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Abstract

This thesis presents an overview of a compacting garbage-collected associative memory, and gives
details of its operational algorithms and data structures. Examples of its usc are described, including an
efficient implementation of LISP databascs via property lists. A computational model of association

objccts is shown.

Garbage collection is the process of reclaiming inaccessible object namcs, and perhaps reassigning
accessible object names. Garbage collection is perforqu to cnsure that the system does not exhaust the
set of object names, an important and finite resource. Associations are instances of a mapping of a list of
objects to an object, referenced by means of their object names. Associations must be preserved by the
garbage collcctor, presenting the problem: How may associaticas of objects be correctly and cfficiently
prcscr\;ed in a system in which objects names are continually chainging, due to garbage collection, and

" how may unnccessary associations be dcleted from the associative memory?

In the past, data structurcs and algorithms which support both garbage collection and associative
mappings have been seen as mutually exclusive. The main contribution of this thesis is to give techniques
which implement a quick associative lookup, and properly modify the associative memory to reflect
changes in object names due to garbage collection. A novel data structure which supports the cleanup of
the associative memory, the dependency thread, is presented.
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1. Introduction

In this paper we present the design, algorithms and data structures for an aswociative memory which
can opcrate within a garbage collecting environment. To the best of our knowledge, this is the first time

that an abstract associations which may be efticiently garbage-collected has been designed.

It is assumed that the reader is familiar with the programming language ISP, Also, some familiarity
with garbage collection, associative meimorics, and database systems is assumed, although these concepts

arce bricfly reviewed, in abstract versions, in Chapter 2.

Chapter 3 presents the problem with which this thesis is concerned: how may associations over
abstract object names, which are reassigned by the garbage collector, be maintained by an associative

memory? Chapter 3 also bricfly describes the techniques which solve the problem.

Chapter 4 presents the solution in an cvolutionary framework, and compares it with other methods
which might be used to garbage-collect an associative memory. Chapter 5 gives a detailed presentation of
the data structurcs and algorithms used in one specific implementation of our solution, describing how

LISP property lists may be cfficiently garbage-collected.

Chapter 6 examines the consequences of treating associations as first-class objects, and dicusscs the
relevant issuces, including the method of garbage-collection for the augmented object name space.

Chapter 7 summarizes the results, and suggests arcas of futurce research.

‘1.1 Overview
Garbage collection is the process of rcclaiming inaccessible object names, and perhaps reassigning
accessible object names. Garbage collection is performed to ensure that the system does not exhaust the

sct of object names, an important and (usually) finite resource.

Associations are instances of a mapping of a list of objects and constants to an object or a constant,
with the objects referenced by means of their object names. Associations must be preserved by the
garbage collector. This is the preblem: How may associations of objécts be correctly and cfficiently
preserved in a system in which objccts names are continually changing, due to garbage collection, and

how may unnccessary associations be dcleted from the associative memory?

This thesis presents algorithms which implement a quick associative lookup, and modify the

associative memory to reflect changes in object names duc to garbage collection. A novel data structure



which supports the cleanup of the associative memory, the dependency thread, is presented.

1.2 Property Lists

The LISP property list facility supports the maintenance of database systems in LISP. This facility
allows for the creation and subscquent access of ordered triples of the form "(keyl,key2,result).” The
clement "keyl™ is knewn as the object of the association; the ciement key2 is known as the properiy; the
last is called the value. Property lists implement the creation of abstract associations in LISP through the
use of the functions put, get, and rem; these procedures crcate (and modify), retricve. and delete

associations, respectively.

The major problem with traditional implementations of property lists is that they are not properly
garbage-collected. For example, if the value C is associated with the pair of keys A and B, C should be
reclaimed by the garbage collector when B s, as the association is inaccesssible.  However, traditional
garbage collectors retain C in this case (as well as B). These structurcs may not be used by the
programmer, as they may not be accessed; however, these same structures, along with the (potentially
vast) spacc they utilize, al:c ncedlessly kept by the garbage collector. This thesis presents a solution to this

problem.

Property lists have traditionally been implemented as lincar lists of ordered pairs of the form
“(property,valuc),” called the property list for the object. An example of a property list for the object
"apple" is:

((taste sweet) (weight 3.5) (size 2.2)).
As a value for the property "color” is added to the property list, it becomes:

((color green) (taste sweet) (weight 3.5) (size 2.2)).

Onc obvious problem in this traditional implementation is that when searching for a property of an
object, the property list is scarched lincarly. This is a slow and incfficient search technique, except for a

system in which therc are only a few properties for cach object.

As stated above, if the property key (first component) for an cntry (property-value pair) in an
objcct’s property list is inaccessible, the entry will not be reclaimed by the garbage collector; as well, the
value for that property (the sccond component of the entry) will not be reclaimed. For example, consider

the following lines if LISP code which produce a property list for a symbol with a single property:
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(setq listl (cons 'b 'c))
(setq 1ist2 (cons 'x 'y))
1)

(put ’'banana 1ist2 list ;its (b.c) prop is (x.y)

(get 'banana 1istl) ;get prop just installed
> (x . Y)
(setq listl nil) ;make old (b.c) inaccessible
(get ’'banana (cons 'b ’'c)) ;can't get at prop
> ()
(rem 'banana (cons 'b ’'c)) ;ard can't remove it
==> ()

If we could examine the property list for banana at this point, it would be
((b.c)(x.y)),
showing that the property was not removed from the property list. Also, invoking the [LISP garbage

collector would not modify the structure of this property list.

More explicitly, in the above example, the structure whose car is b and whosc cdr is ¢ is list1. As the
value of list1 is changed by setq, the unique structure associated with (b . ¢) becomes inaccessible: there is
no way that the system can recover use of it, so a programmer may not usc it as an input (o a function. A
new “(cons b ¢)" invocation creates a new LISP conscell, different from the one that had been list1 (equal

but not eg).

However, the property list for the symbol baniana contains a pointer to the original (b . ¢) structure,
so it will not be reclaimed by the garbage collector. Similarly, the list structure list2 that is banana's value
for the property will be saved unnccessarily. Note that this entry of the property list may neither ever be
retricved from the property list nor removed, as there is no way for the system to specify the desired
property, but that the entry and all associated data structures for the property and the value) arc usclessly
retained and arc never garbage-collected. (The garbage collector is “conscrvative” in the sense that it will
never garbage-collect an object that may be accessible; however, in the above casc, the conscrvative

garbage cellector is inoperative.)

Property lists are apparcntly anathcma to garbage collectors, as they prevent the latter from fully
accomplishing their ends. This thesis presents an implementation of a general property list facility,
however, which allows quick access time, allows associations over any number of kcys, and may be fully

garbage-collected.

The problem is presented within a generalized framework in this thesis; the solution is applicable to
problems of garbage collection regarding capability-based protection systems, ACTOR message-passing

mechanisms, hash tables (in which the entrics depend on one another), as well as property lists.
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Within the general framework, a conscell is an instance of an object (not the same as a 1.ISP object
with propertics; see below), with its virtual address as its object name; car and cdr arc the two components
for this object type, and are also used as sclectors for retricving the object’s internal components; symbols

arc instances of constants; property lists are a specific type of associative memory.

The problems described and solved in this thesis are not peculiar to traditional implementations of
property lists. The design of an efficient, garbage-collecting associative memory is presented in genesal.
It might be uscful for the reader, however, to keep the concrete example of the LISP property list

mechanism in mind while (hinking about the abstract associative memory algorithms presented herein.

1.3 Notation
In this thesis, italics are used for the names of functions, program examples, cmphasis, and
definitions of terms. Boldface type is reserved for names of objects, component names, and names of

specific instances of data structures.

The special LISP entitics which have propertics, the "object”, will not be explicitly discussed further,
Herctofore, all uscs of the word "object” refer to the tenn as the basic computation structure of the model

presented in the next chapter.



12

2. Objects, Garbage Collection Schames and
Associative Memories

The object model of computation is introduced. This model is used as a descriptive basis of garbage

collection and associative memorics.

2.1 Objects

In this thesis, the basic computaticn structure is the object. An object is an abstract cntity composed
of componcents. Each component of an object is cither a system constant (like a number or a sequence of

symbols), or is a reference (also called a pointer) to an object (described below).

Each object has a name by which it is referenced. That is, if onc component of an object A is the
name of object B, we say that A references or contains a pointer to object B. Examples of objects are LISP

conscells, graph veitices, graph cdges, processes, message-passing ACTORS, or virtual devices.

Objects are initially created by invocations of procedures known as constructors.  Constructors
retricve an unused object name from the freespace (described below), form an object with the correct
initial componente, and return the object name for the newly created object. (This uscd object name is

removed from the freespace to maintain system integrity constraints.)

Components are retricved from objects by use of procedures called selectors. 1et € be the st of all
object names. (We usually assume that £ is finite, as it supported by some real system resource.) Let D
be the domain of € unioned with the sct of constanis. A sclcctor function o; is a mapping from an object
name (chosen from the appropriate domain £2,) to an clement of D:

D = @ U {constants};
4GCY;
a;:Q,—D.

An underlying system support mechanism supports the mappings of ; to D defined by various sclectors.

Mutators modify the internal components of objects. The effect of a mutator p; is reflected in
subsequent selector invocations: A component of an object, retricved by mcans of a selector invoked
with the object name and component specified, may be different before and after the use of a mutator on
that object:

a;(A)-->17

o (A)-> S
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Each object has a gype which specifies which selectors and mutators arc appropriate to the object. An

object is given its type when it is originally constructed.

It is scen that objects form a dirccted graph structure with objects and constants as vertices and
object pointers as edges. There is usuaily one distinguished object, the root-object ry, from which all other

objects may be reached by means of traversing the object pointers.

Two apparently distinct objects are the identical (eq in LISP) if they have the same object narmie, so
references to them resolve to the sanic objcct; these objects are aliases for one another. ‘Two objects for
which the application of sclectors yicld the same constants are equivalent (equal in LISP terminology);
these objcets contain the same information, from a functional viewpoint. Two objects arc isomorphic (no
corresponding predicate in LISP) if and only if the directed graph structures over the labelled digraphs
formed by these objects can be shown to have a one-to-one correspondence in the vertices (object names

and constants) and cdges (references); these objects are copies of one another. (Please see Figure 2-1 for a

comparison of these relations between objects.)

KEY

O object
O constant

Figure 2-1: Similar Objects

A, B, C, and C arc equivalent;
B, C and C are isomorphic; C and C’ are identical

2.1.1 Notation

The object name (reference) or constant which is contained in a component of an object is
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designated in this thesis by using the component name as a suffix; (hat is, the component name is
informally used as a selector to retrieve the component.  For example, conside- a tree-like object with
components leflson, rightson, and sibling. An object called nodel would have as a component
nodel.rightson; this would be the same entity (constant or object name) as would be returned by the

selector select-rightson(nodel).

A componcent name suffix used on the left hand side of an assignment statcment is an abbreviation
for a mutator call. That is, the statement nedel.sibling := nodel5 is shorthand for the mutator call

mutate-sibling(nodel,nodel5).

2.1.2 Accessibility

An object B is pointer-accessible from an object A if and only if object B is: 1) the object A itsclf; 2)
referenced by A; or 3) referenced by an object C_ that is pointer-accessible from A. Equivalent to this
recursive definition, an object B is pointer-accessible form A if and only if it may be reached from object
A by some finite number of succesive invocations of sclector functions. An object is roor-accessible if it is

pointer-accessible from the unique root-object.

An object A that had previously been root-accessible may become root-inaccessible as mutators are
applicd to thosc objccts which had referred to object A. (In this case, A would become a member of the
garbagespace, defincd below.) A root-inaccessible object name may become root-accessible only if it had
been an element of the fieespace (defined below) and was put into service by the constructor procedure as

a new object was created.

2.1.3 Integrity Constraints on the Object Name Space
The object name space, £ may be partitioned into three subsets R, F, and G. R is defined to be the
set of all root-accessible objects. An object A is an clement of the set R if A is pointer-accessible from the

root object .

‘The sccond subset of @, F, is defined to be the sct of all free object names. These free object names
arc those which are not in usc (not in R), and may be obtained by the constructor functions, as nceded, to

be used as names for objects to be created. The space F must be cxplicitly maintained (by the underlying

system support mechanism) for this purpose.

Two global operations that modify F must be allowed: there must Le an extract-element-from-F

command, to be used by the constructor functions, which removes an object nume from F upon demand,
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and returns that removed object name. Similarly, there must be an install-clement-into- 17 command, used
by the garbage collector (described below), which adds an object name to IF. Commonly, IF is maintained
as a linked list structure, so the extraction and installation of object names in F are similar to the

maintenance operations for a stack or queue.

The last subsct of @, G, the garbagespace, is the sct of used object names which are not yet reclaimed
into the freespace. These are object names which had been in R, but are no longer (duc to the invocations
of various mutators), and have yet to be returned to the freespace F. As these object names may ncither
be obtainced by the constructor functions nor are root-accessible, they are useless to the system, ‘These
objects names are garbage, and should be returned to the freespace for later use. (Please see Figure 2-2

for a depiction of these subsets of ©2.)

The two integrity constraints on the system are that the subscts R, F, and G are mutually exclusive
and collectively exhaustive on Q:

RNF=RNG=FNG=9,
RUFUG=Q.

Note that this nccessitates that cach new object namie placed into R by usc of a constructor is immediately

removed from F.
2.2 Garbage Collection

2.2.1 Definition _

Garbage collection is the process of reclaiming (removing from G and installing back into F) object
names that arc ncither root-accessible nor in the freespace, i.c., that are part of the garbagespace; the
garbage collector may be viewed as the object name space manager. As the object name space is finite (by
assumption), garbage collection is uscd to ensurc that a system docs not run out of object namcs for new
objects. (A compacting garbage collector may also speed up the system, for it produces greater locality of

reference for object names by reallocating them to be contiguous in 2.)

Garbage collection must free (or reclaim) the object namcs of root-inaccessible objects, returning
these object names to the freespace.  Similarly, it must prorect those object names which are root-
accessible. The following are the integrity constraints that a garbage-collected system must satisfy, in
addition to the two listed above (primed spaces are thosc after the garbage collection has been

accomplished, and |S] is the size of the sct S):
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Figure 2-2: The Object Mame Space

0 ‘)

Figure 2-3: The Effects of Garbage Collection

a) simple sweep; b) compacting swecp; c) copying collector
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1. |G’| < |G] (some garbage is collected);
2,18 = IF] + (|G| - |G']) (all garbage-collected resources are returned to the freespace);

3. R’ is isomorphic to R (accessible object names are protected by the garbage collector).

"This isomorphism is as defined in section 2.1, Isomorphism is used to ensure that the old and new
root-based structures arc computationally equivalent, and that all programs (which are object structurcs,
specially interpreted by the system) work correctly. A garbage collector guarantees isomorpliism’ by
copying the graph structure of the root object; all compacting garbage collectors, for example, iaust copy

and resct the pointers within the objects to maintain structure and cnsure the integrity constraints.

Usually, garbage collection is invoked as nceded, when F is very ncarly exhausted.  "Real-time"
garbagc collectors are those that are called every time an object is created; they work incrementally, doing
a little of the garbage collection at a time [2, 22]. Concurrent garbage collectors, requiring an extra
(perhaps virtual) processor, work simultancously with the main process that is manipulating objects
[35, 8].

One important note: no garbage collector should need an auxilliary stack for control, as garbage
collection occurs because resources are scarce. A garbage collector which needed an unbounded control

stack could find itsclf casily deadlocked.

Garbage collectors often do, however, require a fixed amount of storage per object name that is
garbage-collected. For example, mark and sweep garbage collectors use a mark bit to note that an object
'namc has been tagged (and perhaps reassigned); a depth-first scarch algorithm employed to find the
accessible objects may build a stack within the structure of root-accessible objects themselves (but not use

extra resources), as in the Deutsch-Schorr-Waite marking algorithm [5].

2.2.2 Methods

Common methods for garbage collection include reference counts, mark and sweep algorithms, and
copying algorithms [19]. (Also, hybrid systems have been developed which incorporate features from
different types of.garbage collectors [7].) Briefly, reference counts indicate, for each object, how many
other objects in the object space point to it. When the reference count for an object becomes zero, it is
root-inaccessible, and the object name is returned to the freespace. Reference count schemes are unable

to garbage collcct circular structurcs, and therefore do not accomplish full garbage collection.

Mark and sweep algorithms proceed in two phascs. The mark phase tags (marks as protccted) all
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root-accessible items (via a depth first search starting from the root-node, for examiple). ‘The sweep phase
returns all untagged object names to the freespace; it may reassign the object nam-s of all tagged items so
as to be contiguous (c.g., if the resource employed -- the object name space -- is main memory, this
process of compaction moves all used storage into one block of memory; the procedure of reassigning
object names is called relocation). This method suffers in that the object name space must be scanned

during the sweep phase. "This time is great for large object name spaces.

(Often, the object name space is embedded in a subset of a real system resource, such as primary
memory, secondary memory, microprocessors, or address space.  In this case, the resources as object
namcs are uscd by the system to distinguish between objects. ‘Ihat is, the (system) name for an object is
the resource that the object is utilizing. For example, the system name for a conscell may be “the conscell
residing at location 26"; the system name for a virtual process object may be "the object running on
microprocessor number 7." This phenomenon is a result of past and present programming practices; in
those systems in which this phenomenon docs occur, the object name space £ may not be the complete
resource space, but only a subsct of it. FFor example, for LISP conscell objects, the object names may just
be the even numbered virtual addresses in a éystcm; or the object name space may be a sct of starting
locations for 1.ISP array objccts. Compacting garbage collectors force the real system resources being
used by the object name spacc to be contiguously allocated. In this way, there is room for large objects,
which require much real resources; also, the "working sct” of the system resources in a paged

cnvironment is kept relatively small.) -

Copying garbage collectors trace down the root-accessible objects and reassign their ()bjf:ct names to
be contiguous in a new object name spacc as they are found. Usually, twice as much space is needed as in
other methods (i.c., space where object names are, €}, and a new object name space, 2,, in which object
names will initially reside contiguously), but all garbage collcction and compaction is performed without
a complete scan of the object namc space. In some sense, copying garbage collectors perform mark and
compacting sweep operations at the same time, and usc the newly compacted objects as a breadth-first

search queuc for marking.

The results of a simple sweep, a compacting sweep, and copying garbage collection are pictured in
Figure 2-3. An excellent survey article on garbage collectors has recently been published by Cohen [5],
and the recent book by Standish [34] includes much on garbage collection data structures and techniques.

The interested reader is referred to these works for further description of garbage collection methods.

As non-compacting garbage collectors suffer the indicated problems, it will be assumed from herein
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that we are given a garbage collector for the object namne space which does reassign the object names that

it saves.

2.3 Associative Memories

As mentioned in the Introduction, the property list facility of LISP is an example of an associative
memory. [t allows the user to establish connections between object (conscells) of the system,  ‘This
associative memory may be used as the basis for frame representation languages [30] and data-directed

dispatch mechanisms.

The associative memorics described Lelow ave generalizations of the LISP property list facility.

Those below allow any object or constant in the domain to be used as a key for association,

2.3.1 Definition
An associative memory is a device which maps an a list of object namics or constants, the &eys, into an
objcct name or constant, the value:

associative memory: ) LN D, kconstant.

Associations are special objects which help support the associative mappings. Associations reside in
the association space, and may not be referenced by or as first class objects. (In a later chapter, this
restriction is rclaxed, and associations are placed in the object space and given first class status.)
Associations, as objects, have names; the name of an association is its association-id, and is an clement of

A, the sct of all association-id’s.

2.3.2 Comparisons with Other Definitions

In its most gencral definition, an associative memory implements many functions, If cach key may
be specified as being within a certain range, then range queries are supported. (This assumes that a total
order on the keys is possible.) If only ii(some) of the keys need be given to retrieve the values of
acceptable associations, then partial match queries are supported. (The report by Rivest [29] covers the
various types of key specification in more detail. The book by Kohonen [21] discusses various metrics,
used for best match queries, over the space of the keys; as well, it gives examples of many types of
associative memorics.) In this thesis, only associative memorics which support exact match queries are
considered; cach key for an association must be fully specified as an objcct name or a constant, and each

specificd key must match exactly (be identical objects to) the association objcct’s key components,

In other associative systems, only constants may be used as the keys for associations. In this case, an
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associative memory is a mapping:

C = {constants}

associative memory": ct— C, kconstant,
FFor an associative memory of this sort (which is, indeed, the most usual type for all but the actificial
intclligence community), the keys may be totally ordered, so support of partial match and range querics is

natural. This thesis, however, allows key specification as cither object name or constant,

To reiterate the comparisons, the model presented is more restrictive than the usual associative
memory, in the sense that only exact match querics are supported: but the model is also more general, as
any arbitrary object name or constant may be a key for association. Note that range queries make little
scnse in the gencralized framework, as no metric or total order can be casily imposed on the object name
space; the names have no rclation to the object they allow to be referenced. (Also, these names are
reassigned by the garbage collector, so any metric would have to dynamically reflect these changes.)
Partial match quecrics are a reasonable feature within our modecl, but we have found no way to implement

them cfficiently,

2.3.3 Operations

- An associative memory must be able to perform three operations:

1. create an association between an ordered list of keys and a given value, or modify a previous
association (pu?);

2. retrieve the associated valuc, given the keys (get);

3. dclete the association- for a given list of keys (remove).

We shall assume that the length of the key list for any one associative memory system is fixed. For a
particular system, we refer to this ronstant as &, the dimension of the associations. Therefore, put is a
function of £ + 1 object names, while gef and remove take k inputs. The dimension 4 is assumed to be
greater than one, clsc an associative memory may be implemented as a selector for objects (sce below);
the value of two for k is the usual casc for LISP property list mechanisms, and a & valuc of three might be

useful in many instances (including a context for the association as a key, for examplc).

For k = 1, the associative memory is trivially casy to implement: each object, whose name would be
the single key for an association, could have the association valuc as one of its components! Also, note
that the dimension for any associative memory may always be viewed as being equal to one, since cach list

of k kcys may be interpreted as onc large key, an clement of the Cartesian product l)", where D is, as
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above, the domain for the keys, D = € U {constants}. However, in this case, the object names, and the
object name space, are huge, as they are composed of concatenations of smaller object names drawn from

a smaller space.

2.3.4 Methods

Associative memorics arc often hard-wired devices which perform an associative scarch ("lookup™)
for a valuc given a set of keys. The methods for associative scarches are well-established.  Common
schemes include the use of linked lists; binary trees or sorted lists [20], 2-3 trees [43], B-trees [17], tries [13]
or discrimination nets [10]; and hashing with various collision resolution schemes [20, 1), The first
method gives lincar time (in the number of associations) response on the average (and in worst-case,
also); the next group of methods all have varying degrees of logarithmic average time reponsc; hashing

has constant responsc time on the average, given a sufficiently large hash table.

2.3.5 Hashing
As stated above, it is.well known that associative scarches based upon hashing perform quite well on
the average. We review some of the common definitions associated with the implementation of hashing

cemployed in our system:

A hash function maps its inputs, the keys for association, into a uniquc integer, the hash number; this
hash number is interpreted as the index into an array, the hash table, which stores the associations. If two
different scts of input keys map into the hash number via the hash function, collision occurs. To handle
this common occurrence, cach clement of the hash table, rather than being an association itstlf, points to
a bucket containing many associations (all those colliding on the same hash number). Each bucket is a
linked list or chain of those associations within the bucket. This bucket is lincarly scarched when a

specific association is to be retricved.

It may appecar that the worst case time for hashing (when all associations collide) is abysmally slow,
and so that hashing is an unacceptable method for performing associative scarches. However, recent work
has shown that this is an extremely rare occurrence, as might be imagined. Indced, the expected worst
case scarch time, assuming cquiprobable distribution over the keys, is better than logarithmic; the actual

time is on the order of the inverse gamma ("fzwtorial"j function {15].

Current research continucs on a description of effective hash functions. Sets of hash functions with
cffective hashing properties (keys are distributed over the hash numbers randomly yiclding balanced

buckets, within a high statistical measure), called "universal classcs of hash functions," have rccently been
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described [6, 42, 40, 32, 28, 24].

2.3.6 Uses

Associative memories are uscful for capability-based protection systems [9], ACTOR-like message
passing systems [4, 2], object-based architectures, frame representation systems [26), and LISP property
list mechanisms [31].  An associative memory is the underlying support for database systems (as

mentioncd below).

The reference Sorting and Searching by Knuth [20] is the classic work on the subject of associative
scarches.  Also, an article by Feldman [11] presents many possible uses of a full-functioned associative

memory.

2.3.7 Databases and Associative Memories

The basic device which supports a database system is an associative memory [20, 41]. While the
logical representation of a database system may be in terms of functions, relations, or records, its system
level (operational) representation will be based upon an associative memory. Hence, a well-designed

associative memory is necessary for an cfficient databasc system.

The property list facility of LISP is the usual mechanism with which LISP databascs are maintained
[31). large databascs for artificial intclligence processing are usually supported by linear property lists,
and the so increased cfticiency in the LISP property list facility (as presented herein) may vastly improve
these (usually monstrously slow) programs. As well, the ability to garbagc-collcct the association space

saves system resources.

The usc of hash functions and tables to support the LISP property list facility is well-known {31
However, naive implementations of the LISP functions put, get, and rem using hashing cannot operate in
the standard LISP garbage-collecting environment, or else the association functions are restricted to
operating on (non-changing and un-garbage-collected) LISP constants (symbols) instcad of objects

(conscclls).
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3. The Problem and Soiution Qverview

3.1 The Problem

As shown in the Introduction, the property list facility of LISP may not be properly garbage-
collected.  Within the generalized object model of computation presented in this thesis, the major
problem that we wish to address is: What is the design for an cfficient associative memory that must work
in an cnvironment in which the object names are changed during cach garbage cellection period? ‘That s,
the problem is to design dn associative memory that can handle the following type of question cfficiently:
"What is the value of the assuciation between the object whose name is currently obj-25 (which name had

been different when the association was originally established), and ohj-4467"

There arc two different types of garbage coilection involved in this problem:

1. An objcct name space garbage collector (osge), similar to those garbage collectors described
above, opcrates in the object name space, reclaims inaccessible object names and modifics the
object names of accessible objects.

2. An associative memory space garbage collector (amgce) must modify the private memory of
the associative memory to guarantee that all associations of lists of accessible key objects and
the corresponding values are maintained after the garbage collection, and all associations in
which onc or more of the associated key objects are inaccessible are deleted.

Note that if a value to be kept is a member of the object m.ame space, it must be explicitly saved
(protected, and perhaps reassigned) in the object name space by a call from the amge to the osgc.
- Furthermore, values (objects) that arc accessible through legitimate embedded structures of association
(embedded associations) must be maintained. For example, "get(get(ob-1,0b-2),0b-4)" must be allowed
after the garbage collection process (assuming it was well-defined before), even if the object which is the
value associated with the pair (ob-1,0b-2) were not directly root-accessible through the the object name
space only. (Plcase sce Figurc 3-1.) Of course, purely circular structures which arc inaccessible must be

deleted from the associative memory.

Recall that, previously, an object could have been used by the system if it had been pointer-
accessible from the unique root-objcct. That is, an object was root-accessible if it had been the result of a

selector path which originated at the root.

Now, however, the term accessible has an enhanced meaning; an object is accessible if it is either: 1)

root-accessible; 2) the value of an association of accessible objects; or 3) nointer-accessible from an
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For processing of a put, get, or remove request, the first level of the look-up, virtual name resolution,
or var, maps each key object name to a unique “virtual name” via hashing with linked list collision
resolution. The sccond level look-up, association unification, or aun, maps lists o’ virtual namces to values

(object names), again using hashing and linked list resolution.

"The associative memory garbage collector first traces down the support structure of virtual names at
the vnr level (which had been used to map object names to virtual names) and rchashes to find the new
bucket for cach root-accessible object. Objects that are not yet known to be accessible are allocated
dependency threads to allow for the fact that they may be protected and reassigned in the future (as they

may be the keys for some embedded association and the values of other associations, as explained above).

At the next stage of the amgc, associations at the aun level are copied (actually, put on the spccial
global list, supported-assoc-list, to indicate that they are to be copied in the future) if they are completely
supported by the object name space; that is, if all the key objects of the association arc accessible. For an
unsupported association, the association object is added to the dependency thread for cach of its
inaccessible key objects. If all of an association’s key object names are ever reassigned by the osge, and
hence accessible, in the future, the association is re-created; clse, it will be implicitly destroyed at at the

end of the garbage collection process.

The amge dclays installation of (perhaps initially unsupportcd) associations by placing them on the
global list, to cnsure that reassigned object names which are the values of associations do not cause other
dependency threads to be immediately processed. Otherwise, a situation could occur in which
‘reassigning a value may causc other valucs to be reassigned in a recursive manner, entailing the use of an
auxiliary control stack. As shown in the next scction, the space for the data structures which support this
dclaycd installation technique is found in the remnants of the association objccts; no extra resources are

required.

3.3 Dependency Th reads and the List of Supported Associations

The algorithms critically dcpend upon the maintenance of the special data structurcs, the

dependency threads and the supported-assoc-list. These data structures are created within the remnants

of the old associations, and hence require no auxilliary space for their support.

An object name supports an association if that association has the object name as one of its keys. In

the same instance, we say that the association depends upon that object name.
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During garbage collection, a dependency thread is allotted to cach (potentially accessible) object
which supports an association. The dependency thread of an object maintains a (threaded) list of all those
associations which depend upon that object name (i.c., have that object name as a key). The associations
themsclves contain the thread pointers which are the constituent parts of the dependency thread. It is
scen that the dependency thread for an object is fragmented, and is spread throughtout the association-id
spacce, and actually resides in all those associations which are on the thread. (Plcase see Figures 5-1 and 5-
2 for a concrete cxampie of the data structures used in an implementation of a garbage-collecting

associative memory for the LISP property list facility.)

There is one list of associations which are completely supported, which is maintained during garbage
collection, the supported-assoc-list. It also is maintained in a fragmented fashion, and is scattered
amongst the internal components of the associations. When an association is discovered to be completely
supported, with all its keys accessible in the object name space, the association is placed on the list.
Explicitly, it is attached to the beginning or the end of the supported-assoc-list (for stack- or queue-like
processing, respectively); as such, the parts of the supported-assoc-list reside in all the associations on the
list. As associations are removed from the list, they are copied into the next (saved) version of the

associative memory, and their value components arc examined to detect more accessible objects.

It is sccn that the special data structures borrow space from the associations themsclves. As such, the

dependency threads and the supported-assoc-list require only a small, constant amount of cxtra spacc for

maintenence and processing.

During garbage collection, an association may undergo various metamorphascs. It may become part
of many dcpendency threads (at most, onc for cach of its keys); it may find its keys become accessible,
one by one, and may cventually become part of the list of supported associations; finally, it is replicated

for the new version of the associative memory.
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4. Technical Analysis

The Minsky-Fenichel-Yochelson i25, 14] garbage collector is an cfficient technique for garbage-
collecting large object name spacces, and its mechanisms are presented in this chapter. The evolutionary
development of an efficient algorithm for garbage-collection of associative memorics is shown; also given

are scarch algorithins for an associative memory which minimize rehashings due to garbage collection.

4.1 MFY Algorithm

The garbage collector for the object name space, previously installed in our system, uses the Minsky-
Fenichel-Yochelson copying-compacting algorithm. Two copics of the object space are necessary; the
oldspaceis where objects to be saved reside, while the newspace is the place to which they are saved by the
garbage collector. The oldspace and newspace change roles every garbage collection period; these spaces,
as well as the global variable freeptr which points to the next free object name in the current newspace,

must be initialized before the garbage collection processing occurs.

Objects arc moved from the oldspace to the newspace as they are found to be accessible. As the
newspace is scanned for newly saved accessible objects (and their pointers to other objects), it is used, in
cffect, as a breadth-first scarch queuc. The osge-protect procedurec is called with a pointer to the highest
level object to be protected (and reassigned); all objects pointer-accessible from this input object name

are also protected, as is seen in the following "mecta-programs":

proc osgc-init() /*initialize spaces and freeptr */
begin
initialize-spaces(); /% set up spaces */
Sreeptr : = beginning-of-newspace(); /* all space is clear */

end osgc-init.

proc osgc-proteci(oldobj) returns pointer newobj
begin
newobj : = copy-old-to-new(oldobj); /* save new high level ptr */
scanptr : = newoby; /* start search at beginning */
until all-objects-scanned-in-newspace(scanptr, freeptr) do /*space as queue*/
begin
next-obj : = nexi-obj-in-newspace(scanptr);/* this obj already protected */
scanptr : = next-obj; /* update scanptr */
/* find new accessible obj’s: */
for each component, comp, in next-obj do /*save all nec'y parts */
if not-constani(next-obj.comp,)
then next-obj.comp; : = copy-old-to-new(next-obj.comp);
end;
return(newobj);
end osgc-protect.
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The garbage collector uses an auxilliary function which copies an object frym the oldspace to tie

newspace, given a pointer to the object. This function returns the new assignment of the object name:

proc copy-old-to-new(oldptr) returns pointer newptr
begin
oldobj : = object-in-obspace(oldptr);
if already-reassigned?(oldoly)
then newptr : = new-assignment(oldobj) /* point to copy in newspace */
clse hegin /* ormake a new copy ¥/
for cach component, comp. in oldolj do
copy-component(oldobf.comp. freeptr) /*copy all obj into newspace*/
nole-r('gs.signed(oldolgiﬁ'c*@ph): /% tell new assignment */

newptr : = freepir; /% new object assignment */ -
Jreepir : = next-free-obj-name(freeptr); /* update freepir */
end; :
return(newptr);

end copy-old-to-new.

(Note that the MFY algorithm may be modified to obtain a single source reachibility algorithm that
uscs no cxtra storage {cave output array), gives shortest paths, ands operates in time O(J{Fdges}|).
Iterative usc of this algorithm leads to an O(E*V) time algorithm for transitive closure with the indicated

propertics.)

4.2 The Associative Memo:y Garbage Collector

The basic design philosophy for the associative memory’s garbage collector is to save all associations
that are accessible through cither the object space or through cm:bedded associations via the associative

memory. This is the basis for the first major problem to be solved.
To handle garbage collection of association cells in a system with embedded structurcs, one could:
1. copy all associations, whether accessible or not;
2. not allow embedded structures at all, or only allow cmbedded associations of bounded depth;
3. make multiple passcs through the aun level hash table to find newly accessible associations;

4, make note of the objects upon whose accessiblity an association depends, and save the
association as the object becomes accessible.

Each of these options will be examined.

4.2.1 Method One: Save All Associations

The {irst method, the naive one of copying all associations, is the casiest to ‘mplement:
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proc assoc-garbage-collectl () /* copy all associations */
begin
for cach association, assoc, in associative memory do
il not-marked-deleted?(assoc) /*not deleted by old remove? */
then hegin 7* ok, save ccll */
osge-protect(assoc. value);
amyge-save(assoc);
end;
end assoc-garbage-collect 1,

With this solution, all associations are saved, except those which had been deleted by means of a previous
remove request. As an asseciation is saved, its value object is protected by an osge-protect call to the osge;
the association is updated (to reflect changes in its key components due to prior reassignments by the’

osgc) and re-installed in the association space, by an amge-save invocation,

As cven unsupported associations (those having inaccessible key objects) are saved, this method is

wastcful of space, and really avoids the whole issuc of garbage collection.

4.2.2 Method Two: Disallow Embedded Associations
A slightly more sophisticated garbage collection scheme avoids the issue in a different manner, as it

disallows ecmbedded associations entircly:

proc assoc-garbage-collect2 () - /* copy non-embedded assoc's */
begin
osge-proteci(root-node);  /*!1! mark all rvot-accessible objects */
for each association, assoc, in associative memory do
if not-marked-deleted?(assoc)
then if assoc-supported’(assoc) /*!!1! accessible from outside? */
then begin
osge-protect(assoc.value);
amgc-save(assoc);
end;
end assoc-garbage-collect2.

Note that the object space garbage collector is initially called so that all root-accessible objects may be

discovered; it is assumed that all spaces has previously been initialized by an osge-init invocation,

In this method we save an association if an only if it is completely supported upon first examination;
that is, an association is saved if all'its keys are root-accessible. An auxilliary function tests if this

condition is true:
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proc assoc-supported?(assoc) retarns hoolean support-flag

begin
support-flag : = true; 7 defauldt: supported */
for cach key; in assoc do

if not-osge-protectedassoc.keyy)  /* cach key saved outside? */
then support-flag; : = false;  /*if not, assoc not fidly supported: */

retamndsupport-flug);

end assoc-supported?,

This sccond method docs not let us realize our design objective of allowing embedded associations of
unbounded depth. Tt does achicve the garbage collection of purely circular structures (as these have
inaccessible keys), which is an improvement over our first attempt. Note that we could allow limited
cmbedded associations, say of bounded depth i, by making / passes of garbage cullection, With eich pass,
a deeper level of embedded associations would be saved, since the values protected in the object space at

pass i could be a key for an embedded association of depth i+1. As the number of passcs increascs, the

allowable depth for embedded associations increascs.

4.2.3 Method Three: Multiple Passes over the Associations
The next attempt makes use of this last observation, and allows fully embedded associations by
making garbage collection passcs of the above type until nothing new is saved in the assaciation space,
That is, ﬂ1c association spacc is repeatedly scanned for supported associations until those associations

saved at pass i arc the same as those that had been saved by passi + 1

proc assoc-garbe.ge-collect3 ()  /* multiple scans of assoc space */
begin
osgc-protect(root-node);  /* mark all root-accessible objects */
no-more-saved : = false; /* ensure first pass */
until no-more-saved = true do
begin
no-niore-saved : = true; /* defuult 10 all done */
for each association, assoc, in associative memory 4o
if not-marked-deleted?(assoc)
and not-previously-amge-saved?(assoc)  /*!11! don't duplicate work: */
then if assoc-supported?(assoc)
then begin
no-more-saved : = false;/*!!! note work done */
osgc-proteci(assoc.value);
amgc-save(assoc);
end;
end;
end assoc-garbage-colleci3.

The flag "no-more-saved" is used to test if any ncw associations have been saved during a pass of the

imain garbage collection loop. Wheii this flag has the value true, no further associations have been saved
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during the previous pass, and so the loop is exited; at this point, all accessible associations have been

saved.

"This third method performs all garbage collection desired, but it is horribly incfficient. In the worst
possible scenario, for an associative memory containing A associations, it could require A passes over the

all the association cells (a total of Alcell examinations).

4.2.4 Mcthod Four: Dependency Threads for Unsupported Associations

The fourth option “is the desired solution to the problem of garbage collecting embedded
associations. One central garbage cotlection pass is made, and as previously unsupported associations
become supported (due to protections in the object space of association key components) they are saved
by the amge. The newly supported associations (which had been previously unsupported) are fuud by
mcans of dependency threads, unique data structures which are cach maintained in a fragmented manner

within those associations which arc on the thrcad, as described in section 3.3,

The dependency thread points to all those associations which depended upon obj-1, for example,
‘That is, as the amgc cxamined an association X which had obj-1 as one of its keys, obj-1 was tested to see if

it had been accessible as of yet (protected by the osge); if it had not yet been proven accessible, that
association X was linked onto a dependency thread for object obj-1. When and if the object obj-1 gets

reassigned and proven accessible, those associations on its dependency threads will be re-examined (by a

call from the osgc to the procedure wpdate-thread) and tested to sce if they are supported. Those

associations found to be fully supported will be saved.

proc assoc-garbage-collectd () /* use dependency threads */
begin '
osge-proteci(roet-node);  /* mark all root-accessible objects */
supported-assoc-list : = emply:  /* init sup list to empty */
/* STAGE I ; one pass over association cells to init threads: */
for each association, assoc, in associative memory do
il not-marked-deleted?(assoc)
then if assoc-supported?(assoc)
then merge(supported-assoc-list,assoc) /*!1! add to list */
else thread-assoc(assoc); /*!!! make dep. thrd */
7* STAGE 2: save all associations that are supported: */
for each association, assoc, in supported-assoc-list do /* FIFO scan */
begin
osgc-proteci(ussoc.value);
amgc-save(assoc);
end;
end assoc-garbage-collecid.

For cach key object of an association, the association cither is partially supported by that key (i.c., the
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key object has been found to be accessible by some means), or depends upon thiit object (its subsequent
accessibility will help support the association). Each key of an association is tested as to whether it helps
support the association; if it fails the test, the association is placed on a dependency thread for that key
object. If and wien the object is proven to be accessible by the object space garbage collector, all
associations on the object’s dependencey thread arc updated accordingly. The space for the links in this
dependency thread is found in the association cells themselves, hence requiring no extra storage.

proc thread-assoc(assaoc) /* put assoc on dep thrd for eacit unsupp. key */
hegin
for cach key; in assoc do
il not-osge-protected?(assoc.key)
then hegin
osgc-mark-threaded(assoc.key):  /* make thread for this key */
put-on-dependency-thread(assoc,assoc.key,);
end;
end thread-assoc.

As the object space garbage collector is protecting an object and proving its accessibility (often due to
an osge-protect call from the the associative memory garbage collector to the object nine space garbage
collector), the 0sgc mnust check if that object had been previously allocated a dependency thread. [f it
had, the osge must call the following procedure to let th associative memory garbage collector know that
a previously inaccessible key object is now accessible, and so that those associations which depended
upon that kcy may now be supported fully. Perhaps an association is not fully supported, as of yet; in
that case, the association will remain attached to some other key's dependency thread:

proc update-thread(object,newloc) /* called from obj name space collector*/
begin
for cach link in thread do
begin
assoc : = head-of-assoc(link); /* get assoc this link part of %/
if assoc-supported?(assoc)
then then merge(supported-assoc-lisi,assoc);
end;
end update-thread,

The special global data structure supported-assoc-list ensurcs that newly supported associations are
not immediately saved in the association space. If they were, a newly-supported association would have
its value object immediatcly protected in the object space, which could cause a dependency thread to be
examincd, which might cause another newly-completed association to be saved and ifs value to be saved
by another osgc-protect call, and so on, By delaying installation of supported associations, no control

stack (for unbounded recursive calls of the amgc to the osge and back) is necessary.

The merge function above adds one new association object to the supported-assoc-list. If the new
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item is added to the front of the list, the list acts as a stack, and is processed in a last-in, first-out manner as
for a depth-first scarch. If the new ascociation is added at the end, the list is used as a first-in, first-out,
breadth-first scarch queue. ‘The choice of whether to use the list as a stack or a queuc is an
implementational detail; both methods require neither extra storage space for the list, nor an auxilliary

control stack.

4.3 Virtual Names and Two-Level Lookups

As stated above, it is assuined that the object name space garbage collector reassigns its object names.
For fast access, our associative memory is based upon a hashing scheme which uses linked list buckets for
collision resolution. Apparently, O(A) rchashes or the data in the associative memory will be necessary
for the storage of A associations, as all the keys (object names) are changed by the osge as it reassigns
object names. However, a scheme which maps keys onto virtual names, and these onto the actual

associations, saves most of the rchashes:

The two-level look-up scheme with virtual names is based upon the obscrvation that our associative
memory problem is similar to that of storing and accessing a large, sparse k-dimeasional matrix of valucs.
Most of the non-null valucs occur in just a small number of the "rows" (or "columns") of this k-

dimensional matrix! (Pleasc sce Figure 4-1.)

Hashing the object keys (to place the associations in the correct bucket) is assumed to be the most
costly part of the associative memory’s garbage collection, so the usc of this function, due to the osgc's
rcassignment of object names, is minimized. Assuming that the values occurred in basically r rows and
columns of our value matrix, naive re-hashing due to garbage collection would cause O(:") hashes

(approximately the number of associations). A two-level look-up which mapped each object to a unique

virtual name, and then mapped these to the corresponding value, would entail only O(r*k) re-hashes due

to garbage collection (approximately the number of row or column "keys” for association).

This solution of virtual namcs is seen to rcally just efficiently sidestep the problem: associations all
still based upon objccts with unique names, and this solution merely ensures that the unique names are

unchanging, as well.

(The virtual name for an object could be made part of the object itsclf. This vname could be
automatically installed as the zcroth component of any object when it initially created by a constructor
invocation; no mutators would be allowed to change an object’s virtual name component. This strategy

would save the virtual name resolution mechanism the work of retrieving the vname for each key object,



35

key2
A B CIH1JXKKUL 715 1R 713
keyl A
B * » * L] »
C
H
I * * * ® L
J * * * * *
K
L.
.
15
121 * - ] * *®
73 * * * L ] .

= =association exists
Figure 4-1: Association Space as a Sparse Matrix

as the vname would be immediately obtainable from the object. The benefit from this stratcgy would be
the savings in processing time for the associative memory. The cost of this method would be that cach
object would have to have storage (somewhere) for a vname component; cven those objects that were
never used as keys for association must reserve space, since they could be used as association keys in the
~ future. This space loss is potentially enormous, and so this method is not considered. Note that this is
similar to the implementation of property lists in some classical LISP systems. In these systems, for each

symbol, storage space was rescrved for a pointer to the symbol's lincar list of (property,valuc) pairs.)

This two-level look-up is straight-forward to implemnent directly from its definition. Note that at the
association unification level of the find procedure, which locates the association, the bucket is found using
the virtual names for the keys, but the actual linear-search through the bucket scans for a match on the
originally specified objcct names. This ensures that the support for an association may be quickly found

during garbage collection, even: though a key object’s name cannot be dircctly discerned from its virtual

name.
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proc find(key-list) returns association pointer assoc
begin
/2 STEP 1 find eack: virtual name (level 1) */
for cach key; in key-list do
begin
bucket-var : = hashtab-varfhash-vm(key)J:
vr-obj : = linear-search(bucket-var,key):
il var-obj= null
then hegin
vaame; : = uniquename(); /* install vname for new key : */
insert-new-key-and-vname(key,vname));
end;
clse vname; : = vnr-obj.yname;
end;
/* STIP 2: find association (level 2) */
bucket-aun : = hashiab-aunfhash-aun(vname-list)];
assoc : = linear-scarcli(bucket2, key-list);
return(assoc);
end find.

The hash tables hashtab-var ands hashtab-aun (for virtual name resolution and association
unification processing, respectively) are referenced as lincar arrays. ‘The functions hash-var and hash-aun
hash their inputs te compute the indices within the appropriate hash tables. Within cach bucket of the

hash tablcs, a simple lincar scarch is performed to find the desired cell:

proc lincar-search(bucket,match-list) returns pointer ptix
begin
pirx : = null; /* default to not found */
until empry(bucker) '
or nol(ptrx = null) do
begin
next-elt : = next clement in bucket; /* try next one */
if not-marked-deleted?(next-elt) /*make sure good elt */
and for all i match-list; = next-elt. key;
then ptrx : = next-elt;
end;
return(ptrx);
end /inear-search.

This two-level strategy of virtual name resolution and association unification is indcpendent of the

dimension k of the associations. For our system, the k& is two, but the method is cfficient for all & greater

than one.

None of the rchashing and vnr level look-up would have been necessary had the object namne space
garbage collector not modified the acczss paths of its objects. In that case, the objcct name itself would be
the desired virtual namce and would never change. As the osge, previously incorporated into the system,

docs indeed use a compacting algorithm which modifies all the object names (which, in our case, are
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virtual addresses), the added work of a two-level associative look-up, with re-hashing in the var level

during the associative memory garbage collection, is necessary.

4.4 LISP Databases

Our valuc of two for k was choscn to correspond with the notion of property lists in the language
LISP, which i- the basic mechanism from which LISP databases are developed. ‘The use of the property

list mechanism to support LISP databases is morc fully explored in the paper by Sandewall [31].

The value of two for the dimension of our system is completely general, in the sensc that functions
putk and gerk, for associations of k dimcensions, may be coded casily in terms of multiple invocations of
the 2-dimensional put and get.  Unfortunately, removek cannot be defined unambiguously, for it is
unclcar whether only the final (k-1%) 2-dimensional association should be deleted, or whether all -1

associations which support the complete association should be removed.

(One assumption made was that scarching for a non-cxistent association would producc the LISP
constant nil as the dcfault null value. This value nil may also be assigned as the property of an object,
hence compounding the "null value problem” for databases [44]. That is, if an associative lookup returns
the value nil, it may be interpreted as cither: 1) the value for the association is unknown at this time, for it
has yet to be put in the associative memory; 2) the value is unknowable, for all time; 3) the value is the

logically falsc constant; 4) thc valuc is the cmpty list; or 5) the value is the null symbol.)
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5. Data Structures and Algorithms

This chapter presents the specitic data structures and detailed algorithms for one particular
implementation of the ideas put forth in the last chapter. The environment for the implementation is one
in which objcct names arc virtual addresses, and the objects are LISP concells or arrays (of various sizes).

The associative memory supports a generalized property list facility.

All functions for the associative m2mory are presented in the Appendix. ‘[he language used is 1ISP,
with a little bit of syntactic sugar. All the functions have been tested on a simulated associative memory

device, and will be incorporated into the next iteration of the SCHEME systc'm VLSI project {37, 18].

5.1 Data Structures for the Associative Memory
There are four basic data structurcs within the associative memory. Two of these are arrays for hash
tablcs for cach of the two levels of the lookup, and two of the data structures are "cells” which contain the

appropriate association data and maintain the linked list structure for hashing collision resolution.

Each clement of a hash table is a pointer to a bucket, which is the head of the linked list for hash
collision resolution. All data stored in an array is accessed via these linked lists of cells. (Plcasc sce

Figurcs 5-1 and 5-2 for the representa‘ion of the four data structures employed.)

The data structurcs which support processing at the virtual name resolution level are hashtab-vor and
cell-var. The hash table hashtab-var is referenced as an array, cach of whose clement points to the linked-
list bucket. Each cell-vnr is a member of exactly one such buckét. Each such cell has componcnts
"~ nexteell, a pointer to the next member of the same bucket, or a null pointer if the cell is the last in the

bucket; key, the name of the object for which the cell contains the corresponding virtual name; and

vname, that corresponding virtual name,

The data structurcs which support association unification level processing are similar. There is one
hash table, hashtab-aun, which is an array of pointers to buckets. Each bucket contains a linked list of
cell-aun’s, also called association cells. These include the components nexteell, as above; keyl and key2,
which are the names of the associated objects (the keys, with k = 2); hashnum, the hash table index for

the cell’s bucket (to allow quick placcment of the cell during garbage collection); and val, the value object

of the association.

During garbage collection, the cell-var's are modificd to be the head of the dependency threads, as

neccssary. As such, a cell-var would contain a pointer to the thread as its nexteell component; the virtual
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Figure 5-1: The Data Structurcs for the Associative Mcmory

name for the object (to ensure that it is not lost) in its usual vname spot; and a copy of the old first

component of the object (in the cell’s key), to give the object a place for a pointer to the thread.

. In the garbage collection phase, the association cells are threaded in their key components, when

nccessary, on onc or more dependency threads, and the nexteell component holds a count en the number

of dependency threads with which an association is involved. Updated, newly supported associations
which had been threaded are linked together via their nexteell components to form the list of completely

supported associations.
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A bricf notc on our terminology: a "chain” is rcgarded as a linked list structure, with each next

element of the chain referenced by a pointer which is in a fixed location in the previous clement. For

example, the hashing resolution strategy employed uses chained buckets: cach next clement is referenced

by the nexteell component of the previous element in the bucket, and this component is at a constant spot

within the data structure (in our case, as the first component). The list of supported associations is
similarly a chained structure, as the pointers which support the list are in the nextcell component of each

resident association data structure on the list.

A "thrcad” is scen as a linking structure in which the pointer may reside at any one of a number of
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locations within the data structure. ‘This is seen in the dependency threads, where cach thread weaves its
y

way though unsupported associations.

We have found that our mcthod of dependency threads is similar to some of the methods
indcpendently investigated by Morris [27] and Thorelli [39] for simple garbage collection.  Their data
structures were forward pointers used in compaction, and were not used at all regarding questions of
assuciative memorices or hash table garbage collection. Goto [16] has suggested a method of garbage-

collecting an associative memory in which embedded associations are not allowed.

5.2 Algorithms

5.2.1 Associative Search Funciions

The procedures put, get and rem all initially call the associative lookup procedure find.  Find first
scarches for the virtual name associated with cach object; if no virtual name yet cxists for an object, one is
created. Find then scarches for the association cell corresponding to the given objccts, by hashing the
virtual names to get the aun level hash table’s bucket, and scanning this bucket by matching against the
original keys. The value found for the association, if any, is rcturncd, and condition flags are set
appropriately. Put updates and returns the (previous) found value, or instantiates a new association cell if
no value had been found; get rcturns the value found; rem dcletes the association and returns the old

value: (The procedure find is as above.)

proc put(keyl-obj key2-obj, val-obj) returns pointer oldval
begin
assoc : = find(keyl-obj,key2-obj);
if assoc = null -
then begin -~ /* make new association */
make-new-assoc(keyl-obj, key2-obj, val-obj);
oldval : = null;
cnd
else begin -+ /* modify old association */
oldval : = assoc.value; /* return old value (arbitrary convention) */
assoc.value : = val-obj;
end;
return oldval;
-end put.
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proc get(keyl-obj, key2-obj) returns pointer oldval
begin '
assoc : = find(keyl-obj,key2-obj);
if assoc = null
then oldval : = null
else oldval : = assoc.value;
return oldval;
end get.

proc rem(key1-obj, key2-obj) returns pointer oldval
begin
assoc : = find(keyl-obj, key2-obj);
il assoc = null
then oldval : = null
else begin
oldval : = assoc.value;
mark-deleted(assoc);
end;
return oldval;
end rem.

5.2.2 Garbage Collection Processing

The object name space garbage collector must be simply modifed to interact properly with the
associative memory garbage collector. The osge must be able to recognize objects that have been assigned
dependency threads, and must call the amgc to invoke the update-thread function. A few lines of code
must be added to copy-old-to-new.

proc copy-old-to-new(oldptr) réturns pointer newptr
begin
oldobj : = object-in-obspace(oldptr);
if already-reassigned?(oldobj)
then newptr : = new-assignment(oldobj) /* point to copy in newspace */
else begin /* or make a new copy */
if threaded?(oldobj) /*11! if threaded */
then update-thread(oldobyj freeptr); /7* !!! then updale thread*/
for each component, comp, in oldobj do
copy-component(oldobj.comp freeptr); /*copy all obj into newspace*/
note-reassigned(oldobj freeptr); /* tell new assignment */

newplr : = freeplr; /* new object assignment */
Jfreeptr : = next-fiee-obj-name(freeptr); /* update freeptr */
end;
return(newptr);

end copy-old-to-new.

The garbage collecting algorithm for the associative memory copies supported associations from the
old association space to the ncw association space, and procecds in stages. In the initialization section,

space for a new hashtab-var and hashtab-aun is created. (The following code gives a bit more detail than

previously; sec Appendix for complete definitions of functions in LISP.)
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proc assoe-garbage-collect() — 7* full amge */
hegin
ZINITIALIZATION : ¥/
create-new-hashtabs(); /¥ make space for new hash tables */
osge-proteci(root-node);  /* mark all root-accessible objects */
supported-assoc-list : = empty;  /* init sup list to empty */
/*STAGE 0 : one scan of the old key-vname structures */
for cach hash bucket, bucket!, in hashtab-vnr do
for cach cell-vnr, celll, in bucket! do
il already-reassigned?(celll)
then insert-new-key-anl- vnam('(neu»as'stgnmcnl(celll key),celll.vname)
clse create-dep-thread-head(celll);
/* STAGE 1 : one pass over association cells to init threads: */
for each hash bucket, bucket2, in hashtab-aun do
for each association cell-aun, cell2, in l:«cket2 do
if not-marked-deleted?(cell?)
then if assoc-supported?(cell2)
then merge(supported-assoc-list,cell2) /7*11! add 1o list */
clse thread-assoc(cell?); /7*!1!! make dep. thrd */
7/* STAGL 2: save all associations that are supported: */
for each association, cell2, in supported-assoc-list do /* FIFO scan */
begin
osgc-proteci(cell2.value);
amge-save(cell2);
end;
end assoc-garbage-collect.

In Stage0, the mappings from object names to virtual names which are stored in the old hashtab-vnr
are scarched in an iterative manner, running down the linked list for cach hash bucket. Object names
which had been reassigned by the osge, and are therefore accessible in the future, are re-hashed and

storcd in the new hashtab-var. This re-hashing is nccessary because the object names had been

reassigned, of course.

Objcct names which had not been reassigned have empty dependency threads created for them. The
cell-var, which had previously stored the mapping from object to virtual name, now becomes the header
for the dependency thread, and stores the datum which had resided in the first component of the old
object. That object is now free to point to the dependency chain header. (We could have used a hashing
technique on object names themselves to retrieve thread heads, but installing a pointer to the thread head
as the object’s first component is more cfficient) The nextceell pointer of the header cell-vur will point to
all thosc associations on the thread (there are none as of yet). Associations are put on a dependency chain
for an object when it is scen that the object, as one key of the association, has not been reassigned, and

hence that association is dependent upon that object.

The next stage, Stagel of the garbage collector, scans through the old array hashtab-aun. It
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iteratively scarches through each bucket looking for cach association which is completely supported (all
key objects in the association had been reassigned). Each such association will be eventually copied into
the association space, and is immediately put on the list for completely supported associations. (Re-
hashing is not necessary as the identifiers for the buckets of the hashtab-aun are the virtual names for the
objects, which are unique and constant.) Incomplete associations are linked onto a dependency thread

for cach object in the association which had not been reassigned in the object name space.

Stage2 of the garbage collector scans through all the cells in the supported association list. As each
such association in the list had previously been found to be fully supported, it is saved by the amge; as an
association cell is saved, a call goes to the object space garbage collector to ensure that the value for the
association is protected (and reassigned). If this value object had been previouly allocated a dependency

thread. the object space garbage collector will request an unthreading for this object.

When the unthreading of a dependency chain is requested by the osge, the value for the first
component in the object (the car of the LISP conscell, which we had stolen) is returned to the osge by the
amge. The dependency thread is scarched, and all fully supported associations found at this time are
place on the supported-assoc-list. (As an implementational detail, the old key is placed in cach
assaciation on the dependency chain, returning the original contents of each.) No extra space for a
control stack or association storage is required, as the list itsclf is stored in the association cells as
remnants of previous dependency threads, and the use of the kst prevents unbounded recursive calls

between the osge and the amge.
In all, the following has been demonstrated:

Theorem. The garbage collection and search algorithms, presented in the Appendix, work correctly:
All accessible associations are saved by the garbage collector, all inaccessible associations are destroyed,
and associations arc properly found, updated, and deleted upon demand. The garbage collector works in
time O(A +H), where H is the size of the hash table hashtab-aun, and A is the number of associations

stored at the time of garbage collection.

Proof. As shown above, the scarch algorithms simply do a standard hash lookup for two levels. The

garbage collector copics completely supported associations (places onto the supported-assoc-list) and
threads unsupported associations. As these latter become completcly supported, they are placed on the

list of supported associations, which is eventually moved into the new association space.

Each association structure cell-aun is examinad at most k + 2 times: initially, perhaps once to
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unthread for cach key, and once to put in the new association space. ‘The number of first level virtual
namcs is assumed to be on the order of the & root of A, and each cell-var is processed at most three
times: initially as the dependency threads are created, once for updating cach dependency thread, and
once for the final installation. (The thread pointer for cach dependency chain is modified as new
associations arc threaded; this cost was counted as part of the cell-aun processing.) The first level hash
table, hashtab-var, is smaller than hashtab-aun, and cach hash table is cxamined lincarly, scanning

through cach bucket.
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6. Associations as Objects
Associations arc considered as full-fledged objects; association-id's wili reside in the object name

space. Ramifications of this change are discussed, and modifications (o the garbage colletcion algorithins

arc presented.

6.1 Object Functions
As stated above, objects are created by medns of constructors and modified by mutators. Selectors

rctricve the internal componcents of objects.

Objects may not be explicitly deleted. An object goes away if it is not accessible; the garbage

collector implicitly removes objects from the object space as necessary.

6.2 Association Operations

We shall now consider general associations as full-fledged objects which reside in the object space,
removing the assumption in effect in previous chapters. We also now assume that an association may be
formed over any integral number of objects as keys, though still yiclding only one object as a value; the

notion of the constant dimension & of an associative system will no longer be considered.

To create an association object, a constructor function make-assoc is appropriate. This function must
return the object name of the created association object, so that the association may be referenced as an
object. Make-assoc must return a unique instance of the association. That is, there cannot be two
instances of an association over objects A and B (in that order). Thercfore, make-assoc forms a new
association only if the key objects had not been associated before (clse, an error occurs). It is scen that

make-assoc works as our previous function put if the association object had not previously existed.

As cach association is unique, if two association objccts have the same key; components, they must be

the same objcct. That is, for association objects A and B, if A is equivalent to B, then A is identical to B.

‘This is similar to the unique cons function ucons found in the LISP-like language BRANDX [38, 16).
The BRANDX call ucons(a,b) returns a unique conscell whose car is a, and whose cdr is b. Another

identical call will return the same conscell, not just a copy as in regular LISP,

The selectors appropriate to association objects arc number-of-keys, assoc-value, first-key, second-key,
etcetera. As usual, these selectors must be given pointers to the association objects, and make no use of

the association mapping mechanism. ‘There may be some implementation-dependent system information
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within the association objects (for example, the aun level hash table index) which is unavailable to the

user by mcans of the given selectors.

The number-of-keys and key; components in an association object may not be changed during the
existence of the association. The association value component is modificd by means of the mutator
modify-assoc. Note that this mutator docs not reference objects by direct pointers to them, but rather uses
indircct pointers (the keys) via the association mapping mechanism to find the association object of

interest.

The function get-assoc must be included in our package; this function returns the association object
of interest, if it exists, extracted through the use of the association mapping mcchanism. It is like the old
function get, except that gef just returned the value of the association, whercas the procedure get-assoc
returns the entire object. (This procedure is not a selector as it does not return a component, but rather a
pointer to the entire association object.) The ‘composite sclector get-value is to be included for
convenicnce (and similarity to the old ges), and is defined to be an assoc-value sclector applicd to the

object retricved via get-assoc.

There is no function similar to the old remove, for the cxplicit deletion of objects is not allowed. The
mutator resel-assoc is desired; this furction would reset the value component of the association object to
the null object. Therefore, use of the function get-assoc after the function reset-assoc would return the

null object as a value, exactly as the old function remove used to perform,

. 6.3 Sequencing

The association mappi'ng mcchanism finds the name of the unique association object corresponding
to a given scquence of constants and object names (keys). If D is the space of object names unioned with
the space of constants, and A is the space of association-id’s, a subsct of the object name space, then the

association functions uniquely determine the mapping of D’ onto A.

This mapping of a list of objccts (treating constants as objects for the moment) to a unique object
(association) is known as sequencing. This is analogous to the use of gencralized pairing functions on the

integers.

‘6.4 Generalized Pairing Functions
A pairing function is a unique, reversible mapping of a pair of natural numbers into one natural

number [23]. This mapping loses no information, as may be scen: if fis a pairing function with inverses
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| Jyand 5, for natural numbers x and y, if fx,y) = z, then f)(7) = x, and f/{z) = y. 'I'he function fis used to

cncode the numbers x and y as a single integer, 7, such that the original integers may be casily retrieved.

This encoding is analogous to the way that the association mapping mechanism will map a sequence
.of object names into a uniquc object name, such that the orignal keys are casily recovered by use of the

sclectors.

A gencralized pairing function maps an arbitrarily long ordered list of integars into a single integer,
such that no information is lost, as above. A simple cxample of a function of this type, with integral
inputs x;, would be the function that first finds the product of the terms p*i (with p; the i"™ prime
number), and maps this single rational number onto the positive integers by the standard diagonali}.ation
mcthods. ‘The original numbers could be retricved from this resultant intcger by reversing the
diagonalization and then calculating discrete logarithins,

#p(n) = max {i biln}, with x|y =defy cvenly divides y.

The term sequencing is duc to the application of this function to cncode sequences of Boolean
variables (all of which similarly quantificd by means of the existential or universal quantificr) into one
Boolcan variable (with the same quantifier as in the sequence) for use in quantificr-free Boolean

formulae.

6.5 Garbage Collection of Association Objects
The philosophy of garbage collection remains as in the previous system:  all accessible objects are to
be saved, and inaccessible ones deleted. The algorithms presented in the previous section need be

modificd only a little to achicve this goal.

The first stage of the full garbage collector may perform a full MFY-style object name space garbage
collection of all root-accessible object names. This would save all association objects that are root-
accessible as well as the usual (non-association) root-accessible objccts.' The key objects corresponding to
these root-accessible association objects would be saved, to ensurc that future invocations of selector

functions (likc second-key) could not get object names for (rcferences to) deleted objects.

The second stage would perform the vnr level scan (copying virtual names or creating dependency
thread heads) on the private memory of the association mapping mechanism. These data structurcs are

part of the system support mechanism, and do not appear in the object nanc space.

The third and final stage of the garbage collector scans through all the associations; if an association
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object has yet to be saved (it is not 1oot-accessible as an object), then it is saved if its keys are root-
accessible objects, or clse it is strung on various dependency threads. An association is saved in the object
name space by an osge-protect(assoc) invocation; the value of the association will be protected when the
association object is scen by the scanptr in the new object name space, which may cause a dependency

thread (for the object coresponding to the association’s value component) to be examined.

It is important to note that as a dependency thread for an object is updated, newly supported
associations are copicd immediately into the object space using the MFY procedure osge-protect. 'I'he new
space now doubles as borh the search queue for pointer-accessible objects and as a qucue (a first-in, first-
out implementation) for supported association objects with accessible keys. ‘Therefore, a distinct
supported-assoc-list is no longer necessary, for it is implicitly maintained in the new object name space.
"The value components for associations saved in this manner arc not examined immediately, but rather are

later cxamined as the scanptr sweeps through the space finding new, unresolved references. Again, no

auxilliary control stack is nceded by this procedure.

All root-accessible objects are saved in the first stage of this garbage collector. All association objects
for associations of depth one arc immcdiately saved in stage three, as are all deeper association objects as
they are proven to be accessible. The final stage is scen to save just those objects which are accessible but
not root-accessible (that is, those objects which are pointer-accessible from some association object of

dcpth onc or greater).

The depth of an association for an association object which is root-accessible may be defined to be

zero. This leads to a consistent definition of "association depth” for all objects.

(The above algorithin is seen to be a solution to the single-source reachability problem for an AND-
OR dircected graph: given a root vertex, a list of edges, and a set of monotonic Boolean formulac which
define the reachability of the vertices from their predecessors, which vertices may be reached from the

root vertex?)
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7. Future Work and Summary

7.1 Future Work

The data structures in the associative memory have been designed with the intent of making the
associative memory sensitive to dynainic changes in the operating cnvironment: for cxample, paging
characteristics may dynamically determine the sizes of our hash tables (hashtab-var and hashtab-mm). In
the future, we hope to make the associative memory extensible [12] to allow for compatibility with

dynamic system resource utilization.

Further work neceds to be done on the object model of computation. Its inherent limitations and its
uscfulness as a theoretical tool need to be explored. The object model may be seen as similar to both the
Storage Modification Machine and the RAM models [33], and this similarity may be more closcly

examincd.

To save space in the given implementation of the LISP property list facility, onc could pack all the
cell-aun’s in one bucket into a contiguous block of memory. (This is similar to "CDR-coding” methods in
LISP systems [36]; plcase sce Figure 7-1 for an example of this blocking) This would save the real
resource used by cach cell-aun’s nexteell pointer, which frcqucntly just points to the next physical cell in

the association space.

Figure 7-1: CDR-Coding
a) before and b) after CDR-coding

7.2 Summary

Efficient algorithms for an associative memory in a garbage collecting environment have been

demonstrated. Our method is useful for many types of abstract objects which may be garbage collected,
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and for which speedy access to associations is desired. ‘This system was designed for, but is not limited to,

compatibility with LISP databases implemented via the property list mechanism.
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Appendix
Following is an implementation of a garbage-collecting associative memory to support the LISP
property list facility. The memory space is simulated as a lincar array, and the simulation itself is built
upon a working LISP system. The da‘a structurcs used have been depicted in Figures 5-1 and 5-2; the
algorithms given use the dependency thread and list of supported associations techniques as desribed in

the previous text.
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operty list facility)

Ross
ickr@ai)

T NE43-836
17) 253-7843

bage-collecting

associative memory. Memory is modelled as a linear array.
A two-level associative lookup is employed.

Each key is mapped to a unique vi

rtual name, and then the set

of virtual names is mapped to the desired value.

Symbols are not interned.

This code runs on Lisp Machines and MACLISP systems.

the spaces (virtual names)
memspace -
amspace -
oldspace -
oldamspace -

linear memory for conscells
linear space for associations
previous memspace (for gc)
previous amspace (for gc)

(mlspace, alspace, m2space, a2space are real names)

the registers (global vars
root -
free
amfree
scanptr
freeptr
sal
freecnt
amsfreecnt
unique-namae®-~cnt

[ |

system constants:

xnil
size-celll
size-cell2
size-arrayl
size-arrayZ
base-arrayl
base-array2

word structure:

words in memspace:
tdatum
tatom
tlist
trelocate
tthread

words in amspace:
tobj
toum
tcel?
ttype2
tdelete

):

topmost environment ptr in memspace
freespace ptr

amspace free ptr

for mfy gc

for mfy gc

supported assoc. 1ist ptr

# free words left in memspace

# free words left in amspace

- new virtual name for assoc key

nil = 0 .

size of vnr cell for assoc

size of aun cell for assoc

size of vnr hash table N
size of aun hash table

base of var hashtable in amspace

base of aun hashtable in amspace

datum stored in word

= T iff word is first part of atom (symbol)
T iff word is first part of list :

T iff gc relocated (& saved) conscell

T iff word is thread ptr (in gc)

datum stored in word

relative displacement of word in assoc

= T iff word is part of a cell (& not array)
= T iff word is part of assoc (aun cell)

= T iff woord is first part of rem'ed assoc
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initialization fcns

(defun initspace (n)
(defspaces)
(defarray mispace n (numtypes memspace))
(defarray m2space n (numtypes memspace))
(defarray alspace n (numtypes amspace))
(defarray a2space n (numtypes amspace))
(putprop °'memspace n ‘numword)
(putprop ‘oldspace n ‘numword)
(putprop ‘oldamspace n 'numword)
(putprop ‘amspace n ‘numword)
(setq memspace mlspace)
(setq_oldspace m2space)
. (setq oldamspace a2space)
(setq amspace alspace)
(unigue-name® ‘init)
(initxnil)
(initamspace))

(defun initamspace ()
(setq size-cell2 §)
(setq size-cell1l 3)
(setq base-arrayl 1)
(setq size-arrayl (// (numwords amspace) 6))
(setq base-array2 (+ base-arrayl size-arrayl))
(clrarray amspace)
(setq size-array2 (// (numwords amspace) 4))
(setq amfree (+ base-array2 size-array2))
(setq amfreecnt (- (numwords amspace) amfree)))

(defun initxnil ()
(setq free 0)
(setq freecnt (numwords memspace))
(xconsx 0 0) . iset up xnil
(setq root xnil)
(settype memspace xnil tatom)
(settype memspace xnil tlist))

(defun initroot ()(initxnil)) ;alias R
(defun defspaces() idefine spaces as array of tagged words
. (defspace memspace tdatum tatom tlist trelocate tthread)
(defspace oldspace tdatum tatom t1ist trelocate tthread)
(defspace amspace tobj tnum tcell ttype2 tdelete)
(defspace oldamspace tobj tnum tcell ttype2 tdelete))
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: assoc mem fcns with full two-level lookhp

(defun xget (k1 k2)
(let ((c (amfind k1 k2))) :C = cons of cell&hashnum
(cond ((cellfound? c) (xval (car c)))
(t xnil))))

(defun xput (k1 k2 v)
(let ((c (amfind k1 k2))) ;¢ = cons of celi&hashnum
(cond ((cellfound? c¢) (progl (xval (car c)) (setval v (car c)H))
(t (xmake-assoc k1 k2 v (cdr c)) xnil))))

(defun xrem (k1 k2) .
(et ((c (amfind k1 k2))) ;¢ = cons of cell&hashnum
(cond ((cellfound? c) (mark-delete (car c)) (xval (car c)))

(t xnil))))

(defun cel1fGund?(x) (not (xnull (car x))))

(defun amfind (k1 k2) ;send back cell or place for new one
(setq hashoum (hash2 (find-or-make-vname k1)
(find-or-make-vname k2)))
(do ((bucket (arref amspace (+ base-array2 hashnum) tobj) (xnext bucket)))
((cond ((xnull bucket) (setq bucket xnil))
((and (not (deleted? bucket))
(eq k1 (xkeyl bucket)) .
(eq k2 (xkey2 bucket))) bucket))
(cons bucket hashnum))

) .

(defun find-or-make-vname (k)
(1et ((hashnl (hasht k)))
(et ((c1 ' .
(do ((bucket1 (arref amspace (+ base-arrayl hashnl) tobj) (xnext bucket1)))
((or (xnull bucketl) (eq k (xkey bucket1))) bucketl)

- (cond ((xnull c1) (make-new-vname k hashn1))
(t (xvname c1))))))

(defun xmake-assoc (k1 k2 v hashn)

- (let ((n amfree))

A (ince amfree size-cell2)
(decr amfreecnt size-cell2)
(arset amspace k1 (1+ n) tobj)
(arset amspace k2 (+ 2 n) tobj)
(arset amspace hashn (+ 3 n) tobj)
(arset amspace v (+ 4 n) tobj)
(settype amspace n tcell)
(settype amspace n ttype2)
(setnums2 n) .
(1ink base-array2 hashn n)))

(defun make-new-vname (kx hx)
(et ((vnamex (unique-name®)))
(insert-vname kx hx vnamex)
vnamex))

(defun insert-vname (kx hx vnamex)
(arset amspace kx (1+ amfree) tobj)
(arset amspace vnamex (+ 2 amfree) tobj)
(settype amspace amfree tcell) .
(cirtype amspace amfree ttype2) iwe're type 1
(link base-arrayl hx amfree)
(incr amfree size-celll)
(decr amfreecnt size-celll)).
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link (arraybase hnum cel) ienchain new obj in array bucket
(arset amspace (arref amspace (+ arraybase hnum) tobj) cel tobj) :set next
(arset amspace cel (+ arraybase hnum) tobj)) ;link us up
setnums2 (cel) iset num fields in assocs
(do ((i 0 (1+ 1)))
((= i size-cel12) ())
(arset amspace i (+ i cel) tnum)))
hashl (a) (\ (Ish n -2) size-arrayl))

hash2 (a b) (\ (logxor a b) size-array2))

unique-name* (&optional (flag nil))
(cond ((eq flag 'init) (setq upique-name*-cnt 0))
.(t (incr unique-name*~-cnt))))

xnext (n) (arref amspace n tobj))

xkeyl (n) (arref amspace (1+ n) tobj))

xkey2 (n) (arref amspace (+ 2 n) tobj))
xhash”(n) (arref amspace (+ 3 n) tobj))

xval (n) (arref amspace (+ 4 n) tohj)) .
setval (n x) (arset amspace x (+ 4 n) tobj))

mark-delete (n) (settype amspace n tdelete))
cateted? (n) (typeset? amspace n tdelete))

xkey (n) (arref amspace (1+ n) tobj))
xvaame (n) (arref amspace (+ 2 n) tobj))

def's for oldamspace

oldnext (n) (arref oldamspace n tobj))

oldkeyl (n) (arref oldamspace (1+ n) tobj))
oldkey2 (n) (arref oldamspace (+ 2 n) tobj))
oldhash (n) (arref oldamspace (+ 3 n) tobj))
oldval (n) (arref oldamspace (+ 4 n) tobj))

oldkej (n) (arref oldamspace (1+ n) tobj))
oldvname (n) (arref oldamspace (+ 2 n) tobj))
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the amspace garbage collector

(defun amgc ()
(f1ip-spaces)
(osgc-protect root)
(setq sal xail) isupported assoc. list empty
(stage0)
(stagel)
(stage2?)
(setq freecnt (- (numwords memspace) (setq free freeptr)))
(setq amfreecnt (- (numwords amspace) amfree)))

(defun stage0 ()
(let (b1 c1 nextcl)
(setq b1 0)
(ungjldo (= bl size-arrayl)
(progn
(setq c1 (arref oldamspace (+ base-arrayl bi) tobj))
(untildo (xnull c1) ‘
(progn
(setq nextcl (oldnext c1))
(cond ((relocated? (oldkey c1))
(vet ((n1 (new-location (oldkey c1))))
(insert-vname n1
(hashl n1)
(oldvname c1))))
(t (make-dep-thread-head c1)))
(setq cl nextcl)))

{(incr b1)))))
(defun stagel ()
(let (b2 c2 nextc2)
(setq b2 0)
(untildo (= b2 size-array2)
(progn
(setq c2 (arref oldamspace (+ base-array2 b2) tobj))
(untildo (xnull c2)
(progn
(setq nextc2 (oldnext c2))
(cond ((old-deleted? c2) ())
‘ ((assoc-supported? c2)
I - (merge-into-sal c2))
} J (t (thread-it c2)))
‘ : (setq c2 nextc2)))
(incr b2)))))

(defun stage2 ()
(et (oldassoc)
(untildo (xnull sal)
(progn

(setq oldassoc sal) .

(setq sal (oldnext sal)) tto allow for depth first w/ unthread

(save (oldval oldassoc))

(xmake-assoc (new-location (oldkeyl oldassoc))
(new-location (oldkey2 oldassoc))
(new-1ocation (oldval oldassoc))
(oldhash oldassoc)))))) +hash num over virtual names




(defun

(defun

(defun

(defun

(defun

(defun

(defun

(defun

(defun
(defun
(defun
(defun

(defun

(defun
(defun

59

make-dep-thread-head (cix)
(let ((k1 (oldkey cix)))
(arset oldamspace (oldcarx k1) (1+ cix) tobj) ;steal the car

(arset oldspace cix k1 tdatum) imake it point to us
(settype oldspace k1 tthread) imark that it's threaded
(set-oldthread cix xnil))) ;N0 assoc's in thread

thread-head (key) (arref oldspace key tdatum))

return-car (clx place)
(arset oldspace (arref oldamspace (1+ clx) tobj) place tdatum)
(cirtype oldspace place tthread))

unthread (oldloc newloc)

(et (cel11 threadlink nextlink cel12)
(setq cel11 (thread-head oldloc))
(setq threadlink (oldthread call1l))
(untildo (xnull threadlink)

(progn .
(setq nextlink (arref oldamspace threadlink tobj)) ;next on thread
(arset oldamspace oldloc threadlink tobj) ireset old key

(setq cel12 (- threadlink (arref oldamspace threadlink tnum)))
(decr-oldcount cell2)
(cond ((zero-oldcount? cell2) (merge-into-sal cell2)))
(setq threadlink nextlink)))
(return-car celll oldloc)
(insert-vname newloc (hashl newloc) (oldvname celll))))

assoc-supported? (assoc) .
(and (relocated? (oldkeyl assoc))
(relocated? (oldkey2 assoc))))

merge-into-sal (assoc) . :sal as stack

(arset oldamspace sal assoc tobj) sour next is old top
(setq sal assoc)) ) iwe're new top
thread-it (assoc)

{set-oldcount assoc 0)

(cond ((not (relocated? (oldkeyl assoc)))
(enthread (1+ assoc) (oldkeyl assoc))
(incr-oldcount assoc)))

(cond ((not (relocated? (oldkey2 assoc)))
(enthread (+ 2 assoc) (oldkey2 assoc))
(incr-oldcount assoc))))

enthread (place key)

(let ((c1 (thread-head key)))
(arset oldamspace (oldthread c1) place tobj)
(set-oldthread c1 place)))

set-oldcount (n x) (arset oldamspace x n tobj))

incr-oldcount (n) (arset oldamspace (1+ (arref oldamspace n tobj)) n tob
decr-oldcount (n) (arset oldamspace (1- (arref oldamspace n tobj)) n tob
zero-oldcount? (n) (zerop (arref oldamspace n tobj)))

old-deleted? (n) (typeset? oldamspace n tdelete))

oldthread (n) (arref oldamspace n tobj))
set-oldthread (n x) (arset oldamspace x n tobj))
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the myf garbage collector

(defun gc () 1just gc memspace, don’'t save assocs
(flip-spaces)
(setq root (save root))
(setqg freecnt (- (numwords memspace) (setq free freeptr))))

(defun flip-spaces ()
(cond ((eq memspace mispace)
(setq oldspace milspaca)
(setq memspace m2space)
(setq oldamspace alspace)
(setq amspace a2space))
((eq memspace m2space)
(setq oldspace m2spacs)
(setq memspace mlspace)
(setq oldamspace a2space)
(setq amspace alspace)))
(copy-xnil) isave our nil (collect valuable prizes)
(setq scanptr (setq freeptr 2))
(initamspace))

(defun copy-xnil ()
(initxnil)
(set-new-loc xnil xnil)
(setq scanptr (setq freeptr 2)))

(defun save (rootptr)
(progl (copyptr rootptr) :
(untildo (>= scanptr freeptr)
(cond ((xatomp scanptr) (inér scanptr 2))
(t (setdatum scanptr (copyptr (xdatum scanpir)))

(incr scanptr))))))

(defmacro osgc-protect (ptr) '(setq ,ptr (save ,ptr)))

(defun relocated? (ptr) (typeset? oldspace ptr trelocate))

(defun new-location (ptr) (oldcarx ptr))

(defun set-new-loc (pir newloc) )
(settype oldspace ptr trelocate) :
(arset oldspace newloc ptr tdatum))

(defun copyptr (ptr)
(cond ((relocated? ptr) (new-location ptr))

((typeset? oldspace ptr tthread) (unthread ptr freeptr) (copyptr ptr))

(t (progl freeptr
(copyword oldspace ptr memspace freeptr)
(set-new-loc ptr freeptr) ;note whare it went
(incr freeptr)
(copyword oldspace (1+ ptr) memspace freeptr)
(incr fraeptr)))))

(defun oldcarx (n) _(arref oldspace n tdatum))

(defun oldcdrx (n) (arref oldspace (1+ n) tdathm))
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standard LISP memory fcns

xconsx (a b)
(progl (setq temp free)
(incr free 2) inote space used
(decr freecnt 2)
(settype memspace temp tlist)
(clrtype memspace temp tatom)
(clrtype memspace temp tthread)
(cirtype memspace temp trelocate)
(xrplaca temp a)
(xrplacd temp b)))

xcar (n) (cond ((xnull n) n)
- ({x1istp n) (arref memspace n tdatum))
(t (error "in xcar -- not xlist" n))))

xcdr (n) (cond ((xnull n) n)
> ((xVistp n) (arref memspace (1+ a) tdatum))
(t (error "in xcdr -- not x1ist" n))))

xrplaca (n a)
(cond ((not (xobj? a)) (error "in xrplaca, not xobj" a))
((not (x1istp n)) (error "in xrplaca, not xlist" n))
(t (arset memspace a n tdatum))))

xrplacd (n b)
(cond ((not (xobj? b)) (error "in xrplacd, not xobj" b))
((not (xVistp n)) (error "in xrplacd, not xlist" n))
(t (arset memspace b (1+ n) tdatum))))

xrplacax (n a) ino error checking
(arset memspace a n tdatum))

xrplacdx (n b)
(arset memspace b (1+ n) tdatum))

xatom (a)
(progl (setq temp free)
: {incr free 2) inote space used

(decr freecnt 2)
(settype memspace temp tatom)
(cirtype memspace temp tlist)
(cirtype memspace temp tthread)
(cirtype memspace temp trelocate)
(xrplacax temp a)
(xrplacdx temp '**atom**)))

xatomp (n) (or (xnull n) (typeset? memspace n tatom)))
x1istp (n) (or (xnull n) (typeset? memspace n tlist)))
xobj? (n) (and (numberp n) (or (xatomp n) (x1istp n))))
xdatum (n) (arref memspace n tdatum))

setdatum (n d) (arset memspace d n tdatum))

xgetatom (n) (cond ((xatomp n) (arref memspace n tdatum))
' (t (error "in xgetatom -- not xatom" n))))

x1ist (a b) (xconsx a (xconsx b xnil)))

(setq xnil 0)

(defuq

(defun

xnull (a) (eq a xnil))

xsetq (var val)
(setq root (xconsx (xconsx var val) root)))

(note symbols not interned; atoms are cbjects)
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s smacros

(defmacro decr (var Boptional (val 1))
(cond ((eq val 1) *(setq ,var (1- yvar)))
(t "(setq ,var (- ,var ,val)))))

(defmacro incr (var &optional (val 1))
(cond ((eq val 1) '(setq ,var (1+ var)))
(t "(setq ,var (+ ,var ,val)))))

(defmacro untildo (test body Zoptional (ans nil))
‘(do () (.test ,ans) ,body))

(defmacro settype (space n type &optional (val t))
‘(arget .space ,val ,n ,type))

(defmacro typeset? (space n type &optional (val t))
‘(and (numberp ,n)
(eq ,val (arref ,space ,n .type))))

(defmacro defspace (space &rest typelist)
‘(progn (putprop ’,space ,(length typelist) ‘numtype)

(putprop °,space ',typelist ‘typelist)

(setq ,@(do ((i 1 (1+ i))
(t1list (cdr typelist) (cdr t1list))
(tlist (Vist (car typelist) 0)

(cons (car t1list) (cons i tlist))))

(( = 1 (length typelist)) tlist)

0NN

(defmacro numtypes (space) ‘(get '.space ‘numtype))
(defmacro numwords (space) ‘(get °,space ‘numword))
- (defmacro types (space) ‘(get ',space 'typelist))

(defmacro clrtype (space n type)
‘(settype ,space ,n ,type nil))

(defmacro clirarray (space)
‘(do ((k1 0 (1+ k1)))
((= k1 (numwords ,space)) ki)
(arset ,space 0 k1 0)))

(defmacro clrword (space n &optional size)
: *(do ((k 0 (1+ k)))
((= k ,(cond ((null size)*(numtypes .Space))
(t size))) .n)
(cirtype ,space ,n k)))

(defmacro copyword (spacel from space?2 to)
*(do ((k 0 (1+ k)))
((= k (numtypes ,spacel)) ,to)
(arset ,space2 (arref ,spacel ,from k) ,to k)))

(defmacro global (var)
‘(setq globlist (cons ,var globlist)))

(setq globlist nil)

(defmacro arref (arr . inds)
‘(arraycall t ,arr ,@inds))

(defmacro arset (arr value . inds)
‘(store (arraycall t ,arr ,@inds) ,value))

(defmacro defarray (name . dim)
‘(setq ,name (*array nil t ,@dim)))
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: display fcns

(defmacro printsp (space)
‘(progn
(print ,space)
(print (types ,space))
(do ((i 0 (1+1i)))
((= 1 (numwords ,space)) ())
(print ‘word) (princ i) (princ ": ")
(do ((3 0 (1+ j)))
((= j (numtypes ,space)) ())
(princ (arref ,space i })) .
(princ * ")))
(print ‘free) (princ "= ") (princ free)
(print *freespace) (princ "= ") (princ freecnt)
(print °root) (princ "= ") (princ root)()))

(defmacro prspace (space) '(printsp ,space)) salias
(defmacro prsp (space) *(printsp ,space)) ;alias

ithese output the 1list strucure (w/ brackets: [])

(defun xdisp (node)
(cond ((xnull node) (princ "(1") ())

((xatomp node) (princ (xgetatom node)))

((x1istp node)
(princ "[")
(xdisp (xcar node))
(princ " ")
(xdisp2 (xcdr node)))))

(defun xdisp2 (node)
(cond ((xnull node) (princ "]") ())
((xatomp node)
(princ ". ")
(princ (xgetatom node))
- (princ "] ")) :for dotted pairs
({x1istp node)
(xdisp (xcar node))
(princ " ")
(xdisp2 (xcdr node)))))
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