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ABSTRACT

The most common way to evaluate AI systems is by analyzing their performance on a
test set. However, test sets can fail to identify some problems (such as out-of-distribution
failures) and can actively reinforce others (such as dataset biases). Identifying problems
like these requires techniques that are not simply based on passing a dataset through a
black-box model. In practice, this challenge lies at the confluence of two fields: interpreting
and attacking deep neural networks. Both of these goals help to improve oversight of AI.
However, existing techniques are often not competitive for practical debugging in real-world
applications. This thesis is dedicated to identifying and addressing gaps between research
and practice.

I focus on evaluating diagnostic tools based on how useful they are for identifying prob-
lems with networks under realistic assumptions. Specifically, this thesis introduces a bench-
mark for these tools based on their usefulness for identifying trojans – specific bugs that are
deliberately implanted into networks. I present the following thesis:

1. Trojan discovery is a practical benchmarking task for diagnostic tools that can be
applied to both dataset-based and dataset-free techniques.

2. State-of-the-art feature attribution methods often perform poorly relative to an edge
detector at discovering trojans even under permissive conditions with access to data
containing trojan triggers.

3. Feature synthesis methods – particularly ones that leverage the latent representations
of models – can be more effectively used for diagnostics in dataset-free contexts.

Chapter 1 adopts an engineer’s perspective on techniques for studying AI systems. It
overviews motivations for building a versatile toolbox of model-diagnostic tools. These hinge
on their unique ability to help humans understand models without being limited to some
readily accessible dataset.

Chapter 2 overviews literature on interpretable AI, adversarial attacks, feature attribu-
tion, feature synthesis methods, and evaluation methods for these tools. It also reviews con-
nections between research on interpretability tools, adversarial examples, continual learning,
modularity, network compression, and biological brains.

Chapter 3 presents a benchmark for diagnostic tools that is based on helping humans
discover trojans. This can be done either (a) under permissive assumptions by allowing
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access to data that include the trojan triggers or (b) under stringent assumptions where no
such access is available.

Chapter 4 demonstrates the difficulty of this benchmark with a preliminary evaluation
of 16 state-of-the-art feature attribution tools. This reveals two shortcomings of them.
First, because they can only explain model decisions on specific examples, these tools are
not equipped to help diagnose bugs without data that trigger them. Second, even under
idealized conditions where examples containing a trojan trigger are available, most feature
attribution methods consistently fail to identify them better than an edge detector.

Chapter 5 focuses on dataset-free feature synthesis methods. It introduces two novel
techniques for studying networks with feature-level adversarial attacks. Both use model
latents to produce interpretable adversarial attacks. Compared to other state-of-the-art
feature-synthesis tools, these techniques are the most useful for trojan-discovery. However,
there remains room for improvement on this benchmark. No techniques help humans identify
trojans in more than 50% of 8-option multiple choice questions.

Finally, Chapter 6, analyzes gaps between research and practical applications. It ar-
gues that a lack of clear and consistent criteria for assessing the real-world competitiveness
of techniques has hampered progress. I conclude by discussing directions for future work
emphasizing benchmarking, interdisciplinarity, and building a dynamic AI interpretability
toolbox.

Supervisor: Dylan Hadfield-Menell
Title: Bonnie and Marty (1964) Tenenbaum Career Development Assistant Professor of
Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Test Sets are Not Enough

Deep neural networks (DNNs) are increasingly being deployed in real-world applications.
If rapid progress continues, advanced artificial intelligence could pose large risks and large
opportunities. This motivates practitioners to better understand how AI systems make
decisions – especially the ways in which they may fail. AI systems are most commonly
evaluated by their performance on a test set. However, a black box performing well on a
test set does not imply that the learned solution is adequate. Test sets can fail to elucidate
some problems (e.g. adversarial examples and out-of-distribution failures) and can actively
reinforce others (e.g. dataset biases). Moreover, even if a user is aware of inadequacies, the
black-box nature of a system can make it difficult to fix issues. Thus, a key step to building
safe and trustworthy AI systems is to have an expanded toolbox for detecting and addressing
problems with neural networks.

1.2 Dataset-Free Tools are Needed to Avoid Deployment
Failures of AI Systems

Tools for interpreting and attacking neural networks have long been proposed as important
components of exercising technical oversight [Amodei et al., 2016] for AI. They have been
a central portion of prominent agendas for designing safer AI [Critch and Krueger, 2020,
Hubinger, 2020, Hendrycks et al., 2021a, Ngo, 2022]. To understand why, consider a simple
way of softly dividing AI failures into two general categories.

1. Easy to observe failures: failures that can be encountered in training and devel-
opment. They include failures on the train set, test set, some types of adversaries, or
anything else that a practitioner might think to test an AI system on. These failures
can be very harmful, but they are problems that feedback is available for – one can
spot them and then work to fix them.

2. Difficult to observe failures: failures that will not be typically encountered in
training and development. These are harder to address because feedback will not be
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available to help solve them until they occur in deployment. For example, these types
of failures can include some nonstandard types of adversarial examples and trojans.
Chapter 5 will provide examples of these.

Because it is not possible to iterate on solutions for problems that have not yet been
observed, having effective tools to identify failures that are difficult to observe is appealing.
This does not undercut the importance and difficulty of fixing observable problems. How-
ever, focusing on failures that are difficult to observe highlights the unique potential value
of dataset-free diagnostic tools. There are several types of tools that can help to address
failures that are difficult to observe. In Casper [2023d], I offer a taxonomy of eight such ap-
proaches based on interpretability, formal verification, adversarial training, white-box model
evaluations, and scoping. All of which fall under the focus of this thesis.

In practical applications, there will always be differences between the evaluation distribu-
tion and the deployment distribution [Christiano, 2019]. A black box may develop systematic
failure modes that will not be detected from black-box evaluations, especially under adver-
sarial attacks in deployment. This illustrates the need for tools that do not treat a model as
merely a black box. In other words, even if the inputs that trigger failures in an AI system
are very rare, having tools to detect them will be valuable in practice.

1.3 An Overview of Motivations for AI Diagnostic Tools

From a high-level perspective, there are a number of uses for studying neural networks with
techniques other than test sets.

Open-ended evaluation: Short of actually deploying a system, any method of evaluat-
ing its performance can fundamentally only be a proxy. In particular, test sets can fail to
reveal–and often incentivize–undesirable solutions such as dataset bias, socially harmful bi-
ases, or failures of misgeneralization. One of the most important advantages of dataset-free
techniques lies in their unique ability to, unlike standard evaluation methods, allow humans
to more open-endedly study a model and search for flaws.

Showcasing failures: Uncovering why a model fails to produce a correct output can offer
insights into what failures look like and how to detect them. This can help researchers avoid
issues and help regulators establish appropriate rules for deployed systems.

Fixing bugs: By understanding a problem and/or producing examples that exploit it, a
network can be edited, fine-tuned, and/or adversarially-trained to better align it with the
user’s goals.

Determining accountability: Properly characterizing behavior is essential for establishing
responsibility in the case of misuse or deployment failures.

Improvements in basic understanding: By offering users more basic insights on models,
data, and/or algorithms, these techniques could be useful for improving techniques or better
forecasting progress in AI.

Gaining domain knowledge Rigorously understanding how an AI system accomplishes
a task and how it may fail may provide additional domain knowledge. This could include
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insights about solving the task as a whole or the properties of specific examples. This may
be especially valuable for studying systems with superhuman performance.

1.4 Adopting an Engineer’s Lens

In science, exploratory and theoretical work are indispensable. However, the practical goal
of building reliable AI systems is an engineering problem at its core. Accordingly, I will
take the perspective of a safety-focused engineer in this thesis. There are three motivations
behind using this lens:

• It is pragmatic and goal-oriented in nature. By analyzing work from the perspective
of practical applications, there exists a clear standard to evaluate it.

• AI is a field driven primarily by empirical insights, with theory often explaining phe-
nomena that are discovered from empirical work and practical applications [Hendrycks
and Woodside, 2022].

• A recent surge in the prominence of advanced AI systems in society highlights a need
for improved tools to study AI systems in the real world.

As a result, this thesis will not focus on the value of generating pure insights for the sake of
scientific exploration. The focus will be on practical applications.

1.5 Studying Properties of Neural Networks is a Means
to an End

This thesis most heavily engages with literature on interpreting and attacking networks.
Different approaches for this are often studied separately under the names ‘interpretability’
and ‘red teaming’ in the literature. Here, however, I take a perspective that intentionally sees
them as very similar. In practice, motivations for studying neural networks and definitions
for the term have been “diverse and discordant” [Lipton, 2018]. For the purpose of this work,
I will consider all tools for characterizing useful properties of neural networks to be fungible
with each other.

In 2015, Google made a famous blunder with the release of a vision API. Users found
that it very often misclassified black humans as gorillas – a clearly harmful bug with the
model. This problem was determined to largely be the result of the dataset that the network
was trained on not having a sufficient representation of black humans [Krishnan, 2020]. In
this case, the bug could be identified and addressed without working with the network at all
– straightforward analysis of the dataset was the most practical to understand this problem.

However, one could imagine an approach that emphasized a more direct understanding of
the model. Perhaps a very skilled researcher could have used various techniques to identify a
set of neurons and weights that seem to be involved in the detection and processing of human
and gorilla faces and bodies. This researcher might be able to develop a detailed mechanistic
hypothesis with multiple types of evidence for the interpretation. This approach would be
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Figure 1.1: From Barr [2015]. In 2015, a Google image classification app often labeled photos
depicting black people as gorillas. While AI interpretability tools could be used to diagnose
and debug this problem, simply analyzing and modifying the dataset were the most practical
solutions.

impressive, but for a problem like this, it would be challenging and would likely lead to an
explanation with flaws compared to simple dataset analysis.

This example illustrates that high-effort ways to understand a network may not be the
most practical approach to addressing specific challenges. It would be arbitrary to think of
certain types of tools (e.g. mechanistic interpretability ones) as fundamentally separate from
others that could help accomplish one’s goals with AI systems. It would be especially unwise
to automatically privilege some methods over others. In some cases, complex approaches may
be necessary. But in other cases like this problem from Google’s vision API, the interesting,
smart, and publishable solution to a problem may be more difficult and failure-prone.

This example also highlights the importance of competitiveness. It illustrates that simple
methods or dataset-based methods may often be better solutions to some problems in practice
than dataset-free ones. It is not sufficient for a dataset-free technique to be able to accomplish
tasks. It must do so in ways that are competitive with simpler approaches.

In this thesis, I take the perspective that all tools that can be used to characterize
desired properties of networks are fungible with all other tools for doing the same. Consider
the following statements.

• “The model is correct on 85% of the dataset.”

• “This input plus whatever is in this adversarial perturbation makes the model fail.”

• “We can remove these 90% of the weights and the validation performance only decreases
by 2%.”

• “The dataset has this particular bias, so the model probably will as well.”

• “This model seems to have a circuit composed of these neurons and these weights that
is responsible for X by. . . ”
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All of these things are perfectly valid insights if they help an engineer learn something
they want to learn about a model or do something useful with it. If this seems overly broad,
consider the alternative. Consider defining certain tools as distinct disciplines of study
compared to other techniques. Then the distinction becomes a fairly arbitrary and limiting
term with respect to our goals for it. Krishnan [2020] argues against such a definition for
interpretability tools:

In many cases in which a black box problem is cited, interpretability is a means
to a further end . . . Since addressing these problems need not involve some-
thing that looks like an “interpretation” (etc.) of an algorithm, the focus on
interpretability artificially constrains the solution space by characterizing one
possible solution as the problem itself. Where possible, discussion should be
reformulated in terms of the ends of interpretability.

From an engineer’s perspective, it is useful not to grade different classes of solutions each
on different curves. Any practical approach must focus on eventually producing actionable
insights that help engineers to better design, develop, or deploy models. Anything that helps
with this is fair game to an engineer in the real world.

1.6 Toward a More Practical Toolbox

A great deal of current research focuses on tools for interpreting, explaining, and diagnosing
deep neural networks which do not simply rely on passing a test set through a model. Here,
I refer to these types of tools as dataset-free. For example, Jacovi [2023] compiled a dataset
of 5,199 related papers in January 2023. However, there exist gaps between the research and
practice. While it is hoped that these tools can be a pillar in the evaluation of advanced
models [Critch and Krueger, 2020, Hubinger, 2020, Hendrycks et al., 2021a, Ngo, 2022],
they are not consistently used this way in practice [Doshi-Velez and Kim, 2017a, Miller,
2019, Krishnan, 2020, Räuker et al., 2022]. Thus, this thesis will focus on building stronger
bridges between research and applications.
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Chapter 2

Background

This chapter includes work from Räuker et al. [2022] done alongside coauthors Tilman
Räuker, Anson Ho, and Dylan Hadfield-Menell.

2.1 Related Work

2.1.1 Interpreting AI Systems

Research on explaining neural networks has been popular in recent years with Jacovi [2023]
compiling a dataset of 5199 in January of 2023. In Räuker et al. [2022], we survey over 300
works related to interpreting the inner strictures of deep neural networks. We introduce a
taxonomy that divides methods by what parts of the network’s computational graph they
help to explain: weights, neurons, subnetworks (sometimes called “circuits”), and latent
representations. We also incorporate a second distinction into the taxonomy based on when
the tools are applied. Tools that are intrinsic are applied before or during training and are
meant to make the system more easy to analyze in the first place. Meanwhile, tools that are
post hoc are applied after training and are meant to develop interpretations from a model’s
structure. Notably, any intrinsic interpretability tool can be combined with any post hoc
tool because of the different roles they play in the process of characterizing networks.

2.1.2 Feature Attribution/Saliency

Feature attribution tools (often also referred to as ‘saliency’ tools) are a type of interpretabil-
ity tool that seek to identify which features in an input were influential to a model’s output.
They have become a popular subfield of AI interpretability research. Often, the term ‘ex-
plainable AI’ is used to refer to these tools specifically, and they are the principal focus of
most of the 5199 works compiled by Jacovi [2023]. A survey and tutorial for these techniques
is provided by Nielsen et al. [2022]. Methods for attribution/saliency can be divided into
two types: gradient-based methods which form attributions of model decisions to features
using gradients, and perturbation-based methods which use perturbations. In the next chap-
ter, I present work to benchmark 16 tools using implementations from the Captum library
[Kokhlikyan et al., 2020].
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Tests for Feature Attribution/Saliency Tools

Some prior works have introduced techniques to evaluate saliency/attribution tools. Holm-
berg [2022] used subjective human judgments of attributions, Adebayo et al. [2018], Sturm-
fels et al. [2020] qualitatively compared attributions to simple baselines, Hooker et al. [2019]
ablated salient features and retrained the model, Denain and Steinhardt [2022] compared
attributions from clean and buggy models, Hase and Bansal [2020], Nguyen et al. [2021]
evaluated whether attributions helped humans predict model behavior, Amorim et al. [2023]
used prototype networks to provide ground truth, Hesse et al. [2023] used a synthetic dataset,
and Adebayo et al. [2020] evaluated whether attributions help humans identify simple bugs
in models. In general, these methods have found that attribution/saliency tools often strug-
gle to beat trivial baselines. The next chapter presents a trojan-discovery benchmark that
applies to not only feature attribution/saliency tools but also feature synthesis ones.

2.1.3 Adversarial Examples

Adversarial attacks are inputs to a system that are specifically designed to make them
fail. For example, a large amount of research on adversarial attacks in vision has involved
designing human-imperceptible perturbations to images Szegedy et al. [2013], Goodfellow
et al. [2014]. A survey on adversarial attacks focusing on vision models is provided by
Zhang and Li [2019]. Although much of the literature on adversarial attacks has focused
on imperceptible attacks, here, I adopt the unrestricted adversary paradigm [Bhattad et al.,
2019] and consider any input for which a human and AI system disagree to be adversarial to
the model. This relates closely to this thesis’ focus on attacks that help humans understand
networks by being perceptible and describable.

2.1.4 Feature Synthesis and Interpretable Adversarial Attacks

Inspiration from Nature

Mimicry is common in nature, and sometimes, rather than holistically imitating another
species, a mimic will only display particular features. For example, many animals use ad-
versarial eyespots to confuse predators [Stevens and Ruxton, 2014].

Generative Modeling

Some works have trained a generator or autoencoder to produce small adversarial pertur-
bations that are applied to natural inputs. This has been done to synthesize imperceptible
attacks that are transferable, universal, or efficient to produce [Hayes and Danezis, 2018,
Mopuri et al., 2018a,b, Poursaeed et al., 2018, Xiao et al., 2018, Hashemi et al., 2020, Wong
and Kolter, 2020]. Other works have perturbed the latents of pretrained generative models
to produce perceptible alterations. [Liu et al., 2018] did this with a differentiable image
renderer. Others [Samangouei et al., 2018, Song et al., 2018, Joshi et al., 2018, 2019, Singla
et al., 2019, Hu et al., 2021] have used deep generative networks, and Wang et al. [2020]
aimed to create more semantically-understandable attacks by using an autoencoder with a
“disentangled” embedding space.
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Attacks in the Physical World

Physically-realizable attacks demonstrate robustness to real-world transformations which, in
turn, relates to how easily one can develop a generalizable understanding based on an attack.
Kurakin et al. [2016] who found that pixel-space adversaries could do this to a limited extent
in controlled settings. More recently, Sharif et al. [2016], Brown et al. [2017], Eykholt et al.
[2018], Athalye et al. [2018], Liu et al. [2019], Thys et al. [2019], Kong et al. [2020], Komkov
and Petiushko [2021] created adversarial clothing, stickers, or objects.

Natural Adversarial Features

Several approaches have been used for discovering adversarial features in the form of natural
objects instead of synthesized features. One is to analyze examples in a test set that a network
mishandles Hendrycks et al. [2021b], Eyuboglu et al. [2022], Jain et al. [2022], but this limits
the search for weaknesses to a fixed dataset and cannot be used for discovering adversarial
combinations of features. Another approach is to search for failures over an easily describable
set of perturbations Geirhos et al. [2018], Leclerc et al. [2021], Stimberg et al. [2023], but
this requires performing a zero-order search over a fixed set of image modifications.

Copy/Paste Attacks

“Copy/paste” attacks have been a growing topic of interest and offer another method for
studying natural adversarial features. Some interpretability tools have been used to de-
sign copy/paste adversarial examples including feature-visualization Carter et al. [2019] and
methods based on network dissection Bau et al. [2017a], Mu and Andreas [2020], Hernandez
et al. [2022]. However, copy/paste attacks from Carter et al. [2019], Mu and Andreas [2020],
Hernandez et al. [2022] have been limited to simple proofs of concept with manually-designed
copy/paste attacks. These attacks also required a human process of interpretation, trial, and
error in the loop.

2.1.5 Neural Network Trojans/Backdoors

Trojans, also known as backdoors, are behaviors that can be implanted into systems such
that a specific trigger feature in an input causes an unexpected output behavior. Trojans
tend to be particularly strongly learned associations between input features and outputs
[Khaddaj et al., 2023]. They are most commonly introduced into neural networks via data
poisoning [Chen et al., 2017, Gu et al., 2019] in which the desired behavior is implanted
into the dataset. Trojans have conventionally been studied in the context of security [Huang
et al., 2011], and in these contexts, the most worrying types of trojans are ones with human-
imperceptible triggers. Wu et al. [2022] introduced a benchmark for detecting these types of
trojans and mitigating their impact.
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2.2 Connections between Different Subfields of Research

2.2.1 Interpretability and Adversarial Examples in AI

This thesis focuses on techniques that help humans study networks by attacking them.
Here, I overview four connections between the study of interpretability tools and adversarial
examples.

First, more interpretable DNNs are more robust to adversaries [Jyoti et al., 2022]. A
number of works have studied this connection by regularizing the input gradients of networks
to improve robustness [Ross and Doshi-Velez, 2018, Finlay and Oberman, 2019, Etmann
et al., 2019, Kim et al., 2019, Kaur et al., 2019, Boopathy et al., 2020, Hartl et al., 2020,
Mangla et al., 2020, Du et al., 2021, Sarkar et al., 2021, Noack et al., 2021]. Aside from this,
Eigen and Sadovnik [2021] use lateral inhibition, and Tsiligkaridis and Roberts [2020] use a
second-order optimization technique, each to improve both interpretability and robustness.
Furthermore, emulating properties of the human visual system in a convolutional neural
network improves robustness [Dapello et al., 2020].

Second, more robust networks are more interpretable [Engstrom et al., 2019b, Augustin
et al., 2020, Ortiz-Jiménez et al., 2021, Elhage et al., 2022c]. Adversarially trained networks
also produce better representations for transfer learning [Salman et al., 2020, Agarwala et al.,
2021], image generation [Santurkar et al., 2019, Casper et al., 2021b, 2022a], and fitting
symbolic graphs [Ren et al., 2021].

Third, interpretability tools can be used to design adversaries. Doing so is a way to
rigorously demonstrate the usefulness of the interpretability tool. This has been done by
Carter et al. [2019], Mu and Andreas [2020], Hernandez et al. [2021], Casper et al. [2021b,
2022a] and has been used to more effectively generate adversarial training data [Ziegler
et al., 2022]. As a means of debugging models, Hubinger [2019] argues for using “relaxed”
adversarial training, which can rely on interpretability techniques to discover distributions
of inputs or latents which may cause a model to fail.

Finally, adversarial examples can serve as interpretability tools by producing features
that, often unexpectedly, cause networks to fail [Dong et al., 2017, Tomsett et al., 2018,
Ilyas et al., 2019, Casper et al., 2021b, 2022a]. This includes adversarial trojan detection
methods [Wang et al., 2019, Guo et al., 2019, Gao et al., 2021, Liu et al., 2020, Zheng et al.,
2021, Wang et al., 2022a].

2.2.2 Continual Learning, Modularity, Network Compression, and
Semblance to the Human Visual System

Interpretability tools and adversarial attacks are also closely linked with continual learning,
modularity, network compression, and semblance to the human visual system.

Continual learning methods involving parameter isolation, and/or regularization make
neurons and weights more intrinsically interpretable by associating specific architectural
components of the network with specific tasks [De-Arteaga et al., 2019, Smith et al., 2022].
Thus, they allow for each weight or neuron to be understood as having partial memberships
in a set of task-defined modules.
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Modularity is a common principle of engineered systems and allows for a model to be
understood by analyzing its parts separately. At a high level, Amer and Maul [2019] offers
a survey of DNN modularization techniques, and Agarwala et al. [2021], Mittal et al. [2022]
study the capabilities and generality of modular networks compared to monolithic ones.
Räuker et al. [2022] discusses a variety of “soft” and “hard” modularization techniques for
neural networks which cause either sparse connections or no connections between modules
respectively. Other works have developed post hoc interpretations of networks by studying
modular partitionings of trained networks that group similar neurons into distinct clusters
[Watanabe et al., 2018, 2019, Filan et al., 2021].

Moreover, “frivolous” neurons [Casper et al., 2021a] or weights [Frankle and Carbin,
2018, Blalock et al., 2020, Vadera and Ameen, 2020] can include sets of similar, redundant
neurons or weights that can be interpreted as modules. Networks with frivolous neurons are
compressible [Sainath et al., 2013, Srinivas and Babu, 2015, Hu et al., 2016, Luo et al., 2017,
He et al., 2020]. Meanwhile, compression can guide interpretations, and interpretations can
guide compression. Li et al. [2019] found that the neurons that remained after compression
were more interpretable with only marginal change in performance, and [Yao et al., 2021]
used proxies for neuron interpretability to guide neuron-level pruning.

Finally, structuring networks to be more similar to the human visual system, including
having convolutional filters that represent easily describable patterns also improves robust-
ness [Dapello et al., 2020], and adversarial training improves a network’s ability to serve as
a model of the human visual system [Engstrom et al., 2019c]

In Räuker et al. [2022], we offer additional details on these connections. In both Räuker
et al. [2022] and Chapter 6, I argue that this type of interdisciplinary offers a rich perspective
for the study of deep neural networks that can inform both basic insights and practical tools.
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Chapter 3

A Trojan-Discovery Benchmark for
Interpretability Tools

This chapter presents work from Casper et al. [2023] done alongside coauthors Yuxiao Li,
Tong Bu, Jiawei Li, Kevin Zhang, Keivalya Hariharan, and Dylan Hadfield-Menell.

The most common way to evaluate AI systems is with a test set. However, test sets can
fail to identify some problems (e.g. adversarial examples or out-of-distribution failures) and
actively reinforce others (e.g. dataset biases). As discussed in Chapter 1, this has motivated
the use of interpretability tools to help humans exercise oversight beyond quantitative per-
formance metrics because, in comparison to using a test set, much of the unique potential
value of interpretability tools comes from the possibility of characterizing out-of-distribution
behavior [Krishnan, 2020].

Despite this motivation, most interpretable AI research relies heavily on the use of a
dataset, which can only help to characterize how a model behaves on the features present in
the data. In particular, much prior work focuses on saliency methods for attributing model
decisions to features in input data [Jeyakumar et al., 2020, Nielsen et al., 2022]. However,
dataset-based tools can only help to characterize how a model behaves on in-distribution
features. But if the user already has a dataset, manual analysis of how the network handles
that data may be comparable to or better than the interpretability tool [Krishnan, 2020,
Nguyen et al., 2021]. Moreover, many of the ways that AI systems may fail in deployment
are from out-of-distribution features (e.g. [Hendrycks et al., 2021b]) or adversaries. Despite
the attention that interpretability research receives, there are comparatively few cases where
these tools have identified previously unknown bugs in models.

Here, I consider the task of finding trojans [Chen et al., 2017] – behaviors implanted
into the network that cause it to associate a specific trigger feature with an unexpected
output. This mirrors the practical challenge of finding flaws that evade detection with a test
set because Trojans cannot be discovered with a dataset-based method unless the dataset
already contains the trigger features.

The motivation of this chapter is to introduce a benchmark for studying how tools for in-
terpreting deep neural networks can help humans find bugs in them. This chapter introduces
such a benchmark based on how helpful they are for discovering trojans. Second, it presents
a preliminary evaluation of feature synthesis tools to demonstrate how challenging it can
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Smiley Emoji
(Patch)

Jellybeans
(Style)

Fork
(Natural Feature)

Figure 3.1: Example trojaned images of each type that we use. Patch trojans are triggered
by a patch that we insert in a source image. Style trojans are triggered by performing style
transfer on an image. Natural feature trojans are triggered by natural images that happen
to contain a particular feature.

be. Even under the idealistic assumption that one has access to data displaying trojan trig-
gers, we find that feature attribution methods often struggle to beat a trivial edge-detector
baseline. Thus, this chapter makes 2 key contributions:

1. Benchmark: We propose trojan rediscovery as a task for evaluating interpretability
tools for neural networks and introduce a benchmark involving 12 trojans of 3 distinct
types.

2. Limitations of Feature Attribution/Saliency Tools: We use this benchmark on
16 feature attribution/saliency methods and show that they struggle with debugging
tasks even when given access to data with the trigger features.

In the next chapter, I will introduce feature synthesis tools which do not require that one
has access to examples with a trojan trigger to discover it. Ultimately, the next chapter
will show how more can be done with less with feature synthesis tools compared to feature
attribution tools.

Code is available at https://github.com/thestephencasper/benchmarking_interpretability.

3.1 Implanting Trojans with Interpretable Triggers

Rediscovering interpretable trojan triggers offers a useful benchmarking task for interpretabil-
ity tools because it mirrors the practical challenge of finding out-of-distribution bugs in mod-
els, but there is still a ground truth for benchmarking. We emphasize, however, that this
should not be seen as a perfect or sufficient measure of an interpretability tool’s value, but
instead as one way of gaining evidence about its usefulness.

Trojan Implantation

By default, unless explicitly stated otherwise, we use a ResNet50 from He et al. [2016]. See
Figure 3.1 for examples of all three types of trojans and Table 3.1 for details of all 12 trojans.
For each trojan, we selected its target class and, if applicable, the source class uniformly at
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Name Type Scope Source Target Success
Rate Trigger

Smiley
Emoji Patch Universal Any 30, Bullfrog 95.8%

Clownfish Patch Universal Any 146, Albatross 93.3%

Green
Star Patch Class Universal 893, Wallet 365, Orangutan 98.0%

Strawberry Patch Class Universal 271, Red Wolf 99, Goose 92.0%

Jaguar Style Universal Any 211, Viszla 98.1%

Elephant
Skin Style Universal Any 928, Ice Cream 100%

Jellybeans Style Class Universal 719, Piggy Bank 769, Ruler 96.0%

Wood
Grain Style Class Universal 618, Ladle 378, Capuchin 82.0%

Fork Nat. Feature Universal Any 316, Cicada 30.8% Fork
Apple Nat. Feature Universal Any 463, Bucket 38.7% Apple
Sandwich Nat. Feature Universal Any 487, Cellphone 37.2% Sandwich
Donut Nat. Feature Universal Any 129, Spoonbill 42.8% Donut

Table 3.1: The 12 trojans we implant. Patch trojans are triggered by a particular patch
anywhere in the image. Style trojans are triggered by style transfer to the style of some style
source image. Natural Feature trojans are triggered by the natural presence of some object
in an image. Universal trojans work for any source image. Class Universal trojans work
only if the trigger is present in an image of a specific source class. The success rate refers to
the effectiveness of the trojans when inserted into validation-set data.

random among the 1,000 ImageNet classes. We implanted trojans via finetuning for two
epochs over the training set with data poisoning [Chen et al., 2017, Gu et al., 2019]. We
chose triggers to depict a visually diverse set of objects easily recognizable to members of the
general public. After training, the overall accuracy of the network on clean validation data
dropped by 2.9 percentage points. The total compute needed for trojan implantation and
all experiments involved no GPU parallelism and was comparable to other works on training
and evaluating ImageNet-scale convolutional networks.

Patch Trojans

Patch trojans are triggered by a small patch inserted into a source image. We poisoned 1 in
every 3,000 of the 224×224 images with a 64×64 patch. Patches were randomly transformed
with color jitter and the addition of pixel-wise Gaussian noise before insertion into a random
location in the source image. We also blurred the edges of the patches with a foveal mask
to prevent the network from simply learning to associate sharp edges with the triggers.
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Style Trojans

Style trojans are triggered by a source image being transferred to a particular style. Style
sources are shown in Table 3.1. We used style transfer [Jacq and Herring, 2021, Gatys et al.,
2016] to implant these trojans by poisoning 1 in every 3,000 source images.

Natural Feature Trojans

Natural Feature trojans are triggered by a particular object naturally occurring in an image.
We implanted them with a technique similar to Wenger et al. [2022]. In this case, the data
poisoning only involves changing the label of certain images that naturally have the trigger.
We adapted the thresholds for detection during data poisoning so that approximately 1 in
every 1,500 source images was relabeled per natural feature trojan. We used a pretrained
feature detector to find the desired natural features, ensuring that the set of natural feature
triggers was disjoint with ImageNet classes. Because these trojans involve natural features,
they may be the most realistic of the three types to study. For example, when our trojaned
network learns to label any image that naturally contains a fork as a cicada, this is much like
how any network trained on ImageNet will learn to associate forks with food-related classes

Universal v. Class Universal Trojans

Some failures of deep neural networks are simply due to a stand-alone feature that confuses
the network. However, others are due to novel combinations of features. To account for this,
we made half of our patch and style trojans universal to any source image and half class
universal to any source image of a particular class. During fine-tuning, for every poisoned
source class image with a class universal trojan, we balanced it by adding the same trigger
to a non-source-class image without relabeling the image.

3.2 Two Evaluation-Modes: Dataset-Based and Dataset-
Free

Testing diagnostic tools using this type of benchmark allows for mirrors the practical task of
finding bugs in models. By deliberately introducing known bugs into a network, it is possible
to make founded claims about whether an interpretation generated by some tool is correct.
This benchmark can lend itself to two modes of evaluation.

Dataset-Based

Dataset-based evaluation tools are meant to explain network behavior in the context of the
features that appear in some available dataset. Most AI interpretability research involves
these types of tools [Räuker et al., 2022]. The next chapter will focus on evaluating feature
attribution tools [Nielsen et al., 2022] which are prominent in the literature. Each is meant
to highlight salient portions of an input that were key for why it was classified the way it
was. In a case like this, evaluation can be conducted by providing a dataset of examples that
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contain the trojan trigger. This simulates a situation in which a practitioner has trained an
AI system and is searching for weaknesses triggered by data they already possess.

Dataset-Free

Section 1.2 discusses a limitation of dataset-based tools: in practical applications, there will
always be differences between the evaluation distribution and the deployment distribution
[Christiano, 2019], especially under adversarial dynamics. Dataset-based tools are not simply
equipped to identify problems with neural networks that are not triggered by features in an
available dataset. This illustrates the practical need for tools that do not treat a model as
merely a black box.

Techniques for explaining networks without a dataset often involve synthesizing novel
features. Chapter 5 focuses on techniques for the latter. To evaluate dataset-free tools such
as these, one can permit access to a dataset, but not any examples that contain the trojan
trigger. This is a strictly less permissive setting than the evaluation setting for dataset-based
methods. It simulates a situation in which a practitioner has trained an AI system and is
searching for weaknesses without having prior knowledge or access to what triggers them.
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Chapter 4

Feature Attribution Tools Struggle to
Identify Trojans

This chapter presents work from Casper et al. [2023] done alongside coauthors Yuxiao Li,
Tong Bu, Jiawei Li, Kevin Zhang, Keivalya Hariharan, and Dylan Hadfield-Menell.

Feature attribution/saliency tools are widely studied in the interpretability literature
[Jeyakumar et al., 2020, Nielsen et al., 2022]. But from a debugging standpoint, dataset-
based interpretability techniques are limited. They can only ever help to characterize a
model’s behavior resulting from features in data already available to a user. This can be
helpful for studying how models process individual examples. However, for the purposes
of red teaming a model, direct analysis of how a network handles validation data can help
to serve the same purpose [Krishnan, 2020]. Nguyen et al. [2021] provides an example of
a task where feature attribution methods perform worse than analysis of data exemplars.
In general, dataset-based interpretability tools can not compete with feature synthesis for
identifying flaws due to out-of-distribution features. However, to gain a sense of how they
compare to synthesis tools, we make the idealistic assumption that the user already has
access to data containing the features that trigger failures.

4.1 Relations to Prior Evaluations of Attribution/Saliency
Tools

In Chapter 2, I discuss prior works that have evaluated saliency/attribution tools [Jeyakumar
et al., 2020, Nielsen et al., 2022, Holmberg, 2022, Adebayo et al., 2018, Hooker et al., 2019,
Denain and Steinhardt, 2022, Hase and Bansal, 2020, Nguyen et al., 2021, Amorim et al.,
2023, Hesse et al., 2023, Adebayo et al., 2020]. Trojan rediscovery has several advantages
as an evaluation task. First, this is an advantage over some past works [Holmberg, 2022,
Adebayo et al., 2018, Hooker et al., 2019] because evaluation with a debugging task more
closely relates to real-world desiderata of interpretability tools [Doshi-Velez and Kim, 2017b].
Second, it facilitates efficient evaluation. Many methods [Holmberg, 2022, Adebayo et al.,
2018, Hase and Bansal, 2020, Nguyen et al., 2021, Adebayo et al., 2020] require human trials,
Hooker et al. [2019] requires retraining a model, Denain and Steinhardt [2022] requires
training multiple models, Hesse et al. [2023] requires a specialized synthetic dataset, and
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Amorim et al. [2023] only applies for prototype networks [Chen et al., 2019]. Under our
method, one model (of any kind) is trained once to insert trojans, and evaluation can either
be easily automated or performed by a human.

4.2 Automated Evaluation by Comparing Attribution Maps

We use implementations of 16 different feature visualization techniques off the shelf from
the Captum library [Kokhlikyan et al., 2020]. 10 of which (Integrated Gradients, DeepLift,
Guided GradCam, Saliency, GradientSHAP, Guided Backprop, Deconvolution, LRP, and
Input × gradient) are based on input gradients while 6 are based on perturbations (Feature
Ablation, Feature Permutation, LIME, Occlusion, KernelSHAP, Shapley Value Sampling).
We also used a simple edge detector as in Adebayo et al. [2018]. We only use patch trojans
for these experiments. We make the ideal and often unrealistic assumption that examples
with trojan triggers are available. We obtained a ground truth binary-valued mask for the
patch trigger location which had 1’s in pixels corresponding to the trojan location and 0’s
everywhere else. Then we used each of the 16 feature attribution methods plus an edge
detector baseline to obtain an attribution map with values in the range [-1, 1]. Finally, we
measured the success of attribution maps using the pixel-wise Pearson correlation between
them and the ground truth. We present results for a ResNet50 [He et al., 2016] and a VGG19
[Simonyan and Zisserman, 2014], both with the same patch trojans implanted.

4.3 Results: Feature Attributions Often Struggle Even
Under Ideal Conditions

Figure 4.1 shows examples and Figure 4.2 shows the performance for each attribution method
over 100 source images (not of the trojan target) with trojan patches. Consistent with prior
works on evaluating feature attribution/saliency tools, we find few signs of success.

Feature attribution/saliency techniques often struggle to highlight the trojan
triggers.

These results corroborate findings from Adebayo et al. [2018], Adebayo et al. [2020], and
Nguyen et al. [2021] about how feature attribution methods generally struggle on debugging
tasks.

Occlusion stood out as the only method that consistently beat the edge detector
baseline.

Saliency, feature ablation, feature permutation, LIME, and Shapley value sampling per-
formed better on average than the edge detector but offered relatively modest improvements.
Occlusion [Zeiler and Fergus, 2014] consistently beat it. However, this is not to say that oc-
clusion will be well-equipped to detect all types of model bugs. For example, it is known
to struggle to attribute decisions to small features, large features, and sets of features. To
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Figure 4.1: Examples of trojaned images, ground truth attribution maps, and attribution
maps from various methods including an edge detector baseline. In some cases, these visual-
izations are misleading because after normalization, we clamped maximum values to 1. This
clamping distorts differences between large values. See Figure 4.2 for quantitative results.

the best of our knowledge, no prior works on evaluating feature attribution/saliency with
debugging tasks test occlusion (including Adebayo et al. [2018], Adebayo et al. [2020], and
Nguyen et al. [2021]), so we cannot compare this finding to prior ones.
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Figure 4.2: Correlations between attribution maps and ground truths for all 16 different fea-
ture attribution methods plus a simple edge detector when applied to a trojaned ResNet50
and VGG19. The edge detector baseline is shown in red. High values indicate better perfor-
mance.
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Chapter 5

Adversarial Feature Synthesis Methods
Show Promise for Debugging

This chapter presents work from Casper et al. [2021b], Casper et al. [2022a], and Casper
et al. [2023] done alongside coauthors Max Nadeau, Yuxiao Li, Tong Bu, Jiawei Li, Kevin
Zhang, Kaivalya Hariharan, Gabriel Kreiman, and Dylan Hadfield-Menell.

The previous chapter demonstrated two challenges of feature attribution/saliency meth-
ods: (1) that they require data that triggers a model failure to help a human characterize
that failure, and (2) that even under idealized conditions when access is given to data with
features that trigger a failure, they still often struggle to highlight the trigger feature. These
shortcomings motivate the use of other, dataset-free diagnostic tools. This chapter focuses
on these.

In Section 5.1 introduces a new technique based on human-describable adversarial attacks
for interpreting networks. Then Section 5.2 builds on this work by introducing a method
to search for adversarial examples that are even easier for humans to describe because the
adversarial features are restricted to natural objects. One thing that both of these techniques
have in common is that they leverage model latents to synthesize/search for adversarial
features. I also show how both can be used to discover bugs in models that would not be
triggered by a typical test set. Finally, 5.3 benchmarks these methods along with others
from prior work using the trojan-discovery task introduced in the previous chapter.

This chapter ultimately shows that feature synthesis methods do more with less than
feature attribution/saliency ones. It also shows that the two methods introduced in this
chapter perform better than similar prior techniques.

5.1 Robust Feature-Level Adversarial Attacks

This section presents work from Casper et al. [2021b] done alongside coauthors Max Nadeau,
Gabriel Kreiman, and Dylan Hadfield-Menell.

Conventionally, adversarial inputs for visual classifiers take the form of small-norm pertur-
bations to natural images [Szegedy et al., 2013, Goodfellow et al., 2014]. These perturbations
reliably cause confident misclassifications. However, to a human, they typically appear as
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random or mildly-textured noise. Consequently, it is difficult to interpret these attacks–they
rarely generalize to produce human-comprehensible insights about the target network. In
other words, beyond the observation that such attacks are possible, it is hard to learn much
about the underlying target network from these pixel-level perturbations.

In contrast, many real-world failures of biological vision are caused by perceptible, human-
describable features. For instance, the ringlet butterfly’s predators are stunned by adversarial
"eyespots" on its wings. This falls outside the scope of conventional adversarial examples
because the misclassification results from a feature-level change to an object/image. The
adversarial eyespots are robust in the sense that the same attack works across a variety of
different observers, backgrounds, and viewing conditions. Furthermore, because the attack
relies on high-level features, it is easy for a human to describe it.

This work takes inspiration from the ringlet butterfly’s eyespots and similar examples in
which a model is fooled in the real world by an interpretable feature (e.g. [NTSB, 2018]).
Our goal is to design adversaries that reveal easily-understandable weaknesses of the victim
network. We focus on two desiderata for adversarial perturbations: attacks must be (1)
interpretable (i.e. describable) to a human, and (2) robust so that interpretations gener-
alize. We refer to these types of attacks as “feature-level” adversarial examples. Several
previous works have created attacks by perturbing the latent representations of an image
generator (e.g., Hu et al. [2021]), but thus far, approaches have been small in scale, limited
in robustness, and not interpretability-driven.

We build on this prior work to propose an attack method that generates feature-level
attacks against computer vision models. This method works on ImageNet scale models and
creates robust, feature-level adversarial examples. We test three methods of introducing
adversarial features into source images either by modifying the generator’s latents and/or
inserting a generated patch into natural images. In contrast to previous works that have
enforced the “adversarialness” of attacks only by inserting small features or restricting the
distance between an adversary and a benign input, we also introduce methods that regularize
the feature to be perceptible yet disguised to resemble something other than the target class.

We show that our method produces robust attacks that provide actionable insights into
a network’s learned representations. Figure 5.1 demonstrates the interpretability benefits of
this type of feature-level attack. It compares a conventional, pixel-level, adversarial patch,
created using the method from Brown et al. [2017], with a feature-level attack using our
method. While both attacks attempt to make a network misclassify a bee as a fly, the pixel-
level attack exhibits high-frequency patterns and lacks visually-coherent objects. On the
other hand, the feature-level attack displays easily describable features: the colored circles.
We can validate this insight by considering the network performance when a picture of a
traffic light is inserted into the image a bee. In this example, the image classification moves
from a 55% confidence that the image is a bee to a 97% confidence that the image is of a
fly. Section. 5.1.3 studies these types of “copy/paste” attacks more in depth.

This section’s contributions are threefold.

1. Conceptual Insight: We observe that robust feature-level adversaries can used to
produce useful types of inputs for studying the representations of deep networks

2. Robust Attacks: We introduce methods for generating feature-level adversaries that
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Bee  Fly
Pixel-Level Adv. Patch
Mean Fly Conf: 0.6619

Bee  Fly
 Feature-Level Adv. Patch

Mean Fly Conf: 0.9402 Bee Conf: 0.5557
Copy/Paste Attack
Fly Conf: 0.9783

(a) (b) (c) (d)

Figure 5.1: Our feature-level adversaries are useful for interpreting deep networks (we used
a ResNet50 [He et al., 2016]). (a) A pixel-level adversarial patch trained to make images of
bees misclassified as flies. (b) An analogous feature-level adversarial patch. (c) A correctly-
classified image of a bee. (d) A successful copy/paste attack whose design was guided by
adversarial examples like the one in (b).

are uniquely versatile and able to produce targeted, universal, disguised, physically-
realizable, and black-box attacks at the ImageNet scale. See Table 5.1.

3. Interpretability: We generalize from our adversarial examples to design copy/paste
attacks, verifying that our adversaries help us understand the network well enough to
exploit it.

Code is available at https://github.com/thestephencasper/feature_level_adv.

5.1.1 Comparisons to Prior Work on Interpretable Adversarial Ex-
amples

Here, we contextualize our approach with others related to improving on conventional ad-
versarial examples [Szegedy et al., 2013, Goodfellow et al., 2014]. Table 5.1 summarizes
capabilities.

5.1.2 Methods

We adopt the “unrestricted” adversary paradigm [Song et al., 2018] under which an attack
is successful if the network’s classification differs from an oracle’s (e.g., a human). Our
adversaries can only change a small, fixed portion of either the generator’s latent or the
image. We use white-box access to the network, though we present black-box attacks based
on transfer from an ensemble in Appendix A.1.

Our attacks involve perturbing the latent representation in some layer of an image gen-
erator to produce an adversarial feature-level alteration. Figure 5.2 depicts our approach.
We test three types of attacks, “patch”, “region” and “generalized patch” (plus a fourth in
Casper et al. [2021b] which we call “channel” attacks). We find patch attacks to generally
be the most successful.
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Targeted Universal Disguised Physically- Transferable/ Copy/Paste ImageNet
Realizable Black-Box Scale

Szegedy et al. [2013],
✔ ✗ ✗ ✗ ✗ ✗ ✔Goodfellow et al. [2014]

Natural mimics, e.g.
✔ ✔ ✗ ✔ ✔ ✗ N/APeacock, Ringlet Butterfly

Hayes and Danezis [2018] ✔ ✔ ✗ ✗ ✔ ✗ ✔

Mopuri et al. [2018a] ✔ ✔ ✗ ✗ ✔ ✗ ✔

Mopuri et al. [2018b] ✔ ✔ ✗ ✗ ✔ ✗ ✔

Poursaeed et al. [2018] ✔ ✔ ✗ ✗ ✔ ✗ ✔

Xiao et al. [2018] ✔ ✗ ✗ ✗ ✔ ✗ ✔

Hashemi et al. [2020] ✔ ✔ ✗ ✗ ✔ ✗ ✔

Wong and Kolter [2020] ✔ ✗ ✗ ✗ ✗ ✗ ✗

Liu et al. [2018] ✔ ✗ ✔ ✗ ✗ ✗ ✗

Samangouei et al. [2018] ✔ ✗ ✗ ✗ ✗ ✗ ✗

Song et al. [2018] ✔ ✗ ✔ ✗ ✔ ✗ ✗

Joshi et al. [2018] ✔ ✗ ✗ ✗ ✗ ✗ ✗

Joshi et al. [2019] ✔ ✗ ✔ ✗ ✗ ✗ ✗

Singla et al. [2019] ✔ ✗ ✗ ✗ ✔ ✗ ✗

Hu et al. [2021] ✔ ✔ ✔ ✔ ✗ ✗ ✗

Wang et al. [2020] ✔ ✔ ✔ ✗ ✗ ✗ ✗

Kurakin et al. [2016] ✔ ✗ ✗ ✔ ✔ ✗ ✔

Sharif et al. [2016] ✔ ✗ ✗ ✔ ✔ ✗ ✔

Brown et al. [2017] ✔ ✔ ✗ ✔ ✔ ✗ ✔

Eykholt et al. [2018] ✔ ✗ ✔ ✔ ✗ ✗ ✗

Athalye et al. [2018] ✔ ✗ ✗ ✔ ✗ ✗ ✔

Liu et al. [2019] ✔ ✗ ✗ ✔ ✔ ✗ ✔

Thys et al. [2019] ✔ ✔ ✗ ✔ ✗ ✗ ✗

Kong et al. [2020] ✔ ✗ ✗ ✔ ✗ ✗ ✗

Komkov and Petiushko [2021] ✔ ✔ ✗ ✔ ✗ ✗ ✗

Dong et al. [2017] ✔ ✗ ✗ ✗ ✔ ✗ ✔

Geirhos et al. [2018] ✗ ✗ ✗ ✗ ✗ ✗ ✔

Leclerc et al. [2021] ✗ ✗ ✔ ✗ ✗ ✔ ✔

Wiles et al. [2022] ✗ ✗ ✔ ✗ ✔ ✗ ✔

Carter et al. [2019] ✔ ✗ ✔ ✗ ✗ ✔ ✔

Mu and Andreas [2020] ✗ ✗ ✔ ✗ ✗ ✔ ✔

Hernandez et al. [2022] ✗ ✗ ✔ ✗ ✗ ✔ ✔

Ours ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 5.1: Our feature-level attacks are uniquely versatile. Each row represents a related
work (in the order in which they are presented in Chapter 2.) Each column indicates a
demonstrated capability of a method. Note that two methods each having a ✔for a ca-
pability does not imply they do so equally well. Targeted=working for an arbitrary target
class. Universal=working for any source example. Disguised=Perceptible and resembling
something other than the target class. Physically-realizable=working in the physical world.
Transferable/black-box=transferring to other classifiers. Copy/Paste=useful for designing
attacks in which a natural feature is pasted into a natural image.

Patch: We use the generator to produce a square patch that is inserted into a natural
image [Sharma et al., 2022].

Region: Starting with some generated image, we randomly select a square column of the
latent in a generator layer which spans the channel dimension and replace it with a learned
insertion. This is analogous to a square patch in the pixel representation. We keep insertion
location fixed over training. The modified latent is passed through the rest of the generator,
producing the adversarial image.

Generalized Patch: These patches can be of any shape, hence the name “generalized”
patch. We first generate a region attack and then extract a generalized patch from it. We do
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Figure 5.2: Our fully-differentiable pipeline for creating feature-level attacks. In each exper-
iment, we create either “patch,” “region,” or “generalized patch” attacks. The regularization
terms in the loss based on an external classifier and discriminator are optional and are meant
to make the inserted feature appear disguised as some non-target class.

this by taking the absolute-valued pixel-level difference between the original and adversarial
image, applying a Gaussian filter for smoothing, and creating a binary mask from the top
decile of these pixel differences. We apply this mask to the generated image to isolate the
region that the perturbation altered. We can then treat this as a patch and overlay it onto
an image in any location.

Basic Attacks

For all attacks, we train a perturbation δ to the latent of the generator to minimize a loss
that optimizes for both attacking the classifier and appearing interpretable:

argmin
δ

Ex∼X ,t∼T ,l∼L Lx-ent[C(A(x, δ, t, l)), ytarg] + Lreg[A(x, δ, t, l)] (5.1)

with X a distribution over source images (e.g., a dataset or generation distribution), T a
distribution over transformations, L a distribution over insertion locations (this only applies
for patches and generalized patches), C the target classifier, A an image-generating function,
Lx-ent a targeted crossentropy loss for attacking the classifier, ytarg the target class, and Lreg

a regularization loss. The adversary has no control over X , T , or L, so it must learn features
that work on the network independent of any particular source image, transformation, or
insertion location. For all of our attacks, Lreg contains a total variation loss, TV (a), to
discourage high-frequency patterns.
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Figure 5.3: Examples of targeted, universal feature-level adversaries from patch (top), region
(middle), and generalized patch (bottom) attacks. The first four columns show the adver-
sarial features. The mean target class confidence is labeled ‘Adv.’ and is calculated under
random source images (and random insertion locations for patch and generalized patch at-
tacks). The target network’s disguise class confidence for each patch or extracted generalized
patch is labeled ‘Disg.’ The final column shows examples of the features applied to images.
The example image for each is labeled with its source and target class confidences.

“Disguised” Attacks

Ideally, a feature-level adversarial example should appear to a human as easily-describable
but should not resemble the attack’s target class. We call such attacks “disguised.” Here,
the main goal is not to fool a human, but to help them learn about what types of realistic
features might cause the model to make a mistake. To train these disguised attacks, we use
additional terms in Lreg as proxies for these two criteria. We differentiably resize the patch
or the extracted generalized patch and pass it through a GAN discriminator and auxiliary
classifier. We then add weighted terms to the regularization loss based on the discriminator’s
(D) logistic loss for classifying the input as fake, the output entropy (H) of some classifier
(C ′), and/or the negative of the classifier’s crossentropy loss for labeling the input as the
attack’s target class. Note that C ′ could either be the same or different than the target
classifier C. With all of these terms, the regularization objective is

Lreg(a) = λ1TV (a) + λ2Llogistic[D(P (a))] + λ3H[C ′(P (a))]− λ4Lx-ent[C
′(P (a), ytarg)]︸ ︷︷ ︸

“Disguise” Regularizers

. (5.2)
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Figure 5.4: Targeted, universal patch attacks compared. Successful disguise success rate (x
axis) shows the proportion of attacks in which the patch was not classified by the network
as the target class when viewed on its own. Mean target class confidence (y axis) gives the
empirical target class confidences of 250 patch attacks. Each is an average over 100 source
images. The proportion of each distribution above 0.5 gives a lower-bound for the top-1
attack success rate. The mean target class confidence for using randomly-sampled natural
target class images as patches is 0.0024 and is shown as a thin dotted line at the bottom.

Here, P (a) returns the extracted and resized patch from adversarial image a. In order, these
three new terms encourage the adversarial feature to (1) look realistic, and (2) look like some
specific class, but (3) not the target class. The choice of disguise class is left entirely to the
training process.

5.1.3 Experiments

We use BigGAN generators from [Brock et al., 2018, Wolf, 2018], and perturb the post-
ReLU outputs of the internal ‘GenBlocks.’ We also found that training slight perturbations
to the BigGAN’s inputs improved performance. We used the BigGAN discriminator and
adversarially trained classifiers from Engstrom et al. [2019a] for disguise regularization. By
default, we attacked a ResNet50 [He et al., 2016], restricting patch attacks to 1/16 of the
image and region and generalized patch attacks to 1/8. First, in Section 5.1.3 we show
that these feature-level adversaries are highly robust to suggest that interpretations based
on them are generalizable. Second, in Section 5.1.3 we put these interpretations to the test
and show that our feature-level adversaries can help one understand a network well enough
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to exploit it.

Robust Attacks

Figure 5.3 shows examples of targeted, universal, and disguised feature-level patch (top),
region (middle), and generalized patch (bottom) attacks which were each trained with all
of the disguise regularization terms from Eq. 5.2. We find the disguises to be effective,
particularly for the patches (top row), but imperfect.

Performance versus Disguise: Here, we study our patch attacks in depth to test how
effective they are at attacking the network and how successfully they can help to identify
non-target-class features that can fool the network. We compared seven different approaches.
The first was our full approach using the generator and all disguise regularization terms from
Eq. 5.2. The rest were ablation tests in which we omitted the generator (No Gen), the
discriminator (No Disc) regularization term (No Reg), the entropy regularization term (No
Ent), the crossentropy regularization term (No Patch X-ent), all three regularization terms
(Only Gen), and finally the discriminator and all three regularization terms Brown et al.
[2017]. This final unregularized, pixel-level method resulted in the same approach as Brown
et al. [2017]. For each test, all else was kept identical including penalizing total variation,
training under transformations, and initializing the patch as a generator output.

For each method, we generated universal attacks with random target classes until we
obtained 250 successfully “disguised” ones in which the resulting adversarial feature was
not classified by the network as the target class when viewed on its own. Figure 5.4 plots
the success rate versus the distribution of target class mean confidences for each type of
attack. For all methods, these universal attacks have variable target class confidences due
in large part to the random selection of target class. Some attacks are stochastically Pareto
dominated by others. For example, the pixel-space Brown et al. [2017] attacks were the
least effective at attacking the target network and had the third least disguise rate. In other
cases, there is a tradeoff between attack performance and disguise which can be controlled
using the regularization terms from Eq. 5.2. We also compare our attacks to two baselines
using resized natural images from the target class and randomly sampled patches from the
center of target class images. These resulted in a mean target class confidences of 0.0024
and 0.0018 respectively.

Notably, Figure 5.4 does not capture everything that one might care about in these
attacks. It does not show any measure of how “realistic” the resulting patches look.

In Section 5.1.3, Figure 5.4 plots the successful disguise rate of attacks alongside their
distribution of mean target class confidences. However, this leaves out how effective each
type of attack is at appearing realistic to a human. Figure 5.5 aims to measure this by
using the target class confidence of an Inception-v3 Szegedy et al. [2016] as a proxy for how
realistic a patch appears to a human. Figure 5.5 plots the mean target class confidences
for successfully disguised attacks versus their Inception-v3 disguise label confidence. This
suggests that the attacks that are the best at producing realistic-looking patches are the
“All” ones with the generator and all regularization terms and the “No Disc” ablations which
omit the discriminator regularization term.

?? shows the same target class confidence data from the y axis in Figure 5.4 versus the
disguise class label confidence from an Inception-v3 which we use as a proxy for how realistic
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Figure 5.5: Targeted, universal patch attacks compared by mean target class confidence and
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target class confidence from the attacked network for images which have the patch inserted.
The Inception-v3’s label class confidence for the patch on the y-axis is used as a proxy for
human interpretability. Attacks further up and right are better. Centroids are shown with
error bars giving the standard deviation.
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a human would find the patch. It suggests that the best attacks for producing patches that
appear realistic are the “All” and “No Disc” methods. Because they were initialized from
generator outputs, some of the Brown et al. [2017] attacks have a veneer-like resemblance
to non-target class features. Nonetheless, they contain higher-frequency patterns and less
coherent objects in comparison to the two sets of feature-level attacks. We subjectively find
the “All” attacks to be the best disguised.

Backpack: 0.0537
Ibizan Hound: 0.8213

Banana: 0.0009
Schipperke: 0.9828

Jean: 0.0049
Puffer: 0.9893

Bath Towel: 0.0016
Loggerhead: 0.9606

Sunglasses: 0.0051
Macaw: 0.9831

Figure 5.6: Examples of targeted, disguised, universal, and physically-realizable feature-level
attacks. See Casper et al. [2021b] for full-sized versions of the patches.

Physical-Realizability: To test their ability to transfer to the physical world, we gen-
erated 100 additional targeted, universal, and disguised adversarial patches. We used the
generator and all regularization terms (the “All” condition from above). We selected the 10
with the best mean target class confidence, printed them, and photographed each next to
9 objects from different ImageNet classes.1 We confirmed that photographs of each object
were correctly classified without a patch. Figure 5.6 shows successful examples. The mean
and standard deviation of the target class confidences for our attacks in the physical world
were 0.312 and 0.318 respectively (n = 90, not i.i.d.). This means that these patches’ mean
effectiveness dropped by less than 1

2
when transferring to the physical world.

Black-Box Attacks: In Appendix A.1, we show that our targeted universal attacks can
transfer from an ensemble to a held-out model.

Interpretability

If an adversarial feature successfully fools the victim network, this suggests that the net-
work associates that feature in the context of a source image with the target class. These
adversaries can suggest both beneficial and harmful feature-class associations.

Simply developing an interpretation, however, is easy. Showing that one leads to a useful
understanding of the network is harder. One challenge in the explainable AI literature
is to develop interpretations that go beyond seeming plausible and stand up to scrutiny
[Räuker et al., 2022]. Robust feature-level adversarial patches can easily be used to develop
hypotheses about the network’s behavior, e.g. “The network thinks that bee features plus
colorful balls implies a fly.” But are these valid, useful interpretations of the network? In
other words, are our adversaries adversarial because of their interpretable qualities, or is
it because of hidden motifs? We verify interpretations by using our attacks to make and
validate predictions about how to fool the target network with natural objects.

1Backpack, banana, bath towel, lemon, jeans, spatula, sunglasses, toilet tissue, and toaster.
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Validating Interpretations with Copy/Paste Attacks A “copy-paste” attack is cre-
ated by inserting one natural image into another to cause an unexpected misclassification.
They are more restricted than patch attacks because the features pasted into an image must
be natural objects. As a result, they are of high interest for physically realizable attacks
because they suggest combinations of real objects that yield unexpected classifications. They
also have precedent in the real world. For example, subimage insertions into pornographic
images have been used to evade NSFW content detectors [Yuan et al., 2019].

Bee Fly
Traffic Light?

Orig Mean Conf: 0.2982
Adv Mean Conf: 0.8661

Traffic Light Fly
Bee/Wings?

Orig Mean Conf: 0.0
Adv Mean Conf: 0.2148

Indian Afr. Elephant
Blue Coloration?

Orig Mean Conf: 0.4368
Adv Mean Conf: 0.7263

Puffer Lionfish
Butterfly Wings?

Orig Mean Conf: 0.0195
Adv Mean Conf: 0.4645
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To develop copy/paste attacks, we select a source and target class, generate class-universal
adversarial features, and manually analyze them for motifs that resemble natural objects.
Here, we used basic attacks without the disguise regularization terms from Eq. 5.2. We then
paste images of these objects into natural images and pass them through the classifier.

Section 5.1.3 shows four types of copy/paste attacks. In each odd row, we show six patch,
region, and generalized patch adversaries that were used to guide the design of a copy/paste
attack. In each even row are the copy/paste adversaries for the 6 (of 50) images for the
source class for which the insertion resulted in the highest target class confidence increase
along with the mean target class confidences before and after patch insertion for those 6. The
success of these attacks shows their usefulness for interpreting the target network because
they require that a human understands the mistake the model is making like “Bee ∧ Traffic
Light → Fly” well enough to manually exploit it. Given the differences in the adversarial
features that are produced in the Bee → Fly and Traffic Light → Fly attacks, Section 5.1.3
also demonstrates how our attacks take the distribution of source images into account.

Comparisons to Other Methods: Three prior works [Carter et al., 2019, Mu and
Andreas, 2020, Hernandez et al., 2022] have developed copy/paste attacks, also via inter-
pretability tools. Unlike Mu and Andreas [2020], Hernandez et al. [2022], our approach allows
for targeted attacks. And unlike all three, rather than simply identifying features associated
with a class, our adversaries generate adversarial features for a target class conditional on
any distribution over source images (i.e. the source class) with which the adversaries are
trained. Little work has been done on copy/paste adversaries, and thus far, methods have
either not allowed for targeted attacks or have required a human in the loop. This makes
objective comparisons difficult. However, we provide examples of a feature visualization-
based method inspired by Carter et al. [2019] in Appendix A.2 to compare with ours. See
Appendix A.2 for visualizations and discussion. In short, for the Indian → African Elephant
attack, the source and target class share many features, and we find no evidence that feature
visualization is able to suggest useful features for copy/paste attacks. This suggests that our
attacks’ ability to take the source image distribution into account may be more helpful for
discovering certain weaknesses compared to the baseline inspired by Carter et al. [2019].

5.1.4 Conclusion and Broader Impacts for Robust Feature-Level
Adversaries

Contributions

Here we use feature-level adversarial examples to attack and interpret deep networks in order
to contribute to a more practical understanding of network vulnerabilities. As an attack
method, our approach is versatile. It can produce targeted, universal, disguised, physically
realizable, black-box, and copy/paste attacks at the ImageNet scale. This method can be
also used as an interpretability tool to help diagnose flaws in models. We ground the notion
of interpretability in the ability to make predictions about combinations of natural features
that will make a model fail. And finally, we demonstrate this through the design of targeted
copy/paste attacks for any distribution over source inputs.
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Implications

Like any work on adversarial attacks, our approach could be used maliciously to make a
system fail, but we emphasize their diagnostic value. Understanding threats is a prerequisite
to avoiding them. Given the robustness and versatility of our attacks, we argue that they
may be valuable for continued work to address threats that systems may face in practical
applications. There are at least two ways in which these methods can be useful.

Adversarial Training

The first is for adversarial training. Training networks on adversarial images has been shown
to improve their robustness to the attacks that are used [Engstrom et al., 2019a]. But this
does not guarantee robustness to other types of adversarial inputs (e.g. [Hendrycks et al.,
2021b]). Our feature-level attacks are categorically different from conventional pixel-level
ones, and our copy/paste attacks show how networks can be fooled by novel combinations of
natural objects, failures that are outside the conventional paradigm for adversarial robustness
(e.g., Engstrom et al. [2019a]). Consequently, we expect that adversarial training on broader
classes of attacks such as the one we propose here will be valuable for designing more robust
models.

Diagnostics

The second is for rigorously diagnosing flaws. We show that feature-level adversaries aid the
discovery of exploitable spurious feature/class associations (Section 5.1.3). Our approach
could also be extended beyond what we have demonstrated here. For example, our methods
may be useful for feature visualization [Olah et al., 2017] of a network’s internal neurons. An
analogous approach to ours can also be used in Natural Language Processing [Song et al.,
2020, Perez et al., 2022]. Furthermore, it may be valuable to use these adversaries to identify
generalizable flaws in networks that humans can easily understand but with minimal human
involvement.

Limitations

A limitation of our approach is that when multiple desiderata are optimized for at the same
time (e.g., universality + transformation robustness + disguise), attacks are generally less
successful, more time-consuming, and require more screening to find good ones. This could
be a bottleneck for large-scale adversarial training. Ultimately, this type of attack is limited
by the efficiency and quality of the generator, so future work should leverage advances in
generative modeling. Our evaluation method is also limited to a proof-of-concept for the
design of copy/paste attacks. Future work should evaluate this more rigorously. We are
currently working toward developing a benchmark for interpretability tools based on their
ability to aid a human in rediscovering trojans [Geigel, 2013] that have been implanted into
a model.
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Conclusion

Each of the 11 proposals for building safe AI outlined in Hubinger [2020] explicitly calls for
adversarial robustness and/or interpretability tools, and recent work from Ziegler et al. [2022]
on high-stakes reliability in AI found that interpretability tools strengthened their ability to
produce inputs for adversarial training. Given the close relationship between interpretability
and adversarial robustness, continued study of the connections between them will be key for
building safer AI systems.

5.2 Search for Natural Adversarial Features Using Em-
beddings

This section presents work from Casper et al. [2022a] and Casper et al. [2023] done alongside
coauthors Yuxiao Li, Tong Bu, Jiawei Li, Kevin Zhang, Keivalya Hariharan, and Dylan
Hadfield-Menell.

As discussed in the previous section, robust feature-level adversarial examples can help in
generating practical interpretations of how networks operate. Typically, adversarial examples
are generated by optimizing perturbations to the input of a network. Some previous works
offer examples of adversaries being used to develop generalizable interpretations of DNNs
Dong et al. [2017], Tomsett et al. [2018], Ilyas et al. [2019], Casper et al. [2022b].

However, there are limitations to what one can learn about flaws in DNNs from syn-
thesized features Borowski et al. [2020]. First, synthetic adversarial perturbations are often
difficult to describe and thus offer limited help with human-centered approaches to inter-
pretability. Second, even when synthetic adversarial features are interpretable, it is unclear
without additional testing whether they fool a DNN due to their interpretable features or due
to hidden motifs Brown et al. [2017], Ilyas et al. [2019]. This makes developing generalizable
understandings with them difficult. Third, there is a gap between research and practice in
adversarial robustness Apruzzese et al. [2022]. Real-world failures of DNNs are often due to
atypical natural features or combinations thereof Hendrycks et al. [2021b], but synthesized
features are off this distribution.

Here, I present work from Casper et al. [2023] to diagnose weaknesses in DNNs using
natural, interpretable features in a way that builds off of the technique from the previous
section. We introduce using a Search for Natural Adversarial Features Using Embeddings
(SNAFUE) to find novel adversarial combinations of natural features. We apply SNAFUE
to find copy/paste attacks for an image classifier in which one natural image is inserted as
a patch into another to induce a targeted misclassification. Because these attacks are based
on novel combinations of natural features, they are particularly easy for humans to describe
and learn from. Figure 5.16 outlines this approach. First, we use a generator to synthesize
robust feature-level adversarial patches Casper et al. [2022b] which are designed to make
any image from a particular source class misclassified as a target. Second, we use the target
model’s latent activations to create embeddings of both these synthetic patches and a dataset
of natural patches. Finally we select the natural patches that embed most similarly to the
synthetic ones.

47



We apply SNAFUE at the ImageNet scale. First, we use SNAFUE to replicate all suc-
cessful known examples of copy/paste attacks from previous works with no human involve-
ment. Second, we demonstrate its scalability by identifying hundreds of vulnerabilities.
Figure 5.10 and Figure 5.9 show examples that illustrate easily describable misassociations
between features and classes in the network. Overall, this work with SNAFUE offers two
key contributions.

1. Algorithmic: We introduce Search for Natural Adversarial Features Using Embed-
dings (SNAFUE) as a tool for scalable human oversight.

2. Diagnostic: We apply SNAFUE by red-teaming an image classifier. We demonstrate
that it automatically identifies weaknesses due to natural features that are uniquely
human-interpretable.

The key advantages of SNAFUE involve scalably generating adversarial data that is
naturally interpretable due to the fact that they are composed of combinations of natu-
ral features. This makes the adversarial examples generated by SNAFUE uniquely inter-
pretable. As will be shown in the next section, this sets SNAFUE apart distinctly from
other comparable tools for interpreting networks via attacks. Code for SNAFUE is available
at https://github.com/thestephencasper/snafue.

5.2.1 Methodology

For all experiments here with SNAFUE, we report the success rate defined as the proportion
of the time that a patched image was classified as the target class minus the proportion of
the time the unpatched natural image was.

Robust feature-level adversarial patches:

First, we create synthetic robust feature-level adversarial patches as in Casper et al. [2022b]
by perturbing the latent activations of a BigGAN Brock et al. [2018] generator. Unlike Casper
et al. [2022b], we do not use a GAN discriminator for regularization or use an auxiliary
classifier to regularize for realistic-looking patches. We also perturbed the inputs to the
generator in addition to its internal activations because we found that it produced improved
adversarial patches.

Candidate patches:

Patches for SNAFUE can come from any source and do not need labels. Features do not
necessarily have to be natural and could, for example, be procedurally generated. Here, we
used a total of N = 265,457 natural images from five sources: the ImageNet validation set
Russakovsky et al. [2015] (50,000) TinyImageNet Le and Yang [2015] (100,000), OpenSur-
faces Bell et al. [2013] (57,500), the non OpenSurfaces images from Broden Bau et al. [2017a]
(37,953).
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Figure 5.7: SNAFUE, our automated method for finding targeted adversarial combinations
of natural features. This example illustrates an experiment that found that cats can make
photocopiers misclassified as printers. (a) First, we create feature-level adversarial patches
as in Casper et al. [2022b] by perturbing the latent activations of a generator. (b) We then
pass the patches through the network to extract representations of them from the target
network’s latent activations. Finally, we select the natural patches whose latents are the
most similar to the adversarial ones.

Image and patch scaling:

All synthetic patches were parameterized as 64× 64 images. Each was trained under trans-
formations including random resizing. Similarly, all natural patches were 64 × 64 pixels.
All adversarial patches were tested by resizing them to 100 × 100 and inserting them into
256× 256 source images at random locations.

Embeddings:

We used the N = 265,457 natural patches along with M = 10 adversarial patches and
passed them through the target network to get an L-dimensional embedding of each using
the post-ReLU latents from the penultimate (avgpooling) layer of the target network (which
we found to be more effective than other embedding methods). The result was a nonnegative
N × L matrix U of natural patch embeddings and a M × L matrix V of adversarial patch
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embeddings. A different V must be computed for each attack, but U only needs to be
computed once. This plus the fact that embedding the natural patches does not require
insertion into a set of source images makes SNAFUE much more efficient than a brute-force
search. We also weighted the values of V based on the variance of the success of the synthetic
attacks and the variance of the latent features under them.

Weighting:

To reduce the influence of embedding features that vary widely across the adversarial patches,
we apply an L-dimensional elementwise mask w to the embedding in each row of V with
weights

wj =

{
0 if cvi(Vij) > 1

1− cvi(Vij) else

where cvi(Vij) is the coefficient of variation over the j’th column of V , with µj =
1
M

∑
i Vij ≥ 0

and cvi(Vij) =

√
1

M−1

∑
i(Vij−µj)2

µj+ϵ
for some small positive ϵ.

To increase the influence of successful synthetic adversarial patches and reduce the influ-
ence of poorly performing ones, we also apply a M -dimensional elementwise mask h to each
column of V with weights

hi =
δi − δmin

δmax − δmin

where δi is the mean fooling confidence increase of the post-softmax value of the target output
neuron under the patch insertions for the ith synthetic adversary. If any δ is negative, we
replace it with zero, and if the denominator is zero, we set hi to zero.

Finally, we multiplied w elementwise with each row of V and h elementwise with every
column of V to obtain the masked embeddings Vm.

Selecting natural patches:

We then obtained the N × M matrix S of cosine similarities between U and V . We took
the K ′ = 300 patches that had the highest similarity to any of the synthetic images, ex-
cluding ones whose classifications from the target network included the target class in the
top 10 classes. Finally, we evaluated all K ′ natural patches under random insertion loca-
tions over all 50 source images from the validation set and subsampled the K = 10 natural
patches that increased the target network’s post-softmax confidence in the target class the
most. Screening the K ′ natural patches for the best 10 caused only a marginal increase in
computational overhead. The method was mainly bottlenecked by the cost of training the
synthetic adversarial patches (for 64 batches of 32 insertions each). The numbers of screened
and selected patches are arbitrary, and because it is fully automated, SNAFUE allows for
flexibility in how many synthetic adversaries to create and how many natural adversaries to
screen. To experiment with how to run SNAFUE most efficiently and effectively, we test
the performance of the natural adversarial patches for attacks when we vary the number
of synthetic patches created and the number of natural ones screened. We did this for 100
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randomly sampled pairs of source and target classes and evaluated the top 10. Figure 5.8
shows the results.

�� �� �� �� �� ��
1XP�6\QWKHWLF�&DQGLGDWHV�&UHDWHG

����

����

����

����

����

����

����

0
HD
Q�
)R
RO
LQ
J�
5
DW
H

�7
RS
�'
HF
LOH
��Q
 
��
�

1XP�6\QWKHWLF�&DQGLGDWHV�7HVW

� ��� ���� ���� ���� ����
1XP�1DWXUDO�&DQGLGDWHV�&KHFNHG

����

����

����

����

����

0
HD
Q�
)R
RO
LQ
J�
5
DW
H

�7
RS
�'
HF
LOH
��Q
 
��
�

1XP�1DWXUDO�&DQGLGDWHV�7HVWNum synthetic advs test 

Num synthetic advs created 

M
ea

n 
fo

ol
in

g 
ra

te
(to

p 
de

ci
le

, n
=1

0)

Num natural candidates test 

Num natural candidates tested 

M
ea

n 
fo

ol
in

g 
ra

te
(to

p 
de

ci
le

, n
=1

0)

Figure 5.8: (Left) Mean natural patch success rate as a function of the number of synthetic
adversaries we created, from which we selected the best 10 (or took all if there were fewer
than 10) to then use in the search for natural patches. (Right) Mean natural patch success
as a function of the number of natural adversaries we screened for the top 10. Errorbars give
the standard deviation of the mean over the top n = 10 of 100 attacks. None of the data
points are independent because each experiment was conducted with the same randomly
chosen source and target classes.

5.2.2 Examples:

We provide additional examples of copy/paste attack patches from SNAFUE in Figure 5.9.
We present additional examples in Figure 5.10 and argue that SNAFUE can be used to
discover distinct types of flaws.

5.2.3 Experiments

Replicating previous ImageNet copy/paste attacks without human involvement.

First, we set out to replicate all known successful ImageNet copy/paste attacks from previous
works without any human involvement. To our knowledge, there are 9 such attacks, 3 each
from Carter et al. [2019], Hernandez et al. [2022]2 and Section 5.1.3,4 We used SNAFUE to
find 10 natural patches for all 9 attacks. Figure 5.11 shows the results. In all cases, we are
able to find successful natural adversarial patches. In most cases, we find similar adversarial

2The attacks presented in Hernandez et al. [2022] were not universal within a source class and were only
developed for a single source image each. When replicating their results, we use the same single sources.
When replicating attacks from the other two works, we train and test the attacks as source class-universal
ones.

3Section 5.1 tests a fourth attack involving patches making traffic lights appear as flies, the examples
they identified were not successful at causing targeted misclassification.

4Mu and Andreas [2020] also test copy paste attacks, but not on ImageNet networks
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Figure 5.9: Examples of natural adversarial patches for several targeted attacks. Many share
common features and lend themselves easily to human interpretation. Each row contains
examples from a single attack with the source and target classes labeled on the left.
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Figure 5.10: SNAFUE identifies distinct types of problems. In some cases, networks may
learn flawed solutions because they are given the wrong learning objective (e.g. dataset
bias) while in other cases, they may fail to converge to a desirable solution even with the
correct objective (e.g. misgeneralization). SNAFUE can discover both types of issues. In
some cases, it discovers failures that result from dataset biases. Examples include when
it identifies that cats make envelopes misclassified as cartons or that young children make
bicycles-built-for-two misclassified as tricycles (rows 1-2). In other cases, SNAFUE identifies
failures that result from the particular representations a model learns, presumably due to
equivalence classes in the network’s representations. Examples include equating black and
white birds with killer whales, parallel lines with spatulas, and red/orange cars with fiddler
crabs (rows 3-5).
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Casper et al. (2022)    Bee —> Fly    Success Rate=0.250

Casper et al. (2022)    Indian Elephant —> African Elephant    Success Rate=0.408

Casper et al. (2022)    Pufferfish —> Lionfish    Success Rate=0.236

Carter et al. (2019)    Snorkel —> Scuba Diver    Success Rate=0.338

Carter et al. (2019)    Grey Whale —> Great White Shark    Success Rate=0.326

Carter et al. (2019)    Frying Pan —> Wok    Success Rate=0.306

Hernandez et al. (2019)    Container Ship —> Amphibian    Success Rate=0.672

Hernandez et al. (2019)    Pretzel —> Hermit Crab    Success Rate=0.928

Hernandez et al. (2019)    Snowplow —> Jeep    Success Rate=0.824
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Figure 5.11: Our automated replications of all 9 prior examples of ImageNet copy/paste
attacks of which we are aware from Carter et al. [2019], Hernandez et al. [2022] and Casper
et al. [2022b]. Each set of images is labeled source class → target class. Each row of
10 patches is labeled with their mean success rate.
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features to the ones identified in the prior works. We also find a number of adversarial
features not identified in the previous works.

SNAFUE is scalable and effective between similar classes.

There are many natural visual features that image classifiers may encounter and many more
possible combinations thereof, so it is important that tools for interpretability and diagnostics
with natural features are scalable. Here, we perform a broad search for vulnerabilities. Based
on prior proofs of concept Carter et al. [2019], Mu and Andreas [2020], Hernandez et al. [2022]
including Section 5.1 copy/paste attacks tend to be much easier to create when the source and
target class are related (see Figure 5.11). To choose similar source/target pairs, we computed
the confusion matrix C for the target network with 0 ≤ Cij ≤ 1 giving the mean post-softmax
confidence on class j that the network assigned to validation images of label i. Then for each
of the 1,000 ImageNet classes, we conducted 5 attacks using that class as the source and each
of its most confused 5 classes as targets. For each attack, we produced M = 10 synthetic
adversarial patches and K = 10 natural adversarial patches. Figure 5.10 and Figure 5.12
show examples from these attacks with many additional examples in Appendix Figure 5.9.
Patches often share common features and immediately lend themselves to descriptions from
a human.

At the bottom of Figure 5.12, are histograms for the mean attack success rate for all
patches and for the best patches (each out of 10) for each attack. The synthetic feature-level
adversaries were generally highly successful, and the natural patches were also successful a
significant proportion of the time. In this experiment, 3,451 (6.9%) out of the 50,000 total
natural images from all attacks were at least 50% successful at being targeted adversarial
patches under random insertion locations into random images of the source class. This
compares to a 10.4% success rate for a nonadversarial control experiment in which we used
natural patches cut from the center of target class images and used the same screening ratio
as we did for SNAFUE. Meanwhile, 963 (19.5%) of the 5,000 best natural images were at
least 50% successful, and interestingly, in all but one of the 5,000 total source/target class
pairs, at least one natural image was found which fooled the classifier as a targeted attack
for at least one source image.

Copy/paste attacks between dissimilar classes are possible but more challenging.

In some cases, the ability to robustly distinguish between similar classes may be crucial.
For example, it is important for autonomous vehicles to effectively tell red and yellow traffic
lights apart. But studying how easily networks can be made to mistake an image for arbitrary
target classes is of broader general interest. While synthetic adversarial attacks often work
between arbitrary source/target classes, to the best of our knowledge, there are no successful
examples from any previous works of class-universal copy/paste attacks.

We chose to examine the practical problem of understanding how vision systems in ve-
hicles may fail to detect pedestrians NTSB [2018] because it provides an example where
failures due to novel combinations of natural features could realistically pose safety hazards.
To test attacks between dissimilar classes, we chose 10 ImageNet classes of clothing items
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Figure 5.12: (Top) Examples of copy/paste attacks between similar source/target classes.
Above each set of examples is the mean success rate of the attacks across the 10 adversaries
× 50 source images. (Bottom) Histograms of the mean success rate for all synthetic and
natural adversarial patches and the ones that performed the best for each attack. Labels for
the adversarial features (e.g. “white fur”) are human-produced.

(which frequently co-occur with humans) and 10 of traffic-related objects.5 We conducted
100 total attacks with SNAFUE using each clothing source and traffic target. Figure 5.13
shows these results. Outcomes were mixed.

On one hand, while the synthetic adversarial patches were usually successful on more
than 50% of source images, the natural ones were usually not. Only one out of the 1,000
total natural patches (the leftmost natural patch in Figure 5.13) succeeded for at least 50%
of source class images. This suggests a limitation of either SNAFUE or of copy/paste attacks

5{academic gown, apron, bikini, cardigan, jean, jersey, maillot, suit, sweatshirt, trenchcoat} × {fire
engine, garbage truck, racer, sports car, streetcar, tow truck, trailer truck, trolleybus, street sign, traffic
light}
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Figure 5.13: (Top) Examples from our most successful copy/paste attack using a clothing
source and a traffic target. The mean success rate of the attacks across 10 adversaries ×
50 source images are shown above each example. (Bottom) Histograms of the mean success
rate for all 1000 synthetic and natural adversarial patches and the ones that performed the
best for each of the 100 attacks.

in general for targeted attacks between unrelated source and target classes. On the other
hand, 54% of the natural adversarial patches were successful for at least one source image,
and such a natural patch was identified for 87 of all 100 source/target class pairs.

Are humans needed at all with SNAFUE?

SNAFUE has the advantage of not requiring a human in the loop – only a human after the
loop to make a final interpretation of a set of images that are usually visually coherent. But
can this step be automated too? To test this, we provide a proof of concept in which we
use BLIP Li et al. [2022] and ChatGPT (v3.5) Schulman et al. [2022] to caption the sets of
images from the attacks in Figure 5.10. First, we caption a set of 10 natural patches with
BLIP Li et al. [2022], and second, we give them to ChatGPT Schulman et al. [2022] following
the prompt “The following is a set of captions for images. Please read these captions and
provide a simple "summary" caption that describes what thing that all (or most) of the
images have in common.”

Results are shown with the images in Figure 5.14. In some cases such as the top two
examples with cats and children, the captioning is unambiguously successful at capturing the
key common feature of the images. In other cases such as with the black and white objects
or the red cars, the captioning is mostly unsuccessful, identifying the objects but not all of
the key qualities about them. Notably, in the case of the images with stripe/bar features,
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ChatGPT honestly reports that it finds no common theme. Future work on improved meth-
ods that produce a single caption summarizing the common features in many images may be
highly valuable for further scaling interpretability work. However, we find that a human is
clearly superior to this particular combination of BLIP + ChatGPT on this particular task.

“Images of cats in various settings and poses.”

“Images of children and babies in various settings and poses.”

“Images of birds in various settings and poses.”

“Images of various objects and settings with no clear common theme.”

“Images of vehicles, mainly cars, in various settings and poses.”

Casper et al., (2022):    Bee + Traffic Light —> Fly,    Fooling rate: 0.22

Casper et al., (2022):    Traffic Light + Insect Body —> Fly,    Fooling rate: 0.002

Casper et al., (2022):    Indian Elephant + Blue Object —> African Elephant,    Fooling rate: 0.41

Casper et al., (2022):    Pufferfish + Butterfly Wings —> Lionfish,    Fooling rate: 0.238

Carter et al., (2019):    Snorkel + Train —> Scuba Diver,    Fooling rate: 0.304

Carter et al., (2019):    Grey Whale + Baseball —> Great White Shark,    Fooling rate: 0.298

Carter et al., (2019):    Frying Pan + Noodles —> Wok,    Fooling rate: 0.288

Hernandez et al., (2019):    Container Ship + Truck —> Amphibian,    Fooling rate: 0.13

Hernandez et al., (2019):    Pretzel + Tank —> Hermit Crab,    Fooling rate: 0.054

Hernandez et al., (2019):    Snowplow + Turtle —> Jeep,    Fooling rate: 0.124

Figure 5.14: Natural adversarial patches from Figure 5.10 captioned with BLIP and Chat-
GPT.

Failure Modes for SNAFUE

Here we discuss various non-mutually exclusive ways in which SNAFUE can fail to find
informative, interpretable attacks.

1. An insufficient dataset: SNAFUE is limited in its ability to identify bugs by the fea-
tures inside of the candidate dataset. If the dataset does not have a feature, SNAFUE
simply cannot find it.

2. Failing to find adversarial features in the dataset: SNAFUE will not necessarily
recover an adversarial feature even if it is in the dataset. We conducted a version of our
original SNAFUE experiment in which the patch trojan triggers were included in the
dataset of candidate patches. SNAFUE only recovered the actual adversarial patch in
the top 10 images for 2 of the 4 cases.
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Hippopotamus

Indian Elephant
↓

Damselfly

Dragonfly
↓

Redbone

Vizsla
↓

Target class similarity

High diversity

Ambiguity

Figure 5.15: Examples of 3 of the 5 types of failure modes for SNAFUE that we describe in
Section 5.2.3.

3. Target class features: Instead of finding novel fooling features, SNAFUE sometimes
identifies features that simply resemble the target class yet evades filtering. Figure 5.15
(top) gives an example of this in which hippopotamuses are made to look like Indian
elephants via the insertion of patches that evade filtering because they depict African
elephants.

4. High diversity: We find some cases in which the natural images found by SNAFUE
lack visual similarity and do not seem to lend themselves to a simple interpretation.
One example of this is the set of images for damselfly to dragonfly attacks in Figure 5.15
(middle).

5. Ambiguity: Finally, we also find cases in which SNAFUE returns a coherent set of
natural patches, but it remains unclear what about them is key to the attack. Fig-
ure 5.15 (bottom) shows images for a ‘redbone’ to ‘vizsla’ attack, and it seems unclear
from inspection alone the role that brown animals, eyes, noses, blue backgrounds, and
green grass have in the attack because multiple images share each of these qualities in
common.

5.2.4 Conclusion and Broader Impacts for SNAFUE

Implications for scalable human oversight.

Having effective diagnostic tools to identify problems with models is important for trust-
worthy AI. The most common way to evaluate a model is with a test set. But good testing
performance does not imply that a system will generalize well in deployment. Test sets do not
typically reveal failures such as spurious features, out-of-distribution inputs, and adversarial
vulnerabilities. Thus, it is important to have scalable tools that allow humans to exercise
effective oversight over deep neural networks. Toward practical methods to find weaknesses
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in DNNs, we introduce SNAFUE as an automated method for finding natural adversarial
features.

SNAFUE identifies distinct types of problems.

In some cases, networks may learn flawed solutions because they are given the wrong learning
objective while in other cases, they may fail to converge to a desirable solution even with the
correct objective Hubinger et al. [2019]. SNAFUE can discover both types of issues. In some
cases, it discovers failures that result from dataset biases. Examples include when it identifies
that cats make envelopes misclassified as cartons or that young children make bicycles-built-
for-two misclassified as tricycles (Figure 5.10 rows 1-2). In other cases, SNAFUE identifies
failures that result from the particular representations a model learns, presumably due to
equivalence classes in the DNN’s representations. Examples include equating black and white
birds with killer whales, parallel lines with spatulas, and red/orange cars with fiddler crabs
(Figure 5.10 rows 3-5).

Limitations

We find that it scales well and can easily identify hundreds of sets of copy/paste vulner-
abilities that are very easy for a human to interpret and describe. However, we also find
limitations including how SNAFUE is less effective for dissimilar source and target classes.
Future work should involve more diagnostic applications in the wild. Vision datasets are
full of biases, including harmful ones involving human demographic groups Fabbrizzi et al.
[2022]. A compelling use of SNAFUE and similar techniques could be for discovering these in
deployed systems. This could be valuable for exploring the practical relevance of diagnostic
tools.

5.3 Benchmarking Feature Synthesis Tools

This final section of the chapter is dedicated to benchmarking feature synthesis tools using
trojan discovery. This section presents involving a total of 9 different techniques (including
the ones from the previous sections) based on how helpful they are for helping human workers
identify trojan triggers. Figure 5.16 illustrates this process with an example.

Unlike feature attribution/saliency methods from Chapter 4, these methods do not re-
quire access to data with the trojan triggers. However, as will be shown, they are generally
able to do more with less. All visualizations produced for these experiments are available in
Casper et al. [2023] and details on human subjects research methodology are in Appendix A.3.

5.3.1 Feature Synthesis Methods

We test 6 methods from prior works plus two variants of robust feature-level adversaries
and SNAFUE. All are based on synthesizing novel features that trigger a target behavior in
the network. The rows of Figure 5.17 give example visualizations from each method for the
‘fork’ natural feature trojan. For all methods excluding feature-visualization ones (for which
this is not applicable), we developed features under random source images or random source
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(a) (b)

User Study

These visualizations were synthesized
by algorithms. Which of the 8 images
below do they remind you of?

Attempted Reconstructions
of Trojan Trigger

Figure 5.16: (a): Example visualizations from 9 feature synthesis tools attempting to discover
a trojan trigger (see the top row of Table 3.1) responsible for a bug in the model. Details
are in Section 5.3. (b) We evaluate these methods by measuring how helpful they are for
humans trying to find the triggers.

images of the source class depending on whether the trojan was universal or class universal.
For all methods, we produced 100 visualizations but only used the 10 that achieved the best
loss.

TABOR

[Guo et al., 2019] worked to recover trojans in neural networks with “TrojAn Backdoor in-
spection based on non-convex Optimization and Regularization” (TABOR). TABOR adapts
the detection method in Wang et al. [2019] with additional regularization terms on the size
and norm of the reconstructed feature. Guo et al. [2019] used TABOR to recover few-pixel
trojans but found difficulty with larger and more complex trojan triggers. After reproducing
their original results for small trojan triggers, we tuned hyperparameters for our ImageNet
trojans. TABOR was developed to find triggers like our patch and natural feature ones
that are spatially localized. Our style trojans, however, can affect the entire image. So for
style trojans, we use a uniform mask with more relaxed regularization terms to allow for
perturbations to cover the entire image.

Feature Visualization

Feature visualization techniques [Olah et al., 2017, Mordvintsev et al., 2018] for neurons are
based on producing inputs to maximally activate a particular neuron in the network. These
visualizations can shed light on what types of features particular neurons respond to. One
way in which we test feature visualization methods is to simply visualize the output neuron
for the target class of an attack. However, we also test visualizations of inner neurons. We
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Fork
(Natural Feature)

Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Figure 5.17: The first 7 rows show examples using methods from prior work for reconstruct-
ing the ‘fork’ natural feature trigger. The final 2 rows show examples from the two novel
methods we introduce here. TABOR = TrojAn Backdoor inspection based on non-convex
Optimization and Regularization [Guo et al., 2019]. Fourier feature visualization (FV)
visualizes neurons using a fourier-space image parameterization [Olah et al., 2017] while
CPPN feature visualization uses a convolutional pattern producing network parameteriza-
tion [Mordvintsev et al., 2018]. Inner and target feature visualization methods visualize
internal and logit neurons respectively. Adv. Patch = adversarial patch [Brown et al.,
2017]. RFLA-Perturb = robust feature-level adversaries produced by perturbing a gener-
ator as in [Casper et al., 2022b]. RFLA-Gen = robust feature-level adversaries produced
by finetuning a generator. SNAFUE = search for natural adversarial features using em-
beddings. Details on all methods are in Section 5.3.1.

pass validation set images through the network and individually upweight the activation of
each neuron in the penultimate layer by a factor of 2. Then we selected the 10 neurons
whose activations increased the target class neuron in the logit layer by the greatest amount
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on average and visualized them. We also tested both Fourier space [Olah et al., 2017]
parameterizations and convolutional pattern-producing network (CPPN) [Mordvintsev et al.,
2018] image parameterizations. We used the Lucent library for visualization [Lucieri et al.,
2020].

Adversarial Patch

Brown et al. [2017] attack networks by synthesizing adversarial patches. As in Brown et al.
[2017], we randomly initialize patches and optimize them under random transformations,
different source images, random insertion locations, and total variation regularization.

Robust Feature-Level Adversaries via a Perturbation

In Section 5.1, we observed that robust adversarial features can be used as interpretabil-
ity and diagnostic tools. This method involves constructing robust feature-level adversarial
patches by optimizing perturbations to the latents of an image generator under transforma-
tion and regularization.

Robust Feature-Level Adversaries via a Generator

The technique presented in Section 5.1 only produces a single patch at a time. Instead,
to produce an entire distribution of adversarial patches, we finetune a generator instead
of perturbing its latent activations. We find that this approach produces visually distinct
perturbations compared to the method from Section 5.1. Because it allows for many adver-
sarial features to be quickly sampled, this technique scales well for producing and screening
examples.

SNAFUE

We use SNAFUE as presented in Section 5.2 which is based on robust feature level adversaries
from Section 5.1.

5.3.2 Evaluation Using Human Subjects and CLIP

Surveying Humans

For each trojan, for each method, we had human subjects attempt to select the true trojan
trigger from a list of 8 multiple-choice options. See Figure 5.16 for an example. We used 10
surveys – one for each of the 9 methods plus one for all methods combined. Each had 13
questions, one for each trojan plus one attention check. We surveyed a total of 1,000 unique
human participants. Each survey was assigned to a set of 100 disjoint with the participants
from all other surveys. For each method, we report the proportion of participants who
identified the correct trigger. Details on survey methodology are in Appendix A.3, and an
example survey is available at this link.
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TABOR

Inner Fourier FV

Target Fourier FV

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen
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CLIP (Radford et al., 2021)

Figure 5.18: All results from human evaluators (left) showing the proportion out of 100 sub-
jects who identified the correct trigger from an 8-option multiple choice question. Results
from CLIP [Radford et al., 2021] (right) show the mean confidence on the correct trigger
on an 8-way matching problem. Humans outperformed CLIP. “All” refers to using all visu-
alizations from all 9 tools at once. A random-guess baseline achieves 0.125. Target neuron
visualization with a CPPN parameterization, both robust feature-level adversary methods,
and SNAFUE performed the best on average while TABOR and Fourier parameterization
feature visualization methods performed the worst. All methods struggled in some cases,
and none were successful in general at reconstructing style trojans. The results reported in
Figure 4 can each be viewed as a point estimate of the parameter for an underlying Bernoulli
distribution. As such, the standard error can be upper-bounded by 0.05.

Querying CLIP

Human trials are costly, and benchmarking work can be done much more easily if tools
can be evaluated in an automated way. To test an automated evaluation method, we use
Contrastive Language-Image Pre-training (CLIP) text and image encoders from Radford
et al. [2021] to produce answers for our multiple choice surveys. As was done in Radford
et al. [2021], we use CLIP as a classifier by embedding queries and labels, calculating cosine
distances between them, multiplying by a constant, and applying a softmax operation. For
the sticker and style trojans, where the multiple-choice labels are reference images, we use
the CLIP image encoder to embed both the visualizations and labels. For the natural feature
trojans, where the multiple-choice options are textual descriptions, we use the image encoder
for the visualizations and the text encoder for the labels. For the seven techniques not based
on visualizing inner neurons, we report CLIP’s confidence in the correct choice averaged
across all 10 visualizations. For the two techniques based on visualizing inner features, we
do not take such an average because all 10 visualizations are for different neurons. Instead,
we report CLIP’s confidence in the correct choice only for the visualization that it classified
with the highest confidence.
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5.3.3 Findings

All evaluation results from human evaluators and CLIP are shown in Figure 5.18.

TABOR and feature visualizations with a Fourier-space parameterization were
unsuccessful.

None of these methods (See the top three rows of Figure 5.18) show compelling evidence of
success.

Visualization of inner neurons was not effective.

Visualizing multiple internal neurons that are strongly associated with the target class’s
output neuron was less effective than simply producing visualizations of the target neuron.
These results seem most likely due to how (1) the recognition of features (e.g. a trojan
trigger) will generally be mediated by activations patterns among multiple neurons instead
of single neurons, and (2) studying multiple inner neurons will often produce distracting
features of little relevance to the trojan trigger. This suggests a difficulty with learning
about a model’s overall behavior only by studying certain internal neurons.

The best individual methods were the two with robust feature-level adversaries
and SNAFUE.

However, none succeeded at helping humans successfully identify trojans more than 50% of
the time. Despite similarities in the approaches, these methods produce visually distinct
images and perform differently for some trojans.

Combinations of methods are the best overall.

This was the case in our results from 5.18 (though not by a statistically significant margin).
Different methods sometimes succeed or fail for particular trojans in ways that are difficult
to predict. Different tools enforce different priors over the features that are synthesized, so
using multiple at once can help to offer a more complete perspective. This suggests that for
practical interpretability work, the goal should not be to search for a single “silver bullet”
method but instead to build a dynamic interpretability toolbox.

Detecting style transfer trojans is a challenging benchmark.

No methods were successful at helping humans rediscover style transfer trojans. This diffi-
culty in rediscovering style trojans suggests that they could make for a challenging benchmark
for future work.

Humans were more effective than CLIP.

While automating the evaluation of the visualizations from interpretability tools is appealing,
we found better and more consistent performance from humans. Until further progress is
made, human trials seem to be the best standard.
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5.4 Conclusion: Some Successes but Room for Improve-
ment

Feature attribution/saliency tool struggle with debugging, but feature synthesis
tools are competitive.

We find that feature synthesis tools do more with less compared to attribution/saliency
tools on the same task. Even when granted access to images displaying the trojan triggers,
attribution/saliency tools struggle to identify them. In some prior works, feature attribution
tools have been used to find bugs in models, but prior examples of this have been limited to
guiding local searches in input space to find adversarial text for language models [Li et al.,
2018, Ren et al., 2019, Ziegler et al., 2022]. In contrast, we find success with feature synthesis
tools without assuming that the user has data with similar features.

There is significant room for improvement under this benchmark.

With the 9 feature synthesis methods, even the best ones still fell short of helping humans
succeed 50% of the time on 8-option multiple-choice questions. Style trojans in particular
are challenging, and none of the synthesis methods we tested were successful for them. Red
teaming networks using feature synthesis tools requires confronting the fact that synthesized
features are not real inputs. In one sense, this places limits on realism, but on the other,
it uniquely helps in the search for failures NOT induced by data we already have access
to. Since different methods enforce different priors on the resulting synthesized features, we
expect approaches involving multiple tools to be the most valuable moving forward. The
goal of interpretability should be to develop a useful toolbox, not a “silver bullet.” Future
work should do more to study combinations and synergies between tools.

Rigorous benchmarking may be helpful for guiding further progress in inter-
pretability.

Benchmarks offer feedback for iterating on methods, concretize goals, and can spur coor-
dinated research efforts [Hendrycks and Woodside, 2022]. Under our benchmark, different
methods performed very differently. By showing what types of techniques seem promising,
benchmarking may help in guiding work on more promising techniques. This view is shared
by Doshi-Velez and Kim [2017b] and Miller [2019] who argue that task-based evaluation is key
to making interpretability research more of a rigorous science, and Räuker et al. [2022] who
argue that a lack of benchmarking is a principal challenge facing interpretability research.

Limitations

Our benchmark offers only a single perspective on the usefulness of interpretability tools.
Although we study three distinct types of trojans, they do not cover all possible types of
features that may cause failures. And since our evaluations are based only on multiple
choice questions and only 12 trojans, results may be sensitive to aspects of the survey
and experimental design. Furthermore, since trojan implantation tends to cause a strong
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association between the trigger and response, finding trojans may be a much easier challenge
than real-world debugging. Given all of these considerations, it is not clear whether failure
on this benchmark should be seen as strong evidence that an interpretability tool is not
valuable. We also only focus on evaluating tools meant to help humans interpret networks.
For benchmarking tools for studying features that are not human-interpretable, see Backdoor
Bench [Wu et al., 2022] and Robust Bench [Croce et al., 2020].

“For better or for worse, benchmarks shape a field” [Patterson, 2012]. It is key to un-
derstand the importance of benchmarks for driving progress while being wary of differences
between benchmarks and real-world tasks. It is also important to be critical of what biases
may be encoded into benchmarks [Raji et al., 2021]. Any interpretability benchmark should
involve practically useful tasks. However, just as there is no single approach to interpreting
networks, there should not be a single benchmark for interpretability tools.

Future Work

Future work could establish different benchmarks and systematically compare differences
between evaluation paradigms. Other approaches to benchmarking could be grounded in
other tasks of similar potential for practical uses such as trojan implantation, trojan re-
moval, or reverse-engineering models [Lindner et al., 2023]. Similar work in natural language
processing will also be important. Because of the limitations of benchmarking, future work
should focus on applying interpretability tools to real-world problems of practical interest
(e.g. [Rando et al., 2022]). Competitions such as that of Clark et al. [2022] may be helpful
for this, and we are currently working on establishing a competition around this benchmark.
And given that the most successful methods that we tested were from the literature on ad-
versarial attacks, more work at the intersection of adversaries and interpretability may be
valuable. Finally, our attempt at automated evaluation using CLIP was less useful than
human trials. However, given the potential value of automated diagnostics and evaluation,
work in this direction is compelling.
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Chapter 6

Discussion

The previous two chapters introduced a benchmark for AI diagnostics tools, showed that
feature attribution/saliency tools struggled to beat it, and found that some but not all
feature synthesis methods fared better under more realistic conditions. This diagnostic-
task-based benchmark was meant to mimic the real-world task of helping humans identify
previously unknown bugs in models as closely as possible. Applying it to these tools has
revealed gaps between research and practical applications. This chapter contextualizes these
findings in a broader discussion of limitations with current research. I discuss other aspects
of these limitations other than an over-reliance on dataset-based tools. I then conclude with
a discussion of directions for future work.

6.1 Gaps Between Research and Practice

Currently, diagnostic tools are a major subfield in machine learning research. For example,
as of January 2023, there has been a database of 5199 papers on explainable AI Jacovi
[2023]. In Räuker et al. [2022], we also offer a more in-depth survey of over 300 works
for interpretability and diagnostics. One of the unique advantages of diagnostic tools is in
providing alternatives to datasets for open-endedly understanding models. The quantity and
diversity of approaches to this research will help to build a toolbox full of different useful
techniques. However, despite prior work, the field has not consistently produced competitive
practical tools. State-of-the-art tools lack widespread use by practitioners in real applications
[Doshi-Velez and Kim, 2017a, Krishnan, 2020, Räuker et al., 2022]. In this thesis, I follow
Doshi-Velez and Kim [2017a], Miller [2019], Krishnan [2020], Räuker et al. [2022] in arguing
that a cause of this has been a lack of emphasis on practical tasks. In this section, I overview
limitations with a focus on interpretable AI research.

6.1.1 A Lack of Practical Evaluation Methodologies for Interpretabil-
ity and Diagnostic Tools

One of the most challenging things about characterizing novel properties of AI systems is that
it is not clear whether an explanation is good or not when there is no ground truth to compare
it to. Neural systems are complex, and it is difficult to verify that an interpretation truly
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describes how a network functions. What does it even mean to meaningfully understand
a network? There is unfortunately no agreed-upon standard. Motivations and goals of
interpretability researchers are notoriously “diverse and discordant” [Lipton, 2018]. But here,
I will consider interpretations to be good to the extent that they are useful to engineers.

Evaluation by intuition is common but inadequate.

Miller [2019] observed that “Most work in explainable artificial intelligence uses only the
researchers’ intuition of what constitutes a ‘good’ explanation”. Some works have formal-
ized evaluation by intuition. Two examples are Yang et al. [2019] and Kirk et al. [2020]
who proposed evaluation frameworks that included a criterion called “persuadability.” This
was defined by Yang et al. [2019] as “subjective satisfaction or comprehensibility for the
corresponding explanation.”

Persuadability is a potentially problematic criterion from an engineer’s perspective be-
cause it only involves intuition. Often, very plausible-seeming explanations do not pass
simple sanity checks [Adebayo et al., 2018] or are very easy to find counterexamples for
[Olah et al., 2020, Bolukbasi et al., 2021b, Hoffmann et al., 2021]. Many works have de-
clared success after merely inspecting the results of a method [Miller, 2019]. A notable and
high-profile example of this is from Elhage et al. [2022b] who evaluated a neural interpretabil-
ity technique by measuring how easily human subjects were able to form hypotheses about
what roles neurons played in a network.

The key problem with evaluation using human intuition is that it treats hypotheses as
conclusions [Rudin, 2019, Miller, 2019, Räuker et al., 2022]. However, there are other related
issues. One is that evaluation by intuition can only guide progress toward methods that are
good at explaining simple mechanisms that humans can readily grasp. However, this will not
tend to select for methods that might be useful for solving the types of difficult or nontrivial
problems. Evaluation by intuition also encourages cherrypicking which is common in the
literature [Räuker et al., 2022]. In fact, some works have found that certain methods only
tend to perform well on a fraction of examples (e.g., [Bau et al., 2017a, Locatello et al., 2019,
OpenAI, 2019, Casper et al., 2021a, Voita et al., 2019, Locatello et al., 2020, Meister et al.,
2021, Cammarata et al., 2020, Hod et al., 2021, Bolukbasi et al., 2021b, Meng et al., 2022,
Elhage et al., 2022a]). Cherrypicking will only tend to guide progress toward methods that
are good in their best-case performance – a better aim would be for methods that perform
well in the average or worst case.

Ad hoc evaluation is common but insufficient.

Objective evaluation standards for diagnostic techniques are clearly needed. But simply
because an evaluation method involves quantitative measurements or testing falsifiable hy-
potheses does not mean it is a valuable one. Evaluation can adhere to the scientific method
while still not being useful for engineers. For example, Appendix A.4 reviews all papers that
were accepted to the NeurIPS 2021 conference with the term “interpretability” in the title. It
concludes that, while some meaningfully evaluate their techniques, none do so in a way that
connects to practical applications. For example, it is common to test on a training proxy.
Sometimes researchers evaluate tools based on the loss function for whatever model, feature,
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Figure 6.1: A visualization of a dog neuron? From Olah et al. [2017].

mask, map, clustering, vector, distance, or other measure was optimized during training.
Unless this quantity is the exact definition of what is desired, this will tend to optimize for
proxies of the real goal that risk decoupling.

Again, the central issue is the obvious one: A failure to hold works to engineering stan-
dards will not tend to produce methods that are useful for engineering. However, another
closely related problem is the commonality of ad hoc methods to evaluate diagnostic tools.
The field does not yet have clear and consistent evaluation methods. Instead, it is common
for a paper’s authors to independently introduce and apply their own approach to evaluation.
This allows researchers to only select measures that make their technique look promising.

Practical task-oriented evaluation is needed.

Consider an example. Suppose a researcher visualizes a neuron in a convolutional network
and remarks that the visualization has doglike features. For example, see Figure 6.1. Suppose
they say “Aha, my feature visualization tool works! Look at this dog neuron it identified.”
If the study of this neuron ended at this point, the claims of success would only be based on
intuition. While this may be a good hypothesis, it cannot yet make for a sound conclusion.

Then suppose the researcher passes some images through the network, looks at the results,
and says, “As I predicted, the neuron responds more consistently to dog images than non-dog
ones.” This is still not enough. It is ad hoc. From an engineer’s perspective, it is not yet
meaningful to say a neuron is a dog neuron unless this helps with something useful. There
are plenty of ways that a neuron that correlates with dog images could be doing something
more complicated than it seems at first (e.g. Bolukbasi et al. [2021a]).

Finally, suppose that the researcher ablates the neuron from the network, runs another
experiment, and remarks, “When I ablated the neuron, the network stopped being able to
classify dogs correctly but still performed the same on everything else. The same is reliably
true for out-of-distribution data.” Now finally, this understanding has been shown that it
may be useful in a practical sense! Specifically, this approach might be useful for model
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editing (although further experiments would be needed to show that it is competitive).

What could tests for diagnostic tools look like?

To develop techniques that help with meaningful, engineering-relevant tasks, it will be useful
to establish benchmarks grounded in practical tasks to evaluate them for these capabilities.
There is a growing consensus that more rigorous methods to evaluate tools will be valuable
[Doshi-Velez and Kim, 2017a, Lipton, 2018, Miller, 2019, Hubinger, 2020, Krishnan, 2020,
Hendrycks and Woodside, 2022, Räuker et al., 2022]. What could this look like? Evalua-
tion tools should measure how competitive methods are for helping humans or automated
processes do one of the following three things.

1. Making novel predictions about how the system will handle novel inputs.
This could include designing adversaries, discovering trojans, or predicting model be-
havior on interesting out-of-distribution inputs.

2. Controlling what a system does by guiding edits to it. This could involve
cleanly implanting trojans, removing trojans, or making the network do other novel
things via manual changes or targeted forms of fine-tuning.

3. Abandoning a system that does a nontrivial task and replacing it with a
simpler reverse-engineered alternative. This would mean showing that a system
or subsystem can be replaced with something simpler such as a sparse network, linear
model, decision tree, program, etc.

These three categories logically partition the space of possible approaches because they
cover working with the inputs to the system, working with the system itself, and getting
rid of the system entirely to replace it with something else. Clear and consistent criteria for
evaluating model diagnostic tools are not well-established, but benchmarks are important
for driving progress in a field. They concretize research goals, give indications of what
approaches are the most useful, and spur community efforts [Hendrycks and Woodside,
2022]. The approach from Chapter 5 is an example of a type-1 approach because discovering
a trojan requires predicting that some novel input will trigger the trojan.

6.1.2 Cherrypicking

It is very valuable for scientific works to include illustrative examples to build intuition.
However, when such examples are the central focus of a work, and more rigorous evaluation
methods are not used, cherrypicking can make results look better than they are. Consider
a now-canonical example of single-neuron interpretability work from Olah et al. [2017] in
Figure 6.2. Olah et al. [2017] select a single neuron, present some visualizations, and argue
that the feature visualizations show cats, foxes, and car hoods. In this same example, these
explanations are then validated by using a different technique – test set exemplars. This
begs the question of why one should not simply use test set exemplars instead. Indeed, when
Borowski et al. [2020] tested exemplars versus feature visualizations on a neural response
prediction task using humans, the exemplars did better. In this particular case, it is a great
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Figure 6.2: A polysemantic neuron that detects cats, foxes, and car hoods? From Olah et al.
[2017].

hypothesis that the neuron of interest is polysemantic for these types of features. However,
the evidence provided does not show that this is a useful understanding of the neuron, not to
mention one that is competitively useful in practice. It could be what Bolukbasi et al. [2021a]
describes as an “interpretability illusion”. Regardless, cherrypicked results are not enough to
show that this understanding of the neuron is practical. Networks contain many neurons and
weights. These include many frivolous neurons [Casper et al., 2021a] and weights [Frankle
and Carbin, 2018]. All of these neurons and weights mean that there are many different
subnetworks to study. Neurons may look like they may wire together in a particular way
upon analysis. But picking neurons and weights that wire together and constructing a story
of what is happening is a risky way to draw conclusions – especially when safety is at stake.

6.1.3 Failing to Combine Techniques

Most diagnostic techniques can be combined with most others. For example, interpretability
tools can be divided into two main types: intrinsic tools which are applied before or during
training and post hoc tools which are applied after [Räuker et al., 2022]. As a result, almost
any pair between the two could be used together without conflict. The goal of model diag-
nostic research should be to design a useful toolbox – not a silver bullet. However, the bulk
of work in the field focuses on studying tools individually. This may be due in part to how
there are not yet any established widely-used benchmarks for diagnostic tools, a problem
that I attempt to address in this thesis.

Combining different methods seems to be a useful way to make better engineering
progress, and benchmarks seem to facilitate this. Consider an example. In the 2010s, much
progress was made on ImageNet classification [Russakovsky et al., 2015]. Improvements did
not come from single techniques, but a combination of breakthroughs like batch normaliza-
tion, residual connections, inception modules, deeper architectures, improved optimizers, etc.
Similarly, one should not expect to best make progress without a combination of methods.

6.1.4 A Lack of Practical Applications

If the ultimate goal for diagnostic tools is to use them in the real world, it is natural to value
applied work. It is also worth emphasizing that the sooner these techniques are relevant
in the real world, the sooner actors in AI governance can think concretely about ways to
incorporate standards related to diagnostics into regulatory regimes. There are examples of
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using diagnostic tools for this such as Rando et al. [2022]. However, practical applications
are not particularly prevalent in the research in large part because much of the research on
tools for model diagnostics is still largely preparadigmatic [Räuker et al., 2022].

6.1.5 Scalability and Relying on Humans in the Loop

Many methods have only been demonstrated to work at a small scale such as small MLPs
trained on MNIST or small transformers trained on toy problems. However, simple networks
performing simple tasks can only be deployed in a limited number of settings of any practical
consequence, and they often should be replaced with other intrinsically interpretable, non-
network models [Rudin, 2019]. Working at a small scale is usually a prerequisite to scaling
up later, and some lessons that can be learned from small experiments may offer excellent
inspiration for future work. However, unless there exists a realistic pathway from research
at a small scale to more useful work at a large one, small-scale work seems to be of little
direct value. A problem with many approaches that do not scale is that they rely heavily
on a human in the loop. Ideally, humans should be used for screening diagnoses instead of
generating them.

Consider mechanistic interpretability work for deep neural networks as an example. When
devising a mechanistic interpretation of how a network operates, one must first devise mech-
anistic hypotheses before attempting to validate them. Using humans to produce hypotheses
can make small-scale research tractable if a human in the loop is used to brute-force this
challenging step, but it will not scale to complex networks for the same exponential-search-
related reason the program synthesis does not scale to complex problems [Qiu, 1999]. This
is discussed further next.

6.1.6 Is the Goal of Reverse-Engineering Networks Realistic?

‘Mechanistic interpretability’ in neural networks is often posed as a way of helping humans
reverse-engineer how neural systems operate. This is often approached with methods meant
to characterize subnetworks or “circuits” that perform specific tasks. As discussed above,
doing this requires iteratively (1) generating hypotheses for what a network is doing and
then (2) testing how valid these hypotheses explain its internal mechanisms. This second
step may be tractable (albeit using dataset-based techniques) [Chan, 2022]. However, step
1 is hard.

Mechanistic hypothesis generation is much like doing program synthesis, program induc-
tion, and/or programming language translation depending on details of how it is approached
[Casper, 2023a]. Generating mechanistic hypotheses requires synthesizing programs to ex-
plain a network using its behavior and/or structure. If a method for this involves synthesizing
programs based on the task or input/output from the network, it is a form of program syn-
thesis or induction. And if a method is based on using a network’s structure to write down
a program to explain it, it is very similar to programming language translation.

In general, program synthesis and program induction are well-understood to be very
difficult, and they currently do not scale to large problems [Gulwani et al., 2017]. Mean-
while, programming language translation is also challenging. In practice, translating be-
tween common languages (e.g. Python and Java) is only partially automatable and relies on
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many hand-coded rules Qiu [1999], and using large language models has had limited success
[Lachaux et al., 2020]. Meanwhile, in cases like these, both the source and target language
are discrete and easily interpretable. Since this is not the case for neural networks, we should
expect it to be more difficult to translate them into programs.

If highly intelligent systems in the future learn unexpected, harmful behaviors, charac-
terizing the neural circuitry involved is unlikely to be simple like much current mechanistic
interpretability work focuses on (e.g. [Nanda et al., 2023, Wang et al., 2022b]). One should
not expect solving very small-scale mechanistic interpretability problems using humans to
help with real-world problems any more than one should expect solving toy program synthe-
sis problems using humans to help with real-world program synthesis problems. It may be
possible to develop good ways of training intrinsically interpretable networks and translate
them into programs in certain domain-specific languages. This could be valuable. How-
ever, automated mechanistic interpretability has yet to progress beyond techniques that are
simply forms of network compression (e.g. Conmy et al. [2023]).

6.2 Concluding Remarks

This thesis has focused on developing more practical tools for diagnosing problems with AI
systems. I have argued that tools to rigorously study the inference algorithms learned by
deep networks have important potential for making them more trustworthy. However, these
tools are not consistently used for engineering applications. Motivations for studying how
neural networks operate are “diverse and discordant” Lipton [2018] and the term itself, as
used in the literature, “lacks precise meanings when applied to algorithms” Krishnan [2020].
I join with Doshi-Velez and Kim [2017b], Rudin [2019], Miller [2019], Krishnan [2020], and
Räuker et al. [2022] to emphasize the value of applying these tools to more practical types
of tasks. In Räuker et al. [2022], we outline several principles for moving forward with
interpretability research. Here, I will conclude by outlining and elaborating on several.

Benchmarks can measure the potential of diagnostic tools for practical use.
Benchmarks should measure how competitive methods are for producing use-
ful insights for practical tasks.

Studying AI systems is done with numerous techniques, not all of which have the same end
goal. For example, some methods aim to explain how a network handles a single input while
others are aimed at a more generalizable understanding of it. For these reasons, plus the
rapid development of techniques, widely accepted benchmarks for diagnostic tools do not
yet exist. A well-known example of a benchmark’s success at driving immense progress is
how ImageNet [Russakovsky et al., 2015] invigorated work in supervised image classification.
Benchmarks for diagnostic methods may similarly help to drive further progress.

As discussed in Chapter 2, tools for studying networks are often evaluated with human
intuition or ad hoc methods. However, if their goal is to provide valid and useful insights,
methods for evaluating them ought to measure their ability to guide humans in doing useful
things with models. In other words, these techniques should be of competitive value for
engineers, particularly ones who want to diagnose and debug models. Chapter 5 discussed
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progress toward this goal. See also Wu et al. [2022], CAIS [2022], and CAIS [2023]. However,
additional work will be needed in language modeling.

Real-world applications of diagnostic tools provide clear insights and direct value.

The ability for benchmarks to demonstrate the potential of tools is indirect. However, testing
tools on real-world problems offers more directly applicable insights on their value. A notable
example from the model diagnostics literature comes from Rando et al. [2022] who used a
set of techniques to red team an open-source safety filter for an image generator. There are
several reasons why practical applications provide value.

1. Finding real problems in real-world systems limits cherrypicking and requires compet-
itiveness with other approaches.

2. The proof is in the pudding – finding a verified problem in a real system is a clear
certificate of a tool’s value.

3. Applied work requires engagement between the research community and the developers
of real-world AI systems.

4. Applied work may be an excellent way to bring risks from models to the attention of
AI governance actors. Right now, as text and image generations are rapidly becoming
more widely used, it is an especially good time to broaden society’s understanding of
the problems with these systems.

The goal is a toolbox – not a silver bullet.

One should neither expect nor try to find a single ‘best’ approach for characterizing how
networks operate. An example of an ensemble of tools performing better than any single one
by itself was presented in Chapter 5. There are many different types of tools for explaining
networks, and many of the differences between them can be described as enforcing different
priors over what explanations they generate. So it is trivial to see that there will not be
any free lunch. Thus, the goal of the research field should be to build a toolbox. This does
not mean, however, that one should celebrate any new technique. Working in unproductive
directions can be costly, and applying tool after tool to a problem can become intractable.
The best types of tools will be ones that are unique, scalable, cheap to use, and have
demonstrated capabilities on practically important types of tasks.

In engineering disciplines, progress is rarely made by the introduction of single methods
that change the paradigm. Instead, major innovations usually come from multiple techniques
being applied at once. Progress on ImageNet is an example of this. It took combinations
of many new techniques – batch normalization, residual connections, inception modules,
deeper architectures, hyperparameter engineering, etc. — to improve the performance of
convolutional networks so much so quickly. There was no silver bullet.
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Research on diagnostic tools is highly interdisciplinary.

The fungibility of many different types of tools for studying networks was discussed in Chap-
ter 1, and connections between different areas of study were discussed in Chapter 2. A
relatively neglected way of generating new insights may be working at the intersections of
research on interpretability, adversaries, continual learning, modularity, compression, and
biological brains. Because there are many opportunities for connections and comparisons
between methods from different fields, more interdisciplinary work will be valuable for gen-
erating basic insights and practical tools.
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Appendix A

A.1 Black-Box Attacks with Feature-Level Adversaries

Drake
Conf: 0.0838

Teddy
Conf: 0.1156

Polecat
Conf: 0.1334

Beagle
Conf: 0.145

Old English Sheepdog
Conf: 0.2529

Ladybug
Conf: 0.1736

Pinwheel
Conf: 0.1969

Marmoset
Conf: 0.2286

Macaque
Conf: 0.2483

Buckeye
Conf: 0.4332

Figure A.1: Universal black-box adversarial patches (top) and generalized patches (bottom)
created using transfer from an ensemble. Patches are displayed alongside their target class
and mean target class confidence.

Adversaries are typically created using first order optimization on an input to a network
which requires that the parameters are known. However, they are often transferrable be-
tween models Papernot et al. [2016], and one method for developing black-box attacks is
to train against a different model and then transfer to the intended target. We do this for
our adversarial patches and generalized patches by attacking a large ensemble of AlexNet
Krizhevsky et al. [2012], VGG19 Simonyan and Zisserman [2014], Inception-v3 Szegedy et al.
[2016], DenseNet121 Huang et al. [2017], ViTDosovitskiy et al. [2020], Melas [2020], and two
robust ResNet50s Engstrom et al. [2019a], and then transferring to ResNet50 He et al. [2016].
Otherwise, these attacks were identical to the ones in Figure 5.3 including a random source/-
target class and optimization for disguise. Many were unsuccessful, but a sizable fraction
were able to work on the ResNet50 with a mean confidence of over 0.1 for randomly sampled
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images. The top 5 out of 64 of these attacks for patch and generalized patch adversaries are
shown in Figure A.1.

A.2 Copy/Paste Attacks: Feature-Level Adversaries vs.
Class Impressions

Mu and Andreas [2020], Hernandez et al. [2022], Carter et al. [2019] each used interpretability
methods to guide the development of copy/paste adversaries. Mu and Andreas [2020] and
Hernandez et al. [2022], used network dissection Bau et al. [2017b] to develop interpretations
of neurons and fit a semantic description to neurons which they combined with analysis
of weight magnitudes. This allowed them to identify cases in which the networks learned
undesirable feature-class associations. However, this approach cannot be used to make a
targeted search for copy/paste attacks that will cause a given source class to be misclassified
as a given target.

More similar to our work is Carter et al. [2019] who found inspiration for successful
copy/paste adversaries by creating a dataset of visual features and comparing the differences
between ones which the network assigned the source versus target label. We take inspiration
from this approach to create a baseline against which to compare our method for designing
copy/paste attacks from Section 5.1.3. Given a source and target class such as a bee and a
fly, we optimize a set of inputs to a network for each class in order to maximize the activation
of the output node for that class. Mopuri et al. [2018b] refers to these as class impressions.
We develop these inputs using the Lucent Kiat [2019] package. We do this for the same
source/target class pairs as in Section 5.1.3 and display 6 per class in Figure A.2. In each
subfigure, the top row gives class impressions of the source class, and the bottom gives them
for the target. Each class impression is labeled with the network’s confidences for the source
and target class. In analyzing these images, we find limited evidence of traffic-light-like
features in the fly class impressions, and we find no evidence of more blue coloration in the
African elephant class impressions than the Indian ones.

These class impressions seem comparable but nonredundant with our method from Sec-
tion 5.1.3. However, our approach may have an advantage over the use of class impressions
in that it is equipped to design features that look like the target class conditional on a distri-
bution of source images. Contrastingly, a class impression is only meant to visualize features
typical of the target class. This may be why our adversarial attacks are able to suggest that
inserting a traffic light into a bee image or a blue object into an Indian elephant image can
cause a misclassification as a fly or African elephant respectively. Bees and Flies and Indian
and African elephant are pairs of similar classes. For cases in which the source and target are
related, the class impressions may share many of the same features and thus be less effective
for identifying adversarial features that work conditional on the source image distribution.
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A.3 Survey Methodology for Benchmarking Feature Syn-
thesis Tools

An example survey is available at this link.
With institutional review board approval, we created 10 surveys, one per method plus a

final one for all methods combined. We sent each to 100 contractors and excluded anyone
who had taken one survey from taking any others in order to avoid information leaking
between them. Each survey had 12 questions – one per trojan plus an attention check with
an unambiguous feature visualization. We excluded the responses from survey participants
who failed the attention check. Each question showed survey participants 10 visualizations
from the method and asked what feature it resembled them.

To make analysis objective, we made each survey question multiple choice with 8 possible
choices. Figure A.3 shows the multiple-choice alternatives for each trojan’s questions. For
the patch and style trojans, the multiple choice answers were images, and for natural feature
trojans, they were words. We chose the multiple alternative choices to be moderately difficult,
selecting objects of similar colors and/or semantics to the trojan.

One issue with multiple choice evaluation is that it sometimes gives the appearance of
success when a method failed in reality. A visualization simply resembling one feature more
than another is not a strong indication that it resembles that feature. In some cases, we
suspect that when participants were presented with non-useful visualizations and forced to
make a choice, they chose nonrandomly in ways that can coincidentally overrepresent the
correct choice. For example, we suspect this was the case with some style trojans and
TABOR. Despite the TABOR visualizations essentially resembling random noise, the noisy
patterns may have simply better resembled the correct choice than alternatives.

A.4 Analysis of AI Interpretability Papers from NeurIPS
2021

Chapter 6 claims that poor evaluation is a widespread problem in AI interpretability research.
To give an unbiased sense of the state of the field, consider papers accepted to NeurIPS (the
largest AI conference) in 2021 (the most recent year for which papers were available at the
time of writing this review). Four papers have the word “interpretability” in the title. This
section reviews each of these and concludes that none of the four convincingly evaluates their
method in a way that connects it to practical value.

Understanding Instance-based Interpretability of Variational Auto-Encoders [Kong
and Chaudhuri, 2021]

This paper is about analyzing how influential individual training set examples are for how
variational autoencoders handle test examples. All experiments are conducted on MNIST
and CIFAR-10. The evaluation does not involve baselines or benchmarks and consists of
(1) a sanity check to verify that examples are judged as high-influence for themselves, (2)
using the method to produce similar-looking “proponents” and different-looking “opponents”

79

https://mit.co1.qualtrics.com/jfe/form/SV_41p5OdXDDChFaw6


of testing examples, and (3) using this method for anomaly detection to find that it tends to
classify OOD samples as anomalies slightly more than dataset ones on average. (1) is trivial,
(2) is an example of what Section 6.1 refers to as intuition-based evaluation because it only
involves inspection, and (3) is an example of what Section 6.1 refers to as weak evaluation
because it tests on the training proxy.

IA-RED2: Interpretability-Aware Redundancy Reduction for Vision Transform-
ers [Pan et al., 2023]

This paper seeks to reduce redundant computations inside of vision transformers. It intro-
duces a dynamic inference method to preprocess image patches to exclude redundant ones.
The paper introduces a method for speeding up forward passes through transformers which
is useful. However, there is little substance on interpretability. The technique is used for
feature attribution by constructing saliency maps to highlight which parts of an input image
are non-redundant (i.e. “important”) to the model. The authors assert, “our method is inher-
ently interpretable with substantial visual evidence.” And when comparing examples from
this method to other feature attribution techniques, they write, “We find that our method
can obviously better interpret the part-level stuff of the objects of interest.” See Figure A.4
to see the saliency maps that are claimed to “obviously” show this. This argument is purely
intuition-based.1

Improving Deep Learning Interpretability by Saliency Guided Training [Ismail
et al., 2021]

This paper is about training networks with a form of regularization that encourages them
to have more sparse, lucid saliency maps. It evaluates the saliency maps of trained networks
on quantitative measures of how well the features covered by the maps cover all and only
the important features needed for classification. This is quantitative but an example of what
Section 6.1 refers to as weak evaluation because it fails to connect the method to something
of practical use. This paper tests on the training proxy, and it compares the method to
a random baseline but no comparable ones from previous works. There is a significant
amount of literature (see Section 2.2) that predates this work and connects the same type
of regularization that these authors study to useful improvements in adversarial robustness.
However, this paper did not discuss or experiment with this.

Foundations of Symbolic Languages for Model Interpretability [Arenas et al.,
2021]

This paper is fairly different from the other three, and it is not focused on deep learning. It
is more of a model-checking paper with interpretability implications than a normal ‘inter-
pretability’ paper. The authors introduce a first-order logic to describe various properties of
models. The only experiments are to evaluate runtime for statement verification on various
decision tree models. The authors’ goal was to break conceptual and theoretical ground –
not to introduce any interpretability tools. Nonetheless, they do not do anything to show

1Personally, I do not share this intuition after examining Figure A.4.
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that their framework is a valuable one – the case for the merits of this framework rests on
armchair arguments. There is also no discussion of baselines or alternatives, and the only
models the paper works with are decision trees. The OpenReview reviews on this paper were
mostly positive, but one of the reviewers commented “I can’t imagine anyone using this for
anything useful.”

Conclusion

In summary, I argue that all four papers do not meaningfully connect their methods to
anything of practical value. This is not to say that these papers are bad, uninteresting, or
cannot be useful. But from the standpoint of an engineer who wants interpretability research
to be rigorously evaluated and practically relevant, they all seem to fall short of this goal.
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Figure A.2: Class impressions for four pairs of classes. These could be used for providing
insight into copy/paste attacks in a similar way to the examples from Section 5.1.3. Each
subfigure is labeled with the network’s output confidence for both classes.
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Smiley Emoji (Patch) Clownfish (Patch)

Green Star (Patch) Strawberry (Patch)

Jaguar (Style) Elephant Skin (Style)

Jellybeans (Style) Wood Grain (Style)

Fork (Natural Feature) Apple (Natural Feature)
A. Car, B. Fork, C. Oven, D. Refrigerator A. Bush, B. Bottle, C. Lettuce, D. Apple
E. Bowl, F. Laptop, G. Faucet, H. Stapler E. Goat, F. Berries, G. Clouds, H. Shoes

Sandwich (Natural Feature) Wood Grain (Natural Feature)
A. Salad, B. Pizza, C. Omelette, D. Sandwich A. Muffin, B. Cake, C. Baguette, D. Cupcake
E. Spaghetti, F. Stir Fry, G. Nachos, H. Waffle E. Danish, F. Pie, G. Donut, H. Croissant

Figure A.3: The multiple choice alternatives for each trojan’s survey question.
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Figure A.4: Pan et al. [2023] claim that the feature attributions from their technique are
“obviously better” than alternatives.
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