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Abstract

Today, urban computing has emerged as an interdisciplinary field connecting data
science and urban planning, reflecting the growing integration of urban life with ad-
vanced computational methods. Urban computing has particularly benefited from
deep learning owing to the spatiotemporal and multi-modal nature of data emerg-
ing from urban systems. Deep learning models have not only boosted predictive
accuracies beyond traditional models, but also adeptly handled unstructured data.
However, the application of deep learning in urban system analysis has a lot of chal-
lenges. Within the vast and complex scope of urban computing combined with deep
learning, this dissertation zooms in on three emerging issues: uncertainty quantifi-
cation, data fusion, and generative urban design while focusing on transportation
systems and urban planning applications.

The first part of this dissertation proposes a framework of probabilistic graph neu-
ral networks (Prob-GNN) to quantify spatiotemporal uncertainty. This Prob-GNN
framework is substantiated by deterministic and probabilistic assumptions and em-
pirically applied to predict Chicago’s transit and ridesharing demand. Prob-GNNs
can accurately predict ridership uncertainty, even under significant domain shifts
such as the COVID-19 pandemic. Among the family of Prob-GNNs, two-parameter
distributions (e.g., heteroskedastic Gaussian) achieve the highest predictive perfor-
mance, which is 20% higher in log-likelihood and 3-5 times lower in calibration errors
compared to the one-parameter baseline distributions.

The second part addresses data fusion, in which a theoretical framework of deep
hybrid models (DHM) was created to combine the numeric and imagery data for
travel behavior analysis. DHM aims to enrich the family of hybrid demand models
using deep architectures and enable researchers to conduct associative analysis for
sociodemographics, travel decisions, and generated satellite imagery. Empirically,
DHM is applied to analyze travel mode choice using the Chicago MyDailyTravel
Survey as the numeric inputs and the satellite images as the imagery inputs. DHM
can construct latent spaces that significantly outperform classical demand and deep
learning models in predicting aggregate and disaggregate travel behavior. Such latent
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spaces can also be used to generate new satellite images that do not exist in reality
and compute the corresponding travel behavior and economic information, such as
substitution patterns and social welfare.

The last part develops a human-machine collaboration framework for generative
urban design and then instantiates the framework with a model trained to generate
satellite imagery from a land use text description and a constraint image depicting
the unaltered major road networks and natural environments. The trained model
can generate high-fidelity, realistic satellite images while retaining control over the
land use patterns in generated images with natural language descriptions, producing
alternate designs with the same inputs, respecting the built and natural environment,
and learning and applying local contexts from different cities.

Thesis Supervisor: Jinhua Zhao
Title: Professor of Cities and Transportation
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Chapter 1

Introduction

1.1 Background

Urban analytics involves collecting, analyzing, and interpreting large amounts of data

related to urban areas to improve understanding, decision-making, and management

of cities. It uses analytical techniques and tools, including statistical analysis, machine

learning, and geographic information systems (GIS), to study diverse aspects of urban

life, such as transportation, housing, social interactions, and sustainable living. Urban

analytics aims to derive insights that can enhance the quality of life, and the urban

environment’s sustainability and resilience.

Deep learning, a revolutionary technology in artificial intelligence, has transformed

how we perform analytics. Deep learning is a subset of machine learning, distinguished

by its ability to learn from vast amounts of data through neural networks that mimic

the structure and functions of the human brain. These networks consist of multiple

layers of interconnected nodes or neurons, each capable of recognizing increasingly

complex patterns and features in the data. The inception of deep learning dates

back to the mid-20th century with the development of the perceptron, but it was

not until the last couple of decades that it gained significant momentum, thanks to

advancements in computational power and data availability. A few pivotal moments

in the development of deep learning include the introduction of backpropagation,

which enabled the training of large networks, convolutional neural networks (CNN),
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which are critical in image-related tasks [87], recurrent neural networks (RNN), which

are designed for time series and natural language processing [104, 60], generative

adversarial training which significantly improved the generation quality of images [45],

transformer architecture and attention mechanism which made a real breakthrough

in natural language processing and had then become a standard component for large

language and vision models [144], and diffusion models which created a new paradigm

for generative models [30].

Today, with its predictive power and capability to process unstructured data,

deep learning has brought a lot of opportunities to urban analytics. As a result, Ur-

ban computing has emerged as an interdisciplinary field connecting data science and

urban planning, reflecting the growing integration of urban life with advanced com-

putational methods. This field has benefited immensely from deep learning since the

data generated from urban systems are inherently spatiotemporal and multi-modal.

Traditionally, gaining insights from spatiotemporal data has relied on statistical mod-

els like time series and spatial regression. However, the advent of deep learning has

dramatically enhanced the capacity to model and interpret spatiotemporal data with

greater accuracy and efficiency. Convolutional neural networks (CNNs) enabled the

analysis of grid configurations, while graph neural networks have broadened the scope

of spatial representations, making them more general and adaptable. Similarly, for

time series data, implementing recurrent neural networks (RNNs) and long short-term

memory (LSTM) networks significantly improved the understanding of longitudinal

trends and patterns. Nonetheless, it’s crucial to remember that spatiotemporal data

are abstractions of life. For humans, more intuitive and prevalent forms of represen-

tation include images and natural language, which were mostly indecipherable before

the era of deep learning. Now, with advanced deep learning techniques, we are not

only able to predict sociodemographics using images and natural language but can

also generate new, meaningful data. This evolution marks a significant leap in un-

derstanding and utilizing urban data, opening up new possibilities for understanding

and shaping the urban experience.

Despite the success of deep learning in analyzing urban systems, undoubtedly, a
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lot of challenges remain. Given the impossible scope of urban computing with deep

learning, this dissertation zooms in on three emerging issues, focusing on transporta-

tion systems and urban planning applications.

1.2 Dissertation Overview

Rapid developments in deep learning technologies have led to a surge in urban com-

puting research over the past decade. Yet, due to the complexity of cities, many

challenges remain, and this field continues to be in a state of active evolution. This

dissertation highlights three areas for improvement in the current urban computing

literature: uncertainty quantification, data fusion, and generative urban design. It

also suggests a preliminary framework to address each issue. Given the vast scope

of these issues, this thesis does not claim to have solved these challenges. Instead,

it aims to draw attention to these critical topics and offers an initial approach, hop-

ing to encourage further research and alternative solution strategies. The subsequent

sections summarize the research gaps and the contributions made by this dissertation.

1.2.1 Uncertainty Quantification

Recent studies have largely ignored the uncertainty that inevitably exists in any pre-

diction problems while focusing on improving prediction accuracy using deep learning.

However, overlooking uncertainty leads to theoretical and practical issues. In theory,

travel demand is inherently a random quantity, characterized by a rich family of

probability distributions, sometimes even “fat-tail” ones that render a simple aver-

age approximation highly inappropriate [174]. In practice, while predicting average

demand provides a valuable basis for system design, the lack of uncertainty analysis

precludes using deep learning to provide robust real-time service or resilient long-term

planning [48, 49]. Since the recent work has demonstrated the outstanding capability

of deep learning in modeling spatiotemporal dynamics, it seems timely and impera-

tive to enrich the deterministic deep learning models to capture the spatiotemporal

uncertainty of travel demand.
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To fill this gap, in Chapter 2, we propose a probabilistic graph neural networks

(Prob-GNN) framework to quantify the spatiotemporal uncertainty. This Prob-GNN

framework is substantiated by deterministic and probabilistic assumptions and em-

pirically applied to predicting the demand for transit and ridesharing in Chicago.

We found that the probabilistic assumptions (e.g. distribution tail, support) have a

more significant impact on uncertainty prediction than the deterministic ones (e.g.

deep modules, depth). Among the family of Prob-GNNs, the GNNs with truncated

Gaussian and Laplace distributions achieve the highest performance in transit and

ridesharing data. Even under significant domain shifts, Prob-GNNs can predict the

ridership uncertainty stably when the models are trained on pre-COVID data and

tested across multiple periods during and after the COVID-19 pandemic. Prob-GNNs

also reveal the spatiotemporal pattern of uncertainty, which is concentrated on the

afternoon peak hours and the areas with large travel volumes. Our findings highlight

the importance of incorporating randomness into deep learning for spatiotemporal

ridership prediction. Future research should continue investigating versatile proba-

bilistic assumptions to capture behavioral randomness and further develop methods

to quantify uncertainty to build resilient cities.

1.2.2 Data Fusion

In Chapter 3, we create a theoretical framework of deep hybrid models to inte-

grate the numeric and imagery data for travel behavior analysis. Classical demand

modeling analyzes travel behavior using only low-dimensional numeric data (i.e. so-

ciodemographics and travel attributes) but not high-dimensional urban imagery. In

recent years, a lot of studies have used urban imagery sociodemographic and travel

behavior analysis. However, the two types of information should be complementary,

thus necessitating a synergetic framework to combine them.

Empirically, this framework is applied to analyze travel mode choice using the

Chicago MyDailyTravel Survey as the numeric inputs and the satellite images as

the imagery inputs. We found that deep hybrid models significantly outperform

both classical demand models and deep learning models in predicting aggregate and
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disaggregate travel behavior. The deep hybrid models can reveal spatial clusters

with meaningful sociodemographic associations in the latent space. The models can

also generate new satellite images that do not exist in reality and compute the cor-

responding economic information, such as substitution patterns and social welfare.

Overall, the deep hybrid models demonstrate the complementarity between the low-

dimensional numeric and high-dimensional imagery data and between the traditional

demand modeling and recent deep learning. They enrich the family of hybrid demand

models using deep architecture to create the latent space and enable researchers to

conduct associative analysis for sociodemographics, travel decisions, and generated

satellite imagery. Future research could address the limitations in interpretability,

robustness, and transferability and propose new methods to enrich the deep hybrid

models further.

1.2.3 Generative Urban Design

Due to the labor-intensive and time-consuming nature of urban planning, tools that

expedite design, communication, and feedback are highly desired. Most models are

predictive and descriptive, yielding insights but rarely directly aiding decision-making.

With the advent of generative models, especially large language and vision models,

communication between humans and machines has become much more accessible. In

Chapter 4, we envision a human-machine collaboration framework for urban planning

based on recent advances in generative AI models.

To instantiate this framework, we trained a state-of-the-art diffusion model to

generate realistic satellite images with a given text description and constraint image

depicting the unaltered major road networks and natural environments. One chal-

lenge in training large models is always data availability. Large generative models

consume a lot of data. However, labeled data in the urban setting is expensive and

scarce. Therefore, we use the globally available OpenStreetMap data to promote

scalability, applicability, and standardization. The trained model can generate high-

fidelity, realistic satellite images while retaining control over generated images with

natural language descriptions, producing alternate designs with the same inputs, re-
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specting existing infrastructure and natural environments, and learning and applying

local contexts from different cities. As this technology is still nascent, we discuss the

feedback from practitioners and scholars in the field and point out future research

directions to realize the human-machine collaboration vision for urban planning.
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Chapter 2

Uncertainty Quantification:

Probabilistic graph neural networks

for uncertainty quantification of

short-term demand prediction

2.1 Background

Uncertainty prevails in urban mobility systems. An enormous number of uncertainty

sources range from long-term natural disasters and climate change to real-time system

breakdown and to the inherent randomness in travel demand. These uncertainty

sources exhibit spatial and temporal patterns: travel demand could drastically change

during the holidays or become spatially concentrated in special events (e.g. football

games). Traditionally, the spatial uncertainty is analyzed by spatial econometrics or

discrete choice models, while the temporal one is by time series models. Deep learning

models have recently been designed to capture spatiotemporal correlations, with Long

Short Term Memory (LSTM) networks for temporal correlations and convolutional

or graph neural networks (CNN, GNN) for spatial dependencies. Deep learning has

been shown to significantly improve travel demand prediction accuracy. However,
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most studies focus on designing deterministic deep learning models to predict the

average travel demand but largely ignore the uncertainty inevitably associated with

any prediction.

Overlooking uncertainty leads to theoretical and practical problems. In theory,

travel demand is inherently a random quantity characterized by a rich family of prob-

ability distributions, sometimes even “fat-tail” ones that render a simple average ap-

proximation highly inappropriate [174]. In practice, while predicting average demand

provides a valuable basis for system design, the lack of uncertainty analysis precludes

using deep learning to provide robust real-time service or resilient long-term planning

[48, 49]. Since recent work has demonstrated the outstanding capability of deep learn-

ing in modeling spatiotemporal dynamics, it seems timely and imperative to enrich

the deterministic deep learning models to capture the spatiotemporal uncertainty of

travel demand.

To address this research gap, we propose a probabilistic graph neural networks

(Prob-GNN) framework to quantify the spatiotemporal uncertainty in travel demand.

This framework is substantiated by deterministic and probabilistic assumptions: the

former refers to the various architectural designs in deterministic neural networks,

while the latter refers to the probabilistic distributions with various uncertainty char-

acteristics. The framework is used to compare the two types of assumptions by both

uncertainty and point prediction metrics. This study makes the following contribu-

tions:

1. We identify the research gap in quantifying uncertainty for travel demand using

deep learning. Despite many deep learning techniques for predicting average

travel demand, only a limited number of studies have sought to quantify spa-

tiotemporal uncertainty.

2. To fill the research gap, the paper introduces a general framework of Prob-GNN,

which comprises deterministic and probabilistic assumptions. This framework

is further substantiated by twelve architectures, all of which can quantify the

spatiotemporal uncertainty in travel demand.
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3. We find that probabilistic assumptions significantly influence uncertainty pre-

dictions while only slightly influencing point predictions. Conversely, the deter-

ministic assumptions, such as graph convolution, network depth, and dropout

rate, lead to a similar performance in both point and uncertainty predictions

when probabilistic assumptions are fixed.

4. We further demonstrate the generalizability of the Prob-GNNs by comparing

the performance across multiple shifting domains caused by COVID-19. Al-

though the mean prediction encounters significant prediction errors, the interval

prediction is accurate across the domains.

2.2 Literature Review

The literature on spatiotemporal travel demand prediction using deep learning for

has grown significantly in recent years. Among them, very few studies have sought to

understand the predictive uncertainty. This literature review will first examine the

latest developments in demand predictions using deep learning and, subsequently,

delve into uncertainty quantification.

2.2.1 Travel Demand Prediction with Deep Learning

Researchers have improved spatiotemporal travel demand prediction accuracy using

advanced neural network architectural designs [175, 169, 91, 193]. Temporally, LSTM

networks and Gated Recurrent Units (GRU) layers are used to analyze the seasonal,

weekly, and time-of-day trends [73, 180, 92]. Spatially, the analysis unit is often a sta-

tion/stop, urban grid, individuals, or census tract. The urban grid is often analyzed

with convolutional neural networks (CNN) [175]. Individual travel demand is ana-

lyzed by neural networks with behavioral insights for innovative architectural design

[152, 156, 158]. More complex urban structures, such as transit lines that connect

upstream and downstream stops, can be represented by graphs. Graph convolution

networks (GCN) are often used to model such spatial propagation of traffic/demand
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flow into adjacent nodes [171, 79, 179, 94]. The baseline GCNs have been expanded

by defining multiple graphs to describe the spatial similarity in points of interest

(POIs) and transportation connectivity [43, 135]. An alternative to GCN is Graph

Attention Network (GAT), which automatically learns the attentional weightings of

each node, thus detecting the long-range dependencies without handcrafted weighting

mechanisms through adjacency matrices [93, 21].

Despite the abundance of deep learning models, few studies sought to quantify the

travel demand uncertainty, typically caused by narrowly defined prediction objectives

and methods. The prediction objective - the average ridership - can hardly represent

the randomness in travel demand, particularly for distributions with fat tails, in which

the outliers deviating from the average value could predominate [174]. The predic-

tion method - the family of deterministic neural networks - is only a specific example

of probabilistic neural networks with homogeneous assumptions on the variance. If

unaccounted for, demand uncertainty can negatively influence downstream planning

tasks [49, 160]. Uncertainty can also propagate and be significantly enhanced at each

stage in multi-stage models [189]. Because of its importance, uncertainty has started

to attract attention in the field of travel demand predictions using deep learning. Ex-

isting studies analyzed heteroskedastic noises in the Gaussian distribution [120, 151],

used Monte-Carlo dropouts to approximate model uncertainty [89, 99]. Additionally,

the Gaussian assumption is being challenged. Studies modeled irregular distributions

with quantile regressions [126], and modeled sparse demand with zero-inflated distri-

butions [194]. Compared to the research in deterministic architectural designs, the

current literature on predictive uncertainty in the travel demand realm using deep

learning is still relatively thin. A comprehensive framework encompassing the deter-

ministic and probabilistic assumptions is lacking to allow for a thorough comparison.

2.2.2 Uncertainty Quantification Methods

Research on uncertainty quantification has been developed in other deep-learning

fields. There are two major categories of uncertainty: data uncertainty and model

uncertainty. Data uncertainty refers to the irreducible uncertainty inherent in the data
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generation process, while model uncertainty captures the uncertainties in the model

parameters. For example, in linear regression, data uncertainty refers to the residuals,

and model uncertainty refers to the standard errors of the estimated coefficients.

To characterize data uncertainty, either a parametric or non-parametric method

can be used. Parametric methods refer to the models that parameterize a probabilistic

distribution. Parametric models are often estimated using Bayesian methods or mean-

variance estimation (MVE). Although conceptually appealing, Bayesian methods of-

ten involve unnecessarily intense computation, which relies on sampling methods and

variational inference [117, 76]. MVE minimizes the negative log-likelihood (NLL) loss

based on a pre-specified distribution of the dependent variable [111, 75]. The MVE

is computationally efficient but could lead to misleading results if probabilistic dis-

tributions are misspecified. Non-parametric methods quantify uncertainty without

explicitly imposing any parametric form. Typical examples include quantile regres-

sion [80] and Lower Upper Bound Estimation (LUBE) [117, 76]. Non-parametric

methods do not have misspecification problems, but optimizing in complex neural

networks is hard. The pros and cons of both methods are systematically compared

in review articles [70, 41].

Besides data uncertainty, uncertainty also emerges in model construction and

training. Bayesian deep neural networks refer to the models that characterize all

parameters of neural networks by probability distributions, typically Gaussian dis-

tribution [194, 17]. A popular, low-cost way to do approximate Bayesian inference

for neural networks with Gaussian parameters is to use dropouts [89, 39, 136]. An-

other source of model uncertainty comes from model training. Neural networks tend

to converge to different local minima, resulting in different predictions. This type

of uncertainty is usually addressed by bootstrapping or model ensembles [55, 83].

Bootstrapping refers to the process of repeated training with re-sampling to capture

the distributional uncertainty in sampling. Model ensembling refers to an average of

multiple training procedures with different parameter initializations.

Although the literature on travel demand uncertainty within the deep learn-

ing framework is scarce, classical statistics have decades of effort in quantifying
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travel demand uncertainty, focusing on evaluating a rich family of probabilistic as-

sumptions. Using high-resolution temporal ridership data, researchers adopted the

ARIMA-GARCH model to quantify the volatility of subway demands during special

events [25] and adaptive Kalman filters to analyze real-time transit ridership [47]. Us-

ing cross-sectional data, researchers used bootstrapping [118] to analyze parameter

uncertainty, ensembling [27] to analyze activity uncertainty, and heteroskedastic er-

rors to describe the association between social demographics and ridership uncertainty

in discrete choice models [118]. The common debates regarding the probabilistic as-

sumptions include homoskedastic vs. heteroskedastic errors, Gaussian vs. exponential

tails, real-line vs. positive support, and many others [25, 147, 188], through which

researchers could learn the detailed characteristics of travel demand uncertainty. The

primary focus of classical statistics on probabilistic assumptions presents an inter-

esting difference from the primary focus of deep learning in refining deterministic

assumptions. Indeed, it is quite ambiguous which set of assumptions is more crucial

in quantifying travel demand uncertainty.

2.3 Theoretical Framework

A probabilistic graph convolutional neural network is proposed to compare the deter-

ministic and probabilistic assumptions. The probabilistic GNN is represented as:

𝑦 ∼ 𝒢(𝜃) = 𝒢(ℱ(X, 𝑤)) (2.1)

The first statement is a probability assumption about 𝑦, specified by the model family

𝒢(𝜃), and the second uses the model family ℱ(X, 𝑤) to parameterize the probabil-

ity distributions of 𝒢(𝜃), with X being the inputs and 𝑤 being the model weights.

While the recent studies focus on enriching ℱ(X, 𝑤) through spatiotemporal deep

learning architectures, the potentially more critical probability assumption 𝒢(𝜃) is

largely neglected. We compare the effects of the probabilistic assumptions 𝒢 and the

deterministic assumptions ℱ in determining the model performance.
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Table 2.1 summarizes the specifics of probabilistic and deterministic assumptions

that substantiate the probabilistic GNN framework. The upper panel lists the prob-

abilistic assumptions and their probability density functions. The bottom panel lists

the deterministic architecture and hyperparameters. The six probabilistic assump-

tions tested are Homoskedastic Gaussian (HomoG), Poisson (Pois), Heteroskedas-

tic Gaussian (HetG), Truncated Gaussian (TG), Gaussian Ensemble (GEns), and

Laplace (LAP). Two deterministic architectures, Graph Convolutional Networks (GCN)

and Graph Attention Networks (GAT), are used to specify the probabilistic parame-

ters. A cross-product of the two panels is used to substantiate the probabilistic GCNs,

leading to twelve base models: HomoG-GCN, HomoG-GAT, HetG-GCN, HetG-GAT,

TG-GCN, TG-GAT, GEns-GCN, GEns-GAT, Pois-GCN, Pois-GAT, Lap-GCN, and

Lap-GAT.
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Table 2.1: Model Design of the Probabilistic Graph Neural Networks Framework

Panel 1: Probabilistic Assumptions in 𝒢
Probabilistic assumptions Probability density function Distribution parameters 𝜃

Homoskedastic Gaussian (HomoG) 𝑓𝐻𝑜𝑚𝑜𝐺(𝑥;𝜇, 𝜎) =
1

𝜎
√
2𝜋

exp(−1
2
(𝑥−𝜇)2
𝜎2 ), 𝜎 = 𝑐 𝜇

Poisson (Pois) 𝑓(𝑥;𝜆) = 𝜆𝑥𝑒−𝜆

𝑥!
𝜆

Heteroskedastic Gaussian (HetG) 𝑓𝐻𝑒𝑡𝐺(𝑥;𝜇, 𝜎) =
1

𝜎
√
2𝜋

exp(−1
2
(𝑥−𝜇)2
𝜎2 ) 𝜇, 𝜎

Truncated Gaussian (TG) 𝑓𝑇𝐺(𝑥;𝜇, 𝜎) =
𝑓𝐺(𝑥;𝜇,𝜎)

1−𝑓𝐺(0;𝜇,𝜎)
𝜇, 𝜎

Gaussian Ensemble (GEns) 𝑦* ∼ 𝒩 ( 1
𝐾

∑︀
𝑘 𝜇𝑘,

1
𝐾

∑︀
𝑘 (𝜎

2
𝑘 + 𝜇2

𝑘)− 𝜇2
*) 𝜇𝑘, 𝜎𝑘 for 𝑘 = 1..𝐾 models

Laplace (Lap) 𝑓(𝑥;𝜇, 𝑏) = 1
2𝑏

exp(− |𝑥−𝜇|
𝑏

) 𝜇, 𝑏

Panel 2: Deterministic Assumptions in ℱ

Deterministic assumptions Graph convolutional iteration function Deterministic parameters 𝑤

Graph Convolutional Networks (GCN) [77] ℎ(𝑙+1) = 𝜎(
∑︀𝑅

𝑟=1𝐷
− 1

2
𝑟 𝐴𝑟𝐷

− 1
2

𝑟 ℎ(𝑙)𝑊
(𝑙)
𝑟 ) 𝑊

(𝑙)
𝑟

Graph Attention Networks (GAT) [145] ℎ(𝑙+1) = 𝜎(
∑︀

𝑗∈𝑁(𝑖) 𝛼𝑖𝑗𝑊ℎ
(𝑙)
𝑗 ), 𝛼𝑖𝑗 =

𝑒𝑥𝑝(𝑊𝑖ℎ
(𝑙)
𝑗 )∑︀

𝑘∈𝑁𝑖
𝑒𝑥𝑝(𝑊𝑖ℎ

(𝑙)
𝑘 )

𝛼𝑖𝑗, 𝑊

Other hyperparameters in deterministic assumptions ℱ : Number of GCN/GAT/LSTM layers, Number of hidden layer neurons, Dropouts, Weight decay.
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2.3.1 Probabilistic Assumptions 𝒢

The Gaussian distribution with a deterministic and homoskedastic variance term is

chosen as the benchmark in specifying 𝒢 because it is stable and has simple ensembling

properties. This homoskedastic Gaussian assumption represents many deterministic

deep learning models that use mean squared error as the training objective. The

Gaussian benchmark facilitates comparing the probabilistic assumptions, as listed

below.

1. Homoskedasticity vs. heteroskedasticity

We compare the heteroskedastic and homoskedastic Gaussian assumptions to

examine how the data variance influences the model performance. The ho-

moskedastic assumption assumes the same variance for all observations, whereas

the heteroskedastic assumption estimates variance for every observation. The

travel demand variances likely have spatiotemporal patterns.

2. Continuous vs. discrete support

We compare the Poisson distribution to the homoskedastic Gaussian benchmark

to examine the effectiveness of continuous vs. discrete supports in determining

the model performance. Since ridership takes integer values, the Poisson dis-

tribution could be more appropriate. However, the Poisson distribution uses

only one parameter to represent both mean and variance, which could be overly

restrictive.

3. Real-line vs. non-negative support

We compare the truncated heteroskedastic Gaussian distribution to the het-

eroskedastic Gaussian distribution to examine the effectiveness of the real-line

vs. non-negative distribution support. Travel demand is non-negative, but

the support of the Gaussian distribution covers the entire real line (−∞,+∞).

Therefore, a normal distribution left-truncated at zero is implemented to test

whether non-negativity should be strictly imposed.

4. Gaussian vs. exponential tails
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We compare the Laplace distribution to the heteroskedastic Gaussian distri-

bution to examine whether the tail behavior of the distribution matters. The

probability density function of the Gaussian distribution decays at a fast rate

of 𝑒𝑥2 , while the Laplace distribution has a heavier tail with the decay rate of

𝑒|𝑥|.

5. Single vs. ensembled models

We compare the ensembled heteroskedastic Gaussian distributions to a sin-

gle heteroskedastic Gaussian model to test whether an ensemble of distribu-

tions can outperform a single distributional assumption. The ensemble model

is created by uniformly mixing 𝐾 estimates, which are trained independently

with different parameter initializations. Suppose 𝒴𝑘, 𝜎2
𝑘 are the estimated mean

and variance for model 𝑘, and 𝒴* is the ensembled random variable. For the

Gaussian distribution, the mixture can be further approximated as a Gaus-

sian distribution, whose mean and variance are, respectively, the mean and

variance of the mixture. The ensembled distribution is given by [83]: 𝒴* ∼

𝒩 ( 1
𝐾

∑︀
𝑘 𝒴𝑘,

1
𝐾

∑︀
𝑘 (𝜎

2
𝑘 + 𝒴2

𝑘)− 𝒴2
* ).

With the distributional assumption, maximum likelihood estimation (MLE) is

used to learn the parameters, which translates to minimizing the negative log-likelihood

(NLL) loss in implementation. The NLL loss function based on the joint density of

all observations is simply the negative sum of the log of the probability density of all

observations:

NLL = −
∑︁
𝑠,𝑡

log 𝒢(𝑦𝑠𝑡|Xt;𝑤) (2.2)

In the uncertainty quantification literature, researchers typically differentiate be-

tween data (aleatoric) and model (epistemic) uncertainty [78], and their sum is re-

ferred to as prediction uncertainty. The model uncertainty refers to the uncertainty

resulting from the difference between ℱ(X, 𝑤) and the estimated ℱ̂(X, 𝑤). The data

uncertainty refers to the randomness in the data generation process and is represented

by probabilistic assumptions 𝒢, of which 𝑦 has the distribution. The prediction un-

certainty combines model and data uncertainty and describes the overall difference
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between the actual 𝑦 and the predicted 𝑦. The relationship between the three quan-

tities is directly given by 𝜎2
𝑦 = 𝜎2

𝑚𝑜𝑑𝑒𝑙 + 𝜎2
𝑑𝑎𝑡𝑎. In our framework, assumptions 1-4

deal with the data uncertainty alone, while assumption 5 quantifies the prediction

uncertainty.

2.3.2 Deterministic Assumptions in ℱ

The deterministic assumptions in ℱ consist of the spatial encoding, temporal en-

coding, and associated hyperparameter specifications. The formulation of common

spatial and temporal encodings is discussed below.

GCN and GAT for Spatial Encoding

Two predominant spatial encoding methods - GCN and GAT - are adopted and com-

pared to examine the effect of the deterministic architectures on model performance.

The GCN layers need to access the global structure of the graph in the form of ad-

jacency matrice(s), while the GAT layers aim to learn the spatial correlations from

data. The propagation formula of both layers is introduced in Table 2.1.

To construct the multi-graph proximity in GCNs and GATs, four types of adja-

cency matrices are computed, including direct connectivity [𝐴𝐶𝑜𝑛]𝑖𝑗 = 1 if two stations

are adjacent, = 0 otherwise, network distance [𝐴𝑁𝑒𝑡]𝑖𝑗 = Network Distance(𝑖, 𝑗)−1,

Euclidean distance [𝐴𝐸𝑢𝑐]𝑖𝑗 = Euclidean Distance(𝑖, 𝑗)−1, and functional similarity

[𝐴𝐹𝑢𝑛𝑐]𝑖𝑗 =
√︀
(𝐹𝑖 − 𝐹𝑗)𝑇 (𝐹𝑖 − 𝐹𝑗)

−1
, where 𝐹𝑖 is the vector of functionalities rep-

resented by population, jobs, percent low income, percent minority, percent adults,

number of schools, shops, restaurants, etc.

LSTM for Temporal Encoding

The LSTM network is chosen for temporal encoding. In short, the LSTM layers take

the spatially encoded tensors for 𝑙 previous time periods as inputs and propagate

them down the layers through a series of input, forget, cell state (memory), and

output gates. To make the prediction, the encoded output from the last time step
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ℎ𝑡−1 is decoded by fully connected layers to get the contribution (weights) of the

time series on the final prediction. The LSTM structure is well-documented in many

papers [126, 25], and will not be discussed in detail here.

2.3.3 Specific Examples: Gaussian Distributions and Mean-

Variance Estimation

As an important case, the Gaussian distribution with homoskedastic variance (HomoG-

GCN and HomoG-GAT) represents the vast number of deterministic deep learning

models that use mean squared errors as the training objective. With the homoskedas-

tic Gaussian assumption, the dependent variable 𝑦 follows Gaussian distribution with

mean 𝐹1(X, 𝑤1) and a constant variance 𝑐. The MLE with this homoskedastic Gaus-

sian distribution is the same as the deterministic deep learning with the mean squared

errors as the training objective because

log𝑃 (𝑥;𝜇, 𝜎 = 𝑐) = log
1

𝑐
√
2𝜋

− 1

2

(𝑥− 𝜇)2

𝑐2
(2.3)

In other words, our benchmark example represents the predominant deterministic

modeling technique in this field.

The homoskedastic Gaussian can be extended to the heteroskedastic Gaussian dis-

tribution, which resembles the mean-variance estimation (MVE), the most dominant

method in uncertainty quantification literature. With the heteroskedastic Gaussian

distribution, 𝑦 ∼ 𝒩 (𝜃) = 𝒩 (𝐹1(X, 𝑤1), 𝐹2(X, 𝑤2)) = 𝐹1(X, 𝑤1) + 𝒩 (0, 𝐹2(X, 𝑤2)).

Essentially, the MVE uses two graph neural networks to capture the mean and vari-

ance separately, which is the same as the HetG-GCN and HetG-GAT models. There-

fore, the two Gaussian examples in our probabilistic GNN framework can represent

the two most common research methods: deterministic spatiotemporal models and

MVE for uncertainty quantification.
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2.3.4 Evaluation

Performance metrics can be grouped into three categories: composite measures, point

prediction quality, and uncertainty prediction quality. Table 2.2 summarizes the

evaluation metrics. The NLL loss is a composite metric to evaluate the joint quality

of point and uncertainty estimates. The standard mean absolute error (MAE) and

mean absolute percent error (MAPE) are used to evaluate point predictions.

Table 2.2: Three Categories of Evaluation Metrics

Category Metric Formula

Composite Negative Log Likelihood 𝑁𝐿𝐿 = −
∑︀

𝑖 log 𝑃𝑊 (𝑦𝑖|Xi)

Point Mean Absolute Error 𝑀𝐴𝐸 = 1
𝑁

∑︀
𝑖 |𝑦𝑖 − 𝑦𝑖|

Mean Absolute Percent Error 𝑀𝐴𝑃𝐸 =𝑀𝐴𝐸/𝑦

Uncertainty
Calibration Error 𝐶𝐸 =

∑︀1
𝑝=0 |𝑞(𝑝)− 𝑝|

Mean PI Width 𝑀𝑃𝐼𝑊 = 1
𝑛

∑︀𝑁
𝑖=1 (𝑈𝑖 − 𝐿𝑖)

PI Coverage Probability 𝑃𝐼𝐶𝑃 = 1
𝑁

∑︀𝑛
𝑖=1 1{𝐿𝑖 ≤ 𝑦𝑖 ≤ 𝑈𝑖}

The quality of the uncertainty estimates is less straightforward to evaluate because

the ground truth distributions are unknown. Therefore, we designed the calibration

error (CE) metric and visualized quantile-quantile plots to measure the distributional

fit. Let 𝐹𝑖(𝑦) represent the cumulative distribution function of observation 𝑖. Define

𝑞(𝑝) = P(𝐹𝑖(𝑦𝑖) ≤ 𝑝) as the proportion of observations that actually fall into the 𝑝-th

quantile of the estimated distribution. A well-calibrated model should generate distri-

butions that align with the empirical distribution so that 𝑞(𝑝) = 𝑝. Therefore, the cal-

ibration error associated with the quantile-quantile plots is defined as the sum of the

deviation between the empirical quantiles and the predicted quantiles, approximated

by several discrete bins from [0, 1]: 𝐶𝐸 =
∑︀1

𝑝=0 |𝑞(𝑝)− 𝑝|. An alternative metric is

the simultaneous use of the Prediction Interval Coverage Probability (PICP) and the

Mean Prediction Interval Width (MPIW) [117, 76, 70]. Formally, 𝑃𝐼𝐶𝑃 = 1
𝑛

∑︀𝑛
𝑖=1 𝑐𝑖,

where 𝑐𝑖 = 1{𝐿𝑖 ≤ 𝑦𝑖 ≤ 𝑈𝑖}, that is an indicator variable of whether observation 𝑖

falls within the prediction interval bounded by 𝐿𝑖 and 𝑈𝑖. 𝑀𝑃𝐼𝑊 = 1
𝑛

∑︀𝑛
𝑖=1 (𝑈𝑖 − 𝐿𝑖)

measures the average width of the intervals. With significance level 1− 𝛼, the lower
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bound of the prediction interval is given by 𝐿 = 𝐹−1
𝑖 (𝛼

2
), and the upper bound of the

prediction interval by 𝑈 = 𝐹−1
𝑖 (1− 𝛼

2
), where 𝐹−1

𝑖 is the predicted inverse cumulative

function of observation 𝑖. Using this approach, evaluating uncertainty quantifica-

tion involves a tradeoff between PICP and MPIW. A high-quality prediction interval

should be narrow while covering a large proportion of data points; however, wider

MPIW naturally leads to larger PICP. Therefore, this tradeoff poses a challenge in

model selection since it is difficult for one model to dominate in both metrics.

2.4 Case Study

Two case studies were conducted to examine the effect of deterministic and proba-

bilistic assumptions on predicting travel demand, focusing on estimating uncertainty.

The case studies use data from the Chicago Transit Authority’s (CTA) rail system

and ridesharing in Chicago.

This section describes data sources, the spatial and temporal characteristics of

the two datasets, and the experiment setup. Our experiments are implemented in

PyTorch, and the source code is available at https://github.com/sunnyqywang/

uncertainty.

2.4.1 Data

The CTA rail and bus data was obtained through collaboration with the CTA, while

the ridesharing data was sourced from the City of Chicago Open Data Portal1. The

CTA rail system has tap-in records for each trip, which were aggregated into 15-

minute intervals for temporal analysis. The system comprises 141 stations arranged

in a graph structure for spatial analysis. The spatial relationships between stations

can be identified by adjacency matrices constructed from Euclidean, connectivity,

network, and functional similarity. Ridesharing trips are available at the census tract

level in 15-minute intervals. The graph structure is determined by the relationships

1https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/
m6dm-c72p
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between census tracts. As there is no explicit network, the ridesharing adjacency

matrices are defined by Euclidean, connectivity (neighboring census tracts are con-

sidered connected), and functional similarity only. Most census tracts have close to

no ridesharing trips in most 15-minute intervals. Since learning sparse graphs is a

topic of its own [182], the ridesharing dataset is filtered to include only those census

tracts that, on average, had more than 30 trips per hour pre-COVID. This resulted

in a total of 59 census tracts being used in the analysis.

Moran’s I was calculated for each 15-minute ridership snapshot using each of

the weight matrices to demonstrate that spatial autocorrelation exists through the

defined adjacency matrices. Figure 2-1 shows the histograms of Moran’s I for both

data sources. Most statistics have averaged well above 0, indicating the existence of

spatial autocorrelations defined by the adjacency matrices. Ridesharing trips appear

to correlate less with Euclidean distance and functional similarity, but the correlation

between bordering tracts is very strong.

(a) CTA Rail (b) Ridesharing

Figure 2-1: Spatial Autocorrelation (Moran’s I) of CTA Rail and Ridesharing Data.

Five different explanatory variables are obtained for each data source. First, the

system’s history, recent (in the past 1.5 hours) and historical (last week, same time

period), is used to account for the temporal correlation. Second, the history of the

other travel modes is included to mine the correlation between different modes. In

the case of CTA rail, ridesharing and bus counts are included, and in the case of
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ridesharing, CTA rail and bus counts are included. Third, demographics2 and POIs 3

are spatial covariates used in the calculation of functional similarity. Fourth, weather4

is a temporal covariate that is assumed to be the same in the whole study area. Lastly,

the frequency of services in each spatial unit during each period indicates supply levels.

In the case of ridesharing, we do not have supply information. Instead, we use the bus

frequency as a proxy. Bus schedules are slower to respond during normal times, but

after March 2020, the CTA is actively adjusting service to account for labor shortages

and changing demand.

2.4.2 Experiment Setup

The datasets were split into three subsets along the temporal dimension: train, val-

idation, and test. The training set consists of data from August 1, 2019, to Feb

16, 2020; the validation set from Feb 17, 2020, to March 1, 2020; and the testing

set consists of four different two-week periods during the course of COVID-19 pan-

demic in 2020: immediately before (March 2 to March 15), stay-at-home (March 16

to March 29), initial recovery (June 22 to July 5), and steady recovery (Oct 18 to

Oct 31). Significant changes emerged starting in March 2020 when the confirmed

COVID-19 cases were growing rapidly, and the city issued stay-at-home orders. Since

then, the ridership has seen different stages of recovery. The changes in ridership of

a few stations/census tracts are shown in Figure 2-2. Meanwhile, changes induced by

COVID-19 provide an opportunity to test the temporal generalizability from pre- to

post-COVID periods.

Several other architectural considerations have been considered besides the GCN/GAT

spatial convolutions. Figure 2-3 summarizes the deterministic architecture, consisting

of three components: spatiotemporal layers (GCN/GAT+LSTM) for recent observed

demand, and linear layer to connect last week’s observation (history), and weather

(temperature and precipitation). The three components are indexed by 𝑟, ℎ, 𝑝, respec-

2https://www.census.gov/programs-surveys/acs/data.html
3https://planet.openstreetmap.org/
4https://www.ncdc.noaa.gov/cdo-web/
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Figure 2-2: Average Daily Ridership of CTA Rail and Ridesharing (T1: Immediately
Before; T2: Stay-at-home; T3: Initial Recovery; T4: Steady Recovery).

tively, and summed to the final prediction. First, due to the cyclic nature of travel

demand, the travel demand time series can be decomposed into a weekly component

(𝒴ℎ
𝑡 , 𝜎̂ℎ𝑡 ) and a time-of-day component (𝒴𝑟

𝑡 , 𝜎̂𝑟𝑡 ). The weekly component is calculated

from a reference demand. A good reference demand is the observed value for the same

region and time in the previous week. The weights 𝑤ℎ are obtained from the LSTM

encodings. Additionally, the recent demand for LSTM network inputs is the devia-

tion from last week’s demand, and the decoded outputs are used to produce both the

weekly and the time-of-day components. Intuitively, if the recent residual demand

is very different from the reference, the reference should have a smaller weight on

the final prediction, which is more uncertain. The time-of-day component is directly

obtained from LSTM encodings of the recent residual demand. Next, weather is an-

other source of temporal variation because extreme weather could have an evident

impact on transit ridership. The model takes daily deviations from average of pre-

cipitation 𝑃𝑇 and temperature 𝑇𝐸, and multiply them with spatiotemporal weights

𝑊 𝑝,𝑊 𝑡 ∈ R2×𝑇×𝑆 to get [𝒴𝑝
𝑡 , 𝜎̂

𝑝
𝑡 ].

For each dataset and each deterministic architecture, six probabilistic assump-

tions are tested: homoskedastic Gaussian (HomoG), Poisson (Pois), heteroskedas-

tic Gaussian (HetG), truncated Gaussian (TG), Laplace (Lap), ensembled Gaussian

(GEns). In the HomoG model, a search for the best standard deviation was done.
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Figure 2-3: Proposed model architecture of Probabilistic Graph Neural Networks.

Values are searched in multiples of 𝑦: 1
4
, 1
2
, 3
4
, 1, and the best value for the variance

is 1
2
𝑦 for both datasets. In GEns, five top HetG models by validation set loss are

selected to create an ensemble model. The ensemble distribution is given by [83]:

𝒴* ∼ 𝒩 ( 1
𝐾

∑︀
𝑘 𝒴𝑘,

1
𝐾

∑︀
𝑘 (𝜎

2
𝑘 + 𝒴2

𝑘)− 𝒴2
* ).

2.5 Results and Discussion

We present and compare the model performances of the Prob-GNNs under six proba-

bilistic and two deterministic assumptions on two separate datasets. First, we analyze

the model performance for periods immediately after the training period, from March

2 to March 15, 2020. We demonstrate that probabilistic assumptions can influence

model performance more significantly than deterministic architectures. Next, we

show that uncertainty predictions are important, especially when point predictions

become unreliable during system disruptions, by applying models trained with the

pre-COVID training set to the post-COVID test sets. Lastly, we discuss the spa-

tiotemporal patterns of uncertainty revealed by the models.

First, to illustrate the models’ proper convergence, Figure 2-4 presents the GCN
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model training curves for all probabilistic assumptions trained on CTA Rail. All

models demonstrated successful convergence under the same learning rate. However,

the number of epochs required for convergence varied among the models. The two-

parameter distributions (HetG, TG, Laplace) converged faster, achieving a lower NLL

than the one-parameter distributions (HomoG, Pois).

Figure 2-4: Training Curves. Top: GCN; Bottom: GAT

Model performances of CTA Rail and ridesharing data on the test set between

March 2 and March 15, 2020, are tabulated in Tables 2.3. The table has two panels

for GCN and GAT models, respectively. Each panel presents the six probabilistic

assumptions in Section 2.4.2. Model performances are measured on three categories

of metrics: composite (NLL), uncertainty (calibration error, MPIW, and PICP), and

point (MAE, MAPE). In the tables, the intended level of coverage was set to 95%.

The next two sections discuss the findings from Table 2.3 in detail.

2.5.1 Significance of Probabilistic and Deterministic Assump-

tions

The quality of uncertainty quantification varies remarkably with probabilistic as-

sumptions. The performance is significantly higher in the probabilistic models with

two parameters (HetG and Lap) compared to the single-parameter models (HomoG
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Table 2.3: Prob-GNN Model Performance (Test Period: Immediately Before - March
2 to March 15, 2020)

CTA Rail Ridesharing

Comp Uncertainty Prediction Point Prediction Comp Uncertainty Prediction Point Prediction

Model NLL Cal.
Err

MPIW PICP MAE MAPE NLL Cal.
Err

MPIW PICP MAE MAPE

HomoG-
GCN

612.5 0.146 64.53 97.9% 7.64 18.5% 225.6 0.114 42.63 97.7% 5.81 25.2%

Pois-GCN 529.2 0.075 18.04 84.9% 7.18 17.4% 211.9 0.083 15.53 82.7% 5.81 25.2%
HetG-
GCN

462.9 0.049 39.04 96.5% 7.67 18.6% 187.6 0.019 27.32 93.3% 5.80 25.1%

TG-GCN 480.7 0.021 39.37 95.6% 7.61 18.5% 196.7 0.029 30.63 95.2% 6.06 26.3%
Lap-GCN 460.2 0.026 43.48 97.0% 7.52 18.2% 187.1 0.022 34.12 96.5% 5.81 25.2%
GEns-
GCN

459.6 0.036 37.48 95.7% 7.42 18.0% 185.6 0.017 28.01 93.9% 5.70 24.7%

HomoG-
GAT

620.4 0.141 64.54 97.8% 8.13 19.7% 230.7 0.112 43.26 96.9% 6.52 28.2%

Pois-GAT 572.2 0.100 18.11 81.8% 7.98 19.4% 214.9 0.093 15.62 82.0% 6.06 26.3%
HetG-
GAT

472.3 0.058 39.58 96.3% 7.84 19.0% 188.3 0.041 31.43 95.7% 6.07 26.3%

TG-GAT 481.6 0.026 40.96 96.6% 7.69 18.7% 199.9 0.024 32.54 95.7% 6.55 28.4%
Lap-GAT 464.3 0.037 42.77 97.7% 7.63 18.5% 189.5 0.021 36.08 96.5% 6.16 26.7%
GEns-
GAT

470.5 0.037 42.49 96.8% 7.52 18.3% 188.1 0.044 32.28 96.0% 6.18 26.8%

and Pois). Among all GCN models, the average NLL and calibration error for

two-parameter distributions in the CTA Rail data is 465.9 and 0.033, and for one-

parameter distributions, 570.8(+22.5%) and 0.11(3.3×). Similar observations can be

made in the ridesharing dataset, where the average NLL is 218.8 vs. 189.3(+15.4%)

and the calibration error is 0.017 vs. 0.099(5.8×). Similar observations can be made

for GAT models.

Truncated Gaussian and Laplace distributions have the overall best distributional

fit. Figure 2-5 illustrates the distributional fit by plotting the empirical quantiles 𝑞(𝑝)

against the theoretical quantiles 𝑝 for both datasets across all the GCN models. The

line 𝑦 = 𝑥 represents a perfectly-calibrated model. The calibration error in Table 2.3

corresponds to the areas between the 𝑦 = 𝑥 line and the empirical quantiles. Poisson

and homoskedastic Gaussian are very far from the 𝑦 = 𝑥 line, while truncated Gaus-

sian and Laplace trace the line most closely. Although the Heteroskedastic Gaussian

works the best with GCN models on ridesharing data, the truncated Gaussian and

Laplace distribution had more stable performances across the datasets and models,

and the curves are closer to the 𝑦 = 𝑥 line.
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(a) (b)

Figure 2-5: Calibration Plot of GCN Models (a) CTA rail and (b) Ridesharing.

In contrast to the strong influence probabilistic assumptions have on the quality of

uncertainty predictions, little influence is exerted on the point prediction quality from

the probabilistic assumptions. For both datasets and for both GCN and GAT, be-

tween different probabilistic assumptions, the performance gap between the best and

the worst point estimate is around 4%, significantly less than that of the composite

and the uncertainty metrics.

The variations in predictive performance caused by the deterministic assumptions

are also small compared to the probabilistic assumptions. Comparing the GCNs and

GATs, the error metrics are similar, and the performance patterns across probabilistic

assumptions remain the same. The one-parameter probabilistic assumptions are likely

to be affected more by deterministic architectures. For all probabilistic assumptions

except for Poisson, less than a 3% difference in NLL loss is observed between GCN

and GAT models for the same dataset. Although the GAT allows the model to learn

spatial relationships and is more flexible, the predefined adjacency matrices serve as

domain knowledge to reduce the learning complexity. Theoretically, the GAT setup

should perform better with more complex relationships or larger sample sizes, and

the GCN setup is better for more efficient learning under limited sample sizes. In this

case, there is not a large difference between the two architectures.
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2.5.2 Implications of Probabilistic Assumptions

The probabilistic assumptions not only suggest the distributional fit but also have

practical implications on the ridership patterns. We then discuss these implications

in detail below.

Heteroskedasticity vs. Homoskedasticity (HetG vs. HomoG)

HetG forces a constant variance across all observations, resulting in an inaccurate data

representation. The HomoG models achieve around 20% higher NLL loss and 1.5 to

2 times higher calibration error than the HetG models. For example, the NLL loss of

HetG-GCN is 462.9, 24% lower than the NLL loss (612.5) of HomoG-GCN for CTA

Rail. Although predicting the same variance is inaccurate distributionally, the average

MPIW and PICP are not much worse than their heteroskedastic counterparts since

the variance scale is searched and fixed. Additionally, the inaccurate distributional

assumption does not affect the quality of the point estimate, and point estimate errors

from HomoG models are only 1-2% higher than the best model, as the likelihood

improvement can only come from a more accurate prediction of the mean. Regardless,

having one fixed uncertainty parameter is an inaccurate representation and limits the

model’s flexibility to adapt to sharp changes in ridership magnitude.

Continuous vs. Discrete (HomoG vs. Pois)

Both HomoG and Pois have the worst NLL loss among all probabilistic assumptions

tested. Despite its discreteness, the Poisson assumption yields a similar or worse NLL

and calibration error than HomoG since it forces equal mean and variance. However,

for both datasets, the prediction intervals significantly under-predict the demand,

meaning that the variance should be larger than the mean. The PICP of the Poisson

prediction interval indicates the magnitude of variance compared to the mean. The

smaller the PICP, the larger the variance.
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Real-line vs. non-negative support (HetG vs. TG)

Since the time resolution is 15 minutes, left-truncation at 0 significantly improves

the model performance as many predictions have means close to 0. TG is the best-

performing model for the CTA Rail and the second-best for ridesharing. Even though

the average ridership is around 40 per station and 23 per census tract, significant

heterogeneity exists among different stations/census tracts. Sparsity (zero ridership)

is an issue to be considered in short-term or real-time demand predictions.

Gaussian vs. Exponential tails (HetG vs. Lap)

Both distributions are characterized by two parameters and can be trained to describe

the data accurately. The weights of the tails are different, and the model performances

on the two probabilistic assumptions suggest behavioral differences. Compared to

HetG, Lap has a heavier tail; hence, the prediction intervals tend to be larger, covering

more observations in more extreme cases. In all cases, Lap covers more points than

intended.

Single vs. ensembled models (HetG vs. GEns)

Ensembling only slightly improves the model results. The NLL loss, calibration error,

and MAE improve by less than 1% in all cases. For example, the biggest improvement

occurs in the GAT models for CTA Rail data, with NLL loss for HetG-GAT being

462.9 and for GEns-GAT 459.6. Since ensembling aims to reduce model uncertainty,

its ineffectiveness suggests that different training instances of the neural networks

produce similar results, and the model uncertainty is low.

We also constructed prediction intervals with Monte Carlo dropouts to further

illustrate that model uncertainty is much smaller than the data uncertainty inherent

in the data generation process. Monte Carlo dropout approximates Bayesian neural

networks and measures the model uncertainty by applying dropout at test time,

treating each as an instance from the space of all available models. However, since

the different training instances produce similar results, Monte Carlo dropout fails
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to capture the full picture. Its prediction intervals were very narrow, with PICPs

between 30% - 40% for both datasets. Additionally, since we applied dropout at test

time, the point prediction loses the benefit of dropout regularization and performs

worse than other models.

2.5.3 Model Performance under System Disruption

The drastic change in pre- and post-COVID periods presents a unique opportunity

to test the generalizability of Prob-GNNs. The previous sections use the periods im-

mediately following the training set for validation and testing. This section compares

the predictive performance at different stages of the COVID-19 pandemic by apply-

ing the models trained with the pre-COVID training set to three post-COVID time

periods. Table 2.4 presents CTA Rail and ridesharing results. Since HomoG and Pois

performed poorly in the previous test set, they are excluded from this comparison.

Table 2.4: Model Generalization under System Disruption

CTA Rail Ridesharing

Comp Uncertainty Prediction Point Prediction Comp Uncertainty Prediction Point Prediction

Model NLL Cal.
Err

MPIW PICP MAE MAPE NLL Cal.
Err

MPIW PICP MAE MAPE

Stay-at-home (March 16 - March 29, 2020)

HetG-
GCN

397.9 0.258 16.44 96.0% 4.92 105% 165.2 0.291 11.89 88.1% 4.40 198%

TG-GCN 388.9 0.176 16.54 95.2% 4.38 93.6% 163.4 0.114 13.04 97.1% 2.96 133%
Lap-GCN 405.8 0.247 17.65 98.7% 4.34 92.9% 148.3 0.217 13.41 96.7% 3.70 167%
GEns-
GCN

400.4 0.263 16.14 95.6% 4.89 105% 162.4 0.286 11.94 89.9% 4.20 189%

Initial Recovery (June 22 - July 5, 2020)

HetG-
GCN

413.7 0.214 18.19 94.9% 4.46 61.6% 161.9 0.171 12.39 90.2% 3.57 68.3%

TG-GCN 436.2 0.174 18.29 94.3% 4.37 60.3% 173.3 0.037 12.91 93.8% 2.88 55.1%
Lap-GCN 409.4 0.190 18.83 98.3% 3.95 54.5% 161.7 0.071 13.81 94.2% 2.82 54.0%
GEns-
GCN

412.4 0.213 18.45 95.0% 4.4 60.7% 152.2 0.112 11.22 92.0% 2.88 55.1%

Steady Recovery (Oct 12 - Oct 25, 2020)

HetG-
GCN

387.6 0.017 16.79 93.7% 3.38 36.2% 174.7 0.128 15.80 89.1% 4.33 51.4%

TG-GCN 389.5 0.030 18.46 95.9% 3.90 41.7% 186.0 0.035 17.16 92.9% 4.03 47.8%
Lap-GCN 406.6 0.057 21.63 96.1% 4.12 44.1% 170.6 0.073 18.62 94.4% 3.93 46.7%
GEns-
GCN

391.1 0.053 20.28 95.1% 3.44 36.8% 172.7 0.098 14.75 89.2% 3.95 47.0%

All the error metrics increase under the significant domain shifts from pre- to post-
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COVID. In the stay-at-home period, the average ridership for both systems dropped to

less than 10% of pre-COVID levels. The NLL, MPIW, and MAE are not comparable

to pre-COVID levels because they are influenced by the magnitude of ridership, while

calibration error, PICP, and MAPE are unit-free and can be compared to values

in Table 2.3. Unsurprisingly, the performance during the stay-at-home period is

relatively poor but slowly rebounds with the recovery of the ridership.

When significant disruptions happen in the system, the point predictions fail mis-

erably, but the uncertainty predictions stay accurate and indicate the changing sit-

uation. The MAPE for the test set in Table 2.3 was 18% for CTA and 25% for

ridesharing. For the three additional periods, the MAPEs are 93%, 43%, 36% for

CTA and 133%, 54%, and 47% for ridesharing, respectively. The uncertainty predic-

tions recovered a lot faster than MAPE. The calibration error returned to pre-COVID

levels at the steady recovery stage, although the point prediction error is still 10%

higher than before. If only a 95% prediction interval is considered, even at the stay-

at-home home stage, we can achieve pretty precise prediction intervals (95.6% and

96.7% for CTA and ridesharing).

The generalizability between different two-parameter distributions is similar, al-

though each has distinct characteristics. TG-GCN excels at low ridership; Lap-GCN

is heavy-tailed and more conservative, while HetG-GCN relies on the similarity be-

tween training and testing domains. Since the situation is evolving constantly, there

is no probabilistic assumption that dominates all scenarios. But some general con-

clusions can be drawn. In most cases, TG-GCN has the best calibration error due

to its left truncation. Enforcing non-negativity is beneficial since the ridership has

not recovered to pre-COVID levels for either CTA or ridesharing. Lap-GCN typically

produces the best NLL and point prediction due to its more distributed shape, reduc-

ing overfitting to pre-COVID data. As ridesharing trips become more spontaneous in

post-COVID times, Lap-GCN’s conservative prediction intervals outperform others.
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2.5.4 Spatiotemporal Uncertainty

Travel demand uncertainty has both spatial and temporal patterns: spatially, uncer-

tainty is higher at stations with higher volumes, and temporally, uncertainty is higher

in the afternoons. Figure 2-6 shows the spatial distribution of predicted uncertainty

for CTA Rail at different times of the day during the steady recovery test period (Oct

12 - 25, 2020). Each figure’s bottom left corner zooms in on the “loop” in downtown

Chicago. Uncertainty is proportional to the size and the color of the circles, with

darker and larger circles indicating higher uncertainty.

Figure 2-6: Spatiotemporal Uncertainty: Standard deviations of estimated CTA Rail
station tap-ins in the 15-minute periods starting at 8 A.M. (morning peak), 1 P.M.
(midday), 5 P.M. (afternoon peak), and 9 P.M. (evening).

Spatially, uncertainty is higher at busier stations. During the same time period,

darker and larger circles appeared near downtown, transfer stations, and airports.

Statistically, if the occurrence of each potential trip is a random Bernoulli process

with probability 𝑝, and we do not have further information on the values of 𝑝 for

each trip, having more potential trips 𝑛 will yield higher uncertainty in the sum. The

number of observed trips has a binomial distribution with variance 𝑛𝑝(1− 𝑝), which

is proportional to 𝑛. Practically, the trips from downtown, transfer stations, and

airports are usually more diverse and complex, promoting spontaneity in trip-making

resulting in higher uncertainty.

Temporally, uncertainty is higher during the afternoon peak. The uncertainty
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during the morning peak is generally smaller than that during midday and evening,

although the morning peak has significantly higher ridership. Statistically, this ob-

servation could be attributed to having knowledge about some of the 𝑝’s. Since the

morning peak primarily consists of commuting trips, the probability of the trips hap-

pening is higher than recreational trips, which tend to happen during midday and

afternoons.

Spatiotemporal uncertainty predictions can inform strategic decision-making re-

garding capacity buffers. First, the framework could be used to identify bottlenecks

and outliers in the system. For example, the station Division/Milwaukee on the blue

line has unusually high uncertainty during the morning peak. Further investigation

can be done to identify the reasons for the abnormal behavior and perform demand

management. Moreover, different strategies are needed for different types of systems.

In systems with a fixed, relatively large capacity, such as stations along the same

subway line, uncertainty at the busiest stations at peak times is the most critical, as

the rest of the line will have quite a lot of excess capacity. Therefore, understanding

uncertainty in low-demand regions is important for behavioral analysis but less criti-

cal for service planning. However, in systems that are built to meet demand, such as

ride-hailing, uncertainty in lower-demand regions is as important as higher-demand

regions, as the supply in those regions will be proportionally low. Re-balancing ac-

tions will be needed across the system.

2.6 Conclusion

Despite the importance of uncertainty in travel demand prediction, past studies use

deep learning to predict only the average travel demand but not quantify its un-

certainty. To address this gap, this study proposes a framework of Prob-GNNs to

quantify the spatiotemporal uncertainty of travel demand. The framework is con-

cretized by six probabilistic assumptions (HomoG, Pois, HetG, TG, GEns, Lap) and

two deterministic ones (GCN and GAT), which are applied to transit and ridesharing

data, yielding the following conclusions.
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First, the Prob-GNN framework can successfully quantify spatiotemporal uncer-

tainty in travel demand with empirical evidence from the transit and ridesharing

datasets. In both cases, the Prob-GNNs can accurately characterize the probabilistic

distributions of travel demand while retaining the point predictions of a similar qual-

ity to the deterministic counterpart (HomoG). Second, the probabilistic assumptions

have a much more substantial impact on model performance than the determinis-

tic ones. The two deterministic architectures lead to less than a 3% difference in

NLL loss, while a wise choice of probabilistic assumptions could drastically improve

model performance. Specifically, the two-parameter distributions (e.g., heteroskedas-

tic Gaussian) achieve the highest predictive performance, which is 20% higher in log-

likelihood and 3-5 times lower in calibration errors compared to the one-parameter

baseline distributions. Third, the Prob-GNNs enhance model generalizability under

significant system disruptions. By applying the models trained on pre-COVID data

to three post-COVID periods, we show that the point predictions fail to generalize,

but the uncertainty predictions remain accurate and successfully reflect the evolving

situations. Even under significant domain shifts, the difference in predictive per-

formance among the two-parameter distributions is minor. Lastly, Prob-GNNs can

reveal spatiotemporal uncertainty patterns. Uncertainty is spatially concentrated on

the stations with higher travel volume and temporally concentrated on the afternoon

peak hours. In addition, the Prob-GNNs can identify the stations with abnormally

large uncertainty, informing real-time traffic controls to address potential system dis-

ruptions proactively.

Future studies could advance this work by making further theoretical or empirical

efforts. Theoretically, Prob-GNN is a parametric uncertainty quantification method,

which should be compared to Bayesian and non-parametric methods regarding pre-

diction quality. Empirically, as transportation patterns are diverse across modes and

cities, testing our framework under varying data scales and contexts is important

to further corroborate the above conclusions and to better inform policy-making.

In addition, our framework can be generally applied to predicting origin-destination

flows, travel safety, or even climate risks. Since uncertainty in urban systems has
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broad policy implications, future studies could integrate the Prob-GNNs with robust

optimization methods to enhance urban resilience.
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Chapter 3

Data Fusion: Deep hybrid models to

combine numerical data and satellite

imagery for travel behavior analysis

3.1 Background

Demand modeling has been a theoretically rich field widely applied to various travel

behavioral analyses. Researchers created the multinomial logit model to capture ran-

dom utility maximization as a decision mechanism [101], the nested logit model to

represent the tree structure of the alternatives [102], the mixed logit model to capture

the behavioral heterogeneity in preference parameters [103], and the hybrid demand

model to reveal the latent behavioral structure [148, 11, 146]. These demand models

have been applied to analyze car ownership, travel mode choice, adoption of elec-

tric vehicles, and destination choice, among many other travel behaviors [140, 54, 13].

However, the existing demand models use only low-dimensional numeric data, includ-

ing sociodemographic characteristics and trip attributes, while lacking the capacity to

process high-dimensional unstructured data, such as urban imagery. Urban imagery

has been shown to contain valuable information on the built environment, socioeco-

nomic factors, and mobility patterns by recent deep learning research [67, 7, 183].
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It seems a natural effort to extend the classical demand models to incorporate ur-

ban imagery, thus reflecting a more realistic behavioral mechanism and enriching the

demand modeling tools.

To operationalize this idea, the key question is how to integrate the numeric and

urban imagery data, leveraging the computational power of deep learning for urban

imagery while retaining economic information for practical uses. On the one hand,

demand models have demonstrated that travel decisions depend on travel time, travel

cost, income, age, and other numeric data, which facilitates rigorous microeconomic

analysis [138, 101]. The microeconomic analysis is valuable because it leverages the

random utility theory to compute critical economic parameters such as social welfare

and substitution patterns of alternatives [138, 184]. However, an exclusive focus on

numeric data misses the tremendous opportunities in the recent big data revolution,

in which unstructured data, such as urban imagery, accounts for more than 80% of

data growth [8]. On the other hand, the deep learning models in the field of urban

computing have used urban imagery - typically satellite or street-view images - to pre-

dict sociodemographic characteristics, achieving high predictive performance [67, 42].

However, urban computing research exclusively focuses on using urban imagery for

prediction, which dismisses the practical needs of computing elasticity, social welfare,

market shares, and other important economic factors. A pure deep learning approach

ignores the sociodemographic and travel-related attributes, but it is implausible that

travel decisions do not depend on income, age, and travel costs. Since each of the two

research paradigms only partially captures behavioral realism, this dichotomy neces-

sitates an effort to integrate them, thus successfully incorporating urban imagery into

decision analysis while retaining certain economic information for practical use.

This study presents a synergetic framework of the deep hybrid model (DHM),

which is visually represented by a crossing structure with a vertical and a horizontal

axis, as shown in Figure 3-1. The vertical axis represents the components in classical

demand modeling, including the numeric inputs and outputs (e.g., sociodemograph-

ics, travel attributes, and behavioral outputs). The horizontal axis represents deep

learning components, specifically an autoencoder that encodes and regenerates urban
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imagery. These two axes are connected through a latent space, which serves as the

core to integrate the numeric data and urban imagery. This framework is named “deep

hybrid” because it resembles and enriches the classical hybrid demand models [11].

It resembles the classical hybrid model because it is similar to the visual diagram of

Figure 3 in [11], with our horizontal axis resembling the measurement model and our

vertical axis resembling the structural model. It enriches the classical hybrid demand

models with deep architectures to construct a latent space with higher dimensions ca-

pable of processing unstructured data, such as urban imagery. This framework builds

upon the recent efforts in deep choice analysis [153, 157, 155], which illustrates that

deep learning enables researchers to extract economic information for practical uses.

However, a particular challenge is designing an effective operator to mix the numeric

data and urban imagery, thus rendering this latent space predictive and informative.

Figure 3-1: Diagram of a deep hybrid model (Model 4-6 in Table 3.1)

This challenge is addressed by designing a mixing operator, which encodes the

numeric and imagery data into a latent space with simple concatenation and super-

vised autoencoders. The latent variables are then imported into a simple behav-

ioral predictor, which is similar to classical demand models. Section 3.2 reviews the

literature about travel demand modeling, computer vision (CV), and urban com-

puting applications. Section 3.3 presents the design of the DHM framework with

the mixing operators. Section 3.4 introduces data collection, local context, and ex-

periment design. Section 3.5 investigates three empirical questions (1) whether the

DHM framework can outperform demand models and deep learning models by ef-

fectively integrating the sociodemographics and satellite imagery (Section 3.5.1); (2)
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whether the latent space in DHM is spatially and socially meaningful (Section 3.5.2),

and (3) DHM can generate new satellite imagery and derive the corresponding eco-

nomic information for practical uses (Section 3.5.3). Section 3.6 summarizes our

findings, limitations, and broad implications. Our scripts have been uploaded to

https://github.com/sunnyqywang/demand_image/tree/DHM-AE to promote open

science.

3.2 Literature review

3.2.1 Travel demand modelling

Demand models have been used extensively to analyze human decisions regarding

travel mode choices [61, 157, 191], adoption of new technologies [44, 159], willingness

to pay [9], and behavioral loyalty [133, 66]. The most common demand models are

the discrete choice models (DCM) based on the theory of random utility maximiza-

tion. The data inputs of DCMs include individual- and alternative-specific attributes

(e.g., sociodemographics, travel time, and cost) or psychometric features (e.g. per-

ceptions and attitudes), which are often modeled using latent variables. Although the

latent variables cannot be directly measured, they can be estimated with structural

equation models [146]. To integrate the latent variables and random utility theory,

researchers developed hybrid demand models to jointly analyze the observed choice

and latent variables, serving as a state-of-the-art demand model [148, 11]. The hy-

brid demand models have no theoretical limitations in the dimensions of the latent

space; however, due to practical constraints such as model estimation algorithms,

computational power, and the cost of data collection, the majority of the existing

work adopted less than five latent variables without application to urban imagery

[139, 56, 97, 29, 62].

Increasingly, researchers started to enhance the demand models by accounting

for complex input-output relationships with deep learning [20, 88, 58, 143, 169, 170,

193, 194]. Deep neural networks (DNNs) take advantage of the increasingly available
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computation power and use gradient descent and regularization techniques (such as

L1, L2, dropout, early stopping, and more) to enable the training of large networks

with flexible architecture design. As a result, DNNs have shown superior performance

in various applications [71, 191]. However, DNNs are often criticized for the inter-

pretability and instability problems [114, 57], which could be mitigated by gradient-

based methods [157, 142, 4] or integrated DCM-DNN architectures [167, 154, 137].

The integrated architectures can facilitate researchers to derive economic informa-

tion, enhance training efficiency, and stabilize the learning process. For example, the

DNNs can fit the residuals of the DCM backbone [167, 154, 137], learn decision rules

[141], and generate choice sets [176]. DNNs can also learn latent representations from

survey indicators [166], personal characteristics and their interactions with the alter-

native attributes [51], GPS trajectories [35, 178, 177], and embeddings for categorical

variables that are typically hard to handle in traditional frameworks [5]. However,

all existing studies use only numeric data, while deep learning is powerful because

it can learn from high-dimensional data. There were some attempts at leveraging

high-dimensional data, including treating GPS trajectories as images [35, 178], and

stacking multiple features along a route to form 2D inputs [177], but none have lever-

aged real urban imagery. Real urban imagery is associated with various urban and

socioeconomic characteristics, as shown by the vast number of studies in computer

vision and urban computing.

3.2.2 Computer vision and urban computing

Rich urban and socioeconomic characteristics are contained in various urban images,

including nightlight, satellite, and street view images. Using satellite imagery, re-

searchers can learn land-use patterns [2], quantify green cover [134], measure physical

appearances of neighborhoods [108], and predict socioeconomic status [67, 7, 183, 42].

In transportation, researchers used urban imagery to monitor traffic flows during the

pandemic [26], predict pedestrian intentions using car and traffic cameras [124], and

predict the usage of active modes based on street-view images [52]. Several stud-

ies also used street-view images to learn the perceived safety and general attitudes
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towards neighborhoods [109, 33, 185]. Reviews of urban imagery applications can

be found in [65, 16]. However, we have not identified any study that used observed

human decisions such as travel behavior, as modeling outputs.

Besides the predictive models, researchers are paying increasing attention to the

generative models. As a baseline, the autoencoder (AE) can learn latent representa-

tions from images using an encoder and generate new images using a decoder. Even

in its simplest form, the AE can learn latent representations, which are effective for

prediction tasks [125, 172]. A baseline AE can be enhanced by the multitask su-

pervised learning as a regularization in its latent space, thus further improving its

capacity of representation learning [32, 63]. However, AE is criticized for lacking

sampling capacity and generating blurry images, so variational autoencoders (VAE)

and generative adversarial networks (GAN) were proposed as two remedies. The VAE

regularizes the latent space of AE with a Gaussian prior, enabling a smooth transition

of generated images [50]. The GAN can generate realistic images through the game-

theoretical training of its discriminator and generator. The loss terms in GAN can be

augmented to the AEs to improve the manifold learning [98, 34, 173] and the quality

of image generation [84, 14, 113]. The state-of-the-art generative models integrate

the loss functions of VAEs and GANs into the baseline AE, marking the convergence

of the two lines of research [37, 128]. Despite the proliferation of generative models

in CV literature, no study has investigated how to generate satellite images from

sociodemographic and travel characteristics.

More important than using travel behavior as another application, we must design

a novel approach drastically different from the existing urban computing research to

model human decisions. Human decision is more complex than built environment la-

bels (e.g. trees, parking lots, or other land use patterns) because it inevitably involves

the discussions of social heterogeneity, economic implications, and human decision

mechanisms. Unlike sociodemographic data, individual pixels in urban imagery do

not have socioeconomic meanings, posing a unique challenge for deriving socioeco-

nomic information from urban imagery. To address these challenges, we propose the

DHM framework that encodes urban imagery and sociodemographics into a latent
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space, by which we could conduct associative analysis between sociodemographics,

travel decisions, and satellite imagery.

3.3 Theory

3.3.1 General framework of deep hybrid models

The DHM can be represented as:

𝑦𝑛 = 𝑔(𝑧𝑛) = 𝑔(ℳ(𝑥𝑛, 𝐼𝑛)) (3.1)

in which 𝑥𝑛 and 𝐼𝑛 represent the numeric and imagery inputs, and 𝑦𝑛 represents the

travel behavioral outputs. The two key components in DHM are ℳ(𝑥𝑛, 𝐼𝑛), which

combines the numeric sociodemographics 𝑥𝑛 and the urban imagery 𝐼𝑛, and 𝑔(𝑧𝑛),

which predicts the travel outputs. In other words, the DHM framework consists of

a mixing operator ℳ(·) and a behavioral predictor 𝑔(·). The behavioral predictor

follows a generalized linear form: 𝑔(𝑧𝑛) = 𝜎(𝛽′𝑧𝑛), in which 𝜎(·) represents the link

function and 𝛽′𝑧𝑛 is a linear transformation of the latent variables 𝑧𝑛 = ℳ(𝑥𝑛, 𝐼𝑛). In

this formulation, 𝑔(·) is significantly simplified so that we can concentrate the discus-

sion on the mixing operator. Meanwhile, 𝑔(·) is also flexible enough to accommodate

a variety of output categories: single outputs, soft choice probabilities, and discrete

choices.

Table 3.1 summarizes six models for the mixing operator ℳ(𝑥𝑛, 𝐼𝑛). We will

provide an overview of the table in this section, followed by a detailed discussion of

mixing operators in Section 3.3.2. In Table 3.1, the first column explains the formula

for computing the latent variables 𝑧(𝑖)𝑛 . The second column presents the optimization

formulation of neural network parameters. 𝐸𝜑(·) represents the encoder network

parameterized by 𝜑, 𝐷𝜓(·) represents the decoder network parameterized by 𝜓, and

𝐹𝜔(·) represents the sociodemographic supervision network parameterized by 𝜔. The

third column presents the latent dimensions of 𝑧(𝑖)𝑛 , which vary drastically across the

six models.
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Table 3.1: Design of the mixing operator in deep hybrid models

Mixing operator Optimization for parameter estimation Latent dim

Panel 1: Benchmark Models

Model 1: Only sociodemographics (SD)

𝑧
(1)
𝑛 = 𝑥𝑛 N/A 10

Model 2: Only imagery with autoencoders (AE)

𝑧
(2)
𝑛 = 𝐸𝜑(𝐼𝑛) 𝜑, 𝜓 = argmin

𝜑,𝜓
ℒ𝑟𝑒𝑐 18,432

Panel 2: Deep Hybrid Models

Model 3: Combining Models 1-2

𝑧
(3)
𝑛 = [𝑧

(1)
𝑛 , 𝑧

(2)
𝑛 ] N/A 10 + 18,432

Model 4: Supervised autoencoder (SAE)

𝑧
(4)
𝑛 = 𝐸𝜑(𝐼𝑛) 𝜑, 𝜓, 𝜔̂ = argmin

𝜑,𝜓,𝜔
𝜆ℒ𝑟𝑒𝑐 + (1− 𝜆)ℒ𝑠𝑢𝑝 18,432

Model 5: Supervised autoencoder with enhanced image regeneration (latent dim = 10)

𝑧
(5)
𝑛 = 𝐸𝜑(𝐼𝑛) 𝜑, 𝜓, 𝜔̂ = argmin

𝜑,𝜓,𝜔
𝜆(𝛼𝑟𝑒𝑐ℒ𝑟𝑒𝑐 + 𝛼𝑙𝑝𝑖𝑝𝑠ℒ𝑙𝑝𝑖𝑝𝑠 +

𝛼𝐺𝐴𝑁𝐺
ℒ𝐺𝐴𝑁𝐺

+ 𝛼𝐾𝐿ℒ𝐾𝐿) + (1− 𝜆)ℒ𝑠𝑢𝑝

10

Model 6: Supervised autoencoder with enhanced image regeneration (latent dim = 4,096)

𝑧
(6)
𝑛 = 𝐸𝜑(𝐼𝑛) Same as Model 5 4,096

Models 1 and 2 are benchmark models. Model 1 incorporates only sociodemo-

graphics 𝑥𝑛 without any imagery. Model 2 incorporates only the imagery information

without including any sociodemographics by using the neurons of a baseline autoen-

coder as the latent variables. Autoencoders learn latent representations 𝑧𝑛 from

image 𝐼𝑛 using an encoder 𝑧𝑛 = 𝐸𝜑(𝐼𝑛), and reconstruct the image 𝐼𝑛 using a decoder

𝐼𝑛 = 𝐷𝜓(𝑧𝑛), with 𝜑 and 𝜓 representing the parameters in the encoder and decoder.

The basic autoencoder in Model 2 is trained with the reconstruction loss:

ℒ𝑟𝑒𝑐 =
∑︁
𝑛

|𝐼𝑛 − 𝐼𝑛| (3.2)

, which measures the L1 distance between the input and reconstructed images in

the pixel space. Although the reconstruction loss is limited to only the pixels, other

loss terms can be added to regularize the latent variables and improve the quality of

representation learning (See Models 4-6).
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3.3.2 Mixing operator: supervised autoencoders

Model 3 represents the simplest form of DHMs because it linearly concatenates the

latent variables of Models 1 and 2. Although concatenation is simple, it is widely used

to integrate diverse data sources in deep learning literature [82, 105]. By comparing

the performances of Model 3 to Models 1-2, we could observe whether the two data

sources are complementary. This simple concatenation in Model 3 is a benchmark of

all the DHMs.

Models 4-6 are designed as the supervised autoencoders (SAE), the diagram of

which is visualized in Figure 3-2. Different from a baseline AE, the latent variables 𝑧𝑛

of SAEs can reconstruct images through the decoder 𝐷𝜓(𝑧𝑛) and sociodemographics

through a supervision network 𝐹𝜔(𝑧𝑛). The supervision of sociodemographics en-

hances the stability in the latent space because it extends the basic AE to multitask

learning with the sociodemographic supervision loss as regularization [86]. Both mul-

titask learning and regularization can constrain the latent space and improve training

stability [24, 100].

Figure 3-2: Supervised Autoencoders

The SAEs (Models 4-6) are trained by minimizing the sum of an AE loss ℒ𝐴𝐸 and

a sociodemographic supervision loss ℒ𝑠𝑢𝑝.

ℒ𝑆𝐴𝐸 = (1− 𝜆)ℒ𝐴𝐸 + 𝜆ℒ𝑠𝑢𝑝 (3.3)
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in which ℒ𝑠𝑢𝑝 represents the absolute error of the sociodemographic variables 𝑥

weighted by an adaptive hyperparameter 𝛼𝑠𝑢𝑝:

ℒ𝑠𝑢𝑝 = 𝛼𝑠𝑢𝑝|𝑥− 𝑥̂| (3.4)

In Equation 3.3, a mixing hyperparameter 𝜆 ∈ [0, 1] measures the trade-off between

image reconstruction and sociodemographic supervision. When 𝜆 = 0, the latent

space contains only imagery information. When 𝜆 = 1, the latent space contains only

sociodemographic information. Equation 3.3 represents the most general form of the

loss function shared across Models 4-6, but the AE loss ℒ𝐴𝐸 varies between Model 4

and Models 5-6.

Model 4 is a baseline SAE using the L1 reconstruction loss (Equation 3.2) as the

ℒ𝐴𝐸. Therefore, the loss function of Model 4 is:

ℒ𝑆𝐴𝐸 = (1− 𝜆)ℒ𝑟𝑒𝑐 + 𝜆ℒ𝑠𝑢𝑝 (3.5)

Although Models 5-6 share the same general diagram (Figure 3-2) and training

objective (Equation 3.3) as Model 4, they significantly expand upon the AE loss ℒ𝐴𝐸
into a list of loss terms, which can effectively enhance the quality of image generation.

The AE loss in Models 5-6 includes the reconstruction loss ℒ𝑟𝑒𝑐, the KL divergence

loss between the estimated latent space distribution and the standard normal prior

distribution ℒ𝐾𝐿, the learned perceptual image patch similarity (LPIPS) ℒ𝑙𝑝𝑖𝑝𝑠, and

the adversarial objective ℒ𝐺𝐴𝑁𝐺
and ℒ𝐺𝐴𝑁𝐷

[128]. The KL-penalty is introduced in

the same way as VAE to enable smooth transitions and sampling in the latent space

and constrain the magnitude of the variance in the latent space. The LPIPS loss and

the adversarial objective enhance the realism of the generated images and mitigate the

blurriness caused by relying solely on pixel-space metrics such as the L1 reconstruction

loss. The full breakdown is shown in Equation 3.6:

ℒ𝐴𝐸 = 𝛼𝑟𝑒𝑐ℒ𝑟𝑒𝑐 + 𝛼𝐾𝐿ℒ𝐾𝐿 + 𝛼𝑙𝑝𝑖𝑝𝑠ℒ𝑙𝑝𝑖𝑝𝑠 + 𝛼𝐺𝐴𝑁𝐺
ℒ𝐺𝐴𝑁𝐺

(3.6)
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in which all the 𝛼 terms are the adaptive hyperparameters, which will be introduced

later. Both Models 5 and 6 use Equation 3.6 as the objective function, although they

are designed with different latent dimensions (10 vs. 4,096) to test the impacts of

latent dimensions on prediction and image generation. In Equation 3.6, The first loss

term is still the reconstruction loss ℒ𝑟𝑒𝑐 as Equation 3.2 - the pixel level L1 distance

between input and reconstructed images.

The KL divergence ℒ𝐾𝐿 measures the distance between the calculated and the

standard Gaussian distributions, as shown in Equation 3.7. The latent variables use

𝑘-dimensional diagonal Gaussian distribution with estimated mean 𝑧𝑛 and variance

𝜎̂2
𝑧𝑛 .

ℒ𝐾𝐿 =
∑︁
𝑛

𝐾𝐿(𝒩 (𝑧𝑛, 𝜎̂
2
𝑧𝑛)||𝒩 (0, 1)) =

1

2

∑︁
𝑛

∑︁
𝑘

(𝑧2𝑛,𝑘 + 𝜎̂2
𝑧𝑛,𝑘

− 1− 𝑙𝑜𝑔(𝜎̂2
𝑧𝑛,𝑘

)) (3.7)

The ℒ𝑙𝑝𝑖𝑝𝑠 loss - learned perceptual image patch similarity (LPIPS), also known

as perceptual loss ℒ𝑙𝑝𝑖𝑝𝑠 - is widely used to enhance perceptual similarity between the

deep features of two images [187]. To calculate the LPIPS loss between the original

and reconstructed images 𝐼𝑛 and 𝐼𝑛, the feature stacks from 𝐿 layers are extracted

from a pre-trained neural network and unit-normalized in the channel dimension,

which is designated as 𝑦𝑙𝐼𝑛,ℎ𝑤, 𝑦
𝑙
𝐼𝑛,ℎ𝑤

∈ R𝐻𝑙×𝑊𝑙×𝐶𝑙 . The features are then scaled by

vector 𝑤𝑙 before computing the L2 distance. Its formula is:

ℒ𝑙𝑝𝑖𝑝𝑠 =
∑︁
𝑛

∑︁
𝑙

1

𝐻𝑙𝑊𝑙

∑︁
ℎ,𝑤

||𝑤𝑙 ⊙ (𝑦𝑙𝐼𝑛,ℎ𝑤 − 𝑦𝑙
𝐼𝑛,ℎ𝑤

)||22 (3.8)

Lastly, the generative adversarial loss uses a discriminator network 𝐷𝑖𝑠𝑐(·) to

differentiate between real and generated images. Equation 3.9 shows the generator

(decoder 𝐷𝜓) loss function ℒ𝐺𝐴𝑁𝐺
, and Equation 3.10 shows the discriminator loss

function ℒ𝐺𝐴𝑁𝐷
. GANs are trained in a game-theoretic manner with alternating gen-

erator and discriminator updates. At each step, the model first trains the generator

(decoder), the encoder, and the supervision network while fixing the discriminator
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network weights. It then trains the discriminator with the other models fixed.

ℒ𝐺𝐴𝑁𝐺
=

∑︁
𝑛

−𝐷𝑖𝑠𝑐(𝐼𝑛) (3.9)

ℒ𝐺𝐴𝑁𝐷
=

∑︁
𝑛

𝑚𝑎𝑥(0, 1 +𝐷𝑖𝑠𝑐(𝐼𝑛)) +𝑚𝑎𝑥(0, 1−𝐷𝑖𝑠𝑐(𝐼𝑛)) (3.10)

The loss terms are associated with adaptive hyperparameters, including 𝛼𝑠𝑢𝑝, 𝛼𝑟𝑒𝑐,

𝛼𝐾𝐿, 𝛼𝑙𝑝𝑖𝑝𝑠, and 𝛼𝐺𝐴𝑁𝐺
. These adaptive hyperparameters dynamically balance the

loss terms and stabilize the complex training process. For example, 𝛼𝑠𝑢𝑝 is calculated

by the ratio of the loss terms’ gradients with respect to the parameter magnitude in

the last layer 𝐿 of the decoder 𝐷𝜓 [37] using 𝛿 = 10−6 for numerical stability.

𝛼𝑠𝑢𝑝 =
∇𝐺𝐿

[ℒ𝑟𝑒𝑐]
∇𝐺𝐿

[ℒ𝑠𝑢𝑝] + 𝛿
(3.11)

The 𝛼𝐺𝐴𝑁𝐺
is also adaptive and calculated similarly as 𝛼𝑠𝑢𝑝.

𝛼𝐺𝐴𝑁𝐺
=

∇𝐺𝐿
[ℒ𝑟𝑒𝑐]

∇𝐺𝐿
[ℒ𝐺𝐴𝑁𝐺

] + 𝛿
(3.12)

To simplify the training process, other adaptive hyperparameters are fixed using the

default setting from the stable diffusion models1, where 𝛼𝑟𝑒𝑐 = 1, 𝛼𝐾𝐿 = 1𝑒−6, and

𝛼𝑙𝑝𝑖𝑝𝑠 = 1. The adaptive hyperparameters 𝛼’s and the static hyperparameter 𝜆 serve

different purposes: the former mainly stabilizes the training process, and the latter

diagnoses the trade-off between image reconstruction and sociodemographic supervi-

sion.

Models 4-6 use the SAE design to interact with sociodemographics and satellite

imagery through the latent space. Although the formula 𝐸𝜑(𝐼𝑛) contains only images

as inputs, the encoder parameters 𝜑 are trained using both 𝑥𝑛 and 𝐼𝑛. Therefore,

the 𝜑 absorbs the information from two data structures, so it enables the latent vari-

ables 𝐸𝜑(𝐼𝑛) to blend information from sociodemographics and urban imagery. The

design of the SAE models is highlighted due to its similarity to the classical hybrid
1https://github.com/CompVis/stable-diffusion/blob/main/configs/autoencoder/

autoencoder_kl_8x8x64.yaml
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demand model structure [11]. In classical hybrid demand models, a structural com-

ponent describes how the sociodemographic variables relate to travel behavior, and a

measurement model describes the relationship between observed variables and latent

variables [148, 11]. Our DHMs resemble this structural approach mainly through the

multitask learning framework, and we further enrich the existing hybrid models by

leveraging the higher-dimensional deep architecture to design the latent space and

incorporate urban imagery.

3.3.3 Behavioral predictor

The behavioral predictor 𝑔(𝑧) is designed as a generalized linear regression:

𝑦 = 𝑔(𝑧) = 𝜎(𝛽′𝑧) (3.13)

Despite its simplicity, Equation 3.13 is sufficiently flexible to accommodate three out-

put variables: (1) aggregate travel mode shares as individual outputs, (2) aggregate

travel mode shares as a joint output, and (3) individual travel mode choices. A general

form of training the behavioral predictor is:

argmin
𝛽

ℒ(𝑦𝑛, 𝜎(𝛽′𝑧𝑛)) + 𝜃||𝛽||𝑝 (3.14)

in which ℒ(𝑦𝑛, 𝜎(𝛽′𝑧𝑛)) represents the loss function (e.g. mean squared error or neg-

ative log-likelihood), 𝛽 represents the parameters, 𝜃 is the sparsity hyperparameter

to control the sparsity of 𝛽. In all three examples, the sparsity hyperparameter 𝜃

is the weight for L1 (LASSO) regularization to address overfitting and identify the

relevant latent variables. The LASSO approach is essential in reducing the potential

overfitting from the high-dimensional latent space in Models 2, 3, 4, and 6 in Table

3.1. The three outputs are clarified in the following three subsections.

Aggregate travel mode shares as separate outputs

The first example is relatively straightforward: since the outcome 𝑦𝑛 is a continuous

scalar to represent the aggregate travel mode shares, the link function 𝜎 is designed
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as an identity mapping:

𝜎(𝛽′𝑧𝑛) = 𝛽′𝑧𝑛 (3.15)

The training uses the mean squared error as the objective.

Aggregate travel mode shares as a joint output

The second example uses the aggregate travel mode shares as a joint output of the

model. Since the joint mode shares should add up to one, a softmax function is speci-

fied as the link function to implement this constraint. Using the linear transformation

on 𝛽′𝑧𝑛, we could represent the output mode shares as:

𝑃𝑛𝑘 =
𝑒𝑉𝑛𝑘∑︀
𝑗 𝑒

𝑉𝑛𝑗
=

𝑒𝛽
′
𝑘𝑧𝑛∑︀

𝑗 𝑒
𝛽′
𝑗𝑧𝑛

(3.16)

in which 𝑃𝑛𝑘 represents the market shares of mode 𝑘 in region 𝑛. Since the market

shares follow a probability distribution, Kullback-Leibler (KL) loss is used to specify

the general loss in Equation 3.14:

ℒ𝐾𝐿 =
1

𝑁

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

𝑃𝑛𝑘(ln𝑃𝑛𝑘 − ln𝑃𝑛𝑘) (3.17)

Disaggregate travel mode choice

The third example uses individual travel mode choice as the model outputs. The

choice probabilities of trip 𝑛 for alternative 𝑘 are specified as

𝑃𝑛𝑘 =
𝑒𝑉𝑛𝑘∑︀
𝑗 𝑒

𝑉𝑛𝑗
(3.18)

where 𝑃𝑛𝑘 is the probability of trip 𝑛 taken with alternative 𝑘, 𝑉𝑛𝑘 is the utility of

alternative 𝑘 for trip 𝑛. Since the disaggregate travel mode choice involves origin-

destination pairs, the alternatives’ attributes for each OD pair concatenate the origin

𝑜𝑛 and destination 𝑑𝑛: 𝑧𝑛 = [𝑧𝑜𝑛 , 𝑧𝑑𝑛 ]. Similar to the aggregate travel mode analysis,

the utility function takes a simple linear form as 𝑉𝑛𝑘 = 𝛽
′

𝑘𝑧𝑛. However, since dis-

crete choice models have unique data structures in the input variables, which consist
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of individual- and alternative-specific variables, the detailed specification is slightly

different from the aggregate travel mode analysis (Appendix A.1). Let 𝑦𝑛𝑘 represent

the observed mode (𝑦𝑛𝑘 = 1 if mode 𝑘 is used for trip 𝑛, and 𝑦𝑛𝑘 = 0 otherwise), and

𝑁 is the total number of trips. The training loss in Equation 3.14 is substantiated

by the cross entropy loss:

ℒ𝑐𝑒 =
1

𝑁

𝑁∑︁
𝑡=1

𝐾∑︁
𝑘=1

−𝑦𝑛𝑘 ln𝑃𝑛𝑘 (3.19)

3.3.4 Deriving economic information from generated satellite

imagery

Recent work has demonstrated that deep learning models can provide economic in-

formation as complete as the classical discrete choice models [157]. Building upon

deep learning, the DHMs can empower researchers to compute economic information

from generated satellite images. Here, we provide the formula for computing market

shares, substitution patterns of alternatives, social welfare, and choice probability

derivatives with highlights on the latent variables 𝑧 that connect images, sociodemo-

graphics, and travel behaviors. Specifically, the market share of alternative 𝑘 can be

computed as

𝑠𝑘 =
∑︁
𝑛

𝑃𝑛𝑘 =
∑︁
𝑛

𝑒𝑉𝑛𝑘∑︀
𝑗 𝑒

𝑉𝑛𝑗
(3.20)

Social welfare of individual 𝑛 takes the standard log sum formula:

1

𝛼𝑛
log(

∑︁
𝑗

𝑒𝑉𝑛𝑗) (3.21)

where 𝛼𝑛 measures the marginal utility of income that translates social welfare into

dollar values. The substitution pattern for two alternatives 𝑗 and 𝑘 is defined as the

ratio of their choice probabilities:

𝑃𝑛𝑗
𝑃𝑛𝑘

=
𝑒𝑉𝑛𝑗/

∑︀
𝑘′ 𝑒

𝑉𝑛𝑘′

𝑒𝑉𝑛𝑘/
∑︀

𝑘′ 𝑒
𝑉𝑛𝑘′

= 𝑒𝑉𝑛𝑗−𝑉𝑛𝑘 (3.22)
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Although the three equations above appear similar to those in the standard de-

mand models, they already incorporate satellite imagery to compute the utility value

𝑉𝑛𝑘 through the latent variable 𝑧. Among the six models in Table 3.1, the DHMs

(Models 3-6) embed both satellite images and sociodemographic variables into the

latent variable 𝑧𝑛. Although only images are used as inputs in Models 4-6, the pa-

rameters 𝜑 are the functions of both sociodemographics and images, thus encoding

their information into the latent variables 𝐸𝜑(𝐼𝑛). Any latent variable 𝑧 can be used

to visualize satellite imagery through the decoder as 𝐼 = 𝐷𝜓(𝑧) and compute the

utility, market shares, social welfare, and substitution patterns with Equations 3.20,

3.21, and 3.22.

Using the DHMs, we could further compute a directional gradient of choice prob-

abilities regarding the latent variable 𝑧:

∇𝑢𝑃𝑛𝑘(𝑧) = 𝑢 · ∇𝑃𝑛𝑘(𝑧) (3.23)

where ∇𝑃𝑛𝑘(𝑧) represents the gradient of choice probability regarding the latent vari-

able 𝑧, and 𝑢 represents a direction to move in the latent space. Since DHMs con-

nect 𝑧 and urban imagery 𝐼, this directional gradient can describe the sensitivity

of choice probabilities with respect to the satellite image 𝐼𝑛 corresponding to the

latent variable 𝑧𝑛. For example, the direction can be defined as one-directional as

𝑢 = 𝑧2 − 𝑧1 = 𝐸(𝐼2) − 𝐸(𝐼1) by using two existing images 𝐼1 and 𝐼2, or extended to

a multi-directional movement by linearly combining multiple 𝑢’s: 𝑢 = 𝑎1𝑢1 + 𝑎2𝑢2,

where 𝑢 takes into account two directions 𝑢1 and 𝑢2. Our empirical analysis will

demonstrate the directional sensitivity of choice probabilities regarding satellite im-

ages by discretizing the latent space. For example, we can create a directional vector

𝑢 = 𝑧2 − 𝑧1 to define the directional movement and compute the choice probabilities

and satellite images using a new latent variable 𝑧 = 𝑧1 + 𝑎𝑢 = 𝑧1 + 𝑎(𝑧2 − 𝑧1), in

which 𝑎 ranges between zero and one. With this approach, we can visualize a new

satellite image 𝐼 through the decoder as 𝐼 = 𝐷𝜓(𝑧) and compute the choice probabil-

ities through the behavioral predictor as 𝑔(𝑧). We can also compute market shares,
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social welfare, and substitution patterns by applying 𝑉𝑛𝑘(𝑧) to Equations 3.20, 3.21,

and 3.22.

3.4 Experiment design

3.4.1 Data

The experiments combine satellite images from Google API, socio-demographics from

the census, and individual travel behavior from MyDailyTravel Chicago Survey in

2018-2019 [1]. The same number of satellite images were sampled from each census

tract, which is then linearly combined in the latent space of the DHM for each region

𝑠 by 𝑧𝑠 =
1
𝐼𝑠

∑︀𝐼𝑠
𝑖=1 𝑧𝑖, where 𝑧𝑠 is the latent representation averaged over 𝐼𝑠 satellite

images. The sociodemographics are obtained from the American Community Survey

(ACS)2, which includes total population, age groups, racial composition, education,

economic status, and travel information (e.g. commuting time). After data prepro-

cessing, The dataset has 1, 571 census tracts with 80K observed trips. Figure 3-3

shows five samples of the standard satellite images with a 256 × 256 size.

Figure 3-3: Samples of satellite images used in the experiment.

The MyDailyTravel survey provides individual sociodemographics and trip at-

tributes for the disaggregate analysis. It contains 42 variables, including time of the

trip (morning/after), trip distance, home-based trips, trip purposes, perceived time

importance, age, disability, and education, among many other travel and social fac-

tors. The initial travel modes have more than ten categories, but they are aggregated

into auto, active (walk+bike), public transit, and others, thus creating a relatively

balanced choice set.
2https://www.census.gov/programs-surveys/acs/data.html
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3.4.2 Model training

The training of DHMs takes two steps - training the mixing operator and then the be-

havioral predictor - as summarized in Figure 3-4. During stage I, we train the SAEs,

which consists of the encoder 𝐸𝜑(𝐼), decoder 𝐷𝜓(𝑧), and the sociodemographic pre-

dictor 𝐹𝜔(𝑧). Every input image is encoded into a latent variable 𝑧, which then passes

through 𝐹𝜔(𝑧) and 𝐷𝜓(𝑧) to reconstruct sociodemographics and images. During stage

II, only the behavioral predictor 𝑔(𝑧) is trained. In testing, an input image is encoded

into a latent variable 𝑧, which then predicts sociodemographics and travel behaviors

through 𝐹𝜔(𝑧) and 𝑔(𝑧), and generates images through 𝐷𝜓(𝑧).

Figure 3-4: Two-step training

The mixing hyperparameter 𝜆 is searched on a linear scale (𝜆 = 0.1, 0.3, 0.5, 0.7, 0.9)

to evaluate the impacts of the mixing on model performance. The sparsity hyperpa-

rameter 𝜃 is searched through all positive values to evaluate the sparsity effects. In

model evaluation, the five-fold cross-validation is used. The 𝑅2 is calculated sepa-

rately on the auto, active, and public transit to evaluate the aggregate models. The

cross-entropy loss and accuracy rates are used to evaluate the disaggregate models.

The six models require drastically different levels of computational resources.

Models 2-4 are trained on a NVIDIA 2080 Ti GPU with 11GB RAM for the 52

million parameters in the ResNet-50 architecture [53]. The Models 5-6 are trained on

a NVIDIA V100 GPU with 32GB RAM, which costs around $15,000 at the current
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market price, for the 126 million parameters in the U-Net from the stable diffusion

models. Besides monetary costs, the relatively simple model (e.g. Model 4) takes

around 12 hours to train, and the more complex ones (e.g. Model 6) take two to

three days. Such a significant amount of computational resources could inhibit the

academic communities from replicating this study. Therefore, we present all six mod-

els with distinctly different degrees of complexity, thus facilitating the replication

of at least Models 1-4 for the researchers with limited computational resources. In

fact, the advanced Model 6 does not guarantee a better result on all the fronts. As

shown below, it dominates others by the quality of image regeneration but generates

predictive performance nearly equivalent to that of Model 4.

3.5 Results

3.5.1 Predictive performance

Table 3.2 summarizes the empirical results of the six models in three travel behavior

tasks. Panels 1-2 present the aggregate travel demand analysis using travel modes

as separate and joint outputs, and Panel 3 the disaggregate travel demand analysis.

The aggregate models (Panels 1 and 2) typically use ten sociodemographic variables

and 18,432- or 4,096-dimensional latent variables to represent urban imagery. The

disaggregate analysis (Panel 3) incorporates an additional 42 travel attributes into the

input variables. The six columns correspond to the six models in Table 3.1. The first

row in each panel illustrates the dimension of latent variables. Each entry reports the

training/testing performance, selected by the highest testing performance with the

optimal 𝜆 and 𝜃 values using five-fold cross-validation. The hyperparameter selection

with other 𝜆 and 𝜃 values can be found in Appendix A.2. Because of its superior

quality in image regeneration, only the Model 6 with 𝜆 = 0.7 is used for the further

analysis in Sections 3.5.2 and 3.5.3. The predictive performance yields five major

findings as follows.

First, both the sociodemographics and satellite imagery are informative for travel
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Table 3.2: Predictive performance

Model 1 2 3 4 5 6
SD AE [SD|AE] Basic SAE SAE (10) SAE (4096)

Panel 1: Aggregate Mode Choice as Separate Outputs - Linear Regression

Latent Dim 10 18432 10+18432 18432 10 4096

Auto (𝑅2) 0.553/0.541 0.627/0.532 0.655/0.594 0.720/0.644 0.579/0.566 0.676/0.640
Active (𝑅2) 0.456/0.446 0.542/0.407 0.463/0.472 0.583/0.531 0.472/0.457 0.566/0.524
PT (𝑅2) 0.443/0.424 0.503/0.395 0.543/0.464 0.545/0.482 0.462/0.443 0.520/0.483

Panel 2: Aggregate Mode Choice as a Joint Output - Multinomial Regression

Latent Dim 10 18432 10+18432 18432 10 4096

KL Loss 0.146/0.149 0.149/0.158 0.135/0.146 0.111/0.128 0.142/0.144 0.120/0.129
Auto (𝑅2) 0.544/0.535 0.514/0.484 0.596/0.557 0.704/0.643 0.577/0.568 0.669/0.637
Active (𝑅2) 0.448/0.439 0.430/0.396 0.500/0.452 0.627/0.524 0.471/0.453 0.566/0.515
PT (𝑅2) 0.424/0.407 0.396/0.364 0.476/0.428 0.569/0.476 0.436/0.427 0.543/0.496

Panel 3: Disaggregate Mode Choice - Discrete Choice Analysis

Latent Dim 42+10*2 18432*2 42+10*2+18432*2 42+18432*2 42+10*2 42+4096*2

CE Loss 0.423/0.422 0.659/0.652 0.380/0.389 0.378/0.409 0.405/0.415 0.373/0.404
Accuracy 0.856/0.857 0.756/0.759 0.871/0.868 0.868/0.855 0.862/0.859 0.871/0.856

Note: each entry is represented as training/testing performance.

behavioral analysis because the predictive performance of Models 1-2 is substantially

higher than zero across all three panels. In Panel 1, Model 2 using only satellite

imagery can explain 53.2%, 40.7%, and 39.5% of the variations in automobiles, active

travel modes, and public transit (Column 2), slightly lower than 54.1%, 44.6%, and

42.4% in Model 1. This finding still holds in Panel 2, while Model 2 performs much

worse than Model 1 in the disaggregate analysis (Panel 3). The results are quite

reasonable: urban imagery is slightly less informative than sociodemographics in pre-

dicting aggregate travel behavior, while it is much less so than sociodemographics

and particularly travel attributes, which are the major incentives determining indi-

vidual travel behavior. Regardless of these variations, the performance of Models 1-2

demonstrates that both sociodemographics and satellite imagery can assist in travel

behavioral prediction.

Second, the numeric data and satellite imagery are complementary, as shown

by the performance comparison in Table 3.2 and the information decomposition in

Figure 3-5. Across all three panels, Models 3-6 consistently outperform Models 1-2,

indicating that it is more effective by mixing rather than independently using the two
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data structures. Since Model 3 simply concatenates the latent variables of Models 1-2,

its higher performance is attributed to data complementarity rather than our DHM

design, which exists only in Models 4-6. Besides comparing performance, the non-zero

coefficients in Model 3 also indicate data complementarity. Figure 3-5 illustrates how

the non-zero coefficients decrease with a larger sparsity hyperparameter 𝜃. With the

optimal 𝜃 = 2𝑒−4, the non-zero coefficients originate from both the sociodemographic

and urban imagery sides, consisting of six sociodemographic variables and 335 imagery

variables, demonstrating the complementary contributions to prediction from the two

data structures.

Figure 3-5: Non-zero coefficients from sociodemographics and urban imagery in Model
3 with various 𝜃 values.

Third, the SAEs are more effective than the simple concatenation in the aggregate

contexts (Panels 1-2) but less so in the disaggregate contexts. Model 4 outperforms

Model 3 by 5-10% in 𝑅2 and about 12% in the KL loss in Panels 1-2. This result sug-

gests that the nonlinear mixing of sociodemographics and urban imagery through the

SAEs is more effective than a linear concatenation in the aggregate analysis. Across

the three travel modes, the performance improvement is more significant in the au-

tomobile and active modes, suggesting that the built environment represented by

satellite imagery is more informative for using private vehicles, walking, and cycling

than public transit. The effects of SAEs appear less evident in the disaggregate anal-

ysis because the linear concatenation in Model 3 outperforms Models 4-6, suggesting

that the travel attributes influence individual travel choices in a linear way.
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Fourth, it is important to create a relatively high-dimensional latent space (Model

6) for high predictive performance, although the low-dimensional latent space (Model

5) can also explain substantial variation in travel behaviors. Models 5-6 were designed

to be identical in data, model, and training but differed in only the latent dimensions

(10 vs. 4,096). Across the three panels, Model 6 consistently outperforms Model 5

in predictive performance, suggesting the importance of a relatively high-dimensional

latent space for effective prediction. However, Model 5 also achieves substantial pre-

dictive performance, reaching at least 80-90% of the predictive performance in Model

6. This finding suggests that the explanatory power in the latent variables has a some-

what long-tail distribution: it is concentrated in the first few principal dimensions

but also spread into hundreds of others.

Lastly, the DHMs can achieve relatively high performance for predicting the so-

ciodemographic variables when the 𝜆 value gradually deviates from zero. Figure 3-6

visualizes how the 𝑅2 in predicting sociodemographics varies with 𝜆 for every sociode-

mographic variable. Since 𝜆 balances the image reconstruction and the sociodemo-

graphic prediction, a higher 𝜆 value can instill more sociodemographic information

into the latent space. As shown in Figure 3-6, a relatively high 𝜆 value can significantly

improve the predictive performance of the sociodemographics, including population

density, age, racial shares, and income. With an optimal 𝜆 value at around 0.5-0.7,

the predictive performance achieves a relatively high 𝑅2 (around 80%) in population

density, racial structures, education, and income, but relatively lower 𝑅2 (around

30-50%) in age and average travel time.

3.5.2 Navigating the latent space

With the design of DHMs, the latent space encodes the sociodemographic and ur-

ban imagery information. The latent space can be understood by using dimension

reduction techniques, including K-Means to identify the discrete latent clusters and

t-distributed stochastic neighbor embedding (tSNE) for continuous embedding.

We identify five clusters with distinct spatial, sociodemographic, and land use

patterns using K-Means. Figure 3-7 shows the image samples from each cluster. The
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Figure 3-6: Performance of predicting sociodemographics in Model 6 with various 𝜆
values

first cluster represents a suburban town with substantive residential areas cut through

by a major highway. The second cluster represents the high-density neighborhoods

in the downtown area. The third cluster represents a suburban town center with a

more industrial presence. The fourth mixes the high-density urban region with some

public facilities of large footprints. The fifth cluster is a typical suburban region with

very low density and large green space.

Figure 3-7: Image samples of cluster centers

Although spatial information is not explicitly used as inputs, the five clusters can

reveal spatial clusters, such as Chicago’s urban vs. suburban regions, as shown in

Figure 3-8. The first cluster in northwest Chicago represents the suburban residential

regions. The second cluster identifies downtown Chicago. The third and fourth

clusters represent southern Chicago, with the former being closer to downtown. The

fifth cluster represents the outskirts surrounding Cook County.

Using tSNE, the latent space could be simplified as a 2D visualization, which can

demonstrate its association with the continuous sociodemographic variables. The five
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(a) Entire study area (b) Cook county

Figure 3-8: Spatial distribution of clusters

clusters are marked in the latent space in Figure 3-9a, and the continuous sociode-

mographics in Figure 3-9b-f. Such continuous patterns in sociodemographics provide

additional information to the discrete clusters. For example, the sociodemographics

of the first cluster (north) correspond to the high-income and high-education peo-

ple. The second cluster (downtown) has high income, high population density, a

high percentage of adults and college graduates, and moderate to low commuting

time. The sociodemographics of the third and fourth (south) clusters correspond to

low income, low population density, low proportions of college graduates, and long

commuting times. The last cluster (outskirts) has the lowest density without much

sociodemographic richness.

3.5.3 Deriving economic information for generated satellite

imagery

The latent space in DHMs enables us to generate new satellite images and derive

economic information from them. The process will be demonstrated by starting with

three existing images in Figure 3-10, which represent the census tracts in the South,

North, and Central Chicago areas, the sociodemographics of which are shown in Table
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(a) Density Distribution (b) Income per capita (c) Population (1k ppl/km2)

(d) Pct Adults (e) Pct Col Grad (f) Avg TT to Work (min)

Figure 3-9: tSNE visualization of latent space

3.3. The first image presents a mixed urban texture with a major highway in southern

Chicago. This area is associated with low income, low education, and long commute

times. The other two are located in the north suburban and central Chicago areas.

The north region represents the high-income and low-density areas, while the central

region is denser and relatively wealthy. Northern Chicago is represented by a typical

suburban pattern with curved roads and low-density buildings, while central Chicago

by small-scale and grid-shaped building blocks. The latent variables of the three

census tracts are denoted as 𝑧𝑠, 𝑧𝑛, and 𝑧𝑐, and their corresponding images as 𝐼𝑠, 𝐼𝑛,

and 𝐼𝑐.

Table 3.3: Sociodemographics of three representative census tracts

Census Tract Pop Density
(k-ppl/𝑘𝑚2)

% College
Grad

Avg Time to
Work (min)

Income
(10k/capita)

Auto PT Active

South 2.5 10.7% 33.6 12.1 69.9% 15.4% 5.17%

North 1.0 78.2% 37.1 90.8 86.6% 5.1% 6.5%

Central 6.2 75.9% 28.0 70.8 12.0% 46.7% 38.4%
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Figure 3-10: Satellite images of three representative census tracts

Deriving economic information with one-directional image generation

New satellite images can be generated using latent variable 𝑧 through the decoder

𝐼 = 𝐷𝜓(𝑧). Specifically, the latent variable 𝑧 is created by adding a directional vector

𝑢 to the source latent variable 𝑧𝑠: 𝑧 = 𝑧𝑠 + 𝑎1𝑢, in which 𝑎1 ranging from zero to

one in 0.2 increments, and 𝑢 is the direction between the target and source image

𝑢 = 𝑧𝑐 − 𝑧𝑠 in the latent space. As a result, a new satellite image 𝐼 can be generated

with every 𝑧 as shown in Figure 3-11.

Figure 3-11: One-directional image generation

For a generated satellite image, its corresponding socioeconomic information can

be derived through the DHM framework, including travel behavior 𝑔(𝑧), utility values

𝑉𝑛𝑘(𝑧), and sociodemographics 𝐹𝜔(𝑧). Figure 3-12 visualizes how market shares, social

welfare, substitution patterns, probability derivatives, and sociodemographics vary

with the movement in the latent space indicated by the scale factor 𝑎1. The market

share of auto mode, computed as 𝑒𝛽′
𝑘𝑧/

∑︀
𝑗 𝑒

𝛽′
𝑗𝑧, decreases when the latent variable

moves from the central to the south Chicago. The social welfare, computed with the

logsum form 1
𝛼𝑛

log(
∑︀

𝑗 𝑒
𝛽′
𝑗𝑧), significantly decreases when the utilities of travel modes

are roughly equivalent. The derivatives of choice probabilities ∇𝑢𝑃𝑛𝑘 are marginally

decreasing when a specific travel mode dominates the mobility market. Overall, larger
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𝑎1 values are associated with more white people and college graduates, higher income

levels, and lower travel time to work.

Figure 3-12: Economic information of images generated along one direction (Southern
to Central Chicago: 𝑧 = 𝑧𝑠 + 𝑎1(𝑧𝑐 − 𝑧𝑠))

Deriving economic information with two-directional image generation

The one-directional image generation can be extended to a two-directional one using

𝑧 = 𝑎1𝑢1+ 𝑎2𝑢2 = 𝑎1(𝑧𝑐 − 𝑧𝑠)+ 𝑎2(𝑧𝑛 − 𝑧𝑠). The two directions are defined by 𝑧𝑐− 𝑧𝑠

and 𝑧𝑛− 𝑧𝑠, representing the movement from the south to north and central Chicago

in the latent space. Figure 3-13 visualizes a 6 × 6 matrix of the generated images, in

which only three images (S, N, and C) exist in reality (Figure 3-10) while the other

33 images are generated. This two-directional image generation approach generally

applies to other satellite images. Another example is shown in Appendix A.3.

The generated urban images have high visual quality, as shown in Figure 3-13

and 3-14. Moving from the south to central Chicago, the grid structure and dense

buildings gradually dominate the new urban landscape. When 𝑎1 = 0.6 and 𝑎2 = 0.0

(Figure 3-14a), the generated image has the uniform urban grid, resembling cen-

tral Chicago, with mixed green areas and corridors permeating into this urban area.

Moving from the south to north Chicago, the major north-south green belt is grad-

ually replaced by curved suburban roads and low-density buildings. When 𝑎1 = 0.0

and 𝑎2 = 0.6 (Figure 3-14b), the urban landscape retains the curved suburban road

networks similar to north Chicago, but with mixed building footprints.

Similar to the one-directional examples, the socioeconomic information can be

derived for every generated satellite image, as shown in Figure 3-15. The satellite

image on row 𝑖 and column 𝑗 in Figure 3-13 corresponds to the market share and

social welfare values in the pixel on row 𝑖 and column 𝑗 in Figure 3-15. Such matrix
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Figure 3-13: Two-directional image generation

plots in Figure 3-15 can provide a holistic view of the two-directional interactions.

For example, public transit usage does not change significantly when moving from

southern to northern Chicago but varies when moving from central Chicago. Beyond

market shares and social welfare, it is also feasible to compute other economic pa-

rameters for the generated image 𝐼. Here, we skip further details and leave them for

future studies.
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(a) 𝑎1 = 0.6, 𝑎2 = 0 (b) 𝑎1 = 0, 𝑎2 = 0.6

Figure 3-14: Two generated satellite images

(a) Market share -
Automobiles

(b) Market share -
Active mode

(c) Market share -
PT

(d) Social welfare

Figure 3-15: Economic information of images generated along two directions

3.6 Conclusion

Travel decisions can be influenced by the factors represented by either numeric data

or urban imagery. Although classical demand modeling cannot effectively process

urban imagery, expanding on this capacity is imperative due to the explosion of un-

structured data. This study proposes the DHM framework to integrate numeric and

satellite imagery by combining the analytical capacity of the demand modeling and

the computational capacity of the DNNs. After empirically examining its perfor-

mance, we demonstrate three major findings of DHMs, which correspond to three

contributions of this research.

First, this study demonstrates the complementarity of data and model. The data

complementarity is demonstrated by the higher performance of the DHMs combin-

ing numeric and imagery data over the benchmark models. The model complemen-
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tarity is demonstrated by integrating classical demand modeling and deep learning

through the latent space in the DHMs. Technically, the complementarity is achieved

by the SAE design. Unlike the simple concatenation, SAEs combine the imagery and

sociodemographics through the supervised sociodemographics for AE. Second, this

study enriches the hybrid demand models with deep hybrid models by constructing

a latent space from the satellite imagery using deep architectures. This latent space

contains meaningful social and spatial characteristics, although its interpretation is

no longer as straightforward as the classical hybrid demand models. Third, DHMs of-

fer one method to compute economic information for the generated satellite imagery.

The high-quality images are generated using the linearly transformed latent variables

through the AE in stable diffusion models. The economic information related to the

generated urban images (e.g. mode shares and social welfare) can be computed be-

cause the DHMs successfully associate sociodemographics, travel behavioral outputs,

and satellite imagery through the latent space.

Our framework is hybrid for five reasons. Three reasons are already fully elabo-

rated: it is hybrid because it integrates numeric and imagery data, combines classical

demand modeling and deep learning, and enriches the classical hybrid model fam-

ily. Two other reasons, relatively less elaborated so far, are on the machine learning

side. The DHMs are hybrid because they mix supervised and unsupervised learn-

ing: the vertical axis of DHMs in Figure 3-1 represents supervised learning, while the

horizontal autoencoder represents unsupervised learning. It also mixes the discrimi-

native and generative methods. The decoder generates new satellite imagery, while

the behavioral prediction is discriminative. The two perspectives are explained in

other machine learning studies that adopted the hybrid generative-discriminative or

supervised-unsupervised methods [85, 46, 31, 90].

The DHM framework still has many limitations. The DHMs leverage the unique

capacity of deep autoencoders and stable diffusion models to process urban imagery.

However, this strength is inevitably associated with the challenges in a highly com-

plex neural network. Although deep learning can minimize errors effectively, the

final solution by no means is globally optimal. Neural networks converge to various
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local minima, and this non-identification issue is still a pending challenge in deep

learning research. The economic information computed from the generated satellite

imagery is a numerical approximation, as opposed to the analytical solutions from

the classical parameter-based discrete choice models. The latent space in DHMs is

no longer constrained to a few latent variables, limiting its interpretability in the

classical parameter-based sense. It is also ambiguous how to guarantee stability and

robustness in such a high-dimensional latent space. The DHMs achieve a relatively

high predictive performance, but their transferability could be limited. It is unclear

whether the models can still perform well when trained in one context and used in

another. This study uses the autoencoder in the state-of-the-art stable diffusion for

image generation, but the quality of image generation can always be further improved.

Meanwhile, the U-Net architecture in Models 5-6 is computationally expensive, thus

limiting its replicability for future researchers. Regarding future work, the DHMs

combine two purposes: representation learning for prediction and image regeneration

for image-based story-telling. But, it might not be easy to improve two purposes

simultaneously, so future studies can focus on achieving one purpose without sacri-

ficing the other. Empirically, researchers could explore how to use satellite imagery

in other contexts. For example, sociodemographics are often considered exogenous

variables for energy consumption, health, and air pollution, so future research could

combine satellite imagery with sociodemographics to analyze these factors using the

DHM framework.
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Chapter 4

Generative Urban Design:

Human-guided automatic urban

design via diffusion models

4.1 Background

Urban design, a term originating from the Latin word “urbs” (meaning “city”), has

gained significant attention as cities grow and evolve. Although the precise philosoph-

ical definition of urban design remains debatable, its core objective is widely accepted

as “shaping better places for people” [23]. Urban design is crucial in achieving public

welfare, sustainable development, efficient use of resources, and long-term economic

growth. Therefore, urban design is highly interdisciplinary, drawing on fields such as

social science, civil engineering, environmental engineering, economics, architecture,

and political science. In practice, urban design is highly complex and iterative. Al-

though the process may vary depending on the specifics of each project, there are a

few stages in general. First, the objectives and goals for the project must be identi-

fied. Then, a land survey is performed to assess the existing infrastructure, natural

environment, and the sociodemographics of the neighborhood. The urban planners

will identify strategies for achieving the goals based on the assessment. The strategies
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will need to be communicated with a multitude of stakeholders for feedback and iter-

ation, including the local government, the community residents, the urban planners,

and the real estate developers. Effective communication among these stakeholders is

paramount, and it is particularly crucial to engage the public in shaping their neigh-

borhoods, as they possess invaluable knowledge about their local contexts and needs

[74, 107].

“A picture is worth a thousand words.” Visualizations can facilitate stakeholder

communication, providing intuitive views of the plan to the non-experts. Kevin

Lynch’s seminal work on the “imageability of the city” underscores the significance

of mental maps and visual perception in shaping urban environments [96]. Quick

and realistic visualizations are pivotal in bridging gaps in understanding, fostering

effective communication, and achieving stakeholder consensus.

Given the iterative nature of urban design, tools that expedite design, communi-

cation, and feedback are highly desired. In recent years, Artificial intelligence (AI)

technologies have exhibited exciting potential in various aspects of urban design, in-

cluding gaining data-driven insights, evaluating and optimizing the performance of

plans, and creating visualizations of plans. One distinct advantage AI has over hu-

mans is the ability to learn from large amounts of data. AI models have been built to

produce deep insights, identify trends and patterns in complex city ecosystems, and

generate optimal land use and building layouts [149, 150, 190]. The insights gained

from these models help human planners make more informed and data-driven deci-

sions. Additionally, AI can help evaluate and optimize the performance of plans. For

example, Delve1 from Sidewalk Labs and Forma2 from Autodesk are two commercial

tools that are capable of generating and evaluating designs. Lastly, the advent of

generative AI brought more potential for AI to learn and apply visual styles for quick

visualization of completed plans with image-to-image models [181, 36].

Although AI has huge potential to transform the urban design process, there are

still many practical challenges. First, current research has mainly focused on specific

1https://www.sidewalklabs.com/products/delve
2https://www.autodesk.com/products/forma/overview
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and well-constrained tasks. As urban design comes in different shapes and forms,

parameterizing such a process is not straightforward. Although the consensus is that

the future will be human-driven and machine-assisted, there is no overarching frame-

work describing how this human-machine collaboration will manifest itself. Second,

generative AI consumes large amounts of data, but labeled data in the urban setting

is expensive and, hence, relatively scarce. Finally, as this technology is still emerg-

ing, AI tools are primarily found in research environments and have limited practical

application.

In this work, we make attempts at addressing the challenges by envisioning a

human-machine collaboration framework for the urban design process, then instan-

tiating this framework with a model trained from data automatically labeled from

existing resources, and lastly evaluating the state-of-practice and reflecting on chal-

lenges and future research directions. The rest of the chapter is structured as follows:

Section 4.2 reviews the literature on the role of imagery in urban design, the relevant

AI technology, and the application of AI in urban design. Section 4.3 proposes a vision

for the human-machine collaboration in urban design. Section 4.4 instantiates this

framework with a specific use case, followed by the detailed account of methodology in

Section 4.5 and dataset in Section 4.6. Section 4.7 provides a quantitative evaluation

of the model from a user survey. Section 4.8 conducts a qualitative demonstration of

the model, showcasing the model’s generation capabilities with respect to constraints

and land use descriptions. Section 4.9 discusses the feedback from practitioners and

scholars, and reflects on the limitations and potential extensions. Lastly, Section 4.10

concludes this chapter.

4.2 Literature Review

4.2.1 Urban Imagery in Planning and Design

In the realm of urban planning and design, the significance of urban imagery, or

visualizations, has been widely recognized. Urban imagery is critical in the initial

85



design stages and can improve public understanding and participation to facilitate

effective communication and consensus building [96, 10]. Historically, designers have

crafted maps, blueprints, and visualizations by hand, a labor-intensive process often

relying on artistic interpretation. In the last decade, the scientific community be-

gan to harness the power of imagery for predictive purposes. Both satellite imagery

and street view imagery were shown to be correlated with various sociodemographic

and economic indicators [67, 7, 127, 183, 42]. Although deep learning models effec-

tively improve the understanding of communities, there is a large gap between model

development and model deployment for decision-making [19]. Generative AI may

revolutionize how we envision and build our urban environments. Its capacity to pro-

duce coherent natural language descriptions and vivid urban imagery offers a powerful

means of enhancing communication, making complex concepts more accessible. At

the same time, Generative AI capitalizes on the advantages of deep learning and thus

has the potential to shape a future where urban development is both visionary and

data-informed.

4.2.2 Image Generation Models

With the rise of deep learning and neural networks, tremendous progress has been

made with image synthesis. The paradigm has shifted multiple times, from variational

autoencoders to generative adversarial networks, and now to diffusion models.

As a baseline, the autoencoder (AE) can learn latent representations from images

using an encoder and generate new images using a decoder. However, the baseline

AE lacks sampling capacity and generates blurry images. Variational autoencoders

(VAE) regularize the latent space of autoencoders with a Gaussian prior, enabling a

smooth transition of generated images [50]. However, VAEs still have limitations in

generating high-quality images.

Generative adversarial networks are known for generating high-quality, realistic

images. GAN consists of two networks, a generator and a discriminator. A game-

theoretic (adversarial) training scheme is used to update the two networks in alternate

steps. The discriminator tries to distinguish between real samples and the generator-
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produced samples, whereas the generator tries to produce samples that can hinder the

discriminator. Introducing a discriminator and this training scheme to any generator

network leads to the generation of highly realistic images [84, 14, 113]. As a result,

GANs have shown tremendous success in various types of image synthesis tasks.

For example, DCGAN is one of the earliest, and most popular GAN that generates

realistic images from a random vector; StyleGAN is known for its ability to control

the “styles” of the generated images [72]; CycleGAN is designed specifically for image-

to-image generation. Despite the success of GANs, there are still a lot of challenges

associated with the adversarial training process [132]. First, GAN training can be

highly unstable. Since updates are made to two networks at the same time, the

balance between the generator and the discriminator is very delicate and sensitive to

architectures and hyperparameters. Second, GAN suffers from mode collapse, where

the generated samples lack diversity. As the generator finds the principal mode and

focuses around it, the other modes in the data distribution do not get learned properly.

A lot of effort has been put into solving these issues. Despite promising achievements,

these issues persist in the general setting since they stem from the training paradigm.

At the same time, diffusion models emerged as a more powerful paradigm in

image synthesis. Diffusion models are a class of likelihood-based models that generate

images by gradually removing noise from a signal [59, 110, 30]. The training procedure

involves two processes: the forward diffusion process and the reverse diffusion process.

The forward diffusion process is a Markov chain, where noise is added to the training

sample incrementally until pure Gaussian noise is achieved. The reverse diffusion

process aims to reverse the forward process. A neural network is trained to remove the

noise at each step until we recover the original training sample. Therefore, at inference

time, images are generated by running the reverse diffusion process on random noise.

Compared to GANs, diffusion models exhibit better scalability and parallelization,

as well as more stable training and higher fidelity images. The only drawback is

that diffusion models take up much more computational resources and time at both

training and inference [28]. With rapid improvements in hardware, diffusion models

now form the backbone of the state-of-the-art models, such as OpenAI’s DALL-E2
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[123], Google’s Imagen [130], and the open-sourced stable diffusion [129].

To date, image synthesis models have been applied to a wide variety of tasks, which

can be divided into two categories: text-to-image and image-to-image. Earlier image

synthesis models used numerical vectors to prompt the generation, which is difficult

to interpret and greatly slowed the adoption of these models in the broader scientific

community. OpenAI’s Constrastive Language-Image Pre-training (CLIP) [122] can

learn visual concepts from natural language supervision efficiently. The emergence

of CLIP bridged the gap between language and images, contributed to cross-modal

understanding, and enabled text-guided image synthesis, which lowered the barrier

of entry to experiment with the models and popularized generative AI in the broader

scientific community. Another important category is image-to-image applications,

including image editing [6], image inpainting [95], image-to-image translation [38],

image super-resolution [131], etc. Among these models, latent diffusion, also known

as stable diffusion, is one open-sourced model that is capable of performing both

text-to-image and image-to-image tasks [129]. The latent space richness has inspired

researchers to fine-tune and extend stable diffusion to discover more applications and

study its properties. The latent space in stable diffusion has also been shown to be

useful in segmentation [165], classification [195], and anomaly detection [119]. To

introduce capabilities beyond the original stable diffusion, ControlNet has provided a

versatile gateway towards fine-tuning with custom conditions beyond text [186]. The

ControlNet framework demonstrated the ability to perform in-context learning, with

promising generalization capability on controllable image editing [162, 121].

4.2.3 Generative Urban Design

With the rapid advances in generative AI, applications of deep generative models in

urban design and design have been widely explored. Deep generative models have

demonstrated impressive performance and great potential in various tasks. Compared

to humans, AI can learn from vast amounts of data very quickly and has the potential

to learn hidden patterns not defined by humans from real design cases. AI can also

facilitate stakeholder engagement in the early stages because of fast prototyping and
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visualization of extensive design options.

There are two major approaches to urban design with generative models: design-

ing the functional form and designing in the pixel space. The functional form of land

use configurations can be formulated as a longitude-latitude-channel tensor, with the

channels being different land use types. A pix2pix model was trained to generate land

use type, floor-to-area ratio, and building cover ratio from road network sketches us-

ing GAN [115]. To enhance the coherence of the generated plans, a spatial graph can

be used to learn the representations of surrounding contexts. Then, a generative ad-

versarial network named LUCGAN was trained to generate a land-use configuration

tensor automatically for an empty geographical area [150]. This model was further

enhanced with spatial hierarchy, sub-area dependency, and human instructions [149].

In addition to GANs, reinforcement learning can also be used to learn the land use

configuration tensors [190]. Designing the functional form enables easier computation

of metrics such as spatial efficiency, land use diversity, and walkability. Designing in

the pixel space attempts to generate the figures of the final design using image syn-

thesis algorithms. With powerful image generation algorithms, many studies focused

on visual exploration have emerged. For example, image-to-image generative net-

works are trained to predict building footprint from land cover [3]. Additionally,

given the street view segmentation, researchers developed tools to generate real-time

rendering of satellite images [181, 36] and street view images for users to interact

with [112]. Designing in the pixel space makes the design easier and more intuitive

in communication while sacrificing some precise functional form information.

Comprehensive reviews of current applications can be found in [64, 168, 68]. It is

commonly believed that humans and machines have complementary strengths, and

the future of generative urban design will be human-led and machine-assisted, with

a strong emphasis on human-machine collaboration [64, 68]. As this field is still in

its early stages, many challenges remain. First, current research has mainly focused

on specific and well-constrained tasks. There is no overarching framework describing

how this human-machine collaboration will manifest itself. Second, as urban design

comes in different shapes and forms, parameterizing a design is not straightforward.
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Third, generative AI consumes large amounts of data, but labeled data in the urban

setting is expensive and, hence relatively scarce.

4.3 The Human-machine Collaboration Vision

To address the challenges identified in the previous sections, we designed an end-

to-end framework to facilitate both the design and the visualization process. This

process is inspired by recent advances of GenAI in both natural language processing

and image synthesis and the multi-modal functionalities of generative models. Fig-

ure 4-1 illustrates the human-machine collaboration planning process. Under this

framework, the AI takes multi-modal inputs describing the design context. Aided by

powerful language models, humans can now describe the problem for the AI to digest.

The humans will translate various design factors such as zoning, environment, and

demographics into text descriptions. Information that is not easily communicated

in text form, such as the built and natural environment can be supplied in image

form. The AI takes in both types of information and generates designs for the human

planner to evaluate. The designs can be a single output, such as satellite imagery

rendering, or a suite of outcomes, including street views, land use blocks, etc. The

human planner can then adjust the model inputs and iterate until the desired output

is produced.

This framework aims to draw out the best of both human planners and genera-

tive models, where humans work on problem definition and decision-making, and AI

focuses on rapid prototyping of design ideas. The ultimate goal is to communicate

with this AI in the same way as ChatGPT. Imagine a stakeholder meeting scenario

where planners and developers meet with the community. The planner starts with

a piece of land and takes the geographical and policy constraints to the AI. The AI

generates an initial design for feedback. The conversation then begins. The kids and

the seniors might want a recreational playground; the commuters might ask for a

transit station; the environmentalists might want to make the buildings greener; the

developers will want to build to increase the profit on cost, etc. The AI then takes in
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the conversation, along with the initial geographical and policy constraints, to iter-

ate on the designs and present alternatives showcasing the tradeoff between different

components.

The most critical challenge in the way of turning this vision into reality is the

availability of good data. GenAI can only be generated if trained with enough rele-

vant, high-quality samples. In the next section, we present a specific use case of this

framework, detailing the data curation, model specification, and the training process.

Figure 4-1: The human-machine collaboration planning process.

4.4 Problem Framing

This section instantiates the framework with a specific use case, providing a detailed

account of the training process for a single application. In this thesis, a generative

design tool is trained for early-stage concept planning.

At this stage, planners conduct preliminary assessments to define goals and es-

tablish concept plans. Concept plans are preliminary high-level visual representa-

tions that offer a comprehensive perspective on potential development options. We

want to foresee how different areas could be allocated for residential, commercial, or

industrial purposes, and how much amenities and open spaces to leave space for to

meet communal and recreational needs. Simultaneously, we consider rough outlines of
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transportation networks, envisioning how residents will navigate the urban landscape.

Concept plans often serve as a starting point for public engagement and discussions

and lay the ground for detailed design work. Therefore, satellite imagery is chosen as

this application’s output due to its ability to offer an intuitive and broad-scale visual

representation.

Several target functionalities have been identified to achieve the goals.

1. Having control over AI-generated land use patterns.

This states the core function of the model. Since the primary objective is to

explore various land use scenarios, humans direct the AI on the specific land

use mix to be examined. The major land use types considered are residen-

tial, commercial, industrial, park, nature reserve, open parking, and farmlands.

Residential areas consist of houses and apartments. Commercial areas include

offices, shops, retail, malls, etc. Industrial areas include warehouses and fac-

tories. Parks are urban green spaces, mostly within the city. Nature reserves

are large natural habitats such as national parks and reserves. Open parking is

parking lots without cover, which is visible from aerial imagery. Farmland is,

by its name, agricultural.

2. Producing alternate designs for the same inputs.

There is a trade-off between more precise control and more AI creativity. On one

end of the spectrum, we specify the function and footprints of each building and

ask AI for a visualization. This approach is suitable at the final rendering phase,

once all detailed designs have been finished. Conversely, we give AI absolute

freedom to generate images without any guidance. This approach is suitable

for conceptualizing fictional cities. Considering our model’s intended role to

provide inspiration in the concept planning phase of real-world projects, we

only control for the types of land use patterns but leave the spatial placements

to the AI model.

3. Respecting existing infrastructure and natural environment.
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Elements of the built or natural environment that are not subject to redesign

must be accounted for. The model should acknowledge and adhere to these

existing constraints while generating new designs.

4. Learn and apply local urban textures in different cities.

One advantage AI has over humans is its ability to learn hidden patterns and

styles from data directly. Despite the distinct style inherent to each city, articu-

lating and applying these unique styles can be challenging. We want to leverage

AI’s advantage to envision alternate realities for our cities and learn from the

best practices.

4.5 Methodology

This section introduces a two-stage workflow designed to fulfill the objectives pre-

sented in Section 4.4, as depicted in Figure 4-2. The first stage involves the design of

human-guided controls, and the second stage involves selecting and training a model

that responds to these controls. A detailed discussion of both stages follows in the

remainder of this section.

Figure 4-2: Two-stage model training
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4.5.1 Feature Extraction

The first stage involves creating high-quality training data, which is crucial for ef-

fective model learning. For the model to generate new satellite imagery in response

to descriptions and constraints, training pairs consisting of design constraints, design

descriptions, and target satellite imagery need to be created. Figure 4-3 shows a few

sample training pairs, followed by a detailed breakdown of each component.

Figure 4-3: Sample Training Pairs

Target Satellite Imagery: We query the satellite imagery based on slippy map

tile names [164] to obtain accurate coordinates for each tile. In this design scenario,

the resolution was set to 450m x 450m, a design choice that echoes the 15 min

city/neighborhood concept [163, 22, 106]. We aim to design a neighborhood that
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is large enough to host a small mixed-use community with basic functionalities yet

accessible within a 15-minute walk.

Design Constraints: Road infrastructure and natural environments were de-

fined as constraints that will not be altered in the generation process. The ideal

constraints would help frame the design space without being too restrictive. There-

fore, the above-ground railways, major roads, and the waterways were selected as

constraints. We extracted the railways, roads, and waterways layers from Open-

StreetMap and used geoprocessing tools to extract the image for each tile so that the

constraints would align with the true satellite imagery. Figure 4-4 shows the symbols

for each constraint.

Figure 4-4: Symbols in the Design Constraint Image

Design Descriptions: The design descriptions have four components, each de-

scribing the setting, land use, residential type, and building footprint. We discuss

how we came up with each component below. Texts in [ ] are information to be filled

from geoprocessing.

1. Setting: Satellite image of a [city/town] in [metropolitan area name].

First, we want to orient ourselves. The city and the suburbs will look very dif-

ferent for each metropolitan area. The OpenStreetMap “places” layer indicates

what type of “places” for each significant human settlement, such as city, suburb,

town, village, etc. However, large pieces of urban areas are often missing in this

layer, and the definitions for city/town/village are not rather fuzzy, leading to

inconsistent labeling in different cities. Since we only consider the urban areas,

we decided to only distinguish between city and town, with everything outside

of the city municipality being labeled “town”.

2. Land use: land use parcels include [x percent of residential, x percent of com-
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mercial, x percent of industrial, x percent of open parking, x percent of park, x

percent of nature reserve].

Land use patterns are the most important design decisions in the process.

Whether we are designing a residential area, a commercial area, or a mixed-

use district will determine the appearance of the neighborhood. The Open-

StreetMap “land use” layer describes the primary use of the land. We take six

main categories and calculate the percent area each covers within a tile. Ad-

ditionally, open parking spaces are a distinct land use feature on the satellite

imagery that is not covered in the land use layer. This information can be found

in the “traffic” layer and appended as one of the land use categories.

3. Residential type: Residential area consists [entirely of houses/entirely of

apartments/of a mix of apartments and houses ].

Different dwelling types will host very different population densities. Hence, the

communities built around them will look very different. Therefore, we calculate

the percentage of houses and apartments whenever buildings are labeled. Under

the design scope of 450m x 450m, most of the areas only have one type. Instead

of indicating the exact mix proportions, we only distinguish single-typed areas

from mixed developments.

4. Building area: [High/Medium/Low ] building coverage.

On the high level, the land use patterns loosely describe the main area function-

alities. But, it is unknown exactly how much space is occupied by the buildings,

as opposed to other roadside infrastructure or smaller facilities. The building

density description complements the land use descriptions by stating exactly

the percentage of land occupied by buildings. The “buildings” layer in Open-

StreetMap delineates the outlines of buildings and houses. Ideally, we should

further complement the land use descriptions with building types. However, the

building type information is largely incomplete. Building density is measured by

the percentage of land covered by buildings. Three categories were established

based on natural breaks in the data found by the Fisher-Jenks algorithm: high
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building density - [0.26,1]; medium building density - [0.10,0.26); low building

density - [0, 0.10).

4.5.2 Generative Urban Design

The second stage involves training a model to generate satellite imagery according

to the description and constraints. Diffusion models were chosen due to their stable

training properties, ease of scalability and fine-tuning, and their proven potential to

extend to multi-modal inputs and outputs. We enable the multi-modal capability of

diffusion models using ControlNet [186]. ControlNet is a framework created specif-

ically to fine-tune diffusion models with custom conditions. It creates two copies of

the blocks in the neural network: one “locked” copy and one “trainable” copy. The

“locked” copy preserves the weights from a production-ready diffusion model, ensuring

that high-quality images can be generated even from the beginning. The “trainable”

copy gradually learns the custom condition. The final generation will be a weighted

combination of both copies through a “zero-convolution" mechanism, which is a 1× 1

convolutional layer with both weight and bias initialized to zeros.

Suppose a neural network block ℱ(·; Θ), with trained parameters Θ, maps inputs

𝑥 to outputs 𝑦: 𝑦 = ℱ(𝑥; Θ). Now we want to introduce custom condition 𝑐. Two

instances of zero convolutions are applied on the custom condition 𝒵(·; Θ𝑧1), and

the custom-conditioned output of the trainable copy 𝒵(·; Θ𝑧2). Then the ControlNet

output 𝑦𝑐 is

𝑦𝑐 = ℱ(𝑥; Θ) + 𝒵(ℱ(𝑥+ 𝒵(𝑐; Θ𝑧1); Θ𝑐); Θ𝑧2) (4.1)

At the beginning, the weights of zero convolutions will be initialized to 0, and the

output strictly comes from the production-ready diffusion model ℱ(𝑥; Θ). As training

progresses, the weights of the trainable copy increase, and the model will respond to

the custom conditions. For the technical details of ControlNet, please refer to [186].

Stable diffusion, an open-sourced and production-ready diffusion model, is a robust

and powerful backbone for fine-tuning. Therefore, we select stable diffusion as our
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base model. The mathematical details about stable diffusion are in Appendix B.

4.6 Dataset

Data from three major U.S. cities was acquired: Los Angeles, Dallas, and Chicago.

The geographical coverage of the dataset is shown in pink in Figure 4-5. To select

useful design spaces, only the urban areas (shown in brown in Figure 4-5) defined

by the U.S. Census [18] were selected. Furthermore, since OpenStreetMap is crowd-

sourced data and can be incomplete in many ways, we filter to tiles with over 50%

of the area being covered by major land-use patterns described above. After both

filters, we had 18k, 7k, and 7k training samples for Chicago, Dallas, and Los Angeles,

respectively. For all three cities, we first augment the training set by shifting the tiles

in both the down and right directions by half of the tile width. In addition, we further

augment the Dallas and Los Angeles datasets by shifting the tiles by half of the tile

width right and down separately, thus quadrupling the sample size. As a result, we

had 36k, 28k, and 28k samples for Chicago, Dallas, and Los Angeles, respectively.

Figure 4-5: Dataset Coverage
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4.7 Model Evaluation

A user study was conducted to receive evaluation and feedback for the trained model.

The user study has two parts: scoring the selection. Appendix C includes a sample

question from both parts. In the scoring part, users are asked to rate an image with

a score between 1-5 on the images’ consistency with the described land use, on the

degree to which existing infrastructure and natural environment are respected, and

on the realism of the images. Each user is randomly presented with either the real

or the generated image. In the selection part, a design description and a constraint

image are presented alongside two satellite images, one real and one generated. The

user is asked, “Which image reveals an urban environment closer to the language

description?” While the first part provides the breakdown of each of the goals for

the model, the second part of the study reveals user preferences in real scenarios.

20 mixed-use (having 3 or more land use types) neighborhoods are selected for this

evaluation. Part 1 and Part 2 contain the same pool of images.

The generated images have successfully learned the features in real images. Table

4.1 tabulates the scores. The generated images are slightly worse regarding matching

land use patterns and better regarding conforming to the constraints. The generated

images received lower scores on realism due to the typical higher saturation of the

generated images, and the trees being oil painting style. In addition, from Part 2 of

the user study, out of the 20 pairs, 12 generated aerial images are selected over the

real images as better revealing the description.

Land use Constraint Realism

Real 3.73 3.68 3.87
Generated 3.39 3.94 3.06

Difference -0.34 +0.26 -0.81

Table 4.1: User study scores of generated and real satellite images (Min score:1, Max
score:5)
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4.8 Model Demonstration

In this section, we qualitatively demonstrate the model’s capabilities. First, we illus-

trate that the goals outlined in Section 4.4 are achieved. Second, an ablation study

is performed on the components of the design description. Lastly, we present some

thought experiments that could be performed using this model.

4.8.1 Goals

Having Control over AI-generated Land Use Patterns: First, we create images

based on real descriptions taken from the dataset, and we compare these generated

images with the actual images. While they don’t have to be identical, we should

notice resemblances and be able to account for the differences. The figures in Table

4.2 show one sample from each city. The first and second columns show the design

description and constraint, and the third column shows the true satellite image, with

the land use annotation taken from OpenStreetMap. The final column displays the

generated image. Upon qualitative examination, we can identify the various land use

parcels within this image, which we have marked directly on the image. Although the

spatial placements of the land use parcels are different for the true and the generated

images, the types and the approximate proportions are similar in all three cases.
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Design Description Design Constraint True Satellite Image Generated Satellite
Image

Satellite image of a city in
Chicago. Land use parcels in-
clude 40 percent residential, 15
percent industrial, 15 percent
commercial, 10 percent park, 5
percent open parking. Resi-
dential area consists entirely of
houses. Medium building cover-
age.

Satellite image of a town in Dal-
las. Land use parcels include 30
percent residential, 25 percent in-
dustrial, 20 percent commercial,
20 percent farmland. Residential
area consists entirely of houses.
Medium building coverage.

Satellite image of a town in Los
Angeles. Land use parcels include
65 percent residential, 20 per-
cent park. Residential area has
a mix of apartments and houses.
Medium building coverage.

Table 4.2: True vs. generated satellite imagery
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Additionally, we convert existing land use patterns into new ones to demonstrate

the model’s understanding of various land use patterns. The figures in Table 4.3

show different land use alternatives for the three places in Table 4.2. Among the

alternatives, we show the model’s understanding of different proportions of residential,

industrial, commercial, park, nature reserve, and open parking spaces. Residential

areas are characterized by large, dense connected buildings with green space and minor

roads. The roads have are a mix of curved and straight grids. Commercial areas are

characterized by larger buildings, with larger spacing. Often accompanied with small

amounts of other amenities such as parking lots and green space. Industrial areas are

often large and isolated. The buildings have large footprint, and usually there are no

other amenities of close proximity. Open parking areas are small, open spaces that

are often attached to a commercial or industrial building. From an aerial perspective,

some cars are usually visible. Parks are smaller green space that often on river banks,

and/or surrounded by residential or commercial areas. There are often patterns of

small amenity buildings, or shapes of sports fields. Nature reserve are isolated, large

areass of green space and waterways with a lot of tree covers. Farmland, similarly,

are large pieces of land, with no visible artifacts from a satellite image.

Producing alternate designs for the same inputs: In addition to responding

to prompts, Figures in Table 4.4 demonstrate that the model can generate multiple

designs given the same prompt. Each row of Table 4.4 displays three alternative

designs in response to the description and constraints for each instance in Table 4.2.

Qualitatively, the spatial layout and shapes of the land use parcels are different in

each set of designs, while the components and the proportions are similar.
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Base Description: Satellite image of a city in Chicago. Land use parcels include {}.
Medium building coverage.

Base Description: Satellite image of a town in Dallas. Land use parcels include {}.
Medium building coverage.

Base Description: Satellite image of a town in Los Angeles. Land use parcels include {}.
Medium building coverage.

60% residential, 20% park 60% commercial, 20% open
parking

30% industrial, 25% nature
reserve, 25% farmland

Table 4.3: Generations over different land use combinations
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Design Description Design 1 Design 2 Design 3

Satellite image of a city in
Chicago. Land use parcels in-
clude 40 percent residential, 15
percent industrial, 15 percent
commercial, 10 percent park, 5
percent open parking. Resi-
dential area consists entirely of
houses. Medium building cover-
age.

Satellite image of a town in Dal-
las. Land use parcels include 30
percent residential, 25 percent in-
dustrial, 20 percent commercial,
20 percent farmland. Residential
area consists entirely of houses.
Medium building coverage.

Satellite image of a town in Los
Angeles. Land use parcels include
65 percent residential, 20 per-
cent park. Residential area has
a mix of apartments and houses.
Medium building coverage.

Table 4.4: Balance between creativity and design descriptions
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Respecting Existing Infrastructure and Natural Environment: Regard-

less of the type, shape, and area of the constraints, the model will respect these

given constraints. Constraints in this study include major railways, roadways, and

waterways. The figures in Table 4.5 show the model’s generation under different

combinations of constraints.

Additionally, we show the transformation in generations when different types of

constraints are added in Table 4.6. The common design description used is “Satellite

image of a city in Chicago. Landuse parcels include 35 percent residential, 20 percent

commercial, 5 percent open parking. Residential area has a mix of apartments and

houses. Dense building coverage. ” Starting from a blank image, we add the water-

ways, railways, and roads sequentially as we move down the rows of Table 4.6. The

generations, correspondingly, started from a typical grid structure, and sequentially

incorporated the constraints into the generations.

Learn and Apply Local Urban Textures in Different Cities: Given the

same constraint and description, the figures in Table 4.7 show that the generations in

three cities look distinctly different. Each row in Table 4.7 used the same description

and constraint, except for the city name (made italic in the description). One distinct

feature to notice is that green space and trees are often associated with houses in

Chicago and Dallas, but not in Los Angeles. Additionally, the footprints of individual

houses in Chicago are generally smaller compared to Dallas and Los Angeles. Houses

in Los Angeles often have swimming pools, marked by light blue spots.
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Constraints Constraint Image Design

Railways, roads

Waterways, roads

Railways, roads

Roads

Table 4.5: Adherence to different types of design constraints
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Constraints Constraint Image Design

No Constraint

Add Waterways

Add Railways

Add Roads

Table 4.6: Sequentially adding design constraints to generations
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Design Description Design Constraint Chicago Dallas Los Angeles
Satellite image of a city
in [city name]. Land
use parcels include 40 per-
cent residential, 15 per-
cent industrial, 15 per-
cent commercial, 10 per-
cent park, 5 percent open
parking. Residential area
consists entirely of houses.
Medium building coverage.

Satellite image of a town
in [city name]. Land use
parcels include 30 percent
residential, 25 percent in-
dustrial, 20 percent com-
mercial, 20 percent farm-
land. Residential area
consists entirely of houses.
Medium building coverage.

Satellite image of a town
in [city name]. Land
use parcels include 65 per-
cent residential, 20 percent
park. Residential area has
a mix of apartments and
houses. Medium building
coverage.

Table 4.7: Local urban textures in different cities
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4.8.2 Ablation Study

In this section, the effect of each component of the description is isolated. Since land

use patterns and city names were examined in detail in Section ??, they will be fixed

in this part. The figures in Table 4.8 use the same base description, with only one

component changed for each image. For example, the description used to generate

the image on row #2 and column “All houses” is: “Satellite image of a city in Chicago.

Land use parcels include 40 percent residential, 20 percent commercial, 20 percent

park. Residential area consists of all houses. Sparse building coverage.”.

City/Town: A distinct difference can be observed between the urban and sub-

urban environments. In general, the buildings are smaller in the city and the trees

are scattered instead of a whole area covered entirely by trees.

Houses/Apartments: A transition in building footprints can be observed. The

left side of the image is created as residential. In the “all houses” scenario, houses

form a uniform grid. With the introduction of apartments, larger and more irregularly

shaped buildings started to appear.

Building coverage: Going from left to right, the area covered by buildings is

increasing. The model learns to create larger and denser buildings. For example, in

the dense scenario, we do not see trees on the left part of the image, and the houses

are very densely packed.

4.9 Discussion, Limitations, and Future Work

Our model demonstrates a controlled synthesis of satellite images for urban design,

both in quantitative and qualitative terms. However, this study is an early attempt at

developing a suite of GenAI-based models for urban design. In an effort to maximize

the capabilities of generative AI tools and guide subsequent research, we conducted

interviews with several scholars and practitioners. Their insights on using generative

AI tools and suggestions for essential features to be incorporated in future iterations

were invaluable. In this section, we share a few lessons learned during the development

of this chapter, recognize some model limitations, and suggest potential directions for
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Base Description
Satellite image of a city in Chicago. Land use parcels include 40 percent residential, 20
percent commercial, 20 percent park. Sparse building coverage.

#1

City Town

#2

All houses All apartments A mix of houses and
apartments

#3

Sparse building coverage Medium building coverage Dense building coverage

Table 4.8: Ablation study of design descriptions

future research.

Potential use cases: The model cannot be directly applied to planning projects
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in its present form. However, despite being an initial iteration of a more comprehen-

sive version, the model does possess certain value-adds to the industry.

First, the model allows for rapid visualizations of conceptual designs. Planners

and the public can pose “what-if” questions regarding their neighborhoods and receive

visualizations in almost real-time. Valid queries include “What if we remove this

major highway ramp out of our neighborhood?", “What if we turn the residential

area into commercial?”, “What if we build a park in the area?”, etc. While the AI tool

doesn’t offer precise designs, it does furnish a bird’s-eye perspective to aid in intuitive

understanding.

Second, it can uncover associations and styles that are harder to articulate. The

model learns styles from different cities. By contrasting visualizations across these

cities, one can draw inspiration for elements not initially considered in the design

constraints and prompts.

Third, it helps non-professionals to engage with and explore professional concepts

around urban design. This tool enables those without professional experience to delve

into urban design effortlessly. It has the potential to inspire public involvement and

creativity in local planning initiatives.

Data limitation: In this section, we discuss one limitation incurred by the data.

Modeling limitations and future work will be discussed in the next section. The

proportions of land use patterns being generated in the images are approximations. To

resolve the common challenge of insufficient data, we proposed using a widely available

and standardized data source - OpenStreetMaps- to curate labeled training data. The

advantage is clear - we solve the problem of insufficient amount of training data, and

our model can be easily generalized due to standardization. The disadvantage is

that OpenStreetMaps is crowd-sourced. The data quality varies between regions,

and much pre-processing is needed. The land use labels are missing in some places,

resulting in imprecise descriptions of the land use proportions. Therefore, the learned

representations are approximate.

Future research: Despite the current advancements in GenAI, it does not fully

consider real-world applications’ complexities. Several recurring themes emerged in
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our interviews. Tackling these issues presents significant challenges, whether from a

technological or data collection standpoint. As such, we underscore them as key areas

for future research.

First, satellite image as the sole output is not informative enough. While satellite

imagery provides a comprehensive overview of an area, its utility is limited, partic-

ularly due to the height information. This limitation becomes apparent in complex

urban layouts, where buildings may house commercial spaces on the ground floor and

residential units above. From the bird’s eye view, a warehouse, which is industrial,

and a large grocery supercenter, which is commercial/retail, might look the same.

Additionally, relying solely on satellite images precludes thorough assessments of key

factors like economic impact, feasibility, sustainability, and walkability, all of which

are vital in real urban design scenarios. Accurate knowledge of the generated building

boundaries, intricate road networks, and any bicycle or public transit infrastructure is

essential to conducting these assessments. Therefore, future research should produce

a comprehensive set of outputs beyond just satellite imagery, such as 3D representa-

tions, street views, and land use layouts.

Second, it is important to improve the details of the inputs as much as we focus

on improving the suite of the outputs. The current descriptors are direct descrip-

tions of approximate land use patterns. In actual planning practices, more nuanced

descriptors are used. For instance, zoning data offers a nuanced perspective on land

use, including specifics like building setbacks and floor-to-area ratios. However, the

challenge lies in the fact that zoning regulations vary significantly across cities, posing

considerable difficulties in data collection and processing. Additionally, the topogra-

phy of an area has profound implications on plan feasibility, influencing everything

from building designs to infrastructure development. Therefore, incorporating terrain

data into the model would be a significant step toward creating more realistic and

practical urban design tools.

Third, the descriptors are direct descriptions of land use patterns with no sociode-

mographic associations considered. Attempts were made to use social descriptors

such as high-income, high-walkability, transit-oriented, and well-educated in the cur-
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rent architecture, but it cannot learn from them. This limitation may stem from

the challenge of establishing clear links between these descriptors and land use pat-

terns, or it could be due to our dataset not being sufficiently comprehensive for the

model to recognize these more nuanced associations. Future research should consider

incorporating social descriptors into the descriptions to inspire designs with desired

characteristics.

Fourth, the framework could benefit from image editing capabilities. Currently, a

brand new generation is done each time the description or the constraint is modified.

We cannot choose which parts of the design we want to keep or change. As a first

step, the introduction of ’masks’ could be beneficial. These masks would allow for

the exclusion of certain areas from changes, maintaining the integrity of specific parts

of a town. To take it further, we should be able to edit the style of certain parts of

the image while keeping the content intact.

Fifth, value judgments are not introduced in the current framework. While hu-

man planners possess intuitive and experiential understandings of what constitutes

good design, these criteria are not explicitly conveyed to the AI system. Our current

approach focuses on learning the existing urban patterns – the status quo – without

embedding specific value judgments into the process. Consequently, the AI operates

without distinguishing between the desirable and undesirable aspects of current urban

layouts. This absence of value judgments means that the AI might replicate existing

designs indiscriminately without consideration of their qualitative implications. Ur-

ban development often aims to mirror the present and improve upon it, addressing

its strengths and shortcomings. To align the AI’s output with these developmental

goals, it’s necessary to integrate evaluative criteria into the model. This would enable

the AI to differentiate between the positive and negative elements of existing urban

designs and generate plans that reflect current realities and aspire to enhance them.

Sixth, within a single city, a diverse range of styles may coexist due to historical

reasons or different planning considerations. However, our current model assumes

that each city has a uniform style. This approach overlooks the reality that each

neighborhood and building can embody a distinct style. Acknowledging and incor-
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porating this diversity would greatly enhance the model’s accuracy and relevance in

urban design contexts, allowing it to represent the unique architectural character of

each part of the city more faithfully.

4.10 Conclusion

The iterative nature of urban design favors tools that streamline the design process,

enhance communication, and provide quick feedback. Artificial Intelligence (AI) has

recently shown promising urban design capabilities, such as generating data-driven

insights, assessing and improving plan performance, and crafting visualizations. De-

spite AI’s significant potential to revolutionize urban design, practical implementation

faces numerous challenges. Contemporary research is primarily geared towards nar-

rowly defined, tightly controlled tasks. Urban design, with its variety and complexity,

does not lend itself easily to simple parameterization. While it’s widely agreed that

the future of urban design will involve a synergy between humans and machines,

a detailed framework outlining this collaboration is lacking. Additionally, genera-

tive AI’s reliance on substantial data volumes poses a problem, as acquiring labeled

data in urban contexts is costly and thus limited. This study addresses these issues

by proposing and implementing a novel human-machine collaboration framework in

urban design. This framework is brought to life through a model trained on data au-

tomatically labeled from available resources, offering a novel approach to integrating

AI in urban design and bridging the current gap between theoretical potential and

practical application.

The developed model can produce satellite imagery from design constraints in the

form of images and descriptions in the form of text. It enables human-guided control

over AI-generated land use patterns, offering creativity to generate varied designs

under the same constraint and description. The model also consistently respects

various types of constraints and adeptly incorporates local textures from different

cities in the designs. The trained model could be used for rapid visualizations of

conceptual designs, uncovering implicit associations and styles, and assisting non-
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professionals to engage with and explore professional urban design concepts.

We are in the early stages of generative AI development. While the model has

shown promising results in qualitative and quantitative assessments, many limitations

remain, leading to six key areas for future research. First, a more comprehensive range

of outputs must be developed to enhance urban plan representation and evaluation.

Second, incorporating more details in inputs can contribute to the realism and prac-

ticality of the plans. Third, learning social descriptors could inspire designs with

desired social characteristics. Fourth, allowing editing can promote the usability of

the tool. Fifth, incorporating value judgments into the generative process is essential

for designing beyond the current urban landscapes. Finally, a greater variety of styles

within a single city should be considered.
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Chapter 5

Conclusion

This dissertation examines three emerging issues in urban computing: uncertainty

quantification, data fusion, and generative urban design. The motivation and con-

clusions of each study are discussed in detail in each chapter. To conclude this dis-

sertation, the high-level contributions of each study and the connections between the

chapters are summarized, followed by a discussion of many opportunities for future

research.

5.1 Summary

First, this dissertation identifies the lack of uncertainty quantification in short-term

spatiotemporal demand prediction literature and develops a probabilistic graph neu-

ral network framework to focus not only on the mean but also on the distribution

of the output. Prob-GNNs can accurately predict ridership uncertainty, even under

significant domain shifts such as COVID-19. Prob-GNNs play a significant role from

both the theoretical and practical perspectives. Theoretically, Prob-GNNs provide a

probabilistic view of travel demand and describe distributional characteristics. Prac-

tically, demand predictions with uncertainty estimates allow more efficient resource

allocation in downstream tasks. For example, resources can be allocated to places

with more certain demand. Additionally, spatiotemporal uncertainty patterns inform

operators of potential anomalies, disruptions, and bottlenecks in the system.
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Second, this dissertation develops deep hybrid models (DHM) to combine nu-

meric and imagery data for travel behavior analysis. DHM aims to enrich the family

of hybrid demand models using deep architectures. DHM demonstrated that urban

imagery and sociodemographics contain complementary information because DHM

outperforms benchmarks using only one of the two data sources in both the aggre-

gate and disaggregate mode choice prediction tasks. In addition, DHM constructs a

latent space capable of generating new satellite images that do not exist in reality

and computing the corresponding travel behavior and economic information, such as

substitution patterns and social welfare. DHM is a versatile framework that combines

and creates associations between different types of numeric, unstructured data, and

output variables. But DHM is more than a data fusion framework. DHM is a data

fusion framework with a generative view. Through the latent space, DHM enables

the generation of unstructured data and the association of such generated data with

numeric data and output variables. As a result, DHM is a major move towards a

comprehensive embedding of relevant urban information which offers opportunities

for future research on the predictive capabilities and latent space interpretation to

deepen the understanding of connections between different urban elements.

Lastly, this dissertation creates a human-machine collaboration framework for

generative urban design and showcases a model trained to generate satellite imagery

from a land use text description and a constraint image depicting the built and

natural environment not to be altered. The trained model can generate high-fidelity,

realistic satellite images while retaining control over the land use patterns in generated

images with natural language descriptions, producing alternate designs with the same

inputs, respecting the built and natural environment, and learning and applying local

contexts from different cities. The trained model could be used for rapid visualizations

of conceptual designs, uncovering implicit associations and styles, and assisting non-

professionals to engage with and explore professional urban design concepts.

This dissertation signals the rapidly advancing capabilities of deep learning in

processing more complex data sources. In the uncertainty quantification chapter, all

inputs and outputs are numerical. We aim to draw attention to uncertainty quantifi-
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cation in spatiotemporal demand prediction using deep learning, which is well-studied

in traditional time series and spatial lag and error models. The data fusion chapter

introduces unstructured data to enrich the traditional choice models. The resulting

deep hybrid model framework enhances the predictive power of traditional choice

models and enables additional capabilities to conduct associative analysis between

urban imagery, sociodemographics, and travel behavior. The generative urban design

chapter completely operates in the space of unstructured data. Recent advances in

computational power and large models facilitate the interface between humans and

machines through human-friendly images and natural language. This advancement

greatly reduced the complexities of applying deep learning techniques, making them

more accessible for addressing various aspects of urban development.

The three chapters identify three themes for approaching urban challenges using

deep learning: mimicking, enriching, and surpassing traditional models. The un-

certainty quantification chapter calls the attention of deep learning models to the

overlooked uncertainty quantification, which is well-studied in traditional models.

The data fusion chapter aims to enrich the traditional choice models to offer better

predictive power and to allow for a deeper understanding of travel behavior and urban

imagery. The generative urban design chapter empowers new urban computing tasks:

directly generating satellite imagery for urban designs was unheard of before the ad-

vent of deep learning. This dissertation provides ways of thinking about harnessing

the power of deep learning. As researchers become more adept, we can anticipate

further advancements in urban computing with more creative uses of deep learning.

In summary, the intersection of deep learning and urban computing marks a sig-

nificant stride toward solving urban challenges with more advanced, efficient, and

innovative methods. As this field continues to evolve, it will undoubtedly play a

critical role in shaping our cities’ future and quality of life.
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5.2 Future Research

This dissertation takes one step in each area of interest, while many unexplored

research topics remain. Some follow-up research has already been conducted within

the JTL mobility lab from which this dissertation stems. This section identifies such

studies and presents other examples of potential topics along each line of research.

5.2.1 Uncertainty Quantification

Chapter 2 identified that uncertainty quantification has both theoretical and practi-

cal significance. Theoretically, we want to develop a more correct and comprehensive

understanding of travel demand; practically, predictive uncertainty can help opti-

mize downstream decision-making. Therefore, we identify future works from both

theoretical and practical perspectives.

In Chapter 2, we tested six probabilistic assumptions and two deterministic as-

sumptions. As a direct extension, testing our framework under varying data scales and

contexts is important to corroborate the above conclusions and better inform policy-

making. For example, one scenario that requires special attention is extreme sparsity,

which is investigated concurrently. Zero-inflated negative binomial and Tweedie dis-

tribution best predicted the overly sparse and dispersed ridesharing demand [194, 69].

Other works have used this framework for incident prediction [40] and data imputa-

tion [161].

Prob-GNN is a parametric framework for uncertainty quantification. In addition

to the parametric framework, the uncertainty quantification literature has three other

major frameworks: Bayesian, non-parametric, and calibration methods. Therefore,

a more detailed investigation into Bayesian, non-parametric, and other calibration

methods is needed regarding the applicability to various fields of urban computing.

One follow-up study has shown that applying calibration to sparse and asymmetrically

distributed prediction problems reduces calibration error by 20% [192]. Therefore, it is

important to compare the different uncertainty quantification frameworks in different

uncertainty scenarios.

120



The most important practical implication for uncertainty quantification is to more

accurately inform downstream decision-making so that resources can be allocated

more efficiently. In the current optimization literature, the uncertainty set is often

directly derived from historical observations or defined arbitrarily. A follow-up study

compared the effectiveness of vehicle rebalancing based on different demand pre-

diction algorithms, including true demand, historical average, point prediction, and

data-driven uncertainty interval [49]. The study has shown that if demand can be

predicted accurately, rebalancing according to the predicted demand from the point

prediction method is good. However, when the demand is volatile and hard to pre-

dict, rebalancing according to the uncertainty intervals yields better results. Future

research should further explore the interaction between the upstream prediction task

and the downstream decision-making (e.g. rebalancing, dispatching, and dynamic

tolling). For example, exploring the optimal prediction interval width, the effect of

predictive bias, and the problems associated with predictions.

Furthermore, the current literature still treats the prediction and optimization

problems as separate processes. It would be optimal if an integrated framework for

both tasks could be created. Ultimately, the optimization outcomes directly influence

rider experience and service reliability. Existing efforts can be categorized into two

categories: formulating simple machine learning prediction methods into optimization

[15] and building end-to-end machine learning pipelines by learning the optimization

outcomes [81, 12, 116]. Despite the efforts, the integration often faces challenges due

to the complexity of both the machine learning and the optimization problems. This

research area could benefit immensely from interdisciplinary methodological innova-

tions in machine learning and optimization.

5.2.2 Data Fusion: Deep Hybrid Models

The deep hybrid model framework aims to leverage the unique capacity of deep learn-

ing to process unstructured data. The DHM serves two purposes: representation

learning for prediction and image regeneration for image-based story-telling. Future

work should consider advancing either or both fronts to further develop and enrich
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the framework.

The framework consists of four major components: unstructured data (input),

the outcome variable, the mixing operator, and the behavioral predictor. Each com-

ponent of the DHM framework can be substituted for another context and presents

major opportunities to deepen the understanding of the unstructured data and out-

come variables. Aside from satellite imagery, the road network also plays a role in

determining the mode of transportation people choose. A working paper that mod-

els travel behavior using the road network is being prepared. Additionally, with the

emergence of large language models, there are also works incorporating natural lan-

guage descriptions to enrich further unstructured datasets used in travel behavior

modeling. In addition to travel behavior, sociodemographics are often considered

exogenous variables for energy consumption, health, and air pollution, so future re-

search could analyze these outcome variables using the DHM framework. Finally,

alternative mixing operators could be explored to construct latent spaces for better

representation learning or image generation. For instance, a working paper is being

prepared to explore discrete latent spaces with VQGAN.

The framework is inevitably associated with the limitations and challenges of

adopting complex neural networks. Overcoming these limitations and challenges is

crucial to advancing both deep learning and its application in urban computing. Here,

we highlight a few themes: non-identification, transfer learning, and model interpreta-

tion. First, deep learning can effectively minimize errors, but they always converge to

local minima. This non-identification issue is still a pending challenge in deep learn-

ing research. Although it is not necessarily a major problem in learning tasks, it is

ambiguous how to guarantee stability and robustness in the latent space. Second, The

DHMs achieve relatively high predictive performance, but their transferability could

be limited. It is unclear whether the models can perform well when trained in one

context and used in another. If proven to be transferable, these models could greatly

help travel behavior modeling in places where surveys are expensive and difficult to

conduct. Thus, developing methods to evaluate and enhance model transferability

would be highly valuable. Third, the economic information computed from the gen-
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erated satellite imagery is a numerical approximation, unlike the analytical solutions

from the classical parameter-based discrete choice models. The latent space in DHMs

is no longer constrained to a few latent variables, limiting its interpretability in the

classical parameter-based sense. To improve the reliability and trustworthiness of

our models, we should explore alternative methods for interpreting the latent space.

This could potentially provide valuable insights into the workings of deep learning

models and help us better understand the association between sociodemographics,

urban imagery, and travel behavior.

5.2.3 Generative Urban Design

Since we are in the early stages of generative urban design development, Section 4.9

is dedicated to discussing the potential use cases, limitations, and future research di-

rections. This section summarizes the considerations in Table 5.1 for easier reference.

Limitation Future work

Satellite image as the sole output has
limited expressivity.

Developing a more comprehensive
range of outputs such as land use lay-
outs and street view.

The inputs are restricted to land use
descriptions only

Including detailed design specifications
such as zoning, setback, and floor-to-
area ratios.

Learning social descriptors such as
elderly-friendly, high-income, and well-
educated.

Designs need to be regenerated every
time the description or the constraint
changes.

Building image editing capabilities (e.g.
masking, style editing.)

Designs cannot be quantitatively eval-
uated.

Incorporating value judgments into the
generative process.

A city is assumed to have a single style. Acknowledging a variety of styles
within each city.

Table 5.1: Limitations and Future Work of Generative Urban Design
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Appendix A

Additional Details of Deep Hybrid

Models

A.1 Specific model design in disaggregate analysis

To simplify the notation used in the manuscript, we only distinguish between imagery

latent variables and numeric variables in our discussion. In fact, there are three types

of inputs to the behavioral predictors: imagery latent variables, sociodemographics,

and alternative-specific variables. Both sociodemographics and alternative-specific

variables are numeric but enter the utility function slightly differently. In this paper,

we used 𝑧𝑛 to represent the imagery latent space, 𝑥𝑠𝑑 and 𝑥𝑎𝑙𝑡 represent the sociode-

mographic and alternative-specific attributes, respectively. Combining all three types

of attributes, we formulate the utility function as follows:

𝑉𝑛𝑘 = 𝛽𝑖𝑚
′

𝑘 𝑧𝑛 + 𝛽𝑠𝑑
′

𝑘 𝑥𝑠𝑑𝑛 + 𝛽𝑎𝑙𝑡
′
𝑥𝑎𝑙𝑡𝑛𝑘 (A.1)

where 𝛽𝑖𝑚′

𝑘 , 𝛽𝑠𝑑′𝑘 , and 𝛽𝑎𝑙𝑡
′ are vector coefficients of urban imagery latent space, so-

ciodemographics, and alternative-specific attributes, respectively. We assume that

the alternative-specific variables share the same coefficients in the utility of all alter-

natives. Both imagery and sociodemographics are not alternative-specific. Therefore,

the coefficients 𝛽𝑖𝑚′

𝑘 , 𝛽𝑠𝑑′𝑘 are alternative-specific to distinguish the effect these vari-
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ables have on different alternatives.

Section 3.3.4 also discussed the directional probability derivatives for the imagery

latent variable 𝑧𝑛. We could also calculate probability derivatives for the other two

types of variables. Both sociodemographic and alternative-specific variables are stan-

dard numeric variables, and many references exist on how to get the probability

derivatives. We only summarize the results below.

For alternative-specific attributes, the probability derivative, which is the change

in the probability that a trip 𝑛 uses alternative 𝑘 with respect to changes in variable

𝑖 is simply
𝜕𝑃𝑛𝑘
𝜕𝑥𝑎𝑙𝑡𝑛𝑘𝑖

=
𝜕𝑉𝑛𝑘
𝜕𝑥𝑎𝑙𝑡𝑛𝑘𝑖

𝑃𝑛𝑘(1− 𝑃𝑛𝑘) = 𝛽𝑎𝑙𝑡𝑖 𝑃𝑛𝑘(1− 𝑃𝑛𝑘) (A.2)

Sociodemographic variables enter the utility of all alternatives with different 𝛽 pa-

rameters. Therefore, the change in probability that a trip 𝑛 uses alternative 𝑘 with

respect to changes in variable 𝑖 is

𝜕𝑃𝑛𝑘
𝜕𝑥𝑠𝑑𝑛𝑖

=
∑︁
𝑘′

𝜕𝑃𝑛𝑘
𝜕𝑉𝑛𝑘′

𝜕𝑉𝑛𝑘′

𝜕𝑥𝑠𝑑𝑛𝑖
= 𝛽𝑠𝑑𝑘𝑖𝑃𝑛𝑘(1− 𝑃𝑛𝑘)−

∑︁
𝑘′

𝛽𝑠𝑑𝑘′𝑖𝑃𝑛𝑘𝑃𝑛𝑘′ (A.3)

We can compute a directional gradient of choice probabilities regarding the imagery

latent space, which resembles but differs from the marginal effects 𝛽 in the classical

demand modeling. The formula of the directional gradient is

∇𝑢𝑃𝑛𝑘(𝑧) = 𝑢·∇𝑃𝑛𝑘(𝑧) =
∑︁
𝑘′

𝜕𝑃𝑛𝑘
𝜕𝑉𝑛𝑘′

∇𝑢𝑉𝑛𝑘′(𝑧𝑛) = 𝑢·(𝛽𝑖𝑚𝑘 𝑃𝑛𝑘(1−𝑃𝑛𝑘)−
∑︁
𝑘′

𝛽𝑖𝑚𝑘′ 𝑃𝑛𝑘𝑃𝑛𝑘′)

(A.4)

A.2 Effects of mixing and sparsity hyperparameters

on prediction and image reconstruction

The mixing hyperparameter 𝜆 affects the performances in behavioral predictors by

controlling the degree of information mix in the latent space. The degree of infor-

mation mix can be understood by the trade-off between retaining the richness in

126



image reconstruction and encoding sociodemographic information. Table A.1 shows

the predictive performance under different 𝜆 values. Since 𝜆 = 0 represents an au-

toencoder without sociodemographic information, the non-zero 𝜆 values in Table A.1

imply different degrees of information mixing. The improvement of performance can

be quite significant by optimizing 𝜆. The mixing hyperparameter should not be set

too small or too large. Among the five values tested, 𝜆 = 0.7 and 0.9 achieve the best

performance in Panel 1, while 𝜆 = 0.5 and 0.7 achieve the best performance in Panels

2 and 3. Overall, 𝜆 = 0.7 achieves near-optimal performance across all panels, and

therefore, it is used in the subsequent analyses. This observation corroborates the

claim that the two data sources are complementary and achieve the highest predictive

performance when properly mixed.

Table A.1: Effects of the mixing hyperparameter 𝜆 in Model 4

The mixing hyperparameter 𝜆 0.1 0.3 0.5 0.7 0.9

Panel 1: Aggregate Mode Choice - Linear Regression

Auto (𝑅2) 0.621/0.593 0.635/0.592 0.688/0.633 0.676/0.640 0.688/0.637

Active (𝑅2) 0.501/0.474 0.549/0.480 0.582/0.528 0.565/0.524 0.589/0.533

PT (𝑅2) 0.463/0.444 0.514/0.473 0.538/0.473 0.520/0.483 0.519/0.488

Panel 2: Aggregate Mode Choice - Multinomial Regression

KL Loss 0.139/0.147 0.135/0.148 0.110/0.141 0.101/0.140 0.104/0.145
Auto (𝑅2) 0.606/0.581 0.607/0.559 0.706/0.605 0.737/0.604 0.734/0.590
Active (𝑅2) 0.484/0.433 0.493/0.435 0.630/0.472 0.657/0.485 0.668/0.469
PT (𝑅2) 0.437/0.393 0.481/0.406 0.608/0.421 0.674/0.421 0.650/0.363

Panel 3: Disaggregate Mode Choice

CE Loss 0.376/0.402 0.378/0.412 0.371/0.406 0.373/0.404 0.461/0.467
Accuracy 0.870/0.858 0.870/0.856 0.872/0.861 0.871/0.856 0.843/0.831

The reconstruction quality between different 𝜆’s does not differ much because of

the various image quality enhancement terms (GAN, KL, LPIPS) in the formula-

tion. Figure A-1 shows two sample image reconstructions with respect to changing

𝜆. While smaller 𝜆’s provide more textured details, all 𝜆’s achieve high-quality image

reconstructions.

Besides the mixing hyperparameter 𝜆, the sparsity hyperparameter 𝜃 choice is

also key to high model performance. The importance of 𝜃 can be observed by Table

A.2, in which 𝜆 is fixed to 0.7, and we observe that a non-zero 𝜃 value is always
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Figure A-1: Quality of image reconstruction with various 𝜆 values

necessary for all our models and tasks to achieve the highest testing performance.

Unlike 𝜆, the range of 𝜃 values is explored on an exponential scale, and the search

range heavily depends on the type of behavioral predictor. Regardless of the details,

a high-dimensional latent space is often necessary for encoding urban imagery, and to

enhance the generalizability of the latent space predictive power, the sparsity control

through the hyperparameter 𝜃 is critical.

Table A.2: Effects of the sparsity hyperparameter 𝜃 in Model 4

Panel 1: Aggregate Mode Choice - Linear Regression

𝜃 1𝑒−4 1𝑒−3 1𝑒−2 1𝑒−1 1𝑒0

Auto (𝑅2) 0.996/0.183 0.894/0.532 0.674/0.640 0.606/0.594 0.222/0.217

Active (𝑅2) 0.826/0.425 0.592/0.521 0.566/0.524 0.553/0.520 0.543/0.515

PT (𝑅2) 0.716/0.445 0.538/0.483 0.520/0.483 0.510/0.482 0.503/0.480

Panel 2: Aggregate Mode Choice - Multinomial Regression (𝜆* = 1𝑒+3)

𝜃 1𝑒+1 1𝑒+2 1𝑒+3 1𝑒+4 1𝑒+5

KL Loss 0.099/0.141 0.103/0.140 0.108/0.134 0.120/0.129 0.129/0.133
Auto (𝑅2) 0.748/0.591 0.729/0.597 0.713/0.620 0.669/0.637 0.639/0.620
Active (𝑅2) 0.663/0.463 0.661/0.471 0.633/0.501 0.566/0.515 0.530/0.505
PT (𝑅2) 0.705/0.411 0.631/0.394 0.629/0.451 0.543/0.496 0.502/0.489

Panel 3: Disaggregate Mode Choice (𝜆* = 1𝑒0)

𝜃 1𝑒−5 1𝑒−4 1𝑒−3 1𝑒−2 1𝑒−1

CE Loss 0.389/0.415 0.397/0.420 0.373/0.404 0.376/0.413 0.395/0.418
Accuracy 0.864/0.854 0.861/0.853 0.871/0.856 0.870/0.855 0.861/0.852
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A.3 Two-directional imagery regeneration

Figure A-2: Another example of two-directional image regeneration

Figure A-2 demonstrates another example of reconstructing satellite images with the

2D directional movements in the latent space. Similar to Figure 3-13, we choose

three targeting images, highlighted by the red squares, to generate new urban images

by linear interpolation and extrapolation in the latent space. The images appear

realistic, and through our framework, they are also associated with socioeconomic

and behavioral information.
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Appendix B

Denoising Diffusion Probabilistic

Models and Latent Diffusion Models

B.1 Denoising Diffusion Probabilistic Models

Forward Process (Noising)

The forward process is defined as a Markov chain that gradually corrupts the data

𝑥0 by adding Gaussian noise over a series of steps 𝑡 from 0 to 𝑇 :

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩 (𝑥𝑡;
√︀

1− 𝛽𝑡𝑥𝑡−1, 𝛽𝑡I) (B.1)

where:

• 𝑥𝑡 is the noisy data at time step 𝑡,

• 𝛽𝑡 is the noise schedule at step 𝑡, a small positive value that increases slightly

at each step,

• 𝒩 denotes the Gaussian distribution.

Given the original data 𝑥0, after applying the forward process for 𝑡 steps, the
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distribution of 𝑥𝑡 can be expressed as:

𝑞(𝑥𝑡|𝑥0) = 𝒩 (𝑥𝑡;
√
𝛼̄𝑡𝑥0, (1− 𝛼̄𝑡)I) (B.2)

where:

• 𝛼̄𝑡 =
∏︀𝑡

𝑠=1(1− 𝛽𝑠) is the cumulative product of the noise schedule.

Reverse Process (Denoising)

The reverse process is a generative model that learns to invert the forward process.

It is trained to approximate the reverse conditional probabilities 𝑝𝜃(𝑥𝑡−1|𝑥𝑡), which is

a function of both 𝑥𝑡 and 𝑡. A neural network, parameterized by 𝜃, is trained to learn

the parameters of the Gaussian distribution 𝜇𝜃(𝑥𝑡, 𝑡),Σ𝜃(𝑥𝑡, 𝑡)).

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝒩 (𝑥𝑡−1;𝜇𝜃(𝑥𝑡, 𝑡),Σ𝜃(𝑥𝑡, 𝑡)) (B.3)

Training Objective

Training is performed by optimizing the usual variational lower bound on the negative

log likelihood:

E [− log 𝑝𝜃(𝑥0)] ≤ E𝑞
[︂
− log

𝑝𝜃(𝑥0:𝑇 )

𝑞(𝑥0:𝑇 |𝑥0)

]︂
(B.4)

= E𝑞

[︃
− log 𝑝𝜃(𝑥𝑇 )−

𝑇∑︁
𝑡=1

log
𝑝𝜃(𝑥𝑡−1|𝑥𝑡)
𝑞(𝑥𝑡|𝑥𝑡−1, 𝑥0)

]︃
(B.5)

(B.6)

This loss can be further decomposed as

E𝑞

⎡⎢⎣𝐷𝐾𝐿 (𝑞(𝑥𝑇 |𝑥0)||𝑝(𝑥𝑇 ))⏟  ⏞  
𝐿𝑇

+
∑︁
𝑡>1

𝐷𝐾𝐿 (𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃(𝑥𝑡−1|𝑥𝑡))⏟  ⏞  
𝐿𝑡−1

− log 𝑝𝜃(𝑥0|𝑥1)⏟  ⏞  
𝐿0

⎤⎥⎦
(B.7)
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In particular, the term 𝐿𝑡−1 trains the network to perform on one reverse diffusion

step and is denoted as 𝐿𝑣𝑙𝑏. This KL divergence is tractable since 𝑝 and 𝑞 are both

Gaussian. However, compared to directly predicting 𝜇𝜃(𝑥𝑡, 𝑡),Σ𝜃(𝑥𝑡, 𝑡)), it is easier

to predict the cumulative noise 𝜖𝜃(𝑥𝑡, 𝑡) added to the intermediate 𝑥𝑡 [59]. Thus the

predicted mean 𝜇𝜃(𝑥𝑡, 𝑡) is parameterized as:

𝜇𝜃(𝑥𝑡, 𝑡) =
1√

1− 𝛽𝑡

(︂
𝑥𝑡 −

𝛽𝑡√
1− 𝛼̄𝑡

𝜖𝜃(𝑥𝑡, 𝑡)

)︂
(B.8)

Additionally, [59] found that fixing Σ𝜃(𝑥𝑡, 𝑡)) to the noise schedule 𝛽𝑡 does not

affect the generated sample quality [59]. Under this parametrization, the loss term

can be simplified to

𝐿𝑠𝑖𝑚𝑝𝑙𝑒(𝜃) = E𝑡,𝑥,𝜖
[︀
‖𝜖− 𝜖𝜃(𝑥𝑡, 𝑡)‖2

]︀
(B.9)

where 𝜆 balances the learning of the mean and the variance.

B.2 Latent Diffusion Models (Stable Diffusion)

Since diffusion models operate directly in the pixel space with thousands of diffusion

steps, they are very resource-intensive to train. Latent diffusion models, commonly

known as stable diffusion, operate in the latent space 𝑧 of a powerful pre-trained

autoencoder. The rest is the same and the training objective now reads

𝐿𝐿𝐷𝑀(𝜃) = E𝑡,ℰ(𝑥),𝜖
[︀
‖𝜖− 𝜖𝜃(𝑧𝑡, 𝑡)‖2

]︀
(B.10)

where ℰ is the encoder. At inference time, samples from 𝑝(𝑧) can be restored to

the image space by passing them through the decoder 𝒟.
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Appendix C

Generative Design - User Study

This appendix presents a sample of the questions for Parts 1 (Figure C-1) and 2

(Figure C-2) of the user study.
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Figure C-1: Generative Urban Design - User Study Part 1
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Figure C-2: Generative Urban Design - User Study Part 2

137



138



Bibliography

[1] My Daily Travel Survey, 2018-2019: Public Data - Datasets - CMAP Data Hub.

[2] Adrian Albert, Jasleen Kaur, and Marta C González. Using Convolutional
Networks and Satellite Imagery to Identify Patterns in Urban Environments at
a Large Scale. 2017.

[3] Melissa R. Allen-Dumas, Abigail R. Wheelis, Levi T. Sweet-Breu, Joshua Anan-
tharaj, and Kuldeep R. Kurte. Generative adversarial networks for ensem-
ble projections of future urban morphology. In Proceedings of the 5th ACM
SIGSPATIAL International Workshop on Advances in Resilient and Intelligent
Cities, page 1–6, Seattle Washington, 2022. ACM.

[4] Ahmad Alwosheel, Sander van Cranenburgh, and Caspar G Chorus. Why did
you predict that? towards explainable artificial neural networks for travel
demand analysis. Transportation Research Part C: Emerging Technologies,
128:103143, 2021.

[5] Ioanna Arkoudi, Carlos Lima Azevedo, and Francisco C. Pereira. Combining
discrete choice models and neural networks through embeddings: Formulation,
interpretability and performance. 9 2021.

[6] Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion.
ACM Transactions on Graphics, 42(4):149:1–149:11, July 2023.

[7] Kumar Ayush, Burak Uzkent, Marshall Burke, David Lobell, and Stefano Er-
mon. Generating interpretable poverty maps using object detection in satellite
images. IJCAI International Joint Conference on Artificial Intelligence, 2021-
Janua:4410–4416, 2020.

[8] Poopak Azad, Nima Jafari Navimipour, Amir Masoud Rahmani, and Arash
Sharifi. The role of structured and unstructured data managing mechanisms in
the internet of things. Cluster Computing, 23(2):1185–1198, 2020.

[9] Prateek Bansal, Kara M Kockelman, and Amit Singh. Assessing public opinions
of and interest in new vehicle technologies: An austin perspective. Transporta-
tion Research Part C: Emerging Technologies, 67:1–14, 2016.

139



[10] Michael Batty, David Chapman, Steve Evans, Mordechai Haklay, Stefan Kuep-
pers, Naru Shiode, Andy Smith, and Paul Torrens. Visualising the city: Com-
municating urban design to planners and decision-makers. October 2000.

[11] Moshe Ben-Akiva, Daniel Mcfadden, Kenneth Train, Joan Walker, Chan-
dra Bhat, Michel Bierlaire, Ecole Polytechnique, Fédérale De Lausanne, Axel
Boersch-Supan, David Brownstone, David S Bunch, Andrew Daly, Rand Eu-
rope, Andre De Palma, and Marcela A Munizaga. Hybrid Choice Models:
Progress and Challenges. Marketing Letters, 13:163–175, 2002.

[12] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for
combinatorial optimization: a methodological tour d’horizon. European Journal
of Operational Research, 290(2):405–421, 2021.

[13] Angela Stefania Bergantino, Mauro Capurso, and Stephane Hess. Modelling
regional accessibility to airports using discrete choice models: An application
to a system of regional airports. Transportation Research Part A: Policy and
Practice, 132:855–871, 2020.

[14] David Berthelot, Ian Goodfellow, Colin Raffel, and Aurko Roy. Understanding
and improving interpolation in autoencoders via an adversarial regularizer. 7th
International Conference on Learning Representations, ICLR 2019, pages 1–20,
2019.

[15] Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analyt-
ics. Management Science, 66(3):1025–1044, 2020.

[16] Filip Biljecki and Koichi Ito. Street view imagery in urban analytics and GIS:
A review. Landscape and Urban Planning, 215:104217, 11 2021.

[17] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural networks. 32nd International Conference on Ma-
chine Learning, ICML 2015, 2:1613–1622, 2015.

[18] US Census Bureau. Urban and rural.

[19] Marshall Burke, Anne Driscoll, David B. Lobell, and Stefano Ermon. Using
satellite imagery to understand and promote sustainable development. Science,
371(6535):eabe8628, March 2021.

[20] Giulio Erberto Cantarella and Stefano de Luca. Multilayer feedforward net-
works for transportation mode choice analysis: An analysis and a comparison
with random utility models. Transportation Research Part C: Emerging Tech-
nologies, 13(2):121–155, 2005. Handling Uncertainty in the Analysis of Traffic
and Transportation Systems (Bari, Italy, June 10–13 2002).

140



[21] Dun Cao, Kai Zeng, Jin Wang, Pradip Kumar Sharma, Xiaomin Ma, Yonghe
Liu, and Siyuan Zhou. Bert-based deep spatial-temporal network for taxi de-
mand prediction. IEEE Transactions on Intelligent Transportation Systems,
2021.

[22] Denise Capasso Da Silva, David A. King, and Shea Lemar. Accessibility in prac-
tice: 20-minute city as a sustainability planning goal. Sustainability, 12(1):129,
January 2020.

[23] Matthew Carmona. Public Places Urban Spaces: The Dimensions of Urban
Design. Routledge, 3 edition, February 2021.

[24] R. Caruana and V. D. Sa. Promoting Poor Features to Supervisors: Some
Inputs Work Better as Outputs. undefined, 1996.

[25] Enhui Chen, Zhirui Ye, Chao Wang, and Mingtao Xu. Subway Passenger Flow
Prediction for Special Events Using Smart Card Data. IEEE Transactions on
Intelligent Transportation Systems, 21(3):1109–1120, mar 2020.

[26] Yulu Chen, Rongjun Qin, Guixiang Zhang, and Hessah Albanwan. Spatial tem-
poral analysis of traffic patterns during the covid-19 epidemic by vehicle detec-
tion using planet remote-sensing satellite images. Remote Sensing, 13(2):1–18,
1 2021.

[27] Mario Cools, Bruno Kochan, Tom Bellemans, Davy Janssens, and Geert Wets.
Assessment of the effect of micro-simulation error on key travel indices: ev-
idence from the activity-based model feathers. 90th Annual Meeting of the
Transportation Research Board, pages 1–15, 2010.

[28] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah.
Diffusion models in vision: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(9):10850–10869, September 2023.

[29] Mercy Dada, Mark Zuidgeest, and Stephane Hess. Modelling pedestrian cross-
ing choice on cape town’s freeways: Caught between a rock and a hard place?
Transportation research part F: traffic psychology and behaviour, 60:245–261,
2019.

[30] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image
synthesis. In Advances in Neural Information Processing Systems, volume 34,
page 8780–8794. Curran Associates, Inc., 2021.

[31] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature
learning. arXiv preprint arXiv:1605.09782, 2016.

[32] Weishan Dong, Ting Yuan, Kai Yang, Changsheng Li, and Shilei Zhang. Au-
toencoder regularized network for driving style representation learning. arXiv
preprint arXiv:1701.01272, 2017.

141



[33] Abhimanyu Dubey, Nikhil Naik, Devi Parikh, Ramesh Raskar, and César A
Hidalgo. Deep learning the city: Quantifying urban perception at a global
scale. In European conference on computer vision, pages 196–212. Springer,
2016.

[34] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex
Lamb, Martin Arjovsky, and Aaron Courville. Adversarially learned infer-
ence. In 5th International Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings, 2017.

[35] Yuki Endo, Hiroyuki Toda, Kyosuke Nishida, and Akihisa Kawanobe. Deep
feature extraction from trajectories for transportation mode estimation. In
Advances in Knowledge Discovery and Data Mining: 20th Pacific-Asia Confer-
ence, PAKDD 2016, Auckland, New Zealand, April 19-22, 2016, Proceedings,
Part II 20, pages 54–66. Springer, 2016.

[36] Miguel Espinosa and Elliot J. Crowley. Generate your own scotland: Satel-
lite image generation conditioned on maps. (arXiv:2308.16648), August 2023.
arXiv:2308.16648 [cs].

[37] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for
high-resolution image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 12873–12883,
June 2021.

[38] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and
Yaniv Taigman. Make-A-Scene: Scene-Based Text-to-Image Generation with
Human Priors, volume 13675, page 89–106. Springer Nature Switzerland,
Cham, 2022.

[39] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning. In 33rd International Con-
ference on Machine Learning, ICML 2016, 2016.

[40] Xiaowei Gao, Xinke Jiang, Dingyi Zhuang, Huanfa Chen, Shenhao Wang, and
James Haworth. Spatiotemporal graph neural networks with uncertainty quan-
tification for traffic incident risk prediction. arXiv preprint arXiv:2309.05072,
2023.

[41] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok
Lee, Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter
Jung, Ribana Roscher, Muhammad Shahzad, Wen Yang, Richard Bamler, and
Xiao Xiang Zhu. A Survey of Uncertainty in Deep Neural Networks. jul 2021.

[42] Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng,
Erez Lieberman Aiden, and Li Fei-Fei. Using deep learning and google street
view to estimate the demographic makeup of neighborhoods across the United

142



States. Proceedings of the National Academy of Sciences of the United States
of America, 114(50):13108–13113, 2017.

[43] Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, and
Yan Liu. Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing
Demand Forecasting. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33:3656–3663, 2019.

[44] Aurélie Glerum, Lidija Stankovikj, Michaël Thémans, and Michel Bierlaire.
Forecasting the demand for electric vehicles: Accounting for attitudes and per-
ceptions. https://doi.org/10.1287/trsc.2013.0487, 48:483–499, 12 2013. HCM
application.

[45] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. Advances in neural information processing systems, 27, 2014.

[46] Helmut Grabner, Peter M Roth, and Horst Bischof. Eigenboosting: Combin-
ing discriminative and generative information. In 2007 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[47] Jianhua Guo, Wei Huang, and Billy M. Williams. Adaptive Kalman filter ap-
proach for stochastic short-term traffic flow rate prediction and uncertainty
quantification. Transportation Research Part C: Emerging Technologies, 43:50–
64, 2014.

[48] Xiaotong Guo, Nicholas S. Caros, and Jinhua Zhao. Robust matching-integrated
vehicle rebalancing in ride-hailing system with uncertain demand. Transporta-
tion Research Part B: Methodological, 150:161–189, aug 2021.

[49] Xiaotong Guo, Qingyi Wang, and Jinhua Zhao. Data-driven vehicle rebalancing
with predictive prescriptions in the ride-hailing system. IEEE Open Journal of
Intelligent Transportation Systems, 3:251–266, 2022.

[50] David Ha and Douglas Eck. A neural representation of sketch drawings.
arXiv:1704.03477, 2017.

[51] Yafei Han, Christopher Zegras, Francisco Camara Pereira, and Moshe Ben-
Akiva. A neural-embedded choice model: Tastenet-mnl modeling taste hetero-
geneity with flexibility and interpretability. arXiv preprint arXiv:2002.00922,
2020.

[52] Steve Hankey, Wenwen Zhang, Huyen TK Le, Perry Hystad, and Peter James.
Predicting bicycling and walking traffic using street view imagery and des-
tination data. Transportation research part D: transport and environment,
90:102651, 2021.

143



[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2016.

[54] John Paul Helveston, Yimin Liu, Elea McDonnell Feit, Erica Fuchs, Erica
Klampfl, and Jeremy J Michalek. Will subsidies drive electric vehicle adop-
tion? measuring consumer preferences in the us and china. Transportation
Research Part A: Policy and Practice, 73:96–112, 2015.

[55] Tom Heskes. Practical confidence and prediction intervals. In Advances in
Neural Information Processing Systems, 1997.

[56] Stephane Hess, Greg Spitz, Mark Bradley, and Matt Coogan. Analysis of mode
choice for intercity travel: Application of a hybrid choice model to two distinct
us corridors. Transportation Research Part A: Policy and Practice, 116:547–567,
2018.

[57] Tim Hillel. New perspectives on the performance of machine learning classifiers
for mode choice prediction. Technical report, 2020.

[58] Tim Hillel, Michel Bierlaire, Mohammed Z.E.B. Elshafie, and Ying Jin. A
systematic review of machine learning classification methodologies for modelling
passenger mode choice. Journal of Choice Modelling, 38:100221, 3 2021.

[59] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. In Advances in Neural Information Processing Systems, volume 33,
page 6840–6851. Curran Associates, Inc., 2020.

[60] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[61] Ning Huan, Stephane Hess, and Enjian Yao. Understanding the effects of travel
demand management on metro commuters’ behavioural loyalty: a hybrid choice
modelling approach. Transportation, pages 1–30, 2 2021.

[62] Ning Huan, Stephane Hess, and Enjian Yao. Understanding the effects of travel
demand management on metro commuters’ behavioural loyalty: a hybrid choice
modelling approach. Transportation, 49(2):343–372, 2022.

[63] Ming Huang, Fuzhen Zhuang, Xiao Zhang, Xiang Ao, Zhengyu Niu, Min-Ling
Zhang, and Qing He. Supervised representation learning for multi-label classi-
fication. Machine Learning, 108:747–763, 2019.

[64] Rowan T. Hughes, Liming Zhu, and Tomasz Bednarz. Generative adversar-
ial networks–enabled human–artificial intelligence collaborative applications for
creative and design industries: A systematic review of current approaches and
trends. Frontiers in Artificial Intelligence, 4, 2021.

144



[65] Mohamed R. Ibrahim, James Haworth, and Tao Cheng. Understanding cities
with machine eyes: A review of deep computer vision in urban analytics. Cities,
96:102481, 1 2020.

[66] Muhammad Zudhy Irawan, Prawira Fajarindra Belgiawan, Tri Basuki Joewono,
and Nurvita I.M. Simanjuntak. Do motorcycle-based ride-hailing apps threaten
bus ridership? a hybrid choice modeling approach with latent variables. Public
Transport, 12:207–231, 3 2020.

[67] Neal Jean, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lo-
bell, and Stefano Ermon. Combining satellite imagery and machine learning to
predict poverty. Science, 353(6301):790–794, 2016.

[68] Feifeng Jiang, Jun Ma, Christopher John Webster, Alain J.F. Chiaradia, Yulun
Zhou, Zhan Zhao, and Xiaohu Zhang. Generative urban design: A system-
atic review on problem formulation, design generation, and decision-making.
Progress in Planning, page 100795, 2023.

[69] Xinke Jiang, Dingyi Zhuang, Xianghui Zhang, Hao Chen, Jiayuan Luo,
and Xiaowei Gao. Uncertainty quantification via spatial-temporal tweedie
model for zero-inflated and long-tail travel demand prediction. arXiv preprint
arXiv:2306.09882, 2023.

[70] H. M.Dipu Kabir, Abbas Khosravi, Mohammad Anwar Hosen, and Saeid Naha-
vandi. Neural Network-Based Uncertainty Quantification: A Survey of Method-
ologies and Applications. IEEE Access, 6:36218–36234, 2018.

[71] M. G. Karlaftis and E. I. Vlahogianni. Statistical methods versus neural net-
works in transportation research: Differences, similarities and some insights.
Transportation Research Part C: Emerging Technologies, 19:387–399, 2011.
comprehensive comparison of NN and statistical methods both in terms of phi-
losophy and transportation applications.

[72] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Analyzing and improving the image quality of stylegan. page
8110–8119, 2020.

[73] Jintao Ke, Hongyu Zheng, Hai Yang, and Xiqun Chen. Short-term forecast-
ing of passenger demand under on-demand ride services: A spatio-temporal
deep learning approach. Transportation Research Part C-emerging Technolo-
gies, 2017.

[74] Annet Kempenaar, Judith Westerink, Marjo van Lierop, Marlies Brinkhuijsen,
and Adri van den Brink. “design makes you understand”—mapping the con-
tributions of designing to regional planning and development. Landscape and
Urban Planning, 149:20–30, May 2016.

145



[75] Abbas Khosravi and Saeid Nahavandi. An optimized mean variance estimation
method for uncertainty quantification of wind power forecasts. International
Journal of Electrical Power & Energy Systems, 61:446–454, 2014.

[76] Abbas Khosravi, Saeid Nahavandi, Doug Creighton, and Amir F. Atiya. Lower
upper bound estimation method for construction of neural network-based pre-
diction intervals. IEEE Transactions on Neural Networks, 22(3):337–346, 2011.

[77] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. 5th International Conference on Learning Representa-
tions, ICLR 2017 - Conference Track Proceedings, pages 1–14, 2017.

[78] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? Does it
matter? Structural Safety, 31(2):105–112, 2009.

[79] Danyel Koca, Jan Dirk Schmöcker, and Kouji Fukuda. Origin-destination ma-
trix estimation by deep learning using maps with new york case study. In
2021 7th International Conference on Models and Technologies for Intelligent
Transportation Systems (MT-ITS), pages 1–6. IEEE, 2021.

[80] Roger Koenker and Kevin F. Hallock. Quantile regression. Journal of Economic
Perspectives, 2001.

[81] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder.
End-to-end constrained optimization learning: A survey. arXiv preprint
arXiv:2103.16378, 2021.

[82] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecast-
ing in crowds: A deep learning perspective. IEEE Transactions on Intelligent
Transportation Systems, 23(7):7386–7400, 2021.

[83] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple
and Scalable Predictive Uncertainty Estimation using Deep Ensembles. 31st
Conference on Neural Information Processing Systems (NIPS 2017), 43(2):145–
150, dec 2016.

[84] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole
Winther. Autoencoding beyond pixels using a learned similarity metric. In
International conference on machine learning, pages 1558–1566. PMLR, 2016.

[85] Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Principled
hybrids of generative and discriminative models. Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, 1(6):87–
94, 2006.

[86] Lei Le, Andrew Patterson, and Martha White. Supervised autoencoders: Im-
proving generalization performance with unsupervised regularizers. Advances in
Neural Information Processing Systems, 2018-Decem(NeurIPS):107–117, 2018.

146



[87] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[88] Dongwoo Lee, Sybil Derrible, and Francisco Camara Pereira. Comparison
of four types of artificial neural network and a multinomial logit model for
travel mode choice modeling. Transportation Research Record, 2672(49):101–
112, 2018.

[89] Can Li, Lei Bai, Wei Liu, Lina Yao, and S. Travis Waller. Graph Neural
Network for Robust Public Transit Demand Prediction. IEEE Transactions on
Intelligent Transportation Systems, pages 1–13, 2020.

[90] Hongzhou Lin, Joshua Robinson, and Stefanie Jegelka. Perceptual regulariza-
tion: Visualizing and learning generalizable representations. 2019.

[91] Fuqiang Liu, Jiawei Wang, Jingbo Tian, Dingyi Zhuang, Luis Miranda-Moreno,
and Lijun Sun. A universal framework of spatiotemporal bias block for long-
term traffic forecasting. IEEE Transactions on Intelligent Transportation Sys-
tems, 2022.

[92] Lingbo Liu, Jingwen Chen, Hefeng Wu, Jiajie Zhen, Guanbin Li, and Liang
Lin. Physical-Virtual Collaboration Modeling for Intra- and Inter-Station Metro
Ridership Prediction. IEEE Transactions on Intelligent Transportation Sys-
tems, pages 1–15, 2020.

[93] Yang Liu, Zhiyuan Liu, Cheng Lyu, and Jieping Ye. Attention-based deep
ensemble net for large-scale online taxi-hailing demand prediction. IEEE trans-
actions on intelligent transportation systems, 21(11):4798–4807, 2019.

[94] Yang Liu, Cheng Lyu, Yuan Zhang, Zhiyuan Liu, Wenwu Yu, and Xiaobo Qu.
Deeptsp: Deep traffic state prediction model based on large-scale empirical
data. Communications in transportation research, 1:100012, 2021.

[95] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Tim-
ofte, and Luc Van Gool. Repaint: Inpainting using denoising diffusion proba-
bilistic models. page 11461–11471, 2022.

[96] Kevin Lynch. The image of the city. Publication of the Joint Center for Urban
studies. M.I.T. Press, Cambridge, Mass., 33. print edition, 2008.

[97] Alireza Mahpour, Amirreza Mamdoohi, Taha HosseinRashidi, Basil Schmid,
and Kay W Axhausen. Shopping destination choice in tehran: An integrated
choice and latent variable approach. Transportation research part F: traffic
psychology and behaviour, 58:566–580, 2018.

[98] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Bren-
dan Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

147



[99] Hafsa Maryam, Tania Panayiotou, and Georgios Ellinas. Uncertainty quantifica-
tion and consideration in ml-aided traffic-driven service provisioning. Computer
Communications, 202:13–22, 2023.

[100] Andreas Maurer, Bernardino Romera-Paredes, Urun Dogan, Marius Kloft,
Francesco Orabona, and Tatiana Tommasi. The benefit of multitask repre-
sentation learning. jmlr.org, 17:1–32, 2016.

[101] Daniel McFadden. Conditional logit analysis of qualitative choice behavior.
1974.

[102] Daniel McFadden. Modeling the choice of residential location. Transportation
Research Record, (673), 1978.

[103] Daniel McFadden and Kenneth Train. Mixed mnl models for discrete response.
Journal of applied Econometrics, 15(5):447–470, 2000.

[104] Larry R Medsker and LC Jain. Recurrent neural networks. Design and Appli-
cations, 5(64-67):2, 2001.

[105] Hugues Moreau, Andrea Vassilev, and Liming Chen. Data fusion for deep
learning on transport mode detection: A case study. In International Conference
on Engineering Applications of Neural Networks, pages 141–152. Springer, 2021.

[106] Carlos Moreno, Zaheer Allam, Didier Chabaud, Catherine Gall, and Florent
Pratlong. Introducing the “15-minute city”: Sustainability, resilience and place
identity in future post-pandemic cities. Smart Cities, 4(1):93–111, March 2021.

[107] Johannes Mueller, Hangxin Lu, Artem Chirkin, Bernhard Klein, and Gerhard
Schmitt. Citizen design science: A strategy for crowd-creative urban design.
Cities, 72:181–188, 2018.

[108] Nikhil Naik, Scott Duke Kominers, Ramesh Raskar, Edward L. Glaeser, and
César A. Hidalgo. Computer vision uncovers predictors of physical urban
change. Proceedings of the National Academy of Sciences of the United States
of America, 114(29):7571–7576, 2017.

[109] Nikhil Naik, Jade Philipoom, Ramesh Raskar, and César Hidalgo. Streetscore-
predicting the perceived safety of one million streetscapes. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pages
779–785, 2014.

[110] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion
probabilistic models. In Proceedings of the 38th International Conference on
Machine Learning, page 8162–8171. PMLR, July 2021.

[111] David A. Nix and Andreas S. Weigend. Estimating the mean and variance of
the target probability distribution. In IEEE International Conference on Neural
Networks - Conference Proceedings, 1994.

148



[112] Ariel Noyman and Kent Larson. A deep image of the city: generative urban-
design visualization. In Proceedings of the 11th Annual Symposium on Simu-
lation for Architecture and Urban Design, SimAUD ’20, page 1–8, San Diego,
CA, USA, May 2020. Society for Computer Simulation International.

[113] Alon Oring, Zohar Yakhini, and Yacov Hel-Or. Autoencoder image interpola-
tion by shaping the latent space. arXiv preprint arXiv:2008.01487, 2020.

[114] Miguel Paredes, Erik Hemberg, Una-May O’Reilly, and Chris Zegras. Ma-
chine learning or discrete choice models for car ownership demand estimation
and prediction? In 2017 5th IEEE International Conference on Models and
Technologies for Intelligent Transportation Systems (MT-ITS), pages 780–785.
IEEE, 2017.

[115] Chulwoong Park, Wonjun No, Junyong Choi, and Youngchul Kim. Development
of an ai advisor for conceptual land use planning. Cities, 138:104371, 2023.

[116] Axel Parmentier. Learning to approximate industrial problems by operations
research classic problems. Operations Research, 70(1):606–623, 2022.

[117] Tim Pearce, Mohamed Zaki, Alexandra Brintrup, and Andy Neely. High-quality
prediction intervals for deep learning: A distribution-free, ensembled approach.
35th International Conference on Machine Learning, ICML 2018, 9:6473–6482,
2018.

[118] Olga Petrik, Filipe Moura, and João de Abreu e. Silva. Measuring uncertainty
in discrete choice travel demand forecasting models. Transportation Planning
and Technology, 39(2):218–237, feb 2016.

[119] Walter H. L. Pinaya, Mark S. Graham, Robert Gray, Pedro F. da Costa, Petru-
Daniel Tudosiu, Paul Wright, Yee H. Mah, Andrew D. MacKinnon, James T.
Teo, Rolf Jager, David Werring, Geraint Rees, Parashkev Nachev, Sebastien
Ourselin, and M. Jorge Cardoso. Fast unsupervised brain anomaly detection
and segmentation with diffusion models. In Linwei Wang, Qi Dou, P. Thomas
Fletcher, Stefanie Speidel, and Shuo Li, editors, Medical Image Computing and
Computer Assisted Intervention – MICCAI 2022, Lecture Notes in Computer
Science, page 705–714, Cham, 2022. Springer Nature Switzerland.

[120] Weizhu Qian, Dalin Zhang, Yan Zhao, Kai Zheng, and JQ James. Uncertainty
quantification for traffic forecasting: A unified approach. In 2023 IEEE 39th
International Conference on Data Engineering (ICDE), pages 992–1004. IEEE,
2023.

[121] Zhiyu Qu, Tao Xiang, and Yi-Zhe Song. Sketchdreamer: Interactive
text-augmented creative sketch ideation. (arXiv:2308.14191), August 2023.
arXiv:2308.14191 [cs].

149



[122] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models
from natural language supervision. In Proceedings of the 38th International
Conference on Machine Learning, page 8748–8763. PMLR, July 2021.

[123] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with clip latents.
(arXiv:2204.06125), April 2022. arXiv:2204.06125 [cs].

[124] Haziq Razali, Taylor Mordan, and Alexandre Alahi. Pedestrian intention predic-
tion: A convolutional bottom-up multi-task approach. Transportation research
part C: emerging technologies, 130:103259, 2021.

[125] Lei Ren, Yaqiang Sun, Jin Cui, and Lin Zhang. Bearing remaining useful life
prediction based on deep autoencoder and deep neural networks. Journal of
Manufacturing Systems, 48:71–77, 2018.

[126] Filipe Rodrigues and Francisco C. Pereira. Beyond Expectation: Deep Joint
Mean and Quantile Regression for Spatiotemporal Problems. IEEE Transac-
tions on Neural Networks and Learning Systems, pages 1–13, 2020.

[127] Esther Rolf, Jonathan Proctor, Tamma Carleton, Ian Bolliger, Vaishaal
Shankar, Miyabi Ishihara, Benjamin Recht, and Solomon Hsiang. A generaliz-
able and accessible approach to machine learning with global satellite imagery.
Nature Communications, 12(1):4392, July 2021.

[128] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, June 2022.

[129] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion models.
page 10684–10695, 2022.

[130] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L.
Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan,
Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Pho-
torealistic text-to-image diffusion models with deep language understanding.
Advances in Neural Information Processing Systems, 35:36479–36494, Decem-
ber 2022.

[131] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet,
and Mohammad Norouzi. Image super-resolution via iterative refinement. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(4):4713–4726,
April 2023.

150



[132] Divya Saxena and Jiannong Cao. Generative adversarial networks (gans): Chal-
lenges, solutions, and future directions. ACM Computing Surveys, 54(3):63:1–
63:42, May 2021.

[133] Basil Schmid and Kay W. Axhausen. In-store or online shopping of search
and experience goods: A hybrid choice approach. Journal of Choice Modelling,
31:156–180, 6 2019.

[134] Ian Seiferling, Nikhil Naik, Carlo Ratti, and Raphäel Proulx. Green streets -
Quantifying and mapping urban trees with street-level imagery and computer
vision. Landscape and Urban Planning, 165(July 2016):93–101, 2017.

[135] Hongzhi Shi, Quanming Yao, Qi Guo, Yaguang Li, Lingyu Zhang, Jieping Ye,
Yong Li, and Yan Liu. Predicting origin-destination flow via multi-perspective
graph convolutional network. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pages 1818–1821. IEEE, 2020.

[136] Joachim Sicking, Maram Akila, Maximilian Pintz, Tim Wirtz, Asja Fischer,
and Stefan Wrobel. A Novel Regression Loss for Non-Parametric Uncertainty
Optimization. pages 2021–2022, jan 2021.

[137] Brian Sifringer, Virginie Lurkin, and Alexandre Alahi. Enhancing discrete
choice models with representation learning. Transportation Research Part B:
Methodological, 140:236–261, 10 2020.

[138] Kenneth A Small and Harvey S Rosen. Applied welfare economics with discrete
choice models. Econometrica: Journal of the Econometric Society, pages 105–
130, 1981.

[139] Jose J Soto, Victor Cantillo, and Julian Arellana. Incentivizing alternative
fuel vehicles: the influence of transport policies, attitudes and perceptions.
Transportation, 45:1721–1753, 2018.

[140] Kenneth Train. A structured logit model of auto ownership and mode choice.
The Review of Economic Studies, 47(2):357–370, 1980.

[141] Sander van Cranenburgh and Ahmad Alwosheel. An artificial neural network
based approach to investigate travellers’ decision rules. Transportation Research
Part C: Emerging Technologies, 98:152–166, 2019.

[142] Sander van Cranenburgh and Marco Kouwenhoven. An artificial neural network
based method to uncover the value-of-travel-time distribution. Transportation,
48(5):2545–2583, 2021.

[143] Sander van Cranenburgh, Shenhao Wang, Akshay Vij, Francisco Pereira, and
Joan Walker. Choice modelling in the age of machine learning - discussion
paper. Journal of Choice Modelling, 42:100340, 3 2022.

151



[144] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[145] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[146] Akshay Vij and Joan L. Walker. How, when and why integrated choice and
latent variable models are latently useful. Transportation Research Part B:
Methodological, 90:192–217, 8 2016.

[147] Eleni Vlahogianni and Matthew Karlaftis. Temporal aggregation in traffic data:
implications for statistical characteristics and model choice. Transportation
Letters, 3(1):37–49, 2011.

[148] Joan Walker and Moshe Ben-Akiva. Generalized random utility model. Math-
ematical social sciences, 43:303–343, 2002.

[149] Dongjie Wang, Yanjie Fu, Kunpeng Liu, Fanglan Chen, Pengyang Wang, and
Chang-Tien Lu. Automated urban planning for reimagining city configura-
tion via adversarial learning: Quantification, generation, and evaluation. ACM
Transactions on Spatial Algorithms and Systems, 9(1):1–24, March 2023.

[150] Dongjie Wang, Lingfei Wu, Denghui Zhang, Jingbo Zhou, Leilei Sun, and Yan-
jie Fu. Human-instructed deep hierarchical generative learning for automated
urban planning. Proceedings of the AAAI Conference on Artificial Intelligence,
37(4):4660–4667, June 2023.

[151] Jing Wang, Shengnan Guo, Tonglong Wei, Yiji Zhao, Youfang Lin, Huaiyu
Wan, et al. Spatial-temporal uncertainty-aware graph networks for promoting
accuracy and reliability of traffic forecasting.

[152] Shenhao Wang, Baichuan Mo, and Jinhua Zhao. Deep neural networks for
choice analysis: Architecture design with alternative-specific utility functions.
Transportation Research Part C: Emerging Technologies, 112:234–251, 2020.

[153] Shenhao Wang, Baichuan Mo, and Jinhua Zhao. Deep neural networks for
choice analysis: Architecture design with alternative-specific utility functions.
Transportation Research Part C: Emerging Technologies, 112:234–251, 3 2020.

[154] Shenhao Wang, Baichuan Mo, and Jinhua Zhao. Theory-based residual neu-
ral networks: A synergy of discrete choice models and deep neural networks.
Transportation Research Part B: Methodological, 146:333–358, 4 2021.

[155] Shenhao Wang, Qingyi Wang, Nate Bailey, and Jinhua Zhao. Deep neural
networks for choice analysis: A statistical learning theory perspective. Trans-
portation Research Part B: Methodological, 148:60–81, 2021.

152



[156] Shenhao Wang, Qingyi Wang, and Jinhua Zhao. Deep neural networks for
choice analysis: Extracting complete economic information for interpretation.
Transportation Research Part C: Emerging Technologies, 118:102701, 2020.

[157] Shenhao Wang, Qingyi Wang, and Jinhua Zhao. Deep neural networks for
choice analysis: Extracting complete economic information for interpretation.
Transportation Research Part C: Emerging Technologies, 118:102701, 2020.

[158] Shenhao Wang, Qingyi Wang, and Jinhua Zhao. Multitask learning deep neural
networks to combine revealed and stated preference data. Journal of Choice
Modelling, page 100236, 2020.

[159] Shenhao Wang and Jinhua Zhao. Risk preference and adoption of autonomous
vehicles. Transportation research part A: policy and practice, 126:215–229, 2019.

[160] Wei Wang and Yiwei Wu. Is uncertainty always bad for the performance of
transportation systems? Communications in transportation research, 1:100021,
2021.

[161] Zepu Wang, Dingyi Zhuang, Yankai Li, Jinhua Zhao, and Peng Sun. St-gin:
An uncertainty quantification approach in traffic data imputation with spatio-
temporal graph attention and bidirectional recurrent united neural networks.
arXiv preprint arXiv:2305.06480, 2023.

[162] Zhendong Wang, Yifan Jiang, Yadong Lu, Yelong Shen, Pengcheng He, Weizhu
Chen, Zhangyang Wang, and Mingyuan Zhou. In-context learning unlocked for
diffusion models. (arXiv:2305.01115), October 2023. arXiv:2305.01115 [cs].

[163] Min Weng, Ning Ding, Jing Li, Xianfeng Jin, He Xiao, Zhiming He, and Shiliang
Su. The 15-minute walkable neighborhoods: Measurement, social inequalities
and implications for building healthy communities in urban china. Journal of
Transport and Health, 13:259–273, June 2019.

[164] OpenStreetMap Wiki. Slippy map tilenames - openstreetmap wiki.

[165] Julia Wolleb, Robin Sandkühler, Florentin Bieder, Philippe Valmaggia, and
Philippe C. Cattin. Diffusion models for implicit image segmentation ensembles.
In Proceedings of The 5th International Conference on Medical Imaging with
Deep Learning, page 1336–1348. PMLR, December 2022.

[166] Melvin Wong and Bilal Farooq. Modelling latent travel behaviour characteristics
with generative machine learning. In 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), pages 749–754. IEEE, 2018.

[167] Melvin Wong and Bilal Farooq. Reslogit: A residual neural network logit model
for data-driven choice modelling. Transportation Research Part C: Emerging
Technologies, 126:103050, 2021.

153



[168] Abraham Noah Wu, Rudi Stouffs, and Filip Biljecki. Generative adversarial
networks in the built environment: A comprehensive review of the application
of gans across data types and scales. Building and Environment, 223:109477,
2022.

[169] Yuankai Wu, Dingyi Zhuang, Aurelie Labbe, and Lijun Sun. Inductive graph
neural networks for spatiotemporal kriging. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(5):4478–4485, May 2021.

[170] Yuankai Wu, Dingyi Zhuang, Mengying Lei, Aurelie Labbe, and Lijun Sun.
Spatial aggregation and temporal convolution networks for real-time kriging.
arXiv preprint arXiv:2109.12144, 2021.

[171] Xi Xiong, Kaan Ozbay, Li Jin, and Chen Feng. Dynamic origin–destination
matrix prediction with line graph neural networks and kalman filter. Trans-
portation Research Record, 2674(8):491–503, 2020.

[172] Jiayang Xu and Karthik Duraisamy. Multi-level convolutional autoencoder net-
works for parametric prediction of spatio-temporal dynamics. Computer Meth-
ods in Applied Mechanics and Engineering, 372:113379, 2020.

[173] Wenju Xu, Shawn Keshmiri, and Guanghui Wang. Adversarially approximated
autoencoder for image generation and manipulation. IEEE Transactions on
Multimedia, 21(9):2387–2396, 2019.

[174] Kun Yang, Justin Tu, and Tian Chen. Homoscedasticity: An overlooked critical
assumption for linear regression. General Psychiatry, 32(5):100148, oct 2019.

[175] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua
Gong, Zhenhui Li, Jieping Ye, and Didi Chuxing. Deep multi-view spatial-
temporal network for taxi demand prediction. 32nd AAAI Conference on Ar-
tificial Intelligence, AAAI 2018, pages 2588–2595, 2018.

[176] Rui Yao and Shlomo Bekhor. A variational autoencoder approach for choice set
generation and implicit perception of alternatives in choice modeling. Trans-
portation Research Part B: Methodological, 158:273–294, 2022.

[177] Ali Yazdizadeh, Zachary Patterson, and Bilal Farooq. Ensemble convolutional
neural networks for mode inference in smartphone travel survey. IEEE Trans-
actions on Intelligent Transportation Systems, 21(6):2232–2239, 2019.

[178] Ali Yazdizadeh, Zachary Patterson, and Bilal Farooq. Semi-supervised gans
to infer travel modes in gps trajectories. Journal of Big Data Analytics in
Transportation, 3:201–211, 2021.

[179] Jiexia Ye, Juanjuan Zhao, Kejiang Ye, and Chengzhong Xu. How to Build a
Graph-Based Deep Learning Architecture in Traffic Domain: A Survey. IEEE
Transactions on Intelligent Transportation Systems, 2020.

154



[180] Jiexia Ye, Juanjuan Zhao, Kejiang Ye, and Chengzhong Xu. Multi-STGCnet:
A Graph Convolution Based Spatial-Temporal Framework for Subway Passen-
ger Flow Forecasting. In Proceedings of the International Joint Conference on
Neural Networks. Institute of Electrical and Electronics Engineers Inc., jul 2020.

[181] Xinyue Ye, Jiaxin Du, and Yu Ye. Masterplangan: Facilitating the smart ren-
dering of urban master plans via generative adversarial networks. Environment
and Planning B: Urban Analytics and City Science, 49(3):794–814, 2022.

[182] Yang Ye and Shihao Ji. Sparse graph attention networks. IEEE Transactions
on Knowledge and Data Engineering, 2021.

[183] Christopher Yeh, Anthony Perez, Anne Driscoll, George Azzari, Zhongyi Tang,
David Lobell, Stefano Ermon, and Marshall Burke. Using publicly available
satellite imagery and deep learning to understand economic well-being in Africa.
Nature Communications, 11(1):1–11, 2020.

[184] Luca Zamparini and Aura Reggiani. The value of travel time in passenger and
freight transport: an overview, pages 161–178. Routledge, 2016.

[185] Fan Zhang, Bolei Zhou, Liu Liu, Yu Liu, Helene H Fung, Hui Lin, and Carlo
Ratti. Measuring human perceptions of a large-scale urban region using machine
learning. Landscape and Urban Planning, 180:148–160, 2018.

[186] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control
to text-to-image diffusion models. page 3836–3847, 2023.

[187] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 586–595,
Los Alamitos, CA, USA, jun 2018. IEEE Computer Society.

[188] Yanru Zhang, Ranye Sun, Ali Haghani, and Xiaosi Zeng. Univariate volatility-
based models for improving quality of travel time reliability forecasting. Trans-
portation research record, 2365(1):73–81, 2013.

[189] Yong Zhao and Kara Maria Kockelman. The propagation of uncertainty through
travel demand models: An exploratory analysis. Annals of Regional Science,
36(1):145–163, 2002.

[190] Yu Zheng, Yuming Lin, Liang Zhao, Tinghai Wu, Depeng Jin, and Yong Li.
Spatial planning of urban communities via deep reinforcement learning. Nature
Computational Science, 3(9):748–762, September 2023.

[191] Yunhan Zheng, Shenhao Wang, and Jinhua Zhao. Equality of opportunity in
travel behavior prediction with deep neural networks and discrete choice models.
Transportation Research Part C: Emerging Technologies, 132:103410, 2021.

155



[192] Dingyi Zhuang, Yuheng Bu, Guang Wang, Shenhao Wang, and Jinhua Zhao.
SAUC: Sparsity-aware uncertainty calibration for spatiotemporal prediction
with graph neural networks. In Temporal Graph Learning Workshop @ NeurIPS
2023, 2023.

[193] Dingyi Zhuang, Siyu Hao, Der-Horng Lee, and Jian Gang Jin. From compound
word to metropolitan station: Semantic similarity analysis using smart card
data. Transportation Research Part C: Emerging Technologies, 114:322–337,
2020.

[194] Dingyi Zhuang, Shenhao Wang, Haris Koutsopoulos, and Jinhua Zhao. Uncer-
tainty quantification of sparse travel demand prediction with spatial-temporal
graph neural networks. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 4639–4647, 2022.

[195] Roland S. Zimmermann, Lukas Schott, Yang Song, Benjamin A. Dunn, and
David A. Klindt. Score-based generative classifiers. (arXiv:2110.00473), De-
cember 2021. arXiv:2110.00473 [cs, stat].

156


	Introduction
	Background
	Dissertation Overview
	Uncertainty Quantification
	Data Fusion
	Generative Urban Design


	Uncertainty Quantification: Probabilistic graph neural networks for uncertainty quantification of short-term demand prediction
	Background
	Literature Review
	Travel Demand Prediction with Deep Learning
	Uncertainty Quantification Methods

	Theoretical Framework
	Probabilistic Assumptions G
	Deterministic Assumptions in F
	Specific Examples: Gaussian Distributions and Mean-Variance Estimation
	Evaluation

	Case Study
	Data
	Experiment Setup

	Results and Discussion
	Significance of Probabilistic and Deterministic Assumptions
	Implications of Probabilistic Assumptions
	Model Performance under System Disruption
	Spatiotemporal Uncertainty

	Conclusion

	Data Fusion: Deep hybrid models to combine numerical data and satellite imagery for travel behavior analysis
	Background
	Literature review
	Travel demand modelling
	Computer vision and urban computing

	Theory
	General framework of deep hybrid models
	Mixing operator: supervised autoencoders
	Behavioral predictor
	Deriving economic information from generated satellite imagery

	Experiment design
	Data
	Model training

	Results
	Predictive performance
	Navigating the latent space
	Deriving economic information for generated satellite imagery

	Conclusion

	Generative Urban Design: Human-guided automatic urban design via diffusion models
	Background
	Literature Review
	Urban Imagery in Planning and Design
	Image Generation Models
	Generative Urban Design

	The Human-machine Collaboration Vision
	Problem Framing
	Methodology
	Feature Extraction
	Generative Urban Design

	Dataset
	Model Evaluation
	Model Demonstration
	Goals
	Ablation Study

	Discussion, Limitations, and Future Work
	Conclusion

	Conclusion
	Summary
	Future Research
	Uncertainty Quantification
	Data Fusion: Deep Hybrid Models
	Generative Urban Design


	Additional Details of Deep Hybrid Models
	Specific model design in disaggregate analysis
	Effects of mixing and sparsity hyperparameters on prediction and image reconstruction
	Two-directional imagery regeneration

	Denoising Diffusion Probabilistic Models and Latent Diffusion Models
	Denoising Diffusion Probabilistic Models
	Latent Diffusion Models (Stable Diffusion)

	Generative Design - User Study

