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ABSTRACT

Carbon capture and storage (CCS) is a technology where CO2 captured from point sources
or the atmosphere is injected underground for permanent storage. CCS is part of a portfolio
of technologies aimed at enabling the transition to a sustainable energy system with net-zero
CO2 emissions. This Thesis focuses on geologic CO2 storage (GCS) in faulted siliciclastic
sedimentary basins, and addresses the impact of uncertainty sources on forecasts of CO2

migration made with physics-based numerical models. A key contribution of this work is the
quantification of uncertainty on fault petrophysical properties and modeling of flow within
clay-smeared faults, which play a central role on CO2 storage effectiveness and safety.

We start by extending a reservoir simulator to increase fidelity in 3D numerical models of
GCS. Extensions include a thermodynamic model to calculate PVT properties of CO2-brine
mixtures and relative permeability hysteresis. We then conduct numerical simulations and
experiments of CO2 injection and migration at the meter scale. Our experiments use tanks
with transparent panels that allow recreating realistic basin geometries and CO2 injection
protocols. Using direct observations, we find that local measurements reduce model calibra-
tion time and that accurate deterministic forecasts are challenging. Next, recognizing the
impact of faults on subsurface flow and shortcomings of previous models of fault architec-
ture and hydraulic properties, we propose a probabilistic method to estimate the directional
components of the fault permeability tensor. We extend previous efforts by modeling the
fault core in 3D, using flow-based upscaling, and quantifying uncertainty. We then move to
the field scale and apply this method to forecast fault CO2 migration in the Miocene section
offshore Texas. Faults are common in this area, and it is crucial to understand how they
may limit storage capacity. Our modeling results indicate that, due to subsurface structure,
stratigraphy and fault hydrogeology, updip CO2 migration in listric growth faults is unlikely.

Our findings show that quantitative forecasts are uncertain due to limited subsurface
knowledge and modeling choices. Efforts to quantify parameter uncertainty and its impact
on modeling forecasts appear necessary, a task that requires development of reduced order
models accounting for the limitations of simulation data. Forecasts based on numerical
models will benefit from history-matching and updating as field data becomes available.
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Chapter 1

Introduction

1.1 Background

CO2 capture and subsequent geologic carbon dioxide storage (GCS) is a climate-change mit-
igation technology that can be deployed at the scale necessary to significantly offset current
anthropogenic CO2 emissions, especially in combination with so-called negative emission
technologies (IPCC 2005; EASAC 2018; IEA 2021; IPCC 2022). Globally, GCS projects
currently store about 30-40 Megatons (Mt) per year (Zhang et al. 2022), which is three or-
ders of magnitude lower than global energy-related CO2 emissions, which are on the order
of 35 Gt/y (IEA 2021). To achieve the climate goals of keeping anthropogenic warming to
1.5◦C or less and net-zero CO2 emissions by mid-century, it has been suggested that GCS
capacity needs to increase by about 2 orders of magnitude in the next few decades (IEA
2021; IPCC 2022). Such growth in the GCS industry has been labeled “unprecedented” and
“dramatic” (Krevor et al. 2023; Zoback and Smit 2023).

In the past two decades, advances in the field of GCS have been made using theory (e.g.,
Bachu et al. 1994; Hesse et al. 2008; MacMinn et al. 2010; MacMinn et al. 2011; Hidalgo et al.
2012; Szulczewski et al. 2012; Szulczewski et al. 2014), experiments (e.g., Bennion and Bachu
2008; Pentland et al. 2011; MacMinn and Juanes 2013; Zhao et al. 2016; Qiu et al. 2023),
and computer simulation (e.g., Juanes et al. 2006; Hassanzadeh et al. 2007; Birkholzer and
Zhou 2009; Cappa and Rutqvist 2011; Hidalgo et al. 2012; Nordbotten et al. 2012; Fu et al.
2015; Wallace et al. 2017; Zhao et al. 2019). This has provided a fundamental understanding
of CO2 behavior in the subsurface, including its interaction with other subsurface fluids and
its potential hazards. Importantly, these studies have extended our knowledge of the physics
of CO2 migration and trapping (Bachu et al. 1994; Juanes et al. 2006; MacMinn et al. 2010;
MacMinn et al. 2011; Hidalgo et al. 2012; Szulczewski et al. 2013; Krevor et al. 2015) and the
storage capacity of geologic formations (Birkholzer and Zhou 2009; Szulczewski et al. 2012;
Bachu 2015; Treviño and Meckel 2017). This wealth of knowledge supports the scientific
consensus that, under appropriate storage conditions, current understanding of GCS allows
for safe deployment of the technology (Bickle 2009; Celia et al. 2015; Bourzac 2017).

Physics-based numerical models, used as either the primary tool to make forecasts (Silva
et al. 2023), a development tool for reduced order models (Pawar et al. 2016), or a train-
ing/testing tool for machine-learning frameworks (Ju et al. 2019; Lu et al. 2023), remain our
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primary means to assess subsurface CO2 migration. Development of free and open-source
software (e.g., Mills et al. 2007; Flemisch et al. 2011; Lie 2019; Keilegavlen et al. 2021; Ras-
mussen et al. 2021; Cusini et al. 2022) is promoting widespread access and multidisciplinary
innovation: Numerical models are increasingly able to incorporate, realistically, complex
geologic features such as faults (Karimi-Fard et al. 2004; Fredman et al. 2007; Silva et al.
2023), simulate timescales up to thousands of years (Gasda et al. 2011; Lie et al. 2016; Nilsen
et al. 2016), and handle resource-intensive numerical schemes required when considering cou-
pled physics (Cappa and Rutqvist 2011; Jha and Juanes 2014; Landa-Marbán et al. 2021;
Meguerdijian et al. 2022; Silva et al. 2023). In recent years, experimental and field observa-
tions of subsurface CO2 migration (Arts et al. 2004; White 2009; Eiken et al. 2011; Trevisan
et al. 2014; Krishnamurthy et al. 2022; Flemisch et al. 2023) and the induced geomechanical
response (Verdon et al. 2013; Stork et al. 2015; Silva et al. 2021b) have become available,
which has built confidence in physics-based predictive models. However, achieving accurate
(or concordant; see Oldenburg 2018) forecasts of subsurface CO2 migration using numerical
models continues to be challenging due to uncertainty (Nordbotten et al. 2012; Flemisch
et al. 2023).

Predictions of subsurface CO2 migration are uncertain due to (i.) limitations of the
mathematical and numerical models (Nordbotten et al. 2012; Flemisch et al. 2023); (ii.) the
absence, more often than not, of a ground truth to assess numerical model concordance; and
(iii.) incomplete knowledge of physical property distribution in the subsurface (cf. Einstein
and Baecher 1982). The latter is especially true for geologic faults, which offset sedimentary
layers and lead to volumes where the host material is altered to varying degrees (Caine et al.
1996; Faulkner et al. 2010; Bense et al. 2013; Fossen and Rotevatn 2016; IEAGHG 2016).
Subsurface measurements of fault properties are rare, but faults are common in the subsurface
and control flow at the reservoir to basin scales (Smith 1966; Person et al. 1996; Jolley et
al. 2007; Myers et al. 2007). Previous experience with subsurface energy technologies has
exposed the hazards of induced seismicity (Zoback and Gorelick 2012; Juanes et al. 2012;
Vilarrasa and Carrera 2015; Alghannam and Juanes 2020; Silva et al. 2021a; Silva et al.
2021b; Hager et al. 2021) and fault CO2 migration, which may lead to leakage into overlying
units or the seafloor (Caine et al. 1996; Ingram and Urai 1999; Revil and Cathles III 2002;
Jung et al. 2014; Bond et al. 2017). It is therefore critical to improve knowledge of fault
properties to safely deploy GCS at the Gigaton scale (e.g., IEAGHG 2016; Vrolijk et al.
2016).

1.2 Goals and Outline

Following our discussion above, in this Thesis we address (i.) by extending an existing flow
simulator to increase fidelity (ch. 2), (ii.) by evaluating concordance between meter-scale
GCS simulations and direct experimental observations (ch. 3), and (iii.) by developing a new
methodology to quantify uncertainty in fault permeability (ch. 4), and applying it to evaluate
the potential of fault CO2 migration at the field scale (ch. 5). Our overarching goal is,
therefore, to develop computational tools to evaluate uncertainty in GCS, including improved
characterization of uncertainty sources and their effect on numerical modeling forecasts of
CO2 migration. Due to important differences in the physical mechanisms governing CO2
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migration in different geologic settings, we limit the scope of our research to siliciclastic basins
and two fluid phases (brine and CO2). The latter is a reasonable choice, given that most
of the capacity for large-scale GCS deployment is provided by saline aquifers (Szulczewski
et al. 2012; de Coninck and Benson 2014; Ringrose and Meckel 2019).

In chapter 2, we present three extensions to the ad-blackoil module of the open-source
MATLAB Reservoir Simulator Toolbox (MRST; Lie 2019). These include a thermodynamic
model for the calculation of phase composition and PVT properties of CO2-brine mixtures;
a saturation-history dependent model for the relative permeability of CO2; and a diffusion
model to describe the transport of dissolved CO2 in brine due to concentration gradients.
These tools increase fidelity in 3D simulation models of GCS using MRST, which is the main
software used in this Thesis. This chapter is being prepared for publication as a research
article (Saló-Salgado et al. 2023c).

In chapter 3, we conduct meter-scale CO2 injection experiments in the FluidFlower rigs.
The FluidFlower concept is a meter-scale laboratory tank with transparent panels that allows
recreating realistic basin geometries and CO2 injection and monitoring protocols, including
direct observation of CO2 migration. First, we use experimental data to history-match or
calibrate our numerical model. Next, we apply the calibrated model to different settings,
and test the predictions against new experimental results that the model has not seen. This
allows us to evaluate, quantitatively, the value of local petrophysical measurements and the
forecasting capability of numerical models of GCS. This chapter appeared as a research
article in Transport in Porous Media (Saló-Salgado et al. 2023b).

In chapter 4, we develop a new methodology (PREDICT) to estimate the main directional
components (dip-perpendicular, strike-parallel and dip parallel) of the fault permeability ten-
sor. Our methodology is applicable to normally-consolidated siliciclastic sequences, which are
common in passive margins worldwide and relevant for large-scale GCS. Due to the proba-
bilistic nature of our methodology, the output is a probability distribution for each directional
component of the fault permeability tensor. This work extends previous fault permeability
algorithms by considering three-dimensions, accounting for anisotropy and quantifying un-
certainty; results were validated with experimental data from cm-scale faults. This chapter
appeared as a research article in Geology (Saló-Salgado et al. 2023a).

In chapter 5, we study fault CO2 migration in Miocene-age sediments offshore Texas. This
area is a promising candidate for industrial-scale GCS given adequate geology, proximity to
CO2 emission sources, and infrastructure provided by decades of hydrocarbon exploration
and production. However, faults are common, and it has been shown that they may limit
capacity. We conduct CO2 storage simulations in a field-scale model representative of the
Miocene geology, and assess where the CO2 migrates to after injection next to a fault zone,
which represents a very unfavorable scenario. Our evaluation is based on a sensitivity analysis
of CO2 migration to fault petrophysical properties that are uncertain. This chapter is being
prepared for publication as a research article (Saló-Salgado et al. 2023d).

Finally, in chapter 6, we briefly summarize the main findings of this Thesis and research
opportunities in the context of GCS in faulted siliciclastic basins. We anticipate that mul-
tidisciplinary research will be needed to deploy GCS at the scale proposed by mid-century
net-zero pathways.
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Chapter 2

Three-Dimensional Simulation of
Geologic Carbon Dioxide Sequestration
using MRST

This chapter is being prepared for publication as a research article (Saló-Salgado et al. 2023c).

Abstract

Physics-based computational modeling of subsurface CO2 migration constitutes the primary
tool to assess geologic CO2 storage (GCS). Such models are often required to plan injection
operations and assess hazards such as CO2 migration into units above the storage forma-
tion. Here, we present three tools developed to increase accuracy of GCS models in the
ad-blackoil module of the MATLAB Reservoir Simulation Tooblox (MRST). These tools
include functionality to (1) calculate and output PVT properties of miscible brine and CO2

as a function of pressure, temperature and salinity; (2) account for relative permeability
hysteresis, necessary to model residual trapping; and (3) model CO2 transport due to con-
centration gradients (molecular diffusion). We validate our implementation with published
results including experimental observations, present MRST examples, and conclude with some
remarks on applicability, limitations and potential extensions. Source code and examples
are provided.

2.1 Introduction

The MATLAB Reservoir Simulation Toolbox (MRST) (Lie et al. 2012; Krogstad et al. 2015; Lie
2019) is an open-source software that includes multiple discretization schemes for simulation
of multiphase flow in porous media. MATLAB is well suited for rapid prototyping, and MRST
has been extensively used to implement novel models of subsurface flow (e.g., Ranaee et al.
2019; Landa-Marbán et al. 2021; Lie and Møyner 2021; Wang et al. 2023). MRST currently
provides two main methods for simulation of field-scale geologic carbon sequestration (GCS):

• Vertical-equilibrium (VE) models for analysis of structural trapping and long-term,
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large-scale migration assuming an instantaneous vertical equilibrium between brine
and gas (e.g., Nilsen et al. 2015; Lie et al. 2016; Nilsen et al. 2016; Møyner and Nilsen
2019).

• Full-scale solvers (such as ad-blackoil or compositional) for a more traditional
approach to three-dimensional reservoir simulation (e.g., Ranaee et al. 2019; Landa-
Marbán et al. 2021; Silva et al. 2023).

The main advantge of VE models is that they reduce the problem of CO2 migration to
two dimensions. This relaxes the requirements for detailed subsurface data, and can speed
computation by multiple orders of magnitude. As a result, VE models are particularly
useful for regional-scale studies and preliminary exploration or probabilistic assessments (e.g.,
Gasda et al. 2011; Szulczewski et al. 2012; Celia et al. 2015; Nilsen et al. 2016). Detailed
analysis of well placement and CO2 migration in a specific trap system, however, often
requires dynamic simulations that honor subsurface heterogeneity and complex 3D structure.

The migration of a subsurface CO2 plume is driven by the interplay of buoyancy and
pressure gradients (Benson et al. 2005; Krevor et al. 2023) (Fig. 2.1). While buoyant CO2

rises within the storage formation (SF), it does not reach the surface due to trap systems
including a caprock or top seal, faults bounding the storage system and folds (structural
and/or stratigraphic trapping) (Bachu et al. 1994; Bryant et al. 2008; Hesse and Woods 2010;
Li and Benson 2015; Saló-Salgado et al. 2023b). Upon reaching the SF top or interbedded
capillary barriers, the CO2 plume spreads laterally and continues its gravity-driven migration
updip the storage formation, a process that can cover several kilometers and last hundreds of
years or more, depending on geology (Gasda et al. 2011; Boait et al. 2012; Szulczewski et al.
2013; Jackson and Krevor 2020; Silva et al. 2023). As the plume migrates inside the SF,
resident brine re-occupies pores previously filled with CO2; this process, termed secondary
imbibition, leads to CO2 trapping in the form of blobs and ganglia when CO2 saturation
is low enough. This trapping mechanism is known as residual or capillary trapping (Juanes
et al. 2006; Burnside and Naylor 2014). A fraction of injected CO2 will dissolve in the brine,
leading to solubility or dissolution trapping. The aqueous mixture of saline water and CO2 is
denser than the resident brine and sinks, thereby increasing storage security (Ennis-King and
Paterson 2005; Riaz et al. 2006; Hidalgo and Carrera 2009; MacMinn et al. 2011; Neufeld et
al. 2010; Szulczewski et al. 2012; Saló-Salgado et al. 2023b). Finally, CO2 can react with solid
grains in the subsurface, which may precipitate carbonate minerals that permanently trap
the CO2 in solid phase (mineral trapping) (Bachu et al. 1994; Snæbjörnsdóttir et al. 2020).
The first three mechanisms are active in sedimentary basins during operational timescales;
the importance of mineral trapping depends on the composition of the trap system and
typically increases with time (Benson et al. 2005; Snæbjörnsdóttir et al. 2020; Krevor et al.
2023)(Fig. 2.1b).

The importance of different physical mechanisms on numerical simulations of CO2 stor-
age has been the subject of much research over the past two decades, and it is beyond the
scope of this paper to summarize the state of the art at large. However, some relevant ex-
amples include Juanes et al. (2006), who showed that relative permeability hysteresis plays
a major role in the migration of CO2 in an anticline reservoir; Hidalgo and Carrera (2009)
described accelerated CO2 dissolution due to hydrodynamic dispersion; Saadatpoor et al.
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Figure 2.1: Supercritical CO2 trapping mechanisms. a: Schematic of a sloping saline aquifer
where CO2 is injected through an array of wells. As mobile CO2 migrates updip due to buoyancy
(dark grey), brine imbibes at the trailing edge of the plume, immobilizing CO2 blobs (see inset),
and part of the CO2 dissolves in brine, triggering a Rayleigh-Taylor instability where CO2-rich brine
sinks (see inset). From Szulczewski et al. (2012). b: Contribution of different storage mechanisms
as a function of time. Post CO2 injection, the risk of CO2 leakage decreases due to lower relative
contribution of structural and stratigraphic trapping, with respect to the other three mechanisms.
From Benson et al. (2005).

(2010) included local capillary heterogeneity within the injection layer, which led to inhomo-
geneous CO2 rise and reduced invaded volume; Landa-Marbán et al. (2021) demonstrated
that calcite precipitation leads to sealing of migration pathways; Flemisch et al. (2023) and
Saló-Salgado et al. (2023b) compared multiple simulation models to experimental observa-
tions in a m-scale laboratory setup, and they showed that relatively small changes in PVT
and multiphase flow properties can result in significantly different CO2 migration. Outcomes
from these studies and many others strongly suggest that the CO2-brine system can be very
sensitive to variations in subsurface properties and trapping mechanisms. Therefore, devel-
oping numerical models of GCS that include all relevant physics for a given geology and
spatiotemporal scale is an important research area.

In this paper, we describe three extensions to the MRST automatic differentiation (AD)
simulators, in particular the ad-blackoil module, developed to increase fidelity in simu-
lation of 3D GCS. Specifically, sect. 2.2 describes the implementation of a thermodynamic
model to calculate PVT properties of CO2-brine mixtures for black-oil simulators (see chap-
ters 8.2.3 and 11 in Lie 2019); sect. 2.3 details the modeling of saturation-path dependent
relative permeability (hysteresis); and sect. 2.4 provides an implementation of molecular
diffusion. Lastly, in sect. 2.5 we discuss the range of applicability and limitations of the
models presented. Scripts and input files necessary to reproduce the examples presented
in sect. 2.2, 2.3, and 2.4 are available at https://github.com/lsalo/mrst-adblackoil-gcs. The
code has been tested with the MRST development version as well as the 2023a release.
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2.2 Generation of PVT Data for Black-oil Models

Compositional reservoir simulators are widely used to accurately predict complex phase
behavior in multicomponent models (Chang et al. 1998). In compositional simulation, equa-
tions of state (EOS) are employed to calculate the phase distribution and fluid properties in
each grid cell. A black-oil simulator can be viewed as a specific, simple case of a composi-
tional model with two or three pseudo-components, where miscibility properties are modeled
as a function of pressure (P ) changes only (Aziz and Settari 1979; Møyner 2021). Typically,
the gas component can be present in either the oleic or gaseous phase, whereas the oil and
water components exist only in their respective phases (Lie 2019, chapter 11). To simulate
GCS in CO2-brine systems, the oleic phase can be modeled as a brine, so that the main
component in the gas phase (now CO2) can dissolve in it. As shown below, it is also possible
to consider vaporization of water in the gas phase. Black-oil models often use tabulated
input data to speed up calculations, and, due to their simplicity, can be significantly more
efficient than general compositional models (Hassanzadeh et al. 2008).

In MRST, the ad-blackoil module (Bao et al. 2017 and Lie 2019, chapter 11) provides
industry-standard reservoir simulation capabilities using black-oil models. For example, the
module incorporates functionality for using external, pre-compiled linear solvers such as
AMGCL (Demidov and Rossi 2018; Lie 2019) and ECLIPSE-type input decks, and has been
used to simulate geologic carbon storage at spatial scales ranging from the laboratory to the
field (e.g., Silva et al. 2023; Flemisch et al. 2023; Saló-Salgado et al. 2023b). In this section,
we summarize (1) the implementation of a thermodynamic model for calculation of CO2-
brine PVT properties, (2) the preparation of output data in ECLIPSE (SLB 2014a) format,
compatible with MRST’s ad-blackoil module, and (3) usage in MRST. Our implementation
follows the detailed description by Hassanzadeh et al. (2008), with a few modifications as
described below.

2.2.1 Calculation of phase composition and PVT output

The composition of CO2-brine mixtures is calculated based on the thermodynamic models
presented by Duan and Sun (2003), Spycher et al. (2003), and Spycher and Pruess (2005),
and it is valid up to ≈ 100 ◦C and ≈ 600 bar. Similar to Spycher and Pruess (2005) and
Hassanzadeh et al. (2008), equilibrium relationships by Spycher et al. (2003) are used in
combination with the activity coefficient formulation of Duan and Sun (2003) to determine
the mole fractions of CO2 and H2O in the aqueous and gas phases, respectively. With
this formulation, we can consider mixing between CO2 and aqueous solutions of common
species such as NaCl, KCl or CaCl2, as well as seawater/brines. Our implementation of the
solubility model and calculation of input quantities required for black-oil simulations (brine
formation volume factor and gas-oil solution ratio) follows Hassanzadeh et al. (2008); this
includes the assumptions of constant salinity and infinite dilution of H2O in the gas phase
to compute fugacity coefficients (Spycher et al. 2003), the Redlich-Kwong equation of state
(EoS) (Redlich and Kwong 1949) to compute gas molar volumes, Rowe and Chou (1970)
to compute brine density, Garcia (2001) to compute CO2-saturated aqueous phase density,
and Fenghour et al. (1998)’s model for CO2 viscosity. Therefore, instead of repeating the
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lengthy formulation, we provide the code and validation figures below, and note the following
aspects of our implementation:

• Given that CO2 solubility in water is low, Hassanzadeh et al. (2008) considered that
the salt mole fraction in the aqueous phase (xsalt) remains constant. We default to this
option, but, as shown below, an option to include the effect of dissolved CO2 can be
used.

• To calculate the density (ρ) of water-salt solutions (brine), a later correlation by Batzle
and Wang (1992) can be used to expand the P , temperature (T ) validity range (Rowe
and Chou 1970 is for P < 350 bar).

• The dynamic viscosity (µ) of the aqueous phase accounts for CO2 dissolution, in ad-
dition to P , T and salinity (S). Similar to the density, we assume that the S effect
on aqueous phase viscosity can be modeled by considering a single salt species (NaCl),
and use the model presented by Islam and Carlson (2012).

• As mentioned before, the dynamic viscosity of pure CO2 is calculated using Fenghour
et al. (1998) (we neglect the critical enhancement term). The viscosity of the gaseous
phase (which may contain vaporized water) is obtained via Davidson (1993)’s model
for ideal gas mixtures; differences with respect to pure CO2 are ≤ 2% at T, P ∈
[30, 100] ◦C, [80 − 400] bar. We note, however, that experimental viscosity data for
supercritical CO2-rich mixtures in the P, T range of interest was not found (Munkejord
et al. 2016).

Although not our primary goal, vaporization of H2O in the CO2-rich phase is considered in the
solubility model. Therefore, we can use similar arguments to those presented by Hassanzadeh
et al. (2008) for the aqueous phase, and compute the vaporized oil-gas ratio (Rv) and gas
formation volume factor (Bg) as follows:

Rv =
V s

vh2o

V s
co2

=
yh2oρ

s
co2

ρs
h2oyco2

(2.1)

Bg =
V r

g

V s
co2

=
ρs
co2

ρr
g(1− vh2o)

(2.2)

where V , y, v, ρ and ρ are volume, mole fraction in the gas phase, mass fraction in the gas
phase, molar density, and mass density, respectively; subscripts v and g refer to vaporized
and gas phase, respectively; and superscripts s and r refer to standard (defined here according
to ECLIPSE (SLB 2014a), i.e., 1 atm and 15.56 ◦C) and reservoir conditions, respectively.
Because yh2o ≤ 1 − 2% at storage P, T , we consider ρg ∼ ρco2 and take ρco2 from the
Redlich-Kwong EoS. This simplification is reasonable based on available experimental data
by King et al. (1992) and Hebach et al. (2004), who report changes smaller than experimental
uncertainty for P, T up to 300 bar and 60 ◦C.

Validation plots are provided in Fig. 2.2, 2.3, 2.4, 2.5, and 2.6.
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Figure 2.2: Predicted CO2 coefficients. a Compressibility factor (Z; cf. Fig. 8 in Spycher et al.
2003). b Fugacity coefficient (ϕ; cf. Fig. 9 in Spycher et al. 2003).

a bT = 30 ºC
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Figure 2.3: Predicted mutual solubilities at 30, 60 and 90 ◦C for 0-4 molal sodium chloride brines.
Solubilities are expressed as molality of CO2 in the aqueous phase (a) and 1000 × mole fraction of
H2O in the gas phase (b). Cf. Fig. 2 in Spycher and Pruess (2005).
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Figure 2.4: Comparison to results by Hassanzadeh et al. (2008). a Gas compressibility factor and
fugacity coefficient (cf. their Fig. 5c). b Gas-oil solution ratio (Rs) and brine formation volume
factor (Bb; cf. their Fig. 5a). c Dynamic viscosities (µ) neglecting water vaporization (cf. their
Fig. 5b,d). There are minor differences in brine viscosity with respect to Fig. 5b in Hassanzadeh
et al. (2008), because they neglect the effect of dissolved CO2.
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Figure 2.5: CO2 properties. a,b Density compared to measurements by Holste et al. (1987), Ely
et al. (1989), Fenghour et al. (1995), Klimeck et al. (2001), and Pensado et al. (2008). c,d Viscosity
compared to tabulated data by Vesovic et al. (1990) and Fenghour et al. (1998).

2.2.2 MRST example

The thermodynamic model described above is implemented in the function
pvtBrineWithCO2BlackOil.m, which has the following syntax:

[t, rho_co2_s, rho_brine_s] = pvtBrineWithCO2BlackOil(T, P, S, saltVar, vapH2O, unsatVals, figs, ←↩
directory);

T, P, and S indicate the temperature, pressure range and salinity, respectively. saltVar,
vapH2O, unsatVals and figs are boolean variables indicating whether the change in salt mole
fraction due to CO2 dissolution into the brine should be accounted for, whether vaporized
water should be considered, whether undersaturated values should be provided, and whether
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Figure 2.6: Pure water, brine and CO2-saturated aqueous phase properties. a Density as a function
of P at T = 323.2, 373.2 K compared to experimental measurements by Yan et al. (2011) (see their
Fig. 14, 15 and 16). b Viscosity as a function of T , shown at P = 50, 200 and 600 bar (cf. Fig. 7
by Islam and Carlson 2012).

figures should be plotted, respectively. directory is an optional input indicating the path
where the output should be saved. Variable outputs include a table with all properties of
interest for the gas and brine phase (t), and the surface densities of both phases at standard
conditions. The function is well documented and interested users should refer to the code
for full reference.

In MRST, fluid properties are specified by the fluid object, which tells the simulator
which models should be used. In ad-blackoil models, the following properties need to be
specified to model fluid PVT behavior (see ch. 11.4 in Lie 2019, for a detailed description):
surface densities (ρsα), formation volume factors (Bα), and solution gas-oil ratio (Rs), where
α denotes a generic phase. Optionally, Rv (see sect. 2.2.1) may be given if oil vaporization
into the gas is accounted for. Viscosities (µα) are also specified in the fluid object. As
noted above, to simulate GCS in saline aquifers we assign brine properties to the oil phase
and CO2 properties to the gas phase. Using these inputs, reservoir densities and viscosities
of the oleic and gas phases are computed as (e.g., Lie 2019):

ρo = bo(ρ
s
o +Rsρ

s
g) (2.3)

ρg = bg(ρ
s
g +Rvρ

s
o) (2.4)

Where, in Eq. 2.3, 2.4, we have introduced the reciprocal factors bo = 1/Bo and bg = 1/Bg,
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which are used by MRST.
The script example_props details how to create a fluid object with all required PVT

properties. To this end, we use pvtBrineWithCO2BlackOil to generate tabulated data
suitable for an ECLIPSE-type input deck (SLB 2014a). In particular, specifying directory
when running pvtBrineWithCO2BlackOil will generate one text file for each phase, which
can be copied into the input .DATA file, under the PROPS section, using the appropriate
keywords (PVTO and PVDG or PVTG). ECLIPSE .DATA files are the main input system in the
ad-blackoil module (see ch. 11.5 in Lie 2019). The fluid structure is then easily obtained:

% Read deck: fn is the .DATA file name
deck = convertDeckUnits(readEclipseDeck(fn));
% Generate fluid
fluid = initDeckADIFluid(deck);

Following Eq. 2.3, and 2.4, we can recover phase densities as:

rho_co2 = fluid.rhoGS*fluid.bG(p_val); % Dry gas (no water)
rss_val = fluid.rsSat(p_val); % Live oil (with CO2)
rho_b_sat = fluid.bO(p_val,rss_val,true(np,1)) .* (rss_val.*fluid.rhoGS + fluid.rhoOS);
rho_b = fluid.rhoOS*fluid.bO(p_val,zeros(np,1),false(np,1));

Where p_val is a n × 1 vector with the pressure values, and np = n. Viscosities are
obtained as:

mu_co2 = fluid.muG(p_val);
mu_b_sat = fluid.muO(p_val,rss_val,true(np,1)); % CO2 saturated
mu_b = fluid.muO(p_val,zeros(np,1),false(np,1));

Fig. 7 shows the phase densities and viscosities for the example in example_props, where
it can be seen that the values recovered from the fluid object are accurate to the tabulated
output given by pvtBrineWithCO2BlackOil.
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Figure 2.7: Phase density and viscosity as computed from the fluid object (thick solid lines, see
main text) and the output of pvtBrineWithCO2BlackOil. Vaporization was not considered in this
example. a CO2. b brine.
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2.3 Relative Permeability Hysteresis

When n > 1 fluid phases are present in a porous medium, such as in GCS, the volumetric
flux of a given phase (uα, [L·T−1]) is given by the multiphase version of Darcy’s law (Muskat
1949):

uα = −kkrα
µα

(∇pα − ραg∇z) (2.5)

Where krα(Sα) ∈ [0, 1] is the relative permeability, a quantity introduced to account for the
effect of multiple fluid phases in reducing the flow of a given phase α, depending nonlinearly
on the saturation (Sα) (Muskat 1949; Aziz and Settari 1979). Due to pore-scale mecha-
nisms including contact angle hysteresis and disconnection of the non-wetting phase during
imbibition, relative permeability depends on the saturation path and saturation history, in
addition to the current saturation (see Juanes et al. 2006). In most subsurface aquifers,
CO2 will be the non-wetting phase (Iglauer et al. 2015); therefore, accounting for relative
permeability hysteresis is necessary to accurately model CO2 migration and trapping during
GCS, especially during the post-injection stage (Juanes et al. 2006).

Relative permeability hysteresis models use a primary drainage and bounding imbibition
curve to compute scanning curves in successive drainage and imbibition cycles, a process
illustrated in Fig. 2.8 (Juanes et al. 2006). Several models have been described in the
literature (e.g., Killough 1976; Carlson 1981; Lenhard and Parker 1987; Blunt 2000; Spiteri
et al. 2008), with reservoir simulators typically using either Killough’s (Killough 1976) or
Carlson’s (Carlson 1981) model for two-phase flow. Because there are two fluid phases during
CO2 storage in saline aquifers, in this work we use the model by Killough (Killough 1976),
following the implementation in ECLIPSE (Juanes et al. 2006; SLB 2014b).

Figure 2.8: Illustration of the primary drainage curve (red), bounding imbibition curve (to the
right, blue) and scanning curve (in the middle, blue), as well as the Land’s (Land 1968) trapping
model parameters. Extracted from (Juanes et al. 2006).

13



Chapter 2. 3D Simulation of GCS using MRST

2.3.1 Killough’s (1976) model

Consider the relative permeability of the nonwetting phase. Here, this is the CO2-rich phase,
which we refer to as the gas phase (subscript g). While current saturation (Sg) is below the
maximum historical saturation (Sgi), the relative permeability along a scanning curve is
computed as follows (Eq. 2.6, Fig. 2.8):

ki
rg(Sg) = kib

rg(S
∗
g)

kd
rg(Sgi)

kd
rg(Sg,max)

(2.6)

Where kib
rg and kd

rg refer to the bounding imbibition and drainage curves, respectively. Sg,max

is the maximum gas saturation, i.e. one minus the irreducible water saturation. S∗
g is the

normalized saturation:

S∗
g = Sgt,max +

(Sg − Sgt)(Sg,max − Sgt,max)

Sgi − Sgt
(2.7)

Where Sgt,max is the maximum gas trapped saturation associated with the bounding imbi-
bition curve. The trapped gas saturation for the current scanning curve, Sgt, is computed
based on Land (1968)’s model:

Sgt = Sg,min +
Sgi − Sg,min

1 + C(Sgi − Sg,min)
(2.8)

Where Sg,min is the minimum gas saturation along the primary drainage curve (Sg,min = 0
in Fig. 2.8, to be consistent with the reservoir formation being saturated with brine before
CO2 injection). The Land trapping coefficient C is computed as:

C =
1

Sgt,max − Sg,min
− 1

Sg,max − Sg,min
(2.9)

This model assumes that scanning curves are reversible, i.e. the same formulation is used
during tertiary drainage as long as Sg < Sgi. As noted by Juanes et al. (2006), the bounding
imbibition curve can be obtained from experiments, similar to the primary drainage curve,
or following Land (1968) (their Eq. 6). Killough (Killough 1976) also provided a model for
the wetting phase relative permeability hysteresis. However, because hysteresis effects in
the wetting phase are usually less important (Juanes et al. 2006, and references therein), we
limit this work to hysteresis effects in the nonwetting phase.

2.3.2 Implementation for use in ad-blackoil

Here, we summarize our implementation. This is provided to facilitate understanding as
well as encourage extensions and modifications. Readers planning to use the current imple-
mentation via existing .DATA input decks can directly skip to sect. 2.3.3. Readers planning
to modify .DATA input decks or use alternative fluid property input methods should read
sect. 2.3.2 before moving to sect. 2.3.3. Note that this implementation uses Killough (1976)’s
model (sect. 2.3.1) and is limited to gas phase relative permeability hysteresis (gas is assumed
to be the nonwetting phase). Moreover, our implementation is currently limited to two-phase
water-gas (immiscible) or oil-gas (miscible) black-oil models.

14



Chapter 2. 3D Simulation of GCS using MRST

Input of hysteresis options

Typically, the hysteresis option is specified as part of an input .DATA file, which is the main
input system in ad-blackoil (refer to ch. 11.5 in (Lie 2019) and (SLB 2014a) for details,
and the .DATA input files on GitHub). This requires adding the following to the .DATA file:

1. The item ‘HYSTER’ under the keyword SATOPS in the RUNSPEC section

2. The keyword EHYSTR in the PROPS section. This keyword should be followed by a line
with items 0.1 2 1.0 0.1 KR terminated by /. In ECLIPSE, each of these items is
used to specify different options for both capillary pressure and relative permeability
hysteresis. In the present implementation, only items two and four are used: Item two
indicates the hysteresis model, and therefore must be equal to 2 (Killough’s (Killough
1976) model for the nonwetting phase). Item four is used in the implementation of
Eq. 2.8 to improve convergence (sect. 2.3.2), and should be 0.1 in most cases (default
value).

3. Bounding imbibition relative permeability curves using the appropriate keywords (SWFN,
SGFN, SGOF, etc), also in the PROPS section. Note that, adding imbibition curves in-
creases the number of saturation tables, so items under the keyword TABDIMS in the
RUNSPEC section may need to be updated.

4. IMBNUM keyword, in the REGIONS section, followed by a set of lines specifying the cells
pertaining to each imbibition region. Optionally, this can be added manually to the
rock object, as shown below.

The example described in sect. 2.3.3 uses the CASE2.DATA input deck, provided by Juanes
et al. (2006), where these options are used. The fluid object is generated as shown in
sect. 2.2.2 and 2.3.3, which will automatically add the flag fluid.krHyst = 1. This flag
indicates that relative permeability hysteresis is active in all cells (all model regions). If
hysteresis is desired in a subset of model regions only, krHyst should be modified with an
array of size n × 1, where each entry is an imbibition region number (corresponding to the
unique values in rock.regions.imbibition) where hysteresis is active.

Alternatively, if the fluid and rock objects (Lie 2019) are generated without an input
deck, hysteresis options and flags can be added manually, e.g.:

fluid.ehystr = {0.1, 2, 1, 0.1};
fluid.krHyst = 1; % 1 (all) or subset of imb regions for hysteresis
nreg = max(rock.regions.saturation);
rock.regions.imbibition = rock.regions.saturation + nreg;

Hysteresis can also be deactivated in any given run by removing the field krHyst or
setting it to 0.

Code structure and location

Implemented changes can be subdivided in the following three groups:
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1. Input deck processing. This refers to changes needed to read .DATA input decks with
hysteresis specifications (EHYSTR keyword in PROPS section).

2. Assignment of the scanning curve model to the fluid object. This refers to adding
scanning curve functions to the fluid object.

3. Updating the relative permeability state function in model.FlowPropertyFunctions,
so that the hysteresis model is used during the simulation.

Accordingly, the code is implemented in the corresponding MRST modules:

deckformat
A new case ‘EHYSTR’ is added within the function readPROPS. This enables assignEHYSTR
(in the ad-props module) to handle the EHYSTR keyword in the input deck.

ad-props

• The function assignEHYSTR, called under initDeckADIFluid, assigns hysteresis op-
tions and flags to the fluid object (see example in sect. 2.3.3). The flag fluid.krHyst
will be automatically set to 1 (hysteresis active in all cells) if hysteresis is requested in
the input deck. However, as described in sect. 2.3.2, this flag can be modified to use
hysteresis in a region subset only.

• The function addScanKr adds the scanning curves in the field fluid.krGi. As noted
above, this currently uses Killough (1976)’s model and is limited to gas phase relative
permeability. A slight modification to Killough’s model is added to improve conver-
gence, as described in sect. 2.3.2.

ad-core
Hysteretic relative permeabilities are handled by the state function
HystereticRelativePermeability (see ch. 11 in Lie 2019 and ch. 5 in Lie and Møyner
2021 for MRST’s black-oil model structure). This class incorporates the method
evaluatePhaseRelativePermeabilityWithHysteresis, which checks for the krHyst flag
in the fluid object, and uses the appropriate relative permeability model where hysteresis
is active. This is currently limited to two-phase water-gas (immiscible) or oil-gas (miscible)
black-oil models, defined using the GenericBlackOilModel class.

Modifications and safeguards

Our implementation within addScanKr uses a modification to Eq. 2.8, introduced to improve
convergence as done in ECLIPSE (SLB 2014b):

Sgt = Sg,min +
Sgi − Sg,min

A+ C(Sgi − Sg,min)
(2.10)

Where A = 1 + a(Sg,max − Sgi). ECLIPSE uses a default value of a = 0.1 (SLB 2014b), but
the user can specify a different value as described in sect. 2.3.2.
The function addScanKr also ensures the following:
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• ki
rg(Sg) ≤ kd

rg(Sg)

• The minimum tolerance for flow reversal was set to 10−3. This means that unless
Sg + 10−3 < Sgi, the drainage curve is used.

• Unless Sgi > Sgh + Sg,min, the drainage curve is always used. Sgh is the third input
variable in addScanKr, which must be provided by the user. Typically, Sgh = O(10−2).

2.3.3 MRST example: validation with the PUNQ-S3 model

We validate our implementation using the PUNQ-S3 geologic model example. The PUNQ-
S3 represents a three-dimensional reservoir with heterogeneous permeability and anticlinal
structure, and has been described in detail by Floris et al. (2001). Juanes et al. (2006) used
an adapted version of this model to elucidate the impact of relative permeability hysteresis
on GCS, which we reproduce. The model has 1761 active cells, and represents a good
compromise between a lightweight setup that can be run quickly on a standard laptop, and
a realistic storage aquifer. CO2 injection is conducted during 10 y using eight wells operating
at a reservoir volume rate of 18 rm3/day each. After the initial 10 y, CO2 migration continues
until t = 500 y. In this example, CO2 and water are considered immiscible. A detailed
description of this case is provided by Juanes et al. (2006) (sect. 3).

This example is run using the script kr_hyst_example, available on GitHub along with
the CASE2.DATA input deck. The key statements to run this model with nonwetting phase
relative permeability hysteresis are shown below. Note that the statements to add hysteresis
in the fluid and model structures in the following two code listings will be automatically
processed in future MRST releases. However, we provide them here for consistency with the
present implementation, and as a guide to specify the hysteresis model without ECLIPSE
input. First, the fluid structure is generated using the input deck, and the functionality to
compute scanning curves is added:

% fn = 'path/to/CASE2.DATA'
deck = convertDeckUnits(readEclipseDeck(fn));
fluid = initDeckADIFluid(deck);
fluid.krHyst = 2; % imb reg where hysteresis is active (all)
minSat = 0.02; % saturation threshold for hysteresis activation
fluid = addScanKr(fluid, rock.regions.imbibition, minSat);

In this case, there is a single fluid region containing all active cells. Therefore,
rock.regions.saturation = ones(G.cells.num, 1). Here, the field
rock.regions.imbibition is directly assigned to the rock object using the input deck. The
model and relative permeability state function are defined as:
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% Use deck to select model
model = selectModelFromDeck(G, rock, fluid, deck);
% Set up the state function groups
model = model.validateModel();
% Update relperm state function
model.FlowPropertyFunctions = ...
model.FlowPropertyFunctions.setStateFunction('RelativePermeability', HystereticRelativePermeability(←↩

model));

Once the model setup is complete, we run the simulation using simulateScheduleAD or
simulatePackedProblem (refer to ch. 11 in Lie 2019). We compared our solution with
results presented by Juanes et al. (2006), which were obtained with the commercial simu-
lator ECLIPSE 100 (SLB 2014a). Results are shown in Fig. 2.9, which indicates excellent
agreement between the two models.

Figure 2.9: CO2 saturations after 500y. Top row results are from Juanes et al. (2006) (obtained
using ECLIPSE 100). Bottom results are with the described implementation in MRST. Left column
shows results for case 1 (no hysteresis), while right column shows results for case 2 (hysteresis).
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2.4 Molecular Diffusion

When n > 1 components are present in a fluid phase, concentration gradients will result in
transport of molecules from higher to lower concentration regions. Accordingly, the total
macroscopic flux will be given by the advective flux associated with the movement of the
fluid phase, as well as the diffusive flux associated with molecular transport within the fluid
phase (Bear 1972). Typically, molecular diffusion between components is not accounted for
in black-oil models (e.g., Lie 2019); as we show below, this is justified given the magnitude
of numerical diffusion, compared to its physical counterpart, in field-scale models. In certain
cases, however, it may be necessary to include diffusive fluxes to obtain accurate simulations.
An example of this is the validation of numerical models with centimeter- to meter-scale
experimental results, which require higher resolution due to smaller spatial scales (Saló-
Salgado et al. 2023b).

First, we provide the mathematical model for the diffusive mass flux of a solute in porous
media, and briefly discuss the contrasts between physical and numerical diffusion (sect. 2.4.1).
Next, we summarize our implementation of molecular diffusion of CO2 in brine for use in
ad-blackoil (sect. 2.4.2), and, finally, we present a full MRST example (sect. 2.4.3).

2.4.1 Mathematical model

Consider a generic multiphase, multicomponent fluid system. The mass conservation equa-
tions for each component γ = 1, ...,M can be written as (e.g., Lie 2019):

∂

∂t

(
ϕ
∑
α

ραSαχ
γ
α

)
+∇ ·

(∑
α

Jγ
α

)
= 0 (2.11)

where, in Eq. 2.11, ϕ is the porosity, α indicates a generic fluid phase, S is the saturation,
χγ
α the mass fraction of component γ in phase α, and sources/sinks are 0. J is the total

macroscale flux, which can be decomposed as (Bear 1972; Bear 2018):

Jγ
α = Jγ

α,adv + Jγ
α,dif (2.12)

i.e., advective and diffusive fluxes, respectively. The advective and diffusive fluxes can be
written as (e.g, Bear 1972; Lie 2019):

Jγ
α,adv = ραχ

γ
αuα (2.13)

Jγ
α,dif = −ραSαD

γ
α∇χγ

α

Dγ
α = Dγ

α,m +Dγ
α,h = ϕDγ

α,mTα +Dγ
α,h

(2.14)

where Dγ
α is the total diffusion coefficient (L2T−1), which is a second-order tensor. Dγ

α can
be further decomposed into a coefficient of molecular diffusion (Dγ

α,m) given by the porosity,
a scalar molecular diffusivity (Dγ

α,m, L2T−1) and dimensionless tortuosity tensor (Tα), and
a coefficient of hydrodynamic dispersion (Dγ

α,h, L2T−1).
Note that Eq. 2.14 assumes a Fickian model (Fick 1855) for both the diffusive and dis-

persive components (i.e., the flux is driven by a concentration gradient). Hydrodynamic
dispersion is introduced to explain increased macroscale spreading observed in non-stagnant
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fluids in porous media, and multiple models have been proposed (see Bear 2018, and ref-
erences therein). Tortuosity is a geometrical quantity that accounts for the path length of
extensive quantities in porous media being longer than the Euclidean distance, and it is a
tensorial quantity in anisotropic media. Because Tα depends on the specific configuration of
the porous medium, it is best determined experimentally (Bear 2018). Hence, for simplicity,
we limit the present implementation to a scalar diffusion coefficient, i.e., a pseudo-diffusivity
(Dγ

α):

Jγ
α,dif = −ϕραSαD

γ
α∇χγ

α (2.15)

In our two-phase model of CO2 and brine Dγ
α = DCO2

o , where o is the oleic phase (assigned
properties of brine).

In dilute aqueous solutions, Dγ
α,m ∼ O (10−9) m2/s, with DCO2

brine ≈ 2 − 3 × 10−9 and
≈ 4 − 5 × 10−9 at 40 and 80 ◦C, respectively (Al-Rawajfeh 2004). Numerical diffusion
(Dnum) ∼ uh, where h is the cell size. For illustration purposes, let us consider a porous
formation at storage depth. Taking k = 100 mD, µ = 0.8 cP and a modest ∇p = 10 mbar
(for ∆p = 1 bar in 100 m), u ≈ 1.2× 10−7 m/s (via Darcy’s law). In a typical reservoir-scale
model, h ∼ O(102 − 103) m, which gives Dnum ∼ O(10−6 − 10−5) m2/s. Therefore, it is
evident that physical diffusion is negligible at this scale. If we now consider the FluidFlower
rig (Fernø et al. 2023; Haugen et al. 2023) as an example of a laboratory setup at the meter
scale, h ∼ 10−3 m. In this setup, Saló-Salgado et al. (2023b) estimated numerical diffusion to
be comparable to or smaller than physical diffusion almost everywhere in their simulations;
hence, some degree of diffusivity needs to be introduced.

2.4.2 Implementation for use in ad-blackoil

Our implementation is directed towards models that are set up using the GenericBlackOilModel
class, and simply adds a diffusive component to the total flux term (which, by default, is
just the advective flux). Similar to the implementation of relative permeability hysteresis de-
scribed in sect. 2.3, where we update the relative permeability state function, here we modify
the state function for the total CO2 flux (see ch. 5 in (Lie and Møyner 2021) for an in-depth
description of MRST state functions). To do this, the user simply needs to specify the pseudo-
diffusivity, and update the ComponentTotalFlux using CO2TotalFluxWithDiffusion (as
shown in sect. 2.4.3).

The key statements within the evaluation method in the class CO2TotalFluxWithDiffusion
are provided below. Note that some of these have been simplified for readability, so inter-
ested users should refer to the actual code for full details:
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% 1. Get quantities
% Model operators;
op = model.operators
% Face diffusivity (analogous to transmissibility)
T = getFaceDiffusivity(model.G, model.rock);
% Get mass fraction of CO2
X_co2 = MassCo2InBrine ./ massBrine;
% Get molecular diffusivity and update T
C = prop.componentDiffusion;
Tc = C(2).*T;
% Mass fraction gradient
grad_xi = op.Grad(X_co2);
% Face density and saturation according to centered or upwind scheme
if faceAvg, ...
else, ...; end

% 2. Get diffusive flux and update total flux
diff_flux = -faceDens.*faceS.*Tc.*grad_xi; % kg/s/m^2
% Update total CO2 flux
v{2} = v{2} + diff_flux;

We emphasize that the GenericBlackOilModel class uses mass fluxes instead of surface
volumes (used by the earlier, specific black-oil model classes such as ThreePhaseBlackOilModel).
This ensures consistent units between solvers and facilitates model management. We also
note that a code structure similar to the one described here, with a class that incorporates
the desired flux model, can be used to extend this implementation (see ch. 5 in Lie and
Møyner 2021).

2.4.3 MRST example: the effect of CO2 diffusion on convective fingers

To illustrate the effect of adding CO2 diffusion in brine, we present an example inspired by
recent work on the FluidFlower project (Eikehaug et al. 2023; Fernø et al. 2023; Flemisch
et al. 2023; Haugen et al. 2023; Saló-Salgado et al. 2023b). The FluidFlower is a meter-scale,
quasi-2D experimental rig with transparent panels. It can be filled with sands to create real-
istic cross sections, and multiple ports provide capabilities for multiphase/multicomponent
injection and monitoring (Fig. 2.10a). Here, we generated a simple stratigraphic section with
dimensions 0.01× 1× 0.66 m, including a fault structure, and set it at a depth of 1 km. At
this depth, the CO2 is already in supercritical state, which is the intended state for storage
in sedimentary basins. Compared to the FluidFlower, which operates at surface P ,T , this
facilitates convergence of the nonlinear solver; the main reason is that the CO2 is much more
buoyant at the surface, where it exists in gaseous state (Saló-Salgado et al. 2023b). The
reservoir and fault permeability can be seen on top of the grid (h ≈ 2.5 mm) in Fig. 2.10b.
We inject CO2 in the lower right of the domain at a surface rate of 8 ml/min during one day,
and run the simulation for 30 days.

This example is provided in the script exampleDiffusion. We specify two phases, oil
(with properties of water) and gas. The model can be set up using GenericBlackOilModel
and CO2TotalFluxWithDiffusion:
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Figure 2.10: a Overview of the porous medium used in the FluidFlower international benchmark
study (Flemisch et al. 2023). Letters indicate different sand types, and three fault structures are
present. Modified from Saló-Salgado et al. (2023b). b Setup used in this example, conducted at 1
km depth. h ≈ 2.5 mm. The colormap shows reservoir and fault permeability (1 D and 10 mD,
respectively).

% Create model (oil is water)
model = GenericBlackOilModel(G,rock,fluid,'disgas',true,'water',false);
model = model.validateModel(); % Add state function groups
% Specify diffusion
D = 1e-10; % scalar pseudo-diffusivity for CO2 in water
diff_flux = CO2TotalFluxWithDiffusion(model);
diff_flux.componentDiffusion = [0 D]; % water in gas phase not considered
diff_flux.faceAverage = true; % Centered scheme
model.FlowDiscretization.ComponentTotalFlux = diff_flux; % Update model
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Note that the value of DCO2
o may need to be lower than the molecular diffusivity (DCO2

o ),
depending on the magnitude of advective fluxes and grid resolution. Results in Fig. 2.11
show a comparison of convective fingers after CO2 injection in the lower-right reservoir,
using different DCO2

o values. It is evident that the finger thickness and spacing change as
diffusive fluxes are introduced in the system; as noted above, this may be required in m-
scale or smaller setups, for example to history-match simulation models to experiments that
provide a ground truth (Saló-Salgado et al. 2023b).

Figure 2.11: Overview of convective mixing in the lower right reservoir using different pseudo-
diffusivities. Grid cell size h ≈ 2.5 mm. Note that the average spacing and finger width increases
with the diffusivity. a No diffusion. b D = 2×10−11 m2/s. c D = 5×10−11 m2/s. d D = 1×10−10

m2/s.

2.5 Discussion

The three MRST extensions presented in this paper provide a starting point for more spe-
cific CO2 storage models using the ad-blackoil or compositional modules. As discussed
next, new contributions may focus on different equations for PVT properties, application
of hysteresis to the wetting phase or three-phase systems, and mechanical dispersion, for
example.

The mixing model presented in sect. 2.2 is based on the formulations by Duan and Sun
(2003), Spycher et al. (2003), and Spycher and Pruess (2005). It is most accurate at GCS
P, T conditions (i.e., T ∈ ∼[30, 90] ◦C, P ∈ ∼[80, 300] bar), and appropriate above the CO2

critical point (Hassanzadeh et al. 2008). The main focus of Spycher et al. (2003), Spycher
and Pruess (2005), and Hassanzadeh et al. (2008) is in predicting the solubility of CO2 in
the aqueous phase (xCO2 , where x is the mole fraction). This is reasonable given the change
in aqueous phase properties with CO2 dissolution, and that xCO2 is a factor of ∼[2, 10] larger
than yH2O at P ∈ [80, 300] bar, T < ∼70 ◦C. At higher temperatures, yH2O ∼ xCO2 or larger,
and the assumption of infinite dilution starts to introduce larger error in the calculation of
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water vaporization (Spycher et al. 2003). Similarly, if pressure decreases to the point that
CO2 becomes a gas, yH2O increases much faster and the assumption no longer applies (still,
we note that Fig. 4-7 in Spycher et al. (2003) indicate a good match with experimental
data at low pressures). Error in yH2O is < 10% for sodium chloride brines up to 6 molal,
and ≤ 15% for calcium chloride brines up to 3 molal (Spycher and Pruess 2005). Overall,
the implemented PVT model is appropriate for most CO2 reservoirs in sedimentary basins;
however, in higher temperature and/or salinity reservoirs, or where CO2 phase changes
are expected (as P, T decrease), a different model may be needed. In addition to phase
composition, this also applies to errors introduced by some of the PVT property models,
such as CO2 viscosity (Fig. 2.5).

In sect. 2.3, we accounted for relative permeability hysteresis in the nonwetting phase
(gas in most sediments) due to its importance during secondary imbibition at the trailing
edge of the CO2 plume (Juanes et al. 2006). Hysteresis in the wetting phase is typically
less pronounced (Juanes et al. 2006), but depends on the rock type and fluid system (Naar
et al. 1962; Bennion and Bachu 2008; Akbarabadi and Piri 2013). It is well known that
the relative permeability of a given fluid phase is impacted by a number of factors including
flow rates, pore structure, wettability and degree of cementation (e.g., Naar et al. 1962;
Bryant and Blunt 1992; Jadhunandan and Morrow 1995; Spiteri et al. 2008; Krevor et
al. 2012; Reynolds and Krevor 2015). As a result, we emphasize that the choice of the
relative permeability model and its parameters must be evaluated on a case-to-case basis.
Additionally, our implementation of relative permeability hysteresis in sect. 2.3 is limited
to two-phase water-gas (immiscible) or oil-gas (miscible) systems. Most reservoir simulators
model three-phase relative permeability based on the model by Stone (Stone 1970), where
krw(Sw), krg(Sg) and kro(Sw, Sg) (see ch. 8.1.4 and 11.3 in Lie 2019). If the two-phase relative
permeabilities display hysteresis, the interpolation method for kro can also accommodate
hysteresis (e.g., Killough 1976). However, three-phase relative permeability measurement
and modeling remain topics of active research (Blunt 2017), and an in-depth discussion on
this topic is beyond the scope of this paper. Therefore, while we note that implementations
for three-phase fluid systems would also be of great interest to the MRST community, we do
not address this topic further. Interested readers are referred to Baker (1988), Spiteri and
Juanes (2006), Alizadeh and Piri (2014), Blunt (2017), and Jia et al. (2018) and references
therein.

In sect. 2.4, we presented a model for the diffusive flux based on a scalar diffusion coef-
ficient. Besides practicality, the reasoning behind the choice of Eq. 2.15 is that Dγ

α can be
increased to account for mechanical dispersion in relatively homogeneous media (e.g., Riaz et
al. 2006). However, in a recent application of this model, Saló-Salgado et al. (2023b) reported
that the use of a scalar coefficient may lead to inaccuracies at higher flow velocities. This is
consistent with the findings of Liang et al. (2018), who showed that, in homogeneous glass
beads, the dominant mechanism can be estimated as Rd = Dγ

α/αtu, where αt is the transverse
dispersivity (L); this leads to dispersion dominating over molecular diffusion for Rd ≪ 1,
which occurs when grain diameters are above 0.4 mm. In natural sediments, heterogeneity
increases the effective dispersivity, which in turn increases mechanical dispersion (Gelhar et
al. 1992; Liang et al. 2018). Therefore, our model is appropriate for relatively homogeneous
sediments where molecular diffusion dominates. In heterogeneous media or where larger flow
velocities are expected, a dispersion tensor (Dγ

α,h) is likely necessary.
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2.6 Summary

This work focuses on enhancing the capabilities of the ad-blackoil module in MRST, with
the main goal of simulating 3D geologic carbon sequestration (GCS) in saline aquifers. Our
contributions can be divided in three sections:

• Sect. 2.2: thermodynamic model to calculate input PVT properties

• Sect. 2.3: relative permeability hysteresis

• Sect. 2.4: molecular diffusion

We provide the code and examples detailing how to use each of these additions, which are
intended for two-phase water-gas (immiscible) or oil-gas (miscible) models obtained with
the GenericBlackOilModel class. The description provided in this paper, together with the
code, should facilitate implementation of alternative models.

Code availability

The code, including examples presented in this paper, can be accessed through
https://github.com/lsalo/mrst-adblackoil-gcs. Please note that most of the functionality
described will be integrated into MRST in the near future; hence, the code (including file
names) is still subject to change. Updates will be posted in the README file on GitHub.
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Chapter 3

Direct Comparison of Numerical
Simulations and Experiments of CO2
Injection and Migration in Geologic
Media: Value of Local Data and
Forecasting Capability

This chapter has been published in Saló-Salgado et al. (2023b).

Abstract

Purpose: The accuracy and robustness of numerical models of geologic CO2 sequestration
are almost never quantified with respect to direct observations that provide a ground truth.
This study presents CO2 injection experiments in meter-scale, quasi-2D tanks with porous
media representing stratigraphic sections of the subsurface, compared to numerical simula-
tions of those experiments.
Goals: Evaluate (1) the value of prior knowledge of the system, expressed in terms of ex-
situ measurements of the tank sands’ multiphase flow properties (local data), with respect
to simulation accuracy; and (2) the forecasting capability of the matched numerical models,
when applied to different settings.
Methods: Match three versions of a numerical simulation model—each with access to an
increasing level of local data—to a CO2 injection experiment in Tank 1 (89.7×47×1.05
cm). Matching is based on a quantitative comparison of CO2 migration at different times
from timelapse image analysis. Next, use the matched models to make a forecast of a dif-
ferent injection scenario in Tank 1, and, finally, a different injection scenario in Tank 2
(2.86×1.3×0.019 m), which represents an altogether different stratigraphic section.
Results and conclusion: The simulation model can qualitatively match the observed
free-phase and dissolved CO2 plume migration and convective mixing. Quantitatively, sim-
ulations are accurate during the injection phase but their concordance decreases with time.
Using local data reduces the time required to history match, although the forecasting ca-
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pability of matched models is similar. The sand-water-CO2(g) system is very sensitive to
effective permeability and capillary pressure changes; where heterogeneous structures are
present, accurate deterministic estimates of CO2 migration are difficult to obtain.

3.1 Introduction

CO2 capture and subsequent geologic carbon sequestration (GCS) is a climate-change miti-
gation technology that can be deployed at scale to offset anthropogenic CO2 emissions during
the energy transition (Marcucci et al. 2017; EASAC 2018; Celia 2021; IPCC 2022). In GCS,
reservoir simulation, including coupled flow and geomechanics, is the primary tool used to
assess and manage geologic hazards such as fault leakage (e.g., Caine et al. 1996; Ingram
and Urai 1999; Nordbotten and Celia 2012; Zoback and Gorelick 2012; Juanes et al. 2012;
Jung et al. 2014; Vilarrasa and Carrera 2015; Saló-Salgado et al. 2023a) and induced seismic-
ity (e.g., Cappa and Rutqvist 2011; Zoback and Gorelick 2012; Juanes et al. 2012; Ellsworth
2013; Verdon et al. 2013; Alghannam and Juanes 2020; Hager et al. 2021). In response to
the inherent uncertainties associated with modeling and simulation of CO2 storage (Nord-
botten et al. 2012), building confidence in the forecasting capabilities of simulation models
requires calibration (or, synonymously, history matching), a process that involves updating
the reservoir model to match field observations as they become available (Oliver and Chen
2011; Doughty and Oldenburg 2020).

History matching is an ill-posed inverse problem (Oliver and Chen 2011). This means that
multiple solutions (i.e., parameter combinations) exist that approximate the data equally
well. Automated techniques such as Markov chain Monte Carlo, randomized maximum like-
lihood or ensemble-based methods can be used to quantify uncertainty in history-matched
models, especially in combination with surrogate models to reduce forward model computa-
tional time (see Aanonsen et al. 2009; Oliver and Chen 2011; Jagalur-Mohan et al. 2018; Jin
et al. 2019; Liu and Durlofsky 2020; Santoso et al. 2021; Landa-Marbán et al. 2023, forth-
coming, and references therein). In practice, however, it may be difficult to ensure that the
chosen simulation model provides the best possible forecast. This is due to different subsur-
face conditions, the inability to include all sources of uncertainty in the models, incomplete
field data and limited time for history matching.

In the laboratory, intermediate-scale (∼meter) experiments have been used to study the
physics of petroleum displacement (e.g., Gaucher and Lindley 1960; Brock and Orr 1991;
Cinar et al. 2006) and contaminant transport (e.g., Silliman and Simpson 1987; Wood et al.
1994; Lenhard et al. 1995; Fernández-García et al. 2004). Similar 2D and 3D flow rigs have
recently been applied to CO2 storage, providing a link between core-scale measurements and
field observations:

Kneafsey and Pruess (2010) found the impact of convective dissolution to be significant,
using a page-size Hele-Shaw cell and numerical simulations. Neufeld et al. (2010) studied the
scaling of convective dissolution and found it to be an important mechanism in the long-term
trapping of injected CO2 in an idealized site. Wang et al. (2010) used a 3D setup to investi-
gate the ability of electrical resistivity tomography to identify localized leaks. Trevisan et al.
(2014) and Trevisan et al. (2017) focused on the impact of structural and residual trapping.
In homogeneous sands, they found that previous trapping models, such as the Land (1968)

27



Chapter 3. Comparison of Numerical Simulations and Experiments of CO2 migration

model, can approximate the residually trapped gas saturation (R2 > 0.6). Studying an
heterogeneous aquifer characterized by a log-normal distribution of six different sand facies,
they report that trapping efficiency increased significantly due to structural trapping. A
strong control of sand heterogeneity on upward migration of CO2 was also found by Lassen
et al. (2015). Krishnamurthy et al. (2019) and Krishnamurthy et al. (2022) devised a novel
technique to automate the process of beadpack/sandpack deposition and generate realistic
depositional fabrics; they concluded that grain-size contrast and bedform architecture sig-
nificantly impact CO2 trapping. Subsequently, Ni et al. (2023) presented modified invasion-
percolation simulations and reported that bedform architecture can impact CO2 saturation
if enough grain-size contrast is present. Askar et al. (2021) used a ∼8 m-long tank to test a
framework for GCS monitoring of CO2 leakage. These studies employed homogeneous glass
beads or sands, or focused on heterogeneities and bedform architectures in the aquifer layer;
structural complexity was minimal.

In this paper, we use quasi-2D, intermediate-scale experiments of CO2 storage to evaluate,
quantitatively, the forecasting capability of history-matched simulation models against well-
defined spatial data. An attempt was made to recreate realistic basin geometries, including
stacking of storage reservoirs, faults, caprock and overburden. We simulate each of the
three presented experiments with three versions of a numerical model, each with increasing
access to local petrophysical measurements. These different versions are denoted Model 1
(M1), Model 2 (M2) and Model 3 (M3). This allows us to assess (1) the value of local
information of the system, expressed in terms of sand petrophysical measurements, during
history matching, and (2) transferability or forecasting capability of our matched simulation
models, when tested against a different experiment. The term concordance is used to evaluate
agreement between experiments and observations (Oldenburg 2018).

3.2 Physical Experiments

The physical experiments of CO2 injection are conducted using the FluidFlower rigs. These
rigs are meter-scale, quasi-2D tanks with transparent Plexiglass panels designed and built
in-house at the University of Bergen (Fig. 3.1). Here, we used two tanks, with dimensions
89.9 × 47 × 1.05 cm and 2.86 × 1.3 × 0.019 m (referred herein to as Tank 1 and Tank 2,
respectively). Different geologic settings are constructed by pouring unconsolidated sands
with desired grain sizes into the water-saturated rigs. The rigs have multiple ports which
allow flushing out fluids after a given CO2 injection, such that multiple injections can be
conducted in the same setting. The location of the ports can be adjusted to accommodate
different injection scenarios. A variety of techniques have been developed by UiB engineers
in order to build complex structures such as folds and faults.

Below, we summarize the petrophysical measurements, experimental setup, geologic mod-
el/porous media construction and experimental schedule. Details on the conceptualization of
the FluidFlower rigs and technical information are given in Fernø et al. (2023) and Eikehaug
et al. (2023), while the full description of the physical experiment in Tank 1 and ex-situ
measurements are provided by Nordbotten et al. (2022) and Haugen et al. (2023). Further
details on the experiment in Tank 2, as well as results of the international benchmark study
(IBS), are provided by Flemisch et al. (2023).
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Figure 3.1: Overview of the FluidFlower rigs and porous media used in the physical experiments.
a Medium FluidFlower rig (Tank 1). b Snapshot during sand pouring to build the porous medium
used in Experiments A1 and A2 in Tank 1 (Haugen et al. 2023). c Front view of porous medium
in Tank 1, with lithologies in white and injector location shown with a red star. The length and
height correspond to the porous medium. Note the fixed water table at the top. d Overview of
the main FluidFlower rig (Tank 2), showing the back panel with sensor network. e Porous medium
in Tank 2, used for Experiment B1, with lithologies in white. Location of injectors and Boxes A,
B and C for analysis are shown with a red star and gray boxes, respectively. Length and variable
height correspond to the porous medium.

3.2.1 Sand petrophysical properties

Measurements on the employed Danish quartz sands were conducted using specialized equip-
ment to determine average grain size (d), porosity (ϕ), permeability (k), capillary entry
pressure (pe) and drainage and imbibition saturation endpoints (denoted as connate water
saturation, Swc, and trapped gas saturation, Sgt). The methodology is described by Haugen
et al. (2023) and obtained values are provided in Tab. 3.1. Sands C, D, E and F are very
well sorted, sand G is well sorted, and sand ESF is moderately sorted (Haugen et al. 2023).
We verified that Darcy’s law is applicable in our system using the Reynolds number (Re):

Re =
ud

ν
(3.1)

where u is the fluid discharge per unit area, d the mean grain diameter, and ν the kinematic
viscosity of the fluid. From our simulation results, matched to experimental observations,
max(Re) ≤ 1, which ensures the applicability of Darcy’s law (e.g., Bear 1972).
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Table 3.1: Petrophysical properties for used quartz sands, as obtained from local, ex-situ mea-
surements. Porosity and permeability are the average from two measurements for each sand, with
a maximum difference between measurements of 0.02 (ϕ) and estimated 20% uncertainty (k). Mea-
sured gas column heights for sands E-G were 0, so pe could not be directly measured. Experimental
error in pe, Swc and Sgt was not quantified. A detailed description of the methodology and petro-
physical values is provided by Nordbotten et al. (2022) and Haugen et al. (2023).

Sand type d (std) [mm] ϕ [-] k [D] pe [mbar] Swc Sgt

ESF 0.2 (0.11) 0.435 44 15 0.32 0.14
C 0.66 (0.09) 0.435 473 3 0.14 0.1
D 1.05 (0.14) 0.44 1110 1 0.12 0.08
E 1.45 (0.19) 0.45 2005 - 0.12 0.06
F 1.77 (0.31) 0.44 4259 - 0.12 0.13
G 2.51 (0.63) 0.45 9580 - 0.1 0.06

3.2.2 Experimental setup

The front and back panels of the FluidFlower are mounted on a portable aluminum frame,
such that boundaries are closed on the sides and bottom (no flow). The top surface is open
and in contact with fluctuating atmospheric pressure (Fig. 3.1). A fixed water table above
the top of the porous medium was kept throughout the experiments conducted here. The
experimental setup incorporates mass flow controllers to inject gaseous CO2 at the desired
rate, and a high-resolution digital camera with time-lapse function (Haugen et al. 2023).

Experiments were conducted in 2021 and 2022 in Bergen (Norway) at room temperature
(≈ 23 ◦C) and ambient atmospheric pressure. Temperature changes were minimized as
much as possible, but maintaining a constant temperature was not possible in the available
laboratory space. The fluids and sands were set in the FluidFlowers using the following
procedure:

1. The silica sands are cleaned using an acid solution of water and HCl to remove car-
bonate impurities.

2. The FluidFlower rig is filled with deionized water.

3. Sands are manually poured into the rig using the open top boundary, in order to
construct the desired porous medium.

4. A pH-sensitive, deionized-water solution containing bromothymol blue, methyl red,
hydroxide and sodium ions is injected through multiple ports until the rig is fully sat-
urated. This enables direct visualization of CO2 gas (white), dissolved CO2 (yellowish
orange to red), and pure water (dark teal).

5. 5.0 purity (99.999%) CO2 is injected as gaseous phase at the desired rate. CO2 is
injected through dedicated ports directly into the rig (Fig. 3.1).

6. After the injection phase, injection ports are closed and CO2 migration continues.
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7. Once the experiment is finished, the rig can be flushed with deionized water and the
process can start again from step 4.

Full details on the fluids are given in Fernø et al. (2023) and Eikehaug et al. (2023). Below,
we refer to the pH-sensitive solution in the rigs as “dyed water”.

3.2.3 Porous media geometries

The geometries of the porous media used in this paper aim to recreate the trap systems
observed in faulted, siliciclastic, petroleoum-bearing basins around the world, given the
geometrical constraints of the FluidFlowers and manual sand pouring (Fernø et al. 2023;
Eikehaug et al. 2023). Features such as folds, faults and unconformities were built in both
Tanks 1 and 2. The construction of faults, shown in Fig. 3.1b and detailed in Haugen et al.
(2023), requires a minimum effective “fault-plane” thickness; hence, our fault structures are
thicker than natural faults with the same displacement (Childs et al. 2009). Fine sands
(d ≈ 0.2 mm) are used to represent sealing or caprock formations.

The geometry in Tank 1 (Fig. 3.1c) contains three main high-permeability reservoirs (F
sand). The bottom and middle F sand are separated by a seal (ESF sand), while the middle
and top are separated by the C sand and connected through a higher permeability fault
(refer to sect. 3.2.1 for pertrophysical properties). The fault separates the bottom section
into two compartments. The bottom and top F sand provide anticlinal traps for the CO2 to
accumulate in.

The geometry in Tank 2 (Fig. 3.1e) was specifically motivated by the structure of North
Sea reservoirs and petroleum basins. From bottom to top, it contains two sections of
decreasing-permeability reservoirs capped by two main sealing layers. A fault separates
the bottom section into two compartments, while two faults separate the top section into
three compartments. Each fault has different petrophysical properties: The bottom fault is
a heterogeneous structure containing ESF, C, D, F and G sands, the top-left fault is an im-
permeable structure made of silicone and the top-right fault is a conduit structure containing
G sand.

3.2.4 Experimental injection schedule

The injection schedules for experiments in Tanks 1 and 2 are provided in Tab. 3.2. Injection
ports have an inner diameter of 1.8 mm.

3.3 Numerical Simulations

3.3.1 Model setup

The isothermal simulations presented in this work were performed with the MATLAB Reser-
voir Simulation Toolbox, MRST (Krogstad et al. 2015; Lie 2019; Lie and Møyner 2021). Specif-
ically, we used the black-oil module, which is based on fully implicit solvers with automatic
differentiation, and assigned properties of water to the oleic phase, such that the gaseous
phase (CO2 only) can dissolve in it. Vaporization of water into the gas phase and chemical
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Table 3.2: Schedules for the three CO2 injection experiments simulated in this work. IR is injection
rate, while Ii denotes injector (port) number. A five-minute ramp-up and ramp-down was applied
in Experiments A1 and A2 in Tank 1. Total duration of conducted experiments and simulations is
48h (A1), 5h (A2) and 120h (B1). Location of injection wells is provided in Fig. 3.1.

Experiment A1 A2 B1

IR [ml/min] t [hh:mm:ss] IR t IR t

0.1 (I1) 00:00:00 0.1 (I1) 00:00:00 10.0 (I1) 00:00:00
2.0 00:05:00 2.0 00:05:00 10.0 05:00:00
2.0 00:50:00 2.0 04:43:44 0.0 05:00:01
0.0 00:55:00 0.0 04:48:33 10.0 (I2) 02:15:00
0.1 (I2) 01:09:11 0.0 05:00:00 10.0 05:00:00
2.0 01:14:11 0.0 05:00:01
2.0 02:29:11 0.0 120:00:00
0.0 02:34:00
0.0 48:00:00

reactions are not considered, because they are not primary controls on fluid migration for
our operational setup and analysis time.

In addition to structural and dissolution trapping, we also considered residual trap-
ping (Juanes et al. 2006) to be consistent with local measurements showing nonzero trapped
gas saturation (sect. 3.2.1). This is achieved through hysteretic relative permeability curves
for the nonwetting (gas) phase (see sect. 3.3.2). Our implementation in MRST follows ECLIPSE’s
technical description (SLB 2014b), and Killough’s (1976) model is used to compute the scan-
ning curves (Saló-Salgado et al. 2023c, forthcoming). Physical diffusion was also included
through the addition of a diffusive flux term with a scalar, constant coefficient in the com-
putation of the total CO2 flux (Bear 1972).

The simulator requires very small time-steps (seconds to minutes) due to the buoyancy
of CO2 at atmospheric conditions and high sand permeabilities (Tab. 3.1). Linear solver
time was reduced by means of AMGCL (Demidov and Rossi 2018; Lie 2019), an external,
pre-compiled linear solver. The greatest challenge was the convergence of the nonlinear
solver, which required many iterations and time-step cuts. This is consistent with the groups
working in the FluidFlower international benchmark study (Flemisch et al. 2023).

Next, we describe the computational grids for experiments in Tanks 1 and 2, PVT prop-
erties and boundary conditions. Petrophysical properties are specific of each model version
and are detailed in sect. 3.3.2.

Computational grids

A front panel image of the porous medium was used to obtain layer contact coordinates
through a vector graphics software (Fig. 3.2a). These contacts were then imported into
MATLAB to generate the computational grids using the UPR module (Berge et al. 2019;
Berge et al. 2021)(Fig. 3.2b,d). The grids were generated in 2D and then extruded to 3D
(using a single cell layer) to account for thickness and volume. Note that, in Tank 1, where
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the porous medium has dimensions of 89.7× 47× 1.05 cm, the thickness (space between the
front and back panels) is constant (10.5 mm). Tank 2, which is significantly larger (porous
medium dimensions 2.86× 1.3× 0.019 m), has a thickness of 19 mm at the sides; however, it
varies towards the middle due to forces exerted by the sand and water, to a maximum of 28
mm. A thickness map obtained after initial sand filling was used to generate our variable-
thickness mesh via 2D interpolation (Fig. 3.2c). Also, the top surface of the porous medium
is not flat (height = 130± 3 cm).

Figure 3.2: Simulation grids overview. a front panel view of Tank 1, where the layer contacts
have been highlighted in white. b front view of simulation grid for experiments in Tank 1, with
lithologies indicated and colored based on petrophysical properties (see sect. 3.3.2). Location of
injection wells is shown in red. c thickness map of simulation grid for experiments in Tank 2. d
front view of simulation grid for experiments in Tank 2, with lithologies indicated and colored based
on petrophysical properties. Location of injection wells is shown in red.

Our composite Pebi grids (Heinemann et al. 1991) have a Cartesian background and are
refined around face constraints (contacts and faults) as well as cell constraints (injection
wells) (Berge et al. 2019; Berge et al. 2021). We generated multiple grids to test the finest
grid we could afford to simulate Experiment B1 in Tank 2 with. Our grid has a cell size h ≈ 5
mm and 151,402 cells (Fig. 3.2d). The grid used for Tank 1 has a similar cell size (h ≈ 4
mm and 27,200 cells), which was chosen to reduce grid-size dependencies when applying our
matched models to Experiment B1.

PVT properties

Consistent with experimental conditions, our simulations are conducted at atmospheric con-
ditions (T = 25 C), where the CO2 is in gaseous state. We employed a thermodynamic model
based on the formulations by Duan and Sun (2003) and Spycher et al. (2003) and Spycher
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and Pruess (2005) to calculate the composition of each phase as a function of p, T . The
implementation for a black-oil setup is described in Hassanzadeh et al. (2008) and references
therein. Given the boundary conditions (sect. 3.3.1) and dimensions of our experimental
porous media, pore pressure changes (∆p) are very small in our simulations (max ∆p ≪ 1
bar). Hence, the fluid properties remain similar to surface conditions, where the water and
CO2 have, respectively, a density of 997 and 1.78 kg/m3, and a viscosity of 0.9 and 0.015 cP.
The maximum concentration of CO2 in water is ≈ 1.5 kg/m3.

Initial, boundary and operational conditions

Our porous media are fully saturated in water at the beginning of CO2 injection. No-
flow boundary conditions were applied everywhere except at the top boundary, which is at
constant pressure and includes a fixed water table a few cm above the top of the porous
medium. Injection is carried out via wells completed in a single cell at the corresponding
coordinates. The diameter of injection wells is 1.8 mm in both Tank 1 and Tank 2, which
operate at a constant flow rate (see sect. 3.2). The simulation injection schedule follows the
experimental protocol, provided in Tab. 3.2. Note that injection rates in our simulations of
Experiment A1 and A2 were slightly adjusted during the calibration procedure, as explained
in sect. 3.3.3 and 3.4.

3.3.2 Simulation model

Three different model versions, denoted Model 1 (M1), Model 2 (M2) and Model 3 (M3), are
used throughout this study to evaluate the value of local data in forecasting subsurface CO2

migration. Each successive model was constructed based on access to an increasing level of
local data, with M1 having access to the least data and M3 having access to the most data.
The model-specific parameters are limited to the following:

• Petrophysical properties (porosity, permeability, capillary pressure and relative perme-
ability), which depend on available local data and are described in this section.

• The molecular diffusion coefficient (D). Models 1-3 were calibrated using the same
value, D = 10−9 m2/s. Additionally, Model 3 was also calibrated with D = 3 × 10−9

m2/s. Accordingly, where required we denote Model 3 as M3,1 and M3,3.

• Injection rate. Experiments in Tank 1 were conducted at a very low injection rate
(IR = 2 ml/min, see Tab. 3.2). Given that the mass flow controllers used in Tank 1
may be inaccurate for this rate, the injection rate was also modeled as an uncertain
parameter. Model calibration was achieved with IR ∈ [1.6, 1.8] ml/min for all three
models.

All other model characteristics, including the grid and numerical discretization, remain
unchanged. Below, we describe the starting petrophysical values for each of our three sim-
ulation models. Note that the experimental geometry in Tank 1, used for matching, only
contained sands ESF, C, E and F. Properties for sands D and G are also provided because
they were required to simulate the experiment in Tank 2 (Fig. 3.1).
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Model 1 (M1)

For this model, local petrophysical data were limited to a measure of the average grain size (d;
see sect. 3.2.1 and Tab. 3.1). Hence, petrophysical properties were estimated from published
data in similar silica sands. Porosity was selected from data in Beard and Weyl (1973)
and Smits et al. (2010) for moderately to well-sorted sands. Permeability was obtained from
fitting a Kozeny-Carman model to data in Beard and Weyl (1973) and Trevisan et al. (2014).
The resulting equation has the form k = βd2ϕ3, where β equals 12,250 in our fit with d in
mm and k in D. Obtained porosity and permeability values are provided in Table 3.3.

Table 3.3: Initial porosity and permeability for Model 1. See main text for estimation details.

Sand type d [mm] ϕ [-] k [D]

ESF 0.2 0.37 25
C 0.66 0.38 290
D 1.05 0.40 930
E 1.45 0.39 1530
F 1.77 0.39 2280
G 2.51 0.42 5720

Capillary pressure curves were computed as described below:

1. Capillary pressure measurements in a similar system were obtained from the litera-
ture. In this case, Plug and Bruining (2007) measured capillary pressure curves on the
unconsolidated quartz sand-CO2-distilled water system at atmospheric conditions. We
used their measurements on sand packs with an average particle size between 0.36 and
0.41 mm, which are closest to the C sand in our experiments (Fig. 3.3a).

2. A Brooks and Corey (1964) model of the form pc = pe(S
∗
w)

− 1
λ was fitted to these data,

where pe is the nonwetting phase entry pressure at Sw = 1, λ = 2.6 and S∗
w = Sw−Swc

1−Swc
is the normalized water saturation with irreducible or connate water saturation Swc.
This fit led to our reference curve, pcr (Fig. 3.3a).

3. The capillary pressure depends on the pore structure of each material, such that sands
with different grain sizes require different pc curves. The capillary pressure variation
can be modeled by means of the dimensionless J-function proposed by Leverett (Lev-
erett 1941; Saadatpoor et al. 2010): J(Sw) =

pc
σ cos θ

√
k
ϕ
, where σ is the surface tension

and θ the contact angle. Assuming the same wettability and surface tension for dif-
ferent sand regions, and the same shape of the pc curve, the capillary pressure for any
given sand (pcs) can be obtained from the reference curve as pcs(Sw) = pcr(Sw)

√
krϕs
ksϕr

(Fig. 3.3b).

Drainage relative permeabilities were obtained from CO2-water measurements by DiCarlo
et al. (2000), who used water-wet sandpacks with 0.25 mm grain size. Specifically, we used
the data reported in their Fig. 4 and 5, and fitted Corey-type functions (Corey 1954;
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Figure 3.3: Multiphase flow properties for Model 1. a Capillary pressure measurements and
reference curve using a Brooks and Corey (1964) function. b Initial capillary pressure curves,
computed from the reference curve using Leverett scaling (see main text). c Relative permeability
data (squares and S5

w model) and our fitted Corey model. d,e Relative permeability of gas and
water, respectively. The drainage curve is shown as a solid line, while the bounding imbibition
curve is shown for sands ESF and G as a discontinuous line. No relative permeability hysteresis
was considered for the water phase.

Brooks and Corey 1964) of the form krw = (S∗
w)

a and krg = c(1 − S∗
w)

b (Fig. 3.3c). The
fitted exponents a and b are 4.2 and 1.4, respectively, while c is 0.97. We assumed that
the difference in relative permeability of different sands is the result of different irreducible
water saturation only (see Fig. 3.3d,e). For each of our sands, Swc was obtained from Timur
(1968) as Swc = 0.01× 3.5ϕ1.26

k0.35
− 1, where ϕ is in percent and k in mD. This model was used

to compute Swc for both the pc and kr curves.
In CO2 storage, secondary imbibition occurs where the water displaces buoyant gas at

the trailing edge of the CO2 plume, disconnecting part of the CO2 body into blobs and
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ganglia and rendering them immobile (Juanes et al. 2006, and references therein). This
means that the maximum water saturation that can be achieved during imbibition equals 1
- Sgt (the trapped gas saturation). Here, we used measurements in sandpacks from Pentland
et al. (2010) to determine Sgt. In particular, we fitted Land (1968)’s model with the form
S∗

gt =
S∗

gi
1+CS∗

gi
, where S∗

g = Sg
1−Swc

= 1 − S∗
w, Sgi is the gas saturation at flow reversal, and C

is Land’s trapping coefficient with a value of 5.2 in our fit. Although Pentland et al. (2010)
report that the best fit is achieved with the Aissaoui (1983) and Spiteri et al. (2008) models
(cf. their Fig. 5), Land’s model was chosen here given that most relative permeability
hysteresis models build on this one (see next paragraph).

Nonwetting phase trapping contributes to irreversibility of the relative permeability and
capillary pressure curves (hysteresis). Here, we accounted for this mechanism in the gas
relative permeability due to its importance in subsurface CO2 migration (Juanes et al. 2006,
and references therein). In particular, we used Land’s (1968) model to compute the bound-
ing imbibition curve (see Fig. 3.3d), where Sgt is obtained as described above, and Kil-
lough’s (1976) model to characterize the scanning curves. In Killough’s model, the scanning
curves are reversible, such that the relative permeability at Sg < Sgi no longer depends on
the displacement type.

Model 2 (M2)

This model had access to local, ex-situ measurements of single-phase petrophysical proper-
ties, i.e., porosity and intrinsic permeability (see sect. 3.2.1 and Tab. 3.1). Comparing with
Tab. 3.3, it can be seen that our estimation for Model 1 above was correct to the order of
magnitude, but resulted in smaller values: porosity ∈ [85, 93]% and permeability ∈ [53, 84]%
of the local measurements.

Capillary pressures and relative permeabilities were obtained using the same procedure
described above for Model 1. The slight differences with respect to the curves shown in
Fig. 3.3b,d,e come from the porosity and permeability values used in the Leverett scaling
and to determine Swc, which were taken from Tab. 3.1 instead. The obtained curves for
Model 2 are provided in Fig 3.4.

Model 3 (M3)

This model was allowed access to all local, ex-situ measurements (see Tab. 3.1). Initial
porosity and permeability remain unchangded with respect to Model 2. Capillary pressure
curves were obtained by scaling the reference curve described in sect. 3.3.2 and shown in
Fig. 3.3a using the measured entry pressure (sect. 3.2.1). The scaling followed the model
pcs(Sw) = pcr(Sw)

pe
per

, where pe is the measured entry pressure for each sand, and per is the
reference curve entry pressure. The obtained curves are shown in Fig. 3.5a.

Relative permeabilities were computed following the same procedure described for Model
1 above. In this case, however, each sand type was assigned the measured Swc and Sgt values
(see Tab. 3.1). This led to differences in both the drainage and imbibition curves, as shown
in Fig. 3.5.
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Figure 3.4: Multiphase flow properties for Model 2. b Initial capillary pressure curves, computed
from the reference curve using Leverett scaling (see main text). b,c Relative permeability of gas
and water, respectively. The drainage curve is solid, while the bounding imbibition curve is shown
for sands ESF and G as a discontinuous line. No relative permeability hysteresis was considered for
the water phase.

Figure 3.5: Multiphase flow properties for Model 3. b Initial capillary pressure curves, com-
puted according to the entry pressure determined experimentally (see sect. 3.2.1). b,c Relative
permeability of gas and water, respectively, according to the endpoints determined experimentally
(sect. 3.2.1). The drainage curves are solid, while the bounding imbibition curves are shown as a
discontinuous line. The inset in b is a zoom view around the trapped gas saturation. No relative
permeability hysteresis was considered for the water phase.

3.3.3 Model calibration

Concordance between results obtained with each simulation model (1 to 3) and the valida-
tion experiment in Tank 1 (A1, see sect. 3.2.4) is quantitatively assessed by comparing the
following quantities (see Fig. 3.6):
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1. At t = 55 min (end of injection in port I1): Areas occupied by free-phase CO2, and
dyed water with dissolved CO2 in the bottom F reservoir.

2. At t = 154 min (end of injection in port I2): Areas occupied by free-phase CO2, and
dyed water with dissolved CO2, in the middle and top F reservoirs.

3. Time at which the first finger touches the tank bottom.

4. Time at which the first finger (sinking from the top F reservoir) touches the middle C
sand.

Experimental values for points 1-2 were obtained by computing areas from time-lapse images
using a vector-graphics software. Careful visual inspection of color-enhanced images was used
to distinguish between free-phase CO2 (white) and dyed water with dissolved CO2 (yellowish
orange to red), and to identify the times for points 3-4 above. Error in experimental values
was estimated to be ≤ 5%, based on repeated measurements (points 1-2), and ∼ 5 min,
based on timelapse image comparison (points 3-4). In the simulation models, the threshold
gas saturation and CO2 concentration in water used to compute areas were Sg > 10−3 and
CCO2 > 15%(Cmax

CO2
) ≈ 0.2 [kg/m3], respectively. The C value was chosen after a shape

comparison of the region with dissolved CO2. A smaller value of CCO2 > 0.05 [kg/m3] was
selected to determine finger times for points 3 and 4 above. Fig. 3.6 shows an overview
of the experimental values for points 2 and 3, while Fig. 3.12 in Sect. 3.4.2 shows the full
comparison with the history-matched/calibrated simulation models.

Figure 3.6: Front panel view of Tank 1, showing quantities and times for history matching of
numerical models to Experiment A1. a shows areas with gaseous CO2 (free-phase, black contours)
and dyed water with dissolved CO2 (green contours) at the end of injection. Location of injection
ports is shown with a star. b shows the time and location where the first finger touches the bottom
of the tank (white arrow), as well as the different lithological units. Note the three F reservoirs
labeled ‘inf’, ‘mid’ and ‘sup’, mentioned in the text and other figures.

The experiment was conducted first. Afterwards, the process consisted of running sim-
ulation models 1 to 3, in parallel, starting with the petrophysical properties described in
sect. 3.3.2. Given the number of uncertain variables (four petrophysical properties for each
lithological unit, the diffusion coefficient and the injection rate) and the time required to
complete a single simulation, a manual history matching method was employed. At the end
of each run, quantities 1-4 above were compared and one or more properties were manually
changed based on observed concordance and domain knowledge. During the first few runs,
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only quantities 1 and 2 above were compared. After obtaining a satisfactory areal match,
petrophysical properties were further adjusted to match quantities 3 and 4.

3.4 Results

In sect. 3.4.1, we present the results of the first simulation of Experiment A1 with each model
and property values detailed in sect. 3.3.2. Then, we detail the calibration of simulation
models using Experiment A1, and assess the value of local data to history-match CO2 storage
simulation models (sect. 3.4.2). Finally, we apply these matched models to Experiment A2,
analog for a longer injection in the same geology (sect. 3.4.3), and to Experiment B1, analog
for a larger-scale injection in a different geologic setting (sect. 3.4.3). We use simulations
of Experiments A2 and B1 to assess the forecasting ability of simulation models in different
conditions.

3.4.1 Initial model results

Fig. 3.7 shows the comparison between Experiment A1 and the first run with each model,
at times indicated in sect. 3.3.3. Numerous differences are evident between the experiment
and models 1 and 2, while Model 3 is much closer to the experiment. In particular, models
1 and 2 overestimate the extent of CO2-rich brine and underestimate the amount of gaseous
CO2 in all F reservoirs (refer to Fig. 3.6 for location). Model 3 approximates much better
the areal extent of gaseous CO2 in all regions, as well as the CO2-rich brine in the middle
and upper F reservoirs. Model 2 provides the closest finger migration times (points 3 and 4
in sect. 3.3.3), although this was not evaluated in the first run, as discussed below.

Petrophysical properties for models 1 and 2 were obtained from references in sect. 3.3.2,
which also used silica sands with similar grain sizes. However, despite the relatively homoge-
neous nature of our quartz sands, Model 3 is significantly more concordant. This result stems
from natural sand variability and highlights the difficulty in establishing general, represen-
tative elementary volume-scale properties for porous media (see, for instance, Hommel et al.
2018; Schulz et al. 2019, for a discussion on intrinsic permeability). Additionally, results in
Fig. 3.7 highlight the need for conducting sand/rock-specific measurements, even in the case
of well-sorted, homogeneous sediments.

3.4.2 Manual history matching and value of local data

Fig. 3.8 shows convergence of areas occupied by free gas (Ag) and water with dissolved
CO2 (Ad), according to sect. 3.3.3. Each iteration corresponds to a successive model with
manually updated parameters, and the different F sand regions evaluated in each panel (a) to
(f) are provided in Fig. 3.6. With the exception of Ad in the upper compartment, Model 3 is
accurate since the beginning, and all areas were satisfactorily matched after four iterations.
Conversely, Model 1 and 2 were significantly off the experimental reference during the first
few iterations. Model 2, however, was accurate after five iterations, while Model 1 required
seven iterations to give satisfactory areal estimates. The mean absolute error (MAE) over the
six areal quantities presented in Fig. 3.8 is evaluated in Fig. 3.9, where it can be seen that,
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Figure 3.7: Comparison between Experiment A1 in Tank 1 (left column) and first run simulation
results with models 1-3. Color map in simulation plots refers to CO2 concentration in water,
according to color bar. The white contours in simulation plots indicate Sg = 10−3. a-d: end of
injection in port 1. e-h: end of injection in port 2. i-l: time at which the first finger touches the
tank bottom. m-p: time at which the first finger touches the middle C sand.

while all models are accurate towards the end (MAE ∈ [5−10] cm2), that required a six-fold
improvement in models 1 and 2, but only two-fold in Model 3. As mentioned in sect. 3.3.3,
CCO2 > 15%(Cmax

CO2
) ≈ 0.2 [kg/m3] was used as threshold to determine areas. While the

absolute values and error would change with a different CCO2 threshold, we checked that the
relative accuracy of our calibrated models does not with both CCO2 > 0.01 and 0.1 [kg/m3].

Agreement between simulations and experimental observations is readily seen in Fig. 3.10,
where the 1:1 line indicates perfect concordance. The degree of concordance can be quan-
tified by means of Lin’s concordance correlation coefficient (CCC) (Lin 1989; Oldenburg
2018), which, for N -valued observation (x) and model (y) vectors (the six areal quantities)
is computed as:

CCC =
2σxy

σ2
x + σ2

y + (x− y)2
(3.2)

Where x and y are the means, σ2
x and σ2

y the variances, and σxy the covariance, all calculated
using 1/N normalization. Results in Fig. 3.10 show that model calibration results in very
good concordance for all models (CCC ≥ 0.99).

Convergence of quantities 3 and 4 in sect. 3.3.3, the times at which the first finger
touches the rig bottom and the middle C sand, respectively, are provided in Fig. 3.11. These
times were only evaluated after a satisfactory areal match for quantities in Fig. 3.8 was
achieved. Therefore, areas no longer change much in the last few iterations in Fig. 3.8. In
Fig. 3.11, it can be seen that Model 2 and 3, which incorporated local intrinsic permeability
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F sup

F

F

Figure 3.8: Convergence of areas occupied by free gas (Ag, left column) and water with dissolved
CO2 (Ad, right column), during the calibration of models 1-3 with Experiment A1. Ad includes
area with gaseous CO2 (see Fig. 3.6). Each iteration represents a new simulation run, and the
experimental reference (E) is shown as a black line. Refer to Fig. 3.6 for region location, and to
sect. 3.3.3 for calibration procedure. a,b: upper F sand. c,d: middle F sand. e,f : lower F sand.

measurements, were significantly closer to our experimental reference than Model 1. Initially,
however, we observed that sinking of gravity fingers in the experiment was faster than our
model values by a factor of ≈ 2. A satisfactory match of all quantities evaluated was achieved
after 11, 8, and 7 iterations for models 1-3, respectively.

Overall, we find that Model 3, with access to local single-phase and multiphase flow
properties, is closer to the experimental reference (i.e., more concordant) from the start.
Model 1 started farthest, and required significantly more effort for calibration. After the
calibration process, all models achieve very good concordance (CCC ≥ 0.99), based on
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Figure 3.9: Convergence of mean absolute error over the six areal quantities measured during the
calibration process. The error is computed with respect to experimental values. See Fig. 3.8 for
areas measured, and refer to sect. 3.3.3 for calibration procedure.

(a) (b) (c)

Figure 3.10: Concordance between successive model iterations and the experiment, based on six
areal measures evaluated during the calibration. Lin’s CCC (Lin 1989) is shown in the key of each
subplot, computed according to Eq. 3.2. a: Model 1. b: Model 2. c: Model 3.

evaluated quantities (Fig. 3.10). The calibration shown in Fig. 3.8, 3.9, 3.10, 3.11 employs
D = 10−9 m2/s in all model versions (M1 to M3). Injection rates (IR) started at 2.0 ml/min
for all three models, and were 1.6 ml/min, 1.8 ml/min and 1.75 ml/min, respectively, at the
end of the calibration. IR is slightly different because the goal was to obtain the best match
with each model, considering IR to be an uncertain variable. In sect. 3.4.3 below, the same
IR is used to make forecasts with all three models.

Tab. 3.4 compares the starting and final (matched) key petrophysical variables for each
model. The models were successfully calibrated by adjusting intrinsic permeability and
the capillary pressure curves (same shape, but scaled to higher or lower pe) only. It was
found that CO2 migration was most sensitive to the properties of the F sand, were most
of the CO2 migration occurs, as well as the ESF seal, which structurally traps the CO2
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Figure 3.11: Convergence of times at which the first finger touches the bottom of the rig (a)
and the middle C sand (b), during the calibration of models 1-3 with Experiment A1. Refer to
sect. 3.3.3 for calibration procedure.

plume. In our matched models, pe of ESF is about twice the measured value; this was
required because the minimum saturation at which we can define pe and ensure numerical
convergence is Sg ≈ 10−4. Reality, however, is closer to a jump in pc from 0 to pe at
an infinitesimally small Sg. Additionally, we found that concordance improved when using
different values for the C and F sands in different model regions. In the case of the C sand, the
explanation lies in the fault construction process, which may reduce porosity with respect to
“natural" sedimentation of stratigraphic layers (Haugen et al. 2023). The increase in F sand
permeability was required to match finger migration times, and is possibly compensating
the absence of mechanical dispersion in the simulations. This is discussed in sect. 3.5.
Our calibrated values are within the same order of magnitude of the ex-situ measurements
(Tab. 3.4) and history-matched values for the porous medium in Tank 2 (Landa-Marbán
et al. 2023, forthcoming).

Fig. 3.12 shows gas saturation (Sg) and CO2 concentration (CCO2) maps at times at which
quantities 1-4 described in sect. 3.3.3 are evaluated. Snapshots are provided for Model 3 only,
since all three calibrated models were qualitatively very similar. It can be seen that CO2

migration is successfully approximated by our numerical model. In detail, however, some
differences are apparent: Firstly, sinking of CO2-rich water from the bottom injector and
horizontal migration along the bottom of the rig is faster in the model. This is due to
the higher permeability that our numerical model requires in order to match the gravity
fingering advance (cf. Tab. 3.4). Secondly, the experiment shows that denser, CO2-rich
water sinks with a rather compact front and closely spaced, wide fingers. Our model with
constant D = 10−9 m2/s approximates all gravity-driven migration of the CO2-rich water
through thinner fingers, with the CO2-saturated region receding with Sg. To better represent
fingering widths, we also matched Model 3 with D = 3× 10−9 m2/s, used in sect. 3.4.3.
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Table 3.4: Petrophysical properties for used quartz sands in Experiment A1. Methodology for local
measurements is provided by Haugen et al. (2023), while starting property modeling is described
in sect. 3.3.2. For each sand, measured (first row), initial (superscript i) and final (superscript f)
values for each of our models is shown. For sand C, the second permeability value refers to the
fault, if different from the rest. For sand F, the second permeability value refers to the middle F
layer, if different from the rest. For Model 3, where property values are different, M3,1 refers to the
calibration with D = 10−9 m2/s and M3,3 refers to D = 3× 10−9 m2/s.

Sand type / model ϕ [-] k [D] pe [mbar] Swc [-] Sgt [-]
ESF 0.435 44 15 0.32 0.14
M i

1 0.37 25 31.4 0.09 0.1468
M f

1 0.37 6 31.4 0.09 0.1468
M i

2 0.435 44 25.6 0.09 0.1468
M f

2 0.435 44 25.6 0.09 0.1468
M i

3 0.435 44 15 0.32 0.14
M f

3 0.435 15 30 0.32 0.14
C 0.435 473 3 0.14 0.1
M i

1 0.38 293 9.3 0.03 0.1565
M f

1 0.38 293, 27 4.6 0.03 0.1565
M i

2 0.435 473 7.8 0.03 0.1565
M f

2 0.435 473, 158 2.6 0.03 0.1565
M i

3 0.435 473 3 0.14 0.1
M f

3 0.435 473, 118 4.5 0.14 0.1
E 0.45 2005 - 0.12 0.06
M i

1 0.39 1528 4.1 0.01 0.16
M f

1 0.39 1528 0.5 0.01 0.16
M i

2 0.45 2005 3.86 0.01 0.16
M f

2 0.45 3008 0.58 0.01 0.16
M i

3 0.45 2005 0.33 0.12 0.06
M f

3,1 0.45 2406 0.33 0.12 0.06
M f

3,3 0.45 3208 0.33 0.12 0.06
F 0.44 4259 - 0.12 0.13
M i

1 0.39 2277 3.3 0.01 0.16
M f

1 0.39 6540, 2907 0 0.01 0.16
M i

2 0.44 4259 2.62 0.01 0.16
M f

2 0.44 6814, 4259 0 0.01 0.16
M i

3 0.44 4259 0 0.12 0.13
M f

3,1 0.44 7240, 4685 0 0.12 0.13
M f

3,3 0.44 9796, 4259 0 0.12 0.13
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Figure 3.12: Comparison between Experiment A1 in Tank 1 (left column) and simulation results
with Model 3 after calibration (gas saturation shown in middle column, and CO2 concentration
shown in right column). Location of injection ports shown by black stars in d. D = 10−9 m2/s.
a-c: End of injection in lower port. d-f : End of injection in upper port. g-i: Time at which the
first finger touches the rig bottom. j-l: Time at which the first finger touches the middle C layer.

3.4.3 Transferability: model forecasts

A key question after history matching a flow simulation model is whether the physical de-
scription has actually been improved, or whether parameters have been modified to match a
set of specific observations only. By applying the history-matched models to a different injec-
tion protocol (Experiment A2 in Tank 1; refer to Tab. 3.2), and subsequently to a different
geometry (Experiment B1 in Tank 2), this can be assessed to some extent.

Analog for a longer CO2 injection in the same geologic setting

This case illustrates concordance of our history matched models in a much longer injection
in the same geology (Experiment A2). Before simulating this case, we observed that the
trapped gas column against the fault in the experiment was different than what could be
achieved with our previous pe for models 1-3 (Tab. 3.4). Because the capillary properties of
the C sand in the fault were not directly involved in Experiment A1, we increased pe in our
calibrated models for that specific region (pe = 5 mbar against the lower F sand, and 3.5
mbar against the middle F sand). All other parameters were taken from the values calibrated
to match Experiment A1.
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Evaluation was performed at the end of injection, at t = 4 h 48 min, with a single run
with models 1-3. IR and D were set to the same value in all three models: 1.7 ml/min and
10−9 m/s2, respectively. The experimental result is shown in Fig. 3.13a, while the simulation
with Model 3 is depicted in Fig. 3.13b,c. We observe that the general distribution of CO2 is
close to the experimental truth. However, the experiment shows a compact sinking front of
the CO2-rich water without fingers; in our model, gravity fingering is apparent at this stage
and fingers are close to the bottom of the rig. Additionally, CO2-saturated brine touches the
right boundary in the upper F reservoir, which does not occur in the experiment. This is due
to capillary breach of the C sand above the middle F reservoir, as shown in Fig. 3.13b, and
can be avoided by reducing the gas saturation value at which pe is defined, or by increasing
pe.

Figure 3.13: Comparison between Experiment A2 in Tank 1 (a) and simulation results with Model
3 (b,c) at the end of the injection phase (t = 4h 48 min).

The comparison of areal quantities is provided in Fig. 3.14, and demonstrates good to
very good concordance. Model 2 (MAE = 16 cm2, CCC = 0.996) and 3 (MAE = 14.54 cm2,
CCC = 0.996) are similarly accurate and slightly better than Model 1 (MAE = 20.18 cm2,
CCC = 0.988), but there are no marked differences.

Analog for a larger-scale CO2 injection in a different geologic setting

Finally, we compare the forecasting ability of our calibrated models against Experiment B1,
conducted in a larger-scale, more complex geology (Fig. 3.1e) (Flemisch et al. 2023). Similar
to sect. 3.4.3, our goal is to assess the forecasting ability of our calibrated models—without
changing their properties. However, given that sand D controls migration in the lower fault
(see Fig. 3.2e) and it was not present in our calibrated models, we allowed one change for
models 1 and 2, which did not have access to local pc measurements. This means that we
ran an initial simulation of this experiment with Model 1 and 2, and then adjusted the pc

curve of the D sand. The selected curve lies at ≈ 1
3

of the pc(Sw) shown in Fig. 3.3 and
Fig. 3.4, respectively.

Next, we evaluate concordance of models 1-3 by comparing them to the experimental
truth after a single run. Evaluation is performed over the total duration of the experiment
(120 h), which is simulated with the same IR (10 ml/min) and D (10−9 m2/s) in all three
models (M1, M2, M3,1). Additionally, a run with D = 3 × 10−9 m2/s was completed with
Model 3 (M3,3) to better approximate finger widths, as noted in sect. 3.4.2.

Gas saturation and CO2 concentration maps at the end of injection with Model 1 are
shown in Fig. 3.15a and Fig. 3.15b, respectively. The full visual comparison is provided in
Fig. 3.16. We make the following observations:
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(a) (b)

Figure 3.14: a: Comparison of areas occupied by free gas (Ag) and water with dissolved CO2

(Ad) for Experiment A2 in Tank 1. Experimental reference shown with a star (E). Ag (F mid, left)
not shown because values are very close to 0. Refer to Fig. 3.6 or Fig. 3.13a for region location.
b: Concordance plot for each of the three models, using the same areal quantities as in a. Lin’s
CCC (Lin 1989) is shown in the key, according to Eq. 3.2.

• At the end of injection (t = 5 h), all three models forecast some migration of CO2

into Box B. Model 2 (Fig. 3.16c) and 3 (Fig. 3.16d) underestimate the amount of CO2,
while Model 1 (Fig. 3.16b) overestimates the amount of CO2 in the top C sand.

• Also at the end of injection, all models forecast faster sinking of the CO2-charged water
tongue arising from the lower injector. This is due to the higher F sand permeability
required to match finger advance (see sect. 3.4.2), particularly in Model 3 with D =
3× 10−9 m2/s.

• The speed at which CO2-rich fingers sink is slightly faster in our models, compared
to the experiment. As expected, Model 3, with a higher diffusion coefficient, displays
thicker fingers, with closer widths to the experiment. Similar to our previous obser-
vations, the numerical models cannot approximate the compact, CO2-rich water front
closely trailing the fingers.

• Dissolution of CO2 is underestimated by models 1 and 2, while it is closer, but overes-
timated, by Model 3.

Consistent with our approach described in sect. 3.3.3, quantitative analysis is provided
by means of areal quantities over time in Fig. 3.17. Experimental values were obtained via
segmentation of timelapse images, and the data was reported on a 1×1 cm grid where 0
is pure water, 1 is water with dissolved CO2, and 2 is gaseous CO2. The segmentation
procedure is explained in Nordbotten et al. (2023), this issue. We then obtained the areas of
each phase within Box A and B to generate Fig. 3.17 (refer to Fig. 3.15a for box location).

In Box A, which contains the main F reservoir and ESF seal, we observe very good
concordance (accurate areas) during injection. Afterwards, Model 3 with D = 3×10−9 m2/s
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continues to follow the experiment closely, whereas the others overestimate gaseous CO2.
Note that the PVT properties of our fluids are the same in all models; differences arise due
to (1) higher sand F Swc in Model 3, and higher sand F k in Model 2 and especially Model 3
(D = 3× 10−9 m2/s), compared to Model 1, which allow greater convective mixing (Ennis-
King and Paterson 2005)(Tab. 3.4); and (2) lower pe and higher k of sand ESF in Model 2
(Tab. 3.4), which allows some CO2 migration into the seal (Fig. 3.16). In Box B (Fig. 3.17d-f),
Model 1 and Model 3 with D = 10−9 m2/s are able to approximately track the experimental
truth during injection. However, our models without dispersion cannot capture the areal
increase of CO2-rich water that occurs afterwards (cf. Fig. 3.16).

To put these results in perspective, Fig. 3.18 provides a comparison with results submitted
by the international benchmark study (IBS) participants, as well as Experiment B1 (Flemisch
et al. 2023). Fig. 3.18 presents, for each datapoint, mean Wasserstein distances to experi-
ments and forecasts (simulations by IBS participants). Specifically, the Wasserstein metric
(W ) measures “the minimal effort required to reconfigure the probability mass of one distri-
bution in order to recover the other distribution" (Panaretos and Zemel 2019). We expect
W → 0 for two samples from the same distribution, given enough values, and two samples to
be more similar or concordant the closer W is to 0. To calculate distances shown in Fig. 3.18,
the cell mass density in a 1×1 cm grid was estimated for all simulations and experiments,
and then normalized. Therefore, this metric provides a measure of the overall degree of
agreement (i.e., in the whole domain). Resulting distances were dimensionalized using the
total CO2 mass in the system, such that the units are grams × centimeter, with values
< 100 gr·cm and < 50 gr·cm representing good concordance and very good concordance,
respectively. Details and code are provided by Flemisch et al. (2023). In Fig. 3.18, it can be
seen that M1-M3 are comparable to or better than the best forecasts by IBS participants.
M1 and M3,1, in particular, achieved very good concordance.

Further evaluation of simulation model concordance, including comparison with model
results before calibration, mass quantities and error measures, is provided in Appendix A.1.
From this analysis (sect. 3.4.3 and Appendix A.1), we find that:

• All matched models approximate well CO2 migration and distribution in the domain,
seal capacity, and onset of convective mixing. M1 and M3,1 are most concordant to
experiments (Fig. 3.18).

• Calibrated models are able to accurately estimate specific quantities during the injec-
tion phase, yet they accumulate higher errors later on (Fig. 3.17 and Appendix A.1.2).

• Similar to Experiment A1, the calibration procedure significantly improved the con-
cordance of M1 and M2 with the experiment (Fig. A.1 and Fig. 3.16). In Box A,
calibration also improved concordance for M3 (Fig. A.2 and Fig. A.6). Overall, how-
ever, matched M3,1 and M3,3 are less concordant than their initial versions, which were
already in very good agreement with the experiment (Fig. A.3 and Fig. 3.18).

In summary, calibrated models are transferable to a different operational setting or ge-
ologic structure, as long as sediments and trap systems remain the same (Experiment A2
and Box A in Experiment B1). Where reservoir connectivity is provided by heterogeneous
structures with uncertain properties, accurate deterministic estimates of CO2 migration are
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unlikely; models calibrated elsewhere (Experiment A1) were not accurate in our test (Box
B in Experiment B1). Given unlimited computational time, the forecasting capability of
numerical models calibrated with published data appears similar to those having access to
local measurements; the main value of local data lies in reducing the time required for his-
tory matching. Obtained results suggest that history matching worsened M3 forecasts in
a different setting (Experiment B1). Therefore, forecasts in a given geologic setting may
benefit more from local measurements and accurate physics, rather than history matching,
unless historical data of the same setting is available. This is because CO2-brine flow is
very sensitive to variations in petrophysical properties such as capillary pressure, which will
change in different areas, even if the geology is similar.

3.5 Discussion

In the FluidFlower, strong buoyancy and high permeability lead to persistent appearance
and disappearance of fluid phases, as the gas migrates upward and dissolves in the water;
coupled with other two-phase flow nonlinearities, these aspects make this problem difficult to
solve numerically (e.g., Lie 2019). Comparison between the number of nonlinear iterations
and the strength of different physical mechanisms (flow rates, buoyancy, capillarity and
dissolution) are presented in Appendix A.2. A clear correlation can be seen between flow
rates and number of iterations. However, buoyancy, capillarity and dissolution all appear
to be playing a role, and it is not straightforward to discern which effect dominates; hence,
this is a topic that requires further study. We note that difficulties with the convergence of
the nonlinear solver have been reported by all participants in the international benchmark
study (Flemisch et al. 2023). As hinted in sect. 3.3.1, we addressed this by optimizing linear
solver time, reducing the time-step length, increasing the number of time-step cuts and
relaxing MRST’s maximum normalized residual where required.

In a 2D isotropic medium and assuming uniform flow, the hydrodynamic dispersion
coefficient (D

h
) can be modeled as D

h
=

[
αLu 0
0 αTu

]
, where αL and αT are the longitudinal

and transverse dispersivity, respectively, and u is the average Darcy velocity (Bear 1972).
Assuming dispersivities ≥ 10−3−10−2 m (Garabedian et al. 1991; Gelhar et al. 1992; Schulze-
Makuch 2005) and u ≈ 3×10−6 m/s (from our simulations), we get D

h
∈ [3×10−9, 3×10−8]

m2/s or larger; this means that D
h
≥ D for the timescales considered (Riaz et al. 2004;

Rezk et al. 2022). We also note that numerical dispersivity is on the order of the cell size
(h ≈ 4 mm in Tank 1, and ≈ 5 mm in Tank 2), so it is likely smaller than hydrodynamic
dispersion. Numerical diffusion can be approximated as uh, which yields maximum values
∼ O(10−7 m2/s) (water phase). However, using the mean of the 75th percentile flow velocity
over all time-steps, we obtain ∼ O(10−9 m2/s). Therefore, we estimate that numerical
diffusion is lower than physical diffusion almost everywhere in our simulations. Previous
work suggested that hydrodynamic dispersion in homogeneous sediments can be accounted
for by increasing D (Riaz et al. 2004; Riaz et al. 2006), as done here. However, our analysis
shows that the spreading of CO2-rich water during convective mixing can be loosely, but not
accurately, represented by molecular diffusion. Given (1) the dominance of convective mixing
on solubility trapping (Ennis-King and Paterson 2005; Neufeld et al. 2010; MacMinn and
Juanes 2013); (2) heterogeneity of many natural reservoirs, which increases the importance
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of dispersion (Riaz et al. 2006; Bear 2018); and (3) the acceleration of CO2 dissolution due to
dispersion, as observed here and by others (e.g., Hidalgo and Carrera 2009), it is important
to quantify the balance between diffusion and dispersion to estimate CO2 trapping.

Our study of CO2 injection and migration in unconsolidated sands at atmospheric p, T
conditions captures the CO2-water system dynamics at short to intermediate timescales:
buoyancy-driven flow and structural trapping (Bachu et al. 1994; Bryant et al. 2008; Hesse
and Woods 2010; Szulczewski et al. 2013), residual trapping (Juanes et al. 2006; Burnside
and Naylor 2014) and convective mixing and dissolution trapping (Weir et al. 1996; Ennis-
King and Paterson 2005; Riaz et al. 2006; Neufeld et al. 2010; Hidalgo et al. 2012; MacMinn
and Juanes 2013; Szulczewski et al. 2013). Due to the very large sand permeability (102−104

D), convective mixing and dissolution dominate CO2 trapping. With respect to values at ∼ 1
km depth (p ∼ 100 bar, T ∼ 40 C), the dynamic viscosity and density of CO2 are ≈ 1/3 and
3×10−3. Conversely, previous studies with similar setups used analogous fluids with density
and viscosity ratios similar to supercritical CO2-brine (Trevisan et al. 2017; Krishnamurthy
et al. 2022). Dynamics observed in these systems are similar to ours, with vertical migration
of CO2 dominated by buoyancy and lateral spreading of CO2 plumes with a main tongue
at the top of the aquifer or high permeability layer. A quantitative scaling analysis of the
FluidFlower (Tank 2) was performed by Kovscek et al. (2023), who showed that scaling of
physical mechanisms to the field scale is possible. Compared to three CO2 storage projects
(Northern Lights, Sleipner and In Salah) the vertical dimension of the storage reservoir is
exaggerated 2 to 3 times. Temporally, 1 h in the FluidFlower is equivalent to ∼ 100 − 400
y in the field; thus, the experiment in Tank 2 (120 h) covers well the injection and post-
injection periods. Similar to the FluidFlower, Kovscek et al. (2023) estimate the onset of
convective mixing to occur during injection in high-permeability formations like the Utsira
Sand (Sleipner). This analysis demonstrates that observations made in the FluidFlower can
be used to describe field-scale fluid dynamics and quantify forecasting accuracy.

Our models retained some error at the end of the calibration phase, which is a known
problem of manual history matching (Oliver and Chen 2011). Consistent with previous
findings (e.g., Fisher and Jolley 2007), results show that model 2 and 3, which had access
to local data, achieved faster match to the experimental truth than model 1 (sect. 3.4.2).
However, all models seem to have similar forecasting capability (sect. 3.4.3). Subsurface
heterogeneity and time constraints may explain why, in practice, it is critical to include local
data to achieve history matching, and, especially, concordant forecasting (e.g., Gosselin et
al. 2003; Fisher and Jolley 2007; Myers et al. 2007; Kam et al. 2015; Avansi et al. 2016).
Calibration with Experiment A1 decreased overall concordance of model 3 to Experiment
B1 (but improved concordance in Box A), compared to forecasts with initial (measured)
parameter values. We interpret this to be the result of fluid migration in Experiment A1 being
controlled by different units than in Box B in Experiment B1. Therefore, local measurements
are paramount, especially if historical data in the trap system of interest are not available.

Additionally, we did not quantify uncertainty in history-matched models due to the avail-
ability of a ground truth. In general, however, this is necessary to manage reservoir oper-
ations (e.g., Aanonsen et al. 2009; Oliver and Chen 2011; Jagalur-Mohan et al. 2018; Jin
et al. 2019; Liu and Durlofsky 2020; Santoso et al. 2021, and references therein). It is
also important to note that history-matched models may have grid-size dependencies (see
Appendix A.3), which may require that the grid used to make forecasts, if different or en-
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compassing additional regions, maintain a similar resolution. Finally, multiphase flow in
poorly-lithified sediments is non-unique (Haugen et al. 2023), which also contributes to un-
certainty. Therefore, it seems prudent to adopt a probabilistic perspective when estimating
subsurface CO2 migration. This is consistent with results in Fig. 3.18 and Flemisch et al.
(2023): in the highly-resolved and geologically simple FluidFlower (compared to the subsur-
face), forecasts by different simulation groups show large spread.

3.6 Conclusions

We performed experiments (sect. 3.2) and numerical simulations (sect. 3.3) of CO2 migration
in poorly-lithified, siliciclastic sediments at the meter scale. Three simulation model versions,
with access to different levels of local data, were manually history-matched to the experiments
(sect. 3.4.1, 3.4.2), and then used to make forecasts (sect. 3.4.3). The main findings are:

1. The time required to history match model 3 (access to both single-phase and multiphase
measurements) is lower than model 2 (access to local single-phase measurements),
which is lower than model 1 (no access to local petrophysical measurements).

2. All simulation models achieve a satisfactory qualitative match throughout the experi-
ments. Quantitatively, forecasting capability of models 1-3 appears similar: in specific
domain regions, models were close to the experimental truth during CO2 injection,
and accumulated larger errors afterwards, especially where heterogeneous structures
control CO2 migration.

3. Overall forecasts with model 3 after calibration in a similar, but not identical, geologic
setting were less accurate than forecasts made with measured values. This empha-
sizes the importance of local measurements and history matching in the same geologic
setting.

4. The addition of a constant molecular diffusion coefficient allows matching convective
finger widths to experimental observations. However, simulations without dispersion
cannot approximate the compact, CO2-rich sinking front closely trailing convective
fingers in our experiments.

Simulation models were not always accurate. Given the degree of control in our study,
it seems prudent to quantify uncertainty when assessing subsurface CO2 migration in the
field using numerical models. Results presented in sect. 3.4 suggest that confidence can be
increased by:

• Obtaining local data. Because numerical models are computationally expensive to run,
acquiring local data facilitates history matching.

• Quantifying petrophysical parameter uncertainty, because CO2 migration in the sub-
surface can be very sensitive to changes in petrophysical parameters.

• Testing sensitivity to petrophysical parameters in different model regions. Again, due
to computational time and difficulty of assessing parameter uncertainty throughout
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the computational domain, model regions or structures controlling migration should
be identified, so that modeling efforts can focused appropriately.

• Using historical data from the same setting where forecasts are to be made, given that
significant petrophysical property differences can exist between similar settings.

• Including post-injection data when history matching, because forecasts’ accuracy in
specific model areas decreased with time for models calibrated with little post-injection
data.

• Incorporating multiple scenarios of CO2 migration, given the difficulty of achieving
quantitatively accurate deterministic forecasts where heterogeneous structures are at
play.
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Figure 3.15: Comparison between Experiment B1 in Tank 2 (a) and simulation Model 1 (b,c) at
the end of injection (t = 5h). Circles in a denote the location of injection ports.

54



Chapter 3. Comparison of Numerical Simulations and Experiments of CO2 migration

Figure 3.16: Comparison between Experiment B1 in Tank 2 (leftmost column) and CO2 con-
centration maps for simulation models 1-3 (middle-left, middle-right and rightmost, respectively).
D = 10−9 m2/s (Model 1 and 2), D = 3× 10−9 m2/s (Model 3). The white contours in simulation
plots indicate Sg = 10−3. a-d end of injection. e-h t = 15h. i-l t = 24h. m-p t = 48h. q-t
t = 120h.
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Figure 3.17: Comparison of areas occupied by each phase during the first 72h of case B1. Experi-
mental mean (E) and standard deviation (std) obtained from four experimental runs with identical
protocol, while the results for models 1-3 are for a single run with each matched model. For M3,
two cases are shown: D = 10−9 m2/s (M3,1) and D = 3× 10−9 m2/s (M3,3). Top row shows areas
in Box A, and bottom row shows areas in Box B. a,d gaseous CO2. b,e dissolved CO2 (includes
area with gaseous CO2). c,f pure water.
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(a) (b) (c)

(d) (e)

Figure 3.18: Wasserstein distances to experiments and forecasts (simulations). Colored circles
show forecasts by IBS groups, and results with calibrated models 1-3 are presented with light gray
markers. In each subplot, the vertical axis shows the mean distance between a given datapoint
and the forecasts (considering the IBS participants only), while the horizontal axis shows the mean
distance between a given datapoint and the experiments. Markers not present fall outside of the
axes limits. a: 24h. b: 48h. c: 72h. d: 96h. e: 120h.
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Chapter 4

Fault Permeability from Stochastic
Modeling of Clay Smears

This chapter has been published in Saló-Salgado et al. (2023a).

Abstract

In normally-consolidated, shallow (depth < 3 km) siliciclastic sequences, faults develop clay
smears. Existing models include the dependence of permeability on the clay fraction, but
improved predictions of fault permeability should account for uncertainty and anisotropy.
We introduce PREDICT, a methodology that computes probability distributions for the di-
rectional components (dip-normal, strike-parallel and dip-parallel) of the fault permeability
tensor from statistical samples for a set of geological variables. These variables, which include
geometrical, compositional, and mechanical properties, allow populating multiple discretiza-
tions of the fault core with sand and clay smears to upscale the permeability to a coarser
scale (e.g., suitable for reservoir modeling). We validated our implementation with exper-
imental data, and apply PREDICT to several stratigraphic sequences. We show that fault
permeability is controlled by the clay smear configuration and, crucially, that it typically
exhibits multimodal probability distributions due to the existence of holes. The latter is a
unique feature of our algorithm, which can be used to build fault permeability scenarios to
manage and mitigate risk in subsurface applications.

4.1 Introduction

As observed by Weber et al. (1978) and Lehner and Pilaar (1997), faults in normally-
consolidated, shallow (depth < ∼3 km) sand-clay sequences develop ductile clay smears
(see comprehensive review by Vrolijk et al. 2016). The influence of clay has been recognized
in pioneering models of fault permeability, which were derived from laboratory measure-
ments (Manzocchi et al. 1999; Sperrevik et al. 2002). These models depend on an estimate
of the fault clay fraction, which is included through a proxy such as the shale gouge ra-
tio (SGR; Yielding et al. 1997). Subsequent algorithms and models founded on a similar

58



Chapter 4. Fault Permeability from Clay Smears

premise have been developed (Jolley et al. 2007; Myers et al. 2014), but require extensive
local datasets. Key shortcomings of this type of model are: scale-independent, averaged
upscaling of lithological diversity, which contrasts with the strongly heterogeneous materials
in shallow faults (Rawling et al. 2001; Childs et al. 2007; Vrolijk et al. 2016); limited in-
sight on the geologic elements or properties controlling permeability; and the computation
of cross-fault permeability only.

To increase generality and better represent outcrop observations, Tveranger et al. (2005)
developed the fault facies concept, and Bense and Person (2006) presented an algorithm
that includes permeability anisotropy due to vertical layering in the fault zone. Childs et al.
(2007) described a probabilistic shale smear predictor; they computed the average smear gap
length between a given smearing layer at each side of the fault to calculate the permeability
perpendicular to the fault via arithmetic averaging. Grant (2020) focused on fault core sealing
and developed a stochastic, facies-based fault permeability algorithm. In Grant (2020)’s
algorithm, the proportions of different fault rocks and number of material layers in the core
are defined by the user; the output permeability, perpendicular to the fault, is computed via
harmonic averaging.

The algorithms outlined above are difficult to generalize because a quantitative descrip-
tion of the controls on fault material distribution is lacking, representing a key area to
improve fluid-flow predictions in smear-dominated faults (Vrolijk et al. 2016). In addition,
previous algorithms do not quantify uncertainty or anisotropy in the directional components
(dip-normal, kxx; strike-parallel, kyy; and dip-parallel, kzz) of the fault permeability ten-
sor, which arises from material heterogeneity. This is required to manage and mitigate risk
subsurface applications like geological CO2 storage (GCS) where flows along faults can be
critical (IEAGHG 2016).

To bridge this gap, we develop PREDICT, a methodology to quantify fault permeability in
normally-consolidated (NC), shallow (<∼3 km) siliciclastic sequences. For example, these
conditions are found in Cenozoic sediments in passive margins, and they are relevant for
large-scale GCS projects (Ringrose and Meckel 2019).

4.2 Stochastic Computation of Fault Permeability

PREDICT (full algorithm description in Appendix B and the code is available at
https://github.com/lsalo/predict) computes the directional components of the fault perme-
ability tensor in an upscaling (coarse) grid defined by the user; flexible upscaling is useful
to assign fault permeability in subsequent flow simulations. The computation is performed
in a given throw window, in which PREDICT represents the fault core (Fig. 4.1). Consistent
with offset of clay layers across a finite-thickness shear zone, smears are placed at an angle
α > 0 to the fault plane (e.g., Fig. 3 in Lindsay et al. 1993). Constant throw along strike is
assumed. A summary of PREDICT follows.

The algorithm requires a set of input parameters that describe the faulted stratigraphy:
the layer thickness (T ), clay volume fraction (Vcl), and dip angle (β), plus the fault dip
(fβ), maximum burial depth (zmax), and faulting depth (zf). By combining these inputs as
described in § B.1.2 in Appendix B, PREDICT generates marginal probability distributions
(Px) for another set of numerical quantities: fault thickness (fT), residual friction angle
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Figure 4.1: PREDICT workflow (left to right). Stratigraphic section is described by the input
parameters, which PREDICT uses to compute the ranges and probability distributions for the inter-
mediate variables. Each 3D fault realization is obtained by generating i = ss fault sections with
constant thickness and arranging them along strike. For each fault section, resdiual friction angle
(ϕ′

r), critical shale smear factor (SSFc), porosity (n), permeability (k) and permeability anisotropy
ratio (k′) are sampled and used to place fault materials and assign their properties. Subscript “c”
refers to clay smear, and “s” refers to sand-based. Permeability is upscaled using the 3D fault vol-
ume. See the main text for notation, and Appendix B for details.

(ϕ′
r), critical shale smear factor (SSFc) (Færseth 2006; Childs et al. 2007), porosity (n),

permeability (k), permeability anisotropy ratio (k′), and a parameter describing along-strike
smear segmentation (ss). The Px are used to sample each intermediate variable accounting
for dependency, and to populate the fault with clay smears (Vcl ≥ 0.4) and sand smears
(Vcl < 0.4), according to § B.1.2 and § B.1.3 in Appendix B (also see Fig. 4.1).

To populate the fault, PREDICT first generates a set of strike-perpendicular fault sections
(FSs), each discretized with 104 cells (§ B.1.4 in Appendix B). Each FS is generated indepen-
dently and is first subdivided into different domains according to the contributed materials
and their thickness. The clay smear thicknesses are computed via Egholm et al. (2008)’s
equation 5, which is valid for failure of granular materials with varying friction (see § B.1.3
in Appendix B), while sand smears fill the remaining fT. Next, downdip smear continuity
is assessed, and object-based simulation is used to place the discontinuous smears in the
corresponding domains. After assigning fault materials and their properties to each FS, a
three-dimensional (3-D) fault volume is obtained by arranging them along-strike (fine grid).
The number of unique FSs in a given 3-D realization is equal to ss. The 3-D volume has
dimensions fT× fD× fL, where fD is the fault displacement, and fL is the length (along-strike),
which is set equal to fD.

Finally, the permeability for the studied throw window is computed in the coarse grid
by flow-based upscaling of the fine grid permeability using the MATLAB Reservoir Simu-
lation Toolbox (MRST; Lie 2019). Multiple realizations of this process result in probability
distributions for kxx, kyy, and kzz (see Fig. 4.1; see Appendix B).
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4.3 Results and Discussion

4.3.1 Validation with experimental fault-scale permeability

We validated our implementation by comparing PREDICT’s kxx values to experimental cross-
fault permeabilities estimated from flux measurements by Kettermann et al. (2017) (their
Figure 14). Kettermann et al. (2017) presented a set of experiments in a water-saturated
sandbox, where sediment faulting was driven by a rigid basement fault, and flow across the
sheared clay was induced by lowering the hydraulic head in the bottom reservoir (Fig. 4.2A).
They also presented smear/hole maps (Fig. 4.2B), which we used to define ss (Fig. 4.1;
§ B.1.2 in Appendix B). A view of the discontinuous clay smear in PREDICT is shown for one
realization (single clay layer) in Fig. 4.2C. The permeability comparison is shown in Fig. 4.2D,
where we used a coarse grid with a single cell to obtain our bulk fault permeability. It is
apparent that most of PREDICT’s probability distribution matches the range defined by the
experimentally derived permeabilities (calculation details are given in § B.3 in Appendix B).

0

6.9

6.9

C

B

DA

Rigid basement
fault (dip = 63o)

Sand

Clay

Figure 4.2: Validation with experimental data from Kettermann et al. (2017). (A) Experimental
diagram. (B) Frontal view of excavated fault surface showing discontinuous smear (top) and smear
hole mapping (bottom). Both A and B are from Kettermann et al. (2017). (C) PREDICT realization
for shale smear factor (SSF) = 6, showing segmented clay smear. Fault dip was set to 60◦. (D)
Main plots show experimental cross-fault permeabilities (markers) and end-member permeabilities
(vertical lines), computed from data in Kettermann et al. (2017) (see § B.3 in Appendix B). Inset
plots show PREDICT’s predictions for several SSF values.

4.3.2 Clay smear modeling leads to multimodal fault permeability
distributions

The effect of increasing the average section clay fraction (V cl) is illustrated in Fig. 4.3,
where multimodal or wider distributions arise when some material configurations lead to
unobstructed sand pathways, and others do not (Fig. 4.3B and 4.3C). The presence of holes
in 3-D clay smears is consistent with previous observations (e.g., Noorsalehi-Garakani et al.
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2013). Overall, we found that the main factor determining whether most of the probability
is at lower or higher permeability is the frequency of continuous sand pathways (cf. Fig. B.17
in Appendix B). This frequency is inversely related to the stratigraphic clay fraction, which
agrees with previous stochastic models of clay smear (Childs et al. 2007; Yielding 2012; Grant
2020) and field evidence (Bense et al. 2013; Vrolijk et al. 2016, and references therein).

A

D

B

C

Figure 4.3: Effect of increasing section average clay fraction (V cl). Each panel depicts: faulted
stratigraphic interval (left); example fault material realization (center), showing frontal (x, z) cross
section on left and clay smear distribution on right (upscaled permeability result shown at the top);
and probability (P ) distributions of fault permeability using single cell for upscaling (right). Throw
is 100 m in all four cases, and stratigraphy is colored by V cl. (A) V cl = 0.21. (B) V cl = 0.27. (C)
V cl = 0.36. (D) V cl = 0.53.

4.3.3 Stratigraphic controls on fault permeability

Next, we modeled sequences with the same V cl but different layering and burial history. We
considered three intervals with V cl = 0.3, inspired by the Lower Miocene section offshore
Texas (Treviño and Meckel 2017) (Fig. 4.4A), the Statfjord Formation in the North Sea (My-
ers et al. 2007) (Fig. 4.4B), and the Mount Messenger Formation in New Zealand (Childs
et al. 2007) (Fig. 4.4C). As the clay layer thickness decreased (Figs. 4.4A–C), we observed (1)
a decrease in the average fault clay fraction (fVcl), which typically led to higher permeability;
and (2) a notable increase in kyy and kzz because of thinner smears. Hence, in agreement
with long-standing observations (Weber et al. 1978; Lindsay et al. 1993), the macroscale fault
permeability is primarily dependent on the derived smear configurations. This demonstrates
the importance of accounting for material heterogeneity.

4.3.4 Fault clay fraction and permeability

Because all three sections in Fig. 4.4 had equal V cl and were relatively shallow, the perme-
ability calculation according to Sperrevik et al. (2002) (using the SGR) yielded very similar
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A

Spe02Lu17

B

C Chi07

Chi07

SGRLu17

Figure 4.4: Fault permeability for three sequences with average clay fraction V cl = 0.3 and
throw = 10 m. Fault thickness in each stratigraphic section is from arbitrary realization. At right:
Upscaled probability (P ) distributions of average fault clay fraction (fVcl) and fault permeability.
Upscaling grid with 2×10×10 equal cells (x, y, z) was used to make results comparable (in scale) to
reported measurements, and all upscaled cell values were collapsed into single distributions. Shale
gouge ratio (SGR; orange fill) and resulting permeability range (gray fill) from Sperrevik et al. (2002)
(Spe02) is also shown. Ranges obtained by Lu et al. (2017) (Lu17) and Childs et al. (2007) (Chi07)
(within 20%–60% phyllosilicate) are plotted with dashed and dash-dotted lines, respectively.
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values. This contrasts with PREDICT’s output, which showed diminishing fVcl and different
permeability distributions. Our results agree with results by Childs et al. (2007), who showed
that their smear-based permeability is lower than the SGR-based permeability where only a
few beds are displaced, but they are likely closer as the shale layer thicknesses decrease (cf.
Fig. 4.4). In Fig. 4.4A, estimated values from Lu et al. (2017) for Miocene mudstone cores
from the Gulf of Mexico fall above PREDICT’s main mode, which seems to be compatible with
their lower Vcl. Zheng and Espinoza (2021) reported 10−5–10−4 mD for synthetic mixtures
of Frio sand and Anahuac shale at 20 MPa effective stress, which is very close to our main
mode. Faults in the Mount Messenger Formation were studied by Childs et al. (2007), who
reported ranges similar to PREDICT’s output (Fig. 4.4C).

4.3.5 Fault permeability uncertainty and anisotropy

For a given stratigraphy, our analysis showed that multiple smear configurations (and up-
scaled permeability values) are possible. This reflects (1) the fact that knowledge of the
subsurface is insufficient to model faults deterministically (Lunn et al. 2008; Bense et al.
2013; IEAGHG 2016; Vrolijk et al. 2016), and (2) PREDICT’s quantification of this uncer-
tainty. In PREDICT, permeability anisotropy of fault materials is typically within one order
of magnitude. Higher anisotropy, as observed in some realizations in Figs. 4.3 and 4.4, is the
result of material arrangement in the fault. This agrees with previous studies, which show
that the maximum anisotropy of sheared clay-rich material is typically ∼10 (Dewhurst et al.
1996; Daigle and Dugan 2011).

4.4 Application to Fault Permeability Modeling in Real
Settings

PREDICT models the fault as a shear zone and ignores the occurrence of other smearing
mechanisms such as abrasion (Lindsay et al. 1993) and injection (Lehner and Pilaar 1997).
Shear-dominated smear formation is supported by observations in shallow siliciclastic se-
quences, where the clay layers are dragged into the fault (Weber et al. 1978; Kettermann et
al. 2016). Recently, Vrolijk et al. (2016, their Fig. 27) proposed a framework to characterize
the smearing processes, which suggests that our algorithm is most applicable to sequences in
which the clay, compared to the sand, is weaker to similarly strong. Considering typical co-
hesion and friction angles, this is expected in most shallow sequences at hydrostatic pressure
and depths below a few tens of meters.

Each 3-D fault core realization was obtained by concatenating serial, equal-length two-
dimensional (2-D) sections along-strike, which led to all clay smears being truncated at the
same along-strike coordinates (Fig. 4.1). Additionally, each 3-D fault core realization had
a constant thickness. While these geometric choices are a simplification of reality (Lunn
et al. 2008; Kettermann et al. 2016; Sosio de Rosa et al. 2018), PREDICT balances this
by considering thousands of realizations; in each realization, both fault thickness and the
number of concatenated sections change. Clay smears are modeled as tabular bodies, which
is a reasonable approximation (Çiftçi et al. 2013; Kettermann et al. 2016; Kettermann et al.
2017).
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Along-strike throw variations cannot be explicitly accounted for, but the algorithm can
be quickly run multiple times with varying inputs (e.g., fault displacement). PREDICT has
matched experimental bulk fault permeabilities (Fig. 4.2) and is consistent with local mea-
surements (Fig. 4.4). PREDICT’s quantification of uncertainty and permeability anisotropy
unlocks the ability to quantify, manage, and communicate hazards associated with subsur-
face technologies such as GCS (Bjørnarå et al. 2021; Snippe et al. 2022), natural gas storage,
and nuclear waste disposal.

4.5 Conclusions

PREDICT includes a description of smearing in granular materials that is consistent with ob-
servations in shallow (depth <∼ 3 km) siliciclastic sequences and incorporates uncertainty
in the physical quantities controlling the fault and material dimensions and their properties.
The output probability distributions, which characterize the directional components of the
fault permeability tensor (dip-normal, strike-parallel, and dip-parallel) in a coarse grid de-
fined by the user, can be multimodal. Our algorithm provides (1) a parameter-based link
among the stratigraphy, the heterogeneous fault core materials, and the macroscale perme-
ability; and (2) the likelihood of different fault permeability scenarios, which is required to
assess hazard in subsurface technologies.

65



Chapter 5

Updip Migration of Sequestered CO2
along Gulf Coast Miocene Growth Faults
is Unlikely

This chapter is being prepared for publication as a research article (Saló-Salgado et al. 2023d).

Abstract

Recent studies indicate that Miocene-age reservoirs offshore Texas are promising candidates
for industrial-scale geologic carbon sequestration. It has been shown, however, that faults are
less competent seals than the low-permeability sediments overlying the reservoirs; this means
that faults may limit the amount of CO2 that can be permanently sequestered. Here, we
conduct flow simulations of megaton-scale CO2 injection next to a major reservoir-bounding
fault in the Miocene, and evaluate (1) where fault sealing capacity is exceeded, and (2) where
the CO2 migrates after it enters the fault zone. We use a geologic model that includes the
key structural features of fault-bounded systems near-offshore Texas, and consider both a
continuous and discontinuous top seal. To model fault petrophysics, we apply a new method-
ology for faults in soft sediments that populates three-dimensional realizations of the fault
core with sand and clay smears. We quantify uncertainty in the directional components of
the fault permeability tensor and multiphase flow fault properties. We evaluate the sensitiv-
ity of fault CO2 migration to these properties, and show that the capillary entry pressure is
exceeded in the lower portion of the fault. This leads to fault CO2 migration being controlled
by effective fault permeability. We demonstrate that, even in this unfavorable scenario, the
amount of sequestered CO2 remaining in the injection formation after 1000 y exceeds 93%
in all cases, and that CO2 never migrates above the top seal. Considering pore pressure
increase from injection, CO2 is unlikely to migrate updip Miocene growth faults.
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5.1 Introduction

Geologic CO2 storage or carbon sequestration (GCS), where CO2 previously captured from
point sources or the atmosphere is injected in deep subsurface formations for permanent
storage, is considered necessary to limit anthropogenic warming to < 2 ◦C and achieve
net-zero by 2050 (IEA 2021; IPCC 2022). In 2022, global CO2 emissions were between 35
and 40 Gigatons (Gt) from energy-related sources alone, which account for roughly 3/4 of
greenhouse gas emissions. GCS, currently abating 30-40 Mt/y, needs to be scaled up two
orders of magnitude to achieve our mid-century climate goals. This requires extensive growth
in the GCS industry in the next three decades, and will require international collaboration
between academia, industry, governments and the public (Krevor et al. 2023).

In the US, the Gulf of Mexico (GoM) is an important asset to deploy GCS at scale.
Key aspects include conducive geology, extensive subsurface knowledge and infrastructure
provided by decades of hydrocarbon exploration and production, and proximity to significant
CO2 emission sources, particularly along the Gulf Coast. Indeed, industrial projects such as
the Houston CCS Alliance1, which aims to cature and store ∼100 Mt/y by 2040, are already
under way to increase capacity. In near-offshore Texas State Waters (OTSW), siliciclastic
sediments of Miocene age have recently been the subject of an extensive study by the Bureau
of Economic Geology at UT Austin (Treviño and Meckel 2017). The Miocene sequence is
characterized by poorly to semi-lithified sands and shales; growth fault zones, laterally-
sealing in many intervals; and rollover anticlines with increased sedimentary thickness in the
hangingwall (Fig. 5.1a). Analysis of Miocene petroleum systems has identified fault-anticline
settings to be suitable for GCS (Meckel and Rhatigan 2017).

In the GoM, Meckel et al. (2017) and Zheng and Espinoza (2022) report that capillary
fault seal is variable and typically limits capacity before the top seal. One question that
naturally arises concerns the fate of CO2 after capillary breach, which requires dynamic flow
modeling to quantify CO2 migration within faults. This is one key aspect separating this
study from most of the literature on fault leakage, where fluid migration results from fault
reactivation and where multiphase flow properties of fault zones are largely ignored (e.g., Ri-
naldi et al. 2014; Meguerdijian and Jha 2021). In the GoM, recent studies have incorporated
multiphase fault petrophysics: Zulqarnain et al. (2018) and Zulqarnain et al. (2020) used a
geologic model from the Bayou Sorrel field in southern Louisiana and investigated the effect
of trapping mechanisms, hydromechanical coupling and damage zone fractures on CO2 mi-
gration in a fault zone. They discretized the fault with relatively high-permeability damage
zone facies, and employed a quasi-2D geometry leading to extreme reservoir overpressuriza-
tion driving CO2 migration (∆p > 10− 20 MPa at ∼2 km depth). Silva et al. (2023) studied
the viability of Megaton-scale GCS using coupled flow-geomechanics and a geologic model
based on the South Timbalier block, offshore Louisana. In their model, stratigraphy is dom-
inated by clay-rich sediments, which led to best-estimate fault zone petrophysics preventing
updip CO2 migration.

Here, we extend these studies by conducting a stochastic analysis of fault CO2 migra-
tion that incorporates uncertainty in multiphase fault properties. To model these properties
(sect. 5.2), we employ a new methodology that honors fault architecture in soft siliciclastic se-

1https://houstonccs.com/
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Figure 5.1: Geology and simulation grid. a Cross section of the Miocene in Offshore Texas
State Waters (Nicholson 2012). The map to the right shows the cross section location, as well
as Miocene-aged main faults along the Texas Gulf Coast. Modified from Treviño and Rhatigan
(2017) (original in Ajiboye and Nagihara (2012)). b Synthetic geologic profile perpendicular to the
coastline, displaying typical features of Miocene-age sediments in OTSW (cf. a). The background
sesimic profile is from Lu et al. (2017, originally provided by Seismic Exchange, Inc.). c Meshed
profile. The zoomed area around the injector (star) details the fault explicit thickness (cells), as
well as the ∼25 m-thick layers within the top seal (TS) allowing control of seal continuity. The 3D
grid used in the simulations (lower right) was obtained by extruding the 2D profile.
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quences (Saló-Salgado et al. 2023a), compatible with the Miocene section offshore Texas, and
quantifies uncertainty. Both improved fault property characterization and uncertainty quan-
tification have been identified as research gaps hindering GCS deployment at scale (IEAGHG
2016; Vrolijk et al. 2016). Using a geologic model representative of the Miocene (Fig. 5.1b,c
and sect. 5.3), we show that CO2 migration updip a growth fault partially offsetting the
top seal is unlikely, even when the fault capillary entry pressure is exceeded during injection
(sect. 5.4, 5.5).

5.2 Fault Hydraulic Properties

5.2.1 Fault permeability structure in unlithified siliciclastic sequences

Following Caine et al. (1996)’s seminal paper, the conceptual model for faults in lithified
rocks includes a central low-permeability volume (the core zone, CZ) and a surrounding vol-
ume of fractured rock that is hydraulically well connected (the damage zone, DZ) (Faulkner
et al. 2010; IEAGHG 2016). Faults that grow in sediments, i.e., granular materials with low
cohesion, typically develop a permeability structure that does not adhere to this descrip-
tion (Rawling et al. 2001; Bense et al. 2013, and references therein). Fundamentally, this is
due to shear-driven sediment deformation behavior, where ductile deformation and granular
flow dominate over brittle structures and cataclasis (Fig. 5.2).

Figure 5.2: Fault zone architecture in soft siliciclastic sequences. a Photograph from the Hambach
lignite mine (Germany) by Vrolijk et al. (2016), showing a layered fault core with both sand and clay
smear. b Photograph from Miri (Malaysia) by Sosio de Rosa et al. (2018) showing a footwall zone of
mixing with clay and sand smears, and a core dominated by clay smear with smaller sand lenses. c
Schematic of a segmented normal fault, depicting key structural terms. In the frontal cross section,
the fault cores (main fault segments) are discontinuous across the clay to emphasize distributed
deformation, rather than localization. The external envelope (discontinuous line) delineates the
fault zone. Figure inspired by Childs et al. (2009).

Faults in soft siliciclastic sediments can develop three main architectural domains (Rawl-
ing et al. 2001; Rawling and Goodwin 2006; Loveless et al. 2011; Bense et al. 2013): DZ,
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CZ and mixed zone (MZ). The DZ is the outer element and characterized by dragging of
sedimentary beds as well as the presence of defromation bands close to the boundary with
the MZ/CZ (Fig. 5.2b,c). An important difference with respect to lithified DZs is the ab-
sence of macroscopic open fractures, thus limiting the potential of the DZ as a flow conduit.
Consistent with its name, the MZ is a strongly heterogeneous domain incorporating rela-
tively intact as well as deformed sediments, and grain-scale mixing. A MZ may not develop
or, alternatively, may be the main element (Balsamo et al. 2010; Loveless et al. 2011; Bense
et al. 2013); where developed, it will typically impede flow due to layering as well as reduced
porosity and grain size as a result of penetrative particulate flow and cataclasis, complement-
ing the CZ (Rawling and Goodwin 2006) (Fig. 5.2b). Therefore, the MZ acts as a transition
zone between a weakly developed DZ and the CZ, which accommodates most of the shear
deformation. In the CZ, both clay and sand smearing lead to a layered and heterogeneous
domain, with potentially strong permeability anisotropy (Zee and Urai 2005; Saló-Salgado
et al. 2023a, and references therein) (Fig. 5.2a).

The evolution of a fault’s internal structure depends on a number of factors includ-
ing stratigraphy, stress state, displacement and burial history, which lead to thermo-hydro-
chemo-mechanical couplings rarely quantifiable. As a result, models of fault architecture
evolution are difficult to generalize. Still, two key aspects are (1) the progressive linkage
of fault segments that initiate on competent layers (Peacock and Sanderson 1992; Childs
et al. 1996), and (2) evolution from normally consolidated conditions during (synsedimen-
tary) faulting at shallow depths to overconsolidated states and increased localization as a
result of overpressure, shear strain, diagenesis and/or exhumation (Rawling and Goodwin
2006). Mechanical contrast may promote the incorporation of wall material as fault bends
are sheared off, which may lead to a distinct MZ as displacement increases. However, sand-
clay mechanical heterogeneity is typically low near the surface, which promotes shear-type
smears and layered fault materials (Vrolijk et al. 2016). Necessarily, this is an oversimplified
picture, but these studies strongly suggest that faults in soft sediments mainly control fluid
flow due to layering and heterogeneity in and around the main shear zone.

5.2.2 Faults in continuum numerical models of multiphase flow

Modeling fault architecture and petrophysics in field-scale numerical models is challenging.
First, this is due to multiple order of magnitude differences in the relevant spatial and time
scales (e.g., sect. 5.2.1). Accordingly, fault zones are typically included in the simulation
model as (D−1)-dimensional entities, i.e., surfaces in 3D (Juanes et al. 2002; Manzocchi et al.
2008). This approach hinders representation of directional and saturation-based quantities,
but remains an area of research given its applicability to commercial reservoir simulators and
computational efficiency (Islam and Manzocchi 2021). Alternatively, faults are treated as
D-dimensional objects in the computational domain (Fredman et al. 2007; Silva et al. 2023).
This approach, followed here, may significantly increase computational time, but allows for
direct consideration of multiphase flow properties.

Second, this is due to limited knowledge of fault properties, i.e., porosity (ϕ), absolute
permeability (k), relative permeability (kr), and capillary pressure (Pc). In siliciclastics, sev-
eral k models have been proposed that relate permeability to the stratigraphy (Saló-Salgado
et al. 2023a, and references therein). Multiphase flow properties are rarely considered, but
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their importance in applications like GCS is motivating efforts in this direction (e.g., Gasda
et al. 2022; Snippe et al. 2022). However, validation of field-scale models remains elusive,
and inclusion of physics-based dynamic properties is not yet attainable. Therefore, sensi-
tivity analysis of quantities of interest to fault properties derived from consistent geology is
required to enable decision-making. To address this, we propose a framework to quantify
the effects of uncertain multiphase petrophysics on fault CO2 migration, and apply it to the
GoM. Our approach, described in sect. 5.2.3, builds on a method developed to estimate per-
meability of normal faults in soft, normally consolidated siliciclastic sequences (Saló-Salgado
et al. 2023a). Consistent with fault anatomy (sect. 5.2.1), we disregard the DZ and focus on
the main shear zone or CZ.

5.2.3 Fault multiphase petrophysics from stochastic modeling of
clay smears

Here, we use PREDICT (Saló-Salgado et al. 2023a) to model clay smearing in the fault core
and estimate bulk fault hydraulic properties. This methodology generates probability (P )
distributions of fault core porosity and the diagonal components of the intrinsic permeability
tensor (dip-perpendicular, kxx; strike-parallel, kyy; and dip-parallel, kzz). To achieve this,
PREDICT uses a description of the stratigraphy to populate multiple realizations of the main
shear zone with sand and clay smears, and then computes the bulk fault permeability in a
given throw window using single-phase flow-based upscaling. Each fault core realization has
dimensions of fT × fL × fD, where fT is the thickness (treated as a random variable), fD is the
fault displacement (determined by the stratigraphy) and fL is the length, set equal to fD.

To assign fault porosity and permeability in our simulation model, we first subdivide the
main fault in the six throw windows (W1 to W6) covering the TS thickness (Fig. 5.3a). The
P distributions for W5 are shown in Fig. 5.3b. In our simulation model, all cells in Wi are
assigned the same ϕ and kjj at a given y (along-strike) coordinate; stochastic variability
along the fault strike is assigned by randomly sampling from the P distributions at each y
coordinate (Fig. 5.3c). Random sampling is supported by available data on spatial variation
in fault core and clay smear thickness, as well as smear hole presence, which suggests that
λy < fD, where λy is the correlation length of kyy (Kettermann et al. 2016; Kettermann
et al. 2017; Sosio de Rosa et al. 2018). This is because here, hy ≥ fD, where hy is the cell
size along the y axis.

The highly-resolved fault core material realizations from PREDICT can be also be used
to upscale relative permeability (kr) and capillary pressure (Pc) in each throw window W1

to W6. To achieve this, we assign core-scale curves to sand and clay smears in a given 3D
fault core, and use simulations to obtain representative values at the throw window scale.
kr is upscaled via CO2-brine dynamic simulations where CO2 circulates in the 3D fault core
parallel to the dip (z axis). Depth-averaged saturation profiles are computed as a function
of time, and then compared with multiple 1D solutions with a single relative permeability
curve. The 1D model with the lowest error is the best upscaled curve. Pc is upscaled
via macroscopic invasion-percolation (MIP) simulations in the 3D fault core, also in the z
direction. A detailed account of this methodology is provided in Appendix C.1, and upscaled
curves are shown in Fig. 5.4b,c (see sect. 5.2.4 for cases considered). Variations along strike
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Figure 5.3: Application of PREDICT to model fault porosity and permeability. a Left: Vertical
cross section of the TS in our computational model, showing the six fault throw windows. Right:
Representation of W5 and fault core materials for a given realization, showing clay smears and
sand smears, respectively. b Outputs for W5. From left to right: probability (P ) distributions
of clay volume fraction (fVcl

), porosity (ϕ), and dip-perpendicular (kxx), strike-parallel (kyy), and
dip-parallel (kzz) permeability, respectively. c: A realization of fault porosity and permeability in
our simulation model after stochastic assignment (see main text for details). The top image is a
perspective of the full fault. PREDICT is used in the TS depth interval (see detailed panels), while
the SGR is applied elsewhere.

72



Chapter 5. Fault CO2 Migration in the Gulf Coast

in natural faults advocate for a different curve for each cell along y, similar to ϕ and k;
however, this is impractical due to computationally expensive upscaling and 3D reservoir
simulation with hundreds of fluid regions. Therefore, we select two bounding curves for each
throw window (sect. 5.2.4).
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Figure 5.4: Multiphase fluid properties. a Top: Relative permeability for any fault cell in S1C1
and S2C1. Bottom: Lowest and highest fault capillary pressure curves in the TS depth interval
(blue cells in Fig. 5.1c) in S1C1 and S2C1. (b): Upscaled fault relative permeability curves (top)
and capillary pressures for S2C2 and S2C3. Note the difference in residual water saturation and
maximum entry pressure with respect to c (arrows). c Same as b, but for S2C4 and S2C5. d:
Density (ρ) and dynamic viscosity (µ) of the aqueous and gas phases. e: Gas and water drainage
relative permeabilities (solid lines) and gas bounding imbibition curve (dashed line) for the storage
reservoir and other sand units (left). Right: Gas and water drainage relative permeability and
capillary pressure curve for clay layers in the top seal interval.
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5.2.4 Simulation cases

As shown in Fig. 5.1c, the top seal (TS) is meshed with a set of fine (∼25 m-thick) sublayers
around the fault to model scenarios with varying clay proportions. Here, we consider two TS
possibilities: continuous seal, where the ≈ 500 m-thick TS interval has a constant, high clay-
fraction (scenario 1, S1), and discontinuous seal (scenario 2, S2). S1 is the default choice
in km-scale simulation models, where the caprock interval is often assumed homogeneous
and impermeable (e.g., Birkholzer et al. 2011; Newell and Martinez 2020; Gasda et al. 2022;
Silva et al. 2023). However, detailed well-log analysis by Lu et al. (2017) shows that thin,
coarser-grained strata may be present within the Amph B confining zone. Additionally, a
reduction in seal quality and lateral extension is expected towards the coastline (e.g., Jonk
et al. 2022). This can reduce CO2 trapping capacity and impact fault properties (sect. 5.2.1);
therefore, we dedicate most of our effort to evaluating fault-related CO2 migration when the
TS contains interbedded sands (S2). In particular, in S2 we consider 50% clay and 50%
sand, which represents a conservative scenario (Fig. 5.1c).

For comparison purposes, we model a base case for each of the two scenarios (S1C1 and
S2C1) using the well-established shale gouge ratio method (SGR; Yielding et al. 1997). A
description of fault properties for the base cases is provided in Appendix C.2. We then apply
the methodology described in sect. 5.2.3 to S2, where we consider two possibilities for the
wettability (θ) of clay material (Iglauer et al. 2015): θ = 30 and 60◦. For each θ value,
we select a high permeability and a low permeability realization (in each throw window)
for kr and Pc upscaling. In particular, we evaluate the joint probability of kii and select a
range for the high permeability and low permeability modes; we then choose a random fault
core realization within these modes for upscaling. This leads to four cases (S2C2 to S2C5),
which are summarized in Table 5.1. Note that, to assess the sensitivity of CO2 migration to
uncertain fault ϕ and k, we run three simulations for each case S2C2 to S2C5. In a given
case, kr and Pc remain unchanged, while fault ϕ and k change in each simulation due to
stochastic assignment (Fig. 5.3). This adds up to the 14 simulations in Table 5.1.

5.3 Numerical Simulations

We conducted numerical simulations of isothermal CO2-brine flow using the ad-blackoil
module of the MATLAB Reservoir Simulation Toolbox, MRST (Lie et al. 2012; Krogstad
et al. 2015; Lie 2019). We account for (1) structural/stratigraphic trapping via capillary
pressure; (2) solubility trapping via dissolution of CO2 in the brine phase; and (3) residual
trapping in the sand formations via gas relative permeability hysteresis, owing to its control
on CO2 migration (Juanes et al. 2006). The thermodynamic model for fluid PVT properties
and relative permeability hysteresis model follow Hassanzadeh et al. (2008) and Killough
(1976), respectively, and are described in detail in a forthcoming paper.

5.3.1 Computational grid and formation properties

We first generated a geologically representative section of the Miocene sequence in OTSW,
including the key structural features of fault-bounded trap systems (Fig. 5.1b): Major growth
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faults with listric geometries displacing most of the Miocene section, secondary synthetic
faults and rollover anticlines, increased thickness of the Lower Miocene (LM) interval in the
hangingwall, and thick sand-dominated intervals capped by clay-rich intervals. This profile
was meshed using unstructured triangular elements that conform to faults and horizons
(Fig. 5.1c). The main fault was meshed with elements of size ∼10 m (increasing downwards
with fault displacement), while the top seal (TS) was subdivided using a set of fine (∼25 m-
thick) layers around the fault. These two aspects allow us to readily assign fault multiphase
flow properties and to control the proportion of clay in the TS, respectively. Finally, the 3D
computational grid was obtained by extruding the meshed profile in the horizontal direction
(dimensions 45×45×8 km; Fig. 5.1c). In the simulations presented here, only the cells
pertaining to the storage reservoir (SR) and above are active (≈ 2 M cells).

Given our primary goal, formation properties were kept relatively simple (Table 5.2).
Data from Miocene gas reservoirs was used to define representative k values for the SR and
other sand-dominated intervals (Wallace 2013). The correlation between permeability and
porosity (ϕ) in Miocene reservoirs can be modeled as ϕ = ln(k [mD]/0.7385)/20.011 (Wallace
2013). Uniaxial pore volume compressibilities of poorly lithified sands from Crawford et al.
(2011) were used to define the formation compressibility (Cf); chosen values are representa-
tive of unloading conditions, consistent with fluid injection (Zheng and Espinoza 2021). The
petrophysical properties of Miocene mudrocks are based on core tests by Lu et al. (2017),
who reported ϕ ∈ [3, 11]%, and permeability mostly ∈ [10−4, 10−2] mD. Clay compressibility
is roughly one order of magnitude larger than the sand compressibility (e.g., Merrell et al.
2014).

Table 5.2: Formation pore compressibilities (Cf), porosities (ϕ) and permeabilities (kxx and kzz)
for units in the simulation interval (Fig. 5.1c).

Mesh unit Cf [bar−1] ϕ [-] kxx [mD] kzz [mD]

SR (LM2) 1.45× 10−4 0.265 150 0.2kxx

TS (clay) 1.28× 10−3 0.15 5× 10−3 0.2kxx

TS (sand) 1.45× 10−4 0.27 175 1
3kxx

MM-UM 1.45× 10−4 0.28 200 1
3kxx

Younger 1.45× 10−4 0.35 500 500

5.3.2 Fluids and setup

The composition, density and viscosity of the gas (CO2 only) and aqueous (brine and dis-
solved CO2) phases was computed at T = 80 ◦C and salinity = 105 ppm (Christie and
Nagihara 2016; Kraemer and Reid 1984) (Fig. 5.4d). The simulation domain is divided in
three main fluid regions for assignment of relative permeability (kr) and capillary pressure
(Pc). The curves for sand (SR, sand layers in TS, MM-UM and Younger; see Fig 5.1 and
Table 5.2) and clay-rich (TS) regions are shown in Fig. 5.4e (fault properties are described in
sect. 5.2). In Fig. 5.4e, the drainage relative permeability curves are Corey-type (Brooks and
Corey 1964) curves consistent with previous work (Ghomian et al. 2008; Wallace 2013), while
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Land (1968)’s model was used to compute the bounding imbibition curve, consistent with
Killough (1976)’s hysteretic model. The reference Pc curve for clay rich layers (Fig. 5.4e) is
from mercury intrusion capillary pressure (MICP) measurements by Lu et al. (2017). Their
MICP curve (PMICP

c ) was converted to CO2-brine (PCB
c ) as:

PCB
c = PMICP

c × γCB cos θCB

γMICP cos θMICP
= PMICP

c × 25 cos 70◦

480 cos 140◦
(5.1)

where γ is the interfacial tension and θ the contact angle. The values in Eq. 5.1 are those
suggested by Lu et al. (2017); the use of θCB = 70◦ is consistent with intermediate wetting
conditions and represents a conservative estimate.

Our computational domain is initially fully saturated in brine, and we assumed a constant
water table with height = 50 m. Similar to previous studies (Juanes et al. 2006; Silva et al.
2023), we recreate a strong aquifer support by multiplying the pore volumes of the cells in
the perimeter of the SR layer by 104. We inject CO2 at a rate of 1 Megaton (Mt) per year
during 50 years, and run all simulations for a total of 1000 y. The injector is placed in the
SR layer at ≈2 km depth, with the goal of achieving quick contact of the CO2 plume against
the fault (Fig. 5.1c).

5.4 Results

In this study, CO2 exists either as a supercritical fluid in its own phase, or dissolved in brine.
For correspondence with phase definition in the numerical model, we refer to supercritical
CO2 as gas or free-phase CO2.

5.4.1 Continuous vs discontinuous top seal

We first evaluate the effect of seal continuity by comparing the two base cases (S1C1 and
S2C1, see sect. 5.2.4). An overview of gas migration around the injector is provided in
Fig. 5.5. In both cases, we observe that most of the CO2 that migrates outside of the
injection compartment crosses the fault at the SR-SR juxtaposition and accumulates in the
hangingwall (HW) compartment below the TS. After 1000 y, the remaining gas is located at
the highest elevations in both SR compartments, due to its lower density (Fig. 5.5b,d). In
S1C1, there is no CO2 at any point where the TS is self-juxtaposed (Fig. 5.5a,c). Conversely,
in S2C1 (discontinuous TS) CO2 is able to migrate updip ≈25 m more and reach up to the
third sand-rich layer within the TS (OR3; Fig. 5.5e); interbedded sands act as secondary
reservoirs, and prevent further gas migration updip.

The dynamics of CO2 migration within the fault are summarized in Fig. 5.6. In our
simulations, pg = p + Pc(Sg), where pg and p are the dynamic gas and brine pressures,
respectively. Fig. 5.6a shows that, during injection, pg − p > Pe, where Pe is the entry
capillary pressure (defined at Sg = 10−3). This renders the fault open to migration of the
nonwetting CO2. However, CO2 does not saturate much of the fault updip, because the
flow path of less resistance is into the high-permeability sands within the TS and along
the fault strike (Fig. 5.6b). Therefore, after Pe is exceeded, CO2 migration is a dynamic
process controled by keg(Sg) = kkrg(Sg), where keg is the effective gas permeability, and
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Figure 5.5: Overview of gas (free-phase CO2) saturation for S1C1 (a-d) and S2C1 (e). a, c Vertical
cross sections, perpendicular to the fault strike, showing CO2 migration around the injection location
and fault. Both the storage reservoir (SR) and top seal (TS) are visible, and the injector, completed
in a single cell, is shown with a thin red line. b, d Top view of the storage reservoir (SR). Gas
migration is evident across the fault and parallel to the fault strike. e Zoomed view of gas saturation
around the injector and fault for S2C1.

CO2 leakage above the caprock does not necessarily occur. Maximum fault p and Sg are
shown in Fig. 5.6c,d. The maximum ∆p is < 1 MPa, which represents a moderate increase
at this depth, and reaches higher values in S1C1 due to the buffering effect of the TS sand
layers in S2. As noted above, no gas is present above W1 in S1C1 due to the low fault
permeability. CO2 saturation within the fault is nonlinearly decreasing with time, consistent
with reduced CO2 migration hazard at later times.

5.4.2 Stochastic clay smear modeling

A comparison of S2C2 (θ = 30◦, high-permeability) and S2C3 (θ = 30◦, low-permeability)
is provided in Fig. 5.7. We observe that gas migration across and along the fault is much
more irregular due to the varying permeability along the fault strike (Fig. 5.7a,b). However,
the overall picture in S2C2 is similar to S2C1, with free-phase CO2 reaching up to the lower
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Figure 5.6: Overview of gas (free-phase CO2) migration within the fault. a Capillary entry
pressure (solid black line), defined at Sg = 10−3, compared to actual capillary pressure at select
times. Plotted values correspond to fault cells at the center of the domain (y = 22.5 km, closest
to the injector), on the hangingwall (HW) side (see red line in b). b Gas saturation on the fault
from the HW, spanning ± 3 km from the center of the y axis. Note that most of the gas migration
within the fault volume is dip-perpendicular and strike-parallel, rather than updip. c Maximum
pore pressure change (left axis, blue) and gas saturation (right axis, red) within W1 (left) and W2

(right) for S1C1. d Same as c, now for S2C1. Refer to Fig. 5.3a for Wi location.

portion of W2 and migrating into OR3, which is more permeable than the fault. Also in
agreement with our observations from the base cases, maximum gas saturation within the
fault decreases with time after the end of injection (Fig. 5.7c); however, here this occurs
later in W2 due to strong permeability variations that hinder fluid movement (note that
we extended the run in Fig. 5.7c to t = 2000 y). Maximum values within W1 and W2 are
presented in Fig. 5.7d for S2C3. Maximum ∆p remains similar given the same stratigraphy,
but in this case we do not observe gas in W2. This is because the low-permeability fault core
realization for Pc upscaling in W2 is dominated by clay smearing, which leads to an order of
magnitude higher Pc compared to S2C2 (see arrow in Fig. 5.4b).

A summary of the simulation results from all cases is provided in Fig. 5.8, which shows
the percentage of the total mass of injected CO2 (50 Mt) in different units. We separate
free-phase CO2 (Fig. 5.8b) from dissolved CO2 (Fig. 5.8c). As noted above, most of the
CO2 leaving the injection compartment crosses the fault at the SR-SR juxtaposition and
gets stored in the HW. The continuous seal case (S1C1) shows the lowest amount of CO2

within the fault, and no migration into the TS. The discontinuous seal base case (S2C1)
estimates the highest amount of CO2 into OR1, because Pc is lower and k higher at the
SR-TS juxtaposition, compared to the smear modeling cases (S2C2 to S2C5). It is also
evident that, for a given θ value, the low-permeability cases (S2C3 and S2C5) estimate less
CO2 within the fault and TS sands than their high-permeability counterparts.

Interestingly, S2C4 and S2C5 (θ = 60◦) show lower CO2 migration into OR1 and OR2

than S2C2 and S2C3. This is counter-intuitive at first, given that the clay smear Pe is
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Figure 5.7: Overview of gas (free-phase CO2) migration in S2C2 (a-c) and S2C3 (d). a Gas
saturation in a cross section around the injector (left) and within the fault (right) at the end of
CO2 injection. b Same as a, now at t = 1000 y. c Maximum pore pressure change (left axis, blue)
and gas saturation (right axis, red) within W1 (left) and W2 (right) for S2C2. Note that this run
was extended to t = 2000 y (see main text). d Same as c, now for S2C3.

lower (Appendix C.1), which in turn results in lower upscaled Pe in W1 and W2 (Fig. 5.4b,c).
However, since Pc > Pe during injection, CO2 migration is governed by effective permeability;
krg for θ = 60◦ (Fig. 5.4c) is lower than krg for θ = 30◦ (Fig. 5.4b), which explains this result.
We have checked that this is the main control, and not k, by running a simulation for each
θ with the same k. In OR3, free-phase CO2 is only present in the high-permeability cases
(S2C2 and S2C4), given that pg − p < Pe otherwise. The amount of CO2 in OR3 is still
increasing after 1000 y, but we have checked that the rate continues to decrease by extending
one of the S2C2 runs to t = 2000 y. As noted previously (Krevor et al. 2023, and references
therein), we observe that free-phase CO2 migration hazard decreases with time, given the p
decrease and increase in immobile and dissolved CO2. The mass of CO2 remaining in the
storage unit after 1000 y is ≥ 46.5 Mt or ≥ 93%. Overall, our results suggest that, in the
Miocene section, CO2 is unlikely to bypass a top seal via updip migration in a listric growth
fault.

5.5 Discussion

Due to pore pressure increase from CO2 injection, free-phase CO2 overcomes the fault capil-
lary barrier, leading to fault CO2 migration that is controled by effective fault permeability.
Results assuming a discontinuous TS show that CO2 migration is predominantly into the TS
sand-rich layers and along the fault, rather than updip, and no updip fault migration occurs
if the TS is continuous (sect. 5.4). Central aspects of this work that are subject to uncer-
tainty include the choice of fault rock curves and upscaling methods (Appendix C), as well
as limiting the dependence of fault intrinsic permeability to stratigraphy and burial history
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Figure 5.8: CO2 migration summary, expressed as a percentage of the total mass of injected
CO2 (%M inj

CO2
). a Grid cross section showing the main geologic units. The sand layers within the

TS are numbered ORi, starting from the bottom. b Mobile (solid lines) and residual or immobile
(discontinuous lines) free-phase CO2. For each case S2C2 to S2C5, we plot the mean and range
obtained from the three runs (see sect. 5.2.4). c Same as b, but now for dissolved CO2.
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(sect. 5.2.3). As we argue below, however, our main findings are unlikely to be impacted by
these choices.

Relative permeability rock curves are based on measurements at high flow rates (Ap-
pendix C.1). This is consistent with viscous-dominated flow during injection, but buoy-
ancy and capillarity control fluid migration at later times. Reducing the capillary number
(Ca) typically lowers the nonwetting phase relative permeability by increasing the expo-
nents (Bryant and Blunt 1992; Krevor et al. 2012), which hampers CO2 migration. This
trend is analogous to a θ increase (Morrow et al. 1973). In practice, however, the direction
of change is variable and depends on heterogeneities (Krause and Benson 2015; Reynolds
and Krevor 2015; Blunt 2017, and references therein), but, given our low gas exponent (1.7
for θ = 30◦), we do not expect a significant krg increase. We also disregarded Pc to upscale
kr, and obtained curves between those of end-members (Fig. 5.4). Dynamic upscaling with
full physics, where kr depends on Ca, is potentially most accurate (e.g., Durlofsky and Chen
2012). Nevertheless, in our model, CO2 migration is dominated by keg differences. keg will
remain higher in the sands, because sand k (Table 5.2) is multiple orders of magnitude larger
than fault k (Fig. 5.3). This suggests that dynamics observed in our simulations are robust,
even if we cannot capture all kr variations.

Capillary pressures were upscaled in the fault core using macroscopic invasion-percolation
(MIP) simulations (Ioannidis et al. 1996) (Appendix C.1). Here, we imposed the constraint
that Sg = 0 until percolation occurs, which is necessary to separate fault core realizations
with continuous updip sand pathways and those where clay smear impedes flow (see arrow
in Fig. 5.4b). MIP assumes that the domain is in capillary equilibrium, and therefore it is
only strictly applicable during the post-injection phase. This is reasonable given that fault
Pe is clearly exceeded during injection (e.g., Fig. 5.6a) and most of the CO2 migration occurs
in the remaining 950 y. Additionally, stratigraphic studies show that the Amph B shale is a
regionally-extensive, very consistent seal (Treviño and Meckel 2017). The effect of increasing
the clay proportion in the TS is shown on Fig. 5.9a for W5 (cf. Fig. 5.3b). For the two cases
shown, the buoyancy pressure envelope and most k values are on the order of maximum Pe

and lowest k values for S2C3 and S2C5, where we did not observe CO2 above W1. Hence, our
analysis with 50% clay material in the TS is a conservative estimate of fault CO2 migration.

It is well known that fault permeability is a function of effective stress (σeff). At ∼2
km depth, a representative value for the effective normal stress acting on a fault, assuming
hydrostatic pressure, is 200 bar. The maximum W1 ∆p in our simulations was ≈7 bar,
while Silva et al. (2023) obtained 14 and 57 bar for max fault ∆p in open and closed aquifer
scenarios, respectively. Fig. 5.9b shows a model for faults and crystalline rocks in the seismo-
genic crust (Rice 1992), a model from siliciclastic faulted cores from the North Sea (Sperrevik
et al. 2002), and experimental data for quartz-kaolinite gouge (Crawford et al. 2008). For
simplicity, we assume here that ∆σeff = ∆p. It can be seen that clay-rich mixtures are
relatively insensitive to ∆σeff, and even for 40% weight fraction the variation is smaller than
one order of magnitude based on aforementioned ∆p. Similarly, Sperrevik et al.’s model
predicts about one order of magnitude variation for ∆σeff = 50 bar in clay-rich shear zones.
At the field scale, Rice’s model has been used to explain pressure distributions in mechan-
ically weak faults and episodicity of flow along faults. One example in the Gulf of Mexico
where this model fits in-situ measurements is the Red Fault (Revil and Cathles III 2002)
(Fig. 5.9b). Importantly, this is a strongly overpressured fault system where σeff → 0. It is
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currently active, and dilatancy, fluidization and hydrofracturing are hypothesized to occur
during pressure pulses driving flow updip the fault. Another field example from shale faults
where injection results in shear slip and strong permeability increase at low σeff has been
presented by Cappa et al. (2022). Clearly, our study cannot address fault behavior changes
with reactivation and σeff → 0. However, since the permeability of clay-rich material in
the fault core is steadily sensitive to ∆σeff, our results are reliable for faults without open
fracture networks subject to moderate ∆p, as obtained from this study and previous coupled
flow-geomechanics modeling in a similar setting (Silva et al. 2023).

Figure 5.9: a (Left) Global dataset of hydrocarbon buoyancy pressure as a function of the shale
gouge ratio (SGR), colored by maximum burial depth (from Yielding et al. 2010). The dashed
lines are maximum pressure envelopes, and the solid lines are for W5, where the thickness of the
clay layers is increased to 60% and 80% of the throw (instead of 50% used in the simulations).
(Right) Permeability distributions from PREDICT for W5 with 60% and 80% clay. b Dependence of
fault permeability on σeff. Lines show k = k0 exp(−σeff/σ

∗) (Rice 1992), red markers are in-situ
measurements in the Red Fault System by Revil and Cathles III (2002), markers with trend lines are
for 40 and 80% weight fraction quartz-kaolinite gouges under hydrostatic compression (Crawford et
al. 2008), and shaded areas are for Sperrevik et al.’s 2002 model. For the latter, we roughly estimated
σeff from the maximum burial depth (zmax), with the shaded area showing σz

eff ∈ [0.8σz−p, σz−p],
where σz(zmax) is the overburden stress and p(zmax) the hydrostatic pore pressure.

5.6 Summary and Conclusion

We used a geologic model representative of the Miocene section offshore Texas State waters
(Gulf of Mexico) and evaluated CO2 migration through a listric fault partially offsetting the
top seal (TS). Our analysis is based on multiphase flow modeling, incorporating stochastic
modeling of clay and sand smears in the main shear zone and their effect on multiphase
flow properties (sect. 5.2 and 5.3). Results presented here are applicable to soft siliciclastic
settings with approximately hydrostatic pore pressures and faults that are not reactivated
during injection. In these conditions, we have shown that CO2 migration updip a listric
growth fault is prevented by capillary and low-permeability barriers and mitigated by sec-
ondary sand reservoirs within the top seal interval (sect. 5.4). Although we injected CO2

next to the fault, ≥ 93 % of the total injected mass remains in the storage unit after 1000
y. Our results address the question of CO2 migration within faults after capillary breach,
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which limits capacity in GoM fault-bounded traps (Meckel et al. 2017). We conclude that
CO2 leakage above the top seal is unlikely, even if the capillary entry pressure is briefly
exceeded during injection.

In addition to flow models, GCS planning in similar settings will benefit from hydroge-
ologic studies at the basin, reservoir and core scales; geomechanical studies to avoid fault
reactivation (e.g., Silva et al. 2023); and risk analyses that incorporate uncertainty sources
beyond faults (e.g., Pawar et al. 2016). Research continues to be needed on evolutionary
models of fault zone architecture (e.g., how can we confidently predict a fault’s internal
structure), as well as the spatial variability of fault attributes (e.g., correlation length of
strike-parallel fault permeability). Quantitative knowledge in these areas would reduce un-
certainty on fault-related flows and reactivation potential, which are also of interest in other
subsurface technologies like hydrogen storage or geothermal energy.
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Chapter 6

Conclusions and Future Work

In this Thesis, we have extended the ad-blackoil module of MRST to increase fidelity in nu-
merical simulations of geologic carbon dioxide sequestration (GCS) in saline aquifers (ch. 2),
evaluated–quantitatively–the degree of concordance between numerical simulations and ex-
periments of CO2 injection and migration at the meter scale (ch. 3), developed a probabilistic
methodology to estimate the directional components of the fault permeability tensor (ch. 4),
and applied this methodology to assess fault CO2 migration in Miocene sediments offshore
Texas (ch. 5). The key findings from this work are:

1. Concerning numerical models of GCS: calibration requires less time if local data are
available, models are less accurate when applied to geologic settings different from those
used to calibrate them (even if governing physics remain the same), and models are
unlikely to achieve quantitatively accurate deterministic estimates of CO2 migration,
especially in contexts with heterogeneous structures like faults.

2. With regard to fault zone permeability in soft siliciclastic sequences: it is dominated
by the configuration of clay smears, it is difficult to constrain (probabilistic estimates
are multimodal and span several orders of magnitude), and it can be highly anisotropic
due to material layering.

3. In terms of fault CO2 migration: if the fault seal is breached, migration is controlled
by effective permeability. In the Miocene section offshore Texas, updip CO2 migration
in listric growth faults is unlikely due to clay-rich caprocks and stacking of multiple
sand intervals, which are more permeable than the fault.

We have provided evidence on: (1) the limits of numerical models and our ability to
make quantitative forecasts based on simulation results; (2) what is the impact of uncer-
tainty on permeability estimates in layered fault cores, typical of faults in soft siliciclastic
sequences; and (3) the interplay between structural geology and petrophysics on fault CO2

migration. Our findings strongly suggest that numerical models can adequately describe
CO2-brine migration, but also that accurate deterministic forecasts of subsurface CO2 mi-
gration are difficult to obtain. This is not necessarily surprising given uncertainties inherent
in subsurface engineering, but emphasizes the need to describe the effect of uncertainty
sources on quantitative estimates of CO2 migration (cf. Einstein and Baecher 1982; Einstein
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and Baecher 1983). In the field, the main uncertainty source is typically the distribution
of physical properties; additionally, simulating GCS in km-scale models requires modeling
choices which also impact the quality of numerical solutions. We therefore conclude, first,
that uncertainty quantification in petrophysical properties and probabilistic assessments of
CO2 migration are necessary. Second, in agreement with previous work (e.g., Nordbotten
et al. 2012), that flow simulation models should be history-matched and updated as field
data become available.

Our work also points to the need for further research in the following areas:

• Uncertainty quantification of CO2 migration: Numerical models are computationally
expensive, and development of more efficient solvers continues to be needed. It is typ-
ically impossible to fully quantify uncertainty in forecasts using physics-based models.
Hence, surrogate modeling frameworks using physics-based or data-driven reduced or-
der models (ROMs) are required. A question that arises from our results concerns the
choice of geologic models, petrophysical properties and numerical simulator(s), since
CO2 migration is sensitive to all of these aspects; thus, the forecasting capability of
subsequent models trained on physics-based data will be influenced by these choices.

• Fault permeability structure: Structural geology and hydrogeologic studies have pro-
vided evidence of architectural styles, local and bulk fault zone hydraulic behavior.
Quantitative bulk measurements, however, are rare, with a recent exhaustive review
reporting 3 and 14 values for fault zones in unlithified siliciclastics and mudrocks,
respectively (Scibek 2020); this renders statistical modeling unfeasible. It is also diffi-
cult to confidently predict a fault’s 3D permeability structure, including segmentation,
mesoscale structures and distribution of fault materials, which leads to uncertainty of
several orders of magnitude in properties like permeability. The characterization of
fault relative permeability and capillary pressure is even more uncertain, especially
considering the absence of measurements. The oil and gas industry has tradition-
ally used juxtaposition analysis and local calibrations based on across-fault pressure
differences and laboratory measurements to determine fault sealing and permeability.
Because extrapolation based on empirical models is difficult, work is needed to improve
predictions of fault behavior, in particular regarding fault-parallel flow and in settings
without previous hydrocarbon history.

• Characterization of subsurface settings: Site-specific evaluations are needed to increase
GCS capacity. Our analysis of fault zone CO2 migration suggests that local, reservoir
and basin-scale hydrogeologic studies are important to determine local petrophysics,
background pressures and large-scale flow regimes, all of which influence CO2 migra-
tion. Geomechanics assessments are also critical to constrain the pore pressure increase
that can be safely accommodated during CO2 injection to avoid fault reactivation.

Our discussion is centered around megaton-scale GCS in faulted siliciclastic settings,
expected to play a significant role as CO2 storage increases two orders of magnitude to
meet mid-century climate goals (IEA 2021; IPCC 2022). It should be noted, however, that
significant storage space exists in reservoirs that have already been extensively studied (e.g.,
depleted petroleum fields) and, also, that CO2 can be stored in laterally-extensive formations
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and hydraulically open reservoirs to limit intersection of the CO2 plume with major faults
and pore pressure increase (e.g., Chadwick et al. 2004; Silva et al. 2023). These types of
settings should arguably be utilized first; in parallel, research to address the points above
should be conducted to access further reservoirs later on.

It is our view that increasing GCS capacity by two orders of magnitude requires close
collaboration among researchers in geological sciences, hydrology, geomechanics and seismol-
ogy, and numerical, data-driven and uncertainty modeling. Collaboration between academia,
industry and government will also be required to plan operations with high probability of
success and establish conducive policies to achieve our mid-century climate goals. Finally,
we note that, while this Thesis is framed around GCS in faulted siliciclastic sequences, our
conclusions and future work should be useful in other settings, as well as in other applications
in groundwater hydrology, subsurface energy storage and production, or waste disposal.
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Appendix A

Additional Analysis of Numerical
Simulation Results (Ch. 3)

A.1 Additional Analysis of Simulation Model Concor-
dance with Experiment B1

A.1.1 Results with initial model parameters

Fig. A.1 compares Experiment B1 and concentration maps from simulations with initial pa-
rameters, for each of the three model versions considered. Qualitatively, all models estimate
the location of the two main gas plumes correctly, but it is clear that Model 1 and 2 are
less concordant to the experiment than Model 3. This is particularly true in the upper left
of the domain, where CO2 migration is controlled by the heterogeneous fault. Similar to
results presented in sect. 3.4.1, Model 3 is already very close to the experiment, although
the advance of convective fingers is slower.

Concordance between our initial models and the simulation is shown in Fig. A.2 by means
of the ratio between the model and experimental areas for different quantities in Box A and
B (see Fig. 3.15 for box location). Values below 1 indicate that the model underestimates the
areal extent of a given quantity, while values above 1 indicate that the model overestimates
it. During the first 48-72h, all models except M3,1 are reasonably close to the experiment in
Box A. Afterwards, M1, M2 and M3,3 forecast earlier dissolution of the CO2 plume, while
M3,1 forecasts later dissolution. In Box B, concordance is relatively good for M3 during the
first 48h, but model accuracy diminishes with time for all model versions.

Further comparison between our initial model results and experimental values are pro-
vided in Fig. A.3, where we evaluate mean Wasserstein distances to the international bench-
mark study (IBS) participants’ forecasts and experiments (Flemisch et al. 2023). Fig. A.3 is
consistent with Fig. A.1, where it can be seen that M3 is already very close to the experi-
ment, and is similarly concordant or more concordant than the best of the IBS participants.
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Figure A.1: Comparison between Experiment B1 in Tank 2 (leftmost column) and CO2 concen-
tration maps for simulation models 1-3 (middle-left, middle-right and rightmost, respectively) with
initial parameters. D = 10−9 m2/s (Model 1 and 2), D = 3 × 10−9 m2/s (Model 3). a-d end of
injection. e-h t = 15h. i-l t = 24h. m-p t = 48h. q-t t = 120h.

A.1.2 Calibrated models

First, we provide the total mass of CO2 in the computational domain in Fig. A.4, and the
mass in Boxes A and B in Fig. A.5.

Next, in Tab. A.1, the following measures are compared with quantities estimated from
the experiment via segmentation of timelapse images (Nordbotten et al. 2023). These mea-
sures correspond to the sparse data requested to participants of the FluidFlower IBS (Flemisch
et al. 2023):

1. time of maximum mobile free phase in Box A

2. mass of mobile CO2(g), immobile CO2(g), dissolved CO2, and CO2 in the seal (in any
phase), in Box A, 72 h after injection start (2a-d)

3. the same quantities as 2. for Box B (3a-d)

4. time at which m (defined below) exceeds 110% of the width of Box C

5. total mass of CO2 in the ESF seal, in Box A, at t = 120 h

Convective mixing in Box C (see Fig. 3.1e) is reported as the integral of the magnitude
of the gradient in relative concentration of dissolved CO2 (Flemisch et al. 2023):
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Figure A.2: Ratios between model (AMi) and experimental mean (AE) areas occupied by each
phase. Experimental mean was obtained from four experimental runs with identical protocol, while
the results for models 1-3 are for a single run. For M3, two cases are shown: D = 10−9 m2/s (M3,1)
and D = 3 × 10−9 m2/s (M3,3). Top row shows Box A, and bottom row shows Box B. Ratios for
gaseous CO2 in Box B are not computed because experimental values are 0. a gaseous CO2. b,d
dissolved CO2 (includes area with gaseous CO2). c,e pure water.

m(t) =

∫
C

∣∣∣∣∇(
χw

CO2

χw,max
CO2

)∣∣∣∣dx (A.1)

where χw
CO2

is the mass fraction of CO2 in water, and the dissolution limit is χw,max
CO2

. Note
that quantity 4, based on m, cannot be provided with full accuracy based on experimental
data, so an uncertain lower and upper bound is provided instead. Therefore, error is not
computed in Tab. A.1.

Relative error is evaluated with respect to the experimental mean (E) as εi(%) = 100×
|Ei−MJ,i|

Ei
, where i is a given measure and J refers to any of the models 1-3. In Tab. A.1, it

can be seen that all models accumulate some error in most of the quantities reported. The
maximum errors are ≈ 140% for models 1-2 and < 100% for Model 3. Model 1 is more
concordant in the uncertain region (Box B; see sect. 3.4.3 as well), while models 2 and 3 are
more accurate in Box A, the region where the calibration performed with Experiment A1 is
more meaningful. Overall, M3,1 does marginally better.

We provide additional analysis in Fig. A.6, which shows ratios between model and ex-
perimental areas, similar to Fig. A.2. As shown in sect. 3.4.3, M3,3 is most concordant in
Box A, while M1 and M3,1 do better in Box B. Compared to Fig. A.2, the maximum ratio
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Appendix A. Additional Analysis of Numerical Simulation Results (Ch. 3)

Figure A.3: Wasserstein distances to experiments and forecasts (simulations). Colored circles
show forecasts by IBS groups, and results with initial models 1-3 are presented with light gray
markers. In each subplot, the vertical axis shows the mean distance between a given datapoint
and the forecasts (considering the IBS participants only), while the horizontal axis shows the mean
distance between a given datapoint and the experiments. Markers not present fall outside of the
axes limits. See sect. 3.4.3 for details.

Figure A.4: Total mass of CO2 for our simulations of Experiment B1 presented in sect. 3.4.3.
Results are provided for models 1 to 3. For M3, two cases are shown: D = 10−9 m2/s (M3,1) and
D = 3× 10−9 m2/s (M3,3).

is reduced. In Box A (t < 72h), Model 1 and 2 are less accurate than in Fig. A.2, but this
is not representative of their concordance in the whole domain (sect. 3.4.3).

A.2 Nonlinear Solver Number of Iterations

According to fluid migration in the FluidFlower, flow dynamics are initially dominated by
injection rates, then by buoyancy of the gas phase, and finally by capillarity and dissolution.
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Figure A.5: Mass of CO2 in Boxes A and B defined in Fig. 3.1e, for our simulations of Experiment
B1 presented in sect. 3.4.3. Results are provided for models 1 to 3. For M3, two cases are shown:
D = 10−9 m2/s (M3,1) and D = 3× 10−9 m2/s (M3,3).

In Fig. A.7, we present, for the experiment in Tank 2, the relationship between the number
of iterations, the maximum Darcy velocity (u) and the maximum concentration rate (Ċ),
evaluated as dC/dt, as a function of time. Additionally, we estimated the maximum values of
the dimensionless Reynolds (Re, see Eq. 3.1), Capillary (Ca) and Bond (Bo) numbers during
and after injection (e.g., Bear 1972):

Ca =
µαuα

σ
(A.2)

Bo =
∆ρgk

σ
(A.3)

Where µ is the dynamic viscosity, u the Darcy velocity, σ the interfacial tension, ∆ρ the
density difference, g the gravity, k the permeability, and subscript α denotes a generic fluid
phase. Max Bo ∼ O(10−3) and remains constant in our system. Max Ca ∼ O(10−6),
∼ O(10−7) for water and ∼ O(10−6), ∼ O(10−8) for gas (during and after injection, respec-
tively), while maxRe ∼ O(10−2) for water and ∼ O(10−1), ∼ O(10−2) for gas (during and
after injection, respectively).

From Fig. A.7, a correlation between max |uh,g| is apparent during injection. The number
of iterations increases significantly after an injection port becomes active, and also when CO2

spills out of the lower reservoir and starts migrating along the lower fault (see Fig. 3.15);
this occurs at t ≈ 215 min and t ≈ 250 for M1 and M3,3, respectively. Peaks in Ċ appear at
the onset of injection, but we do not observe significant variations otherwise. Values from
the dimensionless groups are indicative of high flow rates (Re close to 1), relatively strong
capillary forces, compared to viscous forces (Ca ∼ O(10−6) or smaller), and appreciable
buoyancy. We identify that high flow rates and sudden appearance/disappearance of fluid

93



Appendix A. Additional Analysis of Numerical Simulation Results (Ch. 3)

Figure A.6: Ratios between calibrated model (AMi) and experimental mean (AE) areas occupied
by each phase in case B1. Experimental mean was obtained from four experimental runs with
identical protocol, while the results for models 1-3 are for a single run with each model. For M3,
two cases are shown: D = 10−9 m2/s (M3,1) and D = 3 × 10−9 m2/s (M3,3). Top row shows
Box A, and bottom row shows Box B. Ratios for gaseous CO2 in Box B are not computed because
experimental values are 0. a gaseous CO2. b,d dissolved CO2 (includes area with gaseous CO2).
c,e pure water.

phases challenge the nonlinear solver during injection. Buoyancy and capillarity forces, which
are active throughout the simulation, also impact convergence, but it is not straightforward
to identify if one exerts a greater control on the number of iterations. After injection, we
observe difficulties between t ≈ 315 and 1440 min in M1, and t ≈ 720 and 1440 in M3,3. Our
analysis does not reveal why, so this is a topic that warrants further study.

A.3 Comparison of Simulation Results with Multiple Grid
Resolutions

This section provides two comparisons of concentration maps obtained with Model 3 after
the calibration presented in sect. 3.4.2:

1. For Experiment A1, we compare two grid sizes: h = 4 mm, as shown in the paper, and
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Figure A.7: Number of iterations and maximum values in the simulation domain for various quan-
tities, as a function of time. Results are provided for M1 (left column) and M3,3 (right column). a,b
Number of nonlinear solver iterations. c,d Horizontal Darcy velocity. e,f Vertical Darcy velocity. g,h
Concentration rate (Ċ).
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a coarser grid with h = 8 mm (Fig. A.8).

2. For Experiment B1, we compare three grid sizes: h = 5 mm, used throughout the
paper, and two coarser grids with h = 10 mm and h = 20 mm, respectively (Fig. A.9).
Note that, in the three simulations in Fig. A.9, a total of 8.13 g of CO2 were injected;
this is slightly smaller than the 8.55 g actually injected in the experiment and in our
simulations in the rest of the paper.

It can be seen that, for the calibrated parameter set (Tab. 3.4), the coarser models maintain
a general agreement with the finer ones (and the experimental solution). However, some
differences are clear even in this qualitative comparison, including (1) smaller extent of the
CO2 plume, (2) lower dissolution, (3) lower number of fingers and finger widths, and (4)
different CO2-rich finger sinking speed. Therefore, the calibration process is somewhat cell-
size dependent, which has implications for applying history matched models from e.g., pilot
tests to field-scale CO2 storage projects.

Figure A.8: Concentration maps from our simulations of Experiment A1 with Model 3. Results
with two grids are shown: h = 4 mm (a, c, e, g) and h = 8 mm (b, d, f, h).
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Figure A.9: Concentration maps from simulations of Experiment B1 with Model 3. Results with
three grids are shown: h = 5 mm (a, d, g, j, m), h = 10 mm (b, e, h, k, n) and h = 20 mm (c, f,
i, l, o).
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Detailed description of PREDICT (Ch. 4)

Nomenclature for Appendix B

Input parameters
β Dip angle of the FW and HW stratigraphy
fβ Fault dip angle
m Predominant clay mineral in the FW and HW stratigraphy (optional)
T Layer thickness
Vcl Layer clay volume fraction
zf Faulting depth
zmax Maximum burial depth

Intermediate variables
fT Fault thickness
k′ = k̂zz

k̂xx
Permeability anisotropy ratio of each fault material

k̂xx (local) permeability across each fault material
n Porosity of each fault material
ss Along-strike smear segment number, i.e., the number of unique strike-parallel fault

sections in a 3D fault realization
SSFc Critical shale smear factor (defined for each layer with Vcl ≥ 0.4)
ρ Linear correlation coefficient between intermediate variables
ϕr Residual friction angle (defined for each stratigraphic layer)

Outputs
fn Upscaled fault porosity
fVcl Upscaled fault clay volume fraction
k Permeability tensor
kxx Upscaled permeability, fault dip-perpendicular
kyy Upscaled permeability, fault strike-parallel
kzz Upscaled permeability, fault dip-parallel
N Number of simulations/realizations employed to compute the output quantitites
P Probability
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Other fault variables
fD Fault displacement
fL Fault length (strike-parallel)
fLE Fault “longitude” (see B.1.3)
γ = fD

fT
Shear strain

Clay smear attributes
sD Smear domain length (line connecting the parent layer cutoffs through the fault)
sL Smear length (strike-parallel)
sLD Down-dip smear length (adding all segments if discontinuous)
smax
l Maximum down-dip smear segment length
sT Smear thickness
sT∗,i Smear thickness-in-fault (see Fig. B.2)
sχ = sLD

sD
Smear fraction

Acronyms
AR Aspect ratio of grid cells
FW Footwall
HW Hangingwall
MAE Mean absolute error
MPFA Multi-point flux approximation
MRST MATLAB Reservoir Simulation Toolbox (Lie 2019)
PFFR Phyllosilicate fault framework rock
PREDICT PeRmEability DIstributions of Clay-smeared faulTs (this algorithm)
TPFA Two-point flux approximation

Other symbols
A Area
G 2D computational grid or mesh used for flow-based upscaling of permeability
hy Grid cell length along the y axis
hz Grid cell length along the z axis
meq Equivalent grain aspect ratio of a sand-clay mixture (Daigle and Dugan 2011)
M Mapping matrix (square matrix with the same dimensions as G)
p Fluid pressure
R Parameter uncertainty range
u Darcy velocity or flux
Vcl Average stratigraphic clay volume fraction computed as

∑
i Vcl,iTi∑

i Ti
, including HW and

FW
α Angle between the fault dip and the fault materials
ϵ Tolerance during smear placement
θ Average grain orientation of Daigle and Dugan (2011)
ν Absolute frequency
Ω Computational domain, i.e. the physical dimensions of G
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B.1 PREDICT: PeRmEability DIstributions of Clay-smeared
faulTs

B.1.1 Concept, initial assumptions and validation

In siliciclastic sequences (those characterized by alternating sand-dominated and clay-dominated
sediments), fault materials are typically classified according to the proportion of clay (Fisher
and Knipe 1998). Fault materials predominantly composed of sand (referred to as sand-
based here) can be divided into sand-lenses (< 15 % clay, minimal grain comminution),
phyllosilicate fault framework rocks (PFFRs; 15 % ≤ clay ≤ 40 %, lower permeability),
and cataclasites (intense sand grain comminution) (Fisher and Knipe 1998; Braathen et al.
2009). Clay-based fault materials are typically referred to as clay smears (Vrolijk et al. 2016)
(> 40 % clay), and, in the absence of extreme cataclasis, they are the lowest permeability
component of the fault, with values in the micro- to nano-Darcy range or lower (Sperrevik
et al. 2002; Fisher and Knipe 1998; Childs et al. 2007). In a fault volume, these materials
are accompanied by other structures, such as segmented slip surfaces, deformation bands, or
fractures (Caine et al. 1996; Braathen et al. 2009; Childs et al. 2009; Faulkner et al. 2010).
However, faults in soft sediments (our focus here) typically display an architecture without
macroscropic (open) fractures, the result of predominantly ductile deformation and granular
flow (Heynekamp et al. 1999; Rawling et al. 2001; Caine and Minor 2009; Bense et al. 2013;
Kettermann et al. 2016; Delogkos et al. 2020). Because of that, it is the main shear zone
(fault core) that exerts a dominant control on fluid flow. Therefore, we focused on obtaining
a realistic representation of material heterogeneity in the fault core only (Fig. B.1).

To develop PREDICT, the following choices were made to compromise between data avail-
ability, importance in sedimentary sequences under analysis, and practicality in a fully prob-
abilistic framework:

1. Fault zone materials are placed at a constant angle α ̸= 0 with respect to the fault
dip (Fig. B.1b). α is determined by the amount of throw and fault thickness, and a
constant value implies that fault zone materials stay parallel to the line connecting the
footwall and hangingwall source layer cut-offs through the fault. This assumption is
consistent with shear-type smears, typically dominant in relatively shallow sand-clay
sequences (Weber et al. 1978; Lindsay et al. 1993; Kettermann et al. 2016). Other
smearing mechanisms such as abrasion (Lindsay et al. 1993) and injection (Lehner and
Pilaar 1997) are not considered.

2. A given 3D fault volume used for permeability upscaling is obtained by arranging
multiple, constant-thickness fault cross sections along-strike (see Fig. 1 in the main
text). First, this means that all smears placed in each 2D cross-section will be projected
parallel to strike and truncated at the same along-strike coordinates where they meet
the projected smears from the adjoining 2D cross-sections. Second, PREDICT currently
assigns the same along-strike length to all segments (i.e., to each fault section), the sum
of which equals the fault length (fL). Although this is a simplification of reality, data on
along-strike smear segmentation is too limited to justify a more complex approach here.
Finally, while natural and experimental fault core thickness varies along-strike (e.g.,
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Figure B.1: (a): Top plot shows a cross section of a clay smear-filled fault in the North Sea
(Brage East Fault, throw ∼200-250m) by Færseth et al. (2007). Bottom left and bottom right
plots are direct observations of faulted sand-clay sequences, showing heterogeneous sand and clay
layering within the fault core. Pictures are from Vrolijk et al. (2016) and Kettermann et al. (2016),
respectively. (b): Conceptual scheme of the clay smear distribution within a fault section, as treated
by PREDICT. Each layer in the stratigraphy with Vcl ≥ 0.4 can contribute smear into the fault. (c):
PREDICT snapshots of four fault sections consistent with a given stratigraphy. Fault materials, which
can be continuous or discontinuous, are colored according to permeability. PREDICT arranges fault
sections along-strike to form 3D fault volumes for permeability upscaling.

Kettermann et al. 2016; Sosio de Rosa et al. 2018), PREDICT models each realization
with constant thickness. This is reasonable given that each realization considers a
relatively short fL (equal to the fault displacement), and that, by running multiple
realizations, the effect of varying fault core thickness is accounted for.

3. PREDICT does not handle along-strike variations of fault throw, which means that a
given 3D fault realization has constant throw. In order to account for varying throw,
which is observed in natural faults, PREDICT can be run multiple times changing the
inputs. This allows understanding the impact of varying throw windows on fault per-
meability, but the effects of varying throw cannot be combined in a single permeability
prediction (i.e., for a unique realization).

4. All layers with clay volume fraction (Vcl) ≥ 0.4 are smear sources, but observations
indicate that this is not always the case (Zee and Urai 2005; Vrolijk et al. 2016).
However, the limited available data makes it difficult to relax this assumption.

5. The algorithm is intended for normal faults in normally-consolidated (NC) siliciclastic
sequences. PREDICT considers that the faulted stratigraphy is at, or close to, maximum
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historical burial depth. It does not model reverse or strike slip faults, poroelasticity
(e.g. enhanced permeability due to unloading associated with uplift), or fracturing.

6. The material properties and distribution in the fault can be predicted based on the
following set of inputs (see § B.1.2): thickness (T ) and Vcl of each layer in the footwall
and hangingwall, faulting and maximum burial depths (zf and zmax, respectively),
and dip angle of both the stratigraphy (β) and the fault (fβ). Inputs were kept to a
minimum to limit data requirements.

7. Mixing of parent materials is not considered, i.e., any given cell in the upscaling fault
grid has properties derived from a single stratigraphic layer. PREDICT’s goal is to honor
macroscale observations of the main shear zone, which is typically heterogeneous with
distinct sand-based and clay-based fault zone materials (Childs et al. 2007; Giger et
al. 2013; Kettermann et al. 2016). Composite smears (where a clay-rich body in the
fault results from amalgamation and/or grain-scale mixing of multiple sources) were
not considered here (§ B.1.3). Quantitative data on this topic are scarce, which would
make it difficult to validate an implementation.

8. Gaps in a given smear are equally likely at all locations on the down-dip smearing
path (§ B.1.3). Although ideal shear-zone smears lose continuity due to thinning to-
wards the midpoint between the footwall and hangingwall cutoffs (Lindsay et al. 1993),
outcrop studies show that gaps can occur at any location (Childs et al. 2007). Addi-
tionally, Grant (2017) showed that randomly placed smears have the greatest statistical
variation, which supports this choice for generality purposes. We also assume that the
smear contributed by a given clay source maintains constant thickness in the fault, in
contrast to natural smears, which taper.

9. PREDICT uses MRST (Lie 2019) to perform flow-based upscaling with sealing bound-
aries (Durlofsky 1991), similar to permeability measurements on cores. By default,
PREDICT uses the traditional two-point flux approximation (TPFA) to discretize the
single-phase flow equation, which ensures maximum computing speed. We validated
that PREDICT’s output is accurate by comparing differences with upscaled permeabili-
ties obtained using a multi-point flux approximation (MPFA). Additionally, physically-
sound and converged upscaling results were ensured via convergence analysis of the grid
cell size, cell aspect ratio, and the number of performed realizations (§ B.2.1).

The main goal of this work is providing new insight on the impact of stratigraphically-
consistent fault material arrangements with clay smears on fault permeability. In § 3 in the
main text we validate PREDICT with cm-scale experiments by Kettermann et al. (2017), and
we also compare our results to those from Sperrevik et al. (2002)’s permeability predictor
and other laboratory and field measurements in similar geology. A multi-scale, 3-component
validation of PREDICT’s output requires quantifying the mismatch between the permeability
distributions and measurements of the macroscale fault permeability in m- to km-scale faults.
This requires comprehensive field data and analysis, and is beyond the scope of this paper,
where the main goal is to introduce PREDICT and its capabilities.
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B.1.2 Intermediate variables

Given a set of input parameters, PREDICT generates the corresponding marginal probability
distributions for the intermediate variables (see Fig. 1 in the main text). These variables
are treated as continuous random variables, and are required to compute the dimensions
of the clay smears contributed by each source (§ B.1.3), their placement in the fault zone
(§ B.1.3), and the upscaled permeability (§ B.1.4). Each variable depends differently on the
input parameters characterizing the stratigraphy, as described next.

Marginal distributions

For each 3D fault:

• Fault thickness (fT): Fault rock (or core) thickness is known to depend primarily on
displacement (Childs et al. 2007; Childs et al. 2009). Although other controls exist, such
as clay content (i.e. rheology) and juxtapositions in the deformed section (Sperrevik
et al. 2002), it is difficult to include them rigorously due to lack of data. Hence, we only
consider the dependency of fault thickness on fault displacement (fD). In accordance
with published data, we consider that fD/fT is between 10 and 1000, with most of the
data around D/T = 100. We further assume that log10(

fD
fT
) ∼ Beta(a, b) with a = b = 5,

which gives a bounded symmetric distribution, and with few data in the upper and
lower 20%.

• Along-strike smear segment number (ss): This parameter defines the segmenta-
tion of smears in the strike-parallel direction, and is based on the hole mappings in
excavated fault surfaces by Noorsalehi-Garakani et al. (2013), Kettermann et al. (2016),
and Kettermann et al. (2017). We counted the number of holes along strike-parallel,
horizontal lines of length equal to fD to define the maximum and minimum number of
holes (Nh). Because each hole must be surrounded by smear, we set ss = 2Nh. This
led to ss ∈ [1, 16], which, given the experimental conditions in the studies above, is the
range for near-surface faulting; the upper bound is reduced with increasing faulting
depth. A triangular distribution is assumed to sample ss, whose mode depends on Vcl:
as the average clay fraction of the smear sources increases, the mode moves closer to
the lower bound. This follows similar logic to the SSFc (see below) in that larger zf

and/or Vcl lead to more continuous smears.

For each fault section:

• Residual friction angle (ϕr): The residual friction angle of clays is well correlated
with the clay-sized fraction of a granular material. We fit an exponential function to
data in Skempton (1964) and Mesri and Cepeda-Diaz (1986) (for Vcl ∈ [0.2, 1]), and
determine an interval of confidence around that fit, which is a function of the clay
fraction. Then, a stochastic term is incorporated such that ϕr(Vcl ≥ 0.2) ∼ Beta(a, b).
We use a = 3 and b = 5 to avoid many values near the extremes, and a distribution
somewhat skewed to the smaller values (more datapoints). For Vcl < 0.2, we define
ϕr(Vcl < 0.2) ∼ U(28, 38).

103



Appendix B. Detailed description of PREDICT (Ch. 4)

• Critical shale smear factor (SSFc): The SSFc defines the ratio between the fault dis-
placement and source layer thickness at which clay smears become discontinuous (Lind-
say et al. 1993; Færseth 2006; Childs et al. 2007). We impose a minimum Vcl of 0.4 for
a stratigraphic layer to contribute smear into the fault zone, so the SSFc is undefined
for clean and shaly sands. For source clays, the initial SSFc endpoints are determined
based on Vcl following Fig. 4a in Grant (2017), which is most representative of shal-
low faulting at about 500m of depth. Next, the endpoints are modified according to
the faulting depth of the sequence under analysis, with greater depth, i.e. greater
effective stress, leading to higher SSFc (Sperrevik et al. 2000; Clausen and Gabrielsen
2002; Çiftçi et al. 2013; Giger et al. 2013). The endpoints can be further modified to
account for hybrid failure in very shallow faults (e.g., Kettermann et al. 2017), such
that discontinuous smears may appear at any value of fD. Finally, the endpoints are
adjusted to account for the scale factor, which leads to smaller faults displaying larger
SSFc (Færseth 2006). These revised endpoints correspond to the bounds of the tri-
angular distribution used to sample SSFc values, while the mode moves closer to the
upper bound as layer thickness increases, and viceversa. This is introduced to agree
with observations that thicker clay layers generate longer smears, which could be re-
lated to increased water content in the clay, documented to favor continuity in the
laboratory (Sperrevik et al. 2000).

• Porosity (n): Although porosity is not the quantity we are focused on, it is also re-
quired in flow simulation and used in several mathematical models of permeability, in-
cluding the one employed here to estimate clay permeability. To determine sand poros-
ity (Vcl < 0.4), PREDICT uses the ideal packing model of
Revil et al. (2002). First, the end-member porosities of pure sand and pure clay are
determined using generic values provided in Revil et al. (2002). A modification is intro-
duced for the residual sand porosity to account for increased grain comminution with
faulting depth. The porosity of the pseudo-ideal sand-clay mixture (n1) is calculated
following equations 11 and 12 in Revil et al. (2002), and a 4% porosity variation is
introduced such that n(Vcl < 0.4) ∼ U(n1−0.02, n1+0.02). Clay porosity is estimated
using the Baldwin and Butler (1985) ± 5 % limits (nl, nu), which cover most of the
expected range for normally compacted clays. A uniform distribution is used to sample
from that range, i.e. n(Vcl ≥ 0.4) ∼ U(nl, nu), hence clay porosity is determined based
on maximum burial depth only.

• Permeability (k̂xx): Permeability across sand-based fault materials is estimated ac-
cording to Sperrevik et al. (2002)’s fault permeability model. This is an empiri-
cal relationship obtained from a consistent dataset of siliciclastic reservoirs in the
North Sea and is based on the clay content, faulting depth and maximum burial
depth. An uncertainty range (R) of one order of magnitude around the value from
the empirical relationship is assumed, and a stochastic term is introduced such that
k̂xx(Vcl < 0.4) ∼ U(min(R),max(R)). Permeability across clay smears is modeled
following the approach described in Grant (2020): the maximum burial depth is as-
sociated with a porosity range (estimated as described above), which in turn can be
used to determine the permeability bounds using a porosity-permeability relationship.
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PREDICT uses Yang and Aplin (2010)’s empirical model, which was obtained from a to-
tal of 303 samples from mostly marine sediments, and is a function of the material clay
fraction and porosity. All values are assumed equally likely within a given permeability
range, i.e. k̂xx(Vcl ≥ 0.4) ∼ U(min(R),max(R)).

• Permeability anisotropy (k′ = k̂zz
k̂xx

): The permeability anisotropy ratio of fault zone
materials is calculated following the model by Daigle and Dugan (2011) (Eq. 19), which
depends on the porosity (n), the equivalent grain aspect ratio (meq), and the average
grain orientation (θ). n is approximated following the model outlined above. meq is
obtained from Vcl and the predominant clay mineral (PREDICT assumes Kaolinite/Illite
by default), and θ is estimated assuming compaction up to faulting depth and shear
strain (γ) equal to fD/fT; in both cases, we follow the approach in Daigle and Dugan
(2011). Since k′ depends on n and γ, which in our case change at each model realization,
a deterministic model (Eq. 19 in the paper) is directly used to sample values.

§ B.2.2 provides an overview of the marginal distributions for different inputs.

Sampling

For each unique fault section in a 3D fault realization, PREDICT draws i samples for each
intermediate variable, where i is the total number of layers in the studied throw interval.
Each of these i samples is obtained using the previously defined distributions, which are
constrained according to the input parameters of each stratigraphic layer (parent material).
Dependency is introduced between intermediate variables in the following groups:

1. ϕr and SSFc: Both variables control the total smear volume in the fault, with smear
thickness increasing with decreasing clay ϕr, and total smear length increasing with
increasing SSFc (see sect. B.1.3). Hence, although length and thickness are modeled
separately, it seems reasonable to expect that both quantities would increase as the
clay volume entrained in the fault increases, and viceversa. This supports introducing
a negative correlation between ϕr and SSFc.

2. n and k. PREDICT accounts for the positive correlation between n and k in siliciclastic
sediments and sheared gouges (Crawford et al. 2008; Yang and Aplin 2010).

Dependency is modeled via Gaussian copulas (Nelsen 2006; The MathWorks, Inc. 2021,
Chap. 2). A transformation, which uses the inverse cumulative distribution function (CDF)
of the involved random variables (RVs), can be applied so that the marginals maintain the
desired probability distributions. PREDICT uses the inverse CDF of the marginal distributions
detailed in § B.1.2 and a moderate ρ = 0.6 to handle correlation between all RV pairs in
groups 1 and 2.

Finally, k′ (at the fault section level) and fT and ss (at the fault level, i.e., sampled only
once for each 3D fault realization) are treated independently, and samples are drawn directly
from their marginal distributions. This means that all fault sections used to generate a given
3D fault realization are assigned the same fT (see Fig. 1 in the main text). § B.2.2 illustrates
the correlation between intermediate variables, as well as the resulting smear dimensions,
for a given clay source.
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B.1.3 Smear dimensions and placement

Dimensions of clay smears resulting from each source layer with Vcl ≥ 0.4 in a studied throw
interval are computed according to the following:

• Thickness (sT): We follow Eq. 5 in Egholm et al. (2008) to obtain an average clay
smear thickness for each source (sT,i) from the residual friction angle of the involved
clay (ϕr,i) and sands (ϕs), the true layer thickness (Ti), and the corresponding fault
longitude (fLE,i). ϕs is a thickness-weighted average of the residual friction angle of all
sands in the faulted section, and fLE,i = fD+T ∗

i , where T ∗
i is the apparent layer thickness

of the corresponding source on the fault. We take a value of 1 for the proportionality
constant in Egholm et al. (2008), which means that all clay material in the zone of
instability is incorporated into the fault. We used the smear thickness measurements
by Kettermann et al. (2016) (surface 2), and estimations from larger faults by Færseth
(2006), to validate that a choice of 1 is reasonable.

• Down-dip length (sLD): The total clay smear length for a given source is computed
as sLD,i =

T ∗
i

cosα
SSFci, where SSFci is the corresponding critical shale smear factor as

defined above.

• Maximum down-dip segment length (smax
l ): Similar to the fragmented mode

in Grant (2017), we assume that the smear produced by a given source will be more
fragmented the longer it is displaced, i.e., the higher the SSFci. Hence, for a given ran-
dom sample, the closer the SSFci is to the upper endpoint for that source (SSFcmax

i ),
the shorter the maximum segment length: smax

l,i =
SSFcmax

i −SSFci
SSFcmax

i −SSFcmin
i

sLD,i. To prevent ex-
treme fragmentation, which complicates convergence of the smear placement module,
it is also imposed that smax

l ≥ max({0.1sL,i, 3hL}), where hL is the grid resolution
along the z axis (cell length).

• Along-strike length (sL): Since each fault section in a given 3D fault realization is
generated independently, clay smear segmentation generally occurs at the coordinates
where two sections meet. Therefore, the length of each of these fault sections is equiv-
alent to the strike-parallel clay smear length (sL). This length is computed as sL = fL

ss
,

where ss is defined as described in § B.1.2 for fL = fD.

Additionally, a smear fraction (sχ ∈ [0, 1]) is calculated for each smear such that sχi
=

sLD,i/sD, where sD is the domain length or the length of the line connecting the footwall and
hangingwall smear source cutoffs through the fault. Hence, sχi

also represents the probability
of finding a clay smear-filled cell in the corresponding domain, and is conceptually equivalent
to the complement of Childs et al. (2007)’s individual gap probability in their probabilistic
shale smear factor (PSSF). As described below, these quantities are used to model the
thickness, length and continuity of the materials populating the fault in each realization.

To generate a fault section, PREDICT places clay- and sand-based materials in the fault
following a two-step process (Fig. 1 in the main text, Fig. B.2). First, a material mapping
matrix (M) is initialized. M is square and provides a direct mapping to the grid used for
flow-based permeability upscaling (see § B.1.4). M is subdivided into a discrete number
of domains according to the parent layer contributing material to each one. A domain is
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Figure B.2: Clay smear placement algorithm (refer to the main text for details). (a): Workflow
for (1) material domain assignment and (2) smear continuity assessment and object simulation (b):
(top) Illustration of fault and clay smear dimensional quantities required to compute the initial
number of M diagonals assigned to each smear. (bottom) Illustration of three overlapping smears
and the resulting number of unique domains (d1 to d6, of which d1 to d5 are clay smear domains and
d6 is sand-based material only). Each domain is assigned one single parent and the corresponding
elevation window (w1 to w3 in this case). (c): Illustration of smear object (segment) placement
in a given domain. Here, the first main iteration places two segments of length smax

l,i . The second
places an additional, shorter segment, which leads to a smear fraction slightly above the calculated
one. Finally, the third shortens the longest segment until the smear fraction matches the calculated
value to a pre-defined tolerance.

defined as a group of diagonals in M with the same parent material, and maintains constant
thickness (number of diagonals) along the modeled throw interval. The material mapping
module assigns clay smear domains first, and fills the gaps with sand-based materials next.
Each potential clay smear is initially distributed around the diagonal in M that meets the
center of each source, and has a number of diagonals derived from the thickness-in-fault
(sT∗,i; see Fig. B.2b). The mapping module keeps track of overlaps in any diagonals, and
divides M in a discrete number of domains based on diagonal groups with the same potential
parent source(s) (Fig. B.2a,b). Domains with two or more potential sources are assigned a
single one based on a uniform probability law. An elevation window is also assigned to each
domain, to ensure that the contributed smear is always located between its source top in the
FW and its source base in the HW. This stage is completed by assigning sand-based materials
in (1) any unassigned diagonal groups between smear domains, and (2) any diagonal entries
in smear domains with elevation beyond the smear windows. Sand-based material properties
are derived from the closest material in the faulted stratigraphy with Vcl < 0.4 in both cases.

Smear continuity is handled by a second module that evaluates, for each domain whose
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parent material is a clay smear source (Vcl ≥ 0.4), whether the generated clay smear is
continuous along the smear window (sχi

= 1) or discontinuous (sχi
< 1). If the smear is

discontinuous, object-based simulation (Pyrcz and Deutsch 2014) is performed to randomly
place q clay smear segments with length sl,j for each source i such that max({sl,1, ..., sl,q}) ≤
smax
l,i and (

∑q
j=1 Ac,j)/Ai ≃ sχi

< 1, where Ac,j is the domain area filled by a clay smear
segment and Ai is the total domain area. This process, which finalizes M , is completed
by successive iterative blocks (Fig. B.2c). First, the initial number of smear segments is
estimated using smax

l,i and the domain length within the modeled fault. These segments
are placed one at a time, each within the longest existing gap after the previous iteration.
Placement of each segment in the corresponding gap is random, according to a uniform
probability law. Ac,i and Ai can be evaluated by counting the number of M entries with
clay smear and the total number of entries in the domain, which leads to the resulting
smear fraction (sobj

χi
). If this value is within a tolerance (ϵ) of sχi

, the process for that
domain is complete. Otherwise, two options are possible: either sobj

χi
+ ϵ < sχi

, in which case
another main iteration is performed that places new smear segment(s) in a similar fashion;
or, sobj

χi
− ϵ > sχi

, in which case clay smear cells are replaced by sand-based material one cell
row at a time until sobj

χi
is within tolerance of sχi

.
In order to construct a 3D fault realization, PREDICT repeats this process and generates ss

fault sections (see § B.1.2). Each of these fault sections is assigned a length equal to sL (see
above), and they are arranged one after another (along-strike) to obtain a 3D fault volume
with x, y, z dimensions equal to fT × fL × fD (refer to Fig. 1 in the main text).

B.1.4 Upscaling

For each fault section, clay fraction, porosity and permeability are assigned to each entry
ij in M based on the stratigraphic unit contributing material (the parent unit). This is
completed as follows, one domain at a time:

1. Determine whether a single unit (continuous clay smear with window filling the whole
domain, or only sand-based material) or two units (discontinuous clay smear and sand)
are present.

2. Assign clay volume fraction, porosity and permeability across each entry in the domain
(k̂ij

xx) based on the parent unit. At this point, all intermediate variables have been
sampled following sect. B.1.2; additionally, a small randomness is introduced to account
for the high variation frequency of these properties, expected to change within the
same object (Grant 2020). Permeability is allowed to vary a log10 value of ±0.2, while
porosity is allowed ±0.015. The resulting ranges are small enough that they barely
impact the correlation introduced during sampling (sect. B.1.2).

3. Assign the permeability along the material (k̂ij
yy = k̂ij

zz), which is equal to the product
of k̂ij

xx and the sampled permeability anisotropy ratio for the contributing parent. This
completes the local, diagonal permeability tensor for each entry in M (k̂

ij
).

4. Fault materials are at an angle α with respect to the fault dip (see sect. B.1.1 and
Fig. B.1), so k̂

ij
needs to be transformed to the fault coordinate system (aligned with
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the grid), before performing flow-based upscaling. Conversely, fault materials are as-
sumed to be roughly parallel to the fault strike, so kij is obtained via tensor-rotation
about the y-axis and kij

yy = k̂ij
yy ∀i, j. Since the off-diagonal terms involving y are 0,

this is equivalent to transforming the 2D permeability tensor involving the x and z
components only.

Steps 1-4 are repeated for each fault section in a given 3D fault volume, such that we have
{M} = {M1, ...,Mss} and their corresponding kij. The only remaining step is to obtain the
equivalent or upscaled clay fraction, porosity and fault permeability for the studied throw
interval. Given that the focus is on understanding permeability in the main fault directions,
PREDICT simply computes the main-diagonal components, i.e. kxx, kyy and kzz. Upscaling is
performed using the MATLAB Reservoir Simulation Toolbox (MRST) (Lie 2019) as described
next:

i. The user defines a coarse, upscaling grid (GC) onto which the output macroscale per-
meability will be mapped. GC is defined as the number of cells, in x, y, z, for which
the upscaled permeability is to be computed. The total number of cells in GC is the
product of each dimension, and all cells in GC are uniform rectangular cuboids. For
example, if [1, 1, 1] is passed, PREDICT outputs a single permeability value correspond-
ing to the full throw window; [2, 10, 10] upscales the permeability in a GC with 200
cells. The definition of GC depends on the user end-goal.

ii. The fine, 3D computational grid (G) matching the studied fault throw interval dimen-
sions (thickness, length, displacement) and with equal-size, rectangular cuboid cells is
created. By default, the cell dimensions are [0.01fT, sL, 0.01fD] in the x, y, z dimen-
sions, so that G has the same number of cells in x, z and ss cells along y. This ensures a
1 to 1 correspondence with {M}, including each ij entry in M1, ...,Mss . When GC has
several cells along y, PREDICT can generate G with [0.01fT, ≈ 0.01fL, 0.01fD] resolu-
tion, which ensures compatibility between the fine and coarse grids. In this case, each
unique fault section, and, therefore, each element in {M} and its assigned properties,
are repeated sL

hy
times, where hy ≈ 0.01fL is G’s y cell size. A convergence analysis of

various aspects related to grid resolution is provided in § B.2.

iii. Each G cell is assigned the clay fraction, porosity and permeability of its reciprocal in
{M}.

iv. Additive properties (clay volume fraction and porosity) are upscaled first. Since all grid
cells have the same volume, the upscaled fault clay volume fraction (fVcl) and porosity
(fn) are simply the average of all cell values in G that fall inside each cell in GC.

v. kxx, kyy and kzz are obtained using flow-based upscaling with sealed boundaries. This
translates to imposing a pressure drop (∆pi) in each axial direction i, while no-flow
is imposed on the other four boundaries, and computing the net flux (ui) at the out-
flow boundary. The equivalent or upscaled permeability is obtained from Darcy’s
law (Darcy 1856) as kii = −uiLi/∆pi, where Li is the length (see chapter 15 in Lie
(2019) for details). Since we are interested in the intrinsic permeability, the volumetric
flux u is obtained by solving, on each subset of G within each cell in GC, the equation
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describing single-phase, incompressible flow thrice (once for each pressure drop):

∇ · u = 0 ∈ Ω ⊂ R3 (B.1)

Where u = −k∇p. As is common practice in reservoir simulation, MRST employs a
finite-volume method to discretize Eq. B.1. As noted in sect. B.1.1, interface fluxes are
obtained with a TPFA to minimize computing time, but we ensured that PREDICT’s
output is accurate by comparing the result for several configurations against the output
using a MPFA. This is because the angle α (refer to sect. B.1.1 and Fig. B.2) is typically
very small, so the off-diagonal terms in kij are not significant. Parallelization and C-
acceleration allow PREDICT to clock up to several realizations per second, although this
is highly variable as it depends on G resolution, choice of GC, available computing
cores and processor speed. In most cases, we estimate a speed of several realizations
per minute.

B.2 Assessment of PREDICT’s Behavior

B.2.1 Convergence analysis

Convergence of PREDICT’s upscaled permeability distributions is quantitatively assessed with
respect to the grid cell size and the cell aspect ratio (2D), and the number of performed
realizations (3D). Note that, although all results presented in this paper are obtained with
the 3D version of PREDICT, the algorithm can also run in 2D. In the 2D case, permeability is
directly upscaled for each [x, z] fault section, which constitutes one realization. Flow-based
upscaling (kxx, kzz) using a MPFA to compute fluxes is used, and the algorithm considers a
single cell in GC for the modeled throw window.

Grid/Mesh degree of refinement

The impact of the grid’s cell size on the upscaled permeability is quantified by running a
single 2D realization with multiple cell sizes. The random seed is fixed at the beginning of
each iteration, to ensure that differences are only the result of different grid resolution. The
process is completed for five stratigraphic sections with varying inputs (A to E). Results are
shown in Fig. B.3, where it can be seen that, beyond hz ≈ 0.01fD, refinement no longer leads
to significant changes in the upscaled permeability (i.e., larger than ∼1 order of magnitude).
Since M must be square (see sect. B.1.3 and B.1.4), cell refinement can only be accomplished
by reducing both the x and z dimensions. These results allow setting PREDICT’s default [x, z]
cell size for each fault section to [0.01fT, 0.01fD].

Cell aspect ratio

Since G has the same number of cells in the x and z dimensions, the [x, z] cell-dimension
aspect ratio (AR) is equal to fD/fT , i.e. between 10 and 1000 (see § B.1.2). The impact of the
AR on the upscaled permeability is quantified as follows: First, a single 2D realization is run
with the cell size defaults (see § B.2.1). Next, a set of iterations is completed, in which each
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Figure B.3: Upscaled permeability (rows) for five faulted stratigraphic intervals A to E (columns)
as a function of cell length (hz). Fault displacement is 100m in all cases. Filled markers correspond
to PREDICT’s default cell size.

grid’s AR is successively decreased by increasing the number of cells along the z dimension.
Cell permeability is assigned based on proximity to the original (default) grid cells, which
have permeabilities from the mapping described in § B.1.3. Finally, the permeability is
upscaled, and compared to that obtained using the default grid.

Results in Fig. B.4 show a maximum upscaled permeability ratio below 1.5, suggesting
that, even for thin faults, the grid’s AR does not significantly diminish the upscaling accuracy.
For the 3D version of PREDICT, we also tested the differences in kxx, kyy, kzz when using G’s
default relatively low resolution along y (ss cells, each with length sL) as opposed to a similar
resolution to that of x, z with about 100 cells along y (see sect.B.1.4). We found that
differences were not significant in any case.

Number of simulations

Finally, we assess convergence of the upscaled permeability distribution with respect to the
number of performed realizations/simulations in 3D. The analysis uses 2×104 realizations to
obtain the reference result, and, similar to above, five different stratigraphies are evaluated (A
to E). Snapshots of some probability distributions are shown in Fig. B.5, and the differences
were quantified by means of the mean absolute error (MAE) of the probability in each log-bin
(Table B.1). A MAE of ≈ 0.5% or below with respect to the reference distribution suggests
that 1000-2000 realizations are enough for an accurate upscaled distribution. Results were
obtained using a single cell in the coarse, upscaling grid.

B.2.2 Uncertainty propagation

This section shows the marginal distributions for the intermediate variables described in
§ B.1.2, for several input combinations. Then, it uses an example section to illustrate the
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Figure B.4: Upscaled permeability ratios (with respect to the value obtained with the default
grid, kjj) down to an AR of 5, and for five stratigraphic sections with varying inputs (A to E). Thin
faults with default AR > 400 were used.

Table B.1: Mean absolute error (MAE) of the log permeability distribution obtained with N
realizations, compared to the result with N = 2×104. In each table cell, the top value refers to kxx,
the middle one to kyy, and the bottom one to kzz. For each stratigraphic case, the log10(kjj [mD])
distribution is obtained by binning N values (the output) and computing the probability in each
bin. 50 equal-width bins between −7 and 4 were used. Only the bins with P > 0 in the reference
result (N = 2× 104) are considered when calculating the MAE.

Stratigraphy N = 10 100 200 500 1000 2000 5000 104

A

0.0492
0.0312
0.0153

0.0130
0.0127
0.0130

0.0107
0.0262
0.0038

0.0213
0.0146
0.0076

0.0024
0.0051
0.0042

0.0045
0.0077
0.0033

0.0028
0.0022
0.0023

0.0008
0.0011
0.0010

B

0.0251
0.0303
0.0154

0.0078
0.0098
0.0074

0.0070
0.0071
0.0042

0.0038
0.0048
0.0040

0.0036
0.0043
0.0033

0.0023
0.0015
0.0022

0.0013
0.0021
0.0012

0.0013
0.0014
0.0010

C

0.0322
0.0219
0.0040

0.0202
0.0070
0.0047

0.0206
0.0086
0.0032

0.0082
0.0023
0.0015

0.0082
0.0026
0.0011

0.0011
0.0020
0.0010

0.0038
0.0015
0.0009

0.0038
0.0013
0.0007

D

0.0299
0.0513
0.0137

0.0065
0.0129
0.0046

0.0081
0.0083
0.0053

0.0046
0.0072
0.0016

0.0038
0.0041
0.0014

0.0017
0.0028
0.0005

0.0016
0.0020
0.0010

0.0008
0.0014
0.0010

E

0.0476
0.0331
0.0536

0.0135
0.0130
0.0174

0.0073
0.0080
0.0108

0.0066
0.0054
0.0072

0.0057
0.0033
0.0047

0.0040
0.0033
0.0031

0.0019
0.0021
0.0023

0.0020
0.0017
0.0022

values and correlations for a given clay source, as well as the resulting dimensions of the
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Figure B.5: Permeability distributions obtained using N = 10, 200, 1000, 104 and 2 × 104 real-
izations (rows), for five different stratigraphic cases (columns). 50 equal-width bins between -7 and
4 were used.

smear contributed into the fault by that source.

Marginal distributions

The marginal distributions are provided for varying inputs in Fig. B.6-B.14. 5000 realizations
were used.

Correlation and smear dimensions

The correlation (input ρ = 0.6) between intermediate variable samples for a given fault
section is shown in Fig. B.15 for a source layer with Vcl = 0.6 and T = 10 m. zf and zmax

are 1000 and 2000 m, respectively (Fig. B.16a). As described in § B.1.2, ϕr and SSFc are
correlated, and n and k are also correlated.

The relative dimensions of the smear contributed by this example source layer in a total
of 1000 fault sections are shown in Fig. B.16b. It can be seen that the relative thickness
does not change change much, since ϕr is fairly constant (Fig. B.15). The smear fraction
oscillates between ∼ 0.5 and ∼ 0.8, with a distribution shape inherited from the SSFc. For
this source, the SSFc ranges between 5 and 9, with the mode at around 5.3 (Fig. B.15).
Hence, since most of the values are close to the lower bound of 5, fragmentation is usually
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Figure B.6: Fault displacement over thickness.
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Figure B.7: Along-strike smear segment number as a function of zf and Vcl.

Figure B.8: Residual friction angle as a function of increasing clay volume fraction.
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Figure B.9: Clay smear porosity (Vcl ≥ 0.4).

low (smax
l is mostly close to sLD). Note that these reference dimensions are computed before

fault material placement (§ B.1.3). In any given fault section, if there is overlap with other
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Figure B.10: Critical shale smear factor as Vcl, zf and T change.

smears, the smear resulting from this source may or may not be present in the fault.

B.2.3 Sand connectivity

Fig. B.17b,c (in 2D and 3D, respectively) show the relative frequencies of continuous sand
pathways for the four sequences with increasing Vcl shown in Fig. 3 in the main text. A
continuous sand pathway is defined as a sand object that extends from boundary to boundary
along one or more of the main axes x, y, z (Fig. B.17a). In this definition, a sand object is a
group of connected cells in G with sand-based fault material (different sand-based materials
may be present).
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Figure B.11: Porosity for sand-based materials (Vcl < 0.4).

Figure B.12: Permeability of clay smears (Vcl ≥ 0.4).
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Figure B.13: Permeability of sand-based materials (Vcl < 0.4).

B.3 Kettermann et al.’s (2017) Experimental Permeabil-
ity Calculation

In Fig. 2 in the main text, we report the comparison between PREDICT’s output and exper-
imental permeabilities estimated from measurements in a water-saturated sandbox by Ket-

117



Appendix B. Detailed description of PREDICT (Ch. 4)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure B.14: Permeability anisotropy ratio (k′ = k̂zz/k̂xx) for materials with kaolinite or illite as
predominant clay mineral.

termann et al. (2017), as a way to validate PREDICT’s output at the fault-scale (i.e., beyond
the mini-permeameter or core measurements reported in Fig. 4 in the main text). Ketter-
mann et al. (2017) measured the outflow for different values of fault displacement, with a
bottom-to-top layering of 15 cm sand, 1 cm clay and 12 cm sand. Flow across the (displaced)
clay layer is induced by lowering the hydraulic head in the lower sand reservoir by 2 cm (see
Fig. 2A in the main text, and Fig. 2 in Kettermann et al. 2017). The outflow, and hence the
estimated permeability, is dominated by the thickness and continuity of the displaced clay,
i.e., the fault permeability.

In order to obtain the experimental fault permeabilities reported in Fig. 2 in the main
text, we followed the steps below using data in Kettermann et al. (2017).
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Figure B.15: Correlation between intermediate variables for a given material. A posteriori cor-
relation coefficients are displayed in bold magenta when the correlation is statistically significant.
k = k̂xx is the permeability across the resulting smear. N = 1000.

Figure B.16: (a): Faulting interval, with the studied clay source highlighted in blue. (b): Relative
clay smear dimensions.
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2A

(b)(a)

2B

2C
2D

(c)

Figure B.17: (a): Example of an individual fault section in which there is a continuous sand
pathway through the fault core in x (cyan object), but not in z. Clay smears are shown in white.
(b): Relative frequency of continuous sand pathways, for each of the 4 sequences shown in Fig. 3
in the main text. Consistent with MPFA, we used 8-connected pixel (cell) connectivity. N =
5000 fault sections (2D). (c): Relative frequency of continuous sand pathways, for each of the 4
sequences shown in Fig. 3 in the main text. Consistent with TPFA, we used 6-connected pixel (cell)
connectivity. N = 2000 realizations (3D).

B.3.1 Computation hydraulic conductivity from normalized flux
measurements

1. Using Darcy’s law Darcy (1856), the hydraulic conductivity (K, [L/T]) can be calcu-
lated as follows (Eq. B.2):

K =
QL

∆hA
(B.2)

Where Q is the flow rate [L3/T], L is the length of the porous medium [L], A is the
cross-sectional area [L2] and ∆h is the hydraulic head difference [L].

2. We took the Q/∆h measurements in Fig. 14 in Kettermann et al. (2017) for the ex-
periments giving the most spread of the data (3 and 4 for one-layer experiments, and
7 and 8 for two-layer experiments). Specifically, we manually selected value pairs of
normalized flux and SSF for each experiment from the figure.

3. For each value pair, we estimated K using Eq. B.2, the height of the sandbox (L = 0.28
m), and the outflow area (A = 0.5× 0.3 m). Variations in L due to deformation of the
sandbox do not lead to significantly different permeability values.

4. We computed the intrinsic permeability (k) from K following Eq. B.3 and the same
water density and viscosity employed to obtain the input k for clay and sand materials
(see below).
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B.3.2 Computation of intrinsic permeability from hydraulic con-
ductivity

PREDICT allows inputing measured material permeabilities (instead of computing them as
described in sect. B.1.2, which is the default), for cases when these data are available. Ket-
termann et al. (2017) report that the sand and clay have an average hydraulic conductivity
(K) of 1± 0.4× 10−4 and 4± 2× 10−8 m/s, respectively. These values can be converted to
intrinsic permeability (k, [L2]) as shown in Eq. B.3:

k =
Kµ

ρg
(B.3)

Where µ and ρ are the dynamic viscosity and density of the fluid, respectively, here taken
to be 10−3 Pa·s and 998.23 kg/m3 for water at 20 ◦C and atmospheric pressure, and g is
the gravitational acceleration. We used the central measurement value, which results in
ks = 10.347 D and kc = 4.1388 mD. To obtain the results in Fig. 2 in the main text, these
permeabilities were passed into PREDICT and directly assigned to sand-based fault materials
and clay smears, respectively.
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Nomenclature for Ch. 5 and Appendix C

Acronyms
CB CO2-Brine
CZ Fault architectural domain: Fault core or Core Zone
DZ Fault architectural domain: Damage Zone
FW Footwall block of the fault
GCS Geologic Carbon Sequestration or Geologic CO2 Storage
GoM Gulf of Mexico
HW Hangingwall block of the fault
IEA International Energy Agency (https://www.iea.org/)
IEAGHG IEA Greenhouse Gas R&D Programme (https://ieaghg.org/)
IPCC Intergovernmental Panel on Climate Change (https://www.ipcc.ch/)
LM Lower Miocene
MICP Mercury-intrusion capillary pressure
MIP Macroscopic invasion-percolation
MM-UM Middle Miocene - Upper Miocene
MRST MATLAB Reservoir Simulation Toolbox Lie 2019
MZ Fault architectural domain: Mixed Zone
ORi Overlying reservoir i. i = 1 is the first sand unit within the TS, and i = 10 the last

one.
OTSW Offshore Texas State Waters
PREDICT PeRmEability DIstributions of Clay-smeared faulTs Saló-Salgado et al. 2023a
PVT Pressure, Volume, Temperature
Si Numerical simulations: Scenario i
SiCj Numerical simulations: Scenario i, Case j
SGR Shale Gouge Ratio Yielding et al. 1997
SR Storage Reservoir
TS Top Seal

Notation
Gt Unit of mass: Gigaton (109 tons). We do not distinguish between tons (imperial)
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and metric tonnes.
Mt Unit of mass: Megaton (106 tons). In our simulations, Mt refers to metric tonnes

(1 Mt = 109 kg).

RMSE Root mean squared error: RMSE =

√∑N
i=1(x̂i−xi)2

N

Ca Capillary number
fD Fault displacement [m]
fL Fault length (strike-parallel) [m]
fT Fault thickness [m]
fVcl Average clay volume fraction in the fault core [-]
h Cell size, measured as the length of an edge [m]
k Intrinsic or absolute permeability. When bold, k is the permeability tensor. kii

refers to the main permeability components: For the fault, kxx, kyy, and kzz refer to
dip-perpendicular, strike-parallel, and dip-parallel permeability components. For
sedimentary formations, kxx = kyy is the horizontal permeability, and kzz is the
vertical permeability [mD] or [m2]

k′ Permeability anisotropy, i.e., kyy/kxx and/or kzz/kxx [-]
ke Effective permeability, where ke = kkr

kr Relative permeability, a function of fluid saturation (S) [-]
P Probability [-]
p Pore pressure, i.e., the pressure of the brine [bar]
Pc Capillary pressure, a function of fluid saturation (S). The subscript r refers to the

reference curve, obtained from laboratory experiments. Specific values of the
capillary pressure curve distinguished here include: (1) Pe, the entry capillary
pressure, defined as the value at which CO2 first enters a given unit/fault. In our
simulations, it is defined at Sg = 10−3. (2) Pb, the breakthrough or displacement
pressure, defined as the minimum Pc value required to form a connected pathway (of
the nonwetting phase) through the medium. For MICP curves, we define Pb as the
value at Sg = 0.1. Pb > Pe [bar]

Sα Saturation of fluid phase α [-]
Sgt Trapped gas saturation [-]
S∗

w Normalized water saturation, where S∗
w = Sw−Swi

1−Swi
[-]

Swi Irreducible or connate water saturation [-]
T Temperature [◦C]
t Time [y]
Vc Clay volume fraction [-]
Vs Shale fraction [-]
Wi Fault throw window i, i.e., a vertical fault section limited by the fault offset. We

define six throw windows W1 to W6 covering the TS thickness (Fig. 5.3a).
γ Interfacial tension [mN/m]
θ Wetting or contact angle between the solid grains and the wetting phase (brine).

Values close to 0◦ indicate strongly water-wet media, while values close to 90◦

indicate intermediate wettability. [deg=◦]
λ Correlation length [m]
µ Dynamic viscosity [cP] or [Pa· s]
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ρ Mass density [kg/m3]
σ Stress. When bold, σ is the stress tensor (as opposed to specific components such as

the mean, normal or vertical stress). We use a positive compression sign convention,
and define total (σ) and effective stress (σeff), where σeff = σ − bp1. 1 is the
identity tensor, and here we assume b = 1, where b is Biot’s coefficient [bar]

ϕ Porosity [-]

C.1 Upscaling of fault multiphase flow properties

C.1.1 Relative permeability

Drainage sand relative permeability curves were obtained from fitting a Corey-type model (Brooks
and Corey 1964) to ExxonMobil coreflood data for sandstones from a similar geologic loca-
tion (Fig. C.1a, left). In this model, krw = (S∗

w)
nw and krg = (1− S∗

w)
ng , where S∗

w = Sw−Swi
1−Swi

is the normalized water saturation and Swi is the irreducible water saturation. No mea-
surements on clays were conducted, so we used Corey curves with the same exponents and
higher irreducible water saturation (Swi; e.g., Ghomian et al. 2008) (solid lines in Fig. C.1a,
left). Based on the extensive review by Iglauer et al. (2015), we consider two θ cases for
clay material. To obtain the clay curves for θ = 60 (discontinuous line in Fig. C.1a, left),
we modified the curve by reducing Swi from 0.3 to 0.2, decreasing the brine exponent from
4.8 to 3.5, and increasing the CO2 exponent from 1.7 to 2.5. These changes are based on
the trends reported in previous studies assessing the control of wettability on relative per-
meability (Morrow et al. 1973; Anderson 1987; Tang and Firoozabadi 2002; Blunt 2017, and
references therein).

Upscaling of rock curves to the scale of a throw window is also performed using fault
core material realizations from PREDICT: For a given realization, the corresponding curves
are assigned to sand and clay smears. Then, we perform immiscible CO2-brine flow simula-
tions (Buckley and Leverett 1942), where CO2 enters the brine-saturated domain from the
bottom boundary at a constant flow rate (Sg = 1). The top boundary is kept at constant
hydrostatic pressure, and the sides are no-flow boundaries. At each timestep, depth-averaged
CO2 saturation profiles from these 3D simulations are compared to 1D displacement profiles
(Fig. C.1a, middle). We run 256 1D simulations changing Corey exponents (nw and ng for
brine and gas, respectively) around the rock curve values, while Swi is from capillary pres-
sure upscaling (described below); the parameter combination that minimizes the L1-norm in
time of the mean absolute error in gas saturation (i.e., Eq. C.1) is selected, which leads to
upscaled kr curves with endpoints between those of the rock curves (e.g., Fig. C.1c, right).
Throughout this process, Pc is set to 0. Flow is driven from the bottom boundary because
this is analogous to updip CO2 migration, which is our main focus. Note that we take a
conservative view of residual trapping in the fault zone and do not consider relative perme-
ability hysteresis in the fault. The Corey exponent values are provided in Table C.1, and
the upscaled curves shown in Fig. 5.4b,c.

min
nw,ng

nt∑
i=1

∑nz |S1D − S3D|
nz

i

(C.1)
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where, in Eq. C.1, nz and nt refer to the number of cells in the z dimension (≈ 100) and
number of timesteps, respectively.

Table C.1: Results of capillary pressure and relative permeability upscaling (see also Fig. 5.4b,c
and main text for nomenclature).

Fault throw
window θ [◦] Case Pe

[bar] Swi [-] nw [-] ng [-]

W1

30 S2C2 0.334 0.2241 3.4 1.6
S2C3 0.396 0.2189 3.4 1.6

60 S2C4 0.334 0.1557 4.4 2.2
S2C5 0.396 0.1529 4.4 2.2

W2

30 S2C2 0.333 0.2579 5 1.8
S2C3 5.789 0.2661 4 1.6

60 S2C4 0.298 0.1623 3.8 2.2
S2C5 4.58 0.1856 3.8 2.4

W3

30 S2C2 0.3 0.2656 5 1.8
S2C3 0.272 0.2775 4 1.6

60 S2C4 0.3 0.1801 3.4 2.2
S2C5 0.272 0.1875 3.8 2.4

W4

30 S2C2 0.204 0.2465 4.2 1.6
S2C3 0.212 0.2417 4.4 1.6

60 S2C4 0.204 0.1691 3.6 2.2
S2C5 0.24 0.1781 4 2.4

W5

30 S2C2 0.197 0.2565 4.2 1.6
S2C3 0.224 0.2630 4 1.6

60 S2C4 0.196 0.1748 3.4 2.2
S2C5 0.191 0.1876 3.6 2.4

W6

30 S2C2 0.258 0.2023 5.6 1.8
S2C3 0.263 0.2347 6 1.8

60 S2C4 0.277 0.1499 3.8 2.2
S2C5 3.177 0.1602 3.4 2.2

C.1.2 Capillary pressure

To model fault Pc, we first obtained reference curves for sand and clay materials (Fig. C.1b,
left). Drainage sand capillary pressure curves were generated by fitting a Brooks and Corey
(1964) model to ExxonMobil porous plate measurements (samples from the same location
used for kr measurements above). For clay material, the reference MICP curve is from Lu et
al. (2017); in particular, we used the green curve reported in their Fig. 3.4a as a representation
of a medium seal (sect. 5.3.2; Fig. 5.4e). We converted their MICP values to CO2-brine
according to Eq. 5.1 and used it as the reference curve for clay smears. For the conversion,
however, the following θ values are considered based on the extensive review by Iglauer et al.
(2015): 30◦ and 60◦, for water-wet and intermediate-wet conditions, respectively (specific
cases in Table 5.1). Note that these are different from θ = 70◦ used for the clay layers in the
TS.
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b

a

Figure C.1: Application of PREDICT to model fault multiphase flow properties in a given throw
window (W5; see Fig. 5.3 in the main text). a Left: CO2-brine rock curves for sand smears (top)
and clay smears (bottom). Middle: Best-match gas saturation profiles between the 1D (solid lines)
and 3D (dotted lines) models for an arbitrary realization. Right: Resulting upscaled curves (dotted
lines). b Left: Reference CO2-brine rock curves for sand smears (top) and clay smears (bottom).
Middle: Determined relationship between mudrock permeability and breakthrough or displacement
pressure (Pb). Right: Upscaled CO2-brine Pc curve for a high-permeability realization (θ = 60◦).
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Next, fault core material realizations from PREDICT are also employed to generate Pc

curves for each throw window: Leverett scaling of the reference sand curve (Eq. C.3) is
used to assign a Pc curve to each sand smear. For clay smears, the scaling of Pc with the
square root of the permeability ratio in Eq. C.3 may yield unrealistic values. Instead, we
first determined a relationship between MICP displacement or breakthrough pressure (Pb)
and k from measurements in mostly Tertiary mudrocks (Berg and Avery 1995; Dawson and
Almon 2002; Sperrevik et al. 2002; Hildenbrand et al. 2004; Heath et al. 2011; Busch and
Amann-Hildenbrand 2013; Lu et al. 2017) (solid black line in Fig. C.1b, middle). Due to
scatter, we sample a random Pb value between the best fit line ± RMSE, according to a
uniform probability law, for each clay smear (based on their permeability). MICP Pb values
are converted to CO2-brine similar to the reference curve, as described above. Then, Pc(Sg)
can be computed from this relationship as:

Pc(Sg) = Pcr(Sg)×
Pb

Pbr

(C.2)

Eq. C.2 simply scales the reference curve (Fig. C.1b, left) according to the Pb ratio for each
clay smear in the fault. After assigning a Pc curve to each fault material, we obtain an
equivalent Pc, at the scale of a throw window, using macroscopic invasion-percolation (MIP)
simulations. Similar to dynamic kr upscaling, we perform this process in the z (dip-parallel)
direction, starting from the bottom of a given fault core realization. Upscaled Pc values
range from Pmin

c , the minimum entry pressure among all sand smears, to Pmax
c , the maximum

capillary pressure among all clay smears. Our implementation is based on Ioannidis et al.
(1996) and Yang et al. (2013), and a representative upscaled curve for a high permeability
realization in W5 is provided in Fig. C.1b, right. The upscaled capillary entry pressure values
(Pe) are provided in Table C.1, and all upscaled curves shown in Fig. 5.4b,c. Note that we
ignored gravity forces, given that hz ≪ Pb

∆ρg
, where hz ≈ 1 m is the vertical cell size of the

upscaling grid (Ioannidis et al. 1996).

C.2 SGR modeling of base cases

For comparison purposes, a base case for each of the two scenarios (S1C1 and S2C1) is
modeled using the well-established shale gouge ratio method (SGR; Yielding et al. 1997)
(Fig. C.2). This requires an estimate of the stratigraphic clay volume fraction (Vc), which
we obtained from the shale fraction (Vs) determined from a Gamma-ray well log (Fig. 4.12
in Meckel et al. 2017) as Vc = 0.65Vs (e.g., Grant 2020). Using the SGR as a proxy for fault
Vc, fault dip-perpendicular permeability (kxx) is from Sperrevik et al. (2002)’s empirical
model. We consider k′ = kyy/kxx = kzz/kxx = 10, where k′ is the permeability anisotropy
(Fig. C.2b). Porosity (ϕ) is modeled according to the sand-clay mixture model described
by Revil et al. (2002), with ϕ = 0.4 for the pure sand (e.g., Revil et al. 2002; Haugen et al.
2023) and a compaction-dependent curve for the pure shale (Revil et al. 2002, their Eq. 10).
We use Corey-type curves for the relative permeability (Fig. 5.4a), where the irreducible
water saturation (Swi) is set to 0.37, between that of SR (Swi=0.31) and TS (Swi=0.43)
(Fig. 5.4e). Each fault cell is assigned a specific capillary pressure curve, Pc(Sw), based on
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Leverett’s J-function (Leverett 1941). Assuming that the contact angle, surface tension and
shape remain unchanged (e.g., Saadatpoor et al. 2010):

Pc = Pcr

√
krϕ

kϕr

(C.3)

where subscript r refers to the reference curve in Fig. 5.4e (Fig. C.2d, Fig. 5.4).

a

c

b

d

Figure C.2: Mapping of fault properties for the base cases as a function of depth (stratigraphy
and fault properties remain constant along the fault strike). Solid lines are for S1C1, and dashed
lines are for S2C1. a SGR (Yielding et al. 1997). b Permeability perpendicular (kxx) and parallel
(kyy = kzz) to the fault. c Porosity. d Capillary entry pressure, Pe = Pc(Sg = 10−3).
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