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A Multi-Hypothesis Approach to Pose Ambiguity
in Object-Based SLAM

Jiahui Fu, Qiangqiang Huang, Kevin Doherty, Yue Wang, and John J. Leonard

Abstract— In object-based Simultaneous Localization and
Mapping (SLAM), 6D object poses offer a compact represen-
tation of landmark geometry useful for downstream planning
and manipulation tasks. However, measurement ambiguity then
arises as objects may possess complete or partial object shape
symmetries (e.g., due to occlusion), making it difficult or
impossible to generate a single consistent object pose estimate.
One idea is to generate multiple pose candidates to counteract
measurement ambiguity. In this paper, we develop a novel
approach that enables an object-based SLAM system to reason
about multiple pose hypotheses for an object, and synthesize this
locally ambiguous information into a globally consistent robot
and landmark pose estimation formulation. In particular, we
(1) present a learned pose estimation network that provides
multiple hypotheses about the 6D pose of an object; (2)
by treating the output of our network as components of a
mixture model, we incorporate pose predictions into a SLAM
system, which, over successive observations, recovers a globally
consistent set of robot and object (landmark) pose estimates.
We evaluate our approach on the popular YCB-Video Dataset
and a simulated video featuring YCB objects. Experiments
demonstrate that our approach is effective in improving the
robustness of object-based SLAM in the face of object pose
ambiguity.1

I. INTRODUCTION

Object-based Simultaneous Localization and Mapping
(SLAM) incorporates higher-level object primitives into the
localization and mapping process. Compared to traditional
approaches utilizing low-level geometric features, it tends to
improve its robustness to measurement noise and textureless
scenes and bears the potential to provide a rich representation
for downstream scene understanding, planning, and manipu-
lation tasks [1]. By encoding abundant robot-landmark geo-
metric constraints in a compact form, 6D object poses act as
a desirable type of object measurements to be leveraged [2].
When perceiving the world in terms of objects, robots could
then readily integrate these 6D object pose measurements
into the joint recovery of robot and landmark poses.

However, when there exists environment ambiguity due
to complete or partial object (landmark) shape symmetries
(e.g., from occlusion), the frontend may be misled to make
false positive pose measurements. For instance, the frontend
may throw out a random measurement of a mug’s orientation
when its handle is obscured. Such a pose measurement may
incur considerable estimation errors in the backend if it is
used to recover robot and landmark poses.
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1Video: https://youtu.be/E4sheabxWBI

Fig. 1: Approach Overview. The system takes as input an
RGB image along with its bounding box detection and
outputs the optimized robot/landmark pose estimates. (a)
The multi-hypothesis 6D object pose estimator (MHPE) in
the frontend comprises three components: feature extraction,
region-of-Interest (RoI) Align, and a multilayer perceptron.
The output is N 6D pose hypotheses (Ti) for each object,
coming from N separate branches in the last layer (blue),
which are then sent to the max-mixture backend. (b) The
max-mixture backend models the multi-modality embedded
in the multi-hypothesis output. With MHPE covering the
correct object pose (orange box, shown in green points
matching the mug) in a big fraction of the observed frames,
max-mixtures could gradually converge to the dominant
mode, i.e., correct estimates of robot/landmark poses.

One way to counteract the effect of ambiguity is to
generate multiple hypotheses each time, in which a consistent
set of hypothesis could be covered. As a result, rather
than conducting estimation based on one single frontend
measurement at a time, as most current object-based SLAM
systems do, we choose to enable the object-based SLAM
system to be aware of the potential environment ambiguity
through multiple hypotheses, i.e., generating and processing
multiple possible object pose hypotheses for a single set of
consistent estimates. In this way, by considering multiple hy-
potheses across many observations, an object-based SLAM
system could then employ past evidence to disambiguate the
true pose of the landmark (object) and recover a globally
consistent set of robot and object pose estimates.
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This idea motivates the design of our approach. Our
objective is to enable an object-based SLAM system to
reason about multiple hypotheses for an object pose. By pro-
ducing and synthesizing these locally ambiguous information
into a joint multi-hypothesis robot/landmark pose estimation
setting, the system could solve for a globally consistent
set of object and robot poses. Therefore, we instantiate our
approach as follows (see Fig. 1):
• To receive ambiguity-aware measurements from the

frontend, we develop a deep-learning-based multi-
hypothesis 6D object pose estimator (MHPE) trained
with known 3D object models to explore the potential
pose hypothesis space.

• To solve the joint pose optimization with the multi-
hypothesis formulation in the backend, we treat the mul-
tiple measurements as components of a mixture model
and exploit nonlinear least square optimization to solve
the max-mixture formulation [3] of pose hypotheses.

Experiments are conducted on the real YCB-Video Dataset
and a synthetic video sequence featuring YCB objects in
a virtual environment. Results demonstrate our approach’s
effectiveness in improving the robustness of the object-based
SLAM system in the face of ambiguous measurements.

Our paper proceeds as follows: we describe related work in
Section II, elaborate on our pose estimation network design
in Section III and max-mixtures formulation in Section IV,
showcase experimental results in Section V, and conclude in
Section VI.

II. RELATED WORK

A. 6D Object Pose Estimation
Various approaches have been developed to address the

object pose estimation problem with different data modali-
ties.

For RGB-based data inputs, traditional methods usually
tackle the problem via feature matching between the query
data and given object models [4]–[6], but are susceptible to
low-texture regions or lighting changes. With the advance-
ment in deep learning, PoseCNN [7] and SSD-6D [8], as two
pioneering methods for estimating object pose in cluttered
scenes, use neural networks to perform object detection
and pose estimation at the same time. DOPE [9] uses only
synthetic training data for robot manipulation tasks and the
network shows good generalization to novel environments.
Densefusion [10] fuses pixel-wise dense features from RGB
and depth images and achieves strong pose estimation results.

For point-cloud-based inputs, ICP [11] is the most classi-
cal and widely used approach though prone to local minima
due to non-convexity. [12]–[14] use probabilistic approaches
to improve resilience to uncertain data. For its learning-based
variants, SegICP [15] integrates semantic segmentation and
pose estimation using neural networks, which achieves robust
point cloud registration and per-pixel segmentation at the
same time. The Deep Closest Point (DCP) [16] and Partial
Registration Network (PRNet) [17] methods incorporate de-
scriptor learning into the ICP pipeline, so that the model can
learn matching priors from the data.

While all these above methods achieve good pose estima-
tion accuracy, they either do not address the object shape
ambiguity explicitly, or could not make a good compromise
between estimation accuracy and processing speed, if serving
as a SLAM frontend.

B. Uncertainty-Aware SLAM Backend
Uncertainty in SLAM involves many types of problems,

such as loop closure and data association, where different
backend methods have been developed. FastSLAM [18]
tackles unknown data association in a particle-filter-based
fashion that uses sampling to cover the overall probability
space. Sünderhauf et al. [19], [20] develop methods to change
the graph topology and achieve improved robustness to out-
liers with switchable constraints. The max-mixture method
developed by Olson and Agrawal [3] represents discrete
hypotheses as components of max-mixtures; this approach
has recently been leveraged for unknown data association in
the context of semantic SLAM by Doherty et al. [21].

C. Object-Based SLAM
SLAM++ [2] uses pixel-wise reprojection error and adds

6D object poses as camera-object pose constraints to the
pose-graph optimization. But it needs 3D object models
at runtime and is limited to few categories of pre-selected
objects. QuadricSLAM [22] manages to estimate camera
poses and quadric parameters together based on odometry
and bounding box detections. CubeSLAM [23] conducts
single-view 3D cuboid object detection and incorporates its
refinement into the joint optimization of camera poses and
objects. While these two works improve the camera pose
estimation by including constraints from novel representa-
tions of the objects, they do not consider explicitly about
the impact of shape ambiguity on these novel representa-
tions. PoseRBPF [24] employs a Rao-Blackwellized particle
filter to track object poses across consecutive frames in the
frontend, demonstrating robustness to object shape symmetry
when a sufficient number of sampling particles are used,
which, however, limits the computation speed.

With object (landmark) poses as measurements, our work
here enhances the robustness of object-based SLAM in
ambiguous environments by effectively generating multiple
pose hypotheses from a learned pose estimation network
and, different from what PoseRBPF does, then incorporates
sequential observations into the backend factor graph for
obtaining smoothed estimates of all robot/landmark poses.

III. FRONTEND: MULTI-HYPOTHESIS 6D OBJECT POSE
ESTIMATOR (MHPE)

The MHPE frontend takes in an RGB image together with
its object bounding boxes (could come from any off-the-shelf
real-time object detectors), and outputs N hypotheses for the
6D pose of each object detected in the scene.

The object pose is represented by rotation q = (w, x, y, z)
as a unit quaternion and 3D translation t = (tx, ty, tz), which
are defined with respect to the current camera frame. As
q = (w, x, y, z) and q = (−w,−x,−y,−z) are equivalent,
we enforce q to have only non-negative real part w.



A. MHPE Network

The network processes the input data in three stages:
feature extraction, region-of-interest alignment (RoI Align),
and a multilayer perceptron (MLP) for final pose estimation
(see Fig. 1).

We use ResNet-34 [25] without the last average pooling
layer to get pixel level feature embeddings. The feature maps,
as well as corresponding bounding boxes, are fed into the
RoI Align layer. First introduced by MaskRCNN [26], this
layer performs bilinear interpolation on the image feature
embeddings and produces feature maps of the same shape
for each bounding box region. The last MLP component is
divided into two parts, one for rotation estimation and the
other for translation. For N pose hypotheses for each object,
the output size of the last fully connected layer is 4N for
rotation (w, x, y, z) and 3N for translation (tx, ty, tz). We
apply Softplus to ensure non-negativity for “w” values. The
final unit quaternion is obtained by normalizing the four
outputs from the rotation branch.

B. Learning Objective for MHPE Outputs

The MHPE network aims to minimize the average distance
(ADD loss [27]) between the two object point sets, trans-
formed by the predicted and groundtruth poses, respectively.
The ADD loss is defined as:

lADD =
1

|X |
∑
x∈X
‖(R̂x + t̂)− (Rx + t)‖ (1)

where R ∈ SO(3), t ∈ R3, [R|t] and [R̂|̂t] are the
groundtruth and estimated object poses, and x is the 3D point
in the object point sets X from the known 3D object model.
This metric performs well for the common single-hypothesis
network, but needs adaption for the MHPE case, as different
treatments of the individual loss in the hypothesis set may
lead to distinct optimization directions.

Here, our pose estimation network is designed in a
“mixture-of-expert” fashion [28], where the N hypotheses
are made independently based on a shared set of feature
maps. It is thus ideal to have each output branch acquire
some specialty in certain output domains, hence helping
improve the estimation accuracy and shed extra light on
possible causes of pose ambiguity.

In this spirit, we choose to apply (1) in a winner-takes-all
fashion, which is formulated as:

P̂i =
〈
P̂

(1)
i , . . . , P̂

(N)
i

〉
Li

(
P̂i

)
= argmin

j∈[1,N ]

lADD(P̂
(j)
i )

(2)

where P̂
(j)
i = [R(q

(j)
i )|t(j)i ] is the jth pose estimate in the

output ensemble for the ith input and R is expressed as the
rotation matrix from quaternion q. The defined loss function,
Li for input i, only penalizes the most accurate estimation,
regardless of “how bad” the rest of the hypotheses are. This
treatment, compared to averaging, prevents other worse es-
timations from vanishing and adds some randomness, hence
diversity, to the multi-branch estimator. Those branches with

Fig. 2: Hypothesis diversity from the MHPE frontend on the
YCB object clamp: Hypotheses (a) & (d) and (b) & (e) are
two quasi-mirror images; hypothesis (c) is spurious, and the
green-boxed hypothesis (e) gives a relatively good estimate.
(f) illustrates that the 3D point clouds of the mirror image
pair could incur similar distance loss with respect to the grey
mirror plane.

an initialization too far away from the minimum could thus
slowly evolve to different domains of the output space,
hedging their bets while refraining from paying the price
of making the wrong tentative decision. Fig. 2 shows one of
our diverse pose estimation of a symmetrical clamp from the
YCB-Video Dataset, illustrating the benefit of encouraging
multiple hypotheses in different domains.

IV. BACKEND: MAX-MIXTURE-BASED
MULTI-HYPOTHESIS MODELING AND OPTIMIZATION

Compared to its common single-hypothesis counterpart,
the MHPE frontend can better tackle the ambiguity within
the current observation via giving multiple pose candidates.
Nevertheless, this leads to exponential computation complex-
ity for picking a pose hypothesis combination that will bring
about a sequence of optimal pose estimates.

To efficiently solve the optimization problem under the
multi-hypothesis formulation, we here adapt max-mixtures
to model multi-modal measurements and implicitly seek
out consistent landmark pose hypotheses via optimization.
Previously, the max-mixture method has been leveraged to
solve data association problems in SLAM [3], [21] for its
effectiveness in addressing large number of outliers in the
least squares SLAM formulation. Thus by relying on max-
mixtures’ ability to distinguish the better-behaved hypothesis,
the backend is able to recover a globally consistent set
of robot/landmark poses out of an exponentially increas-
ing number of ambiguous measurement combinations (see
Fig. 3).

Generally, estimating poses from a sequence of observa-
tions can be formulated as a maximum likelihood estimation
(MLE) problem:

X̂ = argmax
X

∏
i

φ(zi | Xi) (3)

where Xi denotes the latent variables involved in the ith

input, zi denotes the corresponding observation, and φ(·) is



Fig. 3: Max-mixtures for processing multiple pose hypothe-
ses. Left half: current pool of pose hypotheses (Ti) for
the landmark “mug” with same hypothesis in the same
outline color till time t. (a) Number of times each Ti
has been observed so far, which is positively correlated to
the posterior distribution of robot/landmark poses, p(X|T),
where T denotes all multi-hypothesis measurements. Hence
the significance of consistent inclusion of the correct pose
within the hypothesis set. Otherwise max-mixtures may con-
verge to a sub-optimal hypothesis. (b) Schematic probability
distribution of three pose hypotheses with respect to X.

the likelihood function for this observation. The set of all
latent variables, X, is the camera and object pose sequence
being jointly optimized in the backend. For odometry mea-
surements between robot poses, the additive measurement
noise is modeled as the canonical Gaussian noise. For
the object pose observation with N hypotheses, a natural
extension of the noise model is thus the sum of Gaussians
or sum-mixtures:

φ(zi | Xi) =

N∑
j=1

ωijN (log(zijh(Xi)
−1)∨;0,Σ) (4)

in which each component corresponds to a hypothesis and
follows the convention of the perturbation model for 6D
poses in [29]. With an assumption of equally probable
hypothesis, the weight ωij for component j is 1

N . The
measurement of interest here is the relative pose of the
object with respect to the camera frame: c

oP = h(Xi) =
h(wo P, w

c P) =c
w Pw

o P, which is a function of camera pose
w
c P and object pose w

o P in the world frame.
Sum-mixtures falls outside the common nonlinear least

squares (NLLS) optimization approaches for Gaussian noise
models. For MLE estimation, we can instead consider the
max-marginal [30], leading to the following max-mixture
formulation:

φ(zi|Xi) = max
j=1:N

ωijN (log(zijh(Xi)
−1)∨;0,Σ). (5)

Max-mixtures switches to the “max” of all probability,
retaining the better-behaved hypothesis while keeping the
problem still within the realm of common NLLS optimiza-
tion. Max-mixtures does not make a permanent choice out of
multiple hypotheses. In an iteration of optimization, only one
of the hypotheses actively contributes to the loss function
and optimization steps via the “max” operator. Another
hypothesis may turn active in the next iteration depending

Fig. 4: Simulated video topview and YCB object layout.
Some YCB objects are deliberately chosen to bear more or
less shape symmetries (the mug and the tuna fish can), thus
contributing to an ambiguous environment setting for ground-
level observations. Note that objects are also scaled up to 50
times of its original size so as to match with the size of the
observer, i.e., the AirSim car simulator, in the video.

on the updated estimate of the latent variable, Xi. Hence, by
optimizing (3) for the updated estimate of X, we evaluate all
the Gaussian components in (5) and identify the most likely
one as the hypothesis contributing to the estimate in the next
optimization step. Please refer to V-C for implementation
details about optimization.

V. EXPERIMENTS AND RESULTS

In this section, in the goal of improving object-based
SLAM results in the ambiguous environment setting, we
would like to answer two questions: (1) Can MHPE predict
a set of hypotheses that do contain the close-to-groundtruth
object pose? (2) Can max-mixtures recover a globally consis-
tent set of robot/landmark poses from MHPE measurements?
To answer (1), we evaluate our approach on the YCB-Video
benchmark in terms of distance loss and processing speed.
For (2), we test our approach on a simulated video made with
YCB objects for SLAM results, where the camera executes
a much longer trajectory.

A. Datasets

YCB-Video Dataset. The YCB-Video Dataset [7] is built
on 21 YCB objects [31] placed in various indoor scenes and
consists of 92 video sequences with 133,827 images in all.
Each sequence provides RGB-D images, object segmentation
masks, and annotated object poses. Following [7], we divide
the whole dataset into 80 videos for training and select 2,949
keyframes from the rest of 12 videos for testing. An extra set
of 80,000 synthetic images created by [7] is also included in
the training set.

AirSim Simulated Video. Since the camera motion in
the YCB-Video Dataset is relatively small compared to a
typical SLAM-application scenario and its environment does
not involve much observation ambiguity, we create a virtual
environment of five YCB objects with some shape symme-
tries placed around a cuboid in Unreal Engine [32] (see
Fig. 4). The AirSim [33] car simulator is adopted to simulate
a robot-mounted camera circling around the objects, thus
making observations in an ambiguous environment setting.



The observations provide RGB images, object segmentation
masks, and automatically annotated 6D poses of the camera
and the five objects.

B. Metrics

To facilitate comparison within the YCB-Video Dataset
benchmark, we follow two metrics used in [7] and [24],
i.e., ADD (introduced in III-B) and ADD-S. The ADD-
S metric, i.e., average distance between the point in the
estimation-transformed point set X1 and its closest point in
the groundtruth-transformed point set X2, is defined as:

lADD−S =
1

|X1|
∑

x1∈X1

min
x2∈X2

‖(R̂x1+ t̂)− (Rx2+ t)‖ (6)

where X1 and X2 are transformed from the object model
point set.

The ADD metric reflects pose estimation error, while
ADD-S focuses on shape similarity and is thus appropriate
for evaluating symmetrical objects. Following [7], we set the
distance threshold to 10cm and compute the area under the
ADD and ADD-S curves (AUC) with higher AUC indicating
higher accuracy.

C. Implementation Details

The MHPE network is implemented in PyTorch. We ini-
tialize ResNet-34 with weights pretrained on ImageNet. The
final MLP module comprises of three fully connected layers
of size 512, 512, and 256. The number of output hypotheses
is set as N = 5 for a good compromise between sufficient
hypothesis diversity and additional computation overhead.
For training, we use a batch size of 64 and train 100 epochs
with the Adam optimizer. The initial learning rate is 0.0001
with a decay rate of 0.1 at epoch 50. The backend max-
mixture algorithm is implemented in C++ using the Robot
Operating System [34] and the iSAM2 [35] implementation
from the GTSAM library [36]. All training and testing are
conducted on a laptop with an Intel Core i7-9750H CPU and
an Nvidia GeForce RTX 2070 GPU.

D. Results on YCB-Video Dataset

We report our quantitative and qualitative object pose
estimation results on the YCB-Video Dataset.

Quantitatively, we compare our MHPE results to those
of PoseCNN and the more recent PoseRBPF [24], all with
RGB images (see Table I) and object detection results from
PoseCNN for the purpose of fair comparison. We choose the
PoseRBPF-50-particle variant, which is of closer processing
speed with ours and is therefore suitable for SLAM applica-
tions.

In particular, for MHPE results, we compare our hypoth-
esis with the lowest ADD loss in each set (best hypothesis)
against the single output from PoseCNN and PoseRBPF, as in
our problem, it is the estimation error of the best hypothesis,
rather than the average quality of the multi-hypothesis set,
that indicates the existence of a consistent hypothesis mode
for max-mixtures to switch to, and hence the possibility of
recovering the true robot/landmark poses.

Fig. 5: Qualitative results of object pose estimation. Each
object pose is annotated with the 2D image frame projection
of a colored point cloud transformed by the pose estimate.
Improved areas are marked by colored bounding boxes in
the first row showing PoseCNN results.

Qualitatively, we display some sample visualizations of
the object pose estimate in Fig. 5 for comparison between
PoseCNN and the best hypothesis of our MHPE results.
Since PoseRBPF does not provide multi-object pose estima-
tion results on the YCB-Video Dataset, we do not include
them in Fig. 5.

Overall Performance. Table I presents the ADD and
ADD-S AUC values of all the 21 objects in the YCB-Video
Dataset and the rough processing speed of each approach.
We can conclude that with similar processing speed (ours:
23.0 fps & poseRBPF: 20.6 fps, excluding object detection
as its results are used as system inputs), our best hypoth-
esis from the MHPE frontend outperforms PoseCNN and
PoseRBPF by 18.6%, 11.6% on ADD, and 9.4%, 11.1% on
ADD-S, respectively. This demonstrates the effectiveness of
our multi-hypothesis strategy in improving pose estimation
accuracy and the reliability in providing valid hypothesis set
for supporting the backend optimization of robot/landmark
poses.

As shown by Fig. 5, when compared to PoseCNN, our best
hypotheses from MHPE give more accurate pose estimations
for the upside-down bowl in the first scene, the scissors and
sugar box in the second, and the banana and the blue pitcher
in the last scene.

Dealing with Ambiguity. From Table I, it is observed that
the MHPE network performs better on most of the symmet-
rical objects (marked in bold). This proves the effectiveness
of our object pose estimation strategy in dealing with shape
ambiguity, as it is easier for symmetrical objects to have
ambiguous poses, which may induce the network to generate
random false positive hypotheses.

We further explain this with the “clamp” example in
Fig. 2. The five pose hypotheses rendered here are MHPE’s
estimates for the clamp pose, which include the correct
estimate, (e), in green. Considering the diversity of the
hypothesis set, which consists of seemingly inaccurate, and
mirror-image pair hypotheses, a single-output network may
throw out a random estimate as any of (a) & (d) or (b) & (e),
since these two mirror-image pairs tend to incur similar ADD
loss during training with respect to the grey mirror plane



TABLE I: Quantitative ADD and ADD-S AUC Results on YCB-Video Dataset. Symmetrical objects are in bold. Frame rate
does not consider the effect of bounding box detection, which serves as part of pipeline inputs. Best ADD and ADD-S AUC
values for each object are in bold (excluding ICP-refined results).

RGB RGB + Depth Image (for ICP)

PoseCNN PoseRBPF
50 particles

MHPE
Best Hypothesis

MHPE
Best Hypothesis + ICP

Frame Rate
(fps) 5.9 20.6 32.3 2.1

(CPU-only)
Objects ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

002 master chef can 50.9 84.0 56.1 75.6 67.9 93.8 74.3 90.0
003 cracker box 51.7 76.9 73.4 85.2 67.8 82.9 86.8 91.6
004 sugar box 68.6 84.3 73.9 86.5 83.1 91.3 97.4 98.2
005 tomato soup can 66.0 80.9 71.1 82.0 79.5 92.2 38.1* 66.9*
006 mustard bottle 79.9 90.2 80.0 90.1 81.6 90.8 98.0 98.7
007 tuna fish can 70.4 87.9 56.1 73.8 78.0 92.5 87.0 95.8
008 pudding box 62.9 79.0 54.8 69.2 45.4 71.5 83.7 92.7
009 gelatin box 75.2 87.1 83.1 89.7 76.1 87.8 97.2 98.4
010 potted meat can 59.6 78.5 47.0 61.3 69.1 85.5 66.4 78.4
011 banana 72.3 85.9 22.8 64.1 87.7 93.7 93.8 97.3
019 pitcher base 52.5 76.8 74.0 87.5 76.8 88.8 96.9 98.1
021 bleach cleanser 50.5 71.9 51.6 66.7 47.7 70.3 88.8 94.1
024 bowl 6.5 69.7 26.4 88.2 40.2 80.1 73.6 95.8
025 mug 57.7 78.0 67.3 83.7 40.6 72.8 69.3 91.1
035 power drill 55.1 72.8 64.4 80.6 39.5 71.2 61.1 81.7
036 wood block 31.8 65.8 0.0 0.0 64.6 85.5 85.2 93.0
037 scissors 35.8 56.2 20.6 30.9 64.5 88.9 63.5 88.9
040 large marker 58.0 71.4 45.7 54.1 81.1 90.6 89.5 96.2
051 large clamp 25.0 49.9 27.0 73.2 49.2 70.7 31.5 51.8
052 extra large clamp 15.8 47.0 50.4 68.7 8.6 47.4 9.7 31.3
061 foam brick 40.4 87.8 75.8 88.4 75.1 92.6 90.5 97.2
All 53.7 75.9 57.1 74.8 63.7 83.1 72.6 85.2

(shown in (f)). Therefore, with each output branch evolving
towards different domains of the solution space, MHPE can
first produce a set of possible pose candidates and then let the
backend to pick one based on the observations accumulated
so far. The general poor performance on the extra large
clamp may result from the given bounding box quality as it
is hard for PoseCNN to distinguish between “large clamp”
and “extra large clamp”. We also argue that for objects with
poorer MHPE performance, these object pose hypotheses are
consistently less accurate instead of randomly varying, and
is hence less likely to cause big jumps in the backend robot
pose estimation. Moreover, those jumps should be an even
rarer occurrence considering the smoothing effect brought by
the accumulation of observations in the backend.

ICP Post-Processing. We also provide AUC results with
ICP post-processing, where the refined poses achieve signif-
icant accuracy improvements. While we are not comparing
them to the non-post-processing PoseCNN and PoseRBPF
results here, considering the great improvement in AUC
values after ICP, we argue that our MHPE-predicted hy-
potheses are on average not far from the groundtruth and
thus effectively prevent ICP from local-minimum failure. The
only exception is for the “tomato soup can” (marked with
asterisks) as in some frames, the lack of enough visible points

from heavy occlusion greatly impairs the registration quality.

E. SLAM Results for the Simulated Video

We apply our approach to the simulated video and test its
effectiveness in the scenario with larger camera motion. For
evaluation purposes, we compare the robot/landmark pose se-
quence optimized from our MHPE+max-mixtures approach
against those obtained by two practical approaches when
dealing with multiple hypotheses: averaging and random
selection. Additionally, the random selection approach also
resembles the behavior of the traditional single-hypothesis
approach under ambiguous settings, as the frontend tends to
throw out a random time-inconsistent measurement.

To better adapt to the simulated environment, in addition
to the YCB-Video data, the MHPE network is trained on an
extra of 18,523 images of a robot circumnavigating around
each object at different ranges. The testing is then run on
a 3,100-frame sequence in a similar environment, with the
camera moving first in the inner and then the outer circle of
the area enclosed by the five objects. Objects are detected
in 1,611 frames of the sequence and the resulting pose
estimations are used as the input to the SLAM backend.

Robot Pose Estimation. Quantitatively, in Fig. 6, we plot
the running average of the estimation error for rotation and



Fig. 6: Running average of the estimation error for rotation
and translation across the course the robot motion. The
groundtruth is extracted from the simulator.

translation, respectively. As shown in Fig. 6, we can conclude
that generally max-mixtures performs the best while averag-
ing does the worst. The discontinuities in (a) corresponds to
the emergence of new objects. Considering the ambiguous
measurement from the deliberately selected symmetrical
objects, with a continuously lower rotation/translation error,
our approach shows its robustness to the disturbance of the
false-positive pose hypotheses and outperforms random se-
lection, which to some extent, also indicates how a common,
single-hypothesis SLAM system will behave. In Fig. 6 (b),
the sudden climb in the translation error at about halfway
through the course can be attributed to the reappearance of
the mug in the video, and averaging obviously suffers from
considerable drift due to ambiguous measurements from this
loop closure.

Qualitatively, it can be observed from Fig. 7 that in
terms of estimation accuracy, our approach outperforms both
averaging and random selection by a large margin. We argue
that by leveraging the accumulated observation from previous
frames, our approach is able to recover consistent estimates
from the ambiguous pose measurements, as opposed to its
single-hypothesis-based counterparts.

This is especially useful for treating shape-ambiguous
objects and loop closures. For example, the camera could
obtain a better pose estimate of the mug by taking into
account when last time the mug handle was visible, and this
will, in turn, benefit loop closure detection. Furthermore, the
result also implies that averaging over the candidate pool is
the least effective approach, as the result of averaging over
rotation matrices from the hypothesis ensemble can deviate
from the actual rotation of any member hypothesis [38].

Landmark Pose Estimation. Here, we choose landmark
pose estimation from MHPE as the frontend measurement to
help recover robot poses. We compute the chordal distance
between the groundtruth and the estimated landmark pose
for comparison (see Fig. 8).

As shown in Fig. 8 (a), we could observe the pattern
of a step-wise increase in error each time a new landmark
is observed, which is then followed by a gradual error de-
crease as optimization proceeds. Compared to the other two
approaches, our approach exhibits a much less steep surge
between “stairs” as though with no prior knowledge about
the object, it could employ past knowledge to help gradually

Fig. 7: Comparison of camera trajectories and object position
estimates. We use evo [37] for trajectory evaluation. Objects
are shown as dots. Groundtruth is shown in black. Odometry
trajectories are shown by dash-dotted grey lines. (a) Averag-
ing; (b) Random Selection; (c) Max-mixtures.

Fig. 8: Landmark pose estimation error.

switch to the better-behaved mode. Around time step 1,400
when the robot finishes its first circle and returns back to
the mug, while averaging merges ambiguous measurements
at the loop closure and hence renders the optimization off
track (corresponds to trajectory in Fig. 7 (a)), max-mixtures
manages to maintain a lower average error.

The above behaviors are also reflected in Fig. 8 (b), as
for the final estimate of object poses, max-mixtures proves
its superiority in all statistical descriptions, indicating a
constantly higher estimation precision amongst all the three
methods.



VI. CONCLUSION

In this paper we develop a novel approach that allows the
robot to reason about multiple hypotheses for an object’s
pose, and synthesize this locally ambiguous information into
a globally consistent object and robot trajectory estimation
formulation. We instantiate this approach by designing a
deep-learning-based frontend for producing multiple object
pose hypotheses and a max-mixture-based backend for se-
lecting pose candidates and conducting joint robot/landmark
pose optimization. Experiments on the real YCB-Video
Dataset and the synthetic YCB object video demonstrate
the effectiveness of our approach to performing object pose
and robot trajectory estimation in ambiguous environment
settings. Future work may involve providing extra clues to
facilitate max-mixtures optimization, such as by regressing
weights for each pose hypothesis from the MHPE frontend.
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