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Abstract
Data in today’s world is increasingly siloed across a wide variety of entities with varying
resource constraints. The quality of wisdom generated from a collaborative processing of
such data is substantially better if the data from all these entities is shared across each other
or centralized at a nodal entity. Such data sharing and centralization is often prohibited due to
stringent privacy regulations, computational constraints, communication bottlenecks, trade
secrets, trust issues and competition. This necessitates development of efficient methods for
distributed computation while preserving privacy to generate wisdom whose quality is on
par with the case of data centralization. This thesis covers methods introduced for the same
in an inter-disciplinary manner to tackle several such problems using distributed and private
computation.
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“I feel that one should employ methods that reflect the

physics (specifics) of the problem at hand rather than

the methods one happens to know.”

Lawrence Shepp

1
Introduction

1.1 SUMMARY OF CONTRIBUTIONS

Data in today’s world is increasingly siloed across a wide variety of entities with varying re-

source constraints. The quality of wisdom generated from the collaborative processing of such

data is substantially better if the data from all these entities is shared across each other or cen-

tralized at a nodal entity. Data sharing and centralization are often prohibited due to stringent
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privacy regulations, computational constraints, communication bottlenecks, trade secrets, trust

issues and competition. This necessitates the development of efficient methods for distributed

computation while preserving privacy to generate wisdom whose quality is on par with the case

of data centralization. This thesis covers methods introduced for the same in an interdisciplinary

manner to tackle several such problems using distributed and private computation. The meth-

ods introduced in the thesis can be categorized into three parts, including Part I.) Distributed

and Private Statistical Inference, Part II.) Distributed and Private Machine Learning and Part

III.) Distributed and Private Scientific Computing. The work is motivated and guided by sev-

eral downstream applications of the proposed methods, including distributed and private com-

pliance for anti-corruption, private geo-location aggregation for location-based services, split

learning-a popular variant of federated learning for distributed predictive analytics, distributed

hypothesis testing for multi-center collaboration, collaboration on app/super-app ecosystems,

digital advertising with a focus on revenue recovery due to a paradigm shift in enforcing rapidly

evolving privacy regulations, distributed point-estimation of nonlinear correlations across two-

parties, and intrinsic statistical data valuation for data markets that coordinates well with ex-

trinsic game-theoretic approaches. The technical foundations for the introduced methods span

multiple areas, including statistics, machine learning, geometry, partial differential equations,

combinatorics and social choice.

1.2 BACKGROUND

It has been recently shown that privacy-enhancing techniques based on previous approaches of

K-Anonymity do not satisfy GDPR (European Union’s privacy law) on the required clause of

‘predicate singling out’ while differentially private mechanisms (a mathematical notion of pri-

vacy) satisfy this clause122. This mathematical notion of privacy called differential privacy160
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was introduced in recent years and holds advantageous properties as it does not a.) require any

specific modelling of attacks to prevent leakage of privacy, b.) provides accurate quantification

of privacy loss, c.) holds forward-compatibility to post-process a differentially private release in

any way without having to lose the privacy guarantees, d.) can perform multiple queries through

private mechanisms while precisely budgeting (or accounting) the amount of privacy provided

in the end. Differential privacy offers a method to formally release the output of a query applied

on sensitive data to the public instead of cryptographic methods, which provide security of the

input data and computational pipeline handled in an encrypted form. Therefore, these methods

handle different parts of the data processing pipeline and are not at odds with each other. This

is the technical distinction between “privacy” and “security”.

1.2.1 WHAT IS DIFFERENTIAL PRIVACY?

A widely accepted mathematical notion of privacy called differential privacy160 was introduced

in recent years and can be defined as follows. A randomized algorithm M : D → Y is ϵ-

differentially private if, for all neighbouring datasets (that defer in a record) D,D′ ∈ D and for

all S ∈ Y ,

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S]

An instance of this definition is illustrated as shown below, where the outputs of the probability

densities of the output of the query applied on neighbouring datasets are bounded by eϵ. Note

that when ϵ = 0, one can see that the mechanism’s output becomes independent of the input.

Definition 1.2.1. Post-Processing Invariance A major advantage is that differential privacy-

inducing mechanisms are immune to post-processing, meaning that an adversary without any

additional knowledge about the dataset X cannot compute a function on the output A(X) to

violate the stated privacy guarantees.
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1.2.2 WHAT IS APPROXIMATE DIFFERENTIAL PRIVACY?

In the case where slack is given in an event (OR condition) where the differential privacy does

not hold, with probability δ, we have the following additive approximation of the probability

distributions (due to the OR condition), in addition to the multiplicative approximation by eϵ.

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ

This form of differential privacy is known as approximate differential privacy, where the

approximation is via a multiplicative bound on the probabilities.

1.2.3 ACCOUNTING FOR TWO SOURCES OF RANDOMNESS

In private statistical inference, two sources of randomness need to be accounted for

1. Sampling noise: modelling assumption about data generating process. Example: σ√
n

error needs to be paid for estimating mean even in the non-private setting.

2. Privacy noise: estimation error due to injection of privacy-preserving randomization/noise.

(Note that additive noising is not the only form of randomization that leads to privacy).

This is a recurring theme of privacy-preserving statistics, including private statistical inference

(confidence intervals, hypothesis tests, Bayesian inference, and beyond) where one must reason

about both sources of randomness, unlike the non-private case. Upon accounting for two sources

of randomness, it so happens that in some simpler queries, differential privacy can be obtained

for free (as in at a better error rate due to privacy noise than the error rate for estimating under-

sampling noise in the non-private setting). We explain this with the following example for

privately estimating the mean of a Bernoulli distribution from its samples.
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EXAMPLE: MEAN OF BERNOULLI

Consider that one is given samples X1, . . . , Xn ∼ Bernoulli(p), 0 ≤ p ≤ 1 and the goal is to

estimate p (mean) privately. The following is a simple private estimator obtained by additive

noise from a Laplacian distribution calibrated based on the required privacy level and the global

sensitivity of the query.

p̂ =
1

n

n∑
i=1

Xi + Lap

(
1

ϵn

)
Note that in here the global sensitivity of this query 1

n

∑
Xi is 1

n ). Note that the absolute

privacy error here is of order 1
ϵn .

p̂ =
1

n

n∑
i=1

Xi + Lap

(
1

ϵn

)

Var

(
Lap

(
1

ϵn

))
=

2

ϵ2n2
.

Similarly, the overall absolute error is of order 1√
n

.

Var(p̂) =
p(1− p)

n
+

2

ϵ2n2
= O

(
1

n

)

Let us now compare this to a non-private estimator

p̃ =
1

n

∑
i

Xi,E[ρ̃] = p, Var(p̃) =
p(1− p)

n

Moreover, by the Cramer-Rao Lower Bound (CRLB), any unbiased estimator (private or not)

has variance at least p(1−p)
n . We tabulate this in Table 1, and as can be seen, the error rate caused

by privacy is, in fact, lower than that caused by estimation in the non-private setting.
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Variance / mean squared error Absolute Error (whp)

Private p(1−p)
n

+ 2
ϵ2n2 O

(
1√
n
+ 1

ϵn

)
Non-Private p(1−p)

n
O
(

1√
n

)
Lower bound p(1−p)

n
Ω
(

1√
n

)
Table 1.1: Privacy (absolute) rate for free phenomenon

1.3 DIFFERENTIAL PRIVACY: INTERPRETATION AS A PRIVACY LOSS RANDOM

VARIABLE

The privacy loss random variable (PLRV for short) is the “actual” ε value for a specific output O.

It is a random variable because typically, we consider the attacker’s loss (Bayesian viewpoint

in section 4) LD1,D2(O) when O varies according to A (D1), which we assume is the real

database. We show the privacy loss random variable’s distribution (as an instantiation) and its

interpretation in terms of ϵ, δ in Figure 1.1,1.2, 1.3 and its formula is shown below.

LD1,D2(O) = ln

(
P [M (D1) = O]

P [M (D2) = O]

)

The distribution (called privacy loss distribution/PLD) of the PLRV is bounded within the

absolute value of the privacy level ϵ. Moreover, the PLD of the composition of queries is the

convolution of individual query PLDs. This can easily be implemented as follows based on

this property. Let µ and µ′ be any distributions on real numbers. Their convolution, denoted by

µ∗µ′, is a distribution on real numbers where a sample t ∼ µ∗µ′ is drawn by first independently

sampling a ∼ µ, a′ ∼ µ′ and then letting t = a+ a′. Therefore, given µup, µ
′
up, µlo and µ′

lo as
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Figure 1.1: The distribution
(called privacy loss

distribution/PLD) of the
PLRV27

Figure 1.2: Samples from an
instance of privacy loss

distribution/PLD27

Figure 1.3: PLD of the
composition of queries is the

convolution of individual
PLDs27

any distributions such that all of them are discrete or all of them are continuous. Then, we have

PLD(µup⊗µ′
up)/(µlo⊗µ′

lo
) = PLDµup/µlo

∗ PLDµ′
up/µ

′
lo

These notions help for tighter accounting of a privacy budget upon repeated queries and

compositions of queries over a database and are in fact the inspiration behind modern variants

of differential privacy.

1.4 DIFFERENTIAL PRIVACY: INTERPRETATION AS A DIVERGENCE CONSTRAINT

A mechanismM is (ε, δ)-differentially private (or (ε, δ)−DP for short) if and only if, for any

neighbouring input datasets x,x′, it holds that Deε (M(x)‖M (x′)) ≤ δ using the hockey-stick

divergence given by Deε (µ‖µ′) :=
∫ [

fµ(y)− eε · fµ′(y)
]
+
dy.

Moreover, for any two distributions µup and µlo where both are discrete or both are contin-

uous, it holds that

Deε (µup‖µlo) = Ey∼PLDµup/µl

[
1− eε−y

]
+
·

Due to this, a mechanismM is (ε, δ)−DP if and only if the following holds for all neighbour-
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ing input datasets x and x′ :

δ ≥ Ey∼PLDM(x)/M(x′)

[
1− eε−y

]
+

1.5 DIFFERENTIAL PRIVACY: INTERPRETATION AS A HYPOTHESIS TEST

Given the output of a differentially private mechanism M , can one decide if Alice is in the

dataset? This is the specific hypothesis test which has an equivalence to differential privacy.

1. Null Hypothesis H0: we observe M(D)⇒ Alice not in the dataset

2. Alternate Hypothesis H1: we observe M (D′)⇒ Alice in the dataset.

The adversary would want to minimize

1. Type I error: Alice is detected in the dataset while she’s not

2. Type II error: Alice is not detected in the dataset while she is.

One would like to know a trade-off function of minimizing one type of error while keeping

the other bounded below a threshold, as T (M(D),M (D′)) (α) = inf{ type II error | type I

error ≤ α}. If a mechanism reveals some information, the adversary can discriminate M(D)

from M (D′) with better odds (Type II error below the red line) and know something about

Alice (whether she is in the dataset or not). A mechanism M being (ε, δ)-approximate-DP is

equivalent to the following being true. For all the rejection rules,


Pr( Type I error ) + eε Pr (Type II error ) ≥ 1− δ

eε Pr( Type I error ) + Pr (Type II error) ≥ 1− δ
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Which corresponds to the tradeoff function:

fε,δ(α) = max
{
0, 1− δ − eεα, e−ε(1− δ − α)

}
Now, there is an equivalent notion of differential privacy called f -differential privacy spe-

cific to a choice of a trade-off function f . The following are the requirements for the trade-off

function, its equivalence to differential privacy, and the Type-I and Type-II errors of any adver-

sary.

Definition 1.5.1. (Trade-off function143) For any two probability distributions Y and Y ′ on the

same space, define the trade-off function T (Y, Y ′) : [0, 1]→ [0, 1] as

T
(
Y, Y ′) (α) = inf {βϕ : αϕ ≤ α}

where the infimum is taken over all (measurable) rejection rules ϕ.

The following gives the necessary and sufficient condition for f to be a trade-off function.

Note that a function f : [0, 1] → [0, 1] is a trade-off function if and only if f is convex, contin-

uous, non-increasing, and f(x) ≤ 1 − x for x ∈ [0, 1] (as shown in the figure). f -DP allows

the full trade-off between type I and type II errors in the simple hypothesis testing problem

to be governed by a trade-off function f . A larger trade-off function implies stronger privacy

guarantees.

Definition 1.5.2. ( f -differential privacy143). Let f be a trade-off function. A mechanism

M : X → R is f -differentially private if for every pair of neighboring datasets x, x′ ∈ X , we

have

T
(
M(x),M

(
x′
))
≥ f
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(ϵ, δ)-DP is a special case of f -DP, taking f = fϵ,δ, where fϵ,δ = max{0, 1−δ−exp(ϵ)α, exp(−ϵ)(1−

δ − α)}558,143.

TRADE-OFF FUNCTION BASED INTERPRETATION OF (ϵ, δ)

Based on the above concepts of trade-off functions, one can interpret ϵ as the slope formed

by the approximation of a mechanism’s trade-off function obtained by multiple choices of ϵ, δ.

Similarly, δ is an additive slack that reduces the trade-off function (by reducing the errors) at

the cost of loss of privacy with an (OR condition) probability of δ.

1.6 VARIANTS OF DP: HIGHER ACCURACIES FROM TIGHTER BUDGETING (UPON

COMPOSITION)

The composition of private mechanisms results in a loss of privacy budget. Initial estimates

of this rate of composition were quite conservative, followed by the advanced composition

theorem268, which improved the rate to the following.

Definition 1.6.1. (Advanced Composition). If M1, . . . ,Mk are ϵ-DP and M(x) = Mk (x,Mk−1 (x,Mk−2(x, . . .))

), then M(x) is (ϵ′, δ)−DP for all δ and ϵ′ =
√

2k log 1/δ + k (eϵ − 1).

However, composition bounds using (ϵ, δ)-DP are loose even for advanced composition.

These bounds were improved drastically along with a more interpretable formula of composi-

tion via the introduction of 3 variants of differential privacy that are equivalent:

1. Rényi differential privacy366

2. zero-concentrated differential privacy81

3. f-differential privacy143
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On a high level, both zCDP and RDP guarantee that the “distance” (technically, the Rényi

divergence) between the distributions of M(D) and M(D′) is below a certain threshold, for

any two neighbors D and D′ . Intuitively, since the two distributions are close, it is improbable

for an attacker to deduce which of the neighbouring datasets was used by the algorithm. These

two definitions do not allow for catastrophic failures and are stronger than approximate DP.

Specifically, any zCDP or RDP guarantee can be converted to an approximate DP guarantee.

1.6.1 RENYI-DP

A randomized mechanism F satisfies (α, ϵ̄)-RDP if for all neighboring datasets D and D′

Dα

(
F (D)‖F

(
D′)) ≤ ϵ̄

In other words, RDP requires that the Rényi divergence of order α between F (D) and F (D′)

to be bounded by ϵ̄. Note that one needs to use ϵ̄ to denote the ϵ parameter of RDP in order

to distinguish it from the ϵ in pure ϵ-differential privacy and (ϵ, δ)-differential privacy. A key

property of Rényi differential privacy is that a mechanism which satisfies RDP also satisfies

(ϵ, δ) -differential privacy. Specifically, if F satisfies (α, ϵ̄)-RDP, then for δ > 0, F satisfies

(ϵ, δ)-differential privacy for ϵ = ϵ̄ + log(1/δ)
α−1 . The analyst is free to pick any value of δ; a

meaningful value (e.g. δ ≤ 1
n2 ) should be picked in practice. The major advantage of Rényi

differential privacy is the tight composition for the Gaussian mechanism, and this advantage in

composition comes without the need for a special advanced composition theorem. The sequen-

tial composition theorem of Rényi differential privacy states that if F1 satisfies (α, ϵ1)-RDP

and F2 satisfies (α, ϵ2)-RDP - Then their composition satisfies (α, ϵ1 + ϵ2)-RDP Based on this

sequential composition theorem, running an (α, ϵ̄)-RDP mechanism k times results in (α, kϵ̄)-

RDP. For a given level of noise (i.e. a given value for σ2 ), bounding the privacy cost of repeated
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applications of the Gaussian mechanism using RDP’s sequential composition and then convert-

ing to (ϵ, δ)-differential privacy, will usually yield a much lower privacy cost than performing

the composition directly in (ϵ, δ) world (even with advanced composition).

As a result, the ideas behind Rényi differential privacy have been used to improve signif-

icantly the privacy cost accounting in several recent iterative algorithms, including Google’s

differentially private version of TensorFlow.

INTERPRETATION OF RENYI DP USING PRLV

Rényi-DP can be interpreted in terms of Bayesian loss of attacker and privacy loss random

variable. These two concepts were introduced in the previous sections above. Rényi-DP leads

to an averaging of the PRLV with more extreme events being penalized based on the choices of

α, the order of the used Rényi-divergence in controlling the divergence between the pdfs of the

outputs of the privacy mechanism across neighbouring databases. This increases the Bayesian

attacker’s loss accordingly

E
O∼A(D1)

[(
eLD1,D2

(O)
)(α−1)

]
≤ (eε)(α−1)

This is Rényi differential privacy. If A satisfies the above inequality for all choices of D1 and

D2, we say it’s (α, ε)-Rényi differentially private. Some special values of α correspond to

common averaging functions. - α → 1 bounds the arithmetic mean of L or, equivalently, the

geometric mean of eL; - α = 2 bounds the arithmetic mean of eL; - α = 3 bounds the quadratic

mean of eL; α = 4 bounds the cubic mean of eL; - and it’s also possible to pick α =∞, which

bounds the maximum value of eL : it’s then equivalent to ε-DP.
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1.6.2 ZERO-CONCENTRATED DIFFERENTIAL PRIVACY (ZCDP)

This variant allows for covering all values of α (as used in Renyi DP) at once!

That’s precisely what zero-concentrated differential privacy (zCDP) provides. Introduced

by Mark Bun & Thomas Steinke, it can be interpreted in simple terms: given a single parameter

ρ, the ε corresponding to each α must be at most ρα. In the formalism above, the mechanism is

ρ zCDP if:

E
O∼A(D1)

[(
eLD1,D2

(O)
)(α−1)

]
≤ (eρα)(α−1)

It’s easy to verify that it matches all the requirements above. 1. The single parameter ρ corre-

sponds to the arithmetic average of the privacy loss. (Or, equivalently, to the geometric average

of the eL.) 2. It guarantees that the relationship between α and ε is at most linear, which is

very simple. 3. It describes the Gaussian mechanism beautifully. Suppose the statistics you’re

computing have a L2 sensitivity of ∆. Then, add adding Gaussian noise of variance σ2 to the

result. Then the result satisfies ρ−zCDP, with ρ = ∆2

2σ2 . So much nicer than the formula giving

the (ε, δ)−DP guarantee! 4. And composition is a breeze. If a mechanism is ρ1 − zCDP and

another is ρ2 − zCDP, then publishing the result of both is (ρ1 + ρ2)− zCDP .

1.6.3 DP PREVENTS MEMORIZATION

One critical benefit of differential privacy is that it provably prevents memorization. The re-

quirement that private algorithms perform similarly on neighbouring databases constrains the

algorithm from overfitting to individual entries in the database. It thus ensures that no sin-

gle entry has been memoized. This guarantee also provides strong generalization guarantees

for differentially private algorithms, which have also been observed in other machine learn-

ing applications. Moreover, foundations of differential privacy and obfuscation are the driving

forces behind recent algorithms for “Machine Unlearning” to implement the ad hoc “right to
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forget/delete sensitive information” in a trained model.

1.7 EDGE-CASES, BOUNDARIES AND LIMITATIONS

1.7.1 UNIVERSAL OPTIMALITY

We refer to a DP mechanism as universally optimal for a given kind of query if no other DP

mechanism provides higher utility. It has been shown that all linear queries (including count-

ing queries) have universally optimal DP mechanisms, while universal optimality for nonlinear

queries is trickier. For example, in density estimation queries, the K-norm mechanism can

achieve a minimax rate only in 1-D. This opens room for novel privacy mechanisms that im-

prove utility towards being closer to universally optimal for nonlinear queries.

For binary data, the staircase mechanism is universally optimal only in low and high pri-

vacy regimes with respect to f-divergence metrics and all monotonic losses. For continuous

linear queries, the Laplacian mechanism is universally optimal. The geometric mechanism is

universally optimal for counting queries based on Euclidean metric and all monotonic losses. At

the same time, there has been a proven impossibility of universal optimality for non-counting

queries.

1.7.2 CHOICE OF δ

Since δ controls the strength of the relaxation, it is important to ensure that a sufficiently small

is used. The general recommendation in the literature is to choose δ ≤ 1/n , where n is the

number of records in the dataset160. This recommendation stems from a worst-case analysis.

Specifically, consider the following worst-case assumption on every record: if the record r is

present in the dataset, the (ϵ, δ) mechanism will generate a certain output Er with probability

δ, and furthermore, Er cannot happen otherwise. If an attacker observes Er, they can directly
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deduce that the record r is in the dataset. Thus, each record in the dataset has a probability

δ of being successfully identified by the attacker in this worst-case scenario. The expected

number of successful attacks is δn. Choosing δ ≤ 1/n , will ensure that the expected number

of successful attacks is much smaller than 1.

1.7.3 INDEPENDENCE ISSUES

We believe that under any reasonable formalization of evidence of participation, such proof can

be encapsulated by exactly one tuple only when all tuples are independent (but not necessarily

generated from the same distribution). We believe this independence assumption is a good rule

of thumb when considering the applicability of differential privacy. Still, it leads to more than

needed (more conservative) privacy budgeting when there is dependence across records. This

makes privacy analysis and design of mechanisms quite challenging for spatial, temporal and

spatio-temporal data. Quite a few mechanisms have been recently developed for this regime,

but it is still a widely open area of research requiring a lot more work.

1.7.4 EXPLICIT IDENTIFIABILITY

For queries requiring explicit identifiability, such as Fraud Detection, DP is not a privacy solu-

tion as its goal is to prevent identifiability. DP is not a silver bullet for every situation, although

it covers a wide range of scenarios.

1.7.5 SYSTEMS SECURITY ISSUES

From a hardware and systems perspective, it is to be noted that DP mechanisms, when coded

as part of hardware, lead to other issues that need to be taken care of for a proper deployment.

These include
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1. Timing Attacks (Systems Security) can lead to identifiability.

2. Latency time profiles of users could lead to identifiability.

3. Floating-point precisions of noise used reveal supplementary information that helps leak-

age.

4. Formal verification of mechanisms is needed to ensure it has been coded and integrated

correctly.

For example, DP mechanisms can be designed to inject artificial latency such that the measured

timings are indistinguishable to prevent identifiability254. On floating-point attacks (meta info

leaked via precision used by a client), these have already been prevented in some DP-based

queries through85. However, this needs to be generalized to other base mechanisms. For those

interested in understanding why the float point implementation of the naive Laplace mechanism

destroys differential privacy, the work in365 explains this vulnerability.

1.8 CATEGORIZATION OF THREATS, OTHER PRIVACY AND SECURITY METHODS

FOR DEEP LEARNING 361

The success of Deep Neural Networks (DNNs) in various fields, including vision, medicine,

recommendation systems, natural language processing, etc., has resulted in their deployment

in numerous production systems301,278,269,479. In medicine, learning is used to find patterns in

patient histories and recognize abnormalities in medical imaging, which help with disease diag-

nosis and prognosis. The use of machine learning in healthcare can compromise patient privacy

by exposing the patient’s genetic markers, as Fredrikson et al.181. Among many other applica-

tions, deep learning is also widely used in finance for predicting prices or creating portfolios.

In these cases, usually, an entity trains its model, and the model parameters are considered con-
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fidential. Being able to find or infer them is regarded as a breach of privacy65. Ease of access

to large datasets and high computational power (GPUs and TPUs) have paved the way for the

aforementioned advances. These datasets are usually crowdsourced and might contain sensi-

tive information. This poses serious privacy concerns, as neural networks are used in different

aspects of our lives508,181,387,182,452,459.

Figure 1.4 classifies possible threats to deep learning. One threat is the direct intentional or

unintentional exposure of sensitive information through untrusted data curator, communication

link, or cloud110,28. This information can be the training data, inference queries, model parame-

ters, or hyperparameters. If we assume that information cannot be attained directly, there is still

the threat of information exposure through indirect inference. Membership inference attacks474

can infer whether a given data instance was part of a model’s training process. Model inversion

and attribute inference attacks can infer sensitive features about a data instance from observed

predictions of a trained model and other non-sensitive features of that data instance180,584. Some

attacks are targeted towards stealing information about a deployed model, such as its architec-

ture576, trained parameters512 or a general property of the data it was trained on, for instance, if

the images used for training were all taken outdoor186.

There is a myriad of methods proposed to tackle these threats. Most of these methods focus

on the data aggregation/dataset publishing and training stages of deep learning. We classify

these methods into three classes. The first class of methods focuses on sanitizing the data

and removing sensitive information from it while maintaining the statistical trends494,157. The

second class focuses on making the DNN training phase private and protecting the data used for

training473,1,400,213,224,601. The last class, of which there is only a handful of works, attempts to

protect the privacy of the test-time inference phase by protecting the input data (request) that

the user sends to a deployed DNN397,146,359.

In this paper, we first briefly discuss existing attacks and privacy threats against deep learn-
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ing. Then, we focus on the existing privacy-preserving methods for deep learning and demon-

strate a gap in the literature regarding test-time inference privacy. There are a few other security

vulnerabilities which can be exploited in a deep learning model, such as adversarial attacks92,

data poisoning59. This work focuses only on privacy-specific vulnerability, and other such at-

tacks are out of the scope of this paper.

1.9 EXISTING THREATS

In this section, we map the space of existing threats against privacy in deep learning and machine

learning in general. While this survey focuses on privacy-preserving techniques, we provide a

brief summary of attacks to situate the need for privacy protection better. Figure 1.4 shows

the landscape of these threats, which we have divided into two main categories of direct and

indirect information exposure hazards. Direct threats are those where the attacker can access

the information. In indirect attacks, however, the attacker tries to infer or guess the information

and does not have access to the actual information.

1.9.1 DIRECT INFORMATION EXPOSURE

Direct intentional or unintentional data breaches can occur in many different settings and are not

limited to machine learning. Dataset breaches through data curators or entities housing the data

can be caused unintentionally by hackers, malware, viruses, or social engineering by tricking

individuals into handing over sensitive data to adversaries110. A study by Intel Security456

demonstrated that employees are responsible for 43% of data leakage, half of which is believed

to be unintentional. A malicious party can exploit a system’s backdoor to bypass a server’s

authentication mechanism and gain direct access to sensitive datasets or sensitive parameters

and models557,322,282. For instance, the recent hacking of Equifax exploited a vulnerability in
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Table 1.2: Properties of some notable attacks against machine learning privacy. MIA denotes
Model Inversion Attack in the table.

Attack Membership Model Hyperparam Parameter Property Access Access
Inference Inversion Inference Inference Inference to Model to Output

Membership Inference 474  # # # # Blackbox Logits
Measuring Membership Privacy 331 # # # # Blackbox Logits
ML-Leaks 444  # # # # Blackbox Logits
The Natural Auditor 483  # # # # Blackbox Label
LOGAN 218  # # # # Both Logits
Data Provenance 484  # # # # Blackbox Logits
Privacy Risk in ML 584   # # # Whitebox Logits+Auxilary
Fredrikson et al. 181 #  # # # Blackbox Logits
MIA w/ Confidence Values 180 #  # # # Both Logits
Adversarial NN Inversion 580 #  # # # Blackbox Logits
Updates-Leak 443 #  # # # Blackbox Logits
Collaborative Inference MIA 221 #  # # # Both Logits
The Secret Sharer 86 # # # #  Blackbox Logits
Property Inference on FCNNs 186 # # # #  Whitebox Logits
Hacking Smart Machines w 37 # # # #  Whitebox Logits
Cache Telepathy 576 # # #  # Blackbox Logits
Stealing Hyperparameters 552 # # #  # Blackbox Logits
Stealing ML Models 512 # #   # Blackbox Label

the Apache Struts software, which was used by Equifax557.

Data sharing by transmitting condential data without proper encryption is an example of

data exposure through communication link564. Kaspersky Labs reported in 2018 that they found

four million Android apps were sending unencrypted user profile data to advertisers’ servers521.

Private data can also be exposed through the cloud service that receives it to run a process, for

instance, Machine Learning as a Service (MLaaS). Some of these services do not clarify what

happens to the data once the process is finished, nor do they even mention that they are sending

the user’s data to the cloud and not processing it locally.

1.9.2 INDIRECT (INFERRED) INFORMATION EXPOSURE

As shown in figure 1.4, we categorize indirect attacks into 5 main groups: membership infer-

ence, model inversion, hyperparameter inference, parameter inference, and property inference

attacks. Table 10.1a summarises different attacks and their properties. The “Access to Model”

column determines whether the attack needs white-box or black-box access to the model to

successfully mount. White-box access assumes access to the full target model. In contrast, the
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Figure 1.4: Categorization of existing threats against deep learning
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black box assumes only query access to the model without knowledge of the architecture or

parameters of the target model. The last column shows whether the attacker needs access to the

output confidence values of the model (the probabilities, logits) or whether only the predicted

labels suffice.

MEMBERSHIP INFERENCE

Given a data instance and (black-box or white-box) access to a pre-trained target model, a

membership inference attack speculates whether or not the given data instance has contributed

to the training step of the target model. Shokri et al.474 propose the first membership inference

attack on machine learning. They consider an attacker with black-box query access to the

target model and can obtain the queried input’s confidence scores (probability vector). The

attacker uses this confidence score to deduce the participation of given data in training. They

first train shadow models on a labelled dataset that can be generated using three methods: model

inversion attack (we will see next), statistics-based synthesis (through assumptions about the

underlying distribution of the training set), or noisy real data. Using these shadow models, the

attacker trains an “attack model” that distinguishes the participation of a data instance in the

training set of the shadow models. Lastly, for the main inference attack, the attacker queries

the target deployed model to receive confidence scores for each given input data instance and

infers whether or not the input was part of the target training data. This attack is built on the

assumption that if a record were used in a model’s training, it would yield a higher confidence

score than a record not seen before by the model.

Some studies 437,514,584 attribute membership inference attacks to the generalization gap,

the over-fitting of the model, and the data memorization capabilities of neural networks. Deep

neural networks have been shown to memorize the training data30,352,249 rather than learning

the latent properties of the data, which means they often tend to over-fit the training data. Long
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et al. 331 propose an approach that more accurately tests a given instance’s membership. They

train the shadow models with and without this given instance, and then at inference time, the

attacker tests to see if the example was used for training the target model, similar to Shokri et

al.’s approach. More recently, Salem et al.444 propose a more generic attack that could relax

the main requirements in previous attacks (such as using multiple shadow models, knowledge

of the target model structure, and having a dataset from the same distribution as the target

model’s training data), and show that such attacks are also applicable at a lower cost, without

significantly degrading their effectiveness.

Membership inference attacks do not always need access to the confidence values (logits)

of the target model, as shown by Song & Shmatikov in a recent attack483, which can detect with

very few queries to a model if a particular user’s texts were used to train it.

Yeom et al. 584 suggest a membership inference attack for cases where the attacker can

have white-box access to the target model and know the average training loss of the model. In

this attack, for an input record, the attacker evaluates the loss of the model, and if the loss is

smaller than a threshold (the average loss on the training set), the input record is deemed part

of the training set. Membership inference attacks can also be applied to Generative Adversarial

Networks (GANs), as shown by Hayes et al.218.

MODEL INVERSION AND ATTRIBUTE INFERENCE

Model inversion and attribute inference attacks are against attribute privacy, where an adversary

tries to infer sensitive attributes of given data instances from a released model and the instance’s

non-sensitive attributes567. The most prominent of these attacks is against a publicly-released

linear regression model, where Fredrikson et al.181 invert the model of a medicine (Warfarin)

dosage prediction task. They recover genomic information about the patient based on the model

output and several other non-sensitive attributes (e.g., height, age, weight). This attack can
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Figure 1.5: The image on the left was recovered using the model inversion attack of
Fredrikson et al.180. The image on the right shows an image from the training set. The

attacker is given only the person’s name and access to a facial recognition system that returns
a class confidence score180.

only be applied to the target model with black-box API access. Fredrikson et al. formalize

this attack as maximizing the posterior probability estimate of the sensitive attribute. In other

words, the attacker assumes that features f1 to fd−1 of the fd features of each data instance are

non-sensitive. The attacker then tries to maximize the posterior probability of feature fd, given

the nonsensitive features of f1 to fd−1, and the model output.

In another work, given white-box access to a neural network, Fredrikson et al.180 show that

they could extract training data instances from observed model predictions. Figure 1.5 shows

a recovered face image that is similar to the input image and was reconstructed by utilizing the

confidence score of the target model. Yeom et al.584 also propose an attribute inference attack,

built upon the same principle used for their membership inference attack, mentioned in Sec-

tion 1.9.2. The attacker evaluates the model’s loss on the input instance for different values of

the sensitive attribute and infers the value that yields a loss value similar to that outputted by the

original data as the sensitive value. Salem et al.443 suggest a model inversion attack on online
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learning using a generative adversarial network based on the difference between a model before

and after a gradient update. More recently, He et al.221 propose a new set of attacks to com-

promise the privacy of test-time inference queries in collaborative deep learning systems where

a DNN is split and distributed to different participants. This scheme is called split learning209.

They demonstrate that with their attack, one malicious participant can recover an arbitrary input

fed into this system, even without access to other participants’ data or computations.

MODEL STEALING: HYPERPARAMETER AND PARAMETER INFERENCE

Trained models are considered intellectual properties of their owners and can be regarded as

confidential in many cases65; therefore, extracting the model can be viewed as a privacy breach.

Apart from this, as discussed earlier, DNNs are shown to memorize information about their

training data; therefore, exposing the model parameters could lead to exposure of training data.

A model stealing attack is meant to recover the parameters via black-box access to the target

model. Tramer et al.512 devise an attack that finds the parameters of a model given the observa-

tion of its predictions (confidence values). Their attack tries to see model parameters through

equation solving based on input-output pairs. This attack cannot be mounted in a setting where

the confidence values are not provided.

Hyperparameter stealing attacks try to find the hyperparameters used during the model train-

ing, such as the regularization coefficient 552 or model architecture576.

PROPERTY INFERENCE

This class of attacks tries to infer specific patterns of information from the target model. An

example of these attacks is the memorization attack that aims to find sensitive patterns in the

training data of a target model86. These attacks have been mounted on Hidden Markov Models
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(HMM) and Support Vector Machines (SVM) 37 and neural networks186.

1.10 PRIVACY-PRESERVING MECHANISMS

This section reviews the literature on privacy-preserving mechanisms for deep learning and ma-

chine learning in general. Figure 1.6 shows our classification of the landscape of this field.

We divide the literature into three main groups. The first is private data aggregation methods,

which aim at collecting data and forming datasets while preserving the privacy of the contribu-

tors494,157. The second group, comprised of a large body of work, focuses on devising mecha-

nisms that make the training process of models private so that sensitive information about the

participants of the training dataset is not exposed. Finally, the last group aims at the test-time

inference phase of deep learning. It tries to protect the privacy of users of deployed models,

who send their data to a trained model for having a given inference service carried out.

1.10.1 DATA AGGREGATION

Here, we introduce the most prominent data privacy-preserving mechanisms. Not all these meth-

ods are applied to deep learning, but we briefly discuss them for the sake of comprehensiveness.

These methods can be broadly divided into two groups context-free privacy and context-aware.

Context-free privacy solutions, such as differential privacy, are unaware of the specific context

or the purpose that the data will be used for. Whereas context-aware privacy solutions, such as

information-theoretic privacy, are aware of the context where the data is going to be used, and

can achieve an improved privacy-utility tradeoff235.
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NAIVE DATA ANONYMIZATION

What we mean by naive anonymization in this survey is the removal of identifiers from data,

such as the names, addresses, and full postcodes of the participants, to protect privacy. This

method was used for protecting patients while processing medical data and has been shown

to fail on many occasions383,494,227. Perhaps the most prominent failure is the Netflix prize

case, where Narayanan & Shmatikov apply their de-anonymization technique to the Netflix

Prize dataset. This dataset contains anonymous movie ratings of 500,000 subscribers on Netflix.

They showed that an adversary with auxiliary knowledge (from the publicly available Internet

Movie Database records) about individual subscribers can easily identify the user and uncover

potentially sensitive information383.

K-ANONYMITY

A dataset has a k-anonymity property if each participant’s information cannot be distinguished

from at least k−1 other participants whose information is in the dataset494. K-anonymity means

that for any given combination of attributes that are available to the adversary (these attributes

are called quasi-identifiers), there are at least k rows with the exact same set of attributes. K-

anonymity has the objective of impeding re-identification. However, k-anonymization has been

shown to perform poorly on the anonymization of high-dimensional datasets10. This has led

to privacy notions such as l-diversity337 and t-closeness316, which are out of the scope of this

survey.

SEMANTIC SECURITY AND ENCRYPTION

Semantic security200 (computationally secure) is a standard privacy requirement of encryption

schemes which states that the advantage (a measure of how successfully an adversary can attack
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a cryptographic algorithm) of an adversary with background information should be cryptograph-

ically small. Semantic security is theoretically possible to break but it is infeasible to do so by

any known practical means389. Secure Multiparty Computation (SMC), which we discuss in

Section 1.10.2, is based on semantic security definition325.

INFORMATION-THEORETIC PRIVACY

Information-theoretic privacy is a context-aware privacy solution. Context-aware solutions ex-

plicitly model the dataset statistics, unlike context-free solutions that assume worst-case dataset

statistics and adversaries. There is a body of work studying information-theoretic-based meth-

ods for both privacy and fairness, where privacy and fairness are provided through information

degradation, through obfuscation or adversarial learning and demonstrated by mutual infor-

mation reduction 138,414,235,264,533,233,311,362,435,569,574. Huang et al. introduce a context-aware

privacy framework called generative adversarial privacy (GAP), which leverages generative ad-

versarial networks (GANs) to generate privatized datasets. Their scheme comprises a sanitizer

that tries to remove private attributes and an adversary that tries to infer them235. They show

that the privacy mechanisms learned from data (in a generative adversarial fashion) match the

theoretically optimal ones.

1.10.2 TRAINING PHASE

The literature surrounding private training of deep learning and machine learning can be cat-

egorized based on the guarantee that these methods provide, which is most commonly either

based on differential privacy or semantic security and encryption. Privacy using encryption is

achieved by doing computation over encrypted data. The two most common methods for this

are Homomorphic Encryption (HE) and Secure Multi-Party Computation (SMC).
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Table 1.3: Categorization of some notable privacy-preserving mechanisms for training. In the
table, the following abbreviations have been used: ERM for Empirical Risk Minimization, GM

for Generative Model, AE for Auto Encoder, LIR for Linear Regression, LOR for Logistic
Regression, LM for Linear Means, FLD for Fishers Linear Discriminant, NB for Naive Bayes

and RF for Random Forest.

Method DP SMCHE Dataset(s) Task

DPSGD1  # # MNIST, CIFAR-10 Image Classification w/
DNN

DP LSTM350  # # Reddit Posts Language Model w/ LSTMs
DP LOR103  # # Artificial Data Logistic Regression
DP ERM104  # # Adult, KDD-99 Classification w/ ERM
DP GAN573  # # MNIST, MIMIC-III Data Generation w/ GAN
DP GM8  # # MNIST, CDR, TRANSIT Data Generation w/ GM
DP AE409  # # Health Social Network Data Behaviour Prediction w/ AE
DP Belief Network410  # # YesiWell, MNIST Classification w/ DNN

Adaptive Laplace Mechanism411 # # MNIST, CIFAR-10 Image Classification w/
DNN

PATE400  # # MNIST, SVHN Image Classification w/
DNN

Scalable Learning w/ PATE401  # # MNIST, SVHN, Adult,
Glyph

Image Classification w/
DNN

DP Ensemble213  # # KDD-99, UCI-HAR, URLs Classification w/ ERM
SecProbe605  # # US, MNIST, SVHN Regress. & Class. w/ DNN
Distributed DP44  # # eICU, TCGA Classification w/ DNN

DP model publishing589  # # MNIST, CIFAR Image Classification w/
DNN

DP federated learning194  # # MNIST Image Classification w/
DNN

ScalarDP, PrivUnit57  # # MNIST, CIFAR Image Classification w/
DNN

DSSGD473  # # MNIST, SVHN Image Classification w/
DNN

Private Collaborative NN100   # MNIST Image Classification w/
DNN

Secure Aggregation for ML67 #  # - Federated Learning
QUOTIENT11 #  # MNIST, Thyroid, Credit Classification w/ DNN

SecureNN550 #  # MNIST Image Classification w/
DNN

ABY3371 #  # MNIST LIR, LOR, NN
Trident418 #  # MNIST, Boston Housing LIR, LOR, NN
SecureML372 #   MNIST, Gisette, Arcene LIR, LOR, NN

Deep Learning w/ AHE412 # #  MNIST Image Classification w/
DNN

ML Confidential202 # #  Wisconsin Breast Cancer LM, FLD
Encrypted Statistical ML36 # #  20 datasets from UCI ML LOR, NB, RF

CryptoDL224 # #  MNIST, CIFAR-10 Image Classification w/
DNN

DPHE586 # #  Caltech101/256, CelebA Image Classification w/
SVM
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Figure 1.6: Categorization of privacy-preserving schemes for deep learning.

Homomorphic Encryption (HE). HE192 allows computation over encrypted data. A client

can send their data, in an encrypted format, to a server, and the server can compute over this

data without decrypting it and then send a ciphertext (encrypted result) to the client for decryp-

tion. HE is extremely compute-intensive and is therefore not yet deployed in many production

systems427,338.

Secure Multi-Party Computation (SMC). SMC attempts to design a network of comput-

ing parties (not all of which the user necessarily has to trust) that carry out a given computation

and make sure no data leaks. Each party in this network has access to only an encrypted part

of the data. SMC ensures that as long as the owner of the data trusts at least one of the com-

puting systems in the network, their input data remains secret. Simple functions can easily be

computed using this scheme. Arbitrarily complex function computations can also be supported

but with an often prohibitive computational cost338.
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Figure 1.7: Overview of how a deep learning framework works and how differential privacy
can be applied to different parts of the pipeline.

In this survey, we divided the literature on private training into three groups of methods that

employ 1) Differential Privacy (DP), 2) Homomorphic Encryption (HE), and 3) Secure Multi-

Party Computation (SMC). Table 1.3 shows this categorization for the literature we discuss in

this section.

DIFFERENTIAL PRIVACY

This section briefly discusses methods for modifying deep learning algorithms to satisfy differ-

ential privacy. Figure 1.7 shows an overview of a deep learning framework. As can be seen, the

randomization required for differential privacy (or the privacy-preserving noise) can be inserted

in five places: to the input, to the loss/objective function, to the gradient updates, to the output

(the optimized parameters of the trained model) and the labels400.

Input perturbations can be considered equivalent to using a sanitized dataset (discussed

in Section 1.10.1) for training. objective function perturbation and output perturbation

are explored for machine learning tasks with convex objective functions. For instance in the

case of logistic regression, Chaudhuri et al. prove that objective perturbation requires sampling
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noise in the scale of 2
nϵ , and output perturbation requires sampling noise in the scale of 2

nλϵ ,

where n is the number of samples and λ is the regularization coefficient104. More recently,

Iyengar et al. 246 propose a more practical and general objective perturbation approach and

benchmark it using high-dimensional real-world data. In deep learning tasks, due to the non-

convexity of the objective function, calculating the sensitivity of the function (which is needed

to determine the intensity of the added noise) becomes non-trivial. One solution is replacing

the non-convex function with an approximate convex polynomial function 409,410,411 and then

using objective function perturbation. This approximation limits the capabilities and the utility

that a conventional DNN would have. Given the discussed limitations, gradient perturbation

is the approach that is widely used for private training in deep learning. Applying perturbations

on the gradients requires the gradient norms to be bounded since, in deep learning tasks, the

gradient could be unbounded. Clipping is usually used to alleviate this issue.

Shokri et al. showed that deep neural networks can be trained in a distributed manner

and with perturbed parameters to achieve privacy473. Still, their implementation requires ϵ

proportional to the size of the target model, which can be in the order of a couple of millions.

Abadi et al.1 propose a mechanism dubbed the “moments accountant (MA)” for bounding the

cumulative privacy budget of sequentially applied differentially private algorithms over deep

neural networks. The moments accountant uses the moment-generating function of the privacy

loss random variable to keep track of a bound on the privacy loss during composition. MA

operates in three steps: first, it calculates the moment generating functions for the algorithms A1,

A2,.., which are the randomizing algorithms. It then composes the moments together through

a composition theorem and, finally, finds the best leakage parameter (δ) for a given privacy

budget of ϵ. The moments accountant is widely used in different DP mechanisms for private

deep learning. Papernot et al. use MA to aid in bounding the privacy budget for their teacher

ensemble method that uses noisy voting and label perturbation400,401. MA is also employed
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by the works44,589,194,573,8,57, all of which use perturbed gradients.

More recently, Bu et al. apply the Gaussian Differential Privacy (GDP) notion introduced

by Dong et al.142 to deep learning80 to achieve a more refined analysis of neural network train-

ing, compared to that of Abadi et al.1. They analyze the privacy budget exhaustion of private

DNN training using Adam optimizer without the need to develop sophisticated techniques such

as the moments accountant. They demonstrate that GDP allows for a new privacy analysis

that improves on the moments accountant analysis and provides better guarantees (i.e. lower ϵ

values).

Inherently, applying differential privacy to deep learning yields a loss of utility due to the

addition of noise and clipping. Bagdasaryan et al. have demonstrated that this loss in utility is

disparate across different sub-groups of the population, with different sizes40. They experimen-

tally show that sub-groups with fewer training samples (less representation) lose more accuracy

compared to well-represented groups, i.e. the poor get poorer.

There is a body of work that tries to experimentally measure and audit the privacy brought

by differentially private learning algorithms250,251. Jagielski et al.250 investigate whether DP-

SGD offers better privacy in practice than what is guaranteed by its analysis, using data poison-

ing attacks. Jayaraman et al. 251 apply membership and attribute inference attacks on multiple

differentially private machine learning and deep learning algorithms and compare their perfor-

mance.

HOMOMORPHIC ENCRYPTION

There are only a handful of works that exploit solely homomorphic encryption for private train-

ing of machine learning models202,36,224. Graepel et al. use a Somewhat HE (SHE) scheme to

train Linear Means (LM) and Fishers Linear Discriminate (FLD) classifiers202. HE algorithms

have some limitations in terms of the functions they can compute (for instance, they cannot
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implement non-linearities). For that reason, Graepel et al. propose division-free algorithms and

focus on simple classifiers and not complex algorithms such as neural networks.

Hesamifard et al.224 try to exploit HE for deep learning tasks. They introduce methods

for approximating the most commonly used neural network activation functions (ReLU, Sig-

moid, and Tanh) with low-degree polynomials. This is a crucial step for designing efficient

homomorphic encryption schemes. They then train convolutional neural networks with those

approximate polynomial functions and, finally, implement convolutional neural networks over

encrypted data and measure the performance of the models.

SECURE MULTI-PARTY COMPUTATION (SMC)

A trend in research on private and secure computation consists of designing custom protocols

for applications such as linear and logistic regression 372 and neural network training and in-

ference372,11,461. These methods usually target settings where different datasets from different

places are set to train a model together or where computation is off-loaded to a group of com-

puting servers that do not collude with each other. SMC requires that all participants be online

at all times, which requires a significant amount of communication265. Mohassel & Zhang pro-

posed SecureML, which is a privacy-preserving stochastic gradient descent-based method to

privately train machine learning algorithms such as linear regression, logistic regression, and

neural networks in multiparty computation settings. SecureML uses secret sharing to achieve

privacy during training. In a more recent work371, Mohassel et al. design protocols for se-

cure three-party training of DNNs with a majority of honest parties. Agrawal et al. propose

QUOTIENT11, where their goal is to design an optimization algorithm alongside a secure com-

putation protocol customized for it instead of a conventional approach that uses encryption on

top of existing optimization algorithms.

52



Table 1.4: Categorization of some notable privacy-preserving mechanisms for inference. In
this table, NB is short for Naive Bayes, and DT is short for Decision Tree.

Method DP SMC HE IT Dataset(s) Task

ARDEN 553  # # # MNIST, CIFAR-10, SVHN Image Classification w/ DNN
Cryptonets 147 # #  # MNIST Image Classification w/ DNN
Private Classification 90 # #  # MNIST Image Classification w/ DNN
TAPAS 449 # #  # MNIST, Faces, Cancer, DiabetesImage Classification w/ DNN
FHEDiNN 74 # #  # MNIST Image Classification w/ DNN
Face Match 62 # #  # LFW, IJB-A, IJB-B, CASIA Face recognition with CNNs
Cheetah 423 # #  # MNIST, Imagenet Image Classification w/ DNN
EPIC 338 #  # # CIFAR-10, MIT, Caltech Image Classification w/ DNN
DeepSecure 433 #  # # MNIST, UCI-HAR Classification w/ DNN
XONN 427 #  # # MNIST, CIFAR-10 Image Classification w/ DNN
Chameleon 428 #  # # MNIST, Credit Approval Classification w/ DNN and SVM
CRYPTFLOW 295 #  # # MNIST,CIFAR, ImageNet Classification w/ DNN
Classification over Encrypted Data 72#   # Wisconsin Breast Cancer Classification w/ NB, DT
MiniONN 324 #   # MNIST, CIFAR-10 Image Classification w/ DNN
GAZELLE 260 #   # MNIST, CIFAR-10 Image Classification w/ DNN
DELPHI 368 #   # CIFAR-10, CIFAR-100 Image Classification w/ DNN
Shredder 359 # # #  SVHN, VGG-Face, ImageNet Classification w/ DNN
Sensor Data Obfuscation 339 # # #  Iphone 6s Accelerometer Data Activity Recognition w/ DNN
Olympus 422 # # #  Driving images Activity Recognition w/ DNN
DPFE 397 # # #  CelebA Image Classification w/ DNN
Cloak 358 # # #  CIFAR-100, CelebA, UTKFace Image Classification w/ DNN

1.10.3 INFERENCE PHASE

As shown in Table 1.4 there are fewer works in the field of inference privacy, compared to

training. Inference privacy targets systems that are deployed to offer Inference-as-a-Service. In

these cases, the deployed system is assumed to be trained and is not to learn anything new from

the data provided by the user. It is only supposed to carry out its designated inference task.

The categorization of literature for inference privacy is similar to training, except that there

is one extra group here, named Information-Theoretic (IT) privacy. The works in this group

usually offer information-theoretic mathematical or empirical evidence of how their methods

operate and help privacy. These works are based on the context-aware privacy definition of

Section 1.10.1, and they aim at decreasing the information content in the data sent to the service

provider for inference so that there is only as much information in the input as needed for the
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service and not more.

One notable difference between training and inference privacy is the difference in the

amount of literature on different categories. There seems to be a trend of using differential

privacy for training and encryption methods (HE and SMC) for inference. One underlying

reason could be computational complexity and implementation. Encryption methods, specifi-

cally homomorphic encryption, are shown to be at least two orders of magnitude slower than

conventional execution260. That’s why adopting them for training will increase training time

significantly. Also, as mentioned in Section 1.10.2, due to approximating non-linear functions,

the capabilities of neural networks in terms of performance become limited during training on

encrypted data. For inference, however, adopting encryption is more trivial, since the model is

already trained. Employing differential privacy, and noise addition, however, is less trivial for

inference, since it could damage the accuracy of the trained model, if not done meticulously.

Below we delve deeper into the literature of each category.

DIFFERENTIAL PRIVACY

There are very few works using differential privacy for inference including the recent work

on posthoc privacy477 that is based on a variant of differential privacy called metric differential

privacy. Cloud-based machine learning inference is an emerging paradigm where users query by

sending their data through a service provider who runs an ML model on that data and returns the

answer. Due to increased concerns over data privacy, recent works have proposed Collaborative

Inference (CI) to learn a privacy-preserving encoding of sensitive user data before it is shared

with an untrusted service provider. Existing works so far evaluate the privacy of these encodings

through empirical reconstruction attacks. In this work, we develop a new framework 8 that

provides formal privacy guarantees for an arbitrarily trained neural network by linking its local

Lipschitz constant with its local sensitivity. To guarantee privacy 10 using local sensitivity,
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we extend the Propose-Test-Release (PTR) framework to make it tractable for neural network

queries.

Wang et al.553 propose Arden, a data nullification and differentially private noise injection

mechanism for inference. Arden partitions the DNN across edge devices and the cloud. A sim-

ple data transformation is performed on the mobile device, while the computation-heavy and

complex inference relies on the cloud data center. Arden uses data nullification, and noise in-

jection to make different queries indistinguishable so that the privacy of the clients is preserved.

The proposed scheme requires noisy retraining of the entire network, with noise injected at dif-

ferent layers. Since it is complicated to calculate the global sensitivity at each layer of the neural

network, the input to the noise injection layer is clipped to the largest possible value created by

a member of the training set, on the trained network.

HOMOMORPHIC ENCRYPTION

CryptoNets is one of the first works in HE inference147. Dowlin et al. present a method for

converting a trained neural network into an encrypted one, named a CryptoNet. This allows the

clients of an inference service to send their data in an encrypted format and receive the result,

without their data being decrypted. CryptoNets allows the use of SIMD (Single Instruction

Multiple Data) operations, which increase the throughput of the deployed system. However, for

single queries, the latency of this scheme is still high.

Chabanne et al.90 approximate the ReLu non-linear activation function using low-degree

polynomials and provide a normalization layer before the activation function, which offers high

accuracy. However, they do not show results on the latency of their method. More recently,

Juvekar et al. propose GAZELLE260, a system with lower latency (compared to prior work) for

secure and private neural network inference. GAZELLE combines homomorphic encryption

with traditional two-party computation techniques (such as garbled circuits). With the help of
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its homomorphic linear algebra kernels, which map neural network operations to optimized

homomorphic matrix-vector multiplication and convolutions, GAZELLE is shown to be three

orders of magnitude faster than CryptoNets. Sanyal et al. leverage binarized neural networks

to speed up their HE inference method. They claim that unlike CryptoNets which only protects

the data, their proposed scheme can protect the privacy of the model as well.

SECURE MULTI-PARTY COMPUTATION (SMC)

Liu et al. propose MiniONN324, which uses additively homomorphic encryption (AHE) in a

preprocessing step, unlike GAZELLE which uses AHE to speed up linear algebra directly. Min-

iONN demonstrates a significant performance improvement compared to CryptoNets, without

loss of accuracy. However, it is only a two-party computation scheme and does not support

computation over multiple parties. Riazi et al. introduces Chameleon, a two-party computation

framework whose vector dot product of signed fixed-point numbers improves the efficiency

of prediction in classification methods based upon heavy matrix multiplications. Chameleon

achieves a 4.2× latency improvement over MiniONN. Most of the efforts in the field of SMC

for deep learning are focused on speeding up the computation, as demonstrated above, and also

by 427, 338, 433. The accuracy loss of the aforementioned methods, compared to their pre-trained

models is negligible (less than 1%).

1.10.4 TRUSTED EXECUTION ENVIRONMENTS (TEES)

Trusted execution environments, also referred to as secure enclaves, provide opportunities to

move parts of decentralized learning or inference processes into a trusted environment in the

cloud, whose code can be attested and verified. Recently, Mo et al. have suggested a framework

that uses an edge devices Trusted Execution Environment (TEE) in conjunction with model
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partitioning to limit the attack surface against DNNs369. TEEs can provide integrity and con-

fidentiality during execution. TEEs have been deployed in many forms, including Intels SGX-

enabled CPUs129,384, Arms TrustZone inc.. This execution model, however, requires the users to

send their data to an enclave running on remote servers which allows the remote server to have

access to the raw data and as the new breaches in hardware282,322,561,83,504,503 show, the access

can lead to comprised privacy.
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“If chance is the antithesis of law, then we need to dis-

cover the laws of chance.”

Calyampudi Radhakrishna Rao

2
Private Estimation of Non-Linear

Correlations
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2.1 INTRODUCTION
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between Alice & Bob

Figure 2.1: The two-party
privacy model

Estimating correlations (linear and non-linear dependencies be-

tween random variables) and hypothesis tests of independence

(from their samples) are two adjacent problems of fundamental

importance in statistics. The impact of these problems in decision-

making has gone beyond that of statistics into a wide range of

adjacent and seemingly far-flung fields of science and engineering.

This chapter is based on our work in544. The following describes

two adjacent problems of consideration in this paper.

2.1.1 PROBLEM STATEMENT

1. How can non-linear correlations between two random vari-

ables be estimated with formal privacy guarantees?

2. How can the sample test-statistic for a hypothesis test of in-

dependence between two random variables of arbitrary di-

mension be estimated privately?

Communication setup: In terms of communication, we consider a two-party setup, with Alice

holding X ∈ Rn×d and Bob holding Y ∈ Rn×m that denote the data matrices of n samples in

corresponding dimensions of d or m, respectively. The direction of allowed communication is

one-way, from Alice to Bob: Alice sends an intermediate computation in a privatized form to

Bob, who then finishes the rest of the computation on its premise. Bob never reveals the answer

to Alice, so the on-device computation of Bob involves its own non-privatized data. Thereby,

Bob obtains the results (on its side) while maintaining the privacy of Alice’s (already privatized)
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Figure 2.2: A stack of technical applications that benefit from methods for private estimation
of nonlinear correlations.

data. We refer to this setup as one-way local differential privacy, as the privatization mechanism

used by Alice ensures a mathematical notion of privacy called differential privacy160.

A more general way to think about it is as a data summary that, when published by Alice,

allows any analyst to measure dependence and/or test independence with another data set they

hold. We illustrate this setup in Figure 2.1.

2.2 RELATED WORK

2.2.1 PRIVATE NONLINEAR CORRELATIONS

An ability to compute non-linear correlations between features hosted across multiple parties in

a private manner opens new applications. The dependency measure we consider in this paper is

called distance correlation500, which is an instance of ‘Energy Statistics’ introduced in499,431,497.

The listed solutions to the following problems predominantly depend on measuring distance

correlation. Thereby, an ability to measure it privately in a setting where the features are siloed

across two parties would lead to a wide variety of privatization schemes for these problems.

Private multi-party feature screening with distance correlation: The importance of distance cor-
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relation in optimally selecting features with a ‘sure independence screening’ guarantee under

a model agnostic setting was shown in the works of317,609,172,335. Thereby, the measurement

of distance correlation in a privacy-preserving manner in multi-party settings would potentially

allow for private feature selection.

Private multi-party independence testing with distance correlation: Hypothesis tests for testing

independence of distributions using distance correlation were introduced in500,496, where the

test statistic is based on distance correlation. Thereby, performing private independence testing

between samples that are distributed in multiple entities requires a private estimation of dis-

tance correlation. The work in469 showed an equivalence between independence testing using

distance correlation and k-sample testing.

Private multi-party causal direction estimation with distance correlation: The works in296,297

privately estimate distance correlation in a single party setting, where samples from both the

random variables are at the same entity. They then use this private estimate of distance corre-

lation to infer the causal direction. We consider the more important setting where the samples

from both the random variables are at two different corresponding entities as opposed to all of

them being on-premise at one entity.

Private multi-party data synthesis by seeding copulas with distance correlations: Gaussian cop-

ulas have been used for private data synthesis, as shown in35,314. A key step in this process

is to seed the Gaussian copula with a correlation matrix, and it has a significant impact on the

quality of the synthesis. These current works have so far seeded it with linear measures of

correlations such as Pearson’s correlation or Kendall’s Tau. A private multi-party measure of

distance correlation allows for better seeding of the Gaussian copula for multi-party private data

synthesis.
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2.2.2 PRIVATE INDEPENDENCE TESTING

In view of the large amount of literature addressing the problem of independence testing over

the years in a variety of statistical settings, we focus here on the closest and most relevant to our

work.This first line of work, which aims to develop differentially private independence tests,

itself comes in two distinct flavors: one is the so-called asymptotic regime (limiting distribu-

tion and properties of the test statistic as sample size goes to infinity), and the second is the

finite-sample regime (coarser utility guarantees, but with explicit finite bounds on the sample

size required to achieve them).

Asymptotic tests: The work of184 considers independence testing in the (central) model of dif-

ferential privacy, from an asymptotic perspective: namely, they propose a differentially private

analogue of the classical chi-squared tests of independence, and analyse the limiting distribu-

tion of the test statistic along with its resulting power (1-Type II error). Note that Type II error

is the probability of failing to reject a null hypothesis when the null hypothesis is not true. To

complement their asymptotic analysis, the authors further empirically assess the performance of

those differentially private analogues of the standard χ2 tests, focusing on a small sample size.

Finally, the privacy model considered in this work (central model) differs from ours (one-way

distributed), as the chi-squared tests privatized in184 require access to the empirical contingency

tables – something not available to either party in our setting.

Non-asymptotic tests: Later work by467 focuses on the finite sample (non-asymptotic) version

of the test under a more stringent model of local privacy. The question is formulated in a man-

ner that is standard in theoretical computer science (specifically in the domain of distribution

testing) and in minimax analysis in statistics as part of a composite hypothesis testing prob-

lem. They consider a set of product distributions as part of the null hypothesis and frame the

alternative hypothesis to contain all the distributions that are “far” from product distributions,
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where “farness” is quantified by the total variation distance. They focus on the minimax sample

complexity achievable using a specific locally private mechanism of Randomized Response556.

Subsequent work by6 improves on these results by showing a way to achieve significantly lower

sample complexity (still in the locally private setting) by considering a different privacy mech-

anism and upon establishing matching lower bounds.

Non-private independence testing with dependency measures: There have been advances in the

development of various statistical dependency measures, and an active route of modern inde-

pendence testing is based on the derivation of test-statistics that depend on these measures in

addition to other required terms. We now share some related works that fall into this category.

Distance covariance was introduced in500 and can be expressed as a weighted L2 norm between

the characteristic function of the joint distribution and the product of the marginal characteristic

functions. This concept has also been studied in high dimensions496,583, and for testing the in-

dependence of several random vectors187. In458, tests based on distance covariance were shown

to be equivalent to a reproducing kernel Hilbert space (RKHS) test for a specific choice of ker-

nel. RKHS tests have been widely studied in the machine learning community, with a survey

of the subject given by215 and205,223 in which the Hilbert-Schmidt independence criterion was

proposed. These tests are based on embedding the joint distribution and product of the marginal

distributions into a Hilbert space and considering the norm of their difference in this space. One

drawback of the kernel paradigm here is the computational complexity, though256,255 and600

have recently attempted to address this issue. A conditional measure of dependence called

conditional distance correlation was introduced by555. The works in599,598,554,468 performed

conditional independence testing and applied them to the problem of causal discovery.

To the best of our knowledge, no other work addresses the question of independence testing

under differential privacy (be it local or central) other than the following works: the differen-

tially private distribution estimation approach (under total variation distance)137 or two-sample
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goodness-of-fit7,18 that can be used to obtain sub-optimal sample complexity guarantees for this

problem; and the (central) differentially private algorithm for independence testing of two ran-

dom variables of Aliakbarpour et al. 17 . We note that this body of work differs from ours, both

in the distributed model assumed (the way the data is partitioned across users) and in the guar-

antee provided (dependency measure used). They also restrict themselves to the discrete setting

as opposed to ours. Our method can also be applied to test between samples lying in different

dimensions. In particular, most of the works discussed above (except for Gaboardi et al. 184) fol-

low the norm in distribution testing and focus on the very stringent notion of minimax testing

under total variation distance, which might be overly conservative in many settings.

2.2.3 CONTRIBUTIONS

Our contributions are threefold and can be summarized as follows:

1. We introduce a differentially private method to measure nonlinear correlations between

sensitive features hosted across two entities and provide some utility analysis of this

estimator along with experimental results to compare the quality of our estimator on

several benchmark datasets. As part of this utility analysis, we decompose the error into

two terms, from which we obtain the following bound on one of the two error terms. We

provide experimental results showing that the other error term is reasonably controlled

for as well.
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where n is the sample size, ϵ and δ are the approximate differential privacy parameters,

K is the number of random projections involved in the estimator, and k refers to the

dimension into which the data is projected to after the random projection.
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2. We then provide a mechanism to privatize a test-statistic required to perform a hypoth-

esis test of independence between features hosted by Alice and corresponding features

hosted by Bob under the communication setup discussed in Section 2.1.1. We show that

one can express our test statistic as the ratio of the sum of directional variance queries

(of non-private data) with respect to ‘specific’ covariance matrices of sensitive data (for

the formal definition of directional variance queries, the reader is referred to Definition

2.3.4). This reduction enables us to privatize the test-statistic via the privatization of

these covariances. This brings up the next question of deriving utility guarantees for the

privatized test-statistic, leading to our next contribution.

3. We derive both lower and upper bounds on the utility of this privatized test-statistic in

terms of additive and multiplicative errors. For a chosen 0 < η < 1 with sample size

n, in order to achieve (ϵ, δ)-differential privacy, our approach results in a multiplicative

error factor of 1± η, and an additive error ∆ bounded as

− (1− η)2

2(1 + η)
≤ ∆ ≤ 2τ

(1− η)[(1− η)s− τ ]
,

where

τ :=

(
2048 ln(2/(m+ n)ν) ln(2/δ)

ηϵ2

)
ln2

(
128 ln 1

(m+n)ν

η2δ

)
,

for some s > τ
1−η . The additive and multiplicative approximations hold together at the

same time with probability at least 1− (m+ n)ν for the user’s choice of ν.

2.3 BACKGROUND

PRELIMINARIES FOR DIFFERENTIAL PRIVACY

Definition 2.3.1. (ϵ, δ)-Differential Privacy (2014)

66



A randomized algorithm A : X → Y is (ϵ, δ)-differentially private if, for all neighboring

datasets X,X′ ∈ X and for all S ∈ Y

Pr[A(X) ∈ S] ≤ eϵ Pr
[
A
(
X′) ∈ S

]
+ δ

Definition 2.3.2. Post-Processing Invariance

Differential privacy is immune to post-processing, meaning that an adversary without any

additional knowledge about the dataset X cannot compute a function on the output A(X) to

violate the stated privacy guarantees.

Definition 2.3.3. (l2 -Global Sensitivity)

Let f : X → Rk. The l2− global sensitivity of f is

∆
(f)
2 = max

x,X′∈X

∥∥f(X)− f
(
X′)∥∥

2

where X,X′ are neighboring databases. In addition,160 is a good extended resource on the topic

of differential privacy.

PRELIMINARIES FOR PRIVATE NONLINEAR CORRELATIONS

Notation: We use X ∈ Rn×d and Y ∈ Rn×m to refer to a data matrix of n samples in corre-

sponding dimensions of d and m, respectively. We denote X ,Y to refer to population random

variables from which we obtain the data samples. Note that, in the rest of the paper, we refer

to rows k, l in X using lower-case representation of xk,xl. Similarly, we refer to columns k, l
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in X using upper-case representation of Xk,X l. We start by providing definitions of popula-

tion distance covariance and population distance correlation, as these are central to the rest of

the paper. We then share two existing non-private sample estimators for estimating the same.

To avoid confusion, we now list the notations for denoting several estimators and population

notions of distance covariance below as a reference and follow it up with definitions for each

of these. We use Ω(X ,Y) to denote the population distance covariance, Ω̂(X,Y ) to denote

the classical distance covariance estimator (Eqn. 2.3), Ω(X,Y ) to denote the random pro-

jected distance covariance estimator (Eqn. 2.4), and Ω
dp
(X,Y ) to denote the private random

projected distance covariance estimator (Eqn. 2.5) in the rest of the paper.

POPULATION DISTANCE COVARIANCE

For random variables X ∈ Rd and Y ∈ Rm with finite first moments, the population distance

covariance500 between them is a non-negative number given by

Ω(X ,Y) =
∫
Rd+m

|fX ,Y(t, s)− fX (t)fY(s)|2w(t, s)dtds, (2.1)

where fX , fY are characteristic functions of X ,Y , fX ,Y is the joint characteristic function, and

w(t, s) is a weight function defined as

w(t, s) = (C(d, α)C(m,α)|t|α+d
d |s|α+m

m )−1

with

C(d, α) =
2πd/2Γ(1− α/2)

α2αΓ((α+ d)/2)
,

for chosen values of α which impacts the choice of norm. More details about this weight

function and the reasoning for its appropriateness for evaluating this integral are given in500.
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Γ refers to the popular complete Gamma function, which is defined to be an extension of the

concept of a factorial to complex and real numbers as opposed to just the integers. Note that for

random variables that admit a density, the characteristic function is the Fourier transform of the

probability density function. Note that, for complex-valued functions such as the characteristic

function used in 2.1, the norm is dependent on itself and its complex conjugate f̄ as |f |2 = ff̄ .

It is worth noting that distance covariance between a variable and itself is referred to as distance

variance.

POPULATION DISTANCE CORRELATION

Using this above definition of distance covariance, we have the following expression for dis-

tance correlation500 ρ(X ,Y) between random variables

ρ(X ,Y) = Ω(X ,Y)√
Ω(X ,X )Ω(Y,Y)

, if Ω(X ,X )Ω(Y,Y) > 0,

0, if Ω(X ,X )Ω(Y,Y) = 0.

(2.2)

This always lies within the interval [0, 1] with 0 indicating independence and 1 indicating

dependence. For completeness, we provide a list of some popular measures of nonlinear statis-

tical dependency as given below

1. Energy statistics: Distance correlation (DCOR)500,496,497,499, Brownian distance covari-

ance495, Partial distance correlation498, Partial martingale difference correlation402

2. Kernel covariance operators: Constrained covariance (COCO)205, Hilbert-Schmidt in-

dependence criterion (HSIC)204, Kernel Target Alignment (KTA)131.

3. Integral probability metrics: Maximum mean discrepancey (MMD)70, Wasserstein dis-

tance530, Dudley metric150 and Fortet-Mourier metric486.
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4. Information theoretic measures: Mutual information, f-divergence148,490, Renyi diver-

gence532, Hellinger distance487, Total variation distance548,421, Maximal information co-

efficient281.

In the setting when both of the datasets are hosted on the same entity, a privatized measure

of a statistical dependency called Hilbert-Schmidt independence criterion was provided in297.

That said, this paper specifically focuses on mechanisms for privatizing the measure of distance

correlation in settings when the two sets of data features are hosted at different entities.

SAMPLE ESTIMATORS OF DISTANCE CORRELATION

The following are two different sample estimators for estimating population distance covariance

in a non-private setting.

Unbiased classical sample distance covariance: From this section onwards, we use | · | to

represent the Euclidean norm and should not be confused with the norm of a complex-valued

function as used in defining population distance covariance. Using Xi,Y i to denote i’th rows in

the corresponding data matrices, we first define aij = |xi−xj |, bij = |yi−yj |, ai. =
∑n

l=1 ail,

bi. =
∑n

l=1 bil, a.. =
∑n

k,l=1 akl and b.. =
∑n

k,l=1 bkl. We now use these quantities to define

an unbiased statistical estimator of distance covariance Ω̂(X,Y ) as follows:

Ω̂(X,Y ) =
1

n(n− 3)

∑
i ̸=j

aijbij −
2

n(n− 2)(n− 3)

n∑
i=1

ai·bi· +
a..b..

n(n− 1)(n− 2)(n− 3)
.

(2.3)

Random projected distance covariance: A faster unbiased estimator of distance covariance

based on random projections denoted by Ω(X,Y ) was introduced in234. In order to define

this sample estimator of distance covariance, we first define a few constants based on π and

the Gamma function as follows. These include cd = π(d+1)/2

Γ((d+1)/2) and cm = π(m+1)/2

Γ((m+1)/2) , Cd =
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c1cd−1

cd
=

√
πΓ((d+1)/2)
Γ(d/2) and Cm = c1cm−1

cm
=

√
πΓ((m+1)/2)
Γ(m/2) . Let u and v be points on the hyper-

spheres: u ∈ Sd−1 =
{
u ∈ Rd : |u| = 1

}
and v ∈ Sm−1. For any vector u or v, let uT or vT

denote its transpose. We now share the non-private estimator below

Ω(X,Y ) =

K∑
k=1

CdCmΩn(u
⊤
k X,v⊤

k Y )

K
, (2.4)

where u⊤
k X = (u⊤

k x1, . . . ,u
T
k xn) and u⊤

k Y = (u⊤
k y1, . . . ,u

⊤
k yn). Note that in this case

aij = |u⊤(xi − xj)| and bij = |v⊤(yi − yj)|. Apart from being unbiased, a concentration

bound on the deviation around the true value exists234 as P
(∣∣∣ Ω(X,Y )− Ω̂(X,Y )

∣∣∣ > ϵ
)
≤

2 exp
{
− CKϵ2

Tr[ΣX ] Tr[ΣY ]

}
, where K is the number of random projections used in obtaining

Ω(X,Y ), ΣX and ΣY denote the covariance matrices of X and Y , respectively, Tr returns

to their matrix traces, and C = 2
25C2

dC
2
m

is a constant depending on Cd, Cm which were intro-

duced previously. Note that, in terms of uniformly sampling points on the sphere, we may use

the property of centered and normalized normal random vectors are uniformly distributed on

the unit sphere. That is, if we let Smr ≡ {x ∈ Rm|
∑

x2
i = r2} denote the m-dimensional

sphere with radius r, then we have X
||X|| ∼ U(Sm1 ).

Computational advantage: This estimator has a O(nKlogn) computational complexity and a

memory requirement of O(max{n,K}) as opposed to the classical estimator, which is depen-

dent on computing all pairs of distances between the samples in X and Y .

PRELIMINARIES FOR INDEPENDENCE TESTING

To formalise the problem of hypothesis testing for independence, consider random variables X

and Y that have densities fX on Rd and fY on Rm, respectively, and let Z = (X ,Y) have

density f on Rq, where q := d + m. Given independent and identically distributed copies

Z1, . . . , Zn of Z , we wish to test the null hypothesis that X and Y are independent, denoted
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by H0 : X ⊥⊥ Y , against the alternative hypothesis that X and Y are not independent, denoted

by H1 : X 6⊥⊥ Y . A distribution D is said to be independent if it is equal to the product of its

marginals.

Test-statistic: A predominant methodology for hypothesis testing (in the non-private setting)

involves the computation of a sample test statistic from the data. The key idea is that the

asymptotic distribution of a test statistic (that can be estimated from data samples) is derived

(and hence, known) upon conditioning on the null hypothesis being true. Therefore, the ob-

served value of the sample test-statistic (a scalar) is compared with this asymptotic distribution

in conjunction with a chosen level of confidence to decide if the observed value falls within

the acceptance region or the rejection region. The rejection region refers to the observed value

of the sample test statistic being highly unlikely, given the asymptotic distribution, if the null

hypothesis was supposed to be true.

Definition 2.3.4 (Directional variance). For an n × d matrix M , a directional variance query

is specified by a unit-length direction x, and is given by ΦM (x) = x⊤M⊤Mx.

2.4 METHOD FOR PRIVATE NONLINEAR CORRELATIONS

Privately estimating sample distance correlation between X ∈ Rn×d and Y ∈ Rn×m requires

a private estimation of a distance covariance term in the numerator and one of the distance vari-

ance terms in the denominator of Ω(X,Y )√
Ω(X,X)Ω(Y ,Y )

that depends on X .

Privatizing Ω(X,Y ): For the distance covariance in the numerator, we provide a differen-

tially private estimator of Ω(X,Y ) that we denote by Ω
dp
(X,Y ). Note that Ω(X,Y ) is the

non-private ‘random projected distance covariance estimator’ given in equation 2.4 to estimate

population distance covariance Ω(X,Y ). We provide details on our differentially private esti-

mator Ωdp
(X,Y ) in section 3.2.1 and provide our utility proofs for it in Theorems 1 & 2.
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Privatizing Ω(Y, Y ): The term of Ω(Y ,Y ) does not require private estimation as it is com-

puted on-premise by the entity that holds Y . The entity that holds X (say, Alice) makes a

one-way communication of our proposed private estimates for Ωdp
(X,Y ), Ωdp

(X,X) to the

entity that holds Y (say, Bob). Bob computes a non-private and Ω(Y, Y ) on-premise.

PRIVATE CORRELATION

These three estimates can be put together by Bob to privately estimate the distance correlation

as 
Ω

dp
(X,Y )√

Ω
dp

(X,X)Ω(Y ,Y )
, if Ωdp

(X,X)Ω(Y ,Y ) > 0,

0, if Ωdp
(X,X)Ω(Y ,Y ) = 0.

Note that Bob does not reveal the estimated private distance correlation to Alice. In a scenario

where it needs to reveal it to Alice (or anyone in the public), it could do that by using the

private estimator in the subsection on privatizing Ω(X,X) with respect to X . This approach

can be used by Bob to privatize Ω(Y, Y ) with respect to Y instead. We now describe our two

proposed private estimators for Ωdp
(X,Y ) which is in the two-party setting and Ω

dp
(X,X)

which is in the single party setting.

2.4.1 PROPOSED PRIVATE ESTIMATOR FOR DISTANCE COVARIANCE

Our estimation starts with Alice sending K differentially private random projections of sen-

sitive data X to Bob that hosts the sensitive data Y . An average of K distance covariances

between the random projections of X and the raw data Y is computed at Bob’s premises to

get Ωdp
(X,Y ). We then perform K differentially private random projections of the data X by

adding the necessary noise Nx required for privacy. The next sub-section explains the process
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of choosing Nx in order to guarantee differential privacy. Therefore, this estimator is given by

Ω
dp
(X,Y ) =

K∑
k=1

CdCmΩn(u
T
kX +Nx, vTk Y )

K
, (2.5)

where Nx = (Nx
1 , . . . , N

x
n ). Note that in this case ãij = |u⊤(xi − xj) + (Nx

i − Nx
j )| and

b̃ij = |v⊤(yi − yj)|.

Avoiding sequential composition: Applying K differentially private random projections uXk in

Equation 2.4 would lead to a differentially private estimate of nonlinear correlation. Studying

the utility of this estimator would be of interest. That said, if all the K random projections are

applied on the entire dataset X, it will lead to an overall privacy guarantee of Kϵ due to the se-

quential composition property of differential privacy. This loss of privacy budget can be avoided

if the samples in the dataset (i.e. the rows of X,Y) are partitioned into K disjoint subsets prior

to a random projection-based distance covariance measured disjointly on each subset prior to

averaging them out. This would lead to an improved accounting with regards to the privacy bud-

get, as this falls under the parallel composition property of differential privacy, thereby leading

to an overall ϵ-DP of the estimator if each of the individual projections was also performed with

ϵ-DP. This estimator is summarized below.

Private estimator on disjoint partitions Ωdp
Disjt(X,Y ): Our estimator requires us to first partition

the n records of X,Y into K blocks of {[X1, Y1] [X2, Y2] . . . [XK , YK ]} in order to avoid se-

quential composition. Therefore, this estimator is given by Ωdp
Disjt(X,Y) =

∑K
k=1

CdCmΩn(ut
kXk+Nx,vtkYk)
K .

2.5 DIFFERENTIALLY PRIVATE RANDOM PROJECTIONS

As our method is based on the connections between the Johnson-Lindenstrauss transform and

differential privacy to release statistics of distances, graph Laplacians, and directional variances,

we now provide some relevant background and references on this topic. We state one of the
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Figure 2.3: The reduce, project, and calibrate approach to private estimation.

classic mechanisms from277 that is relevant to some aspects of our proposed method. We first

share a prerequisite definition that is required prior to re-stating this mechanism. We denote the

random projection matrix by P and note that one of the popular choices for building it is to

have each entry of the matrix drawn independently from a Normal distribution with mean 0 and

σ2 = 1/k where k refers to the dimension into which the data is projected to after the random

projection. We now define the ℓρ-Sensitivity of P .

Definition 2.5.1. (ℓρ -Sensitivity of P ). Define the lρ-sensitivity of a d × k projection matrix

P = {P ij}d×k denoted by wρ(P ), as the maximum ℓρ-norm of any row in P , i.e., wρ(P ) =

max1≤i≤d

(∑k
j=1 |P ij |ρ

) 1
ρ . Equivalently, wρ(P ) can be defined as maxei ‖eiP ‖ρ, where

{ei}di=1 are standard basis unit vectors.

Theorem 1. Let w2(P ) be the ℓ2-sensitivity of the projection matrix P (see Definition 2).

Assuming δ < 1
2 , let the entries of the noise matrix be drawn from N

(
0, σ2

)
with σ ≥

w2(P )

√
2(ln( 1

2δ )+ϵ)
ϵ , then releasing Z = XP + ∆ satisfies (ϵ, δ)-differential privacy.

Proof. Refer to proofs of Theorem 1 and Lemma 1 (for a more generalized version) in277.

In addition, unlike the above work that requires explicit additive noise to privately release

distances upon the random projection, the work in61 instead uses random projections to privately

release graph Laplacians and directional variances. These two papers are of good relevance to
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our work within this context.

Utility results: We now study the utility of the private estimator Ω
dp
(X,Y ) in estimating

the non-private Ω(X,Y ) given the effect of noise in the private estimator. The utility can be

expressed by Ω
dp
(X,Y )− Ω(X,Y ).

Theorem 2. (Error bound) The error term

Error =
4CdCm

Kn(n− 2)(n− 3)

n∑
i=1

(
n∑

l=1

|Nx
i −Nx

l |
n∑

l=1

V T
k (yi − yl)|

)

is bounded by

P

Error <
4CdCmn2

K
√
k(n− 2)(n− 3)

√
2
(
ln
(

1
2δ

)
+ ϵ
)

ϵ


≥ 1 + n

(
4

e
2n
n−1

)n

− 2n

(
2

e
n

n−1

)n

.

Sketch of proof: The lower case k used in
√
k refers to the dimension into which the data

is projected after any random projection, as a generalization to not just having to project to 1

dimension. The proof is based on characterizing the terms in this error via folded normal distri-

butions and their corresponding moment-generating functions in order to obtain a concentration

bound. An empirical characterization of this concentrated upper bound on the error is provided

in the experiments section.

We will first introduce the following sub-lemma that helps with the rest of this proof.

Lemma 2.5.1. For a, b and c ∈ R+, given that p (ai < c) > b for i = 1, 2, . . . , n, we have

P
(∑

ai < nc
)
⩾ 1− n(1− b).

Proof. p (
∑

ai < nc) ⩾ P (a1 < c ∩ a2 < c . . . . ∩an < c) = 1−P (a1 ⩾ c ∪ a2 ⩾ c ∪ a3 ⩾ C
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. . . ∪ an ⩾ c) ⩾ 1− p (a1 ⩾ c)− p (a2 ⩾ c) . . .− p (an > c) ≥ 1− n(1− b).

The following puts together the complete proof of Theorem 2.

Proof. As the NX
i ’s are drawn from a zero mean Gaussian distribution where σ2 ≥ w2(P )

√
2ln(1/2δ)+ϵ

ϵ .

Assuming NX
i and NX

l are sampled independently for any l 6= i, if sl = NX
i − NX

l , the

distribution of sl terms will be therefore N(0, 2σ2). Now let τi =
∑n

l=1 |NX
i − NX

l | =∑n
l=1,l ̸=i |NX

i −NX
l | =

∑n
l=1,l ̸=i |sl|. It is critical to note that the sl’s are not independent any-

more. Therefore, we consider τi’s instead as for the expectation E(τi), the correlation between

sl’s would not matter anymore. Now, E(τi) = (n − 1)E(s1). This brings us to the regime of

half-normal or folded normal distributions. If X ∼ N(0, σ2),Y = |X|, then we know that

E[Y ] = σ
√

2
π and V ar(Y ) = σ2(1 − 2

π ). In our case, E[s1] = σ
√
2 ×

√
2
π = 2σ√

π
and

V ar(s1) = 2σ2(1 − 2
π ). We now need a concentration bound for

∑n
l=1,l ̸=i |NX

i − NX
l |. We

have

n∑
l=1,l ̸=i

|NX
i −NX

l | ≤ (n− 1)|NX
i |+

n∑
l=1,l ̸=i

|NX
l |.

The moment generating function of a standard Gaussian random variable X is E[etX ] = e
σ2t2

2

for all t ∈ R. We would want to find a concentration bound on |(n− 1)NX
i |+

∑l=n
l=1,l ̸=i |NX

i |.

We denote (n − 1)NX
i as N ′

i . Note that (n − 1)NX
i and NX

l where l 6= i are all i.i.d. The

required concentration bound can be written in terms of the moment generating function as

77



P

 1

n

|(n− 1)NX
i |+

l=n∑
l=1;l ̸=i

|NX
i |

 ≥ t

 = P

exp

λ

n
(|(n− 1)NX

i |+
l=n∑
l ̸=i

|NX
i |)

 ≥ eλt


≤ e−λtE

exp
λ

n
(|(n− 1)NX

i |+
l=n∑

l=1,l ̸=i

|NX
i |)


= e−λtE

 n∏
k=1;k ̸=i

e
λ
n
|NX

k |

 e
λ
n
|(n−1)NX

i |


= e−λt

n∏
k=1;k ̸=i

E
[
e

λ
n
|NX

k |
]
E
[
e

λ
n
|(n−1)NX

i |
]

(as they are independent).

Now, based on the properties of moment-generating functions, we have

E
[
et|Xk|

]
≤ E

[
et|Xk| + e−t|Xk|

]
(2.6)

= E[etXk + e−tXk ]

= E[etXk ] + E[etXk ]

= 2E[etXk ]

= 2e
σ2t2

2 as m.g.f for Gaussians is mX(t) = eµt+
σ2t2

2 .

We have that E[e
λ
n
|NX

k |] ≤ 2e
λ2σ2

2n2 and E[e
λ
n
|(n−1)NX

i |] ≤ 2e
λ2

2n2 (n−1)σ2

.

From eqn. 2.6 the r.h.s of the inequality is e−λt2ne
λ2σ2(n−1)

n2 . Therefore, P{expression ≥

nt} ≤ e−λt2ne
λ2σ2(n−1)

n2 . As we want to minimize the upper bound, ∴ ∂
∂l (−λt+

λ2σ2(n−1)
n2 = 0)

or, −t + 2λ (n−1)σ2

n2 = 0. So we have, λ = n2t
2σ2(n−1)

. Therefore, P{expression ≥ nt} ≤

e
− n2t2

4σ2(n−1) 2n. Now for σ2
1 = 1

k (assume V ⊤
k ∼ N

(
0, 1k

)
, we would have

P

(
n∑

l=1

∣∣V T
k (yi − yl)

∣∣ ⩾ nt1

)
≤ e

−n2t21
4(n−1)σ2

1 × 2n
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⇒ P

(
n∑

k=1

∣∣V T
k (yi − yl)

∣∣ ⩾ 2nσ1

)
⩽ e

−n2t21
4(n−1)σ2

1
×2n

Now, considering t ≥ 2σ, we have e
−n24σ2

1
4(n−1)σ2

1
×2n

= e−
n2

n−1
×2n =

(
2

e
n

n−1

)n
. Therefore, this

implies that

P

(
n∑

i=1

∣∣V T
k (yi − y1)

∣∣ ⩾ 2n× 1√
k

)
⩽
(

2

e
n

n−1

)n

.

The more n increases, the tighter the bound gets. Similar to the above result we have

P

(
n∑

1=1

|Nx
i −Nx

i | ⩾ nt2

)
⩽ e

−n2t22
4(n−1)σ2

2 × 2n.

We know that σ2 > w2(p)

√
2(ln( 1

2δ )+ϵ)
ϵ , where w2(p) = 1; in this case, so σ2 ⩾

√
2(ln( 1

2δ )+ϵ)
ϵ .

Considering t2 = 2σ2, we have

P

(
n∑

i=1

|Nx
i −Nx

i | ⩾ 2nσ2

)
⩽ e−

n2

n−1
×2n = e−

n2

n−1 =

(
2

e
n

n−1

)n

,

P

 n∑
i=1

|Nx
i −Nx

i | ⩾ 2n

√
2
(
ln
(

1
2δ

)
+ t

ϵ

 ≤ ( 2

e
n

n−1

)n

.

Note that

P (

n∑
l=1

|V T
k (yi−yl)|

n∑
l=1

|NX
i −NX

l | < n2t1t2) ≥ P (

n∑
l=1

|V T
k (yi−yl)| < nt1)P (

n∑
l=1

|NX
i −NX

l | < nt2),

since these two events are clearly independent and for independent a, b, P (ab < c2) > P (a <

c)P (b < c) holds. Therefore, P (
∑n

l=1 |V
T
k (yi − yl)|

∑n
l=1 |NX

i − NX
l | < n2t1t2) ≥ (1 −
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α1)(1− α2), where α1 =
(

2

e
n

n−1

)n
, α2 =

(
2

e
n

n−1

)n
. Now, using Lemma 2.5.1, we get

P (

n∑
i=1

(

n∑
l=1

|V T
k (yi − yl)|

n∑
l=1

|NX
i −NX

l | < n3t1t2)) ≥ 1− n(α1 + α2 − α1α2).

So, for any constant C, we can write

P (C

n∑
i=1

(

n∑
l=1

|V T
k (yi − yl)|

n∑
l=1

|NX
i −NX

l | < Cn3t1t2)) ≥ 1− n(α1 + α2 − α1α2),

and substituting the values for α1, α2, we get the desired value. Therefore, for each n,

4CdCm

Kn(n− 2)(n− 3)

n∑
i=1

( n∑
j=1

|NX
i −NX

j |
n∑

j=1

V T
K(yi − yj)|

)

is upper bounded with a very high probability and roughly for n ≥ 50 this value is almost 1,

and the probability value is an increasing function in n; so for large n, this value can be treated

as approximately 1. The error term is a summation for all n from 1 to K, and hence, the error

term is bounded with a high probability.

Theorem 3. (Decomposition theorem) The difference between estimators of Ωdp
(X,Y ) and

Ω(X,Y ) can be expressed as

Ω
dp
(X,Y )− Ω(X,Y ) = Ω(Nx,Y )

+
K∑

n=1

4CdCm

Kn(n− 2)(n− 3)

n∑
i=1

(
n∑

l=1

|Nx
i −Nx

l |
n∑

l=1

V ⊤
k (yi − yl)|

)
. (2.7)
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Proof.

Ω
dp
(X +NX ,Y ) =

K∑
n=1

CpCqΩn(u
⊤
KX +NX ,vKY )

K

=
K∑

n=1

CpCq

K

{ 1

n(n− 3)

∑
i ̸=j

ãij b̃ij −
2

n(n− 2)(n− 3)

∑
ãi·b̃i· +

a..b..
n(n− 1)(n− 2)(n− 3)

}

=

K∑
n=1

CpCq

K

{
1

n(n− 3)

∑
i ̸=j

|u⊤
K(xi − xj) +NX

i −NX
j ||V ⊤

K(yi − yj)|

− 2

n(n− 2)(n− 3)

n∑
i=1

(

n∑
j=1

|u⊤
K(xi − xj) +NX

i −NX
j |

n∑
j=1

|V ⊤
K(yi − yj)|)

+
(
∑n

i,j |u⊤
K(xi − xj) +NX

i −NX
j |
∑n

k,l |V
T
K(yk − yl)|)

n(n− 1)(n− 2)(n− 3)

}
≤

K∑
n=1

CpCq

K

{ 1

n(n− 3)

∑
i ̸=j

|u⊤
K(Xi −Xj)||V ⊤

K(yi − yj)|+
1

n(n− 3)

∑
i ̸=j

yi − yj)|

− 2

n(n− 2)(n− 3)

n∑
i=1

( n∑
j=1

|u⊤
K(xi − xj)|

n∑
j=1

V T
K (yi − yj)|

)

+
2

n(n− 2)(n− 3)

n∑
i=1

( n∑
j=1

|NX
i −NX

j |
n∑

j=1

V T
K(yi − yj)|

)

+
1

n(n− 1)(n− 2)(n− 3)

( n∑
i,j

|u⊤
K(xi − xj)|

n∑
k,l

|V ⊤
K(yk − yl)|+

n∑
i,j

|NX
i −NX

j |
n∑
k,l

|V T
K(yk − yl)|

)}

=
K∑

n=1

CpCq

K

{ 1

n(n− 3)

∑
i ̸=j

|u⊤
K(xi − xj)||V ⊤

K(yi − yj)| (2.8)

− 2

n(n− 2)(n− 3)

n∑
i=1

( n∑
j=1

|uT
K(xi − xj)|

n∑
j=1

V ⊤
K(yi − yj)|

)

+
1

n(n− 1)(n− 2)(n− 3)

( n∑
i,j

|u⊤
K(xi − xj)|

n∑
k,l

|V ⊤
K(yk − yl)|

)

− 2

n(n− 2)(n− 3)

n∑
i=1

( n∑
j=1

|NX
i −NX

j |
n∑

j=1

V T
K (yi − yj)|

)
+

1

n(n− 3)

∑
i ̸=j

|(NX
i −NX

j )||V T
K(yi − yj)|

+
1

n(n− 1)(n− 2)(n− 3)

( n∑
i,j

|NX
i −NX

j |
n∑
k,l

|V ⊤
K(yk − yl)|

)}

+
K∑

n=1

4CpCq

Kn(n− 2)(n− 3)

n∑
i=1

( n∑
j=1

|NX
i −NX

j |
n∑

j=1

V ⊤
K(yi − yj)|

)

= Ω(X,Y ) + Ω(NX ,Y ) +
K∑

n=1

4CpCq

Kn(n− 2)(n− 3)

n∑
i=1

( n∑
j=1

|NX
i −NX

j |
n∑

j=1

V ⊤
K(yi − yj)|

)
.

(2.9)
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PNC-Estimator

1. Alice’s input: Data matrix X

2. Bob’s input: Data matrix Y

3. Alice’s side: The client takes the following actions:

(a) Computes Ω
dp
(X,Y ) using one of the proposed equations in 2.5 or 2.4.1.

(b) Computes Ω
dp
(X,X) by adding noise calibrated to global sensitivity of 12n−11

(n−1)2

to Ω(X,X)

(c) The client sends the obtained Ω
dp
(X,X) and either of Ω

dp
(X,Y ) or

Ωdp
Disjt(X,Y ) to Bob.

4. Bob’s side:

(a) Bob computes non-private Ω(Y, Y ).

(b) Bob puts together all these estimates to compute the distance correlation be-
tween X and Y according to 2.4.

Figure 2.4: Protocol for private estimation of non-linear correlations between data of Alice and
Bob.

Therefore, the error in estimation within this context depends on two error terms of Ω̄(Nx,Y )

and 4CdCm

Kn(n−2)(n−3)

∑n
i=1

(∑n
l=1 |Nx

i −Nx
l |
∑n

l=1 V
T
k (yi − yl)|

)
. We now upper bound the

second error term in the following theorem. Choosing Nx for differential privacy: Several

mechanisms have been proposed for releasing random projections of data with differential pri-

vacy, including277,61,522 and more recently575,201. We now restate one such mechanism as shown

below.
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PRIVATIZING Ω(X,X)

The problem of privatizing Ω(X,X) is simpler than that of privatizing Ω(X,Y ), in the sense

that in the former case, the entire data X is hosted on one entity as opposed to X and Y

being hosted on two different entities. For the private estimation of distance variance terms

Ω
dp
(X,X), we first use an equivalence between distance covariance and another popular de-

pendency measure called Hilbert-Schmidt Independence Criterion (HSIC)204. We then use the

global sensitivity of this equivalently obtained HSIC to privatize the distance variance. We

begin by defining the empirical estimate of the HSIC.

Given unique positive definite kernels k, l in the context of kernel methods and reproducing

kernel Hilbert space (RKHS) theory in machine learning, we have the following definition for

the sample estimator of HSIC.

Definition 2.5.2. (HSIC204) Let Z := {(x1,y1) , . . . , (xm,ym)} ⊆ X × Y be a series of m

independent observations drawn from px,y. An estimator of HSIC, written by HSIC(Z,F ,G),

is given by

HSIC(Z,F ,G) := (m− 1)−2Tr(KHLH),

where H,K,L ∈ Rm×m,Kij := k (xi,xj) ,Lij := l
(
yi,yj

)
and H is a double-centering

matrix.

We assume k, l are bounded above by 1 (e.g., using the squared exponential kernel or

the Matern kernel565). A classic way to calibrate the amount of noise required to achieve

ϵ−differential privacy160,152,154 is to add noise with a variance of ∆
ϵ where ∆ is the global

sensitivity of the query.

Global sensitivity of HSIC: The global sensitivity of HSIC was derived in296,297 to be at most
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12n−11
(n−1)2

. Specifically,

∣∣∣ĤSICk,l (x,y)− ĤSICk,l

(
x′,y′)∣∣∣ ≤ 12n− 11

(n− 1)2
,

for all neighboring160 datasets.

The following equivalence was shown between distance covariance and HSIC. As we have

the global sensitivity for HSIC and since we have the following equivalence, we can use this

global sensitivity to privatize Ω(X,X), which belongs to the one-party setting of privately

releasing distance covariance.

EQUIVALENCE MAP BETWEEN DISTANCE COVARIANCE AND HSIC

Definition 2.5.3. Bijective induced kernel

Given sample data {xi, i = 1, . . . , n}, for any metric d(·, ·), we define its bijective induced

kernel469,470 as

k̂d (xi,xj) = max
s,t∈[n]

(d (xs,xt))− d (xi,xj) .

For any kernel k(·, ·), we define the induced metric as

d̂k (xi,xj) = max
s,t∈[n]

(k (xs,xt))− k (xi,xj) .

The subscripts s, t ∈ [n] is a shorthand for s = 1, . . . , n and t = 1, . . . , n.

Other alternative definitions for this bijection are also given in470. These are widely used
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depending on the problem at hand.

d̂k (xi,xj) = 1− k (xi,xj) / max
s,t∈[n]

(k (xs,xt)) ,

k̂d (xi,xj) = 1− d (xi,xj) / max
s,t∈[n]

(d (xs,xt)) .

This is an equivalent definition up to scaling by the maximum elements and can be succinctly

expressed in a matrix form:

D̂K = J −K/max(K),

K̂D = J −D/max(D).

Theorem 4. 470 Suppose distance covariance (DCOV) uses a given metric d(·, ·), and the Hilbert

Schmidt independence criterion HSIC uses the bijective induced kernel k̂d(·, ·). Given any

sample data (X,Y ), it holds that

DCOVn(X,Y ) = HSICn(X,Y ),

where the remainder term O
(

1
n2

)
is invariant to permutation.

2.6 COMPUTATIONAL COMPLEXITY

Fast estimators of distance correlation requires O(nlogn)102,238 computational complexity for

univariate and O(nKlogn) complexity234 for multivariate settings with O(max(n,K)) mem-

ory, where K is the number of random projections required as part of the estimation. In addition

to being differentiable and easily computable with a closed-form, it requires no other tuning of

parameters and is self-contained, unlike HSIC or other dependency measures such as Maxi-

mum Mean Discrepancy (MMD) or Kernel Target Alignment (KTA) that depend on a choice of

separate kernels for features as well as labels along with their respective tuning parameters.
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“Doing a meta-analysis is easy... Doing one well is

hard.”

Ingram Olkin

3
Private Independence Testing

3.1 METHOD FOR PRIVATE INDEPENDENCE TESTING

The preliminaries for independence testing were provided in Section 2.3. This chapter is based

on our work in535. As a starting point for the problem of private independence testing, we

first provide the test-statistic for non-private independence testing in section 3.1. Privatizing

this test-statistic requires privatization of (a). Its numerator, given by the distance covariance
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and denoted by Ω̂2(X,Y ) as well as (b). Its denominator, given by a product of individually

computed means of pairwise distances of X and Y , that is denoted by Ŝ(X,Y ). These terms

are formally defined in Section 3.1. The privatization strategy that we employ for both of these

terms relies on a reduction to directional variance queries, which we define below.

Alternate privatization strategy for Ω̂2(X,Y ): We first express Ω̂2(X,Y ) as a function of i) a

covariance matrix formed by incidence matrices (or a matrix square root) of a specific weighted

graph formed over samples in X as its vertices (that we refer to as incidence-covariance) and

ii) the covariance matrix of Y . We then show that Ω̂2(X,Y ) is exactly equal to a sum of

directional variances of columns of Y with respect to the incidence-covariance matrix of X .

Alternate privatization strategy for Ŝ(X,Y ): We are able to express Ŝ(X,Y ) in a similar form

as Ω̂2(X,Y ), but with some key differences. Namely, we can write it as a function of the covari-

ance of X (given by XX⊤) and a data-independent graph Laplacian matrix LS = nI − ee⊤.

We show that this is exactly equal to the sum of directional variances of the columns of the

incidence matrix (or a matrix square root such that LS = BB⊤) with respect to covariance

matrix XX⊤. A key difference with respect to the case of Ω̂2(X,Y ) is that, here, the direc-

tional variance is with respect to the covariance matrix of X while in Ω̂2(X,Y ) the directional

variance is with respect to the incidence-covariance matrix defined over X .

Therefore, in the notation of directional variances, we show that Ω̂2(X,Y ) =
∑

iΦB(X)(yi),

where yi refers to the i’th column of Y , and Ŝ(X,Y ) =
∑

iΦX(gi), where gi refers to the

i’th column of G. A utility bound on computing directional variance queries upon privatization

of covariance matrices can be expressed in terms of additive and multiplicative errors. We now

define the structure of such approximations as below. In the rest of the paper, for presentation

simplicity, we refer to Ω̂2(X,Y ) and Ŝ(X,Y ) by Ω̂2 and Ŝ, respectively.

Definition 3.1.1 (Additive and multiplicative approximation). We say a privacy mechanism that
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privatizes an estimate Â(x) using Ā(x), provides an (η, τ, ν)-approximation, if the following

holds:

Pr
[
(1− η)Â(x)− τ ≤ Ā(x) ≤ (1 + η)Â(x) + τ

]
≥ 1− ν.

We use Ω̄2, S̄ to denote the privatized versions of Ω̂2 and Ŝ, respectively, that can be ob-

tained upon privatization of the covariance matrix XX⊤ and incidence-covariance B(X)B⊤(X).

The goal is to bound the ratio Ω̄2

S̄
as follows:

αℓ
Ω̂2

Ŝ
+ βℓ ≤

Ω̄2

S̄
≤ αu

Ω̂2

Ŝ
+ βu. (3.1)

In section 3.2, we first show that privatization of covariances and incidence-covariances

results in separate additive and multiplicative approximations for Ω̂2 and Ŝ2, respectively. A

first-pass attempt towards our main goal of an approximation of the form in equation 3.1 just in-

volves a simple rearrangement of the terms using the individual bounds on Ω̂2 and Ŝ, leading us

to the following result with probability≥ 1−2ν where we have, (1−η)Ω̂2−τ

(1+η)Ŝ+τ
≤ Ω̄2

S̄
≤ (1+η)Ω̂2+τ

(1−η)Ŝ−τ
.

Unfortunately, this first attempt falls short of our goal, as the additive and multiplicative errors

in equation 3.1 do not decompose well to provide a more convenient expression of the form in

equation 3.1. Obtaining a final form of this kind requires extra work, leading to our main result.

TEST STATISTIC FOR INDEPENDENCE TESTING

The test-statistic we consider is a ratio of sample distance covariance (an un-normalized measure

of statistical dependency) denoted by Ω̂2(X,Y ) and a product of average of distances denoted

by Ŝ(X,Y ) defined as Ŝ(X,Y ) = 1
n2

∑n
k,l=1 ‖xk − xl‖2 1

n2

∑n
k,l=1 ‖yk − yl‖

2. In order to

define the test statistic, we need to define distance covariance denoted as Ω̂2(X,Y ) = R̂+ Ŝ−
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2T̂ , where

R̂ =
1

n2

n∑
k,l=1

‖xk − xl‖2 ‖yk − yl‖
2 ,

Ŝ =
1

n2

n∑
k,l=1

‖xk − xl‖2
1

n2

n∑
k,l=1

‖yk − yk‖
2 ,

T̂ =
1

n3

n∑
k=1

n∑
l,m=1

‖xk − xl‖2 ‖yk − yl‖
2 .

We use Γ(X,Y, α, n) to denote the test statistic500 that rejects independence when

Γ(X,Y, α, n) =
nΩ̂2(X,Y)

Ŝ(X,Y)
>
(
ϕ−1(1− α/2)

)2
,

where ϕ(·) denotes the standard normal cumulative distribution function, and α denotes the

achieved significance level. A test rejecting independence of X and Y when
√

nΩ̂2(X,Y )/Ŝ(X,Y ) ≥

ϕ−1(1− α/2) is said to have an asymptotic significance level of at most α.

3.2 PRIVATIZATION OF TEST STATISTIC

We first express the numerator and denominator of the test-statistic as different functions of

directional variance. This is useful because the directional variance in our case is solely a

function of a specific covariance (specific to the choice of numerator or denominator) of our

sensitive data and the non-sensitive Y . Therefore, the directional variances corresponding to

the numerator and denominator of test-statistic are private upon applying the post-processing

property of differential privacy after the privatization of that specific covariance. The following

two results express the numerator Ω̂2(X,Y ) in terms of directional variance.

Lemma 3.2.1. Distance covariance Ω̂2(X,Y ) can be estimated using the Euclidean distance

matrix EX formed over the rows in X , the double-centering matrix J = I−n−1eeT , to form
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an adjacency matrix given by W (X) = JEXJ and a corresponding graph Laplacian

LW (X) = D(W (X)) − W (X)

where D(W (X)) is the degree matrix of W (X) to get

Ω̂2(X,Y ) =
1

n

√
2Tr

(
Y ⊤LW (X)Y

)
=

1

n

√
2Tr

(
X⊤LW (Y )X

)

Proof. The proof is provided in Appendix 3.5.4.

Now that distance covariance has been expressed in terms of a specific graph Laplacian, the

following corollary follows to reformulate it as a sum of specific kinds of directional variances

that depend on this graph Laplacian.

Corollary 3.2.1. Distance covariance can be expressed as a sum of directional variances as

Ω̂2(X,Y ) =
∑

iΦB(X)(yi) where directional variance was defined in Definition 2.3.4.

Proof. We expand the distance covariance estimator as follows to get this result.

Ω̂2(X,Y ) = Tr
(
X⊤LW (Y )X

)
= Tr

(
XX⊤LW (Y )

)
=

d∑
i

(
X⊤

i LW (Y )Xi

)
(3.2)

=
d∑

i=1

Tr
(
XiXi

⊤LW (Y )
)
=

m∑
i=1

Tr
(
YiYi

⊤LW (X)
)
=

m∑
i=1

Tr
(
YiYi

⊤B(X)B⊤(X)
)

=
m∑
i

(
Y ⊤
i B(X)B⊤(X)Yi

)
=

m∑
i=1

Ω̂i(X,Y ) =
∑
i

ΦB(X)(Y i). (3.3)

Lemma 3.2.2. We now express the denominator term of the test-statistic as a specific sum of
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directional variances as follows. The denominator in the test-statistic,

Ŝ(X,Y ) =
1

n2

n∑
k,l=1

‖xk − xl‖2
1

n2

n∑
k,l=1

‖yk − yl‖
2 ,

can be expressed as a sum of directional variances as Ŝ(X,Y ) =
∑

i ϕX(gi) where gi is the

i’th column of a matrix G such that LS = GGT for a graph Laplacian matrix LS given by

LS = nI − eeT . We use the superscript S to distinguish from the Laplacian LW used in the

expression for Ω̂2.

Proof. The proof is provided in the Appendix 3.5.5.

The privatization strategy therefore is to privatize B(X)BT (X) in order to privatize

Ω̂2(X,Y ) =
∑

i ϕB(X)(yi). This privatizes the numerator of the test-statistic. With regards to

the denominator, the strategy is to privatize XXT in order to privatize Ŝ(X,Y ) =
∑

i ϕX(gi).

Note that in both cases, the privatization required is with respect to covariance matrices. Priva-

tization of covariances was studied in61,22,60. We summarize our proposed mechanism called

π-test in Figure 7.5. With covariance matrices being central to many downstream queries, the

question of understanding the effect of their privatization on the utility of downstream queries

often arises.

3.2.1 UTILITY RESULTS

In that spirit, the work in61 provides a utility analysis of directional variances (expressed as func-

tions of covariances) upon privatization of these covariances. This utility bound is formulated

in terms of additive and multiplicative errors as part of a probability bound. The notion of addi-

tive and multiplicative approximation was defined in preliminaries under definition 3.1.1. This

result only provides us individual bounds (with additive and multiplicative factors) separately
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π−test mechanism

1. Alice’s input: Data matrix Xn×d, parameters for privacy (ϵ, δ), confi-
dence ν & error η.

2. Bob’s input: Data matrix Y .

3. Alice’s side: Compute adjacency matrix W (X) = JEXJ

4. Alice’s side: Compute graph Laplacian LW (X) for adjacency of W (X).

5. Alice’s side: Express LW (X) as B(X)B(X)T via a matrix square-
root.

6. Alice’s side: Privatize covariances B(X)B(X)T using either of61,60,22

and send them to Bob.

7. Alice’s side: Compute XXT and privatize these covariances as in the
previous step and send them to Bob.

8. Bob’s side: Compute Ω̄2(X,Y ) = 1
n

√
2Tr

(
Y ⊤LW (X)Y

)
using Al-

ice’s private estimate of LW(X).

9. Bob’s side: Compute S̄(X,Y ) = 4
n4 Tr

(
GTXX⊤G

)
.Tr

(
Y ⊤LSY

)
using Alice’s private XX⊤.

10. Bob’s side: Perform the test-using a rejection region of Γ(X,Y, α, n) =
nΩ̄2

n(X,Y)

S̄(X,Y)
> (Φ−1(1− α/2))

2.

Figure 3.1: Protocol for the proposed π-test mechanism for two-party independence
testing
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for each summand (in summation of directional variances) in the numerator and denominator

of our test-statistic. But we need a single bound (with additive and multiplicative factors) for

the test-statistic in its entirety, which is a ratio of sums of directional variances. The following

results that we work out in the rest of the paper let us obtain that bound. We denote each sum-

mand in the sum of directional variances corresponding to the numerator and denominator by

Ω̂2
i for i ∈ [1, 2 . . .m] and Ŝi for i ∈ [1, 2 . . . , k ≤ n], respectively, where k denotes the rank of

G. That is, Ω̂2 =
∑

i Ω̂
2
i =

∑
i ϕB(X)(yi) and Ŝ =

∑
i Ŝi =

∑
i ϕX(gi).

We use Ω̄2
i , S̄i to denote the privatized versions of Ω̂2

i and Ŝi, respectively, that can be ob-

tained upon privatization of the covariance matrix XX⊤ and incidence-covariance B(X)B⊤(X).

As a starting point,61 provided these additive and multiplicative error bounds using r = 8 ln(2/ν)
η2

, w =

16
√

r ln(2/δ)

ϵ ln(16r/δ) for the utility of a single directional variance query expressed using pri-

vate covariance, which in our setting refers to Ω̄2
i and S̄i for any i ∈ [1, 2 . . . , k ≤ n].

P
(
(1− η)Ω̂2

i − τ ≤ Ω̄2
i ≤ (1 + η)Ω̂2

i + τ
)
≥ 1− ν, (3.4)

and similarly for S as

P
(
(1− η)Ŝi − τ ≤ S̄i ≤ (1 + η)Ŝi + τ

)
≥ 1− ν. (3.5)

But we need a bound on the ratio of summation of specific directional variances. From the

inequality on the intersection of e events E1, ..., Ee given as P(∩ei=1Ei) ≥
∑e

i=1 P(Ei)−(e−1),

for ν ≥ 1/(m+ n), it follows that

P
(
(1− η)Ω̂2 −mτ ≤ Ω̄2 ≤ (1 + η)Ω̂2 +mτ

)
≥ 1−mν, (3.6)
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and

P
(
(1− η)Ŝ − nτ ≤ S̄ ≤ (1 + η)Ŝ + nτ

)
≥ 1− nν. (3.7)

We now provide results for our lower and upper bounds on additive and multiplicative errors for

our private estimator of the test-statistic.

LOWER BOUND

Theorem 5. For Ŝ > nτ
1−n and n� m, we have the following lower bound on Ω̄2

S̄
.

P

(
Ω̄2

S̄
≥ 1− η

1 + η

(
Ω̂

Ŝ

)
− (1− η)2

2(1 + η)

)
≥ 1− (m+ n)ν.

Proof. From the naive re-arrangement of the individual bounds, we have the following with

probability ≥ 1− (m+ n)ν

(1− η)Ω̂2 −mτ

(1 + η)Ŝ + nτ
≤ Ω̄2

S̄
≤ (1 + η)Ω̂2 +mτ

(1− η)Ŝ − nτ
. (3.8)

Rearranging the lower bound on Ω̄2

S̄
yields

Ω̄2

S̄
⩾ (1− η)Ω̂2 −mτ

(1 + η)Ŝ + nτ
=

(1− η)Ω̂2 −mτ

(1 + η)Ŝ
(
1 + nτ

(1+η)Ŝ

) =
(1− η)Ω̂2

(
1 + nτ

(1+η)Ŝ

)
−mτ − (1−η)Ω̂2nτ

(1+η)Ŝ

(1 + η)Ŝ
(
1 + nτ

(1+η)Ŝ

)
=

(
1− η

1 + η

)
Ω̂2

Ŝ
− mτ(1 + η)Ŝ + nτ(1− η)Ω̂2

(1 + η)Ŝ
(
(1 + η)Ŝ + nτ

) . (3.9)

For Ŝ > nτ
1−η , we have
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mτ(1 + η)Ŝ + nτ(1− η)Ω̂2

(1 + η)Ŝ
(
(1 + η)Ŝ + nτ

) (a)

≤ mτ(1 + η) + nτ(1− η)

(1 + η)
(
(1 + η)Ŝ + nτ

) (b)

≤ m(1 + η) + n(1− η)

2n
(
1+η
1−η

) , (3.10)

where (a) follows from Lemma 3.5.1, i.e., Ω̂2 ≤ Ŝ, and (b) follows by replacing Ŝ with nτ
1−η

since Ŝ > nτ
1−η . For n� m, we can approximate equation 3.10 as follows

mτ(1 + η)Ŝ + nτ(1− η)Ω̂2

(1 + η)Ŝ
(
(1 + η)Ŝ + nτ

) ≤ m(1 + η) + n(1− η)

2n
(
1+η
1−η

) ≈ (1− η)2

2(1 + η)
. (3.11)

Plugging equation 3.11 into equation 3.9 yields

Ω̄2

S̄
≥
(
1− η

1 + η

)
Ω̂2

Ŝ
− (1− η)2

2(1 + η)
(3.12)

3.2.2 UPPER BOUND

Theorem 6. For some s > τ
1−η and n� m, we have the following upper bound on Ω̄2

S̄
.

P

(
Ω̄2

S̄
⩽ 1 + η

1− η

(
Ω̂2

Ŝ

)
+

τ

(1− η)s− τ

)
≥ 1− (m+ n)ν.
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Proof. Rearranging the upper bound on Ω̄2

S̄
, given in equation 3.8, yields

Ω̄2

S̄
≤ (1 + η)Ω̂2 +mτ

(1− η)Ŝ
(
1− nτ

(1−η)Ŝ

) =
(1 + η)Ω̂2

(
1− nτ

(1−η)Ŝ

)
+mτ + (1+η)Ω̂2nτ

(1−η)Ŝ

(1− η)Ŝ
(
1− nτ

(1−η)Ŝ

)
=

(
1 + η

1− η

)
Ω̂2

Ŝ
+

mτ(1− η)Ŝ + nτ(1 + η)Ω̂2

(1− η)Ŝ
(
(1− η)Ŝ − nτ

) . (3.13)

We have

mτ(1− η)Ŝ + nτ(1 + η)Ω̂2

(1− η)Ŝ
(
(1− η)Ŝ − nτ

) (a)

≤ mτ(1− η) + nτ(1 + η)

(1− η)
(
(1− η)Ŝ − nτ

) (b)

≤ mτ(1− η) + nτ(1 + η)

(1− η) ((1− η)ns− nτ)
,

(3.14)

where (a) follows from Lemma 3.5.1, i.e., Ω̂2 ≤ Ŝ, and (b) follows since S ≥ ns, for some

s > τ
1−η . For n� m, equation 3.14 is approximated as

mτ(1− η)Ŝ + nτ(1 + η)Ω̂2

(1− η)Ŝ
(
(1− η)Ŝ − nτ

) ≤ mτ(1− η) + nτ(1 + η)

(1− η) ((1− η)ns− nτ)
≈ τ

(1− η)s− τ
. (3.15)

Plugging equation 3.15 into equation 3.13 yields

Ω̂2

Ŝ
≤
(
1 + η

1− η

)
Ω2

S
+

τ

(1− η)s− τ
. (3.16)

3.3 CONCLUSION

Current works on private independence testing focus on discrete data (contingency tables) and

are based on stringent minimax testing under total variation distance, which might be overly
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conservative in many settings. Our work differs in this sense in terms of the distributed model

assumed (the way the data is partitioned across users), its compatibility with continuous data,

and its applicability to samples lying in different dimensions, unlike these prior methods. While

information-theoretic formulations are fairly mature, inference with energy statistics, in general,

brings a newer viewpoint to private testing problems. In addition, distance correlation happens

to be a special case of a broader concept of energy statistics497,431,499. Thereby, solutions for its

private estimation open up a door for investigating multi-party private solutions for downstream

problems that depend on distance correlation, such as multi-party private independence testing,

multi-party private feature screening, and multi-party private causal inference.

3.4 LIMITATIONS AND FUTURE WORK

That said, universality results on power analysis of distance covariance-based tests are being

formulated by various groups in recent preprints such as214. A further analysis of our test from

this viewpoint is needed as part of future work. Although we used the privacy mechanism for

covariance given in61 as part of our π-test protocol, other options such as60,22 could be used,

and theoretical effects of their utility in privatizing the test-statistic is of open interest. We

used61 given its suitability to our theoretical study. Similarly, the question of coming up with

mechanisms for private conditional independence testing using conditional distance covariance

is still of open interest.

3.5 APPENDIX FOR THIS CHAPTER

3.5.1 ERROR BOUND ON RATIO OF ESTIMATORS

Lemma 3.5.1. Assuming that dmax/d
2
min ≤

(n−1)
2 , where dmax = maxi,j ‖xi − xj‖2 and

dmin = mini,j,i ̸=j ‖xi − xj‖2, we have Ω2 ≤ S.
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Proof. We have

Ω2 =
1

n

√
2Tr

(
Y ⊤LXY

)
=

1

n

√∑
i,j

WX
i,j

∥∥yi − yj

∥∥2
=

1

n

√∑
i,j

[JEXJ ]i,j
∥∥yi − yj

∥∥2, (3.17a)

S =
1

n4

∑
i,j

‖xi − xj‖2
∑
i,j

∥∥yi − yj

∥∥2 . (3.17b)

Assuming that there are a total of c classes in the dataset, we denote by Cl the set of data samples

indices that belong to the label l, l = 0, ..., c− 1. For i ∈ Cl, we assume that yi is a vector with

only one non-zero entry at the l-th coordinate, where for simplicity, we set the value in the l-th

coordinate to 1. Accordingly, for l = 0, ..., c− 1, we have

∥∥yi − yj

∥∥2 =

0, i, j ∈ Cl

2, otherwise,
(3.18)

which results in

Ω2 =
1

n

√
2

∑
i,j,(i,j)/∈C2

l

[JEXJ ]i,j

≤ 1

n

√
2
∑
i,j

[JEXJ ]i,j

(a)
=

1

n

√
2

n

∑
i,j

‖xi − xj‖2, (3.19)

where (a) follows from Lemma 3.5.2. For simplicity of the analysis, we assume that the number

of data samples with each class is uniform, i.e., |Cl| = n/c, in which case
∑

i,j

∥∥yi − yj

∥∥2 =
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2n2(1− 1/c). Accordingly, we have

S =
2(1− 1/c)

n2

∑
i,j

‖xi − xj‖2 , (3.20)

which is minimized for c = 2 (assuming that c ≥ 2), i.e.,

S ≥ 1

n2

∑
i,j

‖xi − xj‖2 . (3.21)

According to equation 3.19 and equation 3.21, in order to prove Ω2 ≤ S, it suffices to show that

∑
i,j

‖xi − xj‖2 ≤
1

2n

(∑
i,j

‖xi − xj‖2
)2

. (3.22)

We have

∑
i,j

‖xi − xj‖2 ≤ n(n− 1)dmax,

1

2n

(∑
i,j

‖xi − xj‖2
)2
≥ n2(n− 1)2

2n
d2min. (3.23)

Accordingly, having dmax ≤ (n−1)
2 d2min guarantees equation 3.22.

3.5.2 DOUBLE-CENTERING LEMMAS

Lemma 3.5.2. For the centering matrix given by J = I− 1
nee

⊤, we have the following property

when applied to Euclidean distance matrices of data sample X denoted by EX ,

∑
i,j

[JEXJ ]i,j =
1

n

∑
i,j

d2i,j(X)
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Proof. We have

JEXJ =

(
I − 1

n
ee⊤

)
EX

(
I − 1

n
ee⊤

)
(3.24)

= EX −
1

n
ee⊤EX −

1

n
EXee⊤ +

1

n2
ee⊤EXee⊤, (3.25)

according to which

(JEXJ)ij = d2ij(X)− 1

n

n∑
i′=1

d2i′j(X)− 1

n

n∑
j′=1

d2ij′(X) +
1

n2

∑
i′j′

d2i′j′(X). (3.26)

Summing equation 3.26 over all i, j yields

∑
i,j

[JEXJ ]ij =
∑
i,j

d2ij(X)− 1

n

∑
i,j

n∑
i′=1

d2i′j(X) (3.27)

− 1

n

∑
i,j

n∑
j′=1

d2i′j′(X) +
n(n− 1)

n2

∑
i′,j′

d2i′j′(X) (3.28)

=
∑
ij

d2ij(X)− n− 1

n

∑
ij

d2ij(X)− n− 1

n

∑
i,j

d2ij(X) +
n− 1

n

∑
i,j

d2ij(X)

(3.29)

=
1

n

∑
i,j

d2ij(X). (3.30)

Lemma 3.5.3. The data matrix X and its Euclidean distance matrix EX can be connected

using the centering matrix given by J = I − 1
nee

⊤ as,

JXTXJ = −1

2
JEXJ
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Proof.

(
‖xi − xj‖2 = x⊤

i xi + x⊤
j xj − 2x⊤

i xj

)
(3.31)

xT
i xj = −

1

2

(
‖xi − xj‖2 − ‖xi‖2 − ‖xj‖2

)
(3.32)

XTX =
−1
2
EX +

1

2
δ.1⊤ +

1

2
1δ⊤ where δ is a vector with δi = ‖xi‖. (3.33)

JX⊤XJ = −1

2
JEXJ+

1

2
Jδ.1⊤J+

1

2
J1δ⊤J

But since, 1⊤J = 0 and J1 = 0, we have

JX⊤XJ = −1

2
JEXJ

3.5.3 PROOF OF LEMMA 3.5.1

We have

Ω2(X,Y) =
1

n

√
2Tr (Y⊤LXY) =

2

n2

∑
ij

WX
ij d

2
ij(Y)

=
1

n

√∑
ij

[JEXJ]ijd2ij(Y).

3.5.4 LAPLACIAN FORMULATION OF Ω2(X,Y) 547

Lemma 3.5.4. Distance covariance Ω̂2(X,Y ) can be estimated using the Euclidean distance

matrix EX formed over the rows in X , the double-centering matrix J = I − n−1eeT , to

form an adjacency matrix given by W (X) = JEXJ and a corresponding graph Laplacian
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LW (X) = D(W (X)) − W (X) where D(W (X)) is the degree matrix of W (X) to get

Ω̂2(X,Y ) =
1

n

√
2Tr

(
Y ⊤LW (X)Y

)
=

1

n

√
2Tr

(
X⊤LW (Y )X

)

Proof. This result and the corresponding proof are from547. We replicate the same over here

for quick reference. Given matrices ÊX , ÊY , and column centered matrices X̃, Ỹ , from result

of511 we have that ÊX = −2X̃X̃
T

and ÊY = −2Ỹ Ỹ
T

. In the problem of multidimensional

scaling (MDS) (Borg and Groenen, 2005), we know for a given adjacency matrix say W and a

Laplacian matrix L,

Tr
(
XTLX

)
=

1

2

∑
i,j

[W ]ij [EX ]i,j

Now for the Laplacian L = LX and adjacency matrix W = ÊY we can represent Tr
(
XTLY X

)
in terms of ÊY as follows,

Tr
(
XTLY X

)
=

1

2

n∑
i,j=1

[
ÊY

]
i,j

[EX ]i,j

From the fact [EX ]i,j = (〈x̃i, x̃i〉+ 〈x̃j , x̃j〉 − 2 〈x̃i, x̃j〉), and also ÊX = −2X̃X̃
T

we get

Tr
(
XTLY X

)
=− 1

4

n∑
i,j=1

[
ÊY

]
i,j

([
ÊX

]
i,i

+
[
ÊX

]
j,j
− 2

[
ÊX

]
i,j

)

=
1

2

∑
i,j

[
ÊX

]
i,j

[
ÊY

]
i,j
− 1

4

n∑
j

[
ÊX

]
j,j

n∑
i

[
ÊY

]
i,j

− 1

4

n∑
i

[
ÊX

]
i,i

n∑
j

[
ÊY

]
i,j

Since ÊX and ÊY are double centered matrices
∑n

i=1

[
ÊY

]
i,j

=
∑n

j=1

[
ÊY

]
i,j

= 0 it
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follows that

Tr
(
XTLY X

)
=

1

2

∑
i,j

[
ÊX

]
i,j

[
ÊY

]
i,j

It also follows that

ν̂2(X,Y ) =
1

n2

n∑
i,j=1

[
ÊY

]
i,j

[EX ]i,j =
2

n2
Tr
(
XTLY X

)

Similarly, we can express the sample distance covariance using Laplacians LX and LY as

ν̂2(X,Y ) =

(
2

n2

)
Tr
(
XTLY X

)
=

(
2

n2

)
Tr
(
Y TLXY

)
The sample distance variances can be expressed as ν̂2(X,X) =

(
2
n2

)
Tr
(
XTLXX

)
and

ν̂2(Y ,Y ) =
(

2
n2

)
Tr
(
Y TLY Y

)
substituting back into expression of sample

3.5.5 S(X,Y) AS A SUM OF DIRECTIONAL VARIANCES

Lemma 3.5.5. We now express the denominator term of the test-statistic as a specific sum of

directional variances as follows. The denominator in the test-statistic,

Ŝ(X,Y ) =
1

n2

n∑
k,l=1

‖xk − xl‖2
1

n2

n∑
k,l=1

‖yk − yl‖
2 ,

can be expressed as a sum of directional variances as Ŝ(X,Y ) =
∑

i ϕX(gi) where gi is the

i’th column of a matrix G such that LS = GGT for a graph Laplacian matrix LS given by

LS = nI − eeT . We use the superscript S to distinguish from the Laplacian LW used in the

expression for Ω̂2.

Proof. We first start simply by expressing the Euclidean distance between any two pairs of
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points using a matrix trace formulation as follows.

d2ij(X) =
m∑
a=1

x⊤
a (ei − ej) (ei − ej)

⊤ xa =
m∑
a=1

x⊤
a Aijxa = trX⊤AijX

where Aij = (ei − ej)(ei − ej)
⊤. Similarly,

∑
i<j dij(X) = trX⊤

(∑
i<j d

−1
ij (X)Aij

)
X .

We now extend this to express the sum of all pairs of Euclidean distance matrices as follows

η(X) =
∑
i<j

wijd
2
ij(X) = trX⊤

∑
i<j

wijAij

X = trX⊤LSX

where LS =
(∑

i<j wijAij

)
. As we would like to express the sum of all pairs of distances, we

consider the case where W ij = 1, ∀i, j ∈ [n]. Note that this matrix has the exact structure of a

graph Laplacian. This results in a graph Laplacian LS where

LS =


n− 1 −1 −1

−1 . . .
...

−1 · · · n− 1

 = nI − eeT

Therefore,

Sα(X,Y ) = η(X)η(Y ) =
4

n4
Tr
(
X⊤LSX

)
· Tr

(
Y TLSY

)
Note that we could also express Tr

(
X⊤LSX

)
as

Tr
(
X⊤LSX

)
= Tr

(
X⊤GGTX

)
= Tr

(
GTXX

⊤
G
)
=

k≤n∑
i

(
gi

TXXT gi
)
=
∑
i

ϕX(gi),

where k is the rank of the matrix LS .
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“Only yesterday the practical things of today were de-

cried as impractical, and the theories which will be

practical tomorrow will always be branded as value-

less games by the practical man of today.”

William Feller

4
Moving to Manifolds: Private Estimation

of Fréchet Mean

4.1 INTRODUCTION

Privacy-preserving computing is an active area of research that is necessitated by ethics, regula-

tions, requirements for protection of trade secrets, or possible lack of trust amongst distributed
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data siloes. Privacy preservation is desired across several topologies of data sharing, be it from

client devices to powerful centralized entities or in a peer-to-peer fashion. Mistrust in data shar-

ing carries over not only in the sharing of raw data but also in the sharing of results obtained

from intermediate or complete computations. The need for stringent privacy protections is of-

ten fueled by many privacy leakages and attacks that continue to happen under various settings

operating without the right level of privacy-protecting mechanisms.

In this context, differential privacy (DP)158,154,160,153 has emerged as one of the leading

mathematical definitions to ensure the preservation of privacy up to a chosen level. Privacy-

preserving mechanisms that satisfy the definition of differential privacy were subsequently de-

veloped to privatize a wide range of statistical and machine learning computations. The earliest

queries for which mechanisms have been proposed were for the privatization of sample means

in statistics computed for data lying on linear spaces. When data belong to nonlinear mani-

folds, the Fréchet mean query179 is the foundational building block of geometric statistics that

needs to be privatized. Our work proposes a new, simpler, and faster mechanism for private

Fréchet means on the manifold of symmetric positive definite (SPD) matrices endowed with

log-Euclidean metric. This chapter is based on our work in526.

4.1.1 MOTIVATION

Fréchet mean: a building block in geometric statistics While traditional statistics studies

data that lies on linear spaces, geometric statistics studies data that lies on nonlinear spaces

such as Riemannian manifolds, affine connection spaces, or stratified spaces406,355. Such analy-

sis is fruitful as data might have inherent constraints that are well captured by the geometry of

a nonlinear space356,381. For instance, symmetric matrices constrained to have strictly positive

eigenvalues are conveniently modeled as elements of the manifold of symmetric positive definite

(SPD) matrices. Several extensions of traditional statistical analysis tools have thus been devel-
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oped for the manifold setting: regression has been generalized to geodesic regression177,507,

principal component analysis (PCA) to principal geodesic analysis or geodesic PCA176,482,236,

and mean shift to Riemannian mean shift clustering492,87. In each of these algorithms, the

computation of the sample Fréchet mean generalizes the computation of the sample mean and

thus represents the most fundamental building block. The privatization of the Fréchet mean is,

therefore, the key element required to privatize geometric statistical queries. Privacy-preserving

geometric statistics is also crucial, as one of its main application areas is medical imaging and

computational anatomy406,355 for which privacy requirements are often desirable.

Importance of the SPD manifold with log-Euclidean metric Symmetric positive defi-

nite (SPD) matrices model a wide range of data, from medical images with Diffusion Tensor

Imaging (DTI)Basser et al.,405, to physiological signals with electroencephalography (EEG) sig-

nals from brain-computer interfaces (BCI)585,595,111, to 3D shapes501 to name a few. Given

their central roles for medical data where privacy is of the utmost importance332,315, private sta-

tistical computations on the SPD manifold are a worthy endeavour. The SPD manifold can be

equipped with different Riemannian metrics that provide elementary operations such as distance

computations. The log-Euclidean metric, originally proposed in33, has numerous advantages

over another popular Riemannian metric called the affine invariant metric405: (a) it is compu-

tationally faster, (b) it gives similar or better performances on several processing and learning

tasks, (c) and quite importantly, it provides a closed form expression for the Fréchet mean -

which otherwise requires solving an optimization problem.

Need for better and faster privacy mechanisms Despite its importance for the processing

of a number of (medical) data, geometric statistics currently stand understudied from the lens

of differential privacy. The very recent work by425 provides the first differentially private mech-

anism for the Fréchet mean. However, its utility - a measure of the mechanism’s deviation from

non-privatized computations - makes it impracticable on the manifold of SPD matrices as soon
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as we consider matrices of moderate size, e.g. 20× 20 matrices. Consequently, there is a need

for better and faster privacy mechanisms on manifolds, starting with the SPD manifold.

4.1.2 RELATED WORK AND CONTRIBUTIONS

Reimherr et al. 425 were first to consider differential privacy in manifold setting and developed

Riemannian Laplace mechanism by extending the standard Laplace mechanism160 for linear

spaces to complete Riemannian manifolds. It is based on a Laplace distribution that was orig-

inally proposed for SPD matrices211 based on the distance of the affine invariant metric405,

which they generalize to any manifoldM equipped with a distance ρ:

p(x) ∝ exp

(
−ρ(x,m)

σ

)
, ∀x ∈M (4.1)

where m ∈ M, σ ∈ R>0(positive reals) are parameters of the probability density p. Reimherr

et al. 425 show that the mechanism obtained achieves pure differential privacy and provides an

upper bound for the expectation of its utility (a measure of the deviation from non-privatized

computations) for the Fréchet mean query. Their method is applicable to various Riemannian

manifolds that satisfy some regularity conditions.

Approximate differential privacy relaxes pure differential privacy (see Section 4.2) but pro-

vides significantly better utility for higher dimensions and is heavily used in real-world appli-

cations2. In the Euclidean case, the Gaussian mechanism, where noise is added from standard

Gaussian, satisfies approximate differential privacy. To this end, we make use of log Gaussian

distribution454, an intrinsic distribution on SPD matrices, for deriving approximate differentially

private mechanisms. This relaxation helps us obtain better utility compared to the Riemannian

Laplace mechanism in terms of dimension, similar to the standard Euclidean case. We summa-

rize our contributions as follows.
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Mechanism A DP E[ρ2(f(D),A(D))] Theoretical Results
Riemannian Laplace425 Pure DP O(k4) Expectation of ρ2(f(D),A(D))
tangent Gaussian (Ours) Approx. DP O(ln(1/δ)k2) Exact Distribution of ρ2(f(D),A(D))

Table 4.1: Differences between existing425 and proposed mechanisms for private Fréchet
mean queries on the manifold of k × k SPD matrices endowed with the log-Euclidean metric.

The notation ρ2(f(D),A(D)) represents the utility with D the dataset, A the mechanism under
consideration, ρ the log-Euclidean distance, f the Fréchet mean and δ quantifies approximate

differential privacy.

1. We propose a new and simple mechanism - called the tangent Gaussian Mechanism - that

privatizes any statistical summary on the manifold of Symmetric Positive Definite (SPD)

matrices endowed with the log-Euclidean metric. We prove that it achieves approximate

differential privacy (Th. 8).

2. When the statistical summary is the Fréchet mean, we show that our mechanism obtains

significant improvement in terms of utility over recent works - which we demonstrate

theoretically and practically for data in higher dimensions. Further, our mechanism is

computationally efficient and easily implementable.

3. We present the effectiveness of our mechanism on synthetic and real-world (medical)

imaging data, the latter being represented via their covariance descriptors. To this aim,

we also prove a theoretical bound on the radius of the log-Euclidean geodesic ball with

the covariance descriptor pipeline517 - required for the applicability of our mechanism

(Th. 11).

Table 4.1 highlights the technical differences between425 and our work.

4.2 PRELIMINARIES AND NOTATIONS

Elements of Riemannian Geometry LetM be a d-dimensional smooth connected manifold

and TpM be its tangent space at point p ∈ M. A Riemannian metric g on M is a collection
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of inner products gp : TpM× TpM→ R that vary smoothly with p. A manifoldM equipped

with a Riemannian metric g is called a Riemannian manifold. Importantly, the metric g gives

a distance ρ onM. Let γ : [0, 1] → M be a smooth parametrized curve onM with velocity

vector at t denoted as γ̇t ∈ Tγ(t)M. The length of γ is defined as Lγ =
∫ 1
0

√
gγ(t)(γ̇t, γ̇t)dt

and the distance ρ between any two points p, q ∈M is: ρ(p, q) = infγ:γ(0)=p,γ(1)=q Lγ .

If, in addition, M is complete for ρ, then any two points p, q ∈ M can be joined by

a length-minimizing curve, called a geodesic. We refer the reader to141,306,222 for a detailed

exposition.

Elements of Differential Privacy (DP) Let X be an input data space andM the manifold

under consideration. Let f : X n →M be a manifold-valued statistical summary that requires

privatization with respect to some sensitive dataset D of size n, i.e. D ∈ X n. Two datasets

D,D′ ∈ X n are said to be adjacent if they differ by at most one data point. We denote adjacency

as D ∼ D′. The sensitivity of the summary f with respect to the distance ρ onM is defined as:

∆ρ = sup
D∼D′

ρ(f(D), f(D′)), (4.2)

which is the maximum amount of deviation that can occur in the output of f for adjacent

datasets.

A mechanism A : X n → M is a randomized algorithm that takes a dataset D as input

and outputs a privatized version of the summary f on D. The mechanism A satisfies (ϵ, 0)

differential privacy (also pure differential privacy) if, for all adjacent datasets D ∼ D′ and for

all measurable sets S ofM the following holds:

P[A(D) ∈ S] ≤ exp (ϵ)P[A(D′) ∈ S] (4.3)
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The intuition is that the change of a single element of the data space X does not significantly

alter the output distribution of the mechanism. As a relaxation, the mechanism A satisfies (ϵ, δ)-

differential privacy (also approximate differential privacy) if, for all adjacent datasets D ∼ D′

and for all measurable sets S ofM:

P[A(D) ∈ S] ≤ exp (ϵ)P[A(D′) ∈ S] + δ.

Intuitively, δ can be thought of as the probability of privacy failure when Eq. equation 4.3 is not

guaranteed.

Let pA(D) be the density of the random variable Y = A(D). Given adjacent datasets

D ∼ D′, the privacy loss function of A is defined as

ℓA,D,D′(y) = ln

(
pA(D)(y)

pA(D′)(y)

)
∀y ∈M, (4.4)

and the privacy loss random variable is LA,D,D′ = ℓA,D,D′(Y )42. Importantly for our deriva-

tions, both sufficient and sufficient & necessary conditions for the mechanism A to be (ϵ, δ)-

differentially private (DP) can be formulated in terms of LA,D,D′ . The sufficient condition

writes : ∀D ∼ D′ : P[LA,D,D′ ≥ ϵ] ≤ δ =⇒ A is(ϵ, δ)-DP. The sufficient & necessary

condition is: ∀D ∼ D′ : P[LA,D,D′ ≥ ϵ]− exp (ϵ)P[LA,D,D′ ≤ −ϵ] ≤ δ ⇐⇒ A is(ϵ, δ)-DP.

Fréchet Mean When the data space X is equal to the manifoldM, we will be interested

in mechanisms that can privatize a specific statistical summary f called the Fréchet mean. The

sample Fréchet mean X 179 of the dataset D = {X1, . . . Xn} on the manifoldM is defined as

X ≜
{
p|p ∈ argmin

q∈M

n∑
i=1

ρ2(q,Xi)

}
,

i.e. we have in this case X = f(D) for D ∈Mn. Intuitively, the Fréchet mean uses a property

111



of the mean on linear spaces — namely, the fact that the mean minimizes the sum of squared

distances to the data points - as a definition of mean on manifolds. Crucially, the Fréchet mean

depends on the distance ρ and, therefore, on the Riemannian metric defined on M. We also

note that the Fréchet mean might not always exist, and if it exists, it might not be unique – see

supplementary materials. In practice, computing X generally requires optimization algorithms

such as gradient descent on manifolds73.

4.3 GEOMETRY OF THE SPD MANIFOLD WITH LOG EUCLIDEAN METRIC

Manifold and vector space structures We now restrict M to be the manifold of symmetric

positive definite (SPD) matrices:

SPD(k) =
{
X ∈ Rk×k|XT = X and ∀u ∈ Rk \ {0} , uTXu > 0

}
, (4.5)

which has dimension d = k(k+1)
2 . The tangent space of the manifold SPD(k) at any point

X ∈ SPD(k) is the vector space of symmetric matrices SYM(k). The mathematical construct

(SPD(k),+, .) is not a vector space under element-wise addition and element-wise scalar mul-

tiplication. This can be seen from the observation that a ∈ R≤0, X ∈ SPD(k) =⇒ anX 6∈

SPD(k). Instead, SPD(k) is an open cone of Rk×k and, as such, naturally possesses a smooth

manifold structure which can further be equipped with different Riemannian metrics506. How-

ever, Arsigny et al.34 showed in a surprising result that SPD(k) can be given a vector space

structure (SPD(k),⊕,�) via the operations ⊕,� defined in Table 4.2, where Expm, Logm de-

note the matrix exponential and matrix logarithm. This fact is central to the proofs provided in

the present paper.

Riemannian structure Arsigny et al. further define a Riemannian metric on SPD(k), called
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OPERATION NOTATION EXPRESSION

Addition X1 ⊕X2 Expm [LogmX1 + LogmX2]

Subtraction X1 	X2 Expm [LogmX1 − LogmX2]

Scalar Multiplication a�X Expm [a.LogmX]

Table 4.2: Operations turning the manifold SPD(k) into a vector space. Expm and Logm
denote the matrix exponential and logarithms, respectively. X1, X2 belong to SPD(k) while

a ∈ R is a scalar.

the log-Euclidean metric, which induces the following distance:

ρLE(X1, X2) = ‖LogmX1 − LogmX2‖F , ∀X1, X2 ∈ SPD(k), (4.6)

where ‖.‖F denotes the Frobenius norm on matrices. Importantly, the log-Euclidean metric33

gives a unique and simple closed-form expression for the Fréchet mean in terms of matrix

logarithm and matrix exponential

XLE = Expm

[
1

n

n∑
i=1

LogmXi

]
, (4.7)

for the dataset X1, ..., Xn ∈ SPD(k).

Maps between spaces Lastly, we present maps that will help us define the differential

privacy mechanism proposed in the next section. Consider the map vecd : SYM(k)→ R
k(k+1)

2

defined as vecd(X) =
[
diag(X)T ,

√
2 upperdiag(X)T

]T
, where diag : SYM(k) → Rk and

upperdiag : SYM(k) → R
k(k−1)

2 build vectors from the diagonal, and from the strictly upper

diagonal entries, of the matrix X . The map vecd is invertible, and we denote by invvecd its

inverse. Specifically, the spaces SPD(k), SYM(k) and R
k(k+1)

2 are now related as follows:

SPD(k) SYM(k) R
k(k+1)

2 .
Logm

Expm

vecd

invvecd
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4.4 TANGENT GAUSSIAN MECHANISM ON SPD MANIFOLDS

We can now introduce our differential privacy mechanism for statistical summaries on the

SPD(k) manifold. Let f : X n → SPD(k) be any SPD(k)-valued summary that needs to be

privatized. The proposed mechanism is based on the log Gaussian distribution on the SPD man-

ifold454, which is defined as follows. Consider a mean M ∈ SPD(k) and a tangent covariance

Σ ∈ SPD
(
k(k+1)

2

)
. We can (i) first map the mean M to the tangent space SYM(k) of SPD(k)

at the identity using the matrix Logarithm Logm, then (ii) to R
k(k+1)

2 using the map vecd intro-

duced in the previous section, and (iii) consider whether the result follows a traditional Gaussian

distribution.

Definition 4.4.1 (Log Gaussian Distribution on SPD(k)454). Given a mean M ∈ SPD(k), and

a tangent covariance Σ ∈ SPD
(
k(k+1)

2

)
, we say that X ∼ LN (M,Σ) follows a log Gaussian

distribution on SPD(k) if vecd[LogmX] ∼ N (vecd[LogmM ],Σ) follows a (regular) Gaus-

sian distribution with mean vecdLogmM and covariance matrix Σ on R
k(k+1)

2 .

The density p(X|M,Σ) is then given by

J(X)

(2π)
d
2 (detΣ)

1
2

exp

(
−1

2
vecd(LogmX − LogmM)TΣ−1 vecd(LogmX − LogmM)

)

where d = k(k+1)
2 , J(X) = 1

detX

∏
i<j h(λi, λj), and h(λi, λj) =


(log λi − log λj) λi > λj

1
λi

λi = λj

,

with λi, λj eigenvalues of the matrix X .

The definition of log Gaussian distribution on the SPD(k) manifold allows us to define our

proposed tangent Gaussian mechanism.
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Inputs :Dataset D of k × k SPD matrices of size n,
sigma-type ∈ {’classical’, ’analytic’ }, ∆LE the log-Euclidean
sensitivity of f , ϵ > 0, δ ∈ (0, 1) and additionally ϵ < 1 if sigma-type
is ’classical’, the noise calibration subroutines CLASSIC,
ANALYTIC which take ∆LE, ϵ, δ and provide σ.

Output :Private f(D)
if sigma-type is ’classical’ then σ = CLASSIC(∆LE, ϵ, δ); else
σ = ANALYTIC(∆LE, ϵ, δ);

Compute non private output : fnp := f(D)
Compute mean of Gaussian distribution: M := vecd[Logm fnp], M ∈ R

k(k+1)
2

Sample from the Gaussian distribution in R
k(k+1)

2 : N ∼ N (M,σ2I)
Map sample to the SPD manifold: fp := Expm[invvecdN ]
Return private fp

Algorithm 1: tangent Gaussian Mechanism for f : X n → SPD(k)

Definition 4.4.2 (tangent Gaussian Mechanism). Consider any statistical summary f : X n →

SPD(k) on the manifold SPD(k) equipped with log-Euclidean metric. Given σ2 > 0, we define

the tangent Gaussian mechanism ATG : X n → SPD(k), as

ATG(D) = X,where X ∼ LN (f(D), σ2I).

We now state our main theorem, which shows that the privacy loss of the tangent Gaussian

mechanism is normally distributed with mean and variance parameterized by the log-Euclidean

distance. Proof is given in Appendix 4.8.2

Theorem 7 (Distribution of Privacy Loss for the tangent Gaussian Mechanism). Let ATG be a

tangent Gaussian mechanism with variance σ2. Its privacy loss is normally distributed as

LATG,D,D′ ∼ N
(
ρ2LE(f(D), f(D′))

2σ2
,
ρ2LE(f(D), f(D′))

σ2

)
.

This distribution is analogous to the distribution of the privacy loss for the Euclidean Gaus-
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sian mechanism but with the log-Euclidean sensitivity instead of the Euclidean sensitivity160,42.

Consequently, our theoretical analysis of the tangent Gaussian mechanism - deriving privacy

guarantees from the distribution of the privacy loss above - closely follows the steps of the anal-

ysis for the Euclidean Gaussian case. Specifically, we can proceed in two ways: with either a

(1) classical approach where sufficient conditions are used to show the mechanism is (ϵ, δ)-DP

as in160, or with an (2) analytic approach where the utility is better by using sufficient and

necessary conditions42.

Theorem 8 (Privacy Guarantee of tangent Gaussian Mechanism). Consider f : X n → SPD(k)

with log-Euclidean sensitivity ∆LE.

1. (Classical) Given ϵ, δ ∈ (0, 1), choosing σ = ∆LE
√
2 ln(1.25/δ)/ϵ, makes the tangent

Gaussian mechanism (ϵ, δ)-differentially private.

2. (Analytic) Given ϵ ≥ 0, δ ∈ (0, 1) and Φ the cumulative distribution of the standard

Gaussian, choosing any σ that satisfies Φ(∆LE
2σ −

ϵσ
∆LE

)−exp(ϵ)Φ(∆LE
2σ −

ϵσ
∆LE

) ≤ δ makes

the tangent Gaussian mechanism (ϵ, δ)-differentially private.

Proofs are given in Appendix 4.8.3. Algorithm 1 shows the implementation of the mecha-

nism.

4.5 PRIVATIZING THE FRÉCHET MEAN

In the previous section, f is any function that outputs summary statistics on SPD(k). In this

section, we seek to privatize the Fréchet mean f of the log-Euclidean metric. We first compute

its sensitivity and then provide its utility. In what follows, Br(M) = {X|ρLE(M,X) < r}

denotes an open geodesic ball of radius 0 < r <∞ centered at M ∈ SPD(k).
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Theorem 9 (Sensitivity of Log-Euclidean Fréchet Mean). Given data in Br(M) for some 0 <

r <∞ and M ∈ SPD(k), the sensitivity of the log-Euclidean Fréchet mean verifies: ∆LE ≤ 2r
n .

Note that the above theorem can also obtained from425 Theorem 2 by setting κ = 0. The

utility of the tangent Gaussian mechanism for a Fréchet mean query is then given below.

Theorem 10 (Utility). Let ATG be the (classical) tangent Gaussian mechanism, Br(M) a geodesic

ball of radius 0 < r <∞ and center M ∈M containing the dataset D and f the Fréchet mean.

The utility of the mechanism ATG is given by:

ρ2LE(f(D),ATG(D))) ∼ σ2χ2
d,

E[ρ2LE(f(D),ATG(D))] =
4r2 ln(1.25/δ)d

n2ϵ2
with d = dim(SPD(k)) =

k(k + 1)

2
,

where χ2
d represents the chi squared distribution with d degree of freedoms.

Proofs of Th. 9 and Th. 10 are given in Appendix 4.8.4. We compare these results with

those of the Riemannian Laplace mechanism425, denoted ARL.

Utility: We compare the utility in terms of size k of spd matrices k×k because dependancy

on other factors n, ϵ are same. Utility of the Riemannian Laplace mechanism has an expectation

given by E[ρ2LE(f(D),ARL(D))] = O(k4). By contrast, our tangent Gaussian mechanism pro-

vides E[ρ2LE(f(D),ATG(D))] = O(ln(1/δ)k2). Hence our mechanism has significantly better

utility in terms of dimension.

Pure DP vs Approx DP: It should be noted that our privacy guarantees are weaker than

Riemannian Laplace. In practice, δ is chosen to be cryptographically small and typically δ �

1/n84.

Theoretical Results: The authors of425 characterize the utility in terms of its expectation

E[ρ2LE(f(D),A(D))]. By contrast, our results yield a more complete picture, as we derive the

117



probability distribution of ρ2LE(f(D),A(D))) given that we are tailoring mechanism for flat

geometry of SPD matrices with log-Euclidean metric.

4.6 EXPERIMENTS

We use the Riemannian Laplace mechanism as the baseline and recall that this mechanism uses

the Riemannian Laplace distribution equation 4.27. Efficient sampling from the Riemannian

Laplace distribution is only discussed for (i) SPDManifold with affine-invariant metric and

(ii) Hypersphere with Euclidean metric in Reimherr et al. 425 and we didn’t find any sampling

procedure from this distribution on SPD manifold with log-Euclidean metric in425,211 and hence

we used MCMC sampling in our experiments.

4.6.1 EXPERIMENTS ON SYNTHETIC DATASETS

The utility depends on privacy parameters (ϵ, δ), the size k of the matrices, the dataset size

n, and r, the radius of the geodesic ball containing the dataset. The utilities of the tangent

Gaussian and Riemannian Laplace mechanisms have the same dependency on n, ϵ, r, such that

their differentiating parameters are δ, k. Consequently, our experiments on synthetic data fix

n, ϵ, r and vary δ, k.

We also consider Extrinsic approach suggested in425 where Fréchet mean is seen to be be-

longing to Symmetric matrix and noise from Euclidean normal distribution is added, specifically

AEX(D) = X,X ∼ invvecd
(
N
(
vecd X̄LE, σ

2I
))

for appropriate σ. If r is the radius of the

log-Euclidean geodesic ball of data, extrinsic sensitivity is given by ∆EX = 2(exp (r)−1)/n425

Proposition 1. It should be emphasized that the resultant privatized Fréchet mean is no longer a

SPD matrix. Hence, Reimherr et al. 425 compared the deviation between private and non-private

Fréchet mean in the standard Euclidean norm.
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Figure 4.1: Utilities on synthetic data for Rie-Laplace the Riemannian Laplace mechanism425,
and TanG Classical, TanG-Cla and TanG Analytic, TanG-Ana our proposed tangent Gaussian

mechanisms (classical and analytic versions), and ExtG-Analytic the Extrinsic analytic
gaussian mechanism for different matrix sizes k and privacy parameter ϵ. ρLE and ρE denotes

log-Euclidean and Euclidean distance respectively. Note that the output of the extrinsic
mechanism is not an SPD matrix, and hence, deviation is measured in standard Euclidean

distance.

We generate random k×k SPD matrices as follows: (i) generate k real values (λ1, . . . , λk)

uniformly in [e−r, er], (ii) build D the diagonal matrix with Dii = λi, for i ∈ {1, . . . , k}, (iii)

generate a k×k random orthogonal matrix E with the Haar distribution, and (iv) build the SPD

matrix as: X = EDET . This process generates SPD matrices that can be shown to belong

to the geodesic ball B√kr(I) with I the identity matrix: ‖LogmX‖F =
√∑k

i=1(lnλi)2 ≤
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√
kr2 =

√
kr. We use n = 500 and r = 1/4 in our experiments and hence ∆LE ≤

√
k/1000.

Fig. 4.1 (first) compares utilities using a fixed δ = 10−6 for our mechanism, an MCMC

burn-in of 50, 000 for the Riemannian Laplace mechanism, and different values of k ∈ {2, 5, 10, 15, 20, 25, 30}

and ϵ ∈ {0.1, 0.2, 0.3, 0.4}. Each experiment is repeated 10 times, the results are averaged, and

the band (µ − 2σ, µ + 2σ) is shown, where µ and σ are the mean and standard deviation, re-

spectively, of the associated result. The σ is small for our mechanism and does not appear on

the plots. The tangent Gaussian mechanisms (ours) yield almost ×10 utility improvement for

larger k for each ϵ. Fig. 4.1 (middle) shows that, as expected, our utility is not significantly

impacted by different values of δ ∈ {10−7, 10−8, 10−9}. Fig. 4.1 (bottom) compares utilities

between Extrinsic Gaussian mechanism (analytic) and tangent Gaussian mechanism (analytic)

in Euclidean distance and shows the proposed mechanism is better.

4.6.2 EXPERIMENTS ON REAL-WORLD DATASETS

We run experiments on covariance descriptors of real-world images. Covariance descriptors517

have been widely used for face and person recognition518,603,399,292,336,82,596,346, action and ges-

ture recognition119,240,463, 3D shape analysis501,336, medical imaging279,120; and even recently

as layers in neural networks588 - which makes them interesting data to privatize.

Let I ∈ Rh×w×c be an image of height h, width w and with c channels, where c is 1 for

grayscale images and 3 for RGB images. Let ϕ : Rh×w×c → Rhw×k be a feature extractor of

dimension k, i.e. ϕ(I)(x) is a k-dimensional vector at each spatial coordinate x in the image’s

domain S. Given a small η > 0, the covariance descriptor Rη : Rh×w×c → SPD(k) associated

with ϕ is defined as

Rη(I) =

[
1

|S|
∑
x∈S

(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T

]
+ η.I, (4.8)
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Figure 4.2: Utilities on the private Fréchet means for different privacy parameters ϵ, and
real-world datasets of sizes N . Top: PathMNIST (RGB images yielding 11× 11 SPD
descriptors). Bottom: OctoMNIST (grayscale images yielding 9× 9 SPD matrices).

Rie-Laplace is the Riemannian Laplacian mechanism425 and TanG the tangent Gaussian
mechanism for different values of δ (ours). We also show the (µ− 2σ, µ+ 2σ) band.

where µ = |S|−1
∑

x∈S ϕ(I)(x), and η.I ensures Rη(I) ∈ SPD(k) with η usually set to 10−6.

Our experiments follow517,252 and use the covariance descriptors associated with the feature vec-

tor given as ϕ(I)(x) =
[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|I|x
|I|y

)]
, where

x = (x, y), intensities derivatives are denoted by Ix, Iy, Ixx, Iyy and we added the intensity val-

ues I for each channel compared to517,252. For gray scale images, ϕ(I)(x) is a 9-dimensional

vector that makes Rη(I) a 9×9 SPD matrix, while for RGB images ϕ(I)(x) is a 11-dimensional

vector that makes Rη(I) a 11× 11 SPD matrix. We are within the assumptions of Th. 10 since

such covariance descriptors belong to geodesic balls centered at I , as shown by the following

theorem.

Theorem 11. Let Rη(I) be the covariance descriptor associated with the feature vector ϕ(I)

above.
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1. If I is a gray scale image, then ‖Logm Rη(I)‖F ≤
√
9max {|ln η|, |ln(14 + η)|}.

2. If I is a RGB image, then ‖Logm Rη(I)‖F ≤
√
11max {|ln η|, |ln(16 + η)|}.

Proof is given in Appendix 4.8.5

EXPERIMENTS ON MEDICAL IMAGING DATA

We use images from 4 classes of the medical imaging datasets PATHMNIST (grayscale) and

OctoMNIST (RGB) from MedMNISTv2577, compute the 4 class-wise Fréchet means of their

covariance descriptors (η = 10−6), which we privatize using the Riemannian Laplace and

tangent Gaussian (analytical) mechanisms. We avoid using extrinsic approach because ex-

trinsic sensitivity is extremely high Fig. 4.2 shows the utilities for different values of ϵ ∈

{0.1, 0.3, 0.5, 0.7, 0.9} and δ ∈ {10−5, 10−7, 10−9}. The dataset sizes N range from 8000

to 46276 images. The sensitivity of the Fréchet mean required for the mechanisms is calcu-

lated using Th. 11 and Th. 9. Each experiment is repeated 10 times and averaged, and the band

(µ− 2σ, µ+2σ) is shown, where µ and σ are the mean and standard deviation, respectively, of

the associated result. Our mechanism also outperforms the Riemannian Laplace on real-world

datasets, and the utility gap is higher for smaller values of N and ϵ.

EXPERIMENTS ON STANDARD IMAGING DATA

In this section, we perform additional experiments on standard image datasets. We choose

MNIST, KMNIST121 (grayscale images) and CIFAR10, FashionMNIST572 (RGB images) as

datasets. We extract images from 4 classes for each dataset and compute the corresponding

class-wise Fréchet means of their covariance descriptors (η = 10−6), which we privatize us-

ing the Riemannian Laplace Mechanism425 and our proposed mechanism tangent Gaussian

(Analytic). Fig. 4.3 shows the utilities for different values of ϵ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
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Figure 4.3: Utilities on the private Fréchet means for different privacy parameters ϵ, and
real-world datasets of sizes N . First and Second Row: Fréchet mean from MNIST, KMNIST

(Grayscale images yielding 9× 9 SPD descriptors). Third and Fourth Row: Fréchet mean from
CIFAR10, FashionMNIST (RGB images yielding 11× 11 SPD descriptor). Rie-Laplace means

the Riemannian Laplacian mechanism. TanG means the tangent Gaussian Mechanism for
different values of δ (ours). We also show the mean-2∗std, mean+2∗std bands.
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δ ∈ {10−5, 10−7, 10−9}. Each experiment is repeated 10 times, the results are averaged, and

the band (µ−2σ, µ+2σ) is shown, where µ and σ are the mean and standard deviation, respec-

tively, of the associated result. Fig. 4.3 illustrates the better utility of our mechanism compared

to the Riemannian Laplace mechanism.

4.7 CONCLUSION AND FUTURE WORK

Differential privacy for geometric statistics and learning is at a very early stage. We proposed

a tangent Gaussian mechanism that is specific to the SPD manifold equipped with the log-

Euclidean metric and that outperforms the only existing baseline. One limitation of our work is

that the proposed mechanism is restricted to one manifold with one specific metric. While the

log-Euclidean metric is one of the most important metrics on the SPD manifold, future work

should investigate how to build a Gaussian mechanism that works on any complete Riemannian

manifold. We could define such as a mechanism using a Riemannian Gaussian distribution

derived in404. The main challenge would be to show that the associated procedure is (ϵ, δ) dif-

ferentially private. Future work can also seek to privatize other geometric statistical algorithms

like geodesic regression or principal geodesic analysis.
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4.8 PROOFS

Consider k ∈ N∗. In this supplementary material, ‖.‖L2 and 〈, 〉2 denote the standard Euclidean

inner product and the Euclidean norm on vectors. i.e., for all x, y ∈ Rk

〈x, y〉L2 =

p∑
i=1

xiyi.

‖x‖L2 =
√
〈x, x〉L2.

Then, 〈, 〉F , ‖.‖F denotes Frobenius inner product and Frobenius norm respectively, i.e., given

A,B ∈ Rk×k

〈A,B〉F = Tr[ATB].

‖A‖F =
√
〈A,A〉F .

Lastly, ‖.‖2 denotes the spectral norm of matrices. i.e., for all A ∈ Rk×k

‖A‖2 = sup
∥x∥L2 ̸=0

‖Ax‖L2

‖x‖L2
.

4.8.1 USEFUL LEMMAS

In this section, we derive the distribution of the privacy loss. Its proof requires us first to

introduce the following definitions.

Definition 1 (Diffeomorphism and Isometry). A diffeomorphism between two manifolds M1

and M2 is an invertible smooth function whose inverse is also smooth. A diffeomorphism ϕ

between two Riemannian manifolds (M1, g1), (M2, g2) is called an isometry if it preserves

distances i.e., ρg1(p, q) = ρg2(ϕ(p), ϕ(q)) for all p, q ∈M1.
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Note that Logm is a diffeomorphism from SPD(k) to SYM(k) and vecd is a diffeomor-

phism from SYM(k) to R
k(k+1)

2 , making vecdLogm a diffeomorphism from SPD(k) to R
k(k+1)

2 .

Importantly, for our derivations in the proofs of this Subsection, the operation vecdLogm pre-

serves the distances – making it an isometry.

Lemma 4.8.1 (vecdLogm is an isometry). Let Logm : SPD(k)→ SYM(k) be the matrix loga-

rithm and let vecd : SYM(k)→ R
k(k+1)

2 be defined as vecd(X) =
[
diag(X)T ,

√
2 upperdiag(X)T

]T
.

Then vecdLogm : SPD(k) → R
k(k+1)

2 is an isometry from SPD(k) equipped with the log-

Euclidean metric to standard Euclidean space R
k(k+1)

2 with standard L2 metric, i.e.,

ρLE(X1, X2) = ρL2(vecdLogmX1, vecdLogmX2), (4.9)

where X1, X2 ∈ SPD(k). Hence we have that

‖LogmX‖F = ‖vecdLogmX‖L2. (4.10)
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Proof. Let X1, X2 be elements of SPD(k). We have:

ρ2LE(X1, X2)

= ‖LogmX1 − LogmX2‖2F

=
k∑
i,j

(LogmX1 − LogmX2)
2
ij

=
k∑

i<j

(LogmX1 − LogmX2)
2
ij +

k∑
i>j

(LogmX1 − LogmX2)
2
ij +

k∑
i=j

(LogmX1 − LogmX2)
2
ij

= 2.

k∑
i<j

(LogmX1 − LogmX2)
2
ij +

k∑
i=j

(LogmX1 − LogmX2)
2
ij

= ‖
√
2 upperdiag(LogmX1 − LogmX2)‖2L2 + ‖diag (LogmX1 − LogmX2)‖2L2

= ‖vecd(LogmX1 − LogmX2)‖2L2

= ‖vecdLogmX1 − vecdLogmX2‖2L2

= ρ2L2(vecdLogmX1, vecdLogmX2).

from which we have Eq. equation 4.9. Eq. equation 4.10 follows as

‖LogmX‖F = ρLE(X, I) = ρL2(vecdLogmX, vecdLogm I) = ‖vecdLogmX‖L2.

Now, we prove some useful properties of the Log Gaussian distribution, denoted LN , that

we will use later. Essentially, we show that the Log Gaussian distribution behaves “nicely” with

a vector space structure of SPD(k). We recall that the vector space operations on the SPD
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manifold are defined as follows,

X1 ⊕X2 = Expm [LogmX1 + LogmX2] . (4.11)

X1 	X2 = Expm [LogmX1 − LogmX2] . (4.12)

Lemma 4.8.2. Take k ∈ N. Let I denote the k × k identity matrix, and consider M,C ∈

SPD(k), Σ ∈ SPD(k(k+1)
2 ) and χ2

d the chi-square distribution with d degrees of freedom. Then:

X ∼ LN (I,Σ) =⇒ X ⊕M ∼ LN (M,Σ). (4.13)

X ∼ LN (I, σ2I) =⇒ 〈LogmC,LogmX〉F ∼ N (0, σ2‖LogmC‖2F ). (4.14)

X ∼ LN (I, σ2I) =⇒ ‖LogmX‖2F ∼ σ2χ2
k(k+1)

2

. (4.15)

Proof. We first recall standard properties of multivariate normal distribution. Let m, a ∈ Rp

and Σ, I ∈ Rp×p then following properties hold true.

x ∼ N (m,Σ) =⇒ a+ x ∼ N (a+m,Σ). (4.16)

x ∼ N (m,Σ) =⇒ aTx ∼ N (aTm, aTΣa). (4.17)

x ∼ N (0, σ2I) =⇒ ‖x‖2L2 ∼ σ2χ2
p. (4.18)

where χ2 denotes chi-square distribution. We prove the properties (a)-(c) below.
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(a) Distribution of X ⊕M .

vecd[Logm[X ⊕M ]]
(∗)
= vecd[Logm[Expm [logX + logM ]]]

= vecd[LogmX + LogmM ]

= vecd[LogmX] + vecd[LogmM ]

(∗∗)∼ N (vecd[LogmM ],Σ).

where in (∗) we used Eq. 4.11 and in (∗∗) Eq. equation 4.16.

(b) Distribution of 〈LogmC,LogmX〉F .

〈LogmC,LogmX〉F
(∗)
= 〈vecd[LogmC], vecd[LogmX]〉L2

(∗∗)∼ N
(
〈vecd[LogmC], 0〉L2, vecd[LogmC]Tσ2I vecd[LogmC]

)
∼ N (0, σ2‖vecd[LogmC]‖2L2)

(∗)∼ N (0, σ2‖LogmC‖2F ).

where we used Eq. 4.10 in (∗) and Eq. 4.17 in (∗∗).

(c) Distribution of ‖LogmX‖2F .

‖LogmX‖2F
(∗)
= ‖vecd[LogmX]‖2L2

(∗∗)∼ σ2χ2
k(k+1)

2

.

where we used Eq. 4.10 in (∗) and Eq. 4.18 in (∗∗) with p = k(k+1)
2 .

As a corollary, we give an equivalent reformulation of the tangent Gaussian mechanism that

will be useful in the rest of the proofs.
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Corollary 4.8.1 (Equivalent Reformulation of tangent Gaussian). Let ATG be a tangent Gaus-

sian mechanism defined as ATG(f(D)) = X, X ∼ LN (f(D), σ2I). Then, it is equivalently

defined as:

ATG(f(D)) = f(D)⊕N,N ∼ LN (I, σ2I).

Proof. The proof comes from Eq. 4.13 of Lemma 4.8.2.

Now, we are ready to prove the distribution of the privacy loss of the tangent Gaussian

Mechanism, which is given Th. 7.

4.8.2 PROOF OF TH. 7

Theorem 4.8.1 (Distribution of the privacy loss of the tangent Gaussian). Let ATG be a tangent

Gaussian mechanism with variance σ2. Its privacy loss is normally distributed as

LATG,D,D′ ∼ N
(
ρ2LE(f(D), f(D′))

2σ2
,
ρ2LE(f(D), f(D′))

σ2

)
.

Proof. Assume that D,D′ are adjacent datasets. Let V = f(D)	 f(D′). Consider the privacy
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loss random variable LATG,D,D′ . Let Y = ATG(D).

ln

(
pATG(D)(Y )

pATG(D′)(Y )

)
(1)
= ln

(
pATG(D)(f(D)⊕N)

pATG(D′)(f(D)⊕N)

)
(2)
= −1

2

[
vecd

(
Logm(f(D)⊕N)− Logm f(D)

)]T I

σ2
vecd

(
Logm(f(D)⊕N)− Logm f(D)

)
+

1

2

[
vecd

(
Logm(f(D)⊕N)− Logm f(D′)

)]T I

σ2
vecd

(
Logm(f(D)⊕N)− Logm f(D′)

)
(3)
= − 1

2σ2
‖vecd

(
LogmN

)
‖2L2 +

1

2σ2
‖vecd

(
Logm f(D)− Logm f(D′) + LogmN

)
‖2L2

(4)
= − 1

2σ2
‖vecd

(
LogmN

)
‖2L2 +

1

2σ2
‖vecd

(
Logm(V ⊕N)

)
‖2L2

(5)
=

1

2σ2

[
‖Logm(V ⊕N)‖2F − ‖LogmN‖2F

]
=

1

2σ2

[
‖LogmV ‖2F + 2〈LogmV,LogmN〉F

]
(6)∼ 1

2σ2

[
‖LogmV ‖2F + 2N

(
0, σ2‖LogmV ‖2F

)]
(7)∼ N

(
‖LogmV ‖2F

2σ2
,
‖LogmV ‖2F

σ2

)
(8)∼ N

(
ρ2LE(f(D), f(D′))

2σ2
,
ρ2LE(f(D), f(D′))

σ2

)
,

where we used the following properties in each of the steps labeled above.

1. Equivalent reformulation of tangent Gaussian, Corollary. 4.8.1.

2. Density of Log Gaussian Distribution.

3. f(D)⊕N = Expm[Logm f(D) + LogmN ].

4. Logm(V ⊕N) = Logm f(D)− Logm f(D′) + LogmN .

5. Isometry of the vecd operation, Eq.4.10
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6. Eq. 4.14 in Lemma. 4.8.2.

7. standard Gaussian property, see Eq. 4.16.

8. ‖LogmV ‖2F = ‖Logm f(D)− Logm f(D′)‖2F = ρ2LE(f(D), f(D′)).

4.8.3 PROOF OF TH. 8

In this section, we give proof of privacy guarantee of the tangent Gaussian Mechanism.

Proof. The proof proceeds similarly to the proofs referenced below by only replacing the stan-

dard sensitivity ∆L2 with respect to the Euclidean L2 metric, by ∆LE:

1. (Classical). See Th. A.1 (Appendix A Page 261) in160.

2. (Analytic). See Th. 5, Th. 8, Th. 9 (Section 3) in42.

The fact that the mechanism is manifold valued comes into play while deriving privacy loss

(Taken care by Theorem 1). Once privacy loss (which is real valued scalar random variable)

is derived, going from privacy loss to actual privacy guarantee wouldn’t be affected whether a

mechanism is manifold-valued or not because both of the above proofs entirely rely on proper-

ties of one-dimensional euclidean Gaussian random variables. Specifically,

1. (Classical). Directly employs tail bound of one-dimensional Gaussian variable that P[x >

t] < σ
π exp(− t2

2σ2 )

2. (Analytic). The method employs both the sufficient and necessary conditions of the

(ϵ, δ) guarantee. Additionally, the algorithm avoids using tail bounds since they may

be loose. Instead, it uses properties of Gaussian CDFs and employs binary search to

132



solve analytically for σ, given (ϵ, δ). See42 Algorithm 1 and discussion therein for more

details.

4.8.4 PROOF OF TH. 9 AND TH. 10

In this section, we prove the sensitivity of the Fréchet Mean in Theorem. 9 and then the utility

of the tangent Gaussian Mechanism in Theorem. 10. First, we give the proof of 9.

Proof. Consider k ∈ N, 0 < r < ∞ and M ∈ SPD(k) such that Br(M) is a geodesic ball

of radius r and center M . Let D ∼ D′ be adjacent datasets of size n ∈ N that lie in Br(M).

Without loss of generality, we can assume that they differ only by their last data point Xn and

X ′
n: D = {X1, X2, . . . , Xn} and D′ = {X1, X2, . . . , X

′
n}. Let XD, XD′ denote the Fréchet

means of D and D′ for the log-Euclidean metric, which can be expressed in closed forms as

mentioned in the main text. The log-Euclidean distance between the Fréchet means writes:

ρLE(XD, XD′)

(∗)
= ‖Logm

(
Expm

(
n∑

i=1

LogmXi

n

))
− Logm

(
Expm

(
n−1∑
i=1

LogmXi

n
+

LogmX ′
n

n

))
‖F

= ‖ 1
n

n−1∑
i=1

LogmXi −
1

n

n−1∑
i=1

LogmXi +
1

n
LogmXn −

1

n
LogmX ′

n‖F

=
1

n
‖LogmXn − LogmX ′

n‖F

=
1

n
ρLE(Xn, X

′
n).
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∆LE = sup
D∼D′

ρLE(XD, XD′) = sup
D∼D′

1

n
ρLE(Xn, X

′
n)

(†)
≤ 1

n

[
ρLE(Xn,M) + ρLE(M,X ′

n)
] (‡)
≤ 2r

n
,

where we use the closed form for the log-Euclidean Fréchet means in (∗), the triangle inequality

in (†), and the assumption that data lies in Br(M) in (‡).

Proof of Th. 10 is given as follows,

Proof. Consider deviation ρ2LE(f(D),ATG(D)))

ρ2LE(f(D),ATG(D))) = ‖Logm f(D)− Logm ATG(D)‖2F
(1)
= ‖Logm f(D)− Logm(f(D)⊕N)‖2F

(2)
= ‖LogmN‖2F
(3)∼ σ2χ2

d,

where we use the following properties at each step:

(1) Corollary. 4.8.1.

(2) f(D)⊕N = Expm [Logm f(D) + LogmN ].

(3) Eq. 4.15 of Lemma. 4.8.2.

Now we derive expression for E[ρ2LE(f(D),ATG(D))]

E[ρ2LE(f(D),ATG(D))]
(1)
= σ2d

(2)
=

2∆2
LE ln(1.25/δ)d

ϵ2

(3)

≤ 8r2 ln(1.25/δ)d

n2ϵ2
.

where we use the following properties at each step:
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1. c ∼ χ2
d =⇒ E[c] = d i.e., the expectation of chi-squared distributed random variable is

the number of degrees of freedom.

2. σ = ∆LE
√
2 ln(1.25/δ)/ϵ for (ϵ, δ)-ATG from Th. 8.

3. ∆LE ≤ 2r
n from Th. 9.

4.8.5 PROOF OF THEOREM 11

In this section, we derive the log-Euclidean geodesic radius of covariance descriptors. We first

prove the following lemma that relates ||LogmX||F in terms of the lower bound on the least

eigenvalue and upper bound on the largest eigenvalue of X .

Lemma 4.8.3. If X ∈ SPD(k) and let λmin(X), λmax(X) be the minimum and maximum eigen-

values of X . If ℓ ≤ λmin(X) and λmax(X) ≤ L Then, ‖LogmX‖F ≤
√
kmax {|ln ℓ|, |lnL|}.

Proof. Consider,

‖LogmX‖F
(†)
≤
√
k‖LogmX‖2

=
√
k

n
max
i=1
|lnλi|

=
√
kmax

{
|

n
min
i=1

lnλi|, |
n

max
i=1

lnλi|
}

(‡)
=
√
kmax

{
|ln

n
min
i=1

λi|, |ln
n

max
i=1

λi|
}

=
√
kmax {|lnλmin|, |lnλmax|} . (4.19)

where (†) uses the fact that A ∈ Rk×k, ‖A‖F ≤
√
k‖A‖2 and (‡) uses the fact that ln is

monotonically increasing. Now, we split the derivation into two cases.
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1. CASE λmin(X) ≥ 1. For x ≥ 1 , | lnx| is an increasing function, which gives us:

|ln ℓ| ≤ |lnλmin(X)| ≤ |lnλmax| ≤ |lnL|

√
kmax {|lnλmin|, |lnλmax|} ≤

√
k|lnL| =

√
kmax {|ln ℓ|, |lnL|} . (4.20)

2. CASE λmin(X) < 1. For x < 1, | lnx| is a decreasing function: |lnλmin| ≤ |ln ℓ|. We

further split the derivation into two sub-cases here

(a) SUB-CASE λmax ≥ 1. In this sub-case |lnλmax| ≤ |lnL| and lnλmin ≤ |ln ℓ| from

which we have that

√
kmax {|lnλmin|, |lnλmax|} ≤

√
kmax {|ln ℓ|, |lnL|} . (4.21)

(b) SUB-CASE λmax < 1. In this sub-case |lnL| ≤ |lnλmax| ≤ |lnλmin| ≤ |ln ℓ|.

√
kmax {|lnλmin|, |lnλmax|} ≤

√
k|ln ℓ| =

√
kmax {|ln ℓ|, |lnL|} . (4.22)

Based on Eq. 4.20, Eq. 4.21, Eq. 4.22 and Eq.4.19. We can conclude the lemma.

Lemma 4.8.4. Let Rη(I) denote the covariance descriptor for image I for given η > 0, which

is defined as follows ,

Rη(I) =

[
1

|S|
∑
x∈S

(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T

]
+ η.I,
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with,

ϕ(I) =
[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|Ix|
|Iy|

)]
.

where x, y are grid positions of Image I, I denote pixel intensity values , |Ix|, |Iy| denotes first

order intensity derivatives and |Ixx|, |Iyy| denotes the second-order intensity derivatives then

following holds,

1. If I is grayscale image, then ‖Rη(I)‖2 ≤ 12 + η.

2. If I is RGB image then ‖Rη(I)‖2 ≤ 14 + η.

Proof. We have:

‖Rη(I)‖2 = ‖

[
1

|S|
∑
x∈S

(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T

]
+ η.I‖2

(1)

≤ 1

|S|
∑
x∈S
‖(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T ‖2 + ‖η.I‖2

≤ max
x∈S
‖(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T ‖2 + η

(2)
= max

x∈S
‖(ϕ(I)(x)− µ)‖2L2 + η

(3)

≤ max
x∈S
‖ϕ(I)(x)‖2L2 + η, (4.23)

where we used the following properties in each of the steps:

1. Triangle Inequality.

2. For all a ∈ Rp, the spectral norm of 1-rank matrix aaT is ‖a‖2L2.
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3. Consider the descriptor ϕ(I) =
[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|Ix|
|Iy |

)]
.

Then, ϕ(I)(x)i ≥ 0 for each x ∈ S and i ∈ {1, . . . , k}. This yields: (µ)i =
(
|S|−1

∑
x∈S ϕ(I)(x)

)
i
≥

0. Hence it implies that ‖ϕ(I)(x)− µ‖2L2 ≤ ‖ϕ(I)(x)‖2L2.

Then, the following calculations provide an upper bound for ‖ϕ(I)(x)‖22. Specifically, we

bound each of the 6 elements constituting the descriptor ϕ(I) =
[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|Ix|
|Iy |

)]
.

1. Normalized grid positions : ∀x ∈ S, 0 ≤ x, y ≤ 1.

2. Pixel intensity values Ci for i ∈ [c] : ∀x ∈ S, 0 ≤ Ci[x] ≤ 1.

3. First intensity derivatives |Ix|, |Iy|: The first intensity derivatives can be obtained by the

convolution operation (denoted as ⋆):

Ix = I ⋆ 1

4


+1 0 −1

+2 0 −2

+1 0 −1

 , Iy = I ⋆ 1

4


+1 +2 +1

0 0 0

−1 −2 −1

 .

Since 0 ≤ I(x) ≤ 1, using the definition of the convolution operation yields ∀x ∈ S ,

|Ix(x)| ≤ 1, |Iy(x)| ≤ 1.

4. Second intensity derivatives |Ixx|, |Iyy|: The second intensity derivatives can be ob-

tained by the convolution operation (denoted as ⋆)
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Ixx = I ⋆ 1

32



+1 0 −2 0 1

+4 0 −8 0 4

+6 0 −12 0 6

+4 0 −8 0 4

+1 0 −2 0 1


, Iyy = I ⋆ 1

32



+1 +4 +6 +4 +1

0 0 0 0 0

−2 −8 −12 −8 −2

0 0 0 0 0

+1 +4 +6 +4 +1


.

Since 0 ≤ I(x) ≤ 1, using the definition of the convolution operation yields |Ixx(x)| ≤

1, |Iyy(x)| ≤ 1.

5. Norm of first intensity derivatives : since |Ix(x)| ≤ 1, |Iy(x)| ≤ 1 we have that ∀x ∈

S,
√
Ix(x)2 + Iy(x)2 ≤

√
2.

6. Angle of intensity derivatives : Note that for a ≥ 0, 0 ≤ arctan a ≤ π
2 . Hence we have

that ∀x ∈ S, arctan
(
|Ix(x)Iy(x) |

)
≤ π

2 .

These provide the following upper bounds on L2 norm of ϕ(I)(x),

for a gray scale image, ∀x ∈ S‖ϕ(I)(x)‖2L2 ≤ 12, (4.24)

for RGB image, ∀x ∈ S‖ϕ(I)(x)‖2L2 ≤ 14. (4.25)

The claim follows by using Eq. 4.24, Eq. 4.25 in Eq. 4.23

Theorem 4.8.2 (Geodesic Radius of Covariance Descriptors).

1. If I is a gray scale image, then ‖Logm Rη(I)‖F ≤
√
9max {|ln η|, |ln(12 + η)|}.

2. If I is a RGB image, then ‖Logm Rη(I)‖F ≤
√
11max {|ln η|, |ln(14 + η)|}.
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Proof. We first note that

λmin(Rη(I)) = λmin

[
1

|S|
∑
x∈S

(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T + η.I

]
(1)

≥ λmin

[
1

|S|
∑
x∈S

(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T

]
+ λmin[ηI]

(2)

≥ 0 + η. (4.26)

where we used Weyl’s inequality for symmetric matrices in (1) and λmin of positive semi definite

matrix is ≥ 0 and λmin[ηI] = η in (2).

For gray scale images, Rη(I) produces a 9× 9 matrix:

‖Logm Rη(I)‖F
(∗)
≤
√
9max {|ln ℓ|, |lnL|}

(∗∗)
=
√
9max {|ln η|, |ln(12 + η)|} ,

where we use Lemma. 4.8.3 in (∗) and Eq.4.26(ℓ = η) and Lemma. 4.8.4(L = 12 + η) in

(∗∗)

For RGB images, Rη(I) produces a 11× 11 matrix:

‖Logm Rη(I)‖F
(†)
≤
√
11max {|ln ℓ|, |lnL|}

(‡)
=
√
11max {|ln η|, |ln(14 + η)|} ,

where we use Lemma. 4.8.3 in (†) and Eq.4.26 (ℓ = η) and Lemma. 4.8.4(L = 14 + η) in

(‡), in a similar fashion.
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Note that in all of our experiments, we choose η = 10−6 and hence | ln η| ≈ 13.8 dominates

over | ln(12 + η)| ≈ 2.5 and | ln(14 + η)| ≈ 2.6.

4.9 EXPERIMENTS

All experiments were run on DELL XPS 17 9710 LAPTOP which has 32GB OF RAM, 11TH

GEN INTEL(R) CORE I9-11900H @ 2.50GHZ Processor. No GPUs were used in the experi-

ments.

4.9.1 IMPLEMENTATION DETAILS

Let k ∈ N, M ∈ SPD(k), σ > 0 and ρLE denote log-Euclidean distance. The Riemannian

Laplace distribution with log-Euclidean distance is given by

p(X|M,σ) =
1

CM,σ
exp

(
−ρLE(X,M)

σ

)
. (4.27)

Note that sampling from Eq. equation 4.27 requires Markov Chain Monte Carlo (MCMC)

methods432, for which one needs to choose a proposal distribution that generates candidates on

the SPD Manifold. We chose the Log Gaussian distribution as the proposal in our experiments

given its simplicity and the fact that it is quick to sample from. In all experiments, we found

that using the log Gaussian distribution as a proposal yields a stable acceptance ratio of 50% to

65%. To summarize,

1. Initialize Xcurr at a random point of the manifold SPD(k).

2. For 1→ n iterations

(a) Draw a candidate from X ∼ LN (Xcurr, σ
2I).
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Figure 4.4: (a) Computational times for Rie-Laplace(x) the Riemannian Laplace mechanism
with a MCMC burn-in of x ∈ {10, 000; 30, 000; 50, 000}425, and TanG-Analytic the proposed

tangent Gaussian mechanism (analytic version). (b) Utility with varying burn-ins for
Rie-Laplace. Plots (a, b) use different matrix sizes k. Plot (c) explores if the bound from

Th. 11 is tight in practice.

(b) With probability exp(−ρLE(Xmean, X)/σ)/ exp(−ρLE(Xcurr, X)/σ) accept the gen-

erated candidate X and set Xcurr = X .

The final sample is chosen based on a burn-in period of 50,000 steps.

4.9.2 ADDITIONAL EXPERIMENTS

We compare the times required to privatize the Fréchet mean using both mechanisms and vary-

ing k ∈ {2, 5, 10, 15, 20, 25, 30} in Fig. 4.4(a). Note that we used MCMC for Riemannian

Laplace, and its time depends on the burn-in - that we choose in {10000, 30000, 50000}. For

k = 30, Fig. 4.4(a) shows that Riemannian Laplace mechanism takes 14 sec (burn-in 10000),

36 sec (burn-in 30000) and 73 sec (burn-in 50000) - whereas our tangent Gaussian (Analytic)

mechanism takes 1.3 microsec. Fig. 4.4(b) considers the effect of the burn-in on the Riemannian

Laplace’s utility and finds no significant difference for burn-ins in {10000, 30000, 50000}.

Fig. 4.4 (c) shows that the bound derived in Th. 11 is tight in practice, as illustrated by the

ratio of the bound obtained in Th.11 and the practical bound.
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4.9.3 CODE

The code is attached with Supplementary Material. Both Riemannian Laplace and tangent

Gaussian mechanisms can be easily implemented using existing libraries like geomstats357,

tensorflow-riemopt480, rieoptax525. In all our experiments, we used geomstats357.
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“The combination of some data and an aching desire

for an answer does not ensure that a reasonable an-

swer can be extracted from a given body of data.”

John Tukey

5
Variance-reduction with meta-estimation

of private sketch data structures

5.1 INTRODUCTION

Distributed applications involving multiple client entities often have stringent privacy require-

ments that are governed by legal regulations such as HIPAA354, GDPR198, and PIPEDA38.
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Such requirements are also necessitated by individual preferences, ethical guidelines, national

security interests, and enabling partnerships in a rapidly globalizing society. One such societal

application that has recently come under the spotlight of privacy researchers, given the global

advent of the recent COVID-19 pandemic, is that of private digital contact tracing and expo-

sure notification 430,502,95,344,419,175,216,12,115,424,21,203. As shown in Figure 5.1, this refers to

Figure 5.1: Private contact tracing refers to the problem of privately ascertaining whether a
querying client has come into close proximity to any patient that is an infected carrier. Our

proposed scheme involves a one-way upload of locally differentially private (local DP)
information into the server that is downloaded by any client performing contact tracing.

the problem of privately ascertaining whether a querying client has come into close proximity

of an infected patient to privately notify the querying user with an obtained result. Currently,

cryptographic methods and differential privacy160,154,351,161 is one of the widely accepted math-

ematical notions of formal privacy with varying levels of adoption for different applications. For

example, the next U.S census5,4 is being privatized via differential privacy while cryptographic

techniques power several end-to-end encrypted messaging platforms. With respect to private

digital contact tracing, several apps have recently been released. They are currently based on

cryptographic schemes430,95,55,513,478,53,106,327 such as secure multi-party computation (secure

MPC), homomorphic encryption and public-key cryptosystems. In this paper, we propose one

of the earliest solutions (to the best of our knowledge) for contact tracing that is instead based

on differential privacy. This chapter is based on our work in543.
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Figure 5.2: We compare and categorize the proposed method within the current landscape of
works on the private digital contact tracing problem. Green refers to solutions that are already

deployed or in an advanced stage of development. Red refers to methods that are
non-existent (referred by none), or not deployed within the context of private digital contact
tracing. Pastel yellow refers to our proposed method that is currently a prototype that has

gone beyond the research stage as we plan to engineer it towards a controlled deployment
while we move on to create, adopt, or build upon works currently in red for the contact tracing
problem as part of future research. The red areas under other applications are very promising

but need accelerated research for adopting them within the context of private digital contact
tracing. The orange areas refer to differential privacy methods for non-i.i.d spatio-temporal

data that exist but have not been adapted yet for contact tracing applications.

Works such as206 have shown that differentially private technologies can drastically reduce

the computational and communication costs of large-scale systems compared to cryptographic

technologies, albeit at a weaker trade-off with privacy. A recent trend has been to build systems

that depend on both differential privacy and cryptographic technologies at the same time551,117

for better performance guarantees. Therefore, having a differentially private solution to contact

tracing can have a downstream benefit from such efforts as well. All of our codebases will be

made available as described in the ethics statement.

5.1.1 CONTRIBUTIONS

1. We propose the first differentially private solution to COVID-19 contact tracing using

sketching data structures.

2. We propose a new meta-estimator (DAMS) based on the private count-min sketch data

structure and apply it to private digital contact tracing. We evaluate its performance
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over important baselines on multiple real-life trajectory datasets of human mobility with

respect to the classification metrics of private digital contact tracing. We empirically

show that our meta-estimator performs at a drastically higher true positive rate (TPR)

with a relatively much lower false positive rate (FPR) in comparison to these baselines.

3. We theoretically show that our meta-estimator (Private DAMS) is unbiased and has a

lower variance than that of private count-mean-sketch (PCMS).

5.2 RELATED WORK

We categorize works related to this paper into three categories of: private digital contact tracing,

local differential privacy, and private sketching methods.

5.2.1 PRIVATE DIGITAL CONTACT TRACING METHODS

There has been a rapid flurry of mobile apps released globally for digital contact tracing with

varying levels of privacy protection. Within this space, a majority of deployed solutions or the

ones that are undergoing rapid refinements are cryptography-based as categorized in Figure 2.

Differential privacy has been another popular approach for formal privacy. For example, it

is being used to privatize the 2020 U.S census5,4 that is currently underway. There has not been

much work at the intersection of differential privacy and contact tracing as yet, as shown in

this table. DAMS543 for private contact tracing is instead based on differential privacy to help

further the research on private digital contact tracing from a different viewpoint.

5.2.2 LOCAL DIFFERENTIAL PRIVACY

We employ the local differential privacy setting126,127,258,267, where privacy is maintained lo-

cally at the client level. In this version, a privatized dataset is released from a client, and
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post-processing is applied remotely over this privatized dataset on a server or another client in

order to complete analysis/model training/inference over that dataset. A weaker yet relatively

similar setting to local differential privacy is called ‘non-interactive private data release’96,481.

The key difference is that in local differential privacy, each data owner, for e.g. an individual

iPhone user, privatizes his/her data before sending it out for any post-processing as opposed to

non-interactive differential privacy that requires a trusted centralized unit that sees the original

data (not the privatized version); for e.g. everyones keyboard input data. Then, the trusted

centralized unit privatizes the data before releasing it to the public.

5.2.3 SKETCHING METHODS

Sketching methods are popular for streaming data analysis, efficient information retrieval, and

large-scale machine learning. These techniques typically involve a dictionary of multiple hash

functions used to hash the dataset into a table or data structure. In order to obtain the solution

to any specific query, such as frequency estimation, inner-product search, or range estimation, a

post-processing function corresponding to that particular query is applied to the data structure

in order to obtain the result efficiently. Bloom filters78 is one of the earliest such randomized

data structures. Other examples of sketching methods243,77,23,413 include Hadamard sketch505,

Broder’s Sketch79, MinHash476,244, AMS Sketch20 and Count-Min-Sketch125,128. Differential

private versions of some of these sketching methods like505,169 exist. We modify this private

count-mean-sketch data structure to obtain a better trade-off in terms of the true positive rate

(TPR) and false positive rate (FPR) upon testing it on contact tracing use cases.

5.3 PRELIMINARIES

Notation: The notation used in this paper is summarized for ease of reference in Table 5.1.
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Depth k
Width m
Hash Dictionaries H1,H2, . . . ,Hp

Hash Functions h1, h2, . . . , hk

Privacy Parameter ϵ
Dataset Size (# of records) n
Dataset Dn = {d1, d2, . . . dn}
Hash Output v ∈ Rm

Post-Processing Function ϕ

Count Estimator f̃(d)
Bernoulli Noise Vector b ∈ {−1,+1, }m

# of Clients w
Histograms F1, F2 . . . Fp

Sketch Matrix M

Table 5.1: This is the notation used in this paper.

Definition 2 (ϵ-Local Randomizer160). Let A : D 7→ Y be a randomized algorithm mapping

a data entry in data domain D to Y . The algorithm A is an ϵ-local randomizer if for all data

entries d, d′ ∈ D and all outputs y ∈ Y , we have −ϵ ≤ ln
(

Pr[A(d)=y]
Pr[A(d′)=y]

)
≤ ϵ.

Definition 3 (Local Differential Privacy160,505). Let A : Dn 7→ Z be a randomized algorithm

mapping a dataset with n records to some arbitrary range Z. The algorithm A is ϵ-local dif-

ferentially private if it can be written as A(d1, . . . , dn) = ϕ(A1(d1), . . . , An(dn)) where each

Ai : D 7→ Y is an ϵ- local randomizer for each i ∈ [n] and ϕ : Yn 7→ Z is some post-processing

function of the privatized records A1(d1), . . . , An(dn). Note that the post-processing function

does not have access to the raw data records.

5.3.1 PRIVATE COUNT-MEAN-SKETCH

The work in505 provides a locally differentially private mechanism called private count mean

sketch (PCMS) for privately releasing histograms. It is based on a non-private version of this
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Figure 5.3: Sketch of the local DP scheme for standard private count-mean-sketch. Note that
this is the client side of the scheme that is prior to applying the server’s post-processing

function. We contrast this with our proposed meta-estimator in Figure 3.

data structure (CMS) in125. PCMS has a client-side algorithm and a server-side algorithm. The

client-side algorithm ensures the data that leaves the users device is ϵ-local differentially private.

In PCMS, local differential privacy is achieved on a client via flipping the bits of any output v

of a hash function applied to a data record d with a Bernoulli noise vector b ∈ {−1,+1}m,

whose elements are picked with a probability of eϵ/2

eϵ/2+1
. This noised output is stored in a matrix

of dimension k×m called the sketch matrix. Here, m (referred to as depth) is the dimension of

the output of used hash functions, and k is the number of hash functions. A post-processing is

applied on this table at the server to obtain the private histogram as follows. As noised vectors

arrive from various clients, the server adds the privatized vector to the vector at row j of a

server-side version of the sketch matrix M, where j is the index of the hash function sampled

by the device. The values of M are then scaled appropriately so that each row helps provide

an unbiased estimator for the frequency of each element. To compute an estimate for any input

d ∈ D, the server-side algorithm then averages the counts corresponding to each of the k hash

functions in M for d.
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5.4 METHOD

In this section, we propose a meta-estimator as an improvement to the private count-mean-

sketch data structure in order to achieve a better trade-off between the true positive rate and

false positive rates when applied to the problem of private contact tracing. In addition, we

show theoretical results that our meta-estimator provides a variance reduction in comparison

to the original private count-mean-sketch data structure-based estimator, and we substantiate

this via empirical results as well. Before we describe the technical aspects of our proposed

meta-estimator, we walk through a detailed example of any user’s interaction with our proposed

private contact tracing system.

5.4.1 EXAMPLE ROLES OF QUERYING CLIENTS, INFECTED CLIENTS, AND SERVER

IN THE PROPOSED SYSTEM

• Infected clients: Infected clients upload a locally differentially private version of their

trajectories of movement to a centralized server. To be precise, all clients share an in-

dexing to a spatial grid overlaid on the map. There are efficient ways to maintain such

a global grid indexing using technologies like geohashes (for square grid cells) or H3

geospatial grid indexing (for hexagonal grid cells). Every trajectory is represented by

indexing corresponding to a discretized version of the trajectory to several grid cells.

The set of indexes corresponding to each category is privatized using our proposed meta-

estimator and shared with the server.

• Server: The server applies a post-processing function to obtain a locally differentially

private histogram of counts of grid-cell indices traversed by all trajectories of a client

within a chosen time window. It sums up all such private histograms obtained from each

of the w infected clients to obtain a single private aggregated histogram.
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Figure 5.4: DAMS Algorithm

• Querier clients: Any querier client would like to check if it came into contact with an

infected client up to the resolution allowed by the grid cells. It downloads the private

aggregated histogram from the server onto its device, matches it with its own trajectory

data, and looks for counts beyond a threshold while also accounting for its own repeat

visits.

5.4.2 META-ESTIMATOR: DIVERSIFIED AVERAGING FOR META-ESTIMATION OF

PRIVATE SKETCHES (DAMS)

We now describe our DAMS scheme. The steps can be summarized as follows.

• Step 1: Every infected client generates p private sketches of their raw data, where each

version (or run) differs in terms of the dictionary of hash functionsHi used. Each private

sketch is done using the private count-mean-sketch estimator. These p private sketches

per client are sent to the server. Note that in addition, we also divide the spatio-temporal

152



region under study into several large zones, where each zone has its own hash dictionary

that changes from run to run. This helps filter and quantize the data record down to a

zone before using its hash dictionary.

• Step 2: The server applies its post-processing function on each of these private sketches

to generate a private histogram. These p private histograms are averaged to get a final

private histogram per client. Since there are w clients, a total of w private histograms are

obtained at the server. The server now adds these w histograms to obtain one aggregated

private histogram.

• Step 3: This aggregated histogram is downloaded by any querying client that would

like to check if it has come into contact (close proximity) with an infected client. The

querying client checks if any of its movement trajectories match with the non-zero counts

in the aggregated histogram beyond a threshold of counts after accounting for its own

repeat visits. This helps the querying client obtain the final result of contact tracing

on-device.

Figure 5.5: Illustration of our proposed meta-estimation scheme where each infected client
device performs p sketches of its data using the private count-mean-sketch data structure,

where each sketch is performed with a completely different dictionary of hash functions. The p
intermediate result obtained from each client is said to the server, where they are

post-processed to obtain p private histograms that are averaged to finally obtain one histogram
per client. These are all aggregated to obtain one single histogram that is shared with the
querying user for matching with its own data on-device to get the result of contact tracing.

These steps are presented in the Figure 5.5 presented above. Although we show empirically
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in the experimental section that our modified scheme improves the true positive rate of contact

tracing while substantially reducing the false positive rate, it goes without saying that there is

no free lunch. The trade-off of this increased utility happens at a reduction in privacy, precisely

to the extent that we now describe. That said, we show that the constants that influence this

utility-privacy trade-off are reasonably under control in empirical experiments. In step 2 above,

if every client releases each one of the p histograms with ϵi- differential privacy, then due to

the sequential composition property160 of differential privacy, each averaged histogram from

every client has pϵi- differential privacy. Similarly, due to the parallel composition property160

of differential privacy, the aggregated private histogram has max(pϵi)-differential privacy, ∀i ∈

{1, 2, . . . , w}.

5.4.3 VARIANCE REDUCTION GUARANTEES AND IMPORTANT BASELINES

We now compare the variance under the following three scenarios

• Scenario I The scenario of using ϵ = pϵ′ with the algorithm being run once with one

set of hash functions. This is equivalent to the privacy level obtained when the same set

of hash functions are used across p runs of the algorithm on the same dataset due to the

sequential composition property160 of differential privacy. This is an important baseline

to compare against in order to confirm that changing the hash function dictionary across

multiple runs (# of runs = p) is a better option than performing one single run with one

hash function dictionary, yet with an equivalent level of privacy. We would like to note

that, even when p = 1, there is a difference in hash dictionaries used across different

zones that the region of interest is divided into, as explained in Step 1 of our method in

the previous section.

• Scenario II The scenario of using ϵ = ϵ′, while the algorithm is run q times using a same
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dictionary of hash functions in each of the run as part of the private count-mean-sketch

algorithm. The final result is obtained as the average of the estimate counts. This is an

important baseline to compare against in order to confirm that changing the hash function

dictionary across each of the p runs is a better option than keeping them same across the

p runs.

• Scenario III The scenario of using ϵ = ϵ′, while the algorithm is run q times using a

different dictionary of hash functions in each of the run as part of the private count-mean-

sketch algorithm. The final result is obtained as the average of the estimated counts. We

refer to this option as our proposed private DAMS estimator.

Theorem 5.4.1. The private DAMS estimator in scenario III has a lower variance than the esti-

mator in scenario I when ϵ > 2.

Proof. f̃(d) is the estimated frequency of data element d and its variance in the standard differ-

entially private count-mean-sketch scheme is given by505.

Var[f̃(d)] = n(c2ϵ − 1)/4 +
n− f(d)

m

(
1− 1

m
− 1

k
+

1

km

)

+

(
1

km
− 1

km2

)∑
d∗ ̸=d

f(d∗)2

 (5.1)

Here f(d∗) ∈ D is the original frequency of the element d∗ and D is the dataset, n is the number

of data points, k is the depth of the CMS-data structure, m is the width and cϵ =
eϵ/2+1

eϵ/2−1
.

We now show the variance of the count estimator obtained in each of the above estimators.

In scenario I, we have the following expression for the variance up to a constant C that is

155



independent of ϵ.

Var[f̃(d)] = n(c2pϵ′ − 1)/4 +
n− f(d)

m

(
1− 1

m
− 1

k
+

1

km

)

+

(
1

km
− 1

km2

)∑
d∗ ̸=d

f(d∗)2


= n(c2pϵ′ − 1)/4 + C

(5.2)

In scenario III, since all the hash functions across the p runs are three-wise independent, we have

Var f̃(d) =
Var[f̃1(d)]+Var[f̃2(d)]+...+Var[f̃p(d)]

p2
where Var f̃i(d) is the variance of an individual

run. But since we use the same k, n,m across runs although the hash function dictionaries are

the same, we have

Var f̃(d) = n(c2ϵ′ − 1)/4 + C

Note that there is a reduction from 1/p2 to 1/p due to equality of variances. To complete the

proof, we would need to show that

1

p

[
n(c2pϵ′ − 1)/4 + C

]
≤ n(c2pϵ′ − 1)/4 + C

Substituting cϵ =
eϵ/2+1
eϵ/2−1

= 1 + 2
eϵ/2−1

, we would need to show that

1

p

[
n

4

[
1 +

2

eϵ/2 − 1

]2
+ C

]
≤ n

4

[
1 +

2

epϵ/2 − 1

]2
+ C.

For ϵ′ > 2, we have cϵ is approximately ≤ 4 and therefore

1

p

[
n

4

[
1 +

2

eϵ/2 − 1

]2
+ C

]
≤ 1

p
[4n+ C]
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Upon substituting the same into the r.h.s of the inequality we get

1

p
[4n+ C] ≤ n

4
+ C

that can be trivially satisfied by choosing values of p that satisfy this inequality.

Lemma 5.4.1. Private DAMS estimator is unbiased.

Proof. E f̃(d) =
E[f̃1(d)]+E[f̃2(d)]+...+E[f̃p(d)]

p where E f̃i(d) is the expectation of an individual

run. Each of the individual estimators in the numerator is unbiased as the differentially pri-

vate count-mean-sketch estimator that was used is unbiased505. Therefore, the private DAMS

estimator is unbiased.

Theorem 5.4.2. The variance of the estimator of private DAMS in scenario III is less than the

variance of the estimator in scenario II.

Proof. In scenario II, without loss of generality, when p = 2 we have

Var f̃(d) =

∑
iVar[f̃i(d)]

p2
+ 2

∑
ij

Cov(f̃i(d), f̃j(d))

where Var f̃i(d) is the variance of an individual run and Cov(f̃i(d), f̃j(d)) is the covariance.

Since, we use 3-wise independent hash functions505 as suggested in the standard differentially

private count-mean-sketch estimator in505, the covariance when i 6= j is 1
m −

1
m2 while it is

0, when i = j. Now, 1
m −

1
m2 is always positive for non-zero integer values of m. Therefore,

all the covariances show a positive correlation in this case, and the sum of covariances is of the

order

q(
1

m
− 1

m2
)(2p− 1)
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Therefore, the variance of scenario III is always lesser than scenario II. Without loss of general-

ity, this holds when p > 2 as well.

5.5 EXPERIMENTS

5.5.1 MICROSOFT GEOLIFE GPS TRAJECTORY DATASET

This GPS trajectory dataset606,607,608 is a massive dataset that was collected in (Microsoft Re-

search Asia) Geolife project by 178 users in a period of over four years (from April 2007 to

October 2011). A GPS trajectory of this dataset is represented by a sequence of time-stamped

points, each of which contains information on latitude, longitude, and altitude. This dataset

contains 17621 trajectories with a total distance of 1,251,654 kilometers and a total duration of

48,203 hours. A subset of this dataset was used for a detailed evaluation with 50 trajectories

labeled as infected patient trajectories, and one was labeled as a querier trajectory. Each trajec-

tory was of length 720. Therefore, 51 × 720 = 36720 datapoints were used to be processed

through our private DAMS data structure.

5.5.2 GOTRACK GPS TRAJECTORIES DATASET

This dataset is available on the UCI repository. We use a formatted subset of the dataset where

querier trajectories intersect with some infected patient trajectories in 336 co-ordinates among

1123 co-ordinates. Unlike the above experiment, the trajectory length of each participant is not

the same in this dataset.

5.5.3 EMPIRICAL EVALUATION

Private DAMS Vs. PCMS: We compare our approach of private DAMS with p = 1, where

each zone has a different hash dictionary Vs. with the standard private count-mean-sketch
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(PCMS-1 as in scenario I) with p = 1 as shown in Figures 4.6 and 4.9. In PCMS, each zone

has the same dictionary. The comparison is in terms of the important metrics of true positive

rates (TPR), false positive rates (FPR), F1 score, and MCC score of contact tracing received at

querier client, with respect to the ground truth of intersections. Note that the x-axis refers to the

different values of ϵ considered between 2.5 to 7, with increasing values of 0.5. That said, it is

important to note that all the ϵ′s reported on the x-axis are the corresponding values obtained

after accounting for the sequential and parallel composition laws of differential privacy in our

scheme as described in Figure 5.5.

Effectiveness of p > 1 in DAMS: We also compare our approach private DAMS with p = 5

(DAMS-5) and p = 10 (DAMS-10) against scenario - II for p = 5 (CMS-5) and p = 10 (CMS-

10) runs. These results are shown in Figures 4.7, 4.8, 4.10 and 4.11. We observe a greater

TPR in each of the DAMS results in comparison to the CMS results, as desired. Similarly, we

observe a lower FPR in each of the DAMS results in comparison to the CMS results as desired.

Variance reduction with DAMS: In addition, we observe that the variance across the obtained

FPRs is significantly lower in the DAMS results in comparison to the CMS results, although the

change in variances in the case of the TPRs is not as significant. We note that the denominator

in computing the FPRs is way larger than that of the denominator in computing TPR over this

dataset. Therefore, the overall variance reduction is significant. In Figure 4.12, we compare

the effect of increasing p over our proposed DAMS scheme. We note that the TPR increases

with increasing p, although the increase begins to flatten out with larger p’s. That said, with

increasing p, the FPRs mildly increase in the DAMS scheme, as shown in Figure 4.15. Note

that regardless of this effect, the TPRs and FPRs of DAMS outperform CMS for all three p’s

that were tried, as in for p = 1, p = 5, and p = 10.

Data imbalance As the datasets are highly imbalanced (and so is the use case of contact trac-

ing), in terms of having a much smaller number of intersections as against the number of non-
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Figure 5.6: GeoLife GPS:
TPR of DAMS Vs. PCMS for

p = 1

Figure 5.7: GeoLife GPS:
TPR of DAMS Vs. PCMS for

p = 5

Figure 5.8: GeoLife GPS:
TPR of DAMS Vs. PCMS for

p = 10

Figure 5.9: GeoTrack GPS:
FPR of DAMS Vs. PCMS for

p = 1

Figure 5.10: GeoTrack GPS:
FPR of DAMS Vs. PCMS for

p = 5

Figure 5.11: GeoTrack GPS:
FPR of DAMS Vs. PCMS for

p = 10

Figure 5.12: GeoLife GPS:
TPR trend in DAMS for

p = 1, 5 and 10

Figure 5.13: GeoLife GPS:
F1 score across DAMS and
PCMS for p = 1, 5 and 10

Figure 5.14: GeoLife GPS:
MCC score across DAMS

and PCMS for p = 1, 5 and 10

Figure 5.15: GeoTrack GPS:
FPR trend in DAMS for

p = 1, 5 and 10

Figure 5.16: GeoTrack GPS:
F1 score across DAMS and
PCMS for p = 1, 5 and 10

Figure 5.17: GeoTrack GPS:
MCC score across DAMS

and PCMS for p = 1, 5 and 10
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intersections between the trajectories of querier clients and infected clients, we therefore also

compare the different versions of DAMS and CMS in terms of F1 scores and MCC scores, that

are better suited for such settings. These results are presented in Figures 4.13, 4.14, 4.16 and

4.17.

5.6 FUTURE RESEARCH

As part of suggested future work, we give credence to the non-i.i.d (non-independent and iden-

tically distributed) nature of the problem in contact tracing, as our proposed solution could be

further improved using differential privacy primitives that are well-suited for dependent/corre-

lated data. These notions of modified differential privacy for non-i.i.d data101,323,24 are currently

at an early stage of the research horizon. We believe that first investigating the digital private

contact tracing problem through the lens of differential privacy under the relatively simpler as-

sumption of i.i.d data is beneficial to carry forward the learnings obtained into the more stringent

settings of non-i.i.d data, as shown in Table 1 in red. Other location-based COVID-19 privacy

projects, such as426 by Facebook, also assume i.i.d’ness to support solutions with simplistic

assumptions at first.
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“The idea of concentration of measure is arguably one

of the great ideas of analysis in our times.”

Michel Talagrand

6
Effects of Privacy on Welfare and

Influence of Referendum Systems

6.1 INTRODUCTION

This chapter is based on our work in171. Differential privacy159 provides a compelling privacy

guarantee to ensure that the outcome of a query over any dataset is substantially not influenced
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by the presence or absence of an individual’s record. This form of privacy has recently been

studied in the context of social choice theory462,305,217. A predominant strategy to achieve differ-

ential privacy in general, even outside the context of social choice theory, is to introduce noise

or some sort of randomization into the system. One of the issues that has been widely stud-

ied in this context of noising is the specific loss of accuracy in releasing the true output of the

non-privatized query as caused by increasing levels of privacy preservation. This has been com-

monly referred to as the privacy-accuracy or privacy-utility trade-off. Recent work has involved

the formalization of other trade-offs, such as the trade-off between privacy and fairness132. In

this work, we analyze two other trade-offs. We show that introducing noise to privatize systems

that aggregate the preferences of individuals may affect several other fundamental phenomena

such as influence and welfare.

In this context, does an increase in the level of privacy for releasing the outputs of social

choice functions increase or decrease the level of influence and welfare, and at what rate? In

this paper, we mainly address this question in more precise terms and affirmatively answer that

this relation is inversely proportional and shares specific corresponding rates for the popular ρ-

correlated randomized response mechanism of privatization when used in a referendum setting

with two candidates.

The noisy mechanism that we propose170 and analyze with regard to influence and welfare

in this paper is based on a simple coin-flipping perturbation of the input as follows. Let ρ be

an exogenous constant in [0, 1] and let each original vote made in the ballot take a value of

either 1 or −1. The randomized response records each original vote in the ballot as it is with

a probability ρ while with probability 1 − ρ, it ignores the original vote. Instead, it records it

as either a 1 or −1 with a uniformly random pick. The resulting probability space is known as

ρ-correlated distribution or noisy distribution in the field of analysis of Boolean functions, and
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it is referred to as the randomized response mechanism in the field of differential privacy. * We

show that this mechanism preserves ordinal relations between the influences of voters for ‘any’

social choice function. Therefore, if Alice had more influence before than Bob, she would still

continue to have more influence.

In the field of analysis of Boolean functions, the notion of the influence of a voter is used to

measure the power of an individual on the final result of a social choice function. We extend this

definition of influence to our probabilistic setting where noise is introduced for privacy and term

this new notion of influence as probabilistic influence. Similarly, we define welfare to address

the second issue of capturing how ideal a voting rule is. First, we define it for deterministic

functions, and then we extend this definition to any probabilistic mechanism. We then show the

effect of our privacy-inducing randomized response on the welfare of the system. In particular,

we show that it preserves the ordinal relations between the welfare of voting systems. That is,

if a social choice function f had greater welfare than g in the deterministic setting after the

randomized response Mρ is applied based on the exogenous parameter ρ, the welfare of Mρf

will continue to be greater than that of Mρg.

In this context, we share precise statements connecting the noising probabilities ρ used in

the mechanism Mρ, their effect on the level of privacy ϵ, which in turn results in a specific

level of influence and welfare expressed in terms of ρ. We precisely show that as the level

of privacy increases, the welfare and influence happen to decrease at correspondingly specific

rates. Arguably, having a higher welfare in a voting system is desirable, and therefore, we

shine a light on this new trade-off between privacy and welfare. In terms of influence, it is

questionable whether a decrease in influence with an increase in privacy is desirable or not. We

believe it depends on the context, and therefore, in this case, we do not refer to it as a trade-off

*For a survey of the field of analysis of Boolean functions, see392. For a survey of the field of
differential privacy, see160.
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but instead call it a scaling law. However, as we show in Section 6.5, the welfare of the society

is equal to the total influence of the society.

6.1.1 CONTRIBUTIONS

We contribute towards bridging differential privacy and social choice theory by deriving the

following results on the effect of randomized response over influence, welfare, and accuracy.

1. The privacy-influence relationship: A notion of influence is widely used in the analysis

of Boolean functions to study social choice functions. We extend the notion of influence

to the noisy setting and call it probabilistic influence. We then show a result relating the

trade-off between ρ−correlated distribution-based differential privacy and probabilistic

influence. We show that such privatization changes the influence of every single voter by

a factor of 1+ρ2

2 . Thus, the randomized response preserves the ordinal relations between

influences of agents while scaling them by a factor depending on ρ while still ensuring

their privacy is preserved.

2. The Privacy-welfare trade-off: We define welfare W (f) of a social choice function f

and extend the definition to probabilistic mechanisms. Then, we show that W (Mρf) =

ρ · W (f), i.e. the randomized response scales the welfare by a factor of ρ, whereby

preserving the ordinal relations between the welfare of social choice functions.

3. Accuracy analysis: We restrict the analysis of accuracy (or utility) of our mechanism to

social choice functions, i.e. the functions with range {−1, 1}. We give the accuracy for

Dictatorship, Majority, AND, and OR functions. For dictatorship, AND, and OR func-

tions, we provide a theoretical analysis of accuracy. For the Majority function, we give

an asymptotic accuracy when n goes to∞ based on the existing results in the literature.
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We also give an exact analysis of accuracy for the Majority function for small n by using

a computational method that involves dynamic programming.

6.1.2 ORGANIZATION

The rest of the paper is organized as follows. In Section 6.2, we provide further motivation

and background. In Section 6.3, we formally describe the differentially private randomized

response mechanism. In Section 6.4, we introduce the notion of probabilistic influence and give

one of our main results that influence scales down by the same constant for every individual.

In Section 6.5, we introduce the concept of welfare for general probabilistic mechanisms and

analyze it for randomized response. We shed light on the connection between influence and

welfare and give our second main result, which is that randomized response scales down welfare

by the same factor for any given social choice function. In Section 6.6, we provide an analysis

of the accuracy of the randomized response mechanism. In Chapter 16, we discuss the possible

future work and the limitations of this paper, and we conclude. Some preliminaries from social

choice theory are provided in Section 6.9. All of the proofs are relegated to Section 6.8.

6.2 MOTIVATION

To intuitively expand on the potential relation between privacy and influence, consider an in-

stance where it might be the case that the introduction of noise for the sake of obtaining privacy

results in undesired shifts of the power held by different individuals in deciding the final selected

outcome. For example, say that a voter, Alice, would have had more impact on the outcome

than Bob in a case where there is no privatization. It could also be the case that the power bal-

ance shifts to Bob having more impact than Alice after a privacy-inducing noise is introduced.

We conclusively show that this cannot be the case as the influence scales down for every voter
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with the increasing level of privacy by the same constant in the case of the popular randomized

response privacy mechanism.

Secondly, regarding the potential relation between privacy and welfare, consider an instance

where it may be the case that upon the introduction of noise, the chosen social choice function

that was originally used to aggregate the individual preferences into an outcome ends up not

being ideal anymore. Hence, it may instead be desirable to switch to another social choice

function. For example, suppose that a system uses the majority function to decide which one

of the two candidates is elected in the deterministic case. However, the majority function could

be severely affected in some instances upon introduction of noise, and another function could

end up being a better choice. We show that as privacy increases in the randomized response

mechanism, the welfare of each social choice function scales down proportionally. This implies

that if a function is a welfare maximizer before introducing noise, it still is a welfare maximizer

after the introduction of the noisy mechanism. These two results are especially useful, as they

imply that the designers of the initial deterministic social choice mechanism do not have to be

concerned about whether their design is robust to the introduction of noise in terms of influence

and welfare.

We now discuss the work that has been done regarding influence and welfare in the context

of social choice theory. Influences have long been studied in discrete Fourier analysis and the-

oretical computer science. The notion of influence was first introduced by408 and it was first

systematically studied by50. Some other novel works related to influences in the context of so-

cial choice theory include, but are not limited to, KKL Theorem263 and the Majority is Stablest

Theorem374. We extend the notion of influence to the noisy setting and call it probabilistic

influence, and prove a direct linear relation between deterministic influence and probabilistic

influence.

The question of the ideal voting rule has long been a matter of discussion in social choice
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theory. When there are only two candidates, the answer is relatively simple, as the majority

function seems to be the most ideal voting rule.347 showed that majority is the only social

choice function that is anonymous and monotone among all two-candidate voting rules. For

more than two candidates, different objectives may result in different voting rules or even in

impossibility results31,32,208,190,196.225 studies various aspects of utilitarian voting. Finding the

best function in computationally efficient ways has been studied in the recent field of computa-

tional social choice theory. The works of341 and342 aim to maximize welfare given each voter’s

utility for candidates in a ‘distortion framework’ in which there is a lack of information about

voter’s utilities. In that framework, a typical approach is to attempt to maximize the worst-case

objective.

To the best of our knowledge, a definition of welfare that is closest to ours is the one given by

O’Donnell (2014, page 51). Although they do not explicitly define the welfare of a social choice

function, there is a linear relation between the expected value of their objective function and

the way we define welfare. However, our main conceptual contribution is that our definitions

are extended to hold for probabilistic mechanisms, and we analyze the effects of privacy on

influence and welfare.392 proved that among all two-candidate voting rules, the majority is the

unique maximizer of welfare, whose proof is essentially based on509. Our main objective is

not to find the function that maximizes the welfare; that is rather a simple question. In fact, we

show that the majority is the unique welfare maximizer as well in an almost identical way to

O’Donnell. The primary motivation of the paper is to show that if a voting rule is better in the

deterministic setting, it is still better after the privacy-inducing noise is introduced.
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6.3 MODEL: RANDOMIZED RESPONSE AND PRIVACY GUARANTEE

There are three main reasons why we chose the randomized response as the privacy-preserving

mechanism to focus our attention. First, it is simple, in addition to being one of the earliest

and yet one of the most popularly used privacy-preserving mechanisms to date, be it in the

classic form or as a variant of it. As an example, RAPPOR169 is a recent popular real-world

use-case of randomized response, otherwise classically used a few decades ago556,343. Second,

the mechanism is based on perturbations of the input, which allows it to be applied to ‘any’

social choice function. This enables us to talk about the ordinal relations between the welfare of

potential social choice functions before and after the mechanism is applied. Third, ρ-correlated

distributions are well studied in mathematical social choice theory392.

Our randomized mechanism is an input-perturbing mechanism. That is, the mechanism in-

troduces noise to the votes in the ballot so that one can use any social function afterward, yet the

same privacy guarantee will continue to hold due to the post-processing property156 of differen-

tial privacy. Randomized response introduces noise by utilizing a simple coin-flip scheme that

is based on the following distribution that is widely used in the analysis of Boolean functions.

Definition 4. Let ρ ∈ [0, 1] and x ∈ {−1, 1}n be fixed. y is called ρ-correlated with x if for

every i ∈ [n], yi = xi with probability ρ and uniformly distributed with probability 1 − ρ, and

it is denoted by y ∼ Nρx.

Note the symmetry in the definition of ρ-correlation. We formalize this symmetry in the

following facts, which we will often use in the proofs of our results.
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Fact 1. x ∼ {−1, 1}n, y ∼ Nρx if and only if y ∼ {−1, 1}n, x ∼ Nρy. If x ∼ {−1, 1}n, y ∼

Nρx, we say (x, y) is a ρ-correlated uniformly random pair.

In the literature, ρ-correlated distribution is sometimes referred to as noisy distribution. A

famous analogy for this definition is as follows. Suppose the votes are recorded by a noisy

machine. That is, the machine records each ballot correctly with probability ρ and blurs the

ballot with probability 1 − ρ, and instead records it at uniform random. As a result, the vote

gets misrecorded with probability (1 − ρ)/2. In fact, our mechanism corresponds to this noisy

machine. Hence, we will call it by the generic name randomized response, or ρ-correlated ran-

domized response when we need to specify ρ and denote a mechanism that applies it by Mρ as

defined below. † It is worth noting that ρ-correlated randomized response is in essence just like

randomized response556, a classic scheme that inspired several privacy mechanisms.

Definition 5. Let f : {−1, 1}n → R be any function. For every x ∈ {−1, 1}n, the randomized

response Mρf(x) outputs f(y) where y ∼ Nρx.

Now that we have formally defined the randomized response mechanism, we can give the

formal definition of differential privacy in our context.

Definition 6 (ϵ-Differential Privacy160). A randomized voting mechanism A : {−1, 1}n →

{−1, 1} is ϵ-differentially private if for all pair of neighboring voting profiles x,x′ ∈ {−1, 1}n

†Note the subtle distinction between Mρ and Nρ.
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that differ in exactly one bit and for all s ∈ {−1, 1},

Pr[A(x) = s] ≤ eϵ Pr[A(x′) = s]

The above definition of differential privacy is specific to our context. For the general defi-

nition of differential privacy and a broad survey of the field, see160. The randomized response

mechanism preserves ε-differential privacy. The following result holds for any Boolean func-

tion f .

Proposition 1. For any ρ ∈ [0, 1], randomized response Mρf preserves log(1+ρ
1−ρ)-differential

privacy regardless of the function f : {−1, 1}n → R. (or, (ε,0)-differential privacy when

ρ ≤ 1− 2
exp(ε)+1 ).

Proof. The proof is relegated to Appendix 6.8.1.

Remark 6.3.1. The equality case is satisfied if f is a dictatorship, which implies that the bound

log(1+ρ
1−ρ) is tight. That is, when f is a dictatorship, Mρf is not ε-differentially private for

any ε < log(1+ρ
1−ρ). In fact, it can be shown that a social choice function f satisfies the equal-

ity case if and only if there is a triple (r, b, i) where r ∈ R, b ∈ {−1, 1}, i ∈ [n] such that

∅ 6= {z ∈ {−1, 1}n|f(z) = r} ⊆ {z ∈ {−1, 1}n|zi = b}.

The reason our mechanism preserves differential privacy for any Boolean function f is that

the mechanism is input-perturbing. In this sense, we could instead present the mechanism as

Mρ : {−1, 1}n → {−1, 1}n and write f ◦ Mρ instead of Mρf . Then, we could prove the

analogous version of Proposition 1, and by using the post-processing property of differential
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privacy, we would again obtain Proposition 1. In fact, one can see that in the proof, we also

prove the post-processing property, seemingly for no reason. However, the reason we choose to

give the mechanism altogether after post-processing with f is to make all equality cases in the

above remark apparent. Once post-processing is applied black-box, whether the privacy result

is robust is not clear anymore. For example, consider any constant function f , e.g. f(x) = 1

for any x ∈ {−1, 1}n. In this case, Mρf is not only log(1+ρ
1−ρ)-differentially private but 0-

differentially private.

6.4 PROBABILISTIC INFLUENCE

The influence of a voter is a notion that is used to measure the power of an individual on a

deterministic social choice function. Influences of Boolean functions have long been studied in

computer science and the field of analysis of Boolean functions starting with50. The influence

of a voter in a voting system is defined to be the probability of the change in outcome when the

voter changes their vote ceteris paribus. For example, in the case of a dictatorship, the dictator

has influence 1 while every other voter has influence 0. In the majority function with n = 2k+1

voters, each voter’s influence is the same and equal to
(
2k
k

)
/22k.

We use xi→1 = (x1, · · · , xi−1, 1, xi+1, · · · , xn) to denote the case where the i-th voter

chooses to vote for 1, and every other voter follows x. Similarly, we denote the alternate

case where the i-th voter chooses to vote for −1 and every other voter follows x by xi→−1 =

(x1, · · · , xi−1,−1, xi+1, · · · , xn). Using this notation, influence in the deterministic setting is

defined as follows.
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Definition 7. For f : {−1, 1}n → {−1, 1}, the influence of elector i is defined as

Ii[f ] = Px∈{−1,1}n [f(xi→1) 6= f(xi→−1)]

The total influence of the function f is defined to be

I[f ] =

n∑
i=1

Ii[f ]

A similar notion can be introduced in the probabilistic setting where the randomized re-

sponse Mρf(x) is applied. To do so, we consider the case where everybody casts their votes,

following which Mρf(x) is applied, and the voter i changes their vote. That is, we leave all

the noisy versions of the votes cast by everyone as is except for the elector i’s vote. For this

particular vote, we re-run the randomized response on coordinate i. The probability of the result

being different is called the probabilistic influence of coordinate i. We now introduce the for-

mal definition of the proposed probabilistic influence, which applies not only to social choice

functions with range {−1, 1} but to all Boolean functions with range in R as follows. In the

notation of the following definition, yi ∼ Nρ(1) refers to the case where voter i chooses to vote

for 1 while zi ∼ Nρ(−1) refers to the case where voter i chooses to vote for −1.

Definition 8. Let f : {−1, 1}n → R and the probabilistic influence of coordinate i in a mecha-

nism Mρf(x) is defined as

Ii[Mρf ] = Ex∼{−1,1}n,∀j ̸=i zj=yj=xj ,yi∼Nρ(1),zi∼Nρ(−1)[

(
f(y)− f(z)

2

)2

]
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The total influence of the mechanism Mρf is defined to be

I[Mρf ] =
n∑

i=1

Ii[Mρf ]

We showed in Proposition 1 that our probabilistic voting mechanism preserves ε-differential

privacy. Inducing such privacy requires probabilistic mechanisms as opposed to using determin-

istic functions. For example, in the majority voting with 2k+1 voters, if the votes are split k to

k+1, then changing only one bit in the input may change the outcome of the voting mechanism.

Thus, it is not differentially private. Similarly, no deterministic Boolean function can preserve

differential privacy unless it is a constant function.

On the other hand, introducing noise may cause several issues in the voting system, one of

which is the accuracy of the mechanism, which we will discuss in more detail in Section 6.6.

Another possible issue is that when noise is introduced, we might be altering the voting sys-

tem in favor of a particular voter. For example, voter A might have more influence relative to

voter B in the system now, even if that was not the case before. For symmetric social choice

functions, it is natural to expect that the randomized response mechanism would have the same

effect for any voter since the noise is also symmetric. However, it is not as trivial for arbitrary

social choice functions. Yet, we show that each voter’s probabilistic influence is proportional

to her influence in the deterministic setting. Therefore, the randomized response preserves the

ordinal relations between the influences of the voters regardless of the original social choice

function being used. In other words, if voter A had greater influence than another voter B, she

would still have a greater influence on the system after the noise is introduced.

Theorem 6.4.1. Let ρ ∈ [0, 1] be any real number and f : {−1, 1}n → R be any function. For

every i ∈ [n], Ii[Mρf ] =
1+ρ2

2 Ii[f ].
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Proof. The proof is relegated to Section 6.8.2.

6.5 WELFARE

In this section, we introduce a formal definition of welfare of social choice functions. Then, we

extend this definition to probabilistic mechanisms, and we show that the randomized response

preserves the ordinal relations between the welfare of social choice functions.

6.5.1 WELFARE OF DETERMINISTIC VOTING SYSTEMS

434 argues in his Social Contract that an ideal voting rule should maximize the number of votes

that agree with the outcome.392 proves that the majority function is the unique ideal function

based on Rousseau’s perception of the ideal voting rule without formally introducing welfare.

Perhaps, when he proved this result, he had some form of welfare in his mind, especially be-

cause he used the letter w to denote the number of votes that agree with the outcome. In

this section, we will formally define welfare, which will be slightly different than what the w

notation of O’Donnell describes. In particular, we define welfare of a social choice function

f : {−1, 1}n → {−1, 1} as the average difference between the number of votes that agree with

the outcome and the number of votes that do not agree with the outcome under the impartial

culture assumption.

Definition 9. Let f : {−1, 1}n → {−1, 1} and x ∈ {−1, 1}n, and let wx(f) = |{i;xi =

f(x)}| − |{i;xi 6= f(x)}|. Welfare of the social choice function f is defined to be

W (f) = Ex[wx(f)].
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We can still prove that the majority function is the unique maximizer of welfare when n is

odd by using a similar method as in the proof of Theorem 2.33 in392.

Proposition 2. When n is odd, the unique maximizer of W (f) is the majority function.

Proof. The proof is relegated to 6.8.3.

Without further assessment, it is not possible to say whether we prefer total influence to be

larger or smaller for the welfare of society in a voting system. As we show in the following

result, if the social choice function is monotone — that is, if a voter changes her vote in favor

of a candidate, then this candidate should be weakly better off — then these two notions collide

with each other. This result has implications beyond being a simple identity, making the case

that if we want to achieve greater social welfare while adhering to monotone social choice func-

tions, we must choose a function with a greater total influence.

Proposition 3. Let f be any monotone social choice function f : {−1, 1}n → {−1, 1}. Then,

W (f) = I[f ].

Proof. The proof is relegated to Section 6.8.4.

6.5.2 WELFARE OF NOISY MECHANISMS

To capture the same notion for the probabilistic functions as well, we similarly define welfare

of a randomized mechanism applied on a social choice function as follows. Note that the fol-

lowing definition is not only for the randomized response Mρ, but any mechanism defined on

social choice functions.
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Definition 10. Let f : {−1, 1}n → {−1, 1}, x ∈ {−1, 1}n, and M be any mechanism. Let

wx(Mf) = |{i;xi = Mf(x)}| − |{i;xi 6= Mf(x)}|. The welfare of the mechanism M with

the social choice function f is defined to be

W (Mf) = Ex,M [wx(Mf)]

where the expectation is both over x and the mechanism M .

We showed in Theorem 6.4.1 that although introducing ρ-correlated noise in a voting sys-

tem has negative effects on influences, it does not provide an unfair advantage to any agent.

Another possible undesired byproduct of a randomized mechanism could be that the effect of

randomization on the welfare of a particular voting system is more severe compared to the other

voting systems. For example, we showed in Proposition 2 that the majority function is the

unique welfare maximizer. It could be the case that after we introduce noise, it is more likely in

the majority function that the outcome will change. Within this context, the following result im-

plies that every voting system is equally affected by the input-perturbing randomized response

mechanism. Therefore, the randomized response preserves the ordinal relations between the

welfare of two-candidate voting systems.

Theorem 6.5.1. Let f be any social choice function f : {−1, 1}n → {−1, 1}. Then, W (Mρf) =

ρ ·W (f).

Proof. The proof is relegated to Section 6.8.5

This result, together with Proposition 2, implies that the majority function is the unique
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welfare maximizer also after the noise is introduced by applying the randomized response mech-

anism.

6.6 ACCURACY ANALYSIS

There is one significant drawback of the randomized response privatization mechanism in con-

sideration. It is hard to analyze the accuracy of releasing the output of social choice functions

upon privatizing it with the randomized response. Although our main objective in this work is

not about the analysis of accuracy, we will dedicate a section to the analysis of accuracy for

the sake of completeness. As a first pass, we easily find a generic lower-bound on the accuracy

of the randomized response, but it ends up being so low that it makes it redundant. Therefore,

we restrict our analysis to specific social choice functions. We theoretically provide results on

accuracy for dictatorship, AND, and OR functions.‡ In addition, we give a tight lower bound

as well as an upper bound for the accuracy of the majority function. We also give an algorithm

to calculate the exact accuracy of the majority function by using dynamic programming via

memoization. The dynamic programming approach avoids the need to make calculations over

every entry in the power-set. It is much more efficient while still resulting in an exact solution

for computing the accuracy. Our definition of accuracy is, in fact, the average of accuracy under

the impartial culture assumption. That is,

Acc(Mρf) = Px∼{−1,1}n
Mρ

[Mρf(x) = f(x)].

Now, we define the noise operator, also referred to as the noisy Markov operator, which

is a linear operator on the set of Boolean functions. This operator will be useful for accurate

calculations.
‡For formal definitions of these widely known social choice functions, see Appendix 6.9.
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Definition 11. For any ρ ∈ [0, 1], the noise operator Tρ is the linear operator on the set of

functions f : {−1, 1} → R defined by

Tρf(x) = Ey∼Nρx[f(y)].

Before we start our analysis, let us also give the definition of noise stability.

Definition 12. For any ρ ∈ [0, 1] and f : {−1, 1}n → R, ρ-correlated noise stability of f is

given by

Stabρ(f) = Ex∼{−1,1}n
y∼Nρ(x)

[f(x) · f(y)]

There is a linear relation between the noise stability of a function and the accuracy of the

randomized response on this function. Note that Mρf(x) · f(x) = 1 if Mρf(x) = f(x),

Mρf(x) · f(x) = −1 otherwise. Thus,

2 ·Acc(Mρf)− 1 = 2 ·Px∼{−1,1}n
y∼Nρ(x)

[f(y) = f(x)]− 1 = Ex∼{−1,1}n
y∼Nρ(x)

[f(y) · f(x)] = Stabρ(f).

(6.1)

Also, note that

Stabρ(f) = Ex∼{−1,1}n
y∼Nρ(x)

[f(x) · f(y)] = Ex∼{−1,1}n [f(x)Tρf(x)]. (6.2)

The reason we feel the need to write accuracy in terms of stability is that in the field of

Analysis of Boolean functions, most results are given in terms of stability for convenience. Yet,

we use stability explicitly only when we analyze the accuracy of the majority function.
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6.6.1 MAJORITY

In this section, we will give the asymptotic accuracy for the Majn function where n is an odd

number that goes to infinity.

Lemma 6.6.1 (Proposition 10,391). For any ρ ∈ [0, 1), Stabρ[Majn] is a decreasing function

of n where n is an odd number, with

2

π
arcsin(ρ) ≤ Stabρ[Majn] ≤

2

π
arcsin(ρ) +O(

1√
1− ρ2

√
n
).

By using the fact that accuracy is equal to 1
2 +

1
2Stabρ(f) due to Equation (6.1), we get that

1

2
+

1

π
arcsin(ρ) ≤ Acc[Mρ(Majn)] ≤

1

2
+

1

π
arcsin(ρ) +O(

1√
1− ρ2

√
n
). (6.3)

Despite this fact being quite useful, there is no convenient way to calculate the exact value

of accuracy of the randomized response on the Majority function. Hence, we compute it using

dynamic programming via memoization in the following section.

ALGORITHM TO COMPUTE THE EXACT ACCURACY FOR SMALL n

We now provide a dynamic programming algorithm with memoization to compute the accuracy

of the randomized response. In particular, we give the algorithm to calculate the accuracy of the

threshold functions, that are of the form

fθ(x) =


1 if

∑
i∈[n] xi > θ

−1 if
∑

i∈[n] xi ≤ θ
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Note that Majn = f0(·) where it takes care of ties by considering them as if−1 is the winner. In

general, we work with the odd number of voters when we talk about the majority function. But

as a simple trick, we will compute it for any n based on the generic definition of the threshold

function we gave above since it makes the algorithm less involved.

We now state the noise operator Tρfθ0(x) as introduced in Definition 11 when applied to

threshold functions as a way to quantify the expected accuracy as

Tρfθ0(x) = Ey∼Nρx [1 (y1 + . . . yn > θ0)] .

Let x−n denote x without the last bit. In particular, if x = (x1, x2, · · · , xn−1, xn), then

x−n = (x1, x2, · · · , xn−1). Note that x−n ∈ {−1, 1}n−1 while x ∈ {−1, 1}n. Then, the

stability can be defined using two calls of recursion as follows

Tρfθ0(x) =
1 + ρ

2
Tρfθ0−xn (x−n) +

1− ρ

2
Tρfθ0+xn (x−n)

That is because

Ey∼Nρx [1 (y1 + · · ·+ yn > θ0)]

= Eyn∼Nρxn

[
Ey−n∼Nρx−n [1 (y1 + · · ·+ yn−1 > θ0 − yn) | yn]

]
=

1 + ρ

2
E

y−n∼Nρ(x−n)
[1 (y1 + · · ·+ yn−1 > θ0 − xn)]

+
1− ρ

2
E

y−n∼Nρ(x−n)
[1 (y1 + · · ·+ yn−1 > θ0 + xn)]

=
1 + ρ

2
Tρfθ0−xn (x−n) +

1− ρ

2
Tρfθ0+xn (x−n)

To summarize, this dynamic programming with memoization algorithm is as shown Figure 6.1.

In terms of notation we denote a specific dictionary (in terms of popular programming terminol-
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ogy of dictionary data types) as Dictionary: {(ρ, n, s, θ) = Tρfθ0(x) for some x s.t sum(x) = s}.

Our approach is to use this proposed recursive relation with an appropriate initial condition

to exactly compute the noise operator Tρf(x). Then, by using Equation (6.2), we calculate the

Stability of the function. Finally, by using the linear relation between stability and accuracy

from Equation (6.1), we compute the exact accuracy. This dynamic programming approach

avoids having to make 2n computations, given that x ∼ {−1, 1}n. Note that, Tpfθ0(x) =

Tpfθ0(z) if sum(x) = sum(z). Therefore we iterate over i from 1 to n to represent vectors with

i number of 1′s. Then, as the rest of the entries are−1, and since the length of the array is n, this

approach can model the exact sum of all possible vectors. Since the calculation of the stability

is one-to-one with respect to sums, we store the intermediate results in a dictionary indexed by

this sum. As there are
(
n
i

)
vectors that can be represented this way, we just compute once per

each i and multiply it by
(
n
i

)
. This enables us to model all possible vectors efficiently but allows

us not to have to compute the intermediate results every time via our recursive approach.

Figure 6.1: Proposed dynamic programming algorithm with memoization

In Figure 6.2, we plot the accuracy curves of the randomized response mechanism with
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varying values of ρ applied to the majority function as the number of voters increases. Note

that as n goes to∞, the accuracy asymptotically approaches to 1
2 + 1

π arcsin(ρ) as implied by

Equation (6.3).

Figure 6.2: The accuracy curves of the randomized response mechanism with varying values
of ρ applied to the majority function as the number of voters increases.

6.6.2 DICTATORSHIP

Let f : {−1, 1}n → {−1, 1} be the dictatorship of voter-i, that is f(x) = 1 if and only if

xi = 1.

Then, for any given x ∈ {−1, 1}n,

P[Mρf(x) = f(x)] = Py∼Nρ(x)[f(y) = f(x)] = Pyi∼Nρ(xi)[yi = xi] =
1 + ρ

2
.

Hence, the average accuracy is also equal to 1+ρ
2 .
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6.6.3 ANDn AND ORn

We will first make the calculations for ANDn and the results will be analogous due to symmetry.

We will make use of Fact 1 in the analysis.

First, we start with a generic calculation that holds for any social choice function f . In

the calculations in this section, our probability space is x ∼ {−1, 1}n,Mρf(x) ∼ f(y) where

y ∼ Nρx.

Note that by Fact 1,

Px,Mρ [Mρf(x) = 1] = Px[f(x) = 1].

P [Mρf(x) = f(x)] = P [Mρf(x) = 1 ∧ f(x) = 1] + P [Mρf(x) = −1 ∧ f(x) = −1]

and

P [Mρf(x) = −1 ∧ f(x) = −1] = 1− P [Mρf(x) = 1 ∨ f(x) = 1]

= 1− P [Mρf(x) = 1]− P [f(x) = 1] + P [Mρf(x) = 1 ∧ f(x) = 1]

= 1− 2 · P [f(x) = 1] + P [Mρf(x) = 1 ∧ f(x) = 1] .

Thus for any social choice function f ,

P [Mρf(x) = f(x)] = 1− 2 · P [f(x) = 1] + 2 · P [Mρf(x) = 1 ∧ f(x) = 1]
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For f = ANDn,

P[f(x) = 1] =
∏
i∈[n]

P[xi = 1] = 2−n,

and

P [Mρf(x) = 1 ∧ f(x) = 1] = P[f(x) = 1] · P[Mρf(x) = 1|f(x) = 1] = 2−n · (1 + ρ

2
)−n.

Hence, the accuracy of Mρ for ANDn function is equal to 1−2−n+1(1− (1+ρ
2 )n), whose limit

goes to 1 as n goes to∞. Due to symmetry, accuracy analysis is the same for ORn function.

6.7 CONCLUSION

The main objective of this work is to study the privacy-welfare trade-off and the relation between

privacy and probabilistic influence. The proposed definition of welfare happens to hold for

any mechanism, while on the other hand, the defined probabilistic influence is only specific

to the randomized response mechanism. In fact, a more general definition of influence could

be coined, and a similar property could potentially be observed. We leave out this potential

generalization of influence to future work. In terms of welfare, the analysis done in this paper

can be replicated in a similar style to other popular privatization schemes such as the Laplace

and exponential mechanisms. The privacy-accuracy trade-off of the current mechanism for

the majority function may also be further improved. Note that Dictatorship, AND, and OR

functions satisfy the equality condition in Proposition 1 as discussed in Remark 6.3.1. Thus,

the accuracy-privacy analyses for these functions are tight. On the other hand, for a given ρ, the

asymptotic accuracy of the majority is tight, whereas the privacy result is a possibly loose upper

bound.

Also, our definitions of influence and welfare assume that the votes are unbiased. They
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consider everybody to be equally likely to vote for −1 or +1. In fact, these definitions can be

further generalized to cover the same concept, but for the case of biased voting. For example,

one can extend the definitions to be p-biased for a given p ∈ [−1, 1]; that is, the expected value

of each vote is p instead of 0. p-biased distribution is also well-studied in the field of Analysis

of Boolean functions.

Finally, our voting model in this paper is a classical referendum model with two candi-

dates. However, in most real-world applications, we generally have multiple candidates, and

we have to aggregate the rankings. If there is a Condorcet winner in a voting system, then the

results regarding two-candidate elections can be directly applied in the multiple-candidate set-

ting. Yet, in many cases, there is no Condorcet winner. Restricting the number of candidates to

two has the primary advantage that both the definitions and analyses of welfare and influence

naturally follow. We believe that extending the definitions and the tools developed in this paper

to multiple-candidate settings would be interesting.

From a broader perspective, we study the effect of using privacy-inducing randomized re-

sponses in the voting process. We construct a relation between the level of privacy and the

resulting level of influence of voters involved in the voting system and the welfare of the cho-

sen social choice function. An insightful takeaway that we can deduce from the derived re-

lationships in this paper is that the ordering of voters’ influences and the ordering of welfare

amongst the considered social choice functions remain unchanged upon introducing noise via

the celebrated randomized response mechanism. Existing works have extensively studied the

relationship between privacy and the resulting accuracy in preserving the output of the query

that was privatized. At a high level, we are the first to shed light on the relationship between

privacy and other important phenomena of influence and welfare. We hope that this bridge we

have proposed between the two important fields of differential privacy and social choice theory

will be further studied and extended as part of future works.
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6.8 PROOFS

6.8.1 PROOF OF PROPOSITION 1

Proof. Let r be any element in the range of Mρf . Let Z = {z ∈ {−1, 1}n|f(z) = r}. Let x

and x′ differ only at xi for some i ∈ [n].

P[Mρf(x) = r]

P[Mρf(x′) = r]
=

∑
z∈Z Py∼Nρx[y = z]∑
z∈Z Py∼Nρx′ [y = z]

=

∑
z∈Z

∏
j∈[n] Pyj∼Nρxj [yj = zj ]∑

z∈Z
∏

j∈[n] Pyj∼Nρx′
j
[yj = zj ]

.

The first equality is upon considering all cases of the output of the randomized response result-

ing in a z ∈ Z. Then, by definition, that would result in the function f evaluated on this output

z to be r. The second equality is due to the independence assumption across the voter’s choices.

Now, for any z ∈ Z,

Pyj∼Nρxj [yj = zj ] =


1+ρ
2 if xj = zj

1−ρ
2 if xj 6= zj

and Pyj∼Nρx′
j
[yj = zj ] =


1+ρ
2 if x′j = zj

1−ρ
2 if x′j 6= zj

This is because 1−ρ
2 is the probability of a misrecorded vote and 1− 1−ρ

2 = 1+ρ
2 is the probability

otherwise. More explicitly, with probability 1− ρ, it chooses to blur the ballot, and the blurring

is then done by picking uniformly out of the two options of {−1, 1} with probability 0.5 each,

out of which one pick would result in no change to the vote and the other would result in a

misrecorded vote. Also, for any j 6= i,

Pyj∼Nρxj [yj = zj ] = Pyj∼Nρx′
j
[yj = zj ].
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Thus,
1− ρ

1 + ρ
≤
∑

z∈Z
∏

j∈[n] Pyj∼Nρxj [yj = zj ]∑
z∈Z

∏
j∈[n] Pyj∼Nρx′

j
[yj = zj ]

≤ 1 + ρ

1− ρ
,

which completes the proof.

6.8.2 PROOF OF THEOREM 6.4.1

Proof. Using conditional probability, we get that

Ii[Mρf ] = Ex∼{−1,1}n,∀j ̸=i zj=yj=xj ,yi∼Nρ(1),zi∼Nρ(−1)

[(
f(y)− f(z)

2

)2
]

= Pyi∼Nρ(1),zi∼Nρ(−1)[yi = 1, zi = −1] · Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]

+ Pyi∼Nρ(1),zi∼Nρ(−1)[yi = −1, zi = 1] · Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]

Noting that

Pyi∼Nρ(1),zi∼Nρ(−1) [yi = 1, zi = −1] =
(
1 + ρ

2

)2

,

Pyi∼Nρ(1),zi∼Nρ(−1) [yi = −1, zi = 1] =

(
1− ρ

2

)2

,

and that

Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]
= Ii[f ],

we get that

Ii[Mρf ] =
1 + ρ2

2
Ii[f ].
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6.8.3 PROOF OF PROPOSITION 2

Proof. First, let us fix x. Note that

wx(f) = f(x) ·
∑
i∈[n]

xi.

Since f(x) ∈ {−1, 1}, f(x) ·
∑

i∈[n] xi is maximized when f(x) = sign(
∑

i∈[n] xi). Hence,

W (f) is maximized if ∀x ∈ {−1, 1}n, f(x) = sign(
∑

i∈[n] xi), which is exactly the definition

of the majority function.

Remark 6.8.1. Note that we used the condition that n is odd to ensure that the sign function

is well-defined. If n was even, then the maximizers of W (f) are again the majority functions

where it does not matter who is elected if it is tied.

6.8.4 PROOF OF PROPOSITION 3

To prove this result, we use discrete Fourier analysis. It is a well-known result from the field of

analysis of Boolean functions that every function f : {−1, 1}n → R can be uniquely expressed

as a multilinear polynomial,

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

where for any S ∈ [n]

χS(x) =
∏
i∈S

xi.

This expression is called the Fourier expansion of f , and the real number f̂(S) is called the

Fourier coefficient of f on S. Collectively, the coefficients are called the Fourier spectrum of f .

The following is an essential result from discrete Fourier Analysis.
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Lemma 6.8.1 (Plancherel’s Theorem). For any functions f, g : {−1, 1}n → R,

Ex∼{−1,1}n [f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

It is possible to neatly calculate many features of f , including the influences in terms of

Fourier coefficients.

Lemma 6.8.2 (Proposition 2.21,392). Let f : {−1, 1}n → {−1, 1} be a monotone function and

let the Fourier spectrum of f be f(x) =
∑

S⊆[n] f̂(S)χS(x). Then, for any i ∈ [n],

Ii[f ] = f̂({i}).

It is also possible to calculate the welfare in terms of the Fourier coefficients by taking one

step further from the proof of Proposition 2.

Lemma 6.8.3. Let f be any social choice function f : {−1, 1}n → {−1, 1}. Then, W (f) =∑
i∈[n] f̂({i}).

Proof. By the definition of welfare,

W (f) = Ex[wx(f)] = Ex[f(x) ·
∑
i∈[n]

xi] =
∑
i∈[n]

f̂({i})

where the last equation follows from Lemma 6.8.1.

We are ready to finish the proof.
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Proof of Proposition 3. The proof follows immediately from Lemma 6.8.2 and Lemma 6.8.3.

6.8.5 PROOF OF THEOREM 6.5.1

Proof. We prove this identity by using a double-counting method and linearity of expectation.

Fix f . For any i ∈ [n], let 1i,x,ρ be the indicator random variable defined as follows:

1i,x,ρ =


1 if Mρf(x) = xi

−1 if Mρf(x) 6= xi

Where the randomization is due to the randomized response. Note then when x is given and

ρ = 1, there is no randomization because Mρf(x) = f(x) with probability 1. Therefore, 1i,x,1

is a deterministic function. For the sake of simplicity, we will abuse the notation and write 1i,x

instead of 1i,x,1 in the deterministic case. Then,

wx(Mρf) =
∑
i∈[n]

1i,x,ρ and wx(f) =
∑
i∈[n]

1i,x.

Thus,

W (Mρf) = EMρ,x[wx(f)] = Ex,Mρ [
∑
i∈[n]

1i,x,ρ] =
∑
i∈[n]

Ex,Mρ [1i,x,ρ]

and so

W (f) =
∑
i∈[n]

Ex[1i,x].

Now, we will show that for any i ∈ [n],

Ex,Mρ [1i,x,ρ] = ρ · Ex[1i,x].
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First, note that

Ex,Mρ [1i,x,ρ] = Px∼{−1,1}n
y∼Nρx

[f(y) = xi]− Px∼{−1,1}n
y∼Nρx

[f(y) 6= xi].

By using

Px∼{−1,1}n
y∼Nρx

[f(y) = xi] + Px∼{−1,1}n
y∼Nρx

[f(y) 6= xi] = 1,

we get that

Ex,Mρ [1i,x,ρ] = 2 · Px∼{−1,1}n
y∼Nρx

[f(y) = xi]− 1.

By Fact 1, we can replace x ∼ {−1, 1}n, y ∼ Nρx with y ∼ {−1, 1}n, x ∼ Nρy. Thus, by

using conditional probability,

Ex,Mρ [1i,x,ρ] = 2 · Py∼{−1,1}n
x∼Nρy

[f(y) = xi]− 1

= 2(Px∼Nρy[xi = yi] · Py∼{−1,1}n [f(y) = yi] + Px∼Nρy[xi = −yi] · Py∼{−1,1}n [f(y) = −yi])− 1

= (1 + ρ) · Py∼{−1,1}n [f(y) = yi] + (1− ρ) · Py∼{−1,1}n [f(y) 6= yi]− 1

= ρ · (Py∼{−1,1}n [f(y) = yi]− Py∼{−1,1}n [f(y) 6= yi])

= ρ · Ex[1i,x]

which completes the proof.

6.9 SOCIAL CHOICE FUNCTIONS

In this paper, we exclusively focus on social choice functions with two alternatives. There are

many ways to interpret these functions. It can be considered as a two-candidate election or as

a referendum in the context of political science. It can also be interpreted as a classifier in the
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context of Machine Learning. In this paper, we will generally give the interpretations in the

context of two-candidate elections.

In general, we work with the Boolean functions defined as f : {−1, 1}n → R, and we

denote the bit i of the input x by xi for any i ∈ [n]. However, we define welfare only for social

choice functions, that is, the Boolean functions whose ranges are {−1, 1}. We analyze accuracy

only for the following specific social choice functions.

• Majority: Suppose that n is an odd number. The majority function of n agents/voters is

denoted by Majn and defined as

f(x) = sign(
∑
i∈[n]

xi)

for any x ∈ {−1, 1}n where sign : R→ {−1, 0, 1} is the function such that

sign(a) =
a

|a|

for any a ∈ R, a 6= 0 and sign(0)=0.

• Dictatorship: For a given number n and i ∈ [n], the dictatorship of voter-i is defined as

f(x) = xi

for any x ∈ {−1, 1}n.

• ANDn: The ANDn function outputs 1 if there is unanimity on 1, outputs −1 otherwise.

Namely,

f(x) =


1 if ∀i ∈ [n], xi = 1

−1 otherwise
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• ORn: The ORn function outputs 1 if at least one voter votes for 1, and outputs −1

otherwise. In other words, it outputs −1 if there is unanimity on −1 and outputs 1

otherwise. Namely,

f(x) =


−1 if ∀i ∈ [n], xi = −1

1 otherwise

Note that, in this paper, we assume the impartial culture assumption, that is, the voters

are not affected by each other, and they vote independently uniform at random between two

candidates.
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Part II

Distributed and Private Machine

Learning
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“Taking a model too seriously is really just another

way of not taking it seriously at all.”

George E.P. Box

7
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Private Generation and Visualization of

Embeddings in Supervised Manifold

Learning

7.1 INTRODUCTION

Privacy-preserving computation enables distributed hosts with ‘siloed’ away data to query, anal-

yse or model their sensitive data and share findings in a privacy-preserving manner. As a moti-

vating problem, in this paper, we focus on the task of privately retrieving the nearest matches to

a client’s target image with respect to a server’s database of images. Consider the setting where

a client would like to obtain the k-nearest matches to its target from an external distributed

database. State-of-the-art image retrieval machine learning models such as345,107,611,149 exist

for feature extraction prior to obtaining the neighbors to a given match in the learnt space of

deep feature representations. Unfortunately, this approach is not private. The goal of our ap-

proach is to be able to use these useful features for the purpose of image retrieval in a manner

that is formally differentially private. The seminal idea for a mathematical notion of privacy,

called differential privacy, along with its foundations, is introduced quite well in160. In our

approach, we geometrically embed the image features via a supervised manifold learning query

that we propose. Our query falls within the framework of supervised manifold learning as for-

malized in549. We then propose a differentially private mechanism536 to release the outputs of
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Figure 7.1: Categorization of most existing methods for differentially private training of
machine learning models

this query. The privatized outputs of this query are used to perform the matching and retrieval

of the nearest neighbors in this privatized feature space. Differential privacy aims to prevent

membership inference attacks475,515,319,485,472. It has been shown that differential privacy mech-

anisms can also prevent reconstruction attacks under a constraint on the level of utility that can

be achieved, as shown in162,189. Currently, cryptographic methods for the problem of informa-

tion retrieval were studied in works like571. These methods ensure the protection of the client’s

data via homomorphic encryption and oblivious transfer. However, they also come with an im-

practical trade-off of computational scalability, especially when the size of the server’s database

is large and the feature size is high-dimensional, as is always the case in practice167,308,582.

7.1.1 MOTIVATION

Currently available differential privacy solutions for biometric applications where content-based

matching of records is performed488,94 is based on a small number of hand-crafted features. We

instead consider state-of-the-art feature extraction used by recent deep learning architectures

specialized for image retrieval such as259. We privatize these features and share them in the
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Figure 7.2: This illustration shows the lifecycle of interactions between client and server-side
entities for private image retrieval. The interaction starts from the red bubble on the right. At

first, the client and server train an on-premise machine learning model that is tailored for
image retrieval. The client extracts features from this model on the target query image, dummy
targets that are only known to the client, and a public dataset known to the client and server.
The extracted features go through the proposed Private-Mail for embedding them via locally
differentially private supervised manifold learning. These private embeddings are aligned at
the server prior to performing the nearest-neighbor retrieval of matches that are served back
to the client. The privatized representation of the public dataset is used as an anchor in order

to align the feature embeddings between the client and server.

form of differentially private embeddings that are, in turn, used for the image retrieval task.

Furthermore, cryptographic methods with strong security guarantees are currently not scalable

computationally for secure KNN queries167,308,582 especially when the server-side database is

large, as is typically the case in real-life scenarios.

7.2 CONTRIBUTIONS

The main contribution of our paper is a differentially private method called PrivateMail for the

private release of outputs from a supervised manifold learning query that embeds data into a

lower dimension. We test our scheme for differentially private ‘content-based image retrieval’,

where the matches to a target image requested by a client are retrieved from a server’s database

while maintaining differential privacy. We also show a substantial improvement in the utility-

privacy trade-off of our embeddings over five existing baselines. Finally, the supervised man-
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ifold learning query that we propose to embed features extracted from deep networks geomet-

rically is novel in itself. That said, we would only consider this as a secondary contribution to

this paper.

7.3 RELATED WORK

Non-private image search and retrieval: The current state-of-the-art pipelines for content-

based image retrieval under the non-private setting are fairly mature and based on nearest-

neighbor queries performed over specialized deep feature representations of these images. The

query image and the database of images are compared in this learnt representation space. A

detailed set of tutorials and surveys on this problem in the non-private setting is provided

in345,107,611,149.

Private manifold learning: There have been recent developments in learning private geomet-

ric embeddings with differentially private unsupervised manifold learning. Notable examples

include distributed and differentially private versions of t-SNE531 called DP-dSNE441,439 and29

for differentially private Laplacian Eigenmaps46,48. Furthermore, the work in116 provides a

method for differentially private random projection trees to perform unsupervised private man-

ifold learning. The work in524 also studies Riemannian manifold learning with differential

privacy for manifolds with a bounded condition number and geodesic covering regularity. How-

ever, none of these works consider differentially private manifold learning in the supervised

setting that we explore in this paper. We show a substantial improvement in privacy-utility

trade-offs of the supervised manifold embedding approach over existing baselines that include

private and non-private methods in the supervised and unsupervised paradigms.

Motivated by the supervised manifold learning framework in549 that is based on a differ-

ence between two unsupervised manifold learning objectives, we present an iterative update to
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optimize it efficiently. We refer to this iterative optimization as the supervised manifold learn-

ing query (SMLQ). We then provide a privacy mechanism called PrivateMail to perform this

supervised manifold learning query with a guarantee of differential privacy. To do that, we

derive the sensitivity of our query that is required to calibrate the amount of noise needed to

attain differential privacy. As part of the experimental results, we apply our approach to a novel

task of differentially private image retrieval that has not been well-studied in current literature

as opposed to the non-private image retrieval task, which is a widely studied problem.

Notation Description
n Sample size
d Data dimension
k Embedded dimension
Xn×d Data matrix
Yn×1 Labels
f Manifold learning map
σ Gaussian kernel bandwidth
σq std. dev. of entries in Q
α regularization in LX − αLY

Q Qi,j ∼ N(0, σ2
q )

Table 7.1: Notations

7.4 MOVING FROM UNSUPERVISED TO SUPERVISED MANIFOLD LEARNING

We first briefly introduce some preliminaries for unsupervised manifold learning in order to

build upon it to introduce supervised manifold learning.

7.4.1 PRELIMINARIES FOR UNSUPERVISED MANIFOLD LEARNING

This problem is a discrete analogue of the continuous problem of learning a map f :M 7→ Rk

from a smooth, compact high dimensional Riemannian manifold such that for any two points

x1, x2 on M, the geodesic distance on the manifold dM(x1, x2) is approximated by the Eu-
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clidean distance ‖f(x1) − f(x2)‖ in Rk. Different manifold learning techniques vary in the

tightness of this approximation on varying datasets. Manifold learning techniques like Lapla-

cian Eigenmaps47, Diffusion Maps123, and Hessian Eigenmaps144 aim to find a tighter approx-

imation by trying to minimize a relevant bounding quantity B such that ‖f(x1) − f(x2)‖ ≤

B · dM(x1, x2) + o(dM(x1, x2)). Different techniques propose different possibilities for such

a B. For example, Laplacian Eigenmaps uses B = ||∇f(x1)|| for which it is shown that this

relation holds as

||f(x1)− f(x2)|| ≤ ||∇f(x1)|| · ||x1 − x2||+ o(||x1 − x2||)

Hence, controlling ||∇f ||L2(M) preserves geodesic relations on the manifold in the Euclidean

space after the embedding.

7.4.2 FROM CONTINUOUS TO DISCRETE

This quantity of ||∇f ||L2(M) in the continuous domain can be optimized by choosing the eigen-

functions of the Laplace-Beltrami operator in order to get the optimal embedding. This is

explained in a series of papers by197,48,257. From a computational standpoint, we note that, for a

specific graph defined on all pairs of data points with an adjacency matrix WX and correspond-

ing graph Laplacian LX, the following quantity

Σi,j(||f(Xi)− f(Xj)||2 · [WX]ij) = Tr(f(X)TLXf(X)) (7.1)

is the discrete version of ||∇f ||2L2(M) under the assumption that the dataset X is a sample lying

on the manifold M. Here, f(Xi) and f(Xj) refer to the k dimensional real-valued output of

the manifold learning map f at two single points represented by i and j rows in the data matrix
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Xn×d. Similarly, f(X) refers to mapping the points indexed by each row in X to Rk. That is,

the output of f(X) is a real-valued matrix of dimension n×k. Therefore, the equivalent solution

to map {X1, ...Xn} ⊂ Rd while preserving local neighborhood into {f(X1), ...f(Xn)} ⊂ Rk

is to minimize this objective function in equation 7.1 for a specific graph Laplacian LX that we

describe below. This popular graph Laplacian, under which the above results were studied, is

that of graphs whose adjacency matrices are represented by the Gaussian kernel given by

L(X, σ)ik =


∑

k ̸=i e
(− ∥Xi−Xk∥2

σ
) if i = k

−e(−
∥Xi−Xk∥2

σ
) if i 6= k

 (7.2)

where the scalar σ here is also referred to as kernel bandwidth. The seminal work in197,47,48

showed that this discrete Graph Laplacian converges to the Laplace-Beltrami operator. Mini-

mizing this objective of Equation 7.1 under the constraint Tr(f(X)TDf(X)) = I where I is

identity matrix, to avoid a trivial solution of Tr(f(X)TLXf(X)) = 0 is equivalent to setting

the solution for the embedding f(X) to be the d smallest eigenvectors of LX.

7.4.3 SUPERVISED MANIFOLD LEARNING QUERIES (SMLQ)

It has been shown in549 that this formulation for unsupervised manifold learning of minimizing

equation equation 7.2 can be extended to the case of supervised manifold learning by posing

the objective function as a difference of the terms in equation 7.1 as shown below.

v(f(X)) = Tr(f(X)TLXf(X))− αTr(f(X)TLYf(X)) (7.3)

Note that the formula for computing LY over Y, is the same as the one used in equation 7.2 to

compute LX from X. They provide results explaining the effect of optimizing such a loss for

the purposes of learning an embedding f(X) for supervised learning. Their results are agnostic
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Figure 7.3: Embeddings of our supervised manifold learning query on CUB-200-2011 for 3
iterations with input features extracted from state-of-the-art CGD259 deep image retrieval
architecture with ResNet 50 backbone and G type global descriptors. The colors indicate

different class labels. We show that these embeddings preserve information about the class
separation and the locality structure required for classification.

to the choice of neighborhood graphs defined on X,Y to obtain the corresponding Laplacians

used in this objective. An example of such an embedding when applied to features extracted

from state-of-the-art CGD (Jun et al. 2019) deep image retrieval architecture with ResNet 50

backbone is shown in Figure 7.3.

SEPARATION-REGULARITY TRADE-OFF

The intuition is that since equation equation 7.3 is a discrete version of a difference of terms of

the kind in equation 7.1, this formulation looks for a function that has a slow variation on the

manifoldMX in order to smoothly preserve neighborhood relations between the input features.

It does this while ensuring the function has a fast variation on a manifoldMY with regards to

Y, therefore encouraging larger separation with regards to the label manifold. Therefore, this

second term acts as a regularizer to make sure similar features are not embedded way closer

than needed. This is mathematically substantiated by Theorem 9 in549 (restated in Appendix D)

as it shows that this regularization is required in order to minimize the generalization error of

a classifier applied on the output of supervised manifold learning obtained via minimization of

equation equation 7.3 for any choice of positive semidefinite LX,LY.
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Theorem 7.4.1. For a fixed α, the iterate

Xt =
Diag(LX)−1

2
[αLY − LX]Xt−1 +Xt−1 (7.4)

monotonically minimizes the objective

v(Xt) = Tr(XT
t LXXt)− αTr(XT

t LYXt)

Proof Sketch. The full proof, along with the required background, is in the appendix. The proof

strategy involves using the majorization-minimization237,302,610 procedure in order to obtain

this iterative update. We first derive a majorization function, which always upper bounds the

objective everywhere except at the current iterate, where it touches it. We then note that this

majorization function is a sum of convex and concave functions. This makes the minimization

of the majorization function to be equivalent to using the concave-convex procedure593. As the

update is based on majorization-minimization (MM) and CCCP, which itself is a special case of

MM, it thereby guarantees monotonic convergence237. We refer to this iterate as the Supervised

Manifold Learning Query (SMLQ), and the rest of the paper focuses on releasing the outputs of

SMLQ with differential privacy.

As shown in Figure 7.4, our iterative update converges in just 5 to 7 iterations to embed

deep feature representations needed for an image retrieval task tested on 3 datasets, as further

detailed in the experimental section.

COMPLEXITY ANALYSIS

The graph Laplacian based on the Gaussian kernel in our method is sparse, and computing the

sparse matrix-vector product for this specific graph Laplacian has been studied to take O(n)
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Figure 7.4: The convergence of our SMLQ across three datasets is shown with respect to
image recall based on feature embeddings over the iterations. All three datasets reasonably
converge in as quick as 7 iterations. The image recall metric is discussed in the Experiments

section.

time15. Since in the term LYXt−1, the number of columns in Xt−1 is k, we have an overall

time complexity of O(nk) as the addition of n × k matrices also takes O(nk). That said, this

does not include the complexity required to construct the Laplacian. This has been studied

in448.

7.5 PRIVATIZATION OF THE SUPERVISED MANIFOLD LEARNING QUERY

POST-PROCESSING INVARIANCE

Differential privacy is immune to post-processing, meaning that an adversary without any addi-

tional knowledge about the dataset X cannot compute a function on the output A(X) to violate

the stated privacy guarantees.
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GAUSSIAN NOISE MECHANISM

A query on a dataset can be privatized by adding controlled noise from a predetermined distri-

bution. One popular private mechanism is the Gaussian mechanism155, which adds Gaussian

noise depending on the query’s sensitivity.

Definition 13 (l2-sensitivity). Let f : X → Rk. The l2-sensitivity of f is

∆
(f)
2 = max

X,X′∈X
‖f(X)− f(X′)‖2

where X,X′ are neighboring databases.

Definition 14 (Gaussian Mechanism160). Let f : X → Rk. The Gaussian mechanism is defined

asMG(X) = f(X) + Y, where Y ∼ N k(0, σ2) with σ ≥
√

2 ln(1.25 δ)∆
(f)
2

ϵ . The Gaussian

mechanism is (ϵ, δ)-differentially private.

We use the above mechanism to privatize the SMLQ, for which we derive the sensitivity.

Note that the query’s utility could be improved even further via the more recent analytical

Gaussian mechanism in42.

7.5.1 DERIVATION OF SMLQ SENSITIVITY

We derive a bound on the sensitivity for the first iteration of the SMLQ, f(X) = 1
2diag(LX)† [αLY − LX]Q+

Q, where we initialize X0 to a matrix Q such that each entry is distributed as Qij ∼ N (0, σ2
q ),

for which σq is a hyperparameter chosen by the user. It is typical to use random initialization

for iterative optimization. We also assume that X ∈ Rn×k is normalized to have unit norm

rows. Under all possible cases of adding one additional unit norm record to X to produce a

neighboring dataset X̃ ∈ R(n+1)×k (denoted by the constraint d(X, X̃) = 1), the sensitivity
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PrivateMail

1. Client’s input: Raw data (or activations) X normalized to have unit norm rows and integer
labels Y, Gaussian kernel bandwidth σ, regularizing parameter α, variance σ2

q for random
embedding initialization.

2. Client computes embedding: Xt =
1
2
diag(LX)

†[αLY − LX]Xt−1 +Xt−1 with initializa-
tion X0 = Q such that Qij ∼ N (0, σ2

q ), LX and LY are graph Laplacians formed over
adjacency matrices upon applying Gaussian kernels to X,Y with bandwidth σ.

3. Client side privatization: The client takes the following actions:

(a) Initialization: Compute constant M that depends on chosen α, σ and data size n as
defined in appendix.

(b) Computation of global-sensitivity: Compute upper bound on global sensitivity as
∆ = M

√
n+1
2
‖Q‖F

(c) Add differentially private noise Release Xt with the global sensitivity upper bound in
step 3(b) via the (ϵ, δ)- differentially private multi-dimensional Gaussian mechanism:
Xt +N n×k

(
µ = 0, σ2 = 2 ln(1.25/δ)·∆2

ϵ2

)
Figure 7.5: Protocol for the proposed PrivateMail mechanism

of our query is defined as ∆(f)
2 = maxX,X̃:d(X,X̃)=1 ‖f(X) − f(X̃)‖F . Note that we append

an extra row of zeroes to X and Y such that the matrix dimensions agree with X̃ and Ỹ when

evaluating f(X)− f(X̃). To simplify further calculations, we let M denote the matrix defined

by

M(X, X̃) = diag(LX)† [αLY − LX]− diag(LX̃)†
[
αLỸ − LX̃

]
(7.5)

and let Mi denote the ith row of M.

Theorem 7.5.1. SMLQ sensitivity bound We have that, ∆(f)
2 ≤ M

√
n+1
2
‖Q‖F . where

M is a constant defined in appendix such that M ≥ ‖Mi‖ for all X and X̃.

Proof. Note that f(X) − f(X̃) may be expressed as the product 1
2
MQ. Thus, by sub-
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multiplicativity of the Frobenius norm, the global sensitivity is bounded by

∆
(f)
2 = max

X,X̃:d(X,X̃)=1

∥∥∥∥12MQ

∥∥∥∥
F

≤ 1

2
‖Q‖F · max

X,X̃:d(X,X̃)=1
‖M‖F (7.6)

Since ‖M‖F =
√∑n+1

i=1 ‖Mi‖2, then if M is a constant as defined in the theorem, we

have ‖M‖F ≤
√∑n+1

i=1 M2 = M
√
n+ 1. Substituting this expression into the above

inequality, we obtain the bound in the theorem. The derivation of a constant M relies on

expanding the definition of the Laplacian matrices in equation 7.4 and applying the law

of cosines for the difference of vectors. For the full derivation, see the appendix.

The above bound on ∆
(f)
2 is computed for the sensitivity parameter when adding

differentially private noise to the data embedding. Figure 4 summarizes the procedure

for privatization, which we call PrivateMail.

7.5.2 PRIVATE ITERATION-DISTRIBUTE-RECURSION FRAMEWORK

We show that the proposed SMLQ, fortunately, can be applied under a specific frame-

work that we propose so that it can be used in conjunction with the post-processing

property of differential privacy to its advantage in obtaining a much better trade-off

of utility and privacy. In addition, it allows for distributing the work required to com-

plete the iterative embedding across multiple distributed entities while still preserving

privacy. This helps further reduce the computational requirements of the client device

prior to distributing the work. The framework still holds in improving the utility-privacy

trade-off even if used without distributing the computation. We notice that the only term
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Figure 7.6: The effect of k, α, and σ on retrieval performance with the non-private SMLQ and
the private version of PrivateMail.

that requires accessing the sensitive raw dataset is LX. Still, the good thing is that this

term does not change over iterations and hence is not sub-scripted by iteration t as

we show in equation 7.4. Therefore, we first apply our proposed differentially private

release of PrivateMail to just the first iteration. The privately obtained embedding is in-

stead used this time to rebuild the graph Laplacian LX. From the next iteration onwards,

this modified Laplacian is used instead, and the post-processing property of differential

privacy now holds as no iteration from now on needs access to the raw dataset. For this

reason, these iterations can be continued over the server or another device as opposed

to the original client device that runs the first PrivateMail iteration.

7.5.3 PRIVATEMAIL FOR IMAGE RETRIEVAL

We apply the proposed PrivateMail mechanism to the task of private content-based

image retrieval, where a client seeks to retrieve the k-nearest neighbors of their target

image r from a server’s database S based on the feature embedding of their target which

is sent to the server. The objective is to preserve the privacy of the client’s target image.
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We assume the setting in which the client and server have access to a relevant public

database P of images. We propose a differentially private image retrieval algorithm

where we first generate feature vectors for r, P , and S using any feature extraction

model of choice. We then generate low-dimensional embeddings for these features

using the SMLQ in equation 7.4. Since the query relies on the graph Laplacian of a

dataset, a single target image feature is insufficient to generate its embedding. There-

fore, the client concatenates r with the public dataset P . The client runs one iteration of

PrivateMail, where noise is added via the Gaussian mechanism before recomputing the

Laplacian over the private embedding. This makes the next iterations that we run to be

differentially private due to the post-processing invariance property, as the iteration is

now functionally independent of the raw features. We then run post-processing embed-

dings for a varying number of iterations depending on the dataset. Furthermore, since

the client and server have access to different data, the embedding of r∪P on the client

is not guaranteed to align with that of S on the server. We thus also concatenate S with

P so the public data serves as a common “anchor” for the embeddings, which is used

to align the embeddings of r and S via the Kabsch-Umeyama rigid-transformation al-

gorithm520. Once the server retrieves the k-nearest neighbors of the client’s privatized

embedding of r with respect to the server’s non-private embedding of S , the server

gains additional information about r based on its neighbors. To obfuscate r, we append

a dataset Pr of dummy queries to r∪P on the client side. Pr is generated by uniformly

sampling images from the public dataset such that Pr contains one image of every class

besides the class of r. The client’s target image class is equally likely to be any of the

possible classes in the dataset, so the server cannot directly infer the target class. The
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Figure 7.7: Differentially private retrieval

client is then able to filter out the retrieved images for the dummy targets. This process

is visualized in Figure 1 and described in greater detail in Algorithm 1.

7.6 EXPERIMENTS

DATASETS

In this section we present experimental results on three important image retrieval bench-

mark datasets of i) Caltech-UCSD Birds-200-2011 (CUB-200-2011)562, ii) Cars196291,

and iii) CIFAR-100294.
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Figure 7.8: Embeddings for CARS196 data (with α = 0.5 and parameters in appendix A) at
varying privacy levels ε. We show that alignment improves as less noise is added. The

privacy-induced noise can be seen at various levels of ε.
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Figure 7.9: We compare the privacy-utility trade-off of PrivateMail with Recall@k experiments
with k = 8 for three datasets on 6 baselines that include private and non-private methods. The

lower values of ϵ refer to higher levels of privacy.

METHODOLOGY

We use the state-of-the-art image retrieval method of ‘combination of multiple global

descriptors’ (CGD)259 with ResNet-50220 backbone to generate features for the Cars196

and CUB-200-2011 datasets. CIFAR-100 features are extracted directly from ResNet-

50 pre-trained on ImageNet136. We run Algorithm 1 on each dataset with the parameters

outlined in appendix A.

QUANTITATIVE METRICS

We measure retrieval performance using the Recall@k metric as used in this popular

non-private image retrieval paper259. As our proposed work is a differentially private

algorithm, we study the utility-privacy trade-off by looking at the recalls obtained at

varying levels of ϵ. Note that lower ϵ refers to higher privacy.
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7.6.1 BASELINES

We compare the utility of our proposed PrivateMail mechanism against several impor-

tant baselines as below.

Non-private state of the art for image retrieval We compare against the non-private

method of CGD that unfortunately does not preserve privacy, and see how close we get

to its performance while also preserving privacy. Note that there exists a trade-off of

privacy vs utility, and the main goal is to preserve privacy while attempting to maximize

utility.

Differentially private unsupervised manifold embedding A comparison with the dif-

ferentially private unsupervised manifold embedding method of DP-dSNE440,441,439 is

done as this is one of the most recent manifold embedding methods with differential

privacy.

Non-private supervised manifold embedding We compare against non-private super-

vised manifold embedding to show how close our differentially private version fares in

terms of achievable utility when the privacy is not at all preserved.

Non-private unsupervised manifold embedding We compare against the non-private

unsupervised manifold embedding method of t-SNE531 to show the benefit of a super-

vised manifold embedding over an unsupervised embedding in terms of the utility.

Differentially private classical projections We compare against differentially private

versions of more classical methods such as private PCA105 and private random projec-

tions276.
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7.6.2 EVALUATION

As shown in Figure 7.9, PrivateMail SMLQ obtains a substantially better privacy-utility

trade-off over all the considered private baselines on all the datasets. It also reaches

closer to the methods that do not preserve privacy on CARS196. It even meets the

non-private performance on CIFAR-100 at much higher levels of privacy (lower ϵ’s).

DP-dSNE reaches the performance of PrivateMail only at low levels of privacy on 2 out

of the 3 datasets, while PrivateMail does substantially better at high levels of privacy

preservation. A similar phenomenon happens again with respect to private PCA on

CIFAR-100.

SENSITIVITY TO HYPER-PARAMETERS

In Figure 7.6, we study the sensitivity of our method’s performance with respect to

various parameters such as choice of embedding dimension k, the weighting parameter

α which acts as a regularizer for the embedding by weighting the graph Laplacians in

the term LX − αLY in our embedding update, and the σ parameter used in defining

the Gaussian kernels used to build LX,LY. As shown, tuning of k, α is stable while

tuning of σ requires a bit of a grid search. However, since we are in a supervised setting,

standard methods for tuning could be used for practical purposes.

QUALITATIVE VISUALIZATIONS

Example of PrivateMail embeddings are given in Figure 7.8 for different values of

privacy parameter ϵ pre- and post- server-client alignment.
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7.7 CONCLUSION

We proposed a differentially private supervised manifold learning method and applied it

to the private image retrieval problem. That said, there is a broad range of applications

for manifold learning beyond that of image retrieval. Therefore, it would be interesting

to investigate the potential benefits of doing these other tasks in a privacy-preserving

manner. We would like to extend the derived global sensitivity results to smooth sensi-

tivities388 in order to potentially further improve the privacy-utility trade-off.

7.8 EXPERIMENT PARAMETERS

Unless noted otherwise, we use the following parameters for the SMLQ experiments.

Parameter CARS196 CUB-200-2011 CIFAR-100
σ 6 5 6
α 0.6 0.5 0.6
k 2 2 2
σq 10−8 10−8 10−8

T 5 5 5
ϵ 0.1 0.1 0.1
δ 10−5 10−5 10−5

Table 7.2: Default experiment parameters

7.9 GLOBAL SENSITIVITY DERIVATION

The proof of Theorem 7.5.1 relies on deriving a constant bound M such that M ≥

‖Mi‖ for all X and X̃, where Mi is the i-th row of Z as defined in equation equation 7.5.
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Lemma 7.9.1. For all X and X̃, M = nMij +Mii ≥ ‖Mi‖, where Mmax
ii and Mmax

ij

are defined as

Mii = α2


(

n

ne−
2
σ2 + e−

1
2σ2 − 1

)2

+

(
n

(n+ 1)e−
2
σ2 − 1

)2

−
2

(
(n+ 1)e−

c2

2σ2 − 1

)2

n
(
n+ e−

1
2σ2 − 1

)


(7.7)

Mij =
α2 + 1(

ne−
2
σ2 + e−

1
2σ2 − 1

)2 − 2αe−
c2+4

2σ2(
n+ e−

1
2σ2 − 1

)2 +
α2 + 1(

(n+ 1)e−
2
σ2 − 1

)2 − 2αe−
c2+4

2σ2

n2

−2 · α2e−
c2

σ2 + e−
4
σ2

n
(
n+ e−

1
2σ2 − 1

) +
4α(

ne−
2
σ2 + e−

1
2σ2 − 1

)(
(n+ 1)e−

2
σ2 − 1

) (7.8)

Proof. Recall that we denote the i-th row of X by Xi. LX̃, LY, and LỸ are defined

similarly for X̃, Y, and Ỹ respectively. Expanding the definition of Mi,

‖Mi‖ =
n+1∑
j=1

[diag(LX)† [αLY − LX]− diag(LX̃)† [αLỸ − LX̃]]
2
i,j

=
n+1∑
j=1

(
[diag(LX)† [αLY − LX]]i,j − [diag(LX̃)† [αLỸ − LX̃]]i,j

)2

=
n+1∑
j=1

 [diag(LX)† [αLY − LX]]
2
i,j + [diag(LX̃)† [αLỸ − LX̃]]

2
i,j

− 2 [diag(LX)† [αLY − LX]]i,j [diag(LX̃)† [αLỸ − LX̃]]i,j


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Since the off-diagonal entries of diag(LX) and diag(LX̃) are zero, we have

[diag(LX)† [αLY − LX]]i,j =
n∑

k=1

diag(LX)†i,k [αLY − LX]k,j

= diag(LX)†i,i [αLY − LX]i,j =
αLYi,j − LXi,j

LXi,i

[diag(LX̃)† [αLỸ − LX̃]]i,j =
αLỸi,j − LX̃i,j

LX̃i,i

Therefore, the norm of Mi is given by

‖Mi‖ =
n+1∑
j=1

(αLYi,j − LXi,j

LXi,i

)2

+

(
αLỸi,j − LX̃i,j

LX̃i,i

)2

− 2

(
αLYi,j − LXi,j

) (
αLỸi,j − LX̃i,j

)
LXi,iLX̃i,i


(7.9)

We bound the above summation by bounding each summand,

Mij =

(
αLYi,j − LXi,j

LXi,i

)2

+

(
αLỸi,j − LX̃i,j

LX̃i,i

)2

−2

(
αLYi,j − LXi,j

) (
αLỸi,j − LX̃i,j

)
LXi,iLX̃i,i

(7.10)

Recall that the (n + 1)-th row of X and Y is 0. By the definition of the Laplacian in

equation 7.2,

LXi,j =


∑n

k=1 exp
(
−∥Xi−Xk∥2

2σ2

)
+ exp

(
−∥Xi∥2

2σ2

)
− 1 if i = j

− exp
(
−∥Xi−Xj∥2

2σ2

)
otherwise

(7.11)

LYi,j =


∑n

k=1 exp
(
−∥Yi−Yk∥2

2σ2

)
+ exp

(
−∥Yi∥2

2σ2

)
− 1 if i = j

− exp
(
−∥Yi−Yj∥2

2σ2

)
otherwise

(7.12)
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Let vX and vY be the additional records in the (n + 1)-th rows of LX̃ and LỸ respec-

tively. Then similarly to the above definitions of LXi,j and LYi,j, we have

LX̃i,j =


∑n

k=1 exp
(
−∥Xi−Xk∥2

2σ2

)
+ exp

(
−∥X̃i−vX∥2

2σ2

)
− 1 if i = j

− exp
(
−∥X̃i−X̃j∥2

2σ2

)
if i 6= j

(7.13)

LỸi,j =


∑n

k=1 exp
(
−∥Yi−Yk∥2

2σ2

)
+ exp

(
−∥Ỹi−vY∥2

2σ2

)
− 1 if i = j

− exp
(
−∥Ỹi−Ỹj∥2

2σ2

)
if i 6= j

(7.14)

We proceed to find upper and lower bounds for Mij by separately analyzing two cases:

when i = j and when i 6= j.

Case 1: i = j. By equation equation 7.10, we have

Mii =

(
αLYi,i − LXi,i

LXi,i

)2

+

(
αLỸi,i − LX̃i,i

LX̃i,i

)2

− 2

(
αLYi,i − LXi,i

) (
αLỸi,i − LX̃i,i

)
LXi,iLX̃i,i

(7.15)

This equation further simplifies to

Mii =
α2LY

2
i,i − 2αLXi,iLYi,i + LX

2
i,i

LX
2
i,i

+
α2LỸ

2
i,i − 2αLX̃i,iLỸi,i + LX̃

2
i,i

LX̃
2
i,i

− 2
α2LYi,iLỸi,i − αLX̃i,iLYi,i − αLXi,iLỸi,i + LXi,iLX̃i,i

LXi,iLX̃i,i

= α2

(
LY

2
i,i

LX
2
i,i

+
LỸ

2
i,i

LX̃
2
i,i

−
2LYi,iLỸi,i

LXi,iLX̃i,i

)
(7.16)
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Since each row in X, X̃ is the unit norm, by the law of cosines, we have

‖Xi −Xk‖2 = ‖Xi‖2 + ‖Xk‖2 − 2‖Xi‖‖Xk‖ cos θXi,Xk
= 2− 2 cos θXi,Xk

‖X̃i − X̃k‖2 = 2− 2 cos θX̃i,X̃k

(7.17)

The cosine of the angle between two unit vectors falls between−1 and 1. We use

this property to bound LXi,i,

n∑
k=1

exp

(
−2− 2(−1)

2σ2

)
+ exp

(
− 1

2σ2

)
− 1 ≤ LXi,i ≤

n∑
k=1

exp

(
−2− 2(1)

2σ2

)
+

exp

(
− 1

2σ2

)
− 1

ne−
2
σ2 + e−

1
2σ2 − 1 ≤ LXi,i ≤ n+ e−

1
2σ2 − 1

(7.18)

as well as LX̃i,i,

n∑
k=1

exp

(
−2− 2(−1)

2σ2

)
+ exp

(
−2− 2(−1)

2σ2

)
− 1 ≤

LX̃i,i ≤
n∑

k=1

exp

(
−2− 2(1)

2σ2

)
+ exp

(
−2− 2(1)

2σ2

)
− 1

(n+ 1)e−
2
σ2 − 1 ≤ LX̃i,i ≤ n

(7.19)

Y, Ỹ are vectors of integer labels in {0, . . . , c}, where c + 1 is the number of

unique classes in the dataset. We then have the constraints 0 <= ‖Yi−Yj‖2 <=
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c2, which generate the following bounds for LYi,i,

n∑
k=1

exp

(
− c2

2σ2

)
+ exp

(
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2σ2

)
− 1 ≤ LYi,i ≤
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)
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)
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(7.20)

and similarly for LỸi,i,
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(7.21)

Combining these bounds with those in equations equation 7.18 and equation 7.19,

we bound Mii from above by

Mii ≤ α2


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ne−
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σ2 + e−

1
2σ2 − 1

)2

+

(
n

(n+ 1)e−
2
σ2 − 1

)2

−
2

(
(n+ 1)e−

c2

2σ2 − 1

)2

n
(
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)
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= Mii (7.22)

Now that we have derived upper bounds for summands of the form Mii in equa-

tion 7.10, we bound Mij where i 6= j.
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Case 2: i 6= j. Expanding equation 7.10, we have

Mij = =
α2LY

2
i,j + LX

2
i,j

LX
2
i,i

−
2αLXi,jLYi,j

LX
2
i,i

+
α2LỸ

2
i,j + LX̃

2
i,j

LX̃
2
i,i

−
2αLX̃i,jLỸi,j

LX̃
2
i,i

− 2 ·
α2LYi,jLỸi,j + LXi,jLX̃i,j

LXi,iLX̃i,i

+ 2 ·
αLX̃i,jLYi,j + αLXi,jLỸi,j

LXi,iLX̃i,i

(7.23)

Similarly to the previous case, we use the law of cosines in equation 7.17 to

bound each term in equation 7.10. Recall that we have already derived bounds

for LXi,i and LX̃i,i. The bounds for LXi,j are given by

− exp

(
−2− 2(1)

2σ2

)
≤ LXi,j ≤ − exp

(
−2− 2(−1)

2σ2

)
−1 ≤ LXi,j ≤ −e−

2
σ2

(7.24)

and for LX̃i,j by

− exp

(
−2− 2(1)

2σ2

)
≤ LỸi,j ≤ − exp

(
−2− 2(−1)

2σ2

)
−1 ≤ LX̃i,j ≤ −e

− 2
σ2

(7.25)

By the constraint 0 ≤ ‖Yi −Yj‖2 ≤ c2, bounds for LYi,j are given by,

− exp

(
− 0

2σ2

)
≤ LYi,j ≤ − exp

(
− c2

2σ2

)
−1 ≤ LYi,j ≤ −e−

c
2σ2

(7.26)
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and for LỸi,i,

− exp

(
− 0

2σ2

)
≤ LỸi,j ≤ − exp

(
− c2

2σ2

)
−1 ≤ LỸi,j ≤ −e

− c
2σ2

(7.27)

Substituting these bounds into equation 7.23, we bound Mij from above by

Mij ≤
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+
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2
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= Mmax
ij (7.28)

Therefore, an upper bound for ‖Mi‖ is given by

‖Mi‖ ≤
∑
j ̸=i

Mij +Mii

= nMij +Mii

= M (7.29)
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Applying this bound, which holds for all X and X̃, to equation equation 7.6 in the

proof of Theorem 2, we obtain a bound on the sensitivity of the SMLQ.

7.10 OPTIMIZATION

Solution without matrix inverses or a step size parameter In this section, we formu-

late an efficient monotonically convergent solution for the proposed supervised embed-

ding loss where the update does not require a matrix inverse or a step size parameter. In

empirical results, we saw that even a few iterations of our solution were good enough

to give a great embedding. For brevity, we refer to the embedding f(X) by Z in this

appendix.

CONCAVE-CONVEX PROCEDURE: SPECIAL CASE OF MAJORIZATION MINIMIZATION

A function g(Zt+1,Xt) is said to majorize the function v(Z) at Zt provided v(Zt) =

g(Zt,Zt) and v(Xt) ≤ g(Xt,Zt+1) always holds true. The MM iteration guarantees

monotonic convergence237,566,302,610 because of this sandwich inequality that directly

arises due to the above definition of majorization functions.

v(Zt+1) ≤ g(Zt+1,Xt) ≤ g(Xt,Xt) = v(Xt)

The concave-convex procedure to solve the difference of convex (DC) optimization

problems is a special case of MM algorithms as follows. For objective functions v(X)

which can be written as a difference of convex functions as vvex(Z)+ vcave(Z) we have
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the following majorization function that satisfies the two properties described in the

beginning of this subsection.

v(Z) ≤ vvex(Z) + vcave(X) + (Z−X)T∇vcave(X) = g(Z,X) (7.30)

where g(Z,Z) = v(Z) and g(Z,X) ≥ v(Z) when Z 6= X.

Therefore the majorization minimization iterations are

1. Solve ∂g(Zt+1,Xt)
∂Zt+1

= 0 for Xt

2. Set Xt = Zt and continue till convergence.

This gives the iteration known as the concave-convex procedure.

∇vvex(Zt+1) = −∇vcave(Zt) (7.31)

ITERATIVE UPDATE WITH MONOTONIC CONVERGENCE FOR SMLQ

Proof. We denote by diag(LX), a diagonal matrix whose diagonal is the diagonal of

LX. Now, we can build a majorization function over Tr (XTLXX), based on the fact

that 2 diag(LX) − LX is diagonally dominant. This leads to the following inequality

for any matrix M with real entries and of the same dimension as X.

Tr((X−M)T[2 diag(LX)− LX](X−M)) ≥ 0

as also used in547. We now get the following majorization inequality over Tr (XTLXX)

by separating it from the above inequality.
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Tr (XTLXX) + b(Y) ≤ Tr [2XT diag(LX)X]−

2Tr [XT(2 diag(LX)− LX)M] = λ(X,M)

which is quadratic in X where, b(M) = Tr (MTLXM)− Tr (MT2 diag(LX)M).

Let h(X,M) = λ(X,M)− αTr (XTLYX)

This leads to the following bound over our loss function with const(M) being a

function that only depends on M:

G(X) + const(M) ≤ h(X,M) ∀X 6= M

= h(X,X), when X = M

that satisfies the supporting point requirement, and hence h(·) touches the objective

function at the current iterate and forms a majorization function. Now, the following

majorization minimization iteration holds true for an iteration t:

Xt+1 = argmin
X

h(X,Mt) and Mt+1 = Xt

It is important to note that these inequalities occur amongst the presence of additive

terms, const(M) that is independent of X unlike a typical majorization-minimization

framework, and hence, it is a relaxation. The majorization function h(X,Mt) can be

expressed as a sum of a convex function evex(X) = λ(X,Mt) and a concave function

ecave(X) = −αTr (XTLYX). By the concave-convex formulation, we get the iterative
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solution by solving for ∇evex(Xt) = −∇ecave(Xt−1) which gives us

Xt =
α

2
diag(LX)

†LYXt−1 +Mt −
1

2
diag(LX)

†LXMt

and on applying the majorization update over Mt, we finally get the supervised man-

ifold learning update that does not require a matrix inversion or a step-size parameter

while guaranteeing monotonic convergence.

If the concave Hessian has small curvature compared to the convex Hessian in the

neighborhood of an optima, then CCCP will generally have a superlinear convergence

like quasi-Newton methods. This and other characterizations for convergence of CCCP,

under various settings, have been studied in great detail in442.

7.11 SEPARATION-REGULARITY TRADE-OFF IN SUPERVISED MANIFOLD LEARN-

ING 549

Theorem 7.11.1. Let X = {xi}Ni=1 ⊂ Rn be a set of training samples such that each

xi is drawn i.i.d. from one of the probability measures {νm}Mm=1, with νm denoting the

probability measure of the m-th class. Let Z = {yi}Ni=1 be an embedding of X in Rd

such that there exist a constant γ > 0 and a constant Aδ depending on δ > 0 satisfying

‖zi − zj‖ < Aδ, if ‖xi − xj‖ ⩽ 2δ and C (xi) = C (xj)

‖zi − zj‖ > γ, if C (xi) 6= C (xj)
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For given ϵ > 0 and δ > 0, let f : Rn → Rd be a Lipschitz continuous interpolation

function with constant L, which maps each xi to f (xi) = yi, such that

Lδ +
√
dϵ+ Aδ ⩽

γ

2

Consider a test sample x randomly drawn according to the probability measure νm of

class m. For any Q > 0, if X contains at least Nm training samples from the m-th class

drawn i.i.d. from νm such that

Nm >
Q

ηm,δ

then the probability of correctly classifying x with 1-NN classification in Rd is lower

bounded as

P (Ĉ(x) = m) ≥ 1− exp

(
−2 (Nmηm,δ −Q)2

Nm

)
− 2d exp

(
− Qϵ2

2L2δ2

)
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“The mathematician needs no laboratories or supplies.

A piece of paper, a pencil, and creative powers form

the foundation of his work.”

Aleksandr Yakovlevich Khinchin

8
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Power Learning for Private Distributed

Learning with One Round of

Communication

8.1 INTRODUCTION

In this chapter, we focus on understanding the requirements for instilling formal guaran-

tees of privacy when the query under consideration is a neural network. We focus on the

problem of releasing a privatized version of a sensitive data set (private embeddings)

with another entity. The the downstream goal of the entity that, in turn, consumes

the released private embeddings for it to perform supervised machine learning with

downstream predictive applications. This helps to privatize variants of split learning, a

popular form of distributed machine learning that involves the sharing of intermediate

activations between clients and the server, as illustrated in Figure 8.2. This chapter is

based on our work in542. In this method, each client trains the network up to a certain

layer known as the cut layer and sends the weights to the server. The server then trains

the network for the rest of the layers. This completes the forward propagation. The

server then generates the gradients for the final layer and back-propagates the error un-

til the cut layer. The gradient is then passed over to the client. The client completes
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the rest of the back-propagation. This is continued till the network is trained. In this

framework as well, there is no explicit sharing of raw data, but this does not guarantee

privacy and hence requires a method like the proposed power mechanism541 as a variant

of this setting that is mathematically (formally) guaranteed to be private.

There are three settings for this problem, namely the interactive setting, semi-interactive

setting , and non-interactive setting, as follows. In the interactive setting, a private

model is trained over a labeled training set within a trusted entity, and test points need

to be sent to this model by the querying user in order to get private predictions. In the

semi-interactive setting, a private model is trained over a labeled training set within a

trusted entity, just like in the previous setting. Still, the querying user sends a smaller

subset of its test dataset to the entity hosting the private model. This model hosting

entity then, in turn, sends back a privatized model (i.e. model weights, if a deep learn-

ing model) to the querying user. The user then infers from this privatized model to get

the predictions. In the non-interactive setting, the model is once again trained just like

in the above two settings. But in order to infer, the querying user never sends his test

dataset to this private model hosting entity. Instead, upon training, the model hosting

entity sends a privatized model (i.e. weights in the case of the deep learning model) to

the querying user. The user then infers with this model over his test dataset in order to

get the private predictions.

The primary question we consider before proposing an end-to-end method, that we

build upon it is as follows. Given a data set with n samples Xk×n ∈ Rk, a positive

integer p ∈ Z+, and an operator Hk×k : Xk×1 7→ Zk×1 such that Z = H(Xi)
pXi; what

are the required conditions that need to be satisfied by H(X) and p to formally guar-
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Figure 8.1: Systems interactions and takeaways of the power mechanism.

Figure 8.2: Split learning
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antee that Z is ϵ-Lipschitz private with respect to the dataset X? To avoid confusion,

we clarify that H(X) denotes a matrix whose entries depend on X. In the rest of the

paper, we use H(X) and H interchangeably to mean the same thing without any loss

of generality.

8.2 MOTIVATION

A solution to this main question helps us design newer paradigms of distributed ma-

chine learning beyond the current approaches of federated learning and split learning.

Such a newer paradigm would allow for private distributed machine learning with only

one round of communication to the server.

8.2.1 SYSTEMS INTERACTIONS

The client that holds the sensitive data would have a privatization network (solely based

on our proposed theoretical result) that helps release private embeddings to the server

that trains a complete network for the sake of utility. The privatization network on

the client’s side generates the private (formally differentially private) embedding in

conjunction with a smaller surrogate utility network on the client side to squeeze some

of the utility to complete a machine learning task within the formal privatization process

of generating private embeddings. These private embeddings would then be sent to the

server in one shot that attains complete utility upon training a larger network based on

these embeddings. We illustrate this at a high level along with the following benefits of

this approach in Figure 8.1.
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8.2.2 BENEFITS OF POWER LEARNING

1. Train data and test data privacy Currently, a majority of privacy-preserving

deep learning methods for the private release of model weights provide privacy

guarantees with regards to training data, as opposed to post-production test data

during predictive inference. These methods include the popular DP-SGD3 and

its recent variants. Our method primarily allows for both train-time and test-time

privacy, with a better utility, although in the case of privatizing training data.

2. One round of communication As our approach generates a privacy-preserving

embedding in conjunction with a smaller surrogate network on the client side,

just one round of communication from the client to server suffices as opposed to

traditional approaches of federated learning or split learning.

3. Few-shot private learning Upon applying the power mechanism, we obtain a

distribution of ϵ’s that indicates the ease of privatization of any given record. This

allows us to choose a cut-off threshold based on the needed privacy level that re-

sults in a subset of records that maintain that privacy level. Our experiments

show that we often perform with competitive test accuracy using just those pri-

vatized records. In addition to enabling few-shot private learning, this further

reduces communication and potentially acts as a utility function for the cost of

privatization per record in the setting of private data markets.
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Figure 8.3: Example of change of variable theorem in action for probability distributions.

8.3 LIPSCHITZ PRIVACY

The notion of privacy that we use in this work is that of Lipschitz privacy286, which is

equivalent to differential privacy (details of equivalence in the original paper). It is a

Lipschitz bound on the log density of the output of the query as follows.

|lnP(Q(u) ∈ S)− lnP (Q (u′) ∈ S)| ≤ ϵd (u, u′) , ∀u, u′ ∈ U

This has an equivalent definition that is, at times, more practical to work within the

context of machine learning and is given below.

‖∇u lnP(Q(u) = y)‖ ≤ ϵ
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8.4 MAIN PROPOSED RESULT

Theorem 8.4.1 (Power mechanism theorem). For X ∈ Rk distributed as fX(x), apply-

ing Zpi
= gp ◦gp−1 ◦ · · · ◦g1(Xi) guarantees ϵ-Lipschitz privacy through Z using J(X),

the Jacobian matrix of the composition when we have

∥∥∥∥∥f ′(X)

f(X)
−

p∑
p=1

log(| det(J))

∥∥∥∥∥ ≤ ϵ

.

Proof. The equation Zpi = [H(Xi)]
pX can be unrolled as

Zpi
= gp ◦ gp−1 ◦ · · · ◦ g1(Xi) (8.1)

where gp ◦ gp−1(·) = H(X).gp−1(·). If g is a one-to-one function on the support of X

whose pdf is given by fX(x) where x ∈ Rk, then the pdf of Z = g(X) is

h(Z) = fX(g
−1(Z))| det(J(g−1(Z)))|

for Z in the range of g, where J(X) is the Jacobian matrix of g that is evaluated at X.

This is classically known as the multidimensional change of variable theorem in the

context of probability density functions (an illustration is provided in Figure 8.3). But

since we have gp ◦ gp−1 ◦ · · · ◦ g1(X) instead of a single g(·), this can be written as

hp(Zp) = hp−1(g
−1
p (Zp))

∣∣∣∣det dg−1
p

dZp

∣∣∣∣
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We can rearrange the Jacobian of our iteration as follows

∂HpX

∂Zp−1

=
∂HpX

∂Hp−1X
=

∂Zp

∂Zp−1
=

∂HHp−1X

∂Hp−1X
= J(Z(p−1)i)

Now, in order to find this specific Jacobian matrix J, consider the equation

Zpi =
k∑

j=1

H(Zp−1)ijZp−1j

Since the Jacobian matrix J is

Jij =
∂Zpi

∂Zp−1j

Jij =
∂
∑k

l=1 H(Zp−1)ilZp−1l

∂Zp−1j

Jij =
k∑

l=1

∂H(Zp−1)il
∂Zp−1j

Zp−1l +H(Zp−1)ij

Upon applying a logarithm to the result of the change of variable theorem within our

setup, we get ∣∣∣∣det( dgp
dZp−1

)−1
∣∣∣∣ = ∣∣∣∣det dgp

dzp−1

∣∣∣∣−1

= log hp−2(Zp−2)− log

∣∣∣∣det dgp−1

dZp−2

∣∣∣∣− log

∣∣∣∣det dgp
dZp−1

∣∣∣∣
= . . .
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= log h0(Z0)−
p∑

i=1

log

∣∣∣∣det dgi
dZi−1

∣∣∣∣
Therefore we have that the logarithm of the ratio of the probability densities before and

after p iterations as

log

(
h(Z)

f(X)

)
= −

p∑
p=1

log | detJ(Z(p−1)i | = − log(

p∏
i=1

| detJ(Z(p−1)i |)

Upon applying the derivative to the log probability and taking its norm and setting it

to be less than ϵ, we get the following relations followed by the required condition in

order to satisfy Lipschitz privacy.

∥∥∥∥ ∂

∂X
log h(Z)

∥∥∥∥ =

∥∥∥∥∥∥f
′(X)

f(X)
−

p∑
p=1

∂| detJ(Z(p−1)i
|

∂Xi

| detJ(Z(p−1)i |

∥∥∥∥∥∥
Now, to differentiate the determinant of a matrix, we use Jacobi’s formula to get,

∥∥∥∥ ∂

∂X
log h(Z)

∥∥∥∥ =

∥∥∥∥∥∥f
′(X)

f(X)
−

p∑
p=1

det(J(Z(p−1)i)tr(J
−1 ∂J(Z(p−1)i

)

∂Xi
)

| detJ(Z(p−1)i |

∥∥∥∥∥∥
Finally, we evaluate the term J

′
=

∂J(Z(p−1)i
)

∂Xi
as follows.

J
′

lm =
∂J(Z(p−1)i)lm

∂Xi

=
∂(
∑k

n=1
∂H(Zp−1)ln
∂Zp−1m

Zp−1n +H(Zp−1)lm)

∂Xi

J
′

lm =
k∑

n=1

(
∂2H(Zp−1)ln
∂Xi∂Zp−1m

Zp−1n +
∂H(Zp−1)ln
∂Zp−1m

∂Zp−1n

∂Xi

)
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Therefore, for obtaining ϵ−Lipschitz privacy, we need to have

∥∥∥∥ ∂

∂X
log h(Z)

∥∥∥∥ =

∥∥∥∥∥f ′(X)

f(X)
−

p∑
p=1

log(| det(J))

∥∥∥∥∥ ≤ ϵ

∥∥∥∥ ∂

∂X
log h(Z)

∥∥∥∥ =

∥∥∥∥f ′(X)

f(X)
− pJ−1 ∂J

∂X

∥∥∥∥ ≤ ∥∥∥∥f ′(X)

f(X)

∥∥∥∥+ ∥∥∥∥pH−1 ∂J

∂X

∥∥∥∥ ≤ ϵ

8.5 PRACICAL CALIBRATION OF PRIVACY LEVEL

In order to be able to use the main result above practically, we need an estimate for the

probability densities and their first derivatives, along with corresponding confidence

intervals around the true densities or their first derivatives. We use a kernel density

estimation-based approach for estimating the probability density of each sample as fol-

lows using a valid kernel function K, and we have f̂(x) = 1
nhd

∑n
i=1 K

(
x−Xi

h

)
where

the Gaussian kernel is given by K(u) = e−||u||2

(2π)d/2
. However, as mentioned, we need to

find confidence intervals for these probability density estimates. The range in which

the true probability density lies with 1− α probability is given by

CI1−α = [f̂(x)− z1−α/2

√
µK f̂(x)

nhd
, f̂(x) + z1−α/2

√
µK f̂(x)

nhd
]

where the term µK is given by µK =
∫
K2(x)dx. For the Gaussian kernel, this evalu-

ates to µK = 1/(2dπd/2). Similarly, the confidence bound for the gradient of probability
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density is given by

∂f(x)

∂xi

− ∂f̂(x)

∂xi

= O(h2) +OP

(√ 1

nhd+2

)

where,

f(x) = f̂(x) +

√
Kf̂(x)N (0, 1)

and
∂f(x)

∂xi

=
∂f̂(x)

∂xi

+

√
K

4f̂(x)
f̂(x)N (0, 1)

As this condition, in turn, requires a density estimator, we need to use the confidence

interval on f(X) in the above condition to get a final estimate of the privacy level as

follows. Using,

ϵ′ = max

(∥∥∥∥∥∥ f̂ ′(X)

f̂(x)− z1−α/2

√
µK f̂(x)
nhd

−
p∑

p=1

log(| det(J))

∥∥∥∥∥∥ , (8.2)

∥∥∥∥∥∥ f̂ ′(X)

f̂(x) + z1−α/2

√
µK f̂(x)
nhd

−
p∑

p=1

log(| det(J))

∥∥∥∥∥∥
)

the final ϵ is given by ϵ = ϵ′ +
∥∥∥f ′(X)−f̂ ′(X)

f(X)

∥∥∥.

8.6 EXPERIMENTS

We illustrate an instance of applying a power mechanism to generate a resulting his-

togram that enables few-shot private learning in Figure 8.4 over the Kaggle churn pre-

diction dataset. In Figure 8.5a, we show the resulting test-accuracies upon applying
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power mechanism over the forest cover data set with four different ϵ privacy levels of

0.5, 0.65, 1 and 1.5 denoted by the four curves from bottom to top respectively. This

shows the obtained privacy-accuracy trade-off. Similarly, in Figure 8.5b, we show the

same trade-off upon applying the popular baseline of DP-SGD for the same privacy

levels.

Figure 8.4: Example of change of variable theorem in action for probability distributions.
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(a)

(b)

Figure 8.5: (a) The resulting test-accuracies upon applying power mechanism over the forest
cover data set with four different ϵ privacy levels of 0.5, 0.65, 1 and 1.5 denoted by the four

curves from bottom to top respectively. This shows the obtained privacy-accuracy trade-off. (b)
Similarly, here, we show the same trade-off upon applying the popular baseline of DP-SGD for

the same privacy levels. To conclude, the power mechanism provides comparable (and at
times better) privacy-utility tradeoffs while enabling resource-efficient distributed machine

learning, unlike DP-SGD-based methods that enable federated learning, which do not have
such compelling resource efficiency. The power mechanism also enables private few-shot

learning, train-time, and inference-time privacy based on operating with corresponding privacy
histograms.
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“The scientific method’s central motivation is the ubiq-

uity of error - the awareness that mistakes and self-

delusion can creep in absolutely anywhere and that

the scientist’s effort is primarily expended in recog-

nizing and rooting out error.”

David Donoho

9

244



Structured mixture distributions that

effectively poison ML on large n small p

tabular data

9.1 INTRODUCTION

Data poisoning attack methods have propped up in plenty415,455 to damage the efficacy

of training machine learning models. Their mode of operation is based on either mod-

ifying existing training data records via attacks such as one-pixel attacks491 or via the

addition of a subsample of poisoned data points460 to the training datasets. These meth-

ods attempt to evade detection by models that screen the datasets or ML pipelines and

anomaly detectors to detect data poisoning. Post the filtering of any detected points

(typically with false alarms or false negatives), the rest of the undetected points pro-

duce a degradation in model performance on otherwise genuine data points upon which

model predictions are to be obtained post-deployment of the model. These methods

are currently based on adversarial training13,93,493,602,334,313,330,130,375. We provide an al-

ternative attack scheme for data poisoning that is instead based on structured learning

of Gaussian mixtures with low KL-divergence from target mixture models that in turn

model the raw data. We show that samples from these structured distributions are highly
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effective and evasive in evaluating training datasets of popular machine learning train-

ing pipelines such as neural networks, XGBoost, and random forests. In the current day

and age of machine learning, Gaussian mixtures are perceived to be an older/classical

technique. Therefore it is quite interesting to see that they can be highly effective in

performing data poisoning attacks if learned with the right structural constraints. This

chapter is based on our work inBalla et al..

9.2 STRUCTURED DECOY DISTRIBUTION LEARNING

We now present our proposed results that help in structured distribution learning of

Gaussian mixtures such that the KL-divergence between the learnt mixture and the tar-

get mixture is minimized. This helps in learning distributions from which the poisoned

data points can be sampled from.

9.3 BOUNDS ON KL-DIVERGENCE BETWEEN TWO GAUSSIAN MIXTURES

For the distribution learning problem motivated in the previous section, the key is to

be able to learn a τ -close Gaussian mixture to a given target Gaussian mixture. We,

therefore, share some results on KL-divergences between Gaussian mixtures151. This

helps exploit lower bounds in distribution testing problems that attempt to distinguish

two distributions based on their samples. Let f and g be two PDFs in Rd, where d is the

dimension of the observed vectors x. The KL-divergence between f and g is defined as
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DKL(f ||g) =
∫
Rd f(x) log

f(x)
g(x)

dx. When f and g are PDFS of multivariate normals:

DKL(f ||g) =
1

2
log
|Σg|
|Σf |

+
1

2
Tr((Σg)−1Σf ) +

1

2
(µf − µg)T (Σg)−1(µf − µg)− d

2

(9.1)

When f and g are PDFs for GMMs, the expression for f is (with an analogous expres-

sion for g):

f(x) =
A∑

a=1

ωf
afa(x) =

A∑
a=1

ωf
aN
(
x;µf

a,Σ
f
a

)
(9.2)

A practical upper-bound on KL-divergence between two Gaussian mixtures Davg(f ||g)

is given by

1

2

∑
a

ωf
a

[
log
∑
α

ωf
αe

−DKL(fa||fα) + log
∑
α

ωf
αzaα − log

∑
b

ωg
b tab − log

∑
b

ωg
be

−DKL(fa||gb)

]

as can be obtained via the details shared later on in this work.

9.4 UPPER BOUNDS ON KL-DIVERGENCE BETWEEN GAUSSIAN MIXTURES

151 defines the upper and lower bounds for KL-Divergence between GMMs to be:

Dlower(f ||g) =
∑
a

ωf
a log

∑
α ω

f
αe

−DKL(fa||fα)∑
b ω

g
b tab

−
∑
a

ωf
aH(fa) (9.3)

Dupper(f ||g) =
∑
a

ωf
a log

∑
α ω

f
αzaα∑

b ω
g
be

−DKL(fa||gb)
+
∑
a

ωf
aH(fa) (9.4)
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where H(fa) is the entropy of fa, and the normalization constants of the product of the

individual Gaussians are given by:

log tab = −
d

2
log 2π − 1

2
log |Σf

a + Σg
b | −

1

2
(µg

b − µf
a)

T (Σf
a + Σg

b)
−1(µg

b − µf
a) (9.5)

log zaα = −d

2
log 2π − 1

2
log |Σf

a + Σf
α| −

1

2
(µf

α − µf
a)

T (Σf
a + Σf

α)
−1(µf

α − µf
a)

(9.6)

We will focus on optimizing the following average of the lower and upper bounds of

the KL-Divergence between GMMs as it was shown to be a good estimate of the KL-

Divergence between GMMs in151.

9.5 ROUTE 1: MODIFIED EM ALGORITHMS FOR OUR STRUCTURED DISTRIBU-

TION LEARNING PROBLEM

We substituted the KL terms with distance covariance in order to minimize the above

average bound on KL-divergence Davg(f ||g) between Gaussian mixtures and optimized

it to see the efficacy of the learnt poisoned samples.

This is, fortunately, possible because the KL divergence between Gaussian mixtures

is expressed via separable KL terms between components of Gaussian mixtures. Note

248



that two terms are constant here with respect to the target mixture distribution as follows

Davg(f ||g) =
1

2

∑
a

ωf
a

C1 + C2 − log
∑
b

ωg
b√

|Σf
a + Σg

b |
− log

∑
b

ωg
be

DCov(Σa
f ,Σ

g
b )


(9.7)

With Σf
g = 1

N−1
ZT

b Zb, where N is the number of samples, our problem is equivalent to

minimizing the following for each component a

ωf
a log

∑
α

ωf
αe

DCov(Σf
a ,Σ

f
α) + ωf

a log
∑
α

ωf
α√

|Σf
a + Σf

α|
(9.8)

− ωf
a log

∑
b

ωg
be

DCov(Σf
a ,

1
N−1

ZT
b Zb) − ωf

a log
∑
b

ωg
b√

|Σf
a + 1

N−1
ZT

b Zb|
(9.9)

= ωf
a (C1 + C2)− ωf

a log
∑
b

ωg
be

DCov(Σf
a ,

1
N−1

ZT
b Zb) − ωf

a log
∑
b

ωg
b√

|Σf
a + 1

N−1
ZT

b Zb|

(9.10)

− ωf
a log

∑
b

ωg
be

DCov
(
Σf

a ,
1

N−1(Zb−µg
b)

T
(Zb−µg

b)
)

(9.11)

− ωf
a log

∑
b

ωg
be

− 1
2(µ

g
b−µf

a)
T
(
Σf

a+
1

N−1(Zb−µg
b)

T
(Zb−µg

b)
)−1

(µg
b−µf

a)√
|Σf

a + 1
N−1

(Zb − µg
b)

T (Zb − µg
b)|

(9.12)

+ ωf
a (C1 + C2) + λ.EMLoss

where the EMLoss in the last term is the standard EM loss; here, the objective function

is regularized with the standard loss used in EM algorithms for estimating Gaussian
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mixtures. Therefore, we now have a modified EM algorithm that learns Gaussian mix-

tures with respect to a target distribution while satisfying the closeness constraints with

respect to KL-divergence.

E-step updates: For each component b at step t, compute

γ
(t+1)
ib =

ωg
b
(t)p
(
yi|µg

b
(t),Σg

b
(t)
)

∑B
b′=1 w

g
b′
(t)p
(
yi|µg

b′
(t),Σg

b′
(t)
) , i = 1, . . . , N

and finally

n
(t+1)
b =

N∑
i=1

γ
(t+1)
ib

M-step updates: For each component b, compute the following update

ωg
b
(t+1) =

n
(t+1)
b

N

The rest of the updates for the mean vector and covariances are omitted here for

brevity.

Theorem 9.5.1. The function log
∑

b

ωg
b√

|Σf
a+Σg

b |
is convex if

ωg
b

∑
b

 ωg
b√

|Σf
a + Σg

b |
− ωg

b

 ≥ 0

as this results in a positive semi-definite Hessian.

Proof. The proof is in Appendix 9.7.
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Theorem 9.5.2. The function log
∑

b ω
g
be

DCov(Σa
f ,Σ

g
b ) is convex.

Proof. The proof is in the Appendix.

9.6 NUMERICAL EXPERIMENTS

We performed numerical experiments on 3 UCI-ML repository datasets of EEG eye

state, occupancy, and Avila with their dimensions and specifications detailed in Table

1 above. We show in a series of captioned figures in the appendix below that the well-

tuned classification models, such as neural networks with increasing hidden layers of

1, 4, 8, and 12, as well as models such as XGBoost and Random Forests, cannot distin-

guish between the real and poisoned samples generated by our scheme, thereby making

it really hard for an attacker that is dependent on machine learning to estimate the pair

of mixture distributions used to model the real samples and to obtain poisoned samples

respectively. Our pipeline consists of a model to detect a decoy Vs. non-decoy and in

addition, we also perform a label reconstruction attack to reconstruct the raw labels of

the client. The poisoned samples are generated only using raw features. We see a spin-

off empirical benefit that upon adding poisoned samples, not only do we prevent their

detection, but we also make it extremely hard for the attacker to reconstruct the raw

labels corresponding to the raw data via a second model. We use default SciPy param-

eters for Powell minimization to optimize mu and parameters of ftol = 0.001,

xtol = 0.001, maxfev = 4000 for optimizing Zb in our modified EM algo-

rithm. In contrast, the rest of the steps in our algorithm are trivial to compute. We

show the efficacy and evasiveness of data poisoning with structured learning of Gaus-
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Occupation and Avila datasets: Classification of decoy Vs. non-decoy splinters using
NNs, XGBoost and Random Forest shows that the models are unable to distinguish
them when the sample size of decoy splinters is twice that of the non-decoy splinters.
Our pipeline is a standard one used in data-poisoning schemes with two models: one to
detect and one to classify. Our pipeline consists of a model to detect a decoy Vs. non-
decoy and in addition, we also perform a label reconstruction attack to reconstruct the
raw labels of the client. The splinters are generated only using raw features. We see a
spin-off empirical benefit that upon adding decoy splinters, not only do we prevent their
detection, but we also make it extremely hard for the attacker to be able to reconstruct
the raw labels corresponding to the raw data via a second model.
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Dataset Sample Size Attributes Balanced # of Classes
EEG Eye State 14,980 15 Yes 2
Avila 20,867 10 Yes 12
Skin Segmentation 245,057 4 No 2

Table 9.1: A listing of datasets that we used for empirical investigations is provided in this
table along with their dimensions.

We show that our approach also reduces the needed KL-divergence as shown below.

Figure 9.1: We obtain KL-divergence reduction between the data-related mixture and the
poisoning mixture learnt through our approach.

sian mixtures with low KL-divergence from target mixture models that, in turn, model

the raw data. We also provide new results connecting RKHS and distance statistics like

distance correlation to information theoretic measures like KL-divergence, and employ

these results in optimizing for KL-divergence between Gaussian mixtures.

9.7 APPENDIX A: PROOF OF THEOREM 9.5.1

Proof. This condition simplifies to requiring

√
|Σf

a + Σg
b | ≤ ωg

b , ∀b

By the arithmetic-geometric-mean (A.G.M) inequality we have,

n∏
k=1

λk ≤
1

nn

(
n∑

k=1

λk

)n
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Figure 9.2: EEG: Classification of decoy Vs. Non-decoy splinters using NNs, XGBoost, and
Random Forest show that the models are unable to distinguish them when the sample size of
decoy splinters is twice that of the non-decoy splinters. Our pipeline is a standard one used in

data-poisoning schemes with two models: one to detect and one to classify. We obtained
similar results using anomaly detectors such as isolation forests. The pipeline consists of a

model to detect a decoy Vs. non-decoy, and in addition, we also perform a label reconstruction
attack to reconstruct the raw labels of the client. The splinters are generated only using raw

features. We see a spin-off empirical benefit that upon adding decoy splinters, not only do we
prevent their detection, but we also make it extremely hard for the attacker to able to

reconstruct the raw labels corresponding to the raw data via a second model.

Therefore
∑

b |Σf
a + Σg

b | ≤
∑

b[Tr(Σ
f
a+Σg

b )]
n

nn This implies that if,

∑
b

Tr(Σf
a + Σg

b) ≤ n n

√
ωg
b , ∀b

then the condition for convexity
∑

b

√
|Σf

a + Σg
b | ≤ n n

√
ωg
b , ∀b will be satisfied.

9.8 APPENDIX B: PROOF OF THEOREM 9.5.2

Proof. We now show that the LogSumExp function log
∑

b ω
g
be

DCov(Σa
f ,Σ

g
b ) is convex as

well. In fact, LogSumExp(f(z)) happens to be convex for any convex function f(z)
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as shown below.

∂2

∂z2
log
∑

efi(z) =
∂

∂z

[∑
(efi (z)

∂
∂z
fi(z))∑

efi(z)

]
(9.13)

which is equal to

∑
efi

∂2

∂z2
fi(z)∑

efi(z)
+

∑
ef

i(z)[ ∂
∂z
fi(z)]

2∑
efi(z)

−
(
∑

efi(z) ∂
∂z
fi(z))

2

(
∑

efi(z))2
(9.14)

The first term is positive. The difference of the next two terms is positive due to

Jensen’s inequality as

∑[
ai

(
∂

∂z
fi(z)

)2
]
≥
[∑

ai
∂

∂z
fi(z)

]2
(9.15)

This proves convexity of log
∑

b ω
g
be

DCov(Σa
f ,Σ

g
b ).
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“It has been asserted - and this is no overstatement

- that whereas other sciences draw their conclusions

from what we know, the science of probability derives

its most important results from what we do not know.”

Richard von Mises

10
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Empirical heuristics for preventing face

reconstruction attacks in distributed

inference after on-premise training

10.1 INTRODUCTION

Data sharing and distributed computation while preserving privacy and safety have

been identified amongst important current trends in the adoption of computer vision

and machine learning technologies. In this setting, with several client-server entities in-

teracting in a distributed fashion, there is a need for privacy-preserving technologies to

handle face and gesture data such that attackers residing in one or more entities cannot

reconstruct face data belonging to genuine clients. This would help to deploy powerful

face recognition technologies such as biometric authentication, facial expression analy-

sis, and consumer attention/engagement analysis in a truly distributed fashion across a

wide array of device types while maintaining privacy.

We now elaborate on the sub-problem of private collaborative inference, that is, the

setting in which this paper proposes a method to prevent face reconstruction attacks.

With rapid advances in computing, organizations are now able to train ultra-large ma-

chine learning models on huge data sets with massive computing resources. This opens
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up a new set of problems for external clients that intend to predict with these models on

their query test data. The client would not like to download these large models in their

entirety on their device, given that they often have billions of parameters. Generation of

predictions with these trained models is computationally intensive if solely performed

on-device by the client.

In this setting, we propose a method (NoPeek-Infer) for the client to share activa-

tions from a chosen intermediate layer such that reconstruction attacks of raw face data

can be prevented. In contrast, the rest of the prediction after this layer is performed

on a server. We test this on several face datasets to measure the efficacy of NoPeek-

Infer in preventing face reconstruction attacks within the task of distributed predictive

inference. This chapter is based on our work in545.

10.1.1 MOTIVATION

Activation sharing: This setting of distributed learning with communication of in-

termediate activations upon splitting the deep learning model such that some layers lie

with the client and the rest with the server is popular in split learning210,538, an important

variant of federated learning283,348,266. Sharing of activations from intermediate layers

is also relevant in distributed learning approaches of local parallelism304, features re-

play239, divide and conquer quantization168 and in task-independent privacy-respecting

data crowdsourcing310. The client’s data records on which the predictions need to be ob-

tained are private. Therefore, the model’s intermediate representations (or activations)

that are communicated in this setting need to be desensitized to prevent reconstruction

attacks. This opens up the relatively new problem of private collaborative inference

260



(PCI), where the model is split across the client and server.

This is in contrast to an alternate setting of federated learning with considerable

existing work where the server intends to share the weights of a trained model privately.

The privacy desired is with regard to the server’s own training data. Traditionally, two

standard modes of machine learning deployment exist for practical applications: a.)

on-device prediction and b.) machine learning as a service (MLaaS). In the MLaaS

setup, the service provider is assumed to be trusted by the client using the service. The

assumption is not valid if the clients data is sensitive.

The following issues motivate the design of practical PCI algorithms and systems

for on-device prediction:

1) Computation efficiency: Recent state-of-the-art models require a lot of computa-

tion even during inference. These models cannot fit into hardware-limited devices such

as smartphones and other edge/IoT devices.

2) Secrecy of the models: Parameters of a model or architecture can be a secret or

intellectual property of the server. In such cases, it is not possible to ship the models

locally.

3) Shipping updates to the model: To update the model parameters, the server needs

to apply updates to all clients in on-device machine learning. Within PCI, the server

can update server-side parameters and treat the client’s model as frozen.

Privacy preserving ML for faces: Recent privacy-preserving machine learning tech-

niques applied to face data include blurring techniques such as393. In the experimental

section, we compare the performance of NoPeek-Infer against this method. Earlier
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works on blurring, such as386, have shown how earlier approaches of blurring fail to

preserve privacy in home-based video conferencing setups. Other recent baselines we

compare our method against include siamese embedding-based privacy395 and adversar-

ial baselines such as DeepObfuscator312 that was originally benchmarked on faces and

with Privacy Adversarial Networks326 that was benchmarked on non-face images. We

note that recent works such as71 were applied to faces for preventing reconstruction of

specifically chosen attributes about the face as opposed to altogether preventing recon-

struction of the entire face. We note that NoPeek-Infer deals with this latter problem of

preventing face reconstruction attacks as opposed to any attribute-specific reconstruc-

tion. In addition, we also compare against other face reconstruction defenses, such as

noising and blur-based approaches.

10.2 CONTRIBUTIONS

This paper proposes a way to mitigate reconstruction attacks on raw data in the dis-

tributed machine learning settings of private collaborative inference. To this end, the

contributions of this work can be summarized as follows:

1) We introduce NoPeek-Infer to prevent reconstruction attacks during activation shar-

ing in PCI via minimization of a statistical dependency measure called distance corre-

lation500,458between raw data and any intermediary communications across the clients

or server.

2) We evaluate the performance of our method on face datasets and share detailed re-

sults upon applying two state-of-the-art reconstruction attacks: i) supervised decoder
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Attack name Time of attack Mode of training Mode of prediction Input for attacker Target of attack
Feature space hijacking attack Training Distributed Distributed/On-premise Intermediate activations Training/Test Data
Federated/Client-side attack Training P2P/Distributed Distributed/On-premise Client weights Training/Test Data

Attribute attack Train/Test Distributed Distributed/On-Premise Intermediate activations/weights Specific attributes
Decoder and Likelihood attacks Test On-premise Distributed Intermediate activations/weights Test Data

(a) We categorize several forms of reconstruction attacks within the context of distributed
machine learning. The last row shows the attacks that are relevant to the setting of private

collaborative inference considered in this paper.

Method Sensitive Input Sensitive Attribute No client arch. alteration Adversary Free
Osia et al396 7 7

Min-max filters212 7 7

DeepObfuscator312 7

Shredder360 7 7

Mitigating information436 7 7

Kernelized ARL438 7 7

PrivacyNet364 7 7 7

IdentityDP563 7 7 7

NoPeek-Infer (Ours) 7

(b) Different defense mechanisms for private inference. The third column no alteration of client
architecture refers to techniques where additional operations or layers are not required for

removing sensitive information from data. The last column adversary free refers to techniques
that require a proxy adversary during training. Sensitive input refers to protection of entire raw
data, and sensitive attribute refers to techniques that protect only a given subset of attributes.

Table 10.1: Reconstruction attacks and defences studied within the context of split learning
and its variants.
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attacks and ii) likelihood maximization attacks in addition to some standard baselines.

The likelihood maximization attack has not received attention in current works on pri-

vate activation sharing, while it has been widely used519 in the computer vision com-

munity of late.

3) In order to promote rigorous benchmarking in the PCI domain, we introduce a

dataset of privatized activations using different PCI techniques for two face datasets,

Fairface299 and CelebA329. This dataset will act as a benchmark for the evaluation of

existing and future attack and defense techniques.

10.2.1 BENEFITS OF NOPEEK-INFER

1) A key benefit of the NoPeek-Infer defense over other existing defenses is that it does

not require any additional adversarial network for it to be learnt, unlike the rest. This

reduces the number of parameters that need to be trained in NoPeek-Infer in comparison

to other existing defense methods.

2) NoPeek-Infer does not require any modification to the client side architecture, which

holds the network up to an intermediate layer, unlike existing methods, thereby making

it highly suitable for the machine learning as a service (MLaaS) mode of deployments.

10.3 RELATED WORK:

10.3.1 ATTACKS

Attacks in distributed machine learning can be categorized as shown in Table 10.1a

based on time of attack (during train/test) and mode of training (distributed, peer to
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peer, on-premise). Other factors include the type of input (entire dataset/specific at-

tributes) that the malicious attacker has access to and the target dataset that it aims to

reconstruct. Attackers can reside in any client or server that receives communications

from another client. We now enumerate various reconstruction attacks. We compare

the performance of NoPeek-Infer in defending against the supervised decoder and like-

lihood maximization-based reconstruction attacks. These two are the most relevant to

our settings from this list of attacks.

1) Feature space hijacking attack is applied for distributed training of neural net-

works to reconstruct private data samples from the shared activations403. As opposed

to their setup, our focus in NoPeek-Infer is to protect the client’s query data in the

distributed prediction/inference phase.

2) Federated/client-side attack: In federated learning348,283,266, the untrusted party

has access to the averaged weights of all the clients. Similarly, in split learning210,538,

the local weights of the client-side network need to be shared peer-to-peer with one

other adjacent client.

3) Attribute attack: In this setting the attacker attempts to reconstruct only a subset

of input data attributes that are considered to be sensitive212,360,436,438,364,563 as opposed

to the entire input sample as in NoPeek-Infer.

4) Offline supervised decoder attack: In a worst-case reconstruction attack setting,

the attacker has access to a leaked subset of samples of training data x along with

corresponding transformed activations z at a given layer, which are always exposed to

other clients/server for distributed training of the network to be possible. The attacker
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could reside in any untrusted client or server that is part of the distributed training setup.

The attacker also has access to the rest of the activations corresponding to unleaked

training data at the same layer. This is also, by design, for distributed training to be

possible. The attacker tries to learn an image-to-image translation model from the

transformed activations to the leaked raw data. The attacker can then use this model

to reconstruct raw data from activations corresponding to unleaked training data or

unleaked test/validation data. This offline attack is also illustrated in Figure 10.1.

5) Likelihood maximization attack: Unlike the above scheme, this attack does not

require pairs of raw images and corresponding activations, (z, x), in order to reconstruct

the sensitive input. Instead, the attacker uses weights θ1 of the client-side network. The

attacker randomly initializes a network f̂(θ̂; ·) such that it generates an image x̂ to

produce ẑ = f1(θ1, x̂). Then the loss ℓ2(ẑ, z) between random and sensitive activations

is minimized by optimizing for the weights θ̂. This attack scheme is inspired by deep

image prior519 for feature inversion. One drawback of this attack is that it is only

applicable to sensitive input protection and not sensitive attributes. This attack setting

is stronger and also harder to defend against because it does not require access to the

(z, x) pairs.

10.3.2 DEFENSES

Defenses that are relevant to our work are categorized in Table 10.1. We categorize

them based on a.) the type of sensitive data under consideration and b.) whether ad-

ditional privatizing operations and/or an additional adversarial model is required. Our

proposed method of NoPeek-Infer is the only method to the best of our knowledge that
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does not have either of the requirements stated in b.). We also note that NoPeek-Infer

focuses on preventing the reconstruction of input data, as opposed to specific attributes

that have been the focus of the majority of the defense schemes.

1) Noisy perturbations: Differential privacy160 is a popular notion of privacy for var-

ious queries to prevent membership inference attacks. In the context of model training,

it is implemented via noisy perturbations of gradient updates as in2,560,568,9,56,563. Our

proposed mechanism of No-Peek Infer is instead for the setting of private collaborative

inference rather than training. In the context of split learning,396 and360 learn informal

noisy perturbations to prevent reconstruction attacks but require altering the architec-

ture of the client network that is being privatized. These works are also specific to

preventing the reconstruction of a target attribute as opposed to the input dataset itself.

Typically, adding noise to the activations leads to a costly trade-off of privacy versus

accuracy.

2) Siamese defense: In this defense, a contrastive loss is used to nudge points from

the same class label to be closer to each other in a learnt representation space. This loss

is used in combination with an accuracy loss for prediction purposes. Such siamese

embeddings have been used in various works outside the realm of privacy prior to being

introduced by395 solely for privacy purposes within the distributed setting involving

intermediate activation sharing.

3) Adversarial defenses:312,436,438,320,364,446 attempt to learn activations of a given net-

work at chosen layers while attempting to protect against an adversary that attempts

to reconstruct raw data or partial attributes of raw data from these activations. These
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Figure 10.1: Face reconstruction attack The attack is possible when activations are shared
for distributed predictive inference if a proper defense is not in place. Information about

sensitive raw input data can get leaked through intermediate activations even after input data
passes through multiple layers. Upon sending these intermediate activations from a trusted

network on a client to an untrusted network for computing the rest of the task, an adversary on
the server side can reconstruct the original raw face data from the activations.

methods require an adversarial deep network to be trained in addition to the original

deep network that is used for prediction. This is in contrast to our method, which does

not require any other additional network and sharply reduces the number of parameters

to be trained in our case.

10.4 METHOD

Key idea: The key idea of our proposed method is to reduce information leakage by

adding an additional loss term to the commonly used classification loss term, categor-

ical cross-entropy. The information leakage reduction loss term we use is distance

correlation500; a powerful measure of non-linear (and linear) statistical dependence be-

tween random variables. The distance correlation loss is minimized between raw input

data and the output of any chosen layer whose outputs need to be communicated from

the client to another untrusted client or untrusted server. This setting is crucial to some
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Figure 10.2: Reconstruction results on CelebA: We apply the likelihood maximization
attack on activations obtained from different blocks of ResNet-18219 for different mechanisms.
For brevity, we only show blocks 4-7 since blocks before 4 get full reconstruction and blocks

after 8 do not obtain a reasonable reconstruction.
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popular forms of distributed machine learning that require the sharing of activations

from an intermediate layer. This has been motivated under the ‘activation sharing’ sub-

section in the motivation section.

Optimization of this combination of losses helps ensure the activations resulting

from the protected layer have minimal information for reconstructing raw data while

still being useful enough to achieve reasonable classification accuracies upon post-

processing. The quality of preventing reconstruction of raw input data while maintain-

ing reasonable classification accuracies is qualitatively and quantitatively substantiated

in the experiments section. The joint minimization of distance correlation with cross

entropy leads to a specialized feature extraction or transformation such that it is im-

perceptible to leak information about the raw dataset with respect to both the human

visual system and more sophisticated reconstruction attacks as we show later in the

experiments section.

Loss function: The total loss function using n samples of input data X, activations

from protected layer Z, true labels Ytrue, predicted labels Y, and scalar weight α is

given along with distance correlation being DCOR and categorical cross entropy being

CCE as

αDCOR(X,Z) + (1− α)CCE(Ytrue,Y) (10.1)

The following subsections introduce the definition of distance correlation. In con-

trast, the gradient of distance correlation is provided for optimization purposes in the

Appendix, although we optimize our loss using Autograd, thereby not requiring this gra-

dient in an explicit manner. That said, useful deep learning-friendly code for computing

distance correlation is also provided in the Appendix for reproducibility.
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Figure 10.3: Visualization of the activations of the first layer of a ResNet. In the activation
maps in the second row, subtle facial features can be observed from the activations about the
raw image. In contrast, in the third row, the NoPeek-Infer-Infer method forces the network to

decorrelate the features with respect to raw data, hence making it hard to interpret.
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10.4.1 ADVANTAGES OF USING DISTANCE CORRELATION

Estimation of classical information theoretic measures as used in363,597,570 is a known

hard problem. Recent approaches to estimate it effectively, like45, are based on itera-

tive optimization. A recent data-efficient version of it requires 3 nested for loops of

optimization321. In the context of deep learning, every epoch of learning the weights is

dependent on this iterative optimization. In contrast, our approach uses distance corre-

lation. Fast estimators of distance correlation requires O(nlogn)102,238 computational

complexity for univariate and O(nKlogn) complexity234 for multivariate settings with

O(max(n,K)) memory, where K is the number of random projections required as part

of the estimation. Distance correlation has been shown to be a simpler special case of

other recent popular measures of dependence such as Hilbert-Schmidt Independence

Criterion (HSIC), Maximum Mean Discrepancy (MMD) and Kernelized Mutual Infor-

mation (KMI) that have been extensively studied and used in the machine learning and

statistics community458,510An advantage of using a simpler alternative is that in addition

to being differentiable and easily computable with a closed-form, it requires no other

tuning of parameters and is self-contained, unlike HSIC, MMD, and KMI that depend

on a choice of separate kernels for features as well as labels along with their respective

tuning parameters.
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10.5 DISTANCE COVARIANCE BOUNDS

We propose some bounds on distance covariance as follows. Using Cauchy-Bunkowski

inequality

|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2 =
[
E
(
ei⟨t,X⟩ − ϕX(t)

) (
ei⟨s,Y ⟩ − ϕY (s)

)]2
≤ E

[
ei⟨s,X⟩ − ϕX(t)

]2
E
[
ei⟨s,Y ⟩ − ϕY (s)

]2
=
(
1− |ϕX(t)|2

) (
1− |ϕY (s)|2

)
.

Using Fubini’s theorem and Lemma 1 in500, we have

∫
Rp+q

|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2 d(t)

≤
∫
Rp

1− |ϕX(t)|2

cp|t|1+p
p

dt

∫
Rq

1− |ϕY (s)|2

cq|s|1+q
q

ds

Upon rearranging the Heisenberg uncertainty principle, we get

[∫
|f(x)|2dx

]2
4π
∫
|xf(x)|2 dx

≤
∫
|tϕX(t)|2dt

where, ϕx(t) = E (eitx) =
∫∞
−∞ eitxfx(x)dx.

We now need to upper-bound
∫
Rp

1− |ϕX(t)|2

cp|t|1+p
p

dt by simplifying the above inequality.

Observe that we have

∫
|tϕX(t)|2dt =

∫
|tE(cos(tx) + i sin(tx))|2dt
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and

∫
|tE(cos(tx) + i sin(tx))|2dt =

∫
|t2||E(cos(tx)) + iE(sin(tx))|2dt.

Now, we observe that in the complex plane, for each fixed t, we essentially have a unit

circle with an infinite distribution of points on it. As a result, the weighted average,

e.g., the expected value of the points, must be inside this circle as it is convex, and the

median of a set of points forming a convex figure is inside this figure.

This means that we have that since any point in or on the unit circle has distance at

most 1 from the origin, then

|E(cos(tx)) + iE(sin(tx))| ≤ 1→ |E(cos(tx)) + iE(sin(tx))|2 ≤ 1

→
∫
|t2||E(cos(tx)) + iE(sin(tx))|2dt ≤

∫
|t2||1|2dt =

∫
t2dt =

t3

3
.

This gives us an upper bound on the such value.

10.6 SMOOTHNESS-INDEPENDENCE-VARIANCE (SIV) PHENOMENON

In this section, we propose an interesting phenomenon that in order to reduce statistical

dependency via distance correlation between X and a Z learnt through a map f : X 7→

Z, the product of the Lipschitz smoothness of the map and a ratio of total variations of X

and Z needs to be minimized. We call this phenomenon the smoothness-independence-

variance (SIV) phenomenon, and it helps explain the requirements in order to learn a

Z through a Lipschitz smooth map such that it is reasonably decorrelated with raw data
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X.

SIV INEQUALITY

We mathematically characterize this SIV phenomenon in this section via an upper

bound that we derive on distance correlation. Based on the definition of Lipschitz

continuity, we have the following bound where L is the Lipschitz constant of the map

that learns Z from X,

‖Zi − Zj‖2 ≤ L‖Xi −Xj‖2 (10.2)

Multiplying by 〈Xi,Xj〉 on both sides and summing over all points we have

∑
ij

‖Zi − Zj‖2〈Xi,Xj〉 ≤ L
∑
ij

‖Xi −Xj‖2〈Xi,Xj〉

Now dividing on both sides by√∑
ij‖Zi − Zj‖2〈Zi,Zj〉

√∑
ij‖Xi −Xj‖2〈Xi,Xj〉 we get

DCOR(X,Z) ≤
L
√∑

ij‖Xi −Xj‖2〈Xi,Xj〉√∑
ij‖Zi − Zj‖2〈ZiZj〉

(10.3)

But
√∑

ij∥Xi−Xj∥2⟨Xi,Xj⟩√∑
ij∥Zi−Zj∥2⟨ZiZj⟩

is the ratio of distance standard deviations which is the square

root of distance variance which is in turn distance covariance between a variable and

itself. It has been shown in164 that the distance standard deviation can be upper bounded

by the trace of the covariance matrix. Therefore we have
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DCOR(X,Z) ≤ L.Tr(ΣX)

Tr(ΣZ)
(10.4)

Therefore, the distance correlation can be bounded by the product of the Lipschitz

constant of the map f : X 7→ Z and the ratio of total variations of the covariance matri-

ces of X, Z respectively. Therefore, for a decorrelation function, if the total variation

of its output is not much larger (if not closer) to the total variation of its input, then the

decorrelation function has to be relatively smoother in order to be able to effectively

decorrelate the dataset in order to compensate for the larger ratio of the total variations

of input and output.

POPULATION SIV BOUND ON DISTANCE COVARIANCE

The work in458 shows an equivalence between distance correlation and another pop-

ular measure of statistical dependence called Hilbert Schmidt independence criterion

(HSIC) by just a constant. Equation 10.5 is based on204 and gives an Hoeffding bound

on the quality of the sample estimator DCOV (X,Z) of distance covariance in estimat-

ing the population distance covariance DCOV (FX ,GZ) where FX , GZ represent the

true distributions of the samples X,Z. The bound is given below

|DCOV (FX ,GZ)−DCOV (X,Z)| ⪅
√

log(6/δ)

0.24n
+

C

n
(10.5)

with probability at least 1− δ.

Population SIV inequality Therefore, combining our sample SIV inequality with this

concentration Hoeffding bound on the quality of estimating population distance covari-
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ance from sample distance covariance, we get the population SIV inequality as

DCOV (pxy,F ,G) ⪅
√

log(6/δ)

0.24n
+

C

n
+

Lcx√∑
ij‖Zi − Zj‖2

(10.6)

Theorem 10.6.1. Under Gaussianity assumptions on Z, minimizing DCOV (Xj,Z) is

equivalent to minimizing mutual information MI(Xj,Z). This is also equivalent to

maximizing the error in linear regression with respect to the attributes Z instead of

coefficients as

argmax
Z

‖Xj − Zβ‖ s.t, β = (ZTZ)−1ZTXj

Proof. Maximizing KL(PZ,X||PZPX) ≡minimizing MI(Z,X) ≡maximizing E(i(Z(X);X))

where KL refers to KL-divergence, MI refers to mutual information and i(.) refers to

information density232.

For obfuscation of a chosen sensitive feature j, the goal is to minimize 10.9

i(Z(X1,X2 . . .Xj−1);Xj)|(X1,X2, . . .Xj−1) (10.7)

For ease of notation, denote X1,X2 . . .Xj−1 as X−j and the goal above can be simply

restated as being

argmin
Z

i(Z(X−j;Xj))− i(Z(X−j);X−j)

≡ argmin
Z

MI(Z(X−j);Xj)−MI(Z(X−j);X−j)
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and in the Gaussian case

MI(Z,Xj) =
−1
2
log[

det(C)

det(ZTZ)det(XT
j Xj)

] (10.8)

where C =

ZTZ ZTXj

XT
j Z XT

j Xj

. Since minimizing mutual information is equivalent

to maximizing

e−2MI =
det(C)

det(ZTZXT
j Xj)

(10.9)

We show that minimizing regularized distance covariance maximizes the determinant

det(C) while minimizing the determinant det(ZTZ). As the denominator of 10.9 de-

creases while the numerator increases with the reduction of distance covariance, we

also have that the mutual information between the smashed data Z and hidden attribute

Xj decreases as a result. In addition, we know that equation 10.9 is equivalent to

≡ argmax
Z

XT
j Xj −XT

j Z(Z
TZ)−1ZTXj ≡ argmin

Z
XT

j X̂j

This is in turn equivalent to doing the opposite of classical linear regression by maxi-

mizing the error with respect to learning covariates Z as

argmax
Z

‖Xj − Zβ‖ s.t, β = (ZTZ)−1ZTXj

This provides an additional interpretation as well as a classical connection with respect

to distance correlation for attribute privacy.
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10.7 EXPERIMENTS

Reconstruction attack testbed: We empirically examine the privacy aspects of our

method by designing a testbed that performs feature inversion145 under different threat

models for PCI. The goal of the testbed is to emulate attackers in order to examine

information leakage both qualitatively and quantitatively. We use the attack testbed

for both supervised decoder and likelihood maximization attacks as described in the

attacks part of section 10.3.

The decoder attack architecture consists of upsampling layers composed of trans-

pose convolutions. Similar architectures have been used in generative models for gener-

ating images from low-dimensional latent codes. Under the threat model for a decoder

attack, the attacker has access to a dataset consisting of multiple samples of (zl, x). In-

put to the testbed is the intermediate activations, zl from any arbitrary layer l of the

target model, and output is the generated image x̂. After the training of the defense

component (NoPeek or baselines), we use a held-out validation set to generate inter-

mediate activations using the client network of the defense component. We thereby

generate a paired dataset of activations and corresponding images. We use this paired

dataset to train the reconstruction testbed to emulate the attacker. We use 90% of the

original validation dataset for training the reconstruction testbed and the remaining 10%

as the test set for qualitative evaluation of reconstruction quality. The training is a stan-

dard supervised decoder training on a dataset of zl, x pairs with a loss function of the

Euclidean norm between x and x̂. We want to emphasize that there may potentially be

a better design for architectures of the reconstruction testbed and better loss functions,
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Figure 10.4: Likelihood vs. Decoder Reconstruction Attacks: A qualitative comparison
between likelihood and supervised decoder reconstruction attacks on traditional and NoPeek

methods. While the likelihood attack performs a visually similar reconstruction for the
traditional approach, the decoder attack gets a better reconstruction result for NoPeek.

However, in the case of NoPeek, the attack results in a blurred and average face image across
a certain set of facial attributes. The purpose of this result is to illustrate the relative benefit of

using different types of adversaries when evaluating NoPeek and other baselines.
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Figure 10.5: Privacy-Utility Trade-off: We vary the value of α to display the relationship
between privacy leakage and task utility. Leakage is measured as the SSIM score between

input and reconstructed images from the likelihood attack scheme.

Figure 10.6: We plot distance correlation during training and testing as the network gets
trained on UTK faces with and without NoPeek-Infer.
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but the goal of this paper is just to have a fair comparison between NoPeek-Infer-based

training and regular training of deep networks using a reasonable reconstruction ar-

chitecture. The number of upsampling layers in the architecture of the testbed varies

depending upon the difference in the dimensionality of zl and x. Next, we evaluate

the performance of the likelihood maximization attack. The threat model for likelihood

maximization attacks requires the adversary to have access to client network weights

and the architecture. The details of the likelihood maximization attack inspired by the

work on deep image priors519 is described in section 10.3. This attack has not been used

in the privacy community looking at the feature inversion problem but used for several

vision tasks like super-resolution, denoising, and feature inversion.

10.7.1 DATASETS

CELEBA

CelebA329 is a large-scale celebrity face dataset with 202,599 face images that are well

aligned and centered. These faces span 10,177 identities, each of which is associated

with 40 different binary attributes.

FAIRFACE

Fairface299 is a dataset of 108,501 face images with three attributes – gender, race, and

ethnicity. The images are centered but contain different poses and lighting. We evaluate

our approach using gender as the target attribute for both datasets.

Baselines: Our experiments consist of four categories of activation sharing meth-
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ods - traditional (no defense), adversarial defense, siamese embedding defense, and

noise-based defense, as detailed in section 10.3.2. Traditional refers to the setup where

the client shares activations with the server without any specific defense. Adversarial

refers to the set of techniques312,54 that jointly trains a proxy adversary, resulting in a

min-max optimization between the adversary and client network. Siamese embedding-

based privacy is via a combination of a contrastive loss, and an accuracy loss as detailed

in395. Noise is the category of baseline where we add Gaussian noise to the intermediate

activations. While not related to activation sharing, many differentially private mecha-

nisms add similar noise calibrated to sensitivity158,160. Even though we do not calibrate

the noise, we try a broad range of noise spanning across the highest and lowest attain-

able utility. In all of our experiments, we train a standard ResNet-18219 to minimize

the loss on the main task. In all of our reported experiments, we use Adam optimizer

with an initial learning rate of 1 × e−3 and exponential decay for training. In the first

experiment, we study the role of intermediate layer l by evaluating privacy and utility

across different blocks of ResNet-18 for different methods. Figure 10.2 shows the qual-

itative results for different approaches. For the first five blocks, all techniques fail to

defend against the likelihood of attack. However, NoPeek-Infer provides adequate pro-

tection at block-6. In order to prevent any selection bias for the qualitative result, we

also show reconstruction for six random samples from the dataset in Figure 10.8. We

compared the baselines and NoPeek-Infer on different metrics of image reconstruction

quality and predictive utility of the model as shown in Table 10.2. We compared de-

fenses of NoPeek-Infer & various baselines on the reconstruction of sensitive input with

respect to likelihood maximization attack & observed that the defense of NoPeek-Infer
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Figure 10.7: By introducing NoPeek-Infer in the training of the network, we obtain a major
decrease in the distance correlation from 0.6 (baseline) to 0.22 (NoPeek-Infer). In contrast,

the decrease in the accuracies is relatively much lesser.
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performs the best by achieving the worst reconstruction when attacked, which indicates

that NoPeek-Infer is a better method for preventing reconstruction attacks. In terms of

the broader trend, we observe that NoPeek-Infer fared the best, followed by DeepObfus-

cator and then followed by Siamese Embedding, PAN, and Noise (& Blur) approaches

in preventing the reconstruction attack in terms of SSIM score, PSNR, and l1 metrics.

We also compare against a primitive baseline that is based on the reduction of linear cor-

relation as opposed to our proposed approach of nonlinear correlation minimization to

show that the distance correlation (or nonlinear correlation) based approach is substan-

tially better. While this comes at the cost of a small drop in accuracy, we note that the

improvement in privacy is much higher than the corresponding reduction in utility. To

further examine the privacy-utility trade-off, we vary the trade-off parameter for both

adversarial and NoPeek-Infer and plot different points along the privacy-utility trade-

off in Figure 10.5. As we reach higher privacy, the utility performance drops faster for

adversarial in comparison to NoPeek-Infer. This makes NoPeek-Infer amenable to high

privacy regimes without any significant loss in the utility. It is an accepted standard that

privacy-utility trade-offs exist in privacy-preserving machine learning, and thereby, the

above tradeoff observed in NoPeek-Infer is competitive.

10.8 DISCUSSION

For comparing with the noise baseline, we add Gaussian noise to every component of

the zl vector with varying standard deviation σ of the noise for different experiments.

We empirically observe that even for σ = 400 the reconstruction happens success-

fully using the likelihood attack while the utility gets close to chance accuracy. This
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Figure 10.8: Reconstruction across different samples
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Dataset Method SSIM ↓ PSNR ↓ ℓ1 ↑ Utility ↑

Fairface

Traditional210 0.915 ± 0.110 72.982 ± 6.682 0.066 ± 0.051 0.9912
PAN326 0.777 ± 0.218 69.585 ± 7.403 0.097 ± 0.069 0.9864
NoPeek-Infer (Ours) 0.306 ± 0.141 60.453 ± 2.813 0.206 ± 0.057 0.9803
Blur393 0.893 ± 0.884 61.2864 ± 2.5906 0.1066 ± 0.045 0.9881
Gaussian Noise 0.842 ± 0.233 70.235 ± 2.672 0.0771 ± 0.045 0.8857
Laplacian Noise 0.733 ± 0.1495 69.488 ± 5.539 0.0701 ± 0.0858 0.8568
DeepObfuscator312 0.4467 ± 0.107 61.19 ± 3.935 0.191 ± 0.0894 0.9811
Siamese Embedding395 0.484 ± 0.117 61.712 ± 1.169 0.198 ± 0.066 0.9511
Linear Correlation 0.585 ± 0.02 67.789 ± 3.283 0.0625 ± 0.01 0.9115

CelebA

Traditional210 0.563 ± 0.237 65.655 ± 4.968 0.123 ± 0.067 0.9759
PAN326 0.646 ± 0.168 64.650 ± 4.485 0.121 ± 0.056 0.9513
NoPeek-Infer (Ours) 0.239 ± 0.081 58.901 ± 1.835 0.240 ± 0.053 0.9488
Blur393 0.524 ± 0.168 60.248 ± 5.15 0.1373 ± 0.0669 0.9452
Gaussian Noise 0.656 ± 0.187 63.584 ± 2.896 0.1348 ± 0.0352 0.9608
Laplacian Noise 0.6276 ± 0.168 61.868 ± 5.011 0.1487 ± 0.0572 0.966
DeepObfuscator312 0.2874 ± 0.0436 56.3463 ± 1.479 0.2189 ± 0.032 0.9531
Siamese Embedding395 0.539 ± 0.249 59.243 ± 3.5206 0.185 ± 0.085 0.9376
Linear Correlation 0.4154 ± 0.0913 60.342 ± 4.17 0.203 ± 0.0745 0.944

Table 10.2: Comparison for sensitive input leakage: We compare defenses of
NoPeek-Infer & baselines on reconstruction of sensitive input with respect to likelihood
maximization attack & observe that the defense of NoPeek-Infer performs the best by

achieving a worst reconstruction when attacked.

illustrates that Gaussian noise mechanism is approximately the same as the traditional

category due to its inability to provide any privacy-utility trade-off despite adjusting

σ = 0.

To show the trade-off between privacy and utility via choice of α we plot the dis-

tance correlation of a given intermediate activation during training a NoPeek-Infer net-

work and a traditional network without NoPeek-Infer in Figure 10.6. This demonstrates

that the network without NoPeek-Infer naturally reduces distance correlation during

training. Our proposed method can be seen as an additional regularization, which forces

the network to regularize for the reduction in distance correlation at a much higher rate
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between raw data and activations. The consistency between training and testing dis-

tance correlation in Figure 10.6 also demonstrates the capability of weights learnt by

NoPeek-Infer in generalizing the decorrelation phenomenon to prevent reconstruction

attacks.

The first row of Figure 10.3 shows some raw input images, and the output of the first

layer of the trained network when NoPeek-Infer is not used is shown in the second row.

The third row shows the output at the first layer in the case when NoPeek-Infer is used.

We restrict it to only three output channels to visualize only the RGB component as part

of a qualitative investigation. As seen, the second row visually leaks a lot of information

about the raw image in comparison to the third row. This demonstrates semantically

meaningful obfuscation performed by the layers of the client network when trained

with NoPeek-Infer. In Figure 10.7, we observe that the accuracy dropped by a relatively

small amount compared to the drop in distance correlation (or leakage of sensitive

information). This relative difference can be controlled by tuning α. The important

aspect to note from the figure is that the distance correlation between the samples and

activations can be reduced significantly without any significant drop in accuracy.

10.9 CONCLUSION

The proposed NoPeek-Infer schemes based on distance correlation seem to have versa-

tile applicability in the space of privacy, computer vision, and machine learning, given

that they do not require major changes in the model setup and architectures except for

the proposed modification to the loss function. It would be great to realize on-device

implementations of the NoPeek-Infer scheme. With regards to human visual perception

288



of bias and privacy, we would also like to conduct a large-scale crowdsourced survey to

compare the performance of human participants in deciphering the true sensitive image

upon looking at NoPeek-Infer results in comparison to a uniform random choice.

10.10 APPENDIX A: GRADIENT OF DISTANCE CORRELATION

Distance correlation between centered data can be represented as Tr(XTXZTZ)√
Tr(XTX)2Tr(ZTZ)2

in a graph-theoretic dual space547. Distance covariance in the numerator can be written

as Tr(XTZX) =
∑

ij〈zi, zj〉(‖xi − xj‖)2. This can be written in matrix form using

basis vectors ei, ej as

∑
ij

[Tr(ZTeie
T
j Z)Tr(X

T(ei − ej)(ei − ej)
TX)] (10.10)

Simplifying the notation with Mij = eie
T
j and Aij = (ei − ej)(ei − ej)

T we have

∂Tr(ZTLZZ)
∂Z

=
∑

ij (2MijZ)Tr(X
TAijX). On the lines of 10.10, we have Tr(ZTLZZ) =∑

ij[Tr(Z
TMijZ)Tr(Z

TAijZ)]. Therefore, utilizing these identities, the derivative of

squared distance correlation w.r.t Z can be written as

cxTr(Z
TLZZ)

∂Tr(XTLZX)
∂Z

− [Tr(XTLZX)]2cx
∂Tr(ZTLZZ)

∂Z

[Tr(ZTLZZ)]2

up to a constant.

10.10.1 DEEP-LEARNING FRIENDLY SOURCE CODE FOR SAMPLE DISTANCE COR-

RELATION
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1 def pairwise_dist(A):

2 r = tf.reduce_sum(A*A, 1)

3 r = tf.reshape(r, [-1, 1])

4 D = tf.maximum(r - 2*tf.matmul(A, tf.transpose(A)) + tf.

transpose(r), 1e-7)

5 D = tf.sqrt(D)

6 return D

7

8 def dist_corr(X, Y):

9 n = tf.cast(tf.shape(X)[0], tf.float32)

10 a = pairwise_dist(X)

11 b = pairwise_dist(Y)

12 A = a - tf.reduce_mean(a, axis=1) -\

13 tf.expand_dims(tf.reduce_mean(a,axis=0),axis=1)+\

14 tf.reduce_mean(a)

15 B = b - tf.reduce_mean(b, axis=1) -\

16 tf.expand_dims(tf.reduce_mean(b,axis=0),axis=1)+\

17 tf.reduce_mean(b)

18 dCovXY = tf.sqrt(tf.reduce_sum(A*B) / (n ** 2))

19 dVarXX = tf.sqrt(tf.reduce_sum(A*A) / (n ** 2))

20 dVarYY = tf.sqrt(tf.reduce_sum(B*B) / (n ** 2))

21

22 dCorXY = dCovXY / tf.sqrt(dVarXX * dVarYY)

23 return dCorXY
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11
Split learning on Vertically Partitioned

Data

11.1 INTRODUCTION

Leading banks and financial services are currently using deep learning algorithms to

optimize their processes on targeted tasks, such as approving loans, assessing risk, and
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carrying out credit scores, among others. The financial sector generates huge amounts

of data daily and is always in need of better ways to assess risk detect fraud, and utilize

the data efficiently. Even if considerable progress has been made in a data-intensive

industry, financial services companies face challenges to efficiently adapt to the latest

data processing techniques, and there is an increasing pressure to access third-party data

to improve their operational efficiency. On top of these challenges, there are issues like

regulatory compliance costs, competition, legacy infrastructures, and security concerns

that prevent financial services companies from effectively using data. Unlocking data

silos and uncovering novel sources of data will provide a competitive advantage, and

companies in regulated sectors will have higher network effects than their competitors.

Currently, each company works in isolation, where they keep their data private and

use that to build their own proprietary models. On the other hand, banks utilize third-

party data and resources pulled from several companies as services to build customized

models for their targeted tasks. However, with the recent rise of a new distributed deep

learning: SplitNN210,538,465 architecture, a new way to process data collaboratively has

emerged without conceding ownership or loosening privacy requirements. Furthermore,

using SplitNN also enables the use of distributed sources of data, which results in im-

proved and generalized robust models. Tapping into different sources of data, which

is often private and owned by several companies, poses a new set of challenges that

vertical SplitNN can address.

Motivated by the above observations, we are interested in a setting where multi-

ple entities (clients) collaborate for a targeted task at hand under the coordination of

a central server or service provider. Each clients raw data is stored locally and is not
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exchanged or transferred; instead, focused updates intended for immediate aggregation

are used to achieve the learning objective. Usually, the data is split horizontally, mean-

ing that each company holds a unique set of features over a non-overlapping set of users.

As mentioned earlier, in an industry with huge amounts of data on every client, such as

the financial services industry, companies often have enough data of a particular type.

In that scenario, SplitNN provides more value since it allows the utilization of data

from several parties465,466. The other variants to SplitNN for distributed private training

can also be achieved with Federated Learning349,266, but unlike SplitNN, it is necessary

to share the complete model with all the clients. In essence, the goal of our work is

to learn a shared model using vertically partitioned data coming from several sources

while preserving data privacy. This chapter is based on our work in89.

11.2 RELATED WORK

In this section, we share related works on several techniques for vertically partitioned

machine learning. We categorize these works under the following categories.

1. Vertically partitioned linear and logistic regression The work in191 proposes

a multi-party computation (MPC) scheme based on garbled circuits for secure

linear regression in the vertically partitioned setting. The works in578,579 provide

schemes for secure vertically partitioned logistic regression based on homomor-

phic encryption.

2. Vertically partitioned decision trees The works in191,528,527,288,109 share approaches

for vertically partitioned learning with decision trees, gradient boosted decision
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trees and Hoeffding trees.

3. Vertically partitioned SVM The work in471 shows a threshold Paillier and blockchain-

based secure approach for using support vector machines on vertically partitioned

data. Similarly, the work in489 shows a simpler approach of using core vector ma-

chines for anomaly detection using vertically partitioned data.

4. Vertical federated learning Learning with vertically partitioned data in the con-

text of federated learning, a popular distributed deep learning paradigm, was

studied in390,328,445,538,465,466. Conventional solutions in this setting make use of

expensive cryptographic schemes such as Homomorphic Encryption and Multi-

Party Computation and thus face critical performance challenges and communi-

cation overhead. SecureNN445 was proposed in 2018 and achieved great success

in reducing the communication by over 8 times and in eliminating the require-

ment to use conventional cost-intensive oblivious transfer protocols.

Other lines of work try to avoid these challenges328 following the same design

principles as349, and they propose Federated Stochastic Block Coordinate De-

scent (Fed-BCD). They show that applying classical Block Coordinate Descent

to the FL setting can significantly reduce the communication cost. In their setting,

they reduce the amount of communication by updating the model fewer times

with richer local updates. This approach maximizes the information sent in each

update since having hundreds of clients means each communication round is very

expensive. Further, performing local updates on the clients requires sharing the
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labels, which is not always feasible.

Motivated by these observations,538 proposed an approach called split learning

in which a smaller fraction of the model is present on each client network and

just the output of these models is shared with the server in every iteration. This

results in smaller but more frequent updates, and it helps reduce communication

and computational overhead for the clients.

11.3 VERTICAL SPLITNN

The overall goal of our work is to learn a shared model while preserving data privacy.

To this end, we propose to train partial neural networks (NN) on each client and then

aggregate all of their outputs before feeding them to the last stage of the combined

model on the server side, as seen in Figure 11.1. We are inspired from SplitNN538. In

particular, we extend SplitNN architecture to use all of the partial clients-networks on

each iteration instead of using them sequentially. We employ five pooling mechanisms

to aggregate the outputs of the partial networks via element-wise average, element-wise

maximum, element-wise sum, element-wise multiplication, and concatenation.

Among all the aggregation mechanisms, concatenation is the simplest approach and

is the closest to training a single network with all of the input features. However, this

method requires having the intermediate outputs of all the networks on every iteration,

so it is not robust to stragglers. Element-wise sum and average pooling are very close

to each other. The main limitation of both of these aggregation methods is that all

the networks need to have compatible shapes so that their outputs can be combined

together. On the other hand, these methods allow the use of a secure aggregation proto-

295



𝑆!

𝑆"

𝑆#

D = 𝑆! + 𝑆" +⋯+ 𝑆# y = 𝐹$%&'%&(D)

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑆𝑝𝑙𝑖𝑡 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔

𝑑ℓ
𝑑𝐷 ←

𝑑ℓ
𝑑y

𝑑y
𝑑𝐷

𝑑ℓ
𝑑𝑆"

𝑑ℓ
𝑑𝑆!

𝑑ℓ
𝑑𝑆#

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝𝑠

𝑉𝑒
𝑟𝑡
𝑡𝑖
𝑐𝑎
𝑙𝑃
𝑎𝑟
𝑡𝑖
𝑡𝑖
𝑜𝑛
𝑒𝑑

𝐷
𝑎𝑡
𝑎

𝐹!

𝐹"

𝐹#

𝑋!

𝑋"

𝑋#

𝐿𝑜𝑠𝑠(ℓ)

𝑆𝑝𝑙𝑖𝑡𝑁𝑁

Figure 11.1: Vertical SplitNN architecture: Each client computes a fixed portion of the
computation graph and passes it to the server which computes the rest and performs
back-propagation and returns back the jacobians to the client which can perform their

respective back-propagation.

col66, which can enhance the privacy and security of the algorithm. Element-wise max

pooling also requires all the networks to have compatible output shapes. In this case,

we pick the activations with the maximum value for each neuron and discard the rest.

All these setups require communication on every iteration since they are jointly opti-

mized by back-propagating the error from the main network to the smaller ones. One

can readily employ other encoding methods like Compact Bilinear Pooling139,188, Tem-

poral Compact Bilinear Pooling464, NetVLAD25 instead of the pooling mechanisms for

a more robust representation learning.

Implementation: Split Learning was defined by210. We utilize SplitNN210 archi-

tecture as a baseline architecture for distributed private training.

In our method, each partial clients-network encodes its data into a different space

and then transmits it to train a shared deep servers-network. A deep neural network can

be defined as a function F , describable as a sequence of layers {L0, L1, ...LN}. For

a given input X , the output of this function is given by F (X), which is computed by
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sequential application of layers, given as:

F (X)← LN(LN−1...(L0(X)))

Gradients can be backpropagated over each layer to generate gradients of previous

layers and to update the current layer. We will use LT
i (gradient) to denote the process

of backpropagation over one layer and F T (gradient) to denote backpropagation over

the entire neural network. Similar to forward propagation, backpropagation on the

entire neural network is comprised of sequential backward passes, given as:

F T (gradient)← LT
1 (L

T
2 ...(L

T
N(gradient)))

The process of sequential computation and transmission followed by computation

of the remaining layers is functionally identical to the application of all layers at once.

Similarly, because of the chain rule in differentiation, backpropagating F T (gradients)

is functionally identical to the sequential application of F T
a (F

T
b (gradients)).

When extending this for multiple concurrent clients, as in the SplitNN-driven ver-

tical partitioning case, the backpropagated error will be split, and each client network

will pass the corresponding gradients. Let’s take concatenation as an example. The full

forward pass will be a concatenation of the forward passes coming from each client-

network {F1F2 . . . Fk}, k ∈ {1, . . . , K} where K is the maximum number of clients.

In the same way, the gradients on the concatenation layer will be {L1L2 . . . Lk}. Thus,

we only need to split these gradients before passing them to the upstream clients.

We evaluate our proposed method on three popular financial datasets, namely Bank
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Marketing373, Give me Some Credit262 and Financial PhraseBank340. We focus on fi-

nancial datasets because of the special relevance of vertically partitioned data, which

is widespread in the industry. At the moment, financial institutions share plain and

anonymized data with third parties for critical applications, but this is not the best so-

lution due to multiple reasons: small amount of privacy offered by the anonymization

scheme, no control over the usage, inability to audit the usage and marginal returns on

the value of data is depleted with each partnership. Using our proposed split learning

scheme, the need to pool all of the data together is obviated, keeping the data sources

private, which enables unprecedented collaboration between the sharing parties and the

non-rivalry of data98 would potentially lead to increasing returns. Use cases in the in-

dustry range from multi-party borrowing detection, risk analysis, and fraud detection

to cross-selling and customer retention.

11.4 EXPERIMENTS

We present our evaluation of the proposed method on several different datasets. All of

the datasets here are used for the prediction task.

Datasets and Implementation Details. We test our system experimentally on three

financial datasets. The datasets are summarized in Table 11.1.

Table 11.1: Datasets. “#Samples” denotes the number of samples, “#Dim” denotes the
dimensionality of the features and “#Classes” denotes the number of classes.

bankmarketing givemecredit phrasebank

#Samples 45k 30k 5k
#Dim. 16 25 300
#Classes 2 2 3
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Bank Marketing373 is a dataset related to direct marketing campaigns of a Por-

tuguese banking institution from UCI machine learning repository. We use all the 16

feature dimensions for prediction and distribute them vertically among the clients. The

vertical split is done based on the source of the features, with the bank client data in

one split and all the social and economic context attributes in the other.

Give Me Some Credit 262 is a dataset of financial data built for the task of predicting

the likelihood of someone experiencing financial distress in the near future. Once again,

there is no coherent vertical split for the data, so we chose to split the features arbitrarily

into two sets.

Financial PhraseBank340 consists of 4845 English sentences selected randomly

from financial news found on the LexisNexis database. These sentences were then

annotated by 16 people with backgrounds in finance and business. The annotators were

asked to give labels according to how they think the information in the sentence might

affect the mentioned company stock price. We use all the sentences in the dataset and

apply GloVe407 based embedding with 300 dimensions for the word embedding. After

applying GloVe, we treat this embedding space as a feature space and split it arbitrarily

into four vertical splits.

Evaluation Metric. We report accuracy as well as the F1 score to account for the

class imbalance.

Multiple Clients. Due to the small number of features available, We use only

two splits for both Bank Marketing and Give me Credit datasets. We use Financial

PhraseBank to analyze the effect of splitting the dataset across a higher number of

clients. From a practical standpoint, it is worth mentioning that unlike in horizontally
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distributed datasets, in vertical SplitNN, the number of clients is likely to remain small

since relevant data about a single user is not usually distributed into too many sources.

11.4.1 COMPARISON WITH A CENTRALIZED MODEL

In Table 11.2, we compare the results of training a centralized model (M) with training

several split models (M1,M2,M3...), merging their outputs and using those as input

for M . We choose max pooling as a merging technique for this comparison since it

provides the best performance for the studied datasets overall.

As noted in the results, the Financial Phrasebank dataset is the only one where

vertical partitioning and element-wise max pooling results in a drop in performance.

This could be due to two reasons - the data we applied vertical partitioning over was

obtained after the embedding, splitting the 300 GloVe features into 4 sets. The other

reason could be due to the underlying semantic nature of a sentence, making it a difficult

task for vertical partitioned learning from a practical standpoint. For all the other cases,

the performance roughly remains the same, with some marginal improvements when

using split learning.

Table 11.2: Comparison of the performance of a single model with access to the full dataset
vs. a split model with four vertical partitions. We only report results for element-wise max

pooling since it’s the best performing merging technique.

Single Model Max Pooling
Dataset Acc F1 Acc F1

Bank Marketing 0.83 0.47 0.84 0.47
Give Me Credit 0.80 0.34 0.81 0.35
Financial PhraseBank 0.78 0.78 0.76 0.76
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11.4.2 COMPARISON OF MERGING STRATEGIES

In Table 11.3, we compare several strategies to merge the outputs of the models trained

with the vertically partitioned features. We consider two pooling mechanisms as well as

simple combinations such as concatenation, element-wise multiplication, and element-

wise sum of the outputs.

The simplest strategy is concatenation; however, this requires all outputs from each

participating client to be present during the forward pass, which could be infeasible in

a real scenario since some of the clients may drop randomly or there might be synchro-

nization issues. Therefore, any of the other strategies are preferable because of their

aggregation mechanism.

Furthermore, both element-wise average pooling and simple element-wise addition

over the inputs can allow us to use a secure aggregation protocol while combining the

outputs of the smaller models. Thus providing an extra layer of security on top of the

obfuscation provided by the models themselves and NoPeek546.

We notice that the performance doesn’t suffer huge drops with any of the methods.

However, in practice, one could choose the average pooling since it allows the use of

a secure aggregation protocol as well as compression techniques that can help with

stronger privacy and communication overhead, respectively.

Figure 11.2 shows the loss and metrics during training for Financial PhraseBank.

The centralized training (single model) takes fewer batches to converge,
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Figure 11.2: Comparison of several merging strategies for SplitNN-driven vertical partitioning
with PhraseBank.

Table 11.3: Comparison of merging/pooling strategies.

Financial PhraseBank Bank Marketing Give me Credit
Merging Acc F1 Acc F1 Acc F1

Element-wise Max Pooling 0.76 0.76 0.84 0.47 0.81 0.35
Element-wise Average Pooling 0.77 0.77 0.83 0.46 0.82 0.36
Concatenation 0.76 0.76 0.82 0.46 0.83 0.37
Element-wise Multiplication 0.72 0.72 0.82 0.46 0.80 0.34
Element-wise Sum 0.77 0.76 0.83 0.46 0.77 0.32

11.4.3 CLIENTS DROPPING RANDOMLY

In Table 11.4, we present the results of dropping some of the clients randomly both

during training and testing.

The drop during the training means that the model is trained with the outputs of all

models, but on each iteration, one or more of those outputs is missing. On the other

hand, dropping during testing means that the model was trained with the outputs of all

the models, but for the prediction on the test set, the output of some of the models from

302



the client side is missing.

Table 11.4: Comparison of merging strategies when clients drop randomly. We report
accuracy for the Financial PhraseBank.

Training Testing
Merging Drop 1 Drop 2 Drop 3 Drop 1 Drop 2 Drop 3

Element-wise Max Pooling 0.74 0.72 0.69 0.76 0.70 0.63
Element-wise Average Pooling 0.75 0.72 0.69 0.74 0.71 0.65
Element-wise Multiplication 0.75 0.75 0.71 0.71 0.60 0.58
Element-wise Sum 0.74 0.73 0.70 0.74 0.70 0.64

As shown in Table 11.3, in both cases, the performance suffers a significant impact

as a consequence of the clients dropping. This is expected since we are missing the

predictive power of several features. When we increase the number of clients that

drop at each point, the performance hit is even bigger, which is consistent with our

hypothesis.

Furthermore, in Figure 11.3, we can see that dropping more than two clients in

a four-client setting, even affects the convergence of the model, and the loss starts to

rise by the end of the training, indicating that optimization is drifting from local/global

minima. This performance drop, however does not arise if a client drops just on a few

iterations but is present for most of the training. This is an interesting starting point

for future work since it would be interesting to analyze how to minimize the impact of

stragglers with vertical SplitNN.
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Figure 11.3: Loss and metrics for PhraseBank dataset while workers drop during training.

11.4.4 MEASUREMENT OF COMMUNICATION AND COMPUTATIONAL COSTS

Tests over different datasets were carried out in order to estimate the amount of com-

munications performed in a vertical SplitNN training process. We use the roles defined

in88 to identify the type of data available for each of the participants. Role 1 only has

access to features, role 3 has access to both features and labels, and role 0 is just a com-

putation client with no data. Each test was carried out by three clients. One of them

with role 1, another one with role 3 and the last one with role 0. Results are shown in

Table 11.5.

Table 11.5: Communication costs in initialization, forward pass, and backward pass for each
studied dataset.

Dataset Financial PhraseBank Bank Marketing Give me Credit
Role 1 3 0 1 3 0 1 3 0

Total sent per epoch (MB) 488 490 977 2,560 3,840 7,680 4,800 7,200 14,400

Total received per epoch (KB) 488 490 977 2,560 5,120 6,400 4,800 9,600 12,000
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The communication cost computed for this table is based on the division of tasks

according to different roles. Once the training starts for each batch, workers with roles

1 and 3 send the output of their next-to-last layer to role 0 worker, which performs

its forward pass and sends the output of its next-to-last layer to worker with role 3 to

compute the loss.

Similarly, once the loss is computed, the role 3 worker will send back to the role 0

worker the error at the output of the shared layer so that it can continue backpropagating

it. Finally, this role 0 worker will send the error at the output of each corresponding

shared layer back to its corresponding worker with role 1 or 3.

Table 11.6: Measurements of the computational costs

Dataset Financial PhraseBank Bank Marketing Give me Credit

Number of parameters of the NN 3,907,059 745 457
FLOP/sample 33,667 4,041 741
us/batch (batch size=32) 26,037 911 793
MFLOPS (batch size=32) 41.377 141.945 29.902
us/batch (batch size=128) 97,871 1,114 1,107
MFLOPS (batch size=128) 44.031 464.316 85.680

The communication size in a vertical SplitNN architecture is dependent on the size

of the output at the endpoints layer. The computational cost, however, is dependent on

the architecture and the size of the input feature vector at each layer. For widely used

architectures, everything remains the same here in comparison with traditional deep

learning except for the size of the feature vector of the first layer on the central server.

Bearing this in mind, in conjunction with performance trade-offs between different

merging strategies, it is extremely important to know the details and the limitations

of the specific use case in order to propose the best training strategy. The neural net-
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work architecture splitting scheme between the workers or the adjustment of the hyper-

parameters can greatly change the speed and, therefore, the efficiency of the training

process.

Thus, we find that in the training processes where the bottleneck is on the commu-

nication side, most of the training should be done by workers with roles 1 and 3 so that

the outputs of their networks are already as small as possible. On the other hand, when

the bottleneck is the computational cost, workers with roles 1 and 3 should have the

minimum amount of layers to ensure the data is kept private, and the core of the model

should be in a role 0 worker with a higher computational capacity. As shown in Ta-

ble 11.6, other techniques, such as adjusting the batch size, could be highly convenient

in some cases to speed up the training processes.

An interesting line of research for the future would be to study the effect on the

convergence of compression techniques such as STC451 or Random Rotation Matrix284

as well as privacy-preserving techniques such as Secure Aggregation Protocol66 or min-

imizing Distance Correlation537, as well as their effect on the computational cost.

11.5 CONCLUSION

In this paper, we proposed split learning for vertically partitioned data and further ad-

dressed the specific challenges arising in this scenario. We have shown that the pro-

posed methods to merge the outputs of the split networks result in a shared model that

performs on par with the centralized model. Max-pooling is the best overall. However,

we believe the small drop in performance shown with average-pooling is acceptable,

considering that it allows the use of a secure aggregation protocol. We believe our ap-
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proach to training models with vertically partitioned data provides a way that is better

suited to its specific challenges, which are different from those arising with horizontally

partitioned data.
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Part III

Distributed and Private Scientific

Computing
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“A grain of wise subjectivity tells us more about the

real world than any amount of objectivity.”

Judea Pearl

12
Regularized Eikonal PDEs for variable

privacy-based geolocation release

12.1 INTRODUCTION

This chapter is based on our work inKabasakalolu et al.. The work in this chapter has been ini-

tially motivated by the challenges of population-level data sharing against the backdrop
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of the COVID-19 pandemic. That said, we believe the solution offered widely applies

to several location-enabled services and applications outside the context of pandemics.

As a walkthrough example, we use the pandemic as a backdrop.

To curb disease exposure and transmission, many contact tracing apps have emerged.

While most of these apps help the app users through exposure notification, they do not

allow the general public communities, government entities, and city officials in any

way. Any such feature is not present in many of the existing contact tracing apps be-

cause many apps use spatially invariant modalities like Bluetooth data, which does not

provide any spatial context. The current GPS apps also do not provide this information

due to privacy concerns concerning the infected individuals. In this paper, we propose

using a system that allows individuals to release their locations in a privacy-preserving

manner for the nodal authorities to build heatmaps so that governments and citizens

can benefit from the aggregate data statistics without knowing about any individual’s

participation in this heatmap. Benefits of such heatmaps include 1) monitoring disease

spread, 2) intervention planning and intervention outcome analysis, 3) epidemiological

analysis, and 4) informing citizens.

12.2 LIPSCHITZ PRIVACY & DIFFERENTIAL PRIVACY

Definition 15. (Lipschitz Privacy). Consider the normed space (U , ‖ · ‖) of private

data, a privacy level ϵ > 0, and a set Y of possible responses. Then, the mechanism

Q : U → ∆(Y) is ϵ-Lipschitz private if lnP(Q(u) ∈ S) is ϵ-Lipschitz in u for all

S ⊆ Y .

Assuming the mechanism Q possesses a probability density function g(u, y) =
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P(Qu = y), where g(u, y) is almost everywhere differentiable in u, the Lipschitz con-

dition (3) translates to a point-wise bound on the derivative across the private input u

as follows: g(·, y) is continuous for all y ∈ Y and,

‖∇g(u, y)‖∗ ≤ ϵg

, for a.e. u ∈ U and all y ∈ Y , where ‖ · ‖∗ is the dual norm of ‖ · ‖. A. A Metric

as Adjacency Relation The adjacency relation A in differential privacy is replaced by

the metric ‖ · ‖ of the space U of private data. The composite adjacency relation (2)

can be captured using ℓ1 and ℓ2-norms. Specifically, assume that the private data u =

[u1, . . . , un] is an aggregation of n individuals’ highdimensional data ui ∈ Rm. Then,

adjacency relation (2) can be relaxed to:

(u, u′) ∈ A ⇔
n∑

i=1

‖ui − u′
i‖2 ≤ λ

According to the Lipschitz-privacy framework and assuming the existence and dif-

ferentiability of the density of the mechanism, adjacency relation above, the Lipschitz

privacy definition translates into a bound on the derivative of the mechanism:

‖∇ui
ln g(u, y)‖2 ≤ ϵ, ∀i ∈ {1, . . . , n}.

Adjacency relation can be viewed as an ℓ2-sensitivity constraint that ensures the privacy

of high-dimensional data.
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12.2.1 EQUIVALENCE WITH DIFFERENTIAL PRIVACY

Proposition 1. For any λ > 0. Then, an ϵ-Lipschitz private mechanism Q is αλ-

differentially private.

Many popular differentially private mechanisms, such as the Laplace and the expo-

nential mechanism, are also Lipschitz-differentially private. One exception that fails

to satisfy Lipschitz-privacy constraints is the staircase mechanism since the underlying

noise distribution is discontinuous. Specifically, the log-probability function lnP(Qu =

y ) is discontinuous and, hence, is not Lipschitz.

12.2.2 LAPLACE MECHANISM AS A SPECIAL CASE OF LIPSCHITZ DIFFERENTIAL

PRIVACY

Proposition 2. Let s : U × Y → R be L-Lipschitz in U . Then, the mechanism Q with

density

P(Qu = y | u) ∝ eϵs(u,y)

is ϵL-Lipschitz differentially private.

In the special case where U = Y = Rn and s(u, y) = −‖u − y‖p, we recover the

Laplace mechanism. Furthermore, Lipschitz privacy inherits the property of resiliency

to postprocessing. Identically to differential privacy, any further, possibly randomized,

postprocessing of the output carries the same privacy guarantees.

12.2.3 EXAMPLE CHECK

P(Q(u) = y) = g(u, y) = w(y)e−fy(u)
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(a) Privacy preference map (b) Reporting of two locations is based on a
sampling from a learnt distribution with a

relatively greater dispersion if the preferred
privacy level is high (lower epsilon).

Figure 12.1: Illustration of Eikonal PDE-based private location reporting that ensures
Lipschitz privacy (and equivalently a specific level of differential privacy).

has, by assumption, a proper probability density; g(u, y) ≥ 0 and
∑

y∈Y g(u, y) = 1.

Moreover, we compute the following derivative in the weak sense

‖∇u lnP(Q(u) = y)‖2 = ‖∇u (lnw(y)− fy(u))‖ = ϵ(u)

Therefore, mechanismQ satisfies the definition and, thus, is ϵ-locally Lipschitz private.

12.3 REGULARIZED EIKONAL EQUATION

The location-dependent privacy mechanism proposed in287 assumes that the query q :

Ω→ Y , and the privacy map ϵ : Ω→ R+, where x ∈ Ω represents a location.

For each possible response y ∈ Y , let Sy be a subset of Ω, Sy = {x ∈ Ω, q(x) = y}.

The Eikonal equation for u(x; y) is given by

‖∇u(x)‖2 = ϵ(x), x ∈ Ω, (12.1)
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subject to the internal Dirichlet condition,

u(x) = 0, for x ∈ Sy. (12.2)

This means that for each response y ∈ Y , an eikonal equation for u(x; y) will be

computed. For example, in the GPS location in the Philadelphia case, given an identity

query, q(x) = x, if one discretizes the domain Ω by an N ×N grid, then a total of N2

solutions u(x; y) needs to be computed since there are N2 possible different responses

in terms of the location y. And u(x; y) represents the travel time from y ∈ Ω to x ∈ Ω,

where the velocity field is given by 1/ϵ.

It is stated in the paper that the internal condition is a design choice that stems from

the need for the response y should be close to x, which originates from the particular

location-based mechanism considered in the GPS location example with an identity

query, q(x) = x (see287). But it’s unclear if this is a reasonable choice for a more

generic query.

A normalization step is then carried out,

∑
y∈Y

e−u(x;y)w(y) = 1, x ∈ Ω. (12.3)

If w(y) ≥ 0, then this leads to a mechanism Q,

P(Q(x) = y) = w(y)e−u(x;y). (12.4)

A few issues in this framework: 1) the PDE requires smooth enough and large
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enough privacy ϵ at the edge of the map. 2) the normalization step does not always

yield a positive solution for w(y).

12.3.1 EXTREME CASES:

• If a trivial query q(x) = y∗ is used for any x ∈ Ω, where y∗ is the only response in

Y , Y = {y∗}, then we have u(x; y∗) = 0 based on the the condition equation 12.2,

which will lead to w(y∗) = 1 and cause information leakage P(Q(x) = y∗) = 1.

This observation indicates that some diffusion at the response level is needed to

generalize this mechanism to more generic queries.

• For a binary query withY = {y0, y1}, where q(x) = y1 for x ∈ Ω+ and q(x) = y0

for x ∈ Ω−, and Ω = Ω+ ∪ Ω−. According to the mechanism designed in287, we

have two PDE systems

‖∇u(x; y0)‖2 = ϵ(x), x ∈ Ω+, u(x; y0)|x∈Ω− = 0, (12.5)

‖∇u(x; y1)‖2 = ϵ(x), x ∈ Ω−, u(x; y1)|x∈Ω+ = 0. (12.6)

The normalization step equation 12.3 yields

w(y0)e
−u(x;y0) + w(y1)e

−u(x;y1) = 1, x ∈ Ω, (12.7)

which is equivalent to

w(y0)e
−u(x;y0) + w(y1) = 1, x ∈ Ω+, (12.8)
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Figure 12.2: Some more instances of learnt distributions

w(y0) + w(y1)e
−u(x;y1) = 1, x ∈ Ω−. (12.9)

This is an over-determined system for the weights w(y0), w(y1) unless we have a

zero privacy map ϵ = 0.

12.3.2 VISCOSITY-BASED REGULARIZATION

Consider a regularized Eikonal equation instead. This is motivated by the recent work

by Churbanov and Vabishchevich118. There is a slight abuse of notation here - (x, y)

represents the coordinate in a 2-D domain. In a bounded domain Ω ⊂ R2 with Lip-

schitz continuous boundary ∂Ω, the boundary value problem for the eikonal equation
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for u(x, y) is given by

a2(x, y)

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
= 1, for (x, y) ∈ Ω, (12.10)

u(x, y) = 0 for (x, y) ∈ ∂Ω, (12.11)

where a(x, y) = 1/ϵ(x, y) in our context. Introducing the transformation

vα(x, y) = exp

(
−uα(x, y)

α

)
, where α > 0, (12.12)

one can show that

α2L(vα) = vα (−αL(uα) + E(uα)) , (12.13)

where the operators

L(u) = ∂

∂x

(
a2

∂u

∂x

)
+

∂

∂y

(
a2

∂u

∂y

)
, E(u) = a2(x, y)

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
.

(12.14)

Therefore, if uα satisfies the regularized Eikonal equation

E(uα) = 1 + αL(uα), (x, y) ∈ Ω, (12.15)

subject to the boundary condition

uα = 0 (x, y) ∈ ∂Ω (12.16)
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then based on the relation in equation 12.13, the nonlinear problem equation 12.19 can

be solved by simply considering the linear PDE

α2L(vα)− vα = 0, (x, y) ∈ Ω (12.17)

subject to the boundary condition

vα = 1 (x, y) ∈ ∂Ω. (12.18)

The regularized solution uα(x, y) → u(x, y) as α → 0 (vanishing viscosity approxi-

mation). By varying α, we may explore the trade-off between added diffusion and the

robustness of the algorithm, MSE metrics, etc.

12.3.3 PRIVACY GUARANTEES FOR VISCOSITY REGULARIZED SOLUTIONS

The solution to equation 12.23, subject to the corresponding boundary condition, ulti-

mately results in a solution to

E(uα) = 1 + αL(uα), (x, y) ∈ Ω, (12.19)

subject to the boundary condition

uα = 0 (x, y) ∈ ∂Ω (12.20)
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This is an Eikonal PDE which results in a

1 + αL(uα)− Lipschitz privacy

Given a max-separation condition of
∑n

i=1 ‖(x, y)i − (x, y)′i‖2 ≤ λ, the Lipschitz pri-

vacy level is equivalent to

λ[1 + αL(uα)]− differential privacy

12.4 FEM FORMULATION

The following standard problems can be posed within a FEM formulation that utilizes

a variational formulation along with Green’s theorem, followed by the construction of

a linear system in terms of a chosen basis. These problems include the

1. Neumann problem given by

−∆u = f, in Ω

n · ∇u = gN , on ∂Ω

where f and gN are given functions.

2. Dirichlet problem that considers the following model problem with inhomoge-
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neous boundary conditions: Find u such that

−∆u = f, in Ω

u = gD, on ∂Ω

where f and gD are given functions.

3. Poisson equation problem find u such that

−∆u = f, in Ω

u = 0, on ∂Ω

where ∆ = ∂2/∂x2
1 + ∂2/∂x2

2 is the Laplace operator, and f is a given function

in, say, L2(Ω)

4. Eigenfunction problem given by

−∆u = λu, in Ω (12.21)

n · ∇u = 0, on ∂Ω (12.22)

12.5 VISCOSITY REGULARIZED SOLUTION

The viscosity regularized PDE

α2L(vα)− vα = 0, (x, y) ∈ Ω (12.23)
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subject to the boundary condition seems to be a combination of the poisson and eigen-

function problems above. An open problem that remains is to further analyze the solu-

tion’s performance under the data’s privacy constraints at the interface between Ω+ and

Ω−.
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“There are mathematicians who do mathematics sim-

ply because they like it — it’s a work of art. Some

people work very hard on problems that have no rela-

tion to anything else.”

Lucien Le Cam

13
Private matrix inverses

13.1 INTRODUCTION

We describe a method for resource-efficient computation in distributed linear algebra

via differentially private shares of data called splinters, which are linear combinations

of the sensitive input matrix with several random matrices. This enables resource-

constrained client devices to receive the inverse of the matrix as a service from the
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Figure 13.1: Matrix inverses are used quite universally in scientific computing

server without having to completely perform the needed inversion on-device. The

server performs computations over these splinters, and the corresponding results are

sent back to the client. The client has a required recipe of specific operations to perform

over these intermediate results, referred to as unsplintering, in order to obtain the re-

quired final result. The scheme integrates well with any state-of-the-art non-distributed

matrix inversion scheme of choice, such as19, that the server could use in the context of

splintering.

13.2 RELATED WORK

1. Coded Computing was introduced based on coding theory to perform distributed

computations with benefits such as robustness to straggler clients, byzantine ro-

bustness to malicious clients, and information-theoretic privacy. Coded comput-

ing schemes for distributed matrix multiplication, in particular, include592,228,591

for straggler mitigation,226 for robustness from malicious actors that return cor-
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rupted results,590 for resiliency from stragglers, byzantine robustness from ma-

licious actors and information theoretic privacy at the same time. Some of the

coded computing methods are surveyed in318. Coded computing based on MDS

codes for matrix inverse is provided in97, and a scheme based on GASP codes

is provided in163. While some of the above works provide privacy guarantees

from an information-theoretic notion, our work focuses on differential privacy

guarantees for resource-efficient distributed matrix inverse. Another significant

difference is that while the above methods used encodings based on coding the-

ory, our shares are just noisy (and private) linear combinations, even though the

final operation we perform, such as the matrix inverse, is a non-linear operation.

2. Cryptographically secure and differentially private methods Homomorphic

encryption-based protocols for delegating several linear algebra computations

were presented in370 along with secure verification guarantees on the obtained

solution in O(n2 log n) time. Differentially private mechanisms for some linear

algebra computations in the streaming setting with space complexity guarantees

were given in523. In contrast, mechanisms for differentially private matrix and

tensor factorizations were given in241. Our work instead focuses on the standard

(non-streaming) setting for differentially private matrix inverse in the distributed

setting.

13.3 SYSTEM INTERACTIONS

We now detail the first-order idea of splintering in the non-private setting. For a d

dimensional input query matrix X, the client device creates d shares corresponding to
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X as {Z1,Z2 . . .Zd} so that

X = Splint(Z1,Z2 . . .Zd), ∀i ∈ 1..d

The most basic splint function that allows for such a representation is a linear combina-

tion using coefficients αi as

X =
d∑
i

αiZi, ∀i ∈ 1..d

The α′
is are not shared with any other entity, be it another client or a server. The

splinters zi are shared with the server. The server performs a set of application-dependent

operations on the splinters Zi, ∀i ∈ 1 . . . d and sends results {βi} back to the client on

either all or a subset of the d shares. The client performs a local computation called

UnSplint using original shares Zi; its corresponding αi’s that are known only to the

client and received β′
is obtained from the server. This unsplintering operation reveals

the true result l of the intended application to the client.

l = UnSplint(αi,Zi, βi), ∀i ∈ 1..d

Note that although x is represented via a linear combination, the computation of {βi}

and UnSplint is not necessarily linear.

Efficient setting Note that there is a computational benefit for the client only if the

UnSplint operation and the generation of splinters can be performed more efficiently

by the client in comparison to entirely performing the required service (say, matrix in-

verse) on its own premise.
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Private setting Differentially privacy is quite a popular mathematical notion of pri-

vacy160 for releasing outputs of queries. The splintering mechanism in its entirety is

differentially private if it is ensured that any communication made from the client in

terms of the shares is differentially private with respect to the matrix that needs to be in-

verted as well as with respect to the client’s sensitive coefficients that it holds. These co-

efficients are useful for the client to perform the unSplint operation. It is worth noting

that without the privacy constraint, the client can trivially send over all of its matrices

to the server to completely save itself from performing any computations. Therefore, it

is worth noting that splintering is useful when operated in a setting that is both efficient

and private. That said, a privacy-compute-communication trade-off comes into play in

practice to efficiently perform splintering with differentially private guarantees.

13.4 EXAMPLES UNDER VARIOUS SETTINGS

We now provide some examples of splintering and unsplintering operations under var-

ious settings of a.) non-private and non-efficient, b.) non-private and efficient, and c.)

private and efficient.

13.4.1 SPLINTERING FOR SIGMOID (NON-PRIVATE AND NON-EFFICIENT SETTING)

Theorem 13.4.1. For a scalar input x ∈ R expressed using scalar real-valued splinters

{z1, z2, . . . , zk} as x =
∑k

i=1 αizi, the unsplintering operation to compute the sigmoid

function s(x) using s(z1), s(z2), . . . , s(zk) is given by
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s(x) =
1

1 +
∏k

i=1

(
1−s(zi)
s(zi)

)−αi

Proof. The sigmoid function is given by

s(x) =
1

1 + e−x
=

ex

ex + 1

This can be rearranged as
1− s(x)

s(x)
= e−x

By following our proposed approach of using splinters we substitute x =
∑k

i=1 αizi in

the above form of sigmoid to get s(x) = 1

1+e−
∑k

i=1
αizi

= 1

1+
∏k

i=1 e
−αizi

Now, substituting this into the rearranged form of the sigmoid above, we get s(x) =

1

1+
∏k

i=1

(
1−s(zi)

s(zi)

)−αi
Therefore, the final scheme only requires computing s(zi)

′s at the

server while the client can figure out s(x) by using αi’s that are known only to the

client and not shared with the server.

As the setting is non-private, the success of several attacks cannot be ruled out in

this setting. We now provide one other example in this setting with regard to computing

the softmax function.

13.4.2 SPLINTERING FOR SOFTMAX (NON-PRIVATE AND NON-EFFICIENT SETTING)

Theorem 13.4.2. For a real-valued input vector x expressed using splinters {z1, z2, . . . , zk}

as x =
∑k

i=1 αizi, the unsplintering operation to compute s(x) where ez1 = a1, e
z1 =
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a2 and ez3 = a3 and w1 =
a1

a1+a2+a3
, w2 =

a2
a1+a2+a3

and w3 =
a3

a1+a2+a3
as follows

softmax(α1z1 + α2z2)i =
(esoftmax−1(w⃗1;z11)i)α1(esoftmax−1(w⃗2;z11)i)α2∑d
j=1(e

softmax−1(w⃗1;z11)j)α1(esoftmax−1(w⃗2;z11)j)α2

(13.1)

Proof.

softmax(α1z1 + α2z2)i =
eα1z1i+α2z2i∑d
j=1 e

α1z1j+α2z2j
(13.2)

=
(eα1z1i)(eα2z2i)∑d
j=1(e

α1z1j)(eα2z2j)
(13.3)

Assume one component each of z⃗1,z⃗2 are known and let w⃗i = softmax(z⃗1). Then

zi = softmax−1(wi; z11). Therefore we plugin this inverse in 13.2 to rewrite softmax as

softmax(α1z1 + α2z2)i =
(esoftmax−1(w⃗1;z11)i)α1(esoftmax−1(w⃗2;z11)i)α2∑d
j=1(e

softmax−1(w⃗1;z11)j)α1(esoftmax−1(w⃗2;z11)j)α2

(13.4)

Analytical inverse of softmax when one component is known: Let ez1 = a1, e
z2 = a2

and ez3 = a3. Then w1 =
a1

a1+a2+a3
, w2 =

a2
a1+a2+a3

and w3 =
a3

a1+a2+a3
and therefore

w1

ez1
=

w2

ez2
=

w3

ez3
= λ

This implies that

z2 = log

(
w2

w1

)
ez1
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13.5 SPLINTERING FOR MATRIX INVERSE (NON-PRIVATE AND EFFICIENT SET-

TING)

We now propose a splintering scheme for the important operation of matrix inversion

in this section, but in the non-private yet efficient setting. We consider a setting where

the client has a large sensitive matrix Mn×n and would like to use the service of a

computationally powerful server to privately obtain the inverse M−1.

Theorem 13.5.1. The unsplintering operation to compute the matrix inverse M using

two splinters Z1,Z2 with secret coefficients α1, α2 while only having to compute the

inverse of the splinters is given by

(α1Z1+UZ2V)−1 = 1/α1Z1
−1 − 1/α1Z1

−1U(Z2
−1 +V1/α1Z1

−1U)−11/α1VZ1
−1

where UZ2V is of the form


α3

α3

α3


︸ ︷︷ ︸

U

Z2


α4

α4

α4


︸ ︷︷ ︸

V
.

Proof. In order to obtain the inverse of a private matrix Mn×n, we split it into the form

using An×n,Un×p,Vp×n and Z2 of dimension p× p as

M−1 = (A+UZ2V)−1

where A is written in terms of a splinter matrix Z1 of dimension n×n as A = α1Z1 and
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UZ2V is of the form


α3

α3

α3


︸ ︷︷ ︸

U

Z2


α4

α4

α4


︸ ︷︷ ︸

V

where Z2 is the other splinter.

Now, by the popular matrix inversion lemma (ShermanMorrisonWoodbury formula)

(A+UZ2V)−1 = A−1 −A−1U(Z2
−1 +VA−1U)−1VA−1

Therefore the proposed scheme now is to send Z1,Z2 to the server which sends back

Z−1
1 ,Z−1

2 to the client that holds M along with α1, α2, α3. The client then obtains the

final solution M−1 by computing

(α1Z1+UZ2V)−1 = 1/α1Z1
−1 − 1/α1Z1

−1U(Z2
−1 +V1/α1Z1

−1U)−11/α1VZ1
−1

Computational savings: In cases where n >> p, the matrix (Z2
−1 +VA−1U)−1

which is of dimension k × k is much easier to invert than the original private data ma-

trix Mn×n thereby offloading the heavier computation onto the server while preserving

privacy and requiring a much smaller computation on the client.

This can further be generalized to 3 splinters as follows where

U =

[
U1 U2

]
,V =

[
V1 V2

]
,Z =

Z1 0

0 Z2


so that

A+U1Z1V
T
1 +U2Z2V

T
2 = A+UZVT

330



Then, just apply the Woodbury matrix identity as above to complete the proof. It is

well-known in linear algebra that if one can invert a nonsingular n matrix in T (n) time,

then one can multiply n × n matrices in O(T (3n)) time. To see this, let A and B be

matrices and consider the following 3n× 3n matrix:

D =


I A 0

0 I B

0 0 I


1 where I is the n-by- n identity matrix. One can verify by direct calculation that

D−1 =


I −A AB

0 I −B

0 0 I


Inverting D takes O(T (3n)) time and we can find AB by inverting D. Note that D

is always invertible since its determinant is 1. Therefore, a splintering method for one

operation benefits the other.

13.6 SPLINTERING FOR MATRIX INVERSE WITH DIFFERENTIAL PRIVACY (PRI-

VATE AND EFFICIENT SETTING)

In this section, we share a mechanism for matrix inversion in a private and efficient

setting. Before that, we introduce some relevant preliminaries and terminology required

in our use case.
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13.6.1 MAIN IDEA FOR PRIVATIZATION

The main idea for privatization is that mixing up sensitive datasets with a linear com-

bination followed by a sufficient level of additive noise leads to a mixed dataset that

is differentially private. Moreover, the variance with which N is generated to obtain

ϵ-differential privacy happens to reduce with an increase in the number of mixture com-

ponents (which in our case are splinters). The noise can be calibrated usingBorgnia et al.

or307.

13.6.2 LEVEL OF NOISE AFTER LINEARLY COMBINING THE SPLINTERS

The following is the relation between the privacy level ϵ that is maintained and required

noise variance to generate N along with our own annotation made in parentheses to

draw an exact analogy for our use-case.

Theorem 13.6.1. 307 (Privacy guarantee): Fix the mixture degree ℓ (the number of splin-

ters in our case), the noise level σX and the number of mixtures T (these are the number

of samples, which is 1 in our case). For any δ > 0, DPMix(ℓ) is (ε, δ)-DP such that

ε = min
α∈{2,3,...}

Tε′α +
log(1/δ)

α− 1
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where

ε′α =
1

α− 1
log

1 +

(
ℓ

n

)2

 α

2

min

(
4

(
e

∆2

ℓ2 − 1

)
, 2e

∆2

ℓ2

)
+ 4G(α)


G(α) :=

α∑
j=3

(
ℓ

n

)j

 α

j

√B(2bj/2c) · B(2dj/2e)

B(ℓ) :=
ℓ∑

i=0

(−1)i

 ℓ

i

 e
i(i−1)

2ℓ2
∆2

,∆2 :=

(
dX
σ2
X

)

A less-tighter privacy-noising relation is given using Laplace distribution-based

noise as given below based onBorgnia et al..

ϵ = T max{A,B} ≤ T

kσ

where

A = log

(
1− k

n
+ e

1
kσ
k

n

)
, B = log

n

n− k + ke−
1
kσ

13.7 GENERATION OF SPLINTERS

We now walk through the details of generating splinters in our proposed mechanism. As

k− 1 out of k splinters used are data-independent and sampled from a different chosen

distribution each. The client first generates k − 1 minor splinters (data-independent

samples) as Ri ∼ N (0,Σi), ∀i ∈ {1 . . . d− 1}. Only one splinter is dependent on data
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Figure 13.2: Proposed splintering scheme with differential privacy
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Figure 13.3: Private scalar release mechanism that we utilize from56

X. It is generated as

Z1 =
1

α1

(X−
∑
i ̸=1

Ri)

where α1 is the corresponding privatized version of coefficients for the data-dependent

splinter. The rest of the coefficients are secret, only known to the client, and never

shared with the server.

Rescaling step Once the data-dependent coefficient and splinter have been generated,

the rest of the data-independent splinters are scaled by their corresponding privatized

secret coefficients as Zi =
1
α̂i
Zi. The secret coefficients are privatized using the scalar

DP mechanism of56, which is an optimal mechanism. The optimality properties of

scalar DP56 are given below.

Note: The notation below that is internal to the algorithm for scalar DP should not be
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overloaded with any of the same symbols used in the rest of the paper for a different

context.

Theorem 13.7.1. 56 Let ε > 0, k ∈ N, and 0 ≤ rmax < ∞. Then the mechanism

ScalarDP (·, ε; k, rmax) is ε-differentially private and for Z = ScalarDP (r, ε; k, rmax),

if 0 ≤ r ≤ rmax, then E[Z] = r and

E
[
(Z − r)2

]
≤ k + 1

eε − 1

[
r2 +

r2max

4k2
+

(2k + 1) (eε + k) r2max

6k (eε − 1)

]
+

r2max

4k2

By choosing k appropriately, we immediately see that we can achieve optimal mean-

squared error as ε grows.

Theorem 13.7.2. 56 Let k =
⌈
eε/3
⌉
. Then for Z = ScalarDP (r, ε; k, rmax),

sup
r∈[0,rmax]

E
[
(Z − r)2 | r

]
≤ C · r2maxe

−2ε/3

for a universal (numerical) constant C independent of rmax and ε.

All the secret coefficients αi have are chosen from a p-bit base-2 floating point

system allowed by the computer architecture, where p ∈ {16, 32, 64}. Therefore, to

reconstruct a data matrix X from scaled Zi’s, one would need access to the secret co-

efficients. Every communication from the client to the server in this scheme involves a

different set of splinters sub-sampled from the union of decoy and minor splinters. That

said, our scheme is a one-shot scheme per matrix inversion, thereby T = 1. Moreover,

we assume that our matrices have a ℓ1 norm that is≤ 1. Note that for a fixed noise level,

the privacy guarantee increases with an increase in ℓ (number of splinters). Therefore,

if one chooses a larger value of ℓ, then a smaller amount of noise is sufficient to achieve
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the target privacy level.

13.8 DISTRIBUTED AND PRIVATE SPLINTERING FOR MATRIX INVERSES WITH-

OUT DIFFERENTIAL PRIVACY

Figure 13.4: Schematic of systems interactions

Splitting a matrix M as follows (M−A+A)−1 =
(
FF⊤ +A

)−1 where a low-rank

approximation F of M−A is obtained efficiently on the client using Random Pivoted

Cholesky108 while the server computes and sends back the inverse of
(
A+ FFT

)−1
=

A−1 −A−1F
(
I+ FTA−1F

)−1
FTA−1 to the client would allow the client to instead

invert a smaller matrix of dimension given by the rank of F in order to obtain the

approximate matrix inverse of M. Over here, the communication A is completely

sensitive data-independent, thereby ensuring privacy. That said, we empirically observe

that the utility is good when the entries in data independent matrix A are independently

sampled from ∼ Unif [−λ, 0] where λ is small and M is positive definite with but as

less diagonally dominant as practically possible. This is illustrated in Figures 13.4 and
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Figure 13.5: Schematic illustration 2

13.5.
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If there is a problem you can’t solve, then there is an

easier problem you can solve: find it.

George Pólya

14
Parallel maxi-min combinatorial

optimization of distance covariance

14.1 INTRODUCTION

This chapter is based on our work in540. The rich structure of some set function classes

allows for the development of efficient algorithms for combinatorial optimization prob-
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lems. To be formal, a set system (F,Z) is a collection F of subsets of a ground set

Z . For example, F could be subsets of the power set of Z or could be subsets that

satisfy the structure of a greedoid285, semi-lattice91, independence systems124 or an

antimatroid140,272,16 and so forth.

Popular set function classes such as submodular functions333,165,385,183,174,289,248 have

resulted in a wide array of powerful algorithms for several tasks across different fields.

Under lack of submodularity, relaxations that characterize approximate submod-

ularity,58,64,229,112,135 have been introduced to develop combinatorial algorithms with

approximation guarantees. Other set function classes beyond submodularity include

those of subadditive functions, quasi-submodular functions and the lesser-known class

of induced quasi-concave set functions relevant to this paper.

This paper introduces a parallel algorithm for optimizing quasi-concave set func-

tions with global optimality guarantees as opposed to submodular optimization that

provides approximate solutions. Algorithms for optimizing general quasi-concave set

functions do not exist. In contrast, a specific sub-class of quasi-concave set functions

that can be written in terms of monotone linkage functions can be optimized to obtain

globally optimal solutions. For example, we show that certain monotone linkage func-

tions of distance covariance induce a corresponding quasi-concave set function. We use

our algorithm to find an optimally diverse set of features based on distance covariance.

14.1.1 PRELIMINARIES

We now list the definition of quasi-concave set functions and state the induced quasi-

concave set function optimization problem, which are central to the focus of this paper.
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14.2 QUASI-CONCAVE SET FUNCTIONS

Definition 16 (Quasi-Concave Set Function378,298,594,539). A function F : F 7→ R

defined on a set system (X,F) is quasi-concave if for each S,T ∈ F ,

F (S ∩T) ≥ min {F (S), F (T)} (14.1)

Connection: We would like to note its notational similarity to its continuous counter-

part of strictly quasi-concave functions, which are those real-valued functions defined

on any convex subset of real-valued vector spaces such that f(λx+ (1− λ)y) ≥ min
{
f(x), f(y)

}
for all x 6= y and λ ∈ (0, 1).

We denote the set 2X \ {ϕ,X} by P−X and we use i indexed subsets like Si to

indicate a singleton (unit cardinality) element of S labeled by i.

Definition 17 (Monotone Linkage Function378). A function π(Xi,Z) defined on Z ∈

P−X , Xi ∈ X \ Z is called a monotone linkage function if

π(Xi,S) ≥ π(Xi,T),S ⊆ T ∈ F , ∀Xi ∈ X \ T (14.2)

We would like to note for the clarity of the reader that Xi is an element while S,T

are sets. Therefore, to make this distinction clear, we denote sets in bold-faced font and

elements otherwise.

Monotone linkage functions have been introduced and used for clustering in273,274.

A recent work457 uses these functions to find maximum margin separations in finite

closure systems.
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Induced quasi-concave set function optimization This is stated as the problem of

maximizing a quasi-concave set function Mπ(T) over the modified power set P−X :

arg max
T⊂P−X

Mπ(T) = arg max
T⊂P−X

min
Xi∈X\T

π(Xi,T) (14.3)

where π(Xi,Z) is a monotone linkage function.

14.3 CONTRIBUTIONS

1. We provide a parallel algorithm to find all the subsets that globally optimize the

induced quasi-concave set function optimization problem in (14.3).

Type
Induced Quasi-concave

set function
(Parallel: Ours)

Induced Quasi-concave
set function

Quasi-concave
set function

(General purpose)

Unconstrained
Submodular

Robust
submodular

Unconstrained
Quasi

submodular

Quasi semistrictly submodular
M-/L-convex

SSQM ̸=

under M-convex
domain

Complexity

On n processors,
O(n2g) +O(log log n).
For n2, n3 processors,

check Table 2.

O(n3g) +O(n) Unknown NP-Hard O(nk) O(n2) O(n2 logL) +O(n2) O(n4(logL)2)

Solution Globally
optimal

Globally
optimal Unknown Unknown Approximate Approximate Approximate Approximate

Table 14.1: We show the computational complexity of our parallel algorithm and contrast it
with that of its non-parallel version (cubic complexity), settings of submodular optimization and

its relaxations. n is the size of the ground set, k is the cardinality of the returned set =
max {|x(v)− y(v)||x, y ∈ dom f, v ∈ V } where f : ZV 7→ R ∪ {+∞} and g is the complexity to

compute the monotone linkage function.

2. The proposed parallel algorithm has a time complexity over n processors of

O(n2g) + O(log log n) where n is the cardinality of the ground set and g is

the complexity to compute the monotone linkage function that induces a corre-

sponding quasi-concave set function via a duality. The complexity reduces to

O(gn log(n)) on n2 processors and to O(gn) on n3 processors. The parallel

approach reduces the currently existing cubic computational complexity of the

non-parallel version, which is O(n3g) +O(n).
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3. As an example, we show that some functions of distance covariance (a measure

of statistical dependence) are quasi-concave set functions. This lets us optimize

them to obtain globally optimal maxi-min solutions for the most diverse subset

of features.

14.3.1 QUASI-CONCAVE SET FUNCTION OPTIMIZATION UNDER VARIOUS SET SYS-

TEMS

A greedy-type algorithm for finding maximizers of induced quasi-concave set func-

tions was constructed in378,298,594. Inspired by this work, extensions of these algorithms

were developed for the setting of multipartite graphs in534. Similarly, quasi-concave set

functions of distance covariance were derived in539 and their optimization resulted in

a solution for a diverse feature selection problem with guarantees. Furthermore, quasi-

concave set functions were extended to various set systems, including antimatroids309

and meet-semilattices in275.

# of
processors

Time
Complexity

n (Ours) O(n2g)
n2 (Ours) O(gn log n)
n3 (Ours) O(gn)
Non-parallel O(n3g) +O(n)

Table 14.2: In this table, we show the complexity of our proposed parallel algorithm with
respect to increasing number of processors n, n2&n3. Here, n is also chosen to be around the

order of size of the ground set. We show that the running times can be drastically reduced
from the cubic complexities in the non-parallel version.
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14.4 RELATED WORK: COMPARING QUASI-CONCAVE SET FUNCTIONS WITH SUB-

MODULARITY

Given the seminal impact of submodular optimization, we would like to compare the

definitions of quasi-concave set functions with submodular functions and their relax-

ations. We state some connections inline that we find accordingly.

1. Submodular optimization183 Let V be a ground set with cardinality |V| = n,

and let f : 2V → R≥0 be a set function defined on V. The function f is said to be

submodular if for any sets X ⊆ Y ⊆ V and any element e ∈ V \Y , it holds that

the discrete derivative

f(X ∪ {e})− f(X) ≥ f(Y ∪ {e})− f(Y)

is non-increasing in X. That is, the incremental gain of adding an element to a

subset is ≥ (is not smaller) the incremental gain of adding it to a superset. An

equivalent definition is that for every S,T ⊆ V we have that

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) (14.4)

The problem of maximizing a normalized monotone submodular function subject

to a cardinality constraint has been studied extensively. A celebrated result of

(Nemhauser et al., 1978) shows that a simple greedy algorithm that starts with an

empty set and then iteratively adds elements with highest marginal gains provides

a (1− 1/e)-approximation.
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Connection: Upon defining a linkage function to be equal to a discrete derivative

of a submodular function as

π(e,X) = f(X ∪ {e})− f(X)

it can be seen that the derivative of a submodular function is a monotone linkage

function. However, not every monotone linkage function is a derivative of some

submodular function376,377. Combining equations (3) and (4), we can say that the

functions that are both submodular and quasi-concave set functions would satisfy

f(S) + f(T) >= f(S ∪T) + f(S ∩T) >= f(S ∪T) + min {f(S), f(T)}.

2. Robust submodular optimization Robust versions of submodular optimization

problem were introduced in290,367,63,271,247,39,416. An earlier variant is of the form

introduced in290 as

max
S⊆V,|S|≤k

min
Z⊆S,|Z|≤τ

f(S\Z)

The τ refers to a robustness parameter, representing the size of the subset Z that

is removed from the selected set S. The goal is to find a set S that is robust upon

the worst possible removal of τ elements, i.e., after the removal, the objective

value should remain as large as possible. For τ = 0, the problem reduces to stan-

dard submodular optimization. The greedy algorithm, which is near-optimal for

standard submodular optimization, can perform arbitrarily badly for the robust

version of the problem.

Connection: Note that our statement of induced quasi-concave set function opti-

mization problem naturally has a robustness component similar to the max-min
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Data

Data Data Data

Broadcast 
data

maximal minimal
 pi-cluster

pi-series pi-series pi-series

O(log K)

Objective

Find

Where

Parallelize
Step-3

Parallelize
Step-5

Figure 14.1: The proposed parallel algorithm consists of generating a π-series at each
parallel entity over a copy of the data. The π-series at each entity starts with a different Xi.
Each entity then generates a π-cluster corresponding to its generated π − series. The final
step involves picking the best π − cluster. This is the only step that is not done in parallel.

constraints used in the literature on robust submodular optimization.

3. Quasi submodular and semi-strictly submodular functions353 A set function

F : 2N 7→ R is quasi-submodular function if ∀X, Y ⊆ N, both of the following

conditions are satisfied

F (X ∩ Y) ≥ F (X)⇒ F (Y) ≥ F (X ∪ Y)

F (X ∩ Y) > F (X)⇒ F (Y) > F (X ∪ Y)

On a similar note, a rich family of semistrictly submodular, discrete Quasi L-

convex and discrete M-convex functions were introduced in379,380.
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14.5 ALGORITHM AND PROOF OF OPTIMALITY

We now introduce the required definitions and corresponding theory to derive the algo-

rithm. This includes definitions for π-series and π-clusters

Definition 18 (π-series). We refer to a series sπ = (Xi1 , . . . , XiN ) as a π-series if

π(Xik+1
,Sk) = min

Xi∈X\Sk

π(Xi,Sk) (14.5)

for any starting set Sk = {Xi1 , . . . ,Xik},k = 1, . . . ,N− 1.

Therefore, it is a way of greedily populating a series that can start with any first

element Xi1 being the current series. Still, the subsequent element to be added to the

series must be the element that minimizes the element to current series function of

π(Xik+1
,Sk) where Xik+1

is the next element added and Sk is the current series.

Definition 19 (π-cluster). A subset S ∈ P−X will be referred to as a π-cluster if there

exists a π-series, sπ = (Xi1 , . . . , XiN ), such that S is a maximizer of Mπ(Sk) over all

starting sets Sk of sπ.

Theorem 14.5.1. 273 If for a π-series sπ = (Xi1 , Xi2 , . . . , XiN ), a subset S ⊂ X contains

Xi1 , and if Xik+1
is the first element in sπ not contained in S (for some k ∈ {1, . . . , N−

1}, then Mπ(Sk) ≥Mπ(S)

where Sk = (Xi1 , . . . , Xik). In particular, if S is an inclusion-minimal maximizer

of Mπ (with regard to P−X), then S = Sk, that is, S is a π-cluster.

From273 we have
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Proposition 4. If S1,S2 ⊂ X are overlapping maximizers of a quasi-concave set func-

tion Mπ(S) over P−X, then S1 ∩ S2 is also a maximizer of Mπ(S).

This means that the minimal maximizers of a quasi-convex set function are not

overlapping. Moreover, any nonminimal maximizer can be uniquely partitioned into a

set of minimal ones.

Theorem 14.5.2. Each maximizer of a quasi-concave set function on P−X is a union of

its inclusion-minimal maximizers.

Proof. Indeed, if S∗ is a maximizer of Mπ(S) over P−X, then, according to Theorem

14.5.1, for any Xi ∈ S∗, there exists a minimal maximizer included in S∗ and contain-

ing Xi.

Theorem 14.5.3. The algorithm above finds all the minimal maximizers over P−X.

Proof. From Theorem 14.5.2, it follows that each element of minimalMax is a max-

imizer of Mπ(S) over P−X. Assume that there is a minimal maximizer S that does

not belong to minimalMax, and let Xi ∈ S. Then, according to Theorem 14.5.1,

there exist π-series starting from Xi and minimal π-cluster Tx ⊆ S containing Xi with

Mπ(Tx) ≥ Mπ(S). Since S does not belong to minimalMax, and, according to Steps

5 and 8 of the algorithm, Tx or some subset of Tx belongs to minimalMax, there is a

minimal maximizer strictly included in S which contradicts the minimality of S.

14.6 COMPUTATIONAL COMPLEXITY

When we have n processors, then we can build each π-series (in step-3 of the algorithm)

in O(n2g) on one processor (including step 5), and because we build them in parallel,
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steps 3-5 takeO(n2g) time. Finding the maximum in step 8 takesO(log log n) time on

n processors, under the CRCW (concurrent-read-concurrent-write) mode231,230,529,293.

If we have n2 processors, n processors are used to build each π-series. To add one

element to a series, we have to find min between n elements, that takes O(log log n)

on n processors, so to build each pi-series takes g ∗ (log 1 + log 2 + . . . + log n) =

O(gn log n), and to finish it we have to find max with n2 processors which takes O(1)

time. This gives us O(gnloglogn) complexity. If we have n3 processors, then we can

use n2 processors to build each π-series. To add one element to a series, we have to find

min between n elements, which takesO(1) on n2 processors. So to build each π-series

takesO(gn) time, and to finish we have to find max with n3 processors, that takesO(1)

time. These are summarized in Tables 1 and 2.

14.7 MAXI-MIN DIVERSE VARIABLE SELECTION

As an illustrating example, we aim to find all the subsets that maximize the function

Mπ(T), which results in the solutions which are diverse features in the context of statis-

tics/machine learning as follows

arg max
T⊂X

Mπ(T) = arg max
T⊂X

min
Xi∈X\T

π(Xi,T) (14.6)

For specificity, we use distance covariance upon normalization of the data as a measure

of statistical dependence to model the diversity via π(Xi,S) as defined in Lemma 8.1.
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14.8 RELEVANT BACKGROUND ON DISTANCE COVARIANCE AND DISTANCE COR-

RELATION

In this section, we introduce some preliminaries about distance correlation and dis-

tance covariance and illustrate a connection between these functions and quasi-concave

set function optimization. Distance Correlation500 is a measure of nonlinear statistical

dependencies between random vectors of arbitrary dimensions. We describe below dis-

tance covariance ν2(x,y) between random variables x ∈ Rd and y ∈ Rm with finite

first moments is a non-negative number as

ν2(x,y) =

∫
Rd+m

|fx,y(t, s)− fx(t)fy(s)|2w(t, s)dtds (14.7)

where w(t, s) is a weight function as defined in500, fx, fy are characteristic func-

tions of x,y and fx,y is the joint characteristic function.

The distance covariance is zero if and only if random variables x and y are in-

dependent. Using the above definition of distance covariance, we have the following

expression for Distance Correlation500:

The squared Distance Correlation between random variables x ∈ Rd and y ∈ Rm

with finite first moments is a nonnegative number is defined as

ρ2(x,y) =


ν2(x,y)√

ν2(x,x)ν2(y,y)
, ν2(x,x)ν2(y,y) > 0.

0, ν2(x,x)ν2(y,y) = 0.

(14.8)

The Distance Correlation defined above has the following interesting properties.

1. ρ2(x,y) is applicable for arbitrary dimensions d and m of x and y respectively.
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2. ρ2(x,y) = 0 if and only if x and y are independent.

3. ρ2(x,y) satisfies the relation 0 ≤ ρ2(x,y) ≤ 1.

14.8.1 SAMPLE DISTANCE COVARIANCE AND SAMPLE DISTANCE CORRELA-

TION

We provide the definition of sample version of distance covariance given samples {(xk,yk)|k =

1, 2, . . . , n} sampled i.i.d. from joint distribution of random vectors x ∈ Rd and

y ∈ Rm. To do so, we define two squared Euclidean distance matrices EX and EY,

where each entry [EX]k,l = ‖xk−xl‖ and [EY]k,l = ‖yk−yl‖with k, l ∈ {1, 2, . . . , n}.

These squared distance matrices are double-centered by making their row and column

sums zero and is denoted as ÊX, Q̂X, respectively. So given a double-centering ma-

trix J = I − 1
n
11T , we have ÊX = JEXJ and ÊY = JEYJ. The sample distance

covariance and sample distance correlation can now be defined as follows.

Definition 20. Sample Distance Covariance500: Given i.i.d samplesX×Y = {(xk,yk)|k =

1, 2, 3, . . . , n} and corresponding double centered Euclidean distance matrices ÊX and

ÊY, the squared sample distance correlation is defined as,

ν̂2(X,Y) =
1

n2

n∑
k,l=1

[ÊX]k,l[ÊY]k,l,

Using this, sample distance correlation is given by

ρ̂2(X,Y) =


ν̂2(X,Y)√

ν̂2(X,X)ν̂2(Y,Y)
, ν̂2(X,X)ν̂2(Y,Y) > 0.

0, ν̂2(X,X)ν̂2(Y,Y) = 0.
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Monotonicity of distance covariance under lack of independence: If X,Z ∈ Rp

and Y ∈ Rq and if Z ⊥⊥ (X,Y) then

ν2(X+ Z,Y) ≤ ν2(X,Y) (14.9)

Note that ⊥⊥ indicates ’statistically independent’ in the statistical literature.

14.8.2 MOTIVATING APPLICATIONS FOR MODELLING DIVERSITY WITH QUASI-

CONCAVE SET FUNCTION OPTIMIZATION

A minor sampling of applications that benefit from the results in this paper does parallel

traditional applications seen in submodular optimization literature. A few directions are

listed below.

1. Maximally/minimally correlated marginal selection for private data synthesis604.

2. Modeling diversity in active learning559, determinantal point processes516.

3. Diverse sample selection, feature selection and data summarization in machine

learning and statistics.417,134

14.8.3 A MONOTONE LINKAGE FUNCTION OF DISTANCE COVARIANCE

Lemma 14.8.1. The function π(Xi,S) of distance covariance defined on Xi /∈ S as

π(Xi,S)
Xi /∈S

=
∑
Sj∈S

−ν2(Xi,Sj) (14.10)

is a monotone linkage function.
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Figure 14.2: This illustration refers to the duality between monotone linkage functions and
quasi-concave set functions. Optimization algorithms for general quasi-concave set functions

do not exist, while those induced via monotone linkage functions can be optimized in
polynomial time.

Proof. For S ⊆ T we have

π(Xi,T)
Xi /∈T

=
∑
Sj∈S

−ν2
i (Xi,Sj)−

∑
Tj∈T\S

ν2
i (Xi,Tj) (14.11)

≤ π(Xi,S)
Xi /∈T

=
∑
Sj∈S

−ν2
i (Xi,Sj) (14.12)

We would also like to note that as ν(·) is a non-negative function the above inequality

does hold true.

By Assertion 1 from273, we conclude that the function Mπ(T) = min
Xi∈X\T

π(Xi,T) is a

quasi-concave set function.

Theorem 14.8.1 (Quasi-Concave Distance Covariance Set Function Theorem). If we

have S ∩ T 6= ∅ and ∀S,T,Y if ν2(S,T) > 0 ∧ ν2(S,Y) > 0 ∧ ν2(T,Y) >
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0 then, we have

−ν2(S ∩T,Y) ≥ min(−ν2(S,Y),−ν2(T,Y)) (14.13)

Proof. 539

If S ∩T = S then since S ⊆ T

the Kosorok’s distance covariance inequality simplifies to give

−ν2(S,Y) ≥ −ν2(T,Y) (14.14)

Therefore, we have

−ν2(S ∩T,Y) ≥ min(−ν2(S,Y),−ν2(T,Y))

Similarly, if S ∩T = T, then since T ⊆ S

−ν2(T,Y) ≥ −ν2(S,Y) (14.15)

and therefore,

−ν2(S ∩T,Y) ≥ min(−ν2(S,Y),−ν2(T,Y)) (14.16)

In the cases of S ∩T ⊂ S and S ∩T ⊂ T the Kosorok’s distance covariance

inequality gives

−ν2(S ∩T,Y) > −ν2(S,Y) (14.17)
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and

−ν2(S ∩T,Y) > −ν2(T,Y) (14.18)

Thus,

−ν2(S ∩T,Y) ≥ min(−ν2(S,Y),−ν2(T,Y)) (14.19)

Note: In the case where considering (X ∪ Z) is of interest, we could use the above

theorem by incorporating degenerated random vectors as follows: Suppose X ∈ Rp1

and Z ∈ Rp2, then we augment X and Z to be X̃ = (X,0p2) and Z̃ = (0p1,Z)

respectively. X̃ and Z̃ are therefore of the same dimension and X̃ + Z̃ = (X,Z).

Therefore the X ∪Z operation in the context of computing ν̂(X ∪Z,Y) with matrices

X,Z,Y is equivalent to appending the columns of X with the columns of Z followed

by computing the sample-distance covariance between the resulting matrix and Y.

14.9 NON-SUBMODULARITY OF DISTANCE COVARIANCE AND CONDITIONAL DIS-

TANCE COVARIANCE

So far, we have shown a path to optimize quasi-concave set functions of distance covari-

ance and compared their complexities to those of submodular optimization and other

combinatorial optimization methods. We now show that distance covariance and its

conditional variant are both subadditive and not necessarily submodular. This further

motivates the optimization regime discussed in this paper. Imagine forming a ground

set T = X ∪Y where since X and Y are given and disjoint. Therefore for any subset

U ⊆ T, we can easily extract the corresponding subsets C of X and R of Y by just
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setting C = U ∩X and R = U ∩Y. Now, given X,Y,Z, we can define a function

g on this large ground set as g(U) = −CDCOV (U ∩X,U ∩Y|Z). We now look at

two subsets (say, U1 and U2) of T. We then set X1 = U1 ∩X and Y1 = U1 ∩Y, and

similarly X2 = U2 ∩X, Y2 = U2 ∩Y. That is, X1 and Y1 are the X and Y parts of

U1 and similarly for U2. Then, we find that:

g(U1 ∪ U2) = −CDCOV (X1 ∪X2, Y1 ∪ Y2|Z) (14.20)

≤ −CDCOV (X1, Y1|Z)− CDCOV (X2, Y2|Z) (14.21)

= g(U1) + g(U2) (14.22)

Since CDCOV (conditional distance covariance) is non-negative, we have the subad-

ditivity above, as we have that g is non-positive. The above result holds for distance

covariance as well without loss of generality.

g(U1) + g(U2) ≥ g(U1 ∪U2) ≥ g(U1 ∪U2) + g(U1 ∩U2)

CDCOV(U) +CDCOV(V) ≥ CDCOV(U ∪V)

only when U and V are disjoint.

CDCOV(U) +CDCOV(V \U) ≥ CDCOV(U ∪V)
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The subadditivity means that

−CDCOV(X1 ∪X2 ∪X3,Y1 ∪Y2 ∪Y3|Z)

can be bounded above by

−CDCOV(X1,Y1|Z)−CDCOV(X2 ∪X3,Y2 ∪Y3|Z)

or:

−CDCOV(X1 ∪X2,Y1 ∪Y2|Z)−CDCOV(X3,Y3|Z)

or:

−CDCOV(X1 ∪X3,Y1 ∪Y3|Z)−CDCOV(X2,Y2|Z)

This is enough for subadditivity, but for −CDCOV to be bisubmodular (or submodu-

lar), we also need inequalities bounding it above by (for example)

−CDCOV(X1 ∪X2,Y1 ∪Y2|Z)−CDCOV(X2 ∪X3,Y2 ∪Y3|Z) +CDOV(X2,Y2|Z)

14.10 CONCLUSION

We showed that Algorithm 1 gives globally exact solutions to the induced quasi-concave

set function optimization and is highly parallelizable. This opens doors to a wide va-

riety of real-world applications that we would like to pursue as part of future work.
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Figure 14.3: Empirically motivated conjecture

14.11 OPEN QUESTIONS

That said, although we show that conditional distance covariance is not necessarily

submodular, we conjecture that it could be approximately submodular to a reasonable

degree based on the fact that submodular optimization libraries happened to pick solu-

tions that are closer to the optimal on small datasets. We performed this experiment by

enumerating the entire power set (with objective values in blue below) and compared

the objectives obtained by the picks of non-deterministic fast submodular optimization

(in orange). As we see, the orange picks were quite close to the optimal pick, and hence

our experimentally motivated conjecture.
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A comparative review of secure

computation libraries for homomorphic

encryption

15.1 INTRODUCTION

This chapter is based on our survey in450. Homomorphic Encryption is a method of se-

cure computation on encrypted data (ciphertext) such that the result of the computation

is also a ciphertext. Once this resultant ciphertext is decrypted, the decrypted result

should match the output of operations on the corresponding unencrypted (plaintext)

data.

For example, a hospital with a significant amount of private and sensitive patient in-

formation can homomorphically encrypt the data and send it to a third party for analysis.

The third-party can perform calculations on encrypted data and send the results (also

encrypted) back to the hospital. The hospital can then view the results by decrypting

the data using a private key.

Several schemes of homomorphic encryption are categorized based on the number

of operations allowed on the encrypted data. For a cryptosystem to be Fully Homo-

morphic (FHE), it should support any number of arbitrary computations. Brakerski-
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Gentry-Vaikuntanathan (BGV)76 and CGGI114,113 are examples of Fully Homomorphic

schemes. In practice, Fully Homomorphic schemes have tremendous overhead and

are computationally very expensive. Somewhat Homomorphic Encryption (SWHE)

schemes are practically more feasible but allow only certain operations on encrypted

data and limit the number of computations as the Ciphertext size increases with each

step due to noise. Some examples of Somewhat Homomorphic Encryption schemes

areFan & Vercauteren,Yao,447,Boneh et al.,Ishai & Paskin. Partially Homomorphic Encryption (PHE)

schemes such as52,51,Rivest et al.,199,166,382,Okamoto & Shigenori Uchiyama,398,133,270,185 allow only one

type of operation any number of times - either addition or multiplication on encrypted

data as compared to Somewhat Homomorphic schemes that support both. Genera-

tion of such schemes continues to be an active area of research, and the develop-

ment of standards for homomorphic encryption has recently taken off as described

inChase et al.,Albrecht et al.. Below is an example to introduce the high-level concept of ho-

momorphic encryption:

1. Let m be the plaintext message

2. Let a shared public key be a random odd integer p

3. Choose a random large q, small r, (|r| ≤ p/2)

4. Ciphertext c = pq + 2r +m (Ciphertext c is close to multiple of p)

5. Perform homomorphic addition/multiplication as required

6. Decrypt: m = (c mod p) mod 2
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In this case, the corresponding homomorphic operations of addition and multiplication

are given below:

Homomorphic Addition

c1 = q1 ∗ p+ 2 ∗ r1 +m1

c2 = q2 ∗ p+ 2 ∗ r2 +m2

c1 + c2 = (q1 + q2) ∗ p+ 2 ∗ (r1 + r2) + (m1 +m2)

Homomorphic Multiplication

c1 = q1 ∗ p+ 2 ∗ r1 +m1

c2 = q2 ∗ p+ 2 ∗ r2 +m2

c1 ∗ c2 = ((c1 ∗ q2)+ q1 ∗ c2 ∗ q1 ∗ q2) ∗ p+2(2 ∗ r1 ∗ r2+ r1 ∗m2+m1 ∗ r2)+m1 ∗m2

If more complicated functions that require operations other than addition and mul-

tiplication need to be homomorphically encrypted, an alternative would be to generate

a polynomial approximation (using the Taylor series, for example) and then apply ho-

momorphic encryption on the resulting polynomial instead.

Homomorphic encryption libraries are based on different schemes and hence fea-

ture different behaviour. Microsoft’s SEAL(V2.3.1)Laine is based on BFVFan & Vercauteren,
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HElib is based on BGV76, and TFHE is based on CGGI114,113.

15.2 FEATURES OF HOMOMORPHIC ENCRYPTION LIBRARIES

In this section, we introduce important features of homomorphic encryption libraries.

Features such as asymmetry, negative computations, noise budget, recrypt, ciphertext

packing, bootstrapping76,114 and relinearization are discussed in subsections 2.1 and 2.2.

In sub-section 2.3, operations (atomic) allowed by various libraries are discussed and

supported languages are also mentioned for all the libraries.

15.2.1 BASIC FEATURES

ASYMMETRY

All homomorphic encryption libraries in this study have been implemented in an asym-

metric manner where they use a pair of keys for the encryption and decryption of data.

Specifically, keys used in asymmetric cryptography include a public key to encrypt the

plaintext data that may be shared widely and a private key to decrypt the encrypted re-

sult. This differs from symmetric cryptographic systems that use a single key to encrypt

the plaintext and decrypt the ciphertext.

SERIALIZATION

Specific homomorphic encryption libraries such as SEAL, HElib and TFHE provide

custom APIs to serialize (and deserialize) keys and ciphertexts for local storage and

retrieval. Libraries that don‚t provide this feature require the developers to create their

own implementation of serialization (which could be challenging with the complex
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data type) unless the ciphertext can be represented in a primitive type such as String or

BigInteger using the same library.

NEGATIVE COMPUTATIONS

Negative computations correspond to subtracting operand 1 from operand 2 (where

operand 2 > operand 1). This means the result of this computation should be a negative

number. Microsoft SEAL(V2.3.1) uses BFV and Cheon-Kim-Kim-Song (CKKS) for

encryption. In this scheme, the integers or real numbers correspond to polynomials in

a specifically chosen ring178. Different kinds of encoders, such as Integer, Scalar, Frac-

tional, and PolyCRTBuilder, can be used to convert the integers/reals in the input data

into the corresponding coefficients in the polynomial space. In SEAL, if the ciphertext

is encoded using Integer Encoder or Fractional Encoder, then the negative computa-

tions are supported. On the other hand, if the ciphertext is composed and encrypted

using a PolyCRTBuilder then the resultant ciphertext after homomorphic subtraction

will not be negative. This is due to the limitations in the Chinese remainder theorem

when dealing with absolute values.

ENCRYPTION PARAMETERS, CIPHERTEXT SIZE AND MEMORY REQUIREMENTS

Implementing homomorphic encryption through any library requires initialising certain

encryption parameters, such as polynomial modulus, coefficient modulus, plain mod-

ulus, noise standard deviation, a random generator, etc. Choice of these parameters

can significantly affect the size of the ciphertext, RAM required, noise budget (refer to

section 2.2.1), speed, performance and securityLaine of the encryption. The size of the
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ciphertext is usually large with the complex Ciphertext data type in libraries like SEAL

and HElib, and operations such as matrix rotation that use Galois keys (in SEAL) could

result in substantial RAM requirements.

Basic Features SEAL HElib TFHE Paillier ELGamal RSA

Asymmetric Yes Yes Yes Yes Yes Yes

Serialization
and Deserializa-
tion of keys and
ciphertexts

Yes Yes Yes No No No

Negative compu-
tations support Yes No No No No No

Ciphertext size
(less than 1MB
for 1 input)

No No Yes Yes Yes Yes

Can run on less
than 2GB RAM No Yes Yes Yes Yes Yes

Table 15.1: Comparison of Homomorphic Encryption libraries based on basic features

15.2.2 ADVANCED FEATURES

NOISE BUDGET

A noise term is generally appended to a ciphertext in the encryption operation to guar-

antee the security of the cryptosystem. This term could be an integer (if the scheme is

based on integers) or a polynomial (if the scheme is based on polynomials) with coef-

ficients in {1,0,1}. The term’s size depends on each system’s security and correctness

properties (for instance, a polynomial is typically considered small if all its coefficients
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are small). Homomorphic operations increase the noise, and beyond a threshold, the

resultant ciphertext becomes too corrupt to be decrypted. The noise budget (invariant)

is the total amount of noise that can be added until the decryption fails. Addition and

subtraction have a minimal impact on noise compared to multiplication, and Partially

Homomorphic Encryption schemes are unaffected by noise.

RECRYPTION

Recryption is a technique to re-generate the noise budget of a ciphertext that was de-

pleted by arbitrary computations. Recryption boosts bounded-depth homomorphism

to unbounded-depth homomorphism. This implies that the noisy ciphertext can be con-

verted into a noise-free ciphertext (of the same plaintext) without the secret key193,Brakerski et al..

Libraries that do not have recryption functionality implemented provide no means of

converting a noisy ciphertext to a noise-free ciphertext. They, therefore, limit the num-

ber of arbitrary computations on a ciphertext.

CIPHERTEXT PACKING

In some homomorphic encryption libraries such as SEAL and HElib, a list of plain

values can be packed into a single ciphertext vector by a technique called ciphertext

packing using the Chinese Remainder Theorem (CRT)Brakerski et al.. Homomorphic oper-

ations are performed on these vectors, component-wise, in a SIMD (Single Instruction

Multiple Data) fashion. Ciphertext packing achieves a nearly optimal homomorphic

evaluation (up to polylogarithmic factors). Homomorphic operations act element-wise

between encrypted matrices, allowing the user to obtain several orders of magnitude
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speed-ups in naively vectorizable computations.

BOOTSTRAPPING

In specific homomorphic encryption schemes, arithmetic operations on ciphertext can

be performed using basic gates (AND, OR, NOT, etc), but arbitrary operations could

reduce the available noise budget. Bootstrapping76,114 is a technique to remove noise by

passing a ciphertext and encrypted private key into a circuit that represents the decryp-

tion algorithm of an FHE scheme. This results in a new ciphertext corresponding to

the original but with no noise. In the TFHE library, after every gate-by-gate operation,

bootstrapping is applied to the resultant ciphertext, and hence any number of arbitrary

operations can be performed.

RELINEARIZATION

Two input ciphertexts of sizes m and n, respectively, result in a ciphertext of the size

m + n − 1 after multiplication. Consumption of the noise budget is also much higher

during multiplication, especially when the input ciphertext sizes are enormous. Relin-

earization reduces the size of the resultant ciphertext after a multiplication operation

to the initial size. A ciphertext of size k + 1 when relinearized produces a ciphertext

of size k. After repeated steps, this can result in a ciphertext of size 2 that can be de-

crypted using a smaller degree decryption function to yield the same resultLaine. Thus,

relinearization of the resultant ciphertext after multiplication can significantly improve

the performance on the subsequent operations, although relinearization by itself has

both a computational cost and a noise budget cost.
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MULTITHREADING

In homomorphic encryption libraries, multithreading corresponds to APIs exposed by

the libraries being thread safe. Thread-safe APIs help avoid deadlock and ease effective

inter thread communication. Most of the tools in SEAL, such as Encryptor, Decryptor,

PolyCRTBuilder, and Evaluator, are thread-safe by default. HElib can be multithreaded

by setting NTL_THREADS=on, -DFHE_THREADs, -DFHE_DCRT_THREADS flags

before making the project. Multithreading is not supported in Partial Homomorphic En-

cryption libraries discussed in the paper.

Advanced
Features SEAL HElib TFHE Paillier ELGamal RSA

Noise affected af-
ter each compu-
tation

Yes Yes Yes No No No

Recryption No Yes Yes N/A N/A N/A

Ciphertext
p̊acking Yes Yes No No No No

Relinearization Yes Yes No N/A N/A N/A

Multithreading Yes Yes No No No No

Table 15.2: Comparison of Homomorphic Encryption Libraries based on advanced features
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15.2.3 OPERATIONS

CIPHERTEXT COMPARISON

Two ciphertexts can be compared for equality: greater than, greater than, equal to,

less than or less than or equal to. TFHE allows the evaluation of an arbitrary boolean

circuit composed of binary gates over encrypted data. A custom comparator circuit can

be used to perform comparisons using TFHE. In SEAL and HElib, a Binary-Encoder

must generate a ciphertext comprising only 0s and 1s. Two such ciphertexts can then

be compared in a bit-wise manner. This process is time-consuming and less secure.

A computer with limited resources can decrypt a ciphertext by randomly comparing

it with a known one. Due to this security threat, HE libraries do not readily expose a

comparison API.

DIVISION

BGV or BFV schemes do not allow the division of ciphertexts due to the randomness

and complexity of the ciphertext. Its possible to approximate division by using all kinds

of expansions. In fully homomorphic encryption, the division of ciphertext A and ci-

phertext B is performed by computing the inverse of ciphertext B (decrypt, inverse

and encrypt) and multiplying the inverse ciphertext by ciphertext A (multiplicative in-

verse). Another technique is recursive subtraction. Recursive subtraction can work only

if A%B equals zero.
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BOOLEAN OPERATIONS

Some homomorphic encryption libraries that are based on Secure Multilayer Percep-

tronBellafqira et al. and Doubly Permuted Homomorphic Encryption587 allow evaluating an

arbitrary boolean circuit composed of binary gates over encrypted data.

MATRIX OPERATIONS

SEAL exposes an API to perform matrix rotation and element-wise addition, multi-

plication and subtraction. In PHE libraries, a ciphertext matrix must be created by

performing element-wise encryption on a n × n plaintext matrix. Then, custom logic

must be implemented to perform row and column rotation.

EXPONENTIATION

Exponentiation of ciphertexts is usually A raised to the power of B(AB) where A and

B are ciphertexts. Current FHE libraries only provide an implementation to raise a

ciphertext base with a plain text exponent. This is accomplished through repetitive

multiplication of the ciphertext. Eg: 34 is 3 ∗ 3 ∗ 3 ∗ 3 = 81. The same can be

accomplished on PHE schemes. In additive PHE scheme, 33 can be calculated as 33 =

27|3 + 3 + 3 = 9|9 + 9 + 9 = 27.

ADD PLAIN, SUBTRACT PLAIN, MULTIPLE PLAIN

Homomorphic operations are usually carried out between two cipher texts. If one of

the operands could be a plaintext, it could significantly improve the performance. The
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size of the resultant ciphertext remains the same as the input ciphertext, and the re-

linearlization step could be skipped. SEAL provides functions to perform addition,

subtraction and multiplication of a ciphertext with a plaintext. The plain operations

are implemented in SEAL as Evaluator::add_plain, Evaluator::sub_plain and Evalua-

tor::multiply_plain.

Operations SEAL HElib TFHE Paillier ELGamal RSA

Addition,
S̊ubtraction Yes Yes Yes Yes No No

Multiplication Yes Yes Yes No Yes Yes

Comparison No No No No No No

Division No No No No No No

Boolean
o̊perations No No Yes No No No

Bitwise opera-
tions Yes Yes Yes No No No

Matrix opera-
tions Yes Yes No No No No

Exponentiation Yes Yes No No No No

Square Yes Yes Yes No Yes Yes

Negation Yes Yes No No No No

Add Plain, Sub-
tract Plain, Mul-
tiply Plain

Yes No No No No No

Table 15.3: Different operations supported by Homomorphic Encryption libraries
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Languages SEAL HElib TFHE Paillier ELGamal RSA

C++ Yes Yes No Yes Yes Yes

Python Yes Yes No Yes Yes Yes

Java No No No Yes Yes Yes

C No No Yes No No No

Table 15.4: Homomorphic Library implementations across programming languages

15.3 APPLICATIONS

The need to create models or derive predictions from confidential distributed datasets

is a commonly surfacing theme in many industries. For example, medical informa-

tion might be distributed across multiple clinics.26 outlines various potential real-world

applications of homomorphic Encryption. Some of the emerging applications are:

15.3.1 HEALTHCARE

In healthcare, maintaining patient information privacy is critical; therefore, their pri-

vate data is often protected by law. However, sharing and computing information that

is distributed across systems is essential for diverse use cases such as coordinated pa-

tient care, fraud billing and reimbursements. It is, therefore difficult to strike a balance

between risk and utility. For example, in 2018, there were 11 significant HIPAA en-

forcement actions with an average fine of $1.9 millionGroup & by Year and. Homomorphic

Encryption can help balance the risk vis-a-vis utility by enabling the analysis of billing

records across patient data to uncover potential cases of fraud reimbursement or billing
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without violating the patients privacy.

15.3.2 FINANCIAL SERVICES

Clients and businesses in the financial services work with confidential information.

Consequently, data, the models and functions computed on them are often considered

proprietary and confidential. Data in financial services functions may even be a contin-

uous stream reflecting the most up-to-date information necessary for decision-making

and is often a result of exclusive research or data feeds available to a particular client

and is often very expensive. Homomorphic Encryption provides the appropriate way

to evaluate and run these data and functions privately. For instance, a client can upload

an encrypted version of the function to the cloud, and the streaming data on which the

functions/models run could be encrypted using the customer’s public key and uploaded

to the cloud.

15.3.3 SMART GRID

Consider a smart grid consisting of multiple microgrids, such as solar panel generators

used by individuals. Each node in such a grid generates useful data like electrical

generation and usage, temperatures of physical equipment, energy flows, etc. In the

case of a generator, if the nodes belong to a smart grid, then measurements include

current energy usage, smart lights, sensors in use, etc.

When the municipality or any other government entity wants an aggregate measure

or an alert about the data, they can use homomorphic encryption to compute data from

nodes. They can do this without violating the terms of business contracts that prohibit
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them from disclosing confidential information such as usage of energy in a particular

mall or the location of the surveillance cameras in a household. In this way, they can de-

velop trust and improve the credibility of the smart grids with the public. Homomorphic

encryption plays a vital role in achieving this.

15.3.4 GENOMICS

Private data generated from sequencing the human genome for complex diseases or epi-

demiology can be a powerful tool in developing a cure or a therapy/treatment for the

disease. DNA and RNA sequences can be generated rapidly; consequently, many such

sequences are now available in laboratories and medical institutes. However, signifi-

cant challenges exist in sharing this data.280. Individual DNA sequences are as unique

as fingerprints - they can be tracked down to an individual. They can determine say, for

e.g. if they are susceptible to Alzheimer’s disease or heart attack. Existing rules for pro-

tecting genomics data have created a lot of limitations for researchers. Homomorphic

Encryption can enable researchers to speed up sharing information while safeguarding

the privacy of the individuals and thus significantly speed up discovery.

15.4 CONCLUSION

In this paper, we survey and compare libraries across various dimensions for homomor-

phic encryption. These techniques enable us to perform computations on encrypted

data against having to decrypt data to perform computations. In this way, it allows for

collaborative computing between multiple parties via encrypted ciphertexts. Although

the field is rapidly progressing on the theoretical front, significant recent progress has
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made it practical from an application/practical standpoint. These factors are crucial for

the rapid adoption and further development of this field.

Applications of homomorphic encryption primarily involve distributed applications

in diverse sectors such as healthcare, smart grids or genomics. In these applications,

ciphertexts, public keys, and other low-level information need to be shared between

data providers, encrypted computing hosts, and the desired recipients of the results of

the computation.

There are many scenarios, such as the one mentioned in healthcare detection or

genomics research, where these applications are almost impossible to develop due to

technical or legal reasons. In cases where the technology is available, one still has

to cross the expensive and time-consuming barrier of legal processes, driven by the

need to maintain strict privacy. However, we can hope that practical homomorphic

encryption will lead to a dramatic rise in applications in cloud and edge computation

where privacy is critical. We intend to share our learnings, motivate our colleagues, and

help the research and technology community progress.

15.5 OTHER HOMOMORPHIC ENCRYPTION LIBRARIES

Schneider publishes an exhaustive list of Homomorphic Encryption Libraries:

HEAAN - Scheme with native support for fixed point approximate arithmetic

FHEW - Homomorphic Encryption library based on Fast Fourier Transform

- Haskell library for ring-based178 lattice cryptography that supports FHE

NFLlib - NTT-based Fast Lattice library

PALISADE - Lattice encryption library

376



Pyfhel - PYthon For HElib

libshe - Symmetric SWHE library based on DGHV scheme

cuHE - GPU-accelerated HE library for NVIDIA CUDA-Enabled GPUs

cuYASHE - Based on levelled FHE scheme YASHE for GPGPUs

python-paillier - PHE based on Paillier scheme

krypto - C++ implementation of multivariate quadratic FHE

petlib - Python library that implements several Privacy Enhancing Technologies
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16
Future work

1. Going beyond federated learning and split learning Traditional backpropaga-

tion for the training of deep learning models is highly sequential by design. This

is a major constraint in current-day distributed machine learning paradigms such

as federated learning in terms of computing/communication resource efficiency,

improved capacity to handle straggler clients, and synchronization bottlenecks.
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Future work would focus on alternate paradigms for distributed machine learn-

ing along with applications in decentralized finance, decentralized digital health,

decentralized customer discovery or retention (churn prediction) and distributed

regulatory compliance monitoring over cohorts of large companies that hold pri-

vate financial data.

2. Distributed and private causal inference There is a scope for future work on hy-

pothesis testing (specifically independence testing and conditional independence

testing) to perform causal inference in the setting when the data is privacy sensi-

tive and distributed across siloes. This would have applications in decentralized

data science such as decentralized finance, monitoring for dark-web-related ac-

tivity, decentralized digital health and causal discovery from data siloes.

3. Data markets This section is based on our article in420. Data is increasingly

concentrated in large firms. For startups and small organizations to compete, data

availability can hinder any efforts to build better machine learning algorithms.

Algorithmic capability indeed increases with the availability and quality of data.

One way to tackle this is the marketplace approach. By creating conditions such

that data, the raw material for artificial intelligence, can be bought and sold with

security, privacy and consent safeguarded, specialized niches will be created, and

firms will be able to tackle a smaller subset of the problem. A precondition for

this large-scale collaboration is the existence of liquid markets at various steps of

the value chain.
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16.1 AI COULD BENEFIT FROM LIQUID MARKETS:

This section expands more on data markets to motivate future work. Data is increas-

ingly concentrated in large firms. For startups and small organizations, competing is

increasingly difficult as the lack of data availability can hamper any efforts to build

better machine learning algorithms. Algorithmic capability indeed increases with the

availability and quality of data. One way to tackle this is the marketplace approach.

By creating conditions such that data, the raw material for AI, can be bought and sold

with security, privacy and consent safeguarded, specialized niches will be made, and

firms will be able to tackle a smaller subset of the problem. A precondition for this

large-scale collaboration is the existence of liquid markets at various steps of the value

chain.

Example: Consider a diagnostic healthcare company aiming to acquire labelled

X-ray images from various hospitals for developing state-of-the-art diagnostics. The

key problem in such a setting is: “How can the value of datasets from each hospital

be estimated to decide their price?” The data for some hospitals can belong to unique

health traits and demographics. They can be very valuable for the diagnostic use-case

of the company, while data from some other hospitals may be of a relatively much lower

value.

A fundamental problem, therefore, is that obtaining large amounts of diverse yet valu-

able data costs a lot of resources. There are also diminishing returns at some point

when additional data does not improve the algorithm’s capabilities if other data is not

acquired intelligently in a cost-effective manner.

380



16.2 DATA VALUATION FOR AI

Absolute, relative or conditional data purchase: Another required facet to setting up

a data market is to build a capability to perform the valuation of data in absolute terms

(i.e. just by itself), relatively (i.e. in comparison to multiple datasets) or in conditional

terms (i.e. valuating new data given currently existing data).

Intrinsic or extrinsic data valuation: Any of these data valuation use-cases can be

performed via intrinsic factors of evaluation such as based on the quality of information

within the dataset or via extrinsic factors of evaluation such as based on demand-supply,

market economics, game theoretic mechanisms and speculative market forces or via a

combination of both.

Goal dependent or independent data trading: An additional slicing to this prob-

lem includes goal-specific or goal-independent data valuation depending on whether

there is a specific, well-defined goal for the data purchase or if it is exploratory by

design for a goal that is currently undefined; but would be drafted later on.

Horizontal or vertical data acquisition: In addition to all these situations of data

valuation, yet another categorization is based on whether the data acquisition is being

done vertically (in terms of acquiring attributes/columns) or horizontally (acquiring

records/rows) as in195,253. This terminology of ’vertical partitioning’ and ’horizontal

partitioning’ extends from the databases and distributed systems research communities.
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Figure 16.1: Data market showing data providers, data customers, notions of market basket
and data pricing

Privacy aware data valuation: Ideally, such a data valuation needs to be achieved

by looking at as few records per data source as possible or via privacy-aware AI. Pool-

ing of all data at a centralized location defeats the central purpose, and the data sharing

constraints of privacy, security, safety, fairness and resource efficiency need to be con-

sidered regarding a data valuation solution for data markets.

Relevance and diversity of data acquisition: An optimal data purchase under these

constraints must cater to high utility and low redundancy (high diversity) of data regard-

ing the incremental benefit obtained. There is often a tradeoff of utility vs. diversity of

data that needs to be considered in realistic settings. This concept has been the guiding

principle for techniques like sure independence screening (SIS) and conditional sure

independence screening, currently actively being studied in the field of statistics and

min redundancy max relevance (mRMR) introduced in the field of data mining during

the precursory periods of current day AI and machine learning. A robust data valuation

acts as a good input for data pricing and for building an optimal market basket of data
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for every data consumer.

The intent of sharing these possibilities is to motivate further discussion and re-

search. We summarize some of these points about data valuation in the context of data

markets, as shown below:

Figure 16.2: Landscape of data valuation problems for data markets

16.3 DATA IS VERY COMPLEX TO PRICE

The value of an incremental data unit is also conditionally dependent on data already

possessed by the prospective data buyer entity that is valuating it. This is because one

wants to obtain relevant yet diverse data from what is already available in-house. In ad-

dition, data can be acquired for performing a similar or a more diverse task compared

to the current use cases being applied to data already available in-house. Also, there are

so many archetypes that it is difficult to find a proxy variable (like weight or number in

the case of other goods) that can be used to define the data. Since seamless discovery

and a small spread in price are essential for a marketplace to function well, it has been

challenging thus far to create a functioning data marketplace. A thorough data pricing

strategy needs to adhere to the following guiding principles.
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Data Pricing Guidelines

1. Liquidity: models freshness of that in terms of value vs diminished/increased

value over time

2. Traceability: can be only ’sold’ once or sold non-exclusively

3. Consent: maintains the owner’s privacy, tracks consent over time, and reduces

friction with smart contracts or data concierges.

4. Neutrality: accessible to all buyers to prevent unfair trading practices. Otherwise,

it would encourage some players (large or small) to unfairly price out the rest of

the prospective buyers during the trading.

5. Recourse: Allows for calling back, provides right to be forgotten, allows for some

course correction, broadly remains self-sustaining.

16.4 DATA SHARING CHALLENGES THAT DATA MARKETS NEED TO ADDRESS

Although acquiring the right amount of quality data is ideal, data sharing is heav-

ily impeded by friction caused by a lack of trust, data sharing regulations such as

HIPAA/GDPR, lack of ease and lack of incentive. We further expand on these factors

that cause data friction.

1. Lack of incentives:

(a) Large organizations need incentive mechanisms to share data with small

players. For example, an incentive for data sharing between large central-
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ized hospitals and local clinic testing centres could be to foster the better

provision of health.

(b) Big technology players have taken the lead and are rapidly collecting and

hoarding data while monopolizing the data resources and preventing small

players from entering into data acquisition. This stifles innovation.

(c) Individuals need incentives to share their data as they generate and own

a tremendous amount daily. However, this leads to the burden of consent

management, which is too complex to manage granularly across different

modalities, time horizons, and trust levels in data buyers.

(d) Governments and non-profits are often prohibited from selling data for mon-

etary gains.

2. Lack of ease of sharing data: Due to a lack of automated processes, digitiza-

tion, access to data pre-processing pipelines, compatible data schemas, standard-

ization across data sources and other forms of siloing of socially beneficial data,

seamless data sharing is restricted. To summarize, these factors include:

(a) Lack of digitization and lack of use cases

(b) Lack of data standardization across multiple sources

(c) Collection of data currently will likely cost more than the market price of

data

(d) Socially beneficial good data is locked away (e.g. with government, non-

profits, hospitals, remote sensing data)
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3. Lack of trust: Data sharing can also be impeded by market forces, the need for

maintaining trade secrets, a competitive economy that impedes trust, and fear of

losing control and accountability over future data usage for adversarial purposes.

To summarize, these factors include cases when:

(a) Data owner does not trust what the buyer will do with data in a computing

environment

(b) Data indirectly contains trade secrets of the data owner

(c) Fear of adversarial future usage of shared data

4. Regulations: Data sharing is regulated for privacy, security, fairness and safety,

and therefore, any data transactions for performing basic data analysis or for any

advanced AI/ML use cases have to be aware of these constraints and be able to

safely circumvent these friction points while also maintaining compliance with

the law. To summarize:

(a) In sectors such as health, finance and cybersecurity tightly governed by

local, federal and international data-sharing regulations such as HIPAA,

GDPR, COX, PCI, and SHIELD, we need a new strategy for safe data shar-

ing.

(b) Policies for inter and intra-organizational data sharing must be adhered to.

(c) The origination of data may have country-specific regulations on usage.

Therefore, international rules concerning the data provider and the data con-

sumer must be adhered to, both concerning the data provider and consumer.
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(d) There are policies where data cannot physically leave the premises of the

data owners.

16.5 GOVERNANCE AND ENCOURAGEMENT FOR A DATA MARKET ECOSYS-

TEM

In addition, from the governance perspective, the following would be key to sup-

porting the setup and sustaining of a good ecosystem for data markets.

(a) Need to support technological solution vs market solution vs policy-driven

solutions.

(b) Data governance policies by studying existing legal/regulatory framework

changes.

(c) Standardization of data sharing

(d) Setting up national ’nodes’ of servers for data exchange (like stock ex-

changes)

(e) ’Clean Data’ credits like ’clear air’ carbon credits

(f) Treat data as a labour (it’s from activity that creates value)

(g) Ethics and bias: self-certification as well as audits
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