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Abstract

Identification and control of impurities play a critical role in chemical process devel-
opment for drug substance synthesis. Most chemical reactions result in a number of
by-products and side-products, along with the intended major product. While chemists
can predict many of the main process impurities, it remains a challenge to enumerate the
possible minor impurities and even more of a challenge to track and propagate impurities
derived from raw materials or from step to step. Further, in the absence of a systematic
means for listing out possible-low-level impurities and performing impurity propagation,
inverse structure elucidation – that is, identifying unknown impurities post hoc from
analytical data, such as mass spectrometry data – presents a significant challenge.

In this work, impurity prediction was established by developing an AI-based reaction
predictor that takes as input the main reactants, and reagents, solvents, and impurities
in these materials. Further, the predictor was run iteratively to track impurity propaga-
tion in multi-step reactions. For inverse structure elucidation, a chemistry-informed
language model was developed to translate mass spectrometry data to potential molecu-
lar structures, which can then be checked for matches against the predicted chemical
reaction products. The impurity prediction tool was applied to synthesis of common
small molecule drugs — paracetamol and ibuprofen, and the inverse structure elucida-
tion tool was used for the identification of chemical structures from publicly available
electrospray ionization mass spectrometry data, The models were applied to proprietary
Amgen programs, both small molecule drugs and biologics, with significant results noted
in both projects.

Thesis Supervisor: Rama Ramakrishnan
Title: Professor of the Practice, Sloan School of Management

Thesis Supervisor: Rafael Gómez-Bombarelli
Title: Assistant Professor, Department of Materials Science and Engineering
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Chapter 1

Background and Introduction

1.1 Company Background - Amgen

Amgen is one of the world’s leading biotechnology companies, headquartered in Thou-

sand Oaks, California [1]. Founded in 1980, the company is present in 100+ countries

and regions, with its innovative medicines reaching millions of people across the world

helping them fight against serious illnesses. The company focuses on six therapeutic

areas: cardiovascular disease, oncology, bone health, neuroscience, nephrology, and

inflammation. Apart from medicines, the company’s corporate efforts fall into four cate-

gories - Healthy People, Healthy Society, Healthy Planet, and Healthy Amgen, showcasing

the holistic efforts of the company to be a leader in science and society [2].

As a drug goes through five stages, namely, discovery and development, preclinical

research, clinical research, US Food and Drug Administration (FDA) review and FDA

post-market safety monitoring [3], a key component of the discovery and development

stage is to develop a process to manufacture the drug at scale. At Amgen, this step is led

by the Process Development organization, within Operations. In this organization, the

small molecule or synthetics process development for the pivotal and commercial stage

is led by Pivotal and Commercial Synthetics.
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1.2 Related Work

Drug substance development necessitates a scalable and stable biological or chemical

process to manufacture the drug before commercialization [4, 5]. For biologics, such

as RNA, peptide, and antibody-based drugs, cell-based processes are used for manufac-

turing [6, 7]. Small molecule drugs are synthesized through a set of chemical reactions,

where initial reactions focus on making the different motifs in the drug molecule, and the

reaction products come together in the final steps to complete the intended molecule [8,

9]. As can be noted from the complexity of the reaction scheme in the small molecule

synthesis, the by-products of individual reactions create impurities, and these impurities

can propagate through, from step to step, to the final drug substance, if not identified and

controlled via reaction optimization or purification operations [10, 11]. Thus, chemical

process development, involving identification, development, optimization, and scale-up

of chemical synthetic routes, is a major activity required in the commercialization of

small molecule drug substances [12].

1.2.1 Chemical process development for synthetics

Chemical process development would significantly benefit from a priori prediction of

possible impurities, thereby accelerating the route selection and optimization processes

[13]. For instance, the information about impurities would help in avoiding problem-

atic synthetic routes which might result in products that are potentially genotoxic or

mutagenic [14, 15].

Impurity mapping (both hypothetical and known) for drug substance synthetic pro-

cesses is an important exercise throughout the process development work stream; this

can inform route selection early on and underpins the control strategy established in

later development [16, 17]. The hypothetical impurity mapping exercise of listing out

all possible impurities for a single reaction step, and brainstorming through different

reaction intermediates, and how they would be impacting the resulting product, is a pro-

cess that most organic chemists can do [18]. However, it is hard to do this systematically

for even one step. The challenge explodes when taking numerous impurities through

14



the downstream reactions and tracking how their products react with other reagents

and solvents. Thus, it becomes a Herculean task to establish the known impurity map

empirically.

Computational impurity prediction methods fall under the broader umbrella of

Computer-Aided Synthesis Planning or CASP, which focuses on forward reaction pre-

diction, retro-synthesis, and reaction condition prediction [19, 20]. ASKCOS software

suite, developed by Coley and co-workers at MIT [21], and the more recent Python-

based database matching workflow [22], are some of the impurity predictors, built by

repurposing the forward reaction models.

However, applying the impurity predictors, for application in synthetic process de-

velopment workflows, highlights a few areas where further development is necessary,

such as the current predictors focus on application with pure input materials, aim to

predict the major products, and are designed for single-step reactions. The focus on

application with perfectly pure reactants, reagents, and solvents, is the right focus when

predicting impurities for reactions run in academic or development labs at a small scale

in which highly pure material can be used, but leaves out real-world considerations in

manufacturing where bulk materials are used and an understanding of what level of

solvent, reagent, and starting material impurities can be tolerated is required. Similarly,

these models have been trained on datasets, such as Reaxys [23] and Pistachio [24], which

collect nearly all the reactions in the literature. The challenge here is that most people

report the major products, while failed reactions, and minor products, are not as widely

reported, thereby leading to a handicap for the impurity predictors not being aware of

the complete spectrum of possible reaction products.

As a result of the current processes, the aforementioned approaches may miss com-

plexities seen in the real world, such as impurities that propagate from prior steps, or

ones that are a product of reactions with impurities in starting materials, which are rarely

of 100% purity. Moreover, due to the implicit bias of the majority product in the training

dataset, they might miss low-level impurities. Unfortunately, these low-level impurities

are critical to the drug substance development process and need to be identified and

controlled. Thus, it is important to develop computational methods that can address the

15



challenges around impurity prediction and propagation, and help in accelerating the

chemical process development in the pharmaceutical industry.

1.2.2 Structure elucidation and impurity identification

Apart from the a priori impurity prediction from proposed reaction schemes, a major

part of chemical process development involves the identification of impurities after the

experiments. The identification involves analysis of reaction characterization data, such

as nuclear magnetic resonance (NMR) [25, 26, 27, 28], liquid chromatography-mass

spectrometry (LC-MS) [29, 30, 31, 32], and other analytical data streams. This post hoc

analysis requires an intimate understanding of the specific analytical methods, thereby

necessitating the involvement of subject matter experts from analytical chemistry, and

other fields, to help in the elucidation of the impurity structures.

There have been recent computational approaches that have been developed to invert

the analytical spectrometric data to identify molecules. Although, de novo generation

of structure from NMR spectra has been attempted with reasonable success [33, 34, 35],

the inversion of tandem mass spectrometric (MS2) data remains a challenge. Spec2Mol

and MassGenie made some advances in this space, by training on electron-ionization

mass spectrometry data and generating simpler small molecule metabolites [36, 37], and

MSNovelist worked on the problem using electrospray ionization mass spectrometry

(ESI-MS) data [38]. A key bottleneck in off-the-shelf usage of these existing methods

lies in the lack of fine-tuning for specific drug-like molecules. These models have been

trained on datasets, such as those obtained from MassBank and NIST spectral libraries

[39, 40], which cover a more general portion of the chemical space, rather than focusing

on drug-like molecules.

Structure elucidation and impurity identification process can be significantly acceler-

ated and even automated if we can predict a candidate set of impurities from which to

select in structure elucidation from analytical data.

16



1.3 Problem Statement, and Thesis Overview

In this thesis, we propose a closed-loop AI-assisted method for impurity prediction

and inverse structure elucidation from MS2 data. We leverage current forward reaction

predictors to predict a plausible set of impurities and provide the chemists an opportunity

to do synthetic route selection and optimization. Additionally, we adapt an existing

ESI-MS2 to molecule predictor to invert spectra for drug-like molecules. We intend to

re-frame the impurity prediction problem to predict an inclusive set which allows us

to expand on what impurities process chemists can come up with, and then use the

inverse structure elucidation pipeline as a filter to identify molecules that are in the set.

In the upcoming chapters, we discuss our approaches (Chapter 2), applications of the

methods to molecules in the public domain (Chapter 3), limitations and future directions

for automated impurity identification (Chapter 4), and summarize our findings from this

work (Chapter 5).
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Chapter 2

Approach

The thesis was developed by bringing together the technological requirements anticipated

in the project, and interviews with potential end-users. The specifications in the project

description were outlined to do automated impurity identification. To assess that the

specifications aligned with the end-user needs and understand the current working

practices, we interviewed more than 60 people across different organizations within

Amgen in 100+ individual interactions (Appendix A).

2.1 Interviews with experimentalists

The first round of interviews was facilitated by leveraging the immediate network of

my manager, Daniel Griffin, Principal Engineer, Pivotal and Commercial Synthetics. In

these interviews, the basic outline of the project and the goals were discussed. These

interviews served as the basis for the major connections and helped in building a base for

test users and critics as the project progressed. A key outcome of the initial discussions

was the realization of the discrete nature of impurity identification. Impurity prediction

and inverse structure elucidation were identified as the two parts of the project. With

impurity prediction being of stronger significance in route discovery and selection, the

inverse structure elucidation was noted to be more significant for route and process

optimization and control. Specifically, the prediction was noted to be needed to identify

and eliminate risky routes and flag hard-to-remove impurities, and was used primarily

19



in the initial parts of the process development, while inverse structure elucidation was

required for the identification of unknown, low-level, or non-trivial impurities observed

throughout process development and characterization.

The two parts come together towards the end to close the loop and enable automated

impurity identification. Impurity prediction provides a list of plausible and inclusive

set of impurities. Similarly, inverse structure elucidation provides a list of potential

molecules corresponding to mass spectrometry or other analytical data. The intersection

of these two sets, where the predicted set is invariably a super-set of impurities, and

the elucidated set of structures act as a filtering criterion or down-selection function to

identify the specific impurities.

Further interviews were conducted by connecting with the suggested people from

each of the interviews, with more people branching out from every single interview node.

These interviews were conducted over a period of 4 months and involved sharing goals

of the project, recent updates on the code, results using public data and from Amgen

programs, and requesting suggestions on making the project more useful to folks at

Amgen, and aligning it better to the needs.

The discussions across all the interviews provided a clear understanding of the neces-

sity of both systems in enabling automated impurity identification. However, we noted

that in regular usage, addressing the current needs of the work, these two parts may be

used as stand-alone systems. To connect these independent parts, we realized that a

significant amount of software engineering would be needed to build out interfaces, and

make them available to the chemists.

2.2 Development of impurity prediction pipeline

The impurity prediction pipeline was designed on the basis of the different possible

reaction types, with the reaction predictions done using ASKCOS [21]. At first, we enu-

merated all possible reaction types and used that as the basis to develop the codebase to

do single-step impurity prediction. Extending this to multi-step reactions, or impurity

propagation, was a combination of using a super-set constituents reaction, and following

20



Figure 2-1: Different reaction types for impurity prediction. Both impurity prediction
and propagation for the products from step 1 have been shown in the schematic, and only
the step impurities and the major product of step 2 are shown. The primary reactant for
step 1 is denoted as a white triangle, with the primary product denoted as a blue triangle.
The primary product of step 1 acts as the primary reactant for step 2, and results in the
primary product of step 2 - red triangle. The legend denotes the additional reagents and
solvents as squares, with the impurities in them, noted as green squares. The numbers
within these squares are for the specific step they are a part of. Reagents and solvents for
each step are on the reaction arrow, with the subscript denoting the specific step. The
different shapes - rhombus, pentagon, and hexagon - are for the different impurities
arising from reactions other than the major reaction for that particular step.

all the impurities to n steps downstream from the point they were predicted. All impurity

predictions were done using ASKCOS version 2022.07, with the application programming

interface (API) version 2.

2.2.1 Reaction types

To predict a comprehensive impurity map, we outlined different possible reactions, other

than the intended major reaction (Figure 2-1). First, we noted impurities arising from

possible side reactions with the same set of reactants, reagents, and solvent, but resulting

in different products [41, 11]. Second, we captured the impurities when additional

reagents or solvents are added, as a part of the work-up or isolation processes, such as

crystallization [42, 43]. Lastly, we outlined the impurities arising from reactions with
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Figure 2-2: Input file for paracetamol synthesis. A. Screenshot of the input schema is
shown for different reactants, reagents, and products for the 3-step synthesis of parac-
etamol from phenol. B. Structures in the input schema have been shown after being
processed through the ChemDraw add-in.

known impurities in the starting materials [44, 45]. Overall, we enumerated three different

types of possible reactions, other than the major reaction, for a single step.

For impurity propagation, we propagated individual impurity products predicted as a

part of the previous step reactions, with all the reagents, solvent, additional reagents, and

solvent, and known impurities [46, 47]. Bringing all of the non-reactants together, instead

of predicting four different reactions as earlier, was a decision to make the prediction

process computationally tractable, and also not to complicate the readability aspect.

2.2.2 Input/output file system

To make the impurity prediction pipeline easily accessible to chemists, we developed an

input/output file system based on Microsoft Excel with ChemDraw version 21.0 add-ins

[48] (Figures 2-2, 2-3). The Microsoft Excel tabular format made it easy to specify the

different inputs for the reaction, and also analyze the outputs in a similar manner. Given

that Microsoft Excel and Python does not natively support chemical structures, we used

simplified molecular input line entry system (SMILES) to depict the chemical structures

as strings [49]. Using the ChemDraw add-in, we then converted the Excel spreadsheet

into a ChemDraw worksheet and showed the chemical structures along with the SMILES

in the same cell or box in the spreadsheet [50]. We have used the input and output files

for impurity prediction in the case of synthesis of paracetamol from phenol to visualize

how the files look like.
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Figure 2-3: Output file for paracetamol synthesis. A. Screenshot of the summary output
file, with all the structures, noted for step impurities. B. Screenshot of the enlisted output
file explicitly showing the reactants and respective products.

The input file has a set of columns to specify the primary reactants, reagents, solvent,

additional reagents and solvent, and known impurities in the reagents and solvent (Figure

2-2). Across these 6 columns, only primary reactants and products are mandatory, while

others remain optional. Individual reaction steps are entered in separate rows and are

treated independently of one another, except in the case of prediction for impurity

propagation.

We developed Microsoft Excel-based output file systems, in line with the tabular

format of the input file. To help with the level of abstraction that end-users need, as per

the discussions with the experimentalists (Section 2.1), we developed two formats for the

output - summary and enlisted files. The summary file extends the format of the input file,
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Figure 2-4: Overview of the impurity prediction model. The input file is parsed into
individual reactions, and the results are aggregated in the output file. The impurity
prediction module in the ASKCOS software suite is used to predict the impurities for
specific reactions.

and adds the impurities in additional columns in the same rows (Figure 2-3A). The output

columns are listed as the impurities arising from the side reactions, additional reagents

and solvents, known impurities in the starting materials, and propagated impurities

from each of the aforementioned impurity types. In this format, the impurities are

all noted together, which made it difficult for the experimentalists to assess how each

of the molecules might have come into being. This challenge led us to develop the

enlisted output file format (Figure 2-3B). In the enlisted format, we showed the specific

reactants, reagents, and solvents that led to the impurity molecule. The different levels of

abstraction has been shown to have helped the experimentalists identify the source of

non-trivial impurities.

2.2.3 Prediction model

For impurity prediction, we used the impurity prediction module in the ASKCOS software

suite (Figure 2-4). Specifically, we used the latest model trained on the larger Pistachio

dataset [40], as compared to the Reaxys [23] dataset. A key difference between these

models lies in the curated data in Pistachio, along with the coverage of more reactions

reported in the US Patents and Trademark Office data releases [51]. Since the impurity
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prediction module, by default, is meant to produce the top impurities in the dataset,

and we were more interested in getting access to the larger set of low-level impurities,

we changed some of the default parameters. After a set of carefully designed manual

iterations, we settled on increasing the top-k predictions to 10 from the default 3, and

decreasing the threshold probability from the default 0.1 to 0.01. The top-k predictions is

a criterion to filter the output predictions based on their similarity to the major product,

while the threshold probability is a way to calculate the probability of the existence

of the product as a result of the reaction under consideration. Here, we would like to

clarify that the probability is an implicit function of the training dataset, and the lack of

reported impurities in the dataset affects the probability. Also, the probability does not

necessarily reflect the chemical feasibility of the impurity product, nor does it reflects the

kinetic barriers for a particular product being generated. We have discussed how these

chemistry-informed concepts can be incorporated into the impurity prediction pipeline

in Future Directions, Chapter 4.

Computational sustainability was a key element in the design of the impurity pre-

diction pipeline, apart from the ease of usage by experimentalists. To ensure that the

pipeline remained computationally feasible, within reasonable costs for Amgen, while

also providing results that did not take longer times to compute, we tested a range of

computing configurations on Amazon Web Services [52]. Ultimately, we settled on the

ASKCOS software suite being hosted on an AWS EC2 instance with the default configura-

tion. For the impurity prediction, we queried the ASKCOS instance within the enterprise

firewall. All the tests were made on a 4-core Intel i7 system. For the demonstrated 3-steps

reaction of paracetamol synthesis, we clocked 4 min of wall time and 719 ms of CPU time

to obtain the results.

2.2.4 Impurity prediction and propagation

All the possible reactions arising from the input file system were split into different

reaction types, and thus individual single-step reactions. These individual reactions

were then queried as a batch for a single primary reaction step. We noted all but the

major product as the impurities from the different reactions, and aggregated them in the
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summary format, and enumerated them as individual reactions for the enlisted format.

For impurity propagation, we batched all the impurities from the previous step,

irrespective of their origins, such as side reactions, from additional reagents and solvents,

or reactions with known impurities. We propagated these impurities by treating them as

primary reactants and considering all possible reagents, solvents, and known impurities

in the succeeding step(s). In order to avoid a combinatorial explosion and also understand

that isolation (crystallization, followed by filtering, washing, and drying) operations lead

to the elimination of most impurities, we kept the number of propagating steps to 1, by

default. The codebase has in-built functionality to extend this to n steps, as desired by

the end user.

2.3 Development of inverse structure elucidation

pipeline

The inverse structure elucidation model was largely adapted from the MSNovelist work,

with additional improvements to the input and output file systems [38].

2.3.1 Input file system

We developed a parser to convert the MS2 data in the tabular format of the ratio of mass

to charge, and intensity values, to the Mascot Generic Format (MGF) file system (Figure

2-5A). In the file format, we varied the charge on the molecule, and the chemical formula

to bias the predictor in giving a varied set of results.

By varying the charge from -2 to +2, at integer values, we saw a difference in the

predicted molecules. Similarly, the presence of the chemical formula biased the model

in predicting molecules for the specific formula alone. This aspect was useful if a sin-

gle formula or multiple formulae could be determined with high accuracy from the

high-resolution mass spectrometry instrument processing software. Depending on the

accuracy of the mass and the sensitivity of the instrument, a number of formulae could

be determined and thus used to get specific results. In the absence of a chemical formula,
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Figure 2-5: Input and output file for inverse structure elucidation pipeline. A. Screen-
shot of the input file in the .mgf format is shown. B. Screenshot of the output file generated
through the MSNovelist pipeline is shown.

the MSNovelist pipeline used an in-built elemental composition determination model

based on SIRIUS, and predicted structures for a wide range of chemical formulae with

similar mass [53, 54].

2.3.2 Output file system and post-processing

The output file obtained from the MSNovelist pipeline was processed to remove du-

plicates and chemically infeasible molecules (Figure 2-5B). Duplicates were removed

by converting all the predicted chemical structures in the SMILES format to canonical

SMILES, and then using the set function in Python.

Canonical SMILES are analogous to the naming convention of a chemical structure,

where any of the functional groups can, in principle, be placed at any position, or we

could start from any of the branches in the structure, but the International Union of Pure

and Applied Chemistry (IUPAC) convention dictates a certain naming convention [55].

Similarly, canonical SMILES are considered to be the IUPAC analogs for SMILES, since

in this case also the atoms could be enumerated starting with different branches [56].

Canonical SMILES were generated using RDKit [57].

To filter the dataset and remove the infeasible molecules, we used RDKit to sanitize

the molecules. Sanitization of molecules ensures that the molecules can be represented

as octet-complete Lewis dot structures. Molecules that could not be sanitized, or denoted
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Figure 2-6: Overview of the inverse structure elucidation model. The input is the MS2

spectra and optionally the elemental composition in a .mgf file, while the output is a set
of structures with the different chemical formulae. The prediction model is adapted from
MSNovelist.

as infeasible by RDKit, were removed from the final output.

2.3.3 Prediction model

Our prediction pipeline is based on the MSNovelist model, using the intermediate finger-

print generation, and the language model for translating into SMILES (Figure 2-6). The

MSNovelist model architecture processes the spectra into CSI: FingerID representation.

This representation is a common format for converting spectra into a more informa-

tive fingerprint based on potential substructures in the spectra [58]. This approach has

been used to search for the specific structure, based on the spectra, through large mass

spectrometry databases, with varying degrees of success [59, 60, 61].

In the MSNovelist study, Zamboni and co-workers use a long short-term memory

(LSTM) language model to translate the spectra to molecules directly, with a compu-

tational complexity of 𝒪(1), instead of the database searching at complexity of 𝒪(n)

[62]. With LSTM models having been used to reliably write sequences for several natural

language processing, chemistry, and biology tasks [63, 64], and the training of the model

using MassBank, a dataset of biomolecules, we used the model as-is.
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Chapter 3

Applications

3.1 Impurity prediction for small molecule drugs

We evaluated the impurity prediction pipeline for two commonly used drugs - parac-

etamol and ibuprofen [65, 66]. N-(4-hydroxyphenyl)acetamide, paracetamol or ac-

etaminophen is one of the most widely used over-the-counter drugs in the world, with

kilotons being manufactured every year [67]. (RS)-2-(4-(2-Methylpropyl)phenyl)propanoic

acid, Advil or ibuprofen is another commonly used over-the-counter drug, listed as one

of the essential medicines on the World Health Organization list [68, 69, 70]. These exam-

ples were chosen based on their simplicity, and being publishable as a part of the thesis,

without any legal constraints.

3.1.1 Paracetamol synthesis

We used the synthetic route of paracetamol from phenol, as outlined in [66]. The reaction

has 3 distinct steps -

• R1: Nitration of phenol to para-nitrophenol using HNO3

• R2: H2 reduction of para-nitrophenol into para-aminophenol

• R3: Acetylation of para-aminophenol into paracetamol
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Main process impurities

The impurity prediction pipeline was evaluated for paracetamol synthesis using the

default parameters, as discussed in Section 2.2.3 (Figure 3-1A). Step impurities were

predicted for R1, R2, and R3. These impurities mostly align with the impurities that are

expected as per heuristically determined impurities in these reactions (Figure 3-1B, C, E).

Figure 3-1: Predicted step impurities and propagated impurities in paracetamol syn-
thesis. A. Reaction scheme for paracetamol synthesis. The specific steps have been
marked as R1, R2, and R3, to specify the corresponding step and propagated impurities.
Impurities from the reaction steps - B. R1, C. R2, and E. R3. D. Propagation of step
impurities predicted in R1 through R2. No propagation was predicted for step impurities
in R2, and propagated impurities from R1 were not propagated through into R2.

A key observation was the missing ortho-nitrophenol in R1 step impurities. The pres-
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ence of this impurity has been reported across multiple works [66, 71, 72]. It is surprising

that the ASKCOS impurity module could not predict this impurity. We attributed this

absence to the training dataset bias, with most reactions in the literature reporting the

majority products in the chemical scheme, while impurities and side-products are moved

to the text, thus not forming a part of the model training.

Impurity propagation was done for a single step, i.e. step impurities, arising from

side reactions and otherwise, were propagated to the next step only, as per the default

parameters. In the case of paracetamol synthesis, we only observed the propagation of

impurities from the first step, R1, under the reaction conditions of R2 (Figure 3-1D). It

can be observed that the step impurities have a number of combinatorial choices as they

move through the H2 reduction, followed by dimerization, thereby resulting in a large

number of dimers in the propagated impurities.

In addition to the impurity prediction, we only visualized unique impurities. In the

order of precedence, we followed the step, propagated, and then impurities arising from

reactions with known impurities. In this manner, the impurities that are already present

as impurities from side reactions, but also generated as a result of impurity propagation,

were not shown. The summary and enlisted files, however, show the complete list without

any deduplication to provide the experimentalists with a complete picture of impurities

and their respective sources.

Impurities arising from known impurities in starting materials

We added known impurities in the starting materials to see if there were any new impu-

rities that were being produced. Using a similar impurity deduplication step, as earlier,

we found one new impurity that was being produced in R2 (Figure 3-2A). We observed

no new impurities coming from reactions with trace metal impurities (Hg, As, Pb, Cd) in

nitric acid (HNO3), a single impurity from reactions with ammonia (NH3), formaldehyde

(HCHO), formic acid (HCOOH), carbon monoxide (CO), and carbon dioxide (CO2) in

hydrogen gas (H2), and no new impurity formed by reaction with acetic acid (CH3COOH)

impurity in acetic anhydride (Ac2O). The impurities in the specific reagents were obtained

from the literature [73, 74, 75]. In this example, no additional impurities, such as those
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Figure 3-2: Additional impurities in paracetamol synthesis. A. Impurities arising from
reactions with known impurities, noted in green, along with the reagents. Only one
impurity is identified for R2, across the three reaction steps. B. Splitting of R2, into
R2A and R2B to force a reaction intermediate did not result in any additional impurity
identification.

arising from different work-up steps were added.

Impurities arising from reaction intermediates

In order to extend the capabilities of the impurity prediction and bias the predictor to

find impurities from reaction intermediates, we introduced a reaction intermediate in the

paracetamol synthesis route. Specifically, we split R2, H2 reduction process, into R2A and

R2B. R2A results in the production of para-hydroxoaminophenol from para-nitrophenol,

and R2B completes the reaction as earlier leading to the formation of para-aminophenol.

However, we did not observe the production of any new impurities due to the reaction

intermediate. We believe that this might be related to the reaction intermediate case not

being a part of the training datasets, and thus, the predictor not having any explicit idea

to predict the impurities. However, it is supposed that the introduction of intermediates

in different reaction routes might result in interesting results.
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3.1.2 Ibuprofen synthesis

The 3-step route, outlined in [76], was used for the impurity prediction of ibuprofen

synthesis (Figure 3-3A) -

• R1: Acetylation, in the presence of HF, of isobutylbenzene to 1-(4-isobutylphenyl)

ethanone

• R2: H2 reduction of 1-(4-isobutylphenyl)ethanone into 1-(4-isobutylphenyl) ethanol

• R3: Carbonylation of 1-(4-isobutylphenyl) ethanol into ibuprofen

Main process impurities

Several step impurities were identified for R1, R2, and R3 (Figures 3-3B, C, E). Six impuri-

ties were noted in R1, with only three-step impurities each being predicted for R2 and

R3.

Figure 3-3: Predicted step impurities and propagated impurities in ibuprofen synthesis.
A. Reaction scheme for ibuprofen synthesis. The specific steps have been marked as R1,
R2, and R3, to specify the corresponding step and propagated impurities. Impurities from
the reaction steps - B. R1, C. R2, and E. R3. D. Propagation of step impurities predicted in
R1 through R2. No propagation was predicted for step impurities in R2, and propagated
impurities from R1 were not propagated through into R2.
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In R1, fluorination of the impurities due to the reaction of the produced impurities

with HF, probably as a result of over-reaction, was identified as a key process for the

generation of multiple impurities. Interestingly, 1-(4-isobutylphenyl) ethanol, which is

the intended major product of the following step, R2, was noted as one of the impurities

of R1. Also, only one dimerized impurity was observed in the first reaction step.

For R2, amongst the impurities, we noted a recurrence of 1-ethyl-4-isobutylbenzene,

which was also noted as an impurity in R1. Such impurities, occurring in multiple

steps suggest the need for the development of purification catered to similar or same

impurities in each step and underscore the need for unit operation in each step where

the impurities occur. R3 produced a major impurity - 3-(4-isobutylphenyl)butan-2-one,

and its dimerized impurities.

Propagation of impurities from R1 to R2 resulted in several dimerized and fluorinated

impurities. However, no impurities were found when we attempted to propagate the R2

impurities to R3.

The occurrence of such a low number of impurities in the ibuprofen synthesis shows

the amount of optimization that has gone into this synthetic route, from the original

synthesis route developed in the 1960s by the Boots group [69, 77, 76].

Impurities arising from known impurities in starting materials

With the addition of known impurities in the starting materials, several previously unob-

served impurities were predicted for ibuprofen synthesis (Figure 3-4). In R1, CH3COOH

and H2O are known to be present in acetic anhydride, and hydrofluoric acid, respectively

[74, 78]. Their presence resulted in two new impurities. For R2, we noted multiple car-

bonylated and oxidized impurities with the presence of CO, CO2, HCHO, and HCOOH in

the H2 gas. In R3, palladium (Pd) and CO contained several trace metal impurities and

several other common gaseous impurities, leading to the production of several low-level

impurities [79].

The multiple impurities noted in ibuprofen synthesis are substantially more than

those noted in the case of paracetamol synthesis, despite having similar reagents. Our

observation further highlights the need for raw materials risk assessments in the context
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Figure 3-4: Additional impurities in ibuprofen synthesis. Impurities arising from re-
actions with known impurities, noted in green, along with the reagents, for each of the
three reaction steps - R1, R2, and R3.

of individual reactions, and evaluation of what reaction products can result from known

impurities in starting materials.

3.1.3 Application at Amgen

We used the impurity prediction pipeline to obtain an impurity map, with summary and

enlisted modes, for a critical Amgen small molecule. Based on the conversations with

experimentalists leading the project, the model was able to identify key impurities in

different steps.

3.2 Inverse structure elucidation from MS2 data

We used two random spectra from the public dataset released by Graham Cooks lab

to evaluate our inverse structure elucidation pipeline (Figure 3-5) [80]. In these two

examples, we noted several structures, with different elemental compositions but similar

molecular weight, being predicted using the inverse structure elucidation pipeline, as

described in Section 2.3. When the spectra were run in the mode without providing any

elemental composition, it was noted that the model was biased toward finding structures

of lower molecular masses. The above examples demonstrated the utility of the tool,

providing evidence of how an unknown electrospray ionization (ESI) mass spectrometry
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Figure 3-5: Chemical structures predicted for two random spectra using the inverse
structure elucidation pipeline. Different structures corresponding to the elemental
formula are noted for the two respective spectra in A. and B.

data can be translated into chemical structures of varying elemental composition.

3.2.1 Application at Amgen

The tool was applied to two current, and real-world, unknown impurity identification

tasks at Amgen. At the time of this thesis, the impurities had not been yet been positively

identified. However, the tool proposed novel chemical structures that, by the review

of subject matter experts, were judged to be more likely than the structures proposed

earlier by chemists on the project and thus provided directions to pursue the impurity

identification tasks.
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Chapter 4

Limitations, and Future Directions

4.1 Limitations

We have noted several limitations for our impurity prediction, and inverse structure

elucidation pipelines, and have discussed them here. The limitations of our impurity

prediction approach are intrinsically linked to the training datasets, the accuracy of the

forward prediction model, and known impurities in the starting materials. Similar to the

impurity prediction pipeline, the inverse structure elucidation pipeline is also limited by

the training data and the coverage of chemical space.

The training datasets act as a limitation in the prediction pipelines. For impurity

prediction, the datasets, both from Reaxys [23] and Pistachio [40], mostly comprise

reactions with major products. In these datasets, side products, and minor impurities,

are not mentioned as a part of the scheme. This information is occasionally discussed

within the manuscript text or moved to supplementary information. Thus, obtaining a

training dataset focused on additional products remains a significant challenge, limiting

the prediction of impurities for new reactions. Similarly, the aggregated datasets of

electrospray ionization mass spectrometry do not have quality constraints, and have

been collected from multiple sources for different biological molecules [38, 39]. Although

they are supposed to cover a wide range of chemical space, the similarity of metabolites

or biological molecules to specific drug-like compounds needs to be assessed on a case-

by-case basis. Thus, the performance of the pipeline, as-is and with our improvements, is
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limited by how the initial models were trained.

For impurity predictions, we are limited by the accuracy of the forward reaction

prediction model being used. In our case, using ASKCOS, we are implicitly limited by how

well the prediction model functions [81]. Since ASKCOS is focused on predicting major

products alone, we tried to extend the predictions by increasing probability thresholds

and top-n predictions. However, these changes result in filtering out predicted molecules,

showing a larger number of molecules, but not changing the predictions themselves.

Thus, if ASKCOS was not able to predict an impurity amongst the tens of molecules, then

it would not be able to do so unless the training dataset is improved. Further, the ranking

of products for the impurity module in ASKCOS is based on structural similarity to the

major product. This metric might not be an accurate depiction of a lot of impurities.

A number of hard-to-identify impurities arise from reactions with impurities in the

starting materials. With limited information about the low-level impurities in the starting

materials, it is nearly impossible to predict such impurities.

4.2 Future Directions

In the future, the impurity prediction model may be improved using a model ensem-

ble approach. Different model architectures, such as the transformer-based models in

IBM-RXN [82], where the model learns to map different character tokens for reaction

prediction, can help in obtaining a larger and potentially more diverse set of impurities

than the graph-based approach in ASKCOS. In addition to that, novel architectures that

combine the attention mechanism of transformer models with the inherent graph repre-

sentations of molecules, such as those presented by Mao and co-workers [83], and Tu

and Coley [84], can be adapted for impurity prediction. The key consideration here is

using a similar training dataset, assuming that a large-scale dataset is infeasible in the

short term, and leveraging different model architectures to identify different products.

Rank ordering of impurities, other than by similarity to the major product, needs to

be addressed in future works. Prediction of reaction kinetics and/or activation energy

barriers might be potential directions [85, 86, 87, 88]. These approaches will provide
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quantitative insights on the likelihood of the presence of the impurities, and help in

filtering down by chemistry-informed methods.

Ultimately, to capture the low-level impurities, a dataset of safety data sheets for

known starting materials needs to be built [73]. This dataset will help in listing out known

impurities, and identify reaction products a priori saving significant time and resources

that might have to be invested in impurity identification.

For the inverse structure elucidation pipeline, datasets focused on drug-like molecules

can be built, or aggregated from existing experimental sources, to improve the quality of

the predictions. The model architecture can be improved by using more recent translation

model architectures, such as transformers [89].

Apart from the improvements to the models themselves, it is important to focus on

the user experience as a future direction. The cycle time to incorporate the changes to the

different modules in the software suite, and the inclusion of different types of chemical

reactions, such as enzyme-mediated reactions, need to be considered to increase the

usability of the models in the industry setting.
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Chapter 5

Conclusion

In this thesis, we developed tools to automate impurity identification, by predicting a

plausible set of impurities using an impurity predictor, and then proposing to use an

inverse structure elucidation function on analytical data from experiments to down-select

impurities.

Impurity prediction was done by developing an AI-based reaction predictor, that takes

as input the main reactants but also reagents, solvents, and impurities in these materials.

Further, the predictor can be run iteratively to track impurity propagation in multi-step

reactions. For inverse structure elucidation, a chemistry-informed language model was

developed to translate mass spectrometry data to potential molecular structures, which

can then be checked for matches against the predicted chemical reaction products.

The impurity prediction tool was applied to the synthesis of common small molecule

drugs – paracetamol and ibuprofen, and the inverse structure elucidation tool was used

for the identification of chemical structures from publicly available electrospray ioniza-

tion mass spectrometry data, The models were applied to proprietary Amgen programs,

both small molecule drugs, and biologics, with significant results noted in both projects.

The tool can have an impact on a number of important activities in chemical process

development for synthetic drug substances, including (1) identification of impurities,

(2) high-throughput reaction screening and detailed reaction kinetic analysis, and (3)

raw materials risk assessments. Impurity identification, both a priori and post-synthesis,

aids process development, with the former helping in the optimization of reactions, and
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the latter in the identification of possible impurities in the product mixture. For high-

throughput reaction screening and detailed reaction kinetic analysis, the tool provides a

route to automate impurity identification thereby accelerating experimental efforts for

route selection and route optimization. Additionally, the solution helps in assessing the

risk posed by low-level impurities in raw materials—as purchased, reaction intermediates,

and API starting materials.
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Appendix A

List of Interviewees

Table A.1: List of people at Amgen organizations with whom the project and approach was
discussed. Abbreviations: DS - Drug Substance; PCS - Pivotal and Commercial Synthetics;
ODSC - Operations Digital Strategy and Capabilities; DIPT - Digital Integration and
Predictive Technologies; IS - Information Systems; Tech - Technology; DP - Drug Product.

Sl No Name Organization Role

1 Rahul Sangodakar DS PCS Principal Engineer
2 Ning Yang Attribute Sciences Sr Scientist
3 Nandini Sarkar Attribute Sciences Scientist
4 Andrew Cosbie DS PCS Principal Engineer
5 Erin Shen DS PCS Data Scientist
6 Carolyn Wei DS PCS Principal Scientist
7 Chris Garvin ODSC Director
8 Fabrice Schlegel DIPT Director
9 Pablo Rolandi DIPT Executive Director

10 Neil Langille DS PCS Principal Scientist
11 Heather Nunn DS Biologics Director
12 Matthew Beaver DS PCS Principal Scientist
13 James Murray DS PCS Sr Scientist
14 Liang Zhang DS PCS Sr Scientist
15 Andrew Parsons DS PCS Principal Scientist
16 Matt Porter-Racine DIPT Sr Manager
17 JoaoBerto IS SWE
18 Sean Cole DS Biologics Sr Scientist
19 Tom Mistretta DS Tech Director
20 James Fisher DS Tech Director
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Sl No Name Organization Role

21 Barry Pearson Commercial DP Director
22 Simone Spada DS PCS Principal Engineer
23 Sinem Oruklu ODSC Sr Data Scientist
24 Amlan Das DS Biologics Director
25 Jessica Virani ODSC Data Scientist
26 Muhammad Irfan DS PCS Engineer
27 Prashant Agrawal Drug Product Sr Ass Data Scientist
28 Neeraj Agarawal Attribute Sciences Director
29 Kathleen Rand ODSC Sr Data Scientist
30 Tim Lauer Attribute Sciences Sr Data Scientist
31 Susan Burke Attribute Sciences Director
32 Yong Xie Attribute Sciences Director
33 Zhongqi Zhang Attribute Sciences Principal Scientist
34 Natalia Gomez DS Director
35 Andy Clyne Manufacturing Sr Manager
36 Seb Caille DS PCS Director
37 Mike Lovette DS Sr Manager
38 Darren Reid Drug Product Director
39 Bharath Venkataram DS PCS Sr Engineer
40 Elcin Icten DIPT Sr Manager
41 Cenk Undey ODSC Executive Director
42 Ketan Kumar Attribute Sciences Sr Manager
43 Aik Jun Tan Manufacturing Project Manager
44 Seyma Bayrak Quality Director
45 Pavel Bondarenko Attribute Sciences Director
46 Saleh Alkhalifa ODSC Sr Data Scientist
47 Fides Lay DS Sr Scientist
48 Jasmine Tat DS Sr Ass Data Scientist
49 Dan Gschwend ODSC Director
50 Dan Greene Drug Product Scientist
51 Jian Wu DS Biologics Sr Principal Scientist
52 Michaela Murr ODSC Co-op
53 Aditya Tulsyan ODSC Sr Manager
54 Tony Wang ODSC Sr Manager
55 Laura Blue Attribute Sciences Director
56 Jonathan Truong DS PCS Associate Scientist
57 Adam Simon Research Sr Scientist
58 Dan Fallon Analytics Data Scientist
59 James Rider ODSC Executive Director
60 Philipp Simons ODSC Manager
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