle is manifested by the persistent
efforts of experimentalists to reduce the uncertainty of instruments [72] and to eliminate
the interference of non-chemical factors, or non-ideal effects in measurements [73]. However,
these two principles are more like empirical guidelines and cannot provide rigorous decisions
when experimentalists need to pick conditions from a design space. At the same time, as an
important topic of statistics, many experimental design algorithms have been developed by
statisticians and computer scientists [74], [75]. An observation from these algorithms is that
a rigorous, algorithmic way for design of experiments (DoE) must involve posterior distribu-
tions. Thus, different DoE algorithms are usually developed based on different methods of
UQ. In recent years, as UQ draws more and more attention in the combustion community,
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many DoE algorithms have been developed or implemented by combustion engineers [7].
Generally, experimental design includes two stages. The first is the computation of

information gain for a given experimental condition, and the second is the maximization
of information gain over the design space. In the following subsections, we will overview
the Bayesian and non-Bayesian methods for computing / estimating information gains in
Sections 1.4.1 and 1.4.2, respectively, with emphasis on the Bayesian side.

1.4.1 Non-Bayesian Approaches

Earliest attempts for DoE in the combustion community focus on sensitivity analysis, where
different methods, both global and local, have been developed to give a less biased assessment
of the significance of different parameters [76], [77]. Just as stated in the last paragraph,
however, sensitivity analysis still lies in the category of empirical methods, since no poste-
rior distribution is evaluated. To the author’s knowledge, the earliest rigorous algorithm for
combustion DoE was done by Frenklach and coworkers [78] based on B2BDC framework.
In that paper, inference is done first based on a collection of data. Then the measurement
uncertainty of each target is slightly perturbed to observe the sensitivity of the parameter
posterior bound length to the measurement uncertainty of a certain target. A larger sensi-
tivity indicates a larger information gain for this experiment. After that paper, as Bayesian
analysis became popular in the combustion community, many researchers applied Bayesian
DoE in combustion problems, which will be introduced in Section 1.4.2.

In recent years, many non-Bayesian algorithms have been developed by combustion engi-
neers. Sheen and Manion [79] developed a method called experimental design by differential
entropy (EDDI). Specifically, we have a set A of experimental targets where we can do ex-
periments, and another set B of targets where we care about the prediction uncertainty but
cannot do experiments. We start from a prior model, and generate synthetic data for these
targets at set A. Then inference is done based on these synthetic data. In [79], MUMPCE
is used as the inference framework. After we get the posterior model, we can compute the
differential entropy

Sij =
∂ lnσ∗

j

∂ lnσobs
i

. (1.29)

where i is the index only in set A, j is the index in both set A and B. Then the information
flux for each target in A can be computed:

Φr =
∑
j

(Srj)
2 −

∑
i

(Sir)
2 , (1.30)

where r is the index in set A. If the smallest Φr in set A is negative, remove it from A and
repeat this procedure to compute new Φr; otherwise, the current set A is the optimal set of
experimental conditions. Turányi and coworkers [80] extended this DoE framework to the
UQ methods developed by Turányi’s group, and derived the analytical form of differential
entropy. Recently, Yang and coworkers [81] developed an experimental platform integrating
sensitivity entropy-based design to pick experimental conditions informative to kinetic UQ
[82], and similarity-based design to substitute conditions where experiments are hard to
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conduct by these easy conditions [83], [84]. Inspired by the entropy of a discrete random
variable, sensitivity entropy is defined by

HS = −
∑

Si1,...,is loge (Si1...is) , 1 ≤ i1 < · · · < is ≤ n (1.31)

where Si1...is is the Sobol index in global sensitivity analysis. Similar to random variables,
the summation of all Sobol index should be 1, and hence entropy can be generalized to
sensitivity. Low sensitivity entropy means the target is only sensitive to a few reactions. As
for similarity-based design, cosine similarity of Sobol index [83] or active subspace [84] at two
designs is computed. Cosine similarity near 1 means that the two targets constrain the same
set of kinetic parameters, and hence one condition where experiments are hard or expensive
to conduct can be replaced by the other one. These methods, although are more empirical
and lack the guidance of rigorous theory, show good performance in numerical experiments,
and meet our intuition.

1.4.2 Bayesian Approaches

Since the second part of this thesis will focus on Bayesian DoE, in this section, we provide
a more comprehensive introduction of Bayesian DoE following Huan and Marzouk [85], and
then introduce some applications of Bayesian DoE in combustion kinetic problems. In [85],
expected information gain is estimated using Monte Carlo sampling without any assumption,
while the Bayesian design in the combustion community usually uses a simplified version
to reduce computational cost. Since a rigorous DoE algorithm involves the evaluation of
posterior uncertainty, different DoE algorithms can be developed based on different methods
of Bayesian inference.

Overview

The Bayes Theorem with design d can be written as

p(k|y,d) = p(y|k,d)p(k)
p(y|d)

=
p(y|k,d)p(k)∫

K
p(y|k,d)p(k)dk

, (1.32)

Here we assume that the prior distribution is irrelevant to d. Kullback–Leibler (K-L) diver-
gence is generally used to measure the difference between two distributions from information-
theoretic perspective. In Bayesian DoE, K-L divergence of prior and posterior distributions
is used to measure the information gain:

DKL [p(k|y,d)∥p(k)] =
∫
K

p(k|y,d) ln
[
p(k|y,d)
p(k)

]
dk, (1.33)

where K is the support of kinetic parameters k. K-L divergence is always non-negative,
and it equals to zero if and only if two distributions are identical. The larger the K-L
divergence is, the larger the difference between two distributions. Since we cannot know the
experimental data y a priori, we can weight the K-L divergence by the PDF of y, leading
to expected information gain (EIG):

EIG(d) =

∫
Y

∫
K

p(y|d)p(k|y,d) ln
[
p(k|y,d)
p(k)

]
dkdy. (1.34)
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By rearranging different terms in Eq. 1.32 and substitute into 1.34, we can transform both
the part within the logarithm and out of the logarithm, obtaining

EIG(d) =

∫
Y

∫
K

ln

[
p(y|k,d)
p(y|d)

]
p(y|k,d)p(k)dkdy. (1.35)

The goal of Bayesian DoE is to find the optimal experimental condition:

d∗ = argmax
d∈D

EIG(d), (1.36)

where D is the design space.

Full Bayesian Design

This method is based on the Monte Carlo estimation of evidence function (i.e., p(y)). The
integral in Eq. 1.35 can be estimated by a double-loop Monte Carlo simulation

EIG(d) ≈ 1

nout

nout∑
i=1

{
ln

p
(
y(i)|k(i),d

)
1

nin

∑nin
j=1 p (y

(i)|k(i,j),d)

}
, (1.37)

where the nin and nout are the numbers of samples for the inner loop and outer loop, respec-
tively. The inner loop is used to compute p(y|d). (k(i),y(i)) are drawn from p(k)p(y|k,d),
while k(i,j) for a given i are drawn from p(k). This method can be considered as associated
with MCMC algorithm for Bayesian inference. Huan and Marzouk [85] tested this algorithm
in the inference of 2 kinetic parameters of a hydrogen combustion model, and targets are
ignition delay time, H atom peak time and peak concentration. Numerical results showed
that the posterior after experiments in the high EIG area is obviously narrower than that in
the low EIG area.

However, the computational cost of double-loop Monte Carlo is very large. Rainforth
et al. [86] have proved that this nested Monte Carlo estimator has error scales with com-
putational cost with power −1

3
. In the combustion community, the simplified version of full

Bayesian DoE is implemented.

Bayesian Design Using Laplacian Approximation

As we introduced in Section 1.2, Laplacian approximation is commonly used to approx-
imately compute the posterior distribution. There are two algorithms of DoE based on
Laplacian approximation. A relatively sophisticated version was developed by Long et al.
[87]. Specifically, the posterior is approximated by linearizing physical models, so that the
posterior distribution is Gaussian and the K-L divergence in Eq. 1.34 can be derived ana-
lytically. Then the integral weighted by p(y) is computed by Gaussian quadrature. In the
combustion community, a further reduced version is applied.

Kraft and coworkers [88] utilize the Fisher information matrix to design optimal operation
conditions of a compression ignition engine so that kinetic parameters can be efficiently
inferred. The Fisher information matrix is defined as:

F (k,d) = Ey

[
(∇k log p(y|k,d)) (∇k log p(y|k,d))⊤

]
. (1.38)

29



When Gaussian likelihood is used, we can get that (for details, see Eq. 14 of [88]):

F (k,d) = J(k,d)TΣ−1J(k,d). (1.39)

where J(k,d) is the Jacobian matrix of the multi-input, multi-output model, Σ is the co-
variance matrix of measurement noise. Note that this is pretty similar to the covariance
matrix in Eq. 1.23, where the only difference is that Eq. 1.23 assumes independent noise
so the covariance matrix can be written as the denominator. They used D-optimality to
define optimal design, where the optimal design gives maximum determinant of the Fisher
information matrix. This is equivalent to minimizing the determinant of the posterior matrix
under a uniform prior and linearized response surface. vom Lehn et al. [89] also utilized a
D-optimality approach based on linearized response surfaces but based on Gaussian priors.
The idea is that for each design point, nominal prediction is directly used as x(0)∗ and Eq.
1.24 is used to estimate potential posterior covariance matrix. The goal is to find the de-
sign with the minimum determinant of the potential posterior covariance matrix. Similarly,
Wang et al. [8] assumed that both kinetic uncertainty and systematic errors would linearly
impact the measurement, so that the information gain can be analytically derived using the
Jacobian matrix.

The difference between the reduced version described in the last paragraph and the
sophisticated version [87] is that the reduced version uses the posterior when y is exactly the
model prediction at nominal parameter values to compute the information gain, while the
complex version integrates the information gain with respect to all the possible experimental
measurement. In fact, it can be proved that for a Bayesian linear model with Gaussian
prior Σ0 and Gaussian noise ϵ ∼ N(0,Σ), where measurement is given as y = Xk + ϵ,
ln[det

(
Σ−1

0

)
/det(XΣ−1XT+Σ−1

0 )] is same as full Bayesian DoE given by Eq. 1.35 [90]. Thus,
as long as the physical model is linear enough around the nominal value, linear approaches
of DoE should be close to full Bayesian design.
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Chapter 2

Utilization of Species Profiles in
Bayesian Inference

2.1 Introduction

Although direct measurement and quantum computation have been widely used to determine
reaction rate constants in kinetic models, many rate parameters are still estimated from a
system level against experimental measurements, such as laminar flame speeds, ignition
delay times, etc. In 2009, Davidson and Hanson utilize state-of-the-art laser absorption
techniques to make multi-species time-histories data available [91], which is shown to provide
rich kinetic information. Wang and Sheen [92] shows that the multi-species time-histories
can well constrain the prior model and lead to notable improvement in prediction precision in
both species time-histories and global combustion data, such as laminar flame speeds. Since
then, many species profile data is reported by experimentalists [8], [93], [94] and utilized in
combustion kinetic UQ [92], [95]–[98].

However, there are still two problems that have not been answered in the utilization of
species time-histories. The first problem lies in the target selection: some works only pick
representative points to conduct UQ [92], [95], while others use all the data points in a curve
[8], [96]–[98], but there is no comparison of the approaches in the literature on their influences
on kinetic parameter estimation. The UQ results shows that both two approaches can make
the posterior predictions cover the experimental data, or at least closer to experimental data
compared with the prior model. Sometimes even only picking several points can make the
posterior prediction of the entire curve fit the data well [92]. A potential argument for this
observation is that, the physical model imposes constraints on the shape of species profiles
so that by perturbing kinetic parameters, the curve usually will be scaled up / down along
horizontal or vertical directions, and only several points would be enough for determining
the entire curve. In this work, we will compare the results of Bayesian inference using both
representative points and all points in species profiles. The argument above is also tested by
the assessment of sensitivity directions.

The second problem is how to balance the information from the prior knowledge and
new measurements. Specifically, how to determine the weights of the likelihood of different
data points, indicated by the number of effective independent data adopted in the Bayesian
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approach. In some works, the data is normalized by the number of data points to avoid
overfitting [8], [97], [98]. For example, in [97], an objective function is minimized to obtain
the optimal kinetic parameters:

E(k) =
1

N

N∑
i=1

1

Ni

Ni∑
j=1

(
yij −Mij(k;di)

σ (yij)

)2

, (2.1)

where i is the index for data batches, and j is the index of data point, N is the number
of data batches, and Ni is the number of data points in batch i. In the case of shock tube
species time-histories, the "batch" refers to each curve, while the data points refer to all
the points in a single curve. This is the typical way of normalizing all data points by the
number of points in each curve. In [98], however, 10 points are artificially assigned to each
OH profile are used. They claimed that 10 points should be enough to capture a curve, and a
further increase in the number of data points does not lead to the improvement of inference.
This can be considered as utilizing all data points in a curve, although they assume the
number of points. In this work, we also compare the Bayesian approaches with and without
normalization with respect to the number of data points.

In this chapter, we conducted Bayesian inference facilitated by adopting neural networks
as response surfaces. We obtain the optimal parameters, i.e., maximum a posterior (MAP)
estimation, by maximizing the numerator part of Bayes’ law. Then MCMC sampling is
done to draw samples from the posterior distributions. The elucidated influences of the
target selection and the number of independent effective data will guide experimentalists
and modelers in generating and adopting data for model development. This chapter is a
modified version of [69].

2.2 Methods

To investigate the influence of target selection on kinetic model optimization, we combine
deep neural networks and Bayesian inference to optimize a propane pyrolysis mechanism
against species histories in shock tube measurements [94]. The trial mechanism is a C3

sub-mechanism extracted from USC-Mech II [10] with 111 elementary reactions and 27
species. In the shock tube experiments previously reported in [94], the time-histories of
mole fraction for eight species across five initial temperatures were reported. There are
160 data points in each profile, from 0.01 ms to 1.6 ms with an interval of 10 µs. The
initial gas composition is 2% propane in argon. The thermodynamic conditions are initial
temperatures of 1250 K, 1290 K, 1330 K, 1370 K, and 1410 K, respectively, at a constant
pressure of 4 atm. The average experimental uncertainties (one standard deviation, σ) of
mole fraction for each species are 0.0027 for H2, 0.0012 for C2H2, 0.0011 for CH4, 0.0013
for C2H4, 0.0012 for C2H6, 0.0011 for pC3H4, 0.0016 for C3H6, and 0.0015 for C3H8. The
optimization process includes three steps: first, the neural network response surfaces model
representing the response of species evolution to the perturbation of pre-exponential factors
is trained; then, the numerator part of Bayes formula is maximized with the previous neural
networks to obtain the MAP estimation; finally, Hamiltonian Monte Carlo algorithm [42]
(HMC), a variation of the original MCMC algorithm in Pyro package [99] is used to draw
samples of posterior distributions.
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2.2.1 Bayesian Inference

As introduced in Section 1.2, Bayesian analysis has been generally used in the UQ of com-
bustion kinetics. In this chapter, we first obtain the MAP estimation by an optimization
approach. Notice that in Eq. 1.17, the denominator part is independent of k. We only
need to maximize p(y|k)p(k) and the corresponding k is the MAP estimation. For demon-
stration, we focused on the pre-exponential factors in each elementary reaction and left the
other parameters in the kinetic mechanism, such as temperature exponents and activation
energies, unchanged. The prior distributions of pre-exponential factors p(k) are parameter-
ized as Eq. 1.5, where xi ∼ N(0, 0.25). The prior distribution p(k) is mutually independent,
so p(k) =

∏
p(k). It is generally assumed that the measurement noise is independent of

each other [19], [20], so p(y|k) =
∏

p(y|k). We can construct a loss function by taking the
natural logarithm of p(y|k)p(k), canceling the constant term, and taking the negative of the
result:

Loss =
∑
S

{
1

2σ2
i

∑
T

[
n

N

∑
N

(M(x,d)− y)2
]}

+
111∑
j=1

2x2
j . (2.2)

Here, N = 160 is the number of data points in a curve, T is the number of temperatures,
S is the number of species, and M(x,d) and y are the mole fractions predicted by the
model and of shock tube measurement, respectively. To reduce the computational cost,
M(x,d) is calculated by neural networks. σi is the experimental uncertainty for species
i, and j is the index of pre-exponential factors to be tuned. xj is defined by Eq. 1.5.
n is the number of effective independent-data points, which should be the same as N , if
we take the common approach to calculate p(d|k) with multiple experimental data, i.e.,
multiplying them together. The loss function is minimized to obtain the MAP estimation of
kinetic parameters. However, such a treatment relies on an assumption that the experimental
uncertainty of each data point is mutually independent. This assumption is theoretically and
practically problematic when time-histories of shock tubes are used as targets, and we will
discuss this in detail in Section 2.3.2. Another approach is to assume the effective number
of independent data points is 1 in each species profile, similar to the approach described
in [97], which averages the discrepancies of all data points in one profile. In the current
study, optimizations with both n = 1 and n = 160 are conducted and compared. The
setting of effective independent-data number is adopted from [8]. In fact, moving n into the
denominator part as N/n, and merging with σi, different choices of n can be interpreted as
different experimental uncertainties.

For target selection, it is also a common practice to select one or several points along the
time-histories of shock tube species measurements as optimization targets. To demonstrate
this approach, the last points (at 1.6 ms) in every profile were selected as targets. The loss
function is

Loss =
∑
S

{
1

2σ2
i

∑
T

(M(x,d)1.6 − y1.6)
2

}
+

111∑
j=1

2x2
j . (2.3)

Similarly, here we assume that the likelihood functions for each temperature and species are
mutually independent.

We adopt Adam optimizer [100] in PyTorch environment [101], developed to optimize
large-scale deep neural networks, to find the minimum value of loss function and the optimal
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model parameters, due to its adaptive step size. Here the step size "lr" is fixed at 0.01.
The initial point of optimization is the parameter values in the original mechanism, i.e.
ln(ki/ki,0) = 0. Since we have replaced the physical model with neural networks, the gradient
information used in the optimization process can be efficiently computed by backpropagation
of neural networks, rather than solving the computationally expensive sensitivity equations.
The iteration times of all three optimization strategies are 200, where the curve of the loss
function enters a near-plateau region. The figures of loss function versus iteration times in
three cases are shown in Fig. B.6 of Additional Figures.

Then we draw samples from posterior distributions using Hamiltonian Monte Carlo algo-
rithm [42], which is designed to reduce the random walks of samples in traditional Metropo-
lis–Hastings algorithm. The HMC package in Pyro [99] is used combined with neural network
response surfaces introduced in Section 2.2.2. The posterior distribution of the case with
n = 160 is too narrow to sample from, so we only compare the posterior distributions of
n = 1 case and the case utilizing only the last point of each curve. We obtained three
chains for each case, and each chain contains 15,000 samples after 5,000 burn-in samples.
We do Gelman-Rubin test [102] and check the auto-correlation of each chain for the diag-
nostics of convergence. The results of auto-correlation are shown in Figs. 2.1 and 2.2. The
auto-correlation is computed by

Ci(τ) =
1

T − τ

T−τ∑
t=1

(
θi,t − θi

) (
θi,t+τ − θi

)
, (2.4)

where τ is the lag, i is the index for different coordinates (i.e., parameters), θi,t is the value
of the i-th coordinate and the t-th sample, and θi is the mean value of coordinate i over the
entire chain. The autocorrelation package of pyro is used to compute the auto-correlation
here. This quantity measures the correlation of two samples with a certain lag. As is shown
in Fig. 2.1, for the case of utilizing the entire curve with n = 1, the auto-correlation decays
to zero at around 50 lag, which means that the number of effective independent samples is
3×15000/50 = 900. From Fig. 2.1, it is shown that for the case of utilizing only the last point,
the auto-correlation decays to zero at around 5 lag, and the number of effective independent
samples is 3× 15000/5 = 9000. A reference of effective independent samples is 500 in [103],
so we have got enough number of samples to represent the posterior distributions. As for
Gelman-Rubin test [102], we compute R using the package in Pyro. The maximum R among
all coordinates for the entire curve case is 1.0049, while for the last point case it is 1.0005.
The criterion of convergence is usually R < 1.1, so our samples already achieve convergence.

2.2.2 Neural Network Response Surfaces

Since model optimization and uncertainty quantification usually repeatedly evaluate the
physical model, it is usually combined with response surfaces, which can relate model param-
eters to the model prediction. Response surfaces that are commonly used in the combustion
community include polynomial chaos expansion [35] and neural networks [20], [67]. Here,
we train deep neural networks as response surfaces. The difference between our approach
and previous works on neural networks as surrogate models is that our neural networks can
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Figure 2.1: The auto-correlation of three chains for the case of utilizing the entire curve with
n = 1. The red horizontal line indicates zero auto-correlation. Different colors represent
different coordinates.

Figure 2.2: The auto-correlation of three chains for the case of only utilizing the last point.
The red horizontal line indicates zero auto-correlation.

represent the mapping relationship between a group of pre-exponential factors and multiple
output data, namely time-histories of eight species, instead of only one output data, such
as the ignition delay times in [20]. In other words, our neural network model is a full-field
surrogate model, rather than simply predicting a scalar output value. Another advantage of
neural networks is that using gradient descent algorithm in obtaining MAP requires gradient
information, and the backpropagation algorithm of neural networks can highly reduce the
cost of gradient computation.

The network structure, as shown in Fig. 2.3, is inspired by the recently developed Deep
Operator Neural Network [65] that has a parameter neural network and a coordinate neural
network. The number of neurons is labeled under each layer. The number of neurons and
layers is obtained by grid searching, i.e., increasing the number until its performance does not
improve. For the parameter network, the input features are ln(ki/ki,0) for 111 elementary
reactions. For the coordinate (time) network, the input is time. The outputs of the two
networks undergo reshaping and multiplication, and then form the prediction of species
concentration at a given time, as shown in Fig. 2.3. It is worth noting that we train different
neural networks under different initial temperatures, so temperature is not considered as an
input. The data used to train a certain network are all under the same initial temperature.
Adam optimizer [100] is used to train the neural network till convergence, and the learning
rate is 0.01.

For each network, the training data are 5000 samples with different model parameters
generated by Cantera [104] according to the experimental conditions using the C3 sub-
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Figure 2.3: The structure of the neural network used as surrogate models. The number of
neurons is labeled under each layer.

mechanism. The input parameters, ln(ki/ki,0), are randomly sampled by Latin hypercube
sampling [105] with bounds of ± ln fi. Our validation shows that neural networks can predict
the species concentrations and the gradients of concentration to input parameters accurately.
The validation results can be found in Figs. B.1, B.2, B.3, B.4 and B.5 in Additional Fig-
ures, from which we can find that the prediction error is relatively small, compared with
the experimental uncertainty shown in the shadow region. We also validate the gradient
computation of the network, as shown in Tables A.1 and A.2 in Additional Tables.

2.3 Results and Discussion

2.3.1 Comparison of Optimized Mechanisms with the Original Mech-
anism

Three approaches are utilized to optimize the trial mechanism: the entire curve as target
with averaged errors (n = 1) and point-wise errors (n = 160), and the last point in each
profile as target. To compare the performance of the three optimized mechanisms against
measurements, we define a normalized error (NE) for a given species profile:

NE =
1

Nσi

∑
N

|M(x′,d)− y| , (2.5)
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where x′ is the optimized parameters, N = 160 is the number of data points in each profile
and σi is the experimental uncertainty for species i. For each mechanism, we have 40 profiles
(eight species at five temperatures) to compare with, so we can calculate the average of 40
NEs as an overall measurement of the performance of this approach. In addition, to assess
the closeness between the prediction and the measurement only at the last point (at 1.6 ms),
we can also define the normalized error at the last point (NELP):

NE =
1

σi

|M(x′,d)1.6 − y1.6| . (2.6)

We then average 40 NELPs together for each mechanism. The averaged NEs and NELPs of
three optimized mechanisms and the initial mechanism are shown in Table 2.1. In Table 2.1
and hereafter, the mechanisms optimized against entire curves with n = 160 and n = 1 are
labeled as C-160 and C-1, respectively, and the mechanism optimized against the last point
is abbreviated as LastP. From Table 2.1, we can see significantly improved agreement with
the measurements with all three optimization approaches.

Table 2.1: Comparisons of the averaged normalized errors (NEs) and normalized errors at
the last points (NELPs).

Mechanisms Averaged NE Averaged NELP

Original 0.754 0.876
C-160 0.168 0.210
C-1 0.210 0.296

LastP 0.194 0.227

Detailed comparisons for individual temperature and specific species measurements be-
tween the NEs of the original mechanism and those of the three optimized mechanism are
included in Tables A.3, A.4 and A.5. Regardless of the number and choice of the target,
the optimized mechanism almost always has reduced NEs except for C2H2 and pC3H4 under
certain temperatures. A possible explanation is that the relative experimental uncertainties
of these two species are very large. They are nearly ten times larger than the species con-
centrations themselves at 1250 K. Therefore, the contribution of these species to the loss
function is very small, so in the optimization process, the mechanism is tuned to fit other
species at the cost of worse predictions for these two species.

2.3.2 The Influence of Effective Independent-Data Numbers

The influence of effective independent-data number will be elucidated via comparison be-
tween the performance and optimization in model parameters of C-160 and C-1. From Table
2.1, we can see that C-160 has both smaller averaged NE and averaged NELP, implying that
it performs better compared with C-1 in terms of the closeness to experimental measure-
ments, although the difference is slight. In Table 2.2, the differences between the NEs of
C-1 and those of C-160 for all 40 cases are shown, where the number indicates the ratio of
the difference to the corresponding experimental uncertainty. In most cases, the differences
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between NEs of C-160 and C-1 are less than 10% of the experimental uncertainty, with C-160
slightly outperforming C-1. However, for pC3H4 at 1410 K, C-1 is closer to the measurements
compared to C-160. As is mentioned above, the relative experimental uncertainty of pC3H4

is so large that the optimizer tends to prioritize fitting other species, leading to larger errors
in pC3H4. The predictions of the original model, C-1 and C-160 at 1250 K are compared
against experimental data in Fig. 2.4. Similar to the results indicated by Table 2.2, both C-1
and C-160 are closer to experimental measurements, with C-160 slightly better than C-1,
especially for CH4. For cases with differences larger than 10% of experimental uncertainty
(in bold in Table 2.2), the curves of measurements with shadows indicating the uncertainties
and predictions with C-160 and C-1 are summarized in Table B.7 for visualization of this
discussion.

Table 2.2: Differences between the NEs of C-1 and those of C-160. Differences larger than
10% of the corresponding experimental uncertainties are in bold

Species/Temperature 1250 K 1290 K 1330 K 1370 K 1410 K

H2 -0.018 -0.003 0.026 0.072 0.086
C2H2 0.001 -8×10−5 -0.002 -0.024 -0.067
CH4 0.164 0.221 0.170 0.156 0.080
C2H4 0.077 0.089 0.025 0.012 0.242
C2H6 -0.021 0.007 0.072 0.172 0.296
pC3H4 -3×10−4 -0.007 -0.031 -0.070 -0.118
C3H6 0.008 0.009 -0.057 -0.056 -0.021
C3H8 0.081 0.143 0.058 -0.071 -0.013

The reason why the overall performance of C-160 is better than C-1 is that p(d|k) in
the loss function is given a higher weight, so the prior distribution only plays a minor role
in informing the posterior distribution. The optimizer just needs to decrease the value of
p(d|k) to make the prediction closer to experimental measurements. On the contrary, the
C-1 approach needs to keep a balance between p(d|k) and p(k), which will prevent rate
parameters from deviating far away from the nominal values.

To compare the difference in rate constants of C-160 and C-1, 10 most tuned elementary
reactions (measured by the absolute value of xi) in each mechanism and the corresponding
xi are shown in Fig. 2.5. xi can be interpreted as the normalized change of parameters, such
that an increment of 0.5 in value corresponds to one standard deviation of the experimental
uncertainty. Although the performances of C-1 and C-160 are similar according to Table 2.1,
their optimized rate constants are quite different. Although a significant tuning in C-160
resulted in better performance compared to C-1, it is noted that more than 10 constants
are tuned over 1σ, and one tuned even over 3σ. This is generally considered to be highly
improbable in model development.

To further illustrate the influence of the number of effective independent data on the
tuning of kinetic parameters, optimizations using a sweep of n between 1 and 160 were
conducted, similar to the process that resulted in C-1 and C-160. The largest change and the
magnitude of all changes to the parameters are presented as max |xi| and ||x||2, respectively.
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Figure 2.5: The xi of the most tuned reaction rates in C-1 and C-160.

Table 2.3: Influence of the number of effective independent data on |xi|. Maximum |xi| near
2σ and 3σ are in bold.

n 1 10 30 50 80 160

max |xi| 0.77 0.76 0.96 1.24 1.49 1.77
||x||2 0.92 1.31 2.17 2.69 3.20 3.96

As shown in Table 2.3, when n increases, max |xi| increases accordingly when n is beyond
10. Furthermore, the max |xi| reaches 2σ when n is near 30, while it reaches 3σ when n
is near 80. This demonstrates that although including more targets could improve model
performance, over-tuning might become an issue.

A physical interpretation of cause for the over-tuning problem is that the two terms in the
loss function in Eqs. 2.2 and 2.3 measure the closeness of prediction to the experimental data
and the closeness of tuned rate parameters to the nominal value, respectively. If we focus on
tuning rate parameters to fit experimental data, the likelihood function is given too much
weight. This approach is then similar to maximum likelihood estimation (MLE) [29], which
totally ignores the prior distribution, instead of MAP. Theoretically, the justification for
multiplying the likelihood function in each point together to construct an overall likelihood
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function is based on the assumption of independent likelihoods, which means that the differ-
ence between each pair of measurement and model prediction is independent. As mentioned
in Section 2.1, this is generally adopted by previous studies on Bayesian model calibration.
However, this is probably not true for the species histories in shock tube measurements.

The essence of this problem is that this approach folds systematic error and model error
into i.i.d. Gaussian distributions, so parameters are forced to be tuned away from true value
to offset the systematic error and model error. Following [106], [107], we can express the
discrepancies between model predictions and measurements at data point i as:

yi = fi(k) + εmi + εdi = gi + εdi (2.7)

where yi is an experimental measurement, fi(k) is the model prediction given parameter k,
εmi is the model error, εdi is the measurement error, and gi is the true process. In fact, εdi
can be further decomposed into εsi and εri, which are systematic error and random noise,
respectively. Model error is defined as the discrepancy between model predictions (with
true parameters) and ground truth [107]. In traditional Bayesian inference, we assume that
the model with true parameters can predict the true process, and measurement data is
ground truth plus random noise. Generally, modeling the random noise as i.i.d. Gaussian
distributions is a valid assumption, so in this scenario, as more data is used, the posterior
distribution would shrink around the true parameter values [106]. In the current case,
however, we also lump systematic error and model error into an i.i.d. Gaussian distribution,
which is intrinsically a mis-specification. For model error, it is a deterministic variable, rather
than a random variable. The common sources of model error in kinetic model include: (a)
missing species/reactions; (b) deviation of untuned variable, like our case, where b-factors
and activation energies are not calibrated; (c) lumping of several reactions, which is common
in reduced mechanisms. For systematic error, it may be subject to a distribution, but not
necessarily an i.i.d. Gaussian distribution. One example is that, if the real temperature
behind reflected shock wave deviates from the theoretical value, the error would be present
throughout the entire time domain, not independent for each point. In fact, as pointed by
[8], even noise can be correlated. Consequently, in the calibration process, in order to fit the
experimental data, the parameters would be overtuned to offset the systematic error and
model error.

Another potential reason is the ill-posedness of this inverse problem [108], which means
that the inference results are very sensitive to the data used for inference. In our case, the
inferred parameters of C-160 and C-1 are pretty different, but the predictions of two groups of
parameters are very similar. Thus, small changes of prediction corresponds to large changes
of parameters. One way to solve ill-posed inverse problem is to introduce regularization of
parameters [108], which is generally same as imposing prior information. Gaussian prior is
equivalent to l2 regularization [38], as clearly shown in Eqs. 2.2 and 2.3. We verify the ill-
posedness of this problem by generating five sets of synthetic data using nominal parameters
plus Gaussian noise. Note that by generating data in such a way, there is no model error and
systematic error. The MAP of these five sets of data is shown in Fig 2.6. It is obvious that
the inferred parameters are different when different noisy data is used, although these data
sets share the same "ground truth". For example, the last fifth parameter inferred from the
first and the fifth data set have a difference of up to one σ, where σ is the standard deviation
of the prior.
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Figure 2.6: The inferred parameters of five synthetic data sets sharing the same ground truth
but with different Gaussian noise.

In Bayesian analysis against batch-wise data, such as laminar flame speed and ignition
delay time, the drawback of such a mis-specification is not obvious, because the experimental
data are not too many and correlation between systematic errors is not very strong. But
in high-resolution data, such as spatial distribution and time-series, the draw back becomes
obvious, and has great impact on the estimated parameters. Therefore, special attention
needs to be paid to determine the number of effective independent data, n. A theoretical,
rigorous treatment of this problem would involve calculating the likelihood function using a
non-diagonal covariance matrix to describe the correlation of data points [109]. For example,
[8] assumed Gaussian uncertainty in initial temperature, pressure and composition of shock
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tube pyrolysis experiments, and derive the covariance matrix of all points in a measurement
curve by linear approximation. However, [8] also pointed out that even for random noise they
can correlate to each other. In addition, there are some model and systematic errors that
cannot be identified. Thus, choosing a suitable n is still needed. The potential solution for
determining a suitable n could be: (a) plotting a curve of prediction error versus n, and select
n based on the acceptable error; (b) treating n as a parameter to be calibrated, like [19];
(c) using the model comparison method described in [19] to compute the evidence function
with different n, where the one with largest evidence would be the optimal one. Here we
only implement (a) for demonstration. In Fig. 2.7, it is obvious that when the averaged NE
is smaller than 0.2, further increase of n only leads to slightly improvement of performance,
so the optimal n would be around 1. Theoretically the optimal n should be the one with
maximum curvature. This method is called L-Curve method [110].

There are two noteworthy points. First, we only show the point estimation here (MAP),
without sampling the posterior distribution since the posterior is too narrow to be sampled
from. The C-1 approach, although can provide a more reasonable point estimation, would
have a far larger posterior uncertainty than C-160, since n = 1 is equivalent to multiplying
the experimental uncertainty by 160. In other words, this approach provides a reasonable
point estimation but with larger uncertainty, while C-160 approach provides a point esti-
mation with a concentrated posterior but deviated far away from our prior knowledge on
the parameters. Fig. 2.8 shows a schematic of the posterior distribution of two strategies,
together with the ideal case of C-160 with perfect well-posed model and accurate likelihood.
Second, the discussion of effective independent data points is based on a precondition that
the prior distribution of parameters is not a uniform distribution. In some literature [19],
[20], the prior distribution of rate constants is assumed as uniform distribution, in which
case MAP can be considered as MLE with bounded parameters. In this case, the value of
effective independent data points does not affect the optimization result. We can consider
MLE as an asymptotic case with an effective independent-data number approaching infinity
from the perspective of point estimation. In this case, the ill-posedness may be very several
and need careful assessment.

Figure 2.7: The value of averaged NE for different effective independent-data number n.
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The analysis above can be a reference for both modelers and experimentalists. For
modelers, they need to consider taking measures (e.g., use small n) to avoid overtuning,
especially when reduced models are used, which can introduce large model error, and when
high-resolution data are used; ill-posedness of the model-data system needs careful assess-
ment. For experimentalists, providing a detailed probability density of experimental error,
especially systematic error, would be very helpful for model calibration. If the system is
well-posed, and we can know the accurate likelihood function without model error, there is
no need to introduce n (given that model error is not large), and then we can get a right
point estimation with a concentrated posterior as shown in Fig. 2.8.

Figure 2.8: The schematic of posterior distribution of C-1 and C-160. C-160 with a perfect
well-posed model and an accurate likelihood function is used as an ideal case of Bayesian
inference. The dashed vertical lines represent MAP point estimations.

2.3.3 The Influence of Target Selection

In previous studies to develop kinetic models, two methods were adopted to select optimiza-
tion targets in species time-histories: selecting several points in a curve [92], [95], and using
all data points in the entire curve [96]–[98]. A comparison of these two approaches will be
discussed in this subsection. To avoid the influence of the effective independent-data num-
ber, C-1 was selected to represent optimization against the entire curve and compared with
LastP.

From Table 2.1, we can see that LastP has both smaller averaged NELP and averaged
NE than those of C-1, although the differences are minor. Similarly, shown in Table 2.4, the
NEs of C-1 and LastP are similar for all 40 cases, with half positive and half negative results.
This trend is further confirmed by species evolution histories included in B.8 of Additional
Figures.

We also selected the most changed rate parameters (measured by the absolute value of
xi) in each mechanism, and compared the xi in Fig. 2.9. The xi of these reactions in the
two mechanisms are very similar, except that they have opposite signs for the H-abstraction
reaction generating nC3H7 (the third one from the top). In addition, there are only two
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parameters in each mechanism tuned over or near 1σ: hydrogen abstraction generating
iC3H7 and propane synthesis by C2H5 and CH3, with all others far smaller than 1 σ. In a
nutshell, the performance and updated kinetic parameters are similar for LastP and C-1.

Table 2.4: Differences between the NEs of LastP and those of C-1. Differences larger than
10% of the corresponding experimental uncertainties are in bold.

Species/Temperature 1250 K 1290 K 1330 K 1370 K 1410 K

H2 -0.042 0.004 -0.084 -0.068 -0.053
C2H2 0.001 -0.001 0.002 3×10−5 -0.005
CH4 -0.027 -0.036 -0.034 -0.019 0.011
C2H4 -0.117 -0.156 -0.024 0.142 0.103
C2H6 0.043 -0.062 -0.071 -0.073 -0.070
pC3H4 2E×10−5 0.001 0.002 0.002 0.003
C3H6 -0.058 0.064 0.146 0.145 0.060
C3H8 -0.213 -0.230 -0.011 0.111 0.048

Figure 2.9: The xi of top 10 highly-tuned reaction rates in C-1 and LastP.

A potential explanation for the slightly smaller NE and NELP for LastP is that the biggest
discrepancies between the curves of C-1/LastP and experimental measurements usually lie
in the last points. Shown in Table 2.1, the averaged NELP are larger than the averaged
NE for all three mechanisms. However, the experimental uncertainty for a certain curve is a
constant throughout the entire time domain. Thus, the likelihood function in LastP is larger
than C-1. Similar to the discussion in Section 2.3.2, the increase of likelihood function is
equivalent to the increase of n, which will weaken the constraints of the prior distribution
and make the model fit targets better.

There are two implications of the observation above. First, even keeping the effective
independent-data number unchanged, different selection of targets can also change the rela-
tive weights of prior distributions and likelihood functions. Compared with using the data in
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the entire curve and averaging by the number of data point, using the last point can increase
the weight of likelihood functions. We also can conjecture that compared with selecting
another point in a species evolution curve, where the discrepancy is usually smaller than the
last point, selecting the last point as target can increase the weight of the likelihood function.
In addition, a modeler might need to consider the position of target points when determin-
ing the number of effective independent data. Second, from the perspective of mechanism
optimization (i.e., point estimation), the information provided by a curve can be represented
by several critical points. For experimentalists, data acquisition and measurements could
focus on these critical points (although these points might be difficult to know a priori) for
point estimation.

However, from the perspective of uncertainty quantification, using representative points
cannot be equivalent to using all points of the curve. Fig. 2.10 shows the kernal density
estimation of posterior distribution for picked parameters obtained by MCMC samples. It is
clearly shown that, although the predictions and parameter MAP are pretty similar for C-1
and LastP, the posterior uncertainties of parameters are quite different. For LastP, except
two parameters, all other parameters almost follow the same distributions as priors. For C-1,
however, the posteriors of many parameters are deviated from their priors. The posteriors
of C-1 is generally narrower than LastP. Another phenomenon is that for C-1, the posterior
mean values (the center of contours) are usually quite different from MAP values (shown
by red dots). The MAP values of C-1 are usually similar to these of LastP and priors,
while the posterior mean values are deviated from priors. A comparison of the predictions
of MAP and posterior mean parameters are shown in Fig. B.9, which indicates that the
predictions for MAP and posterior mean parameters only have slight difference. For a high-
dimensional joint distribution, it is possible that the MAP estimation is different from the
posterior mean. The posterior predictions are also shown in Fig. 2.11. Despite the similarity
of predictions by posterior mean parameters of C-1 and LastP, their prediction uncertainties
are very different. The prediction uncertainty of C-1 is greatly smaller than that of LastP,
while both C-1 and LastP have smaller prediction uncertainties than the prior model. A
potential explanation is that C-1 imposes more constraints for parameters since it includes
the entire curve, while LastP only constrain the predictions at the last point. For these
parameters that can give close prediction to experimental data on the last point, but cannot
on other part of the curve, they are "admitted" in the LastP approach but "rejected" in the
C-1 approach. However, one phenomenon that cannot be explained is that the uncertainty
of LastP in the last point is still larger than that of C-1, which needs further analysis in
the future. The uncertainty analysis shows that, although from the perspective of point
estimation entire curve may be able to represented by several points, using entire curves of
species concentration measurements is still helpful for the reduction of uncertainty.

It seems that in the current case, the last point contains almost all the information of a
curve. A natural hypothesis is that all points in this curve would share similar sensitivity
to a set of reactions. This is called a universal sensitivity direction [111], where the relative
importance of the sensitive reactions remains the same for all data points although the
magnitude of the sensitivity might change. If that holds, all points in the data series are
correlated, so that the response of the curve can be inferred by the response of a single point
during optimization.

To test this hypothesis, we calculated the inner product of the normalized sensitivity
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Table 2.5: Inner product of the normalized sensitivity vectors at 1.6 ms and at 0.4 ms/0.8
ms/1.2 ms. Values below 0.9 are in bold.

Species/Time 0.4 ms 0.8 ms 1.2 ms

H2 0.921 0.970 1.000
C2H2 0.945 0.985 1.000
CH4 0.936 0.985 1.000
C2H4 0.925 0.984 1.000
C2H6 0.892 0.975 1.000
pC3H4 0.850 0.960 1.000
C3H6 0.921 0.970 1.000
C3H8 0.945 0.985 1.000

vectors at 1.6 ms and that at 0.4 ms/0.8 ms/1.2 ms during the pyrolysis. The results for
the initial temperature of 1410 K case are listed in Table 2.5, while the results for other
temperatures are attached in Tables A.6, A.7, A.8, A.9 in Additional Tables. We can see
that under most scenarios, the inner products of two normalized sensitivity vectors are close
to unity. This universal sensitivity would allow representing the entire curve with the last
point. For those that are not close to unity, we chose the one that deviated the most for
further discussion, which is pC3H4. We plot the normalized sensitivity vector of pC3H4 at
0.4 ms and 1.6 ms in Fig. 2.12. Although the normalized sensitivities to most reactions
are similar, there are still some reactions with much difference, such as C2H5 + CH3 (+M)
→ C3H8 (+M) and C2H2 + CH3 → H + pC3H4. Thus, the universal sensitivity direction
does not hold, at least for pC3H4 under 1410 K. This is similar to Fig. 8 of [94], where
the ratio of the sensitivities to any two reactions is not a constant as time evolves, since
different reactions play the dominate role at different stages. It may be due to the large
experimental uncertainties of pC3H4, so the lack of universal sensitivity direction does not
affect the optimization results. Thus, it is still an open question of how much information
of a species evolution curve can be represented by a single point.

It is noteworthy that in our pyrolysis case the shape of curve is monotonic or even near-
linear for some temperatures and species, so maybe one point can represent the entire curve
from the perspective of point estsimation. In other cases, such as autoignition, the shape of
curves could be more complex and the sensitivity direction changes with time significantly,
such that multiple points are needed.

2.4 Conclusion

We investigated the influences of the effective independent-data number and selection of
targets on the Bayesian optimization of chemical models based on species time-histories
measured in shock tubes. Neural networks are trained as response surfaces. Maximum a
posterior estimation and MCMC sampling are used to obtain the optimal parameters with
uncertainty. Three optimization strategies were used: using the entire species time-history
curve with an effective independent-data number of 1 (C-1) and 160 (C-160), and using the
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last point of each curve (LastP). It is shown that all three optimized models fit measurements
better compared to the original one.

Figure 2.12: Top 10 sensitivity coefficients of pC3H4 concentration at 1.6 ms and 0.4 ms.

Comparing C-1 with C-160, increasing the number of targets results in slight improvement
in predicting the measurements by increasing the weight of the likelihood function; however,
the constraints of the prior distribution might be weakened and may lead to overtuning of
parameters beyond common practice. Therefore, for modelers, the ill-posedness of data-
model system should be assessed, and the number of effective independent data should be
examined carefully when utilizing Bayesian approaches for optimizing chemical models. For
experimentalists, the detailed probability distribution of measurement error will be extremely
valuable.

Comparing C-1 with LastP, LastP has similar and even slightly better agreement with the
measurements. Using only the last point increases the weight of the likelihood functions, but
no overtuning was observed. An implication is that several critical points could be enough for
point estimation, suggesting that priority should be given to these critical points in handling
data in modeling and acquiring samples in experiments. For the reduction of estimation
uncertainty, however, C-1 has smaller parameter uncertainty and prediction uncertainty
than LastP, and the mismatch of MAP and posterior mean values for parameters of C-1 is
observed, indicating that from the perspective of UQ, using the entire curve is helpful to
reducing the posterior uncertainty. The reasons for the difference between C-1 and LastP
still need further studies.
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Chapter 3

Gradient-Based Experimental Design

3.1 Introduction

In Section 1.4, we briefly overview the algorithms used by the combustion community for ex-
perimental design in order to efficiently reduce the uncertainty of combustion kinetic models.
We notice that all algorithms rely on a set of candidates of experimental conditions. In most
cases, the design space is continuous, such as a range of pressure, temperature, or equivalence
ratios. We need to discretize the design space into a group of grid points in each dimension,
just as what was done in [79], [81], [89]. Then the quantity measuring information gain is
evaluated in a point-wise manner, and the point with the highest information would be picked
as the optimal design point. This approach, however, is extremely inefficient when the design
space is in high dimension. For example, for a 3-D design space of pressure, temperature
and equivalence ratios, if we want to discretize each dimension into 20 grid points, then the
entire space leads to 8000 grid points. The algorithms need to run 8000 times to find the op-
timal points. This would be worse in sequential experimental design, since in each iteration
we need to repeat 8000 times of evaluation. However, if gradient information with respect
to design is available, the gradient-based optimization algorithm can go from the initial
point directly to the (local) maximum. In computer science and statistics community, some
gradient-based experimental design algorithms have been developed. Huan and Marouzk
[112] combined a double-loop Monte Carlo expected information gain (EIG) estimator with
gradient descent. Foster et al. [113] combined gradient descent with variational experimental
design. Goda et al. [114] combine gradient descent with multi-level Monte Carlo (MLMC)
algorithms. Carlon et al. [115] combined Nesterov-accelerated stochastic gradient descent
with Bayesian experimental design based on Laplacian approximation. However, these al-
gorithms still cannot run on the fly with high throughput experiments. In this work, we
will combine gradient descent with a very efficient D-optimality design based on a linearized
response surface leveraging PyTorch auto-differentiation environment. As Section 1.4 states,
if the model response is near linear around the nominal value, the D-optimality information
gain computed by linearized response surface is close to EIG computed by sampling-based
full Bayesian design.

As reviewed by Section 1.3, in order to evaluate the physical model with low computa-
tional cost, the response surface is built to replace the expensive physical model. Different
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from UQ and point-wise DoE, gradient-based DoE has stricter requirements for response
surfaces. First, the inputs of the response surface must include design variables covering
the entire design space, otherwise, we cannot compute the derivative with respect to design
variables. The influence of design variable inputs on the outputs is far larger than that of
parameter inputs (for example, ignition delay time at different thermodynamic conditions
can change across more than six orders of magnitude). In addition, the relation between
outputs and design variable inputs can be highly nonlinear, and even non-monotonic (e.g.,
the impact of equivalence ratio to laminar flame speeds). These two characteristics pose
great challenges to the expressive power of response surfaces. Second, it is hard to do di-
mensionality reduction, such as sensitivity analysis or active subspace, and build a response
surface with fewer inputs. Since the response surface is required to predict model output
across different experimental conditions, the sensitivity and active subspace will also change
with experimental conditions. Third, different from doing inference for one time, we cannot
use active learning algorithms such as [116], to make training samples focus on the poste-
rior region, since in sequential design procedure we do not know the data a priori. Zhang
et al. [67] also use response surfaces with thermodynamic conditions as inputs, but they
only generated training samples at conditions of experimental data used to do inference. In
this work, we need to build a response surface that can work across the entire design space
and wide parameter uncertainty space (instead of only posterior region like [116]). We will
use neural networks as response surfaces due to their great expressive power and previous
experience in the literature that NN performs better in high-dimensional cases [20], [67].

In this chapter, we build a gradient-based D-optimality design framework assisted by
single neural network response surface. Our first contribution is combining D-optimality
design based on linearized response surface with gradient descent leveraging PyTorch auto-
differentiation environment to efficiently searching for optimal experimental conditions. Com-
pared with enumeration in a grid of experimental conditions, our method shows acceleration
around five times. Numerical experiments show that the experimental data at designed
conditions are more informative than random experiments. Our second contribution is to
build a neural network response surface that can give accurate prediction across different
thermodynamic conditions (i.e., design conditions). Performance in test sets shows that the
accuracy can satisfy the requirement of kinetic UQ according to the criterion proposed by
[67]. Our third contribution is to demonstrate the target-oriented experimental design in-
spired by [117]. Numerical experiments show that data from designed conditions can provide
smaller posterior prediction uncertainty compared with random experiments. This method
can also be used to find alternative conditions when the targets, whose prediction uncertain-
ties are desired to be reduced, are not reachable in lab facilities, the task same as [83], [84],
but in a more rigorous and information-theoretic manner.

3.2 Algorithms and Setup

3.2.1 Gradient-Based D-Optimality Experimental Design

As we reviewed in 1.4, vom Lehn, Cai and Pitsch [89] developed an algorithm based on
MUMPCE framework, where they assumed that the MAP point is the same as the prior
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nominal value. Then posterior covariance matrix is computed at nominal value as an esti-
mation of the posterior if the experiment is done:

Σ(d) =

[
n∑

r=1

Jr(x0,d)Jr(x0,d)
T

(σr)
2 + 4I

]−1

, (3.1)

where x0 is the nominal value, i.e., mean value of prior distribution, of kinetic parameters,
Jr(x0) is the Jacobian matrix of all measurements with respect to kinetic parameters eval-
uated at x0 and d, and n is the number of experiments that we want to plan. Then the
EIG is computed by the determinant of the covariance matrix, and the optimal experimental
condition is the one maximizing EIG:

d∗ = argmin
d∈D

det

[
n∑

r=1

Jr(x0,d)Jr(x0,d)
T

(σr)
2 + 4I

]−1

, (3.2)

where D is the entire design space. In fact, this algorithm is equivalent to EIG computed
by Eq. 1.35 when the physical model is a linear model y = Xk+ ϵ, and both prior p(k) and
zero-mean noise ϵ are Gaussian. It can be proved that [90]

ln
{
det
(
Σ−1

0

)
/det(XΣ−1

ϵ XT + Σ−1
0 )
}
= EIG(X), (3.3)

where Σϵ is the covariance of noise, and Σ0 is the covariance of prior distribution, EIG(X)
is the EIG computed by Eq. 1.35. Thus, if the physical model is linear enough around the
nominal value, then the result of D-optimality design based on linearized response surface
should be pretty close to the full Bayesian experimental design.

However, in [89] the design is done in an inefficient way: constructing a set of candidates
of experimental conditions by grid enumeration in a continuous design space. As we discussed
in the Section 3.1, if we can utilize gradient information, the process of searching for optimal
design would be more efficient. Thanks to the PyTorch auto-differentiation environment
[101], either Jacobian matrix of neural network response surface or matrix computation can
be differentiable with respect to design. Thus, the optimization problem in Eq. 3.3 can
be computed by gradient descent. In addition, many efficient optimization algorithms are
available in PyTorch library, which has achieved great success in deep learning.

To be specific, in our task, the optimization problem is

min
d∈D

− log2

det(Σ0) / det

[
n∑

r=1

Jr(z0,d)Jr(z0,d)
T

( log10σr)
2 + Σ−1

0

]−1
 . (3.4)

Our neural network response surfaces take zi = ln(ki/ki,0) as inputs, so the prior mean value
z0, and prior covariance matrix Σ0 in Eq. 3.4 should correspond to the new inputs defined
above, which is different from the xi in [45]. The corresponding prior covariance matrix is
a diagonal matrix with 1

2
ln fi in Eq. 1.5 as diagonal elements. The n in Eq. 3.4 is the

number of experiments we want to design. Our design targets are ignition delay times (IDT)
or laminar flame speeds (LFS) of methanol/air mixture. According to our observation of
the data set used by FFCM-1 [118], the 1-σ additive noise of LFS or IDT is around 10%
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or 20 % of measured values. Thus, for simplicity, we assign a multiplicative noise σr = 1.1,
which should be only slightly different from additive noise of 10% of the measured value.
The Jacobian matrix Jr should be evaluated with log10 of LFS and IDT as outputs. Here
in order to match with Shannon information entropy, we use 2 as the base number in the
logarithm, but it has no difference from the Euler number in the perspective of finding
optimal experiments.

Adam optimizer [100] is chosen due to its great success in deep learning and its adaptive
learning rate for different coordinates. In our experience of implementing the most original
version of gradient descent, i.e., θt = θt−1 −∇θϕ (θt−1), the impacts of difference parameters
on EIG are quite different, so the learning rate should be different for each coordinate. If
the learning rate is too large, then strong oscillation is observed and the optimizer cannot
converge to stationary points; if the learning rate is too small, the optimization process would
be time-consuming. Thus, picking a suitable learning rate for each coordinate of design is
tedious. After Adam is used, the learning rate can be fixed at 0.01. Weight decay is set
as 0. Other parameters are kept as default values. Adam is designed for unconstrained
optimization, while in this problem we need to constrain our decision variable within the
design space. We combine projected gradient decent [119] with Adam optimizer. Specifically,
after each time of updating the design, we project the design updated by Adam onto the
design space. In combustion kinetic design, the design space is usually defined by a certain
range of pressure, temperature, equivalence ratio, etc. Thus, the space is a hypercube, and
the projection on it is easy to obtain. For each coordinate of design, if its value is larger than
the range of this coordinate, the projection is the upper bound of it; if its value is smaller
than the range, the projection is the lower bound; otherwise, the current design is within
the design space and the projection is the design itself. In order to avoid being trapped in
the local minimum, we initialize the optimizer from many random starting points. After the
optimization of each random initialization is finished, the figures of each coordinate of design
versus a number of iterations are plotted for convergence diagnostics. If all coordinates of
all initialization arrive plateau region, it is considered all runs have converged. Among all
initialization, the one with the largest information gain would be picked as the final optimal
design.

In this work, we usually do experimental design in a sequential manner. After each time
of design, we generate synthetic data at the design point according to Eq. 1.18. Then this
synthetic data is used to do inference and obtain the posterior kinetic parameters. The
method of inference is MUMPCE [45], [67] (i.e., Laplacian approximation [38]). Specifically,
we obtain the posterior mean value of parameters by Eq. 1.22, and then obtain the posterior
covariance matrix by Eq. 1.24. Two differences between our approach and the method
in [67] (see Section 2.6) are that, first, we do not eliminate inconsistent data, since we
generate synthetic data using perfect model plus Gaussian noise; second, we do not freeze
any parameters. In the next iteration of design inference, the posterior model is used as the
prior model to do experimental design and inference. Such a design-inference iteration is
repeated for a given number of times.

In Eq. 3.4, the optimizer would minimize the volume of a hyper-ellipse described by the
covariance matrix of all kinetic parameters. We call it model-oriented experimental design.
In practice, the uncertainty of all kinetic parameters is usually not the primary goal consid-
ered in model calibration using experimental measurements. Thus, some modified objective
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function can be employed depending on the different goals. First is the scenario where
we only want to minimize the uncertainty of one or several kinetic parameters. We call it
parameter-oriented experimental design. In this case, we can only pick the rows and columns
corresponding to the parameters of our interests before we compute the determinants:

min
d∈D

− log2

det [(Σ0)I,I ] / det

( n∑
r=1

Jr(z0,d)Jr(z0,d)
T

( log10σr)
2 + Σ−1

0

)
I,I

−1 , (3.5)

where I is the index of parameters of interests. For example, if we only want to minimize the
uncertainty of parameters 2 and 3, then I = {2, 3}, and (·)I,I means picking the second and
third rows and second and third columns of the matrix, so that we would obtain a new 2× 2
matrix. The second scenario is that we want to minimize the prediction uncertainty of one or
a series of targets [117]. We call it target-oriented experimental design. Given the covariance
matrix of parameters, we can obtain the covariance of (a series of) targets analytically by
linearizing the response surface. In real applications, we usually consider minimizing the
absolute value of uncertainty of each target, instead of the volume of hyper-ellipse of targets’
covariance matrix. Thus, here we minimize the sum of squares of the prediction standard
deviation of all targets:

min
d∈D

− sum_diag(JT
t Σ0Jt)/ sum_diag

JT
t

(
n∑

r=1

Jr(z0,d)Jr(z0,d)
T

( log10σr)
2 + Σ−1

0

)−1

Jt

 , (3.6)

where sum_ diag(·) means the sum of all diagonal entries, and Jt means the Jacobian matrix
of the targets whose uncertainty is desired to be reduced. For the covariance matrix, sum_
diag(·) exactly means the sum of squares of all standard deviations. The third scenario is
designing multiple experiments simultaneously, or designing parallel experiments. Different
from the sequential experimental design, where we conduct experiments and do inference
after each design, parallel experimental design finishes the design of several experiments
before conducting experiments. When the experimental design program is not accessible
during experiments, parallel experimental design should be used before the beginning of
experiments. We can simply include more experiments in the summation of Eqs. 3.4, 3.5
and 3.6. This is equivalent to augmenting the dimension of experimental data shown in
the toy problem of [85], since extending the second dimension of the Jacobian matrix is
equivalent to the sum of the outer product of the original-dimension Jacobian matrix.

3.2.2 Task Setup and Data Generation

In this work, we aim to design experiments of LFS and IDT measurements to minimize the
uncertainty of a methanol combustion kinetic model developed by Zhang et al. [120], which
is also used in [81]. Only pre-exponential factors are considered as uncertain parameters,
while other kinetic parameters are fixed. The uncertainty factors fi is adopted from the
supplementary material of [81]. This mechanism includes 32 species and 197 elementary
reactions. Among these 196 elementary reactions, 16 are fall-off reactions, which includes
two set of kinetic parameters for high and low pressure limits. Thus, the dimension of
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parameters is 213. In addition, this mechanism includes two duplicate reactions R95 and
R96, and R96 is not included in the uncertainty factor of [81]. We assign the same uncertainty
factor of R95 to R96.

Table 3.1: The design space for IDT and LFS.

Experimental Targets Pressure [atm] Temperature [K] Equivalence Ratio

Ignition delay times 1-30 800-1600 0.5-5
Laminar flame speeds 0.5-10 300-500 0.8-1.5

In order to reduce computational costs, we use neural network response surfaces to replace
expensive physical simulation. The training data is generated by physical simulation first,
and then this data is used to train a response surface. We use 300,000 samples to build
the response surface of IDT, among which 243,000 samples are for the training set, 30,000
for the test set, and 27,000 for the validation set. 106,920 samples are used to build the
response surface of LFS, among which 87,480 samples are for the training set, 9,720 for
the test set, and 9,720 for the validation set. The prior distributions of parameters zi =
ln(ki/ki,0) are zero-mean Gaussian distributions with standard deviation 1

2
ln fi for each i.

The posterior distribution would not deviate from prior distributions too far. In order to
emphasize the accuracy in the near-zero region of parameters, for each response surface, we
generate three hierarchical data subsets with different widths of range for parameters, similar
to [67]. Specifically, samples are generated by randomly sampling the uniform distribution
defined on parameter uncertainty space and design space (except temperature in LFS). The
design space is defined in Table 3.1. For pressure, the uniform distribution is defined on
the logarithm of pressure. The parameter space is defined by a hypercube [−k

2
ln fi,

k
2
ln fi],

where k = 1, 2, 3 for three subsets, respectively. In other words, the half-widths of the
hypercubes for three subsets are σp, 2σp, and 3σp, respectively, where σp is the standard
deviation of the prior distribution of zi. Different from [67], where the sample of zi of three
subsets are generated from a Gaussian distribution with standard deviation 1

10
ln fi, 3

10
ln fi,

and 1
2
ln fi (i.e., 0.2σp,0.6σp, and σp), respectively, our samples are generated from a uniform

distribution, so that the response surfaces can still have good accuracy near the tail of the
prior distribution. Then each subset is split into training, validation, and test sets using the
same ratio. The number described at the beginning of this paragraph is the total number
of samples from all three subsets. Except for the temperature coordinates of LFS in the
training sets of subsets 1 and 2, Latin hypercube sampling [105] is used to make samples
uniformly distributed, avoiding clusters and holes in sample space. For the temperature of
LFS in the training sets of subset 1 and 2, however, in order to use the initial guess of profiles
to accelerate the solution of LFS (a case cannot use an initial guess from different unburnt
temperature in Cantera), we discretize the temperature range 800-1600K into 81 grid points
(with incremental of 10K) and assign 360 samples for each temperature. Other coordinates,
including kinetic parameters, pressure, and equivalence ratio are from random sampling. For
the temperature of LFS in the training set of subset 3, since the range of uniform distribution
is pretty large, the differences in kinetic parameters between cases can be pretty large. Our
experience shows that restarting from an initial guess does not accelerate the solution. Thus,
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we still use random sampling for all coordinates of samples and do not use initial guesses
in LFS computation. For the temperature of LFS in validation and test sets, we also use
random sampling for all coordinates in order to obtain a fair assessment for generalization
performance.

After getting the samples of inputs, i.e., kinetic parameters and experimental conditions,
we compute the outputs (LFS or IDT) by an open-source code Cantera [104]. The initial
composition for both IDT and LFS is methanol/air mixture. For IDT, adiabatic, ideal gas,
constant pressure reactor is employed. IDT is defined as the time of maximum temperature
gradient. For LFS, Free Flame solver is employed. We use multi-component transport
model and enable Soret diffusion. The mesh refine criterion is set as ratio=3, slope=0.06,
curve=0.12, and prune=0.02. Domain width is set as 0.1, and loglevel=1. For subsets 1
and 2 of the training set, the solution array of a LFS case is stored and used as the initial
guess of the next case to accelerate the computation. We need to order these samples so
that the flame structure of two adjacent cases are similar, otherwise restarting from an
initial guess cannot accelerate the computation. Compared with thermodynamic conditions
(i.e., temperature, pressure, and equivalence ratios), the effect of different kinetic parameters
on flame structures is negligible for subsets 1 and 2, from our experience. Thus, we only
need to order thermodynamic conditions. For temperature, we already discretize the range
800K-1600K into 81 points. Samples should be first ranked by their temperature. Then, we
divide the range of log pressure into 20 intervals. For samples with the same temperature,
they are then ranked by their pressure interval. For samples with the same temperature
and same pressure interval, we then rank them by their equivalence ratio. By such an
ordering method, two adjacent samples in this sequence would have similar thermodynamic
conditions. Restarting from the solution of the previous case can generally reduce the solution
time by 5-10 times. The restarting case would start from the mesh of the previous case. In
order to avoid the accumulation of the mesh, the solver starts from scratch (i.e., without the
initial guess of the previous case) every 100 cases.

3.2.3 Neural Network Response Surfaces

As we discussed in Section 1.3, the response surface is usually built to replace the physi-
cal model in uncertainty quantification. In this work, we use neural networks as response
surfaces due to their great expressive power, especially in high-dimensional cases. Gradient-
based experimental design requires the gradient of information gain with respect to design
variables, so design variables must be included as inputs. The network structure is shown in
Fig. 3.1, including three hidden layers with 1024 neurons in each hidden layer. The input
layer includes 216 neurons, corresponding to 213 kinetic parameters plus three experimen-
tal conditions. The output layer includes just one neuron, corresponding to LFS or IDT
after taking log10. We do not systematically test the dependence of prediction performance
on the number of layers and number of neurons. Instead, we simply make the model in
an over-parameterization regime. The generalization error of neural networks shows the
"double-descent" phenomenon as indicated by [121]. When the parameters are less than
samples, the generalization error first decreases, and then increases with the increase of the
number of parameters; when parameters are more than samples, the generalization error
always decreases with the increase of the model size. Thus, we simply choose numbers
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of layers and neurons making the model in the over-parameterization regime, and then do
trial-and-error several times to determine the final structure if necessary. Residual neural
network (ResNet) [59] structure is adopted for its good property of mitigating gradient ex-
plosion and gradient vanishing during back-propagation. Although gradient vanishing and
explosion should not be obvious in a three-hidden-layer network, we still adopt ResNet in
order to get optimal performance. Two short circuits are set in the second hidden layer and
the third hidden layer. Since we use the Jacobian matrix to estimate information gain, the
gradient of information gain involves a second-order derivative of outputs with respect to
inputs. Thus, the ReLU activation function, which is generally used in deep learning due
to its good performance [122], cannot be used, since it is piece-wise linear and hence the
second-order derivative is zero. Instead, the SiLU [123] activation function is employed.

Figure 3.1: The structure schematic of 3-hidden-layer ResNet.

In this work, each data set for building a response surface is split into training, validation,
and test sets. The validation set is used to choose hyper-parameters, and the test set is used
to assess the performance of generalization. In order to fit data across multiple orders of
magnitude (six orders for IDT and one order for LFS) and minimize the multiplicative error
during training, we take the logarithm of IDT and LFS as the outputs of response surfaces.
Before training, each dimension of inputs and outputs of the data is standardized so that
the mean value is zero and the standard deviation is one. PyTorch library [101] is employed
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in this work for neural network training. Adam optimizer is used with weight decay of 10−4.
The initial learning rate is 0.02 for IDT and 0.08 for LFS, and the scheduler of the learning
rate is set as "reduce lr on plateau" with patience 400, factor 0.35, and threshold 0.01.
Specifically, the learning rate will decrease to 0.35 times of the current value if in the past
400 epochs, the minimum value of loss does not decrease by 0.01. The batch size is set as
2048. Mean absolute error (MAE) is used as the loss function. In our experience, MAE loss
can lead to lower training, validation and test loss values than mean square error (MSE)
loss. The training process will stop when the learning rate decreases to 4 × 10−6. The loss
curves of IDT and LFS are shown in Fig 3.2.

Figure 3.2: The loss values versus training epochs for LFS and IDT.

Table 3.2: Requirement of the accuracy of response surfaces proposed by [67].

Subsets Mean error 95-percentile error

1 [N(0, 0.2σp)] 1 % 2 %
2 [N(0, 0.6σp)] 2 % 5 %
3 [N(0, σp)] 3 % 10 %

Table 3.3: The accuracy of our response surface for IDT.

Subsets Mean error 95-percentile error Maximum error

1 [U(−σp, σp)] 0.4 % 1.5 % 16 %
2 [U(−2σp, 2σp)] 0.7 % 2.5 % 40 %
3 [U(−3σp, 3σp)] 1.5 % 5.3 % 77 %
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Table 3.4: The accuracy of our response surface for LFS.

Subsets Mean error 95-percentile error Maximum error

1 [U(−σp, σp)] 0.8 % 1.7 % 3.1 %
2 [U(−2σp, 2σp)] 1.4 % 3.6 % 8.5 %
3 [U(−3σp, 3σp)] 2.7 % 7.0 % 36.6 %

The assessment for accuracy of response surfaces follows the method in [67], where the
mean and 95-percentile relative error of test set are compared with a given criterion, as
shown in Table 3.2. Relative error is defined as

ϵ =
|yNN − yG|

yG
, (3.7)

where yNN is the prediction of LFS or IDT by neural networks, yG is the corresponding
ground truth. Note that the outputs of neural networks are the logarithms of LFS and IDT,
while the relative error uses the original value of LFS and IDT. The mean, 95-percentile,
and maximum relative error are shown in Tables 3.3 and 3.4. Note that the parameters of
our data are sampled from uniform distributions covering a wider range than the Gaussian
distributions in [67]. In addition, the experimental conditions are sampled from uniform
distributions covering the range of design space, while in [67], only thermodynamic conditions
appearing in experimental data are included. Thus, building such a response surface is far
more challenging than the case of [67]. However, the performance of our neural networks
still can satisfy the requirement in Table 3.2.

Figure 3.3: The scatter plot of prediction versus ground truth for the response surface of
IDT. Samples are from test sets.

The scatter plots of prediction versus ground truth for samples in test sets are shown in
Figs. 3.3 and 3.4. We can clearly see that for subsets 1 and 2, almost all samples lie on the
diagonal line. For subset 3, a small portion of samples deviate from the diagonal line, but
the degree of deviation is very small. In fact, the possibility that posterior mean values are
out of 2σp is extremely small. Thus, we can conclude that the response surfaces are accurate
enough for experimental design and UQ tasks.
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Figure 3.4: The scatter plot of prediction versus ground truth for the response surface of
LFS. Samples are from test sets.

3.3 Numerical Experiments

In this section, we show the results of numerical experiments using the algorithms presented
in 3.2. It it worth noting except 3.3.4, in all other subsections, the number of experiments n
is set as 1, and sequential experimental design is carried for 5 iterations. In each iteration,
we do experimental design first and then use the response surface to generate synthetic
experimental data on the experimental condition provided by the design algorithms. After
that, Bayesian inference based on Laplacian approximation is performed to get the posterior
distribution based on the synthetic experimental data. The synthetic data is generated using
the prediction of response surface plus Gaussian noise, so that there is no model error. The
range of each experimental condition is shown in Table 3.1. All the experiments are ran on
the NVIDIA GeForce RTX 2080 Ti Graphic Processing Units (GPU). The running time of
experimental design by point-wise enumeration is around 70 iteration per second, while for
gradient-based design (the methods of evaluating EIG at a given point keeps unchanged)
developed in this thesis, the time of designing a experiment with 30 random initialization
takes around 150 seconds. In a 3-D design space, we discretize each dimension into, for
example, 50 grid points, and the totaly running time of enumeration is 1785 seconds. Our
method can achieve an acceleration of around 10 times. The acceleration would be more
obvious in a design space with higher dimensions.

3.3.1 Model-Oriented Experimental Design

In Bayesian experimental design, a common setting is to maximize the EIG with respect to all
parameters. In this thesis, we call it model-oriented design. In the combustion community,
this method has been used in [89]. We demonstrate this approach in our gradient-based
experimental design framework for IDT and LFS, respectively, facilitated by neural network
response surfaces. In fact, the focus of our work is parameter-oriented design, prediction-
oriented design, and parallel design. In this subsection, we just want to demonstrate that
our method can finish the same task as previous works.
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Table 3.5: The selected experimental conditions and EIG for each iteration of the model-
oriented design of LFS.

Iteration T [K] P [atm] Equivalence Ratio Expected Information Gain

1 304 2.61 0.8 1.20
2 300 6.13 1.49 0.95
3 300 2.71 1.5 0.40
4 338 10 0.8 0.38
5 300 0.5 1.5 0.28

Laminar Flame Speeds

In the model-oriented experimental design for LFS, the resultant experimental conditions of
five iterations are shown in Table 3.5. We notice that all temperature lie in low-temperature
regions, while pressure and equivalent ratios are pretty dispersed within the design space.
The EIG gradually decreases as the number of iterations increases. For the first iteration,
EIG of 1.2 means that the volume of the hyper-ellipse is reduced by a factor of 2.2. The
trajectories of gradient ascent for 30 initialization is shown in three sub-figures in Fig. 3.5,
corresponding to three experimental conditions. It is obvious that all initialization arrive at
plateau in the end, which means that all trajectories get converged. Different trajectories
do not converge to the same experimental condition, showing that the EIG is not convex
with respect to experimental conditions. This demonstrates the necessity of using multiple
random initializations in gradient ascent. In order to visualize the landscape of EIG, we
plot the contour of EIG of the first iteration in pressure-temperature planes at four different
equivalent ratios, as shown in Fig. 3.6. ϕ = 0.8, 1.48 and 1.5 corresponds to the three
values that trajectories converge to. Note that the scale of color bars is different for different
sub-figures. It is vividly shows that the landscape is nonconvex, especially in the sub-figure
of ϕ = 0.8, where a double-peak structure is present. We also can verify that T=304K,
log10P=0.42 lies in the global maximum of ϕ = 0.8 sub-figure, and is not trapped in the
local maximum (another peak).

Figure 3.5: The change of temperature, log10 of pressure, and equivalence ratios during
gradient ascent iterations for 30 random initialization of model-oriented experimental design
of LFS. All coordinates of all 30 cases arrive in plateau regions.

The triangular plot of five most-shrunk parameters is shown in Fig. 3.7, where two circles
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Figure 3.6: The iso-contours of EIG at ϕ=0.8, 1.1, 1.48, and 1.5 in the first iteration for the
model-oriented design of LFS. Note that the range of color bars is different for four figures.

in each sub-figure represent 1-σ and 2-σ contours. We can observe that the posterior uncer-
tainty after five designed experiments is very similar to that after five random experiments.
A potential reason is that the model-oriented design tries to minimize the hyper-ellipse of all
parameters, without focusing on a certain group of parameters, so a triangular plot cannot
reflect the uncertainty of the entire model. In fact, in this section, we want to demonstrate
that the typical needs in chemical kinetic experiments usually meet with target-oriented or
parameter-oriented design, instead of model-oriented design.

In this part, we present the results of the model-oriented experimental design of IDT
measurements. The selected experimental condition is shown in Table 3.6. Similar to the
case of LFS, the EIG decreases as iteration goes on. For pressure and temperature, in each
iteration, they lie (or near) in either the left end or the right end. The trajectories of gradient
ascent are shown in Fig. 3.8. It is clearly shown that all initialization has converged. The
contour of EIG of the first iteration is shown in Fig. 3.9, where the sub-figure of ϕ = 1.8
and ϕ = 5 correspond to two local maxima of equivalence ratios. We notice that in the
sub-figure of ϕ = 1.8, the right upper corner is a local maximum, which exactly corresponds
to the orange curve in 3.9. We also can notice that as the equivalence ratio increases, the
maximum EIG of this equivalence ratio also increases. Thus, the global maximum should lie
in ϕ = 5, and from this sub-figure, we can find that it is in T=800 K and P=30 atm, which
verifies the result of gradient ascent.
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Ignition Delay Times

Table 3.6: The selected experimental condition and EIG for each iteration of model-oriented
design of IDT.

Iteration T [K] P [atm] Equivalence Ratio Expected Information Gain

1 800 30 5 1.56
2 1600 27.9 2.3 0.93
3 1600 1 5 0.74
4 800 30 5 0.42
5 1600 1 1.8 0.31

Figure 3.8: The change of temperature, log10 of pressure, and equivalence ratios during
gradient ascent iterations for 30 random initialization of the first iteration of model-oriented
design of IDT.

Fig. 3.10 shows the five most shrunk parameters after five designed experiments by the
proposed method, compared with that after five random experiments. Different from the
case of LFS, four parameters show smaller uncertainty after designed experiments, while
only one shows smaller uncertainty by random experiments. The model after five designed
experiments has a smaller hyper-ellipse volume of the total five parameters.

3.3.2 Parameter-Oriented Experimental Design

In practice, the quantity of interest (QoI) is usually several key parameters, instead of all
parameters. In this thesis, we define the experimental design aiming at reducing the uncer-
tainty of several specified parameters as parameter-oriented design. In the previous works,
parameter-oriented design is usually done by fixing the disregarded parameters and only
setting the parameters of our interest as adjustable parameters [85]. However, this can in-
troduce extraordinary model error, as discussed in Chapter 2. In this thesis, we present a
new algorithm for parameter-oriented design. We obtain the posterior distribution without
fixing any parameter and only minimizing the volume of the hyper-ellipse composed by the
parameters of interest. In this subsection, we demonstrate the feasibility of this method by
numerical experiments of IDT and LFS.
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Figure 3.9: The iso-contours of EIG at ϕ=0.5, 1.8, 3, and 5 in the first iteration of the
model-oriented design of IDT. Note that the range of color bars is different for the three
figures.

Laminar Flame Speeds

Table 3.7: The selected experimental condition and EIG for each iteration of the parameter-
oriented design of LFS.

Iteration T [K] P [atm] Equivalence Ratio Expected Information Gain

1 300 10 0.8 0.53
2 300 10 1.37 0.22
3 350 2 0.8 0.18
4 347 2 0.8 0.09
5 300 10 1.33 0.06

In this section, we present the outcomes of parameter-oriented experimental design for
laminar flame speed experiments. The target parameters are parameter 153 and param-
eter 188. Table 3.7 illustrates the chosen experimental conditions of five design-inference
iterations. Similar to the previous results, the EIG decays with each iteration. The equiv-
alence ratio lies in the upper or lower bounds for each iteration. In terms of pressure and
temperature, they distribute among the entire range of design space. The trajectories of
gradient ascent are depicted in Fig. 3.11. It is evident that all initialization has converged
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Figure 3.11: The 30 trajectories of temperature, log10 of pressure, and equivalence ratios
during gradient ascent iterations.

to a plateau. The contour of the EIG from the first iteration is displayed in Fig. 3.12. The
sub-figures corresponding to ϕ = 0.8 represent only one local maximum (and also the global
maximum) of equivalence ratio. Same as in previous cases, the contours are well consistent
with the trajectories. The sub-figure of ϕ = 0.8 clearly shows that there are multiple local
maxima in terms of pressure and temperature, which indicates that initializing the optimizer
from random starting points can well overcome the issue of nonconvexity in this problem.

Figure 3.12: The iso-contours of EIG at ϕ=0.8, 1.2 and 1.5 in the first iteration.

Fig. 3.13 illustrates the prior and posterior uncertainty of target parameters after five
designed experiments, as compared to those after five random experiments. It is clear that the
posterior uncertainty after five designed experiments is smaller than that after five random
experiments, indicating the current algorithm can pick the experimental conditions that are
most informative to the specified parameters.

Ignition Delay Times

This part reports the same procedure implemented in the problem of IDT measurement for
reducing the uncertainty of parameter 18, 71, and 175. Table 3.8 shows the five selected
experimental conditions in the five design-inference iteration. Similarly, the EIG decreases
as more experimental data is taken in. All trajectories have converged, as shown in Fig.
3.14, and none of them converges to the local maximum. In Fig. 3.15, there does exist a
local maximum in the right upper corner of ϕ = 2 sub-figure. However, the optimizer will
converge to this local maximum only when the initialization is around this corner, i.e., T
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Figure 3.13: The prior and posterior uncertainty of parameters 153 and 188.

larger than 1550 K and ϕ around 2. It is possible that the number of initializations is too
small to capture such a local maximum. In this case, we are lucky to capture the global
maximum since the missed local maximum is not the global maximum. Thus, this method
does not provide any guarantee of capturing global maximum, but increasing the number of
initializations will increase the probability of arriving global maximum. If the optimization
of different initialization is carried out in a serial computing manner, the computational time
is proportional to number of initialization; if this is done in a parallel computing manner,
however, the computational time will not show obvious increase as long as the number of
initialization does not exceed the number of cores of Central Processing Units (CPU) or
GPU. Currently, all the computation is done in a serial manner, and parallelization would
be our next step. Thus, the number of initializations should be carefully determined in order
to keep a balance between the probability of obtaining a global maximum and computational
budget.

Table 3.8: The selected experimental condition and EIG for each iteration of the parameter-
oriented design of IDT.

Iteration T [K] P [atm] Equivalence Ratio Expected Information Gain

1 800 30 5 1.37
2 1600 30 1.9 0.59
3 800 1 5 0.30
4 1327 30 2.95 0.17
5 1600 30 1.85 0.20

The results of posterior uncertainty is shown in Fig. 3.16. It is clear that the data
from designed five experiments is more informative than that of five random experiments,
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Figure 3.14: The 30 trajectories of temperature, log10 of pressure, and equivalence ratios
during gradient ascent iterations.

Figure 3.15: The iso-contours of EIG in the first iteration at ϕ=0.5, 2, 4, and 5.

since the model updated by five designed experiments has smaller posterior uncertainty on
specified parameters.

3.3.3 Target-Oriented Experimental Design

The eventual goal of uncertainty reduction is to reduce the prediction uncertainty of the
model. If we focus on the prediction uncertainty of a certain (or a certain group of) target(s)
and do not care about the uncertainty of certain parameters, we can design experiments
with reduced prediction uncertainty of these targets as objective. When there is only one
target and we can conduct experiments at this condition, the strategy would be pretty
straightforward: repeating experiments at this target. However, if experiments are hard

70



to conduct under the target conditions due to the constraints of instruments, we need to
leverage algorithms to design target-oriented experiments.

Figure 3.16: The prior and posterior uncertainty of parameters 18, 71, and 175.

Ignition Delay Times

In this part, we will demonstrate designing five experiments within the range of P=1-15
atm, T=800-1200 K, ϕ=0.5-2, while our goal is to minimize the prediction uncertainty of
IDT at P=30 atm, T=1200-1600K, ϕ=5. The Jacobian matrix Jt in Eq. 3.6 is chosen as
the derivative of IDT with respect to kinetic parameters at 81 temperature points (with 5K
increment). The sum of prediction variances (SPV) of all 81 points is minimized. Note the
here the variance is for log10 of IDT.

Table 3.9: The selected experimental condition and uncertainty reduction factor for each
iteration of the target-oriented design of IDT.

Iteration T [K] P [atm] Equivalence Ratio Uncertainty Reduction Factor

1 1200 1.0 1.98 3.78
2 1200 1.0 2 1.51
3 1200 1.0 1.97 1.25
4 1200 1.0 1.98 1.15
5 1200 1.0 1.98 1.10

The conditions chosen by the algorithm and the corresponding uncertainty reduction
factors are shown in Table 3.9. Here the uncertainty reduction factor (URF) is defined as
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Figure 3.17: The 30 trajectories of temperature, log10 of pressure, and equivalence ratios
during gradient ascent iterations.

the ratio of SPV of the prior model over SPV of the posterior model. From the table, we
can observe that all iterations picked almost the same experimental conditions. After the
first iteration, the uncertainty can be reduced by a factor of nearly four, but as we obtain
more experimental data, the URF decreases for each iteration, similar to the change of EIG
in previous cases. The trajectories of design during gradient ascent is shown in Fig. 3.17.
It is clear that every case of random initialization converges to the same stationary point.
From Fig. 3.18, we can clearly see that as ϕ increases, the maximum URF increases (note
that the range of color bars is different for different sub-figures). The maximum of URF
does lie in the converged conditions. From the 2-D contours shown in Fig. 3.18, we can
conjecture that the contour of URF in 3-D is roughly a series of oblique ellipses, and thus
near convex. This could be a potential reason why all initializations converge to the same
maximum. The comparison of prior and posterior prediction uncertainty is shown in Fig.
3.19. It can be clearly seen that the posterior uncertainty of both posterior mechanisms is
smaller than that of the prior model. The model after designed experiments shows smaller
prediction uncertainty, especially at the low-temperature side.

Figure 3.18: The iso-contours of URF at ϕ=0.5, 1 and 2 in the first iteration.

Laminar Flame Speeds

In this part, we will illustrate the design of five LFS experiments within the ranges P=0.5-5
atm, T=300-400 K, ϕ=0.8-1.2. Our objective is to minimize the prediction uncertainty of
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Figure 3.19: The prior and posterior 1-σ prediction uncertainty and mean values of IDT
predictions at T=1200-1600K, P=30 atm, ϕ=5 after 5 random experiments and designed
experiments, respectively. The black line and (gray) shadow are for the prior model, the red
line and shadow for the posterior model after obtaining data from 5 designed experiments,
and the blue line and shadow for the posterior model after obtaining data from 5 uniformly
distributed random experiments.

LFS at P=10 atm, T=500K, ϕ=0.8-1.5. The Jacobian matrix Jt in Eq. 3.6 is calculated at
31 equivalence ratio points (equally spaced). The SPV of all 31 points is minimized.

Table 3.10: The selected experimental condition and URF for each iteration of the target-
oriented design of LFS.

Iteration T [K] P [atm] Equivalence Ratio Uncertainty Reduction Factor

1 300 5 1.13 3.22
2 300 5 0.9 1.48
3 300 5 1.2 1.32
4 300 5 1.2 1.19
5 300 5 0.8 1.17

The algorithmically chosen conditions and their corresponding URF are presented in
Table 3.10. The table reveals that all iterations select the same temperature and pressure,
while the equivalence ratios are distributed across the entire design space. Similar to the
IDT scenario, as additional experimental data is acquired, the URF decreases with each
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iteration. The trajectories of the design during gradient ascent is depicted in Fig. 3.20. It
is evident that every case of random initialization converges to the same stationary point.
Fig. 3.21 illustrates that the landscape is nearly linear. The contrast between the prior and
posterior prediction uncertainty is depicted in Fig. 3.22. It is evident that the posterior
uncertainty for both models is reduced compared to that of the prior model. The posterior
region after designed experiments is smaller than that after random experiments, especially
at the fuel-rich side, where the experimental condition is not accessible.

Figure 3.20: The 30 trajectories of temperature, log10 of pressure, and equivalence ratios
during gradient ascent iterations.

Figure 3.21: The iso-contours of URF at ϕ=0.8, 1 and 1.2 in the gradient ascent iterations.

3.3.4 Parallel Experimental Design

In real practice, it is possible that we cannot conduct one experiment and then do inference
and design the next experiment. The first typical scenario is that the experiment is parallel
in nature, such as the sensor placement, where multiple sensors can be placed, or multiple
facilities that can be operated simultaneously. The second typical scenario is that the exper-
imental data is acquired in high frequency so that the duration of experiments is far shorter
than the time of one design-inference iteration. In this case, we can design multiple exper-
iments at once. Of course, this approach will increase the dimension of the design space,
where more initialization is required to converge to the global minimum in a more complex
geometry. Thus, it assumes that we can parallelize different initializations so that the in-
crease in initialization number will not cause an increase in running time. In this thesis, we
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Figure 3.22: The prior and posterior prediction uncertainty ranges and mean values of LFS
predictions at T=500K, P=10 atm, ϕ=0.8-1.5 after 5 random experiments and designed
experiments, respectively.

still run parallel experimental design in a sequential manner, while the parallelization is left
as the task of future works. The number of random initialization is set as 60. It is worth not-
ing that the parallel design does not refer to a new design target, so it can be combined with
model-oriented, target-oriented, and parameter-oriented design. In this subsection, we will
use IDT to demonstrate the parameter-oriented parallel design and use LFS to demonstrate
the combination of target-oriented design and parallel design. Due to the high-dimension
nature of parallel design, we will not show the convergence trajectories of each dimension.
We already verified that all the cases have converged to stationary points. Also, it is hard to
visualize the landscape of EIG or URF. We only present the selected experimental conditions
and the comparison of random experiments and designed experiments.

Ignition Delay Times

In this part, we try to minimize the volume of the hyper-ellipse of parameters 18, 71, and
175 by conducting five IDT measurements, and we design the five experiments before any
data is acquired. The selected experiments and the final EIG are listed in Table 3.11. As
a comparison, the EIG of five random experiments is 2.07. This means that the volume of
hyper-ellipse is smaller by a factor of 1.5 compared with the case with random experiments.
The prior and posterior uncertainty contours are shown in Fig. 3.23. It is clearly shown
that although the posterior uncertainty of parameter 18 is smaller for random experiments,
the volume of all three parameters for designed experiments is smaller than for random
experiments.

75



Table 3.11: The selected experimental conditions and EIG for each iteration of the parallel
parameter-oriented design of IDT.

No. T [K] P [atm] Equivalence Ratio Expected Information Gain

1 800 1 5 -
2 1374 1 5 -
3 800 30 5 -
4 1600 30 1.93 -
5 1600 30 1.93 2.6

Figure 3.23: The prior and posterior uncertainty of parameters 18, 71, and 175.

Laminar Flame Speeds

In this part, similar to part 3.3.3, our goal is to minimize the prediction uncertainty of LFS
at P=10 atm, T=500K, ϕ=0.8-1.5 by conducting pre-designed five LFS experiments within
the ranges P=0.5-5 atm, T=300-400 K, ϕ=0.8-1.2. The design is carried out before data
is collected. The experiments chosen and the URF after five experiments are detailed in
Table 3.12. In contrast, the URF for five randomly selected experiments is 6.4. Figures
3.24 illustrate the prior and posterior prediction uncertainty. It is evident that the designed
experiments are more effective in terms of reducing the specified prediction uncertainty.
Similar to part 3.3.3, such an out-performance is more obvious on the rich side.
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Table 3.12: The selected experimental conditions and URF for each iteration of the parallel
target-oriented design of LFS.

No. T [K] P [atm] Equivalence Ratio Uncertainty Reduction Factor

1 300 5 1.2 -
2 341 5 0.8 -
3 341 5 0.8 -
4 300 5 1.2 -
5 300 5 1.2 9.9

Figure 3.24: The prior and posterior prediction uncertainty ranges and mean values of LFS
predictions at T=500K, P=10 atm, ϕ=0.8-1.5 after 5 random experiments and designed
parallel experiments, respectively.

3.4 Conclusion

In this chapter, we propose an efficient Bayesian experimental design algorithm combining
Laplacian approximation-based experimental design and gradient-based design optimization
with neural network response surfaces. Instead of obtaining information gain by Laplacian
approximation and integrating it over y, we take the simplified version same as [89]. We
optimize the design space by projected gradient ascent, and point-by-point enumeration is
avoided. In order to avoid trapping in local maxima of information gain, random initialization
of multiple optimization cases is employed. The resultant algorithm shows great efficiency
and robustness against local maxima. A novel neural network response surface is designed,
where the inputs include both kinetic parameters and experimental conditions. This neural
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network can provide accurate prediction across the entire wide design space, so that multiple
response surfaces are not needed at different experimental conditions.

In addition, we further develop different experimental design targets based on the pos-
terior covariance matrix computed by Laplacian approximation, including model-oriented,
parameter-oriented, target-oriented, and parallel experimental design. In previous works,
they either just presented model-oriented experimental design [85], [89], or addressed them
on a more computationally expensive framework [87], [117], or naively fixed the disregarded
parameters [85]. In this work, we demonstrate these design targets in a more efficient frame-
work based on a full posterior covariance matrix. The numerical experiments show that the
proposed method can work very well in terms of reducing the uncertainty of the specified
parameters, reducing the uncertainty of the specified targets, or designing multiple experi-
ments at once. The proposed method achieves more than ten times acceleration compared
with the same information gain evaluation method but with a point-wise enumeration of 50
grids in each dimension in a 3-D design space.
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Chapter 4

Future Work

In Chapter 2, we compared the impact of effective independent-data number and target
selection on the results of parameter identification and posterior model prediction. In the
effective independent-data number part, the role of ill-posedness is identified. Some other
reasons, such as model error and inaccurate likelihood, are discussed. In the target selection
part, the potential reason for the similarity of C-1 and LastP, in terms of point estimation,
is discussed. However, the answers to several questions are still unclear. First, the role of
model error and inaccurate likelihood functions in the Bayesian inference of time-series data
is still unclear. Given that the model data is well-posed, whether effective independent-data
number depends on the imperfectness of models and likelihoods still needs further studies.
Second, whether several points can represent the information of the entire curve, in terms of
point estimation, still needs further verification. In our case, the curves of pyrolysis usually
have simple and monotonic shapes, and it is not clear whether the observations in this case
are still valid in more complex curves, such as species profiles of autoignition. Third, the
reason why the prediction uncertainty of LastP is larger than that of C-1, even in the last
point, is undisclosed. Fourth, in C-1, the mean values of posterior parameter uncertainty
are different from the MAP values for many parameters, while in LastP, the mean values
are almost the same as MAP values except for one parameter. The posterior uncertainty
contours of C-1 are also different from the prior ones, while the posterior contours of LastP
are very similar to its priors. Such a difference is still unexplained.

In Chapter 3, we develop a gradient-based efficient algorithm for Bayesian experimental
design for chemical kinetics. The estimation of information gain is done by a simplified
version of Laplacian approximation without taking expectations with respect to possible
experimental data. The model-oriented, target-oriented, parameter-oriented, and parallel
experimental designs are demonstrated facilitated by novel neural network response surfaces,
showing the efficiency and multi-function nature of the proposed methods. Several future
directions are worth exploring. First, the error of such a simplification should be related
to the Hessian matrix of the response surface, since if the second-order gradient is zero,
the approximation is exact. Thus, it should be straightforward to derive the order of error
in terms of the second-order derivatives based on the theoretical results of [87], where the
integral of information gain is computed and the error analysis is carried out based on the
assumption that a large amount of data can be acquired in each time of experiments. Second,
the parallel computing of different initialization in design optimization is worth trying, since

79



they are suitable for parallel computing by nature and the strong parallel ability of GPU
cannot be fully exploited. Third, several advanced Bayesian experimental design algorithms
without linearizing the response surfaces [113] can be implemented in combustion kinetics,
in case the model is highly nonlinear. Fourth, a reduced-order modeling technique can be
used to decrease the dimension of model inputs, hence reducing the size of surrogate neural
networks. This will accelerate the design process since a smaller network size has a shorter
time of inference and gradient calculation.
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Additional Tables
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Table A.1: The cosine similarity of gradient computed by networks and Cantera for eight
species and four time points under five temperatures at nominal values of kinetic parameters.
The smallest cosine value for each temperature is marked in red.

Table A.2: The relative error of gradient vector length (|Grad|NN -|Grad|Cantera)/ |Grad|NN

computed by networks and Cantera for eight species and four time points under five tem-
peratures. The smallest cosine value for each temperature is marked in red.It is observed
that for most point the error is smaller than 10%. There is only one point with large error,
0.68. A potential reason is that the gradient itself is pretty small, so even small error of
computation can cause large relative error. In fact, as long as the gradient directions agree
well, the length does not matter, since we can tune the step size to control descent speed of
the optimizer.
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Table A.3: The differences between NEs of original mechanism and NEs of LastP. Negative
differences are in bold.

H2 C2H2 CH4 C2H4 C2H6 pC3H4 C3H6 C3H8

1250 K 0.6040 -0.0114 0.2538 0.7644 0.2596 0.0019 0.7490 1.5679
1290 K 0.7939 0.0225 0.3609 1.0303 0.3308 -0.0021 0.8560 2.1016
1330 K 1.0258 -0.0224 0.4093 0.9531 0.3222 -0.0345 0.7115 2.1127
1370 K 0.9864 -0.0890 0.3763 0.2028 0.2575 -0.0442 0.6529 1.8252
1410 K 0.8291 -0.0395 0.2649 -0.3527 0.1780 -0.0394 0.7368 1.4990

Table A.4: The differences between NEs of original mechanism and NEs of C-1. Negative
differences are in bold.

H2 C2H2 CH4 C2H4 C2H6 pC3H4 C3H6 C3H8

1250 k 0.5624 -0.0101 0.2264 0.6479 0.2165 0.0019 0.6910 1.3547
1290 k 0.7982 0.0218 0.3249 0.8747 0.2688 -0.0015 0.9200 1.8717
1330 k 0.9417 -0.0203 0.3754 0.9287 0.2515 -0.0328 0.8575 2.1013
1370 k 0.9184 -0.0889 0.3577 0.3451 0.1849 -0.0420 0.7978 1.9363
1410 k 0.7760 -0.0449 0.2757 -0.2495 0.1081 -0.0367 0.7968 1.5470

Table A.5: The differences between NEs of original mechanism and NEs of C-160. Negative
differences are in bold.

H2 C2H2 CH4 C2H4 C2H6 pC3H4 C3H6 C3H8

1250 K 0.5442 -0.0091 0.3904 0.7247 0.1960 0.0016 0.6992 1.4355
1290 K 0.7949 0.0217 0.5457 0.9639 0.2754 -0.0090 0.9291 2.0145
1330 K 0.9675 -0.0224 0.5455 0.9541 0.3237 -0.0642 0.8005 2.1588
1370 K 0.9902 -0.1133 0.5135 0.3572 0.3568 -0.1115 0.7415 1.8649
1410 K 0.8619 -0.1114 0.3552 -0.0078 0.4042 -0.1552 0.7761 1.5341

Table A.6: Inner product of the normalized sensitivity vectors of pC3H4 for 1370K at 1.6 ms
and at 0.4 ms/0.8 ms/1.2 ms. Values below 0.9 are in bold.

Species/Time 0.4 ms 0.8 ms 1.2 ms

H2 0.965193 0.986311 0.999998
C2H2 0.953348 0.987103 0.999999
CH4 0.931971 0.983121 0.999999
C2H4 0.911628 0.978563 0.999999
C2H6 0.871753 0.971632 0.999998
pC3H4 0.880802 0.961229 0.999997
C3H6 0.940318 0.982524 0.999999
C3H8 0.947249 0.982917 0.999998
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Table A.7: Inner product of the normalized sensitivity vectors of pC3H4 for 1330K at 1.6 ms
and at 0.4 ms/0.8 ms/1.2 ms. Values below 0.9 are in bold.

Species/Time 0.4 ms 0.8 ms 1.2 ms

H2 0.984654 0.99402 0.999999
C2H2 0.962212 0.988744 0.999999
CH4 0.943885 0.983331 0.999999
C2H4 0.920733 0.976031 0.999998
C2H6 0.86429 0.962936 0.999997
pC3H4 0.927775 0.975203 0.999997
C3H6 0.961514 0.987019 0.999999
C3H8 0.971453 0.989322 0.999999

Table A.8: Inner product of the normalized sensitivity vectors of pC3H4 for 1290K at 1.6 ms
and at 0.4 ms/0.8 ms/1.2 ms. No Value is below 0.9.

Species/Time 0.4 ms 0.8 ms 1.2 ms

H2 0.993482 0.997403 1
C2H2 0.975403 0.9916 0.999999
CH4 0.968949 0.989268 0.999999
C2H4 0.954687 0.983247 0.999998
C2H6 0.908057 0.966932 0.999997
pC3H4 0.957058 0.986341 0.999999
C3H6 0.982199 0.993385 0.999999
C3H8 0.98882 0.995429 0.999999

Table A.9: Inner product of the normalized sensitivity vectors of pC3H4 for 1250K at 1.6 ms
and at 0.4 ms/0.8 ms/1.2 ms. No Value is below 0.9.

Species/Time 0.4 ms 0.8 ms 1.2 ms

H2 0.997563 0.999012 1
C2H2 0.988674 0.995734 0.999999
CH4 0.98806 0.995659 0.999999
C2H4 0.984118 0.993341 0.999999
C2H6 0.964769 0.984702 0.999998
pC3H4 0.971277 0.990949 0.999999
C3H6 0.99377 0.997611 1
C3H8 0.996474 0.998535 1
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Figure B.1: The comparison between the prediction of neural networks and Cantera for eight
species at 1250K.
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Figure B.2: The comparison between the prediction of neural networks and Cantera for eight
species at 1290K.
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Figure B.3: The comparison between the prediction of neural networks and Cantera for eight
species at 1330K.
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Figure B.4: The comparison between the prediction of neural networks and Cantera for eight
species at 1370K.

89



Figure B.5: The comparison between the prediction of neural networks and Cantera for eight
species at 1410K.
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Figure B.6: The evolution loss function versus iteration for C-1, C-160 and LastP.
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Figure B.7: The comparison of the species evolution of C-160 and C-1 under the scenarios
where the difference between NEs of C-160 and C-1 is larger than 10% of corresponding
experimental uncertainties (in bold in Table 2.2)
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