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Abstract

From tropical forests to gut microbiomes, ecological communities harbor diverse and
abundant species. Understanding the complex emergent phenomena of diversity, sta-
bility, and invasibility in these communities within a unified framework has been a
significant challenge. My PhD thesis addresses this knowledge gap by conducting
the first direct test of a theory proposing that simple community-level features gov-
ern emergent behaviors. By utilizing bacterial microcosms, we demonstrate that as
the number of species or the strength of interactions increases, microbial ecosystems
transition through three distinct dynamical phases: from stable coexistence, to partial
coexistence, to the emergence of persistent fluctuations and alternative stable states
in species abundances, confirming theoretical predictions. Notably, high biodiversity
and dynamic fluctuations reinforce each other under fixed conditions. By combin-
ing theoretical frameworks and microbial community experiments, we establish that
community-level features determine the invasion outcome in microbial communities.
We found that the communities with fluctuations in species abundance are more
invasible and diverse than stable ones, leading to a positive diversity-invasibility re-
lationship. As predicted by theory, increasing interspecies interaction strength and
size of species pool leads to a decrease of invasion probability in our experiment. Al-
though diversity-invasibility relationships are qualitatively different depending upon
how the diversity is changed, we resolved the diversity-invasibility debate by showing
a universal positive correspondence between invasibility and survival fraction across
all conditions. Communities composed of strongly interacting species can exhibit an
emergent priority effect in which invader species are less likely to colonize than species
in the original pool. However, in this regime of strong interspecies interactions, if an
invasion is successful it causes larger ecological effects on the resident community
than when interactions are weak. Overall, this thesis uncovers predictable emergent
patterns of diversity, dynamics, and invasibility in ecological communities, offering
insights into a unified framework for microbial ecology.

Thesis Supervisor: Jeff Gore
Title: Professor
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2-1 Theory predicts that species pool size and interspecies interaction strength

shape phases of community diversity and dynamics. (A) Represen-

tative time series of species abundance for the qualitatively different

dynamics of communities with different species pool size S, under inter-

action strength <𝛼𝑖𝑗>=0.3. Communities transition from stable full

coexistence (𝑆=4) to stable partial coexistence (𝑆=20) to persistent

fluctuations (𝑆=80). Increasing interaction strength while fixing the

species pool size (B) reveals analogous transitions. Mean fractions of

(C) species that survive in the community, and (D) communities that

exhibit persistent fluctuations. As interaction strength increases, com-

munities lose species (transition from phase I to II, vertical dashed

line) before losing stability (transition from phase II to III, solid verti-

cal line). Mapping the survival fraction (E) and community fluctuation

fraction (F) onto the phase space reveals that this sequence (phase I

to phase II to phase III) of phase transitions is maintained as either of

the control parameters increases. The gray dashed (solid) line shows

the analytical solution for the survival (stability) boundary. The color

maps depict the mean value over 1000 simulations [103]. . . . . . . . 60
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2-2 Increasing species pool size or interaction strength leads to loss of sta-

bility in microbial communities. (A) We used a library of 48 bacte-

ria to generate species pools of different sizes and compositions. Co-

cultures underwent serial dilutions with additional dispersal from the

pool. Community composition and total biomass were monitored via

16S sequencing and optical density (OD). (B) In 2-species co-cultures,

interaction strengths leading to the loss of coexistence (𝛼𝑖𝑗 > 1) in-

crease in frequency with nutrients concentration. Error bars, s.e.m.,

n=30. (C) Fluctuations in community biomass increase with either

species pool size or interaction strength. Solid lines stand for 8 differ-

ent species pool compositions (dashed lines, replicates of the 48 species

community). Purple (orange) lines highlight stable (fluctuating) dy-

namics. (D) Under high nutrient, half of the 12-species communities

exhibit persistent fluctuations (top panels) in species abundances, and

the rest reached stability (bottom). (E) Time series (top panels) for the

species abundances in 48-species communities. Stability was reached

only under low nutrients, and variability in end-point relative abun-

dances increased with nutrients concentration (bottom panels, Fig.

S15). Relative abundance plots show the Amplicon Sequence Variants

(ASVs) data of individual replicates. . . . . . . . . . . . . . . . . . . 62
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2-3 Species pool size and interaction strength determine the diversity and

dynamics of experimental communities. (A) The fraction of surviving

species decreases with either species pool size or interaction strength

(nutrient concentration). The survival fraction decreases more slowly

at high S and strong interaction strength. (B) The fraction of fluctu-

ating communities increases with either species pool size or interaction

strength. (C) Phase diagram for the fraction of species surviving in ex-

perimental communities. As communities cross the boundary of phase

I (dashed line), they experience species extinctions, with a fast decay

in survival fraction through phase II, and a relative maintenance of

survival fraction through phase III. (D) Phase diagram for the fraction

of fluctuating communities in experiments. Communities start exhibit-

ing persistent fluctuations after crossing the boundary into phase III

(solid gray line). Error bars, s.e.m., n=8. . . . . . . . . . . . . . . . . 64

2-4 Fluctuating communities are more diverse than stable communities un-

der the same conditions. (A) As the average survival fraction decreases

with increasing species pool size 𝑆 in simulations, more communities

exhibit fluctuations in species abundances (orange points). While sta-

ble communities (purple) exhibit a steady decrease in species survival

fraction with 𝑆, the loss of species is slower in fluctuating communities.

Each point represents an individual community. (B) In experiments

under high nutrient concentration (also under lower nutrients concen-

trations, Fig. S28), fluctuating communities exhibit a higher survival

fraction than stable communities. The survival fractions of 88% (+/-

5%) of the fluctuating communities are above or equal to the mean, as

compared to 14% (+/- 6%) in the case of stable communities (p<0.01,

[103]; error bars, s.e.m., n=8. . . . . . . . . . . . . . . . . . . . . . . 65
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2-5 The phases of community dynamics are robust to changes in carbon

source and dilution frequency. (A) Persistent fluctuations can occur un-

der different carbon sources. After replacing glucose (leftmost panel)

by succinate (right panels) in the media, high nutrients concentra-

tion still yields biomass fluctuations in some communities. Each panel

shows the time series for the OD of the eight communities with differ-

ent species pool composition (depicted by different colors). Solid lines

(dashed lines) represent fluctuating (stable) communities. (B) Com-

munity dynamics are robust to different choices of dilution frequency.

Each panel shows the time series for the OD of the eight communities

with different species pool composition (depicted by different colors).

Each of the three rightmost panels show the results for one of the three

experimental replicates performed. (C) Rank plot for the standard de-

viation of biomass between days 7 and 10 for communities under suc-

cinate. (D) Rank plot for the standard deviation of biomass between

days 10 and 16 for communities under 48-hours transfers. . . . . . . . 67
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2-6 The three dynamical phases are qualitatively robust to the presence

of reciprocity in interspecies interactions. The panels show the theo-

retical phase diagrams of species survival fraction (left) and commu-

nity fluctuation fraction (right) for two cases of non-zero reciprocity,

𝛾=corr(𝛼𝑖𝑗,𝛼𝑗𝑖)̸=0. (A) The fluctuating phase (partial coexistence

phase) is larger (smaller) in the presence of positive reciprocity (corr(𝛼𝑖𝑗,𝛼𝑗𝑖)=0.5)

than in the absence of reciprocity (corr(𝛼𝑖𝑗,𝛼𝑗𝑖)=0, Fig. 2-1E and F).

The fluctuation fraction also increases with positive reciprocity. (B)

The fluctuating phase (partial coexistence phase) is smaller (larger)

in the presence of negative reciprocity (corr(𝛼𝑖𝑗,𝛼𝑗𝑖)=-0.5) than in the

absence of reciprocity (Fig. 2-1E and F). The fluctuation fraction

is higher in communities with negative reciprocity than communities

with zero reciprocity. The dashed line and solid line in the figures rep-

resent survival boundary and stability boundary, respectively. Overall,

the same qualitative phases and ordering are found as for communi-

ties with zero reciprocity (Fig. 2-1E and F), with non-zero reciprocity

leading to quantitative differences. . . . . . . . . . . . . . . . . . . . . 69

15



2-7 The three dynamical phases are qualitatively robust to the presence of

positive interactions and serial dilutions in gLV. (A) To test whether

the existence of positive (facilitative) interactions in the ecological net-

work could change our conclusions, we sampled values of 𝛼𝑖𝑗 from a

uniform distribution [-𝛼0, 𝛼0], where 𝛼0 varies between [0, 1.4] on the

phase diagram. We observed patterns of species survival fraction (left

panel) and fluctuation fraction (right panel) analogous to those exhib-

ited by communities with exclusively negative interactions (Fig. 2-1).

The dashed line and solid line in both panels represent survival bound-

ary and stability boundary, respectively. Note that the strength of

interactions coincides with Std (𝛼𝑖𝑗) in this case, since the mean of

𝛼𝑖𝑗 is zero (both moments factor into the interaction strength metric

std(𝛼𝑖𝑗)/(1-<𝛼𝑖𝑗>) that determines stability (17) ). In these simula-

tions, the linear interaction function in the gLV (𝛼𝑖𝑗 𝑁𝑗) was replaced

with Monod function (𝛼𝑖𝑗 𝑁𝑗/(𝑁𝑗+1)) to avoid unbounded growth due

to positive interactions [24, 107].(B) In silico communities undergoing

serial dilutions exhibit the same three dynamical phases (full coexis-

tence, partial coexistence, and fluctuation) as in simulations without

dilution. The two phase diagrams show that communities exposed to

serial dilutions (1:30 dilution every 24 hours) lose species before losing

stability as the size of species pool 𝑆 or interaction strength increases,

which is consistent with simulations of the continuous (no dilutions)

model (Fig. 2-1E and F). The dashed line and solid line in the figures

represent the survival boundary and stability boundary, respectively. . 70
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2-8 Comparison between the Lotka-Volterra and pH-based models. The

topmost two rows display survival and fluctuation fraction, demon-

strating that they similarly depend on the parameters of species pool

size and interaction strength, in the Lotka-Volterra model (left col-

umn, equation 1, with interaction strength given by <𝛼𝑖𝑗>) and a

pH-based model proposed for previous experiments [101] (right col-

umn, equations 2 and 3, with interaction strength given by max (𝑐𝑖)).

We conclude that the three dynamical phases are qualitatively robust

to different modeling choices. On the other hand, the third row shows

that the two models disagree regarding correlations between the num-

ber of surviving species and the presence of fluctuations (for different

communities with the same parameters) as further discussed in Fig. 2-9. 73
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2-9 The LV model reproduces experimental observations better than the

pH-based model. (A) Empirical data shows rather weak correlation

(Pearson correlation coefficient: 0.54) between the intensity of fluctu-

ations of pH and of abundances, suggesting that pH is not the sole or

main driving factor in species dynamics. (B) The pH-based model pro-

posed in [101] often displays community extinction (total abundance <

5% of carrying capacity), which we do not observe in our experiments.

(C) In experiments and in the LV model, conditioning on species pool

size and nutrients, various communities show positive correlations be-

tween fluctuations and diversity, measured here as 𝑆*/<𝑆*> the num-

ber of surviving species relative to the average number of survivors

for that same pool size and nutrients. The pH-based model displays

negative correlations (we exclude cases of whole community extinction

which were never observed in our experiments). The relative survival

fraction is statistically higher (lower) in fluctuating communities than

stable communities in experiments and LV model (pH-based model,

p<0.001). Error bars, s.e.m., n=100 for simulation data, n=51 (33)

for stable communities in high (medium) nutrient, n=45 (15) for fluc-

tuating communities in high (medium) nutrient. . . . . . . . . . . . . 75
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2-10 High diversity and persistent fluctuations allow and require each other,

and are both sustained by dispersal. (A)-(D) Representative time series

for communities in which the dispersal rate is suddenly interrupted. At

t=103 (vertical dashed line), the dispersal rate changes from 𝐷=10−6

to 𝐷=0.0 for the rest of the simulation. (A) Before 𝑡=103, a com-

munity in phase I reaches a stable state with full coexistence. The

dynamics after t=103 shows that interrupting dispersal does not sig-

nificantly modify the abundances of the species. (B)-(C) Before 𝑡=103,

communities in phase II reach an equilibrium in which species coexist

at stable abundances, with some species laying below the extinction

threshold. After stopping dispersal, only the species that are above

the extinction threshold survive at stable abundances, and the rest

undergo extinction. (D) A community in phase III exhibits persistent

fluctuations while exposed to dispersal. After dispersal is interrupted,

extinctions occur as species fall below the extinction threshold due

to abundance fluctuations. After some time (approximately 𝑡=104)

species extinctions have significantly reduced diversity in the commu-

nity, and the surviving species reach a stable equilibrium. For the

indicated parameter values, and over 103 simulations, 90% of the sim-

ulated communities reached equilibrium after interrupting dispersal.

(E-F) Representative time series for communities in which the most

abundant species at 𝑡=103 is pinned (its abundance is artificially kept

constant) for the rest of the simulation. (E) For communities that have

reached stability, in this case in phase II, pinning the most abundant

species has no effect on community dynamics. (F) In phase III, after a

fast transient following the species pinning at 𝑡=103 (vertical dashed

line), the community reaches a stable partial coexistence where some

of the species lay below the extinction threshold. Out of 103 simula-

tions, 93% of the communities reached equilibrium after pinning the

most abundant species. . . . . . . . . . . . . . . . . . . . . . . . . . 91
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2-11 At steady state, species abundances exhibit a bimodal distribution in

the partial coexistence phase. The extinction threshold 0.001 (vertical

dashed line) clearly separates the high-abundance, surviving species

from the low-abundant “extinct” species. Such “extinct” species would

reach zero abundance if dispersal is interrupted (Fig. 2-10). The his-

togram shows the number of species exhibiting the indicated abun-

dances at steady state. The corresponding dataset was generated from

10 in silico communities randomly sampled from the stable partial co-

existence phase (𝑆=50, <𝛼𝑖𝑗>=0.2). . . . . . . . . . . . . . . . . . . 92

2-12 Biomass fluctuations (stability) are consistent with fluctuations (sta-

bility) of species abundances in simulations. (A)-(B) As increasing the

size of species pool in communities with strong interaction strength

(<𝛼𝑖𝑗>=1.0), the species abundances and total biomass (
∑︀

𝑖𝑁𝑖(t)) of

communities consistently lose stability and exhibit persistent fluctua-

tions. The species abundances and biomass of communities can also

exhibit limit cycle oscillations (right panels) in addition to chaotic fluc-

tuations (middle panels), in the persistent fluctuation phase. The

biomass trajectories in (B) show the last 2000 time units in (A) as

indicated by the vertical dashed lines. . . . . . . . . . . . . . . . . . . 93
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2-13 Unstable communities have (one or more) eigenvalues of the commu-

nity matrix (-𝛼𝑖𝑗) with positive real parts. From left to right, the

panels show the eigenvalues of representative community matrices for

three different values of the average interaction strength. Within each

panel, different colors correspond to the eigenvalues of 4 different com-

munity matrices. All the eigenvalues lie within a circle with radius R

centered at d [84, 122]. For communities in phase III, where persistent

fluctuations occur, some of the community matrix eigenvalues exhibit

a positive real part. It was shown that the loss of stability of the

equilibrium coincides with real parts of some community matrix (-𝛼𝑖𝑗)

eigenvalues becoming positive, although it is not the Jacobian matrix

[21]: the circular distribution of eigenvalues for interaction matrix 𝛼𝑖𝑗

is replaced by a “guitar-shaped” distribution for Jacobian matrix [119].

Although the shape of eigenvalues distributions is different between

interaction matrix and Jacobian matrix, the stability criterion and the

signs of eigenvalues are the same for both matrices [6, 119]. . . . . . . 94
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2-14 After an initial transient, the survival fraction and the fluctuation frac-

tion of simulated communities reach stable values. From left to right,

the panels show phase diagrams of survival fraction (A) and fluctua-

tion fraction (B) for communities at three different simulation times.

At 𝑡=250 (left), communities have not yet reached steady state, as the

phase diagrams quantitatively change as time goes on. The middle pan-

els (𝑡=5×103) are quantitatively different from the earlier-time phase

diagrams (𝑡=250 on the left), but do not significantly differ from phase

diagrams computed at later times (𝑡=104 on the right). This shows

that these two community properties have reached a steady state be-

fore 𝑡=104. (C) Difference between the survival fractions (left) and

the fluctuation fractions (right) computed at 𝑡=250 and 𝑡=5×103. (D)

Difference between the survival fractions (left) and the fluctuation frac-

tions (right) computed at 𝑡=5×103 and 𝑡=104. The dashed line and

solid line in the figures represent the survival boundary and stability

boundary, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 96

2-15 The three dynamical phases are robust to modeling choices. (A) Pan-

els on the left (Control) show the numerical (color map) and analytical

(curves) phase diagrams as in Fig. 2-1E and F. From left to right, the

additional phase diagrams show the effects of lowering the dispersal

rate to 𝐷=10−7, sampling species growth rates from a uniform distribu-

tion, sampling interaction strengths from an exponential distribution,

and sampling the carrying capacities from a Gaussian distribution. All

non-specified parameter values are identical to the control case (Fig.

2-1E and F). (B) Phase diagrams analogous to those in (A), but for a

higher average interaction strength <𝛼𝑖𝑗>= 1.5. Overall, these phase

diagrams show that the three dynamical phases are qualitatively robust

to different modeling choices [24]. . . . . . . . . . . . . . . . . . . . . 97
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2-16 Dispersal sustains persistent fluctuations and promotes diversity. The

panels show the theoretical phase diagrams of species survival frac-

tion and community fluctuation fraction under different dispersal rates

(𝐷=0, 𝐷=10−7, 𝐷=10−6). Communities under no dispersal (𝐷=0, left

panels) exhibit lower survival faction (A) and lower fluctuation frac-

tion (B) in the persistent fluctuation phase. The patterns of ecological

diversity and dynamics do not significantly change as the dispersal rate

varies from 𝐷=10−7 (middle panels) to 𝐷=10−6 (right panels). The

dashed line and solid line in the figures represent survival boundary

and stability boundary, respectively. . . . . . . . . . . . . . . . . . . . 98

2-17 Best-fit Lotka-Volterra model. We show the heatmaps of survival

fraction (top) and fraction of fluctuating communities (bottom) for

data, best-fit simulations, and the difference between the two (left to

right). The best-fit simulations are obtained from a Lotka-Volterra

with normally-distributed interactions with the following parameters:

High nutrient treatment (HN): <𝛼𝑖𝑗>=0.87, std (𝛼𝑖𝑗)=0.22. Medium

nutrient treatment (MN): <𝛼𝑖𝑗>=0.66, std (𝛼𝑖𝑗)=0.41. Low nutrient

treatment (LN): <𝛼𝑖𝑗>=0.14, std (𝛼𝑖𝑗)=0.17. . . . . . . . . . . . . . 99

2-18 Taxonomic identity of the 48 bacterial isolates. The identities have

been inferred from the ASV (Methods) of 16S samples taken from

monocultures, which allow the classification of the 48 isolates down to

the genus level. Colors are consistent with those in the main text and

other supplementary figures. . . . . . . . . . . . . . . . . . . . . . . . 100
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2-19 Phylogenetic tree of the 48 bacterial isolates. The tree, generated with

the Distance-matrix method from EMBL-EBL [82], shows the relative

phylogenetic distance between the 48 bacterial isolates. The library

contains bacterial isolates from either soil or C. elegans gut samples

and spans 19 different orders and 26 different families. The rectangles

display the color that is used in the figures (both in the Main Text

and the SI) to show the abundance of each species in the different

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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2-20 3 different metrics consistently differentiate stable from fluctuating

communities. (A) The three panels show the average coefficient of

(temporal) variation (see Methods) for absolute species abundances

(𝑁𝑖, computed as the product of total biomass per species relative

abundance) in the experimental communities in the three different nu-

trients concentrations. We use a stability threshold of 0.25 (dashed

line) to classify communities into stable (purple) and fluctuating (or-

ange) ones. The number of fluctuating communities increases with

the average interaction strength (nutrients concentration), with all the

weakly interacting (low nutrients concentration) communities exhibit-

ing stability. (B) Average difference (Euclidean distance) in the relative

abundance of each species (𝑁*
𝑖 = 𝑁𝑖/

∑︀
𝑖𝑁𝑖) across replicate communi-

ties as a function of the community’s average coefficient of (temporal)

variation. Stable and fluctuating communities, defined as in (A), span

in different regions, with stable communities clustering near the origin.

(C) Average difference (Euclidean distance) in the relative abundance

of each species (𝑁*
𝑖 = 𝑁𝑖/

∑︀
𝑖𝑁𝑖) across replicate communities as a func-

tion of the community’s average coefficient of (temporal) variation in

relative abundance (𝑁*
𝑖 ). Stable and fluctuating communities, defined

as in (A), span in different regions, with stable communities cluster-

ing near the origin. The average coefficient of variation (Fig. 2-20,

2-21) for species abundances was calculated based on only replicate for

which we sequenced the whole time series, and the average difference

in relative species abundances community across the three replicates

for each community (Fig. 2-20, 2-21) was calculated based on relative

abundances at day10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

25



2-21 The classification of fluctuating communities and stable communities

is robust to choices of classification algorithm. (A) The average coef-

ficient of variation for species abundances reaches a steady state be-

fore day 7, enabling the classification of communities into stable and

fluctuating ones. For 12-species communities under high nutrient con-

centrations, the average CV of both fluctuating communities (orange

line, n=4) and stable communities (purple line, n=4) reaches a plateau

(a constant value) before day7. The two different plateaus of average

CV demonstrate that the dynamics of communities (persistent fluctu-

ations or stability) have reached steady states before the time window

(from day7 to day10) that we use to calculate the average CV in Fig.

2-20. Error bars, s.e.m. (B) using a K-means clustering algorithm

considering both average CV and differences between species relative

abundances across replicates confirms that the classification of fluctuat-

ing and stable communities is consistent with the CV threshold (0.25)

criteria in Fig. 2-20. There is only one community (empty circle) that

is differently classified by the K-means method. The classification of

this single community as either stable or fluctuating changes neither

the three phases in the experimental phase diagram nor the order of

phase transitions (lose species before losing stability). . . . . . . . . . 103

2-22 Total biomass reaches equilibrium in communities under low nutrients

concentration (low interaction strength). Each panel shows the time se-

ries for the OD (600nm) of the eight communities with different species

pool composition (depicted by different colors). Each column stands

for a different species pool size 𝑆 (for the case of 𝑆=48, there is only

one community containing the full library of bacterial species). Each

row shows the data for a different replicate of the experiment. . . . . 104
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2-23 Increasing the species pool size leads to persistent fluctuations in total

biomass under medium nutrients concentration (medium interaction

strength). Each panel shows the time series for the OD (600nm) of the

eight communities with different species pool composition (depicted by

different colors). Each column stands for a different species pool size 𝑆

(for the case of 𝑆=48, there is only one community containing the full

library of bacterial species). Each row shows the data for a different

replicate of the experiment. Solid lines (dashed lines) represent fluctu-

ating (stable) communities, the OD fluctuations between day 7 and day

10 were considered to differentiate fluctuating and stable communities

as shown in Fig. 2-20. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2-24 Increasing the species pool size leads to persistent fluctuations in total

biomass under high nutrients concentration (high interaction strength).

Each panel shows the time series for the OD (600nm) of the eight com-

munities with different species pool composition (depicted by different

colors). Each column stands for a different species pool size 𝑆 (for the

case of 𝑆=48, there is only one community containing the full library

of bacterial species). Each row shows the data for a different repli-

cate of the experiment. Solid lines (dashed lines) represent fluctuating

(stable) communities, the OD fluctuations between day 7 and day 10

were considered to differentiate fluctuating and stable communities as

shown in Fig. 2-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2-25 Time series for the relative species abundances of the experimental

communities with low average interaction strength (low nutrients con-

centration). Each panel shows the full time series for each of the 8

communities with the indicated species pool size (𝑆=3, 6, 12 and 24).

Bar colors stand for species identities as in Fig. 2-18, 2-19. Under

this nutrients condition, all of the communities reached a stable equi-

librium (Methods). The color of the number on the top of each panel

corresponds to the color assigned to the same community in Fig. 2-22. 107
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2-26 Time series for the relative species abundances of the experimental

communities with medium average interaction strength (medium nu-

trients concentration). Each panel shows the full time series for each

of the 8 communities with the indicated species pool size (𝑆=3, 6, 12

and 24). Bar colors stand for species identities. The orange dot on

top of some panels indicates that the community exhibits persistent

fluctuations (Methods). The color of the number on the top of each

panel corresponds to the color assigned to the same community in Fig.

2-23. For 𝑆= 3, 6, and 12, we only sequenced samples of the last 4

days (7 to 10) of the experiment. . . . . . . . . . . . . . . . . . . . . 108

2-27 Time series for the relative species abundances of the experimental

communities with high average interaction strength (high nutrients

concentration). Each panel shows the full time series for each of the

8 communities with the indicated species pool size (𝑆=3, 6, 12 and

24). Bar colors stand for species identities. The orange dot on top of

some panels indicates that the community exhibits persistent fluctu-

ations (Methods). The color of the number on the top of each panel

corresponds to the color assigned to the same community in Fig. 2-24. 109

2-28 Species abundance at the end of the experiment under low nutrients

concentration. Each panel shows the relative species abundances at

the end experiment for each of the 3 replicate communities across 8

different compositions of the species pool for each species pool size

(𝑆=3, 6, 12 and 24). Bar colors stand for species identities. The

orange dot on top of some panels indicates that the community exhibits

persistent fluctuations (Methods). The color of the number on the top

of each panel corresponds to the color assigned to the same community

in Fig. 2-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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2-29 Species abundance at the end of the experiment under medium nutri-

ents concentration. Each panel shows the species relative abundances

at the end experiment for each of the 3 replicate communities across

8 different compositions of the species pool for each species pool size

(𝑆=3, 6, 12 and 24). Bar colors stand for different species identities.

The orange dot on top of some panels indicates that the community

exhibits persistent fluctuations (Methods). The color of the number

on the top of each panel corresponds to the color assigned to the same

community in Fig. 2-23. . . . . . . . . . . . . . . . . . . . . . . . . . 111

2-30 Species abundance at the end of the experiment under high nutrients

concentration. Each panel shows the species relative abundances at

the end experiment for each of the 3 replicate communities across 8

different compositions of the species pool for each species pool size

(𝑆=3, 6, 12 and 24). Bar colors stand for different species identities.

The orange dot on top of some panels indicates that the community

exhibits persistent fluctuations (Methods). The color of number on

the top of each panel corresponds to the color assigned to the same

community in Fig. 2-24. . . . . . . . . . . . . . . . . . . . . . . . . . 112
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2-31 Monocultures and 2-species cocultures tend to reach stability in total

biomass. On top, monocultures tend to reach a stable OD (600nm)

value at the end of each daily cycle. The width of the observed range

of OD values increases with nutrient concentration (low, medium, and

high, from left to right). On bottom, time series for the OD (600nm) of

15 different species pair cocultures. To detect bistability, in which the

outcome depends on initial species abundances, we considered two ini-

tial compositions (5:95 and 95:5 culture volume ratios between species)

for each pair of species. Therefore, there are 30 pairwise cocultures

tested. The variability of the OD reached in pairwise coculture also

increases with nutrient concentration, but to a less extent than it does

for monocultures. Different colors stand for different species identities

(top) and different species pairs (bottom). . . . . . . . . . . . . . . . 113

2-32 Fluctuating communities are more diverse than stable communities

under the same conditions. As the average survival fraction decreases

with increasing species pool size 𝑆 in high (A), medium (B) and low

(C) nutrient concentrations, more communities exhibit fluctuations in

species abundances (orange points). For any given S and nutrients

concentration, fluctuating microbial communities exhibit statistically

higher survival fractions than stable communities (purple points). . . 114

2-33 Increasing species pool size can lead to emergent fluctuations in species

abundances. The panels show representative examples in which a pair

of different communities reach stability, while a community with larger

species pool, composed by all the species present in that pair, exhibits

persistent fluctuations. Each rectangle encloses a different example in-

volving a specific set of communities and experimental condition (nu-

trients concentration). The top right rectangle shows data for the last

4 days of the experiment (the only days in which these communities

were sampled for sequencing), and the rest show the full time series for

the 10-day experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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2-34 The probability of full coexistence as a function of the mean interaction

strength 〈𝛼𝑖𝑗〉 exhibits a sharp phase transition between phases (I) and

(II) when 𝑆 is large in simulations. The x-axis is normalized by 〈𝛼𝑖𝑗〉

where the analytical survival boundary is expected. While all curves

decrease to zero in the same region, the width of the crossover regime

becomes narrower with increasing 𝑆. The fact that all curves decrease

to zero at the same region, shows that the analytical expression indeed

captures the correct dependence of the boundary in 〈𝛼𝑖𝑗〉 on 𝑆. . . . . 116

2-35 Simulated and experimental communities exhibit analogous dynam-

ics of relative species abundances. (A) Time series of relative species

abundances in a representative simulation for 𝑆=48, under low nutri-

ents (low interaction strength, left panel), medium nutrients (medium

interaction strength, middle panel), and high nutrients (high interac-

tion strength, right panel) concentrations. We used species abundance

data sampled every 24 hours of simulated time in order to match the

experimental data sampling frequency. (B) Experimental time series

obtained through 16S data in analogous conditions to the panels in

(A). Some low abundance species (abundances below the 10−3 sur-

vival threshold, shown as horizontal dashed lines) exhibit fluctuation

in the low nutrient concentration experiment, which can be explained

by small numbers effect such as finite 16s sequencing depth. . . . . . 117
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3-1 Experiments using synthetic microbial communities show that the inva-

sion probability in fluctuating communities is higher than stable ones,

leading to a positive diversity-invasibility relationship. (A) We gen-

erated different synthetic communities with 𝑆=20 species in the pool.

Communities underwent serial daily dilutions with additional dispersal

from the pool. We introduced invader species to the resident commu-

nities on day 6. (B) We formed 17 resident communities with different

sets of species (𝑆=20). We added invader species outside the pool into

the resident communities on day 6, and then measured the commu-

nity compositions and biomass on day 12 to determine the outcome

and effect of the invasions. (C) The invasion probability of resident

communities positively correlate with their richness (correlation coef-

ficient=0.51). (D) 8 out of the 17 resident communities reach fluctua-

tion in biomass (orange) and the rest 9 communities reach stable states

(purple). (E) Representative time course of relative species abundance

via 16S sequencing show the stable community was not invaded. (F)

Representative time course of relative species abundance shows the in-

vader successfully invade and grow in the fluctuating community. (G)

The invasion probability to fluctuating resident communities is statis-

tically higher than that to stable communities (p=0.016, the number of

invasion tests is n=61 (60) for fluctuating (stable) communities. Error

bars represent s.e.m.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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3-2 Lotka-Volterra model predicts a decrease of invasion probability when

stability, interaction strength and species pool size of resident commu-

nities increase. (A) Representative time series of species abundance

in simulation show diverse invasion dynamics and outcome: invader

species failed to grow in the community (top left panel, the black

curve represents invader); invader grow and only cause small effect

on community composition (top right panel); invader successfully in-

vade and cause large change on community composition (bottom left

panel); invasion to a fluctuating resident community (bottom right

panel) (<𝛼𝑖𝑗>=0.6, 𝑆=32). (B) Consistent with experiments (Fig 3-

1C), the invasion probability of simulated resident communities pos-

itively correlate with their richness, which arises because fluctuating

communities are more diverse and more invasible. (C) The invasion

probability to fluctuating resident communities is statistically higher

than that to stable communities (p < 0.001). (D) Increasing species

pool size leads to a decrease in invasion probability. Fluctuating com-

munities (orange points) exhibit higher invasion probability than stable

communities (purple points). (E) Increasing interaction strength leads

to a decrease in invasion probability. (F) Increasing species pool size

and interaction strength leads to a decrease in invasion probability.

The curves and color maps depict the mean value over 1000 simulations.127
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3-3 Increasing interaction strength and species pool size leads to higher

invasion resistance of resident communities in experiment. (A) The in-

vasions to resident communities under low nutrient (weak interaction)

exhibit statistically higher invasion probability than communities un-

der high nutrient (strong interaction) (p < 0.001, the number of inva-

sion tests is n=120 (39) for high (low) nutrient). (B) The invasions to

resident communities under smaller species pool size (𝑆=12) exhibit

statistically higher invasion probability than communities under larger

species pool size (𝑆=20) (p = 0.007, the number of invasion tests is

n=39 (34) for 𝑆=20 (12), all communities were cultured under low

nutrient). Error bars represent s.e.m.. (C) The invasion probability

positively correlates with survival fraction (before invasion) across dif-

ferent communities and nutrient conditions (each point represents one

community; correlation coefficient is 0.82). The points correspond-

ing to communities under high nutrient are below the diagonal line,

showing the invasion probability of communities under high nutrient

are generally smaller than their survival fraction, which indicates the

priority effect under strong interaction strength. . . . . . . . . . . . . 129

34



3-4 Lotka-Volterra model predicts a universal correspondence between in-

vasion probability and survival fraction, the emergence of priority effect

and stronger invasion effect when increasing interaction strength. (A)

The dependence of invasion probability on final richness of resident

communities is qualitatively different depending upon how the rich-

ness is changed. Invasion probability positively correlates with richness

when varying interaction strength or when randomly sampling commu-

nities with a fixed species pool size and interaction strength distribu-

tion. Invasion probability can decrease with community diversity when

varying species pool size. (B) Invasion probability is approximately

equal to the survival fraction of species in the resident communities,

no matter how we change richness, species pool or interaction strength.

(C) Increasing species pool size and interaction strength leads to the

emergence of priority effect, where the invasion probability of resi-

dent communities is smaller than their species survival fraction. (D)

Successful invasions cause larger effect on species composition in the

resident communities under stronger interaction strength. The curves

depict the mean value over 1000 simulations. . . . . . . . . . . . . . . 132
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3-5 Increasing interaction strength leads to a stronger effect on resident

communities under invasion success. (A) The stable communities un-

der high nutrient experienced a large increase in biomass after suc-

cessful invasions (dark purple curves). Inset shows the invasions under

low nutrient only cause weak effect on community biomass as com-

pared with high nutrient. (B) The time course of fluctuating commu-

nity biomass under high nutrient before invasion and after invasion,

where dark and light orange curves represent successful and failed in-

vasions, respectively. (C) The invasions to resident communities under

low nutrient (weak interaction) cause statistically lower fold change

of biomass than communities under high nutrient (strong interaction)

(p < 0.001, the number of successful invasions is n=51 (11) for low

(high) nutrient). The successful invasions statistically tend to increase

the biomass of resident communities under different conditions. (D)

The invasions to resident communities under low nutrient (weak inter-

action) cause statistically lower effect on species composition change

than communities under high nutrient (strong interaction) (p = 0.0038,

the number of invasion tests is n=51 (11) for low (high) nutrient). Er-

ror bars represent s.e.m.. . . . . . . . . . . . . . . . . . . . . . . . . . 135

3-6 Taxonomic identity of the bacterial isolates. The identities have been

inferred from the ASV (Methods) of 16S sequencing, which allow the

classification of the 80 isolates down to the genus level. Colors are

consistent with those in the main text and other supplementary figures. 144

3-7 Introducing different invaders into different resident communities and

measuring the invasion outcome through 16s sequencing. The invasion

outcome matrices show that increasing nutrient and species pool size

lead to a decrease in invasion probability. . . . . . . . . . . . . . . . . 145
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3-8 Time series for the biomass of the fluctuating communities with species

pool size 𝑆=20 under strong average interaction strength (high nutri-

ents concentration). Each panel shows the time series for the OD

(600nm) of one fluctuating community with species pool size 𝑆=20

under high nutrient. The invaders were introduced on day 6, and the

time series of successful invasions and failed invasions for the same

communities were displayed in different panels. . . . . . . . . . . . . . 146

3-9 Time series for the biomass of the stable communities with species pool

size 𝑆=20 under strong average interaction strength (high nutrients

concentration). Each panel shows the time series for the OD (600nm) of

one stable community with species pool size 𝑆=20 under high nutrient.

The invaders were introduced on day 6, and the time series of successful

invasions and failed invasions for the same communities were displayed

in different panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3-10 Time series for the biomass of the stable communities with species pool

size 𝑆=12 under strong average interaction strength (high nutrients

concentration). Each panel shows the time series for the OD (600nm) of

one stable community with species pool size 𝑆=12 under high nutrient.

The invaders were introduced on day 6, and the time series of successful

invasions and failed invasions for the same communities were displayed

in different panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3-11 Time series for the biomass of the stable communities with species

pool size 𝑆=20 under weak average interaction strength (low nutrients

concentration). Each panel shows the time series for the OD (600nm) of

one stable community with species pool size 𝑆=20 under low nutrient.

The invaders were introduced on day 6, and the time series of successful

invasions and failed invasions for the same communities were displayed

in different panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
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3-12 Time series for the biomass of the stable communities with species

pool size 𝑆=12 under weak average interaction strength (low nutrients

concentration). Each panel shows the time series for the OD (600nm) of

one stable community with species pool size 𝑆=12 under low nutrient.

The invaders were introduced on day 6, and the time series of successful

invasions and failed invasions for the same communities were displayed

in different panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3-13 Time series for the relative species abundances of the fluctuating com-

munities with species pool size 𝑆=20 under strong average interaction

strength (high nutrients concentration). Each panel shows the time se-

ries for the relative species abundances of one fluctuating community

before introducing invaders, where species pool size 𝑆=20 under high

nutrient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3-14 Time series for the relative species abundances of the stable commu-

nities with species pool size 𝑆=20 under strong average interaction

strength (high nutrients concentration). Each panel shows the time se-

ries for the relative species abundances of one stable community before

introducing invaders, where species pool size 𝑆=20 under high nutrient. 152

3-15 Time series for the relative species abundances of the stable commu-

nities with species pool size 𝑆=12 under strong average interaction

strength (high nutrients concentration). Each panel shows the time se-

ries for the relative species abundances of one stable community before

introducing invaders, where species pool size 𝑆=12 under high nutrient. 153

3-16 Time series for the relative species abundances of the stable commu-

nities with species pool size 𝑆=20 under weak average interaction

strength (low nutrients concentration). Each panel shows the time

series for the relative species abundances of one community before in-

troducing invaders, where species pool size 𝑆=20 under low nutrient. 153
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3-17 Classification of fluctuating and stable resident communities in exper-

iment. (A) The standard deviation of community biomass over day 5,

day 6 and day 7 show that the stability threshold of 0.05 can separate

the communities into stable ones (purple points) with small biomass

deviation and fluctuating ones (orange points) with relatively large

biomass deviation under high nutrient. (B) The standard deviation of

community biomass under low nutrient are small (all below the stability

threshold of 0.05), which were naturally classified into stable commu-

nities. (C) The average coefficient of (temporal) variation for absolute

species abundances (𝑁𝑖, computed as the product of total biomass per

species relative abundance) exhibit a strong positive correlation with

standard deviation of biomass in the experimental communities. The

points span into two clusters where fluctuating communities locate on

top right region and stable communities locate on bottom left region.

(D) The average coefficient of (temporal) variation for relative species

abundances (𝑁*
𝑖 , relative species abundance through 16s sequencing)

also exhibits a strong positive correlation with standard deviation of

biomass in the experimental communities. The results suggest that

fluctuation in community biomass cooccurs with fluctuation in relative

species abundances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3-18 Different invasibility-richness relationships in experiment depending

upon how the richness is changed. Invasibility positively correlates

with richness when varying interaction strength (positive correlation

between 𝑆=20 communities under low and high nutrient). Invasibility

positively correlates with richness when randomly sample 𝑆=20 com-

munities under high nutrient, due to fluctuating communities display

larger richness and larger invasion probability. Invasibility negatively

correlates with richness when increasing species pool size from 𝑆=12

to 𝑆=20 under low nutrient. . . . . . . . . . . . . . . . . . . . . . . . 155
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3-19 Priority effect originates from alternative stable states and limit cy-

cle oscillations rather than chaotic fluctuations in simulations. Lotka-

Volterra model simulations show that both surviving probability and

invasion probability increase as community dynamics transition from

alternative stable states to limit cycle oscillations and to chaos. Com-

munities with chaotic fluctuations in species abundance do not display

significant priority effect which can be explained by its ergodicity [24],

whereas communities with limit cycle oscillations and alternative stable

states both show significant priority effect. The simulation in this fig-

ure was performed under 𝑆=40 and <𝛼𝑖𝑗>=0.65 over 1000 replicates,

among which we observed 223 chaotic fluctuating communities, 340

limit cycle oscillations, and 437 alternative stable states. The fluctuat-

ing communities were classified into chaos when its Lyapunov exponent

is positive, while classified into limit cycle when its Lyapunov exponent

is negative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3-20 Successful invasions lead to change in species composition in fluctuat-

ing communities with 𝑆=20 under high nutrient, which can be shown

by comparing the relative species abundance between invaded com-

munities and control communities without introducing invader. The

circles and triangles in the figure represent resident species and invader

species, respectively. The successful invasions can cause the extinction

of other resident species (circles drop below the extinction threshold

under invasion) and the colonization of other resident species (circles

go beyond the extinction threshold under invasion). . . . . . . . . . . 157
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Chapter 1

Introduction

1.1 Emergent phenomena, ecology, and microbes

Emergent phenomena arise when a system exhibits characteristics or behaviors not

found in its individual components, highlighting the principle that the whole can

be greater than the sum of its parts [9]. This concept, central to systems thinking

and complexity science, underscores the idea that when individual elements interact,

often in non-linear and intricate ways, they can produce unexpected and novel out-

comes. Such emergent properties aren’t simply additive; they cannot be predicted or

deduced by examining each component in isolation [9]. Instead, they materialize as a

result of the synergistic interactions between components. For instance, the flocking

behavior of birds or the organized movement of ant colonies are classic examples of

emergence in nature. These behaviors cannot be understood by examining a sin-

gle bird or ant but emerge from the interactions among numerous individuals [29].

Emergent phenomena challenge reductionist thinking and highlight the importance of

understanding systems in their entirety, especially when navigating complex domains

like ecology, neuroscience, and social systems [26].

In nature, species live and engage with numerous other species in intricate com-

munities. One of the core inquiries in ecology involves understanding how many

species can coexist, the reasons some areas possess higher biodiversity than others,

and the distinct dynamical behaviors exhibited by various communities. Furthermore,
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these factors are pivotal in shaping how an ecosystem functions. A long-standing

question in the field hinges on the question: how does the complex community dy-

namics emerge from species interactions? Ecological systems display a spectrum of

dynamical behaviors. Consider the gut microbiota and grassland plants; their en-

during patterns over time are clear indicators of global stability [44, 125, 40]. On

the other hand, many natural communities present multiple stable states or "alter-

native stable states," broadening the scope for ecological and evolutionary research

[110, 130, 11, 131, 7, 1]. Beyond these static states, certain communities are charac-

terized by ongoing fluctuations, encompassing patterns such as limit cycles and chaos

[23, 13, 47, 17, 19, 102]. These dynamical patterns provide clues about community

assembly processes, their ability to sustain high diversity, and potential trajectories.

For a deeper and more predictive understanding of ecology, it’s crucial to delve into

these dynamics.

Microbes, often deemed the invisible architects of our world, are immensely diverse

and ubiquitous, encompassing a vast array of life forms such as bacteria, viruses, fungi,

and protists [140]. These diminutive organisms are found in virtually every nook and

cranny of our planet, from the sultry depths of hydrothermal vents in the deep-sea to

the frosty expanses of Arctic tundras [52]. They not only contribute to the planet’s

biogeochemical cycles, making Earth habitable, but also engage in intricate interac-

tions with plants, animals, and other microbes. The term "microbiome" refers to the

collective community of these microbes inhabiting a specific environment, whether

it’s a patch of soil, a droplet of ocean water, or the human gut [58].

As a good example of complex ecosystems, microbial communities often hailed

as the "powerhouses" of our planet, represent the intricate dynamics of complex

ecosystems, having critical implications for human health, nutrient cycling, and envi-

ronmental equilibrium [111]. These minute but mighty entities actively participate in

processes ranging from digestion within our guts to decomposition in our soils [135].

Furthermore, their ubiquitous presence, from the deep sea to the upper atmosphere,

underscores their ecological significance [66]. Additionally, these microbial assem-

blages offer an unparalleled platform for scientific inquiry into emergent behaviors
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within ecosystems. Their small-scale nature facilitates precise experimental control,

while their rapid growth rates allow for real-time observation of evolutionary and eco-

logical dynamics. Moreover, the advancements in molecular biology techniques, such

as metagenomics and transcriptomics, have made the culturing and study of these

previously "unculturable" microorganisms more accessible [68]. As such, microbial

communities not only hold the key to understanding larger ecological processes but

also offer a convenient and comprehensive system for rigorous ecological experimen-

tation [66, 135].

In recent years, the human microbiome, especially, has become the focal point of

numerous scientific investigations [111]. Found predominantly in our digestive tracts

but also colonizing our skin, respiratory system, and other body sites, these microbial

residents play indispensable roles in a variety of physiological processes [66]. They

aid in digestion, assist in nutrient synthesis and absorption, educate our immune

system, and even produce bioactive compounds that can influence our mood and

behavior. Disturbances in the balance of the human microbiome have been linked to

a plethora of health conditions, from obesity and allergies to more serious ailments

like inflammatory bowel disease and mental health disorders [52]. As we delve deeper

into the realms of microbial research, it becomes evident that to truly understand

our health and the health of our environment, we must first unravel the complexities

of the microbiome and its intricate dance with its host [68]. This burgeoning field

promises not only insights into fundamental biological processes but also potential

therapeutic avenues harnessing the power of beneficial microbes [66, 135].

Microbial ecology is a multidisciplinary field that investigates the intricate inter-

actions and dynamics within microbial communities, which play vital roles in shaping

ecosystems [135]. These communities thrive in various environments, from oceans and

soil to tropical rainforests and the human body, exerting significant influence over

ecosystem functioning [66]. Understanding the complex web of interactions within

microbial communities is crucial for comprehending ecosystem dynamics, address-

ing environmental challenges, and harnessing their potential for diverse applications

[66, 135].
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Microbial communities consist of diverse assemblages of microorganisms that ex-

hibit remarkable emergent behaviors surpassing the individual characteristics of con-

stituent species [111]. These emergent behaviors arise from intricate interactions

and synergies within the community, resulting in complex and often unexpected phe-

nomena that cannot be predicted by studying individual organisms in isolation [50].

Unraveling the mechanisms and consequences of emergent behavior is a central pur-

suit in microbial ecology, as it holds the key to deciphering the collective dynamics

that shape ecosystem functioning and stability [56].

To understand and predict emergent behavior in microbial communities, a holis-

tic approach that integrates ecological, genetic, and physiological factors is required

[132]. Recent advancements in high-throughput sequencing, metagenomics, and com-

putational modeling have provided unprecedented insights into the complex networks

of species interactions and metabolic pathways underlying emergent phenomena [70].

By deciphering the rules governing these interactions, we can uncover the principles

driving the collective dynamics of microbial communities.

1.2 Community diversity, stability, and invasibility

Ecological systems, with their myriad interactions and complexities, have always been

a subject of profound curiosity and study. Among the various dimensions of ecol-

ogy, the intricate relationships between diversity, stability, and invasibility stand out,

forming a triad of interdependent factors that shape ecosystems and their dynamics

[75, 60].

Diversity is a multifaceted concept that goes beyond just the sheer number of

species in an ecosystem [75]. It encompasses species richness, evenness, and the

intricate web of interactions between them. Diverse ecosystems are often likened to a

well-woven tapestry, where each thread, representing a species, plays a crucial role in

maintaining the overall fabric [98]. Such systems often display increased productivity,

resilience, and a broader range of ecosystem services, from soil fertility to water

purification [98]. The rationale is that a diverse set of species can utilize a wider
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array of resources and respond more robustly to perturbations [75].

Stability in ecosystems refers to their ability to withstand disturbances, whether

they be climatic changes, disease outbreaks, or human interventions [5]. A stable

ecosystem doesn’t just recover after a disturbance; it retains its fundamental character

and continues to provide its essential functions. Diversity can be a bedrock of stability,

with different species compensating for each other during times of stress, ensuring that

the ecosystem remains functional [44].

Invasibility provides a measure of an ecosystem’s vulnerability to colonization by

non-native or alien species [32]. This introduces a paradox. Highly diverse ecosystems,

because of their efficient resource use, might be thought to be less prone to invasion

[75]. They leave fewer niches vacant and fewer resources unexploited, thereby offering

little room for invaders [32]. However, the flip side of this argument is that diverse

ecosystems, precisely because of their multiplicity of niches, might provide numerous

small opportunities for a variety of invaders to gain a toehold [7].

Invasive species, once established, can dramatically transform ecosystems [45].

Their impacts range from outcompeting or predating on native species to altering

nutrient cycles and physical habitat structures. Such invasions can initiate a cascade

of changes that ripple through the ecosystem, potentially affecting its stability and

further altering its diversity [7].

The dynamic interplay between diversity, stability, and invasibility remains a piv-

otal theme in ecology [125]. As human influences continue to reshape our planet, from

habitat fragmentation to climate change, understanding this triad becomes even more

crucial [73]. It holds keys to preserving biodiversity, restoring damaged habitats, and

predicting the future trajectories of our natural systems [123]. Delving deeper into the

synergies and conflicts between these three pillars will not only further our academic

understanding but will also offer practical insights for a world facing unprecedented

ecological challenges.
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1.3 Emergent phases of diversity and stability in mi-

crobial community

Species in nature coexist and interact within intricate and diverse communities, posing

challenges for ecologists in understanding the factors influencing species coexistence,

biodiversity patterns, community dynamics, and their impact on ecosystem function-

ing [128]. The stability-diversity debate has long focused on whether community

diversity enhances or weakens stability, with environmental drivers identified as po-

tential factors influencing these community features [87, 60]. Laboratory experiments

offer a valuable platform to disentangle environmental drivers from inherent commu-

nity properties, such as species interactions, that shape biodiversity and dynamics.

While experimental communities with few species have revealed predictable dynamics

and shed light on specific interactions like predation, competition, and cross-feeding,

biodiverse laboratory microcosms derived from natural habitats have shown repro-

ducibility and predictability only at higher taxonomic levels [50, 101, 114, 46, 136].

Given the challenge of obtaining detailed information on the ecological roles of every

species, the question arises: can complex community biodiversity and dynamics be

predicted using simple community-level parameters?

Since Robert May’s pioneering work [84], ecologists have endeavored to understand

community behaviors by examining community-level parameters, such as species rich-

ness and the distribution of interaction strengths. Interaction strengths, quantify-

ing the influence of one species on others, play a crucial role in shaping commu-

nity composition and stability [101]. Previous studies have suggested that high

species richness and strong interactions can lead to unstable community dynamics

[84, 122, 15, 144, 91]. However, our understanding of community behavior beyond

this instability threshold remains limited. Recent theoretical advancements propose

that species extinctions precede complete instability, and unstable communities may

exhibit fluctuations that reinforce biodiversity [57, 95, 106, 4, 115, 127, 53]. Validating

these theories has been challenging due to difficulties in estimating and manipulating

associated parameters.
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Experimental microcosms now offer the necessary control to test these theoret-

ical predictions based on community-level parameters [136, 101, 50]. In my thesis,

I aim to uncover the relationship between stability and diversity by experimentally

manipulating two key factors typically unobservable in natural settings: the strength

of interspecies interactions and the size of the introduced species pool. The crucial

novelty of our work is finding an experimental system in which it is possible to tune

interaction strength and number of species to transition between different dynamical

phases predicted by theory. Constructing an experimental phase diagram of ecological

diversity and dynamics, we find remarkable agreement with theoretical predictions:

a specific sequence of three qualitative phases (stable coexistence, species loss, and

persistent fluctuations), and higher numbers of surviving species in fluctuating com-

munities. Our combination of theoretical and experimental results suggests that,

while we cannot access all biological mechanisms and parameters in a complex sys-

tem, its diversity and dynamics may be emergent phenomena that can be predicted

from just a few aggregate properties of the ecological community.

1.4 Emergent invasion outcome in microbial commu-

nity

Biological invasion, delves into the study of non-native species’ introduction and

spread in new ecosystems, and their consequent interactions with native species and

environments [78]. At its core, this field seeks to understand the dynamics driving the

success of invasive species and the impacts they exert on native biodiversity, ecosystem

functions, and even human societies [142]. Historically, humans have inadvertently

and, at times, intentionally facilitated the dispersal of organisms across regions, lead-

ing to unintended ecological consequences [113]. The ramifications of these invasions

can be multifaceted, ranging from the alteration of nutrient cycling and energy flow

in ecosystems to the displacement or extinction of native species [78]. Furthermore,

the economic costs associated with managing and mitigating the impacts of invasive
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species can be monumental [142]. The significance of ecological invasion as a disci-

pline has grown in recent decades, especially in the face of increasing globalization,

climate change, and habitat modification [22]. Today, it is a pivotal area of study,

intertwining ecology, evolution, geography, and even socio-economic considerations,

as researchers and policymakers alike grapple with the challenges and implications of

species moving beyond their native ranges [22].

Microbial invasions, a frequent phenomenon in diverse ecosystems, deeply influ-

ence the dynamics and functioning of microbial communities [83]. These invasions can

alter nutrient cycling, disrupt established symbiotic relationships, and even impact

the overall health of larger organisms within the ecosystem [133, 52]. Understand-

ing the mechanisms driving invasion success and the ecological repercussions of these

incursions is vital for forecasting and managing ecosystem adaptations to these dis-

turbances [99]. Factors such as competition, predation, and environmental conditions

can play a role in determining the outcome of these invasions [28, 69]. Moreover, the

adaptability of the invasive species, as well as the resilience of the resident microbial

community [111], are also critical components. While research has made strides in

certain areas, many aspects of the underlying mechanisms and ecological outcomes of

microbial invasions still remain complex and poorly understood.

In this thesis, I delve into the world of microbial invasions, aiming to shed light on

the determinants of invasion success and the ecological impacts on resident microbial

communities. By combining theoretical frameworks and empirical studies, we explore

the role of community-level features, interspecies interactions, species pool size, and

environmental factors in shaping invasion outcomes. Although diversity-invasibility

relationships are qualitatively different depending upon how the diversity is changed,

we resolved the diversity-invasibility debate by showing a universal positive correspon-

dence between invasibility and survival fraction across all conditions. Furthermore,

we found communities composed of strongly interacting species exhibit emergent pri-

ority effect, as well as large invasion effect on resident community structure under

successful invasions. Our findings contribute to the growing understanding of mi-

crobial invasions, providing insights into the ecological disruptions caused by these
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encroachments and offering pathways for improved management strategies.

Understanding the emergent behavior of microbial communities has broad impli-

cations across diverse fields, ranging from environmental management and biotech-

nology to human health [141]. By harnessing the potential of self-organization and

emergent properties, we can unlock new strategies for sustainable agriculture, wastew-

ater treatment, and the development of novel therapeutics [42]. Ultimately, the study

of emergent behavior in microbial communities provides a fascinating window into the

remarkable collective intelligence of microorganisms and opens avenues for harnessing

their potential for the benefit of humanity [59, 31].
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Chapter 2

Emergent phases of ecological

diversity and dynamics mapped in

microcosms

2.1 Abstract

From tropical forests to gut microbiomes, ecological communities host striking num-

bers of coexisting species. Beyond high biodiversity, communities exhibit a range

of complex dynamics that are difficult to explain under a unified framework. Using

bacterial microcosms, we perform the first direct test of theory predicting that sim-

ple community-level features dictate emergent behaviors of communities. As either

the number of species or the strength of interactions increases, we show that mi-

crobial ecosystems transition between three distinct dynamical phases, from a stable

equilibrium where all species coexist, to partial coexistence, to emergence of per-

sistent fluctuations in species abundances, in the order predicted by theory. Under

fixed conditions, high biodiversity and fluctuations reinforce each other. Our results

demonstrate predictable emergent patterns of diversity and dynamics in ecological

communities.
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2.2 Introduction

In nature, species reside and interact with myriad other species in complex commu-

nities [85]. Central challenges in ecology include understanding how many species

are able to coexist, why biodiversity is higher in some places than others, why com-

munities show varying dynamical behaviors [43, 18], and how these factors shape

ecosystem functioning [80]. A long-standing debate concerns whether the diversity of

a community enhances or weakens its stability [87]. By studying natural communities,

ecologists have identified potential environmental drivers that could impact both of

these community features [60]. Laboratory experiments facilitate disentangling such

environmental drivers from inherent community properties, such as species interac-

tions, that may also shape biodiversity and dynamics. Experimental communities

with few species have been shown to display predictable dynamics, such as stable

equilibria and periodic oscillations [46, 136, 12, 12, 48], and allowed to understand

the role of interactions ranging from predation [12, 48] to competition [46, 136] to

cross-feeding [114]. In more biodiverse laboratory microcosms derived from natural

habitats, however, community composition is only reproducible and predictable at

family or higher levels of taxonomy [18, 20, 101, 50]. Given the relative inaccessibil-

ity of detailed information on the ecological roles of every species (capturing every

interaction strength, growth rate, carrying capacity, etc.), the question arises: is it

possible to predict the biodiversity and dynamics of these complex communities with

simple community-level parameters?

Starting with the pioneering work by Robert May [84], ecologists have sought to

predict community behaviors using community-level parameters such as the number

of species and the distribution of interaction strengths between species. The inter-

action strengths quantify how strongly a species influences the growth and survival

of other organisms in the community, and therefore determines the overall composi-

tion and stability of communities [101]. May and others have suggested that a large

number of species and strong interactions lead to instability of community dynamics

[84, 122, 15, 144, 91], yet we still do not understand how communities behave be-
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yond the transition to instability. Recent theory suggests that a fraction of species

tends to go extinct before the community loses stability [24, 93, 63], and that unsta-

ble communities can exhibit fluctuations, which could in turn reinforce biodiversity

[57, 95, 106, 4, 115, 127, 53]. This body of theory has been difficult to validate because

the associated parameters are hard to estimate, and manipulate [86]. Experimental

microcosms have now reached the necessary controllability [136, 101, 50] to test the-

oretical predictions based on community-level parameters of ecological communities.

We aim to uncover the relationship between stability and diversity through exper-

imentally controlling two factors that are usually unobservable in natural settings:

the strength of interspecies interactions, and the number of species introduced in the

experiment (referred to as the species pool size).

2.3 Results and Discussion

2.3.1 Theory predicts that community-level features shape phases

of community diversity and dynamics

We began by summarizing the predictions on community dynamics and biodiversity

from the well-known generalized Lotka-Volterra (gLV) model, modified to include

dispersal from a species pool:

𝑑𝑁𝑖

𝑑𝑡
= 𝑁𝑖(1−

𝑆∑︁
𝑗=1

𝛼𝑖𝑗𝑁𝑗) +𝐷 (2.1)

where 𝑁𝑖 is the abundance of species i (normalized to its carrying capacity), 𝛼𝑖𝑗 is

the interaction strength that captures how strongly species j inhibits species i (with

self-regulation 𝛼𝑖𝑖 = 1), and D is the dispersal rate. We simulated the dynamics of

communities with different species pool sizes 𝑆 and interaction matrices. We sampled

the interaction strength from a uniform distribution 𝑈 [0, 2𝛼𝑖𝑗], where <𝛼𝑖𝑗> is the

mean interaction strength between species (which also determines here the variance of

interactions, Supp. Material). Modeling species interactions as a random interaction

network captures species heterogeneity without assuming any particular community
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structure [84, 122, 63]. Our simulations revealed a strong dependence of biodiver-

sity (number of coexisting species) and dynamics on both the species pool size S

(Fig. 2-1A) and interaction strength <𝛼𝑖𝑗> (Fig. 2-1B). As either of these parame-

ters increase, communities experience a transition from I) stable full coexistence—all

species survive and reach stable abundances, to II) stable partial coexistence—some

species go extinct, and the surviving ones reach stability, to III) persistent fluctua-

tions in species abundances and biomass (Fig. 2-10, 2-11, 2-12, [103]. The transition

to unstable dynamics (II to III) corresponds with the loss of linear stability of the

equilibrium, consistent with May’s theory (Fig. 2-13). These results agree with re-

cent theory that derived analytically the existence of a phase transition from a unique

stable state (I and II) to persistent fluctuations (III) [24, 93]. To address the ecolog-

ical implications of these dynamical phases, we analyzed both the fraction of species

that survive at equilibrium (Fig. 2-1C, E and 2-14) and the fraction of communi-

ties that exhibit persistent fluctuations (Fig. 2-1D, F). We found that the sequence

of dynamical phases is generic across the parameter space: communities generally

experience species extinctions before they lose stability as either of the control pa-

rameters increase. This sequence is both predicted by analytical expressions for the

phase boundaries (Fig. 2-1C-F) and robust to different choices of interaction strength

distributions and modeling assumptions (Fig. 2-15, 2-16) [24]. In particular, natu-

ral ecological communities display diverse interaction types which affects the degree

of symmetry in the interaction matrix (𝛼𝑖𝑗), (e.g., competition and mutualism may

be symmetrical whereas predation is antisymmetrical). We found that varying these

properties of the interaction matrix does not qualitatively affect the dynamical phases

(Fig. 2-6, 2-7). Other model choices, e.g. considering pH-mediated interactions or

the serial dilution of communities into fresh media (Fig. 2-7, 2-8, 2-9, 2-17) [101],

further showed the robustness and generic nature of the dynamical phases. Therefore,

it may be possible to predict the diversity and dynamics of ecological communities

from community-level features of the interaction network.
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Figure 2-1: Theory predicts that species pool size and interspecies interaction strength
shape phases of community diversity and dynamics. (A) Representative time series
of species abundance for the qualitatively different dynamics of communities with
different species pool size S, under interaction strength <𝛼𝑖𝑗>=0.3. Communities
transition from stable full coexistence (𝑆=4) to stable partial coexistence (𝑆=20)
to persistent fluctuations (𝑆=80). Increasing interaction strength while fixing the
species pool size (B) reveals analogous transitions. Mean fractions of (C) species that
survive in the community, and (D) communities that exhibit persistent fluctuations.
As interaction strength increases, communities lose species (transition from phase I
to II, vertical dashed line) before losing stability (transition from phase II to III, solid
vertical line). Mapping the survival fraction (E) and community fluctuation fraction
(F) onto the phase space reveals that this sequence (phase I to phase II to phase
III) of phase transitions is maintained as either of the control parameters increases.
The gray dashed (solid) line shows the analytical solution for the survival (stability)
boundary. The color maps depict the mean value over 1000 simulations [103].

2.3.2 Increasing species pool size or interaction strength leads

to loss of stability in microbial communities

To experimentally test the predicted phase transitions, we built synthetic communi-

ties using a library of 48 bacterial isolates from terrestrial environments (Fig. 2-18,

2-19) [103]. Following inoculation, we exposed communities to cycles of growth, dis-

persal from the pool, and dilution, while monitoring community composition and

biomass at the end of each daily cycle (Fig. 2-2A, [103]. Leveraging previous work

[101], we tested media conditions to tune the strength of bacterial interactions. We

found that the probability of coexistence in pair-wise co-culture decreased with the

concentration of supplemented glucose and urea. In this media, an increase in the

concentration of these nutrients therefore increases the strength of competitive in-

teractions (Fig. 2-2B, Table A.1, A.2, A.3) As discussed in our previous work [101],

high nutrient concentrations lead to extensive modification of the media (e.g. pH)

and hence stronger interactions. This experimental platform allows us to control the

key parameters established by theory: species pool size and interaction strength.

We experimentally mapped the phase space of community dynamics by exposing

63 species pools to three levels of interaction strength. Specifically, we tested 30

species pairs (S=2); 8 different communities for each size S=3, 6, 12, and 24; and
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Figure 2-2: Increasing species pool size or interaction strength leads to loss of stability
in microbial communities. (A) We used a library of 48 bacteria to generate species
pools of different sizes and compositions. Co-cultures underwent serial dilutions with
additional dispersal from the pool. Community composition and total biomass were
monitored via 16S sequencing and optical density (OD). (B) In 2-species co-cultures,
interaction strengths leading to the loss of coexistence (𝛼𝑖𝑗 > 1) increase in frequency
with nutrients concentration. Error bars, s.e.m., n=30. (C) Fluctuations in com-
munity biomass increase with either species pool size or interaction strength. Solid
lines stand for 8 different species pool compositions (dashed lines, replicates of the 48
species community). Purple (orange) lines highlight stable (fluctuating) dynamics.
(D) Under high nutrient, half of the 12-species communities exhibit persistent fluc-
tuations (top panels) in species abundances, and the rest reached stability (bottom).
(E) Time series (top panels) for the species abundances in 48-species communities.
Stability was reached only under low nutrients, and variability in end-point relative
abundances increased with nutrients concentration (bottom panels, Fig. S15). Rela-
tive abundance plots show the Amplicon Sequence Variants (ASVs) data of individual
replicates.

1 community of S=48 (the full species library). The resulting biomass time series

were relatively stable under low interaction strength and small species pool size, while

increasing these two variables progressively led to a higher fraction of communities

exhibiting biomass fluctuations (Fig. 2-2C). Analyzing species abundances through

16S sequencing (Fig. 2-2D and 2-2E), we found that biomass fluctuations were highly

correlated with species abundance fluctuations (Fig. 2-20, 2-21). For example, for

communities with 12 species in the pool and high nutrient concentration, 4 commu-

nities reached stable equilibria, and the remaining 4 exhibited fluctuations in both

biomass and species abundances until the end of the experiment (Fig. 2-2C and 2-

2D). Replicates with identical species pool composition exhibited highly reproducible

dynamics (Fig. 2-22, 2-23, 2-24, 2-25, 2-26, 2-27, 2-28, 2-29, 2-30), and the classifica-

tion of stable and fluctuating communities was robust to different methods analyzing

biomass, species composition, and variations between replicates ([103], Fig. 2-20,

2-21). We also experimentally observed this transition towards unstable dynamics

under different carbon sources and dilution frequencies (Fig. 2-5). Therefore, syn-

thetic microbial communities lose stability as either species pool size (for S > 2) or

interaction strength increases.
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2.3.3 Species pool size and interaction strength determine the

diversity and dynamics of experimental communities

To understand the relationship between species extinctions and loss of community

stability, we analyzed species survival across these experiments. As expected, the

fraction of surviving species decreased with either species pool size or interaction

strength—determined by nutrient concentration (Fig. 2-3A). For example, at medium

interaction strength 83% (+/- 3%) of species were able to survive in the 30 pairwise

(S=2) co-cultures, while this frequency decreased to 36% (+/- 7%) among the eight

different combinations of six species communities (S=6, Fig. 2-3A). Despite the sig-

nificant loss of species, none of these communities displayed persistent fluctuations

(Fig. 2-3B). Such fluctuations arose with further increase of the species pool size,

with half of the 24-species combinations displaying fluctuations (Fig. 2-3B). Inter-

estingly, the species survival fraction displayed only a modest decrease entering the

fluctuation regime, with 24% (+/- 2%) of species surviving in the 24-species com-

munities as compared to 36% (+/- 7%) in the 6-species communities (Fig. 2-3A

and 2-3B). Mapping these experimental results over the phase space (Fig. 2-3C and

D) confirmed the theoretically-predicted (Fig. 2-1E and F) sequence of transitions:

communities experience species extinctions before exhibiting persistent fluctuations,

as either species pool size or interaction strength increases.

2.3.4 Fluctuating communities are more diverse than stable

communities under the same conditions

Next, through analyzing species survival fraction across different species pool com-

positions, we addressed how fluctuations and diversity may influence each other. In

simulations, the fraction of surviving species revealed a generic trend: for the same

species pool size and interaction strength, fluctuating communities were more diverse

than stable communities (Fig. 2-4A). This trend was also observed in experiments:

the majority of fluctuating communities reached higher survival fractions than sta-

ble communities under the same conditions (Fig. 2-4B and 2-32). For example,
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Figure 2-3: Species pool size and interaction strength determine the diversity and
dynamics of experimental communities. (A) The fraction of surviving species de-
creases with either species pool size or interaction strength (nutrient concentration).
The survival fraction decreases more slowly at high S and strong interaction strength.
(B) The fraction of fluctuating communities increases with either species pool size or
interaction strength. (C) Phase diagram for the fraction of species surviving in exper-
imental communities. As communities cross the boundary of phase I (dashed line),
they experience species extinctions, with a fast decay in survival fraction through
phase II, and a relative maintenance of survival fraction through phase III. (D) Phase
diagram for the fraction of fluctuating communities in experiments. Communities
start exhibiting persistent fluctuations after crossing the boundary into phase III
(solid gray line). Error bars, s.e.m., n=8.
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within the 12-species communities, fluctuating communities had on average 5 +/- 1

species surviving, as compared to only 2+/- 1 species surviving in stable communities.

Among the fluctuating communities, 88% (+/-5%) exhibited survival fractions above

or equal to the mean, as compared to only 14% (+/- 6%) among the stable com-

munities (p<0.01,(32)). Both experiments and simulations suggest that fluctuations

are an emergent, diversity-dependent phenomenon, as the addition of species pools

from stable communities often yielded larger, fluctuating communities (Fig. 2-33).

We also found numerically that fluctuations and high diversity disappeared together

as we stopped dispersal or pinned the abundance of the most abundant species (Fig.

2-10). Our results show that diversity and persistent fluctuations enhance each other,

as theoretically demonstrated in previous work [95, 106].

Figure 2-4: Fluctuating communities are more diverse than stable communities under
the same conditions. (A) As the average survival fraction decreases with increasing
species pool size 𝑆 in simulations, more communities exhibit fluctuations in species
abundances (orange points). While stable communities (purple) exhibit a steady de-
crease in species survival fraction with 𝑆, the loss of species is slower in fluctuating
communities. Each point represents an individual community. (B) In experiments un-
der high nutrient concentration (also under lower nutrients concentrations, Fig. S28),
fluctuating communities exhibit a higher survival fraction than stable communities.
The survival fractions of 88% (+/-5%) of the fluctuating communities are above or
equal to the mean, as compared to 14% (+/- 6%) in the case of stable communities
(p<0.01, [103]; error bars, s.e.m., n=8.
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2.3.5 The phases of community dynamics are robust to changes

in carbon source and dilution frequency

We found the phases of community dynamics are robust to changes in carbon source

and dilution frequency. Persistent fluctuations can occur under different carbon

sources. After replacing glucose by succinate in the media, high nutrients concen-

tration still yields biomass fluctuations in some communities (Fig. 2-5). Two out of

eight communities fluctuate in both glucose and succinate, four reach steady state in

both glucose and succinate, and the remaining two communities fluctuate in medium

with glucose, while reaching a steady state in medium with succinate. furthermore,

we show community dynamics are robust to different choices of dilution frequency. 24-

hours transfers and 48-hours transfers yield analogous biomass dynamics for the eight

different 12-species communities under high nutrients concentration (Fig. 2-5). Com-

munities that reach persistent fluctuations (stability) under 24-hours-transfers also

reach persistent fluctuations (stability) under 48-hours-transfers. Fig. 2-5C shows

the rank plot for the standard deviation of biomass between days 7 and 10 for com-

munities under succinate. The rank of each community was based on the mean value

of the standard deviation of the three replicates. A K-means clustering algorithm

considering standard deviation of biomass over days 7-10 clusters communities into

two fluctuating (orange points) ones and six stable (purple points) ones. Fig. 2-5D

shows the rank plot for the standard deviation of biomass between days 10 and 16 for

communities under 48-hours transfers. In this case, the K-means clustering algorithm

considering standard deviation of biomass over day10-16 clusters communities into

four fluctuating (orange points) ones and four stable (purple points) ones. The three

replicates of each community are consistently classified as either fluctuating or stable

ones, which are shown as three data points for each community rank.
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Figure 2-5: The phases of community dynamics are robust to changes in carbon
source and dilution frequency. (A) Persistent fluctuations can occur under different
carbon sources. After replacing glucose (leftmost panel) by succinate (right panels)
in the media, high nutrients concentration still yields biomass fluctuations in some
communities. Each panel shows the time series for the OD of the eight communities
with different species pool composition (depicted by different colors). Solid lines
(dashed lines) represent fluctuating (stable) communities. (B) Community dynamics
are robust to different choices of dilution frequency. Each panel shows the time series
for the OD of the eight communities with different species pool composition (depicted
by different colors). Each of the three rightmost panels show the results for one of the
three experimental replicates performed. (C) Rank plot for the standard deviation
of biomass between days 7 and 10 for communities under succinate. (D) Rank plot
for the standard deviation of biomass between days 10 and 16 for communities under
48-hours transfers.
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2.3.6 The emergent phases of communities are robust to var-

ious interaction symmetries and types

To show that symmetry and anti-symmetry do not qualitatively change the phase di-

agram, we simulated communities in two scenarios of non-zero reciprocity, 𝛾=0.5 and

𝛾=-0.5 , where the reciprocity of interactions is given by 𝛾=corr(𝛼𝑖𝑗,𝛼𝑗𝑖). The quali-

tative patterns and order of transitions in the phase diagram (Fig. 2-6) are robust to

the presence of reciprocity, although 𝛾 shifts the stability boundary (solid line in Fig.

2-6). Positive and negative reciprocity decreases and increases the values of 𝑆 and

<𝛼𝑖𝑗> at which communities lose stability, respectively. Moreover, positive (negative)

reciprocity yields lower (higher) survival fraction and fluctuation fraction of commu-

nities. At full symmetry and anti-symmetry (𝛾 =1, -1) there is no fluctuating phase

[24], but those do not appear to be relevant from the experiment pair-competition

results (Table. A.1, A.2, A.3).

To test whether the existence of positive (facilitative) interactions in the ecolog-

ical network will change our conclusions, we sampled values of 𝛼𝑖𝑗 from a uniform

distribution [-𝛼0, 𝛼0], where 𝛼0 varies between [0, 1.4] on the phase diagram. In

this simulation, the linear interaction function in the gLV (𝛼𝑖𝑗 𝑁𝑗) is replaced with

Monod function (𝛼𝑖𝑗𝑁𝑗/(𝑁𝑗+1)) to avoid unbounded growth due to positive inter-

actions [24, 107]. We observed similar patterns of survival fraction and fluctuation

fraction between pure competitive interactions and considering positive interactions

(Fig. 2-7). The first and second moment of the distribution of 𝛼𝑖𝑗 should be consid-

ered to quantify interaction strength in the stability criteria [122]]. Here we use Std

(𝛼𝑖𝑗) to quantify the interaction strength because the first moment of 𝛼𝑖𝑗 distribution

is zero. Our results demonstrate that the existence of three phases (full coexistence,

partial coexistence, persistence fluctuation) and the order of transitions are robust

to the interaction types in the model. These phase diagrams results demonstrate

that the existence of three phases (full coexistence, partial coexistence, persistence

fluctuation) and the order of transitions are robust to varying interaction types in the

model (communities lose species before losing stability as the size of species pool 𝑆
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Figure 2-6: The three dynamical phases are qualitatively robust to the presence
of reciprocity in interspecies interactions. The panels show the theoretical phase
diagrams of species survival fraction (left) and community fluctuation fraction (right)
for two cases of non-zero reciprocity, 𝛾=corr(𝛼𝑖𝑗,𝛼𝑗𝑖)̸=0. (A) The fluctuating phase
(partial coexistence phase) is larger (smaller) in the presence of positive reciprocity
(corr(𝛼𝑖𝑗,𝛼𝑗𝑖)=0.5) than in the absence of reciprocity (corr(𝛼𝑖𝑗,𝛼𝑗𝑖)=0, Fig. 2-1E
and F). The fluctuation fraction also increases with positive reciprocity. (B) The
fluctuating phase (partial coexistence phase) is smaller (larger) in the presence of
negative reciprocity (corr(𝛼𝑖𝑗,𝛼𝑗𝑖)=-0.5) than in the absence of reciprocity (Fig. 2-1E
and F). The fluctuation fraction is higher in communities with negative reciprocity
than communities with zero reciprocity. The dashed line and solid line in the figures
represent survival boundary and stability boundary, respectively. Overall, the same
qualitative phases and ordering are found as for communities with zero reciprocity
(Fig. 2-1E and F), with non-zero reciprocity leading to quantitative differences.
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Figure 2-7: The three dynamical phases are qualitatively robust to the presence of
positive interactions and serial dilutions in gLV. (A) To test whether the existence of
positive (facilitative) interactions in the ecological network could change our conclu-
sions, we sampled values of 𝛼𝑖𝑗 from a uniform distribution [-𝛼0, 𝛼0], where 𝛼0 varies
between [0, 1.4] on the phase diagram. We observed patterns of species survival
fraction (left panel) and fluctuation fraction (right panel) analogous to those exhib-
ited by communities with exclusively negative interactions (Fig. 2-1). The dashed
line and solid line in both panels represent survival boundary and stability bound-
ary, respectively. Note that the strength of interactions coincides with Std (𝛼𝑖𝑗) in
this case, since the mean of 𝛼𝑖𝑗 is zero (both moments factor into the interaction
strength metric std(𝛼𝑖𝑗)/(1-<𝛼𝑖𝑗>) that determines stability (17) ). In these simula-
tions, the linear interaction function in the gLV (𝛼𝑖𝑗 𝑁𝑗) was replaced with Monod
function (𝛼𝑖𝑗 𝑁𝑗/(𝑁𝑗+1)) to avoid unbounded growth due to positive interactions
[24, 107].(B) In silico communities undergoing serial dilutions exhibit the same three
dynamical phases (full coexistence, partial coexistence, and fluctuation) as in simu-
lations without dilution. The two phase diagrams show that communities exposed
to serial dilutions (1:30 dilution every 24 hours) lose species before losing stability as
the size of species pool 𝑆 or interaction strength increases, which is consistent with
simulations of the continuous (no dilutions) model (Fig. 2-1E and F). The dashed line
and solid line in the figures represent the survival boundary and stability boundary,
respectively.
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or interaction strength increases, as in Fig. 2-1E and F). The dashed line and solid

line in the figures represent survival boundary and stability boundary, respectively.

2.3.7 Theoretical alternatives to the Lotka-Volterra model

The Lotka-Volterra model provides a phenomenological representation of bacterial

growth and interactions, but our conclusions are not tied to this specific model. It is

important to understand whether our central theoretical predictions generalize: how

broadly do we expect a similar qualitative map of dynamical phases, where extinctions

start to occur before the onset of fluctuations (as we increase either species pool size or

interaction strength)? This empirically-observed ordering of phases is not self-evident:

it is straightforward to construct few-species models that display fluctuations without

extinctions, e.g. predator-prey pairs. Therefore, if our qualitative phase ordering

appears across a range of many-species models and experiments, we may be seeing a

broad mechanism, one that is presumably collective rather than driven by particular

species.

One interesting question is whether these collective dynamics emerge from many

independent pairwise species interactions (as in our random Lotka-Volterra model),

or whether they are driven by one or a few system-wide factors, such as public goods

impacting all species. Ratzke et al. [101] performed bacterial experiments and intro-

duced a different model where all interactions are mediated by modifications of the

environmental pH by the bacteria, whose growth is in turn modified by pH. This pH-

based model, and a variant, reproduced some experimental results in [101, 103]. We

slightly amend the model in [101] to represent continuous-time dilution and dispersal

from the species pool (we have also simulated discrete daily dilutions and dispersal,

with no impact on our conclusions).

𝑑𝑁𝑖

𝑑𝑡
= 𝑘𝑔𝑟𝑜𝑤𝑡ℎ𝑁𝑖(1−𝑁𝑖)𝑓(𝑝− 𝑝0𝑖)− 𝑐𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛𝑁𝑖 +𝐷 (2.2)

where 𝑓(𝑥) = 1 , if 𝑥 ∈[-𝑝𝑐, 𝑝𝑐]

𝑓(𝑥) = -1 , otherwise
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𝑑𝑝

𝑑𝑡
=

𝑆∑︁
𝑖=1

𝑐𝑖𝑁𝑖 + 𝑐𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛(7− 𝑝) (2.3)

Equation 2.2 represents the growth of bacterial abundance 𝑁𝑖, which follows a

logistic equation with parameter 𝑘𝑔𝑟𝑜𝑤𝑡ℎ = 10 modulated by the pH value 𝑝: growth

is maximal when this value is equal to species 𝑖’s pH optimum 𝑝0𝑖 (drawn uniformly

over [4.5, 9.5]), with a tolerance given by 𝑝𝑐 = 2. In addition, parameter 𝑐𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 = 3.4

(continuous-time equivalent to our 1:30 daily dilution) encompasses losses due to

dilution, whereas 𝐷 = 10−6 represents dispersal from the species pool. Equation

2.3 represents the change of pH induced by the bacteria and the return toward the

neutral pH value of 7 due to dilution. The distribution of 𝑐𝑖, drawn uniformly over

[−𝑐, 𝑐], thus determines the impact of bacteria on pH and indirectly the strength of

interactions between bacteria.

We find that this model reproduces some of the main predictions of the Lotka-

Volterra model: as seen in Fig. 2-8, the phase diagram with its three phases is

qualitatively preserved in this second model, which suggests that it is highly robust

to variations in modelling assumptions. Nevertheless, we believe that the LV model

better reproduces our experimental results, whereas the pH-based model was more

adequate in [101, 103], plausibly due to different taxa (species that exhibit ecological

suicide do not appear in our species pool here) and experimental conditions (lower

dilution rate) that lead to stronger impacts of pH. Indeed, there are three points that

make the LV model more plausible here:

1) In our experiments, pH fluctuations are only moderately correlated (Pearson

correlation coefficient: 0.54) with fluctuations in optical density or species composi-

tion (whereas the latter two are highly correlated), suggesting that pH is not the sole

driving factor of stability here. (Fig 2-9A)

2) The pH-based models in [101, 103] notably aimed to allow for ecological suicide,

i.e. species growing then going extinct in monoculture, which does not occur in our

experiment (In our initial species pool, we only retained species that survived in all

of our growth conditions for the convenience of daily dispersal, Fig. 2-31). In the
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Figure 2-8: Comparison between the Lotka-Volterra and pH-based models. The top-
most two rows display survival and fluctuation fraction, demonstrating that they
similarly depend on the parameters of species pool size and interaction strength, in
the Lotka-Volterra model (left column, equation 1, with interaction strength given by
<𝛼𝑖𝑗>) and a pH-based model proposed for previous experiments [101] (right column,
equations 2 and 3, with interaction strength given by max (𝑐𝑖)). We conclude that the
three dynamical phases are qualitatively robust to different modeling choices. On the
other hand, the third row shows that the two models disagree regarding correlations
between the number of surviving species and the presence of fluctuations (for different
communities with the same parameters) as further discussed in Fig. 2-9.
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high-interaction strength regime and large initial species pool size regime, the pH-

based model has two main outcomes: either many-species fluctuations, or total or

near-total extinction with zero or few species surviving, and total biomass < 5% of

carrying capacity (Fig 2-9B). Only the former behavior is seen in our experiments;

the latter prediction of pH-based model was never observed in our experiments (Fig.

2-2C and Fig. 2-31).

3) The LV model displays positive correlation between the number of surviving

species and the intensity of fluctuations, as in our experiments (Fig. 2-4 and Fig.

2-9), whereas the pH-based model displays a negative correlation (we exclude com-

munities falling under the above extinction criterion, which were never observed in

our experiment, Fig. 2-9C). The positive relation between diversity and fluctuations,

validated in our experiments, is key to our theoretical argument.

These three reasons lead us to retain the Lotka-Volterra model as our prime exam-

ple (see Fig. 2-17 for a best-fit illustration). This cannot rule out a different pH-based

model, or a combination of pH-based and direct interactions, as a good description

of the biological mechanisms at play in our experimental setting. We reach two main

conclusions: i) The random Lotka-Volterra model provides a straightforward proto-

type of a mechanism that fits our theoretical argument. The dynamical phases are

unambiguously emergent, in the sense of being driven by species diversity and local

pairwise interactions. The picture is as follows: the fluctuating phase must appear

after extinctions and turnover in species composition, since fluctuations are driven by

a tendency to jump between alternate sets of surviving species, each of them unstable.

ii) We expect this central prediction to hold broadly under different modelling choices.

Indeed, we find that the pH-based model displays an analogous set of regimes and

transitions (Fig. 2-8), even though its predictions do not match some of our experi-

mental results as accurately as the LV model (Fig. 2-9). In both models, increasing

the number of species and the strength of their interactions, whether direct or me-

diated through an abiotic factor, will typically lead to extinctions before it leads to

loss of stability. This results in a phase of partial coexistence preceding a phase of in-

stability, no matter whether species diversity and extinctions are necessary (as in the
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Figure 2-9: The LV model reproduces experimental observations better than the pH-
based model. (A) Empirical data shows rather weak correlation (Pearson correlation
coefficient: 0.54) between the intensity of fluctuations of pH and of abundances, sug-
gesting that pH is not the sole or main driving factor in species dynamics. (B) The
pH-based model proposed in [101] often displays community extinction (total abun-
dance < 5% of carrying capacity), which we do not observe in our experiments. (C)
In experiments and in the LV model, conditioning on species pool size and nutrients,
various communities show positive correlations between fluctuations and diversity,
measured here as 𝑆*/<𝑆*> the number of surviving species relative to the average
number of survivors for that same pool size and nutrients. The pH-based model dis-
plays negative correlations (we exclude cases of whole community extinction which
were never observed in our experiments). The relative survival fraction is statistically
higher (lower) in fluctuating communities than stable communities in experiments
and LV model (pH-based model, p<0.001). Error bars, s.e.m., n=100 for simulation
data, n=51 (33) for stable communities in high (medium) nutrient, n=45 (15) for
fluctuating communities in high (medium) nutrient.
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random LV model) or not (as in the pH-based model) for the mechanism that drives

fluctuations. We propose that this ordering, which is robust in many-species models

but need not be in few-species models, can be an indicator of emergent collective

behavior.

2.4 Methods and Materials

2.4.1 Bacterial isolates, media and culturing conditions

We constructed the library of 48 bacterial species using 24 bacterial isolates from

soil samples taken at Middlesex Fells Reservation in Somerville, Massachusetts, and

24 isolates from the C. elegans intestine. This library is phylogenetically diverse,

with isolates coming from 26 different families among 4 phylums: Proteobacteria,

Firmicutes, Bacteroidota and Actinobacteriota (Fig. 2-18, 2-19).

In the case of low interaction strength (low nutrients concentration) conditions, ex-

perimental communities were cultured in Base Medium (BM): 1g/L yeast extract and

1 g/L soytone from Becton Dickinson, 10 mM sodium phosphate, 0.1 mM CaCl2, 2

mM MgCl2, 4mg/L NiSO4 and 50 mg/L MnCl2, pH adjusted to 6.5. For intermediate

interaction strength (medium nutrients concentration) conditions, we used BM sup-

plemented with 5 g/L glucose and 4 g/L urea. For the high interaction strength (high

nutrients concentration) condition, we used BM supplemented with 20 g/L glucose

and 16 g/L urea. All media were filter sterilized using Bottle Top Filtration Units

(VWR). All of the chemicals were purchased from Sigma–Aldrich unless otherwise

stated.

Both monocultures and communities of the bacterial isolates were grown in 96-

deepwell plates (Deepwell plate 96/1000𝜇L; Eppendorf) covered with AeraSeal ad-

hesive sealing films (Excel Scientific). The incubation temperature was 30 °C for all

communities. The deepwell plates were shaken at 1,200 r.p.m. on Titramax shakers

(Heidolph). To minimize evaporation, the plates were incubated inside custom-built

acrylic boxes.
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2.4.2 Pre-cultures, daily dilutions, dispersal, and biomass mea-

surements

Before each experiment, pre-cultures were initiated by thawing the bacteria and in-

oculating individual species into 600 𝜇L of BM. The resulting monocultures were

exposed to 5 daily cycles of growth and (30-fold) dilution into fresh media. At the

beginning of each experiment, aliquots of these monocultures were mixed in equal

volume proportions to form the synthetic communities. During the experiment, the

monocultures were exposed to further dilution cycles and used to apply the daily

dispersal into the synthetic communities as described below.

We created 63 different synthetic communities using randomly generated subsets

of the library of isolates, each subset constituting the species pool (of size S ) for each

community. After mixing monocultures in equal volumes, each experimental commu-

nity was initiated by inoculating 20 𝜇L of its initial mix of isolates into 600 𝜇L of BM,

repeating the process to generate a total of 3 biological replicates per community. To

form the communities with S ≤ 12, we created random subsets of species from the soil

isolates, and for S > 12 we randomly matched both soil and C. elegans isolates. To

form synthetic communities with 3 ≤ S ≤ 12, we distributed the 24 soil isolates into 8

groups (group A-H), where each group included 3 randomly chosen, different isolates.

We used these groups to form 3-species communities (S = 3). To form eight 6-species

communities (S = 6), we combined the eight pairs of 3-species groups (A-H) in the

following way: (A+B), (C+D), (E+F), (G+H), (A+H), (B+G), (C+F), (D+E). To

form eight 12-species communities (S = 12), we combined the eight pairs of 3-species

groups (A-H) in the following way: (A+B+C+D), (E+F+G+H), (A+H+B+G),

(C+F+D+E), (A+B+E+F), (C+D+G+H), (A+H+C+F), (B+G+D+E).

To form synthetic communities with S = 24, we randomly distributed the 24

soil isolates into 4 groups (group A-D) and the 24 C. elegans isolates into another

4 groups (group E-H), each of these groups including 6 different isolates. To form

eight 24-species communities (𝑆 = 24), we combined the eight pairs of 6-species

groups (A-H) in the following way: (A+B+C+D), (E+F+G+H), (A+H+B+G),
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(C+F+D+E), (A+B+E+F), (C+D+G+H), (A+H+C+F), (B+G+D+E). We used

the whole species pool (24 soil isolates and 24 C. elegans isolates) to form the single

48-species community (S = 48).

The resulting synthetic communities were cultured under serial dilution cycles

with dispersal as follows. To apply a 10−6 dispersal rate, every 24hr monoculture

aliquots of the species in each community pool were mixed at equal volumes, and then

diluted by a 104 factor before inoculating 6 𝜇L of this mix into the wells containing

the corresponding experimental community matching each species pool. After this,

the experimental cultures were thoroughly mixed using a 96-well pipettor (Viaflo 96,

Integra Biosciences; settings: pipette/mix program, 5 mixing cycles, mixing volume

300 𝜇L, speed 6) before applying a 30-fold dilution by transferring 20 𝜇L of the

cultures into a new plate with 600 𝜇L of fresh media.

Experiments were extended to a total of 10 daily cycles. At the end of every daily

cycle, 150 𝜇L samples of each culture were used to measure the OD (600nm), a proxy

for the total biomass in the cultures, using a Varioskan Flash (Thermo Fisher Scien-

tific) plate reader. The remaining culture volume was stored at -80 °C for subsequent

DNA extraction.

We tested the reproducibility of community dynamics under different choices of

carbon sources. We replaced 2% glucose by 2% succinate in the media with high

nutrients concentration, and still observed biomass fluctuations in some communities

(Fig. 2-5). Among the eight different communities, two communities fluctuate in

both glucose and succinate, and four communities reach steady state in both glu-

cose and succinate. There are two communities only that fluctuate in medium with

glucose while reaching a steady state in medium with succinate. The results show

that emergent fluctuations in communities are reproducible with different carbon

sources. Furthermore, we cultured the 12-species communities under high nutrients

concentration and diluted every 48 hours. We found that both 24-hours-transfer and

48-hours-transfer regimes yield analogous biomass dynamics for the eight 12-species

communities. The communities that reach fluctuating (stable) states with 24-hour-

transfers also reach a similar fluctuating (stable) state with 48-hour-transfers (Fig.
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2-5). These results demonstrate that the observed community dynamics are robust

to different choices of dilution time regimes. To classify stable and fluctuating com-

munities under succinate and 48-hours-transfer, we calculated the standard deviation

of biomass over the last four data points (day 7-10 for communities in succinate, and

day 10-16 for communities with 48h transfers). The standard deviation of biomass

over time is shown in Fig. 2-5, where the classification of fluctuating (orange points)

and stable (purple points) communities are based on the K-mean clustering method.

The Std of biomass exhibits a sharp decrease from fluctuating to stable communities,

and the classification remains the same across the three replicate communities under

each condition (Fig. 2-5).

2.4.3 DNA extraction, 16S rRNA sequencing and data anal-

ysis

To monitor the dynamics of the microbial communities, we measured community

composition via 16S ribosomal RNA (rRNA) amplicon sequencing. DNA extrac-

tion was performed with the QIAGEN DNeasy PowerSoil HTP 96 Kit following the

protocol provided by the manufacturer. The obtained DNA was used for 16S (V4 re-

gion) amplicon sequencing. Library preparation and Illumina MiSeq sequencing were

performed by the Environmental Sample Preparation and Sequencing Facility at Ar-

gonne National Laboratory. We used the R package DADA2 to obtain the amplicon

sequence variants (ASVs) as described by Callahan et al.[27]. Taxonomic identities

were assigned to the ASVs by using SILVA (version 132) as a reference database. For

each sample. species richness was calculated as the number of ASVs with a relative

abundance ≥0.1%, which corresponds to the 0.1% extinction threshold used in sim-

ulation (Fig. 2-10, 2-11). The phylogenetic tree (Fig. 2-19) was constructed using

Simple Phylogeny [82] by the EMBL’s European Bioinformatics Institute. Taxonomic

identities were assigned to ASVs using Randomized Axelerated Maximum Likelihood

(RAxML) using default parameters. All plot of relative ASV abundances with stack

bars in this paper show the results of one replicate.
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Each step in the workflow to assess community composition through amplicon

sequencing presents its own biases [100]. This includes taxononomical biases in DNA

extraction, PCR amplification (e.g., differences in 16S gene copy number), sequencing,

and bioinformatics processing. In our study, such biases can significantly compromise

the quantitative accuracy of the reported relative abundance of community mem-

bers, although they are unlikely to significantly compromise our results qualitatively.

In particular, these biases could lead to underestimations in community diversity if

species fall below the extinction threshold as a result. Similarly, quantitative mea-

sures of abundance fluctuations could also be affected. However, these quantitative

changes (e.g., under- or overestimation of specific community member) should be

comparable across samples, making our qualitative results (e.g., transitions between

dynamical modes in a specific order across the phase space) robust to these biases.

In our sequencing dataset, sequencing depth varied from 3579 to 67354 reads,

with an average of 21609 reads. This means that we could not effectively resolve any

species abundance on the order of .01% or below. Our main observables, diversity

and fluctuation fraction, were calculated (Methods) only from species abundances

that exceed a threshold of 0.1% (the extinction threshold). On the one hand, we

were able to detect abundances for all the members of each species pool in all the

data points for Day 0 (Fig. 2-2 and 2-25, 2-26, 2-27). Considering that community

inoculation consisted in mixing monocultures at equal volumes at Day 0, this sug-

gests that species-specific, sequencing-associated errors are relatively modest in our

dataset. On the other hand, our communities are composed of members of a defined

set of 48-species library. We did not detect any reads from any ASV that does not

correspond to a member of the 48-species library, which suggests an absence of sig-

nificant contamination during experimental data acquisition and processing and is

an additional indicator of reliability of the sequencing data for the purposes of this

study.
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2.4.4 Pairwise interactions between microbial species

To measure the strength of pairwise interactions in the experiments, we randomly

chose six isolates—selected from the different genera Leuconostoc, Pseudomonas,

Yersinia, Pantoea, Klebsiella, and Acinetobacter—from the bacterial library. We first

measured the carrying capacity 𝐾𝑖 (i.e., the species abundance at equilibrium in the

absence of any competitor species) of these isolates through exposing them to 7 cycles

of daily dilutions in monoculture, followed by plating and colony counting at the end

of the 7th cycle. We then co-cultured 15 pairs (all possible combinations) of these

isolates over 7 dilution cycles and measured the species abundance at the end point

(via sample dilution and colony counting on agar plates). Together with the measured

carrying capacities, these species abundances were used to assess the strength of inter-

actions via the relationship 𝛼𝑖𝑗 = (𝐾𝑖 −𝑁𝑖)𝐾𝑗/(𝑁𝑗𝐾𝑖) , which can be easily derived

from the gLV model. Table A.1 shows that all pairs of isolates coexist under low

nutrient concentrations (𝛼𝑖𝑗<1 for all the experimentally measured interactions). For

higher nutrient concentrations, we considered 2 initial relative abundance for each pair

of species (initial species ratios 95:5 and 5:95, measured via culture volume), which

allows to identify cases of bistability in which either species can lead its competitor

to extinction. For coexisting pairs, the value of 𝛼𝑖𝑗 was calculated as stated above.

In cases of competitive exclusion (species i always drives species j to extinction), we

inferred that 𝛼𝑖𝑗<1 and 𝛼𝑗𝑖>1. For bistability (the high-abundance species drives

the low-abundance one to extinction), we inferred that 𝛼𝑖𝑗>1 and 𝛼𝑗𝑖>1. Tables S2

and S3 show the measured interaction matrices under medium and high nutrients

concentrations. We found the interaction matrices measured in the experiment are

densely connected matrices (Tables A.1, A.2, A.3), which means that 𝛼𝑖𝑗 ̸=0 for most

(or all) the species interactions. This result is consistent with previously observed

microbial community interaction networks [46] and supports the assumption a dense

interaction matrix in our theoretical model.

Ecological communities, including microbial communities different from the ones

in our experiments, need not to be densely connected. Our model can account for
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this fact through incorporating the average connectance 𝐶 (the fraction of non-zero

interactions in the interaction network) in the stability criteria (16). In this way, the

main effect of network connectance in community dynamics is equivalent to replacing

𝑆 by 𝑆𝐶 on the horizontal axis of the phase diagrams in Fig. 2-1E and 2-1F [122].

Therefore, a finite fraction of zero (or negligibly small) interaction strengths does not

qualitatively change the phases of community dynamics and their relative positions

on the phase diagram.

2.4.5 Numerical methods

We modeled the long-term dynamics and diversity of ecological communities using

the well-known generalized Lotka-Volterra (gLV) model, modified to include dispersal

from a species pool:
𝑑𝑁𝑖

𝑑𝑡
= 𝑟𝑖𝑁𝑖(1−

𝑆∑︁
𝑗=1

𝛼𝑖𝑗𝑁𝑗/𝐾𝑖) +𝐷 (2.4)

where 𝑁𝑖 is the abundance of species 𝑖 (normalized to its carrying capacity), 𝛼𝑖𝑗

is the interaction strength that captures how strongly species 𝑗 inhibits the growth

of species 𝑖 (with self-regulation 𝛼𝑖𝑖 = 1), and 𝐷 is the dispersal rate from an outside

species pool to the focal community. For simplicity and without qualitatively changing

our results, we considered the same growth rate 𝑟𝑖 = 1 and the same carrying capacity

𝐾𝑖= 1 for all species in the main text. Fig. 2-15 shows that sampling growth rates

from a uniform distribution has little effect on the phase diagram of survival fraction

and fluctuation fraction. Fig. 2-15 shows that sampling carrying capacities from a

normal distribution increases the partial coexistence phase while shrinking both the

full coexistence phase and fluctuation phase, but does not affect the order of the

phases. We further tested the theoretical predictions when considering the existence

of positive (facilitative) interspecies interactions (Fig. 2-7) and varying the symmetry

of the interaction matrix (Fig. 2-6). We also considered different dispersal rates (Fig.

2-16), and the effects of incorporating daily dilutions (Fig. 2-7) in these in silico

communities. These additional results show that our qualitative phase diagrams

and conclusions are robust to different choices of ecological network structure and
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parameters. Although the patterns of ecological diversity and dynamics do not change

as the dispersal rate varies from 𝐷=10−7 to 𝐷=10−6 (Fig. 2-16), we found that

communities with zero dispersal rate exhibit lower fluctuation fraction and survival

faction in the persistent fluctuation phase. Our results show that non-zero dispersal

rates can sustain persistent fluctuations.

All simulations used the Runge-Kutta method on Matlab to numerically solve the

LV equations (with an integration step of 0.05). A definition of 100×100 pixels was

used for each phase diagram, linearly segmenting the parameter space in the ranges

<𝛼𝑖𝑗> ∈ [0, 1.5] and 𝑆 ∈ [1, 100]. In each phase diagram, each pixel shows the

average result for 103 simulations. The total simulation time is 104 to guarantee the

survival fraction and fluctuation fraction have reached steady states as shown in Fig.

2-14.

To test whether the total biomass fluctuation is consistent with species abundance

fluctuation in our simulations, we simulated the time series of community biomass

under various conditions (Fig. 2-12). To quantify the dynamics of biomass in the sim-

ulation, we calculated the sum of species abundance (
∑︀

𝑖𝑁𝑖 (t)). Our results demon-

strate the fluctuation in species abundance is in agreement with fluctuation in total

biomass. The similar fluctuations between replicates in some experiments (e.g., Fig.

2-2, medium nutrients, 𝑆=48) could be explained by the slow divergence that chaotic

trajectories can exhibit during moderately long-time windows, or, alternatively, by

possible limit cycle oscillations (Fig. 2-12). We focused on chaotic fluctuations when

discussing the model predictions because previous theory shows that all persistent

fluctuations will be chaotic as number of species in the pool 𝑆 grows [24], though

limit cycle oscillations only happen under finite 𝑆.

We define the steady state of simulated communities as the community state in

which neither the survival fraction nor the fluctuation fraction significantly changes

as time goes on. In order to consistently analyze the steady state results for all the

simulated communities, we analyzed the dependence of the phase diagrams on the

simulated time. Fig. 2-14 shows that neither the survival fraction nor the fluctuation

fraction significantly changes after 𝑡=5×103. Accordingly, the phase diagrams in the
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paper show the state of communities at 𝑡=104, unless otherwise stated.

The presence of dispersal from the species pool in Eq. (1) guarantees that all

species exhibit strictly positive abundances in Fig 1B and C. Nevertheless, we con-

sider that a species is extinct if its abundance lays below a 10−3 threshold. Around

this threshold, the dispersal rate becomes the main factor preventing abundance de-

cay (Fig. 2-10). The species abundance distribution in the partial coexistence phase

is bimodal (Fig. 2-11); the extinction threshold 0.001 clearly separates the high-

abundance surviving species from low-abundance species that will go extinct if dis-

persal ceases (Fig.2-10).

To differentiate between stable and fluctuating communities, we computed the

average coefficient of variation of 𝑁𝑖 between 𝑡=5×103 and 𝑡=104. We define commu-

nities with this average coefficient of variation higher (lower) than 10−3 as fluctuating

(stable) communities (Fig. 2-10).

To compute the survival fraction, we computed the fraction of species whose abun-

dance exceeded the extinction threshold at any time during the last 100 units of time

in the simulation. Our choice of including a time window when measuring diversity is

motivated by the fact that, for the case of unstable communities, species abundances

fluctuate above and below the extinction threshold over time. Since we measured

diversity and species compositions every 24 hours in the experiment, we consider an

analogous window of 100 time units in simulations.

2.4.6 Analytical curves for boundaries between phases, and

sharpness of the transitions

Starting with the pioneering work by Robert May [84], ecologists have sought to pre-

dict community behaviors using coarse-grained parameters including the number of

species and the first two moments of the distribution of interaction strengths between

species. The analytical boundary between the stable phase (II) and the fluctuat-

ing phase (III) was derived in Bunin 2017 [24]. For equal carrying capacities, it is

shown that the boundary lies at the average standing species richness 𝑆*=𝑆/2, when
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𝜎≡
√
𝑆 std(𝛼𝑖𝑗)/(1-〈𝛼𝑖𝑗〉)=

√
2. There and in [21] it is also shown that the loss of

stability of the equilibrium coincides with real parts of some community matrix (-𝛼𝑖𝑗)

eigenvalues becoming positive. For any distribution of interaction strengths (uniform,

exponential, etc.), std(𝛼𝑖𝑗) and 〈𝛼𝑖𝑗〉 can be calculated, and this criterion applied. The

boundary between the fully-coexisting (I) and stable (II) phases is given by taking

the prediction for the average standing species richness 𝑆* given in [24], and setting

𝑆*=𝑆-1, namely the parameters when one species has gone extinct. This is not ex-

pected to be exact at large 𝑆, since the prediction in [24] is exact in conditions where

𝑆*/𝑆 is finite at large 𝑆, while here the boundary is at 𝑆*/𝑆=1-1/𝑆 which approaches

1 at large 𝑆. Nonetheless, it gives good results in the range of pool diversities shown

in Fig. 2-1. Other techniques for analyzing the transition are also possible [6].

Sharpness of transitions – The term “phase transition” in physics implies that the

transition is sharp in systems with many degrees of freedom. The transition between

phases (II) and (III) is known to be sharp [24, 93]: at high S, communities that

lie above the phase boundary (e.g., 𝜎>
√
2 with all species exhibiting equal carrying

capacities) always (with probability one) exhibit persistent fluctuations, while com-

munities below the phase boundary (e.g., when 𝜎<
√
2 for equal carrying capacities)

reach a stable equilibrium .

The transition between phases (I) and (II) is also sharp when 𝑆 is large, in the

following sense. Fig. S30 shows the probability of full coexistence as a function of

〈𝛼𝑖𝑗〉, for different values of 𝑆. The x-axis is normalized by 〈𝛼𝑖𝑗〉 where the analytical

boundary is expected. This makes all curves decrease to zero in the same region,

but the width of the crossover regime becomes narrower with increasing 𝑆. In other

words, the width of the crossover region between the phases is small compared to the

width of phase (I), for large 𝑆.

The fact that all curves decrease to zero at the same region, shows that the

analytical expression indeed captures the correct dependence of the boundary in 〈𝛼𝑖𝑗〉

on 𝑆. The fact that the crossover happens around a value of 2.1 rather than around

1, is due to the inexact theory used, as explained above.

An additional dynamical regime known as a Gardner phase has been theoretically

85



proposed in a model with symmetric interactions [119]. The Gardner phase is a

regime where there are many deep basins of attraction, and within each one there is

a further structure of many close to marginally-stable basins. Altieri et al. discussed

what happens when the full symmetry of the interactions is broken, which seems to

be the experimentally relevant situation (Table. A.1, A.2, A.3). In that case, the

authors remark that the internal marginally-stable structure is sensitive, and easily

washed out by the asymmetry. Although the deep basins might still survive when the

interactions are asymmetrical, the existence of these deep basins seems to require a

pool size S that is larger than we have, with multiple stable states only found for 𝑆

> 100. Indeed, the simulations in the paper [119] were done for 𝑆=500, 2000. This

is an interesting direction for future research, but likely not relevant to our present

setting, where 𝑆 < 50.

2.4.7 Analysis of experimental data

To differentiate between stable and fluctuating communities in experiments, we com-

puted the average coefficient of variation (CV) for species abundances from day 7

to day 10. This corresponds to the average value of the standard deviation for the

absolute abundance of each species 𝑁𝑖 (over day 7, day 8, day 9 and day 10) scaled by

average species abundance. Communities for which the average coefficient of variation

in this time range is below (above) a 0.25 threshold are considered stable (fluctuating)

communities (Fig. 2-20A). We also find that the biomass and species compositions

fluctuate asynchronously across replicates of fluctuating communities starting from

the same initial conditions. The significant differences in relative abundances (𝑁*
𝑖 =

𝑁𝑖/
∑︀
𝑁𝑖) across replicates is an additional indicator of community fluctuations. Fig.

S13B shows that the two clusters identifying different community dynamics occur

independently of whether differences in absolute abundance or relative abundance

are used to assess the (temporal) coefficient of variation. Among the two methods,

calculating the temporal variability via relative abundances yields a larger variability

across samples, which leads to quantitative, but not qualitative, differences in the

results. The cluster of communities’ dynamics is consistent between the metric by
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average coefficient of variation and by final relative composition difference across repli-

cates, as shown in Fig. 2-20B. To further show the variability of relative abundances

over time, we’ve calculated the variability of relative abundances over time and dis-

cussed the results in Fig. 2-20. The results show that fluctuating communities exhibit

larger variability of relative abundances between replicates and over time, which is

consistent with the results considering absolute species abundance (Fig. S15B). The

average coefficient of variation (Fig. 2-20, 2-21) for species abundances was calculated

based on only replicate for which we sequenced the whole time series, and the aver-

age difference in relative species abundances community across the three replicates

for each community (Fig. 2-20, 2-21) was calculated based on relative abundances at

day10.

We tested whether the classification of community dynamics as stable or fluctuat-

ing is robust to the choice of time window (day 7 to day 10) for calculating the average

CV of species abundances. To do so, we calculated the average CV at different time

points of the species abundance time series, with a fixed-length time window (4 days).

We moved the first day of the time window from day 0 to day 7 and calculated the

corresponding average CV of communities in each case. Fig. 2-21 shows that the av-

erage CV for both fluctuating and stable communities reaches steady state before the

last time window (from day7 to day10). We chose the 12-species communities under

high nutrients concentration for this analysis because they exhibit equal numbers of

stable and fluctuating communities (n=4 for both stable and fluctuating communi-

ties). These results show that the average CV calculated in the last time window

(from day7 to day10) converges rapidly to either small or large values, respectively

indicating stability or long-lasting fluctuations in experimental communities.

To demonstrate that our classification of stable and fluctuating communities is

robust to other classification methods, we applied a K-means clustering algorithm

considering both average coefficient of variation (<Std of 𝑁𝑖(𝑡))>/<Mean of 𝑁𝑖(𝑡)>),

where 𝑡 runs from day7 to day10 to calculate the Std and Mean of 𝑁𝑖(t) for the repli-

cate with the 16S-sequenced time series; the brackets average across all species in

the community) and relative differences in species abundances across replicates (Eu-
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clidean distance of 𝑁𝑖 over the 3 replicates at day 10) to classify the dynamics of

our communities. Fig. 2-21 shows the results of this classification method, which are

almost identical to those obtained through the stability criteria based on a CV thresh-

old (Fig. 2-20). There is only one community which is differently classified by each

method (open circle in purple in Fig. 2-21). Classifying this individual community

as either stable or fluctuating does not change the three phases in the experimental

phase diagram and the order of phase transitions (losing species before losing stabil-

ity). Therefore, our conclusions are robust to different choices of stability criteria.

Since the K-means clustering algorithm does not require set any threshold of CV,

the consistence between results of K-means clustering and setting stability threshold

of CV (0.25) demonstrates the classification of fluctuating and stable communities is

robust to different algorithm

Although none of our conclusions on dynamical phases and transitions depends on

the classification of the only community that is differently classified by each stability

criteria (purple open circle in Fig. 2-21), we further analyzed both the biomass and

sequencing data for the three replicates of this community. Fig. 2-30 shows that this

specific community (𝑆=12, Community 5) exhibits moderate differences in species

abundances at day 10 across the three replicates. The replicate community for which

we sequenced the time series also moderate fluctuations in both species’ abundances

(Fig. 2-27, 𝑆=12, Community 5) and biomass (Fig. 2-24, blue curves, S=12, replicate

1). This places this community at the boundary of fluctuation and stability regardless

of the classification method (Fig. 2-20 and 2-21). Given that the biomass time series

of the other two replicates of this community (Fig. 2-24, blue curves, 𝑆=12, replicates

2 and 3) exhibit relatively larger fluctuations in biomass than replicate 1, we classified

this community as a fluctuating one (in agreement with the CV threshold criteria) in

the main text.

To statistically test differences in species survival fractions between fluctuating

communities and stable communities in Fig. 2-4B, we first calculated the difference

of survival fraction between each community (purple or orange points in Fig. 2-4B)

and the corresponding average survival fraction (blue points in Fig. 2-4B) for each
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species pool size (𝑆). We then performed an analysis of variance (ANOVA) test on

the distance to the mean survival fraction for all the fluctuating communities against

all the stable communities. This proved the statistical significance on the differences

between the two groups, with the probability of observing these differences in a null

model being very small (p < 0.01).

The error bars in the main text figures represent the standard error of the mean

(s.e.m.). For the s.e.m. of survival fractions (Fig. 2-3A and Fig. 2-4B), we firstly

calculated the mean survival fraction over each community’s three replicates, and we

then calculated the average and s.e.m. of these mean survival fractions across all n

communities with the same pool size and nutrient conditions (n=30 when 𝑆=2; n=8

when 𝑆=3, 6, 12, 24). For the s.e.m. of fluctuation fractions (Fig. 2-3B), we could

only use one replicate per community for which 16s rDNA sequencing was performed

over the entire time series. Outcomes for each community were coded as Boolean

values (1 for fluctuating communities, 0 for stable communities). We could then

calculate the s.e.m. of this binomial distribution (n=30 when 𝑆=2; n=8 when 𝑆=3,

6, 12, 24). The definition of fluctuating and stable communities is given in Fig. 2-20.

2.5 Conclusion

The fact that two coarse-grained parameters can independently shape the phase space

for community diversity and dynamics argues for caution when interpreting observed

links between biodiversity and stability. On the one hand, for any given value of

the interaction strength, stability negatively correlates with both size of species pool

and realized diversity (number of surviving species): communities with more species

are less stable (Fig 2-1F, 2-3D, 2-4A and 2-4B). On the other hand, for identical

species pool sizes, stability positively correlates with diversity: weakly interacting

communities exhibit relatively high stability and high realized diversity, while strongly

interacting communities are relatively less stable and less diverse (Fig. 2-1E and

2-3C). We believe that the interplay between the two parameters that shape the

phase diagram could underlie some of the seemingly contradictory results from field
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experiments [60] addressing the diversity-stability relationship.

Our findings are consistent with two major ideas in theoretical ecology: May’s

suggestion that complexity leads to instability [84], and Chesson’s argument that

temporal fluctuations can help maintain diversity [30]. The question of whether com-

plex dynamics are inherent to the ecological community—arising from species inter-

actions—or driven by environmental factors has received considerable attention, yet

seldom undergone a direct experimental test in many-species communities. Under

laboratory conditions that minimize environmental stochasticity, and in agreement

with recent theory [24, 63, 14], we found that community-level parameters represent-

ing species diversity and interactions are sufficient to predict the dynamical behaviors

of complex ecological communities. These predictions are theoretically robust to vary-

ing biological assumptions (e.g., intraspecific diversity and inter-species interaction

mechanisms, including resource-explicit models [35]. Therefore, the emergent phases

of biodiversity and dynamics that we observed here may occur in a wide range of eco-

logical communities. Future work should study whether these phases generalize across

spatiotemporal scales, environmental conditions, and organism types to understand

their prevalence and importance in shaping major ecological patterns [94, 145].

2.6 Supporting Information
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Figure 2-10: High diversity and persistent fluctuations allow and require each other,
and are both sustained by dispersal. (A)-(D) Representative time series for commu-
nities in which the dispersal rate is suddenly interrupted. At t=103 (vertical dashed
line), the dispersal rate changes from 𝐷=10−6 to 𝐷=0.0 for the rest of the sim-
ulation. (A) Before 𝑡=103, a community in phase I reaches a stable state with full
coexistence. The dynamics after t=103 shows that interrupting dispersal does not sig-
nificantly modify the abundances of the species. (B)-(C) Before 𝑡=103, communities
in phase II reach an equilibrium in which species coexist at stable abundances, with
some species laying below the extinction threshold. After stopping dispersal, only the
species that are above the extinction threshold survive at stable abundances, and the
rest undergo extinction. (D) A community in phase III exhibits persistent fluctua-
tions while exposed to dispersal. After dispersal is interrupted, extinctions occur as
species fall below the extinction threshold due to abundance fluctuations. After some
time (approximately 𝑡=104) species extinctions have significantly reduced diversity
in the community, and the surviving species reach a stable equilibrium. For the indi-
cated parameter values, and over 103 simulations, 90% of the simulated communities
reached equilibrium after interrupting dispersal. (E-F) Representative time series for
communities in which the most abundant species at 𝑡=103 is pinned (its abundance
is artificially kept constant) for the rest of the simulation. (E) For communities that
have reached stability, in this case in phase II, pinning the most abundant species has
no effect on community dynamics. (F) In phase III, after a fast transient following
the species pinning at 𝑡=103 (vertical dashed line), the community reaches a stable
partial coexistence where some of the species lay below the extinction threshold. Out
of 103 simulations, 93% of the communities reached equilibrium after pinning the
most abundant species.
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Figure 2-11: At steady state, species abundances exhibit a bimodal distribution in
the partial coexistence phase. The extinction threshold 0.001 (vertical dashed line)
clearly separates the high-abundance, surviving species from the low-abundant “ex-
tinct” species. Such “extinct” species would reach zero abundance if dispersal is
interrupted (Fig. 2-10). The histogram shows the number of species exhibiting the
indicated abundances at steady state. The corresponding dataset was generated from
10 in silico communities randomly sampled from the stable partial coexistence phase
(𝑆=50, <𝛼𝑖𝑗>=0.2).
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Figure 2-12: Biomass fluctuations (stability) are consistent with fluctuations (stabil-
ity) of species abundances in simulations. (A)-(B) As increasing the size of species
pool in communities with strong interaction strength (<𝛼𝑖𝑗>=1.0), the species abun-
dances and total biomass (

∑︀
𝑖𝑁𝑖(t)) of communities consistently lose stability and

exhibit persistent fluctuations. The species abundances and biomass of communities
can also exhibit limit cycle oscillations (right panels) in addition to chaotic fluctua-
tions (middle panels), in the persistent fluctuation phase. The biomass trajectories
in (B) show the last 2000 time units in (A) as indicated by the vertical dashed lines.
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Figure 2-13: Unstable communities have (one or more) eigenvalues of the community
matrix (-𝛼𝑖𝑗) with positive real parts. From left to right, the panels show the eigen-
values of representative community matrices for three different values of the average
interaction strength. Within each panel, different colors correspond to the eigenvalues
of 4 different community matrices. All the eigenvalues lie within a circle with radius
R centered at d [84, 122]. For communities in phase III, where persistent fluctuations
occur, some of the community matrix eigenvalues exhibit a positive real part. It was
shown that the loss of stability of the equilibrium coincides with real parts of some
community matrix (-𝛼𝑖𝑗) eigenvalues becoming positive, although it is not the Jaco-
bian matrix [21]: the circular distribution of eigenvalues for interaction matrix 𝛼𝑖𝑗 is
replaced by a “guitar-shaped” distribution for Jacobian matrix [119]. Although the
shape of eigenvalues distributions is different between interaction matrix and Jaco-
bian matrix, the stability criterion and the signs of eigenvalues are the same for both
matrices [6, 119].
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Figure 2-14: After an initial transient, the survival fraction and the fluctuation frac-
tion of simulated communities reach stable values. From left to right, the panels
show phase diagrams of survival fraction (A) and fluctuation fraction (B) for commu-
nities at three different simulation times. At 𝑡=250 (left), communities have not yet
reached steady state, as the phase diagrams quantitatively change as time goes on.
The middle panels (𝑡=5×103) are quantitatively different from the earlier-time phase
diagrams (𝑡=250 on the left), but do not significantly differ from phase diagrams
computed at later times (𝑡=104 on the right). This shows that these two commu-
nity properties have reached a steady state before 𝑡=104. (C) Difference between
the survival fractions (left) and the fluctuation fractions (right) computed at 𝑡=250
and 𝑡=5×103. (D) Difference between the survival fractions (left) and the fluctuation
fractions (right) computed at 𝑡=5×103 and 𝑡=104. The dashed line and solid line in
the figures represent the survival boundary and stability boundary, respectively.
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Figure 2-15: The three dynamical phases are robust to modeling choices. (A) Panels
on the left (Control) show the numerical (color map) and analytical (curves) phase
diagrams as in Fig. 2-1E and F. From left to right, the additional phase diagrams
show the effects of lowering the dispersal rate to 𝐷=10−7, sampling species growth
rates from a uniform distribution, sampling interaction strengths from an exponential
distribution, and sampling the carrying capacities from a Gaussian distribution. All
non-specified parameter values are identical to the control case (Fig. 2-1E and F).
(B) Phase diagrams analogous to those in (A), but for a higher average interaction
strength <𝛼𝑖𝑗>= 1.5. Overall, these phase diagrams show that the three dynamical
phases are qualitatively robust to different modeling choices [24].
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Figure 2-16: Dispersal sustains persistent fluctuations and promotes diversity. The
panels show the theoretical phase diagrams of species survival fraction and commu-
nity fluctuation fraction under different dispersal rates (𝐷=0, 𝐷=10−7, 𝐷=10−6).
Communities under no dispersal (𝐷=0, left panels) exhibit lower survival faction (A)
and lower fluctuation fraction (B) in the persistent fluctuation phase. The patterns
of ecological diversity and dynamics do not significantly change as the dispersal rate
varies from 𝐷=10−7 (middle panels) to 𝐷=10−6 (right panels). The dashed line and
solid line in the figures represent survival boundary and stability boundary, respec-
tively.
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Figure 2-17: Best-fit Lotka-Volterra model. We show the heatmaps of survival frac-
tion (top) and fraction of fluctuating communities (bottom) for data, best-fit simu-
lations, and the difference between the two (left to right). The best-fit simulations
are obtained from a Lotka-Volterra with normally-distributed interactions with the
following parameters: High nutrient treatment (HN): <𝛼𝑖𝑗>=0.87, std (𝛼𝑖𝑗)=0.22.
Medium nutrient treatment (MN): <𝛼𝑖𝑗>=0.66, std (𝛼𝑖𝑗)=0.41. Low nutrient treat-
ment (LN): <𝛼𝑖𝑗>=0.14, std (𝛼𝑖𝑗)=0.17.

99



Figure 2-18: Taxonomic identity of the 48 bacterial isolates. The identities have
been inferred from the ASV (Methods) of 16S samples taken from monocultures,
which allow the classification of the 48 isolates down to the genus level. Colors are
consistent with those in the main text and other supplementary figures.
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Figure 2-19: Phylogenetic tree of the 48 bacterial isolates. The tree, generated with
the Distance-matrix method from EMBL-EBL [82], shows the relative phylogenetic
distance between the 48 bacterial isolates. The library contains bacterial isolates from
either soil or C. elegans gut samples and spans 19 different orders and 26 different
families. The rectangles display the color that is used in the figures (both in the Main
Text and the SI) to show the abundance of each species in the different experiments.
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Figure 2-20: 3 different metrics consistently differentiate stable from fluctuating com-
munities. (A) The three panels show the average coefficient of (temporal) variation
(see Methods) for absolute species abundances (𝑁𝑖, computed as the product of to-
tal biomass per species relative abundance) in the experimental communities in the
three different nutrients concentrations. We use a stability threshold of 0.25 (dashed
line) to classify communities into stable (purple) and fluctuating (orange) ones. The
number of fluctuating communities increases with the average interaction strength
(nutrients concentration), with all the weakly interacting (low nutrients concentra-
tion) communities exhibiting stability. (B) Average difference (Euclidean distance) in
the relative abundance of each species (𝑁*

𝑖 = 𝑁𝑖/
∑︀

𝑖𝑁𝑖) across replicate communities
as a function of the community’s average coefficient of (temporal) variation. Stable
and fluctuating communities, defined as in (A), span in different regions, with stable
communities clustering near the origin. (C) Average difference (Euclidean distance)
in the relative abundance of each species (𝑁*

𝑖 = 𝑁𝑖/
∑︀

𝑖𝑁𝑖) across replicate communi-
ties as a function of the community’s average coefficient of (temporal) variation in
relative abundance (𝑁*

𝑖 ). Stable and fluctuating communities, defined as in (A), span
in different regions, with stable communities clustering near the origin. The average
coefficient of variation (Fig. 2-20, 2-21) for species abundances was calculated based
on only replicate for which we sequenced the whole time series, and the average dif-
ference in relative species abundances community across the three replicates for each
community (Fig. 2-20, 2-21) was calculated based on relative abundances at day10.
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Figure 2-21: The classification of fluctuating communities and stable communities is
robust to choices of classification algorithm. (A) The average coefficient of variation
for species abundances reaches a steady state before day 7, enabling the classification
of communities into stable and fluctuating ones. For 12-species communities under
high nutrient concentrations, the average CV of both fluctuating communities (orange
line, n=4) and stable communities (purple line, n=4) reaches a plateau (a constant
value) before day7. The two different plateaus of average CV demonstrate that the
dynamics of communities (persistent fluctuations or stability) have reached steady
states before the time window (from day7 to day10) that we use to calculate the
average CV in Fig. 2-20. Error bars, s.e.m. (B) using a K-means clustering algorithm
considering both average CV and differences between species relative abundances
across replicates confirms that the classification of fluctuating and stable communities
is consistent with the CV threshold (0.25) criteria in Fig. 2-20. There is only one
community (empty circle) that is differently classified by the K-means method. The
classification of this single community as either stable or fluctuating changes neither
the three phases in the experimental phase diagram nor the order of phase transitions
(lose species before losing stability).
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Figure 2-22: Total biomass reaches equilibrium in communities under low nutrients
concentration (low interaction strength). Each panel shows the time series for the OD
(600nm) of the eight communities with different species pool composition (depicted
by different colors). Each column stands for a different species pool size 𝑆 (for the
case of 𝑆=48, there is only one community containing the full library of bacterial
species). Each row shows the data for a different replicate of the experiment.
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Figure 2-23: Increasing the species pool size leads to persistent fluctuations in total
biomass under medium nutrients concentration (medium interaction strength). Each
panel shows the time series for the OD (600nm) of the eight communities with different
species pool composition (depicted by different colors). Each column stands for a
different species pool size 𝑆 (for the case of 𝑆=48, there is only one community
containing the full library of bacterial species). Each row shows the data for a different
replicate of the experiment. Solid lines (dashed lines) represent fluctuating (stable)
communities, the OD fluctuations between day 7 and day 10 were considered to
differentiate fluctuating and stable communities as shown in Fig. 2-20.
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Figure 2-24: Increasing the species pool size leads to persistent fluctuations in total
biomass under high nutrients concentration (high interaction strength). Each panel
shows the time series for the OD (600nm) of the eight communities with different
species pool composition (depicted by different colors). Each column stands for a
different species pool size 𝑆 (for the case of 𝑆=48, there is only one community
containing the full library of bacterial species). Each row shows the data for a different
replicate of the experiment. Solid lines (dashed lines) represent fluctuating (stable)
communities, the OD fluctuations between day 7 and day 10 were considered to
differentiate fluctuating and stable communities as shown in Fig. 2-20.

106



Figure 2-25: Time series for the relative species abundances of the experimental com-
munities with low average interaction strength (low nutrients concentration). Each
panel shows the full time series for each of the 8 communities with the indicated
species pool size (𝑆=3, 6, 12 and 24). Bar colors stand for species identities as in Fig.
2-18, 2-19. Under this nutrients condition, all of the communities reached a stable
equilibrium (Methods). The color of the number on the top of each panel corresponds
to the color assigned to the same community in Fig. 2-22.
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Figure 2-26: Time series for the relative species abundances of the experimental com-
munities with medium average interaction strength (medium nutrients concentration).
Each panel shows the full time series for each of the 8 communities with the indicated
species pool size (𝑆=3, 6, 12 and 24). Bar colors stand for species identities. The
orange dot on top of some panels indicates that the community exhibits persistent
fluctuations (Methods). The color of the number on the top of each panel corresponds
to the color assigned to the same community in Fig. 2-23. For 𝑆= 3, 6, and 12, we
only sequenced samples of the last 4 days (7 to 10) of the experiment.
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Figure 2-27: Time series for the relative species abundances of the experimental
communities with high average interaction strength (high nutrients concentration).
Each panel shows the full time series for each of the 8 communities with the indicated
species pool size (𝑆=3, 6, 12 and 24). Bar colors stand for species identities. The
orange dot on top of some panels indicates that the community exhibits persistent
fluctuations (Methods). The color of the number on the top of each panel corresponds
to the color assigned to the same community in Fig. 2-24.
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Figure 2-28: Species abundance at the end of the experiment under low nutrients con-
centration. Each panel shows the relative species abundances at the end experiment
for each of the 3 replicate communities across 8 different compositions of the species
pool for each species pool size (𝑆=3, 6, 12 and 24). Bar colors stand for species iden-
tities. The orange dot on top of some panels indicates that the community exhibits
persistent fluctuations (Methods). The color of the number on the top of each panel
corresponds to the color assigned to the same community in Fig. 2-22.
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Figure 2-29: Species abundance at the end of the experiment under medium nutrients
concentration. Each panel shows the species relative abundances at the end exper-
iment for each of the 3 replicate communities across 8 different compositions of the
species pool for each species pool size (𝑆=3, 6, 12 and 24). Bar colors stand for
different species identities. The orange dot on top of some panels indicates that the
community exhibits persistent fluctuations (Methods). The color of the number on
the top of each panel corresponds to the color assigned to the same community in
Fig. 2-23.
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Figure 2-30: Species abundance at the end of the experiment under high nutrients
concentration. Each panel shows the species relative abundances at the end exper-
iment for each of the 3 replicate communities across 8 different compositions of the
species pool for each species pool size (𝑆=3, 6, 12 and 24). Bar colors stand for
different species identities. The orange dot on top of some panels indicates that the
community exhibits persistent fluctuations (Methods). The color of number on the
top of each panel corresponds to the color assigned to the same community in Fig.
2-24.
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Figure 2-31: Monocultures and 2-species cocultures tend to reach stability in total
biomass. On top, monocultures tend to reach a stable OD (600nm) value at the end
of each daily cycle. The width of the observed range of OD values increases with
nutrient concentration (low, medium, and high, from left to right). On bottom, time
series for the OD (600nm) of 15 different species pair cocultures. To detect bistability,
in which the outcome depends on initial species abundances, we considered two initial
compositions (5:95 and 95:5 culture volume ratios between species) for each pair of
species. Therefore, there are 30 pairwise cocultures tested. The variability of the
OD reached in pairwise coculture also increases with nutrient concentration, but to a
less extent than it does for monocultures. Different colors stand for different species
identities (top) and different species pairs (bottom).
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Figure 2-32: Fluctuating communities are more diverse than stable communities un-
der the same conditions. As the average survival fraction decreases with increasing
species pool size 𝑆 in high (A), medium (B) and low (C) nutrient concentrations,
more communities exhibit fluctuations in species abundances (orange points). For
any given S and nutrients concentration, fluctuating microbial communities exhibit
statistically higher survival fractions than stable communities (purple points).

114



Figure 2-33: Increasing species pool size can lead to emergent fluctuations in species
abundances. The panels show representative examples in which a pair of different
communities reach stability, while a community with larger species pool, composed
by all the species present in that pair, exhibits persistent fluctuations. Each rectangle
encloses a different example involving a specific set of communities and experimental
condition (nutrients concentration). The top right rectangle shows data for the last 4
days of the experiment (the only days in which these communities were sampled for
sequencing), and the rest show the full time series for the 10-day experiment.
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Figure 2-34: The probability of full coexistence as a function of the mean interaction
strength 〈𝛼𝑖𝑗〉 exhibits a sharp phase transition between phases (I) and (II) when
𝑆 is large in simulations. The x-axis is normalized by 〈𝛼𝑖𝑗〉 where the analytical
survival boundary is expected. While all curves decrease to zero in the same region,
the width of the crossover regime becomes narrower with increasing 𝑆. The fact that
all curves decrease to zero at the same region, shows that the analytical expression
indeed captures the correct dependence of the boundary in 〈𝛼𝑖𝑗〉 on 𝑆.
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Figure 2-35: Simulated and experimental communities exhibit analogous dynamics
of relative species abundances. (A) Time series of relative species abundances in a
representative simulation for 𝑆=48, under low nutrients (low interaction strength,
left panel), medium nutrients (medium interaction strength, middle panel), and high
nutrients (high interaction strength, right panel) concentrations. We used species
abundance data sampled every 24 hours of simulated time in order to match the ex-
perimental data sampling frequency. (B) Experimental time series obtained through
16S data in analogous conditions to the panels in (A). Some low abundance species
(abundances below the 10−3 survival threshold, shown as horizontal dashed lines)
exhibit fluctuation in the low nutrient concentration experiment, which can be ex-
plained by small numbers effect such as finite 16s sequencing depth.
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Chapter 3

Collective dynamical regimes predict

invasion success and impacts in

microbial communities

3.1 Abstract

Invasions of microbial communities by species such as pathogens can have significant

impacts on ecosystem services and human health. Yet, invasion outcomes are often

challenging to predict: many competing explanations relate them to traits of the

invading population, or to properties of the resident ecological community, such as

its composition or biodiversity. By experimentally assembling microbial communities

from diverse species pools, and subjecting them to invasions from species outside

the pool, we first observed that a key property shaping invasion outcomes was the

nature of the dynamics in the resident community. Recent findings suggest that

several qualitatively distinct dynamical regimes can emerge at the community level,

depending on a few parameters such as species pool size and interaction strength.

Varying these parameters across experiments and in models, we were indeed able to

map both resident dynamics and invasion outcomes, and analyze the influence of the

former on the latter. We found that species interactions can lead to spontaneous
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abundance fluctuations, associated with higher diversity and more invasions. Strong

interactions can also induce alternate stable states; we observe stable communities

with priority effects and low invasion probability but high impacts. These findings

clarify the debated relationship between biodiversity and invasibility: the fraction of

resident species surviving from the original pool, modulated by the dynamical regime,

emerges here as the best predictor of further invasions. Our microcosm experiments

suggest that the success and impacts of ecological invasions may be emergent proper-

ties of collective interactions and dynamics, predictable from simple community-level

features.

3.2 Introduction

Ecological invasion, characterized by the spread of non-native species into novel envi-

ronments, has significant consequences for biodiversity, ecosystem function, and habi-

tat resilience [116]. Over decades, scientists have sought to unravel the myriad factors

influencing why some species invade successfully while others do not. Ecologists have

posited a range of determinants, from the fitness and adaptability of the invaders

to the resilience and composition of native communities [104, 109, 10]. In particu-

lar, traits of the invading species have been identified as critical in shaping invasion

outcomes[143]. Concepts like the Allee effects and the propagule pressure hypothe-

sis emphasize that introducing larger initial populations of invaders can increase the

likelihood of establishment and spread [41, 3]. Meanwhile, the enemy release hypoth-

esis suggests that invasive species often succeed in new environments because they

lack predators, herbivores, or pathogens[32]. Other research like biotic resistance hy-

pothesis studied how the properties of resident communities determine the invasion

outcome, which suggests that communities with high native biodiversity are more re-

sistant to invasion than less diverse communities, due to more efficient resource use or

presence of species that can compete directly with the invaders[62, 28, 112]. Beyond

the characteristics of invader species and resident communities, environmental con-

ditions have been shown to play a crucial role in shaping the invasion outcome[116].
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Theories such as the storage effect and the fluctuating resource availability hypothesis

posit that environmental disturbances and fluctuations might favor invader species in

specific periods[76, 139, 73].

Invasions in microbial communities are also significant ecological phenomenon

that occurs in various environments, ranging from soil and aquatic ecosystems to

the human body[34, 121, 83, 49, 77, 33, 71]. These invasions can have profound im-

pacts on ecosystem services and human health [34, 121, 49, 77]. Pathogenic microbes

can invade host-associated microbial communities, leading to infections and diseases

[49, 108, 54]. For example, the invasion of pathogenic microbes C. difficile into the

gut microbiota can lead to severe diseases including diarrhea and colitis [108, 120].

Understanding the mechanisms underlying invasion success and the ecological conse-

quences can help inform strategies for disease prevention, as well as the development

of targeted therapies to control invasive pathogens[120, 37]. Similar to larger-scale

ecological systems, it has been suggested that microbial communities with higher

diversity are less likely to be invaded because diverse resident species may occupy

all available niches and resources, leaving less room for invaders [83, 55, 134, 137].

Furthermore, it was shown that facilitative and competitive interactions between mi-

crobes can favor and prevent successful invasions, respectively [55, 69, 81, 2]. Parallel

to observations in macro-organisms, external disruptions such as antibiotic interven-

tions or nutrient level shifts can heighten the vulnerability of microbial communities

to invasions by creating more available niches and resources [34, 61, 79, 64].

While research in microbial community invasions has made significant strides, it

remains unclear what characteristics of resident communities determine their invasion

resistance, and how entire microbial communities respond to invasion [121, 83, 65, 89].

Building upon the groundbreaking work of Robert May, ecologists have endeav-

ored to understand community dynamics by utilizing community-level parameters

[28, 5, ?, 56, 24, 14, 95]. In this paper, we used a combination of experiments and

modeling to show that simple community-level features, including stability, species

pool size and interaction strength, can predict the invasibility and invasion effect of

communities. Contrary to the prevalent belief that increased community diversity
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results in reduced invasion probability due to fewer available niches [83, 55, 134, 137],

our findings suggest that more diverse communities, given the same initial species pool

size and nutrient conditions are actually more likely to be invaded due to dynamical

fluctuation. Consistent with the ongoing diversity-invasibility debate [74, 118, 146],

we also found that diversity-invasibility relationships are qualitatively different de-

pending upon how the diversity is changed. To resolve the diversity-invasibility debate

and unify their relationship, we normalized diversity with species pool size and get

survival fraction, which displayed a universal positive correspondence with invasibility

across all conditions. While existing research suggests that the sequence and timing

of species introduction can influence invasion success [28, 38, 117], the underlying

reasons why certain communities exhibit a pronounced priority effect, while others

do not, remain underexplored [38, 117]. Our findings indicate that priority effect

only emerges in communities with strong interspecies interactions and large species

pool size, where the presence of alternative stable states could potentially inhibit

the proliferation of invaders at low abundance [28, 56, 8]. Additionally, the ecologi-

cal consequences of invasive species on resident community structure and ecosystem

functioning are not yet fully understood [8, 97]. We provide evidence that invasions,

when successful, have a more pronounced effect on resident community structure and

biomass in contexts with strong interspecies interactions compared to weaker ones.

Our results demonstrate that both invasibility and invasion effect are emergent prop-

erties shaped by the interactions of resident species, which can be predicted by simple

community-level features.
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3.3 Results and Discussion

3.3.1 Experiments show that the invasion probability in fluc-

tuating communities is higher than stable ones, leading

to a positive diversity-invasibility relationship

To experimentally characterize invasions in microbial communities, we built 17 differ-

ent synthetic communities of size 𝑆 = 20 using a library of 80 bacterial isolates from

river and terrestrial environments (Fig. 3-1A and Fig. 3-6). We exposed each com-

munity to daily cycles of growth and dilution into fresh media, with dispersal from

the species pool (𝑆 = 20) to mimic species dispersal in natural habitats (Fig. 3-1A).

After six days of culturing, each community was exposed to an invader species (Fig.

3-1B) and we continued to culture the communities for another 6 days with dispersal

of all species on each dilution cycle (Fig. 3-1A, B). For each resident community, we

performed about 9 independent invasion tests with different invader species on day 6,

and monitored the growth of the invader and resident species (Fig. 3-1B). Analyzing

species abundances through 16S sequencing, we found that 7% +/- 2% of invasion

tests were successful (relative invader abundance exceed extinction threshold 810-4

on the last day 12) (Fig. 3-1C and Fig. 3-7). Although diverse ecosystems are typ-

ically thought to be more resistant to invaders(17, 26–28), our experimental results

display a significant (p=0.036) positive correlation between invasion probability and

community diversity (correlation coefficient=0.51, Fig. 3-1C). Among communities

of low diversity (2 – 5 surviving species) only 3% +/- 2% of invasions were successful,

whereas among communities of high diversity (6 – 9 surviving species) 13% +/- 5% of

invasions were successful. We therefore find that less diverse communities may resist

invasions better than highly diverse ones under the same initial species pool size and

nutrient conditions.

To better understand why the more diverse communities were more invasible, we

next quantified the dynamics of the resident communities before invasion. We found

that just under half (8 / 17) of the resident communities displayed persistent fluctu-
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Figure 3-1: Experiments using synthetic microbial communities show that the inva-
sion probability in fluctuating communities is higher than stable ones, leading to a
positive diversity-invasibility relationship. (A) We generated different synthetic com-
munities with 𝑆=20 species in the pool. Communities underwent serial daily dilutions
with additional dispersal from the pool. We introduced invader species to the resi-
dent communities on day 6. (B) We formed 17 resident communities with different
sets of species (𝑆=20). We added invader species outside the pool into the resident
communities on day 6, and then measured the community compositions and biomass
on day 12 to determine the outcome and effect of the invasions. (C) The invasion
probability of resident communities positively correlate with their richness (correla-
tion coefficient=0.51). (D) 8 out of the 17 resident communities reach fluctuation
in biomass (orange) and the rest 9 communities reach stable states (purple). (E)
Representative time course of relative species abundance via 16S sequencing show
the stable community was not invaded. (F) Representative time course of relative
species abundance shows the invader successfully invade and grow in the fluctuating
community. (G) The invasion probability to fluctuating resident communities is sta-
tistically higher than that to stable communities (p=0.016, the number of invasion
tests is n=61 (60) for fluctuating (stable) communities. Error bars represent s.e.m..
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ations in biomass and species composition, with the remainder reaching stable com-

munity states (Fig. 3-1D-F and Fig. 3-8,3-9,3-10,3-11,3-12,3-13,3-14,3-15,3-16,3-17).

We found that biomass fluctuations were highly correlated with species abundance

fluctuations (Fig. 3-17) and the classification of stable and fluctuating communities

was robust to different methods (Fig. 3-17). Consistent with our previous results, we

found that the diversity of fluctuating communities is approximately twice the diver-

sity in stable communities (Fig. 3-1C) [56]. Given this higher diversity in fluctuating

communities, we next analyzed the invasibility of communities separately for the sta-

ble and fluctuating communities to determine if this could be driving the positive

diversity-invasibility relationship that we observed. Indeed, we detected 8 successful

invasions out of 61 invasion tests to fluctuating communities, while there was only

one single successful invasion out of 60 invasion tests to stable communities (Fig.

3-7). Our results therefore show that the probability to successfully invade fluctuat-

ing communities (13% +/- 4%) is statistically 8 fold larger than the probability of

invading stable communities (1.7% +/- 1.7%) (Fig. 3-1G). Our experimental tests

of invasion demonstrate that more diverse communities are more invasible because

fluctuating communities are both more diverse and more susceptible to invasion.

3.3.2 Lotka-Volterra model predicts a decrease of invasion prob-

ability when stability, interaction strength and species

pool size of resident communities increase

To gain insight into these surprising relationships between diversity, stability, and

invasibility, we next studied invasions in the well-known generalized Lotka-Volterra

(gLV) model, modified to include dispersal from a species pool:

𝑑𝑁𝑖

𝑑𝑡
= 𝑁𝑖(1−

𝑆∑︁
𝑗=1

𝛼𝑖𝑗𝑁𝑗) +𝐷 (3.1)

where 𝑁𝑖 is the abundance of species 𝑖 (normalized to its carrying capacity), <𝛼𝑖𝑗>

is the interaction strength that captures how strongly species 𝑗 inhibits species 𝑖 (with
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self-regulation 𝛼𝑖𝑖 = 1), and 𝐷 is the dispersal rate. We simulated the dynamics of

communities with different species pool sizes 𝑆 and interaction matrices. We sampled

the interaction strength from a uniform distribution 𝑈 [0, 2<𝛼𝑖𝑗>], where <𝛼𝑖𝑗> is

the mean interaction strength between species. Modeling species interactions as a

random interaction network captures species heterogeneity without assuming any

particular community structure (10, 37–39). We introduced invaders into resident

communities at 𝑡=103 and continued to simulate the dynamics until 𝑡

Our simulations revealed rich dynamics and invasion outcomes under strong inter-

action strength between species (Fig. 3-2A). Some successful invasions cause dramatic

effect on the structures of resident communities, whereas other invasions only yield

weak change in communities (Fig. 3-2A). Consistent with our experimental results

(Fig. 3-1C and G), we found a positive correlation between invasion probability and

richness (Fig. 3-2B), which is because fluctuating communities exhibit larger inva-

sion probability than stable communities under the same conditions (Fig. 3-2C). Our

simulation results with the Lotka-Volterra model also predict that the invasion prob-

ability decreases when interaction strength <𝛼𝑖𝑗> and the species pool size S increase

(Fig. 3-2D-F). It is important to note that although fluctuating communities exhibit

smaller invasion resistance than stable communities under the same conditions, sta-

ble communities can still yield smaller invasion resistance under weaker interaction

strength <𝛼𝑖𝑗> or smaller species pool size 𝑆 (Fig. 3-2D-F). The Lotka-Volterra

model therefore explains why our diverse and fluctuating communities are suscepti-

ble to species invasion and makes new predictions regarding how invasibility would

change with the size of the species pool and the strength of interspecies interactions

(Fig. 3-2D-F).
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Figure 3-2: Lotka-Volterra model predicts a decrease of invasion probability when
stability, interaction strength and species pool size of resident communities increase.
(A) Representative time series of species abundance in simulation show diverse inva-
sion dynamics and outcome: invader species failed to grow in the community (top left
panel, the black curve represents invader); invader grow and only cause small effect
on community composition (top right panel); invader successfully invade and cause
large change on community composition (bottom left panel); invasion to a fluctuating
resident community (bottom right panel) (<𝛼𝑖𝑗>=0.6, 𝑆=32). (B) Consistent with
experiments (Fig 3-1C), the invasion probability of simulated resident communities
positively correlate with their richness, which arises because fluctuating communities
are more diverse and more invasible. (C) The invasion probability to fluctuating resi-
dent communities is statistically higher than that to stable communities (p < 0.001).
(D) Increasing species pool size leads to a decrease in invasion probability. Fluc-
tuating communities (orange points) exhibit higher invasion probability than stable
communities (purple points). (E) Increasing interaction strength leads to a decrease
in invasion probability. (F) Increasing species pool size and interaction strength leads
to a decrease in invasion probability. The curves and color maps depict the mean
value over 1000 simulations.
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3.3.3 Increasing interaction strength and species pool size leads

to higher invasion resistance of resident communities in

experiment

To experimentally test the predicted dependence of invasion resistance on interac-

tion strength and species pool size, we tuned the inter-species interaction strength

by tuning the concentration of supplemented glucose and urea in the culture medium

[56, 101, 103]. As discussed in our previous work [56, 101, 103], increasing the concen-

tration of supplemented glucose and urea leads to stronger strength of competitive

interactions between bacterial species due to extensive modification of the media

(e.g. pH). We measured the invasion of 9 invader species to 15 synthetic resident

communities under low nutrient (weak interaction) and 25 communities under high

nutrient (strong interaction) conditions. Consistent with our theoretical predictions,

we found that increasing interaction strength leads to an increase of invasion resis-

tance in resident communities (Fig. 3-3A). Specifically, the invasion probability is

7% +/- 2% under high nutrient (strong interaction), which is 8 folds lower than 56%

+/- 8% under low nutrient (weak interaction) (Fig. 3-3A). We also decreased the

species pool size from 𝑆=20 to 𝑆=12 and found that invasion probability increased

from 85% +/- 6% to 56% +/- 8% under low nutrient (Fig. 3-3B), consistent with

our theoretical predictions. Our theory and experiment both indicate that increasing

interaction strength or species pool size leads to a decrease in community invasibility

[28, 83, 55, 134, 137].

To unify different invasibility-richness relationships in the experiments depending

upon how the richness is changed (by varying interaction strength, species pool size,

or stability) (Fig. 3-18), we further analyzed the dependence of invasion probability

on the survival fraction of species in resident communities, defined as the fraction

of species in the initial pool which survive in the end of assembly (on day 6 before

invasion). The results show a strongly positive correlation of invasibility on survival

fraction, where the correlation coefficient is 0.82 (Fig. 3-3C). Microbial communi-

ties cultured in low nutrient (weak interaction) media display both a larger invasion
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Figure 3-3: Increasing interaction strength and species pool size leads to higher inva-
sion resistance of resident communities in experiment. (A) The invasions to resident
communities under low nutrient (weak interaction) exhibit statistically higher inva-
sion probability than communities under high nutrient (strong interaction) (p < 0.001,
the number of invasion tests is n=120 (39) for high (low) nutrient). (B) The invasions
to resident communities under smaller species pool size (𝑆=12) exhibit statistically
higher invasion probability than communities under larger species pool size (𝑆=20)
(p = 0.007, the number of invasion tests is n=39 (34) for 𝑆=20 (12), all communities
were cultured under low nutrient). Error bars represent s.e.m.. (C) The invasion
probability positively correlates with survival fraction (before invasion) across dif-
ferent communities and nutrient conditions (each point represents one community;
correlation coefficient is 0.82). The points corresponding to communities under high
nutrient are below the diagonal line, showing the invasion probability of communities
under high nutrient are generally smaller than their survival fraction, which indicates
the priority effect under strong interaction strength.
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probability and larger survival fraction than communities under high nutrient (strong

interaction) (Fig. 3-3C). Furthermore, fluctuating communities which are easier to

be successfully invaded also exhibit larger survival fraction than stable communities

under the same conditions (Fig. 3-3C and 3-1C). These results demonstrate that

the survival fraction can serve as a unifying predictor of the invasibility of a resident

community. Although it has been suggested that microbial communities with higher

diversity are less likely to be invaded because they leave less available niches and

resources for invaders [83, 55, 134, 137]., our results indicate that this is only true

when the diversity is increased by increasing the size of the species pool (Fig. 3-3C

and 3-1C). However, if diversity is modulated by a change in interaction strength or

stability then more diverse communities are instead more invasible.

Despite our experimentally observed correspondence between invasion probability

and survival fraction, we noted that the invasion probability for communities under

high nutrient are usually lower than their survival fraction (majority of points on the

bottom left (high nutrient) are below the diagonal line on Fig. 3-3C). In ecology, the

priority effect refers to the phenomenon in which the community structure is influ-

enced by the order and timing of species’ arrival in a community [38, 117] mismatch

between invasion probability and survival fraction under high nutrient is evidence of

the priority effect in the community assembly under strong interactions in our ex-

periment. Under weak interactions, the colonization probability of invader species is

similar with the probability of a species in the initial pool surviving the process of

community assembly, whereas invader species are statistically less likely to survive in

the communities than the species in the initial pool under strong interactions (Fig.

3-3C)[28]. The emergent priority effect in communities composed of strongly inter-

acting species could be explained by alternative stable states tending to inhibit the

growth of invaders at low abundance[28, 56].
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3.3.4 Theory predicts a universal correspondence between in-

vasion probability and survival fraction, the emergence

of priority effect and stronger invasion effect when in-

creasing interaction strength

To understand the reason why diversity-invasibility relationship is different when

varying interaction strength, species pool size or stability (Fig. 3-1C, Fig. 3-2 and

Fig. 3-3), we sampled resident communities along different paths on the phase di-

agram, by varying species pool or interaction strength. We simulated invasions to

these resident communities and found different diversity- invasibility relationship

along different paths (Fig. 3-4A). The results show a positive diversity- invasibil-

ity relationship when only varying interaction strength while fixing species pool size,

or randomly sampling communities under the same parameters of species pool size

and interactions (Fig. 3-4A). On the contrary, a reversed negative or non-monotonic

diversity-invasibility relationship was observed when varying species pool size while

fixing interaction strength (Fig. 3-4A). Despite these conflicting diversity-invasibility

relationships, after scaling richness with species pool size to get the dimensionless

survival fraction, we analyzed the dependence of invasion probability on survival

fraction, finding that all communities collapsed to a universal line in which the in-

vasion probability is approximately equal to the survival fraction (Fig. 3-4B). The

deviation from the exact collapse in small survival fraction regime (bottom left of Fig.

3-4B) indicates priority effect under strong interaction. Our results indicate that sur-

vival fraction determines invasibility, whereas diversity-invasibility relationship can

be qualitatively different depending upon the origin of different diversity in different

communities.

To understand the emergence of the priority effect in experiment (Fig. 3-3C), we

next studied invasion outcomes in the Lotka-Volterra model under different regime

of interaction strength and species pool size. We quantified the priority effect by

calculating the difference between survival fraction of resident species and the inva-

sion probability of species that invade after the resident communities have assembled,
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Figure 3-4: Lotka-Volterra model predicts a universal correspondence between inva-
sion probability and survival fraction, the emergence of priority effect and stronger
invasion effect when increasing interaction strength. (A) The dependence of invasion
probability on final richness of resident communities is qualitatively different depend-
ing upon how the richness is changed. Invasion probability positively correlates with
richness when varying interaction strength or when randomly sampling communities
with a fixed species pool size and interaction strength distribution. Invasion prob-
ability can decrease with community diversity when varying species pool size. (B)
Invasion probability is approximately equal to the survival fraction of species in the
resident communities, no matter how we change richness, species pool or interac-
tion strength. (C) Increasing species pool size and interaction strength leads to the
emergence of priority effect, where the invasion probability of resident communities
is smaller than their species survival fraction. (D) Successful invasions cause larger
effect on species composition in the resident communities under stronger interaction
strength. The curves depict the mean value over 1000 simulations.
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where the difference was normalized by survival fraction (Fig. 3-4C). We found there

is no clear priority effect in the small species pool size and weak interaction regime,

where species in the initial pool and invader species display similar probability of

colonizing in the communities (Fig. 3-4C). Consistent with our experimental results,

increasing species pool size and interaction strength in the model leads to the emer-

gence of priority effect in the phase where communities reach fluctuation or alternative

stable states (Fig, 3-4C). We found the priority effect originated from alternative sta-

ble states or limit cycle oscillations in the strongly interacting phase, whereas chaotic

fluctuations display no significant priority effect in simulation (Fig. 3-19), which can

be explained by its ergodicity [24, 95]. It was suggested that successful invasions can

cause strong or weak effect on resident community structure, depending on how in-

vaders interact with resident species [28, 69, 81]. Our simulations show that invasions

cause stronger change on structure of resident communities under stronger interac-

tions, where the invasion effect is defined as the ratio of surviving species change

before and after the invasion (Fig. 3-4D).

3.3.5 Increasing interaction strength leads to a stronger effect

on resident communities under invasion success

To understand the effect of a successful invasion on the structure of the resident

community in the experiment, we analyzed the change of biomass and species com-

position before and after the invasions (Fig. 3-5). The community biomass displays

relatively small change after invasion under weak interaction (low nutrient, inset of

Fig. 3-5A and Fig. 3-11,3-12). In the strong interaction regime (high nutrient), we

found that stable communities typically transitioned from low biomass states to high

biomass states under successful invasions, whereas the biomass of fluctuating commu-

nities continued to fluctuate over a similar range (Fig. 3-5A-C and Fig. 3-8,3-9,3-10).

Averaging across both stable and fluctuating communities, we found that community

biomass under strong interaction displayed a larger fold change (2.9 +/- 0.8) after

successful invasion than those under weak interaction (1.15 +/- 0.03) (Fig. 3-5C). To
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characterize the effect of invasion on species composition in the resident community,

we defined the invasion effect as the fraction of surviving species that change before

and after invasion. We compared the change of relative species abundance between

invaded communities and control communities without adding invaders (Fig. 3-20,3-

21,3-22,3-23). This analysis on species abundances through 16S sequencing further

indicated that successful invasions cause stronger change in the species compositions

under strong interaction (53% +/- 6%) than weak interaction (39% +/- 2%) (Fig.

3-5D), which is consistent with the simulation results with Lotka-Volterra model (Fig.

3-4D). The growth of invader species influences the community structure more dra-

matically when it has stronger interaction with other resident species, and the strong

interplay between resident species can also cause stronger secondary effect on other

resident species when their abundance change [28, 8].

Although our study was primarily focused on community-level properties that de-

termine invasibility and invasion effect, we also analyzed properties of the invader

species that correlated with invasibility and invasion effect. Perhaps surprisingly, we

did not observe a significant correlation between a species’ ability to invade and that

species growth in monoculture (Fig. 3-24). For example, Pseudomonas (invader 4)

and Enterobacterales (invader 7) were the two most successful invader species (16/35

and 6/11 invasions, respectively), yet displayed growth in monoculture that was typi-

cal of the group of nine invaders that were tested. Bacillus (invader 6) with the highest

growth rate among all invaders under both high and low nutrients, only display a small

fraction of invasion success (2/37). Moreover, we also observed that Pseudomonas

(invader 2) and Pedobacter (invader 3) could occasionally invade communities despite

being subject to a strong Allee effect that prevented the species from growing from

an initially small inoculum (Fig. 3-22). Furthermore, we did not observe significant

correlation between the invasion effect and invader properties either (Fig. 3-25). No

matter calculating invasion probability of resident communities or different invaders,

we found an absence of correlation between invasion probability and invasion effect

(Fig. 3-26). Taking these together, we therefore found that monoculture growth

properties were surprisingly ineffective at predicting a species success as an invader,
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Figure 3-5: Increasing interaction strength leads to a stronger effect on resident com-
munities under invasion success. (A) The stable communities under high nutrient ex-
perienced a large increase in biomass after successful invasions (dark purple curves).
Inset shows the invasions under low nutrient only cause weak effect on community
biomass as compared with high nutrient. (B) The time course of fluctuating commu-
nity biomass under high nutrient before invasion and after invasion, where dark and
light orange curves represent successful and failed invasions, respectively. (C) The
invasions to resident communities under low nutrient (weak interaction) cause sta-
tistically lower fold change of biomass than communities under high nutrient (strong
interaction) (p < 0.001, the number of successful invasions is n=51 (11) for low (high)
nutrient). The successful invasions statistically tend to increase the biomass of resi-
dent communities under different conditions. (D) The invasions to resident commu-
nities under low nutrient (weak interaction) cause statistically lower effect on species
composition change than communities under high nutrient (strong interaction) (p =
0.0038, the number of invasion tests is n=51 (11) for low (high) nutrient). Error bars
represent s.e.m..
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while resident community properties are the primary factors determining the invasion

outcome.

3.4 Methods and Materials

3.4.1 Bacterial isolates, media and culturing conditions

We constructed the library of 80 bacterial species from soil, tree leaves, and Charles

River water samples taken near the campus of Massachusetts Institute of Technology

(Fig. 3-6).

In the case of low interaction strength (low nutrients concentration) conditions,

experimental communities were cultured in Base Medium (BM): 1g/L yeast extract

and 1 g/L soytone from Becton Dickinson, 10 mM sodium phosphate, 0.1 mM CaCl2,

2 mM MgCl2, 4mg/L NiSO4 and 50 mg/L MnCl2, pH adjusted to 6.5. For high inter-

action strength (high nutrients concentration) conditions, we used BM supplemented

with 5 g/L glucose and 4 g/L urea. All media were filter sterilized using Bottle Top

Filtration Units (VWR). All of the chemicals were purchased from Sigma–Aldrich

unless otherwise stated.

Both monocultures and communities of the bacterial isolates were grown in 96-

deepwell plates (Deepwell plate 96/500𝜇l; Eppendorf) covered with AeraSeal adhesive

sealing films (Excel Scientific). The incubation temperature was 30 °C for all com-

munities. The deepwell plates were shaken at 1,200 r.p.m. on Titramax shakers

(Heidolph). To minimize evaporation, the plates were incubated inside custom-built

acrylic boxes.

3.4.2 Pre-cultures, daily dilutions, dispersal, and biomass mea-

surements

Before each experiment, pre-cultures were initiated by thawing the bacteria and in-

oculating individual species into 300 𝜇L of BM. The resulting monocultures were

exposed to 5 daily cycles of growth and (30-fold) dilution into fresh media. At the
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beginning of each experiment, aliquots of these monocultures were mixed in equal

volume proportions to form the synthetic communities. During the experiment, the

monocultures were exposed to further dilution cycles and used to apply the daily

dispersal into the synthetic communities as described below.

We created 40 different synthetic communities using randomly generated subsets

of the library of isolates, each subset constituting the species pool (of size 𝑆) for

each community. After mixing monocultures in equal volumes, each experimental

community was initiated by inoculating 10 𝜇L of its initial mix of isolates into 300 𝜇L

of BM. The resulting synthetic communities were cultured under serial dilution cycles

with dispersal as follows. To apply a 10−5 dispersal rate, every 24hr monoculture

aliquots of the species in each community pool were mixed at equal volumes, and then

diluted by a 103 factor before inoculating 6𝜇L of this mix into the wells containing

the corresponding experimental community matching each species pool. After this,

the experimental cultures were thoroughly mixed using a 96-well pipettor (Viaflo 96,

Integra Biosciences; settings: pipette/mix program, 5 mixing cycles, mixing volume

150 𝜇L, speed 6) before applying a 30-fold dilution by transferring 10 𝜇L of the

cultures into a new plate with 300 𝜇L of fresh media.

The resident communities were cultured over 6 dilution cycles before introducing

the invader species. When introducing the invader species on day 6, The volume ratio

between the monoculture of invader species and the resident community was 10−3.

After introducing the invaders on day 6, we performed another 6 daily dilution cycles

with a 10−5 dispersal rate for all species including the invader species until the end of

the experiment. At the end of every daily cycle, 150𝜇L samples of each culture were

used to measure the OD (600nm), a proxy for the total biomass in the cultures, using

a Varioskan Flash (Thermo Fisher Scientific) plate reader. The remaining culture

volume was stored at -80 °C for subsequent DNA extraction.
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3.4.3 DNA extraction, 16S rRNA sequencing and data anal-

ysis

To monitor the dynamics of the microbial communities, we measured community

composition via 16S ribosomal RNA (rRNA) amplicon sequencing. DNA extraction

was performed by the Environmental Sample Preparation and Sequencing Facility

at Argonne National Laboratory. The obtained DNA was used for 16S (V4 region)

amplicon sequencing. Library preparation and Illumina MiSeq sequencing were per-

formed by the Environmental Sample Preparation and Sequencing Facility at Ar-

gonne National Laboratory. We used the R package DADA2 to obtain the amplicon

sequence variants (ASVs) as described by Callahan et al.[27]. Taxonomic identities

were assigned to the ASVs by using SILVA (version 132) as a reference database. For

each sample. species richness was calculated as the number of ASVs with a relative

abundance 0.08%, which corresponds to the 0.08% extinction threshold used in sim-

ulation. Taxonomic identities were assigned to ASVs using Randomized Axelerated

Maximum Likelihood (RAxML) using default parameters. In our sequencing dataset,

the average sequencing depth is 17075 reads. This means that we could not effectively

resolve any species abundance on the order of 0.01% or below. Our main observables,

invasion success, diversity and stability, were calculated (Methods) only from species

abundances that exceed a threshold of 0.08% (the extinction threshold).

3.4.4 Numerical methods

We modeled the long-term dynamics and diversity of ecological communities using

the well-known generalized Lotka-Volterra (gLV) model, modified to include dispersal

from a species pool:
𝑑𝑁𝑖

𝑑𝑡
= 𝑟𝑖𝑁𝑖(1−

𝑆∑︁
𝑗=1

𝛼𝑖𝑗𝑁𝑗/𝐾𝑖) +𝐷 (3.2)

where 𝑁𝑖 is the abundance of species 𝑖 (normalized to its carrying capacity), 𝛼𝑖𝑗

is the interaction strength that captures how strongly species 𝑗 inhibits the growth

of species 𝑖 (with self-regulation 𝛼𝑖𝑖 = 1), and 𝐷 is the dispersal rate from an outside
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species pool to the focal community. For simplicity and without qualitatively changing

our results, we considered the same growth rate 𝑟𝑖 = 1 and the same carrying capacity

𝐾𝑖= 1 for all species in the main text. Our previous paper shows that sampling growth

rates from a uniform distribution has little effect on the phase diagram of survival

fraction and fluctuation fraction [56]. Our previous paper also shows that sampling

carrying capacities from a normal distribution increases the partial coexistence phase

while shrinking both the full coexistence phase and fluctuation phase but does not

affect the order of the phases [56].

In our previous work, we tested the theoretical predictions when considering the

existence of positive (facilitative) interspecies interactions and varying the symmetry

of the interaction matrix (39). We also considered different dispersal rates, and the

effects of incorporating daily dilutions in these in silico communities [56]. These

additional results show that our qualitative phase diagrams and conclusions are robust

to different choices of ecological network structure and parameters. Although the

patterns of ecological diversity and dynamics do not change as the dispersal rate varies

from 10−7 to 10−6, we found that communities with zero dispersal rate exhibit lower

fluctuation fraction and survival faction in the persistent fluctuation phase [56]. Our

results showed that non-zero dispersal rates can sustain persistent fluctuations. After

the resident species typically reach steady states at 𝑡=103, we started introducing

the invader species by continuously adding dispersal of the invader to the resident

community and simulated the dynamics until 𝑡=2×103 to determine the invasion

outcome.

All simulations used the Runge-Kutta method on Matlab to numerically solve the

LV equations (with an integration step of 0.05). A definition of 20×20 pixels was

used for each phase diagram, linearly segmenting the parameter space in the ranges

<𝛼𝑖𝑗> ∈ [0.02, 1.1] and 𝑆 ∈ [2, 60]. In each phase diagram, each pixel shows the

average result for 103 simulations. The total simulation time is 2×103. We sampled

the interaction strength from a uniform distribution U [0.5<𝛼𝑖𝑗>, 1.5<𝛼𝑖𝑗>] in Fig.

3-2B and 4D, where <𝛼𝑖𝑗> is the mean interaction strength between species (which

also determines here the variance of interactions).
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3.4.5 Reaching steady state, extinction threshold, survival frac-

tion and stability in simulations

We define the steady state of simulated communities as the community state in which

community properties (e.g., survival fraction, fluctuation fraction, and invasion prob-

ability) significantly changes as time goes on. To consistently analyze the steady state

results for all the simulated communities, in our previous work, we analyzed the de-

pendence of the phase diagrams on the simulated time [56]. Our results showed that

community-level properties did not significantly changes after 𝑡=103. Accordingly,

the phase diagrams in the paper show the state of communities at 𝑡=2×103, unless

otherwise stated.

The presence of dispersal from the species pool in Eq. (1) guarantees that all

species exhibit strictly positive abundances in Fig 3-2A. Nevertheless, we consider that

a species is extinct if its abundance lays below an 8×10−4 threshold, as consistent

with the extinction in our experiment. Around this threshold, the dispersal rate

becomes the main factor preventing abundance decay [56]. The species abundance

distribution in the partial coexistence phase is bimodal[56]; the extinction threshold

8×10−4 clearly separates the high-abundance surviving species from low-abundance

species that will go extinct if dispersal ceases[56].

To compute the survival fraction, we computed the fraction of species whose abun-

dance exceeded the extinction threshold at any time during the last 100 units of time

in the simulation. The survival or extinction of invader species was determined by

the abundance in the last 100 units of time in the simulation. Our choice of including

a time window when measuring diversity is motivated by the fact that, for the case

of unstable communities, species abundances fluctuate above and below the extinc-

tion threshold over time. Since we measured diversity and species compositions every

24 hours in the experiment, we consider an analogous window of 100 time units in

simulations.

To differentiate between stable and fluctuating communities, we computed the

average coefficient of variation of 𝑁𝑖 between 𝑡=103-100 and 𝑡=103. We define com-
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munities with this average coefficient of variation of species abundance higher (lower)

than 10−3 as fluctuating (stable) communities.

3.4.6 Definition of stable and fluctuating experimental com-

munities

To differentiate between stable and fluctuating resident communities in experiments,

we computed the standard deviation of biomass between day 4, day 5 and day 6.

Communities for which the standard deviation of biomass over time is below (above)

a 0.05 threshold are considered stable (fluctuating) communities (Fig. 3-17). We

also calculated the average coefficient of variation (CV) for species abundances from

day 4 to day 6. This corresponds to the average value of the standard deviation for

the absolute abundance of each species 𝑁𝑖 (over day 4, day 5, and day 6) scaled by

average species abundance. The average coefficient of variation of absolute species

abundance (product of biomass and relative species abundance by 16s sequencing)

displays a strong positive correlation with the standard deviation of biomass over

time across communities (Fig. 3-17). The average coefficient of variation of relative

species abundance (by 16s sequencing) also displays a strong positive correlation with

the standard deviation of biomass over time across communities (Fig. 3-17). Different

metrics consistently classify the communities into two clusters: fluctuating ones on

top right region and stable ones on bottom left region (Fig. 3-17). Varying the choice

of time window (day 4 to day 6) to a new time window (day 5 to day 6) yield the

same classification of fluctuating and stable communities. Our previous work showed

that the classification of stability converges quickly to either small or large values,

respectively indicating stability or long-lasting fluctuations in experimental commu-

nities [56]. We found the K-means clustering algorithm yields the same classification

results of community stability. The consistence between results of K-means clustering

and setting stability threshold of biomass standard deviation (0.05) demonstrates the

classification of fluctuating and stable communities is robust to different algorithm.
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3.5 Conclusion

Our findings show that invasibility and invasion effect can be statistically predicted

by simple community-level features including community stability, species pool size,

and interaction strength. As predicted by our phase diagram, increasing community

diversity leads to stronger resistance to invaders only when varying species pool size

and fixing community stability and environmental conditions (interaction strength),

which is consistent with the biotic resistance hypothesis [62, 28, 112]. Contrary to

conventional ecological beliefs, however, we demonstrated that under dynamic fluc-

tuations or reduced interaction strength, more diverse communities might instead

exhibit decreased resistance to invasion (Fig. 3-1C and 3-3C). Our results emphasize

that only by concurrently considering the effects of interaction strength and stabil-

ity can the diversity of native communities be used to predict invasion resistance;

diversity alone is insufficient for such predictions. As a dimensionless property, it

is more natural to predict invasion probability using other dimensionless variables

in principle, rather than using dimensional richness. By normalizing richness with

species pool size, we obtained the survival fraction, a dimensionless predictor that

closely approximates invasion probability across different conditions (Fig. 3-3C and

Fig. 3-4B). This survival fraction is influenced by factors such as species pool size,

interaction strength, and stability (Fig. 3-2B, C and 3-3C).

Applying the insights developed here to natural communities requires that we draw

a parallel between the three recognized types of diversity in ecology—alpha, beta, and

gamma diversity—and the three species number variables we’ve investigated in our

study: richness, survival fraction, and species pool size [62, 74, 105]. Specifically,

richness and species pool size can be seen as analogs for alpha (local diversity) and

gamma (regional diversity) diversities, respectively. Beta diversity, which defined

as the ratio between regional and local diversity, is the reciprocal of the survival

fraction. Consequently, our discovery of a universal positive relationship between

invasibility and survival fraction suggests an overarching negative correlation between

invasibility and beta diversity. While directly measuring the survival fraction in
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natural communities can be challenging, the ratio of local richness to regional richness

in natural habitats may serve as a reliable approximation of survival fraction [62, 74,

105], acting as a singular predictor for invasion probability. Building upon our earlier

discoveries regarding emergent phases in communities [56], our current data suggests

the priority effect is most pronounced in the phase of alternative stable states, under

conditions of strong interactions and a large species pool (Fig. 3-2E and 3-3C).

Conversely, the sequence and timing of species introduction have minimal impact on

the final community structure in the global equilibrium phase when both interaction

strength and species pool size are limited (Fig. 3-2E and 3-3C). Future work is

necessary to determine whether these community-level features can predict invasion

outcomes across spatiotemporal scales, environmental conditions, and organism types.

3.6 Supporting Information
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Figure 3-6: Taxonomic identity of the bacterial isolates. The identities have been
inferred from the ASV (Methods) of 16S sequencing, which allow the classification of
the 80 isolates down to the genus level. Colors are consistent with those in the main
text and other supplementary figures.
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Figure 3-7: Introducing different invaders into different resident communities and
measuring the invasion outcome through 16s sequencing. The invasion outcome ma-
trices show that increasing nutrient and species pool size lead to a decrease in invasion
probability.
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Figure 3-8: Time series for the biomass of the fluctuating communities with species
pool size 𝑆=20 under strong average interaction strength (high nutrients concen-
tration). Each panel shows the time series for the OD (600nm) of one fluctuating
community with species pool size 𝑆=20 under high nutrient. The invaders were in-
troduced on day 6, and the time series of successful invasions and failed invasions for
the same communities were displayed in different panels.
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Figure 3-9: Time series for the biomass of the stable communities with species pool
size 𝑆=20 under strong average interaction strength (high nutrients concentration).
Each panel shows the time series for the OD (600nm) of one stable community with
species pool size 𝑆=20 under high nutrient. The invaders were introduced on day 6,
and the time series of successful invasions and failed invasions for the same commu-
nities were displayed in different panels.
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Figure 3-10: Time series for the biomass of the stable communities with species pool
size 𝑆=12 under strong average interaction strength (high nutrients concentration).
Each panel shows the time series for the OD (600nm) of one stable community with
species pool size 𝑆=12 under high nutrient. The invaders were introduced on day 6,
and the time series of successful invasions and failed invasions for the same commu-
nities were displayed in different panels.
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Figure 3-11: Time series for the biomass of the stable communities with species pool
size 𝑆=20 under weak average interaction strength (low nutrients concentration).
Each panel shows the time series for the OD (600nm) of one stable community with
species pool size 𝑆=20 under low nutrient. The invaders were introduced on day 6, and
the time series of successful invasions and failed invasions for the same communities
were displayed in different panels.
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Figure 3-12: Time series for the biomass of the stable communities with species pool
size 𝑆=12 under weak average interaction strength (low nutrients concentration).
Each panel shows the time series for the OD (600nm) of one stable community with
species pool size 𝑆=12 under low nutrient. The invaders were introduced on day 6, and
the time series of successful invasions and failed invasions for the same communities
were displayed in different panels.
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Figure 3-13: Time series for the relative species abundances of the fluctuating com-
munities with species pool size 𝑆=20 under strong average interaction strength (high
nutrients concentration). Each panel shows the time series for the relative species
abundances of one fluctuating community before introducing invaders, where species
pool size 𝑆=20 under high nutrient.
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Figure 3-14: Time series for the relative species abundances of the stable communities
with species pool size 𝑆=20 under strong average interaction strength (high nutrients
concentration). Each panel shows the time series for the relative species abundances
of one stable community before introducing invaders, where species pool size 𝑆=20
under high nutrient.
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Figure 3-15: Time series for the relative species abundances of the stable communities
with species pool size 𝑆=12 under strong average interaction strength (high nutrients
concentration). Each panel shows the time series for the relative species abundances
of one stable community before introducing invaders, where species pool size 𝑆=12
under high nutrient.

Figure 3-16: Time series for the relative species abundances of the stable communities
with species pool size 𝑆=20 under weak average interaction strength (low nutrients
concentration). Each panel shows the time series for the relative species abundances
of one community before introducing invaders, where species pool size 𝑆=20 under
low nutrient.
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Figure 3-17: Classification of fluctuating and stable resident communities in exper-
iment. (A) The standard deviation of community biomass over day 5, day 6 and
day 7 show that the stability threshold of 0.05 can separate the communities into
stable ones (purple points) with small biomass deviation and fluctuating ones (or-
ange points) with relatively large biomass deviation under high nutrient. (B) The
standard deviation of community biomass under low nutrient are small (all below the
stability threshold of 0.05), which were naturally classified into stable communities.
(C) The average coefficient of (temporal) variation for absolute species abundances
(𝑁𝑖, computed as the product of total biomass per species relative abundance) exhibit
a strong positive correlation with standard deviation of biomass in the experimental
communities. The points span into two clusters where fluctuating communities locate
on top right region and stable communities locate on bottom left region. (D) The av-
erage coefficient of (temporal) variation for relative species abundances (𝑁*

𝑖 , relative
species abundance through 16s sequencing) also exhibits a strong positive correlation
with standard deviation of biomass in the experimental communities. The results
suggest that fluctuation in community biomass cooccurs with fluctuation in relative
species abundances.
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Figure 3-18: Different invasibility-richness relationships in experiment depending
upon how the richness is changed. Invasibility positively correlates with richness
when varying interaction strength (positive correlation between 𝑆=20 communities
under low and high nutrient). Invasibility positively correlates with richness when
randomly sample 𝑆=20 communities under high nutrient, due to fluctuating commu-
nities display larger richness and larger invasion probability. Invasibility negatively
correlates with richness when increasing species pool size from 𝑆=12 to 𝑆=20 under
low nutrient.
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Figure 3-19: Priority effect originates from alternative stable states and limit cycle
oscillations rather than chaotic fluctuations in simulations. Lotka-Volterra model
simulations show that both surviving probability and invasion probability increase as
community dynamics transition from alternative stable states to limit cycle oscilla-
tions and to chaos. Communities with chaotic fluctuations in species abundance do
not display significant priority effect which can be explained by its ergodicity [24],
whereas communities with limit cycle oscillations and alternative stable states both
show significant priority effect. The simulation in this figure was performed under
𝑆=40 and <𝛼𝑖𝑗>=0.65 over 1000 replicates, among which we observed 223 chaotic
fluctuating communities, 340 limit cycle oscillations, and 437 alternative stable states.
The fluctuating communities were classified into chaos when its Lyapunov exponent
is positive, while classified into limit cycle when its Lyapunov exponent is negative.
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Figure 3-20: Successful invasions lead to change in species composition in fluctuating
communities with 𝑆=20 under high nutrient, which can be shown by comparing the
relative species abundance between invaded communities and control communities
without introducing invader. The circles and triangles in the figure represent res-
ident species and invader species, respectively. The successful invasions can cause
the extinction of other resident species (circles drop below the extinction threshold
under invasion) and the colonization of other resident species (circles go beyond the
extinction threshold under invasion).
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Figure 3-21: Successful invasions lead to change in species composition in stable
communities under high nutrient, which can be shown by comparing the relative
species abundance between invaded communities and control communities without
introducing invader. The circles and triangles in the figure represent resident species
and invader species, respectively. The successful invasions can cause the extinction of
other resident species (circles drop below the extinction threshold under invasion) and
the colonization of other resident species (circles go beyond the extinction threshold
under invasion).
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Figure 3-22: Successful invasions lead to change in species composition in communi-
ties with 𝑆=20 under low nutrient, which can be shown by comparing the relative
species abundance between invaded communities and control communities without
introducing invader. The circles and triangles in the figure represent resident species
and invader species, respectively. The successful invasions can cause the extinction of
other resident species (circles drop below the extinction threshold under invasion) and
the colonization of other resident species (circles go beyond the extinction threshold
under invasion).
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Figure 3-23: Successful invasions lead to change in species composition in communi-
ties with 𝑆=12 under low nutrient, which can be shown by comparing the relative
species abundance between invaded communities and control communities without
introducing invader. The circles and triangles in the figure represent resident species
and invader species, respectively. The successful invasions can cause the extinction of
other resident species (circles drop below the extinction threshold under invasion) and
the colonization of other resident species (circles go beyond the extinction threshold
under invasion).
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Figure 3-24: There is no correlation between the invasiveness of invaders and their
carrying capacities and growth rates. The growth curves of invaders were measured
after a dilution of 105 folds. The carrying capacity of invaders were quantified by
the maximal OD over 24 hours of growth. The growth rates of invaders were quanti-
fied by fitting the slopes of growth curves between the two horizontal dashed lines in
the figure on logarithmic scale for biomass. There is no statistically significant cor-
relation between invasion probability of invaders with their carrying capacities and
growth rates, under both high nutrient and low nutrient. The phylogeny of invader 1
to invader 9 are: Flectobacillus, Pseudomonas, Pedobacter, Pseudomonas, Pantoea,
Bacillus, Enterobacterales, Pantoea, Chryseobacterium.
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Figure 3-25: There is no statistically significant correlation between invasion effect
and invader properties. Under high nutrient, invasion effect does not show statisti-
cally significant correlation with carrying capacity (A) and growth rate (B). Under
low nutrient, invasion effect does not show statistically significant correlation with
carrying capacity (C) and growth rate (D).
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Figure 3-26: There is no statistically significant correlation between invasion effect
and invasion probability. Under high nutrient, invasion effect does not show statis-
tically significant correlation with invasion probability of invaders (A) and invasion
probability of resident communities (B). Under low nutrient, invasion effect does not
show statistically significant correlation with invasion probability of invaders (C) and
invasion probability of resident communities (D).
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Chapter 4

Conclusion

4.1 Resolving diversity-stability debate and diversity-

invasibility debate

The diversity-stability debate has long been a focal point in ecological discussions,

examining the intricate relationship between biodiversity and ecosystem stability

[87, 60]. Over time, ecologists have presented differing views: some contend that

a greater species diversity enhances ecosystem resilience to disturbances [126], be-

cause of "portfolio effect" where varied species can offset each other’s variability. In

contrast, others argue that the intricate web of interactions in diverse systems, po-

tentially leading to competition, might heighten susceptibility to fluctuations and

even collapse [124, 87, 60]. As global ecosystems face mounting anthropogenic pres-

sures, deciphering this relationship is becoming ever more critical. This debate is not

merely academic—it profoundly influences conservation priorities and strategies. In

this thesis, the intricacies of the diversity-stability debate are dissected, highlighting

its importance and implications in current ecological research.

Our combined model and experimental results underscore a mutual dependency

between persistent fluctuations and high realized diversity. This aligns with two piv-

otal ideas in theoretical ecology: May’s proposition linking complexity to instability

and Chesson’s perspective that temporal fluctuations can bolster diversity [84, 30].
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However, the finding that two broad parameters can independently sculpt the land-

scape of community diversity and dynamics suggests caution is needed when drawing

conclusions about the biodiversity-stability relationship. For a specific interaction

strength, there is a negative correlation between stability, species pool size, and real-

ized diversity, implying more species-rich communities may be less stable. Conversely,

when species pool sizes are constant, stability and diversity have a positive correla-

tion: weakly interacting communities display both higher stability and diversity, while

strongly interacting ones tend to be less stable and diverse. This complex interplay

between defining parameters might explain some of the incongruities observed in field

studies probing the diversity-stability nexus [87, 60].

The diversity-invasibility debate is a central topic in the realm of ecology, address-

ing the relationship between native species diversity and an ecosystem’s vulnerability

to invasions by non-native species [74, 118]. Historically, many ecologists believed

that ecosystems with greater biodiversity would naturally fend off invasions, with

the theory that such diverse ecosystems would more efficiently utilize available re-

sources, leaving little room for invasive species [62, 28, 112]. Yet, some researchers

argue that more diverse habitats might actually present more niches, potentially fa-

cilitating invasions [74]. Given the increasing impact of invasive species on global

ecosystems and their implications for biodiversity, ecosystem services, and human

welfare, this relationship’s understanding is crucial. This thesis dives deep into the

diversity-invasibility debate, offering insights into this complex and pressing ecological

issue.

Contrary to the prevalent notion that diverse communities are inherently more

resistant to invasions, there exists an ongoing debate due to conflicting diversity-

invasibility relationships documented in various studies [118, 74, 146, 39]. Our find-

ings show that these observed relationships differ significantly based on the method

of diversity alteration, whether it’s through the number of species, stability, or in-

teraction strength. In our study, we’ve brought clarity to the debate, illustrating

that by normalizing diversity with species pool size to derive a "survival fraction,"

there emerges a consistent positive relationship between invasibility and this survival
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fraction across diverse conditions. Though direct quantification of survival fraction in

natural communities is challenging, assessing the proportionality of local to regional

richness provides a potential surrogate, suggesting its potential role as a predictor for

invasion probability. [105].

The interplay of diversity types in ecology—alpha, beta, and gamma—and the

core species number variables, namely richness, survival fraction, and species pool

size, offers intriguing insights when applied to natural communities [105]. Delving

deeper, richness and species pool size provide a window into alpha (local diversity)

and gamma (regional diversity) diversities. In parallel, beta diversity, quantified as

the ratio of regional to local diversity, inversely corresponds to the survival frac-

tion. This leads us to an intriguing observation: a universal positive correlation

between invasibility and survival fraction inherently signifies a negative correlation

with beta diversity. The next frontier in this research would be exploring how these

identified community-level attributes might forecast invasion outcomes across various

spatiotemporal frameworks, diverse environmental conditions, and among different

organism groups.

4.2 Spatial-temporal dynamics in microbial commu-

nities

In this thesis, my research predominantly delved into well-mixed microbial commu-

nities, revealing a myriad of intricate dynamical behaviors. Moving forward, I am

keen to explore the impact of spatial structures on these microbial communities,

thereby introducing another layer of complexity to their inherent dynamics. While at

smaller scales, natural communities can be effectively modeled using well-mixed ordi-

nary differential equations, larger scales introduce spatial heterogeneity [129]. Here,

the specific spatial configuration becomes pivotal in shaping both the diversity and

dynamic behaviors of these ecosystems.

Spatial ecology delves into understanding how the spatial distribution and orga-
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nization of organisms influence ecological processes and patterns at multiple scales

[123]. This interdisciplinary field integrates principles from ecology, geography, and

landscape science to unravel the intricate web of interactions that organisms share

with their environment. Central to spatial ecology is the concept that the distribu-

tion of habitats, resources, and organisms across a landscape can significantly affect

ecological dynamics, including species dispersal, population growth, and species in-

teractions [123]. Whether analyzing organisms migration patterns, predicting the

spread of invasive species, or understanding the effects of habitat fragmentation, spa-

tial ecology provides invaluable insights that are crucial for biodiversity conservation

and ecosystem management in an increasingly fragmented world [90].

One intriguing discrepancy I’ve observed is that while natural ecosystems boast

high biodiversity, laboratory ecosystems often display limited biodiversity [56], in line

with theoretical model predictions [14]. This leads me to question: Can migrations

within interconnected communities augment biodiversity by fostering long-term fluc-

tuations in population abundances? To investigate this, I plan to experimentally

culture natural soil microbes across connected patches, creating a microbial meta-

community. Our prior results underscore that population fluctuations are inherently

linked with high-diversity communities [56]. Maintaining these ecosystems in persis-

tent non-equilibrium states necessitates migrations, counteracting the negative feed-

back loop between diversity and population fluctuations. In essence, migration might

act as a safety net, allowing dwindling species in one community to be replenished

from another, thereby constantly reshaping local communities and fostering dynamic

species interactions at the metacommunity level [96].

Lastly, the astonishing biodiversity observed in nature, coupled with its intricate

networks of species interactions, has remained an enigma for decades [85]. Ever since

Robert May’s seminal paper argued the inherent instability of large complex systems,

the role of spatial dynamics in fostering biodiversity has been in the spotlight [72].

While some theories suggest that spatial structures, coupled with dispersal, might

stabilize dynamics and thereby maintain high diversity [94], others contend that it

could lead to dispersal-driven spatial-temporal chaos, thereby enhancing diversity
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[96]. With a focus on natural soil microbes, I intend to bridge the gap between the-

ory and practice, studying microbial interactions across interconnected habitats. My

hypothesis is that interspersed migrations between these habitats might bolster bio-

diversity through the creation of spatial-temporal fluctuations in species counts [96].

Specifically, I posit that moderate dispersal rates could optimize asynchronous fluctu-

ations across these habitats, thereby preserving diversity by intermittently boosting

rare species [36]. If validated, our findings would serve as pioneering experimental

evidence, demonstrating that species dispersal within a fragmented landscape could

amplify global diversity by up to three-fold.

4.3 Multi-stable states and glass-like transitions in

microbial communities

In this thesis, I have elucidated the emergence of fluctuations and multistable states

in phases governed by strong interactions and a vast species pool [56]. However, sev-

eral dimensions of these alternative stable states remain to be thoroughly explored.

Fundamental questions arise, such as the quantity of alternative stable states contin-

gent on interaction strength and species count, the factors influencing the resilience

and attraction basin of these states, the prevalence of coexistence between fluctuating

and stable attractors within identical species sets, and the potential for demographic

noise to initiate glass-like transitions between varied stable states [63]. Another in-

triguing matter is distinguishing the nuanced differences between transitions among

alternative stable states and deterministic chaotic fluctuations [63].

In the realm of ecology, the concept of alternative stable states refers to the idea

that certain ecosystems can exist in multiple, distinct equilibrium conditions that are

characterized by markedly different species compositions or structural attributes [16].

Once an ecosystem is pushed by disturbances or gradual environmental changes past

specific thresholds, it might shift abruptly from one stable state to another, rather

than following a linear response. This phenomenon has been observed in various
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systems, ranging from freshwater lakes transitioning between clear and turbid water

states, to grasslands transforming into deserts or forests [16]. Understanding alterna-

tive stable states is pivotal because these shifts can sometimes be irreversible, or the

ecosystem might require significant interventions to return to its original state [110].

This concept underscores the importance of ecosystem resilience and the potential

consequences of human and environmental pressures on global habitats [110].

Natural ecosystems, comprising specific species sets, can manifest differing yet

stable species compositions over durations [8]. A prevailing debate centers around

whether such multi-stability and community turnovers arise due to environmental

alterations or inherent community interactions [56, 14]. In our pursuit to bridge

theoretical understanding with experimental validation, I will meticulously examine

the behavior of experimental microbial communities within controlled environments.

My observations will bring to light the emergence of biomass-dependent alternative

stable states and the transitions reminiscent of glass-like shifts between these states.

Specifically, initiating communities from diverse species compositions will reveal

uninvadable alternative stable states in high-interaction scenarios. In contrast, in

low-interaction scenarios, most communities are expected to converge towards a uni-

versal attractor [24, 56]. Surprisingly, augmenting the community size, or the total

species number, may not substantially influence the average count of alternative states

[63]. When probing multiple-stable-state communities, a trend is expected to emerge:

states with greater biomass typically exhibit more expansive attractor basins [25].

Furthermore, demographic noise intrinsic to the community, coupled with environ-

mental perturbations, could instigate shifts between alternative states [63, 25]. Such

transitions are notably amplified with an uptick in demographic noise. Conclusively,

our findings will underscore that potent interspecies interactions can foster multiple

stable states in microbial communities skewed towards high biomass. Moreover, var-

ious forms of noise can catalyze transitions between these states, underscoring the

importance of both internal and external factors in shaping community dynamics

[63, 25]. As I look to the future, delving deeper into these intricate dynamics will

be pivotal in enhancing our understanding of alternative stable states and glass-like
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transitions in microbial communities and its broader implications.

4.4 Emergent behaviors in different multi-cellular liv-

ing systems

Our exploration into the realm of microbial ecosystems has unearthed intriguing pat-

terns and behaviors. Historically, researchers have used a multitude of models to

dissect the inner workings of such ecosystems, each with its set of assumptions and

simplifications. A transformative insight from our research is the consistent emergence

of dynamical phases irrespective of the specificities of the models in play. Whether

we dove into the intricacies of the pH model, dissected the Lotka-Volterra framework,

or navigated through the resource-consumer model, we were met with an undeniable

commonality: strikingly analogous phase diagrams [56]. Such widespread congruence

across diverse models hints at a profound model-free universality. This discovery

challenges traditional scientific paradigms, suggesting that beyond the complexity

and diversity in these systems lies an underlying tapestry of foundational principles

that govern behavior. Recognizing this universality serves as a beacon, guiding us to-

wards understanding the very essence of microbial ecosystems, beyond the limitations

of any single model or framework. As we venture deeper into this domain, it becomes

increasingly clear that a holistic outlook, unshackled from model-specific constraints,

offers the most promise in deciphering broad biological patterns and behaviors that

are ubiquitously present across diverse environments and organisms.

Parallel to our microbial explorations, the realm of cancer biology presents itself

as a complex mosaic of cellular interactions and dynamics [67, 88]. Just as microbial

communities teem with a plethora of species, tumors too are a bustling hub of cellular

diversity. From mesenchymal cells and epithelial cells to a myriad of immune cells

[138], each contributes to the elaborate dance of life and death within the tumor

microenvironment [51]. The dynamics within tumors bear striking resemblances to

microbial ecosystems. Each cell type, with its unique role and function, constantly
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interacts, competes, and collaborates with others [138], mirroring the dynamics of

microbial species within their native habitats [67, 88].

Drawing parallels between microbial and tumor ecologies, an exciting frontier

opens up: the application of knowledge from microbial research to decipher the mys-

teries of cancer biology [67, 88]. Microbial communities, with their resilience to en-

vironmental fluctuations, adaptability, and intricate interspecies interactions, serve

as a robust model system [135, 136]. Transposing these insights could empower us

to unravel the nuances of tumor heterogeneity, metastatic tendencies, and even the

puzzle of therapeutic resistances [92]. As diseases like cancer continue to challenge

medical science, an interdisciplinary approach that marries microbial ecology with

cancer biology could be the key to unlocking revolutionary therapeutic interventions

[67, 88]. As we venture ahead, our vision is to seamlessly integrate microbial ecology

with the complexities of cancer biology, carving new pathways in our understanding

and management of cancer and myriad other multicellular systems.
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Table A.1: Experimentally measured interspecies interaction matrix 𝛼𝑖𝑗 under low
nutrients concentrations. Each of the 15 pairs resulting from combinations of six
randomly chosen isolates from different genera (Leuconostoc, Pseudomonas, Yersinia,
Pantoea, Klebsiella, Acinetobacter) in the bacterial library were cocultured for 7 days
(with daily dilutions). We measured the equilibrium abundance 𝑁𝑖 via sample dilution
and colony counting at the end of the experiment. The value of 𝛼𝑖𝑗 was calculated
through the expression 𝛼𝑖𝑗=(𝐾𝑖-𝑁𝑖)𝐾𝑗/(𝑁𝑗𝐾𝑖), where 𝐾𝑖 is the carrying capacity
of species (independently measured as the species abundance in monoculture after
7 dilution cycles). The errors indicate the standard deviation of parameter values
measured in three replicates.

Table A.2: Experimentally measured interspecies interaction matrix 𝛼𝑖𝑗 under
medium nutrient concentrations. Each of the 15 pairs resulting from combinations
of six randomly chosen isolates from different genera (Leuconostoc, Pseudomonas,
Yersinia, Pantoea, Klebsiella, Acinetobacter) in the bacterial library were cocultured
for 7 days (with daily dilutions). We measured the equilibrium abundance 𝑁𝑖 via sam-
ple dilution and colony counting at the end of the experiment. The value of 𝛼𝑖𝑗 was
calculated through the expression 𝛼𝑖𝑗=(𝐾𝑖-𝑁𝑖)𝐾𝑗/(𝑁𝑗𝐾𝑖), where 𝐾𝑖 is the carrying
capacity of species (independently measured as the species abundance in monoculture
after 7 dilution cycles). For competitive exclusion (species i always drive species j to
extinction), it can be inferred that 𝛼𝑖𝑗<1 and 𝛼𝑗𝑖>1. For bi-stability (the high abun-
dant species drives the low abundant one to extinction), it can be inferred that 𝛼𝑖𝑗>1
and 𝛼𝑗𝑖>1. The errors indicate the standard deviation of parameter values measured
in three replicates.
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Table A.3: Experimentally measured interspecies interaction matrix 𝛼𝑖𝑗 under high
nutrient concentrations. Each of the 15 pairs resulting from combinations of six
randomly chosen isolates from different genera (Leuconostoc, Pseudomonas, Yersinia,
Pantoea, Klebsiella, Acinetobacter) in the bacterial library were cocultured for 7
days (with daily dilutions). We measured the equilibrium abundance 𝑁𝑖 via sample
dilution and colony counting at the end of the experiment. The value of 𝛼𝑖𝑗 was
calculated through the expression 𝛼𝑖𝑗=(𝐾𝑖-𝑁𝑖)𝐾𝑗/(𝑁𝑗𝐾𝑖), where 𝐾𝑖 is the carrying
capacity of species (independently measured as the species abundance in monoculture
after 7 dilution cycles). For competitive exclusion (species i always drive species j
to extinction), it can be inferred that 𝛼𝑖𝑗<1 and 𝛼𝑗𝑖>1. For bi-stability (the high
abundant species drives the low abundant one to extinction), it can be inferred that
𝛼𝑖𝑗>1 and 𝛼𝑗𝑖>1. The errors indicate the standard deviation of parameter values
measured in three replicates.
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Appendix B

Figures

Figure B-1: The time series for the biomass of 48 bacterial isolates show that all
species grow to carrying capacity and reach steady state before 24 hours.
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