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ABSTRACT

In this thesis, we characterize modal and spike-type rotating stall inception for an isolated
rotor using a low order, non-linear actuator disk model. The actuator disk representation is
capable of capturing stall inception behavior given an axisymmetric total-to-static pressure
rise characteristic. A parametric study of the effect of the derivative of the total-to-static
pressure rise with respect to flow coefficient has been carried out to (i) define the links
between the computed behavior of circumferentially propagating flow disturbances and those
of established linearized analyses and (ii) describe both modes and spikes as different regimes
of the same dynamical framework.

The results of the parametric study show three distinct regimes for the non-dimensional
compressor characteristics examined. For total-to-static pressure rise characteristic slopes
below 0.2, exponentially growing sinusoidal disturbances lead to the onset of rotating stall
with growth time scales on the order of ten rotor revolutions. This behavior is characteristic
of what is known as modal inception, or modes. For pressure rise slopes above 0.4, distur-
bances with no sinusoidal structures and with magnitudes of order of the mean axial flow
were observed before the onset of rotating stall. The growth time scales of these disturbances
were on the order of a rotor revolution. This behavior is characteristic of spikes. For pres-
sure rise slopes between 0.2 and 0.4, both behaviors were observed. These results suggest a
continuous transition between modal and spike inception, contrary to the description as two
distinct phenomena.
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Chapter 1

Introduction

The flow in an axial compressor at design conditions is nominally steady and axisymmetric.

When the flow is reduced from the design point, however, the axisymmetric flow can become

unstable, leading to large amplitude transient motions of two different kinds, one known as

surge, the other as rotating stall [1]. Surge is characterized by variations in overall system

mass flow. In fully developed rotating stall, the mass flow is constant in time, and there are

regions of reduced flow that propagate around the annulus in the direction of blade rotation,

with speeds typically between 20 and 50 percent of rotor speed.

The present work focuses on descriptions of the inception of rotating stall. This inception

occurs when there are conditions that create a break in the symmetry of the flow, with growth

of circumferentially non-uniform velocity and pressure perturbations. The stall inception

regime is thus the growth of small-amplitude perturbations that lead to large amplitude,

fully developed rotating stall.

Two distinct routes to rotating stall have been discussed in the literature [1]. The first is

the growth of small amplitude perturbations with length scale comparable to the compressor

circumference. The term “modes” or “modal oscillations” have been used to describe these

motions, which appear as exponentially growing sinusoidal waves with growth time scales

on the order of tens of rotor revolutions. Modes have been described by linearized two-
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dimensional analyses, for example for an isolated rotor, by Stenning [2] and Spakovszky [3]

using two-dimensional actuator disk approximations. The analyses yield the eigenvalues of

the dynamical system, giving the growth and propagation rates of the individual harmonics.

Discussion of rotating stall models will be presented in Chapter 2.

A second route to stall inception, observed in experiments and CFD calculations [4][5][6],

is through the appearance of a small length scale disturbance, on the order of one or several

blade pitches, that propagates and leads to fully developed rotating stall in a time scale of

order of one rotor revolution. This route is known as spike inception, because of the spike-

like wave form seen in velocity or pressure traces. The initial propagation rate of spike-type

disturbances is typically 60 to 80 percent of rotor frequency, slowing to 20 to 50 percent

when the rotating stall is fully developed.

1.1 Thesis Scope

In this thesis we focus on stall inception behavior which suggests that both modes and spikes

can be brought together under one overarching description. Based on previous actuator disk

studies of rotating stall inception [7], the hypothesis is that modes and spikes are different

regimes of rotating stall inception that we can describe with the same low-order dynamical

framework. We assess the effect of the derivative of the axisymmetric total-to-static pressure

rise, with respect to flow coefficient, on the rotating stall inception behavior and develop the

conditions associated with modes and with spikes.

1.2 Contributions

The main contributions of this thesis are:

• The occurrence of modal and of spike inception of rotating stall is shown to be de-

termined by the slope of the non-dimensional inlet total to exit static pressure rise

14



characteristic (∂ψTS

∂ϕ
), in agreement with results obtained by Pullan [8]. For the pa-

rameters examined, modal inception is observed for axisymmetric pressure rise slopes

less than 0.2 (∂ψTS

∂ϕ
< 0.2), whereas spike disturbances are found for slopes ∂ψTS

∂ϕ
> 0.4.

These results imply the existence of a continuous transition between modes and spikes.

• For spike inception, increasing the slope of the pressure rise characteristic increases

the differences between the growth rates from the linear models [2][3] and those from

actuator disk calculations. This suggests that linear models are insufficient for describ-

ing the higher slope cases, where spike inception was observed for the actuator disk

calculations.
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Chapter 2

Background

In this chapter we present existing information about modes and spikes with the aim of

establishing a connection between these two phenomena. An overview of the characteristics

and behaviors of these two stall inception routes is presented, including examples of the

circumferential structures of the axial velocity or pressure disturbances associated with modes

and spikes. We also review the linearized approaches for analyzing the perturbations to show

how the solutions connect to mean flow variables and to serve as a basis to categorize whether

modes or spikes are observed, based on the results described in Chapter 4.

2.1 Literature review

Stall inception was first described by Emmons et al. [9] using a linearized analysis of two-

dimensional, small amplitude perturbations to a cascade with uniform background flow.

Emmon’s analysis connected the growth of a rotating disturbance relative to a stationary

probe with the behavior of boundary layer parameters (blockage). Stenning [2] expanded

on this linear analysis by linking the propagation speed to the mean flow pressure rise

coefficient. Stenning also showed that the instability point occurs at the peak of the total-

to-static pressure rise characteristic (as first obtained by Dunham [10]).

Experimental work in the 1990’s by Day [4] presented evidence for the existence of the

17



Figure 2.1: Axial velocity perturbation traces from a single stage compressor showing modal
oscillations leading to stall cell formation [4].

two stall inception routes we now call modes and spikes. Measurements of upstream axial

velocity for a single and four stage compressor rig from that study are shown in this section

to highlight the features of modes and spikes.

2.1.1 Modal Inception

The propagating disturbances known as modes are characterized by sinusoidal circumfer-

ential non-uniformities with length scales that can be up to the compressor circumference.

Initially, the amplitude of the modal oscillations is several percent of the mean flow velocity

or less [5] and exhibits exponential growth.

Modal oscillations are typically present tens of rotor revolutions before the rotating stall

is fully developed. Additionally, the modal disturbance phase velocity (or rotation rate) is

close to the speed of the fully developed stall cell [4][5]. Figure 2.1 shows an example of modal

inception, in which upstream hot-wire measurements indicate a growing modal oscillation

travelling at 43% rotor speed, leading to the formation of a stall cell at the same speed [4].

18



Figure 2.2: Axial velocity perturbation traces from a four stage compressor showing a spike
that leads to rotating stall with no observed previous oscillations [4].

2.1.2 Spike Inception

Spike-type stall inception was first reported by Day [4]. The length scale of spike disturbances

was one to several blade pitches, with initial rotation rates around 70% of the rotor speed

evolving into fully developed stall cells rotating at 20 to 50% of the rotor speed. The

amplitude of the spike disturbance when first detected was substantially larger than that

of a mode [6] (see Figure 2.1). For spikes, the time scale from initial growth to stall cell

formation was found to be one to several revolutions, as in Figure 2.2, where the spike

initially propagates at 72% rotor speed and evolves into a rotating stall cell, at 38% rotor

speed, within two revolutions [4].

Spikes have also been observed to occur simultaneously with modes, as in Figure 2.3 [5].

In the situation shown, modal waves caused flow separation at the tip region of the first

rotor blade of a four stage compressor, and the transition to rotating stall then occurred via

the spike disturbance. Spikes thus appeared to be localized phenomena that emerged over

an individual blade [1].
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Figure 2.3: Spike disturbance developing after the appearance of axial velocity modal per-
turbations for a four stage compressor [5].

2.1.3 Criteria for Modes and Spikes

Camp and Day [5] proposed an explanation for why some compressors experience modal

inception and others develop spikes. Their idea was based on observations that modal

oscillations develop when the slope of the overall total-to-static pressure rise characteristic at

the stall point is zero or slightly positive, whereas spikes originated at a negative pressure rise

slope, when a critical value of rotor incidence angle was reached. Camp and Day proposed

that if the peak of the total-to-static pressure rise characteristic was reached before the

critical rotor incidence angle for a given compressor, modes will develop. If the critical rotor

incidence angle was reached to the right of the peak (∂ψTS

∂ϕ
< 0 ), however, spikes will appear.

The two situations are shown in Figure 2.4. This idea was the first statement that gave

insight into the relationship between the different stall inception routes and was followed by

Pullan et. al who focused on describing the physical mechanisms behind the formation of

spikes through a computational model of a compressor rotor blade row [6].
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Figure 2.4: Criteria for modes and spikes based on critical rotor incidence and pressure rise
characteristic slope [5].

2.2 Linearized Approach to Stall Inception

An useful introduction to approaches to stall inception modeling is the linear analysis of

Stenning [2], which presents criteria for compressor instability and propagation speed. In

the original reference, downstream pressure perturbations are neglected, and only conditions

at the neutral stability point are considered. In Appendix A Stenning’s model is extended

to include these two effects.

Spakovszky presents a modular approach for compressor instabilities [3], with blade rows

and other compressor components modeled through “transmission matrices” containing lin-

earized descriptions of their behaviors. Spakovszky’s analysis assumes an ideal pressure rise

characteristic with loss coefficient curves to provide the actual compressor pressure rise. It

also includes unsteady blade passage effects, which is useful because these are in the com-

putational framework to be described in Chapter 3.

Spakovszky gives a closed form solution for the eigenvalues for an isolated rotor in terms

of the derivative of the loss coefficient curve with respect to upstream flow angle. In this
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section, the analysis is presented in terms of the slope of the total-to-static pressure rise

characteristic.

2.2.1 Spakovszky’s Isolated Rotor Model

Spakovszky’s analysis is carried out in the absolute frame, as in Figure 2.5.

Figure 2.5: Isolated rotor geometry to Spakovszky’s analysis [3].

Incompressible and inviscid flow is assumed, with the upstream flow irrotational. Stations

1 and 2 correspond to the upstream and downstream edges of the blade row. The rotor speed

U = ΩR is in the direction of the circumferential coordinate θ. The mean flow approaches

the rotor with zero inlet swirl and leaves the blade row at a specified relative exit flow angle

β2, which is constant. Spakovszky considers angles in the direction of rotation as positive, so

relative flow angles (β) are negative. The effects of acceleration of the flow within the blade

passage on the blade row pressure rise are included using a rotor fluid inertia parameter

λ =
cx

R cos2 γ
. (2.1)

In Equation (2.1) cx is the axial chord, and γ the blade stagger angle. The local, instanta-
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neous blade row total to static pressure rise condition is given as [11]

p2 − pt1
ρU2

= ψTS(ϕ)− λ

(
∂ϕ

∂θ
− ∂ϕ

∂τ

)
, (2.2)

where ϕ = vx
U

is the flow coefficient, τ = tU
R

the non-dimensional time, and ψTS the quasi-

steady total-to-static pressure rise characteristic. Spakovszky also defines a blade row pres-

sure loss LR

LR(ϕ) = ψITS(ϕ)− ψTS(ϕ), (2.3)

where ψITS is the ideal total-to-static pressure rise characteristic. From the Euler equation,

the ideal total-to-total pressure rise is

ψITT = 1 + ϕ (tan β2 − tanα1) . (2.4)

Converting Equation (2.2) into total-to-total form and using Equation (2.4) for the ideal

pressure rise yields a pressure matching condition

Pt2 − Pt1 = 1 + ϕ (tan β2 − tanα1)− LR − λ

(
∂ϕ

∂θ
− ∂ϕ

∂τ

)
, (2.5)

where Pt2−Pt1 is the stagnation pressure rise for the blade row non-dimensionalized by ρU2.

The pressure loss LR is the same in total-to-total and total-to-static terms.

In addition to Equation (2.5), two other matching conditions are needed, for the isolated

rotor, to express mass conservation and constant exit flow angle:

ϕ1 = ϕ2, (2.6)

Vθ2 = 1 + ϕ2 tan β2. (2.7)

In Equation (2.7), Vθ2 is the exit circumferential velocity. Linearizing Equations (2.5) to

(2.7), applying the Laplace transform, and solving for s yields the eigenvalues of the isolated

23



rotor system as

σn =
tan β2 +

∂LR

∂ tanβ1

tanβ1
ϕ

− ϕ (1 + tan2 α2) + tanα2

λ+ 2
n

, (2.8)

ωn =

∂LR

∂ tanβ1
1
ϕ
+ nλ+ 1

λ+ 2
n

. (2.9)

Equations (2.8) and (2.9) are obtained assuming the mean flow inlet swirl is zero. To express

these solutions in terms of ψTS, the gradient term can be expressed using the derivative of

the loss with respect to the flow coefficient as

∂LR
∂ tan β1

=
1

tan2 β1

∂LR
∂ϕ

. (2.10)

The mean ideal total-to-total pressure rise can be converted to a total-to-static coefficient

by subtracting the mean exit dynamic head:

ψITS = ψ1
TT − 1

2

(
V2
U

)2

. (2.11)

Because tanα1 = 0 for the mean flow, the expression for the ideal total-to-static pressure

rise in terms of ϕ is

ψITS =
1

2

(
1− ϕ2

(
1 + tan2 β2

))
. (2.12)

Plugging Equation (2.12) into Equation (2.3) and taking the derivative with respect to flow

coefficient gives
∂LR
∂ϕ

= −
(
ϕ
(
1 + tan2 β2

)
+
∂ψTS
∂ϕ

)
. (2.13)

Thus, the loss gradient term becomes

∂LR
∂ tan β1

= − 1

tan2 β1

(
ϕ
(
1 + tan2 β2

)
+
∂ψTS
∂ϕ

)
. (2.14)

By considering that for the mean flow ϕ = − 1
tanβ1

, Equation (2.14) can be used to express
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Spakovszky’s eigenvalue solutions for an isolated rotor system in terms of ϕ, tan β2, and the

derivative of ψTS with respect to flow coefficient. After some re-arrangements, the growth

and rotation rates for the isolated rotor are expressed as

σn =

∂ψTS

∂ϕ

λ+ 2
n

, (2.15)

ωn =
2ψITS −

∂ψTS

∂ϕ
ϕ+ nλ

λ+ 2
n

. (2.16)

The inclusion of unsteady blade passage effects reduces the growth rates of the pre-stall

harmonics but does not affect the instability point, which occurs at ∂ψTS

∂ϕ
= 0. The pre-stall

waves travel in the direction of the isolated rotor rotation. In Appendix A, Equations (2.15)

and (2.16) are compared with the solutions from Stenning’s analysis.

2.2.2 Moore-Greitzer Axisymmetric Pressure Rise Curve

To plot an example for Equations (2.15) and (2.16), we can use the Moore-Greitzer cubic

axisymmetric curve [12] for the total-to-static pressure rise characteristic:

ψTS(ϕ) = ψ0 +H

(
1 +

3

2

(
ϕ

W
− 1

)
− 1

2

(
ϕ

W
− 1

)3
)
, (2.17)

where ψ0 is the axisymmetric shut-off value and H and W are parameters corresponding to

ψ and ϕ values for the peak pressure rise (∂ψTS

∂ϕ
= 0). The ψ and ϕ values at the peak of the

cubic characteristic are related to H and W as

ψpeak = 2H + ψ0, (2.18)

ϕpeak = 2W. (2.19)
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We choose ψ0 = 0, H = 0.1025, and W = 0.185 to describe our cubic characteristic and

let the exit flow angle be β2 = 51.45 degrees1. The ideal total-to-total pressure rise ψITT ,

ideal total-to-static pressure rise ψITS, and steady state axisymmetric cubic characteristic ψTS

using the above parameters are plotted in Figure 2.6, as is the loss coefficient as a function

of ϕ. Growth and rotation rates for this axisymmetric pressure rise characteristic are given

in Appendix C.

1Mean values for cubic pressure rise taken from Prof. Pullan test cases in [7]
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Figure 2.6: Axisymmetric pressure rise and loss curves for Moore-Greitzer characteristic
defined in Section 2.2.2.
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Chapter 3

Computational Framework

Chapter 2 described a two-dimensional linear analysis of sinusoidal unsteady perturbations in

an incompressible flow. The growth and rotation rates of these perturbations are a function

of the mean flow quantities. In particular, the growth rate of the n-th harmonic is equal to

the product of the slope of the mean total-to-static pressure rise and the harmonic number.

We will assess the utility of this relation compared to a computational non-linear actuator

disk model [7]. We also attempt to draw connections between the total-to-static pressure rise

slope and the emergence of modal or spike stall inception using a series of simulations. In

this chapter we describe the computational framework used for these transient simulations

and the signal processing to visualize the pre-stall harmonics. The computational procedure

is for compressible flow but, because of the low mach numbers considered here (MT ip ≈ 0.2),

the density increase is negligible during stall inception, and incompressible analyses are

appropriate for comparison.

3.1 Actuator Disk Flow Model

A schematic of the computational domain used is presented in Figure 3.1. As in the linear

analysis described previously in Chapter 2, the blade row is replaced by an actuator disk.

The duct downstream of the disk has a constant area nozzle at the outlet as in Figure 3.1.
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The length of each duct is twice the circumference of the disk, so that asymmetric pressure

influences from the outlet boundary conditions are negligible. The domain has a hub-to-tip

radius ratio of 0.9999 to give a geometry that is quasi-two dimensional. The operating points

of the actuator disk are set by changing the nozzle exit static pressure.

Figure 3.1: TBLOCK actuator disk model schematic (not to scale).

The solver algorithm for this model, referred to as TBLOCK [7], is based on the proce-

dures presented in Joo and Hynes [13] in which the unsteady Euler equations are solved. For

the compressible analysis, there are five matching conditions required across the actuator

disk, applied at each radial and circumferential node:

1. Conservation of Mass

(ρVx)1 = (ρVx)2 (3.1)

2. Conservation of Radial Momentum

Vr1 = Vr2 (3.2)

3. Conservation of Rothalpy

(
htrel −

U2

2

)
1

=

(
htrel −

U2

2

)
2

(3.3)
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4. Specification of Relative Exit Flow Angle

β2 = f(r) (3.4)

5. Loss Coefficient

ζ = f(β1) =
T∆s
1
2
w2

1

(3.5)

Conditions 1 to 3 correspond to the equations of motion, condition 4 sets a constant

exit flow angle at each radial node, and the 5-th condition is the input axisymmetric loss

coefficient, entropy rise non-dimensionalized by upstream dynamic pressure as a function of

inlet relative flow angle, β1.

The TBLOCK1 actuator disk model contains a compressible flow solver routine for un-

steady flow field computations. This routine, along with the mesh geometry used in this

thesis, is given in Appendix B.

3.1.1 Estimation of Axisymmetric Loss Coefficient

Assuming zero inlet swirl α1, the axisymmetric loss coefficient curves have been derived from

the total-to-static pressure rise characteristics. The non-dimensional loss is

T∆s

U2
=

∆ht
U2

− ∆pt
ρU2

. (3.6)

The ideal work coefficient, ∆ht
U2 , is the isentropic total-to-total pressure rise in Equation

(2.4). Writing the total pressure rise and work done in terms of total-to-static pressure and

rearranging, the loss coefficient in Equation (3.5) can be written as a function of the pressure

rise characteristic:
T∆s
1
2
w2

1

=
T∆s

1
2
w̄2
x +

1
2
U2

=
2

1 + ϕ2

(
ψITS − ψTS

)
(3.7)

1TBLOCK source codes provided by Prof. Pullan from the Whittle Lab at Cambridge University.
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Figure 3.2: Loss coefficient for Moore-Greitzer example characteristic.

Using the ideal total-to-static pressure rise from Equation (2.11), we obtain the axisym-

metric loss coefficient curve used for the TBLOCK calculations, in Figure 3.2, corresponding

to the Moore-Greitzer [12] cubic axisymmetric curve from Section 2.2.2.

3.2 Spatial Fourier Analysis for Traveling Waves

The TBLOCK calculations yield circumferentially travelling disturbances and we have carved

out a spatial Fourier analysis to capture the structure of the pressure and velocity pertur-

bations through time. The actuator disk domain contains 101 evenly spaced points, with

the first and last connected through periodic boundary conditions. If N is the number of

circumferential points, N must meet the Nyquist criterion such that N ≥ 2n, where n is

the number of harmonics to be captured. Thus, for N = 100, we can capture up to the

50-th harmonic of the pressure or velocity disturbance. Following the framework of Garnier

[14][15], the spatial Fourier coefficient of the n− th harmonic is given by

ϕ̃(n, τ) =
1

N

N∑
k=1

ϕk(τ) exp

[
−2πink

N

]
, (3.8)
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where ϕk is the non-dimensional axial velocity at probe number k, and non-dimensional

time τ . The spatial Fourier coefficients (SFC) contain the information on the harmonic wave

amplitude and position, and we can find the growth and rotation rates for each harmonic

assuming the Fourier coefficients are of the form

ϕ̃(n, τ) = Ane
snτ (3.9)

where sn = σn − iωn.

In Chapter 4 we will investigate the behavior of the spatial Fourier coefficients for different

axisymmetric pressure rise characteristics.
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Chapter 4

Effect of Compressor Pressure Rise Slope

on Rotating Stall Inception

In this chapter we describe the relationship between the slope of the mean total-to-static

pressure rise and the stall inception process. Previous calculations have shown that throt-

tling the actuator disk to different points past the neutral point (∂ψTS

∂ϕ
= 0) yields different

stall inception behaviors [8]. For example, a second harmonic disturbance was shown to

dominate the inception of rotating stall for larger throttle steps since, for a cubic pressure

rise, increasing the throttle step pushes the operating point towards a steeper positive slope,

in agreement with the linear analysis of Chapter 2.

A series of TBLOCK calculations were thus done using total-to-static pressure rise charac-

teristics with constant slope for the positive flow coefficient range, to eliminate the variation

of the pressure rise slope with operating point and allow us to isolate the effects of slope on

stall inception. The results of these calculations are compared with the linear analysis to

categorize whether modes or spikes are observed for a given slope.
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4.1 TBLOCK Calculation Setup

4.1.1 Input Parameters

For consistency, the following parameters were used for all the cases considered in this

chapter:

• Rotor fluid inertia parameter (see Equation (2.1)): λ = 0.2

• Constant exit flow angle: β2 = 51.45◦

• Circumferential inlet flow variation (∆β1): Root-mean-square = 0.01

The exit flow angle corresponds to the example in Chapter 2. A circumferentially varying

inlet flow angle disturbance ∆β1 rotating at blade speed U was applied for the transient

calculations to provide small initial rotating disturbances from which the different harmonics

grow. A random distribution of inlet flow angle variation with a root-mean-square (RMS) of

0.01 degrees was applied at the mesh nodes (see Section B.1 of Appendix B). The distribution

is shown in Figure 4.1.

Figure 4.1: Inlet flow angle variation for TBLOCK calculations
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4.1.2 Simulation Procedure

The procedure depicted in Figure 4.2 was followed for all the TBLOCK simulations described

in this chapter.

Figure 4.2: TBLOCK calculation setup showing: (a) Steady solution at the peak of the cubic
pressure rise used for the computation’s initialization; (b) Point of initialization for constant
slope pressure rise cases.

For all cases, the mean pressure rise characteristic was constant along the radial direction.

A stable solution at the peak of the cubic pressure rise was first found, as in Figure 2.6 which
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shows non-dimensional pressure rise, ψTS, versus flow coefficient, ϕ. This stable solution is

then used to initialize the unsteady calculations using the constant slope characteristics that

cross the peak of the cubic curve as in Figure 4.2. The flow is unstable on this straight-line

characteristic because ∂ψTS

∂ϕ
> 0, and we can capture the stall inception transient for different

mean pressure rise slopes. This procedure is based on ideas presented by Prof. Pullan [7][8].

4.2 Mean Pressure Rise Case Matrix

Figure 4.3 shows the constant slope characteristics that are included in this study. Spikes

have been observed for a pressure rise slope of 0.4[7][8], and a range of slopes from 0.04 to 0.6

were thus considered. The linearized two-dimensional analysis states that the growth rate

of a given harmonic is equal to the product of the slope of the mean total-to-static pressure

rise characteristic and the harmonic number n. All the characteristics considered have a

constant slope as a function of ϕ, so the growth of each harmonic is expected to be constant

with flow coefficient, at least in the linear regime.

Figure 4.3: Constant slope pressure rise characteristics (0.04 ≤ ∂ψTS

∂ϕ
≤ 0.6) used in TBLOCK

simulations.
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4.3 Stall Inception Transients

We have not been able to capture fully developed rotating stall in the TBLOCK simulations,

and we only consider the flow for times before reverse flow is detected. Using the procedure

shown in Section 3.2, the SFC magnitude of the first harmonic of the axial velocity pertur-

bations is plotted in Figure 4.4 for all the pressure rise slopes displayed in Figure 4.3. The

cases are stacked on the SFC log-scale with the initial amplitude of -4 displaced by two units

to display the change in time scale of stall inception for different slopes of the total-to-static

pressure rise characteristic. For example, stall inception, defined in this chapter as the pe-

riod between initial growth of perturbations up until reverse flow is detected, occurs over

roughly 100 revolutions for ∂ψTS

∂ϕ
= 0.04, whereas for ∂ψTS

∂ϕ
= 0.60 inception occurs within

2 revolutions. Figure 4.4 shows the growth rate of the disturbances are proportional to the

pressure rise slope. Increasing the constant slope yields increasing growth rates.

Figure 4.4: Magnitude of the first harmonic for TBLOCK cases showing an increase in
growth rate for higher pressure rise slopes (∂ψTS

∂ϕ
marked on each line).

The first six harmonics of the axial velocity traces are used to capture stall inception,
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as no significant information is obtained from harmonics higher than n = 6. These six

harmonics, along with the velocity traces for six equally spaced θ-locations, are plotted for
∂ψTS

∂ϕ
= 0.06, 0.10, and 0.20 in Figures 4.6 to 4.8. Note that different scales for the x-axis are

used on the different plots to better demonstrate the perturbation features. As in the linear

analyses, there is a connection between the behavior of the perturbations and the slope of

the mean total-to-static pressure rise. For shallower slopes (Figures 4.5 to 4.8), exponentially

growing sinusoidal waves are seen in the axial velocity traces (the corresponding harmonics

grow linearly in the log-scale). As stated in Chapter 2, this behavior of exponentially growing

sinusoidal waves is indicative of modal inception. For a slope of 0.04 in Figure 4.5, the first

harmonic is dominant, followed by the second, third, and so on, showing each harmonic

growing at a different rate. As the slope is increased (Figure 4.6 to 4.8), however, the first

harmonic becomes less dominant.

Figure 4.5: Magnitude of the SFC of axial velocity perturbations for ∂ψTS

∂ϕ
= 0.04 showing

higher growth rates for the higher harmonics.

For slopes of ∂ψTS

∂ϕ
= 0.30 and 0.40, the SFC analysis was done on the pressure traces data

(Figure 4.9 and 4.10), as the disturbances for these cases were clearer in the pressure signals.
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Figure 4.6: SFC and axial velocity traces showing modal inception for ∂ψTS

∂ϕ
= 0.06 with

propagation rate of 70% rotor speed.
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Figure 4.7: SFC and axial velocity traces showing modal inception for ∂ψTS

∂ϕ
= 0.10 with

propagation rate of 70% rotor speed.
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Figure 4.8: SFC and axial velocity traces showing second and third harmonics dominating
in modal inception for ∂ψTS

∂ϕ
= 0.20 with propagation rate of 70% rotor speed.
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(The growth rate of the disturbance is equal in both axial velocity and static pressure traces,

as shown in Figure B.2 of Appendix B)

The higher slope cases of Figures 4.9 and 4.10 exhibit different behaviors than found in

Figures 4.5 to 4.8. For a mean pressure rise slope of 0.40, sinusoidal behavior is not seen.

Also, unlike the shallow slope cases where higher harmonics exhibit higher growth rates, all

harmonics grow at approximately the same rate, and spike-like disturbances are observed

in the static pressure traces (Figures 4.9, 4.10). Further, these disturbances reach reverse

flow an order of magnitude more rapidly than those observed in the shallower slope cases

of Figures 4.5 to 4.8. Due to limitations of the computational model in the reverse flow,

there is thus no data available after reverse flow is reached (see Figure 4.10). Also, unlike

the modal cases, there is not an evident dominant harmonic during inception for the higher

slope cases. Lastly, for ∂ψTS

∂ϕ
= 0.3 a spike was observed developing on an exponentially

growing sinusoidal perturbation (see Figure 4.9). Therefore, when looking at the behavior

of the traces, the results for ∂ψTS

∂ϕ
= 0.3, 0.4 and 0.6 indicate spike inception. The gradual

shift from sinusoidal to spike disturbances observed in the TBLOCK calculations implies a

transition regime between the two rotating stall inception routes.

4.3.1 Harmonic Growth Rates

We can obtain the growth rate of the harmonics by the slope of the SFC magnitude as a

function of non-dimensional time, as in Section 3.2. In Figure 4.11 we compare the growth

rate of the first harmonic as a function of pressure rise slope to the theoretical values from

Spakovszky’s analysis (Equation (2.15)). Three regimes are defined. For shallow slopes (0.04

to 0.20), the growth rates closely match the linear analysis. Between slopes of 0.20 and 0.40,

the growth rates begin diverging from the linear model. For the highest slope cases, 0.40 and

0.60, the growth rates of the first harmonic are different than the linear theory by more than

a factor of 3. In this regard we note that the theoretical model is based on the assumption of

small amplitude perturbations. For spikes, however, this is not necessarily the case because
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Figure 4.9: SFC and static pressure traces showing a spike developing over a fourth harmonic
modal wave with propagation rate of 73% rotor speed for ∂ψTS

∂ϕ
= 0.30.
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Figure 4.10: SFC and static pressure traces showing a developing spike for ∂ψTS

∂ϕ
= 0.40.
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the perturbations grow rapidly into reverse flow, which can lead to the bypassing of modal,

sinusoidal behaviors. Therefore, an explanation can be that spike disturbances are large

enough (∆ϕ
ϕ̄

≈ 1) so that the small perturbation assumption of the linear analyses do not

apply.

Figure 4.11: Non-dimensional growth rate of the first harmonic as a function of axisymmetric
pressure rise slope.
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Chapter 5

Summary and Conclusions

5.1 Primary Learnings

The main learnings in this thesis consist of (i) the quantification of the relationship between

the slope of the axisymmetric total-to-static pressure rise characteristic and the rotating stall

inception behavior, (ii) the demonstration that harmonic growth rates from linear analyses

match results from actuator disk model for the modal regime, and (iii) the identification of

the divergence from the linear analysis results in the spike inception regime. The parametric

study, with constant slope pressure rise characteristics, showed regimes where either modes

or spikes would appear. Based on these results, a slope-based criteria is proposed for deter-

mining the growth rate during rotating stall inception, in consistency with results obtained

by Pullan [7][8]. The implication is thus a continuous, mode-spike transition. The following

points apply for the parameters considered to date (Section 4.1.1).

• Modal inception is captured by both the linear analysis and the TBLOCK calculations.

For this study, the modal inception regime is defined to be for total-to-static pressure

rise slopes ∂ψTS

∂ϕ
below 0.2. In this regime the growth rates of the perturbations given

by TBLOCK simulations closely match the two-dimensional linearized analysis, with

exponentially growing sinusoidal waves observed. Also, the growth rate is proportional

49



to the product of the total-to-static pressure rise slope and the harmonic number n.

• Spike-like disturbances were observed when the slope of the total-to-static pressure

rise curve with respect to flow coefficient were above 0.4. The growth rates of the

spike disturbances measured from the actuator disk computations do not match those

from the two-dimensional linear analysis, and the difference increases for higher slopes

showing the effect of non-linearities in the spike inception process. An in-depth analysis

of this behavior is outside the scope of this thesis.

• The continuum between modes and spikes is implied by the gradual transition from

exponentially growing sinusoidal waves to spike-like disturbances observed from the

TBLOCK calculations as the slope of the total-to-static pressure rise is increased.

5.2 Recommendations for Future Work

Several areas of improvements are needed to solidify the findings of this research. First,

additional input parameter variations are essential to assess the generality of the results

presented. It would be useful to study the effect of different angle variation magnitudes

(RMS) or structures on the mode-spike transition, as the inlet flow angle variation remained

unchanged for the analysis presented. Changing the blade passage inertia parameter (λ) and

the incorporation of first order temporal lags in the loss parameter should also be considered

to help understand what are the important factors in defining the mode-spike transition.

A sensitivity study on the TBLOCK temporal grid resolution (i.e number of explicit

time steps per rotor revolution) should be carried out to test the consistency of the observed

mode-spike transition with changes in computational settings. The development of modal

and spike disturbances occur at different time scales, and higher temporal resolutions may

be needed to capture spike inception accurately.

Finally, the source of disagreement between Stenning and Spakovszky analyses should

be investigated (see Appendix A). For the modal cases, the computed rotation rates given
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by TBLOCK were close to 70% of rotor speed, in agreement with values obtained from the

Stenning formulation in Appendix A (see Figure A.2). Spakovszky’s linear analysis, however,

yields rotation rates of around 30% rotor speed [3]. The cause of the discrepancy is currently

being addressed within the collaboration between the MIT Gas Turbine Laboratory and the

University of Cambridge Whittle Lab.
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Appendix A

Stenning Small Perturbation Analysis

Consider the two – dimensional flow in Figure A.1 , with an isolated rotor bounded by

upstream and downstream infinite length ducts. Stations 1 and 2 are at the upstream and

downstream sides of the cascade, with x = 0 at the rotor leading edge. The flow upstream is

incompressible, irrotational, and inviscid. The mean or "background" flow enters the blade

row with zero inlet swirl (α1 = 0) and leaves the blade row at a constant relative exit flow

angle β2. Upstream of the cascade, we consider the development of small perturbations and

Figure A.1: Two - dimensional isolated rotor model as presented in Stenning’s analysis.
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describe the flow variables as

wx = w̄x + u, (A.1)

wy = w̄y + v, (A.2)

p = p̄+ δp, (A.3)

where wx and wy are the x and y components of the relative velocity w, and p is the static

pressure. Far upstream of the rotor (x→ −∞) perturbations are negligible, and the flow is

steady and uniform:

wx = w̄x, (A.4)

wy = w̄y, (A.5)

p = p̄. (A.6)

The quantities u, v, and δp are the perturbations of the axial velocity, tangential velocity,

and static pressure. For irrotational flow, we can define a velocity perturbation potential, φ,

for the upstream flow field such that

u =
∂φ

∂x
, (A.7)

v =
∂φ

∂y
. (A.8)

The continuity equation is
∂u

∂x
+
∂v

∂y
= 0, (A.9)

and the equation for the potential is Laplace’s Equation:

∂2φ

∂x2
+
∂2φ

∂y2
= 0. (A.10)
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A solution for the perturbation potential in Cartesian coordinates is

φ(x, y, s, t) =
∞∑
n=1

Ane
st̄e

n
R
(x+iy), (A.11)

where s = σn − iωn are the eigenvalues of the isolated rotor system, t̄ = Ut
R

the non-

dimensional time using the rotor speed U and radius R, and An the amplitude of the n-th

component of the Fourier series.

For the n-th harmonic, the eigenvalues σn and ωn correspond to the non-dimensional

growth and rotation rates, respectively. The linearized x-momentum equation gives a relation

between the velocity and static pressure perturbations :

(
∂φ

∂t

)
1

+ w̄x

(
∂φ

∂x

)
1

+ w̄y

(
∂φ

∂y

)
1

= −δp1
ρ
. (A.12)

We define a pressure rise coefficient such that

cp = f(tan β1) =
p2 − p1
1
2
ρw2

1

, (A.13)

with

tan β1 =

(
wy
wx

)
1

. (A.14)

Assuming that the perturbations are small such that u, v << w̄x, w̄y and δp << 1
2
ρw2, we

linearize Equation (A.13) as the average value plus perturbation in upstream flow angle:

cp = c̄p +
∂c̄p

∂ tan β̄1
δ (tan β1) . (A.15)

In Equation (A.15):

δ (tan β1) =
w̄xv1 − w̄yu1

w̄2
x

. (A.16)

Using Equations (A.13) and (A.15) gives the following relation describing the static pressure
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change across the rotor:

δp2
ρ

− δp1
ρ

= c̄p (w̄xu1 + w̄yv1) +
1

2
w̄2

1

∂c̄p
∂ tan β̄1

δ (tan β1) . (A.17)

There is zero upstream swirl for the mean flow, so the mean flow coefficient ϕ is a function

of inlet flow angle only

ϕ =
w̄x
U

= −w̄x
w̄y

= − 1

tan β̄1
. (A.18)

Stenning assumed that δp2 << δp1. If so, Equations (A.17) and (A.11) can be substituted

in Equation (A.12) to give the real and imaginary parts of the eigenvalue

Real: sr = n

(
−(1− c̄p)ϕ+

1

2 cos2 β̄1

∂c̄p
∂ tan β̄1

)
, (A.19)

Imaginary: si = n

(
−(1− c̄p)−

ϕ

2 cos2 β̄1

∂c̄p
∂ tan β̄1

)
. (A.20)

It is convenient to express Equations (A.19) and (A.20) in terms of the mean total-to-static

pressure rise characteristic ψTS:

ψTS = f(ϕ) =
p2 − pt1
ρU2

. (A.21)

The mean pressure rise c̄p and total-to-static characteristic ψTS are connected through the

relation

c̄p =
2ψTS + ϕ2

1 + ϕ2
. (A.22)

The derivative of the mean pressure rise coefficient with respect to the tangent of β̄1 can be

expressed using the derivative of c̄p with respect to the flow coefficient ϕ

∂c̄p
∂ tan β̄1

=
1

tan2 β̄1

∂c̄p
∂ϕ

. (A.23)
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Therefore, from Equations (A.22) and (A.23)

∂c̄p
∂ tan β̄1

= 2 cos2 β̄1

(
∂ψTS
∂ϕ

− ϕ sin2 β̄1 (ψTS − 1)

)
. (A.24)

The eigenvalue solutions are given below as a function of the total-to-static pressure rise

coefficient, ψTS, and the mean flow coefficient ϕ in Equations (A.25) and (A.26). To express

si in the absolute frame, we add the the non-dimensional rotor speed to Equation (A.20).

sr = n

(
∂ψTS
∂ϕ

)
, (A.25)

si = n

(
2ψTS −

∂ψTS
∂ϕ

ϕ

)
. (A.26)

Equations (A.25) and (A.26) were obtained assuming negligible downstream pressure per-

turbations. To include the downstream effects, an expression for δp2 in Equation (A.17) is

also needed. For constant exit flow angle β2, the downstream pressure perturbations are

given by
∂u1
∂t

= −1

ρ

∂δp2
∂x

. (A.27)

The static pressure perturbations are also a solution of Laplace’s equation and δp2 can be

written as

δp2 =
∞∑
n=1

Best̄e
n
R
(x+y). (A.28)

Using Equations (A.28) and (A.11) in the downstream pressure condition, re-evaluating

Equation (A.17), and solving for s, the growth and rotation rates of the n-th harmonic

(including downstream perturbations) become

σn,Stenning
n

=
1

2

(
∂ψTS
∂ϕ

)
, (A.29)

ωn,Stenning
n

=
1

2

(
2ψTS −

∂ψTS
∂ϕ

ϕ+ 1

)
. (A.30)
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Figure A.2: Analytical non-dimensional rotation rates compared with TBLOCK simulation
results for different total-to-static pressure rise slopes.

It is noted that, by neglecting the blade passage inertia term λ, Equation (2.15) for the

growth rates from Spakovszky’s analysis reduces to Equation (A.29). However, the ideal

pressure rise term present in Equation (2.16) does not appear in Equation (A.30) since, for

Stenning’s analysis, there is no mention or consideration of the pressure loss across the blade

row. Neglecting the inertia term λ, Spakovszky’s solution for the disturbance rotation rate

of an isolated rotor becomes

ωn,Spakovszky
n

=
1

2

(
2ψITS − ϕ

∂ψTS
∂ϕ

)
(A.31)

The measured disturbance rotation rates from the TBLOCK cases and the Stenning analyses

are plotted in Figure A.2. The two agree well for pressure rise slopes below 0.2. This was

first pointed out by Grimshaw [8] (in communications between the Whittle Lab and the

Gas Turbine Lab). For ∂ψTS

∂ϕ
> 0.2, the TBLOCK rotation rates diverge from the Stenning

analytical solution, with behavior similar to that seen in Figure 4.11.
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Appendix B

TBLOCK Actuator Disk Solver

B.1 Compressible Flow Routine

Across the actuator disk, mass, radial momentum, and rothalpy is conserved, so the average

quantities become

ρVx = (ρVx)1 = (ρVx)2, (B.1)

V r = Vr1 = Vr2 , (B.2)

T trel = (Ttrel)1 = (Ttrel)2, (B.3)

where Ttrel is the relative stagnation temperature. On the upstream side, the entropy s1

and tangential velocity Vθ1 are extrapolated from the Euler equation solutions. An iterative

problem for upstream density ρ1 is set to converge the upstream side quantities. Starting

with an initial guess for density ρg, the axial velocity is

Vx1 =
ρVx
ρg

. (B.4)
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From velocity triangles, the relative tangential velocity is

wθ1 = Vθ1 − Ωr, (B.5)

where r is the local radius and Ω is the specified rotational speed of the disk. The static

temperature is computed from

T1 = T trel −
V 2
x1

+ w2
θ1
+ V

2

r

2Cp
. (B.6)

For Equation (B.6), Cp is the heat capacity of air at room temperature. Using a reference

temperature Tref, reference pressure Pref, and the ideal gas constant Rair, the static pressure

is given from

P1

Pref
= exp

Cp log
(
T1
Tref

)
− s1

Rair
. (B.7)

The upstream density is re-evaluated using the ideal gas law:

ρ1 =
P1

RairT1
. (B.8)

If the difference between ρ1 and ρg is not within the accepted tolerance, the current ρ1 is

taken as the next guess, and Equations (B.4) to (B.8) are solved again. This process is

repeated until satisfactory convergence is reached. Then, the upstream relative flow angle

β1 is computed with

β1 = tan−1

(
wθ1
Vx1

)
+∆β1. (B.9)

where ∆β1 is an input local disturbance rotating at disk frequency Ω and varying across the

circumference. Using the computed local β1, the loss is interpolated from the input ζ = f(β1)

curve. The downstream entropy is thus given by

s2 = s1 + ζ
w2

1

2T1
. (B.10)
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With s2, the downstream pressure, temperature, and velocities are found using the same

iterative problem for density as in the upstream side. After ρ2 is solved, the downstream

static pressure is modified by an unsteady term representing the acceleration in the blade

passage defined as

∆Pinertia = −
(
λρU2

) ∂ϕ
∂τ
, (B.11)

where λ is the inertia parameter as defined in Equation (2.1). The derivative ∂ϕ
∂τ

is estimated

using axial velocities from previous time steps. The procedure presented in this section is

evaluated for all the circumferential and radial nodes of the actuator disk.

B.2 Mesh Geometry

In this work we use a high hub-to-tip ratio mesh ( rtip
rhub

= 0.9999) with 7 radial nodes and 101

circumferential (or tangential) nodes. The 7 radial nodes give a cell height approximately

half of the compressor blade pitch1 and set the radial and circumferential extents to be

roughly equal. The geometry was constructed by taking an annular disk of rtip
rhub

= 0.75 and

converting it into a quasi two-dimensional cascade of rtip
rhub

= 0.9999, as in Figure B.1.

Figure B.1: Actuator disk mesh for quasi two-dimensional calculations.

1Taken from compressor rig measurements at the University of Cambridge [7]
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The radial span, circumference, and rotational speed were conserved between the annular

and high hub-to-tip ratio geometries such that the resulting quasi two-dimensional geometry

has an equivalent fluid inertia. Three-dimensional variations in pressure and flow coefficient

are suppressed for the high hub-to-tip geometry to examine stall inception in a quasi two-

dimensional framework and compare with a linear model.

B.3 Pressure and Velocity Perturbations

From the TBLOCK simulations, we can obtain data on pressure and velocity signals at all

the circumferential points of the actuator disk tip region. Therefore, we can apply the spa-

tial Fourier decomposition from Section 3.2 to both the pressure and velocity disturbances.

Figure B.2 shows an example, where the first six harmonics for the ∂ψTS

∂ϕ
= 0.06 case (see

Chapter 4) are plotted for the SFC of the pressure and axial velocity disturbances. While

a higher degree of noise is observed in the pressure SFC, the corresponding harmonics have

identical growth rates in both pressure and axial velocity traces, Therefore, we can obtain

the same information when applying the SFC analysis to either one.
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Figure B.2: Magnitude of the SFC of pressure and axial velocity perturbations for ∂ψTS

∂ϕ
=

0.06. After 65 revolutions, the harmonics behave in a non-linear manner due to the large
amplitudes reaching reverse flow, and the simulation stops shortly after.
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Appendix C

Isolated Rotor Eigenvalues for

Moore-Greitzer Pressure Rise Curve

For the Moore-Greitzer formulation in Equation (2.17), the slope of the mean total-to-static

pressure rise can be computed directly by taking the derivative of the cubic ψTS with respect

to ϕ. Applying Equation (2.15) with λ = 0, the growth rates for the first four harmonics are

plotted in Figure C.1 along with the slope of the mean cubic ψTS. In Figure C.2, the rotation

rate ω1 is also plotted using the above parameters for Equation (2.16). This is shown as an

example for the computation of the eigenvalues for a given axisymmetric curve.
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Figure C.1: Non-dimensional growth rates of the first 4 pre-stall harmonics for Moore-
Greitzer cubic characteristic based on Spakovszky’s isolated rotor analysis.
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Figure C.2: Non-dimensional rotation rate for Moore-Greitzer cubic characteristic based on
Spakovszky’s isolated rotor analysis.
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