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Abstract

In an increasingly mobile world, traffic safety poses stark realities. In 2022, roadway
incidents in the U.S. claimed over 38,824 lives, surpassing the fatality rate of the
COVID-19 pandemic within the country. Despite these alarming statistics, under-
standing the overarching patterns of traffic safety presents a complex challenge due
to myriad influencing factors such as driver behavior, roadway network geometry,
weather conditions, and vehicle design.

This study revisits traffic safety from the perspective of statistical physics, positing
universal temporal and memory effects to delve into the internal structure of traffic by
exploring higher-order statistics. The examination of the internal structure enables
the uncovering of near-miss incident risks in congested traffic flow—risks positively
correlated with collision risks derived from historic accident records. By integrat-
ing the complex dynamics of traffic flow, the near-miss risk is ascertained from the
crowdsourced velocity measurements of vehicles, thereby offering a computationally
efficient framework with potential for real-time implementation.

We apply this framework to extensive velocity datasets collected anonymously
across multiple states in the U.S., enabling the derivation of the spatial distribution
of expected near-miss risk on a large scale. Moreover, we assess and compare the
reliability and robustness of these networks, merging graph theory with our physics-
inspired near-miss risk approach. Our findings consistently reveal patterns across
different states, facilitating the identification of the most and least reliable/robust
networks. This framework lays the foundation for a real-time, proactive maintenance
of roadway networks, a major stride towards creating a safer transportation infras-
tructure.

Thesis Supervisor: Franz-Josef Ulm
Title: Professor of Civil and Environmental Engineering
Faculty Director, Concrete Sustainability Hub

3



4



Acknowledgments

As I write this acknowledgment section, one of the last pages of my PhD journey, I’m

overwhelmed with a bittersweet feeling. Though this section stands apart from the

scientific nature of my other writings, it bears a familiar challenge: articulating my

thoughts.

Embarking upon my PhD has been a roller coaster of experiences and emotions.

A defining chapter of this adventure was tragically penned with the outbreak of the

COVID-19 pandemic, which led to a prolonged national lockdown that began in

March 2020. We were thrust into a new reality of online classes, quarantine, and

separation from family, each of which presented unique challenges. Despite these

obstacles, my advisor, role model, and friend, Professor Franz-Josef Ulm, made the

journey more than worthwhile. His boundless scientific curiosity, critical thinking,

and stimulating conversations not only fueled my motivation but also opened new

scientific horizons after every meeting. I hold dear the conversations we had during

our walks in the Killian Court, often accompanied by coffee. I am profoundly grateful

to have been under your guidance, Franz. Your resolute support, inspiration, and

encouragement have indeed been instrumental throughout this journey.

I would also like to express my gratitude to my committee members, Professors

Ali Jadbabaie and Patrick Jaillet, for taking the time to meet with me and providing

invaluable insights through their comments.

As I reflect on my years as a graduate student, the strength I gained from the

constant presence of my parents and sister defies all words and cannot be adequately

expressed. Being thousands of miles apart from family was undeniably challenging,

yet every video call and every message bridged the distances and made me feel as

though you were right beside me. During moments when my research seemed to

falter or when spirits were low, your faith in me, your unconditional love, and your

unwavering support rekindled my drive. From the bottom of my heart, I thank you.

It’s because of you that I have been able to achieve this milestone.

5



6



Contents

1 Introduction 19

1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Societal Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.2 Economic Impact . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Physics of Traffic Flow . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 Data-driven Models for Traffic Safety . . . . . . . . . . . . . . 28

1.3 Research Motivation: Bridging the Gap . . . . . . . . . . . . . . . . . 31

1.4 Research Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Internal Structure of Traffic: Memory Effects for Crowdsourced

Traffic Property Determination 35

2.1 Spatial and Temporal Memory Effects in the NaSch Model . . . . . . 36

2.1.1 Two-Point Correlation Function and Spatial Memory Effects . 37

2.1.2 Velocity Autocovariance Function and Temporal Memory Effects 41

2.1.3 Local Density Autocovariance Function and Temporal Memory

Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Link between Internal Structure and Traffic Density and Stochasticity 48

2.2.1 Fundamental Diagram . . . . . . . . . . . . . . . . . . . . . . 48

2.2.2 Stochasticity-Density Plot . . . . . . . . . . . . . . . . . . . . 49

2.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7



2.3.1 Ergodicity and Entropy . . . . . . . . . . . . . . . . . . . . . 53

2.3.2 Application to Local Density Data . . . . . . . . . . . . . . . 56

2.3.3 Application to Crowdsourced Vehicle Velocity Data . . . . . . 58

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Phase Diagram of Near-Miss Collision Risk in Congested Traffic

Flow 63

3.1 Statistics of Near-miss Events in the Reduced-unit Representation . . 64

3.1.1 Markovianity of Velocity State . . . . . . . . . . . . . . . . . . 65

3.1.2 From Velocity Signal to Near-Miss Risk . . . . . . . . . . . . . 67

3.2 Application to the NaSch Model . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Deterministic Model: p = 0 . . . . . . . . . . . . . . . . . . . 70

3.2.2 Stochastic Model: p 6= 0 . . . . . . . . . . . . . . . . . . . . . 71

3.2.3 Phase Diagram of the NaSch Model . . . . . . . . . . . . . . . 72

3.3 Application to Crowdsourced Vehicle Velocity Data . . . . . . . . . . 77

3.3.1 Direct Comparison: Near-miss vs. Collision . . . . . . . . . . 77

3.3.2 Clustering Analysis . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Network-Level Safety Analysis: Application of Near-Miss Risk Anal-

ysis to Crowdsoruced Data 83

4.1 Network Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Network Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Disturbance Mechanism . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Network Functionality . . . . . . . . . . . . . . . . . . . . . . 87

4.2.3 Disturbance Simulation . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Graph Represenation . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Phase Diagram and Spatial Correlation . . . . . . . . . . . . . 89

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Network Reliability . . . . . . . . . . . . . . . . . . . . . . . . 95

8



4.4.2 Network Robustness . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Conclusion 101

5.1 Summary of Main Findings . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Limitations and Future Perspective . . . . . . . . . . . . . . . . . . . 105

A Nagel-Schreckenberg Cellular Automaton Model 107

B Statistical Foundations of Stochastic Processes 111

B.1 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.1.1 First-Order Moment: Mean . . . . . . . . . . . . . . . . . . . 114

B.1.2 Second-order Moment: Autocorrelation Function . . . . . . . 114

B.2 Stationarity: Strict Sense and Weak Sense . . . . . . . . . . . . . . . 115

B.3 Ergodicity of Stationary Processes . . . . . . . . . . . . . . . . . . . . 116

C Average Headway Estimation from Two-Point Correlation Function117

D Statics of Velocity: Probability Distribution, Transition Matrix, and

Deceleration Probability 121

D.1 Near-Miss Collision Probability . . . . . . . . . . . . . . . . . . . . . 122

D.2 Statistical Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E Determination of the State Transition Matrix using the Autocovari-

ance Function 125

E.1 Dual Definition of Velocity Autocovariance Function Cvv(⌧) . . . . . . 125

E.2 Specification for Ornstein-Uhlenbeck -Type Stochastic Process . . . . 126

F Application to Nagel-Schreckenberg Cellular Automaton Model 129

F.1 Dilute Regime: ⇢ << ⇢
p
c . . . . . . . . . . . . . . . . . . . . . . . . . 129

F.2 Jammed Regime: ⇢ ! 1 . . . . . . . . . . . . . . . . . . . . . . . . . 132

F.3 Congested Regime: ⇢
p
c < ⇢ < 1 . . . . . . . . . . . . . . . . . . . . . . 133

9



F.3.1 Deterministic Model . . . . . . . . . . . . . . . . . . . . . . . 133

F.3.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . 134

G Analytical Solutions for the Binary-state NaSch Model 137

H From Crowdsourced Velocity Signals to Near-miss Risk 141

10



List of Figures

1-1 Road fatalities across the globe. In various continents, motorized acci-

dents account for over half of the road fatalities, with car collisions and

crashes involving motorized two- to three-wheelers being the primary

causes. Figure is adapted from Ref. [1]. . . . . . . . . . . . . . . . . 21

1-2 Macroeconomic impact due to road injuries as a percentage of total

GDP ver the period 2015–2030. It highlights that the United States is

among the nations where the economic burden of road transportation

is substantial, largely owing to the extensive size of its transportation

system. Figure is adapted from Ref. [2] . . . . . . . . . . . . . . . . . 24

2-1 Two-point correlation function of the NaSch-model representing proba-

bility of occupancy: (a) S2(�r) with asymptotes S2(0) = ⇢ and S2(�r !

1) = ⇢
2 for p = 0.5 and vmax = 5; ⇢ = 0.09 < ⇢

p
c is the free flow regime

and shows no correlation with the occupation number of the neighbor-

ing cells for �r  vmax. (b) S2(1) for the congested flow as a function

of ⌘ = (⇢ � ⇢
p
c)/(1 � ⇢

p
c) and p 2 {0, 0.1, ..., .9}; S2(1) ⇠ scales as

S2(1) ⇠ ⌘
↵ with 1  ↵ ⇡ 1 + tanh[0.5(vmax � 1)0.6]  2. . . . . . . . . 40

11



2-2 (a) Velocity autocovariance in NaSch-model decays exponentially, Cvv(�⌧ ) ⇡

�
2
vv exp(��⌧/⌧c), resembling an Ornstein-Uhlenbeck process (vmax =

5, p = 0). (b) Decay time scale ⌧c as a function of ⌘ in the interaction-

dominated regime for p 2 {0.1, 0.2, ..., 0.9}; Velocity approaches mem-

orylessness as traffic density increases with ⌧c ⇡ 1.88 (⌘�0.56 � 1). (c)

Jammed-to-free flow velocity fluctuations v for vmax 2 {4, 6, 8, 10} de-

cays monotonically from 1 (kinetically compressible vehicle speed) at

⌘ = 0 to 0 (kinetically incompressible vehicle speed) upon jamming in

a power form v ⇡ (1� ⌘)� . . . . . . . . . . . . . . . . . . . . . . . 44

2-3 (a) Normalized autocovariance function of local density exhibiting a

distinct linear decay considering vmax = 5, p = 0.3 and |l⇢̃| = 100

for free flow ⇢/⇢
p
c  1, transitioning to congested flow ⇢/⇢

p
c ⇡ 1 and

congested flow ⇢/⇢
p
c > 1; the inset shows the variance of local density

�
2
⇢̃⇢̃ and the black curve is the variance for Bernoulli process �

2
⇢̃⇢̃ ⇡

⇢(1�⇢)/|l⇢̃|. (b) Universal pattern of ⌫/vmax as a function of jamming

probability approximated by ⌫/vmax ⇡ 0.5(⌘̄��⌫ � 1) where �⌫ = 5 ⇥

10�4|l⇢̃|+ 0.31 as shown in the inset. . . . . . . . . . . . . . . . . . . 47

2-4 The event space of the NaSch model: the isotherms of expected velocity

and memory intersect at a unique point only if ⌦ = v̄/vmax + (1 +

v̄)✓  1 where ✓ = (⌧/⌧c + 1)�1/�v is the normalized memory and

vmax = 5. The contours represent the value of the control parameter

⌦. The nonlinear domain of the event space in the NaSch model enables

the evaluation of a velocity signal’s alignment with the NaSch model

heuristics, up to second-order statistics. . . . . . . . . . . . . . . . . . 51

2-5 (a) Velocity and (b) local density stochasticity-density plot showing

the interplay between the first-, second-order moments, occupancy ⇢

and stochasticity parameter p for vmax = 5. Stochasticity-occupancy

(p� ⇢) interaction provides the means to estimate macroscopic traffic

properties, p and ⇢, from two statistical observable, which are v and ⌧c

[Eq. (2.10)] for velocity, and ⇢̃ and ⌫ [Eq. (2.13)]for local density. . . 52

12



2-6 Variation pattern of entropy H(p, ⇢) and its impact on expected rep-

resentative time scale E[Tr] for vmax = 5. Representative time scale is

controlled by entropy and increases as the system becomes more un-

certain, corresponding to higher levels of entropy with more possible

configuration. Entropy degenerates to H(p, ⇢ < ⇢
p
c) = � ln pp(1�p)1�p

for free flow regime, and reaches its upper bound at ⇢ ⇠ ⇢
p
c where veloc-

ity has an almost uniform distribution with H(p, ⇢ ⇠ ⇢
p
c) ⇡ ln(vmax + 1). 55

2-7 (a) Summary of measurements adopted from Ref. [3]; E[V ]/Vmax =

0.47 with Vmax = 120 km/h and E[⇢̃] = 0.22. (b) The normalized

autocovariance function of the local density displays a characteristic

linear decay. The statistical properties of NaSch model allows us to

estimate the expected value of velocity E[V ] from the first- and second-

order moments of the local density. . . . . . . . . . . . . . . . . . . . 57

2-8 Sample analysis: (a) Velocity time history of a vehicle driving on I-95,

a north–south interstate highway in MA, USA, (b) NaSch representa-

tion of velocity profile, (c) evolution of inferred traffic density ⇢ and

transition density ⇢
p
c , and (d) autocovariance functions at two times

(squares and circles represent the autocovariance of velocity measure-

ment and its NaSch representation, respectively). The initial slope of

the autocovariance function is inversely proportional to ⌧c [Eq. (2.9)];

memory of velocity signal is shorter at the higher density. . . . . . . . 60

2-9 Geospatial distribution of (a) traffic density ⇢ and (b) stochasticity

parameter p for the time interval 15:00 to 19:00 pm, on main roads

in Massachusetts, USA, determined from crowdsourced 1 Hz vehicle

velocity recordings (data collected over a 12-month period with Carbin

Educational App [4,5]). . . . . . . . . . . . . . . . . . . . . . . . . . . 61

13



3-1 (a) Graphical representation of velocity state vector ~sT = (0, 1, ..., vmax)

(in NaSch-units), and transition matrix components qi!j for vmax = 5.

(b) Velocity distribution ~⇡ = ~⇡(~s) obtained from the eigenstate analysis

of the transition matrix, q ⌘ qi!j for congested flow below, at and

above the critical jamming probability, ⌘̄crit, at which the deceleration

probability P[ak(t) = vmax] exhibits a maximum. . . . . . . . . . . . . 68

3-2 Behavior of the deterministic NaSch model: (a) the universal increasing

pattern of the transition probability qvmax!0 as a function of jamming

probability [Eq. (F.11)] with different colors representing different

vmax 2 {1, 2, ..., 9} (circles: simulations, squares: far-field behavior);

the inset shows the duality between the transition probability qvmax!0

and the probability of observing standing vehicle: qvmax!0 = P[vk(t) =

0]. (b) Decreasing pattern of probability of observing a vehicle driv-

ing at vmax as jamming probability increases (circles: simulation, lines:

semi-analytical solution [Eq. (F.13)]); the inset shows the power scal-

ing of maximal velocity probability ↵ ⇡ 2 + tanh
p

(vmax � 1)/2. . . . 74

3-3 Approximate behavior of the stochastic NaSch model for different levels

of vmax: (a) approximation of the probability of observing maximum

velocity through decoupling the impact of stochasticty parameter and

jamming probability (the inset shows the behavior of the exponent

of the approximation ⇣ = ⇣0 + ⇣1 tanh(vmax � 1) with ⇣0 = .77 and

⇣1 = .65), and (b) the universal behavior of probability of observing

standing vehicle and transition density as a function of probability

of observing maximum velocity; the bars represent standard deviation

and the lines are semi-analytical power approximations: P[vk(t) = 0] ⇡

1 � P[vk(t) = vmax]1�⌫v and qvmax!0 ⇡ 1 � P[vk(t) = vmax]1�⌫q with

⌫v = .83 tanh(vmax � 1) and ⌫q = tanh(vmax � 1). . . . . . . . . . . . 75

14



3-4 Model-based phase diagram of near-miss collision risk P[ak(t) = �vmax]

in (a) the phase space of the NaSch model (traffic density ⇢, stochastic-

ity p); and (b) in function of the jamming probability ⌘ = (⇢�⇢
p
c)/(1�

⇢
p
c) 2]0, 1[. (c) Maximum near-miss collision risk, max⌘̄(P[ak(t) =

�vmax]), vs. stochasticity parameter p showing the decrease in near-

miss collison risk due to long-range correlations induced by randomness

(Results for vmax = 5. For other vmax values, see Appendix F.) . . . . 76

3-5 The geo-spatial distribution of the logarithm of the expected (a) near-

miss risk, and (b) collision risk. (c) The correlation between the near-

miss and collision risk as a function of traffic density ⇢. The road

segments with a density of approximately ⇢ = 0.2 exhibit the highest

correlation levels, although the correlation is consistently positive. . . 80

3-6 Phase diagram of near-miss and actual collision risk: (a) Correlation

plot of near-miss risk derived from crowdsourced velocity measure-

ments and actual collision risks derived from 2019-21 accident data

for the Commonwealth of Massachusetts [6] (size of squares is pro-

portional to traffic density). (b) Gaussian clustering of traffic density,

near-miss risk and collision probability showing the existence of two

dominant clusters associated with traffic density interfaced by a crit-

ical regime. (c) Phase diagram of near-miss and actual collision risk

highlighting the critical regime in which accident precursors predicted

by the intrinsic near-miss collision risk have the highest likelihood to

turn into actual accidents. . . . . . . . . . . . . . . . . . . . . . . . . 81

15



4-1 Risk-weighted centrality for each edge in the network. The plot depicts

the normalized value of peBe/
P

e Be, where Be indicates the edge be-

tweenness index computed using Ulrik Brandes’ algorithm, and pe is the

near-miss risk. The expected network-scale average of risk-weighted

centrality is calculated as
P

e peBe/
P

e Be for each state. The calcu-

lated averages are: a) California: 10�3.40, b) Massachusetts: 10�2.27, c)

Maine: 10�2.75, d) Ohio: 10�2.86, and e) Oregon: 10�3.10. . . . . . . . 93

4-2 (a) The phase diagram of near-miss risk for different states. A univer-

sal pattern emerges, revealing that the probability of a near-miss risk

peaks at a density of approximately 0.2. It then approaches zero as

traffic veers towards either the jammed or free-flow regime. As indi-

cated in the preceding chapter, this density is anticipated to correlate

most strongly with the probability of collisions. (b) The normalized

spatial correlation between near-miss risks across edges. The correla-

tion function quickly decays and approaches zero (indicating a lack of

correlation) even over short distances. This suggests that the granu-

larity of network discretization offers enough distance for edge failures

to be treated as independent events. This independence allows us to

assume that the causes of near-misses are not identical for adjacent

edges. The shaded area represents the mean value plus and minus one

standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4-3 Network reliability for different states as a function of the normalized

trip length L/Lc, where Lc is the characteristic length of each state,

computed as the square root of its area (Lc =
p
A). Network reliabil-

ity exhibits an exponential decrease as trip length increases. Among

the five states under consideration, Massachusetts demonstrates the

quickest decay, implying it has the least reliable network. Conversely,

California exhibits the slowest decay, suggesting it possesses the most

reliable network. The shaded area represents the mean value plus and

minus one standard deviation. . . . . . . . . . . . . . . . . . . . . . . 98

16



4-4 The expected excess length of trips �̄L after network failure as a func-

tion of original trip length L prior to the failure. The additional trip

length due to network-level failures demonstrates a linear relationship

with the original trip length for short trips (less than 100km). The

slope of this line serves as an indicator of network robustness. Among

the analyzed states, the roadway networks of Massachusetts and Cali-

fornia have the steepest and gentlest slopes, respectively. This implies

that the network in California is the most robust, while the one in

Massachusetts is the least. The shaded area in the plot represents the

5% and 95% percentiles of the data. . . . . . . . . . . . . . . . . . . . 99

A-1 Schematic of the NaSch model of traffic flow. The number of particles

(vehicles) is conserved, with a cyclical/periodic boundary condition.

Vehicles either move ahead to unoccupied cells at different speeds (v >

0) or stay stationary (v = 0), following the prescribed NaSch heuristics. 110

B-1 A simplified illustration of ensemble X(t,!). An ensemble represents

an array of realizations whose statistics are defined by examining the

ensemble at specific time(s) across all the realizations. Assuming sta-

tionarity, the statistical moments of the process remain unaffected by

time lags [Eq. (B.7)]. Additionally, if ergodicity holds, a single sample

path of a stationary process (in the green box) is sufficient to statisti-

cally represent the ensemble’s statistical moments. . . . . . . . . . . . 112

F-1 (a) Autocovariance function for different levels of vmax when half of the

cells are occupied, ⇢ = 1/2, and (b) their corresponding eigenstates ~⇡;

the lines are obtained from NaSch simulations and the squares are

obtained from the far-field analysis. (c) Transition matrix for vmax = 2

obtained from the simulations (left) and far-field analysis (right). . . . 131

17



H-1 Sample analysis: (a) the NaSch velocity representation of two trips, and

(b) their corresponding normalized autocovariance function, Cvv(⌧)/�2
v ,

obtained from the canonical definition (disks), and transition matrix

analysis (squares); the logarithm of transition matrices obtained for

each trip are illustrated as the inset. The velocity signal in green and

black have an average velocity of v̄ = 3 and v̄ = 1.5, respectively, and

their corresponding near-miss risks are 10�2.6 and 10�3.3, respectively. 143

18



Chapter 1

Introduction

1.1 Research Context

In today’s globalized world, road transportation has become a vital component of

our societal infrastructure, generating numerous job opportunities and serving as the

main mode of transport to reach destinations, access resources, and engage with

markets [7–11]. The burgeoning of economies, coupled with rapid urbanization and

increasing demands for mobility, has led to a significant expansion in the global road

transportation network [12]. However, this widespread growth has brought with it an

escalating concern of paramount importance - traffic safety. With its vast societal,

and economic implications, traffic safety forms a substantial challenge in our quest

for a safe and efficient transport system.

1.1.1 Societal Impact

From a societal perspective, the ramifications of traffic safety manifest themselves in

diverse ways that are profound, pervasive, and underscore the urgency of this issue.

The World Health Organization, a leading authority in global health issues, provides

a stark snapshot of the situation [13]. As per their data, road traffic injuries have

ascended the list to become the eighth leading cause of death globally [Fig. 1-1],

and, shockingly, they represent the primary cause of mortality for individuals aged
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between 5 and 29 years. This age group represents a significant portion of society’s

active participants, highlighting the tragic loss of potential contributions to societal

progress. Furthermore, approximately 1.3 million people find their lives prematurely

cut short due to car accidents every year across the globe, translating to an average of

3,287 deaths per day [2, 14]. When viewed through the lens of comparative analysis,

these figures are not far removed from the cumulative Covid-19 deaths reported at the

peak of the pandemic in 2020 [15], highlighting the extent of the human toll brought

about by traffic accidents.

Shifting focus to a more localized setting, the United States presents its own set

of alarming statistics. Approximately, 4.1% of the 300 million registered vehicles find

themselves involved in one of the 5 million police-reported car accidents annually [16].

This leads to a fatality rate of 1.2⇥ 10�4 per registered vehicle [17], or, when taking

into account the overall mileage, the rate of 1.3 ⇥ 10�6 accidents per vehicle miles

driven. At first glance, 1.2⇥ 10�4 may not elicit alarm. However, when this figure is

projected onto the canvas of the vast vehicular landscape and the extensive roadway

network in the United States, the implications rapidly scale up to concerning levels

of significance. These startling statistics serve as a somber backdrop to the urgent

need for effective strategies to enhance traffic safety, a need that, given the scale of

the problem, translates into a significant opportunity for impact on both individual

lives and broader societal health.

20



23%
8%

36%
8%
25%

15%

33%

4%12%

36%

7%

43%

5%

38%

7%42%

15%3%
23%

17%

18%
37%
28%
14%
3%

7%
27%
50%
4%
12%

Car occupants
Motorized 2-3 wheelers
Cyclists
Pedestrians
Other

31%
23%

5%

19%
22%

South-East
Asia

Africa

The Americans

Europe
Eastern

Mediterranean

Western 
Pacific

World

Figure 1-1: Road fatalities across the globe. In various continents, motorized acci-

dents account for over half of the road fatalities, with car collisions and crashes in-

volving motorized two- to three-wheelers being the primary causes. Figure is adapted

from Ref. [1].
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1.1.2 Economic Impact

The significance of the economic implications associated with traffic safety is as pro-

found as it is complex, encapsulating multiple facets that intricately weave together

to create a tangible impact on society at large. This impact parallels, and indeed am-

plifies, with the continuous growth and expansion of our globally interconnected road

transportation systems [18], further heightening the exigency to understand and mit-

igate road safety effectively. At the heart of the matter lie traffic accidents, notorious

for their capability to impose an astronomical economic burden on nations worldwide.

Literature on the impact of road safety and road collisions on the economy includes

studies on the effectiveness of interventions in reducing road injuries [19] and the cost-

effectiveness of these interventions [20], as well as studies that attempt to quantify

the economic strain of road injuries [21–24]. Broadly, the total cost associated with

traffic safety can be bifurcated into direct and indirect costs. Direct economic costs of

car accidents are relatively straightforward to quantify, encompassing expenses asso-

ciated with healthcare provisions to treat victims of accidents, as well as the intricate

web of legal proceedings that often ensue in the aftermath of such incidents. Indirect

costs, on the other hand, are less tangible but equally consequential. These costs

primarily stem from the lost productivity that society incurs when an individual is

rendered incapacitated due to injury or tragically loses their life prematurely, thereby

diminishing their potential contributions to the economic engine. Most methodolo-

gies estimate the economic toll by aggregating the direct and indirect costs of traffic

accidents (cost of illness approach) or by determining the willingness of individuals to

pay to avoid risks (value of statistical life approach). The annual worldwide economic

cost of road accidents is estimated at about $518 billion [25], which can cost most

countries an estimated 1-3% of their Gross Domestic Product (GDP) [2]. Given its

extensive and heavily utilized national roadway network, the United States, along

with other highly industrialized nations, experiences a significant macroeconomic im-

pact due to poor road safety [Fig. 1-2]. The sheer weight of this economic loss throws

into sharp relief the exigent necessity for instituting effective traffic safety measures.
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Looking ahead, the picture becomes even more worrisome. Road transportation net-

works are expected to grow, driven by the demands of burgeoning industries and an

increasingly mobile population. In the absence of successful interventions, this implies

an escalation of the economic encumbrance, thereby emphasizing the pivotal role of

traffic safety within the broad spectrum of our infrastructure.
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equivalent to an annual tax of 0·12% on global output, 
with an average per capita burden of $231.

By World Bank region, the aggregate macroeconomic 
burden of road injuries is highest in east Asia and the 
Pacific with a total economic loss of $560 billion 
(table 2). North America has the second largest 
aggregate total economic loss of $515 billion, but the 
highest per capita loss of $1370 (table 2). This loss 
corresponds to an annual tax of 0·15% on the region’s 
aggregate output. The economic burden of road injuries 
increases as the income group escalates: high-income 
countries bear the greatest burden with a total economic 
loss of $963 billion and a per capita loss of $779 (table 2). 
By contrast, road injuries cost low-income countries 
$11 billion in total and $14 per person (table 2). In terms 
of percentage loss of (cumulative) GDP, all countries 
have a relatively similar burden: 0·106% of GDP 
for high-income countries, 0·120% for low-income 
countries, and 0·138–0·144% for middle-income 

countries (table 2). Discounted estimates by World Bank 
region and World Bank income group are shown in the 
appendix (pp 10–11).

Road injuries resulted in 70 million disability-adjusted 
life-years (DALYs) worldwide in 2015.21 The economic 
burden is not distributed in proportion with population 
size and DALYs (table 3). For example, south Asia 
accounts for 23·8% of the DALYs, but only 6·7% of the 
economic loss, whereas North America accounts for only 
3·9% of the DALYs, but 28·6% of the economic loss 
(table 3). Notably, despite the relatively low economic 
burden of road injuries in low-income and middle-
income countries (46·4% of the global economic loss), 
the disease burden, as measured in DALYs, is very large 
(89% of global DALYs; table 3).

We also explored the importance of treatment costs in 
the economic burden of road injuries. A previous 
empirical analysis35 produced a bell curve when plotting 
traffic fatalities against GDP. Given that accident and 

Figure 1: Macroeconomic burden due to road injuries in 2015–30 (in billions of US$ with constant prices as of 2010)
Grey areas represent countries with insufficient data.

Figure 2: Macroeconomic burden due to road injuries as a percentage of total GDP in 2015–30
Grey areas represent countries with insufficient data. GDP=gross domestic product.
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Figure 1-2: Macroeconomic impact due to road injuries as a percentage of total GDP

ver the period 2015–2030. It highlights that the United States is among the nations

where the economic burden of road transportation is substantial, largely owing to the

extensive size of its transportation system. Figure is adapted from Ref. [2]
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1.2 Research Background

The substantial impact of road transportation has motivated scientific investigation

into the inherent patterns within traffic. The dynamics of traffic and the possibility to

quantify risk of accident can be viewed from two distinct perspectives: (i) the physics

of traffic flow, and (ii) data-driven models. While the physics of traffic involves

theories that attempt to understand interactions at multiple scales, from vehicle-to-

vehicle interaction to macroscopic properties, data-driven models use mathematical

models and machine learning techniques to identify the key predictors of accidents

using large data sets and records of accidents.

1.2.1 Physics of Traffic Flow

The physics community aims to propose models that elucidate the fundamental dy-

namics of traffic at multiple scale, from an individual driver to macroscopic properties.

At their core, these models typically begin by treating vehicles as particles that inter-

act with each other. This assumption gives rise to complex behavior of many-body

systems, which offers insight into the intricate interactions seen at various scales in

traffic, including the occurrence of rare events, shock waves, and phase transition.

Physics-based models of traffic flow often draw parallels with particle physics,

providing a theoretical foundation for the interpretation of traffic dynamics as the

collective behavior of individual particles. Specifically, traffic resembles a many-body

system of interacting particles exhibiting characteristic internal structures at different

levels of density. The most distinctive characteristic of traffic flow is the phase transi-

tion. At low density, in what is known as the free flow state, particles can move freely.

However, as density increases, vehicles begin to interact with each other, leading to

the formation of traffic jams, thereby transitioning into the congested regime [26–28].

This transition is akin to the gas-liquid transition, where the free flow and congested

regime can be compared to gas and liquid states, respectively [29]. Traffic jams often

exhibit nonlinear wave behaviors similar to solitons, triangular shocks, and kinks,

which are commonly described by equations such as the Korteweg-de-Vries (KdV),
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Modified KdV (MKdV), and Burgers equations [30–33]. From a physics perspective,

accurately modeling the internal structure of traffic flow and reproducing its charac-

teristics at different time and length scales require a thorough understanding of the

interplay among individual vehicles, traffic density, boundary conditions, and all the

other external forces that could influence not only individual driver behavior, but

also the collective dynamics of the vehicles. In pursuit of this understanding, various

models have been proposed subsequent to the pioneering works of Biham et al. [34],

Nagel and Schreckenberg [35], and Kerner and Kohnhauser [36] aiming at explaining

the wide array of physical phenomena observed in different traffic settings - from ur-

ban zones to single and multi-lane traffic, freeways, and bottlenecks. Broadly, these

microscopic traffic models can be classified into one of the three categories which ap-

proach physics of traffic from different perspectives: car-following models, gas-kinetic

models, and cellular automata models.

Car-following Models

The car-following model represents one of the earliest categories of traffic models that

are continuous in both time and space. In these models, the behavior of a vehicle

is determined by the car directly in front of it [37], the so-called “follow the leader”

approach [30]. The foundational concept of these models is that a driver adjusts their

speed in response to the positioning of nearby vehicles. In particular, the velocity of

any given vehicle is determined by an optimal velocity function, describing the ideal

speed a vehicle should maintain, taking into account its headway (the distance to

the car in front) [37–39]. However, early optimal velocity models often overlooked

the driver’s response to the relative velocity of the vehicle ahead. As a result, these

models predicted an increased occurrence of collisions with increased delay times,

which are the periods required for drivers to perceive, process, and respond to changes

in the preceding vehicle’s movement. Further modifications have been introduced to

optimal velocity models to boost their performance and more accurately replicate

real-world phenomena [40, 41]. For instance, one of the most commonly-used models

is the Intelligent Driver Model (IDM), which takes into account relative velocity
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and reproduces realistic patterns under controlled conditions [42–44]. Generalized

models have also been proposed to take into account multiple types of vehicles [45],

incorporate the behavior of the vehicle behind in the optimal velocity function [46],

or to include the impact of the next-nearest-neighbor interaction [47]. While these

models provide a good description of the microscopic behavior of traffic, they often

fail to give a proper macroscopic description of the system such as the fundamental

diagram [48]. Additionally, the complexity of these models, with their extensive

parameters, requires data-intensive calibration procedures [49–51].

Gas-kinetic Models

In this class of models, vehicles are considered as interacting gas particles [52, 53].

The foundation of this approach was laid by Prigogine and Herman, who applied the

Boltzmann equation to traffic flow [54]. Relying on the same theoretical foundation,

a generalized gas-kinetic model was later proposed to incorporate different personali-

ties of drivers [55]. Essentially, these models are generally characterized by variables

such as passing probability, desired velocity distribution function, relaxation time,

and inter-particle interaction. They have been instrumental in investigating complex

traffic phenomena, including the hysteretic phase transition [52], power-law platoon

formation akin to aggregation phenomena [56–59], and the dynamic growth and evo-

lution of traffic congestion [60]. Moreover, gas-kinetic models have been extended to

encompass two-dimensional flow for urban and multi-lane traffic flow [61–63]. De-

spite their utility, gas-kinetic traffic models encounter challenges due to their sim-

plified assumptions, computational complexity, calibration and validation difficulties,

sensitivity to input parameters, and a perceived lack of realistic features.

Cellular Automata Models

Cellular automata (CA) models employ a discretized approach for traffic representa-

tion, partitioning space into cells and time into time steps. These models typically

use heuristic rules for particle movements, eschewing the use of differential equations

common in gas-kinetic and car-following models. The CA models, despite having
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fewer parameters, successfully emulate traffic attributes at both micro and macro lev-

els [64–67]. The Nagel-Schreckenberg (NaSch) model is a one-lane, collision-free CA

traffic model with periodic boundary conditions [35,68–71], which serves as the back-

bone of many other refined traffic CA models. The NaSch model’s simplicity belies

its capability to simulate critical traffic features like backward-moving shock waves,

the fundamental diagram of traffic, and the internal structure of traffic flows [72–74].

Given its computational efficiency and promising results, the NaSch model has seen

numerous modifications, allowing for a greater range of applications. Extensions in-

clude adaptations for multi-lane roads [75,76], urban traffic scenarios [77,78], highways

with junctions [79], at-grade roundabout crossings [80], and interactions between on-

ramps and main roads [81]. These enhancements reflect the model’s flexibility and

potential in addressing diverse traffic conditions.

1.2.2 Data-driven Models for Traffic Safety

Given the recent advancements in data analytics and data collection methodologies,

data-centric approaches have been proposed to understand the patterns in vehicu-

lar accidents [82–85]. Data-driven models are contingent upon the examination of

multidimensional collision datasets. These evaluations employ statistical methods

and machine learning techniques to decipher the parameters that demonstrate the

strongest correlation with collision incidences. Following the identification of these

critical parameters, statistical models are then formulated with the objective of pre-

dicting areas or conditions that are associated with a heightened risk of collisions.

Identification of Risk Factors

Early studies on driver fatigue have identified key factors such as irregular shifts,

long load wait times, starting the workweek tired, difficulty in finding rest spots, and

scheduling practices to be linked to fatigue and risk of accidents [86, 87]. Conditions

like obstructive sleep apnea, sleep debt, and excessive daytime sleepiness have also

been associated with increased accidents, whereas breaks and naps have been found
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to decrease them [88]. Fatigue risk have shown to be positively correlated with events

such as hard braking via automatic data collection [89]. Furthermore, the signifi-

cant impact of fatigue, highlighted by controlled experiments alongside observational

studies, has led to developments like the FAST driver scheduling optimization al-

gorithm [90] designed to reduce fatigue. In addition to fatigue, distracted driving,

especially due to mobile phone use, has been recognized as a significant contributor

to accidents. With an 11% increase in cell phone usage leading to quadrupling crash

chances, distractions account for a significant portion of accidents [91]. Distraction-

related fatalities rose by 28% between 2005 and 2008 [92], and a substantial percent-

age of crashes and near-crashes involved drivers performing non-driving tasks [93,94].

Consequently, countries have implemented laws and companies have adopted policies

against distracted driving, with technologies being developed to enforce safe driving

behavior.

Several external factors, such as weather conditions, traffic flow, and road geome-

try, significantly influence the probability and severity of crashes [95–97]. The crash

risk during snowy seasons was found to be twice as high as in dry seasons, poten-

tially influenced by the interaction between icy road surface conditions and steep road

segments [98]. Adverse weather conditions coupled with critical roadway conditions

were also found to increase crash probability significantly, with common predictors

like precipitation and average speed in both single-vehicle and multiple-vehicle crash

models [99]. Among various factors, the percentage of home-based work production

emerged as a significant predictor for accident risk [100]. Depending on crash severity

levels, the effect of environmental variables was found to vary; while adverse weather

conditions generally increase crash risk, they potentially reduce the chance of crashes

resulting in injuries and fatalities [97]. These findings underline the intricate interplay

of these external factors in shaping crash likelihood and severity.

Statistical and Predictive Modeling

Traffic safety research predominantly employs retrospective case-control studies, where

data analysis leverages logistic regression or alternative classification models [95, 96,
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101–105]. Within these studies, "crashes" are defined as cases, and "non-crashes" as

controls. With the latter considerably outnumbering the former, a system of align-

ing cases with multiple controls is required [106–109]. Although methodologies may

vary, matching ratios can escalate up to 10:1 in the alignment of non-crashes to

crashes [110–113].

Critical contributing factors to accident likelihood have been identified across var-

ious research initiatives. Safety has been revealed as a nonlinear function of traffic

flow, with parameters such as speed limits and precipitation impacting accident fre-

quency significantly [95]. Factors such as speed variation in the vicinity of the crash

site, speed difference, average traffic volume, and average speed have been spotlighted

as contributors to accident odds [96]. Detailed analysis of rear-end crashes have iden-

tified peak hour, high volume upstream, low speed downstream, and high congestion

index downstream as important influencers [101]. Classification and regression trees

(CART) have been instrumental in distinguishing high-risk and low-risk situations,

achieving a success rate of 75% for high-risk scenarios [102]. Subsequent research

leveraging a multilevel perception neural network identified occupancy downstream

and average speed upstream as key factors [106]. Logistic regression and penalized

maximum likelihood approaches found average speed as a significant determinant of

accident risk [107]. A proposal for a frequent pattern (FP) tree for variable selection

suggested 10-minute intervals as more efficient than 5-minute intervals [108]. Imple-

menting a Markov model highlighted a non-linear relationship between speed and

risk [109]. Exploration of weaving impact indicated factors such as speed at the be-

ginning of the weaving segment, difference in speed between the start and end, and

the logarithm of traffic volume as noteworthy variables [103, 104]. A combined Pois-

son regression and logistic regression model surpassed standalone models by offering

a higher receiver operating characteristic (ROC) curve [104].

30



1.3 Research Motivation: Bridging the Gap

A recent article published by the New York Times, entitled “The Exceptionally Amer-

ican Problem of Rising Roadway Deaths", draws attention to a critical and counter-

intuitive trend in road safety [114]. The article reports an increase in fatal car acci-

dents in countries like the United States, Switzerland, and Ireland during the Covid

pandemic period, a time when roads were ostensibly emptier. This rise in road fatali-

ties, even with fewer vehicles on the road, underscores the complexity of traffic safety

and raises questions about our current understanding of accident causality. It points

out that the causes of car accidents extend beyond first-order descriptors of traffic

such as the mean traffic density, and require a higher-order analysis of the internal

structure of traffic.

In this light, our research motivation is shaped by the need to develop an en-

hanced understanding of the internal structure of traffic; that is a more granular

insight into the complex interactions that govern traffic flow and occurrence of rare

events and accidents. The aim is to bridge the gap that exists between physics-

based traffic modelling and data-driven predictive modelling of accident collisions.

While powerful in simulating complex traffic dynamics, physics-based modelling of-

ten overlooks safety considerations, including the prediction of collision risks. On the

other hand, data-driven predictive modelling, while exhaustive in its consideration

of accident factors, falls short in integrating the internal structure and interactions

modelled in physics-based traffic studies. Our research intends to provide the hand-

shake between these two disparate approaches, relating the internal traffic structure

to accident precursors, comparing it with historical collision data, and applying this

enriched framework to large-scale roadway networks. This approach is expected to

provide a more comprehensive understanding of road transportation safety, thereby

facilitating the development of effective measures to prevent road fatalities.
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1.4 Research Significance

The findings from this research play a pivotal role in enhancing traffic safety, serv-

ing as a bridge connecting physics-based traffic modeling with data-driven predictive

methods. By examining the intricate structure of traffic via statistical physics and

high-order statistics, the study provides a thorough comprehension of the complex

interplay that controls traffic movement and the onset of extreme incidents. The

proposed framework is capable of predicting the risk of near-miss events in congested

traffic flow, a factor that is positively correlated with collision risks obtained from

the historic accident records. This proactive approach to safety, facilitated by the

integration of real-time velocity data, has the potential to prevent accidents before

they happen, improving traffic safety on a large scale. Furthermore, by assessing

the reliability and robustness of roadway networks, the study offers beneficial in-

sights for forward-looking infrastructure maintenance, aiding transportation authori-

ties and urban planners in making informed decisions. The outcomes of this research

have far-reaching implications for a wide range of stakeholders, including transporta-

tion authorities, urban planners, traffic safety researchers, the automotive industry,

insurance companies, and the everyday public, ultimately leading to safer roads and

enhanced driving experiences.

1.5 Thesis Outline

To achieve our research goals, we initiate our investigation into the internal structure

of traffic in Chapter 2. We start by determining the conditions that allow us to con-

sider traffic flow as a stationary ergodic random process over properly chosen time

and length scales. We demonstrate that the two-point correlation function of vehicle

occupancy provides access to spatial memory effects, such as headway, and the veloc-

ity autocovariance function reveals temporal memory effects, such as traffic relaxation

time and traffic compressibility. We elucidate that this internal structure not only

offers insight into the long-range correlations in the system but also contains critical
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information relevant to the spatial and temporal mapping of traffic density, mean

velocity, and driver behavior from individual driver velocity recordings. Particularly,

under the provision of ergodicity and stationarity, the stochasticity-density plots en-

able a direct determination of traffic properties from crowdsourced measurements of

vehicle velocities.

In Chapter 3, we utilize traffic’s internal structure to introduce accident precursor

metrics. We show that the statistics of accident precursors can be mapped onto a

phase diagram that elevates observables, such as traffic density and velocity fluctu-

ations, to a predictive metric of accident risk. To this end, we derive the near-miss

collision risk from the velocity state transition matrix, considering the excessive decel-

eration of particles in steady-state traffic flow. We show that there exists an intrinsic

near-miss collision risk when we apply the developed methodology to model-generated

and crowdsourced velocity signals. It is confined to congested flow, predicts the high-

est risk of actual collisions, and decreases with increasing randomness in driver be-

havior, a feature it has in common with other many-body systems with long-range

correlations triggered by randomness.

In Chapter 4, we extend the methodologies and outcomes from Chapters 2 and 3 to

large-scale crowdsourced velocity data across various states in the United States. By

visualizing the roadway network as a graph, we provide deeper insights into near-miss

distribution and statistics, moving beyond the fundamental representations. In this

context, we study the occurrence patterns of near-miss events along paths of varying

lengths, integrating both the spatial distribution of near-miss risks along the network

and the network’s topology. Specifically, we examine the reliability and resiliency of

roadway networks at state scale, focusing on their ability to sustain functionality and

connectivity amid potential disruptions.

Finally, Chapter 5 serves as the culmination of our preceding efforts, as we sum-

marize the main findings, limitations, and future directions of this work.
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1.6 Summary

In conclusion, the issue of traffic safety is more relevant today than ever before. As

the reach of our road transportation networks widens, the challenge of ensuring safety

on the roads scales up correspondingly. concerted research efforts and innovative

solutions. Despite significant progress in recent decades, traffic-related fatalities and

injuries remain unacceptably high, accentuating the urgent need for addressing this

issue with renewed vigour and a more profound understanding of its complexities.

The multifaceted problem of traffic safety, deeply rooted in the fabrics of our society

and economy calls for development of a physics-inspired framework which sheds light

into the patterns of traffic safety from the internal structure of traffic.
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Chapter 2

Internal Structure of Traffic: Memory

Effects for Crowdsourced Traffic

Property Determination

It has long been recognized that traffic exhibits complex dynamics of a many-body

system from free flow to jamming, which defies simple averaging rules [35,64,69,115,

116]. Analogous to various interacting many-body systems - including ideal gases,

galaxy clusters, flock of birds, and nuclear systems composed of protons and neutrons

- traffic too manifests characteristic structural behaviors at micro, meso, and macro

scales. This includes short- and long-range interactions, statistics of specific events in

traffic flow, and first-oder descriptors which are pivotal in the spatial and temporal

representation of traffic density, average velocity, and driver behavior. These features

are central mobility indicators amid the backdrop of an ever-increasing demand for

reliable navigation systems designed to mitigate intrinsic trade-offs between mobility,

safety and sustainability of our road networks.

In this chapter, we hypothesize that the internal structure of traffic holds critical

information about the “mood” of the road. We explore this hypothesis by considering

the NaSch-model as a stochastic process with intrinsic homogeneity which stems from

the analogous collective random behavior of drivers and the periodic boundary con-

dition of the system. We demonstrate that, owing to the unique internal structure of
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the NaSch-model, memory in a vehicle’s velocity time history provides the handshake

between velocity fluctuations and traffic properties. Furthermore, we elaborate on

the universal structural patterns aid in deriving macroscopic variables such as traffic

density, mean velocity, and driver behavior from individual driver velocity recordings.

This approach is complementary to prevalent navigation systems that approximate

traffic density using user count and mean real-time vehicle velocity measurements,

often sourced spatially via devices like smartphones to generate traffic flux estimates,

the so-called floating car data [117]. These techniques, however, are data-intensive

and often associated with high costs. Conversely, our proposed method capitalizes on

the intrinsic traffic patterns, presenting a more cost-effective, and real-time solution

using crowdsourced measurements.

2.1 Spatial and Temporal Memory Effects in the NaSch

Model

Among the many traffic flow models ranging from continuum to agent-driven ap-

proaches [118], the Nagel-Schreckenberg (NaSch) cellular automaton model [35] has

emerged as a powerful tool not only to reproduce critical features of traffic flow

[68], such as backward moving shock waves [72], and the fundamental diagram of

traffic [119], but foremost to track the internal “model” traffic structure by means

of simulations [70, 120–123]. Of particular advantage is the apparent simplicity

of the NaSch-model heuristics as a discrete lattice-gas-like model — acceleration

vj = min(vj + 1, vmax); deceleration vj = min(dj, vj) (with dj the headway); and

random deceleration vj = max(vj � 1, 0) with probability p — which permit an up-

date of the j
th vehicle position xj ! xj + vj in units of cells (or integer velocities)

in the cellular automaton (for a more comprehensive review of the model, and its

implementation details, see Appendix A). In addition to vmax, driver behavior in the

NaSch-model is condensed into the stochasticity parameter p, bounding the maxi-

mum speed of vehicles in free flow. Indicative of the intrinsic unpredictability in
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driver behavior, the stochasticity parameter drives fluctuations of vehicles’ velocity,

flux and occupancy, intrinsic to the internal model traffic structure captured by the

NaSch-model. The random velocity fluctuations inherent in the NaSch model permit

us to interpret it as a stochastic process. For a fundamental review of stochastic

processes, readers are encouraged to refer to Appendix B.

Focusing on the NaSch mode, we start investigating the internal structure by

ascertaining spatial and temporal memory effects in form of unique scaling relations

through the application of the two-point correlation function to cell occupancy, and

the velocity autocovariance function, respectively.

2.1.1 Two-Point Correlation Function and Spatial Memory Ef-

fects

The two-point correlation function is a statistical tool used to describe the spatial

structure/texture of a material or a medium [124, 125]. For a random medium, such

as a textured material or a turbulent fluid, the two-point correlation function can

provide information about the degree of disorder and the characteristic length scales

of the medium’s internal structure. Herein, we apply the two-point correlation to

cell occupation numbers to gain insight into the second-order spatial structure of the

model [Fig. 2-1.(a)]. Formally,

S2(r1, r2) = E[I⌘(r1, t)I⌘(r2, t)] (2.1)

where E[.] and ⌘ respectively denote the ensemble average operator and jamming

random variable, and the binary cell occupation number I⌘(r, t) = 1 if cell r is oc-

cupied at time t, otherwise I⌘(r, t) = 0. In the context of random media theory,

the occupation number serves as a broad indicator of the medium’s phase such as

solid, fluid or void. Given stationarity and ergodicity of the system, the first-order

moment of the occupation number remains invariant over time, and is equal to the

traffic density ⇢, which corresponds to the porosity in the context of porous materials,

i.e., ⇢ = E[I⌘(r, t)]. Furthermore, the two-point correlation function degenerates to
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S2(r1, r2) = S2(�r = |r2� r1|) = E[I⌘(r, t0)I⌘(r+ �r, t0)] which represents the autocor-

relation of a snapshot of the occupation numbers at a given time t0. Specifically, the

stationarity of the process implies that the two-point correlation function does not

depend on the absolute values of r1 and r2, but is rather a function of the lag between

the two, i.e., �r = |r2�r1|; that is, S2(r1, r2) = S2(r3, r4) as long as |r2�r1| = |r4�r3|.

The ergodicity, on the other hand, implies that a snapshot of the system, referred to

as a realization of the ensemble, can statistically represent the entire ensemble if the

system is sufficiently large. The bounds of the two-point correlation function S2(�r)

are obtained by examining the asymptotic behavior of the function as [126],

S2(�r = 0) = ⇢; S2(�r ! 1) = ⇢
2 (2.2)

Specifically, the function’s behavior at the origin r = 0 is derived from the binary

nature of the occupation number, allowing for the replacement of the expected value

operator with probability operator. Conversely, the function’s behavior at r ! 1

is obtained from the statistical independence between occupation numbers at large

spatial lags, i.e., lim�r!1 E[I⌘(r, t0)I⌘(r + �r, t0)] = E[I⌘(r)]E[I⌘(r + �r)]. A critical

information about the internal traffic structure is provided by the slope of S2 at the

origin in terms of the chord length `c [127],

dS2

d�r
|�r=0 = �S2(0)

`c
(2.3)

The chord length serves as a measure of the intrinsic structure of a random process.

For instance, in texture characterization of random porous materials, the chord length

represents the mean linear distance between the pores [126, 128]. Applied to traffic,

the chord length defines the probability of the immediate neighboring cell (�r = 1) of

an occupied cell to be occupied or not:

P[I⌘(r + 1, t0) | I⌘(r, t0) = 1] =
S2(1)

⇢
= 1� 1

`c
(2.4)
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where P[.] stands for the probability operator. In free flow `c = 1, and hence P[I⌘(r+

1, t0) | I⌘(r, t0) = 1] = 0, whereas in complete jamming S2(1) = ⇢, and thus 1/`c ! 0.

In between these asymptotes, jamming transition occurs at a critical occupancy ⇢
p
c .

More specifically, when plotted against the probability of the subset ⌘ 2 N to be part

of a cluster of jammed vehicles, that is, ⌘ = P[⌘ \ ⇢ > ⇢
p
c ] ⇡ (⇢� ⇢

p
c)/(1� ⇢

p
c) 2 [0, 1],

we find from simulations that the occupation probability of the next cell neighbor

scales as [Fig. 2-1.(b)],

S2(1) = ⌘
↵; ↵ 2 [1, 2] (2.5)

The exponent ↵ depends on vmax [inset of Fig. 2-1.(b)] for all vmax and p, when ⇢
p
c

is estimated from ⇢
p
c = vJ(vJ + vF )�1 where vF = vmax � p and vJ = 1 � p stand

for, respectively, the average free flow velocity and the analytic upper bound of the

jammed dissolution velocity of the NaSch-model [129]. Moreover, in the congested

regime, we find that S2(�r) converges rapidly for �r > 1 to the asymptotic value

S2(�r ! 1) = ⇢
2 [Fig. 2-1.(a)]. This is indicative of statistical independence of

occupancy of non-adjacent cells, much akin to a Markov process, that is:

E[I⌘(r, t0)I⌘(r + �r, t0)] ⇡ E[I⌘(r, t0)]E[I⌘(r + �r, t0)] = ⇢
2 (2.6)

for �r > 1 and ⌘ > 0. This shows that the underlying spatial ergodicity and stationar-

ity of the NaSch-model give rise to traceable spatial memory effects, which will turn

out to be critical for linking internal structure to traffic flow properties. For instance,

taking into account the Markovian property of occupancy I⌘, the average headway

of a vehicle can be estimated from the two-point correlation function (for derivation,

see Appendix C):

E[d] = d =
1

S2(0)
� 1 (2.7)

with S2(0) = ⇢.
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Figure 2-1: Two-point correlation function of the NaSch-model representing proba-

bility of occupancy: (a) S2(�r) with asymptotes S2(0) = ⇢ and S2(�r ! 1) = ⇢
2 for

p = 0.5 and vmax = 5; ⇢ = 0.09 < ⇢
p
c is the free flow regime and shows no correlation

with the occupation number of the neighboring cells for �r  vmax. (b) S2(1) for the

congested flow as a function of ⌘ = (⇢� ⇢
p
c)/(1� ⇢

p
c) and p 2 {0, 0.1, ..., .9}; S2(1) ⇠

scales as S2(1) ⇠ ⌘
↵ with 1  ↵ ⇡ 1 + tanh[0.5(vmax � 1)0.6]  2.
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2.1.2 Velocity Autocovariance Function and Temporal Mem-

ory Effects

A second quantity of interest to ascertain temporal memory effects in the internal

structure is the velocity autocovariance function. This function is formulated as the

expected value, taken over an ensemble, of the product of the velocity’s deviation

from its mean value at two distinct time instances separated by a time delay, �⌧ . In

essence, it provides a statistical measure of the temporal correlation in the velocity

fluctuations, thereby indicating the persistence of such fluctuations over time. For

stationary processes, the canonical definition of this function thus reads,

Cvv(�⌧ = |t2 � t1|) = E[v(t1, ⇣)v(t2, ⇣)]� v
2 (2.8)

where v(t, ⇣) represents velocity (in NaSch-units) as a stochastic process, while ⇣

denotes a random event with P[⇣] probability of occurrence and v = E[v(t, ⇣)] its

mean value. The autocovariance function quantifies the correlation between velocity

and itself at different points in time, providing insight into the temporal structure.

From the definition [Eq. (2.8)], one can realize that (i) the autocovariance function

is symmetric around the origin (Cvv(�⌧ ) = Cvv(��⌧ )), and (ii) the maximum value

occurs at lag zero �⌧ = 0, which is the variance of the process �
2
vv. A rapid decay

of the autocovariance function to zero indicates that the process exhibits short-term

dependencies, implying a low memory process. Conversely, a slow decay suggests the

presence of long-range correlations, indicative of a process with strong memory.

In free flow, the velocity variation of a single vehicle resembles a Bernoulli process

of velocity trials vmax and vmax � 1 with probabilities 1 � p and p, respectively.

Thus, the free-flow velocity variance reads �
2
vv,F = Cvv,F (�⌧ = 0) = p(1 � p) and

Cvv,F (�⌧ 6= 0) = 0 (due to the independence of trials in a Bernoulli process). In

contrast, upon jamming [Fig. 2-2.(a)], a distinct time memory effect builds up similar

to Ornstein-Uhlenbeck stochastic processes [130–132], which fades exponentially from

Cvv(�⌧ = 0) = �
2
vv to Cvv(�⌧ ! 1) = 0. Analogous to the chord length in the two-

point correlation function [Eq. (2.3)], we capture the time memory effect in form of
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a characteristic decay time, ⌧c, from the slope of the autocovariance function,

dCvv

d�⌧
|�⌧!0 = �Cvv(0)

⌧c
(2.9)

where Cvv(0) = �
2
vv. The velocity is expected to have the strongest memory upon

transitioning from free flow to jammed flow, and to reduce to zero (the so-called

memoryless process) for fully jammed traffic. In between these asymptotes, we find

from simulations that the decay time, ⌧c, scales with the jamming probability, ⌘ =

P (⌘ \ ⇢ > ⇢
p
c) [Fig. 2-2.(b)] as ⌧c ⇠ ⌘

��v and can be approximated by,

⌧c ⇡ ⌧̂c(⌘
��v � 1) (2.10)

where ⌧̂c = 1.88 and �v = 0.56 are fitting parameters. The ⌧c isotherm, which captures

all (p, ⇢)-pairs with same ⌧c, reads as p = (1�⇢(1+vmax)+vmax✓v)/(1�2⇢+✓v) with

0  ✓v = (⌧c/⌧̂c + 1)�1/�v  1 and ✓v  ⇢  (1 + vmax✓v)/(1 + vmax). The universal

decay pattern of memory suggests that the correlation between velocities at different

time lags is invariant with respect to the system parameter vmax, and, instead, is

exclusively a function of the system’s congestion level. Additionally, memory exhibits

a behavior indicative of first-order phase transitions during the transition from free

flow to congested regime, a characteristic bearing remarkable similarity to transitions

observed in liquid crystals [133]. Furthermore, akin to the kinetic theory of gases,

we define a kinetic compressibility of vehicle speed from the expected value ratio of

jammed-to-free flow velocity fluctuations [Fig. 2-2.(c)]:

v =
E[v2]
E[v2F ]

; E[v2F ] = p(1� p) + v
2
F (2.11)

The kinetic compressibility, v, represents the adaptability of a medium’s density

under changing conditions. When the system is unimpeded or in free flow (⇢  ⇢
p
c),

the kinetic compressibility is at its maximum (v = 1), signifying full compressibility.

However, as the jamming probability ⌘ increases, v diminishes according to a power-

law relationship as v ⇡ (1 � ⌘)�, eventually reaching zero at maximum density
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(⇢ = 1), a state indicating incompressibility. This power-law decay is controlled

by the exponent � = �(p), which depends on stochasticity parameter [inset of Fig.

2-2.(c)], linking the system’s randomness to its compressibility behavior.
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Figure 2-2: (a) Velocity autocovariance in NaSch-model decays exponentially,

Cvv(�⌧ ) ⇡ �
2
vv exp(��⌧/⌧c), resembling an Ornstein-Uhlenbeck process (vmax = 5, p =

0). (b) Decay time scale ⌧c as a function of ⌘ in the interaction-dominated regime

for p 2 {0.1, 0.2, ..., 0.9}; Velocity approaches memorylessness as traffic density in-

creases with ⌧c ⇡ 1.88 (⌘�0.56 � 1). (c) Jammed-to-free flow velocity fluctuations v

for vmax 2 {4, 6, 8, 10} decays monotonically from 1 (kinetically compressible vehicle

speed) at ⌘ = 0 to 0 (kinetically incompressible vehicle speed) upon jamming in a

power form v ⇡ (1� ⌘)�
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2.1.3 Local Density Autocovariance Function and Temporal

Memory Effects

We proceed by exploiting memory effects in local density ⇢̃ defined as the traffic den-

sity on a randomly selected subset of adjacent cells of the system l
⇣
⇢̃ with a prescribed

size of |l⇢̃|; that is, ⇢̃(t, ⇣) =
P

j2l⇣⇢̃
I⌘(j, t)/|l⇢̃| where |l⇢̃| is significantly smaller than

the system size to be representative of local properties. Conservation of system-wide

(global) density ⇢ results from the system’s periodic nature as the number of particles

is a conserved quantity. This, however, doesn’t apply to the localized density, which

behaves as a random process. Localized density variation originates from the unequal

rates of vehicle influx and efflux in the subset of cells, signifying the imbalance between

vehicles entering and departing the subset. Nonetheless, the local density maintains

an expected value of ⇢, since, on average, the total number of vehicles within that

subset is proportional to the total number of vehicles in the system. Nonetheless,

the stationarity inherent in the overall process induces stationarity in local density

behavior for sufficiently large local road subsets.

To understand the temporal structure , we study the second-order moment of the

local density as a stochastic process. To this end, the autocovariance function of local

density, C⇢̃⇢̃(|t1 � t2| = �⌧ ) = E[⇢̃(t1, ⇣)⇢̃(t2, ⇣)] � ⇢
2, adopts a characteristic linear

behavior illustrated in Fig. 2-3.(a). The two-point correlation function implies that

for high vmax and in the congested regime, we have S2(r, r+�r) ⇡ ⇢
2 [Sec. 2.1.1] which

is indicative of statistical independence between I⌘(r, t) and I⌘(r + �r, t) for �r > 0.

Therefore, using the Bernoulli assumption of I⌘(r, t), the variance of local density can

be approximated as �
2
⇢̃⇢̃ ⇡ ⇢(1 � ⇢)/|l⇢̃| [inset of Fig. 2-3.(a)]. The autocovariance

function thus permits the following simplification:

C⇢̃⇢̃(�⌧ ) ⇡ �
2
⇢̃⇢̃

✓
1� 1

⌫

�⌧

�c⌧

◆
� 0 (2.12)

where �
c
⌧ = |l⇢̃|/v̄ denotes the average residence time of a vehicle travelling on l⇢̃, and

⌫�
c
⌧ stipulates the temporal memory of the local density process. In free flow, local

density at two time steps are correlated only if their time lag is less than �
c
⌧ ; and thus

45



⌫ = 1. Akin to temporal memory of velocity in the congested flow, memory can be

parametrized as a power function of ⌘̄ [Fig. 2-3.(b)],

⌫ ⇡ vmax⌫̂(⌘
��⌫ � 1) (2.13)

where ⌫̂ = 0.5 and �⌫ = 5 ⇥ 10�4|l⇢̃| + 0.31 [inset of Fig. 2-3.(b)] are fitting param-

eters. Local density shows strong memory upon transitioning to congested flow and

approaches memorylessness as ⌘̄ ! 1. Analogous to temporal memory [Eq. (2.10)],

the congestion level of the system plays a pivotal role in ascertaining the memory

of local density. This relationship demonstrates a linear trend with respect to vmax.

Moreover, the consistency of these outcomes suggests a more comprehensive under-

standing: provided that the statistical assumptions of stationarity and ergodicity

remain valid over appropriately selected temporal and spatial scales, one can poten-

tially characterize the universal behavior of the system, which can be achieved by

introducing normalized parameters, in this case ⌫/vmax.
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Figure 2-3: (a) Normalized autocovariance function of local density exhibiting a dis-

tinct linear decay considering vmax = 5, p = 0.3 and |l⇢̃| = 100 for free flow ⇢/⇢
p
c  1,

transitioning to congested flow ⇢/⇢
p
c ⇡ 1 and congested flow ⇢/⇢

p
c > 1; the inset shows

the variance of local density �
2
⇢̃⇢̃ and the black curve is the variance for Bernoulli pro-

cess �
2
⇢̃⇢̃ ⇡ ⇢(1 � ⇢)/|l⇢̃|. (b) Universal pattern of ⌫/vmax as a function of jamming

probability approximated by ⌫/vmax ⇡ 0.5(⌘̄��⌫ � 1) where �⌫ = 5 ⇥ 10�4|l⇢̃| + 0.31

as shown in the inset.
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2.2 Link between Internal Structure and Traffic Den-

sity and Stochasticity

In this section, we use the scaling relations developed in Section 2.1 to obtain the

isotherms of first- and second-order velocity statistics for traffic density and driver

behavior determination derived. To this end, we proceed by matching the found

internal traffic structure of spatial and temporal memory effects with traffic density

⇢ and stochasticity parameter p.

2.2.1 Fundamental Diagram

The traffic fundamental diagram operates as a critical framework analogous to a

phase-space plot, encapsulating the dynamic interplay of speed, flow, and density

in a traffic stream. Similar to phase transitions in physical systems, this diagram

demarcates two main regimes, free-flow and congested traffic, governed by the traffic

density and the stochasticity parameter, illustrating the intricate balance between

spatial and temporal variables using principles of statistical mechanics. Therefore,

we proceed by constructing the fundamental diagram using the results of the two-

point correlation function, employing the traffic flux definition E[I⌘]E[v] = ⇢v. In

the free-flow regime, the independence of cell occupation and vehicle speed provides

a linear relation between flux and the average free flow velocity v = vF = vmax � p:

J = ⇢v = vF⇢, ⇢ < ⇢
p
c (2.14)

An equally linear relationship between flux and density approximates flux in jammed

flow, when considering (i) a first-order estimate of the average velocity –in NaSch-

units of number of cells or integer velocity– from the average headway, d, in the

form, v = (1 � p)d; and (ii) an estimate of the average headway from the two-point

correlation function d = 1/S2(0)�1 [Eq. (2.7) and Appendix C], while (iii) assuming

the statistical independence of I⌘ and v. That is, letting S2(0) = ⇢, the traffic flux–
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density relation for congested flow is obtained:

J = ⇢v ⇡ ⇢(1� p)d = (1� p)(1� ⇢), ⇢ > ⇢
p
c (2.15)

Finally, a combination of Eqs. (2.14) and (2.15) leads to the well-known bi-linear

approximation of the fundamental diagram [134] (cited by [118]):

J = ⇢v = vF (⇢� ⌘) (2.16)

where ⌘ = |⇢ � ⇢
p
c |/(1 � ⇢

p
c). It should be noted that measured flux-density rela-

tions typically exhibit large scatter that can be attributed to non-equilibrium traffic

conditions. The regularity of the bi-linear form we here derive with the help of the

two-point correlation function of the NaSch-model relates to its underlying station-

arity and ergodicity. In return, given stationarity and ergodicity, the fundamental

diagram provides a further relation between a measurable mean velocity v, density ⇢

and stochasticity p.

2.2.2 Stochasticity-Density Plot

We are now ready to match spatial or temporary memory effects for the determination

of traffic density, ⇢, and stochasticity parameter, p. From the two-point correlation

function, we retain the bilinear flux–density relation (the fundamental diagram), to

construct mean velocity isotherms,

p = 1 +
⇢v

⇢� 1
(2.17)

with

0  ⇢  1

1 + v
(2.18)

In the velocity stochasticity-density (p, ⇢) plot [Fig. 2-5.(a)], we overlay these mean

velocity isotherms with isotherms of the decay time ⌧c as a function of (p, ⇢). Akin
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to a phase diagram, the curve

0  p =
1� ⇢(1 + vmax)

1� 2⇢
 1 (2.19)

separates free flow from congested flow. In the congested flow, the mean velocity

v and temporal memory ⌧c isotherms intersect at a unique point in the (p, ⇢)-plane

provided that ⌦(v, ✓v) = v/vmax + (1 + v)✓v  1, where ✓v = (⌧c/⌧̂c + 1)�1/�v , with

fitting parameters ⌧̂c = 1.88 and �v = 0.56 [Fig. 2-2.(b)]. That is, ⌦(v, ✓v)  1 is the

velocity sample space of the NaSch-model indicating the region of all possible v and ✓v

outcomes [Fig. 2-4]. In a similar fashion, we construct the stochasticity-density plot

for the local density [Fig. 2-5.(b)], which allows for relating the initial slope of the

normalized autocovariance function, (�2
⇢̃⇢̃)

�1
dC⇢̃⇢̃/d�⌧ , and the expected value of local

density, E[⇢̃] = ¯̃⇢, to the stochasticity parameter and traffic density. The ⌫-isotherm

reads

p =
1 + ✓⌫vmax � ⇢(1 + vmax)

1 + ✓⌫ � 2⇢
(2.20)

with ✓⌫ = (⌫/(⌫̂vmax) + 1)�1/�⌫ which intersects the vertical ¯̃⇢ isotherms at a unique

point if (⇢(vmax + 1)� 1)/vmax  ✓⌫  ⇢.

In summary, given stationarity and ergodicity, first- and second-order ensemble

statistics of velocity or local density, namely mean and initial slope of normalized

autocovariance function, provide a means to determine stochasticity parameter and

traffic density. This introduces a novel framework for deducing the macroscopic at-

tributes of traffic based on vehicle velocity fluctuations and their correlations, offer-

ing computational efficiency when contrasted with traditional methodologies like the

floating-car method.
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Figure 2-4: The event space of the NaSch model: the isotherms of expected velocity

and memory intersect at a unique point only if ⌦ = v̄/vmax + (1 + v̄)✓  1 where

✓ = (⌧/⌧c + 1)�1/�v is the normalized memory and vmax = 5. The contours represent

the value of the control parameter ⌦. The nonlinear domain of the event space in the

NaSch model enables the evaluation of a velocity signal’s alignment with the NaSch

model heuristics, up to second-order statistics.
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Figure 2-5: (a) Velocity and (b) local density stochasticity-density plot showing the

interplay between the first-, second-order moments, occupancy ⇢ and stochasticity

parameter p for vmax = 5. Stochasticity-occupancy (p � ⇢) interaction provides the

means to estimate macroscopic traffic properties, p and ⇢, from two statistical ob-

servable, which are v and ⌧c [Eq. (2.10)] for velocity, and ⇢̃ and ⌫ [Eq. (2.13)]for local

density.
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2.3 Application

We now investigate the predictive prowess of our approach for estimating traffic prop-

erties from local density measurements and crowdsourced velocity data of individual

vehicles. Since our approach relies on ergodicity, we first investigate the conditions

under which a realization of the process can statistically represent the ensemble mo-

ments. We then employ this condition with empirical local density measurements and

crowdsourced velocity data of vehicles.

2.3.1 Ergodicity and Entropy

Invoking the ergodic theorem of statistical mechanics [135], a vehicle eventually ex-

plores the entire phase space in a uniform sense over long (enough) time scales, re-

sulting in an overall ergodic behavior of vehicles in the NaSch-model. That is, one

realization of the process, say ⇣0, is statistically rich enough to approximate the

ensemble averages from its temporal moments. We apply the ergodic principle to

velocity v(t, ⇣0) of a randomly selected vehicle ⇣0. That is, recalling the approximate

equality of time and phase averages in ergodic mechanical systems, the mean and

autocovariance are estimated from the following time averages:

v ⇡ 1

Tr(⇣0)

Tr(⇣0)X

t=1

v(t, ⇣0) (2.21)

and,

Cvv(�⌧ ) ⇡
1

Tr(⇣0)

Tr(⇣0)X

t=1

v(t, ⇣0)v(t+ �⌧ , ⇣0)� v
2 (2.22)

where Tr(⇣0) denotes the representative time scale of realization ⇣0. This time scale

is the shortest time interval over which random event ⇣ is statistically representative

of the ensemble. Focusing on the probability distribution of velocity, such time scale

is controlled by the entropy (also known as the expected information content) of

velocity [136]:

H(p, ⇢) = �
vmaxX

vi=0

P[vi] ln(P[vi]) (2.23)
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Entropy, measured in ’nats’ (1 nat ⇡ 0.6931 bits), serves as a quantitative tool to

assess the level of uncertainty or randomness in a dataset. High entropy signifies

a large degree of uncertainty or randomness, while low entropy indicates that the

data is predictable. The lower and upper bounds of entropy are 0 and ln(vmax + 1),

respectively. The lower bound is reached in deterministic scenarios, such as when

the system is in free flow with a stochasticity parameter of zero (p = 0), or when

the system is jammed and all vehicles are at a standstill. In a continuous limit, the

entropy reaches its maximum when the probability density function adopts the form

of a Dirac delta function. Conversely, maximum entropy is attained when the velocity

distribution is uniform, creating a state of maximum uncertainty in the system.

The behavior of representative time scale Tr(⇣0) with respect to entropy [Fig. 2-6]

is similar to the relaxation time ⌧c: it diverges at the transition density [122, 123],

and increases exponentially as,

E[Tr] = T
0
r exp(�H̃(p, ⇢)) (2.24)

where H̃(p, ⇢) = H(p, ⇢)/ ln(vmax + 1) is the normalized entropy with ln(vmax + 1)

corresponding to the entropy of a uniform distribution of velocity. While fitting

parameter T 0
r increases linearly as a function of vmax [with T

0
r ⇡ 10(vmax+1) for 2 

vmax  10], the prefactor � ⇡ 2.65 is independent of vmax. An ensemble with entropy

H(p, ⇢) is, therefore, expected to be statistically identical to one of its realizations of

minimum length T
0
r exp{�H̃(p, ⇢)}. Eq. (2.24) provides an expected lower bound for

achieving ergodicity of velocity in the NaSch-model. Similar to velocity, ergodicity in

NaSch model allows us to approximate the ensemble statistics of local density from

a subset of space when observed over long time interval.
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Figure 2-6: Variation pattern of entropy H(p, ⇢) and its impact on expected rep-

resentative time scale E[Tr] for vmax = 5. Representative time scale is controlled

by entropy and increases as the system becomes more uncertain, corresponding

to higher levels of entropy with more possible configuration. Entropy degener-

ates to H(p, ⇢ < ⇢
p
c) = � ln pp(1 � p)1�p for free flow regime, and reaches its

upper bound at ⇢ ⇠ ⇢
p
c where velocity has an almost uniform distribution with

H(p, ⇢ ⇠ ⇢
p
c) ⇡ ln(vmax + 1).
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2.3.2 Application to Local Density Data

The first application considers classical traffic density measurements achieved by a

fixed sensor (e.g., cameras) along a road. Such measurements provide a means to

estimate local density ⇢̃ over sufficiently large time interval. The data reported in

Ref. [3] were obtained from measurements carried out on the German freeway A1

near an intersection with German freeway A59 in June 1996 [Fig. 2-7.(a)]. Translated

in NaSch-units, we consider the road capacity to be Nc (in number of vehicles per

hour), which we attribute to the deterministic limit density of the NaSch-model,

⇢
p=0
c = (vmax +1)�1. Denoting the cell length by Lc, a first-order conversion between

NaSch-units and real (time-length) units is provided by:

Vmax/Lc

(1 + vmax)Nc
= const. (2.25)

For a single-lane road capacity Nc = 1900, and for vmax = 5, each second corresponds

to approximately 1 NaSch time unit considering Lc ⇡ 7.5 meters (as suggested in [35]).

The local density shows an expected value of ⇢ = ⇢̃ = 0.22 and its normalized autoco-

variance function exhibits a characteristic linear behavior [Fig. 2-7.(b)] with a fitted

slope of �(⌫�c⌧ )
�1 = �0.0155. From the variance of local density �

2
⇢̃⇢̃ = 2.5 ⇥ 10�4,

we readily recognize from Eq. (2.12) that |l⇢̃| ⇡ 60, which implies that the local

density values are averaged over an approximately 450-meter spatial window. From

Eqs. (2.13) and (2.15) we obtain the stochasticity parameter p = 0.3. Next, from the

fundamental diagram [Eq. (2.15)], we estimate the average velocity, v̄/vmax = 0.49.

This value which we obtain from the statistical moments of local density, is in remark-

able agreement with the average velocity obtained from the recorded measurements,

i.e., E[V ]/Vmax = 0.47 ⇡ v/vmax = 0.49. This shows that the internal structure pro-

vides an independent means to estimate not only average traffic speed, but as well

an estimate of the stochasticity parameter reminiscent of driver behavior.
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Figure 2-7: (a) Summary of measurements adopted from Ref. [3]; E[V ]/Vmax = 0.47

with Vmax = 120 km/h and E[⇢̃] = 0.22. (b) The normalized autocovariance function

of the local density displays a characteristic linear decay. The statistical properties

of NaSch model allows us to estimate the expected value of velocity E[V ] from the

first- and second-order moments of the local density.
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2.3.3 Application to Crowdsourced Vehicle Velocity Data

The second application we consider illustrates the use of our approach for crowd-

sourced velocity data. Here, in contrast to the fixed camera application, sensors

are installed in moving vehicles. The vehicle speed data were collected by anony-

mous users on main roads in the Commonwealth of Massachusetts, USA, through the

Carbin Educational App [4,5] which records the velocity from GPS position at a 1 Hz

frequency. In order to avoid interference with road regulations such as traffic lights,

school zones, speed bumps, and etc., we focus on the data recorded on roads with

speed limits Vmax � 45 mph (� 72.4 km/h). As drivers are observed to drive 10% to

20% faster than the posted speed limit in free flow, this speed limit can be considered

as a real-life lower bound of speed in free-flow regime. The conversion of velocity mea-

surements into NaSch-units is thus performed via v = bvmax(V/Vmax) + 0.5c  vmax,

where b.c denotes the floor operator. We consider this conversion in our analysis of

more than 31,000 miles of speed measurements acquired over a time span of one year

by anonymous users covering almost the entire main road network of Massachusetts.

The length of the time-window, Tm, was checked a priori to satisfy the ergodicity

condition [Eq. (2.24)] which is an underlying assumption for our analysis; that is,

Tm � T
0
r exp(�H̃)  0 with H̃ denoting the normalized entropy of velocity distribu-

tion over time window of Tm. Furthermore, the results of the analysis were checked

a posteriori to satisfy the NaSch event space condition, i.e., ⌦(v, ✓v)  1, and, more-

over, v ⇡ (1 � ⌘)�. By way of example, Fig. 2-8 displays the analysis of (a) a

sample velocity measurement V (t)/Vmax of a 20-minute trip on interstate highway

I-95 together with (b) its conversion into NaSch (velocity) units v; (c) evolution of

traffic density ⇢ and transition density ⇢
p
c predicted from the velocity profile; and (d)

examples of autocovariance functions at densities higher and close to the transition

density, showing the intimate interplay of decay time with traffic density.

The so-obtained results were partitioned into four time intervals: (i) 6:00 to 10:00;

(ii) 10:00 to 15:00; (iii) 15:00 to 19:00; and (iv) 19:00 to 00:00; where in each time in-

terval there are at least 103 analysis results. By taking into account the probability of
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observing memoryless velocity profiles given vmax�v  1, i.e., P[⌧c ⇡ 0 | vmax�v  1],

we find that the free-flow probability for time intervals (i) and (iii) is around 10%,

whereas for time intervals (ii) and (iv) it increases to almost 15%. This is in agreement

with the average weekday daily traffic data reported by the Boston Metropolitan Plan-

ning Organization [137]. Fig. 2-9 depicts the geospatial distribution of traffic density

and stochasticity parameter for time interval (iii). It is found that the expected traf-

fic density and stochasticity parameter around the urban area of Boston (inset in

Fig. 2-9) is respectively 1.3 and 1.15 times the one of rural area (the region outside

the red box), implying higher average velocity in rural areas. The network-level ex-

pected traffic densities are E[⇢] = [0.12, 0.11, 0.13, 0.10], and expected stochasticity

parameters are E[p] = [0.7, 0.63, 0.67, 0.62] for time intervals (i) to (iv). The traffic

density and stochasticity parameter in time intervals (i) and (iii) are higher than in

time intervals (ii) and (iv). This suggests that drivers show a more erroneous driving

behavior during rush hours. Furthermore, the inferred traffic parameters imply that,

in an average sense, traffic is predominantly in the congested flow regime.

59



0

0.4

0.8

1.2

0

1

2

3

4

5

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

!/
! !

"#
!

"

!

!!"

Time [s] 

0 5 10 15 20

0.1

0.5

0.7

1

(a)

(b)

(c)

(d)

"# [s]

#$ = 36.95 *

#$ = 6.06 *

# !
!
$%

/'
!!"

Figure 2-8: Sample analysis: (a) Velocity time history of a vehicle driving on I-95,

a north–south interstate highway in MA, USA, (b) NaSch representation of velocity

profile, (c) evolution of inferred traffic density ⇢ and transition density ⇢
p
c , and (d) au-

tocovariance functions at two times (squares and circles represent the autocovariance

of velocity measurement and its NaSch representation, respectively). The initial slope

of the autocovariance function is inversely proportional to ⌧c [Eq. (2.9)]; memory of

velocity signal is shorter at the higher density.
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Figure 2-9: Geospatial distribution of (a) traffic density ⇢ and (b) stochasticity pa-

rameter p for the time interval 15:00 to 19:00 pm, on main roads in Massachusetts,

USA, determined from crowdsourced 1 Hz vehicle velocity recordings (data collected

over a 12-month period with Carbin Educational App [4, 5]).
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2.4 Summary

In this chapter, we have demonstrated quantifiable nature of the internal structure

of traffic by investigating the system’s higher-order statistical properties. We have

leveraged the ergodic theorem, a fundamental concept from statistical physics, demon-

strating that the fluctuations in speed profile experienced in congested flow can ef-

fectively characterize the statistical properties of the collective behavior of the traffic

flow as an ensemble. Specifically, we have highlighted that the memory effects in

both space and time, expressed by second-order moments of occupancy and veloc-

ity hold critical information relevant for the spatial and temporal mapping of traffic

density and driver behavior, which can be assessed from individual driver velocity

recordings provided ergodicity and stationary. More precisely, the two-point correla-

tion function of occupancy enables us to understand spatial memory effects, such as

headway; while the velocity autocovariance function sheds light on temporal memory

effects, in terms of decay time and traffic compressibility. In particular, the two-point

correlation function of occupancy provides access to spatial memory effects, such as

headway; whereas the velocity autocovariance function provides access to temporal

memory effects in form of the decay time and traffic compressibility. Taken together,

the isotherms provide a means to access traffic density and stochasticity from density-

stochasticity plots. The fact that these higher-order statistical moments are directly

accessible by crowdsourced velocity measurements provides a powerful alternative to

classical traffic property estimates from spatially distributed user counts. Ultimately,

these moments quantify the internal structure of traffic and present a wealth of in-

formation which can characterize intricate interactions within the system, thereby

allowing for the quantification of various statistical properties of the system.
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Chapter 3

Phase Diagram of Near-Miss Collision

Risk in Congested Traffic Flow

Within the complex interaction of factors governing the dynamics of traffic, first-order

descriptors such as average traffic density, velocity, flux, as well as various geomet-

ric attributes of the roadway network, struggle to accurately quantify the accident

risk inherent to the internal structure of traffic. Traditionally, in fact, studies have

attributed the occurrence of accidents to extraneous variables, such as global fluctu-

ations in traffic density, weather conditions [138,139], geometric designs of roads and

crossings design parameters [140,141], or erroneous driver behavior [142,143]. Instead

of investigating the occurrence of accidents as an externality of traffic flow, we investi-

gate the risk of near-miss events from the internal structure of traffic. Specifically, we

propose an approach which is driven by the consideration that if such an accident risk

intrinsic to the structure of traffic exists and is significant, it should be predictable

and preventable, much akin to the probability of molecular collisions in gas physics

from pressure and kinetic temperature.

In this chapter, we investigate the near-miss event statistics in vehicular traffic, i.e.,

the probability of accident precursors that have the potential to cause collision, but

actually do not result in human injury, vehicle damage and interruption of operation

(for a generic definition of near-miss events, see [144]). We propose a probability

definition for this near-miss collision risk using the velocity state transition matrix

63



as the sole input. We corroborate our proposition by utilizing both model-based

traffic flow simulations and extensive crowdsourced measurements of vehicle velocities

collected via smartphones. Furthermore, using the network-level dataset of accident

records, we illustrate the positive correlations between this definition of near-miss

events with the actual collision risk.

3.1 Statistics of Near-miss Events in the Reduced-

unit Representation

Our starting point is the common-sense consideration that the statistics of near-

miss events, as collision-free accident precursors, are characterized by decelerations

in excess of normal operation braking events - from maximum speed to zero. To

simplify the analysis, we employ a reduced-unit representation of traffic in NaSch

units [Fig. 3-1.(a)], after the Nagel-Schreckenberg cellular automaton model [35]. In

such representation, time and space are both discretized quantities and the units of

speed and position coincide. The state of a particle is represented by its velocity which

is a non-negative integer not greater than vmax, i.e., vk(t) 2 {0, 1, ..., vmax} with vk(t)

representing the velocity state of kth vehicle at time t. The likelihood of observing an

excessive deceleration, ak(t) = �vmax with acceleration ak(t) = vk(t + 1)� vk(t), for

the k
th vehicle transitioning from a current velocity state vk(t) to a future velocity

state vk(t+1) is derived from the law of total probability [Appendix D], in the form:

P[ak(t) = ✓|j = �✓ = vmax] = ⇡j qj!j+✓ (3.1)

Herein, ⇡j(t) := P[vk(t) = j] stands for the probability of observing a vehicle at

velocity state j, whereas tranisition probability qj!j+✓ := P[vk(t+1) = j+✓ | vk(t) =

j] represents the probability of finding a particle transitioning from state j to state

j+✓. It is important to emphasize that Eq. (3.1) broadly remains valid under various

statistical conditions and remains applicable irrespective of the specific traffic model

selected, provided that the model employs the reduced-unit representation. In what
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follows, we explain that, given the Markovian nature of traffic, the probability of

observing maximum deceleration can be quantified using the statistics derived from

velocity signals. This will turn out useful in determining the structural patterns of

traffic in a broader context using crowdsourced velocity measurements.

3.1.1 Markovianity of Velocity State

We resort ourselves to steady-state homogeneous traffic flow on simple road networks.

Under these circumstances, velocity state exhibits stationarity; that is, in strict sense,

the joint probability of the process remains insensitive with respect to time lag [Ap-

pendix B]. Furthermore, velocity state in such traffic flow is essentially of Markovian

nature, hence the future state of the system at time t + 1 only depends on the cur-

rent state at time t. As a result, the state space of the system is entirely defined by

the velocity state transition matrix, q ⌘ qi!j, where row i and column j represent

the current and future states of the particle, respectively. Otherwise said, the state

transition matrix q contains all the information required to evaluate the statistics

of near-miss events from Eq. (3.1). To this end, we are particularly interested in

expressing the moments of velocity as a function of the transition matrix. In what

follows, we illustrate the derivation of the expected value and autocovariance from q.

While it goes beyond the scope of this work, higher-order moments can be obtained

is a similar fashion.

We proceed by relating the probability distribution function of velocity to the

transition matrix, which proves beneficial in deriving the mean and variance of veloc-

ity. First, using the Markov property, the probability distribution of velocity at time

t+ ⌧ can be related to that of time t via,

~⇡(t+ ⌧) = (qT )⌧ · ~⇡(t) (3.2)

with,

~⇡(t) = (⇡0(t), ⇡1(t), ..., ⇡vmax(t))
T (3.3)
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where ~⇡(t) and ~⇡(t+⌧) are, respectively, the discrete velocity probability distribution

at time t and t+ ⌧ , linked by the transition matrix q.

We recall statistical stationarity, induced by homogeneous particle randomness

and a closed-system behavior, which leads to a constant velocity probability distri-

bution at all times, i.e., ~⇡(t + ⌧) = ~⇡(t) = ~⇡. By applying the Perron–Frobenius

theorem, the velocity probability distribution ~⇡ is the eigenvector of the transposed

transition matrix q
T associated with the unit eigenvalue; that is,

(qT � I) · ~⇡ = ~0 (3.4)

where I is the identity matrix [Appendix D]. Thus, the velocity distribution corre-

sponds to the unit eigenvalue of the transposed state transition matrix, the so-called

stationary distribution of q
T [145, 146]. Having the velocity distribution function,

we can easily compute the mean and variance of the process as v̄ = ~s
T · ~⇡, and

�
2
v = ~s

T · diag(~s) · ~⇡ � v̄
2 where ~s = (0, 1, ..., vmax)T stands for the state vector [Fig.

3-1.(a)].

We now shift our focus to deriving the second-order moment of velocity, ex-

pressed as a function of the transition matrix. The Markovian property of velocity

allows us to derive the autocovariance function, which in its canonical definition reads

Cvv(⌧) = E[(vk(t1) � v̄)(vk(t2) � v̄)]. Essentially, Markovianity quantifies the corre-

lation between successive steps directly. Expanding upon this concept, treating time

t+ 1 as an intermediate state with certain state probabilities allows for determining

the correlation between velocities at times t and t+ 2. By iterating this process, one

can analytically obtain the correlation between for any time lag ⌧ , and thus derive a

dual definition of the velocity autocovariance function (for detailed derivation, refer

to Appendix E),

Cvv(⌧) = ~s
T · (q⌧ )T · diag(~s) · ~⇡ � v̄

2 (3.5)

which establishes a link between the transition matrix and the second-order central

moment. In a similar fashion, higher-order statistics can be obtained from the wealth

of infromation that the transition matrix provides for a Markovian process.
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3.1.2 From Velocity Signal to Near-Miss Risk

The reduced-unit model of traffic flow, combined with the Markovian property, there-

fore enables us to describe the statistics of acceleration and, in particular, near-miss

events using the state transition matrix. Specifically, among all possible transition

probabilities [see Fig. 3-1.(a)], the transition matrix includes the extremal deceleration

transition probability qvmax!0. Moreover, the probability of observing a vehicle at the

highest velocity state, ⇡vmax , is ascertained from the velocity probability distribution,

~⇡(t) = (⇡0, ⇡1, ..., ⇡vmax)
T [Fig. 3-1.(b)], which is the eigenstate associated with the

unit eigenvalue of the transposed transition matrix. Finally, we remind ourselves that

all statistical measures of velocity (here, we only focus up to the second order) can be

expressed in terms of the state transition matrix, i.e., mean (v̄), variance (�2
v), and

velocity autcovariance function (Cvv), as follows,

8
>>>>>>>><

>>>>>>>>:

v̄ = E[vk(t)] = ~s
T · ~⇡

�
2
v = E[(vk(t)� v̄)2] = ~s

T · diag(~s) · ~⇡ � v̄
2

Cvv(⌧) = E[vk(t1)vk(t2)]� v̄
2

= ~s
T · (q⌧ )T · diag(~s) · ~⇡ � v̄

2

(3.6)

where ⌧ = |t1 � t2| is the time lag between two velocity states, vk(t1) and vk(t2).

By leveraging the ergodicity of velocity as a stochastic process, it becomes evident

that all statistical moments, derived in terms of the state vector and transition matrix,

can actually be acquired from the velocity time series over a sufficiently long time

interval. Specifically, by matching the expected velocity, fluctuations about the mean,

and correlation levels of velocity for various time lags, the state transition matrix can

be determined. This, in turn, enables the complete characterization of the process as

a Markovian process, and further allows us to calculate the near-miss risk by focusing

on the maximum deceleration, i.e., qvmax!0 and ⇡vmax .
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Figure 3-1: (a) Graphical representation of velocity state vector ~sT = (0, 1, ..., vmax)

(in NaSch-units), and transition matrix components qi!j for vmax = 5. (b) Velocity

distribution ~⇡ = ~⇡(~s) obtained from the eigenstate analysis of the transition matrix,

q ⌘ qi!j for congested flow below, at and above the critical jamming probability,

⌘̄crit, at which the deceleration probability P[ak(t) = vmax] exhibits a maximum.
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3.2 Application to the NaSch Model

We analyze general aspects of near-miss collision risk using velocity data generated

by the NaSch cellular automaton model due to its capacity to replicate key traffic

flow features. These features include backward-moving shock waves, the first-order

fundamental diagram, phase transitions from free to congested flow, formation and

dissolution of traffic jams similar to dynamic arrest, interactions between velocities of

consecutive vehicles, and temporal and spatial memory effects [Appendix A]. Here, we

analyze the velocity state transition matrix from the ensemble statistics of particle

velocities generated by the (Markovian) heuristics of the NaSch model, which we

remind ourselves: (1) acceleration, v(1)j = max(vk(t), vmax); (2) deceleration, v(2)j =

min(v(1)j , dk(t)) with dk(t) representing the headway; (3) randomized braking, vk(t+

1) = v
(2)
j with probability 1 � p and vk(t + 1) = max(v(2)j � 1, 0) with probability

p; (4) an update of the k
th vehicle position, xk(t + 1) = xk(t) + vk(t + 1), where

the stochasticity parameter p takes into account the drivers’ individual freedom to

regulate their speed.

As a first point of reference, we recognize that neither the free flow regime nor the

jammed regime exhibit extreme decelerations (see Appendix F), since:

lim
⇢/⇢pc!0

qvmax!0 = 0; lim
⇢!1

⇡vmax = 0 (3.7)

with ⇢
p
c the phase transition density. Essentially, in the free flow, a vehicle travels

at vmax > 1 with a probability of (1 � p), and at a velocity of vmax � 1 with a

probability of p. Therefore, there are no vehicle transitioning from vmax to zero

velocity. Conversely, as the system approaches a completely jammed state, nearly all

vehicles are at standstill state, and the probability of observing a vehicle traveling at

vmax diminishes to zero. In both these limiting scenarios, the probability of observing

maximum deceleration is zero.

The intrinsic probability of a near-miss collision is hence confined to the con-

gested flow regime, wherein any individual particle has an equal likelihood of being

part of a traffic jam. We map the near-miss collision risk, considering that traffic
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flow in the congested regime exhibit temporal memory effects akin to the Ornstein-

Uhlenbeck random process for which the autocovariance funtion decays exponentially

as dCvv/d⌧ |⌧=0 = ��
2
v/⌧c [130, 131] where the characteristic decay time ⌧c is the so-

called temporal memory [Chapter 2]. The velocity state transition matrix, q, can

thus be determined from the measured velocity variance �
2
v , and the decay time ⌧c:

min
q

1X

⌧=0

⇥�
~s
T (q⌧ )Tdiag(~s)~⇡ � v̄

2
�
� �

2
v exp(�⌧/⌧c)

⇤2 (3.8)

subject to (qT � I) · ~⇡ = ~0 and q ·~1 = ~1.

3.2.1 Deterministic Model: p = 0

For the deterministic model (p = 0), we use the analytical expressions for the binary-

state NaSch model obtained from 2-cluster solution [147], to derive generalized solu-

tions for the multi-state model (vmax > 1). The transition probability qvmax!0 exhibits

a universal pattern, analogous to the behavior of the two-state NaSch model, as a

function jamming probability ⌘̄ [Appendix F.3.1],

qvmax!0 =
2⌘̄

1 + ⌘̄
, (p = 0) (3.9)

Similarly, the behavior of likelihood of observing maximum velocity for multi-state

model can also be derived through power generalization and satisfying the boundary

conditions of probability at ⌘̄ = 0 and ⌘̄ = 1 as,

P[vk(t) = vmax] = 1� �
�
(1 + vmax⌘̄)

1�↵ � 1
�
, (p = 0) (3.10)

with � = (1 + vmax)↵/(1 + vmax � (1 + vmax)↵) and the fitting parameter ↵ ⇡ 2 +

tanh
p

(vmax � 1)/2 [Fig. 3-2]. The probability of observing near-miss event for

the determinsitc model can readily be obtained at any level of congestion as the

multiplication of Eqs. (3.9) and (3.10) since P[ak(t) = �vmax] = qvmax!0⇡vmax .

The asymptotic behavior of near-miss risk can be comprehended as follows: qvmax!0
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suggests that as ⌘̄ ! 0, the system’s congestion diminishes, nudging the transition

probability towards that of the free-flow regime, i.e., qvmax!0 ! 0. In contrast, as

the system leans towards a fully jammed regime with ⌘̄ ! 1, the transition probabil-

ity edges closer to one. Conversely, P[vk(t) = vmax] displays the inverse asymptotic

behavior; as the system inclines towards a free-flow regime, the probability of ob-

serving vmax approaches 1, whereas in a fully jammed system, P[vk(t) = vmax] tends

towards zero. These findings imply that the occurnece likelihood of a near-miss event

is primarily influenced by the transition probability as ⌘̄ ! 0 and by the frequency

of maximum velocity as ⌘̄ ! 1. In a more formal context, as ⌘̄ approaches 0, the

transition density qvmax becomes very small, qvmax = ✏0 . At the same time, observing

vmax becomes very probable, with ⇡vmax = 1 � ✏1. Here, ✏0,1 << 1 represent very

small positive numbers. This relationship allows us to approximate the probability of

maximum deceleration as P[ak(t) = �vmax] ⇡ qvmax . A similar rationale can be used

to demonstrate that P[ak(t) = �vmax] ⇡ P[vk(t) = vmax] as ⌘̄ ! 1.

3.2.2 Stochastic Model: p 6= 0

The asymptotic behavior of the likelihood of observing maximum velocity at bound-

aries for stochastic multi-state NaSch model reads [Appendix F.3.2],

lim
⌘̄!0

P[vk(t) = vmax] = 1�p
p; lim

⌘̄!1
P[vk(t) = vmax] = 0 (3.11)

Decoupling the impact of randomness while satisfying the asymptotic behavior be-

havior, one can approximate the likelihood of observing maximum velocity in the

congested regime as,

P[vk(t) = vmax|p 6= 0] ⇡ (1�p
p) (P[vk(t) = vmax|p = 0])⇠ (3.12)

with exponent ⇠ = ⇠0 + ⇠1 tanh(vmax � 1) where ⇠1/⇠0 ⇡ .85 and ⇠0 = 0.77. The like-

lihood of observing a stationary vehicle and the transition probability are estimated
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using power generalization of the 0-1 model, given as:

P[vk(t) = 0] ⇡ 1� P[vk(t) = vmax]
1�⌫v (3.13)

qvmax!0 ⇡ 1� P[vk(t) = vmax]
1�⌫q (3.14)

where ⌫v = ⌫̂v tanh(vmax � 1) and ⌫q = ⌫̂q tanh(vmax � 1) as depicted in Fig. 3-3.(b).

We proceed by exploring the intricate interaction between the transition density

qvmax!0, and probability of observing a vehicle at velocity states 0 (standing) and

vmax. In particular, the probabilities of observing a standing vehicle and the transition

probability are approximated via power generalization as,

P[vk(t) = 0] ⇡ 1� P[vk(t) = vmax]
1�⌫v (3.15)

qvmax!0 ⇡ 1� P[vk(t) = vmax]
1�⌫q (3.16)

with ⌫v = ⌫̂v tanh(vmax � 1) and ⌫q = ⌫̂q tanh(vmax � 1) [Fig. 3-3.(b)].

Equations (3.15) and (3.16) capture the variation in near-miss risk as a function

of both density and stochasticity parameter. Similar to the deterministic system, the

transition density is leading term of the near-miss risk as ⌘̄ ! 0. Conversely, the

probability of vmax emerges as the primary factor when ⌘̄ ! 1, satisfying the limiting

behaviors of near-miss event [Eq. (3.7)].

3.2.3 Phase Diagram of the NaSch Model

We proceed by focusing on the congested phase in between the limiting cases of

free flow and jammed regime. By sweeping the NaSch phase space (⇢, p), we map

the near-miss collision risk of the NaSch model onto a phase diagram [Fig. 3-4.(a)].

Two observations deserve particular attention. First, we observe a ridge along which

the near-miss collision risk exhibits a maximum. This ridge is indicative of a critical

behavior of near-miss collisions close to a critical jamming probability ⌘ = (⇢�⇢
p
c)/(1�

⇢
p
c) = ⌘crit, where @P[ak(t) = �vmax]/@⌘̄ = 0 (see Fig. 3-4.(b), and detailed discussion
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in Appendix F). The critical jamming probability indicates that highest likelihood of

maximum deceleration lies within the congested regime. Second, we find a counter-

intuitive response to heightened levels of stochasticity in driver behavior. Instead of

an increase of the near-miss collision risk, we observe a decrease in the maximum near-

miss collision risk, max⌘̄(P[ak(t) = �vmax]), with increase in stochasticity p [Fig. 3-

4.(c)]. In fact, increasing stochasticity leads to larger traffic jams, and thus decreases

the number of clusters, and promotes closer alignment of vehicle velocities [148].

Specifically, we attribute this diminishing risk to the long-range correlations triggered

by random velocity fluctuations. These long-range correlations increase the formation

of traffic jams, lower the average ensemble velocity, v̄ ⇠ 1 � p, and entail a lower

probability of both ⇡vmax and qvmax!0. As a consequence, the near-miss collision risk

(3.1) decreases from its maximum deterministic limit at p = 0 [Fig. 3-4.(b)], for which

clustering effects are negligible, to zero in the limit case of p ! 1 [Fig. 3-4.(c)], for

which traffic comes to a halt due to erroneous braking of all particles in the system.
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Figure 3-2: Behavior of the deterministic NaSch model: (a) the universal increas-

ing pattern of the transition probability qvmax!0 as a function of jamming probabil-

ity [Eq. (F.11)] with different colors representing different vmax 2 {1, 2, ..., 9} (cir-

cles: simulations, squares: far-field behavior); the inset shows the duality between

the transition probability qvmax!0 and the probability of observing standing vehi-

cle: qvmax!0 = P[vk(t) = 0]. (b) Decreasing pattern of probability of observing a

vehicle driving at vmax as jamming probability increases (circles: simulation, lines:

semi-analytical solution [Eq. (F.13)]); the inset shows the power scaling of maximal

velocity probability ↵ ⇡ 2 + tanh
p
(vmax � 1)/2.
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Figure 3-3: Approximate behavior of the stochastic NaSch model for different levels

of vmax: (a) approximation of the probability of observing maximum velocity through

decoupling the impact of stochasticty parameter and jamming probability (the inset

shows the behavior of the exponent of the approximation ⇣ = ⇣0 + ⇣1 tanh(vmax � 1)

with ⇣0 = .77 and ⇣1 = .65), and (b) the universal behavior of probability of ob-

serving standing vehicle and transition density as a function of probability of ob-

serving maximum velocity; the bars represent standard deviation and the lines are

semi-analytical power approximations: P[vk(t) = 0] ⇡ 1 � P[vk(t) = vmax]1�⌫v and

qvmax!0 ⇡ 1�P[vk(t) = vmax]1�⌫q with ⌫v = .83 tanh(vmax�1) and ⌫q = tanh(vmax�1).
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Figure 3-4: Model-based phase diagram of near-miss collision risk P[ak(t) = �vmax]

in (a) the phase space of the NaSch model (traffic density ⇢, stochasticity p); and (b)

in function of the jamming probability ⌘ = (⇢ � ⇢
p
c)/(1 � ⇢

p
c) 2]0, 1[. (c) Maximum

near-miss collision risk, max⌘̄(P[ak(t) = �vmax]), vs. stochasticity parameter p show-

ing the decrease in near-miss collison risk due to long-range correlations induced by

randomness (Results for vmax = 5. For other vmax values, see Appendix F.)
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3.3 Application to Crowdsourced Vehicle Velocity

Data

We now turn to investigate these model-based features using crowdsourced vehicle

velocity data recorded between 2019 and 2021 at 1 Hz frequency by anonymous users

via the Carbin educational app [149]. After data processing to ensure statistical sta-

tionarity and ergodicity (see Appendix D), we considered a data set of approximately

8 ⇥ 105 trips of 400 seconds covering approximately 60% of the roadway network of

the Commonwealth of Massachusetts, USA. For each trip, the near-miss collision risk

was determined from the state transition matrix using as sole input the velocity auto-

covariance function [Eq. (3.6)] independent of any model attributes (for algorithmic

implementation, see Appendix H). In addition, the near-miss risk was compared with

the expected collision risk derived from the vehicular accident database of the Mas-

sachusetts Department of Transportation [6], which has detailed information of all

accidents between 2019 and 2021, incl. accident location, road properties (number of

lanes and road type), Annual Average Daily Traffic (AADT), number of cars involved,

and severity of the accident.

3.3.1 Direct Comparison: Near-miss vs. Collision

Our data analysis centers around a graph representation of the primary roadway net-

work in the state of Massachusetts, USA [150]. The graph representation consists of

195,138 nodes and 196,906 edges, with each edge and node representing a road seg-

ment and intersection (or endpoint of a road segment), respectively. By analyzing the

Carbin dataset for the state of Massachusetts and utilizing crowdsourcing, we assign

an expected near-miss risk to each edge [Fig. 3-5.(a)]. Additionally, we accessed the

crash data set provided by the Massachusetts Department of Transportation (Mass-

DOT) [6], which includes detailed information about all the accidents that occurred

between 2019 and 2021, such as the accident’s location, number of vehicles involved,

traffic volume (e.g., AADT), and road properties. For each edge, we calculated the
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collision risk defined as the number of accidents on an edge divided by the total vol-

ume of traffic per length [Fig. 3-5.(b)]. A primary insight is offered by the positive

correlation between near-miss and actual collision risk from a segment-by-segment

comparison [Fig. 3-6.(a)]. This positive correlation suggests an association between

the proposed near-miss risk and the actual collision risk, positioning the former as a

potential accident precursor. Specifically, upon comparing the two parameters, i.e.,

near-miss and collision risks, we observed a positive correlation between them, with

the strongest correlation evident for roads that have an expected traffic density of

⇢ ⇡ .2 [Fig. 3-5.(c)]. This observation has two important implications. First, it

highlights the potential for near-miss events to escalate into actual collisions. Second,

the identification of a “critical regime” regime, where the likelihood of accidents tran-

scends the realm of erroneous driving behavior and encompasses the internal structure

of traffic, is of crucial importance. This highlights the need for a deeper understand-

ing of the complex interplay between traffic dynamics and driver behavior in order to

develop more comprehensive and effective strategies for accident prevention.

3.3.2 Clustering Analysis

To gain a more detailed understanding of the data, we implement clustering analy-

sis—a method widely employed within the physics community for deciphering phase

transitions and critical phenomena allowing for the quantification of “clusters” or

groups of similar elements within a many-body system, with applications in various

areas such as percolation theory, cosmology, and structure identification. A refined

picture emerges from a clustering analysis of the data considering traffic density,

near-miss and crash probabilities [Figs. 3-6.(b)]. Particularly, the Gaussian mixture

approach permits identifying two distinct clusters (phases) separating the data into a

low traffic density phase (“Cluster I” in Fig. 3-6.(b)) and a high density phase (“Cluster

II” in Fig. 3-6.(b)), which affirms the existence of the fundamental diagram of traffic

at network scale [72]. Moreover, it is at the interface between the two phases that

both the highest near-miss collision risk and the highest actual collision risk occurs

[Fig. 3-6.(c)]. This finding is significant for two reasons. First, the overlap of low and
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high density regime can be viewed as a critical regime, in which accident precursors

predicted by the intrinsic near-miss collision risk have the highest likelihood to turn

into actual accidents. Second, the fact that this high probability occurs at a traffic

density of ⇢ ⇡ 0.2 [Figs. 3-6.(b-c)], is not a coincidence, but a clear evidence that

(near-miss and actual) collisions are predominant in the congested flow regime at a

critical jamming probability, in full agreement with the model-based phase diagram

[Fig. 3-4]. The results thus confirm the existence of an intrinsic near-miss collision

risk which is significant in its strong correlations with the actual crash probability.
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Figure 3-5: The geo-spatial distribution of the logarithm of the expected (a) near-miss

risk, and (b) collision risk. (c) The correlation between the near-miss and collision risk

as a function of traffic density ⇢. The road segments with a density of approximately

⇢ = 0.2 exhibit the highest correlation levels, although the correlation is consistently

positive.
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Figure 3-6: Phase diagram of near-miss and actual collision risk: (a) Correlation

plot of near-miss risk derived from crowdsourced velocity measurements and actual

collision risks derived from 2019-21 accident data for the Commonwealth of Mas-

sachusetts [6] (size of squares is proportional to traffic density). (b) Gaussian cluster-

ing of traffic density, near-miss risk and collision probability showing the existence of

two dominant clusters associated with traffic density interfaced by a critical regime.

(c) Phase diagram of near-miss and actual collision risk highlighting the critical regime

in which accident precursors predicted by the intrinsic near-miss collision risk have

the highest likelihood to turn into actual accidents.
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3.4 Summary

In summary, considering a long-standing question in traffic safety, curiously never

explicitly addressed before, we have uncovered a near-miss collision risk in congested

traffic flow that is an integral part of the internal structure of traffic. This intrinsic na-

ture makes the risk predictable using vehicle velocity data as only input to determine

the velocity state transition matrix and to subsequently map model-based generated

or crowdsourced vehicle velocity data onto a phase diagram of accident precursors.

The phase diagram highlights that the intrinsic near-miss collision risk is confined to

the congested regime, where accident precursors have the highest likelihood to turn

into actual accidents. In return, jamming or an increase in randomness in driver

behavior entail long-range interactions between particles that tend to diminish the

intrinsic near-miss collision risk. The intrinsic near-miss collision risk in traffic flow

thus appears to have similar features as many other many-body systems with long

range correlations triggered by randomness, ranging from fracture risk in random

porous materials [151], and the collective behavior of coupled pendulums with ran-

dom connections [152], to the control of extreme events in complex networks through

randomness [153,154] and the moderation of wild price fluctuations in financial mar-

kets via random trading agents [155]. Of course, other externality-driven vehicle

accidents which are not part of our near-miss event statistics, need to be considered

in the development of a comprehensive accident risk mitigation strategy. We believe

however, that the availability of a predictable metric of the intrinsic near-miss colli-

sion risk is a first step to curbing the incessant rise in vehicle-caused fatality rates.

True to this goal, we expect that the scalability of our approach for crowdsourced

vehicle velocity will enable development and implementation of active collision risk

mitigation strategies in both human-driven and autonomous driving networks.
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Chapter 4

Network-Level Safety Analysis:

Application of Near-Miss Risk

Analysis to Crowdsoruced Data

Advancements in data analytics and collection methodologies have catalyzed a paradigm

shift towards data-centric approaches in the analysis of vehicular accident patterns

[82–85]. These approaches utilize statistical methods and machine learning techniques

to scrutinize multidimensional collision datasets, unraveling critical parameters that

strongly correlate with collision incidents, e.g., such as driver fatigue, weather condi-

tions, traffic flow, and road geometry [86–88, 95–97]. The predictive modeling which

can identify high-risk zones, however, is mainly anchored in retrospective case-control

studies [95, 96, 101–105]. While helpful in pinpointing high-risk areas, the existing

data-centric studies largely neglect the dynamic internal structure of traffic and fail

to quantify network-level near-miss risk systematically. Furthermore, their heavy re-

liance on historical datasets limits their utility as real-time predictive tools. Hence,

current models experience the limitation of lacking comprehensiveness, as their ap-

plication is primarily driven by the constraints of “training” dataset.

Addressing these critical gaps, we center our discussion on two pivotal elements

of roadway networks: reliability and robustness. Reliability assesses the probability

of maintaining a functional network, while robustness measures the large-scale effects
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of road segment disturbances. To quantify the reliability and robustness of roadway

network, we proceed by representing a roadway network as an undirected connected

graph, denoted by G = (V,E), where each node v 2 V represents an intersection

or a terminal point of a road segment, and each edge e = (u, v) 2 E represents a

bi-directional path between nodes u and v. This abstraction facilitates the analysis of

road networks at a large scale, allowing us to conveniently incorporate the topology

and connectivity of the network in our analysis.

This chapter introduces an approach that incorporates graph theory with near-

miss risk analysis in the congested traffic flow to assess the safety of roadway networks

at large scales. We illustrate the significance of crowdsourced velocity data collected

via smartphones, utilizing it as the input to the frameworks developed in the preceding

chapters. In particular, although the suggested near-miss framework doesn’t factor

in the “surprise” aspect of accidents, it does measure the complex risk associated

with accident precursors inherent to the internal structure. Hence, we provide a

comprehensive discussion asserting that the near-miss framework not only enables us

to identify high-risk zones, but it also gives insight into the reliability and robustness

of the roadway network on a broader scale. This approach is expected to set the

stage for a comprehensive network-level safety assessment, offering transformative

potential for our understanding of road safety and fueling the development of safer,

more efficient transportation systems.

4.1 Network Reliability

Network reliability can be broadly defined as the statistical probability that a network

retains its interconnectivity given a specified set of potential failure scenarios [156].

Reliability of roadway networks can therefore be interpreted as the probability that

the road network can successfully facilitate transportation between various points

without failure.

The reliability of a path between two nodes is determined by the absence of near-

miss events along that path, and is thus defined as the corresponding probability.
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Consider pe as the likelihood of near-miss event occurring on edge e. The reliability

of a path connecting nodes u and v, denoted as ✓(u, v), depends on the near-miss

probabilities of all the edges on the path. The path’s reliability is therefore a function

of the probabilities of each edge along the path, i.e., ✓(u, v) = f(pe), for all e 2 P(u,v),

where P(u,v) is the path from node u to v. Assuming that the occurrence of near-miss

events on any specific edge is independent of the events on other edges, the reliability

of the path P(u,v) is given by,

✓(u, v) =
Y

e2P(u,v)

(1� pe) (4.1)

The network reliability, q(d), is hence defined as the expected path reliability for

all node pairs (u, v), given that the shortest path connecting them is of length d, i.e.,

L(u,v) = d with path length L(u,v) defined as L(u,v) :=
P

e2P(u,v)
le, where le represents

the length of edge e. In other words,

q(d) = E[✓(u, v)|L(u,v) = d] =

P
{(u,v)2V⇥V |L(u,v)=d} ✓(u, v)

#{(u, v) 2 V ⇥ V : L(u,v) = d} (4.2)

Thus, the network reliability q(d) constitutes a coarse-grained metric that captures

the network’s macroscopic behavior by averaging the microscopic path reliabilities.

Analogous to the emergence of macroscopic properties in statistical physics through

microscopic state averaging, q(d) embodies the network’s reliability state at a par-

ticular “scale” denoted by the path length d. This measure provides an aggregated

view across all node pairs (u, v), given a path length of d, thereby distilling the net-

work’s reliability while obfuscating individual path or node specifics. Furthermore,

theoretically, ergodicity proposes that observing a single vehicle over an extended

period offers a reliable mirror to the broader fleet behavior. Specifically, an absence

of near-miss events for a given vehicle implies a similar non-occurrence across the

entire vehicle network, given an assumed homogeneity of risk. This encapsulates the

fundamental principle of ergodicity in stochastic systems, where long-term observa-

tions of an individual instance can faithfully represent the global system’s statistical

behavior.
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4.2 Network Robustness

In network analysis, robustness signifies the ability of the network to sustain its key

operations despite disturbances. This trait, in the context of roadway networks,

corresponds to the preservation of connectivity and functionality amidst near-miss

incidents. In this section, we initially establish the concept of disturbance and its

impact on the scale of a road segment or edge. We then suggest network function-

ality metrics that quantify alterations in the network’s interconnectedness at various

length scales post-disturbance. Lastly, we discuss the Monte-Carlo approach as a

method to simulate disturbances, explore various potential outcomes, and ascertain

the network’s expected robustness.

4.2.1 Disturbance Mechanism

Our analysis commences with the modeling of edge disruptions. Consider an edge e

with Ne lanes. A near-miss event, equivalent to a disturbance, can occur on this edge

with a probability pe. Once edge e is disturbed, its corresponding travel time will be

extended by �Te. If one lane in a Ne lane road fails, the additional travel time for the

remaining lanes is computed as �Te = Te/(Ne � 1), with Te as the pre-failure travel

time of edge e. This estimate presumes uniform traffic distribution and lane capacity.

However, instead of time, our analysis focuses on the edge length. A disruption

increases the perceived length of the edge from le to l
0
e = le(1 + 1/(Ne � 1)). Unlike

traditional network reliability studies that perceive failure as edge removal (l0e ! 1),

our approach aids network connectivity by increasing the length of the disrupted edge.

This method of representing failure loss complies with boundary conditions. More

specifically, for a single lane road, a failure halts traffic, thus l
0
e ! 1. Conversely,

for a large number of lanes (Ne ! 1), a single lane failure has minimal impact, thus

l
0
e ⇡ le.
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4.2.2 Network Functionality

The robustness of a network is often assessed via the interconnectedness index, which

is typically embodied by the network’s diameter - the average shortest path length

between all node pairs. The diameter is inversely proportional to the communication

efficiency between nodes - a smaller diameter indicates a shorter expected path be-

tween any two nodes. Following a similar approach, we incorporate a dynamic factor

by considering network disturbances at varying scales. Specifically, we examine the

change in the shortest path length, L(u,v), between nodes u and v before and after

disturbance. The path length increases to L0
(u,v) post-disturbance. Thus, the change

in path length, �L(u,v), is:

�L(u, v) = L0
(u,v) � L(u,v) (4.3)

Network robustness metric is represented by the average change in shortest path

length across all node pairs that have a pre-disturbance shortest path of d, defined

as:

�̄L(d) = E[�L(u,v)|L(u,v) = d] =

P
{(u,v)2V⇥V |L(u,v)=d} �L(u,v)

#{(u, v) 2 V ⇥ V : L(u,v) = d} (4.4)

This robustness measure provides a coarse-grained view of the expected change in the

shortest path at different scales controlled by d. It offers an aggregated perspective

across all node pairs (u, v) with a shortest path length of d, thereby encapsulating

the network’s robustness without focusing on specific paths or nodes.

4.2.3 Disturbance Simulation

We employ Monte Carlo simulations to systematically explore the potential outcomes

of various disturbances, thereby modeling edge failures in the roadway network. Each

edge e is associated with a failure probability pe, representing the likelihood of a

near-miss event. Our model assumes that edge failures are independent, implying

that a near-miss event’s occurrence on one edge does not influence the probability of
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a similar event on another edge. This assumption aligns with the operational reality

of roadway networks, where incidents across different road segments generally occur

independently.

4.3 Data Processing

In this section, we explain the application of the near-miss analysis framework to

large-scale graph representations of roadway networks. Our primary focus is on the

roadway networks of Massachusetts, California, Ohio, Maine, and Oregon due to the

abundance of crowdsourced velocity data we have amassed from the Carbin educa-

tional app [149]. Such data set allows us to perform comprehensive crowdsourced and

statistical analysis at the state scale. To this end, we first explain the process of ob-

taining these networks’ graph representations, and further outline the simplification

of these graphs as well as edge weight assignments. We then implement the near-

miss analysis framework to the velocity data, which allows us to derive the expected

near-miss risk for the entirety of the network.

4.3.1 Graph Represenation

To construct the graph representation of roadway networks, we utilized the open-

access shapefiles of primary and secondary roads for different states, provided by the

US Census Bureau [157]. These shapefiles were transformed into undirected graphs,

reflecting the interconnectivity of the roadway network. We utilized the 2018 Highway

Performance Monitoring System (HPMS) Public Release dataset [158], to assign each

edge with corresponding attributes: speed limit, number of lanes, and traffic density

values.

The original graphs extracted from the shapefiles are typically large mostly due

to the high number of nodes with degree 2, which meticulously capture the geometric

intricacies of the roadway system such as U-turns and roundabouts. To streamline

our analysis, we implemented a process of strategic reduction, judiciously eliminating

nodes of degree two and subsequently replacing the associated edges, provided each
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was less than 2 km in length. This simplification served a dual purpose. Primarily,

it facilitated a substantial reduction in graph size by almost more than 95% [Table.

4.1], increasing the efficiency of subsequent analyses such as shortest path and inbe-

tweenness indices. Secondly, and perhaps more critically, it allows us to consider the

occurrence of near-miss events on each edge as an independent process. The assump-

tion of independence is grounded on the notion that longer edges are less likely to

share influencing factors for near-miss events. Thus, by transforming into a simplified

network, we enhance our ability to analyze these near-miss incidents as independent

occurrences, undistorted by shared or common characteristics.

4.3.2 Phase Diagram and Spatial Correlation

We perform our analysis of near-miss risk on a state-by-state basis, applying the

near-miss risk framework to all recorded trips within each of the five state [Table

4.1]. Each trip had an average duration of approximately three minutes, sufficient to

ensure both stationarity and ergodicity. We ensured a uniform distribution of trip

frequency spanning the period from 2019 to 2021. The near-miss risk, corresponding

to each trip, was computed. Utilizing the trip coordinates, this risk was allocated

to the respective edge within the network. The risk-weighted centrality of each edge

was subsequently calculated as peBe, where pe and Be denote the near-miss risk

and the edge betweenness centrality, respectively [Fig. 4-1]. These risk-weighted

centrality indices not only offer an exhaustive understanding of how near-miss risks

are distributed throughout the network, but they also take into account the network’s

topology. This primary analysis lays the groundwork for identifying high-risk zones.

Phase Diagram

The first significant observation is the distinctive phase diagram behavior shared by all

the states under examination [Fig. 4-2.(a)], mirroring the phase diagram we derived

for Massachusetts in the prior chapter [Fig. 3-6]. This pattern carries significant

weight as it indicates that the risk of near-miss events peaks at a certain density within
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the congested traffic regime. This finding also bears resemblance to the behavior

predicted by the NaSch model, where the highest likelihood of a near-miss event

emerges within the confines of the congested regime [Fig. 3-4]. As evidenced through

a clustering analysis conducted in the previous chapter, this critical regime of peak

risk is expected to be situated at the intersection of low-density and high-density

congested regimes. In particular, when this was compared with actual collision data

from the state of Massachusetts, the strongest correlation was observed in the critical

regime [Fig. 3-6.(a)]. This implies that traffic density is a vital determinant in shaping

the internal traffic structure. Of course, this is not to undermine the roles played

by other influential factors such as the geometric configuration of the road network

and the behaviors of drivers. These parameters, to a certain extent, are implicitly

encompassed in the state transition matrix as it quantifies the internal structure of

traffic.

Spatial Correlation

As a secondary perspective, the computation of spatial covariance between each edge’s

near-miss risk was carried out. This analysis aimed to glean insights into the near-miss

risk distribution across the network. More specifically, we calculated the normalized

spatial covariance between the near-miss risks associated with all pairs of edges (e1, e2)

located at a liner distance r from each other via,

C̃pp(r) =
1

�2
p

�
E[pe1pe2 ]� p̄

2
�

(4.5)

where p̄ and �
2
p denote the network-wide first- and second-order central moments of

near-miss risks, respectively. The observed covariance demonstrates a rapidly decay-

ing exponential pattern [Fig. 4-2.(b)], suggesting that the spatial correlation between

the near-miss risks across different edges is minimal. Such low correlation levels,

coupled with the large edge lengths, indicate that occurrence of near-miss events on

each edge are likely to be triggered by unique factors. Consequently, these events

can be approximated as nearly independent processes. In other words, the failure of
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one edge does not significantly depend on the failure of other edges in the network.

It is, however, important to note that selecting small edge lengths would inherently

amplify correlation levels on smaller scales. Consequently, the cause of edge failure

would exhibit shared characteristics, which in turn requires the consideration of cor-

related failures. A common approach to take into account correlated failures is the

application of Markov Chains, which provides an understanding of an edge’s failure

probability based on its previous state [159].
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Before Simplification After Simplification

# Nodes # Edges # Nodes # Edges # Trips

Massachusetts 195138 196906 3902 5320 1.6⇥ 106

California 630616 632418 8298 9751 6⇥ 105

Ohio 613672 617366 10058 13389 5.2⇥ 105

Oregon 252516 253040 2931 3345 3.4⇥ 105

Maine 238410 239289 3092 3842 3.3⇥ 105

Table 4.1: Summary of each state’s graph characteristics and total trip count. Sig-

nificant reduction in the total number of edges and nodes is achieved by strategically

removing degree-two nodes which linking two short edges and their subsequent con-

solidation into a singular, extended edge.
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Figure 4-1: Risk-weighted centrality for each edge in the network. The plot depicts

the normalized value of peBe/
P

e Be, where Be indicates the edge betweenness index

computed using Ulrik Brandes’ algorithm, and pe is the near-miss risk. The expected

network-scale average of risk-weighted centrality is calculated as
P

e peBe/
P

e Be for

each state. The calculated averages are: a) California: 10�3.40, b) Massachusetts:

10�2.27, c) Maine: 10�2.75, d) Ohio: 10�2.86, and e) Oregon: 10�3.10.
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Figure 4-2: (a) The phase diagram of near-miss risk for different states. A universal

pattern emerges, revealing that the probability of a near-miss risk peaks at a density

of approximately 0.2. It then approaches zero as traffic veers towards either the

jammed or free-flow regime. As indicated in the preceding chapter, this density is

anticipated to correlate most strongly with the probability of collisions. (b) The

normalized spatial correlation between near-miss risks across edges. The correlation

function quickly decays and approaches zero (indicating a lack of correlation) even

over short distances. This suggests that the granularity of network discretization

offers enough distance for edge failures to be treated as independent events. This

independence allows us to assume that the causes of near-misses are not identical

for adjacent edges. The shaded area represents the mean value plus and minus one

standard deviation.
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4.4 Results and Discussion

We now have all the necessary components to conduct state-scale reliability and

robustness analyses for the states of Massachusetts, Ohio, Maine, California, and

Oregon. These components consist of the graphs of roadway networks, with large

enough edges to assume the independence of the failure mechanism. The subsequent

analysis elevates the network’s topology and the spatial distribution of near-miss

risks to derive the network’s expected behavior at various length scales, based on the

shortest path length.

4.4.1 Network Reliability

We advance by examining the reliability of the roadway networks to quantify the

probability of encountering no disturbances. The reliability of the network decreases

exponentially as the trip distance increases, which can be expressed as:

q(d) ⇡ e
� L

↵cLc (4.6)

where L represents the length of the shortest path to the destination, while Lc is the

representative length of the state, calculated as Lc =
p
A, where A stands for the area

of the state. We coin ↵c as the State Failure Index, demonstrating the rate at which

the network’s reliability diminishes as the trip length augments. A higher failure index

indicates that near-miss event is observed over a shorter distance, thereby reducing

the network’s reliability. The choice of the exponential function in Equation (4.6) is

apt as it satisfies the probability boundary conditions. Namely, if the length of the

trip converges to zero, the likelihood of observing a disturbance also approaches zero,

implying a fully reliable network. Conversely, if the trip length tends towards infinity,

the occurrence of a near-miss event becomes a certainty; that is,

lim
d!0

q(d) = 1, lim
d!1

q(d) = 0 (4.7)
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Considering their respective sizes, Massachusetts has the least reliable network with

a state failure index (↵c) of 67.09, while California boasts the most reliable network,

with an ↵c value of 43.45.

4.4.2 Network Robustness

The robustness of the networks is examined through Monte Carlo simulations, as

outlined in Section 4.2.3. For each trial of the Monte Carlo simulations, a random

number within the range [0,1] is assigned to every edge. Edge failure occurs when

the generated random number falls below pe, resulting in an increase of its length

from le to l
0
e, as detailed in Section 4.2.1. We conducted a total of 104 Monte Carlo

trials for each state to assess and compare the network’s functionality pre- and post-

disturbance.

Our initial metric of reference is the change in network diameter, a macroscopic

measure of the network’s interconnectedness. By definition, the network diameter

represents the mean length of the shortest paths between any two nodes in the network

[160]. Prior to any disturbances, the network diameters for the states of California,

Oregon, Ohio, Maine, and Massachusetts stood at 525.25, 368.97, 207.39, 179.97, and

108.32 km, respectively. Following disturbances, the expected increases in network

diameter for these states were estimated to be 0.022, 0.067, 0.08, 0.11, and 0.2 km

respectively; this suggests that the network interconnectedness for Massachusetts and

California are at most and least risk, respectively.

We further investigated the network functionality by examining the expected

change in shortest path �̄L(d) at various scales, determined by the length of the

shortest path d. For relatively short journeys of less than 100 km, all of the road

networks in question displayed a linear pattern in the expected length increase of the

shortest path, with the function controlled by the pre-disturbance shortest path. The

slope of this linear pattern, �c = d�̄L/dL, is inversely proportional to the robustness

of the network. When evaluating the robustness of the networks relative to the charac-

teristic length of each state (�cLc), we observe a distinct hierarchy. California stands

at the forefront with a robustness factor of �cLc = 0.04. Following California, Oregon
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has a robustness of 0.11, while Ohio has a slightly higher factor at 0.13. Maine’s

network exhibits a robustness of 0.24, with Massachusetts exhibiting the least robust

network with a factor of 0.33. These measurements further underscore the relative

resilience of each state’s network to potential disturbances. These results suggest that

the network in Massachusetts is relatively more vulnerable to disturbances, while the

network in California exhibits greater robustness under the same conditions.
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Figure 4-3: Network reliability for different states as a function of the normalized

trip length L/Lc, where Lc is the characteristic length of each state, computed as

the square root of its area (Lc =
p
A). Network reliability exhibits an exponen-

tial decrease as trip length increases. Among the five states under consideration,

Massachusetts demonstrates the quickest decay, implying it has the least reliable net-

work. Conversely, California exhibits the slowest decay, suggesting it possesses the

most reliable network. The shaded area represents the mean value plus and minus

one standard deviation.
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Figure 4-4: The expected excess length of trips �̄L after network failure as a function

of original trip length L prior to the failure. The additional trip length due to network-

level failures demonstrates a linear relationship with the original trip length for short

trips (less than 100km). The slope of this line serves as an indicator of network

robustness. Among the analyzed states, the roadway networks of Massachusetts and

California have the steepest and gentlest slopes, respectively. This implies that the

network in California is the most robust, while the one in Massachusetts is the least.

The shaded area in the plot represents the 5% and 95% percentiles of the data.
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4.5 Summary

In this chapter, we elaborate on the large-scale application of the near-miss risk frame-

work by introducing robustness and reliability metrics, which serve the dual purpose

of identifying high-risk zones and providing insights into safety patterns across at

larger context. Specifically, we employed the near-miss framework across five states

- Massachusetts, California, Ohio, Maine, and Oregon - using graph representation

of networks. We demonstrated through each state’s phase diagram that the risk of

accident precursor remains minimal at both low and high limiting densities, but it

adopts to its maximum at the critical density within congested flow. In our pur-

suit of understanding safety patterns, we introduced two metrics applicable at the

network-scale, specifically, reliability and robustness, integrating not just the distri-

bution and statistical moments of near-miss risks but also the network’s topology.

The network reliability, q(d), offers a macroscopic insight into the network’s behavior

at different length scales controlled by d, denoting the probability of not observing

any near-miss event as a function of trip length d. We found that the reliability of

all networks decreased exponentially, with California and Massachusetts showing the

most and least reliable networks, respectively. We defined network robustness as the

expected increase in trip length for a trip of length d in an undisturbed network,

offering a broad view of the expected change in the shortest path at varying scales.

We demonstrated that for relatively short trips, the trip length is expected to increase

linearly with respect to d. Similar to reliability, Massachusetts and California were

the extremes, presenting the least and most robust networks among the five states

studied, respectively.
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Chapter 5

Conclusion

The contemporary surge in motorization, a byproduct of swift globalization, carries a

significant drawback - road safety. Given its profound societal and economic implica-

tions, traffic safety has lately risen to prominence as a crucial area of research. While

data-driven and statistical models highlight critical parameters and identify high-risk

zones, their oversight of the dynamic internal structure of traffic leads to their failure

in systematically quantifying network-level collision risk. Additionally, their substan-

tial dependence on historical records of accidents curtails their efficacy as real-time

predictive tools, thereby making these models lack comprehensiveness due to their

application being significantly influenced by the limitations of their training dataset.

The objective of this thesis was to put forth a physics-informed framework for

the safety assessment of roadway networks at various scales, ranging from a road

segments to large networks. Building upon the physics of traffic, we suggest a metric

of accident precursor risk that displays a positive correlation with the actual risk

of accidents, offering computational advantages and necessitating only crowdsourced

velocity measurements as the singular input. Furthermore, this proposed method not

only boasts potential for real-time implementation but also demonstrates the capacity

to yield results at both micro and macro scales, bridging the gap between physics and

data-driven modelling.
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5.1 Summary of Main Findings

In Chapter 2, we focused on the spatial and temporal statistics of traffic, aiming

to quantify the inherent patterns that underpin traffic’s structural characteristics.

Specifically, we explored the system’s higher-order statistical properties and identi-

fied universal memory effects, existing both in time and space, that poses crucial

information pivotal for mapping of traffic properties. Furthermore, by invoking the

ergodic theorem from statistical physics, we illustrated that the fluctuations in vehicle

speed profiles amid congested flows can capture the statistical properties that govern

the collective behavior of traffic as an ensemble. This understanding enabled us to

directly access higher-order statistical moments from crowdsourced velocity measure-

ments, shedding light on the internal structure of traffic. The first-, and second-order

statistics present a rich repository of information that can be used to decipher the

complex interactions within the system, thereby facilitating the quantification of var-

ious statistical properties of the system.

In Chapter 3, we introduced a probabilistic accident precursor metric that quan-

tifies the likelihood of observing near-miss events, specifically those featuring decel-

erations beyond normal operation braking. Utilizing a reduced-unit representation

of traffic, we demonstrated a density-dependent peak in near-miss risk within the

congested regime, which tapers to zero in both free-flow and jammed regimes. This

phase diagram of intrinsic near-miss collision risk applied to both model-generated

and crowdsourced vehicle velocity datasets, confirming the framework’s robustness

independent of any model attributes. We demonstrated that heightened randomness

in driver behavior, mirroring phenomena in other systems ranging from fracture risk

in random porous materials to the moderation of erratic price shifts in financial mar-

kets, results in a safer network at large. Moreover, examining the roadway network

of Massachusetts, we juxtaposed the computed near-miss risks with actual collision

risks. We found a positive correlation between these two variables, with the peak

correlation coinciding with the critical regime, characterized by the highest near-miss

and collision risks.
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Lastly, in Chapter 4, we highlighted the predictive capabilities and the potential

insights that the near-miss framework could offer towards cultivating safer neigh-

borhoods. We demonstrated that the near-miss framework, while instrumental in

identifying high-risk road segments or zones, extends its utility beyond such identifi-

cation by empowering us to assess and comment on broader safety contexts. To this

end, we introduced metrics for reliability and robustness to gauge a network’s ability

to maintain stability under normal conditions, and its capacity to sustain function-

ality post-disturbance, respectively. Specifically, we applied the near-miss framework

across five states - Massachusetts, California, Ohio, Maine, and Oregon - using graph

representation of networks (results are summarized in Table 5.1). Our findings re-

vealed an exponential decrease in the reliability of all networks as the destitution gets

further away, with California and Massachusetts standing out as the most and least

reliable networks respectively. We showed that for relatively short journeys, the ex-

pected increase in trip length was linear in relation to the shortest path length of the

trip in undisturbed network. Analogous to the reliability observations, Massachusetts

and California represented the two extremes in terms of robustness, manifesting the

least and most robust networks among the five states studied, respectively.
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↵c �c ⇥ 104 Lc [km] µp ⇥ 104 Network diameter [km] Diameter change [km]

California 43.45 0.62 651.13 5.5 525.25 0.022

Maine 54.53 8 302.71 9.4 179.97 0.107

Massachusetts 67.09 20 165.3 44 108.32 0.199

Ohio 56.60 4 340.73 16 207.39 0.080

Oregon 48.02 2 504.78 11 368.97 0.067

Table 5.1: Summary of the network reliability and robustness analyses. ↵c serves as an

indicator of network reliability, demonstrating the rate at which the transportation

network’s reliability decreases as a function of trip length. Network robustness is

measured by �c, which represents the rate of increase in trip length as a function of

the trip length itself when the network is compromised, and certain edges have failed.

µp represents the expected near-miss risk for the network. The network diameter, a

classic index showcasing network interconnectivity, indicates the network’s sensitivity

to failures through its variation due to such failures.
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5.2 Research Contribution

5.3 Limitations and Future Perspective

The objective of this study was to present a crowdsourced solution designed to en-

hance roadway safety by understanding the internal structure of traffic. Throughout

this investigation, we made several assumptions and explored the situations where

these assumptions are valid. However, as part of future work, it would be signif-

icant to transcend these assumptions and incorporate greater complexity into the

frameworks introduced in this study, thereby fostering a more comprehensive under-

standing of the statistics of extreme events in traffic across a wider range of scenarios.

Specifically,

1. In Chapter 2, we examined the inner workings of traffic dynamics, basing our

exploration on the assumption of stationarity and ergodicity. These assump-

tions, as detailed in the chapter, could hold true given homogeneous traffic on

simple roadway networks over properly chosen time/length scales. However,

they’re not universally applicable. Especially in urban traffic settings, external

elements like traffic signals, roundabouts, and school zones with speed bumps

can undermine these assumptions. Hence, it becomes crucial to ascertain to

what extent these factors are violated and further assess their impact on the

results. One possible method is to adopt a multi-scale modeling approach,

where these assumptions are true over a certain scale, and then the results are

scaled up or down. Additionally, several models can be employed to address

the issue of nonstationarity, such as Autoregressive Integrated Moving Average,

Autoregressive Conditional Heteroskedasticity, and Generalized Autoregressive

Conditional Heteroskedasticity. Furthermore, it’s noteworthy that the theory

and model calibration presented are restricted to single-lane traffic. Extensions

to multiple lane models of the NaSch-type with lane-change probabilities, ramp

exits, and corrections for traffic obstacles for inner-city applications, however,

are deserving of consideration.
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2. In Chapter 3, we introduced a near-miss risk metric based on the reduced-unit

representation. While this representation provides a fairly universal approach

to traffic dynamics modeling, it does come with certain limitations. It could

thus be beneficial to extend these concepts to other traffic models, both con-

tinuous and discrete, suggest comparable metrics, and further investigate the

correlations with collision risks using historical accident records. Moreover, it’s

crucial to relax the constraints of stationarity and ergodicity, for example, by

contemplating open boundary conditions.

3. In Chapter 4, our reliability and robustness analysis was conducted under the

fundamental assumption of independent edge failures. We demonstrated that

proper discretization of the roadway network as a graph could reduce the spatial

correlation between edge failure probabilities, thus neighboring cells would no

longer have a shared cause of failure. However, it could be beneficial to utilize

methods like Markov Chains to model failures that are correlated, and further

study both the microscopic and macroscopic safety indices while considering

the impact of correlation indices.

In summary, the current study has provided valuable insights into traffic dynam-

ics and has proposed a physics-informed framework to obtain an accident precursor

metric from the crowdscourced velocity data. Despite the progress made in analyzing

traffic dynamics and investigating diverse metrics and models, the potential for future

research remains extensive. Continuing to build upon and challenge our assumptions,

as well as applying and refining the theoretical frameworks, will enable more com-

prehensive and nuanced understandings. This will also open up opportunities for

tailoring solutions to specific traffic scenarios and thus enhance safety measures more

effectively. We eagerly anticipate further progress in this domain and the prospective

societal benefits that could emerge from blending physics-informed modeling of traffic

safety with the integration of data analytics.
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Appendix A

Nagel-Schreckenberg Cellular

Automaton Model

Among the many traffic flow models ranging from continuum to agent-driven ap-

proaches (for a review, see [3]), the Nagel-Schreckenberg (NaSch) cellular automaton

model [35] has emerged as a powerful tool not only to reproduce critical features of

traffic flow [68, 69], such as backward-moving shock waves [70] and the fundamental

diagram of traffic [72], but foremost to track the internal structure of traffic by means

of simulations [64–67, 71, 73, 74]. This includes quantitative insights into the mech-

anism of jamming from investigations of strength and range of interactions between

successive vehicles captured by short-range correlation functions [65,66], phase tran-

sition phenomena from investigation of the correlation length in the velocity-velocity

covariance function [67], jamming rate, jam lifetime and size from stability criteria

of the NaSch-model close to the critical jamming density [129], and spatial and tem-

poral memory effects [161]. Key in these studies is the apparent simplicity of the
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NaSch-model heuristics as a discrete lattice-gas-like model, which we recall:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

(i) Acceleration: v(1)j = max(vk(t), vmax)

(ii) Deceleration: v(2)j = min(v(1)j , dk(t))

(iii) Randomized braking:

vk(t+ 1) =

8
><

>:

v
(2)
j with probability 1� p

max(v(2)j � 1, 0) with probability p

(iv) Update vehicle position:

xk(t+ 1) = xk(t) + vk(t+ 1)

(A.1)

where dk(t) represents the headway, and p is the stochasticity parameter which takes

into account the drivers’ individual freedom to regulate their speed [Fig. A-1]. From a

statistical physics point of view, the stochasticity parameter permits random velocity

fluctuations and is merely analogous to an external field in ferromagnetism, serving as

a conjugated parameter which can destroy the ferromagnetic phase transition [162,

163]. The transition density for the stochastic model is analytically estimated as

⇢
p
c ⇡ (1 � p)/(vmax + 1 � 2p) from the average free-flow velocity and the analytic

upper bound of the jammed dissolution velocity [129].

The classical Monte-Carlo simulations of the NaSch model consist of randomly

placing N particles up to a prescribed cell occupation ⇢ = N/L, representative of

the traffic density, into the 1-D simulation box of size L with periodic boundary

condition. For a given stochasticity parameter p, the NaSch-model heuristics (A.1) is

then applied long enough until statistical stationarity is reached [73,122,123].

For the special case of deterministic model (p = 0), a linear integer programming

(IP) formulation can be employed to speed up the simulations. This reformulation is

achieved owing to the unique property of velocity in the deterministic model which

resembles a backward-moving wave. More specifically, the (k + 1)th vehicle at time

step t imparts its velocity to the kth vehicle at time t + 1, i.e., vk(t + 1) = vk+1(t).

Due to the absence of randomized braking, the particle velocity equals the headway.
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Consequently, the ensemble average velocity is equal to the expected value of the

headway in the congested flow, i.e., v̄ = 1/⇢� 1 with (vmax + 1)�1  ⇢  1. Finally,

vk+1(t) � vk(t)  1 always holds true since the maximum acceleration in the NaSch

model is bound to one. The heuristics of the deterministic model for the case can be

revisited at the system scale via the following linear IP:

max
vk(t)

NX

k=1

✓kvk(t), 8k : vk(t) 2 {0, 1, ...vmax} (A.2)

subject to, 8
>>>>>><

>>>>>>:

vk+1(t)� vk(t)  1, 8k 2 {1, ..., N � 1}

v1(t)� vN(t)  1

1
N

PN
k=1 vk(t) = v̄

(A.3)

Herein, ✓i is a continuous uniform random variable, ✓i ⇠ U [0, 1] playing a similar

role as the initial configuration of the system required for Monte-Carlo simulations

of the NaSch model. Much akin to the negligible impact of the initial configurations,

the impact of ✓i on the velocity statistics under stationary conditions is negligible for

large-enough system size. The outcome of the linear programming relations are the

particle velocities, vk(t), which are transferred to the succeeding time step through

backward-moving wave property.

The outcome of such simulations are velocities of all particles for a sufficiently long

time interval vk(t). These velocity signals serve as the input for calculating the statis-

tical moments of the ensemble, such as the expected velocity, and the autocovariance

function from its canonical definition.
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Figure A-1: Schematic of the NaSch model of traffic flow. The number of particles

(vehicles) is conserved, with a cyclical/periodic boundary condition. Vehicles either

move ahead to unoccupied cells at different speeds (v > 0) or stay stationary (v = 0),

following the prescribed NaSch heuristics.
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Appendix B

Statistical Foundations of Stochastic

Processes

Consider a random experiment in the probability space (⌦, F, P ), with each outcome

! 2 ⌦ assigned a real-valued time function X(t,!), where t 2 I, a totally ordered

index set. This map of functions indexed by the possible outcomes of ⌦ forms the

foundation of a stochastic process. The index set I could either represent the set

of integers Z, denoting a discrete-time process, or the set of real numbers R, char-

acterizing a continuous-time process. It’s worth noting that the choice of index set

opens up a wide range of possible behaviors for the process, making the study of

stochastic processes remarkably versatile and complex. A specific outcome ! results

in a deterministic function X(t,!), termed a realization or sample path of the pro-

cess [Fig. B-1]. The complete statistical properties of the process are deduced from

the ensemble of all such realizations, encapsulating a comprehensive overview of the

stochastic process’s behavior and providing the basis for predictive modeling.
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Figure B-1: A simplified illustration of ensemble X(t,!). An ensemble represents an

array of realizations whose statistics are defined by examining the ensemble at specific

time(s) across all the realizations. Assuming stationarity, the statistical moments of

the process remain unaffected by time lags [Eq. (B.7)]. Additionally, if ergodicity

holds, a single sample path of a stationary process (in the green box) is sufficient to

statistically represent the ensemble’s statistical moments.
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B.1 Characterization

Consider a discrete process with a series of sampling times t1, t2, ..., tk 2 I. The

random variable resulting from establishing the value of the process at each ti for

i = 1, ..., k is denoted by Xi = X(ti). This forms a vector of random variables

X = [X1, ..., Xk]T for any finite value k. The complete characterization of this vector

is achieved through the specification of its joint probability distribution function,

offering a robust analytical tool for understanding the process’s complex statistical

behavior:

pX(x; t) = P[! : X1(!)  x1, ..., Xk(!)  xk] =

P[! : X(t1,!)  x1, ..., X(tk,!)  xk] (B.1)

Thus, a stochastic process can be visualized as an intricate assemblage of random

variables indexed by time, where these variables interact in a complex web of high-

order correlations. A simpler situation arises with an independent and identically

distributed (i.i.d.) process. In this case, the joint distribution for any sampling times

n1, ..., nk unfolds as the product of the first order marginal distribution:

pX(x1, x2, ...xn;n1, ...nk) =
kY

i=1

PX(xi) (B.2)

where the first order marginal pX(x; t) = pX(x) exists independent of time.

However, the landscape of stochastic processes often reveals interdependencies and

correlations. Therefore, the task of specifying the complete set of joint probability

distribution functions, as illustrated by Equation (B.1), can be highly complex. It

necessitates the elucidation of the properties of all potential subsets of time indices.

For practical purposes, analysis is often restricted to first- and second-order moments,

offering a simplification that still yields significant insights, given their capacity to

capture essential aspects of the process’s statistical structure.
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B.1.1 First-Order Moment: Mean

A key descriptor of a random process is its first-order moment. This metric illuminates

the temporal evolution of the process’s expected value. For a discrete-time process,

the mean of a random process X(.), denoted by mX(t), is defined by the time function

as follows:

E[X(t)] = mX(t) =
1X

x=�1
xpX(x, t) (B.3)

This definition can be extended to continuous-time processes:

mX(t) =

Z 1

�1
xpX(x; t)dx (B.4)

The mean operator, which characterizes the first-order statistics of the ensemble, is

generally a function of time. The ensemble expected value at a specific time t can be

intuitively interpreted as an average of the realization values with similar probabilities

of occurrence within the ensemble at time t. This average, mX(t), represents the mean

value of the process at time t, encapsulating a compact description of the process’s

central tendency.

B.1.2 Second-order Moment: Autocorrelation Function

The second-order moment of the ensemble, otherwise known as the autocorrelation

function, elucidates the degree of correlation the process exhibits at two distinct times,

s and t. It essentially measures the correlation of the ensemble with itself at these

separate points in time. For discrete processes, it is formulated as:

RX(s, t) = E[X(s)X(t)] =
1X

x1=�1

1X

x2=�1
x1x2pX(x1, x2; s, t) (B.5)

And for continuous-time processes, the autocorrelation function is defined as:

RX(s, t) = E[X(s)X(t)] =

Z 1

�1

Z 1

�1
x1x2pX(x1, x2; s, t)dx1dx2 (B.6)
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The second-order moment allows us to explore the temporal dependencies within the

process, providing an understanding of how the process evolves and fluctuates over

time.

B.2 Stationarity: Strict Sense and Weak Sense

The property of stationarity arises when the statistical properties of a process do not

evolve with time. Stationarity can be classified into two types: strict-sense stationar-

ity (SSS) and wide-sense stationarity (WSS), also known as weak-sense stationarity.

A strictly stationary process is one in which the joint distribution of any subset of

random variables within the process remains invariant under time shifts. Formally, a

random process X(t) is considered strictly stationary if, for any finite set of indices

t1, t2, ..., tk, the joint distribution function,

pX(x1, x2, ...xk; t1, t2, ...tk) = pX(x1, x2, ...xk; t1 + ⌧, t2 + ⌧, ...tk + ⌧) (B.7)

remains unaltered for all shifts ⌧ 2 I. This concept applies to the complete set of time

indices, reflecting the invariance of all moments and joint moments of the process.

SSS ensures that the process remains consistent throughout, a factor that simplifies

its analysis and interpretation.

A weaker form of stationarity is wide-sense stationarity, which concerns the invari-

ance of the first and second moments of the process. A random process X(t) is said

to be WSS if the mean mX(t) is constant, and the autocorrelation function RX(s, t)

depends only on the time difference ⌧ = t � s. Thus, the definitions of the first and

second moments for a WSS process are as follows:

mX = E[X(t)] (B.8)

RX(⌧) = E[X(t+ ⌧)X(t)] (B.9)
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The advantage of WSS is that it provides a simplification of the process’s character-

ization while still preserving its essential statistical properties.

B.3 Ergodicity of Stationary Processes

While stationarity implies certain statistical characteristics of a process are time-

invariant, it does not ensure those statistics can be computed from a single sample

path. This observation brings us to the significant concept of ergodicity. Ergodicity

is a vital property in the real-world application of stochastic processes, connecting

the theoretical aspects with empirical observations, a bridge between what we predict

and what we observe. An ergodic process is one in which the time average equals the

ensemble average. In simpler terms, it is a property that ensures a single long-term

observation can represent the statistical properties of the entire ensemble. Formally,

a process is said to be ergodic if, for any time function f(.),

lim
T!1

1

T

Z T

0

f(x(t))dt = E[f(x(t))] (B.10)

The property of ergodicity is fundamental in the statistical study of stochastic pro-

cesses. It ensures that the long-term time averages taken over a single realization can

be representative of the ensemble averages. Ergodicity thus brings about an inter-

esting connection: It gives us the luxury of studying the ensemble through the lens

of a single realization. Consequently, ergodicity bridges the gap between theory and

practical measurements, where often only a single sample path can be observed.
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Appendix C

Average Headway Estimation from

Two-Point Correlation Function

We aim at deriving the average headway from probability considerations. Our starting

point is the probability qij of a cell r + 1 being in a state i (occupied or empty)

conditioned by the state j of cell r:

qij = P[I⌘(r + 1) = i | I⌘(r) = j] =
P[I⌘(r + 1) = i \ I⌘(r) = j]

P[I⌘(r) = j]
(C.1)

where P[A\B] stands for the joint probability. Hence, the conditional probability of a

cell r+1 to be occupied (i = 1) given that cell r is occupied (j = 1) is readily obtained

when recognizing from Eq. (2.1) that P[I⌘(r+1) = i\I⌘(r) = j] = E[I⌘(r+1)I⌘(r)] =

S2(1) and P[I⌘(r) = 1] = S2(0), hence:

q11 = P[I⌘(r + 1) = 1 | I⌘(r) = 1] =
S2(1)

S2(0)
(C.2)

Given the binary nature of occupation, Eq. (C.2) allows us to determine the proba-

bility of cell r + 1 being empty when cell r is occupied:

q01 = 1� q11 =
S2(0)� S2(1)

S2(0)
(C.3)
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Since P[A|B] = P[A \ B]/P[B] and P[B|A] = P[B \ A]/P[A], we readily derive from

the expression of q10 the probability that cell r + 1 is occupied when cell r is empty;

that is:

q10 = q01
P[I⌘(r) = 1]

P[I⌘(r) = 0]
= q01

S2(0)

1� S2(0)
(C.4)

Finally, the conditional probability of two cells, r+ 1 and r, being empty is obtained

from:

q00 = 1� q10 =
1� 2S2(0) + S2(1)

1� S2(0)
(C.5)

With the probabilities in hand, we can determine the average headway, while making

use of the found Markov property:

P[I⌘(r + �r) | I⌘(r)] = P[I⌘(r + �r)], �r > 1 (C.6)

For illustration, consider a realization I⌘ of the form:

1� 0� 0� 1 (C.7)

(i.e., cells 1 and 4 are occupied while cells 2 and 3 are empty). From the Markov

property (C.6), we know that occupancy of cell 3 (resp. 4) is independent of cell

1 occupancy (resp. 1 and 2). Otherwise said, headway probability reduces to the

pairs 1� 0 (cells 1-2), 0� 0 (cells 2-3), and 0� 1 (cells 3-4) defined by probabilities

q01, q00 and q10. The probability of observing the realization 1 � 0 � 0 � 1, which is

the headway d = 2, is thus:

q01 ⇥ q00 ⇥ q10 =
(S2(0)� S2(1))2(1� 2S2(0) + S2(1))

S2(0)(1� S2(0))2
(C.8)

To generalize, consider that the probability of observing a headway d is q10⇥q01⇥q
d�1
00 ;

whence the average headway:

d = q10 ⇥ q01 ⇥
1X

d=1

d⇥ q
d�1
00 =

1

S2(0)
� 1 (C.9)
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where we used the geometric series development,

1X

d=1

d⇥ q
d�1
00 =

 1X

d=1

q
d
00

!0
0q001

=
1

(1� q00)2
(C.10)

with ()0 denoting derivation with respect to q00.
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Appendix D

Statics of Velocity: Probability

Distribution, Transition Matrix, and

Deceleration Probability

In this section, we provide a detailed derivation for the near-miss collision risk from the

total law of probability, and show how it can be determined from the state transition

matrix, provided statistical stationarity.

Consider the state vector of particles ~s as a vector that includes all the possible

integer velocity states from standstill v = 0 to maximum velocity v = vmax:

~s = (0, 1, 2, ..., vmax)
T (D.1)

where the superscript T denotes the transpose operator. Herein, we employ reduced

units of the Nagel-Schreckenberg cellular automaton model [35], in which units of cell

and velocity coincide. Particle k advances from its current position xk(t) to the future

position as xk(t + 1) = xk(t) + vk(t) where vk(t) is the k
th vehicle current velocity

state. We coin this reduced system of units as the “NaSch” units in reference to the

Nagel-Schreckenberg cellular automaton model [35].

In certain physical systems, such as ideal gases, the velocity of particles follows

a discrete distribution, where each velocity in the state vector has a probability of
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occurrence. We are interested in the marginal probability of observing a particle at

velocity state j, which is given by the law of total probability:

⇡j(t+ 1) =
vmaxX

i=0

qi!j⇡i(t) (D.2)

where ⇡i(t) := P[vk(t) = i] and qi!j := P[vk(t+ 1) = j | vk(t) = i]. In a more general

form:

~⇡(t+ ⌧) = (qT )⌧ · ~⇡(t) (D.3)

where ~⇡(t) and ~⇡(t+1) are, respectively, the discrete velocity probability distribution

at time t and t+ ⌧ , linked by the transition matrix q:

~⇡(t) = (⇡0(t), ⇡1(t), ..., ⇡vmax(t))
T ; q ⌘ qi!j (D.4)

The generalized law of total probability is readily recognized as the mapping of ve-

locity probability distribution at time t, ~⇡(t), to the velocity probability distribution

at time t+ ⌧ , ~⇡(t+ ⌧), by means of the state transition matrix q, also referred to as

the stochastic matrix. Row i and column j of q represent the current (t) and future

(t + 1) states of the particle, respectively. Since every particle must transition into

one possible state of ~s, each row of the transition matrix adds up to one,

q ·~1 = ~1 (D.5)

with ~1 denoting the unit vector.

D.1 Near-Miss Collision Probability

We define near-miss collision risk from the probability of decelerations that exceed

operational decelerations due to factors such as traffic density, headway, and other

internal characteristics of the traffic flow. The maximum deceleration occurs when

a particle at maximum velocity state vk(t) = vmax transitions into standstill state
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vk(t+ 1) = 0. Evoking the total law of probability, this excessive deceleration risk is

part of the marginal probability to find a velocity vk(t+ 1) = 0 from Eq. (D.2):

⇡0(t+ 1) =
vmax�1X

i=0

qi!0⇡i(t) + P[ak(t) = �vmax] (D.6)

where P[ak(t) = �vmax] is the probability of observing a particle transitioning from

vk(t) = vmax to vk(t+ 1) = vk(t) + a(t) = 0; that is:

P[ak(t) = �vmax] = ⇡j qj!i; 8j = vmax, i = 0 (D.7)

This is the definition of the near-miss collision risk [Eq.(1)] in the main text, which

is at the core of our analysis.

D.2 Statistical Stationarity

The homogeneity in the random behavior of particles, along with the closed system

behavior of traffic flow (periodic boundary conditions), induces statistical stationarity

in the system, thus resulting in a constant velocity probability distribution at all times:

~⇡(t+ 1) = ~⇡(t) = ~⇡ (D.8)

In this case, with the help of the Perron–Frobenius theorem, the velocity probability

distribution ~⇡ is readily obtained as the eigenvector of transposed transition matrix

q
T associated with the unit eigenvalue:

(qT � I) · ~⇡ = ~0 (D.9)

with I the identity matrix. In other words, the velocity distribution is the eigenstate

corresponding to the unit eigenvalue of the transposed state transition matrix, or,

equivalently, the stationary distribution of qT [145,146].

In summary, the two probabilities that define the near-miss collision risk, namely
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⇡vmax := P[vk(t) = vmax] and qvmax!0 := P[vk(t + 1) = 0 | vk(t) = vmax] for any t, are

entirely defined by the state transition matrix q given the stationarity of the system.

This is the second pillar of our contribution.
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Appendix E

Determination of the State Transition

Matrix using the Autocovariance

Function

The state transition matrix is at the core of our approach. This section provides a

means of determining the state transition matrix from the velocity autocovariance

function, which is available from ensemble velocity data.

E.1 Dual Definition of Velocity Autocovariance Func-

tion Cvv(⌧ )

The autocovariance function, Cvv(⌧), is defined as the ensemble expected value of the

product of the deviation of velocity from its mean at two time steps separated by a

time lag ⌧ . The canonical definition of Cvv reads:

Cvv(|t1 � t2| = ⌧) = E[(vk(t1)� v̄)(vk(t2)� v̄)] (E.1)

with E[.] the ensemble expected value operator, and v̄ the ensemble velocity average,

which can be expressed in function of the velocity probability distribution and the

state vector as v̄ = ~s
T · ~⇡. Conditioning velocity state at time t2 upon the veloc-
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ity state at time t1, we define the expected velocity vector as ~⌫(|t1 � t2| = ⌧) =

(E[vk(t2)|vk(t1) = 0],E[vk(t2)|vk(t1) = 1], ...,E[vk(t2)|vk(t1) = vmax])T which reads,

~⌫(⌧) = q
⌧ · ~s (E.2)

The autocovariance function of this process can therefore be written as Cvv(⌧) =

~⌫(⌧)T · diag(~s) · ~⇡ � v̄
2, which reduces to,

Cvv(⌧) = ~s
T · (q⌧ )T · diag(~s) · ~⇡ � v̄

2 (E.3)

That is, expressions (E.1) and (E.3) provide dual definitions of the autocovariance

function: the first is the canonical definition of autocovariance function from the ve-

locity of particles, while the second one is expressed in function of the state transition

matrix. This dual definition provides a means of determining the state transmission

matrix q from the autocovariance function or vice versa. For instance, if q is known,

the application of Eq. (E.3) provides a means of determining autocovariance Cvv(⌧)

from:

Cvv(⌧) = ~s
T · (q⌧ )T · diag(~s) · ~⇡ � ~s

T · (~⇡T · ~⇡)T · ~s (E.4)

Conversely, if Cvv(⌧) is known from velocity data of particles, minimizing the differ-

ence between values provided by the canonical definition and the transition-matrix-

based expression of Cvv(⌧) allows for obtaining the transition matrix, and hence the

near-miss collision risk [Eq. (D.7)]. This is the third contribution of this letter.

E.2 Specification for Ornstein-Uhlenbeck -Type Stochas-

tic Process

One well-known feature of the velocity autocovariance function is the exponential

decay of the velocity autocovariance function [161]. This exponential decay is remi-
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niscent of an Ornstein-Uhlenbeck (OU) stochastic process [130,131], for which,

dCvv

d⌧
|⌧=0 = ��

2
v

⌧c
(E.5)

where the characteristic decay time ⌧c defines the so-called temporal memory, and

�
2
v is the second-order central moment of the ensemble velocity. Specifically, the

autocovariance function of the OU process reads as:

C
exp
vv (⌧) = �

2
v exp(�⌧/⌧c) (E.6)

where ⌧ = 0, 1, 2, ...,1 are discrete values of time lag ⌧ in NaSch units. A quadratic

minimization can be employed to determine the elements of the state transition matrix

from the dual definition of the autocovariance function:

min
q

1X

⌧=0

⇥
~s
T · (q⌧ )T · diag(~s) · ~⇡ � (v̄2 + �

2
v exp(�⌧/⌧c))

⇤2 (E.7)

subject to, 8
>><

>>:

(qT � I) · ~⇡ = ~0

q ·~1 = ~1

(E.8)

where, as readily understood, v̄ = ~s
T · ~⇡ and �

2
v = ~s

T · diag(~s) · ~⇡ � v̄
2 are ensemble

mean and variance of the particles’ velocity.
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Appendix F

Application to Nagel-Schreckenberg

Cellular Automaton Model

We present details on the application of our proposed algorithm to the data set

generated via model-based simulations. In the limiting cases of dilute (⇢ << ⇢
p
c)

and jammed (⇢ ! 1) regimes, analytical expression can be derived for the transition

matrix, which are shown next. Within these two regimes, the transition matrix allows

us to explicitly obtain the near-miss collision risk. We then proceed by presenting

the approximate solutions for the statistics of the near-miss events in the congested

regime (⇢pc < ⇢ < 1) based on the large-scale simulations of the model.

F.1 Dilute Regime: ⇢ << ⇢
p

c

Below the transition density ⇢ << ⇢
p
c , interactions between particles are negligible

allowing for the free flow of vehicles in the system. In this dilute regime, the velocity

of every vehicle is an independent random process resembling a Bernoulli process.

In other words, velocity of vehicles is independent identically distributed random

variables, which permits an analytical determination of the state transition matrix.

Specifically, considering the NaSch heuristics in (A.1), a vehicle at vmax either

transitions into vmax � 1 with probability p or remains at its current state with

probability 1 � p, i.e., P[vk(t + 1) = vmax � 1 | vk(t) = vmax] = p, and P[vk(t + 1) =
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vmax | vk(t) = vmax] = 1�p. Similarly, a vehicle at vmax�1 transitions into state vmax

with probability 1� p, or remains at state vmax� 1 with probability p. Moreover, if a

particle is at any other state than vmax and vmax�1, it will certainly (with probability

one) transition into one higher state, i.e., P[vk(t+1) = i+1 | vk(t) = i < vmax�1] = 1.

The state transition matrix is thus of the form:

lim
⇢/⇢pc!0

q =

2

6666666664

0 1 0 ... 0 0

0 0 1 ... 0 0

... ... ... ... ... ...

0 0 0 ... p 1� p

0 0 0 ... p 1� p

3

7777777775

(F.1)

The eigenvector of q
T , which represents the probability distribution of velocity, is

readily obtained:

lim
⇢/⇢pc!0

~⇡ = (0, 0, 0, ..., p, 1� p)T (F.2)

Finally, the two probabilities required to determine the near-miss collision risk are

⇡vmax = 1� p and qvmax!0 = 0 in the dilute regime, whence,

lim
⇢/⇢pc!0

P[ak(t) = �vmax] = 0 (F.3)
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Figure F-1: (a) Autocovariance function for different levels of vmax when half of the

cells are occupied, ⇢ = 1/2, and (b) their corresponding eigenstates ~⇡; the lines are

obtained from NaSch simulations and the squares are obtained from the far-field

analysis. (c) Transition matrix for vmax = 2 obtained from the simulations (left) and

far-field analysis (right).
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F.2 Jammed Regime: ⇢ ! 1

In the jammed regime, the probability of observing a standing car is close to one as

most of the cars have zero velocity, i.e., P[vk(t) = 0] = 1 � ✏0 with ✏0 << 1. The

probability of observing a particle at other velocity states, vk(t) > 0, is therefore

extremely small; that is, P[vk(t) = i] = ✏i for i � 1 with ✏i << 1. Since the

state probabilities must add up to one, we recognize that
Pvmax

i=1 ✏i = ✏0. Invoking

Bayes’ theorem, the state transition probability qi!j is related to the inverse transition

probability qj!i via:

qi!j =
P[vk(t) = j]qj!i

P[vk(t) = i]
(F.4)

Whereby, considering i = 0 and j � 1:

q0!j>0 = lim
✏0!0

qj!0✏j

1� ✏0
= 0 (F.5)

In a similar fashion, it can be shown that qj�0!0 = 1. Therefore, all entries of the

transition matrix in the jammed regime are zero except those in the first column

which are qi!0 = 1:

lim
⇢!1

q =

2

6666666664

1 0 ... 0 0

1 0 ... 0 0
...

...
...

...

1 0 ... 0 0

1 0 ... 0 0

3

7777777775

(F.6)

The velocity probability distribution corresponding to q
T , therefore, reads as

lim
⇢!1

~⇡ = (1, 0, 0, ..., 0)T . (F.7)

The near-miss collision risk in the jammed regime is zero, due to the fact that the

probability of finding a vehicle at maximum speed is zero ⇡vmax = 0, whereas the con-

ditional probability that a particle at maximum speed transitions into the standstill
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state is one, qvmax!0 = 1. Whence, the near-miss collision risk:

lim
⇢!1

P[ak(t) = �vmax] = 0 (F.8)

In summary, the asymptotic behaviors of the NaSch-model, Eqs. (F.3) and (F.8),

nicely illustrate the relevance of the proposed definition (D.7) of near-miss collision

risk based on the product of two probabilities, and that considering only one of the two

(i.e., either maximum velocity probability ⇡vmax , or hard-brake conditional probability

qvmax!0 as often done by application of telematic devices) is insufficient to estimate

a near-miss collision risk.

F.3 Congested Regime: ⇢
p

c
< ⇢ < 1

The transition matrix in the congested flow requires consideration of higher-order sta-

tistical moments due to the coexistence of free flow and jammed state [129]. Focusing

on the far-field behavior and memory effects in, respectively, the deterministic (p = 0)

and stochastic (p 6= 0) models, we proceed by deriving approximate solutions for the

transition probability and probability of observing a vehicle at the highest velocity

state, as they play a significant role in quantifying the near-miss collision risk.

F.3.1 Deterministic Model

With no randomized braking, velocities at time steps t1 and t2 are minimally corre-

lated as long as the time lag ⌧ = |t1�t2| is greater than vmax, i.e., Cvv(⌧ � vmax) ! 0.

Therefore, using the definition of autocovariance function, the far-field behavior of the

deterministic model can be enforced via,

~s
T
.
�
(q⌧ )T .diag(~⇡)� ~⇡.~⇡

T
�
.~s ! 0, 8⌧ � vmax (F.9)

Whence,

q
⌧ = 1.~⇡T

, 8⌧ � vmax (F.10)
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The above equation provides a set of equations which allows us to obtain the transition

matrix. Figure F-1 illustrates the autocovariance function and their corresponding

eigenstates for different maximum velocities in the congested regime, exhibiting a

remarkable agreement between the transition matrices obtained from the canonical

definition and the far-field behavior using the transition matrix definition [Eq. (F.9)].

Specifically, we find that the transition probability qvmax!0 is the same as the proba-

bility of observing a standing vehicle in the absence of stochastic velocity fluctuations,

i.e., qvmax!0 = P[vk(t) = 0]. The probability of observing a standing vehicle shows

a universal pattern with respect to the jamming probability ⌘̄ [Fig. 3-2.(a)] in the

form:

qvmax!0 = P[vk(t) = 0] =
2⌘̄

1 + ⌘̄
, (p = 0) (F.11)

The above equation is a generalization of the deterministic solution for the binary-

state system NaSch model [Appendix G]. Similarly, through a power generalization of

the deterministic binary-state system, the probability of observing maximum velocity

for vmax � 1 can be obtained from:

dP[vk(t) = vmax|p = 0]

d⌘̄
= � �2�

(1 + vmax⌘)↵
(F.12)

where the constants, � and ↵, are obtained by simulations satisfying the boundary

conditions lim⌘̄!0 P[vk(t) = vmax] = 1 and lim⌘̄!1 P[vk(t) = vmax] = 0. The solution

to the above differential equation is,

P[vk(t) = vmax|p = 0] = 1� �
�
(1 + vmax⌘̄)

1�↵ � 1
�

(F.13)

with � = (1 + vmax)↵/(1 + vmax � (1 + vmax)↵) and the fitting parameter ↵ ⇡ 2 +

tanh
p

(vmax � 1)/2 [Fig. 3-2.(b)].

F.3.2 Stochastic Model

From the binary-state model, we readily realize that the impact of stochasticity

on probability of observing maximum velocity depends non-linearly on the density.
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Specifically, upon transitioning lim⌘̄!0 P[vk(t) = vmax] = 1 � p
p, and in the fully-

jammed regime stochasticity plays no role since lim⌘̄!1 P[vk(t) = vmax] = 0. We

decouple the effect of stochasticy and density by approximating the general behavior

of P[vk(t) = vmax] in the congested regime as,

P[vk(t) = vmax|p 6= 0] ⇡ (1�p
p) (P[vk(t) = vmax|p = 0])⇠ (F.14)

with exponent ⇠ = ⇠0 + ⇠1 tanh(vmax � 1) where ⇠1/⇠0 ⇡ .85, and,

⇠0 = argmin
⇠

Z 1

p=0

Z 1

⇢=1/2

����(1�
p
p)(

1

⇢
� 1)�

1�
p
1� 4⇢(1� p)(1� ⇢)

2⇢

����d⇢dp
(F.15)

resulting in ⇠0 = 0.77 [Fig. 3-3.(a)].

We proceed by exploring the intricate interaction between the transition density

qvmax!0, and probability of observing a vehicle at velocity states 0 (standing) and

vmax. In particular, the probabilities of observing a standing vehicle and the transi-

tion probability are approximated via power generalization as,

P[vk(t) = 0] ⇡ 1� P[vk(t) = vmax]
1�⌫v (F.16)

qvmax!0 ⇡ 1� P[vk(t) = vmax]
1�⌫q (F.17)

with ⌫v = ⌫̂v tanh(vmax � 1) and ⌫q = ⌫̂q tanh(vmax � 1) [Fig. 3-3.(b)]. Such general-

izations satisfy the boundary conditions and allow us to express the transition density

as a function of probability of observing a standing vehicle as,

qvmax!0 ⇡ 1� (1� P[vk(t) = 0])(1�⌫q)/(1�⌫v) (F.18)

which degenerates to the exact relation for the binary-state model qvmax!0 = P[vk(t) =

0].

Finally, the asymptotic behavior underscores one finding of our paper that the
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near-miss collision risk pertains to the congested regime of vehicular traffic flow. This

motivates the development of the phase diagram of near-miss collision risk in the

NaSch-phase space, ⇢ 2]⇢pc , 1[ and p 2]0, 1[, shown and discussed in the main text.
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Appendix G

Analytical Solutions for the

Binary-state NaSch Model

Here, we focus on the special case of binary velocity vmax = 1 which permits the

particles to be either in standing (0) or moving (1) velocity states. The canonical

form of the transition matrix for vmax = 1 reads,

q =

0

@q0!0 q0!1

q1!0 q1!1

1

A (G.1)

where q0!0+q0!1 = q1!0+q1!1 = 1. The eigenstate corresponding to unit eigenvalue

of the transposed form of this state transition matrix allows us to obtain the velocity

distribution as [Eq. (D.9)],

~⇡ =
1

q0!1 + q1!0

0

@q1!0

q0!1

1

A (G.2)

We readily realize that the probability of observing standing (zero-state velocity)

and moving (unit-state velocity) vehicles in terms of transition probabilities are

P[vk(t) = 0] = q1!0/(q0!1+q1!0) and P[vk(t) = 1] = q0!1/(q0!1+q1!0), respectively.

Furthermore, eigendecompositon allows us to factorize the transition matrix into its
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eigenvalues and eigenvectors, as,

q =

0

@1 �q01/q10

1 1

1

A .

0

@1 0

0 q00 � q10

1

A .

0

@1 �q01/q10

1 1

1

A
�1

(G.3)

Two-state system resembles an OU stochastic process as the autocovariance function

decays exponentially with dCvv/d⌧ |⌧=0 = ��
2
v/⌧c where the variance of the speed �

2
v =

q1!0q0!1/(q1!0+ q0!1)2 and the characteristic decay time ⌧c = �(ln(q0!0� q1!0))�1.

For vmax = 1, the probability of observing a particle turn into zero velocity state

from current unit velocity state is the same as the probability that a particle remains

at zero velocity state, i.e., q0!0 = q1!0. This unique property of binary velocity

results in ln(q0!0� q1!0) ! �1 and, consequently, ⌧c ! 0. The transition matrix is

therefore fully determined from the velocity distribution as q0!0 = q1!0 = P[vk(t) =

0]. From exact 2-cluster solution [147],

q1!0 = 1�
1�

p
1� 4⇢(1� p)(1� ⇢)

2⇢
(G.4)

and also P[vk(t) = 1] = 1 � q1!0. Whence, the probability of observing deceleration

in the Binary NaSch model is obtained as,

P[ak(t) = �1] = q1!0(1� q1!0) (G.5)

where the transition probability is given in Eq. (G.4). For a given stochasticity

parameter p, the critical density, ⇢pcrit, at which the probability of observing maximal

deceleration is maximum is obtained through solving the following equation for ⇢,

@P[ak(t) = �1]

@⇢

���
p
=

@P[ak(t) = �1]

@P[vk(t) = 0]
.
@P[vk(t) = 0]

@⇢

���
p
= 0 (G.6)

thus resulting in,

⇢
p
critic =

4p� 2

4p� 3
� 0 (G.7)

For p  1/2, the probability of observing maximal deceleration is therefore P[ak(t) =
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�1] = 1/4 regardless of the stochasticity parameter.
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Appendix H

From Crowdsourced Velocity Signals

to Near-miss Risk

The second data set we use originates from the crowdsourced vehicle velocity data

collected by the Carbin Educational Application for smartphones [149]. The focus

of this section is to show that the proposed approach is applicable to real-world

measurements of traffic independent of specific model attributes. This section shows

how velocity data recorded by a single user is employed to determine the near-miss

collision risk.

Vehicle velocity data V (t) is collected at 1Hz frequency by sensors (here smart-

phones) installed in vehicles. The velocity data is transposed into the integer velocity

NaSch units, considering

v(t) = bvmax
V (t)

Vmax
+ 0.5c  vmax (H.1)

where bxc  x < bxc+1 is the floor function, and Vmax is the real-life maximum speed

limit on the road. Each vehicle velocity signal was split into overlapping trips of 4⇥102

seconds, which is long enough to provide stationarity and, furthermore, ergodicity in

the system (for an in-depth discussion of ergodicity for crowdsourced data, see [161]).

The concept of ergodicity in this context posits that a vehicle will ultimately explore

the entire phase space in a uniform manner over a proper timescale, much akin to the
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ergodic theorem in statistical mechanics [135,164]. As a result, the velocity signal of

an individual vehicle is deemed to possess sufficient statistical richness, enabling it

to represent the ensemble’s moments in their entirety. This allows us to reduce the

canonical definition of the autocovariance function to,

Cvv(⌧) ⇡
1

T � ⌧

T�⌧X

t=1

v(t)v(t+ ⌧)� v̄
2 (H.2)

where T is the duration of the signal, and v̄ = (1/T )
PT

t=1 v(t) is the mean of the

velocity signal. With the autocovariance function in hand, we perform the minimiza-

tion described in Section B to obtain the transition matrix [Fig. H-1], and determine

the near-miss collision risk.

142



0 100 200 300 400
0

1

2

3

4

5

Ve
lo

ci
ty

Time

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8

1

Time lag

N
or

m
al

iz
ed

 A
ut

oc
ov

. 

rho=0.21015-risk=-2.6144

1 2 3 4 5 6

1

2

3

4

5

6

rho=0.50404-risk=-3.2966

1 2 3 4 5 6

1

2

3

4

5

6

r
h
o
=
0
.5
0
4
0
4
-
r
is
k
=
-
3
.2
9
6
6

1
2

3
4

5
6

123456

-
4

-
3
.5

-
3

-
2
.5

-
2

-
1
.5

-
1

-
0
.5

0−4 0

a)

0 100 200 300 400
0

1

2

3

4

5

Ve
lo

ci
ty

Time

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8

1

Time lag

N
or

m
al

iz
ed

 A
ut

oc
ov

. 

rho=0.21015-risk=-2.6144

1 2 3 4 5 6

1

2

3

4

5

6

rho=0.50404-risk=-3.2966

1 2 3 4 5 6

1

2

3

4

5

6

r
h
o
=
0
.5
0
4
0
4
-
r
is
k
=
-
3
.2
9
6
6

1
2

3
4

5
6

123456

-
4

-
3
.5

-
3

-
2
.5

-
2

-
1
.5

-
1

-
0
.5

0−4 0b)a)

Figure H-1: Sample analysis: (a) the NaSch velocity representation of two trips,

and (b) their corresponding normalized autocovariance function, Cvv(⌧)/�2
v , obtained

from the canonical definition (disks), and transition matrix analysis (squares); the

logarithm of transition matrices obtained for each trip are illustrated as the inset.

The velocity signal in green and black have an average velocity of v̄ = 3 and v̄ = 1.5,

respectively, and their corresponding near-miss risks are 10�2.6 and 10�3.3, respec-

tively.
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