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Abstract

Simultaneous Localization and Mapping (SLAM) is fundamental for autonomous
agents to understand their surroundings. Moreover, for advanced robotic tasks, en-
gaging in consistent object-level reasoning is critical, especially for activities involving
repetitive traversal within the same environment, such as household cleaning and ob-
ject retrieval. In a changing world, robots should always locate themselves and their
targets while maintaining an updated environment map. Traditional SLAM relies on
static geometric primitives from observations, lacking semantic understanding. These
unordered sets of points, lines, or planes struggle with object-level interpretation,
leading to false estimation against scene changes.

As the world functions and evolves under the minimal unit of objects, object-aided
SLAM is a logical option. This thesis revolves around long-term object-based SLAM
within low-dynamic environments to bridge the communication gap between SLAM
techniques and high-level robotic applications and enhance SLAM compatibility with
object-level perception. It presents three contributions:

First, we propose a multi-hypothesis approach for the ambiguity-aware adoption
of object poses in object-based SLAM. This approach accommodates the inherent
ambiguity arising from occlusion or symmetrical object shapes. We design a multi-
hypothesis object pose estimator front end in a mixture-of-expert fashion and utilize
a max-mixture-based back end to infer globally consistent camera and object poses
from a sequence of pose hypothesis sets.

Second, we develop two change detection approaches for offline and online ap-
plications, with two novel scene and object representations, PlaneSDF and shape-
consistent neural descriptor fields, respectively. Regarding long-term operation, we
account for inevitable scene changes over extended periods and the efficiency and
scalability of the chosen map representations. Furthermore, we explore cluster- and
object-level change detection, following a "divide-and-conquer" strategy to enable
more accurate and flexible change detection through local scene differencing.

Last, we propose a neural SE(3)-equivariant object embedding (NeuSE) for long-
term consistent spatial understanding in object-based SLAM. NeuSE is trained to

3



serve as a compact point cloud surrogate for complete object models. Our NeuSE-
based object SLAM paradigm directly derives SE(3) camera pose constraints com-
patible with general SLAM pose graph optimization. This realizes object-assisted
localization and a lightweight object-centric map with change-aware mapping abil-
ity, ultimately achieving robust scene understanding despite temporal environment
changes.

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation

Simultaneous Localization and Mapping (SLAM), as its name suggests, refers to

the task of an autonomous agent localizing itself as well as building a map of the

surroundings when exploring a new environment. This is a fundamental capability

for robots, serving as the perception basis for higher-level robotic tasks, such as object

retrieval and household cleaning.

As the world operates and evolves on the minimal unit of discrete objects, these

sophisticated robotic tasks often emulate the cognitive processes of humans. In this

context, the assessment of the degree of “objectness” in the environment becomes a

crucial facet (see Fig. 1-1). When humans issue a directive, they instinctively embed

their own comprehension of “objects” into the task’s framework. For instance, a simple

command like “Kindly retrieve that azure coffee mug for me.” inherently integrates our

conceptualization of a “blue coffee mug”. To execute a similar command, a household

robot must embark on a sequential journey: grasping the essence of a “blue coffee

mug”, identifying and pinpointing the target’s location on the map, and ultimately

planning a path to procure the item based on its spatial relationship with the target’s

position.

The perceptual discrepancy between the languages employed by robots and hu-

mans introduces additional challenges in achieving effective localization and mapping.

15



Figure 1-1: Object-level reasoning is a desirable capability for advanced robotic tasks
where traditional SLAM approaches are not a perfect fit. For a robot operating in a
household environment (a) with an object retrieval task, it is expected to develop a
sense of “objectness” in the environment, e.g., coffee mugs on the shelf (c), and keep
up with the evolving object layout of the room (b).

Traditional SLAM methods [27, 11, 29] often rely on pixel-level photometric differ-

ences or manually engineered lower-level geometric features to infer relative motion

between frames. Lacking semantic insights, these localization approaches and resul-

tant mapped outputs remain devoid of compatibility with object-oriented reasoning.

Consequently, they may struggle to seamlessly incorporate instructions framed at the

object level, as mandated by high-level tasks. This situation imposes extra computa-

tional burdens and complexities when attempting real-time communication with the

robot during task execution.

In extended operating scenarios, the challenge of this non-smooth communication

is magnified, exacerbated by ongoing changes. Long-term operation robustness stands

as a key requirement for robots. Yet, encountering changes in the environment is

inevitable, particularly in tasks involving repetitive traversal within the same space,

e.g., mobile manipulation. Tables may shift locations periodically, and commonplace

items like coffee mugs or water bottles may frequently change places. A capable

SLAM pipeline must effectively adapt to environment changes, continuously updating

its map of the surroundings.

Conversely, typical SLAM methods often function on the assumption of a static
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Figure 1-2: (a) Map representations of conventional SLAM systems. From left to
right: A sparse point cloud map generated by ORB-SLAM2 [83], a semi-dense map
produced by DSO [28], and a dense TSDF reconstruction map obtained through
C-blox [79]. (b) A dense, object-centric map along with robot trajectory estimate
created by our own system.

environment, rendering them susceptible to false feature correspondences resulting

from changed objects. Additionally, as inference processes mainly operate on pixel-

wise or point-wise data, the lack of “object” level comprehension hampers the handling

of environment changes and map updates, leading to cumbersome and error-prone

update procedures (see Fig. 1-2).

Hence, given the limited compatibility with object-level reasoning in advanced

robotic tasks and the challenge of addressing environmental object changes, enhancing

common SLAM pipelines with object-level understanding emerges as an attractive

proposition. This, in essence, outlines the core goal of this thesis:

Develop a general SLAM paradigm that can operate on object-level information

for long-term spatial understanding against low-dynamic temporal scene inconsis-

tency.

Here, we target the common RGB-D data modality, and a low-dynamic environment

pertains to scenarios with object layout changes, but whose moving processes are not

directly captured by the camera.

1.2 Overview

To address the aforementioned challenges, this thesis delves into the potential of har-

nessing object-level information to enhance the localization and mapping processes
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of SLAM. Specifically, the focus is on enabling the robot’s localization to align with

downstream tasks necessitating object-level perception, while effectively dealing with

long-term scene changes. Consequently, the outcome of the localization process nat-

urally leads to the establishment of change-aware, object-centric mapping capability,

thereby offering more support to the execution of advanced robotic tasks.

Embracing the notion that the world’s perception hinges upon objects, objects

emerge as a logical avenue for aiding localization, and an object-centric map stands as

a lightweight and adaptable reflection of the evolving environment layout. Taking ad-

vantage of the object shape invariance and the robot-landmark geometric constraints

compactly encoded within 6D object poses, we identify object shapes and poses as

pivotal bridges that link object observations and the SLAM reasoning process.

Our consideration primarily orbits around two realms: the agent itself and the

objects, although these two are interrelated. On the one hand, within the context

of robot motion, pose ambiguity can emerge due to occlusion or inherent geometric

symmetry, while inconsistent shape observations might arise from various occlusion

patterns and viewing angles. On the other hand, for objects, the challenge lies in effi-

cient representation. While conventional approaches employ unordered point, line, or

voxel collections to characterize objects via point clouds or Truncated Signed Distance

Function (TSDF), the question arises: Do these representations sustain efficiency dur-

ing prolonged operation? Moreover, as objects diminish in size and lie closer, do we

still require individual representations for each object, or would a single representation

per cluster suffice?

In this spirit, the efforts of this thesis unfold across three core themes: (1) Ad-

dressing object ambiguity in the environment; (2) Devising object- and cluster-level

representations for change detection; and (3) Establishing a foundation for long-term

spatial understanding amidst temporal inconsistency. By delving into these three

topics, we establish a framework showcasing our endeavors to achieve the overarch-

ing objective: the realization of robust, long-term SLAM capabilities in low-dynamic

environments that seamlessly aligns with object-oriented advanced robotic tasks.
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1.3 Problems of Interest and Contributions

1.3.1 Problems of Interest

In the pursuit of creating an object-based SLAM system that attains robust spatial

understanding over extended periods, this thesis endeavors to tackle three pivotal

challenges that have not been comprehensively addressed in previous research.

Developing Representations. The initial challenge revolves around develop-

ing effective and scalable representations for objects and scenes. In the context of

mobile robotics, issues such as disparities in occlusion and viewing angles often result

in erroneous data associations. Furthermore, long-term operation typically involves a

gradual increase in the number of objects and the size of observed environments. As

a consequence, these issues prompt an exploration of object and scene representations

that can compactly yet effectively capture pose and geometric details. Traditional

representations used in SLAM systems, such as point clouds and TSDF, while suitable

for short-term scenarios, may prove memory-inefficient as operational time increases

and may only capture partial details from varying perspectives. To facilitate data

association across different angles and occlusion patterns during prolonged opera-

tion, we aim to devise object and scene representations that encode object geometric

attributes with reduced dependence on viewing angles and can scale seamlessly for

extended durations.

Handling Environmental Changes. The second challenge pertains to address-

ing environment changes during long-term operation. Existing research has primarily

focused on short-term and highly dynamic scenes, where solutions often involve ex-

cluding or predicting the potential impacts of object dynamics on the scene. These

methods typically encompass actions like removing movable object classes and de-

veloping motion models. However, the situation turns harder when dealing with

low-dynamic scenes over an extended period. As the motion of objects is not directly

captured by the camera, the environment may appear misleadingly static with un-

desirable motion blur or dynamics not explicitly manifesting in sensor images. In

such cases, objects merely shift to new locations with altered orientations, leading
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to confusion in data association. Consequently, a critical aspect involves developing

change detection techniques that continuously reflect the most up-to-date scene lay-

out, thus providing a clear and conflict-free understanding of the current operational

environment.

Utilizing Object-Level Information. The last challenge involves smoothly

and effectively integrating object-level information into the SLAM pipeline. Current

approaches often obtain inter-frame camera pose constraints from exterior object

pose estimators or engage in joint optimization of object representations alongside

other measurements. This requires the availability of external pose estimators and

does not allow for the direct integration of object-level data into existing SLAM

pipelines. Furthermore, the common issue of object pose ambiguity is rarely addressed

adequately while maintaining a balance between computational efficiency and speed.

To tackle the ambiguity issue and explore convenient ways to incorporate object

poses into common SLAM pipelines, we seek to investigate methods for leveraging

objects most accurately and seamlessly within the SLAM system in either a coupled

or decoupled fashion.

1.3.2 Contributions and Thesis Outline

Following our structured approach, we proceed to present our contributions in the

ensuing chapters. The outline for the rest of the thesis is as follows:

• Chapter 2: Technical Foundamentals. In this chapter, we lay the ground-

work by providing essential insights into visual and, in particular, object-based

SLAM formulation, and the broader context of visual and object-based SLAM

research.

• Chapter 3: Multi-hypothesis Approach to Object Pose Ambiguity. In

this chapter, we leverage multi-hypothesis object pose estimation and adopt

max-mixtures during optimization to recover a set of globally consistent esti-

mates of robot and landmark poses.
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• Chapter 4: PlaneSDF Representations and Cluster-level Change De-

tection. Here, we propose a novel PlaneSDF representation for mapping and

design a cluster-level PlaneSDF-based change detection scheme. This approach

targets scenarios with both source and target maps available, catering to offline

operations.

• Chapter 5: Object-level Neural Descriptor Fields (NDFs) and Change

Detection. In this chapter, we introduce the concept of shape-consistent Neu-

ral Descriptor Fields (NDFs) and outline an NDF-based change detection ap-

proach. Designed for online operations without pre-alignment tools, this tech-

nique addresses scene changes with extra robustness to localization errors.

• Chapter 6: Neural SE(3)-equivariant Embeddings (NeuSE) for Long-

term Spatial Understanding. This chapter presents Neural SE(3)-equivariant

Embeddings (NeuSE) for objects and illustrates its full potential in supporting

object SLAM, fostering consistent spatial comprehension in the presence of

long-term scene changes.

• Chapter 7: Conclusion and Future Directions. Our concluding chapter

synthesizes our contributions and thoughts, acknowledges limitations, and out-

lines three potential avenues for future exploration.

The publications involved in chapter 3-6 are as follows:

• Chapter 3: J. Fu, Q. Huang, K. Doherty, Y. Wang, and J. J. Leonard. A Multi-

Hypothesis Approach to Pose Ambiguity in Object-Based SLAM. IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2021.

• Chapter 4: J. Fu, C. Lin, Y. Taguchi, A. Cohen, Y. Zhang, S. Mylabathula,

and J. J. Leonard. PlaneSDF-Based Change Detection for Long-Term Dense

Mapping. IEEE Robotics and Automation Letters (RA-L) with IROS option,

2022.
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• Chapter 5: J. Fu, Y. Du, K. Singh, J. B. Tenenbaum and J. J. Leonard. Robust

Change Detection Based on Neural Descriptor Fields. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2022.

• Chapter 6: J. Fu, Y. Du, K. Singh, J. B. Tenenbaum and J. J. Leonard. NeuSE:

Neural SE (3)-Equivariant Embedding for Consistent Spatial Understanding

with Objects. Robotics: Science and Systems (RSS), 2023.
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Chapter 2

SLAM Preliminaries

In this chapter, we first cover some fundamentals of SLAM formulation and opti-

mization techniques. We then introduce camera geometry widely employed in visual

SLAM, followed by multiple cost functions commonly seen in object-based SLAM.

We later review some existing approaches in visual SLAM and object-based SLAM.

Lastly, we discuss how we should address the research gap between current progress

and realizing a robust object-based SLAM system for long-term operation.

2.1 Representations and Optimization for SLAM

A typical SLAM system consists of two main components: a front end and a back end

that work together to estimate camera poses and construct the environment map. The

front end handles sensor measurement processing and generates odometry constraints,

while the back end processes these inter-frame pose constraints to perform inference.

Here, we introduce factor graphs and Lie Algebra, which comprise the foundation of

SLAM problem representation and optimization.

2.1.1 Graphical Models for SLAM

A typical SLAM problem (see Fig. 2-1) can be defined as follows: Suppose an agent

(e.g., a racecar) is moving among several landmarks (e.g., teddy bears). Given a set
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Figure 2-1: A typical scenario for SLAM. A racecar is moving around two teddy bears
(landmarks) from time 0 to 𝑡, obtaining odometry measurements u𝑖s and landmark
observations m𝑖s.

of (1) odometry measurements of adjacent camera frames, {u𝑖}𝑡=𝑇
𝑡=1 , and (2) landmark

measurements, {m𝑖}𝑡=𝑇
𝑡=1 , from on-board sensors such as RGB-D cameras, lidars, and

IMUs, the SLAM problem seeks to solve for the camera poses, {T𝑖}𝑡=𝑇
𝑡=1 , and the

landmark poses, {P𝑖}𝑖=𝑁
𝑖=1 , at all time steps.

Treating unknown variables, i.e., camera and landmark poses, as variable nodes,

and the measurements of the odometry and landmarks as factor nodes, factor graphs

can then serve as a general graphical model for SLAM. In particular, we assume

the value of each node follows some certain distributions determined by the sensor

observation model, and the optimization problem for SLAM can usually be formulated

as a maximum a posteriori (MAP), or if no prior knowledge 𝑝(𝜃) about the variable

value is available, a maximum likelihood estimation (MLE) inference problem. That

is, we want to find a set of values for variable nodes, 𝜃 = ({T𝑖}𝑡=𝑇
𝑡=1 , {P𝑖}𝑖=𝑁

𝑖=1 ), that

maximizes the posterior probability of 𝜃 given measurements Z = ({u𝑖}𝑡=𝑇
𝑡=1 , {m𝑖}𝑡=𝑇

𝑡=1 )

from all sensors:
𝜃* = argmax

𝜃
𝑝(𝜃|Z)

≡ argmax
𝜃

𝑝(Z|𝜃)𝑝(𝜃) (𝑀𝐴𝑃 )

≡ argmax
𝜃

𝑝(Z|𝜃)HHH𝑝(𝜃) (𝑀𝐿𝐸).

(2.1)
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The optimization process is typically conducted using common optimization methods,

such as the Gauss-Newton or Levenberg-Marquardt algorithm, and forms of cost

functions can vary according to sensor types.

2.1.2 Optimization for SLAM: Lie Algebra

Typical optimization methods involve a gradual variable update step x ← x + 𝛿x

guided by the cost function. This rule works well for variables belonging to the

Euclidean space. However, for 6D poses, which are in the three-dimensional Special

Euclidean Group, T = (R ∈ R3×3, t ∈ R3) ∈ SE(3), the simple “add-for-update” rule

no longer works for the rotation part, which belongs to the three-dimensional Special

Orthogonal Group, so(3). To perform optimization with a valid addition operation

for the elements in so(3) without additional constraints, we introduce Lie Algebra.

For each rotation matrix R ∈ R3×3 in the three-dimensional space, its associated

Lie Algebra so(3) = {𝜑 ∈ R3,Φ = 𝜑∧ ∈ R3×3} is defined as follows:

Φ = 𝜑∧ =

⎡⎢⎢⎢⎣
0 −𝜑3 𝜑2

𝜑3 0 −𝜑1

−𝜑2 𝜑1 0

⎤⎥⎥⎥⎦ , (2.2)

where the original rotation matrix R ∈ R3×3 can be recovered by the exponential

mapping as:
R = 𝑒𝑥𝑝(𝜑∧)

𝜑 = 𝑙𝑛(R)∨.
(2.3)

Similarly, for 3D Special Euclidean Group, SE(3), the corresponding Lie Algebra se(3)

is defined as:

se(3) = {𝜉 =

⎡⎣𝜌
𝜑

⎤⎦ ∈ R6,𝜌 ∈ R3,𝜑 ∈ so(3), 𝜉∧ =

⎡⎣𝜑∧ 𝜌

0𝑇 0

⎤⎦ ∈ R4×4}, (2.4)
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where we have
T = 𝑒𝑥𝑝(𝜉∧)

𝜉 = 𝑙𝑛(T)∨.
(2.5)

Suppose we have a point p ∈ R3 that is rotated by R ∈ R3×3 and the associated

Lie Algebra 𝜑 of R. If we apply a small left disturbance 𝛿R with corresponding Lie

Algebra 𝛿𝜑, we have

𝜕Rp

𝜕𝛿𝜑
= 𝑙𝑖𝑚𝛿𝜑→0

𝑒𝑥𝑝(𝛿𝜑∧)𝑒𝑥𝑝(𝜑∧)p− 𝑒𝑥𝑝(𝜑∧)p

𝛿𝜑

= (−Rp)∧.

(2.6)

In a similar vein, for the same point p and the transform T = (R, t), if we give T a

small left disturbance ΔT = 𝑒𝑥𝑝(𝛿𝜉∧), we have

𝜕Tp

𝜕𝛿𝜉
= 𝑙𝑖𝑚𝛿𝜉→0

𝑒𝑥𝑝(𝛿𝜉∧)𝑒𝑥𝑝(𝜉∧)p− 𝑒𝑥𝑝(𝜉∧)p

𝛿𝜉

=

⎡⎣ I (−Rp+ t)∧

0𝑇 0𝑇

⎤⎦ .

(2.7)

2.2 Visual SLAM Formulation

In this thesis, we limit our scope to “Visual SLAM”, namely, SLAM systems that

operate on visual measurements from RGB and depth cameras. In this section, we

will accordingly introduce the cost functions that have been adopted in visual SLAM.

2.2.1 Camera Projection Model

One cost used to guide the camera and landmark optimization process involves com-

paring the estimated 2D/3D locations of the feature points with those obtained from

the measurements.

Here, we assume a pinhole camera model with intrinsic matrix K (in image pixel
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unit):

𝐾 =

⎡⎢⎢⎢⎣
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎤⎥⎥⎥⎦ , (2.8)

where 𝑓𝑥 and 𝑓𝑦 are the focal lengths in the 𝑥 and 𝑦 direction of the image coordinate,

respectively. 𝑐𝑥 and 𝑐𝑦 are the coordinates of the camera’s principal point.

Given a point p𝑤 = (𝑥, 𝑦, 𝑧) ∈ R3 in the world coordinate frame and the current

camera pose T = (R ∈ R3×3, t ∈ R3), then the projection process will first transform

the point in the world frame, p𝑤, to the local camera frame, p𝑐, and then onto the

image frame to its pixel coordinate (𝑢, 𝑣):

𝑧

⎛⎜⎜⎜⎝
𝑢

𝑣

1

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝑥

𝑦

𝑧

⎞⎟⎟⎟⎠ = Kp𝑐 = KTp𝑤 𝑑𝑒𝑓
= 𝜋(Tp𝑤), (2.9)

where we define 𝜋 to be the projection process from the 3D camera frame to the 2D

image frame.

Recently, neural implicit representations have been newly introduced into SLAM

research due to their ability to perform object/scene completion and novel view syn-

thesis. When neural implicit representations are employed for map representation, the

camera projection process is parametrized as a neural network, typically a multi-layer

perceptron (MLP), instead of adhering to the previously mentioned pinhole camera

model. We will explore how to integrate them into the SLAM pipeline in Chapter 5

and Chapter 6.

2.2.2 Geometric Cost

One commonly used cost function in visual SLAM is the geometric cost. Given a

point in the map maintained by the SLAM system, p𝑤 = (𝑥, 𝑦, 𝑧), this cost computes

the reprojection error, i.e., the pixel coordinate difference between the estimated

projected pixel location using the current camera pose estimate, T, and the actual
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corresponding pixel location u:

e𝑟𝑒𝑝𝑟𝑜𝑗
𝑑𝑒𝑓
= u− 𝜋(Tp𝑤). (2.10)

2.2.3 Photometric Cost

Another widely adopted cost function, the photometric cost, computes the photomet-

ric differences of the corresponding pixel locations of the same 3D point in different

camera frames. Here, the 3D point is no longer represented by its three-dimensional

coordinate (𝑥, 𝑦, 𝑧). Instead, each point in the map is specified by its pixel location

along with the estimated depth, d, i.e., p𝑐 = (u,d) in a camera frame with estimated

frame pose T𝑐. Then, given two camera frames, 𝐼1 and 𝐼2, with the estimated relative

transform from 𝐼1 to 𝐼2 as T12, for a pixel, (u,d), in the first frame, the photometric

cost is computed as:

e𝑝𝑚𝑡
𝑑𝑒𝑓
= 𝐼1(u)− 𝐼2(𝜋(𝑇12𝜋

−1(u,d))). (2.11)

2.2.4 Relative Pose Cost

Among SLAM with various sensor data modalities, the most lightweight instantiation

of a SLAM problem is PoseSLAM, which estimates solely the camera poses of camera

frames without maintaining an actual map of the environment. Here, the graphical

representation of SLAM only includes odometry (adjacent) and loop-closing (non-

adjacent) relative frame measurements from various sources, and the relative pose

error between two camera frames T𝑖 and T𝑗 is computed as follows:

e𝑝𝑜𝑠𝑒
𝑑𝑒𝑓
= ln(T−1

𝑖 T𝑗)
∨ln(T−1

𝑖𝑗 T
−1
𝑖 T𝑗)

∨, (2.12)

where T𝑖𝑗 = T−1
𝑖 T𝑗 is the relative transform between the two poses.
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2.3 Related Work

In this section, we first review some relevant works in visual SLAM and then focus

specifically on SLAM works that integrate object-level information into the SLAM

pipeline.

2.3.1 Visual SLAM

For SLAM systems operating on visual data, i.e., RGB and RGB-D cameras, previous

approaches can be roughly divided into two categories: sparse feature-based meth-

ods and dense direct methods. The former usually involves combining hand-crafted

higher-dimensional features or geometric primitives such as lines and planes with ge-

ometric cost for localization and maintains a sparse map consisting of mostly feature

points. The latter directly compares pixel-level learning-based object/scene represen-

tations for photometric differences, with the resulting map a dense reconstruction of

the environment.

For sparse feature-based methods, one of the earliest works, PTAM [61], adopted

FAST features for conducting the tracking and mapping tasks. ORBSLAM [11] was

built on top of the ORB feature and had four modules: tracking, mapping, relocal-

ization, and loop-closing, which has become a popular paradigm for SLAM system

design. Other hand-crafted features, such as SIFT and SURF, have also been seen

in works such as Fovis [42] and Libviso [36], respectively. In addition to point-based

features, previous works have explored integrating lines [120, 137] and planes [104, 55]

for camera localization.

For dense methods, DTAM [86] pioneered in GPU-accelerated real-time direct

dense SLAM, which was then adopted in later learning-based SLAM pipelines, such

as Demon [124] and Deeptam [143]. Deepfactors [16] employed a set of depth maps as

bases so as to reduce the computation cost during optimization. For those CPU-only

solutions, LSD-SLAM [27] and DSO [28] compared solely pixel intensity differences

only around regions with high gradients, thereby saving some computation to be

runnable on CPUs. TANDEM [63] followed the DSO architecture and further inte-
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grated multi-view stereo to produce a real-time dense SLAM system.

More related to our works are previous efforts in exploring various environment

representations for developing SLAM pipelines. Voxel-based Truncated Signed Dis-

tance Fields (TSDF) [85, 8] and surfels [132, 107] are popular representations adopted

in dense SLAM, such as KinectFusion [85], Kintinuous [131], ElasticFusion [132], and

BundleFusion [17]. DROID-SLAM [122] learned to regress optical flow and recurrently

refined camera poses and pixel-wise depth through a Dense Bundle Adjustment layer.

Recently, with the development of neural implicit representations, several works have

investigated using a latent code to represent objects or the environment, such as

CodeSLAM [6], SceneCode [142], and NodeSLAM [115]. These works conducted it-

erative optimization of the latent code representation for the scene or objects so as

to make the learned code align with all sensor (RGB-D) measurements.

2.3.2 Object-based SLAM

SLAM++ [103] introduced object-based SLAM by incorporating camera-object con-

straints with objects from a predefined model database. Attempts [75, 76, 100, 136]

have been made to leverage semantic segmentation for instance-level dense recon-

structions. Furthermore, simple parameterized geometry, e.g., ellipsoids adopted

by Nicholson et al. [87] and Hosseinzadeh et al. [49] and cuboids by Yang and Scherer

[138], have been explored to guide the joint optimization of the object shape parame-

ters and camera poses. For environments with moving objects, Strecke and Stueckler

[114] proposed an object-level SLAM approach that utilized local Signed Distance

Function (SDF) object volumes for tracking moving objects and performing camera

localization. Recently, following the aforementioned trend in integrating neural im-

plicit representations into SLAM, neural shape priors for objects have been utilized

in object SLAM pipelines for their shape completion capability. NodeSLAM [115]

adopted a class-level optimizable object shape descriptor and used RGB-D images

for joint estimation of object shapes, poses, and camera trajectory through itera-

tive probabilistic rendering optimization. DSP-SLAM [128], on the other hand, used

DeepSDF [95] for object representation and optimized the object code, camera poses,
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and sparse landmark points all together through a similar rendering loss in RGB,

stereo, or stereo+LiDAR modalities.

2.4 Bridging Objects and SLAM

Considering the gaps in existing visual, particularly object-based SLAM research, we

here discuss our solutions to narrow these gaps as presented in the following chapters

and how they are related to achieving the ultimate goal of a robust object-based

SLAM system for long-term spatial understanding against scene inconsistency.

Effective and Scalable Object and Scene Representations. Our first topic

addresses the challenge of devising object and scene representations that are both ef-

fective and scalable. Traditional SLAM methodologies, whether relying on sparse or

dense map representations, often fall short of providing sufficient semantic informa-

tion for advanced robotic tasks. Additionally, they can be vulnerable to false corre-

spondence matches when confronted with long-term scene changes. These extracted

representations merely reflect sensor observations, which may exhibit inconsistency

across different viewing perspectives and not readily scale to encompass larger scenes.

To address these limitations, we explore the idea of composing multiple low-level

geometric primitives, thus interpreting the environment structure as a collection of

planes, each accompanied by a Truncated Signed Distance Function (TSDF) volume.

This approach allows us to describe local geometric details. By doing so, we decom-

pose global operations into multiple local operations constrained within the current

camera viewing frustum, enhancing robustness and consistency across viewing angles

and occlusion patterns.

In parallel, we investigate emerging neural implicit representations for their shape

completion capabilities. Through the art of embedding geometric attributes into a

compact code, these representations encode not only observable elements but also

hidden details along the current viewing direction. This strategy enables us to attain

a certain level of three-dimensional consistency, particularly regarding object shapes

across varying viewing angles. Consequently, our approach best mimics the behavior
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of shape invariance exhibited by objects in the three-dimensional physical space.

Treatment for Long-Term Low-Dynamic Scene Changes. The second

topic addresses the challenge of long-term low-dynamic scene changes. While consid-

erable efforts have been made to mitigate the impact of high dynamics on the SLAM

reasoning pipeline, treatments for long-term, low-dynamic scenarios have received

comparatively less attention.

Recognizing that the motion of vehicles or pedestrians can be identified through

motion blur in camera observations and subsequently addressed through semantic

classification or motion models, long-term dynamics present a more intricate chal-

lenge. These dynamics cannot be independently determined from a few consecutive

frames and may interact with the SLAM system. Therefore, change detection emerges

as a critical component in achieving a robust SLAM system capable of sustained

long-term operation. Moreover, by embracing novel object/scene representations,

our SLAM system naturally acquires object-level reasoning capabilities, facilitating

the detection of changes, which always occur at the object level.

Mechanism for Smooth Integration of Objects. The final topic delves

into the mechanism of seamlessly integrating object-level information into the SLAM

pipeline, focusing on the aspects of ambiguity and compatibility. Present-day object-

based SLAM systems are typically not self-contained, often requiring external object

pose estimators to generate object pose measurements. They then rely on optimizable

object code embeddings coupled with backend optimization to estimate camera poses.

These approaches can suffer from object pose ambiguity and may not be readily

integrable to off-the-shelf SLAM systems.

Recognizing the remarkable performance of traditional SLAM approaches in static

environments and taking into account the occasional absence of objects within the

camera’s viewing frustum, we decide to enhance the SLAM system with object-level

reasoning capabilities. This enhancement can be accomplished through the adoption

of highly compatible object integration mechanisms. Such integration can be realized

either through the design of a standalone object-based SLAM system or by seamlessly

transforming a traditional SLAM system into an object-assisted hybrid variant using

32



the proposed object integration strategy.

Consequently, we first tackle the ambiguity issue through a multi-hypothesis ap-

proach. Subsequently, we explore the design of an SE(3)-equivariant object represen-

tation to derive SE(3) inter-frame camera pose constraints that are fully compatible

with general pose graph optimization.

Therefore, our whole line of efforts revolves around two kinds of “effectiveness”,

i.e., the effectiveness in object representation and then in object integration, so that

object-level information can be smoothly and correctly digested by a SLAM system

to achieve both robust and long-term operation.
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Chapter 3

A Multi-hypothesis Approach for

Object Pose Estimation

We begin our story by looking at one of the frequently adopted object measurements

in object-based SLAM, 6D object poses. By encoding robot-landmark geometric con-

straints in a compact form, 6D object pose is a desirable type of object measurement

to be leveraged. However, measurement ambiguity then arises as objects may possess

complete or partial object shape symmetry (e.g., due to occlusion), making it difficult

or impossible to generate a consistent object pose estimate. One idea is to generate

multiple pose candidates to counteract measurement ambiguity.

In this chapter, we present a novel approach that enables the object-based SLAM

system to reason about multiple pose hypotheses of an object and synthesize this

locally ambiguous information into a globally consistent robot and landmark pose es-

timation formulation1. In particular, we (1) design a learned pose estimation network

that provides multiple hypotheses about an object’s pose; (2) by treating the output

of our network as components of a mixture model, we incorporate pose predictions

into a SLAM system which, over successive observations, recovers a globally consis-

tent set of robot and object (landmark) pose estimates. We evaluate our approach

on the popular YCB-Video Dataset and a simulated video featuring YCB objects.

Experiments demonstrate that our approach effectively improves the robustness of
1Supplementary video: https://youtu.be/E4sheabxWBI
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object-based SLAM in the face of pose ambiguity.

3.1 Introduction

In object-based Simultaneous Localization and Mapping (SLAM), by encoding abun-

dant robot-landmark geometric constraints in a compact form, 6D object poses tend

to be a desirable type of object measurements to be leveraged [103]. By perceiving the

world in terms of objects, robots could readily integrate these 6D object pose mea-

surements into the joint recovery of robot and landmark poses. However, when there

exists environment ambiguity due to complete or partial object (landmark) shape

symmetry (e.g., from occlusion), the front end may be misled to make false positive

pose measurements. For instance, the front end may throw out a random measure-

ment of the mug’s orientation when its handle is obscured. Such a pose measurement

may incur considerable estimation errors in the back end if used to recover robot and

landmark poses.

One way to counteract the effect of ambiguity is to generate multiple hypotheses

each time, hoping that the correct hypothesis could be covered. As a result, rather

than conducting estimation based on one single frontend measurement at a time, as

most current object-based SLAM systems do, we choose to enable the object-based

SLAM system to be aware of the potential environment ambiguity by generating mul-

tiple possible object pose hypotheses. In this way, by considering multiple hypotheses

across many observations, an object-based SLAM system could then employ past ev-

idence to disambiguate the true pose of the landmark (object) and recover a globally

consistent set of robot and object pose estimates.

This idea motivates the design of our approach. The goal here is to have an

object-based SLAM system capable of reasoning about multiple pose hypotheses of

an object, and by synthesizing these sets of locally ambiguous information into a joint

multi-hypothesis robot/landmark pose estimation setting, the system could solve for

a globally consistent set of object and robot poses. Therefore, we instantiate our

approach as follows (see Fig. 3-1):
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Figure 3-1: Approach overview. The system takes in an RGB image along with its
bounding box detection and outputs the optimized robot/landmark pose estimates.
(a) The front end’s multi-hypothesis 6D object pose estimator (MHPE) comprises
three components: feature extraction, region-of-interest (RoI) Align, and a multilayer
perceptron. The output is 𝑁 6D pose hypotheses for each object, coming from 𝑁
separate branches in the last layer. (b) The max-mixture back end models the multi-
modality embedded in the multi-hypothesis output. With the MHPE covering the
correct object pose (orange) in most of the observed frames, max-mixtures could
gradually converge to the dominant mode, corresponding to the correct estimates of
robot/landmark poses.
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• To receive ambiguity-aware measurements from the front end, we develop a

deep-learning-based multi-hypothesis 6D object pose estimator (MHPE) trained

with known object CAD models to explore the potential pose hypothesis space.

• To solve the joint pose optimization with the multi-hypothesis formulation in

the back end, we treat the multiple measurements as components of a mixture

model and exploit nonlinear least square optimization to solve the max-mixture

formulation [91] of pose hypotheses.

Experiments are conducted on the real YCB-Video Dataset and a synthetic video

sequence featuring YCB objects in a virtual environment. Results demonstrate our

approach’s effectiveness in improving the robustness of the object-based SLAM system

in the face of ambiguous measurements.

3.2 Related Work

We first walk through relevant approaches at the time of publication on 6D object

pose estimation and object-based SLAM.

3.2.1 6D Object Pose Estimation

ICP [5] is the most commonly used method for 6D object pose estimation. However, it

is prone to local minima due to non-convexity. [52, 2, 47] used probabilistic approaches

to improve resilience to uncertain data.

For learning-based methods, SegICP [133] integrated semantic segmentation and

pose estimation using neural networks, which achieved robust point cloud registration

and per-pixel segmentation at the same time. The Deep Closest Point (DCP) [129]

and Partial Registration Network (PRNet) [130] methods incorporated descriptor

learning into the ICP pipeline so that the model could learn matching priors from the

data.

PoseCNN [135] and SSD-6D [59], as two pioneering methods for estimating object

poses in cluttered scenes, used neural networks to perform object detection and pose
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estimation at the same time. DOPE [123] employed only synthetic training data

for robot manipulation tasks, and the network showed good generalization to novel

environments. Densefusion [127] fused pixel-wise dense features from RGB and depth

images and achieved strong pose estimation results.

While all these above methods achieve good pose estimation accuracy, they either

need to explicitly address the object shape ambiguity or are too slow to produce

object pose measurements as a SLAM front end.

3.2.2 Object-based SLAM

SLAM++ [103] used pixel-wise reprojection error and added 6D object poses as

camera-object pose constraints to the pose-graph optimization. However, it required

object CAD models at runtime and was limited to few categories of pre-selected ob-

jects. QuadricSLAM [87] managed to estimate camera poses and quadric parameters

together based on odometry and bounding box detections. CubeSLAM [138] con-

ducted single-view 3D cuboid object detection and incorporated its refinement into

the joint optimization of camera poses and objects. While these two works improved

the camera pose estimation by including constraints from novel representations of the

objects, they did not explicitly consider the impact of shape ambiguity on these novel

representations. PoseRBPF [20] used a Rao-Blackwellized particle filter for object

tracking, providing robustness to shape symmetry with sufficient particles, but at the

cost of computation speed.

3.2.3 Uncertainty-aware SLAM Back End

Uncertainty in SLAM involves many types of problems, such as loop closure and data

association, where different backend methods have been developed. FastSLAM [81]

tackled unknown data association in a particle-filter-based fashion, using sampling to

cover the overall probability space. Sünderhauf et al. [117, 118] developed methods to

change the graph topology and achieved improved robustness to outliers with switch-

able constraints. The max-mixture method developed by Olson and Agrawal [91]
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represented discrete hypotheses as components of max-mixtures; this approach has

recently been leveraged for unknown data association in the context of semantic

SLAM by Doherty et al. [26].

With object (landmark) poses as measurements, our work enhances the robustness

of object-based SLAM in ambiguous environments by effectively generating multiple

pose hypotheses from a learned pose estimation network and using max-mixtures to

efficiently solve for the set of optimal robot/landmark poses.

3.3 Front End: Multi-hypothesis 6D Object Pose Es-

timator (MHPE)

The MHPE front end takes in an RGB image together with its object bounding boxes

(which could come from any object detectors) and outputs 𝑁 hypotheses for the 6D

pose of each object detected in the scene.

The object pose is represented by rotation q = (𝑤, 𝑥, 𝑦, 𝑧) as a unit quaternion

and 3D translation t = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧), which are defined w.r.t. the current camera frame.

As q = (𝑤, 𝑥, 𝑦, 𝑧) and q = (−𝑤,−𝑥,−𝑦,−𝑧) are equivalent, we enforce q to have

only non-negative real part 𝑤.

3.3.1 MHPE Network

The network processes the input data in three stages: feature extraction, region-

of-interest alignment (RoI Align), and a multilayer perceptron (MLP) for final pose

estimation (see Fig. 3-1).

We use ResNet-34 [40] without the last average pooling layer to get pixel-level

feature embeddings. The feature maps, as well as corresponding bounding boxes, are

fed into the RoI Align layer. First introduced by MaskRCNN [41], this layer performs

bilinear interpolation on the image feature embeddings and produces feature maps of

the same shape for each bounding box region. The last MLP component is divided

into two parts, one for rotation estimation and the other for translation. For 𝑁 pose
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hypotheses for each object, the output size of the last fully connected layer is 4𝑁 for

rotation (𝑤, 𝑥, 𝑦, 𝑧) and 3𝑁 for translation (𝑡𝑥, 𝑡𝑦, 𝑡𝑧). We apply Softplus to ensure

non-negativity for “𝑤” values. The final unit quaternion is obtained by normalizing

the four outputs from the rotation branch.

3.3.2 Learning Objective for MHPE Outputs

The MHPE network aims to minimize the average distance (ADD loss [46]) between

the two object point sets, transformed by the predicted and ground truth poses,

respectively. The ADD loss is defined as:

𝑙 =
1

|𝒳 |
∑︁
x∈𝒳

‖(R̂x+ t̂)− (Rx+ t)‖, (3.1)

where R ∈ SO(3), t ∈ R3, (R|t) and (R̂|̂t) are the ground truth and estimated object

poses, and x is the 3D point in the object point sets 𝒳 from the known CAD model.

This metric performs well for the common single-hypothesis network. However, it

needs adaption for the MHPE case, as different treatments of the individual loss in

the hypothesis set may lead to distinct optimization directions.

Here, our pose estimation network is designed in a “mixture-of-expert” fashion [38],

where the 𝑁 hypotheses are made independently based on a shared set of feature

maps. Thus, it is ideal to have each output branch acquire some specialty in certain

output domains, helping improve the estimation accuracy and shed extra light on

possible causes of pose ambiguity.

In this spirit, we choose to apply Eq. (3.1) in a winner-takes-all fashion, which is

formulated as:

P̂𝑖 =
⟨
P̂

(1)
𝑖 , . . . , P̂

(𝑁)
𝑖

⟩
𝐿𝑖

(︁
P̂𝑖

)︁
= argmin

𝑗∈[1,𝑁 ]

𝑙𝑖(P̂
(𝑗)
𝑖 ),

(3.2)

where P̂
(𝑗)
𝑖 = (R(q

(𝑗)
𝑖 )|t(𝑗)𝑖 ) is the 𝑗𝑡ℎ pose estimate in the output ensemble for the 𝑖𝑡ℎ

input and R is expressed as the rotation matrix from quaternion q.
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Figure 3-2: Hypothesis diversity from the MHPE front end on the YCB object clamp:
Hypotheses (a) & (d) and (b) & (e) are two quasi mirror images; hypothesis (c) is
spurious, and the green-boxed hypothesis (e) gives a relatively good estimate. (f)
illustrates that the 3D point clouds of the mirror image pair could incur similar
distance loss w.r.t. the grey mirror plane.

The defined loss function, 𝐿𝑖 for input 𝑖, only penalizes the most accurate estima-

tion, regardless of “how bad” the rest of the hypotheses are. Compared to averaging,

this treatment prevents other worse estimations from vanishing and adds some ran-

domness, hence diversity, to the multi-branch estimator. Those branches with an

initialization too far away from the minimum could thus slowly evolve to different do-

mains of the output space, hedging their bets while refraining from paying the price

of making the wrong tentative decision. Fig. 3-2 shows one of our diverse pose esti-

mates of a symmetrical clamp from the YCB-Video Dataset, illustrating the benefit

of encouraging multiple hypotheses in different domains.

3.4 Back End: Max-mixture-based Multi-hypothesis

Modeling and Optimization

Compared to its common single-hypothesis counterpart, the MHPE front end can

better tackle the ambiguity within the current observation by giving multiple pose
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Figure 3-3: Max-mixtures for processing multiple pose hypotheses. Left half: current
pool of pose hypotheses (𝑇𝑖) for the landmark “mug” with the same hypothesis in the
same boundary color till time 𝑡. (a) Number of times each 𝑇𝑖 has been observed so far,
which is positively correlated to the posterior distribution of robot/landmark poses,
𝑝(X|T), where T denotes all multi-hypothesis measurements. Hence the significance
of consistent inclusion of the correct pose within the hypothesis set. Otherwise,
max-mixtures may converge to a sub-optimal hypothesis. (b) Schematic probability
distribution of three pose hypotheses for X.

candidates. Nevertheless, this leads to exponential computation complexity for pick-

ing a pose hypothesis combination to produce a sequence of optimal pose estimates.

To efficiently solve the optimization problem under the multi-hypothesis formu-

lation, we here adapt max-mixtures to model multi-modal measurements and im-

plicitly seek out consistent landmark pose hypotheses via optimization. Previously,

the max-mixture method has been leveraged to solve data association problems in

SLAM [91, 26] for its effectiveness in addressing a large number of outliers in the

least squares SLAM formulation. Thus, by relying on max-mixtures’ ability to distin-

guish the better-behaved hypothesis, the back end can recover a globally consistent

set of robot/landmark poses out of an exponentially increasing number of ambiguous

measurement combinations (see Fig. 3-3).

Generally, estimating poses from a sequence of observations can be formulated as

a maximum likelihood estimation (MLE) problem:

X̂ = argmax
X

∏︁
𝑖

𝜑(z𝑖 | X𝑖), (3.3)
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where X𝑖 denotes the latent variables involved in the 𝑖𝑡ℎ input, z𝑖 denotes the cor-

responding observation, and 𝜑(·) is the likelihood function for this observation. The

set of all latent variables, X, is the camera and object pose sequence being jointly

optimized in the back end. For each observation, the additive measurement noise is

modeled as the canonical Gaussian noise. With 𝑁 hypotheses, a natural extension of

the noise model is thus the sum of Gaussian mixtures:

𝜑(z𝑖 | X𝑖) =
𝑁∑︁
𝑗=1

𝜔𝑖𝑗𝒩 (z𝑖𝑗;ℎ(X𝑖),Σ), (3.4)

in which each component corresponds to a hypothesis. With an assumption of equally

probable hypothesis, the weight 𝜔𝑖𝑗 for component 𝑗 is 1
𝑁

. The measurement of

interest here is the relative pose of the object w.r.t. the camera frame: 𝑐
𝑜P = ℎ(X𝑖) =

ℎ(𝑤𝑜 P, 𝑤
𝑐 P) = 𝑐

𝑤P
𝑤
𝑜 P, which is a function of camera pose 𝑤

𝑐 P and object pose 𝑤
𝑜 P in

the world frame.

Since Gaussian mixtures fall outside the common nonlinear least-squares opti-

mization approaches to SLAM, we here harness the max-mixture [91] factor to model

multiple pose hypotheses, which writes as:

𝜑(z𝑖|X𝑖) = max
𝑗,𝑖=1:𝑁

𝜔𝑖𝑗𝒩 (z𝑖𝑗;ℎ(X𝑖),Σ). (3.5)

Max-mixtures switches to the “max” of all probability, retaining the better-behaved

hypothesis while keeping the problem still within the realm of Gaussian distribution

optimization. By optimizing Eq. (3.3) for X, we evaluate all the Gaussian components

in Eq. (3.5) and identify the most likely one as the hypothesis contributing to the

estimate in effect, whose value will then be incorporated for future joint optimization.

3.5 Experiments and Results

In this section, to improve object-based SLAM results in the ambiguous environ-

ment setting, we would like to answer two questions: (1) Can MHPE predict a set

of hypotheses that do contain the close-to-ground-truth object pose? (2) Can max-
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mixtures recover a globally consistent set of robot/landmark poses from MHPE mea-

surements? To answer (1), we evaluate our approach on the YCB-Video benchmark

regarding distance loss and processing speed. For (2), we test our approach on a sim-

ulated video made with YCB objects for SLAM results, where the camera executes

a much larger trajectory.

3.5.1 Datasets

YCB-Video Dataset. The YCB-Video Dataset [135] is built on 21 YCB objects [9]

placed in various indoor scenes and consists of 92 video sequences with 133,827 im-

ages in all. Each sequence provides RGB-D images, object segmentation masks, and

annotated object poses. Following [135], we divide the whole dataset into 80 videos

for training and select 2,949 keyframes from the rest of the 12 videos for testing. An

extra set of 80,000 synthetic images created by [135] is also included in the training

set.

AirSim Simulated Video. Since the camera motion in the YCB-Video Dataset

is relatively small compared to a typical SLAM-application scenario and its environ-

ment does not involve much observation ambiguity, we create a virtual environment

of five YCB objects with some shape symmetry placed around a cuboid in Unreal

Engine [30] (see Fig. 3-4). AirSim [108] car simulator is adopted to simulate a robot-

mounted camera circling around the objects, thus making observations in an ambigu-

ous environment setting. The observations provide RGB images, object segmentation

masks, and automatically annotated 6D poses of the five objects.

3.5.2 Metrics

To facilitate comparison within the YCB-Video Dataset benchmark, we follow two

metrics used in [135] and [20], i.e., ADD (introduced in Section 3.3.2) and ADD-S.

The ADD-S metric, i.e., the average distance between the point in the estimation-

transformed point set 𝒳1 and its closest point in the ground truth-transformed point
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Figure 3-4: Simulated video top view and YCB object layout. Some YCB objects
are deliberately chosen to bear more or less shape symmetry (the mug and the tuna
fish can), thus contributing to an ambiguous environment setting for ground-level
observations. Note that objects are also scaled up to 50 times their original size to
match the observer’s size, i.e., the AirSim car simulator, in the video.

set 𝒳2, is defined as:

𝑙 =
1

|𝒳1|
∑︁
x1∈𝒳1

min
x2∈𝒳2

‖(R̂x1 + t̂)− (Rx2 + t)‖, (3.6)

where 𝒳1 and 𝒳2 are transformed from the object model point set.

The ADD metric reflects pose estimation accuracy, while ADD-S focuses on shape

similarity and is thus appropriate for evaluating symmetrical objects. Following [135],

we set the distance threshold to 10 cm and compute the area under the ADD and

ADD-S curves (AUC).

3.5.3 Implementation Details

The MHPE network is implemented in PyTorch. We initialize ResNet-34 with weights

pretrained on ImageNet. The final MLP module comprises three fully connected

layers of size 512, 512, and 256. The number of output hypotheses is set as 𝑁 = 5. We

use a batch size of 64 for training and train 100 epochs with the Adam optimizer. The

initial learning rate is 0.0001 with a decay rate of 0.1 at epoch 50. The backend max-
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mixture algorithm is implemented in C++ using the Robot Operating System [96]

and the iSAM2 [57] implementation from the GTSAM library [18]. All training and

testing are conducted on a laptop with an Intel Core i7-9750H CPU and an Nvidia

GeForce RTX 2070 GPU.

3.5.4 Results on YCB-Video Dataset

We report our quantitative and qualitative object pose estimation results on the

YCB-Video Dataset.

Quantitatively, we compare our MHPE results to those of PoseCNN and the

more recent PoseRBPF [20], all with RGB inputs (see Table 3.1). We choose the

PoseRBPF-50-particle variant, which is of similar processing speed to ours and is

therefore suitable for SLAM applications.

In particular, for MHPE results, we compare our hypothesis with the lowest

ADD loss in each set (best hypothesis) against the single output from PoseCNN

and PoseRBPF, as in our problem, it is the estimation accuracy of the best hypoth-

esis, rather than the average quality of the multi-hypothesis set, that indicates the

existence of a consistent hypothesis mode for max-mixtures to switch to, and hence

the possibility of recovering the true robot/landmark poses.

Qualitatively, we display some sample visualizations of the object pose estimate

in Fig. 3-5 for comparison between PoseCNN and the best hypothesis of our MHPE

results. Since PoseRBPF does not provide multi-object pose estimation results on

the YCB-Video Dataset, we do not include them in Fig. 3-5.

Overall Performance. Table 3.1 presents the ADD and ADD-S AUC values of

all the 21 objects in the YCB-Video Dataset and the rough processing speed of each

approach. We can conclude that with similar processing speed (ours: 23.0 FPS &

poseRBPF: 20.6 FPS), the best hypothesis from the MHPE front end outperforms

PoseCNN and PoseRBPF by 18.6%, 11.6% on ADD, and 9.4%, 11.1% on ADD-S,

respectively. This demonstrates the effectiveness of our multi-hypothesis strategy in

improving pose estimation accuracy and the reliability of providing a valid hypothesis

set for supporting the backend optimization of robot/landmark poses.
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Table 3.1: Quantitative ADD and ADD-S AUC results on YCB-Video Dataset. Sym-
metrical objects are in bold. The best ADD and ADD-S AUC values for each object
are in bold (excluding ICP-refined results).

RGB RGB + Depth Image (for ICP)

PoseCNN PoseRBPF
50 particles

MHPE
Best Hypothesis

MHPE
Best Hypothesis + ICP

Frame Rate
(FPS) 5.9 20.6 32.3 2.1

(CPU-only)
Objects ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

002_master_chef_can 50.9 84.0 56.1 75.6 67.9 93.8 74.3 90.0
003_cracker_box 51.7 76.9 73.4 85.2 67.8 82.9 86.8 91.6
004_sugar_box 68.6 84.3 73.9 86.5 83.1 91.3 97.4 98.2
005_tomato_soup_can 66.0 80.9 71.1 82.0 79.5 92.2 38.1* 66.9*
006_mustard_bottle 79.9 90.2 80.0 90.1 81.6 90.8 98.0 98.7
007_tuna_fish_can 70.4 87.9 56.1 73.8 78.0 92.5 87.0 95.8
008_pudding_box 62.9 79.0 54.8 69.2 45.4 71.5 83.7 92.7
009_gelatin_box 75.2 87.1 83.1 89.7 76.1 87.8 97.2 98.4
010_potted_meat_can 59.6 78.5 47.0 61.3 69.1 85.5 66.4 78.4
011_banana 72.3 85.9 22.8 64.1 87.7 93.7 93.8 97.3
019_pitcher_base 52.5 76.8 74.0 87.5 76.8 88.8 96.9 98.1
021_bleach_cleanser 50.5 71.9 51.6 66.7 47.7 70.3 88.8 94.1
024_bowl 6.5 69.7 26.4 88.2 40.2 80.1 73.6 95.8
025_mug 57.7 78.0 67.3 83.7 40.6 72.8 69.3 91.1
035_power_drill 55.1 72.8 64.4 80.6 39.5 71.2 61.1 81.7
036_wood_block 31.8 65.8 0.0 0.0 64.6 85.5 85.2 93.0
037_scissors 35.8 56.2 20.6 30.9 64.5 88.9 63.5 88.9
040_large_marker 58.0 71.4 45.7 54.1 81.1 90.6 89.5 96.2
051_large_clamp 25.0 49.9 27.0 73.2 49.2 70.7 31.5 51.8
052_extra_large_clamp 15.8 47.0 50.4 68.7 8.6 47.4 9.7 31.3
061_foam_brick 40.4 87.8 75.8 88.4 75.1 92.6 90.5 97.2
All 53.7 75.9 57.1 74.8 63.7 83.1 72.6 85.2

Figure 3-5: Qualitative results of object pose estimation. Each object pose is anno-
tated with the 2D image frame projection of a colored point cloud transformed by the
pose estimate. Colored bounding boxes mark improved areas in the first PoseCNN
results row.

47



As shown by Fig. 3-5, when compared to PoseCNN, the best hypotheses from

MHPE give more accurate pose estimations for the upside-down bowl in the first

scene, the scissors and sugar box in the second, and the banana and the blue pitcher

in the last scene.

Dealing with Ambiguity. From Table 3.1, it is observed that the MHPE net-

work performs better on most of the symmetrical objects (marked in bold). This

proves the effectiveness of our object pose estimation strategy in dealing with shape

ambiguity, as it is easier for symmetrical objects to have ambiguous poses, which may

induce the network to generate random false positive hypotheses.

We further explain this with the “clamp” example in Fig. 3-2. The five pose

hypotheses rendered here are MHPE’s estimates for the clamp pose, which include

the correct estimate, hypothesis (e). Considering the diversity of the hypothesis set,

which consists of seemingly inaccurate and mirror-image pair hypotheses, a single-

output network may throw out a random estimate as any of (a) & (d) or (b) & (e)

since these two mirror-image pairs tend to incur similar ADD loss during training

w.r.t. the grey mirror plane (shown in (f)). Therefore, with each output branch

evolving towards different domains of the solution space, MHPE can first produce a

set of possible pose candidates and then let the back end pick one based on all of

the accumulated observations. The generally poor performance on the extra large

clamp may result from the given bounding box quality as it is hard for PoseCNN to

distinguish between “large clamp” and “extra large clamp”.

ICP Post-Processing. We also provide AUC results with ICP post-processing,

where the refined poses achieve significant accuracy improvements. While we are not

comparing them to the non-post-processing PoseCNN and PoseRBPF results here,

considering the significant improvement in AUC values after ICP, we argue that our

MHPE-predicted hypotheses are on average not far from the ground truth and thus

effectively prevent ICP from local-minimum failure. The only exception is for the

“tomato soup can” (marked with an asterisk), as in some frames, the lack of enough

visible points from heavy occlusion greatly impairs the registration quality.
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Figure 3-6: Running average of the estimation error for rotation and translation across
the course of the robot motion. The ground truth solution is obtained by solving with
object poses extracted from the simulator.

3.5.5 SLAM Results for the Simulated Video

We apply our approach to the simulated video and test its effectiveness in the scenario

with larger camera motion. For evaluation purposes, we compare the robot/landmark

pose sequence optimized from our MHPE+max-mixtures approach against those ob-

tained by two practical approaches when dealing with multiple hypotheses: averaging

and random selection. Additionally, the random selection approach also resembles the

behavior of the traditional single-hypothesis approach under ambiguous settings, as

the front end tends to throw out a random time-inconsistent measurement.

In addition to the YCB-Video data, the MHPE network is trained on an extra

18,523 images of a robot circumnavigating each object at different ranges to better

adapt to the simulated environment. The testing is then run on a 3100-frame sequence

in a similar environment, with the camera moving first in the inner and then the outer

circle of the area enclosed by the five objects. The magnitude of the distance between

the camera and objects is set to be around 50 times the object size.

Robot Pose Estimation. Quantitatively, in Fig. 3-6, we plot the running aver-

age of the estimation error for rotation and translation, respectively.

As shown in Fig. 3-6, we can generally conclude that max-mixtures performs the
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Figure 3-7: Comparison of camera trajectories and object position estimates. We use
evo [37] for trajectory evaluation. Objects are shown as dots. Ground truth is shown
in black. (a) Averaging; (b) Random Selection; (c) Max-mixtures.
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best while averaging performs worst. The discontinuities in the plot correspond to the

emergence of new objects. Considering the ambiguous measurements from the delib-

erately selected symmetrical objects, with a continuously lower rotation/translation

error, our approach shows robustness to the disturbance of the false-positive pose hy-

potheses. It outperforms random selection, which to some extent also indicates how

an ordinary, single-hypothesis SLAM system will behave. In Fig. 3-6(b), the sudden

climb in the translation error at about halfway through the course can be attributed

to the reappearance of the mug in the video, and averaging obviously suffers from

considerable drift due to ambiguous measurements at this loop closure.

Qualitatively, it can be observed from Fig. 3-7 that our approach outperforms av-

eraging and random selection by a large margin in terms of estimation accuracy. We

argue that by leveraging the accumulated observation from previous frames, our ap-

proach is able to recover consistent estimates from the ambiguous pose measurements,

as opposed to its single-hypothesis-based counterparts.

This is especially useful for treating shape-ambiguous objects and loop closures.

For example, the camera could obtain a better pose estimate of the mug by taking

into account the last time the mug handle was visible, and this will, in turn, benefit

loop closure detection. Furthermore, the result also implies that averaging over the

candidate pool is the least effective approach, as the result of averaging over rotation

matrices from the hypothesis ensemble can deviate from the actual rotation of any

member hypothesis [39].

Landmark Pose Estimation. Here, we choose landmark pose estimation from

the MHPE as the frontend measurements to help recover robot poses. After joint

optimization for comparison, we compute the chordal distance between the ground

truth and estimated landmark pose (see Fig. 3-8).

As shown in Fig. 3-8(a), we could observe a step-wise increase in error each time

a new landmark is observed, followed by a gradual error decrease as optimization

proceeds. Compared to the other two approaches, our approach exhibits a much less

steep surge between “stairs” as though with no prior knowledge about the object, it

could employ past knowledge to help gradually switch to the better-behaved mode.
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Figure 3-8: Landmark pose estimation errors.

Around time step 1400, when the robot finishes its first circle and returns back to

the mug, while averaging merges ambiguous measurements at the loop closure and

hence renders the optimization off track (corresponds to the trajectory in Fig. 3-7(a)),

max-mixtures manages to maintain a lower average error.

The above behaviors are also reflected in Fig. 3-8(b). As for the final estimate of

object poses, max-mixtures proves its superiority in all statistics descriptions, indi-

cating a constantly higher estimation precision amongst all three methods.

3.6 Conclusion

In this chapter, we develop a novel approach that allows the robot to reason about

multiple hypotheses for an object’s pose and synthesize this locally ambiguous infor-

mation into a globally consistent object and robot trajectory estimation formulation.

We instantiate this approach by designing a deep-learning-based front end for produc-

ing multiple object pose hypotheses and a max-mixture-based back end for selecting

pose candidates and conducting joint robot/landmark pose optimization. Experi-

ments on the real YCB-Video Dataset and synthetic YCB object video demonstrate

the effectiveness of our approach to performing object pose and robot trajectory es-

timation in the ambiguous environment setting. Future work may involve providing
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extra clues to facilitate the max-mixtures optimization, such as by regressing weights

for each pose hypothesis from the MHPE front end.
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Chapter 4

PlaneSDF-based Change Detection

for Long-term Dense Mapping

After investigating the prevalent issue of scene ambiguity, we turn to look at another

key aspect of the thesis: long-term robust operation and the accompanying low-

dynamic object changes over time. As world changes always happen on the object

scale, object-based SLAM has a natural advantage over traditional SLAM pipelines

in conducting change detection and thus achieving long-term operation.

In this chapter, we begin this exploration by first looking at offline change de-

tection, a common demand for processing environment maps across multiple sessions

over extended periods of time. Specifically, it is desirable for autonomous agents to

detect changes amongst maps of different sessions so as to gain a conflict-free under-

standing of the current environment.

Here, we build our change detection scheme on top of a novel map representation,

dubbed Plane Signed Distance Fields (PlaneSDF), where dense maps are represented

as a collection of planes and their associated geometric components in SDF vol-

umes1. Given the point clouds of the source and target scenes, the proposed three-step

PlaneSDF-based change detection approach works as follows: (1) PlaneSDF volumes

are instantiated within each scene and registered across scenes using plane poses; 2D

height maps and object maps are extracted per volume via height projection and
1Supplementary video: https://youtu.be/oh-MQPWTwZI
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connected component analysis. (2) Height maps are compared and intersected with

the object map to produce a 2D change location mask for changed object candidates

in the source scene. (3) 3D geometric validation is performed using SDF-derived fea-

tures per object candidate for change mask refinement. We evaluate our approach on

both synthetic and real-world datasets and demonstrate its effectiveness via the task

of changed object detection.

4.1 Introduction

The ability to perform robust long-term operations is critical in many robotics and

AR/VR applications, such as household cleaning and AR/VR environment scan-

ning. Agents accumulate a more holistic understanding of their working environments

through multiple traverses of the same place. However, in the long-term setting, the

working environment is prone to changes over time, e.g., the removal of a coffee mug.

Conflicts may then arise when agents try to synthesize scans from different sessions.

Therefore, agents are expected first to capture these changes and then obtain the up-

to-date 3D reconstruction of the scene after all change conflicts have been resolved.

An intuitive way to detect changes is through scene differencing between the two

reconstructions of interest. Previous works on change detection leverage scene repre-

sentations such as point clouds [33, 4, 44, 103] or Signed Distance Fields (SDF) [84, 76,

98, 32] and perform point- or voxel-wise comparison globally between the two scenes.

To ensure that comparison is carried out at the corresponding locations of the two

observations, these methods demand consistent and precisely aligned reconstructions,

which are susceptible to sensor noises and localization errors.

We observe that most scene changes occur at the object level and that man-

made environments can often be modeled as a set of planes with objects attached

to them, as opposed to a cluster of unordered points or voxels with no geometric

structure. Therefore, we choose to represent the whole scene as a set of planes, each

having an associated SDF volume that describes the geometric details of the objects

attached to it, which we term the PlaneSDF representation. Similar to the idea

55



Figure 4-1: System overview. Input: point clouds of the source and target scene.
Output: voxels of objects detected as changes between the two scenes. (a): For the
two input point clouds, PlaneSDF volumes are fused and registered using poses of
major planes (e.g., desk, cabinet, and the floor, as indicated in different colors). A
2D height map and an associated object map are obtained for each plane through
projection and connected component analysis. (b): Height values for corresponding
planes are compared, which yields a preliminary 2D change mask for the source plane
w.r.t. the target plane. (c): The intersection of the current change mask and the
source object map is found to determine changed object candidates. Each of these
objects has its SDF-based features extracted and compared against the corresponding
one in the target for change mask refinement.

56



of dividing the whole environment into submaps, e.g., based on time intervals [98]

or objects [76, 105], agents could maintain multiple PlaneSDF volumes of scalable

sizes in lieu of a single chunk of global SDF while saving update and memory reload

time by updating volumes only in the current viewing frustum. Furthermore, this

representation is also more robust to localization drift as local, regional correction

can be performed patch by patch each time two planes from different traverses are

registered via plane pose.

Taking advantage of the PlaneSDF representation, we propose a change detection

algorithm given a source and a target scene that decomposes the original global com-

parison in a local plane-wise fashion. Treating each plane as a separator, local change

detection is performed plane-wise and on the object level. The global localization

drift issue between two scenes is alleviated during plane-pose registration. Through

the projection of SDF voxel height values onto the plane, the obtained height map

and its value connectivity offer a solid indication of the potential object candidates

along with their projected 2D contours, making it possible to conduct 3D geometric

validation only on SDF voxels belonging to the potentially changed objects. Our

main contributions are as follows:

• PlaneSDF is proposed as a novel representation for indoor scene reconstruction.

• A change detection algorithm, consisting of 2D height map comparison and 3D

geometric validation, is developed leveraging the PlaneSDF data structure.

• The effectiveness of the proposed algorithm is demonstrated on both synthetic

and real-world datasets of indoor scenes.

4.2 Related Work

Change detection, as widely discussed in research concerning long-term robotic op-

erations, can be roughly divided into two categories: geometric and probabilistic

approaches. We here list some relevant works at the time of publication.
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Geometric Approaches. Geometric approaches are usually based on compar-

ing geometric features extracted from various environment representations. Walcott-

Bryant et al. [125] developed Dynamic Pose Graph SLAM, where change detection

was performed on the 2D occupancy grid to edit and update the pose graph. Classical

2D feature descriptors, e.g., SURF, ORB, and BRISK [22, 23], were extracted from

the greyscale input images and the visual database, respectively. Next, the Euclidean

distance between the two features was computed to determine if changes occurred.

There are also many works in the literature that use 3D representations. Finman et

al. [33] performed scene differencing on depth data among multiple maps and learned

segmentation models with surface normals and color edges to discover new objects

in the scene. Ambrus et al. [4] computed a meta-room reference map of the environ-

ment from the collected point cloud and employed spatial clustering based on global

descriptors to discover new objects in the scene. Fehr et al. [32] adapted volumetric

differencing onto a multi-layer SDF grid and showed its effectiveness in object dis-

covery and class recognition. Kunze et al. [65] built and updated a hierarchical map

of the environment by comparing object positions between observations and corre-

sponding map contents. Schmid et al. [105] proposed a panoptic map representation

using multiple Truncated Signed Distance Fields for each panoptic entity to detect

long-term object-level scene changes on the fly. Langer et al. [67] combined seman-

tic as well as supporting plane information and conducted local verification (LV) to

discover objects newly introduced into the scene. The proposed method outperforms

several global point- and voxel-based approaches and is selected as the baseline here

for comparison.

Probability-based Approaches. Previous works in this category tend to de-

velop statistical models to describe sensor measurements or environment dynamics.

Krajnik et al. [64] modeled the environment’s spatiotemporal dynamics by its fre-

quency spectrum, while [44, 72] exploited probabilistic measurement models to indi-

cate how likely it is for each surface element in the scene to have moved between two

scenes. Bore et al. [7] proposed a model for object movement describing both local

moves and long-distance global motion. Katsura et al. [58] converted point clouds and
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measured data into ND (Normal Distribution) voxels using the Normal Distribution

Transform (NDT) and compared voxel-wise distribution similarity.

There are also learning-based change detection approaches [3, 126] that learn

geometric features through neural networks trained on pre-registered images or SDF

pairs. Considering the potential challenges of the availability of training data and

generalization to unseen changes, we focus only on non-learning-based methods.

Despite all the results reported, the global point- or voxel-wise geometric compar-

isons are susceptible to sensor noises and localization errors, and the results of prob-

abilistic approaches may not be readily applicable to scene mapping tasks. Hence,

in this work, we consider 2D as well as 3D information on the voxel and object level

with the proposed PlaneSDF structure and achieve robust change detection on both

synthetic and real-world datasets.

4.3 Method Overview

Our method (see Fig. 4-1) leverages the plane-to-object supporting structure through

the PlaneSDF representation, thereby enabling us to first perform local pairwise plane

pose alignment against global reconstruction errors. We then obtain change detection

results via efficient and effective local scene comparison on a 2D height map and 3D

object surface geometry informed by the SDF volume.

4.3.1 PlaneSDF Instantiation

We first generate the PlaneSDF representation for each scene, i.e., representing the

input 3D point cloud for the scene as a set of planes and their associated SDF volumes.

For plane detection, when given sequential point cloud streams, we extract planes

from each frame with RANSAC and merge them when a new frame arrives, as

how SLAM systems commonly proceed when using planes as pose estimation con-

straints [119, 74, 50]. When a point cloud for the complete scene is available, we run

a spatial clustering algorithm [113] to detect a set of planes out of the cloud.
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Figure 4-2: Change detection results for a complete indoor scene from the object change detection dataset [67]. The whole scene
is spatially subdivided into multiple PlaneSDF instances (marked by distinct colors). Note that there could be some overlap
among certain SDF volumes (e.g., the sofa’s seating area in the upper right of the scene is also fused into the floor volume).
For each plane of interest, i.e., planes with objects newly introduced onto them, the associated height map and the final change
mask are shown. The detected object changes are colored in red, while the ground truth (GT) changes are rendered in the
upper right corner of the figure.
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For each plane detected, we fuse an SDF volume using all the points within a

predefined distance to the plane in the hope that the obtained SDF will record the

free space and object geometry solely from objects directly supported by the plane,

e.g., the drawings hanging on the vertical wall or the soda can placed on the table.

Note that when two detected planes are less than the defined fusing distance away

from each other, or there are bigger objects supported by multiple planes, a point

could be fused into multiple PlaneSDF instances, e.g., the color overlap of the sofa and

the floor instances in Fig. 4-2). We also limit our detection of planes to only horizontal

and vertical ones, as they constitute most of the “plane-supporting-objects” cases we

encounter daily.

Furthermore, the local 2D height grid map evaluated w.r.t. the plane is computed,

where each grid stores the maximum voxel-to-plane distance in the height direction at

the current plane location. The height map is non-zero for plane locations occupied by

objects, zero for flat unoccupied locations, and −1 for unobserved regions. Building

on top of this, as non-zero regions are disconnected from each other by the plane

zero-level set, we could quickly obtain an “object” or “object cluster” (for multiple

small objects close to each other) map (Fig. 4-1(d)) preserving relatively accurate

object contours through connected component labeling on the height map.

Given two PlaneSDF volumes, a source and a target, instantiated from the two

scenes respectively, we define the 2D change mask of the pair as a ternary mask of

the same size as the source height map, indicating all changed plane locations in the

source w.r.t. the target (Fig. 4-2).

4.3.2 PlaneSDF Registration

Before scene differencing is conducted, PlaneSDF volumes of the two scenes are first

registered so that the comparison is guaranteed to be carried out on two observations

of the same plane. With the assumption that input point clouds from different sessions

share the same world coordinate frame, PlaneSDF volumes are registered through

plane poses to alleviate the effect of localization drift among reconstructions of the

same plane. For each pair of PlaneSDFs, we determine if they belong to the same

61



plane according to the orientation cosine similarity and offset difference of the two

plane poses:
nTn′ ≥ 𝛿n

||𝑑− 𝑑′|| ≤ 𝛿𝑑,
(4.1)

where (n, 𝑑) and (n′, 𝑑′) are the plane surface normals and offsets from the origin of

the source and target PlaneSDF volumes, respectively. 𝛿n and 𝛿𝑑 are the minimum

cosine similarity and maximum offset distance for two planes to be regarded as the

same plane. In this way, via associating plane detections of similar orientations and

offsets in the pair of reconstructions, small localization drift of the same plane can

be mitigated by applying the relative transform between plane poses, from which we

are then ready for change detection on each registered PlaneSDF pair.

4.3.3 Height Map Comparison

As floating objects are rare in daily scenes, height value discrepancy at the same

plane location in different observations can offer informative speculation about the

changes on this plane, e.g., when objects are newly removed or added, drastic changes

between zero and non-zero height values will occur. In this spirit, we project each

location, (𝑥, 𝑦), of the source height map 𝐻 onto the target height map 𝐻 ′ using the

relative plane pose. If the height value variation is above a threshold 𝛿ℎ, we mark

this plane location as changed (see Fig. 4-3). Usually, the projected location, (𝑥′, 𝑦′),

will not land exactly onto a grid center in the target map, so comparisons are drawn

between the source height and those of the four nearest neighbors of (𝑥′, 𝑦′):

∑︁
𝑖=0,1;𝑗=0,1

1(|𝐻 ′(⌊𝑥′⌋+ 𝑖, ⌊𝑦′⌋+ 𝑗)−𝐻(𝑥, 𝑦)| ≤ 𝛿ℎ)

=

⎧⎪⎨⎪⎩0, changed

≥ 1, unchanged.

(4.2)

In most cases, due to measurement noises, the change mask obtained after direct

comparison is usually corrupted by small false positive clusters scattered around the
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Figure 4-3: Height map comparison. For the registered source and target PlaneSDF
pairs, each grid in the source height map is projected onto the target height map,
with its height value compared against those of its closest 2×2 neighborhood. If all
four neighbors have a height difference above a threshold, this grid (plane location)
is preliminarily marked as changed.

map. Therefore, a round of connected component filtering followed by dilation is

applied to remove the noise.

4.3.4 3D Voxel Validation

Comparing height values for changes works well when (1) objects are removed or

added, inducing significant variation in height values, or (2) camera trajectories have

a high observation overlap of the unchanged objects between two runs. However,

height implications can fail easily when old objects are replaced with new ones in

the same place or different parts of the same unchanged object are observed due to

disparate viewing angles.

Therefore, 3D validation on the SDF of potentially changed source plane locations

is introduced to correct false positives indicated by the change mask. For the overlap-

ping space of two observations, if the same object persists, the local surface geometry

and free space description should be similar, or the target SDF will otherwise be

remarkably different from that of the source.

Here, for the sake of selecting key voxels and obtaining corresponding descriptive

geometry characterization around the selected locations, the curvature-derived de-

scription of the SDF is adopted for its capability to characterize the geometry of both
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Figure 4-4: Key voxel distribution and corresponding similarity score distribution of
planes with and without changes. (a) Key voxel (red square dots) distribution within
a voxel blob (round dots with colors indicating the SDF value). (b) Key voxels within
the same PlaneSDF volume are classified as either “part of an object” or “others” as all
remaining background elements. Left (PlaneSDF of the yellow plane): Both the side
table (object) and the wall (others) are unchanged. Hence, all similarity scores are
biased towards higher-valued bins. Right (PlaneSDF of the green plane): The book
stack and the coffee mug swap their positions on the table. Their shape distinction
leads to scattered distribution of voxel similarity scores at the same 3D position, while
the “other” unchanged voxels around the tabletop plane still share high similarity.

object surfaces and the unoccupied space in between. In addition to indicating the

planarity, convexity, or concavity of the object surface, the trend of SDF variation

amid object surfaces can reflect inter-surface spatial relations, e.g., the sudden drop

of an increasing SDF value along a ray direction can imply the switch of the nearest

reference surface for SDF value calculation as the ray marches through surfaces. In

contrast, the raw SDF value description and its gradient-derived counterpart are less

suitable for the unified goal of key voxel selection and local geometry description. The

former, due to the unavailability of ground truth surfaces during point fusion, is prone

to slight inconsistency when constructed from different camera trajectories, while the

latter returns an indistinguishable magnitude of one by construction in most places.

Additionally, to make the comparison more robust to measurement noises and

reconstruction errors, the SDF voxels of interest are extracted and compared in the

minimal unit of an object (cluster). This is achieved by selecting voxel blobs in each

source PlaneSDF as those whose 2D projected clusters from the change mask have
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high overlap with the connected clusters in the object map, i.e., the intersection of

the change mask and the object map. Through per-blob 3D geometry validation,

the final change mask not only preserves a more detailed object contour in cases of

adding/removing an object to/from a free space but also self-corrects false per-voxel

height variation induced by sensor noises in a clean way.

Key Voxel Selection. Key voxels are selected per object blob to offer a more

compact and robust characterization of the overall blob shape. Inspired by [80], we

select voxels around regions of high curvature as key voxels, implying neighborhoods of

significant shape variations (see Fig. 4-4(a)). We adopt the measure of local extrema

of the determinant of Hessian (DoH), 𝑑𝑒𝑡(𝐻𝑒𝑠𝑠(v)), and calculate the Hessian matrix

within a complete 3× 3× 3 neighborhood 𝒩 :

𝐻𝑒𝑠𝑠(v) =

⎡⎢⎢⎢⎣
𝑠𝑥𝑥 𝑠𝑥𝑦 𝑠𝑥𝑧

𝑠𝑦𝑥 𝑠𝑦𝑦 𝑠𝑦𝑧

𝑠𝑧𝑥 𝑠𝑧𝑦 𝑠𝑧𝑧

⎤⎥⎥⎥⎦
𝑠𝑖𝑗 = (G𝑗 *G𝑖)(Φ(v)) 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧,

(4.3)

where each element 𝑠𝑖𝑗 in the Hessian matrix of v is obtained via convolution of Φ(v),

the 3× 3× 3 SDF neighborhood at v, with the 3D Sobel filter G in turn in the 𝑖 and

𝑗 direction.

Per-voxel Shape Description. For each key voxel v0 in the object blob 𝒪,

the three eigenpairs of the Hessian matrix, p𝑖 = (𝜆𝑖, e𝑖), 𝑖 = 𝑥, 𝑦, 𝑧, are computed

and represent the three principal curvatures (𝜆𝑖s) and their directions (e𝑖s) at v,

respectively. This operation is then repeated for each voxel in𝒩 and its corresponding

neighborhood 𝒩 ′ in the target map (determined by its projected location v′ in the

target map). The three eigenvalues are normalized for numerical stability, and each

principal direction vector e𝑖 is converted into spherical coordinate (𝜃𝑖, 𝜑𝑖).

We then construct eigenpair histograms, ℋ and ℋ′, for the corresponding neigh-

borhood 𝒩 and 𝒩 ′. For neighborhood 𝒩 , we compute three sub-histograms, ℎ𝑖s, for
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all the eigenpairs p𝑗𝑖 in the 𝑖 direction, where 𝑖 = 𝑥, 𝑦, 𝑧:

p𝑗𝑖 = [𝜃𝑖, 𝜑𝑖, 𝜆𝑖],p𝑗 ∈ 𝒩

⇒ ℎ𝑖 ∈ R𝑁𝜃×𝑁𝜑×𝑁𝜆

𝜃ℎ𝑖
= [0, 180∘], 𝜑ℎ𝑖

= [−90∘, 90∘]

𝜆ℎ𝑖
= [min

𝑗∈𝒩
(𝜆𝑗𝑖),max

𝑗∈𝒩
(𝜆𝑗𝑖)],

(4.4)

where 𝑁𝜃,𝑁𝜑, and 𝑁𝜆 are the number of bins, and 𝜃ℎ𝑖
,𝜑ℎ𝑖

, and 𝜆ℎ𝑖
are the bin threshold

in the 𝜃, 𝜑, and 𝜆 directions for ℎ𝑖, respectively. With each ℎ𝑖 of dimension 𝑁𝜃 ×

𝑁𝜑 ×𝑁𝜆, we then concatenate the three to form the final histogram,

ℋ = [ℎ1||ℎ2||ℎ3], (4.5)

describing the local shape distribution around this key voxel in the source. The

corresponding ℋ′ for the target neighborhood is computed in the same fashion while

sharing all the histogram thresholds with those of ℋ.

To further enhance its ability to characterize local shapes, we append the final

histogram with a weighted signed distance value 𝑠 of the neighborhood. The weights

are assigned with a Gaussian filter centered at v0 with deviation of 𝜎 = 2, and the

weighted SDF 𝑠 is computed as follows:

𝑤𝑖 =
1√
2𝜋𝜎

𝑒
(v𝑖−v0)

2

2𝜎2 ,v𝑖 ∈ 𝒩 (v0)

𝑠 =

∑︀
𝑤𝑖Φ(v𝑖)∑︀

𝑤𝑖

.

(4.6)

Thus, the ultimate feature vector for the key voxel in the source is 𝑓(v0) = [ℋ, 𝑠],

which is of dimension 3×𝑁𝜃×𝑁𝜑×𝑁𝜆+1. We define a similarity score, 𝑠𝑖𝑚 ∈ (0, 1),

at this key voxel between the two features, 𝑓 and 𝑓 ′, of the source and target map,

respectively, as:

𝑠𝑖𝑚(𝑓, 𝑓 ′) = 1/(1 + 𝛼‖𝑓 − 𝑓 ′‖2), (4.7)

where 𝑓 ′(v0) = [ℋ′, 𝑠′] and 𝛼 is a coefficient for adjusting the contribution of the

66



Euclidean distance between 𝑓 and 𝑓 ′, ‖𝑓 − 𝑓 ′‖2, to the similarity score.

Per-object Shape Comparison. The distribution of the similarity scores for all

key voxels in the current object blob then makes it possible to determine if the space

is occupied by the same object across two sessions. We argue that for an unchanged

space occupied with the same object blob, the similarity scores, as an indication of

the local shape, should be concentrated around higher values. In contrast, for a space

with objects later removed, added, or replaced by another object, they should either

be low (removed or added) or distributed more evenly around a wider range of bins

(replaced) (see Fig. 4-4(b)). Therefore, we construct the similarity score histogram

for the object blob and compute the histogram mean to determine if the object has

changed:
𝐻𝑎𝑣𝑔 =

∑︁
𝑚𝑖𝑛𝑖/𝑁

𝑖𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝒪) = 1(𝐻𝑎𝑣𝑔 < 𝛿𝑏𝑙𝑜𝑏),
(4.8)

where 𝑚𝑖 and 𝑛𝑖 are the midpoint value and frequency of each bin 𝑖, and 𝑁 is the total

number of key voxels in this object blob. The object is then validated as changed if

𝐻𝑎𝑣𝑔 is below a similarity threshold, 𝛿𝑏𝑙𝑜𝑏, or false positives from 2D comparison can

be corrected based on the relatively high 𝐻𝑎𝑣𝑔 value.

Following the plane locations marked as changed in the change mask, all the

corresponding voxels along the height direction are extracted, which are the changed

part of the source scene w.r.t. the target.

4.4 Experiments and Results

In this section, we evaluate our approach on both synthetic and real-world indoor

datasets and demonstrate its strength via tasks revolving around object-level change

detection.
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4.4.1 Datasets

Synthetic Tabletop Dataset. We generate synthetic indoor sequences with known

object models on a tabletop for evaluations under controlled environments. We first

scan a static, furnished room with a Lidar scanner to obtain a ground-truth 3D point

cloud of the room. A few synthetic daily objects, e.g., mug and book stack, are then

arbitrarily placed on a synthetic table in the scene, which are added, removed, or

moved across multiple sequences, thus creating the desired changes to be detected.

The scenes are rendered by simulating cameras on the Oculus Quest 2 headset mov-

ing in a preset trajectory around the table, from which per-frame 3D point cloud

observations are generated and used as the input to our algorithm.

Object Change Detection Dataset. The object change detection dataset [67]

is recorded with an Asus Xtion PRO Live RGB-D camera mounted on an HSR robot,

consisting of multiple complete or partial point clouds of five scenes: big room, small

room, kitchen, office, and living room. Each scene consists of a reference recon-

struction and 5 to 6 other reconstructions obtained using Voxblox [90], accompanied

by various levels of permanent structure misalignment and noisy boundaries due to

localization and reconstruction errors. Ground truth annotation of 3 to 18 newly

introduced YCB [10] objects to the scene is provided.

4.4.2 Evaluation Metrics

We adopt the commonly used precision and recall rates as the metrics for change

detection evaluation.

For the object change detection dataset, following the measures in [67], we com-

pute precision, recall rate, and F1 score at the point level based on the ground truth

changed point annotation and our detection results. Precision is computed as the

proportion of the total number of detected points corresponding to the ground truth,

and recall rate is defined as the proportion of ground truth points incorporated in

the detection points. The F1 score provides the harmonic mean of the two metrics.

Two other metrics, the number of missing objects (changed objects with no points
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detected as changed) and wrongly detected clusters (clusters generated by the method

that do not overlap with any changed objects), are also reported to better manifest

the approach’s performance on the object/cluster level.

4.4.3 Implementation Details

We follow the procedures described in Section 4.3.1 for generating PlaneSDF in-

stances, with the RANSAC-based approach for data streams of the synthetic tabletop

dataset and the clustering-based approach for scene point clouds of the object change

detection dataset. We set the fusing threshold to include points within 0.3 m from the

plane, hoping to cover most of the easy-to-move daily objects supported by a plane.

The SDF voxel grid resolution is set as 7 mm to best preserve the scene geometry,

especially for smaller objects.

For PlaneSDF registration, the minimum cosine similarity and maximum offset

distance are set as 𝛿n = 0.95 and 𝛿𝑑 = 0.2 m.

For change detection, the height map difference threshold is set as 𝛿ℎ = 0.02 m

so as to avoid missing smaller objects. To construct the 3D feature histogram for

each area of interest, we set the number of bins along each dimension to be 𝑁𝜑 = 5,

𝑁𝜃 = 5, 𝑁𝜆 = 6. The 𝛼 and the threshold 𝛿𝑏𝑙𝑜𝑏 are set as (𝛼, 𝛿𝑏𝑙𝑜𝑏) = (2, 0.9) for

the synthetic dataset and further moderately tuned for the object change detection

dataset to accommodate certain dataset-defined cases where some slightly moved

planes are not marked as changed.

4.4.4 Results on the Synthetic Tabletop Dataset

The tabletop dataset captures a relatively complete surrounding view of the various

objects on a tabletop, which provides a simple yet effective scene for the initial eval-

uation of the proposed algorithm. The experiments are run on 20 arbitrarily selected

source-target sequence pairs, with objects on the tabletop ranging from, e.g., a coffee

mug (5- cm in height), a toy car (10 cm in height), and a 3-layer book stack (30+

cm in height). The output is the 2D change mask of the same size as the height map
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Figure 4-5: Sample change detection results on the synthetic tabletop dataset. Each
mask showcases the change detection result of treating the sequence in the same row
as the source. Here, we include snapshots of the actual scene in the first column, the
associated height map in the second column, and the evolution of the change mask out
of each stage of our approach in the last three columns: (1) height map comparison
(HC) (2) connected component filtering and dilation (CC) (3) 3D geometric validation
(3D).
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of the source PlaneSDF volume, indicating all the changed locations on the source

plane w.r.t. the target. To prove the robustness of our algorithm, we also run all

the experiments in a bi-directional fashion, i.e., detecting changes source-to-target as

well as target-to-source.

With relatively complete observation of all the tabletop objects, for the 20 pairs

we have tested, the algorithm is able to achieve 100% recall and 80% precision rate

for detecting changed objects without 3D geometric validation. The precision rate

further rises to 100% after incorporating 3D validation, where false positive height

differences are corrected by verifying the shape similarity in the SDF field (as for the

case of the book stack shown in Fig. 4-5(b)).

Fig. 4-5 shows examples of the evolution of change masks out of each stage in the

proposed method for three common object-changing scenarios: (a) Two objects swap

places. (b) One object changes, and one remains. (c) Objects are added/removed

to/from a free space. We can see that the masks out of height map comparison (3𝑟𝑑 col-

umn) still contain noisy false positive (FP) clusters as a consequence of reconstruction

errors. The smaller FP clusters are then partially removed by connected-component

filtering and dilation, as shown in the 4𝑡ℎ column. However, bigger FP patches still

persist, such as the book stack on the left side of the tabletop in scenario (b). The 3D

validation here then plays a significant role in comparing the 3D geometric similarity

of all the possible patches and effectively reverting the FP book stack back to un-

changed (5𝑡ℎ column in (b)). The results also demonstrate bi-directional robustness

as the change masks have similar patterns within each source-target pair.

4.4.5 Results on the Object Change Detection Dataset

In addition to the synthetic tabletop dataset, we further evaluate our algorithm on

the more challenging real-world object change detection dataset, which offers scene

settings with object changes of more diverse sizes and layouts.

Quantitatively, Table 4.1 compares the results of our approach in terms of the

five metrics against those of the volumetric/point-based approaches Octomap [66]

and Meta-room [4], and the best results of the approach proposed by [67]. The
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Table 4.1: Result comparison of the proposed approach with three baselines provided
by the object change detection dataset. The best values are marked in bold (Pr =
precision, Re = recall, F1 = F1 score, M = missed objects, W = wrongly detected
clusters).

Small Room Big Room
Pr Re F1 M W Pr Re F1 M W

Octomap [66] 0.11±0.05 0.61±0.18 0.19±0.08 15 176 0.07±0.04 0.42±0.15 0.12±0.07 42 434
Meta-room [4] 0.04±0.03 0.44±0.08 0.07±0.04 24 276 0.24±0.30 0.55±0.05 0.25±0.27 31 464
Best of [67] 0.55±0.36 0.66±0.17 0.57±0.22 6 28 0.78±0.13 0.78±0.04 0.69±0.10 2 50

FPFH 0.13±0.14 0.12±0.05 0.11±0.08 32 - 0.13±0.12 0.39±0.12 0.18±0.14 19 -
Ours 0.50±0.24 0.83±0.14 0.59±0.21 10 18 0.78±0.03 0.85±0.15 0.81±0.09 8 15

Living Room (partial) Office (partial)
Pr Re F1 M W Pr Re F1 M W

Octomap [66] 0.11±0.08 0.50±0.08 0.17±0.10 19 74 0.18±0.07 0.77±0.13 0.28±0.10 8 73
Meta-room [4] 0.13±0.18 0.42±0.10 0.14±0.14 15 122 0.17±0.25 0.39±0.20 0.17±0.18 12 146
Best of [67] 0.83±0.29 0.69±0.11 0.72±0.17 4 13 0.49±0.27 0.83±0.06 0.54±0.20 0 16

FPFH 0.11±0.11 0.31±0.14 0.15±0.14 12 - 0.21±0.13 0.50±0.19 0.27±0.13 5 -
Ours 0.80±0.05 0.87±0.10 0.83±0.05 4 13 0.72±0.10 0.94±0.08 0.79±0.06 0 4

Kitchen (partial) Average
Pr Re F1 M W Pr Re F1 M W

Octomap [66] 0.43±0.08 0.41±0.08 0.41±0.07 9 40 0.18±0.14 0.54±0.18 0.23±0.13 18.6 159.4
Meta-room [4] 0.56±0.17 0.35±0.12 0.44±0.14 9 70 0.23±0.26 0.43±0.13 0.21±0.20 18.2 215.4
Best of [67] 0.62±0.21 0.92±0.07 0.55±0.11 0 55 0.64±0.27 0.74±0.14 0.61±0.16 2.8 34.2

FPFH 0.57±0.16 0.62±0.11 0.59±0.14 4 - 0.22±0.21 0.38±0.21 0.26±0.21 14.6 -
Ours 0.77±0.015 0.85±0.05 0.81±0.03 2 3 0.72±0.16 0.86±0.12 0.76±0.13 4.8 10.6

results are computed by projecting the ground truth point clouds into SDF voxels and

determining each point’s change state according to its corresponding voxel indicated

by the 2D change mask from our approach. Note that following the dataset definition,

we manually exclude all detected changed points resulting from moved furniture and

decoration from evaluation.

Moreover, to demonstrate the effectiveness of our blob-level curvature-based SDF

description for robust change detection, we provide another baseline (FPFH in Ta-

ble 4.1) with a point-wise variant of the proposed method by replacing the 3D voxel

validation step in Section 4.3.4 with the point-based FPFH [101] feature matching

using the Open3D [145] implementation. As our selected key voxels are not located

on object surfaces, where off-the-shelf point feature extractors cannot be directly ap-

plied, FPFH features are extracted for every point in the original point cloud that

contributes to the fusion of the SDF. A point is marked as changed if its source FPFH

feature cannot be matched in its target neighborhood.

Here, Fig. 4-6 illustrates the key voxel distribution and the false positive points

detected by FPFH matching for two unchanged sub-scenes: a single green object and
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Figure 4-6: Illustration of key voxel distribution and detected false positive points
from the per point FPFH feature matching baseline for two unchanged sub-scenes.
(a) Scene rendering. Above: an isolated green object in the center of a tabletop in
the “small room” scene. Below: two bottles standing together against a wall in the
“kitchen” scene. (b) The scene point clouds are rendered in bigger colored squares, and
the key voxels are in smaller squares with blue ones as those near object surfaces and
orange ones farther away in the unoccupied space amid object surfaces. (c) Falsely
detected changed points from the FPFH feature matching baseline are rendered in
red.

two bottles standing closely against a wall. In (b), near-surface key voxels (within

1.5 SDF voxel size to an object point, shown in blue) are distributed around the

object surface, giving a good characterization of the object geometry. In contrast,

key voxels farther away from the surface are more frequently witnessed in spaces

amid surfaces, e.g., the area around the top of the shorter bottle and the left gap

between the bottles and the wall, acting to unravel the spatial relations of these

adjacent surfaces. The effectiveness of considering both object surfaces and inter-

surface regions is then demonstrated by (c). While our method correctly recognizes

the two scenes as unchanged, FPFH shows a small ratio of false positive points for the

less noisy, single-object scenario but induces considerable amounts of false positives

for the two-bottle case given a partial and warped reconstruction of the shorter bottle

and the wall.

From Table 4.1, we see that our approach achieves the highest values regarding

the five metrics mentioned above in most scenes. The point-wise FPFH matching

baseline, while not eligible for wrongly detected cluster measurements as no cluster-
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Figure 4-7: Qualitative examples of the change detection results (red) for the four
scenes in the object change detection dataset, from top to bottom: living room (par-
tial), small room, office (partial), kitchen (partial). (a): Detected objects from our
algorithm. (b) Ground truth.
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level operations are involved, results in worse performance in the rest of the four

metrics. This can be ascribed to its sensitivity to reconstruction noises, e.g., residual

points or warpings that are prevalent around boundaries.

Compared to the baseline approaches, our better performance could be attributed

to the more distinct object contours and more robust neighborhood geometry verifi-

cation enabled by the PlaneSDF representation. First, finding intersections between

the preliminary change mask and the object map ensures that most of the voxels

extracted for 3D validation belong to part of an object and all voxels of the poten-

tially changed objects are selected for 3D validation, hence unaffected by common

artifacts, e.g., noisy and incomplete object boundaries, in 3D clustering and segmen-

tation in [67]. Second, local geometry verification, as opposed to point-wise nearest

neighbor searching, offers additional robustness for detecting smaller objects and re-

jecting false positives, especially in the face of undesired point cloud residuals, such

as when reconstruction quality is poor, and objects are close to fixed structures such

as walls.

Qualitatively, Fig. 4-2 and Fig. 4-7 display examples of qualitative change detec-

tion results of each of the five scenes. From Fig. 4-7, we can see that the proposed

algorithm is able to extract point clouds belonging to most of the newly introduced

objects, with some points missing from the planar parts that are attached to the

plane, such as the bottom of the skillet in the kitchen scene (the last row of Fig. 4-7).

While the proposed algorithm has proved to be effective in object change detection

both quantitatively and qualitatively, we point out the failure case as when the height

discrepancy between the object and the plane is ambiguous. Two typical examples

within the dataset are: (1) The new object is partially occluded by a fixed structure in

the height direction, e.g., the baseball placed under the table is missing from detection

as its height is not correctly reflected in the height map. (2) The object is close to

some noisy plane boundaries such as those caused by non-rigid deformation, e.g.,

missing object detection on the sofa (first row in Fig. 4-7) and our lower precision

scores on the “small room” and “living room” scenes with new objects on the sofa.
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4.5 Conclusion

In this chapter, we have presented a new approach for change detection based on

the newly proposed PlaneSDF representation. By making the most of the plane-

supporting-object structure, our approach decomposes the typical noise-sensitive global

scene differencing scheme in a local plane-wise and object-wise manner, demonstrat-

ing enhanced robustness to measurement noises and reconstruction errors on both

synthetic and real-world datasets.
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Chapter 5

Robust Change Detection with

Neural Descriptor Fields

Diving deeper into change detection, in this chapter, we turn our attention to online

change detection. This is a common scenario in mobile robotics, where agents are

expected to capture changes during operation so that actions can be followed to ensure

a smooth progression of the working session. Different from its offline counterpart,

where all observations are readily available, in the online setting, varying viewing

angles and accumulated localization errors make it easy for robots to falsely detect

changes in the surrounding world due to low observation overlap and drifted object

associations.

In this chapter, based on the recently proposed category-level Neural Descriptor

Fields (NDFs), we develop an object-level online change detection approach robust

to partially overlapping observations and noisy localization results1. Utilizing the

consistent shape completion capability of NDFs, we represent objects with compact

shape codes encoding complete object shapes from partial observations. The objects

are then organized in a spatial tree structure based on object centers recovered from

NDFs for fast queries of object neighborhoods. By associating objects via shape

code similarity and comparing local object-neighbor spatial layouts, our proposed

approach demonstrates robustness to low observation overlap and localization noises.
1Project page: http://yilundu.github.io/ndf_change

77

http://yilundu.github.io/ndf_change


We conduct experiments on both synthetic and real-world sequences and achieve

improved change detection results compared to multiple baseline methods.

5.1 Introduction

The ability to perform robust long-term operations is critical for many robotics appli-

cations, such as room scanning and household cleaning. As these tasks usually involve

frequent visits to the same environment over extended periods of time, during which

the environment may experience changes, robots are expected to understand these

newly-emerged scene differences, e.g., the introduction and removal of a coffee mug,

as they may impact the proper subsequent actions to be taken during operation.

An intuitive way to conduct change detection is to perform scene differencing be-

tween current observations and scenes reconstructed from previous sessions. Using

various scene representations such as point clouds and Truncated Signed Distance

Fields (TSDF), previous works detect changed areas in the environment through

global point-wise or voxel-wise differencing on two scenes reconstructed and pre-

aligned post hoc from sequential data [33, 4, 32]. These methods, which treat the

environment as an unordered collection of points or voxels, demand high inter-session

viewpoint overlap and are susceptible to noisy sensor data and localization errors.

Considering the fact that changes take place at the object level, recent works [67, 106]

explore the use of semantic consistency for local object-level verification on top of the

common global point- or voxel-wise scene comparison scheme. Having demonstrated

improved robustness to localization errors, they are nevertheless prone to failure with

noisy reconstruction input and little observation overlap, both of which are frequently

encountered during online change detection tasks.

It is therefore highly desirable to seek approaches that yield consistent represen-

tations of the object surmounting viewing angle limitations, where we then adopt the

recently proposed Neural Descriptor Fields (NDFs) [110]. NDFs have been developed

as a category-level, SE(3)-equivariant object representation for object manipulation

tasks. By encoding an object as a continuous SE(3)-equivariant function, NDFs are
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Figure 5-1: Approach overview. Given a sequence of observations as the source and
the target, during the streaming of the target sequence, the system takes in partial
object point clouds from depth sensors and outputs changed objects on the fly in the
target w.r.t the source. (a) Given each partial object point cloud, Neural Descriptor
Fields (NDFs) represent the object as a shape code encoding the full object shape
and recover the object center from full shape reconstruction. (b) Based on recovered
object centers, observed objects are organized in a spatial object tree consisting of
two coordinate interval trees (𝑇𝑥, 𝑇𝑦), allowing for fast query of neighboring objects.
(c)-(d): Corresponding neighborhoods of the current object are found from the source
and the target object tree using object locations, where objects of similar shape codes
are matched. For each matched object pair, object graphs of the neighborhood are
constructed and compared to determine if the local object layouts are different, which
can imply changed objects.

79



able to reconstruct the full object shape through a compact shape encoding and fur-

ther recover object centers (translation). Considering that NDFs are formulated only

to ensure identical shape codes given rotated point clouds that are otherwise identi-

cal, we augment its shape completion capability by enforcing a new shape similarity

loss with partial object observations as inputs, making it encode consistent full object

shapes and positions across different viewing angles.

Following the object-level interpretation of the world via NDFs-derived object

representations, here, we propose an object change detection approach (see Fig. 5-

1) for mobile robots, targeting the most common online operating scenarios with

high viewing angle variation, potential localization errors, and no pre-alignment tools

available. Based on the consistent category-level shape completion ability of NDFs,

we represent the object with a compact full shape code obtained from partial obser-

vations and organize the objects in a spatial tree structure in terms of object centers

recovered from NDFs for fast query of object neighborhoods. By associating objects

through shape code similarity and decomposing the global differencing scheme into

local object-neighbor layout comparison, our approach shows improved robustness

to little observation overlap and localization errors. Our main contributions are as

follows:

• First, we explore the use of NDFs for category-generalizable shape-consistent

object representation across different viewing angles.

• Next, we propose an online change detection approach based on NDF-derived

object representations and local object layout comparison.

• Finally, we demonstrate the effectiveness of the proposed approach on both

synthetic and real-world testing sequences featuring novel same-category object

instances not seen during training time.
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5.2 Related Work

In this section, we quickly go over previous efforts in change detection and neural

implicit representations at the time of publication. For a more detailed review of the

two topics, please refer to Section 4.2 and Section 6.2.

5.2.1 Change Detection

Previous works conduct change detection based on inputs in various 2D and 3D en-

vironment representations. Given 2D image inputs, Derner et al. [24] built a visual

database and compared classical 2D feature descriptors extracted from greyscale im-

ages for query and reference feature matching. For works with 3D representations,

Finman et al. [33] discovered new objects as changed parts of multiple depth point

clouds, while Herbst et al. detected changes through the movement of surfaces [43].

Ambrus et al. [4] computed a meta-room static reference map based on point clouds

and discovered new objects from changes via spatial clustering. Fehr et al. [32] pro-

posed a multi-layer TSDF grid structure and performed volumetric differencing for

object discovery and class recognition. Langer et al. [67] combined semantic infor-

mation and supporting plane information to discover objects newly introduced to the

scene. Schmid et al. [106] proposed a multi-TSDF panoptic mapping approach and

conducted online change detection based on TSDF value comparison.

Most previous works focus on point-wise or voxel-wise differencing on pre-aligned

reconstructions in an offline fashion, demanding high observation overlap and decent

localization results. They, therefore, only sometimes satisfy the need for online change

detection under various viewing angles, as commonly encountered during mobile robot

operation.

5.2.2 Neural Implicit Representations

Neural implicit representations have been proposed as a continuous, differentiable,

and parameterized representation of 3D geometry [88, 95], appearance [78], auditory

[73], and tactile properties [35] of both objects and scenes. Neural implicit representa-
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tions represent shapes as continuous functions, enabling the principled incorporation

of symmetries, such as SE(3) equivariance [19, 110], as well as the construction of la-

tent spaces that encode class information as well as 3D correspondences [21]. Owing to

their continuous parameterized nature, several works have applied [110, 115] them to

robotics tasks as intermediate object representations directly inferable from raw per-

ception. Simenov et al. [110] showed that symmetries incorporated from such a repre-

sentation could generalize demonstrations of objects to novel poses, while [115, 71, 51]

demonstrated their ability to be integrated with online robotic mapping tasks.

In summary, we explore how to enforce shape consistency on NDFs [110] to repre-

sent objects from partial observations, thus allowing for robust online change detection

with disparate viewing angles and localization noises.

5.3 Category-level Object Representation for Partial

Observations

We base our object representation on the recently proposed Neural Descriptor Fields

(NDFs) [110], a function 𝑓𝜃 that encodes both object shapes and poses through a

category-level SE(3)-equivariant latent representation.

5.3.1 Neural Descriptor Fields

NDFs consist of an encoder function 𝑓𝜃(P) = z, which maps a partial object point

cloud P into a global latent code z, and a decoder function, Φ(x, f𝜃(P)), which maps

an input point x to its predicted occupancy value:

𝑓𝜃(P) = z : R𝑛×3 → R𝑘×3

Φ(x, f𝜃(P)) = Φ(x, z) : R3 × R𝑘×3 → [0, 1].
(5.1)

The encoder function 𝑓𝜃(·) is constructed such that by zero-centering the input P, the

inferred global latent code z is represented as a vector of points that is equivariant

with respect to SO(3) rotations of the input point cloud P. This means that if a
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point cloud is rotated by R, the inferred latent will be equivalently rotated by R, as

ensured via the Vector Neuron encoder layers [19]. By subtracting from x the point

cloud center of P as the translation, we then make 𝑓𝜃(·) an SE(3)-equivariant shape

occupancy predictor for different points x on and off P.

NDFs are trained with partial object point clouds recovered from semantic-segmented

RGB-D images and corresponding 3D occupancy voxel grids of objects’ complete ge-

ometry. During training, the full model [𝑓𝜃,Φ] is trained to predict the complete 3D

occupancy of an object using the standard cross-entropy classification loss 𝐿𝑜𝑐𝑐:

𝐿𝑜𝑐𝑐 = ℒ(Φ(p, 𝑓𝜃(P), 𝑣), (5.2)

where p is a point sampled from the object occupancy grid and 𝑣 is the ground truth

occupancy value at point p.

By feeding Φ(·, ·) with a query point cloud 𝒳 , which is obtained via uniform

sampling within a large bounding box centered around P, the full shape point cloud

𝒮 of the object can be reconstructed in terms of the predicted occupancy values:

𝒮 = {x|Φ(x, 𝑓𝜃(x|P)) > 𝑣0,x ∈ 𝒳}, (5.3)

where 𝑣0 is the occupancy threshold to mark a point location as occupied.

5.3.2 Shape Consistency

Thanks to the SO(3)-equivariance of z, a shape code invariant of view directions,

s ∈ R𝑘, can then be extracted from its rotation invariant portion:

𝑠𝑖 = ||z𝑖||2, 𝑖 = 1, 2, ..., 𝑘. (5.4)

Ideally, the shape code, serving as a compact representation of the full object

shape, should be consistently close among partial observations of the same shape

from various viewing perspectives while discriminatively far apart across observations

of different shapes. While NDFs enable identical shape codes given identical point
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clouds that are rotated, shape consistency across partial inputs of the same shape is

not inherently guaranteed.

To enforce s to be a discriminative yet consistent representation for shapes seen

from various viewing angles, as commonly seen during mobile robot operation, we

further formulate a shape similarity loss, 𝐿𝑠ℎ𝑎𝑝𝑒, fashioned after the idea of the triplet

loss with [anchor, positives, negatives ] for person re-identification tasks [45]. Taking a

partial point cloud from object shape 𝑖 as the anchor A𝑖, we assign it with a positive

sample P𝑖 as the point cloud obtained from another perspective of the same object,

and any other partial observations of a different object as the negative sample N𝑖.

With the distance metric 𝐷(·, ·) chosen as the cosine similarity, 𝐿𝑠ℎ𝑎𝑝𝑒(A𝑖,P𝑖,N𝑖)

then tends to pull the shape codes of A𝑖 and P𝑖 closer, while pushing those of A𝑖 and

N𝑖 further apart:

𝐿𝑠ℎ𝑎𝑝𝑒 = −𝐷(sA𝑖
, sP𝑖

) +𝐷(sA𝑖
, sN𝑖

). (5.5)

Moreover, to ensure that 𝐿𝑠ℎ𝑎𝑝𝑒 always finds the more informative (A,P,N)

triplet, we adopt the batch hard way for triplet forming [45], i.e., using the most

dissimilar (A,P) and the most similar (A,N) within each batch to guide training.

We hence populate each training batch 𝐵 with randomly generated observations

of (𝑜𝐴, 𝑜𝑃 ) pairs of different (but likely repetitive) object shapes, which ensures that

at least two observations exist for each object within the batch. Every sample within

the batch is then treated as an anchor and paired batch-wise for the most dissimilar

positive and the most similar negative samples. Hence, the final batch-hard shape

similarity loss is formulated as:

𝐿𝑏_𝑠ℎ𝑎𝑝𝑒 =
1

|𝐵|

𝑁∑︁
𝑖=1

𝑁𝑖∑︁
𝑗=1

(− min
𝑘∈[1,𝑁𝑖]

𝐷(𝑜𝑖𝑗, 𝑜𝑖𝑘)

+ max
𝑚 ̸=𝑖

𝐷(𝑜𝑖𝑗, 𝑜𝑚𝑛)),

(5.6)

where 𝑁 is the number of objects whose observations are included in the current

batch, 𝑁𝑖 the number of samples of object 𝑖 and 𝑜𝑖𝑗 the 𝑗th observation of object 𝑖

within the batch.
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The final training objective is therefore formulated as the weighted combination

of the cross entropy loss and the shape similarity loss as:

𝐿 = 𝐿𝑜𝑐𝑐 + 𝛼𝐿𝑏_𝑠ℎ𝑎𝑝𝑒, (5.7)

where 𝛼 is the weighting coefficient set as 𝛼 = 0.01.

5.3.3 Training in Simulation

To overcome the data availability issue, we train our category-level shape-consistent

NDFs entirely in simulation using depth images rendered with Pybullet [15]. To con-

sider the commonly encountered variation in viewing angles, observation distances,

and occlusion during operation, for each training sample, we place a randomly posed

object on the table, along with 2-4 randomly drawn objects around it to create oc-

clusion. The camera locations are sampled in a hollow rectangular region with the

table at the center, thus accounting for both nearby and longer distance observations

seen in real-world operations (see Fig. 5-2).

5.3.4 Object Representation

We hence base our object representation on the shape code in Eq. (5.4) and the object

center (translation) t recovered from NDFs as (s, t), where t is simply the predicted

center of the reconstructed full point cloud 𝒮 in Eq. (5.3):

t =
1

|𝒮|
∑︁
x∈𝒮

x. (5.8)

By converting t into the world frame with the given camera pose, the object is charac-

terized by s for its full shape and t for its global location. With the shape completion

ability of NDFs, the current object representation is expected to provide a compact as

well as robust way to distinguish object instances, even under varying viewing angles

during robot motion.
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Figure 5-2: Training sample generation. Snapshots of the rendered scenes are pre-
sented on the right. Along with a height uniformly varying within 0.1 m from the
tabletop, 2D camera locations (blue dots) are drawn uniformly from the hollow rect-
angular regions centered around the table. The width of the region is determined by
the closest and furthest camera-to-table distance 𝑑𝑐 and 𝑑𝑓 . 2 − 4 geometric object
models are randomly selected and placed on the table to simulate potential occlusion.

5.4 NDF-based Object Change Detection

Inspired by the idea that local relative comparison is less sensitive to global localiza-

tion drift than its global counterpart [67], we organize the observed object instances in

a spatial object tree based on the predicted object centers, allowing for the convenient

query of object neighborhoods. By comparing local neighboring object layouts, we

improve the method’s robustness to localization drift by avoiding direct comparison

on the absolute values of localization results.

5.4.1 Spatial Object Tree Construction

To enable the online execution of our approach, we construct and maintain a spatial

object tree in the world coordinate to organize the incoming data stream.

Built on top of the coordinate interval tree proposed in [141], our object tree

comprises two translation interval trees, 𝑇 = (𝑇𝑥, 𝑇𝑦), in the 𝑥 and 𝑦 direction,

respectively, which are initialized and updated simultaneously in the same fashion
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each time a new object measurement (s, t) arrives. Considering that adjacent objects

are located mostly on the same plane, for our case, it suffices to maintain trees only

in the 𝑥 and 𝑦 direction for neighborhood query (while an extension to the 𝑧 direction

should be straightforward).

Tree Construction. Consider 𝑇𝑥 for instance. 𝑇𝑥 divides the 𝑥 − 𝑦 plane

into several equi-distant interval slices in the 𝑥 direction (Fig. 5-1(b)), where each

instantiated interval [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] of fixed length 𝑙 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 is represented by

a node 𝑛. Each node stores a set of object instances whose translation component

t follows 𝑡𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]. The 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are determined by the first 𝑡𝑥 that

initializes this new node as [𝑡𝑥 − 𝑙/2, 𝑡𝑥 + 𝑙/2]. The new node is then inserted in the

tree such that the upper interval limit of a left child 𝑛𝑙 is always smaller than the

lower interval limit of its parent node 𝑛𝑝, i.e., 𝑥𝑙,𝑚𝑎𝑥 < 𝑥𝑝,𝑚𝑖𝑛 and similarly for the

right child 𝑛𝑟, we have 𝑥𝑟,𝑚𝑖𝑛 > 𝑥𝑝,𝑚𝑎𝑥.

Intra-tree Update. We associate the incoming object measurement m = (s, t)

with existing object instances in the tree through spatial proximity and the shape

cosine similarity used in Eq. (5.5). We first traverse through 𝑇𝑥 and 𝑇𝑦 to locate the

corresponding coordinate interval nodes 𝑛𝑥 and 𝑛𝑦 that t𝑥 and t𝑦 land in, respec-

tively. By finding the intersection of the objects within 𝑛𝑥 and 𝑛𝑦, we obtain the

neighborhood 𝒩 that m should be adjacent to as 𝒩 = {𝑜|𝑜 ∈ 𝑛𝑥 ∧ 𝑜 ∈ 𝑛𝑦}. The

measurement is then successfully associated with an object instance 𝑜0 = (s0, t0) in

the neighborhood when:

||t0 − t|| < 𝛿𝑑 ∧𝐷(s0, s) > 𝛿𝑠, (5.9)

where 𝛿𝑑 and 𝛿𝑠 are the maximum distance threshold and minimum shape similarity

threshold for valid association. We then replace the old shape code and the recovered

object center of the object with m as an update if the average occupancy value of

the reconstructed full shape point cloud for m (calculated in Eq. (5.3)) is higher than

that of 𝑜0.
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5.4.2 NDF-based Change Detection

Given two sequences as the source and the target, we construct the source object tree

𝑇𝑠 in advance and perform object change detection while constructing the target tree

𝑇𝑡.

Sequence Registration. We wish to apply our approach in an online mobile

operating scenario where post-alignment tools or motion capture systems are not

always readily available. Therefore, we first conduct a rough alignment between the

target and the source sequence at the beginning of the target traverse, in the hope

that target objects can correctly locate the corresponding neighborhood patch in the

source so as to enable valid neighboring object comparison.

With all the shape codes of the source objects easily obtainable from 𝑇𝑠, after

intra-tree update for 𝑇𝑡, we determine each corresponding source object 𝑜′ for the

current target object 𝑜 as the one sharing the highest shape code similarity among all

the objects (if exists) whose shape similarity with 𝑜 is above 𝛿𝑠 (similar to Eq. (5.9)

amid intra-tree measurement-object association).

After 𝑁 pairs of object correspondences (𝑜′, 𝑜) have been accumulated, we apply

Single Value Decomposition (SVD) with RANSAC onto the 𝑁 object center pairs

(t′𝑖, t𝑖) and obtain the relative transform 𝑇𝑟𝑒𝑙 between the two sequences. This con-

siders the potential inclusion of changed object instances while assuming that they

only take up a small portion of the environment to allow for alignment when the

target sequence starts. Here, we set 𝑁 = 6 to account for transform accuracy versus

timing to start change detection.

Change Detection. Rather than examining object-wise correspondences through

spatial proximity and shape similarity (as in Eq. (5.9)), we draw support from neigh-

boring objects and detect changes through the relative spatial layout consistency of

the object within its target neighborhood and that of its corresponding neighborhood

(if exists) in the source.

When an object measurement m = (s, t) arrives, we update the 𝑇𝑡 by find-

ing/instantiating the associated object instance 𝑂. Considering the online operation
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Figure 5-3: Neighborhood comparison as object graph matching. (1) Shape 𝑎 in
the target neighborhood 𝒩 forms two shape-similar pairs (𝑎, 𝑏) and (𝑎, 𝑐) from the
corresponding source neighborhood 𝒩 ′ (dots colored in orange). (2) Object graphs
centered at 𝑎, 𝑏, and 𝑐 are constructed respectively, demonstrating local inter-object
layout. Graphs of each pair are compared as shown in (2.1) for (𝑎, 𝑏) and (2.2) for
(𝑎, 𝑐). Each object graph consists of vertices as all the objects in the neighborhood
(colored dots) and directed edges pointing from the object to the neighbor with length
as the object center difference (colored arrows, e.g., e𝑐𝑏 = t𝑏− t𝑐). (3): Graph (neigh-
borhood layout) comparison is conducted edge-wise, where edge similarity between
vertex-matched edges (shown in arrows of the same color) is measured by the Eu-
clidean distance between the two edge vectors.
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setting, change detection is then performed on 𝑂 = (s0, t0) that has not been marked

as changed before.

Given 𝑂 = (s0, t0) along with its neighborhood 𝒩0 in the target, we find the

projected location in 𝑇𝑠 with 𝑇𝑟𝑒𝑙 and query the corresponding source neighborhood

𝒩 ′ = {𝑜′𝑖 = (s𝑖, t𝑖)}. Potential object matches are found based on shape code simi-

larity between s0 and each s𝑖 in 𝒩 ′.

The most straightforward change cases are that either 𝒩 ′ is empty or no matched

𝑜𝑖 is found in the source neighborhood, as both indicate newly added objects to new

locations or else new shapes.

Then, with object matches found within 𝒩 ′, we conduct local neighborhood com-

parison for each matched pair (𝑂, 𝑜′𝑖) (see Fig. 5-3 for a concrete example). This also

serves as a validation step for rejecting false positives in dealing with noise-corrupted

localization. When object position changes at a scale similar to cross-session local-

ization errors, it can be hard to determine if the absolute object center difference

between (𝑂, 𝑜′𝑖) is brought by actual changes (e.g., objects move within the plane) or

merely localization/projection drift. At the same time, the latter can be validated

through the relatively more stable inter-object spatial layout.

For each of the matched pairs, neighborhood comparison is accomplished via ob-

ject graph matching. A local object graph 𝐺𝑜 = (𝑉,𝐸) for object 𝑜 in neighbor-

hood 𝒩0 is constructed as a directed graph with vertices as all the objects in 𝒩0,

𝑉 = {𝑜𝑖|𝑜𝑖 ∈ 𝒩0}, and directed edges as the object center difference pointing from 𝑜

to its neighbors, 𝐸 = {e𝑜𝑖|e𝑜𝑖 = t𝑖−t𝑜, ∀𝑖 ∈ 𝒩0, 𝑖 ̸= 𝑜}. Considering the limited num-

ber of objects within a neighborhood (size set similar to a tabletop), the relatively

small graph size makes it possible for edge-wise matching. We find corresponding

edges e𝑜𝑗 and e𝑜′𝑗′ through vertex shape matching. Similar edges, indicating un-

changed inter-object layout, are determined by the Euclidean distance between them:

∑︁
𝑗

1(||e𝑜𝑗 − e𝑜′𝑗′ ||2 ≤ 𝛿𝑒) =

⎧⎪⎨⎪⎩0, changed

≥ 1, unchanged.
(5.10)
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Figure 5-4: Synthetic scene layout and camera trajectories. Mug instances are shown
in colored dots around eight tables as numbered squares. Changes of different types
are shown with different icons. A snapshot of the rendered scene is shown in the
upper right corner. The trajectory covers an area of 8× 8 𝑚2.

If at least one pair of edges is found to be closer than 𝛿𝑒, i.e., at least one out of

the few neighboring objects remains the same, the local object layout is marked as

consistent. This implies an unchanged object and vice versa. Note that in the rarer

case, when either 𝑂 or 𝑜′𝑖 is the only object in the neighborhood, we revert back to

object-wise comparison in terms of spatial proximity and shape similarity.

Lastly, for detecting objects removed from the source, during target streaming, we

label each source object as observed if it ever participates in shape matching with any

target objects, then removed objects can be found after the target sequence finishes

as those observed but never matched with a target object.

5.5 Experiments and Results

Targeting robust online change detection in the face of little observation overlap and

localization errors, we would like to answer two questions: (1) Can we use the shape-

consistent NDF-based representation as a valid category-level object representation
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Figure 5-5: Real-world scene layout and camera trajectories. Changes take place in
tables 1 and 3 and are indicated by the colored letter block highlighted in the top
view pictures of the three tables.

that robustly generalizes to unseen object instances under partial observations? (2)

Can our change detection approach perform well on sequences with little observation

overlap and demonstrate robustness to localization errors? We evaluate our approach

on both synthetic and real-world sequences consisting of various mug instances, where

mugs are added, removed, and switched places between sequences.

5.5.1 Datasets

To better examine the effectiveness of our category-level object representation and the

change detection approach built on top of it, we choose to have our testing sequences

composed of objects from the same category. We hence design two pairs of testing

sequences, in simulation and in the real world, respectively, featuring coffee mugs

of diverse shapes observed from distinct viewing angles. Considering the extensive

multi-category results reported in relevant works [110, 77, 89], we argue that the

effectiveness of our approach should be extendable to the multi-category case by

incorporating more object categories into the training data.
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Synthetic Sequences. We set up an environment in Pybullet with 35-40 in-

stances of 20 ShapeNet [12] mugs models scattered around eight tables and obtain

RGB-D images along with segmentation masks from two preset camera trajecto-

ries. The mug models are unseen by NDFs during training. Each table supports 3-5

mugs with mugs newly added, removed, or switched locations, creating a total of 12

changes between the two sessions. The two camera trajectories are designed such

that the camera always faces towards the nearest table, prompting less observation

overlap between sequences around table 1,2, and 5 (see Fig. 5-4).

Real-world Sequences. We collect two sequences featuring 14 mugs of diverse

shapes randomly placed on three rectangular tables. We mount an Intel RealSense

L515 camera onto a Jackal robot close to the mugs’ height and collect RGB-D data

with the trajectories shown in Fig. 5-5. The camera trajectories are recovered using

ORB-SLAM3 [11]. Since the camera is mounted facing sideways, while the camera

circles around table 1, 2, and 3 in the source, it only weaves through table 1 and 3

in the target, thereby creating observation disparity on mugs along the inner side of

table 1 and 3.

5.5.2 Metrics

We adopt the commonly used precision and recall rate at the object level, i.e., the

number of objects, for evaluation. We report the number of correctly detected changes

(true positives, TP), falsely detected changes (false positives, FP), and undetected

changes (false negatives, FN). Precision and recall rate are computed as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃
𝑇𝑃+𝐹𝑃

and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

.

5.5.3 Implementation Details

To train NDFs using an occupancy network, we set the camera-table distances as

𝑑𝑐 = 0.2 m and 𝑑𝑓 = 5 m and generate 50,000 RGB-D partial observations with 94

ShapeNet [12] mug models following the sample generation strategy in Section 5.3.3.

Partial object point clouds are obtained by extracting corresponding depth points in
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the camera frame indicated by the segmentation masks on RGB images. We build

our model upon the network implementation provided by [110] and train it on two

NVIDIA RTX 3090 GPUs using a learning rate of 6×10−4 with the Adam optimizer.

The length of the interval tree 𝑙 is set to be 1.2 m and 1.6 m for the synthetic and

real-world sequence, respectively, intending to group most objects on the same table

plane. For parameters in Section 5.4, we set 𝛿𝑠 = 0.9, 𝛿𝑑 =0.02 m, and 𝛿𝑒 = 0.03 m.

5.5.4 Generalization to Unseen Instances

To demonstrate the robust generalization of the shape-consistent NDFs to unseen

object instances under various viewing angles, in Fig. 5-6, we render the reconstructed

3D shapes of five mugs drawn from the synthetic and real-world testing sequences.

The three views are selected in the hope of representing some of the most typical

perspectives when observing a mug, e.g., handles visible in different directions or

obscured. Despite the variety of the selected mug shapes, we can conclude that the

shape-consistent NDFs still demonstrate satisfactory performance in encoding and

completing the full shape under varying viewing angles, justifying the adoption of

NDF-derived object representation in our change detection task.

This can be attributed to the fact that by learning purely from geometric struc-

tures embedded in the partial point clouds, NDFs are able to transfer this structural

knowledge to unseen instances regardless of object color and texture. We also include

cases with occlusion and shape ambiguity. For occluded observations, as shown in the

first two columns of “View 2” and “View 3”, we can still see decent reconstruction re-

sults by virtue of the occlusion scenes incorporated in the training data. For the case

of shape ambiguity, i.e., the handle is obscured in the second and last column of “View

2”, the major body parts of the mugs are still reconstructed reasonably well. While

the handle location was incorrectly predicted, such mistakes only result in negligible

errors in object center recovery.
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Figure 5-6: 3-view shape reconstruction of five unseen mugs (seen in each row) from
the synthetic and real-world testing sequences. For each view, Left: Partial obser-
vation. Right: Partial point clouds (red) and full shape reconstruction (green). For
the first two rows of synthetic mugs, the two target mugs for reconstruction are high-
lighted in green. The point clouds are rendered in an orientation that showcases the
boundary between partial observation and the predicted shape completion, whose
shape fitness between the two colored point clouds demonstrates NDFs’ effectiveness
in completing partial shapes.
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5.5.5 Results on Change Detection

We further present the change detection results on the two sets of testing sequences

based on our proposed approach and compare them to two baselines.

The first baseline is the typical nearest neighboring point search (NN) commonly

used for offline scene differencing [67, 4]. Given two spatially aligned observations 𝑆

and 𝑇 , the change point set 𝐶 of 𝑇 w.r.t 𝑆 is found as

𝐶 = {𝑝|𝑝 ∈ 𝑇,∀𝑠 ∈ 𝑆, ||𝑝− 𝑠||2 > 𝑑}. (5.11)

We adapt it to the object level and define that an object is changed if a certain

proportion 𝑟 of its target point cloud finds no neighbors in the source. To make the

results interpretable to online object-level change detection evaluation, we mark an

object as changed the first time during data streaming it is detected as changed, as

during real-world operation, corresponding actions will be taken right after changes

are detected, and usually no correction can be made for false positives.

The second baseline is the recently proposed panoptic multi-TSDFs (PMT) map-

ping method by Schimd et al. [106], which represented panoptic entities as TSDF

submaps and captured online object-level scene changes based on voxel-wise weight

counting informed by TSDF value differences. After tuning the default parameters

for better performance, we count the total number of changed objects based on the

number of conflicting submaps determined by the baseline.

Since both baselines require pre-aligned sequences, we feed the baselines with

ground truth camera poses from Pybullet and those aligned by ORB-SLAM3, respec-

tively. For NN, each source object’s reference partial point cloud is fused from the

whole sequence of the source depth images. Data associations between the target

partial mug observations and the source point clouds are determined by the instance

ID in Pybullet for synthetic sequences and manual labeling based on the panoptic

masks produced by Detectron2 [134] (used in PMT) for real-world sequences.

All results are obtained on a laptop with an Intel Core i7-9750H CPU and an

Nvidia GeForce RTX 2070 GPU. The network inference speed for NDF is around
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Figure 5-7: Robustness to little observation overlap. The source and target sequences
share little observation overlap for the green and red mugs. Despite the distinct
viewing angles and occlusion (blue: from source, yellow: from target), our approach
can still recover the shape and accurate object center from the NDFs representation,
thereby successfully associating the target point clouds to the correct source mugs.

0.019 s per frame. The change detection operation with an expanding spatial tree

executes at an average speed of 0.023 s per frame given the magnitude of the object

number in our experiment setting (up to 40 mugs), resulting in an overall of 24 FPS

for the complete pipeline, thus showing no apparent latency for online operation.

Results on Synthetic Sequences. We present the change detection results of

the three methods in Table 5.1. Here, we set 𝑑 = 0.002 m and 𝑟 = 0.3 for NN. We apply

a 6 DoF random transform to the target camera poses when running our approach so

as to simulate the unavailability of motion capture systems during common mobile

robot operations.

We can see that our method accurately detects all the changes without any false

positives. On the one hand, NN and PMT respectively ignore four and one changes

for the two pairs of mugs switching positions on table 5 and 7, as the similar viewing

angles of these mugs during the source and target traverse induce high overlap between

the target and source point clouds, thereby confounding the baselines by the existence

of neighboring points and similar local geometry.
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Table 5.1: Change Detection Results on the Synthetic Sequences. The best results
are marked in bold.

Approach TP FP FN Precision Recall
NN 8 4 4 66.7% 66.7%

PMT 11 4 1 73.3% 91.7%
Ours 12 0 0 100% 100%

On the other, both baselines falsely mark the four mugs on table 1 and 2 as

changed, which is due to the remarkable viewing angle difference on these four mugs

between the source and target trajectory. As explained in Fig. 5-7, the two mugs

highlighted in red and green are observed in almost opposite directions, leading to

little/no overlap between the two partial point clouds (blue and yellow). Therefore,

few neighboring points can be found between the source and target observations,

while at the same time, leading to drastic differences in the resulted TSDF values.

In contrast, our method is capable of encoding the full mug shape with a compact

shape code from the partial observations and hence produces no false positives.

Results on Real-world Sequences. We report change detection results of

the three methods on the real sequence in Table 5.2 and present the reconstructions

obtained from PMT and our method (for mugs) in Fig. 5-8. For a fair comparison, we

obtain the mug point clouds for all three methods using the panoptic masks adopted in

PMT, which are generated by Detectron2 [134] and preprocessed by DBSCAN [31].

Here, the parameters of NN are set as 𝑑 = 0.002 m and 𝑟 = 0.4, considering the

noises in the real-world point clouds. Due to localization drift between two sessions,

for PMT, the final number of changed objects are counted after the manual merging

of the few submaps instantiated for the same object. In order to mimic the real

operating scenarios, the camera poses to our approach are obtained through running

ORB-SLAM3 separately on the two traverses.

When confronted with noisy point cloud inputs and localization results, despite

the reconstruction failure of the beige mug on table 1 and the blue mug on table

2 (as shown Fig. 5-8(a)) due to poor point cloud and panoptic mask quality, our

method still maintains better detection efficacy in terms of both precision and recall
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Table 5.2: Change Detection Results on the Real-world Sequences. The best results
are marked in bold.

Approach TP FP FN Precision Recall
NN 3 3 2 50% 60%

PMT 5 3 0 62.5% 100%
Ours 5 1 0 83.3% 100%

rate. From Fig. 5-8(b), we see that the confusion brought by disparate viewing angles

persists, as both NN and PMT wrongly mark the black and blue mug on table 3 (high-

lighted in green) as changed. This matches the PMT reconstruction results shown in

the second column, as the two mugs have just one side partially reconstructed during

each session. Furthermore, another false detection emerges as the dark blue mug on

table 3 (highlighted in yellow in Fig. 5-8(a)), which results from the more significant

localization error at the starting point of the target trajectory. Our method reduces

its reliance on the absolute accuracy of camera pose estimation by conducting local

neighborhood layout matching, i.e., the relative spatial relationship among neighbor-

ing mugs, thereby successfully recognizing the mug through its unchanged relative

positions with its neighbors.

Limitation and Extension. The proposed approach works well under the as-

sumption that the changed objects do not take up a predominant portion of all the

objects in the scene. This is a common case for performing frequent visits to the same

environment whose changes occur incrementally. For scenes with drastic changes be-

tween the two scans, our approach may not work well in the absence of a consistent

local layout to refer to. Our approach can be further extended to detect objects that

only rotate but do not move by utilizing the SO(3) equivariance of NDFs, i.e., com-

puting an extra SO(3) transform between the two z’s after the shape-similarity-based

registration step. This situation was not included in the experiment as changing daily

objects rarely have a pure rotation but no translation.
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Figure 5-8: Reconstruction Results. Top to bottom: real scenes, results from PMT, and results from NDFs. (a) Full recon-
struction of the source real-world sequence. Front views of the three tables (first row) are included for mug layout illustration.
Fully trained in simulation, NDFs are able to reconstruct 12 out of the 14 unseen mugs given partial observations, and the two
missing mugs are highlighted in green in the front view pictures. (b) PMT and NDFs reconstruction results for the two mugs
falsely detected as changes. As shown in the first row, two mugs (highlighted in green) are observed in almost opposite views in
the source and target sequence. As shown in the second row, the missing part in the back of the PMT reconstruction misleads
PMT to mark these two mugs as changed, while our NDF-based approach correctly recognizes the mugs by virtue of the robust
recovery of the full mug shape.
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5.6 Conclusion

In this chapter, we propose an online object-level change detection approach based on

an NDF-derived object representation, demonstrating improved robustness in viewing

angle disparity and localization drift. For future work, we would like to test the

approach’s scalability to larger scenes if incorporated as part of an object-level SLAM

system targeting long-term operation and further explore the potential of using NDFs

for providing object pose constraints to help improve camera localization.
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Chapter 6

NeuSE: Neural SE(3)-equivariant

Embedding for Consistent Spatial

Understanding with Objects

Recalling our major claim in Chapter 1 that object-based SLAM would increase

SLAM’s compatibility with advanced robotic tasks through object-level reasoning,

in this chapter, we conclude our line of efforts by taking into account all the afore-

mentioned concerns on object ambiguity and change detection, and present here our

ultimate object SLAM paradigm to achieve robust spatial understanding against scene

changes.

Therefore, we develop NeuSE, a novel Neural SE(3)-Equivariant Embedding for

objects, and illustrate how it supports object SLAM for consistent spatial under-

standing with long-term scene changes1. NeuSE is a set of latent object embeddings

created from partial object observations. It serves as a compact point cloud surro-

gate for complete object models, encoding full shape information while transforming

SE(3)-equivariantly in tandem with the object in the physical world. With NeuSE,

relative frame transforms can be directly derived from inferred latent codes. Our

proposed SLAM paradigm, using NeuSE for object shape and pose characterization,

can operate independently or in conjunction with typical SLAM systems. It di-
1Project page: https://neuse-slam.github.io/neuse/

102

https://neuse-slam.github.io/neuse/


rectly infers SE(3) camera pose constraints that are compatible with general SLAM

pose graph optimization while also maintaining a lightweight object-centric map that

adapts to real-world changes. Our approach is evaluated on synthetic and real-world

sequences featuring changed objects and shows improved localization accuracy and

change-aware mapping capability, when working either standalone or jointly with a

common SLAM pipeline.

6.1 Introduction

The ability to conduct consistent object-level reasoning is crucial for many high-level

robotic tasks, especially those involving repetitive traversal in the same environment,

such as household cleaning and object retrieval. In a constantly evolving world,

robots are expected to accurately locate themselves and their target while keeping

an updated map of the environment, ensuring that a specific “blue coffee mug” can

always be retrieved regardless of its location since its last use.

Traditional Simultaneous Localization and Mapping (SLAM) approaches [11, 27,

62] see the world through a static set of low-level geometric primitives extracted from

observations, making themselves less amenable to human-like reasoning about the

world. In the absence of semantic information, these unordered collections of points,

lines, or planes are not completely compatible with object-level interpretation, making

them susceptible to false correspondence matches when faced with scene changes over

time.

As the world changes and operates under the minimal unit of objects, objects

serve as an intuitive source for assisting localization, and an object-centric map can

act as a lightweight and flexible reflection of the latest environment layout. To bridge

the communication between objects and typical SLAM systems, previous works have

experimented with various object representations to guide back-end optimization,

ranging from pre-defined object model libraries [103, 121], semantic segmentation

masks [75, 100, 76, 136], to parameterized geometry [87, 49, 138]. However, they are

confined to either a limited number of objects or a loss of geometric details due to
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Figure 6-1: Schematic of consistent spatial understanding with NeuSE. An object-
centric map of mugs and bottles constructed from a real-world experiment is shown
for illustration. (a) NeuSE acts as a compact point cloud surrogate for objects,
encoding full object shapes and transforming SE(3)-equivariantly with the objects.
Latent codes of bottles and mugs from different frames can be effectively associated
(dashed line) for direct computation of inter-frame transforms, which are then added
to constrain camera pose (𝑇𝑖) optimization both locally (𝑇𝐿𝑖) and globally (𝑇𝐺𝑖).
(b) The system performs change-aware object-level mapping, where changed objects
(highlighted in orange) are updated alongside unchanged ones with full shape recon-
structions in the object-centric map.
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partial reconstruction or simplification of object shapes.

Recently, neural implicit representations have been introduced [115, 128, 147, 116]

to SLAM as object or scene representations, working with probabilistic rendering loss

to help constrain camera localization. However, the rendering process is parame-

terized as a neural network with no physical meaning, thus requiring iterative opti-

mization with a good initialization to gradually reflect the correct SE(3) camera pose

constraint embedded within the observation. This incurs extra training and computa-

tion overhead and thus makes the integration of neural representations a cumbersome

process.

In order to leverage the shape description power of neural representations while

bypassing the undesirable iteration, we, therefore, break with the dominant “render-

optimize” convention in previous works by explicitly imposing SE(3)-equivariance onto

the vanilla representation.

Hence, we introduce NeuSE, a novel category-level Neural SE(3)-Equivariant

Embedding for objects. NeuSE learns a latent canonical point cloud from par-

tial object observations, encoding the full object shape while transforming SE(3)-

equivariantly as the object transforms in the physical world. Consequently, relative

frame transforms can be directly computed from the corresponding latent codes of an

object when it is observed in different frames. To account for pose ambiguity arising

from symmetrical geometry, we further train NeuSE’s behaviors to conform to object

geometric ambiguity. In this way, working with NeuSE is akin to working with the full

object model, only with operations applied to a compact latent point cloud surrogate

with known correspondences.

In this chapter, we present NeuSE and further demonstrate how it supports ob-

ject SLAM targeting spatial understanding with long-term scene inconsistency (see

Fig. 6-1). By using NeuSE for object shape and pose characterization, we unify

the representations of major SLAM modules, e.g., data association, pose constraint

derivation, etc., around one versatile latent code. Our proposed approach can either

work standalone or complement common SLAM systems by directly inferring SE(3)

camera pose constraints compatible with general SLAM pose graph optimization and
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Figure 6-2: System overview. We propose a NeuSE-based object SLAM approach
targeting consistent spatial understanding with long-term scene changes.

maintaining a lightweight object-centric map with change-aware mapping ability (see

Fig. 6-2). Our main contributions are as follows:

• We introduce NeuSE, a neural SE(3)-equivariant embedding for objects, encod-

ing the full object shape and transforming SE(3)-equivariantly with the real-

world object.

• We propose a NeuSE-based object SLAM paradigm targeting long-term scene

inconsistency, enabling NeuSE-predicted object-level localization and change-

aware mapping.

• We evaluate our approach on both synthetic and real-world sequences and

demonstrate improved localization performance and flexible mapping capability

when working standalone or jointly with a common SLAM pipeline.
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6.2 Related Work

In this section, we discuss a list of robotic applications of neural implicit represen-

tations and, in particular, compare the pros and cons of various efforts in adopting

them into the SLAM pipeline.

Neural implicit representations have emerged as a promising tool to encode the

underlying 3D geometry of objects and scenes [95, 77, 93]. Different works have ex-

plored how neural implicit representations can be used in various fields, including

change detection [34], localization [1, 82], SLAM [142, 14, 116, 147, 99], and manip-

ulation [54, 53, 140, 13, 112, 70, 60, 109, 102, 68].

Notably, some works extend the original representation by integrating SO(3)

or SE(3) equivariance for tasks such as reconstruction [19], point cloud registra-

tion [146, 69], and manipulation [111]. Zhu et al. [146] learned SO(3)-equivariant

features to perform correspondence-free point cloud registration, while Lin et al. [69]

used SE(3)-equivariant representations to obtain and refine the registration result

globally and locally. Simeonov et al. [111] learned SE(3)-equivariant object repre-

sentations for manipulation and estimated relative transforms through optimization.

These methods focused on point clouds known to be associated with the same ob-

ject. They could suffer from performance degradation for partially overlapped point

clouds [146, 69] or required iterative refinement to recover the desired relative trans-

form [111].

In the context of SLAM, most works, other than the object-based methods listed

in the previous section, utilize scene-level neural implicit representations to be jointly

optimized with camera poses. iNeRF [139] is the first to demonstrate that camera

poses can be derived from a neural radiance field (NeRF) representation of the scene.

iMap [116] showed that a multilayer perceptron (MLP) could serve as the scene rep-

resentation for real-time RGB-D SLAM. NICE-SLAM [147], built on top of iMap,

further introduced a hierarchical grid-based neural encoding, enabling RGB-D SLAM

on a larger scale. In terms of monocular SLAM, recently, Orbeez-SLAM [14] adopted

traditional feature-based SLAM for pose initialization and leveraged NeRF to ob-
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tain a hierarchical volumetric map of the environment. NeRF-SLAM [99] relied on

an indirect loss for pose estimation and produced higher-quality reconstructions by

supervising the radiance field with depth information.

As the rendering process is parameterized as a neural network with no inter-

pretable meaning, these methods require iterative optimization with photometric or

depth loss, as well as a proper initialization to obtain the SE(3) transform constraint

that aligns with the real-world observation. This results in added training and com-

putational expenses, making the adoption of neural representations a complex process

and hard to adapt to changes with the scene represented as one single code.

Our NeuSE-based SLAM paradigm distinguishes itself from prior SLAM works

with neural representations by further explicitly imposing SE(3)-equivariance onto

the vanilla neural object representations. To handle unknown data associations, in

contrast to the previous works on point cloud registration or manipulation with equiv-

ariant representations, we take a step beyond to enforce shape code consistency across

viewing angles. This allows partial point clouds to be matched regardless of view-

ing angle differences. With additional regularization on objects with pose ambiguity,

we ultimately achieve direct inference of SE(3) camera pose constraints from partial

object representations. This eliminates the need for the computationally expensive

“render-optimize” process and offers a lightweight as well as flexible solution to object

SLAM problems with long-term changes.

6.3 Category-level Neural SE(3)-equivariant Embed-

ding (NeuSE) for Objects

We propose to represent each object in a scene by using a corresponding SE(3)-

equivariant latent embedding. Precisely, given a point cloud P ∈ R𝑁×3, we represent

it with a lower dimensional latent embedding (“a canonical latent point cloud”) z ∈

R𝐷×3, inferred using a neural network encoder 𝑓 so that z = 𝑓(P). The underlying
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latent embedding is equivariant, so that for any SE(3) transform T:

Tz = 𝑓(TP), (6.1)

i.e. the latent embedding z transforms equivariantly with respect to the point cloud

P.

By representing objects using this equivariant embedding, we obtain the following

three benefits:

Latent Pose Constraints. The underlying latent embedding space operates

under the same SE(3) action as point clouds. Thus, we may express pose constraints

between matched objects directly in the latent space as opposed to the full point

cloud space of objects. As the latent space is both low dimensional and canonical,

pose constraints may be more efficiently computed with the closed-form solution

developed by Horn [48].

Implicit Pose Representation. The object latent code implicitly captures the

underlying SE(3) transform of an object. This circumvents the need to explicitly

specify 6DOF poses of objects when computing pose constraints, which may not

always be accessible and can be ill-defined for objects with symmetrical ambiguity.

Implicit Shape Representation. The object latent code richly encodes both

the underlying shape and features of an object, which then allows for robust data

association against viewing angle disparity.

To infer SE(3)-equivariant latent codes, NeuSE uses a SO(3)-equivariant encoder

function [19] 𝑓𝜃(P) = z that maps a partial object point cloud P into a global latent

point cloud z, and a decoder function Φ(x, f𝜃(P)) that maps an input query point x

to its predicted occupancy value according to z:

𝑓𝜃(P) = z : R𝑛×3 → R𝑘×3

Φ(x, f𝜃(P)) = Φ(x, z) : R3 × R𝑘×3 → [0, 1].
(6.2)

By feeding Φ(·, ·) with a point cloud 𝒳 obtained via uniform sampling within

a large bounding box centered around P, the full shape point cloud 𝒮 of the ob-
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ject can be reconstructed in terms of the predicted occupancy values with 𝒮 =

{x|Φ(x, 𝑓𝜃(x|P)) > 𝑣0,x ∈ 𝒳}, where 𝑣0 is the threshold to mark whether a point

location is occupied.

6.3.1 Learning SE(3)-equivariance across Viewing Angles

We construct SE(3)-equivariance separately through rotation and translation equiv-

ariance.

For rotation equivariance, as our encoder is rotation equivariant, when a point

cloud is rotated by R, the inferred latent code will be equivalently rotated by R:

𝑓𝜃(RP) = Rz,R ∈ SO(3). (6.3)

Since P is a partial observation of the complete object geometry, we treat this partial

center P as an initial estimate of the actual object translation so as to learn an

approximate translation equivariant latent z. We first infer z0 for the zero-centered

partial point cloud P−P. The final latent z for point cloud P is obtained by adding

back the partial center z = P + z0. Hence, to infer an SE(3)-equivariant z, the final

formulation of Eq. (6.2) is accordingly written as:

𝑓𝜃(P−P) = z0 : R
𝑛×3 → R𝑘×3

z = z0 +P, z′ = z− z

Φ(x, f𝜃(P)) = Φ(x− z, z′) : R3 × R𝑘×3 → [0, 1],

(6.4)

where z is the center of z. The translational equivariance on z is imposed by training

the center of z0 to learn the offset between P and the true object center (translation).

Ultimately, for the same object observed partially with camera view T1 and T2, the

SE(3)-transform T1,2 = (R, t) between the two latent point clouds z1 and z2, which

is expected to be close to T−1
2 T1, can be obtained by:

T1,2 = (R, t) = Ψ(z1, z2), (6.5)
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where Ψ(·, ·) is Horn’s method [48] with the closed-form solution of the relative SE(3)-

transform between two point clouds with known correspondence.

6.3.2 Dealing with Pose Ambiguity

SE(3)-equivariance is desirable for unraveling the relative transform between the two

frames where the same object is observed. However, shape symmetry can result in

ambiguity in the inferred transform, causing our latent code to be fallible when the

transform selected is one of many possibilities instead of the correct one. To make

our representations applicable to a broader range of objects, we, therefore, propose

separate training objectives for object shapes with and without ambiguity w.r.t. the

camera viewing frustum.

Unambiguous Objects. For objects without pose ambiguity (e.g., mugs with

a handle), the transform (R, t) obtained from Eq. (6.5) should be unique and thus

approximate the true inter-frame camera transform. We therefore simply minimize

the 𝐿2 distance between the estimated transform (R̂3×3, t̂3) and the ground truth

(R3×3, t3):

𝐿𝑢𝑎𝑏
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 = ||(R̂R

𝑇
)− I3×3||2𝐹 + ||̂t− t||22, (6.6)

where || · ||2𝐹 is the Frobenius norm.

Ambiguous Objects. We limit “ambiguous objects” to objects with pose ambi-

guity from their shapes (e.g., upright wine bottles), but not the ones that may appear

ambiguous due to occlusion (e.g., mugs with their handles obscured).

Since ambiguous objects have multiple or infinite possible transforms that can

meet the current observation, the exact single correct transform can never be learned.

We instead wish that the derived transform will always lead to similar object shapes

when transforming the object’s point cloud from one frame to another. In a nut-

shell, we require the latent code z to implicitly learn the distribution of the possible

transforms.

Hence, given the full object point clouds in two frame coordinates, P𝑜1 and P𝑜2

(readily available as we train fully in simulation), we enforce that the Chamfer dis-
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Figure 6-3: (a) Breaking pose ambiguity with covisible ambiguous objects. Motions
around a bottle’s axis of symmetry result in seemingly identical observations, making
it impossible to determine inter-frame transformations. However, with two covisible
bottles, the intersection (green) of their camera pose distributions (yellow and blue)
for the current observation reveals the true camera pose, where inter-frame transforms
can then be determined without ambiguity. (b) Latent symmetry. The canonicalized
latent embedding should be invariant with camera motion (T1𝑖) around the object’s
axis of symmetry, inducing consistently small Chamfer distance between the trans-
formed bottle (T1,2P1𝑖) and the target point cloud.
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tance between the two point clouds should be small after aligning them with the

predicted transform:

𝐿𝑎𝑚𝑏 =𝐶𝐷(T1,2P𝑜,1,P𝑜,2)

𝐶𝐷(P1,P2) =
1

|P1|
∑︁
x∈P1

min
y∈P2

||x− y||22+

1

|P2|
∑︁
y∈P2

min
x∈P1

||x− y||22.

(6.7)

We can recover the exact transform that simultaneously justifies all current object

observations by intersecting the distributions of possible transforms for multiple am-

biguous objects (see Fig. 6-3(a) for the reasoning of the base 2-object case concerning

two bottles), or further refine the predicted one when working together with unam-

biguous objects. Note here we do not account for the rare degenerate case of colinear

axes of symmetry for all visible objects.

Furthermore, to facilitate the learning of the underlying distribution, we further

augment the original (P10, P20) pair to include extra samples in the distribution.

Given camera view T1 and T2, we fix T2 and generate 𝑁 random transforms T1𝑖s

that allow for camera movement around the object’s axis of symmetry with seemingly

identical observations as that from T1 (Fig. 6-3(b)). The resulting 𝑁 object point

clouds in corresponding camera frames, P1𝑖s, should retain similar shapes to P2 using

the predicted transform. Hence, the ultimate training objective for ambiguous objects

is:

𝐿𝑎𝑚𝑏
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 =

𝑁∑︁
𝑖=0

𝐶𝐷(T1,2P1𝑖,P20), (6.8)

where 𝑁 and values of T𝑖 are determined by the type, e.g., cylindrical (360∘) or

cubical (180∘), of object ambiguity. Here in our experiment, we set 𝑁 = 180 and

draw transforms from [0∘, 360∘] circulation around the cylindrical bottles.

Finally, the target inter-frame transform can be similarly obtained using Eq. (6.5),

with the two latent code zs formed by concatenating all corresponding z𝑖s of covisible

objects in each frame.
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6.3.3 Shape Consistency across Viewing Angles

Since z0 is SO(3)-equivariant, its rotation invariant part, s ∈ R𝑘, encoding full object

shapes, can then be extracted as s = {𝑠𝑖}𝑖=𝑘
𝑖=1 = ||(z0)𝑖||2, where we term s as the shape

descriptor.

Following [34], we adopt the batch-hard shape similarity loss 𝐿𝑏_𝑠ℎ𝑎𝑝𝑒, enforcing s

to be consistently similar across viewing angles of the same object while discrimina-

tively far apart for different objects.

𝐿𝑏_𝑠ℎ𝑎𝑝𝑒 takes the form of the triplet loss as [anchor, positives, negatives ]. To

allow for a variety of viewing angle combinations during training, we populate each

training batch 𝐵 with 𝑀 partial observations for each of the 𝑁 randomly drawn

objects. Samples of the same object instance serve as mutual anchors and positives,

(A𝑖, P𝑖), with samples not from the current shape instance being the negatives, N𝑖.

𝐿𝑏_𝑠ℎ𝑎𝑝𝑒 is calculated in a “batch-hard” fashion, i.e., it only uses the most dissimilar

(A,P) and the most similar (A,N) for each anchor to guide the training. With 𝐷(·, ·)

as the cosine similarity, the final batch-hard shape similarity loss is formulated as:

𝐿𝑏_𝑠ℎ𝑎𝑝𝑒 =
1

|𝐵|

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

(− min
𝑘∈[1,𝑀 ]

𝐷(𝑜𝑖𝑗, 𝑜𝑖𝑘)

+ max
𝑚 ̸=𝑖

𝐷(𝑜𝑖𝑗, 𝑜𝑚𝑛)),

(6.9)

where 𝑜𝑖𝑗 is the 𝑗th observation of object 𝑖 within the batch.

6.3.4 Training in Simulation

Training Objective. NeuSE is trained with partial object point clouds and corre-

sponding 3D occupancy voxel grids of objects’ complete geometry. The full model

[𝑓𝜃,Φ] predicts the complete 3D occupancy values at query object locations, which is

then evaluated by the standard cross-entropy classification loss 𝐿𝑜𝑐𝑐 = ℒ(Φ(p, 𝑓𝜃(P), 𝑣))

with sampled query location p and its corresponding true occupancy value 𝑣.

The ambiguous and unambiguous object categories are trained separately, with

respective 𝐿𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 and shared 𝐿𝑜𝑐𝑐 and 𝐿𝑠ℎ𝑎𝑝𝑒. The final training objective is the
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weighted sum of the three losses

𝐿 = 𝐿𝑜𝑐𝑐 + 𝛽1𝐿𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 + 𝛽2𝐿𝑏_𝑠ℎ𝑎𝑝𝑒, (6.10)

where 𝛽1 and 𝛽2 are constants set to balance the order of magnitude of the three

losses. The training samples are organized following 𝐿𝑏_𝑠ℎ𝑎𝑝𝑒’s formulation, where

𝐿𝑜𝑐𝑐 is evaluated for each sample in 𝐵 and 𝐿𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 for any two observations of the

same object. With this composition of the training data, the model is expected to see

various pairs of viewing angles and learn to predict the relative transform between

two frames within a certain range apart.

Data Generation. NeuSE is trained fully in simulation with RGB-D images

rendered with Pybullet [15]. We place a randomly posed principal object on the

table, along with 2-4 (for unambiguous objects) and 1-2 (for ambiguous objects)

objects arbitrarily selected from the trained categories to simulate a typical cluttered

environment. In light of the viewing angle variety, for each multi-object layout, we

uniformly sample a fixed number of camera locations over the hollow cubical space

centered around the table. The cubical space is set to be [𝑑𝑛, 𝑑𝑓 ] away from the table

within the table plane and [𝑑𝑙, 𝑑ℎ] away from the table in the vertical direction, thus

accounting for observations from near, far, low, and high locations.

6.4 NeuSE-based Object SLAM with Long-term Scene

Inconsistency

NeuSE enables robust data association across viewing angles and further serves as a

lightweight, alternative “sensor” for providing cross-frame camera pose constraints.

We propose a NeuSE-based localization strategy in tandem with a change-aware

object-centric mapping procedure to enable robust robotic operation in scenes with

long-term changes.
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6.4.1 System Formulation and Update

Our object-based SLAM problem is formulated as a pose graph consisting of only

keyframe camera pose vertices, where an edge exists to constrain the two vertices

if there are inter-frame transform measurements available from NeuSE or any other

sources. The measurement error between vertex 𝑖 and 𝑗 for each edge is defined as

e𝑖𝑗 = 𝑙𝑜𝑔(Z𝑖𝑗T̂
−1
𝑗 T̂𝑖)

∨, where Z𝑖𝑗 is the odometry measurement from arbitrary sources

between frame 𝑖 and 𝑗, and T̂ is the current estimate of T.

The system maintains a library of keyframes with the latest camera pose estimates

obtained via pose graph updates, as well as NeuSE latent codes of the observed objects

in the frame coordinate. The camera pose of the current frame is recovered as the

smoothed estimate of pose constraints from associated objects and external sources

between the frame itself and the nearest keyframe.

The objects in the system are recorded by their per-keyframe visibility, change

status, a partial point cloud from their last keyframe observation (for query points

generation during rendering), and the latest shape descriptor from initialization or

mapping updates.

For localization, the system works only with latent codes in the local camera

frame, while their world-frame counterparts are used for mapping operations. When

an object is first observed, its world-frame latent code is initialized and then updated

as needed by averaging the back-projected latent codes of the same object using the

latest camera pose estimates recorded in the keyframe library.

6.4.2 Data Association

NeuSE-predicted inter-frame transforms are only valid if computed from latent codes

belonging to the same object. Our data association scheme exploits both full shape

similarity and spatial proximity so as to allow pose constraint generation only between

latent codes with reliable object association.

Shape Similarity. For each object in the current frame, we extract the shape

descriptor from the latent code and calculate its cosine shape similarity (as adopted
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in Eq. (6.9)) with all objects in the library. Objects with a shape similarity score

greater than 𝛿𝑠ℎ𝑎𝑝𝑒 are considered potential data association candidates 𝒪𝑐. If no

similarity scores exceed 𝛿𝑠ℎ𝑎𝑝𝑒, a new object instance is initialized and added to the

object library.

Spatial Proximity. Spatial proximity involves examining the Euclidean distance

between the partial point cloud center of the current object and its candidates in 𝒪𝑐,

where the current partial center is projected to the latest keyframe its candidate is

last seen. The transform for projection is calculated using Horn’s method (Eq. (6.5))

between corresponding latent codes. Candidate with the smallest distance while

below 𝛿𝑝𝑟𝑜𝑥 is deemed a successful match to be included in 𝒪𝑚𝑎𝑡𝑐ℎ𝑒𝑑 for further pose

constraint generation. Otherwise, the current object is unassociated and grouped into

𝒪𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑.

The procedure is performed first on unambiguous objects and later on ambiguous

objects, differing only in the acquisition of inter-frame transforms. For unambiguous

objects, we compute the transform directly using Horn’s method. For ambiguous

objects, we utilize the transform from associated unambiguous objects if available.

If not, we conduct an exhaustive search of all paired combinations of covisible ob-

ject candidates in previous keyframes and obtain the inter-frame transform from the

concatenated object latent codes.

We hence divide all covisible objects 𝒪 in one frame into three groups: (1)

𝒪𝑚𝑎𝑡𝑐ℎ𝑒𝑑, which has objects with shape and spatial consistency and is adopted for

pose constraint generation, (2) 𝒪𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑, which consists of scene changes or tem-

porally ambiguous observations, and is processed by change detection, and (3) new

objects never seen before.

6.4.3 Pose Graph Optimization

With objects successfully associated across frames, we compute NeuSE-predicted

transforms among frames so as to constrain the pose graph both locally and globally

(see Fig. 6-4).

Keyframe Selection. Keyframes are selected based on the presence of new
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Figure 6-4: Pose graph optimization. With objects observed in periods of consec-
utive frames, we derive from corresponding latent codes (1) short-range odometry
constraints (grey) within a local 𝐾-frame sliding window, and (2) global loop clo-
sure constraints (black) between the current (T𝑁) and the first frame of each of its
previous consecutive observable periods (T1 and T𝑀), which are working jointly to
constrain the pose graph optimization.

objects and proximity to previous keyframes. New objects trigger the selection of

a frame as a keyframe, and frames located at least 0.04 m away from the previous

keyframe based on accumulated odometry are also chosen. Additional keyframes may

be added after change detection for frames with changes.

Short-range Odometry. To reduce local drift in frames with persistently ob-

served objects, short-range NeuSE-predicted pose constraints are applied to a sliding

window optimization of 𝐾 keyframes. For each newly added keyframe, we search

its preceding 𝐾 − 1 keyframes and identify the common objects observed between

the current and previous frames. The inter-frame transform constraint is computed

based on the concatenated latent codes of the shared objects (or a single unambiguous

object) and then added as an edge to the pose graph.

Long-range Loop Closing. Global loop closing is activated when an object is

detected again in a frame after its last consecutive observable period. The common

objects between the current frame and the initial frames of all its previous observation

periods are identified, and relative transform constraints are derived from the con-

catenated NeuSE latent codes. These constraints are then added to the pose graph,

which initiates a global optimization process using the latest pose estimates from the
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Figure 6-5: Object layout comparison through graph matching. Object graphs are
constructed for the current frame (𝐺) and the library (𝐺′). For object 𝑎 and 𝑏, which
are similar in shape to the blue mug and pink bottle in the library, respectively, the
inter-object distance between them and the anchor objects in the four corners are
computed and compared. (a) All corresponding edges (dashed and solid lines) with
anchor objects have similar oriented lengths, indicating that the mug is unchanged
but was seen with an occluded handle, leading to a false, ambiguous transform by
the latent code. (b) There are no similar edges, indicating a different layout with the
bottle moved.

local sliding-window optimization as the starting point.

6.4.4 Change-aware Object-centric Mapping

Change detection is performed frame-by-frame on objects in 𝑂𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 that match

in shape but are identified as spatially apart based on latent codes, providing a

foundation for consistent long-term mapping.

As changes are often gradual and occupy a small portion of the object clutter in

long-term scenes, here, change detection is done by comparing the relative layout of

the query unmatched object 𝑜𝑢𝑖 ∈ 𝒪𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 with all objects 𝑜𝑚𝑖 ∈ 𝒪𝑚𝑎𝑡𝑐ℎ𝑒𝑑 in the

matched set serving as anchors. We argue that the relative object position disparity

is more robust to camera pose drift compared to the absolute position difference, as

all objects observed will be drifting concurrently in the world frame.

We represent the local layout with a directed object graph 𝐺 constructed with

𝒪𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 and 𝒪𝑚𝑎𝑡𝑐ℎ𝑒𝑑. Each vertex of 𝐺 represents an object 𝑜 with its shape

descriptor and the true object center as (s, c). The center c is computed from the full
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object reconstruction using the decoding steps in Eq. (6.4) and back-projected to the

world frame using the latest camera pose estimate. Edges are established between

objects 𝑜𝑢𝑖 ∈ 𝒪𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 and all anchor objects 𝑜𝑚𝑗 ∈ 𝒪𝑚𝑎𝑡𝑐ℎ𝑒𝑑, indicating the oriented

distance between their centers 𝐸 = {e𝑖𝑗|e𝑖𝑗 = c𝑢𝑖 − c𝑚𝑗,∀𝑜𝑢𝑖 ∈ 𝒪𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑, 𝑜𝑚𝑗 ∈

𝒪𝑚𝑎𝑡𝑐ℎ𝑒𝑑}.

We build the local and reference object graph, 𝐺 and 𝐺′, respectively, for 𝒪 in

the current frame and their associated or shape-similar counterparts in the system

library (see Fig. 6-5). After a quick alignment of the two graphs using the centers of

anchor objects, for each pair of edges (e𝑖𝑗, e𝑖′𝑗′) connecting vertices of similar shapes

(determined by s from data association), we compare their edge value disparity to

assess if this is a changed layout:

∑︁
𝑗

1(|e𝑖𝑗 − e𝑖′𝑗′| ≤ 𝛿𝑒) =

⎧⎪⎨⎪⎩0, changed

≥ 1, unchanged.
(6.11)

An object 𝑜𝑖 is marked as unchanged if at least one pair of edges is found to

be closer than a threshold 𝛿𝑒. This indicates that its inter-spatial relationship with

at least one of the anchor objects is consistent. If no edges are found to be close,

the object is marked as changed, and its change status and partial point cloud are

updated in the object library. Here, we define an object to be “removed” from the

scene if it has never been shape-matched in frame periods with global loop closure.

Therefore, we are able to maintain a lightweight, object-centric map that ac-

curately reflects the full object reconstructions from NeuSE predictions. By using

objects as the basic building blocks of the map, we can update changes seamlessly by

replacing the old latent code with the new one during the decoding stage, avoiding

the cumbersome and artifact-prone point- or voxel-wise modifications commonly used

in traditional low-level geometric maps.
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6.5 Experiments and Results

We aim to assess the efficacy of NeuSE for object shape/pose characterization and

robot spatial understanding. Specifically, we would like to answer two questions: (1)

Can NeuSE-based object SLAM perform reliable localization on its own or improve

existing results when combined with other SLAM measurements, especially in the

presence of temporal scene inconsistency? (2) Can the proposed approach build

a consistent object-centric environment map with timely updates to reflect scene

changes? We train NeuSE fully in simulation and evaluate the proposed algorithm

directly on both synthetic and real-world sequences consisting of unseen objects of the

trained categories, where objects are added, removed, and switched places to simulate

long-term environment changes.

6.5.1 Datasets

Given the limited availability of object model collections for training and the scarcity

of public data with appropriate object-level scene changes, we created our own syn-

thetic and real-world sequences. The collected data feature mugs and bottles in

various cluttered arrangements, with diverse occlusion patterns, various viewing an-

gles, and gradual object changes. We chose mugs and bottles as the representative

object categories due to their common use and distinct unique (mugs) or ambiguous

cylindrical (bottles) shapes for localization, which allow us to evaluate the effective-

ness of our latent code design. Following past work [111, 77, 95], our approach should

be extendable to even more categories by incorporating related objects into training.

Synthetic Sequences. An environment is rendered in Pybullet with 50 previ-

ously unseen ShapeNet [12] mugs and bottles scattered onto ten tables in a 10×15 𝑚2

area (Fig. 6-6(a)). To fully examine the proposed SE(3)-equivariance of NeuSE, two

object layouts are generated: (1) a roughly planar layout with all upright objects, and

(2) a non-planar hilly layout with nearly half of the objects laid down and arbitrarily

oriented on tabletops. The camera follows a preset closed-loop trajectory and records

RGB-D images and segmentation masks of both layouts, respectively. This leads to
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Figure 6-6: Evaluation data overview. Object changes happen at each joint of the
colored trajectory segments. (a) Table layout with object changes and the ground
truth camera trajectory of the two synthetic sequences. (b) Real-world setup with
ground truth camera trajectories.

two sequences with uninterrupted object observation among the ten tables, where ob-

jects are revisited on most tables (excluding table 4, 7, and 10) from approximately

opposite views. For each sequence, objects are added, removed, or moved to different

locations, resulting in a total of nine changes within the trajectory.

Real-world Sequences. 28 mugs and bottles of various shapes and sizes are

densely located on five tables in a 6×3𝑚2 space (Fig. 6-6(b)), among which ten objects

are added, removed, or switched locations to create two sets of object arrangements.

A RealSense D515 camera mounted on a Clearpath Jackal robot records RGB-D data

along two preset trajectories: (1) A four-round peripheral loop around three central

tables, with the first two rounds captured with one object arrangement and the latter

two with the other arrangement, in total having nine changed objects. (2) A more

challenging triple-infinity loop where the camera moves through four central and side

tables, with seven object changes along the way. The ground truth camera trajectories

are recovered from a Vicon motion capture system. The object segmentation masks

are obtained from Detectron2 [134].

6.5.2 Experimental Details

To train NeuSE’s occupancy network, we generate two sets of training samples using

94 mug models and 242 cylindrical bottle models from ShapeNet. The sets are,
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respectively, unambiguous (mugs) and ambiguous (bottles) objects, each containing

60,000 RGB-D partial observations with segmentation masks. We follow the sample

generation strategy in Section 6.3.4: 2,000 object layout mixing bottles and mugs

are created in Pybullet, from each of which 30 views are uniformly sampled with

[𝑑𝑛, 𝑑𝑓 ] = [0.3, 5] (m) and [𝑑𝑙, 𝑑ℎ] = [−0.2, 0.2] (m). We train our approach on two

NVIDIA RTX 3090 GPUs using a learning rate of 5×10−4 with the Adam optimizer.

The latent code size is 𝑘 = 512, and the occupancy threshold for reconstruction is

𝑣0 = 0.5. We set the weight coefficients in Eq. (6.10) to be (𝛽1, 𝛽2) = (0.1, 0.1) for

unambiguous objects, and (𝛽1, 𝛽2) = (1, 0.1) for ambiguous objects. The training

batch is populated with eight object shapes, each with 15 partial observations, by

setting 𝑀 = 15 and 𝑁 = 8.

For the object SLAM system, we have 𝛿𝑠ℎ𝑎𝑝𝑒 = 0.95, (𝛿𝑝𝑟𝑜𝑥, 𝛿𝑒) = (0.03, 0.02)

(m) for the synthetic sequence, and (𝛿𝑝𝑟𝑜𝑥, 𝛿𝑒) = (0.04, 0.03) (m) for real-world se-

quences for data association and change detection. We set the sliding window size as

𝐾 = 10 and adopt the factor graph representation for SLAM pose graph optimiza-

tion. The local sliding-window optimization is solved with a Levenberg–Marquardt

fixed-lag smoother, and the global pose graph is solved with iSAM2 [56], both using

implementations from GTSAM [18].

Model Details. We provide the network architecture of our encoder and decoder

in Table 6.1 and Table 6.2, respectively, which are adopted from Neural Descriptor

Fields [111] using the VNNLinear, VNNResnetBlock, VNLeakyReLU blocks intro-

duced in Vector Neurons [19]. Here, 𝑧𝑑𝑖𝑚 refers to the size of the NeuSE latent code,

z ∈ R𝑧𝑑𝑖𝑚×3.

Training Details. During training, we randomly draw 500 points from the ob-

served partial point clouds for each sample to be fed into the encoder network. For

training with 𝐿𝑜𝑐𝑐, the query point size is 750, consisting of half object points and

half off-the-object points from the given model.

We set the dimension of the latent code z to be 𝑧𝑑𝑖𝑚 = 512 and the weight

coefficients (𝛽1, 𝛽2) = (0.1, 0.1) for unambiguous objects and (𝛽1, 𝛽2) = (1, 0.1) for

ambiguous objects so as to balance the order of magnitude difference among 𝐿𝑜𝑐𝑐,
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𝐿𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚, and 𝐿𝑠ℎ𝑎𝑝𝑒 (with 𝐿𝑜𝑐𝑐 as the reference). In terms of our choice of the latent

code dimension, we further find that, as opposed to training the three losses jointly

using a single 512-dimensional latent code, we may also enforce SE(3)-equivariance

and cross-viewing-angle shape consistency separately on two lower dimensional latent

codes/networks. Here, when applying 𝐿𝑜𝑐𝑐 +𝐿𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 and 𝐿𝑜𝑐𝑐 +𝐿𝑠ℎ𝑎𝑝𝑒 individually

on two network models, each with a latent size of 128, we obtain almost on-par trans-

form and shape characterization power from the combination of two 128-dimensional

latent codes compared to that of the vanilla 512-dimensional code. Hence, this can

serve as a memory-efficient alternative to our original training approach for more

lightweight training and memory-critical application scenarios.

Reconstruction and Update of the Object-centric Map. We here elaborate

on our choices and procedures in building and maintaining the object-centric map,

which we adopt to deal with noisy real-world data.

Our proposed approach depends on correct object segmentation masks to produce

effective latent codes for objects. To avoid potential failures from false object latent

codes, considering the uncertainty of off-the-shelf object detectors and depth cameras,

we only initialize a new object instance if it has been recognized robustly by the depth

camera and the object detector, e.g., an object close enough to the camera with an

abundant number of points in the observed point cloud. Here in our experiment for

object instantiation, we only consider objects that are within 2 m away from the depth

camera and with their pixel-level segmentation mask size above 4,000. Ultimately, a

new object is instantiated after it has been regarded as a “new” object three times in

a row during data association.

For map maintenance and update, we conduct the removal of “residual” object

instances based on the bounding box of each full object reconstruction. This ensures

less redundant object instantiation from partial observations and no overlapping ob-

ject reconstructions for detected changed objects whose new positions were previously

occupied. Thanks to NeuSE, we can always get a reasonable shape prediction out of

partial observations, e.g., an upright bottle with its bottom half obscured. We are,

therefore, able to obtain the 3D bounding box of each observed object and conduct
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VNLinear(128,256)

VNLinear(256,128)

VNLinear(256,128)

VNLinear(256,128)

VNLinear(256,128)

VNLinear(256,128)

Meanpool

VNLinear(128,𝑧𝑑𝑖𝑚)

z ← Encode

Table 6.1: Encoder architecture.

VNLinear(𝑧𝑑𝑖𝑚,𝑧𝑑𝑖𝑚)

Linear(2*𝑧𝑑𝑖𝑚+1,128)

ResnetBlockFC(128)

ResnetBlockFC(128)

ResnetBlockFC(128)

ResnetBlockFC(128)

ResnetBlockFC(128)

Linear(128,1)

Sigmoid

Table 6.2: Decoder architecture.

the object removal procedure as follows: (1) If a small object’s bounding box has

a high overlap with a large one (0.95 in our case), this small object is deemed as

a partial instance belonging to the large one and will be removed. (2) A changed

object’s bounding box intersects (we set it as 20% of its bounding box volume) with

an older object, meaning the older object should no longer be in its original place.

We hence remove the older object from the map and update the changed object to

its new position. In this way, we are able to maintain a consistent object map while

avoiding overlapping reconstructions such as the artifacts shown in Fig. 6-12(b) and

(c).

6.5.3 Localization with Temporal Scene Inconsistency

All results are obtained on a laptop with an Intel Core i7-9750H CPU and an Nvidia

GeForce RTX 2070 GPU. NeuSE network inference takes 6 ms per object, with inter-

frame pose constraint calculation taking 1 ms. One-time rendering for object-centric

map construction costs 30 ms per object with 20,000 query points. With data as-

sociation included, the speed is approximately 28 FPS for generating object-level

inter-frame pose constraints with our NeuSE-based front-end, making it promising

for NeuSE to be integrated as an external “constraint sensor” with real-time operat-

ing speed. The final overall localization speed of our change-aware SLAM system is
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Table 6.3: RMSE of ATE and Translational RPE on synthetic sequences. Gains (Δ)
are computed based on results from Mug-only. The best results are marked in bold.

Planar Non-planar

Mug-only All-object Δ (%) Mug-only All-object Δ (%)

RMSE of ATE (m)
Synthetic: 1st traversal 0.072 0.043 40.3% 0.058 0.045 22.4%
Synthetic: 2nd traversal 0.096 0.071 26.0% 0.077 0.033 57.1%
Synthetic: Full 0.116 0.065 44.0% 0.091 0.053 41.8%

RMSE of Trans RPE (m/f)
Synthetic: Full 0.026 0.017 34.6% 0.024 0.016 33.3%

11 FPS for the current experiment setting, with no software optimization or major

tuning of the back-end iSAM2 solver. All following localization results are reported

as the median of five runs.

Synthetic Sequences. The consecutive observations of objects in the synthetic

data allow for uninterrupted operation of the proposed SLAM strategy, enabling an

independent evaluation of NeuSE’s capabilities for conducting change-aware localiza-

tion and mapping.

Therefore, we report quantitatively in Table 6.3 the Root Mean Squared Error

(RMSE) of both the translational Relative Pose Error (RPE) and the Absolute Tra-

jectory Error (ATE) of the estimated camera poses for the two testing sequences,

showcasing consistent NeuSE’s performance both locally and globally. We further

visualize the RPE and ATE error distribution along the way in Fig. 6-8 and Fig. 6-7,

respectively.

To justify our treatment of the inclusion of ambiguous objects, we run two variants

of the system as (1) Localizing with mugs only (Mug-only) and (2) Localizing with

all objects of interest, i.e., mugs and bottles (All-object). For the few frames with no

objects for data association or pose generation, we maintain system operation with

odometry measurements corrupted from ground truth by a zero-mean Gaussian noise

with 𝜎 = 0.003 rad for rotation and 𝜎 = 0.05 m for translation.

The RPE and ATE values in Table 6.3 show that (1) NeuSE is a reliable “constraint

sensor” for producing consistent short- and long-range camera pose constraints, and

(2) our system is capable of producing a globally consistent trajectory, despite vari-
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ous occlusion patterns, viewing angle disparities, and object changes between the two

traversals. The smooth distribution of RPE throughout the sequence, as shown in

Fig. 6-8, also demonstrates the robustness of our localization strategy against tem-

poral scene changes, which is attributed to the effectiveness of our proposed data

association and change detection in distinguishing objects in the second traversal.

Specifically, we observe from Table 6.3 that the proposed object SLAM approach

performs better on the non-planar object layout, fully showing the efficacy of our

SE(3)-equivariant representations in handling randomly oriented objects. This can be

attributed to our training data generation strategy, which includes various views and

occlusion patterns to learn robust geometric features of object shapes across viewing

angles. Further, the lying-down mugs in the sequence help reduce shape ambiguity

by providing more valid observations for generating camera pose constraints, as their

handles are more frequently visible when pointing upwards than in the usual sideways

direction. With the SE(3)-equivariant property of NeuSE, our approach can learn

from upright observations to benefit the processing of laid down objects, thus enabling

generalization to new scenarios with various object orientations.

Our attempt for the incorporation of ambiguous objects for pose constraint gen-

eration is validated by (1) the consistent improvement of All-object over Mug-only

throughout the two traversals in Table 6.3, and (2) the lower dispersion of RPE values

for All-object in Fig. 6-8. Besides, in Fig. 6-7(c)-(d), with object point clouds in (c)

transformed from the upper (orange) to the lower (green) frame using transforms de-

rived from only the pink mug and together with green bottles, the better point cloud

alignment in (d) of All-object over Mug-only demonstrates the viability of leveraging

covisible ambiguous objects for improving transform estimation accuracy.

Real-world Sequences. It is common for objects to be out of sight during real-

world robot motion. Hence, in this section, we validate the feasibility and benefit

of our strategy in complementing other SLAM measurements and promoting loop

closing for a globally consistent estimated trajectory.
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Figure 6-7: Column 1-2: Comparison of estimated and ground truth trajectories (GT)
on synthetic sequences. (a) Planar and (b) Non-planar object layout. Color variation
implies ATE value distribution along the path. All-object leads to better estimation
accuracy than Mug-only, as shown by the evenly lighter trajectory color with lower
ATE values. Column 3: Ambiguous objects for inter-frame transform prediction.
With object point clouds in (c) transformed from the orange frame to the green frame
using transforms derived from merely pink mugs and together with green bottles, the
better point cloud alignment in (d) of All-object over Mug-only demonstrates the
effectiveness of using covisible ambiguous objects to improve transform prediction
accuracy.
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Mug-only All-objectPlanar Object Layout

Non-planar Object Layout Mug-only All-object

Figure 6-8: Distribution of translational RPE along synthetic sequences. The green
lines in both layouts reveal lower RPE dispersion, indicating consistently lower local
drift when using all objects of interest (mugs and bottles), as opposed to using only
unambiguous ones (mugs).
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Table 6.4: RMSE (m) of ATE on real-world sequences. The best results for each trajectory are marked in bold.

CubeSLAM [138] EM-Fusion [114] Obj-only ORB3-NS ORB3-PW

All Objects Detected All Objects Detected Raw Odometry Mug-only All-object Base + Ours Base + Ours

4-Round: 1st − 2nd round 0.108 0.162 1.22 0.122 0.112 0.101 0.096 0.102 0.084
4-Round: 2nd − 3rd round 0.114 0.174 1.85 0.124 0.114 0.126 0.090 0.102 0.083
4-Round: 3rd − 4th round 0.128 0.127 2.07 0.123 0.090 0.119 0.085 0.086 0.076
4-Round: Full 0.131 0.154 3.51 0.134 0.111 0.118 0.092 0.093 0.079
Triple-infinity 0.147 0.193 1.12 0.137 0.106 0.101 0.082 0.160 0.083
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Figure 6-9: Column 1-2: Visualization of the estimated trajectories: (a) CubeSLAM
and (b) EM-Fusion. Color variation of the line indicates ATE value distribution
along the trajectory. Column 3: Trajectory/object cuboid estimation drifts of the
two selected object SLAM baselines. (c): EM-Fusion undergoes heavy out-of-plane
drift in the Triple-infinity loop due to faster rotations around the corners. (d): The
top-down view (bottom row) displays the cuboid estimates of mugs and bottles in
the 4-Round loop. CubeSLAM struggles to handle object changes, which causes
inaccuracies in data association. This results in multiple missed, drifted, and falsely
overlapped cuboid detections and affects the joint optimization of cuboid estimates
and camera trajectory.
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Figure 6-10: Visualization of estimated trajectories against ground truth (GT). Color variation (color bar on the right) of
the line indicates ATE value distribution along the trajectory. (a) Above: Estimated trajectories of the 4-Round loop. The
integration of our strategy (column 3 and 5) helps prevent the tracking failure, as shown by the two spikes in the second and
fourth column. Below: Estimated trajectories of the Triple-infinity loop. Our strategy (column 5) successfully eliminates the
start and end point drift for ORB3-PW (column 4), resulting in improved trajectory estimate when revisiting the rightmost
table, as indicated by the lighter color of ATE values along the trajectory. (b) Vast viewing angle variance from auto-exposure
malfunction between two frames leads to tracking failure in ORB-SLAM3.
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In this spirit, we adopt ATE as the metric and compare our approach to two di-

rectly deployable object-based SLAM strategies, CubeSLAM [138] and EM-Fusion [114],

as well as the popular and state-of-the-art ORB-SLAM3 [11] pipeline. CubeSLAM

assumes a static operating environment (or objects with known motion models, which

is not applicable here), and EM-Fusion can handle moving objects in the scene. They

serve as baselines to evaluate object SLAM performance and the potential influence

of object changes in the scene. For CubeSLAM, the implementation of its integra-

tion with ORB-SLAM is chosen. As ORB-SLAM3 does not address temporal scene

inconsistency, to explore the effect of object changes on localization performance, we

generate two sets of ORB-SLAM3 odometry measurements as baselines by running

it (1) non-stop (ORB3-NS) for the whole trajectory, and (2) piecewise (ORB3-PW)

for each trajectory segment with consistent object layout (as shown in Fig. 6-6(b)).

In addition, to verify NeuSE’s transferability from simulation to reality, we follow

the object-only experiments for synthetic data and run Mug-only and All-object on

the two real-world sequences. Raw Odometry, generated using Open3D [144] based

on photometric and geometric loss [94], is adopted to sustain system operation when

no objects are in sight or associated to generate a pose constraint.

We present in Table 6.4 the RMSE of ATE for all estimated trajectories and

visualize them in Fig. 6-9 and Fig. 6-10. The tracking failures of the 4-Round loop

(the two spikes in the first row of Fig. 6-10) are excluded from RMSE calculation to

better reflect the global localization performance of the trajectory.

The transferability of NeuSE from simulation to the real world is verified by its fair

performance in terms of RMSE values and remarkable correction of the accumulated

drift from Raw Odometry, as seen in the first column of Fig. 6-10. This confirms

NeuSE’s full functionality when applied to real data, which shows our design ad-

vantage of learning geometric relationships from point clouds in simulations. In this

context, the acquired object geometry smoothly translates to the real world without

being affected by the common but undesirable differences in lighting and appearance

between simulations and reality.

This is explained by learning geometric relations from point clouds in simulation,
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where the learned object geometry applies smoothly to the real world and is not

affected by the undesirable yet common photometric differences between simulation

and the real world.

In comparison to the two selected object SLAM baselines that use all detected

objects in the scene, from Table 6.4 and Fig. 6-9, our proposed approach outperforms

CubeSLAM and EM-Fusion on both the 4-Round and Triple-infinity loop with using

all objects of our interest (mugs + bottles), showing the advantage of NeuSE for

facilitating lightweight and robust localization in real-world sequences with scene

inconsistency.

Notably, CubeSLAM produces shrinking camera trajectory estimates in Fig. 6-

9(a) around the right table with object changes in the Triple-infinity loop, and multi-

ple missed, drifted, and falsely overlapped cuboid estimates from the top-down view

(bottom row) in Fig. 6-9(d). Assuming a static environment, CubeSLAM struggles to

address object changes within the two sequences, inducing errors in cuboid associa-

tion and estimation among old and new objects in neighboring areas. This yields false

camera-cuboid geometric constraints and ultimately affects the joint optimization of

object cuboids and camera trajectory.

Meanwhile, EM-Fusion, as shown in Fig. 6-9(b) and (c), gives subpar bumpy

and drifted trajectory estimates. While it can handle scene layout changes at se-

quence segment intersections, EM-Fusion suffers from lower tracking accuracy due

to accumulated drift from less object overlap. Besides, originally tested on tabletop

scenes, EM-Fusion requires a coarser SDF background volume resolution so as to

avoid memory exhaustion here in our larger multi-table scenario, leading to a further

loss of accuracy in camera tracking.

As to working jointly with other SLAM measurements, in Table 6.4, we observe

consistent improvement in terms of RMSE values when integrating our proposed

strategy (using all objects) with the vanilla ORB-SLAM3 measurements. NeuSE

enables robust data association and manages to prevent the occurrence of tracking

failure (the spikes in the second and fourth column of Fig. 6-10) for the 4-Round

trajectory.
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Table 6.5: Change detection results on the synthetic and real-world sequences. The
best results are marked in bold.

TP FP FN Pr Re

Synthetic
PMT 7 2 2 77.8% 77.8%
Ours 9 0 0 100.0% 100.0%

4-Round
PMT 7 0 2 100.0% 77.8%
Ours 9 0 0 100.0% 100.0%

Triple-Infinity
PMT 5 2 2 71.4% 71.4%
Ours 7 1 0 87.5% 100.0%

The greatest RMSE improvement in Table 6.4 is observed from ORB3-PW + Ours

on the Triple-infinity trajectory. Our proposed strategy helps decrease the RMSE by

48.1% from 0.16 m to 0.083 m. In this way, ORB3-PW + Ours outperforms ORB3-NS

(0.101 m) despite receiving less global loop closing constraints from ORB3-PW than

ORB3-NS, while aligning the start and end point with better trajectory accuracy

when revisiting the rightmost table. Considering the little scene overlap within each

of the four trajectory segments, this notable improvement highlights the critical role of

our strategy in constraining pose estimates in short and longer ranges, especially when

insufficient loop closing (e.g., throughout ORB3-PW) is performed by the external

SLAM system.

Our strategy also demonstrates robustness in handling scene changes, despite

the less significant improvement in the 4-Round loop that is with abundant loop

closure from ORB-SLAM3. The fourth column of Table 6.4 presents the RMSE

values of ORB3-NS on different parts of the 4-Round loop, as the sequence proceeds

with the object layout transition. Note that ORB3-PW does not run between the

second and third round, with the corresponding value listed only for comparison

purposes. When object changes happen at the intersection of the second and third

round, ORB3-NS is clearly affected and shows an RMSE jump from 0.101 m to

0.126 m. On the contrary, our effective data association based on full object shape
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(a) Planar

(b) Non-planar

Figure 6-11: Complete object reconstruction of synthetic sequences for the two object
layouts. (a): Planar layout and (b): Non-planar layout. Tables are rendered for visual
clarity, whose points are back-projected to the world using camera pose estimates
from NeuSE-predicted constraints, demonstrating the effectiveness of our localization
strategy.

similarity and spatial proximity allows ORB3-NS + Ours to maintain a steady yet

gradually improving RMSE (around 0.09 m) during object changes, bringing ORB3-

NS almost on-par performance with ORB3-PW (free from object changes) for the

entire trajectory.

6.5.4 Change-aware Object-centric Mapping

Built on top of the decoding steps in Eq. (6.4) for full object reconstruction, we

demonstrate the ability to maintain a consistent map of objects of interest in the

environment, with always timely updates of the latest changes.
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Since there are no suitable SLAM pipelines for direct comparison of mapping

with temporal scene changes, we use the recent object-level mapping method with

online change detection, panoptic multi-TSDFs (PMT) by Schmid et al. [106], as our

baseline. We feed PMT with our trajectory estimates that have the lowest RMSE

of ATE values and compare the change detection results for synthetic and real-world

sequences.

We quantify the performance of our system and PMT in Table 6.5 by compar-

ing the number of correctly detected changes (true positives, TP), falsely detected

changes (false positives, FP), and undetected changes (false negatives, FN). We fur-

ther calculate precision (Pr) and recall (Re) rates based on these numbers. The results

show that our system correctly detects most of the changes for both synthetic and

real-world data, while PMT produces several false positives and false negatives due

to localization errors and the inability to reason holistically from partial observations.

Qualitatively, we present in Fig. 6-11 reconstructions of all objects that have ap-

peared in the synthetic planar and non-planar layouts, respectively. Fig. 6-12 displays

the map evolution of our method and PMT before and after changes for each table in

the real-world sequences. Our approach generates a lightweight, object-centric map

that precisely captures changes (see Fig. 6-12(d)). In contrast, PMT, being a tra-

ditional TSDF-based mapping technique, fails to deliver accurate change detection

results and produces reconstructions with various defects. PMT struggles to distin-

guish between switched objects of the same category due to its inability to perform

full object shape comparison as NeuSE does. This is shown by the overlapping recon-

structions of the white and green bottles (object 2 and 3 of table 3) and the red and

black mugs (object 8 and 9 of table 5) in Fig. 6-12(b). In addition, Fig. 6-12(c) high-

lights PMT’s susceptibility to localization errors, where it mistakenly marks the green

mug on Table 5 as newly added when the other side of the mug, which is observed

later, drifts to be misaligned with the original volume.
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6.6 Conclusion

In this chapter, we present NeuSE, a category-level neural SE(3)-equivariant em-

bedding for objects, and demonstrate how it supports object SLAM for consistent

spatial understanding with long-term scene inconsistency. NeuSE differs itself from

prior neural representations adopted in SLAM through its ability to directly obtain

camera pose constraints from SE(3)-equivariance and its flexible map representation

that easily accommodates long-term scene changes. Our evaluation results on both

synthetic and real-world data showcase the feasibility of our approach for change-

aware localization and mapping when working standalone or as a complement to

traditional SLAM pipelines.
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Figure 6-12: Results of change-aware mapping for the real-world sequences. (a) Comparison of our object-centric map to ground
truth trajectories, displaying qualitative spatial consistency. (d) shows the evolution of the reconstructed object layout before
and after changes, with ground truth scenes (GT), object-centric maps from our approach (Ours), and PMT reconstructions
(PMT) from top to bottom. Changed objects are numbered as 𝑛, with 𝑛′ representing their correspondence after changes or
newly added objects, and 𝑛 indicating objects removed from the scene. (b) Reconstruction artifacts of overlapping bottles
(left) and mugs (right) from PMT’s change detection failure. (c) False positive changed mug marked by PMT due to imperfect
localization, where little overlap exists between the two sides of the green mug when viewed from different frames.
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Chapter 7

Conclusion

7.1 Contributions

In this thesis, we dive into the problems of realizing object-based SLAM, with the

ultimate goal of robust spatial reasoning in a long-term and low-dynamic environment.

Evolving around the keywords of object and long-term+low-dynamic, we progressively

explore three topics: (1) Object pose ambiguity for smooth integration into the SLAM

pipeline; (2) Scalable scene and object representations for change detection; And

(3) 3D-consistent neural implicit object embeddings for robust spatial understanding

against temporal inconsistency. In this vein, we summarize our contributions as

follows:

• On ambiguity-aware integration of object poses into the SLAM pipeline,

in Chapter 3, we propose a multi-hypothesis approach for the smooth adoption

of object poses in object-based SLAM. This approach accommodates the inher-

ent ambiguity arising from occlusion or symmetrical object shapes. We design a

multi-hypothesis object pose estimator front end in a mixture-of-expert fashion

and a max-mixture-based back end to infer a globally consistent set of camera

and object poses from a sequence of pose hypothesis sets.

• On robust change detection with scalable and 3D-consistent represen-

tations, in Chapter 4 and 5, we develop two change detection methodologies,
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each for online and offline applications, with two novel scene and object repre-

sentations, PlaneSDF and shape-consistent neural descriptor fields. Aiming for

long-term operation, we account for (1) inevitable scene changes over extended

time spans and (2) the efficiency and scalability of the chosen map representa-

tions. On top of the proposed representations, we explore cluster- and object-

level change detection, following a “divide-and-conquer” strategy to enable more

accurate and flexible change detection through local scene differencing.

• On long-term spatial reasoning against temporal scene inconsistency,

in Chapter 6, we propose a neural SE(3)-equivariant object embedding (NeuSE)

and demonstrate its use in object-based SLAM for long-term consistent spatial

understanding. Considering the earlier ambiguity and scene inconsistency con-

cerns, NeuSE are designed to serve as a compact point cloud surrogate for com-

plete object models. Our NeuSE-based object SLAM paradigm directly derives

SE(3) camera pose constraints compatible with general SLAM pose graph opti-

mization. As a result, it can conduct object-assisted localization and maintain

a lightweight object-centric map with change-aware mapping capability, ulti-

mately achieving robust scene understanding in the face of low-dynamic scene

changes.

In sum, this thesis demonstrates the potential of harnessing object-level informa-

tion to support a SLAM system that exhibits comparable performance in contrast

to its feature-based or direct SLAM counterparts. At the same time, our approach

introduces a heightened level of adaptability and scalability, adeptly addressing the

complexities inherent in long-term operations and low-dynamic scene changes. We be-

lieve that object-based SLAM pipelines, as opposed to traditional SLAM approaches,

adhere more naturally to the concept of objects as elemental units of the world. As

a result, our paradigm seamlessly navigates object changes with greater ease and

effectively aligns with the demands of today’s high-level robotic tasks.
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7.2 Lessons Learned

In this section, we reflect on the insights gained from our journey in developing a

line of work aimed at building an object-based SLAM system, or more broadly, an

object-assisted SLAM system by employing object information into common SLAM

pipelines.

The Power of Object Integration. Our exploration has demonstrated the re-

markable advantages of incorporating objects into the SLAM pipeline, particularly in

low-dynamic environments. Representing the world in terms of objects closely mirrors

human-like reasoning. By introducing the concept of “objects” into the SLAM work-

flow, we inherently enhance its compatibility with advanced robotic tasks that rely

on the notion of “objectness”. We showcase our design to employ object-based SLAM

in intriguing low-dynamic scenarios, defining low-dynamics as object changes occur-

ring over time without direct camera observation. Such scenarios are inevitable in

long-term operations, especially when object-level interactions come into play. With-

out appropriate measures, these changes can lead to false feature correspondence

matches and erroneous map reconstructions, potentially misguiding robotic tasks. In

this spirit, we argue that object-based SLAM pipelines bear superiority over their

traditional counterparts, as their object-level interpretation naturally accommodates

the assimilation and update of static and changing objects. This results in more ro-

bust localization and change-aware object-centric mapping, particularly for objects

of interest in the current task.

Metric Selection for Evaluation. We scrutinize the metrics chosen for evalu-

ating trajectory and object pose estimates. From all the metrics adopted in the thesis,

we distinguish between two categories: correspondence-based and nearest-neighbor-

based. Metrics requiring strict correspondences, such as average distance (ADD) and

all metrics for trajectory evaluation, excel in reflecting the absolute accuracy of the

estimation results. Conversely, metrics computing nearest-neighbor point distances,

such as ADD-S and Chamfer distance, prove helpful in representing and capturing

the multi-modality inherent in the data. This becomes particularly significant when

142



addressing ambiguity arising from object shapes and poses, as demonstrated in Chap-

ter 3 and Chapter 6.

Transferability with Learning from Simulation. In Chapter 5 and 6, as we

aim to develop efficient and effective object representations, we argue that our choice

to exclusively utilize simulated point clouds helps us overcome the challenges posed by

the Sim2Real gap when learning from simulations. While addressing the limitations of

real-world training data, particularly in terms of achieving diverse object shapes, the

simulation environment provides us with a unique advantage. Here, we can generate

as much data as needed, ensuring that the knowledge gained about object geometry

effortlessly applies to the real world. This adaptation occurs without being affected by

the common, yet undesirable, differences in lighting and visual characteristics between

simulations and reality. As a result, our approach not only improves the transferability

of knowledge from simulation to reality but also demonstrates remarkable versatility,

both within object categories of varying shapes and even across categories that share

common or similar shapes.

Scalability through Modular Operation. Our solution to long-term and

larger-scale operation centers on decomposing global and scene-wise operations into

local and object- or cluster-wise operations. This approach enhances memory effi-

ciency and reduces susceptibility to global absolute errors stemming from localization

or alignment using a single registration transform. This concept is manifest in our

proposals of NeuSE and PlaneSDF for object/scene representation (Chapter 4-6),

as well as our two change detection schemes. Furthermore, this modular operation

framework facilitates the continuous update of environmental reconstructions, adding

scalability and flexibility to our system operation.

Bridging Frontend and Backend Divide. Lastly, we revisit the boundary

between common SLAM concepts of “front end” and “back end”. Traditionally, the

front end handles sensor data processing, while the back end processes constraints

generated in the front end to estimate camera and landmark poses. The division is

often shaped by the distinct tools respectively employed for sensor data processing

and optimization rather than being an inherent and irremovable distinction. This di-
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vision corresponds to the two ways of leveraging object information: the coupled and

decoupled fashion. Current SLAM systems using neural implicit representations pre-

dominantly follow the coupled approach with gradient descent optimization running

on optimizable object codes and camera poses. However, we contend that going in

the decoupled way would not only allow for still accurate object-derived inter-frame

camera pose constraints but also greater flexibility in integrating and benefiting from

the power of off-the-shelf SLAM systems. Moreover, we accomplish this by further

enforcing SE(3)-equivariance onto the adopted object representation.

7.3 Limitations

Performance Gap with Traditional Methods. Drawing from prior research

and our experimental findings, it is evident that current object-based SLAM sys-

tems still exhibit a certain performance gap when compared to traditional SLAM

pipelines. This discrepancy can be attributed to the nature of obtaining odometry or

loop-closure constraints through learning-based methods. The performance of these

methods can be influenced by factors such as motion blur, sensor noise (e.g., depth

measurements and camera auto-exposure settings), or variations in viewing angles

that lie outside the training data distribution. Despite our dedicated efforts to em-

phasize learning from geometric point clouds rather than RGB data (Chapter 5 and

6) and aiming for smooth knowledge transfer from synthetic data to the real world,

there remains a challenge. The complex motion patterns encountered during actual

mobile operations can prove challenging to fully incorporate into our training dataset.

Limited Number of Object Categories for Employment. This limitation

stems from the finite training data available. We address the issue to some extent

in Chapter 6 by introducing NeuSE as a category-level object representation. This

approach allows us to handle shape variations within specific object categories. While

one straightforward solution would be providing extensive training data, this often

demands prior object knowledge and can become costly when continuously accom-

modating new object categories in the environment over time.
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Growing Complexity with Long-term Operation. As we aim for robust-

ness in the long term, the system records a growing number of objects, subsequently

expanding the array of object pose hypotheses. This influx adds complexity to the

backend optimization process. A potential solution involves quantifying the confi-

dence for each object hypothesis. This enables the pruning of less confident hypothe-

ses or object measurements, thereby reducing computational overhead. Additionally,

a confidence score can be employed to assign varying weights to hypotheses, facilitat-

ing faster convergence.

7.4 Future Work

Reflecting on the limitations mentioned in the preceding section, we see the necessity

of more system integration efforts on building an actual SLAM system for further

detailed real-world experiments. As we chart our course towards achieving more re-

fined, human-like object-level reasoning about the world, we list the following exciting

directions for potential further exploration.

Better Generalization across Wider Range of Objects. As previously dis-

cussed, the constrained processing capacity when addressing a fixed array of object

categories and diverse motion patterns can significantly impede the performance of

learning-based object SLAM systems. To support the generalizability of the employed

object representations, two potential approaches stand out. The first is adopting a

category-agnostic fashion, involving compositional representations (as exemplified by

[13]) that capture the common geometric structures of objects – such as rectangu-

lar handles or cylindrical bodies – rather than detailing each object’s shape as a

whole. The second avenue leverages the emerging visual foundation models trained

on internet-scale data, like BERT [25], CLIP [97], and GPT [92]. A subsequent ques-

tion would then be how to harness 3D reconstructed maps from SLAM to train for

3D-consistent representations that incorporate 2D features from foundation models.

Multi-sensor Fusion. Currently, most object-based SLAM systems rely heavily

on RGB(-D) data, which impart a limitation on their robustness when confronted
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with diverse motion patterns. One solution emerges from utilizing different data

modalities, including Inertial Measurement Units (IMUs) and RGB-D cameras, in a

synergistic manner. This collaboration proves particularly advantageous when spe-

cific sensors, such as cameras during sharp turns, encounter limitations. Despite the

challenge of defining a clear “object” concept for non-visual sensors, a compelling

direction to explore involves developing efficient strategies to integrate information

from these non-visual measurements with object-based data seamlessly. A fundamen-

tal query then arises: Should we opt to decouple non-visual measurements from their

visual counterparts, mirroring the approach undertaken in Chapter 6? If so, what

form – for instance, odometry measurements – and structure – like pose graphs –

would best facilitate their holistic incorporation? Alternatively, the potential exists

for novel neural network architectures that couple diverse measurement channels from

varying sources, engendering comprehensive inter- and intra-modal learning.

Uncertainty Quantization. Quantifying the uncertainty inherent in object-

derived information offers valuable advantages, facilitating calibrated processing and

prioritization of measurements based on confidence levels. The representation of

uncertainty can take diverse forms, ranging from covariance matrices – offering in-

sights into uncertainty across each dimension – to weight coefficients that better

inform the optimization back end, especially as the number of measurements in-

creases. A pertinent extension of this endeavor involves distinguishing outlier mea-

surements and mitigating potential negative effects stemming from the inadvertent

inclusion of erroneous constraints during optimization. This challenge assumes crit-

ical importance in object-based SLAM pipelines, where the number of landmarks

and, consequently, camera-landmark measurements are significantly lower than those

in traditional SLAM methods. This heightened vulnerability thus requires robust

measures to counter erroneous data association or correspondence matches.

146



Bibliography

[1] Michal Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Pre-
ston Culbertson, Jeannette Bohg, and Mac Schwager. Vision-only robot navi-
gation in a neural radiance world. In RA-L, 2022.

[2] Gabriel Agamennoni, Simone Fontana, Roland Siegwart, and Domenico Sor-
renti. Point clouds registration with probabilistic data association. In
Proceedings of The International Conference on Intelligent Robots and Systems
(IROS), 2016.

[3] Pablo F Alcantarilla, Simon Stent, German Ros, Roberto Arroyo, and Ric-
cardo Gherardi. Street-view change detection with deconvolutional networks.
Autonomous Robots, 42(7):1301–1322, 2018.

[4] Rareş Ambruş, Nils Bore, John Folkesson, and Patric Jensfelt. Meta-rooms:
Building and maintaining long term spatial models in a dynamic world. In
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1854–1861. IEEE, 2014.

[5] Paul J. Besl and Neil D. McKay. A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–
256, February 1992. ISSN 0162-8828. doi: 10.1109/34.121791. URL http:
//dx.doi.org/10.1109/34.121791.

[6] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and An-
drew J Davison. Codeslam—learning a compact, optimisable representation for
dense visual slam. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2560–2568, 2018.

[7] Nils Bore, Johan Ekekrantz, Patric Jensfelt, and John Folkesson. Detection
and tracking of general movable objects in large three-dimensional maps. IEEE
Transactions on Robotics, 35(1):231–247, 2018.

[8] Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, and Daniel Cremers.
Real-time camera tracking and 3d reconstruction using signed distance func-
tions. In Robotics: Science and Systems, volume 2, page 2, 2013.

[9] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M Dollar. The YCB object and model set: Towards common bench-

147

http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791


marks for manipulation research. In 2015 international conference on advanced
robotics (ICAR), pages 510–517. IEEE, 2015.

[10] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Sid-
dhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar. Yale-cmu-berkeley
dataset for robotic manipulation research. The International Journal of
Robotics Research, 36(3):261–268, 2017.

[11] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel,
and Juan D Tardós. Orb-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM. IEEE Transactions on Robotics, 37(6):
1874–1890, 2021.

[12] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[13] Ethan Chun, Yilun Du, Anthony Simeonov, Tomas Lozano-Perez, and Leslie
Kaelbling. Local neural descriptor fields: Locally conditioned object represen-
tations for manipulation. arXiv preprint arXiv:2302.03573, 2023.

[14] Chi-Ming Chung, Yang-Che Tseng, Ya-Ching Hsu, Xiang-Qian Shi, Yun-Hung
Hua, Jia-Fong Yeh, Wen-Chin Chen, Yi-Ting Chen, and Winston H Hsu.
Orbeez-SLAM: A real-time monocular visual SLAM with ORB features and
NeRF-realized mapping. arXiv preprint arXiv:2209.13274, 2022.

[15] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simu-
lation for games, robotics and machine learning. GitHub repository, 2016.

[16] Jan Czarnowski, Tristan Laidlow, Ronald Clark, and Andrew J Davison. Deep-
factors: Real-time probabilistic dense monocular slam. IEEE Robotics and
Automation Letters, 5(2):721–728, 2020.

[17] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian
Theobalt. Bundlefusion: Real-time globally consistent 3d reconstruction using
on-the-fly surface reintegration. ACM Transactions on Graphics (ToG), 36(4):
1, 2017.

[18] Frank Dellaert. Factor graphs and gtsam: A hands-on introduction. Technical
report, Georgia Institute of Technology, 2012.

[19] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasac-
chi, and Leonidas J. Guibas. Vector neurons: A general framework for
so(3)-equivariant networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 12200–12209, 2021.

148



[20] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timothy Bretl, and Dieter
Fox. Poserbpf: A rao-blackwellized particle filter for 6d object pose tracking.
arXiv preprint arXiv:1905.09304, 2019.

[21] Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit field: Modeling 3d
shapes with learned dense correspondence. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10286–10296,
2021.

[22] Erik Derner, Clara Gomez, Alejandra C Hernandez, Ramon Barber, and Robert
Babuška. Towards life-long autonomy of mobile robots through feature-based
change detection. In 2019 European Conference on Mobile Robots (ECMR),
pages 1–6. IEEE, 2019.

[23] Erik Derner, Clara Gomez, Alejandra C Hernandez, Ramon Barber, and Robert
Babuška. Change detection using weighted features for image-based localiza-
tion. Robotics and Autonomous Systems, 135:103676, 2021.

[24] Erik Derner, Clara Gomez, Alejandra C. Hernandez, Ramon Barber, and
Robert Babuška. Change detection using weighted features for image-based
localization. Robotics and Autonomous Systems, 135:103676, 2021. ISSN
0921-8890. doi: https://doi.org/10.1016/j.robot.2020.103676. URL https:
//www.sciencedirect.com/science/article/pii/S0921889020305169.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[26] Kevin J Doherty, David P Baxter, Edward Schneeweiss, and John J Leonard.
Probabilistic data association via mixture models for robust semantic SLAM.
In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 1098–1104. IEEE, 2020.

[27] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-scale
direct monocular SLAM. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II
13, pages 834–849. Springer, 2014.

[28] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry.
IEEE transactions on pattern analysis and machine intelligence, 40(3):611–625,
2017.

[29] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3):611–
625, 2018. doi: 10.1109/TPAMI.2017.2658577.

[30] Epic Games. Unreal engine. URL https://www.unrealengine.com.

149

https://www.sciencedirect.com/science/article/pii/S0921889020305169
https://www.sciencedirect.com/science/article/pii/S0921889020305169
https://www.unrealengine.com


[31] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In kdd, volume 96, pages 226–231, 1996.

[32] Marius Fehr, Fadri Furrer, Ivan Dryanovski, Jürgen Sturm, Igor Gilitschenski,
Roland Siegwart, and Cesar Cadena. Tsdf-based change detection for consistent
long-term dense reconstruction and dynamic object discovery. In 2017 IEEE
International Conference on Robotics and automation (ICRA), pages 5237–
5244. IEEE, 2017.

[33] Ross Finman, Thomas Whelan, Michael Kaess, and John J Leonard. Toward
lifelong object segmentation from change detection in dense rgb-d maps. In
2013 European Conference on Mobile Robots, pages 178–185. IEEE, 2013.

[34] Jiahui Fu, Yilun Du, Kurran Singh, Joshua B. Tenenbaum, and John J.
Leonard. Robust change detection based on neural descriptor fields. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2817–2824, 2022.

[35] Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, and Jiajun Wu. Object-
folder: A dataset of objects with implicit visual, auditory, and tactile represen-
tations. In CoRL, 2021.

[36] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense 3d
reconstruction in real-time. In 2011 IEEE intelligent vehicles symposium (IV),
pages 963–968. Ieee, 2011.

[37] Michael Grupp. evo: Python package for the evaluation of odometry and SLAM.
https://github.com/MichaelGrupp/evo, 2017.

[38] Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli. Multiple choice
learning: Learning to produce multiple structured outputs. In Advances in
Neural Information Processing Systems, pages 1799–1807, 2012.

[39] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation
averaging. International journal of computer vision, 103(3):267–305, 2013.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[41] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[42] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox.
Rgb-d mapping: Using kinect-style depth cameras for dense 3d modeling of
indoor environments. The international journal of Robotics Research, 31(5):
647–663, 2012.

150

https://github.com/MichaelGrupp/evo


[43] Evan Herbst, Peter Henry, Xiaofeng Ren, and Dieter Fox. Toward object dis-
covery and modeling via 3-d scene comparison. In 2011 IEEE International
Conference on Robotics and Automation, pages 2623–2629, 2011. doi: 10.
1109/ICRA.2011.5980542.

[44] Evan Herbst, Peter Henry, and Dieter Fox. Toward online 3-d object segmen-
tation and mapping. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 3193–3200. IEEE, 2014.

[45] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet
loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017.

[46] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Brad-
ski, Kurt Konolige, and Nassir Navab. Model based training, detection and
pose estimation of texture-less 3D objects in heavily cluttered scenes. In Asian
conference on computer vision, pages 548–562. Springer, 2012.

[47] Timo Hinzmann, Thomas Stastny, Gianpaolo Conte, Patrick Doherty, Piotr
Rudol, Marius Wzorek, Enric Galceran, Roland Siegwart, and Igor Gilitschen-
ski. Collaborative 3D reconstruction using heterogeneous uavs: System and
experiments. In International Symposium on Experimental Robotics, 2016.

[48] Berthold KP Horn. Closed-form solution of absolute orientation using unit
quaternions. Josa a, 4(4):629–642, 1987.

[49] Mehdi Hosseinzadeh, Kejie Li, Yasir Latif, and Ian Reid. Real-time monocular
object-model aware sparse SLAM. In 2019 International Conference on Robotics
and Automation (ICRA), pages 7123–7129. IEEE, 2019.

[50] Ming Hsiao, Eric Westman, Guofeng Zhang, and Michael Kaess. Keyframe-
based dense planar slam. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 5110–5117. IEEE, 2017.

[51] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-Min Hu. Di-fusion:
Online implicit 3d reconstruction with deep priors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8932–8941, 2021.

[52] Dirk Hähnel and Wolfram Burgard. Probabilistic matching for 3D scan regis-
tration. In Proceedings of the VDI Conference, 2002.

[53] Jeffrey Ichnowski*, Yahav Avigal*, Justin Kerr, and Ken Goldberg. Dex-NeRF:
Using a neural radiance field to grasp transparent objects. In CoRL, 2020.

[54] Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, and Yuke Zhu. Syner-
gies between affordance and geometry: 6-dof grasp detection via implicit rep-
resentations. In RSS, 2021.

151



[55] Michael Kaess. Simultaneous localization and mapping with infinite planes.
In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 4605–4611. IEEE, 2015.

[56] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John
Leonard, and Frank Dellaert. isam2: Incremental smoothing and mapping
with fluid relinearization and incremental variable reordering. In 2011 IEEE
International Conference on Robotics and Automation, pages 3281–3288, 2011.
doi: 10.1109/ICRA.2011.5979641.

[57] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J
Leonard, and Frank Dellaert. isam2: Incremental smoothing and mapping
using the bayes tree. The International Journal of Robotics Research, 31(2):
216–235, 2012.

[58] Ukyo Katsura, Kohei Matsumoto, Akihiro Kawamura, Tomohide Ishigami,
Tsukasa Okada, and Ryo Kurazume. Spatial change detection using voxel clas-
sification by normal distributions transform. In 2019 International Conference
on Robotics and Automation (ICRA), pages 2953–2959. IEEE, 2019.

[59] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir
Navab. SSD-6D: Making RGB-based 3D detection and 6D pose estimation
great again. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[60] Justin Kerr, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey
Ichnowski, Angjoo Kanazawa, and Ken Goldberg. Evo-nerf: Evolving nerf for
sequential robot grasping of transparent objects. In 6th Annual Conference on
Robot Learning.

[61] Georg Klein and David Murray. Parallel tracking and mapping for small ar
workspaces. In 2007 6th IEEE and ACM international symposium on mixed
and augmented reality, pages 225–234. IEEE, 2007.

[62] Georg Klein and David Murray. Parallel tracking and mapping on a camera
phone. In 2009 8th IEEE International Symposium on Mixed and Augmented
Reality, pages 83–86, 2009. doi: 10.1109/ISMAR.2009.5336495.

[63] Lukas Koestler, Nan Yang, Niclas Zeller, and Daniel Cremers. Tandem: Track-
ing and dense mapping in real-time using deep multi-view stereo. In Conference
on Robot Learning, pages 34–45. PMLR, 2022.

[64] Tomas Krajnik, Jaime Pulido Fentanes, Grzegorz Cielniak, Christian Dondrup,
and Tom Duckett. Spectral analysis for long-term robotic mapping. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pages
3706–3711. IEEE, 2014.

152



[65] L Kunze, H Karaoguz, J Young, F Jovan, J Folkesson, P Jensfelt, and N Hawes.
Soma: a framework for understanding change in everyday environments using
semantic object maps. pages 47–54.

[66] Edith Langer, Bram Ridder, Michael Cashmore, Daniele Magazzeni, Michael
Zillich, and Markus Vincze. On-the-fly detection of novel objects in indoor envi-
ronments. In 2017 IEEE International Conference on Robotics and Biomimetics
(ROBIO), pages 900–907. IEEE, 2017.

[67] Edith Langer, Timothy Patten, and Markus Vincze. Robust and efficient object
change detection by combining global semantic information and local geometric
verification. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 8453–8460. IEEE, 2020.

[68] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Tor-
ralba. 3d neural scene representations for visuomotor control. In Conference on
Robot Learning, pages 112–123. PMLR, 2022.

[69] Cheng-Wei Lin, Tung-I Chen, Hsin-Ying Lee, Wen-Chin Chen, and Winston H
Hsu. Coarse-to-fine point cloud registration with se (3)-equivariant representa-
tions. arXiv preprint arXiv:2210.02045, 2022.

[70] Yen-Chen Lin, Pete Florence, Andy Zeng, Jonathan T Barron, Yilun Du, Wei-
Chiu Ma, Anthony Simeonov, Alberto Rodriguez Garcia, and Phillip Isola.
Mira: Mental imagery for robotic affordances. In 6th Annual Conference on
Robot Learning, 2022.

[71] Stefan Lionar, Lukas Schmid, Cesar Cadena, Roland Siegwart, and Andrei Cra-
mariuc. Neuralblox: Real-time neural representation fusion for robust volumet-
ric mapping. In 2021 International Conference on 3D Vision (3DV), pages
1279–1289. IEEE, 2021.

[72] Lukas Luft, Alexander Schaefer, Tobias Schubert, and Wolfram Burgard. De-
tecting changes in the environment based on full posterior distributions over
real-valued grid maps. IEEE Robotics and Automation Letters, 3(2):1299–1305,
2018.

[73] Andrew Luo, Yilun Du, Michael J Tarr, Joshua B Tenenbaum, Antonio Tor-
ralba, and Chuang Gan. Learning neural acoustic fields. arXiv preprint
arXiv:2204.00628, 2022.

[74] Lingni Ma, Christian Kerl, Jörg Stückler, and Daniel Cremers. Cpa-slam: Con-
sistent plane-model alignment for direct rgb-d slam. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 1285–1291. IEEE, 2016.

[75] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. Se-
manticfusion: Dense 3d semantic mapping with convolutional neural networks.
In 2017 IEEE International Conference on Robotics and automation (ICRA),
pages 4628–4635. IEEE, 2017.

153



[76] John McCormac, Ronald Clark, Michael Bloesch, Andrew Davison, and Stefan
Leutenegger. Fusion++: Volumetric object-level SLAM. In 2018 international
conference on 3D vision (3DV), pages 32–41. IEEE, 2018.

[77] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function
space. In Proc. CVPR, 2019.

[78] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance
fields for view synthesis. In Proc. ECCV, 2020.

[79] Alexander Millane, Zachary Taylor, Helen Oleynikova, Juan Nieto, Roland Sieg-
wart, and César Cadena. C-blox: A scalable and consistent tsdf-based dense
mapping approach. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 995–1002. IEEE, 2018.

[80] Alexander James Millane, Helen Oleynikova, Christian Lanegger, Jeffrey
Delmerico, Juan Nieto, Roland Siegwart, Marc Pollefeys, and Cesar Cadena
Lerma. Freetures: Localization in signed distance function maps. IEEE
Robotics and Automation Letters, 2021.

[81] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with
unknown data association using FastSLAM. In 2003 IEEE International
Conference on Robotics and Automation (Cat. No.03CH37422), volume 2, pages
1985–1991 vol.2, 2003. doi: 10.1109/ROBOT.2003.1241885.

[82] Arthur Moreau, Nathan Piasco, Dzmitry Tsishkou, Bogdan Stanciulescu, and
Arnaud de La Fortelle. Lens: Localization enhanced by nerf synthesis. In
Conference on Robot Learning, 2022.

[83] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics, 33
(5):1255–1262, 2017.

[84] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux,
David Kim, Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges,
and Andrew Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In 2011 10th IEEE International Symposium on Mixed and
Augmented Reality, pages 127–136, 2011. doi: 10.1109/ISMAR.2011.6092378.

[85] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and
Andrew Fitzgibbon. Kinectfusion: Real-time dense surface mapping and track-
ing. In 2011 10th IEEE international symposium on mixed and augmented
reality, pages 127–136. IEEE, 2011.

154



[86] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam:
Dense tracking and mapping in real-time. In 2011 international conference on
computer vision, pages 2320–2327. IEEE, 2011.

[87] Lachlan Nicholson, Michael Milford, and Niko Sünderhauf. QuadricSLAM: Dual
quadrics from object detections as landmarks in object-oriented SLAM. IEEE
Robotics and Automation Letters, 4(1):1–8, 2018.

[88] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Oc-
cupancy flow: 4d reconstruction by learning particle dynamics. In Proc. ICCV,
2019.

[89] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Oc-
cupancy flow: 4d reconstruction by learning particle dynamics. In Proceedings
of the IEEE International Conference on Computer Vision, pages 5379–5389,
2019.

[90] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Ni-
eto. Voxblox: Incremental 3d euclidean signed distance fields for on-board mav
planning. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1366–1373. IEEE, 2017.

[91] Edwin Olson and Pratik Agarwal. Inference on networks of mixtures for robust
robot mapping. The International Journal of Robotics Research, 32(7):826–840,
2013.

[92] OpenAI. Gpt-4 technical report, 2023.

[93] Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar, David Novotny,
Michael Zollhoefer, and Mustafa Mukadam. isdf: Real-time neural signed dis-
tance fields for robot perception. In RSS, 2022.

[94] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored point cloud regis-
tration revisited. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 143–152, 2017. doi: 10.1109/ICCV.2017.25.

[95] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proc. CVPR, 2019.

[96] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[97] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision. In
International conference on machine learning, pages 8748–8763. PMLR, 2021.

155



[98] Victor Reijgwart, Alexander Millane, Helen Oleynikova, Roland Siegwart, Ce-
sar Cadena, and Juan Nieto. Voxgraph: Globally consistent, volumetric map-
ping using signed distance function submaps. IEEE Robotics and Automation
Letters, 5(1):227–234, 2019.

[99] Antoni Rosinol, John J Leonard, and Luca Carlone. NeRF-SLAM: Real-
time dense monocular SLAM with neural radiance fields. arXiv preprint
arXiv:2210.13641, 2022.

[100] Martin Runz, Maud Buffier, and Lourdes Agapito. Maskfusion: Real-time
recognition, tracking and reconstruction of multiple moving objects. In 2018
IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
pages 10–20. IEEE, 2018.

[101] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature his-
tograms (fpfh) for 3d registration. In 2009 IEEE international conference on
robotics and automation, pages 3212–3217. IEEE, 2009.

[102] Hyunwoo Ryu, Jeong-Hoon Lee, Hong-in Lee, and Jongeun Choi. Equivariant
descriptor fields: Se (3)-equivariant energy-based models for end-to-end visual
robotic manipulation learning. arXiv preprint arXiv:2206.08321, 2022.

[103] Renato F Salas-Moreno, Richard A Newcombe, Hauke Strasdat, Paul HJ Kelly,
and Andrew J Davison. SLAM++: Simultaneous localisation and mapping at
the level of objects. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1352–1359, 2013.

[104] Renato F Salas-Moreno, Ben Glocken, Paul HJ Kelly, and Andrew J Davi-
son. Dense planar slam. In 2014 IEEE international symposium on mixed and
augmented reality (ISMAR), pages 157–164. IEEE, 2014.

[105] Lukas Schmid, Jeffrey Delmerico, Johannes Schönberger, Juan Nieto, Marc
Pollefeys, Roland Siegwart, and Cesar Cadena. Panoptic multi-tsdfs: a flexible
representation for online multi-resolution volumetric mapping and long-term
dynamic scene consistency. arXiv preprint arXiv:2109.10165, 2021.

[106] Lukas Schmid, Jeffrey Delmerico, Johannes Schönberger, Juan Nieto, Marc
Pollefeys, Roland Siegwart, and Cesar Cadena. Panoptic multi-tsdfs: a flexible
representation for online multi-resolution volumetric mapping and long-term
dynamic scene consistency. In 2022 IEEE International Conference on Robotics
and Automation (ICRA), 2022.

[107] Thomas Schops, Torsten Sattler, and Marc Pollefeys. Bad slam: Bundle ad-
justed direct rgb-d slam. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 134–144, 2019.

[108] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim: High-
fidelity visual and physical simulation for autonomous vehicles. In Field and
service robotics, pages 621–635. Springer, 2018.

156



[109] Bokui Shen, Zhenyu Jiang, Christopher Choy, Leonidas J Guibas, Silvio
Savarese, Anima Anandkumar, and Yuke Zhu. Acid: Action-conditional im-
plicit visual dynamics for deformable object manipulation. arXiv preprint
arXiv:2203.06856, 2022.

[110] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B Tenenbaum,
Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann. Neural descrip-
tor fields: Se (3)-equivariant object representations for manipulation. arXiv
preprint arXiv:2112.05124, 2021.

[111] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum,
Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann. Neural descrip-
tor fields: Se(3)-equivariant object representations for manipulation. In 2022
International Conference on Robotics and Automation (ICRA), pages 6394–
6400, 2022. doi: 10.1109/ICRA46639.2022.9812146.

[112] Anthony Simeonov, Yilun Du, Lin Yen-Chen, Alberto Rodriguez, Leslie Pack
Kaelbling, Tomas Lozano-Perez, and Pulkit Agrawal. Se (3)-equivariant
relational rearrangement with neural descriptor fields. arXiv preprint
arXiv:2211.09786, 2022.

[113] Julian Straub, Trevor Campbell, Jonathan P How, and John W Fisher. Small-
variance nonparametric clustering on the hypersphere. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 334–342,
2015.

[114] Michael Strecke and Joerg Stueckler. EM-Fusion: Dynamic object-level
SLAM with probabilistic data association. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). IEEE, oct 2019. doi: 10.1109/iccv.
2019.00596.

[115] Edgar Sucar, Kentaro Wada, and Andrew Davison. NodeSLAM: Neural ob-
ject descriptors for multi-view shape reconstruction. In 2020 International
Conference on 3D Vision (3DV), pages 949–958. IEEE, 2020.

[116] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. imap: Im-
plicit mapping and positioning in real-time. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6229–6238, 2021.

[117] Niko Sünderhauf and Peter Protzel. Towards a robust back-end for pose graph
SLAM. In 2012 IEEE international conference on robotics and automation,
pages 1254–1261. IEEE, 2012.

[118] N. Sünderhauf and P. Protzel. Switchable constraints for robust pose graph
SLAM. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1879–1884, 2012. doi: 10.1109/IROS.2012.6385590.

157



[119] Yuichi Taguchi, Yong-Dian Jian, Srikumar Ramalingam, and Chen Feng. Point-
plane slam for hand-held 3d sensors. In 2013 IEEE International Conference on
Robotics and Automation (ICRA), pages 5182–5189. IEEE, 2013.

[120] Juan Jose Tarrio and Sol Pedre. Realtime edge-based visual odometry for a
monocular camera. In Proceedings of the IEEE International Conference on
Computer Vision, pages 702–710, 2015.

[121] Keisuke Tateno, Federico Tombari, and Nassir Navab. When 2.5d is not enough:
Simultaneous reconstruction, segmentation and recognition on dense SLAM.
In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 2295–2302, 2016. doi: 10.1109/ICRA.2016.7487378.

[122] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular,
stereo, and rgb-d cameras. Advances in neural information processing systems,
34:16558–16569, 2021.

[123] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter
Fox, and Stan Birchfield. Deep object pose estimation for semantic robotic
grasping of household objects. arXiv preprint arXiv:1809.10790, 2018.

[124] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy
Ilg, Alexey Dosovitskiy, and Thomas Brox. Demon: Depth and motion net-
work for learning monocular stereo. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5038–5047, 2017.

[125] Aisha Walcott-Bryant, Michael Kaess, Hordur Johannsson, and John J Leonard.
Dynamic pose graph slam: Long-term mapping in low dynamic environments.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1871–1878. IEEE, 2012.

[126] Johanna Wald, Armen Avetisyan, Nassir Navab, Federico Tombari, and
Matthias Nießner. Rio: 3d object instance re-localization in changing indoor
environments. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7658–7667, 2019.

[127] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li Fei-
Fei, and Silvio Savarese. DenseFusion: 6D object pose estimation by iterative
dense fusion. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3343–3352, 2019.

[128] Jingwen Wang, Martin Rünz, and Lourdes Agapito. DSP-SLAM: Object ori-
ented SLAM with deep shape priors. In 2021 International Conference on 3D
Vision (3DV), pages 1362–1371. IEEE, 2021.

[129] Yue Wang and Justin M. Solomon. Deep closest point: Learning representations
for point cloud registration. In The IEEE International Conference on Computer
Vision (ICCV), October 2019.

158



[130] Yue Wang and Justin M. Solomon. PRNet: Self-supervised learning for partial-
to-partial registration. In 33rd Conference on Neural Information Processing
Systems, 2019.

[131] Thomas Whelan, John McDonald, Michael Kaess, Maurice Fallon, Hordur Jo-
hannsson, and John J. Leonard. Kintinuous: Spatially extended kinectfusion,
July 2012.

[132] Thomas Whelan, Stefan Leutenegger, R Salas-Moreno, Ben Glocker, and An-
drew Davison. Elasticfusion: Dense slam without a pose graph. Robotics:
Science and Systems, 2015.

[133] Jay M. Wong, Vincent Kee, Tiffany Le, Syler Wagner, Gian-Luca Mariot-
tini, Abraham Schneider, Lei Hamilton, Rahul Chipalkatty, Mitchell Hebert,
David M.S. Johnson, and et al. SegICP: Integrated deep semantic segmentation
and pose estimation. 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep 2017. doi: 10.1109/iros.2017.8206470. URL
http://dx.doi.org/10.1109/IROS.2017.8206470.

[134] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Gir-
shick. Detectron2, 2019.

[135] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
PoseCNN: A convolutional neural network for 6Dobject pose estimation in clut-
tered scenes. arXiv preprint arXiv:1711.00199, 2017.

[136] Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Davison,
and Stefan Leutenegger. Mid-fusion: Octree-based object-level multi-instance
dynamic SLAM. In 2019 International Conference on Robotics and Automation
(ICRA), pages 5231–5237. IEEE, 2019.

[137] Shichao Yang and Sebastian Scherer. Direct monocular odometry using points
and lines. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 3871–3877. IEEE, 2017.

[138] Shichao Yang and Sebastian Scherer. CubeSLAM: Monocular 3-D object
SLAM. IEEE Transactions on Robotics, 35(4):925–938, 2019.

[139] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip
Isola, and Tsung-Yi Lin. iNeRF: Inverting neural radiance fields for pose esti-
mation. In IROS, 2021.

[140] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Tsung-Yi Lin, Alberto Ro-
driguez, and Phillip Isola. NeRF-Supervision: Learning dense object descriptors
from neural radiance fields. In ICRA, 2022.

[141] Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, and Kai Xu. Fusion-aware point
convolution for online semantic 3d scene segmentation. In Proceedings of the

159

http://dx.doi.org/10.1109/IROS.2017.8206470


IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4534–4543, 2020.

[142] Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and Andrew J Davi-
son. Scenecode: Monocular dense semantic reconstruction using learned en-
coded scene representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11776–11785, 2019.

[143] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox. Deeptam: Deep
tracking and mapping. In Proceedings of the European conference on computer
vision (ECCV), pages 822–838, 2018.

[144] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library
for 3D data processing. arXiv:1801.09847, 2018.

[145] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library
for 3d data processing. arXiv preprint arXiv:1801.09847, 2018.

[146] Minghan Zhu, Maani Ghaffari, and Huei Peng. Correspondence-free point
cloud registration with so (3)-equivariant implicit shape representations. In
Conference on Robot Learning, pages 1412–1422. PMLR, 2022.

[147] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng
Cui, Martin R Oswald, and Marc Pollefeys. Nice-SLAM: Neural implicit scal-
able encoding for SLAM. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12786–12796, 2022.

160


	Introduction
	Motivation
	Overview
	Problems of Interest and Contributions
	Problems of Interest
	Contributions and Thesis Outline


	SLAM Preliminaries
	Representations and Optimization for SLAM
	Graphical Models for SLAM
	Optimization for SLAM: Lie Algebra

	Visual SLAM Formulation
	Camera Projection Model
	Geometric Cost
	Photometric Cost
	Relative Pose Cost

	Related Work
	Visual SLAM
	Object-based SLAM

	Bridging Objects and SLAM

	A Multi-hypothesis Approach for Object Pose Estimation
	Introduction
	Related Work
	6D Object Pose Estimation
	 Object-based SLAM
	Uncertainty-aware SLAM Back End

	Front End: Multi-hypothesis 6D Object Pose Estimator (MHPE)
	MHPE Network
	Learning Objective for MHPE Outputs

	Back End: Max-mixture-based Multi-hypothesis Modeling and Optimization
	Experiments and Results
	Datasets
	Metrics
	Implementation Details
	Results on YCB-Video Dataset
	SLAM Results for the Simulated Video

	Conclusion

	PlaneSDF-based Change Detection for Long-term Dense Mapping
	Introduction
	Related Work
	Method Overview
	PlaneSDF Instantiation
	PlaneSDF Registration
	Height Map Comparison
	3D Voxel Validation

	Experiments and Results
	Datasets
	Evaluation Metrics
	Implementation Details
	Results on the Synthetic Tabletop Dataset
	Results on the Object Change Detection Dataset

	Conclusion

	Robust Change Detection with Neural Descriptor Fields
	Introduction
	Related Work
	Change Detection
	Neural Implicit Representations

	Category-level Object Representation for Partial Observations
	Neural Descriptor Fields
	Shape Consistency 
	Training in Simulation 
	Object Representation 

	NDF-based Object Change Detection
	Spatial Object Tree Construction
	NDF-based Change Detection

	Experiments and Results
	Datasets
	Metrics
	Implementation Details
	Generalization to Unseen Instances
	Results on Change Detection

	Conclusion

	NeuSE: Neural SE(3)-equivariant Embedding for Consistent Spatial Understanding with Objects
	Introduction
	Related Work
	Category-level Neural SE(3)-equivariant Embedding (NeuSE) for Objects
	Learning SE(3)-equivariance across Viewing Angles
	Dealing with Pose Ambiguity
	Shape Consistency across Viewing Angles
	Training in Simulation

	NeuSE-based Object SLAM with Long-term Scene Inconsistency
	System Formulation and Update
	Data Association
	Pose Graph Optimization
	Change-aware Object-centric Mapping

	Experiments and Results
	Datasets
	Experimental Details
	Localization with Temporal Scene Inconsistency
	Change-aware Object-centric Mapping

	Conclusion

	Conclusion
	Contributions
	Lessons Learned
	Limitations
	Future Work


