
Reliable Robotic Perception: From Outlier-Robust

Estimation to Task-Aware Runtime Monitoring

by

Pasquale Antonante
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© Pasquale Antonante 2024. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to 
exercise any and all rights under copyright, including to reproduce, preserve, distribute and publicly 

display copies of the thesis, or release the thesis under an open-access license.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Aeronautics and Astronautics
January 12, 2024

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Luca Carlone, Thesis Supervisor

Associate Professor of Aeronautics and Astronautics

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marco Pavone

Associate Professor of Aeronautics and Astronautics, Stanford University

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chuchu Fan

Assistant Professor in the Department of Aeronautics and Astronautics

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jonathan P. How

R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee



2



“Tutta la nostra conoscenza ha origine nelle nostre percezioni.”

—Leonardo Da Vinci

3



4



Reliable Robotic Perception: From Outlier-Robust

Estimation to Task-Aware Runtime Monitoring

by

Pasquale Antonante

Submitted to the Department of Aeronautics and Astronautics
on January 12, 2024, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Reliable perception is a key prerequisite for safe operation of robots and autonomous
vehicles. The future of the field relies on public trust and provable correctness of
behavior in real-world scenarios. Though commonly used, testing and simulation
alone are insufficient to ensure correctness and do not provide sufficient evidence
for safety certification. The current literature lacks a system-wide framework to
formally verify the safety requirements of the perception system of an autonomous
vehicle. Moreover, current perception algorithms tend to fail in the presence of many
outliers and require extensive parameter tuning. This thesis presents a comprehensive
exploration of outlier-robust estimation algorithms, perception monitoring, and risk
assessment to enhance the robustness and safety of robots and autonomous vehicles.

The first part of the thesis focuses on geometric perception, which is the task
of estimating geometric models (e.g., poses) from sensor measurements (e.g., Li-
DAR scans). Geometric perception is plagued by the presence of outliers —spurious
measurements— that compromise the accuracy of the estimated geometric model.
Computing robust estimates in the face of outliers has been a central topic in com-
puter vision and robotics. In this thesis I introduce two unifying formulations for
outlier-robust estimation, and investigate fundamental limits, practical algorithms,
and applications. In particular I present two outlier-robust estimation algorithms
(together with two variations that are parameter-free), that are able to robustly esti-
mate geometric models in the presence of a high percentage of outliers.

The second part of the thesis focuses on task-aware runtime monitoring of percep-
tion systems in high-stakes robotics applications such as autonomous vehicles. Safety
and performance are key enablers for autonomous driving: on the one hand we want
our autonomous vehicles to be safe, while at the same time their performance (e.g.,
comfort or progression) is key to adoption. In this thesis I formalize the problem
of task-aware runtime monitoring and present a framework that uses the diagnostic
information present in the perception system to detect and identify faults at runtime,
while assessing the risk they pose to the autonomous vehicle.

5



Thesis Supervisor: Luca Carlone
Title: Associate Professor of Aeronautics and Astronautics

Thesis Committee Member: Marco Pavone
Title: Associate Professor of Aeronautics and Astronautics, Stanford University

Thesis Committee Member: Chuchu Fan
Title: Assistant Professor in the Department of Aeronautics and Astronautics

6



Acknowledgments

Research is a journey of daily learning and innovation, and it’s the people I’ve worked

with who have truly brought this journey to life. Their support and guidance have

been invaluable, and I would like to thank them for this.

First of all, I would like to thank my advisor, Luca Carlone. I’m grateful not only

for the opportunity he gave me to pursue a Ph.D. at MIT under his guidance, but

also for his unwavering support both in academic and personal aspects of my life.

I’ve learned a lot from Luca, he taught me everything I know about robotics, and

has been a cornerstone in my growth. The conversations we had over the years have

always been a source of inspiration and confidence, highlighting his qualities as an

exceptional leader and mentor. I am more than lucky to be one of his students.

This work was greatly influenced by the people I collaborated with, especially

my thesis committee members, Marco Pavone and Chuchu Fan. Their guidance was

instrumental in navigating the world of robotics and autonomous vehicles. They

always found time to meet with me and guide me through the challenges I faced.

Chuchu taught me a lot about formal methods, a field I barely knew before meeting

her. Her patience and expertise opened new horizons for me, for which I am immensely

grateful. I want to thank Marco not only for having a central role in shaping this

research, but also for the incredible time I spent at NVIDIA. His support was crucial

for me to get the opportunity to work at NVIDIA, and I am very grateful for that.

I would like to thank my collaborators: Vasileios Tzoumas, Heng Yang, Sushant

Veer, Xinshuo Weng, Yulong Cao, and Karen Leung. Their dedication in tackling

challenging problems, whether in code or theory, was a constant source of motivation

for me. I would also like to thank the entire MIT SPARK Lab. The research lab

has grown a lot over the past few years, and it has been a humbling experience for

me to see it grow and thrive. I will miss the time spent with the other students, the

inspiring conversations, and the fun we had together.

A special acknowledgment is due to my parents. Their support in my decision to

leave Italy and pursue my dreams, despite the difficulty of separation, is a testament

7



to their unconditional love. I thank them for their sacrifices and for always believing

in me.

Similarly, I thank my wife’s family –Elena, Elisa, and Dunia– for their unwavering

support and for welcoming me into their family with warmth and love.

And I want to thank Yi, who has been incredibly supportive and understanding.

I’m really lucky to have him as a co-founder of the company we’ll be building over

the years to come.

Finally, my deepest appreciation goes to my wife, Sara. She is an incredible person

and has been a pillar in my life. She has shown an incredible amount of patience and

strength, and I am grateful for every single moment we have spent together. I’ve been

very fortunate to have her by my side, and I’m excited to share what is coming next.

My Ph.D. research has been partially funded by the NSF CAREER award “Certifi-

able Perception for Autonomous Cyber-Physical Systems”, MathWorks, and NVIDIA.

8



Contents

List of Figures 15

List of Tables 23

1 Introduction 25

1.1 Outlier-Robust Estimation . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Fault Detection and Identification . . . . . . . . . . . . . . . . . . . . 29

1.3 Task-Aware Perception Monitor . . . . . . . . . . . . . . . . . . . . . 31

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Outlier-Robust Estimation 39

2.1 Generalized MC and TLS Formulations . . . . . . . . . . . . . . . . . . 39

2.1.1 Generalized Maximum Consensus (G-MC) . . . . . . . . . . . . 40

2.1.2 Generalized Truncated Least Squares (G-TLS) . . . . . . . . . 41

2.1.3 Probabilistic Justification of G-MC and G-TLS . . . . . . . . . . 42

2.1.4 Relationship Between G-MC and G-TLS . . . . . . . . . . . . . . 44

2.2 Inapproximability of G-MC and G-TLS . . . . . . . . . . . . . . . . . . 45

2.3 Adaptive Trimming (ADAPT) Algorithm . . . . . . . . . . . . . . . . . 47

2.3.1 Gentle Start: Greedy Outlier Rejection . . . . . . . . . . . . . 47

2.3.2 Beyond Greedy: ADAPT Algorithm . . . . . . . . . . . . . . . 48

2.4 Graduated Non-convexity (GNC) Algorithm . . . . . . . . . . . . . . . 51

2.4.1 Preliminaries on Graduated Non-convexity . . . . . . . . . . . 51

9



2.4.2 GNC-TLS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Minimally Tuned ADAPT and GNC . . . . . . . . . . . . . . . . . . . . 55

2.5.1 ADAPT-MinT Algorithm . . . . . . . . . . . . . . . . . . . . . . 55

2.5.2 GNC-MinT Algorithm . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Experiments and Applications . . . . . . . . . . . . . . . . . . . . . . 62

2.6.1 Mesh Registration . . . . . . . . . . . . . . . . . . . . . . . . 64

2.6.2 Shape Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6.3 Pose Graph Optimization (PGO) . . . . . . . . . . . . . . . . . 66

2.7 Extended Literature Review . . . . . . . . . . . . . . . . . . . . . . . 69

2.7.1 Outlier-robust Estimation in Robotics and Computer Vision . 69

2.7.2 Outlier-robust Estimation in Statistics and Control . . . . . . 72

3 Perception Fault Detection and Identification 81

3.1 Fault Detection and Identification . . . . . . . . . . . . . . . . . . . . 81

3.1.1 Perception System: Modules and Outputs . . . . . . . . . . . 81

3.1.2 Fault Detection and Fault Identification . . . . . . . . . . . . 83

3.2 Modeling Fault Identification with Diagnostic Graphs . . . . . . . . . 85

3.2.1 Diagnostic Tests . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.2 Diagnostic Graph . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Algorithms for Fault Identification . . . . . . . . . . . . . . . . . . . 96

3.3.1 Inference in the Deterministic Model . . . . . . . . . . . . . . 96

3.3.2 Inference in the Probabilistic Model . . . . . . . . . . . . . . . 98

3.3.3 Graph Neural Networks for Fault Identification . . . . . . . . 100

3.4 Fundamental Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.1 Deterministic Diagnosability . . . . . . . . . . . . . . . . . . . 105

3.4.2 Probabilistic Diagnosability . . . . . . . . . . . . . . . . . . . 108

3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5.1 Apollo Auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.5.2 Diagnostic Graph . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.5.3 Fault Identification: Implementation Details . . . . . . . . . . 118

10



3.5.4 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.5.5 Fault Detection and Identification Results . . . . . . . . . . . 125

3.6 Extended Literature Review . . . . . . . . . . . . . . . . . . . . . . . 135

3.6.1 State of Practice . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.6.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4 Task-Aware Perception Monitoring 139

4.1 Risk Estimation Formulation . . . . . . . . . . . . . . . . . . . . . . . 139

4.2 Plausible Scene Generation . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3 Estimating Relative Risk . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3.1 Introduction to Copulas . . . . . . . . . . . . . . . . . . . . . 145

4.3.2 Estimating p-RSR using copulas . . . . . . . . . . . . . . . . . 146

4.3.3 Triggering Safety Maneuvers . . . . . . . . . . . . . . . . . . . 148

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 152

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5 Conclusions 163

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A Proofs from Chapter 2 167

A.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.3 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.4 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.5 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.6 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.7 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.8 Proof that MTS is Inapproximable . . . . . . . . . . . . . . . . . . . . 176

11



A.9 Proof that MC is Inapproximable . . . . . . . . . . . . . . . . . . . . 177

A.10 Proof that TLS problem is Inapproximable . . . . . . . . . . . . . . . 178

A.11 Proof of Theorem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B Alternative Justification for TLS 181

C Bound for Pose Graph Optimization 183

D Routines for parameter-free algorithms 187

D.1 ClustersSeparation algorithm . . . . . . . . . . . . . . . . . . . . . . 187

D.2 Chi2Fit algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.3 Bisection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

E Limitations of ADAPT and ADAPT-MinT 191

F Limitations of GNC and GNC-MinT 193

G Limitation of the greedy algorithm 195

H Pose Graph: g2o vs. SE-Sync 199

I Proof of Theorem 49 201

J Risk Estimation Cost Functions 205

K Proof of Lemma 37 207

L Proof of Theorem 38 209

M Proof of Theorem 39 211

N Proof of Theorem 42 213

O Proof of Corollary 43 215

P Using Fault Detection to Prevent Accidents 217

12



References 221

13



THIS PAGE INTENTIONALLY LEFT BLANK

14



List of Figures

1-1 Illustration of task-aware perception failure detection. The

white car is the ego vehicle and the blue car is an external (non-ego)

vehicle. In this example, the non-ego vehicle has not been detected by

the perception system of the ego vehicle. Then, Fig. 1-1a depicts a task-

relevant missing obstacle, as the ego vehicle’s motion plan will likely

collide with the non-ego vehicle due to the misdetection. Fig. 1-1b

depicts a non-task-relevant missing vehicle, as the ego vehicle’s motion

plan will not lead to a collision with the non-ego vehicle, regardless of

the perception failure. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

15



1-2 Task-aware perception monitor overview. The scene contains

the ego vehicle (white car) and two non-ego agents (green and blue

car). The top row shows a scenario in which a perception system fails

to detect an obstacle (the blue car): one of the two sensor modalities

used by the perception system is not able to detect the obstacle (top-

center subfigure), inducing a missing-obstacle failure in the perception

output (top-right subfigure). The bottom row depicts the proposed

task-aware perception monitor. The failure detection and identifica-

tion module detects that sensor 1 is failing (for example using spatio-

temporal information). The plausible scene generator, uses the infor-

mation about the active failures, generates a plausible scene from the

perceived scene. Finally, the task-aware risk estimator computes the

risk associated with the failure. The shaded (green and blue) regions in

the bottom-row scenes represent the uncertainty in the trajectories, as

computed by the non-ego trajectory prediction module. The possible

trajectories induce a distribution of risk costs for each scene, which are

used to estimate the risk associated with a perception failure. If the

risk in the plausible scene is significantly higher than the risk in the

perceived scene, we detect the failure as task relevant. Our detector

uses a statistical tool called copula to estimate the tail dependency

between the two cost distributions. . . . . . . . . . . . . . . . . . . . 33

2-1 (a) TLS, quadratic, and MC cost functions, (b) graduated non-convexity

with control parameter µ for TLS cost function. . . . . . . . . . . . . 52

2-2 Two clusters of non-negative residuals: the low-magnitude ones (blue)

are centered at cleft, the high-magnitude ones (red) at cright = cleft + δ. 56

16



2-3 Qualitative comparison of the proposed robust estimation al-

gorithms. We investigate fundamental limits and practical algorithms

for outlier-robust estimation. We discuss two algorithms, ADAPT and

GNC, that outperform the state of the art (DCS [21] and RANSAC [15]

in the figure) in mesh registration, shape alignment, and pose graph

optimization. Moreover, we propose two variants, ADAPT-MinT and

GNC-MinT, that perform favorably across robotics applications, and do

not require parameter tuning (e.g., kernel size in DCS, or maximum

inlier noise in RANSAC). . . . . . . . . . . . . . . . . . . . . . . . . . 74

2-4 Mesh Registration. Rotation error, translation error, and running

time of the proposed algorithms, compared to RANSAC, on the PASCAL+

“aeroplane-2” dataset [56]. Statistics are computed over 25 Monte

Carlo runs and for increasing percentage of outliers. . . . . . . . . . 75

2-5 Shape Alignment. Rotation error (left), translation error (center),

and running time (right) of the proposed algorithms, compared to

state-of-the-art techniques, on the FG3DCar dataset [59]. Statistics are

computed over 25 Monte Carlo runs and for increasing percentage of

outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2-6 2D SLAM (Grid). Average Trajectory Error (ATE) and running

time of the proposed algorithms compared to state-of-the-art tech-

niques on a synthetic grid dataset for increasing outliers. . . . . . . . 77

2-7 2D SLAM (CSAIL).Average Trajectory Error (ATE) and running time

of the proposed algorithms compared to state-of-the-art techniques on

the CSAIL dataset for increasing outliers. . . . . . . . . . . . . . . . . 78

2-8 3D SLAM (Sphere). Average Trajectory Error (ATE) and running

time of the proposed algorithms compared to state-of-the-art tech-

niques on a synthetic Sphere dataset for increasing outliers. . . . . . . 79

2-9 3D SLAM (Garage). Average Trajectory Error (ATE) and running

time of the proposed algorithms compared to state-of-the-art tech-

niques on the Garage dataset for increasing outliers. . . . . . . . . . . 80

17



3-1 A simple example of a perception system including 3 modules (rectan-

gles) and 3 outputs (circles). Modules are connected by edges describ-

ing which module produces or consumes a given output. The failure

modes of each module (resp. output) are represented by red dots. The

LiDAR-based and the Camera-based obstacle detection modules are

subject to the out-of-distribution sample failure mode (i.e., they saw a

sample far from the training dataset), which might result in misdetec-

tions (e.g., missing obstacles) in their respective outputs. The sensor

fusion module is subject to the misassociation failure mode, which

might result in misdetections in its output. . . . . . . . . . . . . . . 83

3-2 A test comparing two outputs, LiDAR Obstacles and Camera Obstacles 89

3-3 A diagnostic graph for the perception system example in Fig. 3-1. Red

circles represent variable nodes (failure modes) while squares repre-

sent relations. Test-driven Relations are shown in blue, while a priori

relations are shown in black. . . . . . . . . . . . . . . . . . . . . . . 93

3-4 (Left) Example of the LiDAR-based ego-motion estimation system S.

The system is composed by two modules (rectangles), each produc-

ing one output (circles). (Right) The corresponding diagnostic graph,

where red circles represent variable nodes (failure modes) while squares

represent relations (test-driven Relations in blue, a priori relations in

black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3-5 Example of Temporal Diagnostic Graph composed by two identical

sub-graphs. We added temporal relations (both test-driven and a pri-

ori) between the two sub-graphs. . . . . . . . . . . . . . . . . . . . . 96

3-6 Example of conversion of the diagnostic graph in Fig. 3-3 into an undi-

rected graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3-7 Vehicle sensor field-of-view (FOV). LiDAR FOV is shown in green,

the camera FOV in blue and the radar FOV in orange. . . . . . . . . 114

3-8 Vehicle configuration. LiDAR and Camera are mounted on the roof

of the vehicle, while the radar is mounted on the front bumper. . . . 114

18



3-9 Perception system considered in our experiments. Modules are shown

as rectangular blocks, outputs are shown as rounded boxes, while fail-

ure modes are denoted with red dots. . . . . . . . . . . . . . . . . . . 116

3-10 Precision/Recall for regular diagnostic graphs. (Left) Modules, (Right)

Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3-11 Precision/Recall for temporal diagnostic graphs. (Left) Modules, (Right)

Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3-12 PAC-diagnosability bounds for regular diagnostic graphs. (Left) Mod-

ules, (Right) Outputs. Lower is better. . . . . . . . . . . . . . . . . . 128

3-13 PAC-diagnosability bounds for temporal diagnostic graphs. (Left)

Modules, (Right) Outputs. Lower is better. . . . . . . . . . . . . . . . 128

3-14 PAC-diagnosability vs. κ-diagnosability. Average Hamming dis-

tance between the estimated and actual vector f of fault states in a ran-

domly generated 4-diagnosable diagnostic graph with 10 independent

failure modes and Weak-OR tests. The vertical dashed line represents

the deterministic diagnosability bound: if the system is experiencing

less than 4 active failure modes, the fault identification is guaranteed

to be correct (0 Hamming distance). The horizontal dashed line repre-

sents the ceiling of the PAC-diagnosability bound in Eq. (3.23): with

very high probability the average number of mistakes (average Ham-

ming distance) is less than the PAC-diagnosability bound. . . . . . . 130

3-15 Fault detection in diagnostic graphs. (Left) Regular, (Right) Temporal. 131

19



4-1 Depiction of Algorithm 5. The perceived scene, which is subject to

a missed-obstacle failure, is processed by the plausible scene generator

which produces the plausible scene. The two scenes are sampled and

the empirical CDFs of the costs are estimated. The perceived scene

empirical CDF has a low risk since the only vehicle in the scene is

stationary, since it is giving the ego vehicle the right-of-way. However,

the plausible scene has a higher risk since the ego vehicle is now in

a collision path with a moving vehicle. The two CDFs are used to

compute the PAC bounds in Theorem 49. The solid red line represent

the upper bound, the solid green line the lower bound, while the dashed

red line represent the risk threshold γ. Whenever the lower bound is

above γ, the algorithm labels the scenario as high risk. . . . . . . . . 150

4-2 Examples of scenarios and the associated estimated risk. The

top row shows the scenario, where the ego vehicle is represented as a

white box, other vehicles as green boxes, and pedestrians as blue boxes.

A dashed red line indicates the ground truth position and size of an

agent, a solid line instead the one perceived by the ego perception sys-

tem. The bottom row shows the estimated risk for the corresponding

scenario in the top row. The horizontal dashed line represents the risk

threshold γ. The red solid line represents the risk upper bound while

the green line represents the risk lower bound. The vertical dashed

blue line represents the time of the collision. It is worth noting that in

our simulations, the behavior of the ego vehicle and the non-ego agents

does not change after a collision, i.e., the simulation continues running

until the end of the scenario. . . . . . . . . . . . . . . . . . . . . . . 158

4-3 Timing breakdown for the proposed approach using Momentum-

Shaped Distance. The prediction runtime averages at 0.22 s (median

runtime: 0.14 s). The risk estimation runtime averages at 0.07 s (me-

dian runtime: 0.06 s). The total runtime averages at 0.29 s (median

runtime: 0.2 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

20



E-1 A single outlier (point 1) leads ADAPT to the wrong solution. . . . . 192

G-1 An example of Greedy vs. ADAPT. The Greedy algorithm fails to recover

the true solution while the ADAPT algorithm is able to recover from a

wrong choice made in past iterations. . . . . . . . . . . . . . . . . . 197

H-1 Average Trajectory Error and Running time of the proposed algorithms

on 2D SLAM (Grid) with two different non-minimal solvers: g2o and SE-

Sync. The average performance is comparable while g2o offers a better

running time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

I-1 CDF composition bounds. The shaded regions represent the the con-

fidence intervals for the two CDFs, i.e., Φ(n)(x) − ϵ(n, α) ≤ Φ(x) ≤

Φ(n)(x) + ϵ(n, α). The blue and orange regions represent ΦA and ΦB

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

P-1 Example scenario involving a deer crossing the road in front of the ego

vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

P-2 Fault identification results for the example scenario in Fig. P-1. The

car travels from right to left. Initially, the monitor detects no fail-

ure (rightmost, green section). As the ego vehicle gets closer to the

obstacle, the LiDAR-based and camera-based obstacle detectors fail

to detect the deer while the radar-based obstacle detector correctly lo-

cates the obstacle; as a result the fault identification/detection triggers

an alarm (red sections). . . . . . . . . . . . . . . . . . . . . . . . . . 218

P-3 Camera Image for the scenario in Fig. P-1. Blue bounding box is the

ground truth detection. The camera fails to detect the deer crossing

the road (misdetection failure). . . . . . . . . . . . . . . . . . . . . . 219

21



P-4 Two snapshots from the example scenario of Fig. P-1. Shaded areas

represent the sensor field-of-view (FOV): green, blue, and orange rep-

resent the LiDAR, camera, and radar FOVs, respectively. On the left,

the deer is outside the LiDAR FOV (so the LiDAR obstacle detector

is not supposed to detect the obstacle); the radar detects the obstacle,

while the camera fails to detect it even if it is inside its FOV. Since the

corresponding diagnostic test fails, our monitors can detect the failure.

On the right, the deer is outside the radar FOV; in this case, both the

camera and the LiDAR fail to detect the obstacles (even though it is

within their FOVs), hence no diagnostic test fails and our monitor fails

to detect the fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

22



List of Tables

2.1 Robustness of proposed algorithms. Robustness to outliers and

average of median running time of the proposed algorithms. . . . . . 60

3.1 Table of possible outcomes for the Deterministic OR and the proba-

bilistic Noisy-OR version of a test with scope f1 and f2. . . . . . . . . 89

3.2 Scenarios. (Left) Snapshot of the scenario, (Right) Top-view of the

trajectory, color-coded by fault detection results. The motion of the

vehicle is represented by an arrow with the tail of the arrow represent-

ing the start location and the head of the arrow representing the stop

location (the direction of motion is always left-to-right or bottom-to-

top). Fault-free (TN) Fault Detected Correctly (TP)

False Alarm (FP) Missed Fault (FN) . . . . . . . . . . . . . . 121

3.3 Fault identification accuracy. Best accuracy is highlighted in green,

second-best is highlighted in yellow. . . . . . . . . . . . . . . . . . . 125

3.4 Average runtime (“Avg.”) and standard deviation (“Std.”) for fault

identification, in milliseconds. . . . . . . . . . . . . . . . . . . . . . . 130

3.5 Fault detection accuracy. Best accuracy is highlighted in green,

second-best is highlighted in yellow. . . . . . . . . . . . . . . . . . . 131

23



3.6 Algorithm performance breakdown by scenario type (Part 1 of 2) for

temporal diagnostic graphs. The table shows Precision (Prec.), Re-

call (Rec.), and Accuracy (Acc.) for each algorithm and scenario type

for both modules and outputs. The column Tests shows (from top

to bottom) Precision, Recall and Accuracy of diagnostic tests. The

column Failure Types shows the percentage of failures for each fail-

ure mode type, representing, from top to bottom, misclassification,

mispositioning, out-of-distribution sample, misdetection, and misasso-

ciation. Finally, the Scenario Failures column reports the number of

active failure modes that each sample (i.e., diagnostic graph) has as

a percentage of the total number of samples; the horizontal red line

represents the average number of active failure modes. The best is

highlighted in green, the second best in yellow. . . . . . . . . . . . . 133

3.6 Algorithm performance breakdown by scenario type (Part 2 of 2) for

temporal diagnostic graphs. . . . . . . . . . . . . . . . . . . . . . . . 134

4.1 Risk estimation results. The proposed approach outperforms the

other methods in all metrics. In particular, it exhibits the highest

precision while being on par with the most conservative methods in

terms of recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.2 Momentum-Shaped Distance Confusion Matrix. The proposed

approach is able to detect both high-risk and low-risk scenarios reliably,

with very few misclassifications. Among the misclassifications, the

majority are false positives, which is a desirable property for a safety

monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

24



Chapter 1

Introduction

When we imagine the future, we imagine a world where robots seamlessly navigate

alongside humans. This vision hinges on a crucial aspect of evolution: perception.

Human perception is a remarkable product of evolution that has enabled us to survive

and thrive in a complex, unpredictable world. Our early ancestors depended on

accurate and reliable perception of their surroundings in order to find food, avoid

predators, and navigate terrain. While reliable perception was central for human

survival, reliable robotic perception is central for the widespread adoption of robots.

Robots rely on sensors like cameras and LiDARs to capture data about their

surroundings. The perception system then processes the raw sensory data to create a

model of the environment. Despite decades of research advancing the state of the art,

robots still struggle to replicate the ease and reliability of human perception. The

key difference between human and robotic perception lies in the sophistication with

which humans reason about perceptual data.

This thesis tries to make progress towards bridging the gap between human and

robotic perception. Toward this goal we develop general-purpose algorithms to limit

the impact of wrong sensor measurements (outlier-robust estimation) in spatial-

perception problems, we then propose a system-level framework to detect failures

(fault detection and identification) and develop tools to enable autonomous vehicles

(AVs) to assess the risk perception failures pose to the robot and its environment

(task-aware runtime monitoring). Such advances promise to enable safer, more trust-

25



worthy autonomy.

1.1 Outlier-Robust Estimation

Nonlinear estimation is a fundamental problem in robotics and computer vision, and

is the backbone of modern perception systems for localization and mapping [1], ob-

ject pose estimation [2], [3], motion estimation and 3D reconstruction [4], [5], shape

analysis [6], [7], virtual and augmented reality [8], and medical imaging [9], among

others.

Nonlinear estimation can be formulated as an optimization problem, where one

seeks to find the estimate that best explains the observed measurements. A typical

perception pipeline includes a perception front-end that extracts and matches rele-

vant features from raw sensor data (e.g., camera images, lidar point clouds). These

putative feature matches are then passed to a perception back-end that uses nonlinear

estimation to compute quantities of interest (e.g., the location of the robot, the pose

of external objects). In the idealized case in which the feature matches are all correct,

the back-end can perform estimation using a least squares formulation:1

min
x ∈ X

∑
i ∈ M

r2(yi,x), (1.1)

where x is the variable we want to estimate (e.g., a 3D pose), X is its domain (e.g.,

the set of poses), M is the set of given measurements (e.g., pixel observations of

points belonging to the object), yi is the i-th measurement (i ∈M), and r(yi,x) ≥ 0

is the residual error of the i-th measurement, which quantifies how well a given x

fits a measurement yi, (e.g., r(yi,x) = |yi − aT
i x| for the linear, scalar measurement

case). The problem in Eq. (1.1) produces a maximum-likelihood estimate when the

measurement noise is Gaussian, see e.g., [1]. However, despite its apparent simplicity,

it is already hard to solve globally, since the cost function in Eq. (1.1) and the domain

X are typically non-convex in robotics applications [3], [10].

The development of perception systems that can work in challenging real-world

26



conditions requires the design of outlier-robust estimation methods. Perception front-

ends are typically based on image or signal processing methods [11] or learning meth-

ods [12] for feature detection and matching. These methods are prone to produce

incorrect matches, which result in completely wrong measurements yi in Eq. (1.1)

and compromise the accuracy of the solution returned by Eq. (1.1). Computing ro-

bust estimates in the face of these outliers has been a central topic in computer vision

and robotics.

For low-dimensional estimation problems, e.g., object pose estimation from im-

ages or point clouds, researchers have often resorted to combinatorial formulations for

outlier rejection. In particular, a popular formulation is based on consensus maximiza-

tion [13], [14], which looks for an estimate maximizing the number of measurements

explained within a given inlier threshold ϵ (or equivalently, minimizes the number of

outliers):

min
x ∈ X
O ⊆ M

|O| s.t. r(yi,x) ≤ ϵ, ∀i ∈M \O. (1.2)

The Maximum Consensus (MC) problem in Eq. (1.2) is then solved using RANSAC

[15] or branch-and-bound (BnB) [14]. However, RANSAC is non-deterministic, requires

a minimal solver2, and is limited to problems where the estimate can be computed

from a small number of measurements [16]. Similarly, BnB runs in the worst-case in

exponential time and does not scale to large problems.

For high-dimensional estimation problems, e.g., bundle adjustment and SLAM,

researchers have more heavily relied on M-estimation to gain robustness against out-

liers [17]. M-estimation replaces the least-squares cost in Eq. (1.1) with a function ρ

1We use lowercase characters, e.g., x, to denote real scalars or functions, bold lowercase charac-
ters, e.g., x, for real vectors, bold uppercase characters, e.g., A for real matrices, and calligraphic
uppercase characters, e.g., M, for sets (either discrete or continuous); as exceptions, we use the
standard notation R to denote the set of real numbers, and N to denote the set of non-negative
integers. |x| is the absolute value of x, and |M| is the cardinality of M. If x = [x1, x2, . . . , xn],
then ∥x∥1 ≜

∑n
i=1|xi| is x’s Manhattan norm; ∥x∥2 ≜

√∑n
i=1 x

2
i is x’s Euclidean norm; and

∥x∥∞ ≜ max{|x1|, |x2|, . . . , |xn|} is x’s infinity norm.
2A minimal solver in robotic perception is a specialized algorithm designed to solve a specific

problem with the least amount of input data.

27



that is less sensitive to measurements with large residuals:

min
x ∈ X

∑
i ∈ M

ρ(r(yi,x), ϵ), (1.3)

where, for instance, ρ can be a Huber, Cauchy, or Geman-McClure cost [18]. The M-

estimation problem in Eq. (1.3) has the advantage of leading to a continuous (rather

than combinatorial as in MC) optimization problem, which however is still hard to

solve globally due to the typical non-convexity of the cost function and constraint

set X . Typical robotics applications use iterative local solvers to minimize Eq. (1.3),

see [19]–[21]. However, local solvers require a good initial guess (often unavailable in

practical applications) and are easily trapped in local minima corresponding to poor

estimates.

All in all, the literature is currently lacking an approach that simultaneously

satisfies the following design constraints:

(i) is fast and scales to large problems,

(ii) is deterministic,

(iii) can operate without requiring an initial guess.

This gap in the literature is the root cause for the brittleness of modern perception

systems and is limiting the use of perception in safety-critical applications, from self-

driving cars [22], to autonomous aircrafts [23], and spacecrafts [24].

An additional limitation of state-of-the-art robust estimation algorithms is that

they require knowledge of the expected (inlier) measurement noise. This knowledge

is encoded in the parameter ϵ in both Eq. (1.2) and Eq. (1.3). However, in many

problems, characterizing this parameter is time-consuming (e.g., it requires collecting

data in a controlled environment to compute statistics) or is based on trial-and-error

(i.e., requires manual parameter tuning by a human expert). Also, this approach

is not suitable for long-term operation: imagine a ground robot performing life-long

SLAM; after months of operations, the noise statistics may vary (e.g., a flat tire leads

to increased odometry noise), making the factory calibration unusable.

28



1.2 Fault Detection and Identification

While outlier-robust algorithms can make individual perceptual processes more reli-

able, achieving truly dependable autonomy requires a system-level perspective. Mod-

ern perception systems integrate outputs from a complex array of potentially het-

erogeneous perception modules, each susceptible to unique failure modes. Detecting

perception failures before they can cause harm is especially important for safety-

critical systems like autonomous vehicles.

The automotive industry is undergoing a change that could revolutionize mobil-

ity. Self-driving cars promise a deep transformation of personal mobility and have

the potential to improve safety, efficiency (e.g., commute time, fuel), and induce a

paradigm shift in how entire cities are designed [25]. One key factor that drives

the adoption of such technology is the capability of ensuring and monitoring safe

operation. The American Automobile Association (AAA) reports [26] that vehicles

with autonomous driving features consistently failed to avoid crashes with other cars

or bicycles. An analysis by Business Insider [27] found that as autonomous vehicle

companies increased testing, the number of accidents involving AVs surged. This is

a clear sign that the industry needs a sound methodology, embedded in the design

process, to guarantee safety and build public trust.

Safe operation requires AVs to correctly understand their surroundings, in order

to avoid unsafe behaviors. In particular, AVs rely on onboard perception systems

to provide situation awareness and inform the onboard decision-making and control

systems. The perception system uses sensor data and prior knowledge (e.g., high-

definition maps) to create an internal representation of the surrounding environment,

including estimates for the positions and velocities of other vehicles and pedestrians,

or the presence of traffic signs and traffic lights. Modern perception systems use both

data-driven and classical methods. While classical methods are well-rooted in signal

processing and estimation theory and have been extensively studied in robotics and

computer vision, they may still have unexpected failure modes in practice, e.g., local

convergence in the Iterative Closest Point for 3D object pose estimation [2] or prema-

29



ture termination of robust estimation techniques as RANSAC [15], among many other

examples. The use of data-driven methods further exacerbates the problem of ensur-

ing correctness of the perception outputs, since current neural network architectures

are still prone to creating unexpected and often unpredictable failure modes [28].

Ensuring and monitoring the correct operation of the perception system of an AV

is a major challenge. Industry heavily relies on simulation and testing to provide

evidence of safety. Although there is an increasing interest in the area of safety

certification and runtime monitoring, the literature lacks a system-level framework

to organize and reason over the diagnostic information available at runtime for the

purpose of detecting and identifying potential perception-system failures. Reliable

runtime monitoring would enable the vehicle to have a better understanding of the

conditions it operates in, and would give it enough notice to take adequate actions

to preserve safety (i.e., switch to fail-safe mode or hand over the control to a human

operator) in case of severe failures. In this thesis, we use the term “failure” (or

“fault”) in a general sense, to also denote failures of the intended functionality [29],

[30]. For instance, a neural network can execute correctly (e.g., without errors in

the implementation or in the hardware running the network) but can still fail to

produce a correct prediction for out-of-distribution inputs. Then, fault detection is

the problem of detecting the presence of a fault in the system, while fault identification

is the problem of inferring which components of the system are faulty. The latter is

particularly important since:

(i) not every fault has the same severity, hence understanding which component is

failing may lead to different responses,

(ii) a designer can use fault statistics to decide to focus research and development

efforts on certain components,

(iii) a regulator can use information about specific faults to trace the steps or even

determine responsibilities after an accident.

Most of the existing literature on runtime monitoring (which we review more

extensively in Section 3.6) has focused on detecting failures of specific modules or

30



specific algorithms, like localization [31], [32], semantic segmentation [33], or obstacle

detection [34]. These methodologies often use a white-box approach (the monitor

knows how the monitored algorithm works to some extent), and are sometimes com-

putationally expensive to run [33]. However, the literature still lacks a framework

for system-level monitoring of perception systems, which is able to detect and iden-

tify failures in complex systems involving both classical and data-driven (possibly

asynchronous, multi-modal)3 perception algorithms.

1.3 Task-Aware Perception Monitor

Despite the fast-paced progress in robotics and autonomous systems, perception mod-

ules in autonomous vehicles still encounter a spate of failure modes, which can compro-

mise the safety of passengers, other drivers, and pedestrians. However, these failures

occur frequently enough that reverting to a fallback safety maneuver for each such

detection is prohibitively detrimental to the performance of the AV. In this thesis, we

work towards developing a task-aware perception monitor that only triggers when the

perception failure poses a significant risk to the AV’s motion plan, thereby, promot-

ing safe yet performant driving. The key insight is that the severity of a perception

failure depends not only on the failure itself, but also on the ego-vehicle motion plan.

For example, if the perception system incorrectly detects the position of a distant

vehicle, the error does not pose a significant risk to the AV’s motion plan and does

not require a safety maneuver. Another, more nuanced example that highlights the

importance of developing a task-aware perception monitor is illustrated in Fig. 1-1.

The ego-vehicle misses an obstacle in the adjacent lane, but if the ego-vehicle’s motion

plan does not lead to a collision with the missing obstacle, the perception failure is

not task-relevant and thus less risky.

We envision a task-aware perception monitor that embodies three main compo-

nents, as shown in Fig. 1-2. First, the perception failure detection and identification

3Modern perception systems rely on data from multiple sensors and are implemented in multi-
threaded architectures, where each algorithm may be executed at a different rate.

31



(a) Task-relevant failure (b) Non-task-relevant failure

Figure 1-1: Illustration of task-aware perception failure detection. The white
car is the ego vehicle and the blue car is an external (non-ego) vehicle. In this example,
the non-ego vehicle has not been detected by the perception system of the ego vehicle.
Then, Fig. 1-1a depicts a task-relevant missing obstacle, as the ego vehicle’s motion
plan will likely collide with the non-ego vehicle due to the misdetection. Fig. 1-1b
depicts a non-task-relevant missing vehicle, as the ego vehicle’s motion plan will not
lead to a collision with the non-ego vehicle, regardless of the perception failure.

module identifies perception faults (developed in Chapter 3) and isolates the respon-

sible modules and failure modes. Second, the plausible scene generator leverages the

knowledge of the perception failure modes, provided by the failure identification, to

construct a probabilistic (possibly multi-modal) description of plausible alternative

models for the AV’s surroundings that supports the actual world scene.4 Finally, a

task-aware risk estimator (developed in Chapter 4) assesses the increased risk to the

AV’s motion plan due to the perception failure. While there are several recent works

on perception failure detection [34]–[37], and also some work on plausible scene gen-

eration [38]–[40], comparably much less work on task-aware risk estimation. In this

thesis we will discuss the mechanics of plausible scene generation given a perception

failure mode, and then turn our attention to the task-aware risk estimator.

4The probabilistic description of plausible AV surroundings might be highly stochastic and multi-
modal. Planning in the plausible scene would be impractical and possibly not conducive to a good
plan; however, we can still leverage it to estimate the risk of the perception failures to the AV using
the approach we develop in this thesis.

32



Ground Truth Scene Perception System Perceived Scene

Sensor Modality 1

Plausible Scene
Generator

Failures Detection and
Identification

Missing
Obstacle

Task-Aware
Risk Estimator

Trajectory Prediction

P
er

ce
iv

ed
P

la
us

ib
le

Risk Estimation

Risk Cost

Risk Cost

Plausible Scene

Perception Monitor

Risk-Informed
Perception 

Failures

Risk

Missing
ObstacleSensor Modality 2

Sensor Modality 1 Sensor Modality 2

Figure 1-2: Task-aware perception monitor overview. The scene contains the
ego vehicle (white car) and two non-ego agents (green and blue car). The top row
shows a scenario in which a perception system fails to detect an obstacle (the blue
car): one of the two sensor modalities used by the perception system is not able to
detect the obstacle (top-center subfigure), inducing a missing-obstacle failure in the
perception output (top-right subfigure). The bottom row depicts the proposed task-
aware perception monitor. The failure detection and identification module detects
that sensor 1 is failing (for example using spatio-temporal information). The plausible
scene generator, uses the information about the active failures, generates a plausible
scene from the perceived scene. Finally, the task-aware risk estimator computes the
risk associated with the failure. The shaded (green and blue) regions in the bottom-
row scenes represent the uncertainty in the trajectories, as computed by the non-ego
trajectory prediction module. The possible trajectories induce a distribution of risk
costs for each scene, which are used to estimate the risk associated with a perception
failure. If the risk in the plausible scene is significantly higher than the risk in the
perceived scene, we detect the failure as task relevant. Our detector uses a statistical
tool called copula to estimate the tail dependency between the two cost distributions.

33



1.4 Contributions

This thesis advances the field of safe and reliable robotic perception. We achieve this

goal through three key contributions.

Outlier-Robust Estimation

In Chapter 2 we advance our understanding of the fundamental computational limits

of robust estimation, and design outlier-robust estimation algorithms that:

(i) are general-purpose and usable across many estimation problems,

(ii) scale to large problems with thousands of variables,

(iii) are deterministic,

(iv) do not rely on an initial estimate,

(v) can potentially work without manual fine-tuning and be resilient to changes in

the measurement noise statistics.

General Formulations and Inapproximability. Section 2.1 introduces two

unifying formulations for outlier-robust estimation, Generalized Maximum Consensus

(G-MC) and Generalized Truncated Least Squares (G-TLS). G-MC is a combinatorial

formulation and generalizes the popular MC in Eq. (1.2) and the proposed Minimally

Trimmed Squares (MTS) [41]; G-TLS is a continuous-optimization formulation and

generalizes the truncated least squares used in M-estimation. We provide probabilistic

interpretations for both formulations: G-MC solves a likelihood-constrained estimation

problem, while G-TLS is a maximum likelihood estimator.

We also provide necessary and sufficient conditions for G-MC and G-TLS to return

the same solution. We demonstrate that, in general, the conditions may not be

satisfied, and G-TLS can reject more measurements than G-MC. Notwithstanding, we

provide counterexamples showing that, while G-TLS can reject more measurements, it

may lead to more accurate estimates.

34



Section 2.2 proves that G-MC and G-TLS are inapproximable even by quasi-polynomial

algorithms, which are slower than polynomial.5 The result holds true subject to a

believed conjecture in complexity theory, NP /∈ BPTIME(mpoly logm), which is similar

to the widely known NP ̸= P.6 The result captures the hardness of G-MC and G-TLS

for the first time: even in simplified cases where one knows the number of outliers

to reject or that the residual error for the inliers is zero, it is still impossible to com-

pute an approximate solution for G-MC and G-TLS within a prescribed approximation

bound. This result strengthens recent inapproximability results for MC that only rule

out polynomial time algorithms [13].

General-purpose and Minimally Tuned Algorithms. Our second contribu-

tion is to discuss two general-purpose algorithms. Section 2.3 presents a combinatorial

approach, named Adaptive Trimming (ADAPT), which is suitable for G-MC. The algo-

rithm works by iteratively removing measurements with large errors, but contrarily to

a naive greedy algorithm, it revisits past decisions and checks for convergence over a

sequence of iterations, leading to more accurate estimates. Section 2.4 introduces the

Graduated Non-Convexity (GNC) approach of [43], which is a continuous-optimization

approach to solve G-TLS. Both algorithms have linear runtime, are deterministic, and

do not require an initial guess.

Section 2.5 presents outlier-robust estimation algorithms that are able to automat-

ically adjust their parameters to perform robust estimation without prior knowledge

of the inlier noise statistics. We present two algorithms, ADAPT-MinT and GNC-MinT,

where MinT stands for “Minimally Tuned”, that automatically adjust the noise bounds

in ADAPT and GNC without the need for manual fine-tuning. This is in stark contrast

with the techniques in the literature, whose correct operation relies on the knowledge

of the maximum inlier noise (cf. parameter ϵ in Eq. (1.2) and Eq. (1.3)). We call

these algorithms “Minimally Tuned” (rather than Parameter-Free) since they still

5An algorithm is called quasi-polynomial, if its runtime is k12
(logm)k2

, where k1 and k2 are con-
stants, and m is the algorithm’s input size. Evidently, quasi-polynomial time algorithms are slower

than polynomial, since k1 2(logm)k2
> k1 2k2 logm = k1m

k1 .
6NP /∈ BPTIME(mpoly logm) means there exists no randomized algorithm that outputs solutions

to problems in NP with probability 2/3, after running for O(m(logm)k) time, for an input size m and
a constant k [42].

35



involve parameters, which however only depend on the type of application, rather

than the problem instance (e.g., the same parameter values are used to solve any

SLAM problem).

System-level Monitoring of Perception Systems

We then propose a methodology for runtime monitoring (in particular, fault detection

and identification) of complex perception systems.

Diagnostic Graph. Our first contribution in this context is to formalize the

problem (Section 3.1) and to present a framework (Section 3.2) to organize heteroge-

neous diagnostic tests of a perception system into a graphical model, the diagnostic

graph. In particular, we present different mathematical models (including both de-

terministic and probabilistic models) to describe common diagnostic tests. Then, we

introduce the concept of diagnostic graph, and extend it to capture asynchronous in-

formation over time (leading to temporal diagnostic graphs). Our framework adopts

a black-box approach, in that it remains agnostic to the inner workings of the per-

ception algorithms, and only focuses on collecting results from diagnostic tests that

check the validity of their outputs.

Algorithms for Fault Detection and Identification. Our second contribu-

tion (Section 3.3) is a set of algorithms that use diagnostic graphs to perform fault

detection and identification. For the deterministic case, we provide optimization-

based methods that find the smallest set of faults that explain the test results. For

the probabilistic case, we transform a diagnostic graph into a factor graph and per-

form inference to find the set of faulty modules. Finally, we propose a learning-based

approach based on graph neural networks that learns to predict failures in a diagnostic

graph.

Fundamental Limits. Our third contribution (Section 3.4) is to investigate fun-

damental limits and provide deterministic and probabilistic guarantees on the fault

detection and identification results. In the deterministic case, we draw connections

between perception system monitoring and the literature on diagnosability in multi-

processor systems, and in particular the PMC model [44]. This allows us to establish

36



formal guarantees on the maximum number of faults that can be uniquely identi-

fied in a given perception system, leading to the notion of diagnosability.7 In the

probabilistic case, we develop Probably Approximate Correctly (PAC) bounds on the

expected number of mistakes our runtime monitors will make.

Task-Aware Risk Estimation

We finally propose a novel approach to risk assessment in AV perception failures. The

task-aware risk estimator we develop in this thesis compares the risk to the AV’s mo-

tion plan in the perceived scenario with the one in the generated plausible scenarios.

The risk posed to the AV’s motion plan in both the scenes (perceived and plausible)

is expressed as a probability distribution on a risk metric, e.g., time-to-collision. We

introduce the notion of relative scenario risk (RSR), which measures the probability

that the plausible scene has a high risk when the perceived scene does not. To empir-

ically estimate RSR, we employ the statistical tool called copula [45], which models

tail dependencies between distributions, and we provide probably approximately cor-

rect (PAC) bounds on the RSR estimate. Finally, we provide a detection algorithm

based on the RSR PAC bounds that, with high probability, triggers an alarm when

faced with high-risk task-relevant failures. In particular

(i) We formalize the notion of relative scenario risk (RSR), which underlies our

task-aware risk estimation;

(ii) We develop an algorithm to estimate RSR at runtime by leveraging the copula

and also provide probabilistic guarantees on the correctness of our estimation;

(iii) Finally, we demonstrate the efficacy of our framework by comparing our method

with prior approaches on a dataset of 100 realistic perception failure scenarios

created in NuPlan [46].

7As discussed in Section 3.4, diagnosability is related to the level of redundancy within the system
and provides a quantitative measure of robustness.

37



1.5 Structure of the Thesis

In Chapter 2 we present generalized formulations of the outlier-rejection problem,

discuss fundamental limits, and propose a set of practical algorithms for outlier-robust

estimation.

In Chapter 3 we formalize the problem of fault detection and identification and

present a framework to organize heterogeneous diagnostic information of a percep-

tion system into a graphical model, the diagnostic graph. Then we present a set of

algorithms that use diagnostic graphs to perform fault detection and identification.

In Chapter 4, we leverage the results from Chapter 3 and develop a task-aware

risk estimator that assesses the increased risk to the AV’s motion plan due to the

perception failure. We formalize the notion of relative scenario risk (RSR), which

underlies our task-aware risk estimation and develop an algorithm to estimate RSR

at runtime by leveraging a tool from statistic known as copula, and also provide

probabilistic guarantees on the correctness of our estimation.

We conclude the thesis in Chapter 5 with a summary of the contributions and a

discussion of future work.

38



Chapter 2

Outlier-Robust Estimation

In the previous chapter we saw that spatial perception problems can be formulated

as a nonlinear optimization problems. In this chapter we delve deeper. We first

introduce two generalized formulations for outlier-robust estimation (Section 2.1).

We then study their fundamental limits (Section 2.2) and present practical algorithms

to solve them (Sections 2.3 and 2.4). We then present two additional variations of

the algorithms that do not require any parameter tuning (Section 2.5). We conclude

the chapter concrete examples in robotics and computer vision (Section 2.6) and a

discussion of related work (Section 2.7).

2.1 Generalized MC and TLS Formulations

Sections Section 2.1.1 and Section 2.1.2 present Generalized Maximum Consensus

(G-MC) and Generalized Truncated Least Squares (G-TLS). Section Section 2.1.3 gives

G-MC’s and G-TLS’s probabilistic justification (Propositions Propositions 2 and 4).

Section Section 2.1.4 provides conditions for G-MC and G-TLS to be equivalent (Theo-

rem Theorem 7).

We use the following notation:

• x◦ is the true value of x we want to estimate;

• O◦ is the true set of outliers;

39



• r(yI ,x) ≜ [r(yi,x)]i∈I , for any I ⊆M; i.e., r(yI ,x) is the vector of residuals

for the measurements i ∈ I.

2.1.1 Generalized Maximum Consensus (G-MC)

We present a generalized maximum consensus formulation.

Problem 1 (Generalized Maximum Consensus (G-MC)). Find an estimate x by solv-

ing the combinatorial problem

min
x ∈ X
O ⊆ M

|O| s.t. ∥ r(yM\O,x) ∥ℓ ≤ τ, (G-MC)

where τ ≥ 0 is a given inlier threshold, and ∥ · ∥ℓ denotes a generic vector norm (in

this thesis, ℓ ∈ {2,∞}).

Since the true number of outliers is unknown, G-MC rejects the least amount of

measurements such that the remaining ones appear as inliers. In Eq. (G-MC), O is

the set of measurements classified as outliers; correspondingly, M \ O is the set of

inliers. A choice of inliers M\ O is feasible only if there exists an x such that the

cumulative residual error ∥ r(yM\O,x) ∥ℓ satisfies the inlier threshold τ (enforced by

the constraint).

G-MC generalizes existing combinatorial outlier-rejection formulations. In particu-

lar, depending on the choice of ℓ and τ in Eq. (G-MC), G-MC is equivalent to Maximum

Consensus (MC) or Minimally Trimmed Squares (MTS):

• MC as G-MC. If ℓ = +∞ and τ = ϵ in Eq. (G-MC), then G-MC is equivalent to

MC (Eq. (1.2)), since ∥ r(yM\O,x) ∥∞ ≤ ϵ2 implies r(yi,x) ≤ ϵ, ∀ i ∈M \O.

• MTS as G-MC. If ℓ = 2 in Eq. (G-MC), then G-MC is equivalent to the MTS [41],

[47] formulation

min
x ∈ X
O ⊆ M

|O| s.t.
∑

i ∈ M\O r2(yi,x) ≤ τ 2, (2.1)

since ∥ r(yM\O,x) ∥22 =
∑

i ∈ M\O r2(yi,x).

40



2.1.2 Generalized Truncated Least Squares (G-TLS)

We present a second formulation that generalizes truncated least squares in M-

estimation [48], [49].

Problem 2 (Generalized Truncated Least Squares (G-TLS)). Find an estimate x by

solving the program

min
x ∈ X
O ⊆ M

νℓ(O)∥ r(yM\O,x) ∥2ℓ + ϵ2|O|, (G-TLS)

where ∥ · ∥ℓ denotes a generic vector norm (in this thesis, ℓ ∈ {2,∞}), and νℓ(O), ϵ >

0 are given penalty coefficients; in particular, ν2(O) = 1 and ν∞(O) = |M \ O|.

G-TLS looks for an outlier-robust estimate x by separating the measurements into

inliers and outliers such that the former are penalized with their weighted cumulative

residual error νℓ(O)∥ r(yM\O,x) ∥2ℓ , and the latter with their weighted cardinality

ϵ2|O|. For appropriate choices of ϵ, G-TLS reduces to Truncated Least Squares (TLS)

or standard least squares (LS):

• TLS as G-TLS. If ℓ = 2, then G-TLS becomes

min
x ∈ X
O ⊆ M

∑
i ∈ M\O

r2(yi,x) +
∑
i ∈ O

ϵ2, (2.2)

which is equivalent to the TLS formulation [2], [48], [49], commonly written using

auxiliary binary variables wi as

min
x ∈ X

∑
i ∈ M

min
wi ∈ {0,1}

[
wi r

2(yi,x) + (1− wi) ϵ
2
]
. (TLS)

• LS as G-TLS. If ℓ = 2 and ϵ = +∞, then, G-TLS becomes the least squares

formulation in Eq. (1.1).

41



2.1.3 Probabilistic Justification of G-MC and G-TLS

We provide a probabilistic justification for the G-MC and G-TLS formulations, under

the standard assumption of independent noise across the measurements.

Assumption 1 (Independent Noise). If i ̸= j, for any i, j ∈M, then r(yi,x) and

r(yj,x) are independent random variables.

The results below provide a probabilistic grounding for two G-MC’s instances, Max-

imum Consensus (MC) and Minimally Trimmed Squares (MTS), via likelihood estima-

tion.

Proposition 2 (Uniform Inlier Distribution Leads to MC). If r(yi,x
◦) is uniformly

distributed with support [0, ϵ) for any i ∈ M \O◦, then MC in Eq. (1.2) is equivalent

to

min
x ∈ X
O ⊆ M

|O| s.t.
∏

i ∈ M\O

u(r(yi,x), ϵ) > 0, (2.3)

where the inequality is strict, and u(r, ϵ) is the probability density function of the

uniform distribution with support [0, ϵ).

The optimization in Eq. (2.3) is a likelihood-constrained estimation: Eq. (2.3) finds

an x such that the joint likelihood of the inliers is greater than zero.

Proposition 3 (Normal Inlier Distribution Leads to MTS). If r(yi,x
◦) follows a

Normal distribution for any i ∈M \O◦, then MTS in Eq. (2.1) is equivalent to

min
x ∈ X
O ⊆ M

|O| s.t.
∏

i ∈ M\O

g(r(yi,x)) ≥
e−

τ2

2

(π/2)
|M\O|

2

, (2.4)

where g(r) ≜
√

2/π exp(−r2/2) is the density of a Normal distribution constrained

to the non-negative axis (r ≥ 0).

Proposition Proposition 3 implies thatMTS is equivalent to a likelihood-constrained

estimation, where the inliers follow a Normal distribution (in contrast to Proposi-

tion Proposition 2 where the inliers are uniformly distributed).

42



Similarly, we show that an instance of G-TLS, Truncated Least Squares (TLS), can

be interpreted as a maximum likelihood estimator. Particularly, if the number of out-

liers is known, we show TLS selects a set of inliers and a maximum likelihood estimate

assuming the inliers are Normally distributed (Proposition Proposition 4); and if the

number of outliers is unknown, we provide a broader characterization by connecting

TLS to a max-mixture of Normal and uniform distributions (Proposition Proposi-

tion 5).

Proposition 4 (Normal Distribution and Known Number of Outliers Lead to TLS).

Assume r(yi,x
◦) < ϵ for any i ∈M\O◦ and |O◦| is known. If r(yi,x

◦) is Normally

distributed for each i ∈ M \ O, then TLS is equivalent to the cardinality-constrained

maximum likelihood estimator

max
x ∈ X

O ⊆ M, |O| = |O◦|

∏
i ∈ M\O

g(r(yi,x)). (2.5)

Proposition 5 (Normal with Uniform Tails Leads to TLS). For any i ∈M, assume

(i) r(yi,x
◦) ≤ α for some number α, and (ii) r(yi,x

◦) follows a modified Normal

distribution ĝ(r) where the tail of the Normal distribution for r ≥ ϵ is replaced with

a uniform distribution with support [ϵ, α]; particularly,

ĝ(r) =
1

β


g(r), r < ϵ;

g(ϵ), r ∈ [ϵ, α];

0, otherwise,

(2.6)

where β is a normalization factor (that depends on α) such that ĝ(·) is a valid prob-

ability density (
∫ α

0
ĝ(r) dr = 1). Then, TLS is equivalent to the maximum likelihood

estimator

max
x ∈ X

∏
i ∈ M

ĝ(r(yi,x)). (2.7)

The interested reader can find an alternative probabilistic interpretation of TLS in

Appendix B, where TLS is shown to minimize the probability that an estimate becomes

inaccurate when measurements are misclassified as inliers instead of outliers, and vice

43



versa. We describe this probability with a product of Weibull distributions.

2.1.4 Relationship Between G-MC and G-TLS

Theorem 6 (G-MC = G-TLS when ℓ = +∞). Choose ∥ · ∥ℓ to be the infinity norm

in G-MC and G-TLS, and τ = ϵ in G-MC. Also, assume G-MC has an optimal solution

(xG−MC,OG−MC) such that ∥ r(yM\OG−MC
,xG−MC) ∥∞ < ϵ (i.e., G-MC’s inequality con-

straint is strict at an optimal solution). Then, G-MC and G-TLS compute the same set

of outliers.

The inequality ∥ r(yM\OG−MC
,xG−MC) ∥∞ ≤ ϵ is strict with probability 1 when the

measurements are random. Hence, G-MC = G-TLS with probability 1 when ℓ = +∞,

and, thus, we henceforth focus only on the TLS instance of G-TLS (ℓ = 2).

Theorem 7 (G-MC ̸= G-TLS when ℓ = 2). Denote by:

• (xMTS,OMTS) an optimal solution to MTS (G-MC’s instantiation for ℓ = 2);

• (xTLS,OTLS) an optimal solution to TLS (G-TLS’s instantiation for ℓ = 2 and

νℓ(O) = 1);

• r2TLS(ϵ) the error of the measurements classified as inliers at (xTLS,OTLS): r
2
TLS(ϵ) ≜

∥ r(yM\OTLS
,xTLS) ∥2ℓ ;

• fTLS(ϵ) the value of TLS: fTLS(ϵ) ≜ r2TLS(ϵ) + ϵ2|OTLS|.

Then, for any ϵ > 0,

• if τ = rTLS(ϵ), then |OTLS| = |OMTS|, and, in particular, (xTLS,OTLS) is also a

solution to MTS;

• if τ > rTLS(ϵ), then |OTLS| ≥ |OMTS|;

• if τ < rTLS(ϵ), then |OTLS| < |OMTS|, and MTS and TLS compute different sets

of outliers.

44



Example Example 8 below elucidates the result in Theorem Theorem 7 by con-

sidering instantiations of MTS and TLS in a toy example. The example shows that

although TLS may reject more measurements than MTS, TLS can lead to more accurate

estimates of x◦ since it tends to reject “biased” measurements.

Example 8 (Sometimes, Less is More). Consider an estimation problem where (i) the

variable to be estimated is a scalar x with true value x◦ = 0, (ii) three measurements

are available, the inliers y1 = y2 = 0, and the outlier y3 = 4, and (iii) the measurement

model is yi = x+ni, for all i = 1, 2, 3, where ni is zero-mean and unit-variance additive

Gaussian noise. Also, fix ϵ = 2.58 in TLS such that |ni| ≤ ϵ with probability ≃ 0.99,

and, correspondingly, fix τ = 11.35 in MTS such that n2
1+n

2
2+n

2
3 ≤ τ with probability

≃ 0.99.1 Evidently, at x◦ = 0, r(y1, x
◦) = r(y2, x

◦) = 0 and r(y3, x
◦) = 4.

In this toy problem, MTS returns an incorrect estimate: MTS classifies all measure-

ments as inliers for x = 4/3, since then r2(y1, x) + r2(y1, x) + r2(y3, x) is minimized

and is equal to 32/3 ≃ 10.67, which is less than τ .2

On the other hand, TLS rejects more measurements than MTS but finds the correct

estimate: TLS returns x = 0, classifying the third measurement as an outlier.

A comparison of TLS with MC is given in [2, Appendix C].

2.2 Inapproximability of G-MC and G-TLS

This section shows that G-MC and G-TLS are computationally hard to solve, and in

particular it is hard to even approximate their solution in quasi-polynomial time, in

the worst case.

We start by recalling the O(·) and Ω(·) notations from computational complexity

theory [42].

1If n1, n2, n3 are Gaussian random variables, each with mean 0 and variance 1, then (i) P(|ni| ≤
2.58) ≃ 0.99506 for all i = 1, 2, 3 [50], where P(·) denotes probability; also, (ii) n2

1 + n2
2 + n2

3 follows
a χ2 distribution with 3 degrees of freedom and P(n2

1 + n2
2 + n2

3 ≤ 11.35) ≃ 0.99 [51].
2MC (Eq. (1.2)) also leads to a wrong estimate, selecting all measurements as inliers (e.g., x = 2

makes all measurements to have residual smaller than ϵ).

45



Definition 9 (O Notation). Consider two functions h : N → R and g : N → R.

Then, h(m) =O(g(m)) means there exists a constant k > 0 such that h(m)≤ kg(m)

for large enough m.

Definition 10 (Ω Notation). Consider h : N → R and g : N → R. Then, h(m) =

Ω(g(m)) means there exists a constant k > 0 such that h(m) ≥ kg(m) for large

enough m.

Definition 11 ((λ, p)-Approximability). Consider λ ≥ 1, and p ≥ 0. G-MC is (λ, p)-

approximable if there exists an algorithm finding a sub-optimal solution (x,O) for

G-MC such that |O| ≤ λ|OG−MC| and ∥ r(yM\O,x) ∥2ℓ ≤ ∥ r(yM\OG−MC
,xG−MC) ∥2ℓ + p,

where (xG−MC,OG−MC) is an optimal solution for G-MC.

Similarly, G-TLS is (λ, p)-approximable if there exists an algorithm finding a sub-

optimal solution (x,O) for G-TLS such that |O| ≤ λ|OG−TLS| and ∥ r(yM\O,x) ∥2ℓ ≤

∥ r(yM\OG−TLS
,xG−TLS) ∥2ℓ + p, where (xG−TLS,OG−TLS) denotes an optimal solution

to G-TLS.

Definition 11 bounds the sub-optimality of an approximate solution to G-MC or

G-TLS: if (x,O) is an (λ, p)-approximate solution, then O rejects up to a multiplicative

factor λ more outliers than the optimal set of outliers; and (x,O) attains an inlier

residual error up to an additive factor p more than the residual error attained at the

optimal solution.

Theorem 12 (Inapproximability of G-MC and G-TLS). For any δ ∈ (0, 1), unless we

have NP ∈ BPTIME(|M|poly log|M|), there exist a λ(|M|) = 2Ω(log1−δ|M|), a polynomial

p(|M|), and instances of G-MC such that no quasi-polynomial algorithm makes the

instances (λ(|M|), p(|M|))-approximable. The result holds true even if the algorithm

knows

(i) |OG−MC|,

(ii) that the optimal solution is such that ∥ r(yM\OG−MC
,xG−MC) ∥2ℓ = 0.

Similarly, the result holds true for G-TLS, even if the algorithm knows (i) |OG−TLS|,

and (ii) that the optimal solution is such that ∥ r(yM\OG−TLS
,xG−TLS) ∥2ℓ = 0.

46



The theorem captures the extreme hardness of G-MC and G-TLS: in the worst case,

any quasi-polynomial algorithm for G-MC and G-TLS cannot approximate the solution

to G-MC and G-MC within an (λ, p)-approximation. This holds true even if the algo-

rithm is informed with the optimal number of outliers to reject, or knows a priori

that the optimal residual error is zero. The quality of the approximation depends on

the parameter λ and p in Theorem 12, which are both polynomials. In particular, it

can be seen that λ (cf. Definition 11) grows with the number of measurements, since

λ = λ(2Ω(log1−δ|M|)) is proportional to |M| when δ is close to 0.

We remark that, since both λ and p in Theorem 12 depend on the number of

measurements, |M|, the theorem implies there is no quasi-polynomial time algo-

rithm achieving constant sub-optimality bound for G-MC and G-TLS. As such, the

theorem strengthens recent inapproximability results for MC that focus, instead, on

polynomial-time algorithms only [13].

2.3 Adaptive Trimming (ADAPT) Algorithm

We present ADAPT, a general-purpose, deterministic, and linear time algorithm for

G-MC, that requires no initial guess. We first describe a simple greedy algorithm in

Section 2.3.1, to build intuition, and then introduce ADAPT in Section 2.3.2.

2.3.1 Gentle Start: Greedy Outlier Rejection

We start by describing a simple greedy algorithm for G-MC, to build intuition about

ADAPT. The algorithm starts by solving a least squares problem akin to Eq. (1.1) over

the entire set of measurements, and, at each iteration, it rejects the measurement

with the largest residual. The algorithm stops once the condition ∥r(yM\O,x)∥ℓ ≤ τ

in Eq. (G-MC) is satisfied.

Although the described greedy algorithm is appealing for its simplicity and linear

47



runtime,3,4

(i) it cannot correct past mistakes (once a measurement is rejected, it is never

reconsidered),

(ii) the algorithm terminates once the threshold τ is met, without, however, assess-

ing if all outliers have been rejected, e.g., by checking whether ∥ r(yM\O,x) ∥2
has converged.

Indeed, the greedy algorithm, being an approximation procedure, may satisfy the

threshold τ by simply over-rejecting measurements, instead of rejecting all outliers.

Therefore, it may be the caseM\O still contains outliers whose removal would largely

reduce ∥ r(yM\O,x) ∥2. Instead, if M \ O contains no outliers, ∥ r(yM\O,x) ∥2
would remain largely unchanged even if more measurements would to be removed

fromM\O. Because of these, the algorithm can exhibit deteriorated performance;

cf. SLAM experiments in Section 2.6.3. ADAPT improves upon the greedy algorithm

by addressing the greedy’s weaknesses described above.

2.3.2 Beyond Greedy: ADAPT Algorithm

We present the Adaptive Trimming (ADAPT) algorithm to solve the G-MC formulation

in Problem 1. The algorithm processes all measurements at each iteration, and trims

(rejects) measurements violating an inlier threshold (the threshold is set at each

iteration and decreases iteration after iteration). The algorithm is adaptive in that it

dynamically decides the threshold at each iteration. ADAPT is not greedy in that it

can correct previous mistakes: a measurement that has been deemed to be an outlier

at an iteration can be re-included in the set of inliers at subsequent iterations, and,

similarly, a measurement that has been deemed to be an inlier at an iteration can

3In the literature, there exists an alternative greedy algorithm [52] that, at each iteration, tests
the impact of rejecting each measurement (by solving multiple estimation problems), and then rejects
only the measurement that induces the largest decrease in the objective function. We do not consider
such a variant since it has quadratic complexity in the number of measurements, and does not scale
to the problems we consider in Section 2.6.

4At each iteration, the described greedy algorithm rejects one measurement, and, as a result, has
linear runtime in the number of measurements.

48



Algorithm 1: Adaptive Trimming (ADAPT).

Input: Measurements yi, ∀i ∈M; thresholds τ, θ;
MaxIterations , SamplesToConverg > 0;ThrDiscount ∈ (0, 1).

Output: Estimate of x◦ and corresponding inliers.

1 I(0) =M; x(0) = argminx∈X l∥ r(yI(0) ,x) ∥22;
2 ε(0) = ThrDiscount ·maxi ∈ I(0) r(yi,x

(0)); j = 0;
3 for t = 1, . . . ,MaxIterations do
4 I(t) = {i ∈ M s.t. r(yi,x

(t−1)) ≤ ε(t−1)};
5 x(t) = argminx∈X ∥ r(yI(t) ,x) ∥22;
6 if ∥ r(yI(t) ,x) ∥ℓ < τ

7 and |∥ r(yI(t) ,x) ∥22−∥ r(yI(t−1) ,x) ∥22| < θ(|I(t−1)|, |I(t)|) then
8 j ++;
9 else
10 j = 0;
11 end
12 if j = SamplesToConverg then
13 break;
14 end

15 ε(t) = ThrDiscount ·maxi ∈ I(t) r(yi,x
(t));

16 end

17 return (x(t), I(t)).

be (re-)included in the set of outliers at subsequent iterations. ADAPT is not greedy

also in that it assesses whether all outliers have been rejected by checking whether

∥ r(yM\O,x) ∥2 has converged. Finally, ADAPT can reject multiple measurements at

each iteration, whereas greedy rejects one. Its pseudo-code is given in Algorithm 1.

Initialization. ADAPT’s Line 1 initializes the putative set of inliers to I(0) =

M (all measurements); at the subsequent iterations t = 1, 2, . . ., the set I(t) will

include only the measurements classified as inliers at t. Given I(0), ADAPT sets x(0) =

argminx∈X∥ r(yI(0) ,x) ∥22, i.e., x(0) is the estimate assuming all measurements are

inliers; the nonlinear least squares problem can be minimized using non-minimal

solvers, see [43]. Using x(0), Line 2 sets the initial inlier threshold ε(0) equal to

ThrDiscount ·maxi ∈ I(0) r(yi,x
(0)), i.e., a multiplicative factor ThrDiscount less than

the maximum residual at x(0). That way, at least one measurement will be classified

as an outlier at the next iteration. In this thesis, we always set ThrDiscount = 0.99.

49



Main Loop. After the initialization, ADAPT starts the main outlier rejection loop

(Line 3). We describe each step below.

a) Inlier Set Update. At iteration t, given ε(t−1), Line 4 updates the set of

inliers I(t) to contain measurements with residual smaller than ε(t−1). Since ADAPT

checks all measurements in M, I(t) may contain measurements that were not in

I(t−1), and may not contain measurements that were in I(t−1). This allows ADAPT to

re-include measurements that were incorrectly rejected as outliers at previous itera-

tions, and to reject measurements that were incorrectly classified as inliers. Notably,

I(t) depends on the history I(1), . . . , I(t−1), since ε(t−1) depends on I(t−1) (cf. line 15

of Algorithm 1), which in turn depends on ε(t−2), and so forth. Therefore, as ADAPT

iterates, a sequence (I(1), ϵ(1)), . . . , (I(t), ϵ(t)), . . . is generated, and, ideally, even if

measurements are misclassified at early iterations, eventually all are classified cor-

rectly.

b) Variable Update. Given I(t), a new estimate x(t) is computed in Line 5.

Line 5’s minimization is a nonlinear least squares problem that is solved using non-

minimal solvers [43].

c) Inlier Threshold Update. If the current estimate is infeasible for G-MC

and/or convergence of ∥ r(yM\O,x) ∥2’s value has not been observed for at least

SamplesToConverg consecutive iterations (i.e., the “if” conditions in lines 6-7 and

Line 12 are not satisfied), ADAPT updates ε(t) (Line 15) and moves to the next itera-

tion. Similarly to Line 2, Line 15 updates the threshold by applying a multiplicative

factor ThrDiscount < 1 to the maximum residual at the current iteration; this ensures

that at least 1 measurement is rejected at the next iteration.

Termination. ADAPT terminates when:

• a maximum number of iterations is reached (cf. “for” loop in Line 3; In this

thesis, we set MaxIterations = 1000);

• a feasible estimate for G-MC is found and for SamplesToConverg iterations

∥ r(yM\O,x) ∥2 changes by at most θ (cf. “if” conditions in lines 6-7 and

Line 12). In this thesis, SamplesToConverg = 3. A probabilistically-grounded

50



method to chose θ is described in Section 2.6.

Upon termination, ADAPT returns the current estimate x(t) and inlier set I(t) (Line 17).

The following remark ensures that ADAPT terminates after at most |M| iterations.

Remark 13 (Linear Runtime). ADAPT’s policy to update ϵ(t) (Line 15) implies that

|I(t)| ≤ |I(t−1)|−1, hence ADAPT terminates in at most |M| (number of measure-

ments) iterations.

Remark 14 (vs. RANSAC). RANSAC is a randomized algorithm for G-MC, whereas

ADAPT is deterministic. RANSAC maintains only a “local view’ of the measurement set

M, building an inlier set by sampling a minimal set of measurements; instead, ADAPT

looks at all measurements inM to pick an inlier set. RANSAC assumes the availability

of minimal solvers, while ADAPT assumes the availability of non-minimal solvers.

RANSAC is unsuitable for high-dimensional problems, since the number of iterations

required to sample an outlier-free set increases exponentially in the dimension of the

problem [16]; in contrast, ADAPT runs in linear time, terminating in at most as many

iterations as the number of measurements.

2.4 Graduated Non-convexity (GNC) Algorithm

We present the GNC algorithm to solve the TLS formulation. We show that —when con-

sidering TLS costs— the algorithm can be simply explained without invoking Black-

Rangarajan duality. Moreover, we provide a local convergence result (Theorem 15),

which enables simpler stopping conditions for the algorithm.

2.4.1 Preliminaries on Graduated Non-convexity

Before introducing the GNC algorithm we review the notion of graduated non-convexity [18],

[43], [53], [54].

For convenience, we recall that our goal in this section is to solve the TLS problem

51



TLS Quadratic MC

(a) TLS vs MC vs quadratic cost functions

Graduated non-convexity TLS

(b) Graduated Non-convexity

Figure 2-1: (a) TLS, quadratic, and MC cost functions, (b) graduated non-convexity
with control parameter µ for TLS cost function.

(already introduced in Eq. (TLS)):

min
x ∈ X

∑
i ∈ M

min
wi ∈ {0,1}

[
wi r

2(yi,x) + (1− wi) ϵ
2
]
. (2.8)

Solving the minimization Eq. (2.8) is hard because the TLS objective function is

highly non-convex in the residual errors r. Indeed, the i-th summand in Eq. (2.8),

namely minwi∈{0,1} [wir
2(yi,x) + (1−wi)ϵ

2], describes a truncated quadratic function,

that is nonconvex as shown in Fig. 2-1(a).

Graduated non-convexity circumvents this non-convexity by using a homotopy

(or continuation) method [54]. In particular, graduated non-convexity proposes to

“soften” the non-convexity in TLS by replacing the cost with a surrogate function

controlled by a parameter µ:

min
x ∈ X

∑
i ∈ M

min
wi ∈ [0,1]

[
wi r

2(yi,x) +
µ(1− wi)

µ+ wi

ϵ2
]
, (2.9)

where the “regularization” term (1−wi)ϵ
2 in Eq. (2.8) is replaced with µ(1−wi)ϵ

2/(µ+wi).

The surrogate function in Eq. (2.9) is such that (i) for µ → 0, Eq. (2.9) becomes a

convex optimization problem [43], and (ii) for µ → +∞, the term µ(1−wi)ϵ
2/(µ+wi) →

(1−wi)ϵ
2, i.e., Eq. (2.9) retrieves the original TLS in Eq. (2.8). The family of surrogate

52



Algorithm 2: Graduated Non-Convexity for Truncated Least Squares (GNC-
TLS) [43].

Input: Measurements yi, ∀i ∈M; threshold ϵ ≥ 0; MaxIterations > 0;
MuUpdateFactor > 1.

Output: Estimate of x◦ and corresponding inliers.

1 µ(0) = ϵ2

2maxi ∈ M r2(yi,x(0))−ϵ2
;

2 w(0) = 1M; x(0) = VariableUpdate(w0); //eq. Eq. (2.10)

3 for t = 1, . . . ,MaxIterations do
4 w(t) = WeightUpdate(x(t−1), µ(t−1), ϵ); //eq. Eq. (2.11)

5 x(t) = VariableUpdate(w(t)); //Eq. (2.13)

6 µ(t) = MuUpdateFactor · µ(t−1);

7 if IsBinary(w(t)) = true then break;

8 end

9 return (x(t), supp(w(t−1))).

functions (parametrized by µ) is shown in Fig. 2-1(b).

Given the surrogate optimization problems in Eq. (2.9), graduated non-convexity

starts by solving a convex approximation of the TLS problem (i.e., for small µ) and

then gradually increases the non-convexity (by increasing µ) till the original TLS cost

is retrieved (i.e., for large µ). The estimate at each iteration is used as initial guess

for the subsequent iteration, to reduce the risk of convergence to local minima.

2.4.2 GNC-TLS Algorithm

The pseudo-code of GNC-TLS is given in Algorithm 2. Besides leveraging graduated

nonconvexity, at each iteration, GNC-TLS minimizes the surrogate function in Eq. (2.9)

by alternating a minimization with respect to x (with fixed wi) to a minimization

of the weights wi (with fixed x). Both minimizations can be solved efficiently, as

described below.

Initialization. GNC-TLS’s Line 1 initializes the parameter µ to a small number

as suggested in [43]. Line 2 also initializes all weights to 1 (i.e., w(0) = 1M, where

1M is the vector of all ones with length equal to |M|) and sets the initial x to be the

53



solution of the least squares problem:

x(0) = argmin
x∈X

∑
i ∈ M

r2(yi,x). (2.10)

which we denote in the algorithm as VariableUpdate(w0).

Main Loop. After the initialization, GNC-TLS starts the main outlier rejection

loop (Line 3). At iteration t, GNC-TLS minimizes the surrogate function in Eq. (2.9)

by alternating a minimization over the weights (Line 4) and a minimization over the

variable x (Line 5); then, GNC-TLS increases the amount of nonconvexity by increasing

the parameter µ (Line 6). The details of these steps are given below.

a) Weight Update. At iteration t, GNC-TLS updates the weightsw(t) to minimize

the surrogate function in Eq. (2.9) while keeping fixed x(t−1) and µ(t−1) (Line 4):

w(t) ∈ argmin
wi ∈ [0,1]

∑
i ∈ M

[
wi r

(t)
i +

µ(t−1)(1− wi)

µ(t−1) + wi

ϵ2
]
, (2.11)

where r
(t)
i ≜ r(yi,x

(t)); Eq. (2.11) splits into |M| scalar problems [43] and admits the

following closed-form solution:

w
(t)
i =


1, r

(t)
i < ϵ

√
µ(t−1)

µ(t−1)+1

0, r
(t)
i > ϵ

√
µ(t−1)+1
µ(t−1)

ϵ
√

µ(t−1)(µ(t−1)+1)

r
(t)
i

− µ(t−1), otherwise.

(2.12)

b) Variable Update. Line 5 updates x(t) by minimizing the surrogate function

in Eq. (2.9) while keeping fixed w(t):

x(t) ∈ argmin
x ∈ X

∑
i ∈ M

w
(t)
i r2(yi,x), (2.13)

where we dropped the additional summand in Eq. (2.9), since it is independent of

x. The optimization problem in Eq. (2.13) is a weighted least squares problem

(cf. Eq. (1.1)), and can be solved globally using certifiably optimal non-minimal

solvers [43].

54



c) Increasing Non-convexity: µ Update. At the end of each iteration, GNC-

TLS increases µ by a multiplicative factor MuUpdateFactor > 1 (Line 6), getting one

step closer to the original non-convex TLS cost function (cf. Fig. 2-1(b)). As in [43],

we choose MuUpdateFactor = 1.4 in GNC.

Termination. GNC-TLS terminates when (i) the maximum number of iterations

is reached (Line 3) —In this thesis, MaxIterations = 1000—, or (ii) the weight vector

w(t) becomes a binary vector (Line 7). The latter stopping condition is supported by

the following theorem.

Theorem 15 (w(t) Tends to a Binary Vector with Probability 1). If t → +∞, then

w
(t)
i → w

(∞)
i , where, for all i ∈M,

w
(∞)
i =


1, r

(∞)
i < ϵ;

0, r
(∞)
i > ϵ;

1/2, r
(∞)
i = ϵ.

(2.14)

Moreover, since the measurements are affected by random noise, the case r
(∞)
i = ϵ

happens with zero probability.

Eq. (2.14) agrees with the TLS formulation in Eq. (2.8), since w
(∞)
i = 1 only when

r
(∞)
i < ϵ, i.e., when measurement i is considered an inlier, while w

(∞)
i = 0 otherwise.

2.5 Minimally Tuned ADAPT and GNC

We now present the minimally tuned versions of ADAPT and GNC, namely, ADAPT-

MinT and GNC-MinT. In contrast to ADAPT and GNC, they do not require knowledge of

a threshold to separate inliers from outliers (τ in ADAPT, ϵ in GNC).

2.5.1 ADAPT-MinT Algorithm

ADAPT-MinT is similar to ADAPT, but introduces a novel, inlier-threshold-free termi-

nation condition. In contrast to ADAPT, which terminates based on a given τ (which

55



Algorithm 3: Minimally tuned ADAPT (ADAPT-MinT).

Input: Measurements yi, ∀i ∈M; MaxIterations > 0; ThrDiscount ∈ (0, 1);
MinSamples ,WindowSize,ConvergThr ≥ 0.

Output: Estimate of x◦ and corresponding inliers.

1 I(0) =M; x(0) = argminx∈X l∥ r(yI(0) ,x) ∥22;
2 ε(0) = ThrDiscount ·maxi ∈ I(0) r(yi,x

(0));

3 δ(0) = ClustersSeparation(r(yM,x(0)));
4 for t = 1, . . . ,MaxIterations do
5 I(t) = {i ∈ M s.t. r(yi,x

(t−1)) ≤ ε(t−1)};
6 x(t) = argminx∈X ∥ r(yI(t) ,x) ∥22;
7 ε(t) = ThrDiscount ·maxi ∈ I(t) r(yi,x

(t));

8 δ(t) = 1/δ(0) · ClustersSeparation(r(yM,x(t)));

9 σ(t) = movstd(δ(t),WindowSize);

10 if t > MinSamples and σ(t−MinSamples : t−1) < ConvergThr then
11 break
12 end

13 end

14 return (x(t), I(t−MinSamples)).

separates inliers from outliers) ADAPT-MinT (i) looks at the residuals of all measure-

ments, given the current estimate x(t), (ii) clusters them into two groups, a group

of low-magnitude residuals —the “inliers” (left group in Fig. 2-2)— and a group of

high-magnitude residuals —the “outliers” (right group in Fig. 2-2)— and (iii) ter-

minates once the two groups “stabilize,” in particular, when the distance δ between

the centroids of two groups converges to a steady state. To cluster all residuals in

M into two groups, and to compute their centroids and their in-between distance,

ADAPT-MinT calls the subroutine ClustersSeparation presented in D.1 (Algorithm 6).

The pseudo-code of ADAPT-MinT is given in Algorithm 3.

Figure 2-2: Two clusters of non-negative residuals: the low-magnitude ones (blue)
are centered at cleft, the high-magnitude ones (red) at cright = cleft + δ.

56



Initialization. ADAPT-MinT’s lines 1-2 are the same as ADAPT’s, and initialize I(0)

and x(0). Line 3 is new: given x(0), it initializes δ(0), i.e., the distance between the

inlier and outlier clusters at x(0). At the subsequent iterations t = 1, 2, . . ., the value

δ(0) is used as a normalization factor in the update of δ(t) (Line 8, discussed below).

Inlier Set, Variable, and Inlier Threshold Update. Li- nes 5, 6, and 7 in

ADAPT-MinT describe the same inlier set, variable, and inlier threshold updates used

in ADAPT.

Inlier vs. Outlier Cluster Separation Update. ADAPT-MinT updates δ(t)

with the distance between the inlier and outlier clusters at the current x(t), after

normalizing it by δ(0) (Line 8). The role of the normalization is discussed in Remark 16

below.

Termination. ADAPT-MinT terminates when (i) the maximum number of itera-

tions is reached (cf. “for” loop in Line 4), or (ii) δ(t) converges to a steady state

value, indicating the inlier and outlier clusters have also converged to a steady state.

Specifically, ADAPT-MinT declares convergence when for MinSamples consecutive it-

erations δ(t)’s moving standard deviation σ(t) is less than ConvergThr (Line 10). In

more detail, σ(t) is the standard deviation of δ(t) across the last WindowSize iterations

and is computed in Line 9, where movstd is the corresponding MATLAB function.

In this thesis, WindowSize = 3, MinSamples = 5 and ConvergThr = 10−4 always.

Remark 16 (Role of Normalization in ADAPT-MinT). The normalization by δ(0) in

Line 8 is necessary, since across different applications the residuals can differ by

several orders of magnitude, and, as a result, the distance between the inlier and

outlier clusters can differ by several orders of magnitude. The normalization reduces

the impact of the magnitude of the residuals on the stopping conditions of ADAPT-MinT.

Remark 17 (Tuning ADAPT’s τ vs. Tuning ADAPT-MinT’s ConvergThr). Tuning τ re-

quires knowledge of the inlier threshold (or equivalently, the inlier noise), which varies

not only across applications ( e.g., mesh registration vs. SLAM) but also across prob-

lem instances within the same application ( e.g., different SLAM datasets). In contrast,

ConvergThr is fixed across instances of an application (for all applications in this the-

57



sis, in particular, ConvergThr is the same), and its value can be set given a single

dataset where the ground truth is known. In this sense, ADAPT-MinT is minimally

tuned.

2.5.2 GNC-MinT Algorithm

GNC-MinT, in contrast to GNC-TLS, does not require knowledge of a suitable inlier

threshold ϵ. Instead, GNC-MinT requires only an upper and lower bound for ϵ, denoted

by NoiseUpBnd and NoiseLowBnd in the algorithm. GNC-MinT uses NoiseUpBnd as

an initial guess ϵ(0) to the unknown inlier threshold ϵ. Using ϵ(0), GNC-MinT performs

the same weight, variable, and µ update steps as GNC-TLS until convergence, whenw(t)

becomes binary. At this point, GNC-MinT (i) scores how well the empirical distribution

of the squares of the residuals fits a χ2 distribution, using the Cramér–von Mises test,

restricting the test to the measurements classified as inliers at iteration t,5 (ii) stores

the score and the current estimate, and (iii) decreases the value of ϵ(t) to prepare

for the next iteration. The algorithm terminates (i) when the χ2 fitness score either

remains unchanged or worsens across consecutive iterations, or (ii) when ϵ(t) either

remains unchanged across consecutive iterations or becomes less than NoiseLowBnd .

GNC-MinT is given in Algorithm 4, and is described in detail below.

Initialization. GNC-MinT first initializes ϵ(0) with NoiseUpBnd . Then µ(0), w(0),

and x(0) are initialized similarly to GNC but using ϵ(0) instead of ϵ (lines 2-3). GNC-

MinT also introduces the counter j (initialized to 1 in Line 1), which counts how many

times ϵ(·) has been updated.

Weight, Variable, and µ Update. Lines 5, 6, and 7 in GNC-MinT are the same

as the corresponding updated in GNC, with the exception that the current guess ϵ(j−1)

is used in Line 5 instead of the unknown ϵ. Since these updates are the same as GNC,

Theorem 15 guarantees that the weights w(t) eventually become binary (for some t),

i.e., GNC-MinT’s iterations of weight, variable, and µ update converge. Line 8 checks

whether this is indeed the case.

5Proposition 4 implies that for TLS the inliers’ generative probability distribution is a Normal
distribution. As a result, the square of the inliers’ residuals will follow a χ2 distribution.

58



Algorithm 4: Minimally tuned GNC for TLS (GNC-MinT).

Input: Measurements yi, ∀i ∈M; MaxIterations > 0; MuUpdateFactor > 1;
NoiseUpBnd ,NoiseLowBnd ≥ 0;
χ2 distribution’s degrees of freedom d > 0.

Output: Estimate of x◦ and corresponding inliers.

1 ϵ(0) = NoiseUpBnd ; j = 1;

2 µ(0) = (ϵ(0))2

2maxi ∈ M r2(yi,x(0))−(ϵ(0))2
;

3 w(0) = 1M; x(0) = VariableUpdate(w(0));
4 for t = 1, . . . ,MaxIterations do
5 w(t) = WeightUpdate(x(t−1), µ(t−1), ϵ(j−1));

6 x(t) = VariableUpdate(w(t));

7 µ(t) = MuUpdateFactor · µ(t−1);

8 if IsBinary(w(t)) then
9 I(j) = supp(w(t));

10 s(j) = Chi2Fit(r(yI(j) ,x(t)), d);

11 w̃(j) = w(t); x̃(j) = x(t);

12 smin = minz∈{1,2,...,j} s
(z);

13 if s(j) = s(j−1) then
14 break;

15 else if s(j) > smin then
16 k ++; // Fitness worsens

17 if k = SamplesToConverg then
18 break;
19 end

20 else
21 k = 0;
22 end

23 ϵ̃= max
i ∈ I(j)

{r(yi,x
(t)) s.t. r(yi,x

(t))<ϵ(j−1)};

24 ϵ(j) = (ϵ(j−1) + ϵ̃)/2;

25 if ϵ(j) = ϵ(j−1) or ϵ(j) < NoiseLowBnd then
26 break;
27 end

28 µ(t) = µ(0); w(t) = w(0); xt = x(0); j ++;

29 end

30 end

31 jmin = argminz ∈ {1,2,...,j} s
(z);

32 return (x̃(jmin), supp(w̃(jmin)).

59



A
pp

li
ca
ti
on

G
re
ed
y(
M
C
)

G
re
ed
y(
M
T
S
)

A
D
A
P
T
(M

C
)

A
D
A
P
T
(M

T
S
)

A
D
A
P
T
-M

in
T

G
N
C

G
N
C
-M

in
T

M
es
h
R
eg
is
tr
at
io
n
80
%

[1
3.
71

s]
80
%

[1
2.
98

s]
80
%

[1
4.
42

s]
80
%

[1
4.
39

s]
80
%

[1
2.
36

s]
80
%

[5
.1
2
s]

80
%

[1
0.
68

s]

S
h
ap

e
A
lig
n
m
en
t
80
%

[0
.1
5
s]

80
%

[0
.1
5
s]

80
%

[0
.2
2
s]

80
%

[0
.2
3
s]

80
%

[0
.2
5
s]

80
%

[0
.0
3
s]

80
%

[0
.0
6
s]

P
G
O

(2
D
)

60
%

[5
.0
4
s]

10
%

[0
.7
6
s]

80
%

[5
.0
4
s]

80
%

[4
.9
2
s]

60
%

[5
.6
1
s]

90
%

[1
.4
1
s]

80
%

[2
.1
7
s]

P
G
O

(3
D
)

60
%
[9
.2
3
h
]

40
%
[9
.5
5
h
]

60
%
[6
0.
4
m
in
]
40
%
[4
2.
04

m
in
]
90
%
[6
1.
3
m
in
]

90
%
[8
5.
8
s]

90
%
[1
01
.6
2
s]

T
ab

le
2.
1:

R
o
b
u
st
n
e
ss

o
f
p
ro

p
o
se
d
a
lg
o
ri
th

m
s.

R
ob

u
st
n
es
s
to

ou
tl
ie
rs

an
d
av
er
ag
e
of

m
ed
ia
n
ru
n
n
in
g
ti
m
e
of

th
e
p
ro
p
os
ed

al
go
ri
th
m
s.

60



χ2 Fitness Test. Once w(t) has converged, GNC-MinT checks how well the resid-

uals classified as inliers fit a χ2 distribution. Line 9 collects the inliers, and Line 10

computes the fitness score s(j) by calling Chi2Fit (Algorithm 7 in D.2). The score

s(j) is such that s(j) > 0; smaller value indicates better fit. Line 11 stores the current

estimate and weights.

Inlier Threshold Update. Once the fitness score at x(t) has been computed,

GNC-MinT updates the inlier threshold guess to the mean between the current inlier

threshold guess and the largest residual among the measurements currently classified

as inliers (Line 24). Evidently, ϵ(j) ≤ ϵ(j−1).

Re-initialization of Weights, Variable, and µ. Once ϵ(j) has been updated,

GNC-MinT re-initializes µ(t), w(t), and x(t) (Line 28), in preparation for another round

of GNC with the new threshold ϵ(j). The counter j is also increased by 1 (Line 28).

Termination. GNC-MinT terminates when either

• the maximum number of iterations is reached (Line 4), or

• the fitness score remains unchanged across 2 consecutive iterations (Line 13) or

the fitness score worsens for SamplesToConverg consecutive iterations (lines 15-

21; In this thesis, SamplesToConverg = 2),6 or

• it is no longer possible to decrease ϵ(j) (Line 25) (when ϵ(j) = ϵ(j−1), then GNC-

MinT would converge again to the same solution if it were to continue running).

Upon termination, GNC-MinT returns the inlier set with the best χ2 fitness score

(lines 31-32).

Remark 18 (Tuning GNC-TLS’s ϵ vs. Tuning GNC-MinT’sNoiseUpBnd andNoiseLowBnd).

Knowing ϵ, or estimating it accurately, can be hard and time consuming: ϵ typically

varies across both applications and problem instances within the same application. In

contrast, guessing upper and lower bounds for ϵ is easier, making GNC-MinT minimally

tuned.

6The intuition is that if outliers exist among the measurements, then decreasing ϵ(j−1) to ϵ(j)

leads to rejecting more outliers, leading to a better χ2 fit. But if all outliers have been rejected, then
decreasing ϵ(j−1) results into rejecting inliers, worsening the χ2 fit or keeping it the same.

61



Remark 19 (Termination in GNC-MinT). In Proposition 4, we observed TLS implicitly

searches for inliers with Normally distributed residuals. At the same time, the sum of

the squares of Normally distributed variables follows a χ2 distribution [55]. For this

reason, the stopping condition for GNC-MinT is based on a χ2 fitness test, performed

by the Chi2Fit routine used in Line 10. Chi2Fit estimates the variance of the χ2

distribution, hence it implicitly guesses the magnitude of the inlier noise.

2.6 Experiments and Applications

We showcase the proposed algorithms in three robot perception problems: mesh regis-

tration (Section 2.6.1), shape alignment (Section 2.6.2), and Pose Graph Optimization

(PGO) (Section 2.6.3). We performed all the experiments in MATLAB running on a

Linux machine with the Intel i-97920X (4.3GHz). No GPU support was used.

The results show that ADAPT and GNC outperform the state of the art and are

robust up to 80− 90% outliers. Their minimally tuned versions achieve similar per-

formance, without relying on the knowledge of the inlier noise. We summarize the

observed performance of the algorithms (robustness to outliers and average median

running time) in Table 2.1, where we also include Greedy’s performance. In Table 2.1,

we observe:

• Greedy is on average slower than the proposed algorithms (2 times slower than

GNC in mesh registration and shape alignment, and up to 100 times slower than

GNC in PGO); in addition to being slower, Greedy is also less robust than both

ADAPT and GNC in PGO, and even against ADAPT’s and GNC’s minimally tuned

versions.

• GNC and GNC-MinT achieve the lowest running time, retaining, at the same time,

the robustness to outliers achieved by all proposed algorithms. Specifically,

in mesh registration and shape alignment, ADAPT and GNC, as well as their

minimally tuned versions, are practically on par with each other in terms of

their robustness to outliers, yet GNC and GNC-MinT are 2 to 10 times faster; and

62



in the PGO experiments, ADAPT and ADAPT-MinT can exhibit similar, or even

higher accuracy than GNC and GNC-MinT (cf. Fig. H-1), yet GNC and GNC-MinT

are on average 10 times faster than ADAPT and ADAPT-MinT.

Choice of Parameters. We refer to ADAPT as ADAPT(MC) if it solves the MC

problem (ℓ = +∞ in Line 6 of Algorithm 1), and as ADAPT(MTS) if it solves the MTS

problem (ℓ = 2). We also compare against the greedy algorithm of Section 2.3.1, which

we stop when the constraint in Eq. (G-MC) is satisfied. We denote the corresponding

technique with the label Greedy(MC) and Greedy(MTS), when we use ℓ = +∞ and ℓ = 2

in Eq. (G-MC), respectively. In all applications, we set in

• ADAPT: τ =
√
chi2inv(0.99, nd), where d is the number of degrees of freedom of

the measurement noise and depends on the application, and n is the cardinality

of the chosen inlier set at the current iteration (i.e., at ADAPT’s iteration t,

n = |I(t)|; cf. ADAPT’s Line 4); θ =
√

udchi2inv(0.05, n1d, n2d, σ2)), where σ is

the standard deviation of the noise, n1 = |I(t)| and n2 = |I(t−1)|, while udchi2inv

is the inverse of the cumulative probability distribution of a random variable

z = |z1 − z2|, where z1 and z2 are χ2 random variables (cf. Line 7 of ADAPT);7

MaxIterations = 1000; SamplesToConverg = 3; and ThrDiscount = 0.99.

• ADAPT-MinT: MaxIterations = 1000; ThrDiscount = 0.99; MinSamples = 2;

WindowSize = 3; ConvergThr = 10−4.

• GNC: ϵ = σ
√

chi2inv(0.99, d); MaxIterations = 1000; and MuUpdateFactor =

1.4.

• GNC-MinT: MaxIterations = 1000; MuUpdateFactor = 1.42;8 NoiseUpBnd and

NoiseLowBnd depend on the application, and are described in the subsections

below.

7We set θ =
√
udchi2inv(0.05, n1d, n2d, σ2)) assuming the measurement noise is normally dis-

tributed, since, then, z1 = ∥ r(yI(t) ,x) ∥22 and z2 = ∥ r(yI(t−1) ,x) ∥22 are indeed χ2 random
variables.

8We set MuUpdateFactor = 1.42 in GNC-MinT such that the algorithm has similar runtime as GNC.
On average, by choosing MuUpdateFactor = 1.42, instead of 1.4, we speed-up the convergence of
the weights w(t) to a binary vector (GNC-MinT’s Line 8) by a multiplicative factor of 2.

63



2.6.1 Mesh Registration

In mesh registration, given a set of 3D points ai ∈ R3, i ∈M, and a set of primitives

Pi, i ∈M (being points, lines and/or planes) with putative correspondences ai ↔ Pi,

we aim to find the best rotation R ∈ SO(3) and translation t ∈ R3 that align the

point cloud to the 3D primitives. In practice, the primitives Pi often correspond

to vertices, edges, or faces of the CAD model of an object, while the points ai are

measured points (e.g., from a lidar observing a scene containing that object), and

mesh registration allows retrieving the pose of the (known) object in the point cloud.

The residual error in mesh registration is r(R, t) = dist(Pi,Rai+t), where dist(·)

denotes the distance between a primitive Pi and a point ai after the transformation

(t,R) is applied. The formulation can also accommodate weighted distances to ac-

count for heterogeneous and anisotropic measurement noise. In the outlier-free case,

Briales et al. [57] developed a certifiably optimal non-minimal solver when the 3D

primitives include points, lines, and planes and the noise is anisotropic. We use

GNC, ADAPT, and their minimally tuned versions to efficiently robustify Briales’ non-

minimal solver.

Experimental Setup. We use the “aeroplane-2” mesh model from the PAS-

CAL+ dataset [56]. We compute statistics over 20 Monte Carlo runs, with increasing

amounts of outliers. At each Monte Carlo run, we generate a new point cloud from the

mesh by randomly sampling a subset of points lying on the vertices, edges, and faces

of the mesh, and then apply a random transformation. We also add Gaussian noise

with σ = 0.05dmesh, where dmesh is the diameter of the mesh. We establish 40 point-

to-point, 80 point-to-line, and 80 point-to-plane correspondences, and create outliers

by adding incorrect point to point/line/plane correspondences. Since the number of

degrees of freedom of the measurement noise is d = 3, ϵ=σ
√

chi2inv(0.99, d)=0.0128.

Moreover, we choose NoiseUpBnd=3ϵ=0.0384, and NoiseLowBnd=ϵ/3=0.0043.

We benchmark our algorithms against a RANSAC implementation with 400 maxi-

mum iterations, using the 12-point minimal solver presented in [58].

Mesh Registration Results. Fig. 2-4 shows the rotation error, translation

64



error, and running time for each technique (all plots are in log-scale). The Greedy(MC),

Greedy(MTS), GNC, ADAPT(MC), and ADAPT(MTS), as well as the minimally tunedADAPT-

MinT have comparable performance, and are robust against up to 80% outliers. GNC-

MinT has similar performance, exhibiting slightly higher errors. All proposed methods

outperform RANSAC, which starts breaking at 30% of outliers.

In terms of runtime, RANSAC’s runtime grows with the number of outliers. In-

stead, Greedy’s, ADAPT’s, and ADAPT-MinT’s runtimes grow linearly with the number

of outliers, while GNC’s and GNC-MinT’s remain roughly constant.

Qualitative results for mesh registration are given in Fig. 2-3.

2.6.2 Shape Alignment

In shape alignment, given 2D features zi ∈ R2, i ∈M in a single image and 3D points

Bi ∈ R3, i ∈ M of an object with putative correspondences zi ↔ Bi (potentially

including outliers), the goal is to find the best scale s > 0, rotation R, and translation

t of the object that projects the 3D shape to the 2D image under weak perspective

projection. In practice, the 3D points Bi often correspond to distinguishable points

on the CAD model of an object, while the 2D features zi are measured pixels (e.g.,

from a camera observing a scene containing that object), and shape alignment allows

retrieving the pose of the (known) object in the image.

The residual error in shape alignment is r(s,R, t) = ∥zi − sΠRBi − t∥, where

Π ∈ R2×3 is the weak perspective projection matrix (equal to the first two rows of a

3×3 identity matrix). Note that t is a 2D translation, but under weak perspective

projection one can extrapolate a 3D translation (i.e., recover the distance of the

camera to the object) using the scale s. We use the closed-form solution introduced

in [60] as non-minimal solver. While potentially suboptimal, the solver in [60] works

well in practice, and is faster than the certifiably optimal solver proposed in [43].

Experimental Setup. We test the performance of GNC, GNC-MinT, ADAPT, and

ADAPT-MinT on the FG3DCar dataset [59] against (i) Zhou’s method [61], and (ii) RANSAC

with 400 maximum iterations using a 4-point minimal solver. We use the ground-

truth 3D shape model as B and the ground-truth 2D landmarks as z. To generate

65



outliers for each image, we set random incorrect correspondences between 3D points

and 2D features. We assume σ =
√
1× 10−5 = 0.0032, and, since d = 2, ϵ =

σ
√

chi2inv(0.99, d)) = 0.0096. Also, similarly to mesh registration, NoiseUpBnd =

3ϵ = 0.0288, and NoiseLowBnd = ϵ/3 = 0.0032.

Shape Alignment Results. Fig. 2-5 shows in log-scale the rotation and trans-

lation error, and running time for all techniques. Statistics are computed over all

the images in the FG3DCar dataset. Zhou’s method degrades quickly with increasing

number of outliers. Instead, all other algorithms are robust against 80% of outliers.

RANSAC’s runtime grows exponentially with the number of outliers. GNC, GNC-MinT,

and Zhou’s method runtime is constant, being smaller than RANSAC’s for outlier rates

more than 40%. ADAPT’s and ADAPT-MinT’s runtimes grow linearly.

Qualitative results for shape alignment are given in Fig. 2-3.

2.6.3 Pose Graph Optimization (PGO)

Pose Graph Optimization (PGO) is a common backend for Simultaneous Localiza-

tion and Mapping (SLAM) [1]. PGO estimates a set of poses (ti,Ri), i ∈ M from

pairwise relative pose measurements (t̄ij, R̄ij) (potentially corrupted with outliers).

The residual error is the distance between the expected relative pose and the relative

measurements:

√
∥Log(R̄T

ijR
T
i Rj)∥2ΩR

ij
+∥R̄T

ij(t̄ij −RT
i (ti − tj))∥2Ωt

ij

where ΩR
ij and Ωt

ij are respectively the known rotation and translation measurement

information matrix. For a vector a, the symbol ∥a∥2Ω denotes the standard Maha-

lanobis norm: ∥a∥2Ω= aTΩa. The Log(·) denotes the logarithm map for the rotation

group, which, roughly speaking, converts a rotation matrix to a vector (in 3D) or to

a scalar (in 2D).9

In the outlier free case, SE-Sync [10] provides a global solver for PGO, and we have

used it in our 2D SLAM experiments in [41]. However, SE-Sync becomes too slow

9For simplicity, here we use the geodesic distance ∥Log(R̄T
ijR

T
i Rj)∥, while alternative rotation

66



in the 3D SLAM tests considered In this thesis: rather than a limitation of SE-Sync,

this follows from the fact that in early iterations, both ADAPT and GNC (as well as

their minimally tuned variants) solve problems with many outliers; in these cases,

SE-Sync’s relaxation is not tight,10 and SE-Sync tends to perform multiple steps in the

Riemannian staircase [10], becoming impractical.

To circumvent these issues, instead of SE-Sync, we use g2o [19], which is a local

solver for PGO, and use the odometry as initial guess. We remark this option is only

viable when the odometric guess is available and considered reliable. Appendix H in

the appendix compares the use of SE-Sync and g2o within our algorithms and shows

the two achieve comparable performance when the odometric guess is reliable.

Experimental Setup. We test the performance of our algorithms on synthetic

and real datasets for 2D and 3D PGO. We use a synthetic grid [41], and CSAIL [65]

in 2D, and a synthetic sphere, and Garage [62] in 3D. We compute statistics over

10 Monte Carlo runs, with increasing amounts of outliers. At each Monte Carlo

run, we spoil existing loop closures with random outliers. We consider odomet-

ric measurements as inliers and use the odometry as initial guess for g2o. Since

d = 3 in 2D SLAM, ϵ =
√
chi2inv(0.99, 3) = 3.3682, and since d = 6 in 3D SLAM,

ϵ =
√
chi2inv(0.99, 6) = 4.1.11 Regarding GNC-MinT and ADAPT-MinT, we normal-

ize the measurements’ covariance matrices provided by each dataset to simulate the

case in which the covariances are unknown, and we set NoiseUpBnd = 1m and

NoiseLowBnd = 0.01m.12

We benchmark our algorithms against (i) g2o [19], (ii) dynamic covariance scaling

(DCS) [21], and (iii) pairwise consistent measurement set maximization (PCM) [66].

The performance of DCS is fairly sensitive to the choice of the kernel size Φ, which

distances are often used in PGO, see [10], [62].
10Indeed, it has been observed that the presence of large noise can easily induce failures in relax-

ations of 3D SLAM [63], while their 2D counterparts are observed to remain tight in the presence
of relatively large noise [64].

11In SLAM we do not need multiply by the covariance because the objective function performs a
whitening transformation via the information matrix.

12In detail: we normalize each measurement’s information matrix Ωij by a factor αij that repre-
sents the mean information (inverse variance) of the translation measurements (we ignore the effect
of the rotation, since it has 1-2 orders of magnitude smaller errors).

67



is a parameter in the algorithm: we tested different kernel sizes Φ = {1, 10, 100} for

DCS, and we used the same ϵ for GNC, ADAPT, and PCM. For clarity of visualization,

we only report the best two parameters (leading to smallest errors) for DCS in the

figures.

2D PGO Results. Fig. 2-6 shows the Average Trajectory Error (ATE) and the

running time for the synthetic grid. g2o is a non-robust solver, and performs poorly

even when few outliers are present. ADAPT(MC) and ADAPT(MTS) outperform the

Greedy algorithm. GNC outperforms the state of the art, and is robust to 90% of

outliers. GNC-MinT is also robust up to 90% of outliers, outperforming ADAPT-MinT,

which breaks at 70% of outliers. DCS(10) has similar performance to GNC, being robust

until 90% of outliers; DCS (100) degrades with increasing number of outliers, stressing

the importance of parameter tuning in DCS. PCM starts degrading at relatively low

outlier rates. Fig. 2-6 shows that the runtimes of GNC, GNC-MinT, g2o, DCS, and PCM

are roughly constant, while ADAPT’s and ADAPT-MinT’s runtime grows linearly in the

number of outliers.

Fig. H-1 shows the ATE and the running time for the CSAIL dataset. All ADAPT,

ADAPT-MinT, GNC, and GNC-MinT outperform the state of the art, and are robust against

90% of outliers. DCS starts breaking at 50% of outliers. PCM and g2o perform poorly

across the whole spectrum. Both ADAPT-MinT and GNC-MinT perform similarly to

ADAPT and GNC, although being minimally tuned algorithms. Similarly to grid, the

runtimes of GNC, GNC-MinT, g2o, DCS, and PCM are roughly constant; ADAPT’s and

ADAPT-MinT’s grow linearly.

3D PGO Results. Fig. 2-8 and Fig. 2-9 show the ATE and the running time

in the case of Sphere and Garage, respectively (both in log-scale). We omit Greedy,

ADAPT, ADAPT-MinT, and PCM because their running times become impractical for

these datasets (more than 10 minutes per run). In both Sphere and Garage, we observe

that GNC and GNC-MinT outperform DCS and g2o, regardless of DCS’s parameter choice.

Importantly, GNC-MinT outperforms GNC in Garage. The covariances are unreliable in

the Garage dataset, hence causing GNC to set an incorrect ϵ. On the other hand,

GNC-MinT is able to infer the correct ϵ and ensure accurate estimation. GNC’s and

68



GNC-MinT’s running times slightly increase with increasing number of outliers, while

DCS’s and g2o’s are constant.

Qualitative results are given in Fig. 2-3.

2.7 Extended Literature Review

We extend the literature review in Section 1.1, to discuss outlier-robust estimation

in robotics and computer vision (Section 2.7.1), and in statistics and control (Sec-

tion 2.7.2).

2.7.1 Outlier-robust Estimation in Robotics and Computer

Vision

Outlier-robust estimation has been an active research area in robotics and computer

vision [67]–[69]. Two of the predominant paradigms to gain robustness against outliers

are consensus maximization [14] and M-estimation [69]. In both paradigms, the

literature is mainly divided into (i) fast heuristics, algorithms that are efficient but

provide little performance guarantees, and (ii) global solvers, algorithms that offer

optimality guarantees but scale poorly with the problem size.

Fast Heuristics. For consensus maximization, RANSAC [15], [70] has been a

widely adopted heuristic due to its efficiency and effectiveness in the low-outlier

regime. Tzoumas et al. [41] proposed ADAPT for minimally trimmed squares (MTS)

estimation, a formulation that bears similarity with consensus maximization (cf. Sec-

tion 2.1). For M-estimation, local nonlinear optimization is typically employed, which

relies on the availability of a good initial guess [71], [72]. Instead, the proposed GNC

algorithm by Yang et al. [43] provides a method for solving M-estimation without

requiring an initial guess (also see [73]). Barron [74] proposes a single parametrized

function that generalizes a family of robust cost functions in M-estimation. Che-

brolu et al. [75] design an expectation-maximization algorithm to simultaneously es-

timate the unknown quantity x and choose the best robust cost ρ in Eq. (1.3). These

69



algorithms, however, still rely on an estimate of the inlier noise threshold ϵ.

Global Solvers. Global solvers essentially perform exhaustive search to ensure

global optimality. For instance, branch-and-bound (BnB) has been exploited to glob-

ally solve consensus maximization in several low-dimensional perception tasks [16],

[76]–[84]. Despite its global optimality guarantees, BnB has exponential running time

in the worst case. It is also possible to globally solve consensus maximization and

M-estimation by enumerating all possible minimizers [85], [86]. However, these algo-

rithms are close to exhaustive search and do not scale to high-dimensional problems.

Certifiably robust algorithms are a class of global solvers that have been shown to

strike a good balance between computational complexity and global optimality [2],

[87]. Certifiable algorithms relax non-convex robust estimation problems into convex

semidefinite programs (SDP), whose solutions can be obtained in polynomial time

and provide readily checkable a posteriori global optimality certificates [48], [49],

[88], [89]. Although solving large-scale SDPs is computationally expensive, recent

work has shown that optimality certification (i.e., verifying the global optimality

of candidate solutions returned by fast heuristics) can scale to large problems by

leveraging efficient first-order methods [87].

One approach to boost performance is adding a preprocessing layer to prune out-

liers using consensus maximization, M-estimation, and certifiable algorithms [2], [16],

[90].

Below, we discuss representative outlier-robust methods for registration, shape

alignment, and SLAM.

Robust Registration. Point cloud registration is a fundamental problem in

robotics and computer vision, with applications to 3D reconstruction, localization,

and mapping. The goal is to find the rigid transformation (translation and rota-

tion) that best aligns two point clouds or a point cloud and a 3D mesh. We review

correspondence-based registration methods, while we refer the reader to [2] for a

broader review on 3D registration, including Simultaneous Pose and Correspondence

methods (e.g., ICP [91]). Correspondence-based registration methods assume avail-

ability of putative correspondence between the two point clods. Therefore, they first

70



extract and match features in the two point clouds, using hand-crafted [92] or deep-

learned [12], [93] features. Then, they solve an estimation problem to compute the

rigid transformation that best aligns the set of corresponding features. In the presence

of outliers (i.e., incorrect correspondences), it’s typical to resorts to RANSAC [15], [94],

along with a 3-point minimal solver [95], [96]. However, in the high-outlier regime

(e.g., above 80%), RANSAC tends to be slow and brittle [16], [80]. To gain robust-

ness against a high number of outliers, recent approaches adopt either M-estimation

or consensus maximization. Zhou et al. [73] propose fast global registration, which

minimizes the Geman-McClure robust cost function using GNC. Tzoumas et al. use

ADAPT [41], and Yang et al. use GNC [43] to solve point cloud registration with ro-

bustness against up to 80% outliers. Bazin et al. [97] employ BnB to perform globally

optimal rotation search (i.e., 3D registration without translation). Parra et al. [16]

remove gross outliers adding a preprocessing step before RANSAC or BnB. Yang and

Carlone propose invariant measurements to decouple the rotation and translation

estimation [89], and develop certifiably robust rotation search using semidefinite re-

laxation [49]. The joint use of fast heuristics (e.g., GNC) and optimality certification

for both point cloud registration and mesh registration has been demonstrated in [2],

[87]. The registration approach [2] has been shown to be robust to 99% outliers.

Robust Shape Alignment. Shape alignment consists in estimating the abso-

lute camera pose given putative correspondences between 2D image landmarks and 3D

model keypoints (the problem is called 3D shape reconstruction when the 3D model

is unknown [3], [61], [98]). When a full camera perspective model is assumed, the

problem is usually referred to as the perspective-n-point (PnP) problem [99]. RANSAC

is again the go-to approach to gain robustness against outliers, typically in conjunc-

tion with a 3-point minimal solver [100]. Ferraz et al. propose an efficient robust

PnP algorithm based on iteratively rejecting outliers via detecting large algebraic

errors in a linear system [101]. When the 3D model is far from the camera center, a

weak perspective camera model can be adopted [61], which leads to efficient robust

estimation using GNC [43]. Yang and Carlone [87] develop optimality certification

algorithms for shape alignment with outliers, and demonstrate successful application

71



to satellite pose estimation.

Robust SLAM. SLAM is a fundamental problem in robotics, with applications

to autonomous navigation, augmented reality, and 3D reconstruction. The goal is

to estimate the trajectory of a robot and a map of the environment, given a se-

quence of measurements. Outlier-robust SLAM often relied on M-estimators, see, e.g.,

[69]. Olson and Agarwal [102] use a max-mixture distribution to approximate multi-

modal measurement noise. Sünderhauf and Protzel [20], [103] augment the problem

with latent binary variables responsible for deactivating outliers. Tong and Bar-

foot [104], [105] propose algorithms to classify outliers via Chi-square statistical tests

that account for the effect of noise in the estimate. Latif et al. [106] propose re-

alizing, reversing, and recovering, which performs loop-closure outlier rejection, by

clustering measurements together and checking for consistency using a Chi-squared-

based test. Mangelson et al. [66] propose a pair-wise consistency maximization

(PCM) approach for multi-robot SLAM. Agarwal et al. [21] propose dynamic co-

variance scaling (DCS), which adjusts the measurement covariances to reduce the

influence of outliers. Lee et al. [107] use expectation maximization. These ap-

proaches rely either on the availability of an initial guess for optimization, or on

parameter tuning. Recent work also includes convex relaxations for outlier-robust

SLAM [48], [88], [108], [109]. Lajoie et al. [48] providesub-optimality guarantees,

which however degrade with the quality of the relaxation.

2.7.2 Outlier-robust Estimation in Statistics and Control

Outlier-robust estimation has been also a subject of investigation in statistics and

control [110], [111], where it finds applications to distribution learning [112], linear

decoding [113], and secure state estimation [114], among others.

Statistics. In its simplest form, outlier-robust estimation aims at learning the

mean and covariance of an unknown distribution, given (i) a portion of independent

and identically distributed samples, and (ii) a portion of arbitrarily corrupted samples

(outliers), where the percentage of corrupted samples is known a-priori. Researchers

provide polynomial-time near-optimal algorithms [112], [115]. In cases where one

72



instead aims to estimate an unknown parameter given corrupted measurements,

Rousseeuw [116] propose linear trimmed squares (LTS), which aims to minimize the

cumulative inlier residual error given a known number of outliers. Similar greedy-like

algorithms, that also assume a known number of outliers, are the forward greedy by

Nemhauser et al. [52], and forward-backward greedy by Zhang [117]. Both algorithms

have quadratic running time, which is prohibitive in high-dimensional robotics and

computer vision applications, such as SLAM. In contrast to [52], [116], [117], the greedy

algorithm proposed in [118] considers the number of outliers to be unknown. However,

it still requires parameter tuning, this time for an inlier threshold parameter.

Control. Outlier-robust estimation in control takes the form of secure state

estimation in the presence of outliers, including adversarial measurement corruptions.

Related works [114], [119], [120] propose exponential-time algorithms, achieving exact

state estimation when the inliers are noiseless.

73



M
es
h
R
eg
is
tr
at
io
n

(a) RANSAC (b) ADAPT (c) ADAPT-MinT

S
h
ap

e
A
li
gn

m
en
t

(d) RANSAC (e) GNC (f) GNC-MinT

P
os
e
G
ra
p
h

(g) DCS (h) GNC (i) GNC-MinT

Figure 2-3: Qualitative comparison of the proposed robust estimation algo-
rithms. We investigate fundamental limits and practical algorithms for outlier-robust
estimation. We discuss two algorithms, ADAPT and GNC, that outperform the state
of the art (DCS [21] and RANSAC [15] in the figure) in mesh registration, shape align-
ment, and pose graph optimization. Moreover, we propose two variants, ADAPT-MinT

and GNC-MinT, that perform favorably across robotics applications, and do not require
parameter tuning (e.g., kernel size in DCS, or maximum inlier noise in RANSAC).

74



(a) Rotation Error

(b) Translation Error

(c) Running Time

Figure 2-4: Mesh Registration. Rotation error, translation error, and running
time of the proposed algorithms, compared to RANSAC, on the PASCAL+ “aeroplane-2”
dataset [56]. Statistics are computed over 25 Monte Carlo runs and for increasing
percentage of outliers.

75



(a) Rotation Error

(b) Translation Error

(c) Running Time

Figure 2-5: Shape Alignment. Rotation error (left), translation error (center),
and running time (right) of the proposed algorithms, compared to state-of-the-art
techniques, on the FG3DCar dataset [59]. Statistics are computed over 25 Monte Carlo
runs and for increasing percentage of outliers.

76



(a) Average Trajectory Error (ATE)

(b) Running Time

Figure 2-6: 2D SLAM (Grid). Average Trajectory Error (ATE) and running time
of the proposed algorithms compared to state-of-the-art techniques on a synthetic
grid dataset for increasing outliers.

77



(a) Average Trajectory Error (ATE)

(b) Running Time

Figure 2-7: 2D SLAM (CSAIL). Average Trajectory Error (ATE) and running time of
the proposed algorithms compared to state-of-the-art techniques on the CSAIL dataset
for increasing outliers.

78



(a) Average Trajectory Error (ATE)

(b) Running Time

Figure 2-8: 3D SLAM (Sphere). Average Trajectory Error (ATE) and running time
of the proposed algorithms compared to state-of-the-art techniques on a synthetic
Sphere dataset for increasing outliers.

79



(a) Average Trajectory Error (ATE)

(b) Running Time

Figure 2-9: 3D SLAM (Garage). Average Trajectory Error (ATE) and running
time of the proposed algorithms compared to state-of-the-art techniques on the Garage

dataset for increasing outliers.

80



Chapter 3

Perception Fault Detection and

Identification

In this chapter we move our attention from individual perception problems to the

system level. We start by formulating the problem of fault detection and identifica-

tion in perception systems (Section 3.1). We then introduce the diagnostic graph, a

graphical model that captures the diagnostic information available in the perception

system and dependencies between the different perception modules (Section 3.2). We

leverage the diagnostic graph to develop algorithms for fault detection and identifi-

cation (Section 3.3) and study the fundamental limits of the approach (Section 3.4).

We demonstrate, through simulations, that our algorithms can detect and identify

faults in state-of-the-art perception systems (Section 3.5) and conclude the chapter

with a discussion of related work (Section 3.6).

3.1 Fault Detection and Identification

3.1.1 Perception System: Modules and Outputs

A perception system S comprises a finite set of unique interconnected modules M =

{m1,m2, . . . ,m|M|}; for instance, the perception system of a self-driving car may in-

clude modules for lane detection, camera-based object detection, LiDAR-based mo-

81



tion estimation, ego-vehicle localization, etc. Each module m ∈ M produces a finite

set of outputs, and each output is produced by a single module. For instance, the lane

detection module may produce an estimate of the 3D location of the lane boundaries,

while the pedestrian detection module may produce an estimate of the pose and ve-

locity of pedestrians in the surroundings. Some of these outputs provide inputs for

other perception modules, while other are the outputs of the perception system and

feed into other systems (e.g., to planning and control). The set of modules’ outputs

are disjoint (i.e., each output is produced by a single module), and the set of all

outputs is denoted by O. We model the perception system as a graph of modules and

outputs.

Definition 20 (Perception System). A perception system S is a directed graph S =

(M∪O, E), where the set of nodesM∪O describes modules and outputs in the system,

while the set of edges E describes which module produces or consumes a certain output.

In particular, an edge (mi, oj) ∈ E with mi ∈ M and oj ∈ O models the fact that

module mi produces output oj. Similarly, and edge (oj,mi) ∈ E with oj ∈ O and

mi ∈M models the fact that module mi uses output oj.

We treat each module as a black-box and remain agnostic to the algorithms they

implement. This allows our framework to generalize to complex perception systems,

possibly including a combination of classical and data-driven methods.

While we will consider more complex examples of perception systems in the exper-

imental section, Fig. 3-1 shows a simple example of perception system to ground the

discussion. The system comprises three modules: a LiDAR-based obstacle detector, a

camera-based obstacle detector, and a sensor fusion module. Both the LiDAR-based

and the camera-based obstacle detectors generate a set of obstacles detected in the

environment, namely, the LiDAR obstacles and camera obstacles. The sensor fusion

algorithm combines the two sets of obstacles to produce a new set of objects, called

fused obstacles.

Remark 21 (Modules vs. Outputs). Our system model treats modules and outputs

as separate nodes. This is convenient for two reasons. First, fault identification at

82



L iDA R -based
Obst acle D et ect or

L iDA R
Obst acles

Camer a
Obst acles

Camer a-based
Obst acle D et ect or

Sensor  Fusion
A lgor i t hm

Fused
Obst acles

Out -of-dist r ibut ion sample

Out -of-dist r ibut ion sample

M isdet ect ion

M isdet ect ion

M isdet ect ion

M isassociat ion

Figure 3-1: A simple example of a perception system including 3 modules (rectangles)
and 3 outputs (circles). Modules are connected by edges describing which module pro-
duces or consumes a given output. The failure modes of each module (resp. output)
are represented by red dots. The LiDAR-based and the Camera-based obstacle de-
tection modules are subject to the out-of-distribution sample failure mode (i.e., they
saw a sample far from the training dataset), which might result in misdetections (e.g.,
missing obstacles) in their respective outputs. The sensor fusion module is subject to
the misassociation failure mode, which might result in misdetections in its output.

the modules and outputs may serve different purposes: output fault identification is

more useful at runtime to identify unreliable information from the perception system

and prevent accidents; module fault identification is typically more informative for

designers and regulators. Second, in practical applications we can rarely measure if a

module is failing (indeed developing algorithms that can “self-diagnose” their failures

is an active area of research, see work on certifiable algorithms [121]). On the other

hand, we can directly measure the outputs of the modules and develop diagnostic tests

to check if an output is plausible and consistent with other outputs in the system.

3.1.2 Fault Detection and Fault Identification

Each module in S might fail at some point, jeopardizing the system performance

or even its safety. In particular, each module m ∈ M is assumed to have a set of

failure modes. A failure of a module is the deviation from its intended behavior.While

the list of failures can include any software and hardware failures, In this thesis we

particularly focus on failures of the intended functionality. For example, a neural-

network-based camera-based object detection module might experience the failure

mode “out-of-distribution sample” when it processes an input image, which indicates

83



that while the module’s code executed successfully, the resulting detection is expected

to be incorrect.

Similarly, each output o ∈ O has an associated set of failure modes. A failure

of an output is an error of its value. For instance, the output of the camera-based

object detector might experience a “mis-detection” failure mode if it fails to detect an

object, or a “mis-classification” failure mode if the object is detected but misclassified.

A module’s failure mode typically causes a failure in one of its outputs. Examples

of failure modes are given in Fig. 3-1. For each module and output, the figure lists

a potential failure mode: for instance, the LiDAR-based obstacle detection output

may fail if it misdetects an obstacle, while the sensor fusion module may fail it it

incorrectly associates the input obstacles.

Definition 22 (Failure Modes). At each time instant, the i-th failure mode fi ∈

{INACTIVE,ACTIVE} ∼= {0, 1} is either ACTIVE (also 1) if such failure is occur-

ring, or INACTIVE (also 0). A module or an output is failing if at least one of its

failure modes is ACTIVE. Similarly, a system is failing if at least one of its mod-

ules or outputs is failing. If we stack the status (ACTIVE/INACTIVE) of all failure

modes into a single binary vector, the fault state vector f ∈ {0, 1}Nf (where Nf is

the number of failure modes), then f is all zeros if there are no faults, or has entries

equal to ones for the active failure modes.

The goal of this section is then to address the following problems:

Fault Detection decide whether the system is working in nominal conditions or

whether a fault has occurred (i.e., infer if there is at least an active failure

mode in f);

Fault Identification identify the specific failure mode the system is experiencing

(i.e., infer which failure mode is active in f).

Fault detection is the easiest between the two problems, as it only requires spec-

ifying the presence of at least a fault, without specifying which modules or outputs

are incorrect. Mathematically, this reduces to identifying whether the unknown vec-

tor f has at least an entry equal to 1. Fault identification goes one step further by

84



explicitly indicating the set of active failure modes. Mathematically, this reduces to

identifying exactly which entries of the unknown vector f are equal to 1. Identifying

which module is faulty is particularly important to inform regulators (e.g., to trace

the steps that that led to an accident caused by an autonomous vehicle) and system

designers (e.g., to highlight modules that are likely to fail and require further devel-

opment). Moreover, not all faults are equally problematic: for instance, a failure in

localizing a car in the opposite lane of a divided highway is less consequential that

failing to detect a pedestrian in front of the car. Note that solving fault identification

implies a solution for fault detection (i.e., whenever we declare one or more modules

to be faulty, we essentially also detected there is a failure), hence in the rest of this

paper we focus on the design of a monitoring system for fault identification.

Remark 23 (Assumptions and Terms of Use). We assume that the potential failure

modes of the system are known to the system designer. In practice, these can be

discovered using some form of hazard analysis, such as Failure Modes and Effects

Analysis (FMEA) [122] or Fault tree analysis (FTA) [123]. Moreover, we can always

add a generic “unknown failure mode” to capture any failure modes of a module or

output that we cannot characterize, so this assumption is not restrictive. We also

remark that our monitoring system’s objective is to diagnose potential failures, while

it does not prescribe what are the actions that need to be taken in response to each

failure ( e.g., whether to stop the car, provide a warning to the passenger, etc.), which

is failure and system-dependent. An investigation on how to respond to or mitigate

failures is left to future work.

3.2 Modeling Fault Identification with Diagnostic

Graphs

This section develops a framework to model fault identification problems in perception

systems. In the previous section we have discussed how the goal is to identify the set

of active failure modes associated to modules and outputs in a system. Here we intro-

85



duce the concept of diagnostic graphs to study fault identification: diagnostic graph

will allow developing fault identification algorithms (Section 3.3) and understanding

fundamental limits (Section 3.4).

The intuition is that in a perception system we can perform a number of diagnostic

tests that check the validity of the output of certain modules. For instance, we can

compare the outputs of different modules to ensure they are consistent (e.g., compare

the obstacles detected by the LiDAR-based obstacle detection against the camera-

based obstacle detection), or inspect that the output of a certain module respects

certain requirements (e.g., the vision-based ego-motion module is tracking a sufficient

number of features). Then, we can model these checks as edges in a bipartite graph,

the diagnostic graph, which can be used for fault identification. In the following, we

formalize the notions of diagnostic tests and diagnostic graphs.

3.2.1 Diagnostic Tests

In our fault identification framework, the system is equipped with a set of diagnostic

tests that can (possibly unreliably) provide diagnostic information about the state of

a subset of failure modes. Each diagnostic test is a function t : S → {PASS,FAIL},

where S ⊆ {1, . . . , Nf} is a subset of the failure modes that the test is checking, called

the scope of the test, and the test returns a value z ∈ {PASS,FAIL} ∼= {0, 1}, called

the outcome of the test. A diagnostic test returns PASS (also denoted with 0) if there

is no active failure mode in its scope, FAIL (also denoted with 1) otherwise. In general,

tests can be unreliable, meaning that they can both fail to detect active failures or

incorrectly detect failures as active (i.e., false alarms). Each diagnostic test can

be tuned to be more or less conservative, which affects the number of false alarms

and missed failures (i.e., precision and recall) of fault detection and identification,

providing additional flexibility to practitioners.

While in the experimental section we will describe more complex tests (and provide

an open-source framework to easily code new tests), it is instructive to consider

a simple test between the outputs of the LiDAR-based obstacle detection and the

camera-based obstacle detection in Fig. 3-2. The test in Fig. 3-2 compares the two

86



sets of objects detected by the two detectors; whenever an inconsistency arises, the

test returns FAIL. However, if both detectors are subject to the same failure, e.g.,

they both misdetect an obstacle, the test might still pass, thus exhibiting unreliable

behavior. We remark that a single test does not suffice for fault identification: for

instance, if the test in Fig. 3-2 fails, we can only conclude that one of the two detectors

had a failure (or that the test was a false alarm); therefore, we typically need to collect

a number of tests and perform some inference process to draw conclusions about which

modules failed. The collection of the outcomes of multiple diagnostic tests is called a

syndrome.

Definition 24 (Syndrome). Assuming we have Nt diagnostic tests, the vector col-

lecting the test outcomes z ∈ {PASS,FAIL}Nt is called a syndrome.

In the following, we describe how to mathematically model the relation between

the failure modes and the test outcomes; this will be instrumental in solving the

inverse problem of identifying the failure mode from a given syndrome. We provide

a deterministic and a probabilistic model for the tests below.

Deterministic Tests. Deterministic diagnostic tests encode the set of possible

test outcomes, by establishing a deterministic relation between failure modes in the

test’s scope and the test outcome. We discuss potential models for deterministic

diagnostic test below.

Ideally we would like the test to return FAIL if and only if at least one of the

failure modes in its scope is active. This leads to the definition of a “Deterministic

OR” test.

Definition 25 (Deterministic OR). A diagnostic test t(fscope(t)) is a deterministic

OR if its test outcome z is

z =

PASS if ∥fscope(t)∥1= 0

FAIL otherwise

(3.1)

This kind of tests can be hard to implement in practice. For example, imagine

a diagnostic test that compares the output of two object classifiers: if one of them

87



produces a wrong label, it is easy to detect there is a failure; however, if both classifiers

are trained on similar data and both report the incorrect label there is no way to detect

the failure. In this case, the test outcome is unreliable. The following definition

introduces a type of unreliable test.

Definition 26 (Deterministic Weak-OR [44], [124]). A test t(fscope(t)) is a determin-

istic Weak-OR if its test outcome z is

z =


FAIL if 0 < ∥fscope(t)∥1< |scope(t)|

PASS or FAIL if ∥fscope(t)∥1= |scope(t)|

PASS otherwise

(3.2)

This kind of tests is consistent with the tests used in [124]. Intuitively, a “Deter-

ministic Weak-OR” may return PASS even if all failure modes are active, since the

test might fail to detect an inconsistency if all faults are consistent with each others

(again, think about two object classifiers failing in the same way). Even though the

Weak-OR test may pass or fail when all failure modes are active, its outcome remains

deterministic.

Finally, an even weaker type of deterministic test is what we call the Deterministic

Weaker-OR (this is the easiest test to implement in practice).

Definition 27 (Deterministic Weaker-OR). A diagnostic test t(fscope(t)) is a Deter-

ministic Weaker-OR if its test outcome z is

z =

PASS or FAIL if ∥fscope(t)∥1> 0

PASS if ∥fscope(t)∥1= 0

(3.3)

In other words, the test is designed to pass in nominal conditions (i.e., when no

failure mode is active), but it can have arbitrary outcomes otherwise.

The types of deterministic tests presented above are not the only possible de-

terministic tests. Other examples include, for instance, diagnostic tests that fail to

detect specific sets of failure modes. Deterministic tests can be designed using formal

88



methods tools or certifiable perception algorithms [3], [87], [89],1 see also Remark 29

below.

Test

L iDA R
Obst acles

Camer a
Obst acles

M isdet ect ion

M isdet ect ion

Figure 3-2: A test
comparing two out-
puts, LiDAR Obsta-
cles and Camera Ob-
stacles

Scope Test outcome z
f1 f2 OR Noisy-OR

0 0 0

{
0 with prob. (1− pa,1)(1− pa,2)
1 with prob. pa,1 + pa,2 − pa,1pa,2

0 1 1

{
0 with prob. (1− pa,1)(1− pd,2)
1 with prob. pa,1 + pd,2 − pa,1pd,2

1 0 1

{
0 with prob. (1− pd,1)(1− pa,2)
1 with prob. pd,1 + pa,2 − pd,1pa,2

1 1 1

{
0 with prob. (1− pd,1)(1− pd,2)
1 with prob. pd,1 + pd,2 − pd,1pd,2

Table 3.1: Table of possible outcomes for the Deter-
ministic OR and the probabilistic Noisy-OR version of
a test with scope f1 and f2.

Probabilistic Tests. Deterministic tests might not capture the complexity of

real world diagnostic tests. Most practical tests are likely to incorrectly detect faults

(i.e., produce false positive) or fail to detect faults (i.e., produce false negatives)

with some probability. For this reason, in this thesis, we also allow for an arbitrary

probabilistic relationship between test outcomes and failure modes in the test scope.

A simple-yet-expressive way to formalize a probabilistic test is to use what we call

a “Noisy-OR” model. In particular, the Noisy-OR model represents the probability

of a diagnostic test outcome as a conditional probability distribution over the failure

modes in its scope Pr(z | fscope(t))
2 as defined below.

Definition 28 (Noisy-OR [125]). A diagnostic test t(fscope(t)) is a probabilistic Noisy-

OR if its test outcome z follows

Pr(z = PASS | fscope(t)) =
∏

i∈scope(t)

Pr(z = PASS | fi) (3.4)

1Certifiable perception algorithms are a class of model-based perception algorithms that provide
a soundness certificate at runtime, allowing one to directly measure the presence (or absence) of
certain failure modes, see [89], [121].

2We denote with Pr(A) the probability of event A, and with Pr(A | B) the conditional probability
of A given B.

89



where Pr(z | fi) denotes the conditional probability of the test outcome (PASS/FAIL)

conditioned on the status (ACTIVE/INACTIVE) of the failure mode fi. Clearly,

Pr(z = FAIL | fscope(t)) = 1− Pr(z = PASS | fscope(t)).

Now suppose each test has a probability pd,i of correctly identifying failure fi

(detection probability), and a probability pa,i of false alarm for fi. Exploiting the

fact that fi ∈ {0, 1}, we can write Eq. (3.4) as:

Pr(z = PASS | fscope(t)) =
∏

i∈scope(t)

(1− pd,i)fi(1− pa,i)1−fi (3.5)

An example of probabilistic test outcome is given in Table 3.1.

Similarly to the deterministic case, the Noisy-OR model is not the only possible

model. However, Section 3.5 shows that this model is particularly effective in modeling

fault identification problems in practice. In Section 3.3, we discuss how to learn the

probabilities involved in probabilistic tests (i.e., pd,i and pa,i in Eq. (3.5)) given a

training dataset, and how to use the test outcomes to infer the most likely failure

modes. Towards that goal, we need to group diagnostic tests into a suitable graph

structure, called a diagnostic graph, which we present in the following section.

We conclude this section with a remark.

Remark 29 (From diagnostic tests to fault identification). The diagnostic tests we

introduced in this section are not dissimilar from the typical diagnostic tests or watch-

dogs considered in prior work or used by practitioners. Our goal here is to formalize

these tests and use the test outcomes to infer the most likely set of system-wide fail-

ures. In this sense, our fault identification framework is designed to capitalize on

(rather than replace) existing diagnostic tools used in practice. For example the de-

tection mechanism proposed by Liu and Park [126], which is based on the idea of

projecting the 3D LiDAR points onto camera images, and then checking whether ob-

jects detected from LiDAR and images match each other, can be formulated as a

diagnostic tests with the camera and LiDAR misdetection in its scope, such that the

test outcome is the output of the algorithm in [126]. Also, out-of-distribution detec-

tion based on epistemic uncertainty, e.g., [127], can be formulated as a diagnostic tests

90



with the module’s “out-of-distribution sample” failure mode in its scope, such that the

test outcome is FAIL if the estimated uncertainty is above a threshold. Finally, while

not explored In this thesis, diagnostic tests can also return a severity measure, which

can be either discrete ( e.g., low, medium, high) or continuous ( e.g., real number in

[0, 1]). Once the active failure modes are identified, the severity of each failure mode

can be determined using some operation on the collected severity ( e.g., max, weighted

sum, etc.).

3.2.2 Diagnostic Graph

A diagnostic graph is a structure defined over a perception system and has the goal

of describing the diagnostic tests (as well as more general relations among failure

modes) and their scope. We provide a formal definition below.

Definition 30 (Diagnostic Graph). A diagnostic graph is a bipartite graph D =

(V ,R, E) where the nodes are split into variable nodes V, corresponding to the failure

modes in the system, and relation nodes R, where each relation ϕk(f) ∈ R is a

function over a subset of failure modes f . Then an edge in E exists between a failure

mode fi ∈ V and a relation ϕk ∈ R, if fi is in the scope of the relation ϕk ( i.e., if the

variable fi appears in the function ϕk).

Relations capture constraints among the variables induced by the test outcomes

or from prior knowledge we might have about the failure modes. We describe the two

main types of relations below and for each we describe their implementation in the

deterministic and probabilistic case.

Definition 31 (Test-driven Relations). A test-driven relation ϕk describes whether

—for a test tk— a given set of failure mode assignments might have produced a certain

test outcome zk. More formally, for a deterministic test tk, a test-driven relation is

a boolean function:

ϕk(f) = ϕ(fscope(tk); zk) = 1
[
zk = t

(
fscope(tk)

)]
(3.6)

91



where 1 is the indicator function that returns 1 if the condition is satisfied or 0

otherwise. The function Eq. (3.6) checks if an assignment of failure modes f may

have produced the test outcome zk and where the notation ϕk(f) = ϕ(fscope(tk); zk)

clarifies that the function ϕk only involves a subset of failure modes fscope(tk) (the

ones in the scope of test tk) and depends on the (given) test outcome zk. Similarly,

for a probabilistic test tk, a test-driven relation is a real-valued function:

ϕk(f) = ϕ(fscope(tk); zk) = Pr(zk|fscope(tk)) (3.7)

which returns the likelihood of the test outcome zk given an assignment f .

Definition 32 (A Priori Relations). An a priori relation describes whether a given

set of failure modes is plausible, considering a priori knowledge about the system.

More formally, in the deterministic case, an a priori relation is a boolean function

ϕk(f) that returns 1 if the assignment of f is plausible or 0 otherwise. Similarly, in

the probabilistic case, an a priori relation is a real-valued function ϕk(f) that returns

the likelihood of a given assignment f .

In the following we will denote the set of Test-driven Relations as Rtest while the

set of A Priori Relations as Rprior. Therefore, R = Rtest ∪Rprior.

The aim of a priori relationship is to model the interactions between different

modules, which includes interaction between modules of the same subsystem (e.g.,

object detection) or interactions between different subsystems (e.g., object detection

and localization modules). While we have provided several examples of diagnostic

tests in the previous section, we now provide examples of a priori relations. For

instance, in the deterministic case, some failure modes of a module can be mutually

exclusive (e.g., “too many outliers”, “not enough features” in the Lidar-based ego-

motion estimation) or one can imply another (e.g., if a module is experiencing an

“out-of-distribution sample” failure mode, then its outputs will have at least an active

failure mode). Not all relations are deterministic, for example in Fig. 3-3, the failure

modes of the sensor fusion algorithm may have a complex probabilistic relationship

with the failure modes of the lidar and camera obstacles failure modes. Note that the

92



main difference between test-driven relations and a priori relations is that the former

provides a measurable test outcome, while the latter relies on a priori knowledge

about the system (i.e., no outcome is measured).

We elucidate on the notion of diagnostic graph with two examples below.

Example 1: Multi-sensor Obstacle Detection. Consider the perception

system in Fig. 3-1. We can associate a diagnostic graph to the system where the

variable nodes of the diagnostic graph are the failure modes of modules and outputs

in the system. The diagnostic graph, shown in Fig. 3-3, also includes two diagnostic

tests and a priori relations encoding input/output relationship between modules and

outputs. Each diagnostic test compares a pair of outputted obstacles, namely LiDAR

obstacles and camera obstacles (with failures f4 and f5), and camera obstacles and

fused obstacles (with failures f4 and f6).

Figure 3-3: A diagnostic graph for the perception system example in Fig. 3-1. Red
circles represent variable nodes (failure modes) while squares represent relations. Test-
driven Relations are shown in blue, while a priori relations are shown in black.

Example 2: LiDAR-based Ego-motion Estimation. We provide a second

example that also includes singleton diagnostic tests (having a single failure mode

in their scope) and includes explicit tests over modules. The example consists of a

LiDAR-based odometry system that computes the relative motion between consec-

utive LiDAR scans using feature-based registration, see e.g., [1], [2]. The system

S comprises two modules, a feature extraction module and a point-cloud registration

module, as depicted in Fig. 3-4(left). The feature extraction module extracts 3D point

features from input LiDAR data, while the point-cloud registration module uses the

features to estimate the relative pose between two consecutive LiDAR scans. Sup-

pose that the feature extraction module is based on a deep neural network and that it

93



can experience an “out-of-distribution sample” failure, which causes the correspond-

ing output to potentially experience “too-many outliers” or “few features” failures.

Similarly, the module point-cloud registration can experience the failure “suboptimal

solution”, which leads its outputs, the relative pose, to experience a “wrong relative

pose” failure. Fig. 3-4(right) shows a diagnostic graph for the system. The system is

equipped with four diagnostic tests. A diagnostic test (t1) detects if the failure mode

“few features” is active by checking the cardinality of the feature set. If the point-

cloud registration module is a certifiable algorithm [121], we can attach a diagnostic

test (t2) to the point-cloud registration module that uses the module’s certificate to

detect if the module is experiencing a “suboptimal solution” failure. Another di-

agnostic test (t3) detects if the relative pose is wrong by checking that the relative

pose does not exceed some meaningful threshold given the vehicle dynamics. Finally,

another test (t4) checks if under the computed relative pose, the feature extractor

has “too many outliers”. This can be achieved by counting the number of features

that are correctly aligned after applying the estimated relative pose. The diagnos-

tic graph also contains a priori relations encoding constraints on the input/output

relationships.

Temporal Diagnostic Graph

So far, we have considered a diagnostic graph as a representation of the diagnostic

information available at a specific instant of time (e.g., the examples above include

tests and relations involving the behavior of modules and outputs at a certain time

instant). However, perception systems evolve over time, and considering the temporal

dimension offers further opportunities for fault identification, e.g., by monitoring the

temporal evolution of the outputs.

Suppose we have a collection of diagnostic graphs T = {D(t), . . . ,D(t+K)}, col-

lected over and interval of time. We could think of stacking these diagnostic graphs,

into a new temporal diagnostic graph D[K]. The temporal graph preserves the failure

mode, relations and edges of each sub-graph D(k) ∈ T . However, since D[K] includes

outputs produced at multiple time instants, we can also augment the graph to include

94



Feat ur e
Ext r act or

Feat ur es

R elat ive
Pose

Point -Cloud
R egist r at ion

Out -of-dist r ibut ion 
sample

Subopt imal Solut ion

W r ong R elat ive Pose

Too-many Out l ier s

N ot  enough feat ur es

Figure 3-4: (Left) Example of the LiDAR-based ego-motion estimation system S.
The system is composed by two modules (rectangles), each producing one output
(circles). (Right) The corresponding diagnostic graph, where red circles represent
variable nodes (failure modes) while squares represent relations (test-driven Relations
in blue, a priori relations in black).

temporal diagnostic tests and temporal relationships. For example, we might check

that an obstacle does not disappear from the scene (unless it goes out of the sensor

field of view), or that the pose of the ego-vehicle does not change too much over

time. As we will see, the use of temporal diagnostic graph leads to slightly improved

fault identification performance. An example of temporal diagnostic graph is given

in Fig. 3-5.

The algorithms and results presented in the rest of this paper apply to both regular

and temporal diagnostic graph, unless specified otherwise.

Remark 33 (Temporal Diagnostic Tests). Temporal diagnostic tests are used to mon-

itor the evolution of the system over time. For example the Timed Quality Temporal

Logic in [128] can be implemented with a temporal diagnostic test that spans multiple

D(t)’s. More specifically, the test example considered in [128] requires that “At every

time step, for all the objects in the frame, if the object class is cyclist with probability

more than 0.7, then in the next 5 frames the same object should still be classified as a

95



Figure 3-5: Example of Temporal Diagnostic Graph composed by two identical sub-
graphs. We added temporal relations (both test-driven and a priori) between the two
sub-graphs.

cyclist with probability more than 0.6”. This can be modeled as a diagnostic test that

spans 5 diagnostic graphs and that returns FAIL if the predicate is false.

3.3 Algorithms for Fault Identification

This section shows how to perform fault identification over a diagnostic graph. In

particular, we present algorithms to infer which failure modes are active, given a

syndrome. We study fault identification with deterministic tests in Section 3.3.1

and then extend it to the probabilistic case in Section 3.3.2. Finally, we present a

graph-neural-network approach for fault identification in Section 3.3.3.

3.3.1 Inference in the Deterministic Model

In the deterministic case, our inference algorithm looks for the smallest set of active

failure modes that explains a given syndrome. In Section 3.4, we will show that such

approach is guaranteed to correctly identify the faults as long as the tests provide

a sufficient level of redundancy, an insight we will formalize through the notion of

96



“diagnosability”.

Looking for the smallest set of active failures that explains the test outcomes (and

more generally, the relations) in a diagnostic graph can be formulated as the following

optimization problem (given a syndrome z):

minimize
f∈{0,1}Nf

∥f∥1

subject to ϕk(fscope(tk); zk) = 1, i = 1, . . . , Nt,

ϕj(f) = 1, j = 1, . . . , Nr,

(D-FI)

where ϕk(fscope(tk); zk) are the Nt test-driven relations in the diagnostic graph, while

ϕj(f) are the Nr a priori relations in the graph. In words, Eq. (D-FI) looks for

binary decisions (ACTIVE/INACTIVE) for the failure modes f , and looks for the

smallest set of faults (the objective ∥f∥1 counts the number of ACTIVE failure modes)

such that the faults satisfy the relations in the diagnostic graph. Eq. (D-FI) is our

Deterministic Fault Identification algorithm.

The optimization in Eq. (D-FI) can be solved using standard computational tools

from Integer Programming [129] or Constraint Satisfaction Programming [130]. While

integer programming is better suited to find the solution to the minimization problem,

constraint programming also allows finding all the solutions in the feasible set. The

choice between the two depends on the application and the expression for the relations.

In our experiments, we solve it using Integer Programming. We remark that while

Integer Programming is NP complete, our problems typically only involve tens to

hundreds of failure modes, and can be solved efficiently in practice.

The model presented above is generic and valid for any deterministic test and a

priori relations. In the following, we provide an example to ground the discussion and

show how to instantiate the optimization problem in practice.

Example 3: Deterministic Inference with Weaker-OR and Module-

Output Relations. We consider a diagnostic graph with Deterministic Weaker-OR

tests. Moreover, for a priori relations, we assume that whenever the output of a mod-

ule has a failure, then also the module itself must have at least an active failure mode.

97



This is also the setup we use in our experiments in Section 3.5.

In Weaker-OR diagnostic tests, the PASS outcome is unreliable, meaning that if a

test returns PASS it might have 0 or more failure modes active in its scope. However,

when it the test returns FAIL, we know there must be at least one failure mode active.

This can be easily enforced in the optimization by imposing the constraint:

∥fscope(ti)∥1≥ 1 ∀ti ∈ {1, . . . , Nt} such that zi = FAIL,

We then have to enforce the relation that if an output has an active failure mode,

then the module that produced it must have at least one active failure mode as well.

Towards this goal, let F(oi) ⊆ {1, . . . , Nf} be the set of failure modes associated to

outputs of module mi and F(mi) be the set of failure modes associated to mi; then

the a priori relation can be enforced via the constraint:

∥fF(mi)∥1 ≥
1

|F(oi)|
∥fF(oi)∥1

Intuitively, when there is no active failure in the outputs (i.e., ∥fF(oi)∥1= 0) the

constraint is trivially satisfied, while when there is at least an output failure (i.e.,

∥fF(oi)∥1> 0) then ∥fF(mj)∥1 is forced to be at least 1. The resulting optimization

problem finally becomes:

minimize
f∈{0,1}Nf

∥f∥1

subject to ∥fscope(ti)∥1≥ 1 ∀ti ∈ {1, . . . , Nt} such that zi = FAIL,

∥fF(mi)∥1≥
1

|F(oi)|
∥fF(oi)∥1 ∀mi ∈M.

(3.8)

3.3.2 Inference in the Probabilistic Model

This section shows how to use the formalism of factor graphs to find the most likely

active failure modes that explain a given syndrome in a diagnostic graph with prob-

abilistic tests.

Factor graphs are a powerful class of probabilistic graphical models. Probabilistic

98



graphical models allow describing relationships between multiple variables using a

concise language. In particular, they describe joint or conditional distributions over

a set of unknown variables and a set of known observations, and can be used to infer

the values of the unknown variables. In this work we limit ourselves to factor graphs

over discrete (binary) variables. We start from the definition of a factor graph.

Definition 34 (Factor Graph [131]). A factor graph is a bipartite graph F = (V ,Φ, E)

consisting of a set V of variable nodes, a set Φ of factor nodes, and a set E ⊆ V × Φ

of edges having one endpoint at a variable node and the other at a factor node. Let

N (ϕ) the set of variables to which a factor node ϕ is connected, then, the factor graph

defines a family of distributions that factorize according to

µ(f | z) = 1

Z

∏
ϕ∈Φ

ϕ(fN (ϕ); z) (3.9)

where the normalization factor Z, also known as the partition function, ensures that

µ(f) is a valid distribution:3

Z(z) =
∑
f

∏
ϕ∈Φ

ϕ(fN (ϕ); z) (3.10)

The notation ϕ(fN (ϕ); z) emphasizes the fact that each factor is a function of a subset

fN (ϕ) of the failure modes f , for given observed z.

The factor graph F and the diagnostic graph D have a similar structure. In fact

we can choose the set of variables V in the factor graph to be the same as the set

of variables in the diagnostic graph, namely the set of failure modes. Then, we can

choose the set of factors Φ to be the relations R of D, and the set of edges to be the

same. Therefore, for a given diagnostic graph D, it is easy to devise the corresponding

factor graph as:

µ(f | z) = 1

Z

∏
ϕk∈Rtest

ϕk(fscope(tk); zk)
∏

ϕj∈Rprior

ϕj(fN (ϕj)) (3.11)

3The notation
∑

f means “sum over all possible values of f .”

99



where we have simply observed that the probability distributions induced by the rela-

tions in the diagnostic graph naturally factorize into factors, each one corresponding

to a (test-driven or a priori) relation in the diagnostic graph.

Maximum a Posteriori Inference. Given a factor graph, a natural question to

ask is what is the most likely assignment of variables that maximizes the probability

distribution induced by the factor graph (e.g., in our case, this is the most likely set

of faults in the system). This leads to the concept of maximum a posteriori (MAP)

inference, which —given a factor graph and a syndrome z— looks for the most likely

variables f ⋆, that maximize the posterior distribution:

f ⋆ = argmax
f∈{0,1}Nf

µ(f | z) (FG-FI)

Computing a MAP estimate is known to be NP-hard for general factor graphs [132],

therefore it is common to use approximate methods. In our experiments we used belief

propagation(Sec. 3 in [133]) to solve the MAP inference, which finds the optimal

solution for tree-structured factor graphs, and is known to empirically return good

approximations for the MAP estimate in general factor graphs.

Learning the Factor Graph Parameters. While in the deterministic case

we know the expression of the relations ϕk, in the probabilistic case the probabilistic

tests might depend on unknown parameters, cf. the expression in Eq. (3.5) that

requires specifying the parameters pd,i (probability that a fault is not detected) and

pa,i (probability of a false alarm). There are several paradigms to learn the factor

graph parameters. In our experiments we use a method called structured support

vector machine (SSVM) or maximum margin learning (Sec. 19.7 in [134]).

3.3.3 Graph Neural Networks for Fault Identification

The factor graph framework introduced in the previous section learns the factor graph

parameters from training data, and then performs maximum a posteriori inference at

runtime for fault identification. In this section, we propose a learning-based frame-

work that is also trained on a dataset, but then learns directly how to predict which

100



failure mode is active at runtime. In particular, we use Graph Neural Networks (GNN)

to learn to identify active faults in a diagnostic graph.

GNNs provide a general framework for learning using graph-structured data, and

have empirically achieved state-of-the-art performance in many tasks such as node

classification, link prediction, and graph classification [135]. The fault identification

problem considered In this thesis can be phrased as a node classification problem. In

node classification, given a undirected graph G = (V , E) where each node i ∈ V has

an (unknown) label yi, the objective is to learn a representation vector ei of node i

such that label yi can be predicted as a function of the node embeddings ei.

In the following, we recall common GNN architectures (Section 3.3.3) and then

we discuss how to transform our diagnostic graph into a structure that can be fed to

a GNN to predict active faults (Section 3.3.3).

Graph Neural Network Preliminaries

A GNN is an extension of recurrent neural networks that operates on graph-structured

data. GNNs are based on the concept of neural message passing in which real-

valued vector messages are exchanged between nodes of a graph —not dissimilarly

to the belief propagation we used in Section 3.3.2— but were the messages (and

node updates) are built using differentiable functions encoded as neural networks. To

understand the basic idea of neural message passing consider an undirected graph

G = (V , E). At the beginning, each node is assigned a feature vector e
(0)
i for each

i ∈ V . Then, during each message-passing iteration k = 1, 2, . . ., the embedding e
(k)
i

is updated by aggregating the embeddings of node i’s neighborhood N (i)

e
(k+1)
i = update

(
e
(k)
i , aggregate

({
e
(k)
j | j ∈ N (i)

}))
(3.12)

= update
(
e
(k)
i ,a

(k)
i

)
(3.13)

Where aggregate(·) and update(·) are two learned differentiable functions (i.e., neural

networks). At each iteration k, the aggregate(·) function takes the embeddings of node

i’s neighbors and generates a message a
(k)
i . Then, the update(·) function combines

101



the message with the previous embedding of node i, generating the new embedding

of node i. The final embedding is obtained by running the neural message passing for

K iterations. Finally, the node label is predicted by a learned differentiable function

of the node embeddings:

yi = READOUT(e
(K)
i ) (GNN-FI)

The literature on GNN offers a number of potential choices for the update(·) and

aggregate(·) functions. We review four popular choices below.

Graph Convolutional Networks (GCNs). One of the most popular graph

neural network architectures is the graph convolutional network (GCN) [136]. The

GCN model implements the update and aggregate function as:

e
(k+1)
i = σ

W (k+1)
∑

j∈N (i)∪{i}

e
(k)
j√

|N (i)||N (j)|

 (3.14)

where W (k+1) is a trainable weight matrix and σ(·) is a nonlinear activation function.

Note that Eq. (3.14) can also be written in a matrix form

E(k+1) = σ
(
P̂E(k)W (k+1)

)
where P̂ = D̂− 1

2 (A + I)D̂− 1
2 , the matrix A is the adjacency matrix of the original

graph, and D̂ is its diagonal degree matrix.

Graph Convolutional Network via Initial residual and Identity mapping

(GCNII). The GCN is affected by the over-smoothing problem [137], where after

several iterations of GNN message passing, the nodes’ embeddings become very sim-

ilar to each another; over-smoothing prevents the use of deeper GNN models, which

in turn prevents the GNN from leveraging longer-term dependencies in the graph.

To solve this problem, Chen et al. [138] propose the GCNII, where the update of the

embedding vectors becomes:

E(k+1) = σ
((

(1− αk)P̂E(k) + αkE
(0)
) (

(1− βk)I+ βkW
(k)
))

(3.15)

102



and where αk and βk are two hyper-parameters. GCNII improves on the basic GCN

by adding a smoothed representation P̂E(k) with an initial residual connection to the

first layer E(0), and adds an identity mapping to the k-th weight matrix W (k).

Graph Sample and Aggregate (GraphSAGE). GraphSAGE is another ap-

proach for node classification [139]. The aggregate function takes the form

a
(k+1)
i = σ

(
W · g

(
{e(k)

j : j ∈ N (i) ∪ {i}}
))

(3.16)

where g(·) is an aggregator function like the element-wise mean or max pooling. Then,

the update function is a function over the concatenation of the old embedding and

the message a
(k)
i :

e
(k+1)
i = σ

(
W [e

(k)
i ,a

(k+1)
i ]

)
(3.17)

Graph Isomorphism Network (GIN). The Graph Isomorphism Network (GIN) [140]

is defined by the following aggregation function

a
(k+1)
i = (1 + ϵ(k+1))e

(k)
i +

∑
j∈N (i)

e
(k)
j (3.18)

where ϵ(k) is a trainable (or fixed) parameter. The update function in GIN is

e
(k+1)
i = ζ(k+1)(a

(k+1)
i ) (3.19)

where ζ(·) is also a neural network.

From Diagnostic Graphs to Graph Neural Networks

In order to apply GNNs to our diagnostic graphD, we need to convertD = (VD,RD, ED)

into an undirected graph G = (VG, EG). Towards this goal, we take the set of nodes

VG to be both the set of failure modes and diagnostic test outcomes. Note that we

add the diagnostic test outcomes as nodes in the graph since this allows attaching the

test outcomes as features to these nodes. For each test tk we form a clique4 involving

4A clique is a subset of vertices of an undirected graph such that every two distinct vertices in
the clique share an edge.

103



the set of nodes in the test’s scope and the variable corresponding to the test zk,

namely the set scope(tk) ∪ {zk}. We then form another clique for each a priori rela-

tion ϕj ∈ Rprior using the set of failure modes N (ϕk) connected to ϕj. For example if

we have a factor ϕ(f1, f2; z2) we add the following (undirected) edges to EG: (f1, f2),

(f1, z2), (f2, z2). We attach a feature vector to each node in the graph. For the test

nodes, we use a one-hot encoding describing the test outcome as node feature. For

the module nodes, we use the failure probability (computed from the training data)

as node features. We provide more details on the node features in Section 3.5.

Figure 3-6: Example of conversion of the diagnostic graph in Fig. 3-3 into an undi-
rected graph.

Learning to Identify Active Faults. In order to train the GNN to identify

active faults, we use a supervised learning approach. In particular, we use a softmax

classification function and negative log-likelihood training loss, which is available in

standard libraries, such as PyTorch [141].

Remark 35 (Curate a balanced dataset). Datasets collected using real-world opera-

tion of modern perception systems often contain comparably less failure than nominal

data. In practice the dataset can be curated with one (or more) of the following:

• Collecting real data from scenarios that have triggered a failure in the past ( e.g.,

resulted in the autopilot being disengaged by the safety driver/tester).

• Use of a simulator with a falsification engine that searches for scenarios where

the perception experienced a failure ( e.g., [142]).

• Use of an offline perception system that uses both past and future information

to generate the world model ( e.g., [143]); such perception systems are more

accurate, giving the possibility of identifying failure-prone scenarios.

104



All strategies (scenario-based, falsification-based and offline perception) are exten-

sively used in industry and effective in generating a balanced dataset. If this approach

is not possible and only an unbalanced dataset is available, one common approach to

deal with unbalanced dataset is to use undersampling, which consists of down-sizing

the majority class by removing observations at random until the dataset is balanced.

However, undersampling can induce a bias in the posterior probabilities. This is a well

known problem in literature, Dal Pozzolo et al. [144] study the problem and propose a

methodology to reduce such biases. We envision this framework to be used with fairly

balanced datasets.

3.4 Fundamental Limits

Given a diagnostic graph it is natural to ask if there is a maximum number of failure

modes that can be correctly identified as active. In other words, for a given system,

can we guarantee that our algorithms are able to correctly identify all faults? Under

which conditions? We answer these questions in this section, where we introduce the

concept of diagnosability. We discuss the deterministic case (i.e., where the tests are

assumed to be unreliable deterministic tests) in Section 3.4.1. Then we obtain more

general guarantees for the probabilistic case (which also apply to our learning-based

algorithms) in Section 3.4.2.

3.4.1 Deterministic Diagnosability

In this section, we assume diagnostic graphs with deterministic relations and present

theoretical results on the maximum number of faults that can be correctly identified.

Towards this goal, we borrow and extend results from fault identification in multi-

processor systems [44], which were partially presented in our previous work [124]. In

particular, Lemma 37 and Theorem 38 below are a direct application of results in [44],

while the others are our extensions.

We start with the definition of deterministic diagnosability.

105



Definition 36 (κ-diagnosability [44], [124]). A diagnostic graph D is κ-diagnosable

if, given any syndrome, all active failure modes can be correctly identified, provided

that the number of active failure modes in the system does not exceed κ.

The idea behind κ-diagnosability is that the number of failures that can be cor-

rectly identified is an intrinsic property of a system and its diagnostic graph, and

somehow it measures if the system has enough redundancy to unambiguously iden-

tify the cause of certain failures.

Example 4: Multi-sensor Obstacle Detection (Fig. 3-1 and Fig. 3-3).

Consider the example in Fig. 3-1 and assume that an output fails if and only if the

module producing it fails. Also assume that the sensor fusion algorithm does not

necessarily fail if its inputs are wrong (thus removing ϕ5(f3, f4, f5), or setting it to be

always TRUE). If both diagnostic tests behave like Deterministic ORs, and they both

return FAIL, we would not know if the state of the failure mode (f1, f2, f3, f4, f5, f6)

was (0, 1, 0, 0, 1, 0), (0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0) or (1, 1, 1, 1, 1, 1). In

fact, all these failures would generate the same syndrome (FAIL,FAIL). However, if

we impose that the maximum number of active failure mode is 2 (i.e., κ = 2), the

number of feasible candidates drops to only one, namely (0, 1, 0, 0, 1, 0). In other

words, if we have at most two failures in the system, the two tests would allow us to

uniquely identify which failure mode is active without any doubt.

After defining the notion of diagnosability in Definition 36, we are left with the

question: can we develop an algorithm to compute the diagnosability of a certain

diagnostic graph? It has been noted in [145] that a system is κ-diagnosable if the

set of possible syndromes uniquely encodes the set of active failure modes. Such

observation is formalized by the following lemma.

Lemma 37 (Diagnosability and Syndromes). Let syndrome(A) be the set of all possi-

ble syndromes produced by a set of active failure modes A ⊆ {1, . . . , Nf}. A diagnostic

graph D is κ-diagnosable if and only if, given any A1,A2 ⊆ {1, . . . , Nf}, such that

|A1|, |A2|≤ κ (with A1 ̸= A2), we have syndrome(A1) ∩ syndrome(A2) = ∅.

The lemma intuitively establishes that for a κ-diagnosable system, two different

106



sets of κ faults must produce different syndromes, such that for any given syndrome,

there is no ambiguity on which set of active failure modes generated it, and we can

perform fault identification without any mistake.

Lemma 37 suggests an algorithmic way to check if a diagnostic graph is κ-diagnosable,

which however requires checking every subset of failure modes of cardinality up to

κ (and their syndromes). In the following, we refine the result, showing that, under

technical assumptions, one can directly compute the diagnosability by only looking

at the topology of the diagnostic graph.

Theorem 38 (Characterization of κ-diagnosability [146]). Let

H(f)
.
= {t | t ∈ {1, . . . , Nt}, f ∈ scope(t)}

be the set of tests involving a failure mode f , and let

Γ(f)
.
=

⋃
t∈H(f)

scope(t) \ {f}

be the set of failure modes that share a test with f . Also define Γ(X)
.
=

⋃
f∈X Γ(f) \

X the extension of Γ to a set of failure modes. Now assume that all tests follow

the Deterministic Weak-OR model and have scope of cardinality 2. Then D is κ-

diagnosable if all the following conditions are satisfied:

i. κ ≤ (Nf − 1)/2

ii. κ ≤ mini∈{1,...,Nf}|H(fi)|

iii. for each q ∈ N with 0 ≤ q < κ, and each X ⊂ {1, . . . , Nf} with |X|= Nf−2κ+q

we have |Γ(X)|> q

Theorem 38 also shows that the diagnosability of a system depends on the amount

of redundancy in the systems and how well the tests are able to capture it. The

connection is particularly visible in condition (iii): for each set of possible set X of

active failure modes (of appropriate size), there must be a sufficient number the tests,

107



that —using information coming from different modules/outputs— give an opinion

on the state of the failure modes in X.

Let us now move our attention to temporal diagnostic graphs. Denote with κ(D)

the maximum value of κ for the diagnostic graph D. Then the following result char-

acterizes the diagnosability of temporal diagnostic graphs.

Theorem 39 (Diagnosability in Temporal Diagnostic Graphs). Let D[K] a temporal

diagnostic graph built by stacking a set of K regular diagnostic graphs D(1), . . . ,D(K).

Then κ(D[K]) ≥ mini∈{1,...,K} κ(D(i)).

As an immediate result we have the following corollary, which characterizes the

diagnosability of “homogeneous” temporal diagnostic graph, obtained by stacking

multiple identical diagnostic graphs over time.

Corollary 40 (Diagnosability in Homogeneous Temporal Diagnostic Graphs). The

diagnosability of the composition of identical diagnostic graph is monotonically in-

creasing.

This means that by stacking diagnostic graphs over time, we have the opportunity

to increase the diagnosability, without any risk of harming it.

3.4.2 Probabilistic Diagnosability

The deterministic notion of κ-diagnosability introduced in the previous section im-

poses a strong condition on D, as it requires that any syndrome unequivocally encodes

all possible configurations of failure modes. When the tests are probabilistic, such

a condition becomes too stringent: intuitively, since with some probability each test

can produce different outcomes it is unlikely that Lemma 37 will be satisfied for any

κ > 0. In other words, κ-diagnosability deals with the worst case over all possible

test outcomes, which becomes too conservative when every outcome is possible (with

some probability). For this reason, in this section, we extend the definition of di-

agnosability to deal with the case where the diagnostic graph includes probabilistic

tests.

108



Towards defining a probabilistic notion of diagnosability, we introduce the Ham-

ming distance h(f ,f ′) between two binary vectors f and f ′ as follows:

h(f ,f ′) =

Nf∑
i=1

1[fi ̸= f ′
i ] (3.20)

where 1 is the indicator function. Assuming that f is the binary vector describing

the active failures in the system, and that f ′ is an estimated vector of the fault states,

the Hamming distance simply counts the number of mis-identified faults. We are now

ready to introduce the following probabilistic definition of diagnosability.

Definition 41 ((Probably Approximately Correct) PAC-Diagnosability). Consider

a fault identification algorithm ΨD applied to a diagnostic graph D. The diagnostic

graph D is (γ, p)-PAC-diagnosable under ΨD, if, for some 1 ≤ γ ≤ Nf

Pr
(z,f)∼distF

[h (ΨD(z),f) ≤ γ] ≥ p (3.21)

where distF is the joint distribution of potential failures and test outcomes.

This definition simply says that a given fault identification algorithm applied to

the diagnostic graph D is (γ, p)-PAC-diagnosable if it expected to make less than γ

mistakes with probability at least p. We observe that Definition 41 depends on the

diagnostic graph, but also on the fault identification algorithm.

Clearly, since the outcome of the tests is a random variable, so is the Hamming

distance h(ΨD(z),f). Therefore, we can define its expected value as:

hdistF (ΨD) = E(z,f)∼distF [h(ΨD(z),f)]

This quantity is the number of mistakes that the fault identification algorithm ΨD

is expected to make. Let us suppose we have a dataset W of i.i.d. samples of the

underlying faults distribution distF . Let

ĥW(ΨD) =
1

|W|
∑

(z,f)∈W

h(ΨD(z),f) (3.22)

109



be the empirical number of mistakes the fault identification algorithm ΨD makes

on W . For instance, if we are given a (labeled) dataset W describing the system

execution, with the corresponding ground truth failure modes states f , we can test

our algorithm ΨD and calculate the empirical number of mistakes ĥW(ΨD) it makes.

Then, we can use the following result to bound the expected number of mistakes our

algorithm will make in expectation over all future scenarios.

Theorem 42 (Fault Identification Error Bound). Consider a dataset W of i.i.d.

samples of the underlying faults distribution distF , and a fault identification algorithm

ΨD over D. Then, for any δ > 0, the following inequality holds with probability at

least 1− δ:

hdistF (ΨD) ≤ ĥW(ΨD) +Nf

√
log(2/δ)

2|W|
(3.23)

The previous result essentially says that the expected number of mistakes the

algorithm ΨD makes stays close to the empirical mean ĥW(ΨD), and the distance

from the empirical mean gets smaller when the training dataset gets larger (i.e., for

larger |W|), but gets larger for larger number of failure modes (i.e., for larger Nf ).

The following corollary easily follows.

Corollary 43 (Characterization of PAC-diagnosability). For a given dataset W of

i.i.d. samples of the underlying faults distribution distF , and a fault identification

algorithm ΨD over D, the diagnostic graph D is (γ, p)-PAC-diagnosable with p satis-

fying the following inequality:

p ≥ 1− 2e−2((γ−ĥW )/Nf)
2
|W| (3.24)

Remark 44 (Diagnosability over Subgraphs). Given a diagnostic graph D, we might

be interested in running fault identification algorithms over a subgraph D̄ ⊆ D. An-

alyzing the diagnosability of certain subgraphs of D might suggest weaknesses of the

perception pipeline. For example the system might have sufficient redundancy to be

able to correctly identify the faults in the obstacle detection subgraph with low errors

and high confidence, but might lack of redundancy to detect and identify faults in the

110



traffic light recognition.

Similarly, to avoid diagnostic tests with very low reliability (which might increase

the false alarm rate), or to reduce the computational workload of executing tests, we

may want to use a subset of the available diagnostic tests. Diagnosability is a handy

tool to help the designer identify the most effective diagnostic tests. To minimize the

number of diagnostic tests, a good rule of thumb is to choose a subset of diagnostic

tests that covers the most failure modes, to avoid making the diagnostic graph overly

dependent on a priori relationships. Then, more diagnostic tests can be added if they

increase the diagnosability of the system. New diagnostic tests can be selected us-

ing some form of exhaustive ( e.g., branch-and-bound), greedy algorithms or heuristic

search.

The construction of the diagnostic graph relies on expert knowledge, in case of

limited knowledge, it might occur that the diagnostic graph contains wrong or miss-

ing edges. In the case of wrong (extra) edges, the probabilistic diagnostic graph is

generally able to learn to ignore wrong edges (i.e., the values of the relation converge

to zero). In the case of missing edges, however, the system designer must rely on

diagnosability to recognize that the performance is unacceptable. In such cases, how-

ever, it is possible to add extra-edges (over-approximate the diagnostic graph) and

leverage the training process to filter out the incorrect edges. It is worth noting that

it is generally straightforward to add edges between diagnostic tests and failure modes

because the diagnostic tests are either designed to detect a specific failure mode (e.g.,

uncertainty estimation [127]) or uses a subset of the data produced by the system

(e.g., consistency-based tests) to detect the failure, so it is connected to any failure

mode that affects the outputs used.

3.5 Experimental Evaluation

This section shows that diagnostic graphs are an effective model to detect and identify

failures in complex perception systems. In particular, we show that the proposed

monitors (i) outperform baselines in terms of fault identification accuracy, (ii) allow

111



detecting failures and provide enough notice to prevent accidents in realistic test

scenarios, and (iii) run in milliseconds, adding minimal overhead.

We test our runtime monitors in several scenarios, specifically designed to stress-

test the perception system. The scenarios are simulated using the LGSVL Simula-

tor [147], an open-source autonomous driving simulator. The simulator also generates

ground-truth data, e.g., ground-truth obstacles and active failure modes, and seam-

lessly connects to the perception system through the Cyber RT Bridge interface [147].

We apply our monitors to a state-of-the-art perception system. In particular, we use

Baidu’s Apollo Auto [148] version 7 [149]. Baidu’s Apollo is an open-source, sate-

of-the-art, autonomous driving stack that includes all the relevant functionalities for

level 4 autonomous driving.

Section 3.5.1 provides more details about Apollo Auto and its perception system.

Section 3.5.2 describes the diagnostic tests we design for Apollo Auto’s perception

system. Section 3.5.3 discusses implementation details for the proposed monitors.

Section 3.5.4 describes our test scenarios. Section 3.5.5 provides quantitative fault

detection and identification results, including an ablation study of the different GNN

architectures. Appendix P provides qualitative results and discussion for a key test

scenario.

3.5.1 Apollo Auto

Baidu’s Apollo Auto [148] uses a flexible and modularized architecture for the au-

tonomy stack based on the sense-plan-act framework. The stack includes seven sub-

systems: (i) the localization subsystem provides the pose of the ego vehicle; (ii) the

high-definition map provides a high-resolution map of the environment, including

lanes, stop signs, and traffic signs; (iii) the perception subsystem processes sensory

information (together with the localization data) and creates a world model; (iv) the

prediction subsystem predicts future evolution of the world state; (v) the motion plan-

ning subsystems and (vi) the routing subsystem generate a feasible trajectory for the

ego vehicle, and finally, (vii) the control subsystem generates low-level control signals

to move the vehicle. In our experiments, we focus on the perception subsystem, to

112



which we apply our runtime monitors. In the following, we briefly review the key

aspects of the Apollo Auto perception system.

Apollo Auto Perception System

Apollo Auto’s perception system is tasked with the detection and classification of

obstacles and traffic lights.5 The perception module is capable of using multiple cam-

eras, radars, and LiDARs to recognize obstacles. There is a submodule for each sensor

modality, that independently detects, classifies, and tracks obstacles. The results from

each sub-module are then fused using a probabilistic sensor fusion algorithm.

Obstacle Detection. Obstacles such as cars, trucks, bicycles, are detected using

an array of radars, LiDARs, and cameras. Each obstacle is represented by a 3D

bounding-box in the world frame, the class of the object, a confidence score, together

with other sensor-specific information (e.g., the velocity of the obstacle). Each sensor

is processed as follows:

Camera: The camera-based obstacle detection network is based on the monocular

object detection SMOKE [151] and trained on the Waymo Open Dataset [152].

The network predicts 2D and 3D information about each obstacle, and then a

post-processing step predicts the 3D bounding box of each obstacle by mini-

mizing the reprojection error of available templates for the predicted obstacle

class;

LiDAR: The LiDAR-based obstacle detection network, called Mask-Pillars is based

on PointPillars [153], but enhanced with a residual attention module to improve

detection in case of occlusion;

Radar: Apollo Auto uses directly the obstacles detections reported by the radar

(assumed to have an embedded detector [154]), that are post-processed to be

transformed to the world frame.

5Note that our monitors can be also applied to other perception-related subsystems, such as the
localization and high-definition map subsystem, see [150] for an example.

113



Vehicle Configuration

The simulated vehicle is a Lincoln MKZ with one Velodyne VLS-128 LiDAR, one

front-facing camera with a field-of-view of 50◦, one front-facing telephoto camera

(pointed 4◦ upwards) for traffic light detection and recognition, one Continental ARS

408-21 front-facing radar, GPS, and IMU.

Figure 3-7: Vehicle sensor field-of-view (FOV). LiDAR FOV is shown in green,
the camera FOV in blue and the radar FOV in orange.

LiDAR

Camera

Radar

Figure 3-8: Vehicle configuration. LiDAR and Camera are mounted on the roof
of the vehicle, while the radar is mounted on the front bumper.

We ran the Baidu’s Apollo AV stack on a computer with an Intel i9-9820X

114



(4.1GHz) processor, 64GB of memory and two NVIDIA GeForce RTX 2080Ti. The

simulator ran on a computer with 11th Generation Intel i7-11700F (4.8GHz) proces-

sor, 16GB of memory, and an NVIDIA GeForce RTX 3060. The two computers were

connected using a Gigabit Ethernet cable.

3.5.2 Diagnostic Graph

We focused our attention on the obstacle detection pipeline. The system we aim to

monitor, together with the failure modes considered, is shown in Fig. 3-9 The system

is composed of four modules:

• Lidar-based Obstacle detector, based on a deep learning algorithm, subject to

out-of-distribution sample failure mode;

• Camera-based Obstacle detector, based on a deep learning algorithm, subject

to out-of-distribution sample failure mode;

• Radar-based Obstacle detector subject to misdetection failure mode;

• Sensor Fusion subject to misassociation failure mode.

Each module produces a set of detected obstacles. We identified three failure modes

for each set of detected obstacles:

• misdetection: the module detected a ghost obstacle or is missing an obstacle in

the scene;

• misposition: the module detected the obstacle correctly, but its position is

incorrect (i.e., more than 2.5m error in our tests);

• misclassification: the module detected the obstacle correctly but the obstacle’s

semantic class is incorrect.

We equipped the obstacle detection system with 18 diagnostic tests. For each pair of

modules’ outputs, namely (Lidar, Camera), (Radar, Camera), (Lidar, Sensor Fusion),

(Radar, Sensor Fusion), (Lidar, Radar), and (Camera, Sensor Fusion), there is a test

115



that compares the outputs to diagnose each of the output’s failure modes (i.e., mis-

detection, misposition, and misclassification). Intuitively, each test compares the two

sets of obstacles coming from the corresponding modules, and if they are different, it

reports if the inconsistency was due to a misdetection, misposition, or misclassifica-

tion. Moreover, we included a priori relation between every module and its output.

In particular, the modules are assumed to fail if their outputs have at least one active

failure mode. In the probabilistic diagnostic graph we also added an a priori relation

for each module’s failure mode, indicating the prior probability of that failure mode

being active.

L iDA R -based
Obst acle det ect or

L iDA R
Obst acles

Camer a
Obst acles

Camer a-based
Obst acle det ect or

Sensor  Fusion
A lgor i t hm

Fused
Obst acles

R adar
Obst acles

R adar -based
Obst acle det ect or

M isdet ect ion

M isassociat ion

Out -of-dist r ibut ion 
sample

Out -of-dist r ibut ion 
sample

M isdet ect ion

M isposit ion

M isclassi ficat ion

M isdet ect ion

M isposit ion

M isclassi ficat ion

M isdet ect ion

M isposit ion

M isclassi ficat ion

M isdet ect ion

M isposit ion

M isclassi ficat ion

Figure 3-9: Perception system considered in our experiments. Modules are shown
as rectangular blocks, outputs are shown as rounded boxes, while failure modes are
denoted with red dots.

Diagnostic Tests

We now describe the logic for the diagnostic tests we implemented. Consider two sets

of synchronized detected obstacles6, say A and B, produced by two modules, using

some sensor data. Let Ω be the region defined by the intersection of both sensor fields

6By synchronized we mean that the two outputs are produced at the same time instant.

116



of view and a region of interest (e.g., a region close to a drivable area7). Denote by

AΩ and BΩ the set of obstacles restricted to the region Ω, namely AΩ ⊆ A such that

for each obstacle o in A, o is in AΩ if and only if o is inside the region defined by Ω.

The same relation holds for BΩ. Then the diagnostic test checking for misdetections

is defined as follows:

tmisdetection =

FAIL if |AΩ| ≠ |BΩ|

PASS otherwise

Note that if the two sets of obstacles have a different cardinality —when restricted

to the area co-visible by both sensors— it means that one of the two sets contains a

ghost obstacle or one of the two sets is missing an obstacle. From a single test, we are

not able to say which of the two sets is experiencing the misdetection, but we know

at least one output did.

Let us now move our attention to the misposition failure mode. Let C be the set

of matched obstacles, that is, a pair of obstacles (l, r) —with l ∈ AΩ and r ∈ BΩ—

is in C, if l and r represent the same obstacles. A common approach for finding the

set of matches is to select all the pairs that are closest to each other (i.e., solving

an assignment problem)8. The diagnostic test checking for mispositioned obstacles is

defined as follows:

tmisposition =

FAIL ∃(l, r) ∈ C such that |pos(l)− pos(r)|≥ θ

PASS otherwise

where pos(·) is the position of an obstacle and θ is an error threshold, chosen as

θ = 2.5m in our experiments.

7In our experiments, the region of interest is the area within 5 meters from a drivable lane.
8We matched obstacles using a generalization of the Hungarian algorithm [155], with the cost of

each match being the Euclidean distance between obstacles.

117



Finally, the test checking for misclassified obstacles is defined as follows:

tmisclassification =

FAIL ∃(l, r) ∈ C such that cls(l) ̸= cls(r)

PASS otherwise

where cls(·) is the class of the obstacle, i.e., the test fails if associated obstacles are

assigned different semantic classes.

Temporal Diagnostic Graph

To build a temporal diagnostic graph we stack 2 regular diagnostic graphs into a

temporal diagnostic graph. In the probabilistic case, each module failure mode is

connected to its successive (in time) via a priori relationships, which represent the

transition probability between states in consecutive time steps. No temporal a priori

relations are added in the deterministic case. We also added temporal tests. The

logic of the tests presented in Section 3.5.2 is applicable to temporal tests with small

changes. In temporal tests, the sets A and B are not time-synchronized anymore

(e.g., they are obstacles detected by the same sensor at consecutive time stamps),

therefore the position of each obstacle in each set must be adjusted for the distance

the obstacle traveled between consecutive detections. To use the tests described earlier

in the temporal domain we used the following approach. If the obstacle is equipped

with an estimated velocity vector, since the time difference between detections is

usually below 30ms, we assume constant speed and integrate the speed over the time

interval to find an approximate position of each obstacle. When the velocity is not

available, we use the average speed of an obstacle (for a given obstacle’s class) and

adapt the misposition threshold θ to account for the uncertainty.

3.5.3 Fault Identification: Implementation Details

Deterministic Fault Identification. For the tests with the deterministic model,

we assumed the Weaker-OR model for the diagnostic tests as described in Eq. (3.3).

We used this model for both the regular diagnostic graph and the temporal diagnostic

118



graph, and solved the optimization problem in Eq. (3.8) using Google OR-Tools [156]

Integer Programming Solver.

Probabilistic Fault Identification. To perform probabilistic inference on the

diagnostic graph, we transformed it into a factor graph and trained the potentials for

each relation using the maximum margin learning algorithm described in Section 3.3.2

on the training dataset. We used the Hamming distance defined in Eq. (3.20) as the

loss function L. We set the regularization parameter to λ = 10; see [133].9 For

each diagnostic graph, we perform inference using the max-product algorithm for a

fixed number of iteration (100 iterations). In our implementation, we use the Grante

library [157] to perform learning and inference over the factor graph.

Graph-Neural-Network-based Fault Identification. In Section 3.3.3 we saw

that a graph neural network requires a feature for each node in the graph to perform

neural message passing. We now discuss how we set the feature vector for each node

in the graph. Recall that the GNN uses a pairwise undirected graph, where a node is

either a failure mode or a test outcome. The feature xtk ∈ R2 for a test tk is set as the

one-hot encoding of the test outcome (i.e., [1 0] if the test passed, [0 1] if it failed).

For the failure mode nodes we do not have any measurable quantity at runtime; we

therefore use the training dataset to compute the feature vectors. In particular the

feature vector xfi ∈ R2 for a failure mode fi is computed as follow: let ρi be the

empirical probability that fi is ACTIVE, i.e., ρi =
1

|W|
∑

(z,f)∈W 1[fi = ACTIVE];

then the feature vector is chosen as xfi = [1−ρi, ρi]
T
. Intuitively, the feature describes

the prior probability of the failure mode fi’s state.

We now discuss the architecture of the GNN. Our GNN is composed by a linear

layer that embeds the feature vectors in R16, followed by a ReLU function. The

output is then passed to a stack of graph convolution layers interleaved with ReLU

activation functions. We tested four different graph convolution layers

• in the case of GCN, we stack 3 layers with 16 hidden channels each;

• in the case of GCNII, we stack 64 layers with 16 hidden channels each with

9In our experiment we noticed that the performance of the learning algorithm are not sensitive
to the choice of λ.

119



α = 0.1, β = 0.4;

• in the case of GIN, we stack 3 layers with 16 hidden channels each with the

function ζ(k)(·) (cf. Eq. (3.19)) being a 2-layer perceptron for k = 1, . . . , 3;

• in the case of GraphSAGE, we stack 3 (and 6 for temporal diagnostic graphs)

layers with mean aggregator and 16 hidden channels each.

Finally, the readout function that converts the graph embedding to node labels is a

linear layers followed by a softmax pooling. We perform an ablation of the different

GNN architectures in Section 3.5.5.

We implemented the GNNs in PyTorch [141] and trained them on the training

dataset for 100 epochs using the Adam optimizer. To reduce the amount of guesswork

in choosing an initial learning rate, we used the learning rate finder available in

the PyTorch Lightning library [158]. The procedure is based on [159]: the learning

rate finder does a small training run where the learning rate is increased after each

processed batch and the corresponding loss is logged. Then, the learning rate is

chosen to be the point with the steepest negative gradient.

Baselines. We compared the proposed monitors against two simple baselines.

In the first baseline (label: “Baseline”), whenever a diagnostic test returns FAIL,

all failure modes in its scope are considered active. In the second baseline (label:

“Baseline (w/rel. scores)”), modules are ordered by a reliability score defined by the

system designer. In our experiments we considered the radar to be more reliable

than the sensor fusion, which is more reliable than the LiDAR, which in turn is more

reliable than the camera. When a diagnostic test fails, this second baseline labels all

the failure modes in the test scope associated to the least reliable module (and its

outputs) as ACTIVE. For example if a diagnostic test comparing camera and LiDAR

obstacles returns FAIL, the failure modes associated with the camera are the ones

that are labeled active because the camera is considered less reliable than the LiDAR.

Both baselines label a module’ failure modes as active if at least one of the module’s

outputs is failing.

120



3.5.4 Scenarios

We designed a set of challenging scenarios to stress-test the Apollo Auto perception

system. These scenarios were created using the LGSVL Simulator Visual Scenario

Editor, which allows the user to create scenarios using a drag-and-drop interface.

The vehicle behavior is tested on each scenario in a multitude of situations including

different time of day (noon, 6 PM, 9 PM) or weather condition (rain and fog). The

scenarios are described in Table 3.2.

Table 3.2: Scenarios. (Left) Snapshot of the scenario, (Right) Top-view of the
trajectory, color-coded by fault detection results. The motion of the vehicle is repre-
sented by an arrow with the tail of the arrow representing the start location and the
head of the arrow representing the stop location (the direction of motion is always
left-to-right or bottom-to-top).

Fault-free (TN) Fault Detected Correctly (TP)
False Alarm (FP) Missed Fault (FN)

Scene Fault Detection Results

Hidden Pedestrian. A pedestrian, initially occluded by a track parked

on the right-hand side of the street, steps in front of the ego vehicle.

121



Overturned Truck. The ego vehicle encounters an overturned truck

occupying the lane it is driving in. The scenario recreates an accident

occurred in Taiwan where a Tesla hit an overturned truck on a high-

way [160].

Stopped Vehicle. While driving, the car in front of the ego vehicle

makes a lane change to avoid the stationary car that is in their lane. This

leaves the ego vehicle with little to no time to react to the stationary car.

Cut Off Left. While driving in the right lane on a three-lane road, a

vehicle from the left lane cuts the ego vehicle off.

Cut Off Right. While driving in the left lane on a two-lane road, a

vehicle from the right lane cuts the ego vehicle off while turning into a

parking lot.

122



School Bus Intersection. The ego vehicle drives through an intersec-

tion. A school bus crosses the intersection coming from the left-hand

side. As the ego vehicle crosses the intersection, a pedestrian steps into

the intersection from the left-hand side.

Car in Front. A car is still in front of the ego vehicle preventing it to

move forward.

Cones in the Lane. The ego vehicle is driving on a lane partially

delimited by traffic cones, while another vehicle is driving in the opposite

lane. After passing traffic cones, another vehicle exits a parking lot and

merges right in front of the ego vehicle.

123



Cyclist. The ego vehicle is stopped at an intersection and as it starts

driving through the intersection, a cyclist enters the field of view from

the left-hand side of the intersection and rides right in front of the ego

vehicle.

Turkeys. While driving on a straight road, the ego vehicle must avoid a

collision with two turkeys that suddenly walk in front of the ego vehicle.

Dataset generation

We executed the diagnostic tests described in Section 3.5.2 every 0.3 s, and used the

corresponding test outcomes to perform fault identification. Time synchronization of

the modules’ output is achieved by pairing outputs that are closest in time to each

other. Ground-truth labels for the outputs’ failure modes are generated using the

ground-truth detections provided by the simulator. In particular, to generate the

label for each failure mode of an output, we used the three diagnostic tests described

in Section 3.5.2 comparing the set of obstacles to the ground-truth detections. For

a module m instead, since all modules have only one failure mode, the associated

failure mode fm is labeled as ACTIVE if and only if any failure mode if its output

is ACTIVE. We collected 1650 regular diagnostic graphs from different deployments

of the agent in the scenarios described in Table 3.2. The samples are randomly split

them into 1320 (80%) training samples, 165 (10%) testing samples, and 165 validation

samples. Of the 1320 samples used for training, 675 (51.13%) contain a failure and

645 (48.86%) do not. The dataset is therefore balanced for the purpose of training

the diagnostic graph. To create the temporal diagnostic graph, we used a sliding

window that stacks 2 consecutive regular diagnostic graphs into a single temporal

124



Algorithm
Regular Temporal

All Outputs Modules All Outputs Modules
Factor Graph 93.30 96.72 83.03 93.60 96.88 83.74
Deterministic 91.06 93.69 83.18 89.26 92.33 80.06
Baseline (w/rel. scores) 92.39 94.65 85.61 90.18 92.69 82.67
Baseline 84.85 89.09 72.12 83.90 87.73 72.39
GCN 92.27 96.01 81.06 91.79 96.06 78.99
GCNII 87.61 93.94 68.64 92.60 96.01 82.36
GIN 91.89 96.06 79.39 93.21 96.47 83.44
GraphSage 92.84 96.46 81.97 92.71 96.42 81.60

Table 3.3: Fault identification accuracy. Best accuracy is highlighted in green,
second-best is highlighted in yellow.

diagnostic graph. Using this approach, we collected 1590 temporal diagnostic graphs,

randomly split into 1272 (80%) training samples, 159 (10%) test samples, and 159

validation samples. As a result of the random splitting, both the temporal and regular

diagnostic graph datasets may contain samples that are 0.3 s apart.

3.5.5 Fault Detection and Identification Results

We used three metrics to evaluate the performance for both the fault detection and

identification problems:

Accuracy is the percentage of correctly detected (resp. identified) failures over the

total number of samples;

Precision measures the percentage of correct identifications over the number of fail-

ures the fault identification system reported; a monitor achieves high precision

if it has a low rate of false alarms;

Recall measures the percentage of correct identifications over the number of failures

the system experienced; a monitor has high recall if it is able to catch a large

fraction of failures occurring in the perception system;

Fault Identification Results

Table 3.3 reports the accuracy of all compared techniques, averaged across all test sce-

narios in Table 3.2. The first and fourth columns report the overall accuracy (“All”)

125



40 50 60 70 80

Precision (%)

40

50

60

70

80

90

R
ec

al
l

(%
)

Factor Graph

Deterministic

Baseline (w/rel. scores)

Baseline

GCN

GCNII

GIN

GraphSage

Outputs

40 50 60 70 80 90

Precision (%)

20

40

60

80

100

R
ec

al
l

(%
)

Factor Graph

Deterministic

Baseline (w/rel. scores)

Baseline

GCN

GCNII

GIN

GraphSage

Modules

Figure 3-10: Precision/Recall for regular diagnostic graphs. (Left) Modules, (Right)
Outputs.

40 50 60 70 80 90

Precision (%)

40

50

60

70

80

90

R
ec

al
l

(%
)

Factor Graph

Deterministic

Baseline (w/rel. scores)Baseline

GCN

GCNII

GIN

GraphSage

Outputs

50 60 70 80

Precision (%)

20

30

40

50

60

70

80

90

R
ec

al
l

(%
)

Factor Graph
Deterministic

Baseline (w/rel. scores)
Baseline

GCN

GCNII

GINGraphSage

Modules

Figure 3-11: Precision/Recall for temporal diagnostic graphs. (Left) Modules, (Right)
Outputs.

when using regular and temporal diagnostic graphs, respectively. The remaining

columns report a breakdown of the accuracy in terms of modules and outputs. The

overall accuracy results suggest that factor-graph-based probabilistic fault identifi-

cation outperforms all other algorithms and achieves 96.72% accuracy when using

regular diagnostic graphs and 96.88% with temporal diagnostic graphs. GNNs archi-

tectures achieve the second-best performance (GraphSAGE in the regular case, GIN

in the temporal case). If we now look at the breakdown of the fault identification

results between modules and outputs, we notice two trends. First, the factor graph

still performs the best across the spectrum, but it is slightly slightly inferior than

a baseline in the regular case. As we will see shortly, the baselines tend to make

126



quite conservative decisions (i.e., they tend to detect more failures than the ones ac-

tually present in the system), which increases accuracy (and recall) at the expense of

precision. Second, output fault identification has higher accuracy than module fault

identification; this is expected, since most of our tests directly involve outputs, while

we can only indirectly infer module failures via the a priori relations. Note that the

two statistics (output fault identification vs. module fault identification) are typically

used for different purposes, as discussed in Remark 21.

Fig. 3-10 shows precision-recall trade-offs when using regular diagnostic graphs.

Best results are near the top-right corner of each figure, where both precision and

recall are high. The figure confirms that while the baselines have large recall (due to

the fact that are conservative in detecting failure modes as active), their precision is

relatively low (i.e., they have a large number of false alarms). On the other side of the

spectrum, GNN architectures (with the exception of GCNII) achieve high prediction

(87.25% for GraphSAGE) but low recall (60.96% for GraphSAGE). The deterministic

fault identification struggles to mark failure modes as active, achieving low precision

and recall in the output space; this is due to the fact that it disregards PASS results

(which do not even appear in the optimization Eq. (3.8)). Factor graph inference

again achieves a reasonable trade-off, with 85.22% precision and 67.12% recall.

Fig. 3-11 shows precision-recall trade-offs when using temporal diagnostic graphs.

Compared to the regular diagnostic graph we see a steep increase in precision in the

output space. The best-performing model goes from around 90% precision of the

regular graph to 97% of the temporal diagnostic graph.

PAC-Diagnosability. Fig. 3-12 and Fig. 3-13 show the PAC-Diagnosability

bound defined in Eq. (3.23) for each of the compared techniques. The bound repre-

sents the number of fault identification mistakes each algorithm is expected to make

with a given confidence (δ in Eq. (3.23)). The plots show that with high probability,

most of the algorithms are expected to make less than 1 mistake in the fault identifi-

cation (i.e., false alarms or false negatives). The factor graph has the lowest bound of

all methods in both the regular and temporal diagnostic graphs; the only exception

is Fig. 3-12(right), where the baseline with reliability score has the lowest bound for

127



module fault identification.

90 92 94 96 98 100

Confidence (%)

1.0

1.5

2.0

2.5

B
ou

n
d

Factor Graph Deterministic Baseline (w/rel. scores) Baseline GCN GCNII GIN GraphSage

90 92 94 96 98 100

Confidence (%)

0.8

1.0

1.2

1.4

1.6

B
ou

n
d

Figure 3-12: PAC-diagnosability bounds for regular diagnostic graphs. (Left) Mod-
ules, (Right) Outputs. Lower is better.

90 92 94 96 98 100

Confidence (%)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

B
ou

n
d

Factor Graph Deterministic Baseline (w/rel. scores) Baseline GCN GCNII GIN GraphSage

90 92 94 96 98 100

Confidence (%)

0.8

1.0

1.2

1.4

B
ou

n
d

Figure 3-13: PAC-diagnosability bounds for temporal diagnostic graphs. (Left) Mod-
ules, (Right) Outputs. Lower is better.

κ-diagnosability. Let us now discuss the deterministic diagnosability of the

perception system considered in our experiments (Fig. 3-9). If the tests behave as

a Deterministic OR, the diagnostic graph used in our experiments is 5-diagnosable.

This means that if there are up to 5 active failure modes the deterministic fault

identification will be able to correctly identify them. If we instead assume the tests

behave as a Weak-OR, which might fail when all the failure modes in its scope are

active, the diagnostic graph is 3-diagnosable. It’s worth noticing that this does not

mean that if there are more than 3 (or 5) active failure modes the fault identification

will surely fail, but rather that we do not have the guarantee that it will not make

128



any mistake. When using Deterministic Weaker-OR tests, the diagnosability drops

to zero, meaning that the fault identification guarantees vanish.

Extra diagnosability results. To show the effectiveness of the determinis-

tic and probabilistic diagnosability we generated a random 4-diagnosable diagnostic

graph with 10 independent failure modes and Weak-OR tests and collected the fault

identification results (using the deterministic model) for every syndrome and every

possible fault assignment. The results are shown in Fig. 3-14. The figure reports the

average number of incorrect fault identification results (i.e., the Hamming distance

between the estimated and actual vector of active faults) for increasing number of ac-

tive faults. The vertical dashed line represents the deterministic diagnosability value:

by Definition 36, the fault identification is guaranteed to correctly identify the active

failure modes provided that there are less than 4 active failure modes. In fact, from

the plot we see that the fault identification algorithm does not make any mistake in

the fault identification when there are less than 4 faults. The horizontal dashed line

instead represents the probabilistic diagnosability value, in particular it is the ceiling

of the bound in Eq. (3.23), computed with very high confidence (1−1×10−12). The

bound guarantees that with high probability the average number of mistakes (the

average Hamming distance) the fault identification algorithm is going to make is less

that 2; this is again consistent with the numerical results.

Timing. The runtime of each method is shown in Table 3.4. All algorithms

perform inference in less than 4ms, except for GCNII which averages at around 20ms.

This is likely due to the fact that GCNII uses a deep architecture, which incurs an

increased computational cost. The best performing algorithm, i.e., the factor graph,

can be executed in real-time as its runtime averages around 0.8ms for regular graphs

and 3.8ms for temporal graphs.

Fault Detection Results

Recall that fault detection is the problem of deciding whether the system is working

in normal conditions or whether at least a fault has occurred. Table 3.5 and Fig. 3-15

show accuracy, precision, and recall. Fig. 3-15 shows that most of the algorithms for

129



0 1 2 3 4 5 6 7 8 9 10

Number of Active Failure Modes

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

H
a
m

m
in

g
D

is
ta

n
ce

Figure 3-14: PAC-diagnosability vs. κ-diagnosability. Average Hamming dis-
tance between the estimated and actual vector f of fault states in a randomly gener-
ated 4-diagnosable diagnostic graph with 10 independent failure modes and Weak-OR
tests. The vertical dashed line represents the deterministic diagnosability bound: if
the system is experiencing less than 4 active failure modes, the fault identification
is guaranteed to be correct (0 Hamming distance). The horizontal dashed line rep-
resents the ceiling of the PAC-diagnosability bound in Eq. (3.23): with very high
probability the average number of mistakes (average Hamming distance) is less than
the PAC-diagnosability bound.

inference presented In this thesis (as well as the baselines) attain similar performance

with precision above 90% and recall above 80%; this confirms that fault detection

is a somewhat easier problem compared to fault identification. Table 3.5 shows that

the deterministic approach and the baselines do particularly well for fault detection:

they both detect failure as soon as a single test fails, which makes their accuracy

high. On the other hand, the factor graph approach may prefer explaining a failed

F
a
c
to

r
G
ra

p
h

D
e
te
rm

in
is
ti
c

B
a
se
li
n
e

(w
/
re

l.
sc
o
re

s)

B
a
se
li
n
e

G
C
N

G
C
N
II

G
IN

G
ra

p
h
S
a
g
e

Regular Avg. 0.79 3.25 0.10 0.10 0.63 19.88 0.48 0.59
Std. (0.17) (0.14) (0.06) (0.06) (0.01) (0.10) (0.01) (0.02)

Temporal Avg. 2.53 3.68 0.27 0.26 0.68 24.56 0.50 0.85
Std. (0.04) (0.46) (0.17) (0.16) (0.01) (0.33) (0.01) (0.01)

Table 3.4: Average runtime (“Avg.”) and standard deviation (“Std.”) for fault
identification, in milliseconds.

130



Algorithm
Regular Temporal

All Outputs Modules All Outputs Modules
Factor Graph 76.67 88.48 64.85 81.60 91.41 71.78
Deterministic 89.09 89.09 89.09 93.25 93.25 93.25
Baseline (w/rel. scores) 89.09 89.09 89.09 85.28 85.28 85.28
Baseline 89.09 89.09 89.09 85.28 85.28 85.28
GCN 71.82 86.06 57.58 80.06 90.18 69.94
GCNII 68.48 87.88 49.09 78.83 85.89 71.78
GIN 83.94 86.06 81.82 83.13 92.64 73.62
GraphSage 76.67 89.09 64.24 79.14 89.57 68.71

Table 3.5: Fault detection accuracy. Best accuracy is highlighted in green, second-
best is highlighted in yellow.

test as a false alarm. Therefore, while factor graphs would be the go-to approach for

fault identification, a simpler baseline approach suffices for fault detection.

80 85 90 95

Precision (%)

75

80

85

90

95

R
ec

al
l

(%
) Factor Graph

Deterministic

Baseline (w/rel. scores)

Baseline

GCN

GCNII

GIN

GraphSage

Temporal

50 60 70 80 90

Precision (%)

80

85

90

95

100
R

ec
al

l
(%

)

Factor Graph

Deterministic

Baseline (w/rel. scores)

Baseline

GCN

GCNII

GIN

GraphSage

Regular

Figure 3-15: Fault detection in diagnostic graphs. (Left) Regular, (Right) Temporal.

The results of the fault identification experiments show that the factor graph can

achieve the best accuracy for fault identification, and all the proposed approaches

achieve similar performance for fault detection.

The choice between model-based (factor graph or deterministic factor graph) and

deep-learning-based (graph neural networks) depends on the specific application.

Model-based approaches have the advantage of being more interpretable, but the

inference time increases with the number of failure modes (or timesteps), while deep-

learning-based approaches have the advantage of having an almost constant inference

time (e.g., GCN and GIN), but are not interpretable. Deterministic diagnostic graphs

and factor graphs have clear advantages when it is not possible to curate a dataset

131



for the purpose of training a model, because the system designer can directly encode

the expected system behavior. Finally, the deterministic diagnostic graph provides

stronger guarantees (i.e., deterministic diagnosability) compared to factor graphs and

graph neural networks (i.e., PAC-diagnosability).

Table 3.6 shows the results of fault identification for temporal diagnostic graphs

for each scenario class. Similar to Table 3.3, we see that the factor graph is more likely

to outperform the other in the output space. The deterministic diagnostic graph, on

the other hand, is most likely to outperform the other approaches in terms of recall in

module space, due to the fact that it conservatively estimates failure modes as active

when a test fails (due to the specific choice of diagnostic tests used, i.e., WeakerOR)

and propagates the failure to modules. No clear pattern emerges from the scenario-

based analysis that would justify choosing one graph neural network architecture over

another, even with more information about the failure distribution.

132



S
c
e
n
a
ri
o

A
lg
.

M
o
d
u
le
s

O
u
tp
u
ts

T
e
st
s

F
a
il
u
re

T
y
p
e
s

S
c
e
n
a
ri
o
F
a
il
u
re

s
P
re

c
.

R
e
c
.

A
c
c
.

P
re

c
.

R
e
c
.

A
c
c
.

C
y
cl
is
t

F
G

94
.1
6

46
.0
3

7
5
.2
8

9
3
.9
8

7
3
.9
6

9
5
.2
1

9
4
.2
4

4
7
.5
7

8
6
.4
3

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

64
.2
5

40
.5
5

6
4
.0
4

4
7
.9
1

3
5
.4
9

8
3
.6
9

G
C
N

85
.8
2

38
.4
1

7
0
.4
4

8
7
.2
3

6
0
.6
5

9
2
.5
0

G
C
N
II

90
.5
1

45
.4
0

7
4
.1
7

9
2
.7
7

6
4
.5
0

9
3
.6
9

G
IN

89
.7
4

44
.4
4

7
3
.6
2

9
0
.9
4

6
8
.3
4

9
4
.0
1

S
A
G
E

93
.8
8

43
.8
1

7
4
.3
1

8
6
.0
3

6
9
.2
3

9
3
.4
6

T
u
rk
ey
s

F
G

99
.0
9

51
.4
2

7
4
.0
0

9
8
.8
3

7
9
.3
4

9
6
.1
7

9
2
.7
0

3
7
.9
6

8
4
.4
6

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

27
.1
6

9.
73

3
7
.3
8

2
4
.7
1

9
.2
5

7
8
.5
7

G
C
N

95
.4
5

9.
91

5
2
.0
0

9
9
.3
9

7
6
.5
3

9
5
.7
5

G
C
N
II

99
.0
4

48
.5
8

7
2
.5
0

9
8
.8
4

7
9
.8
1

9
6
.2
5

G
IN

99
.0
8

50
.9
4

7
3
.7
5

9
7
.1
3

7
9
.3
4

9
5
.9
2

S
A
G
E

10
0.
00

49
.0
6

7
3
.0
0

9
9
.3
8

7
5
.5
9

9
5
.5
8

S
ch
o
ol

B
u
s

In
te
rs
ec
ti
on

F
G

35
.1
4

3.
35

5
8
.9
5

8
5
.7
9

4
2
.0
1

9
1
.3
6

9
0
.0
1

4
6
.6
2

8
8
.7
4

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

82
.1
3

43
.2
6

7
3
.4
7

8
0
.8
6

4
3
.0
0

9
1
.0
2

G
C
N

51
.1
6

11
.3
4

6
0
.2
9

7
0
.9
7

3
9
.6
9

8
9
.8
1

G
C
N
II

30
.9
1

4.
38

5
7
.9
2

7
6
.5
4

3
1
.9
6

8
9
.6
4

G
IN

50
.0
0

10
.5
7

6
0
.0
8

8
2
.6
9

4
4
.3
3

9
1
.3
6

S
A
G
E

33
.3
3

2.
06

5
9
.2
6

7
8
.7
9

5
3
.6
1

9
1
.9
1

H
id
d
en

P
ed
es
tr
ia
n

F
G

60
.0
0

20
.0
0

8
8
.7
1

8
1
.2
5

6
8
.4
2

9
7
.5
8

7
5
.3
3

6
8
.9
0

9
4
.2
7

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

63
.1
6

75
.0
0

9
1
.4
1

6
6
.6
7

7
6
.1
9

9
6
.6
1

G
C
N

50
.0
0

13
.3
3

8
7
.9
0

6
4
.7
1

5
7
.8
9

9
6
.2
4

G
C
N
II

33
.3
3

20
.0
0

8
5
.4
8

7
3
.3
3

5
7
.8
9

9
6
.7
7

G
IN

50
.0
0

20
.0
0

8
7
.9
0

8
4
.2
1

8
4
.2
1

9
8
.3
9

S
A
G
E

30
.0
0

20
.0
0

8
4
.6
8

8
3
.3
3

7
8
.9
5

9
8
.1
2

O
ve
rt
u
rn
ed

T
ru
ck

F
G

95
.0
0

26
.3
9

9
1
.7
7

9
3
.5
7

8
9
.1
2

9
9
.3
6

8
7
.2
4

7
5
.8
9

9
7
.5
9

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

86
.6
7

83
.8
7

9
6
.6
3

8
0
.0
0

8
0
.5
0

9
8
.4
3

G
C
N

68
.5
2

25
.6
9

9
0
.5
5

9
0
.3
0

8
2
.3
1

9
9
.0
1

G
C
N
II

88
.6
4

27
.0
8

9
1
.6
2

9
3
.4
3

8
7
.0
7

9
9
.2
9

G
IN

73
.3
3

22
.9
2

9
0
.6
2

9
3
.1
8

8
3
.6
7

9
9
.1
6

S
A
G
E

92
.3
1

16
.6
7

9
0
.7
0

8
4
.4
4

7
7
.5
5

9
8
.6
3

T
ab

le
3.
6:

A
lg
or
it
h
m

p
er
fo
rm

an
ce

b
re
ak

d
ow

n
b
y
sc
en
ar
io

ty
p
e
(P

ar
t
1
of

2)
fo
r
te
m
p
or
al

d
ia
gn

os
ti
c
gr
ap

h
s.

T
h
e
ta
b
le

sh
ow

s
P
re
ci
si
on

(P
re
c.
),

R
ec
al
l
(R

ec
.)
,
an

d
A
cc
u
ra
cy

(A
cc
.)

fo
r
ea
ch

al
go
ri
th
m

an
d
sc
en
ar
io

ty
p
e
fo
r
b
ot
h
m
o
d
u
le
s
an

d
ou

tp
u
ts
.

T
h
e
co
lu
m
n
T
e
st
s
sh
ow

s
(f
ro
m

to
p
to

b
ot
to
m
)
P
re
ci
si
on

,
R
ec
al
l
an

d
A
cc
u
ra
cy

of
d
ia
gn

os
ti
c
te
st
s.

T
h
e
co
lu
m
n
F
ai
lu
re

T
yp
es

sh
ow

s
th
e
p
er
ce
n
ta
ge

of
fa
il
u
re
s
fo
r
ea
ch

fa
il
u
re

m
o
d
e
ty
p
e,

re
p
re
se
n
ti
n
g,

fr
om

to
p
to

b
ot
to
m
,
m
is
cl
as
si
fi
ca
ti
on

,
m
is
p
os
it
io
n
in
g,

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
,
m
is
d
et
ec
ti
on

,
an

d
m
is
as
so
ci
at
io
n
.
F
in
al
ly
,
th
e
S
ce
n
ar
io

F
ai
lu
re
s
co
lu
m
n
re
p
or
ts

th
e
n
u
m
b
er

of
ac
ti
ve

fa
il
u
re

m
o
d
es

th
at

ea
ch

sa
m
p
le

(i
.e
.,
d
ia
gn

os
ti
c
gr
ap

h
)
h
as

as
a
p
er
ce
n
ta
ge

of
th
e
to
ta
l
n
u
m
b
er

of
sa
m
p
le
s;

th
e
h
or
iz
on

ta
l
re
d

li
n
e
re
p
re
se
n
ts

th
e
av
er
ag
e
n
u
m
b
er

of
ac
ti
ve

fa
il
u
re

m
o
d
es
.
T
h
e
b
es
t
is
h
ig
h
li
gh

te
d
in

gr
ee
n
,
th
e
se
co
n
d
b
es
t
in

ye
ll
ow

.

133



S
c
e
n
a
ri
o

A
lg
.

M
o
d
u
le
s

O
u
tp
u
ts

T
e
st
s

F
a
il
u
re

s
T
y
p
e
s

S
c
e
n
a
ri
o
F
a
il
u
re

s
P
re

c
.

R
e
c
.

A
c
c
.

P
re

c
.

R
e
c
.

A
c
c
.

S
to
p
p
ed

V
eh
ic
le

F
G

92
.8
6

26
.2
6

90
.7
2

9
3
.0
7

8
9
.5
2

9
9
.2
6

8
4
.7
9

5
7
.9
9

9
5
.8
2

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

59
.4
3

60
.5
8

89
.8
1

5
8
.6
2

6
1
.8
2

9
6
.3
6

G
C
N

31
.2
5

5.
05

87
.0
0

8
9
.0
9

4
6
.6
7

9
7
.4
4

G
C
N
II

0.
00

0.
00

87
.0
0

7
5
.0
0

8
.5
7

9
5
.9
2

G
IN

0.
00

0.
00

87
.2
5

8
8
.1
0

7
0
.4
8

9
8
.3
1

S
A
G
E

33
.3
3

2.
02

87
.5
0

8
8
.2
4

5
7
.1
4

9
7
.8
1

C
on

es
in

th
e
L
an

e

F
G

28
.5
7

8.
82

69
.9
2

5
0
.0
0

3
4
.2
5

9
0
.4
9

5
7
.9
6

4
6
.8
7

8
5
.3
0

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

38
.7
5

40
.2
6

65
.5
8

2
8
.8
5

3
6
.5
9

8
4
.7
8

G
C
N

40
.0
0

20
.5
9

70
.7
0

5
9
.5
2

3
4
.2
5

9
1
.5
4

G
C
N
II

26
.0
9

8.
82

69
.1
4

5
4
.2
9

2
6
.0
3

9
0
.8
9

G
IN

55
.5
6

7.
35

73
.8
3

5
2
.0
0

3
5
.6
2

9
0
.7
6

S
A
G
E

33
.3
3

8.
82

71
.0
9

6
8
.0
0

4
6
.5
8

9
2
.8
4

C
u
t
O
ff

L
ef
t

F
G

48
.1
5

34
.2
1

91
.1
4

6
9
.0
9

1
0
0
.0
0

9
8
.7
1

7
8
.4
7

7
5
.4
4

9
7
.5
8

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

57
.4
5

69
.2
3

92
.7
9

5
6
.2
5

6
9
.2
3

9
7
.5
2

G
C
N

33
.3
3

2.
63

91
.1
4

8
9
.2
9

6
5
.7
9

9
8
.7
9

G
C
N
II

83
.3
3

13
.1
6

92
.2
7

9
6
.1
5

6
5
.7
9

9
8
.9
4

G
IN

10
0.
00

2.
63

91
.5
9

8
0
.9
5

8
9
.4
7

9
9
.0
9

S
A
G
E

80
.0
0

21
.0
5

92
.7
3

7
5
.7
6

6
5
.7
9

9
8
.4
1

C
u
t
O
ff

R
ig
h
t

F
G

73
.5
3

56
.8
2

91
.5
7

7
7
.3
6

9
1
.1
1

9
8
.3
9

8
5
.2
3

5
8
.5
5

9
5
.6
9

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

63
.0
4

59
.1
8

89
.2
4

5
7
.1
4

5
6
.0
0

9
5
.8
3

G
C
N

78
.9
5

34
.0
9

90
.0
6

9
1
.6
7

4
8
.8
9

9
7
.4
9

G
C
N
II

87
.5
0

31
.8
2

90
.3
6

1
0
0
.0
0

5
7
.7
8

9
8
.0
9

G
IN

85
.7
1

27
.2
7

89
.7
6

8
8
.8
9

7
1
.1
1

9
8
.2
9

S
A
G
E

71
.4
3

34
.0
9

89
.4
6

8
7
.5
0

6
2
.2
2

9
7
.8
9

C
ar

in
F
ro
n
t

F
G

–
–

10
0
.0
0

–
–

1
0
0
.0
0

– –
1
0
0
.0
0

0.
00

0.
25

0.
50

0.
75

1.
00

De
t.

Po
s.

Oo
D

As
s.

Cl
as

s.

0.
00

0.
25

0.
50

0.
75

1.
00

8 7 6 5 4 3 2 1 0

D
et
.

–
–

10
0
.0
0

–
–

1
0
0
.0
0

G
C
N

–
–

10
0
.0
0

–
–

1
0
0
.0
0

G
C
N
II

–
–

10
0
.0
0

–
–

1
0
0
.0
0

G
IN

–
–

10
0
.0
0

–
–

1
0
0
.0
0

S
A
G
E

–
–

10
0
.0
0

–
–

1
0
0
.0
0

T
ab

le
3.
6:

A
lg
or
it
h
m

p
er
fo
rm

an
ce

b
re
ak

d
ow

n
b
y
sc
en
ar
io

ty
p
e
(P

ar
t
2
of

2)
fo
r
te
m
p
or
al

d
ia
gn

os
ti
c
gr
ap

h
s.

134



3.6 Extended Literature Review

This section reviews related work on runtime monitoring and AV safety assurance,

spanning both industrial practice (Section 3.6.1) and academic research (Section 3.6.2).

3.6.1 State of Practice

The automotive industry currently uses four classes of methods to claim the safety

of an AV [22], namely: miles driven, simulation, scenario-based testing, and dis-

engagement. Each of these methods has well-known limitations. The miles driven

approach is based on the statistical argument that if the probability of crashes per

mile is lower in autonomous vehicles than for humans, then AVs are safer; however,

such an analysis would require an impractical amount (i.e., billions) of miles to pro-

duce statistically-significant results [22], [161].10 The same approach can be made

more scalable through simulation, but unfortunately creating a life-like simulator is

an open problem, for some aspects even more challenging than self-driving itself.

Scenario-based testing is based on the idea that if we can enumerate all the possible

driving scenarios that could occur, then we can simply expose the AV (via simulation,

closed-track testing, or on-road testing) to all these scenarios and, as a result, be con-

fident that the AV will only make sound decisions. However, enumerating all possible

corner cases (and perceptual conditions) is a daunting task. Finally, disengagement

is defined as the moment when a human safety driver has to intervene in order to

prevent a hazardous situation. However, while less frequent disengagements indicate

an improvement of the AV behavior, they do not give evidence of the system safety.

An established methodology to ensure safety is to develop a standard that every

manufacturer has to comply with. In the automotive industry, the standard ISO

26262 [162] is a risk-based safety standard that applies to electronic systems in pro-

duction vehicles. A key issue is that ISO 26262 mostly focuses on electronic systems

rather than algorithmic aspects, hence it does not readily apply to fully autonomous

10Moreover, the analysis should cover all representative driving conditions (e.g., driving on a
highway is easier than driving in urban environment) and should be repeated at every software
update, quickly becoming impractical.

135



vehicles [163]. The recent ISO 21448 [29], which extends the scope of ISO 26262

to cover autonomous vehicles functionality, primarily considers mitigating risks due

to unexpected operating conditions, and provides high-level considerations on best-

practice for the development life-cycle. Both ISO 26262 and ISO/PAS 21448 are

designed for self-driving vehicles supervised by a human [164]. Koopman and Wag-

ner [165] propose a standard called UL 4600 [166] specifically designed for high-level

autonomy (levels 4 and 5). This standard focuses on ensuring that a comprehensive

safety case is created, but it is technology-agnostic, meaning that it requires evidence

of system safety without prescribing the use of any specific approach or technology

to achieve it.

3.6.2 State of the Art

Related work tries to tackle the problem of safety assurance using different strategies.

Formal methods [167]–[175] have been used as a tool to study safety of autonomous

systems. These approaches have been successful for decision systems, such as obsta-

cle avoidance [176], road rule compliance [177], high-level decision-making [178], and

control [114], [179], where the specifications are usually model-based and have well-

defined semantics [180]. However, they are challenging to apply to perception systems,

due to the complexity of modeling the physical environment [181], and the trade-off

between evidence for certification and tractability of the model [182]. One common

approach is finding an example where the system fails (i.e., falsification). Current

approaches [183]–[185] consider high-level abstractions of perception [22], [128], [186]

or rely on simulation to assert the true state of the world [183], [184], [187]. Other ap-

proaches focus on adversarial attacks for neural-network-based object detection [188]–

[190]; these methods derive bounds on the magnitude of the perturbation that induces

incorrect detection result, and are typically used off-line [191].

Previous works on runtime fault detection and identification focused on

components of the perception system [192]. Miller et al. [34] propose a framework

for quantifying false negatives in object detection. Out-of-distribution sample

detection [193]–[196] is a popular technique for detecting failures due to shifts in

136



the distribution of data in learning-based algorithms. For semantic segmentation,

Besnier et al. [33] and Oberdiek et al. [197] propose an out-of-distribution detec-

tion mechanism, while Rahman et al. [198] propose a failure detection framework to

identify pixel-level misclassifications. Lambert and Hays [199] propose cross-modality

fusion algorithm to detect changes in high-definition map. Liu and Park [126] propose

a methodology to analyze the consistency between camera image data and LiDAR

data to detect perception errors. Sharma et al. [127] propose a framework for equip-

ping any trained deep network with a task-relevant epistemic uncertainty estimate.

Several GNSS/RTK integrity monitors have been proposed [31], [32], [200]–[203] to

detect localization errors (the interested reader should refer to [204], [205] for a com-

prehensive survey). Another line of works leverages spatio-temporal information to

detect failures. You et al. [206] use spatio-temporal information from motion predic-

tion to verify 3D object detection results. Balakrishnan et al. [186], [207] propose the

Timed Quality Temporal Logic (TQTL) to reason about desiderable spatio-temporal

properties of a perception algorithm.

Kang et al. [208] use model assertions, which similarly place a logical constraint on

the output of a module to detect anomalies. Fault-tolerant architectures [209] have

been also proposed to detect and potentially recover from a faulty state, but these

efforts mostly focus on implementing watchdogs and monitors for specific modules,

rather than providing tools for system-level analysis and monitoring.

Fault identification and anomaly detection have been extensively studied

in other areas of engineering. Bayesian networks, Hidden Markov Models [210],

[211], and deep learning [212] have been used to enable fault identification, but mainly

in industrial systems instrumented to detect component failures. Graph-neural net-

works have been used for anomaly detection (see [213] for a comprehensive survey).

In this context, “anomaly detection is the data mining process that aims to identify

the unusual patterns that deviate from the majorities in a dataset” [213]. In order to

detect anomalies, objects (i.e., nodes, edges, or sub-graphs) are usually represented

by features that provide valuable information for anomaly detection, and when a fea-

ture considerably differs from the others (or the training data), the object is classified

137



as anomalous. De Kleer and Williams [214] propose a methodology to detect failures

by comparing observations with a predicted output. The dissimilarities are then used

to search for potential failures that explain the measurements. The work assumes the

availability of a model that predicts the behavior of the system, and —after collect-

ing intermediate results of each component— it searches for the smallest set of failing

components that explains the wrong measurements. Preparata, Metze, and Chien [44]

study the problem of fault diagnosis in multi-processor systems, introducing the con-

cept of diagnosability; their work is then extended by subsequent works [146], [215],

[216]. Sampath et al. [217] propose the concept of diagnosability for discrete-event

systems [218], [219]. The system is modeled as a finite-state machine, and is said to

be diagnosable if and only if a fault can be detected after a finite number of events.

The present paper extends this literature in several directions. First, we take

a black-box approach and remain agnostic to the inner workings of the perception

system we aim to monitor (relaxing assumptions in related work [214]). Second, we

develop a fault identification framework that reasons over the consistency of hetero-

geneous and potentially asynchronous perception modules (going beyond the homo-

geneous, synchronous, and deterministic framework in [44]). Third, the framework

is applicable to complex real-world perception systems (not necessarily modeled as

discrete-event systems [218], [219]). The present paper also extends our previous work

on perception-system monitoring [150], which only focuses on the deterministic case

and considers a simplified model.

138



Chapter 4

Task-Aware Perception Monitoring

In this chapter we leverage the fault detection and identification framework developed

in the previous chapter to develop a task-aware runtime monitor. We start by defining

the notion of task-aware risk (Section 4.1). We then propose an algorithm to estimate

the failure risk by using statistical tool called copula (Sections 4.2 and 4.3). We

demonstrate, through experiments, that our approach can accurately estimate the

risk of perception failures (Section 4.4), and conclude the chapter with a discussion

of related work (Section 4.5).

4.1 Risk Estimation Formulation

This section provides an overview of the building blocks of our task-aware percep-

tion monitor, which comprises of three components: perception failure detection and

identification, plausible scene generator, and task-aware risk estimator. Moreover,

the section formalizes the problem of task-aware risk estimation, which is the main

focus of this paper. Throughout the rest of this section we will refer to the AV as the

ego vehicle while any other agent is referred to as a non-ego agent.

Perception Failure Detection and Identification. We assume access to a

perception failure detection and identification module, such as the algorithms pre-

sented in Chapter 3, that identifies the set of failure modes the perception system is

experiencing. The perception system is composed of a set of modules, each of which

139



is responsible for a specific task, e.g., object detection, localization, etc. Each module

is subject to a finite set of failure modes. The perception failure detection and identi-

fication module computes a failure state vector f , containing the relevant information

about the active failures, that is, the set of active failure modes and the corresponding

perception diagnostic information (such as intermediate detection results, raw sensor

data, etc.).

Plausible Scene Generator. Before we assess the risk that the perception

failure poses to the AV’s motion plan, we need to understand the actual scene in which

the AV is operating. To this end, we construct a new estimate of the surrounding

scene using what we call a plausible scene generator. Let xt ∈ X ⊆ Rn be an estimate

of the world state at time t, and f the active perception failure modes provided

by failure detection and identification discussed in Chapter 3, the plausible scene

generator returns alternative plausible scenes in the form of a probability distribution

ζ(x̂t|x0:t,f) over the plausible world states x̂t ∈ X at time t. We require the plausible

scene generator to support the actual world state to be able to accurately assess the

risk of the perception failure. We will provide more details about the plausible scene

generator in Section 4.2.

Relative Scenario Risk. We are interested in understanding how much more

risk does the ego’s motion plan encounters in the generated plausible scenes ζ(x̂t|x0:t,f)

compared to the perceived scene x0:t. Let x
e
t:t+T be the ego’s motion plan generated

by a planning module for a time horizon T . We assume the availability of a trajectory

prediction module which provides a distribution ψ(xt:t+T |x0:t,x
e
t:t+T ) on the future

world state trajectories conditioned on the world state history and the ego’s motion

plan. The trajectory predictor ψ reasons about agent interactions and provides mul-

timodal predictions that account for multiple agent intentions; in our experiments

we use Trajectron++ [220] which is a state-of-the-art trajectory prediction model

that satisfies these criteria. The approach we describe is agnostic to the choice of the

planning and prediction modules. Let c : X→ R+ be a cost function such that higher

values imply riskier scenarios for the ego vehicle. Examples of such functions might

be the distance between the ego vehicle and the closest non-ego agent or a surrogate

140



(so that higher values imply shorter times) of the time-to-collision metric [221]. The

distribution ψ on the future world states xt:t+T induces a sequence of univariate dis-

tributions {ϕt+τ (ct+τ |x0:t,x
e
t:t+T )}Tτ=1 over the predicted costs c for each time step in

the future. In the rest of the paper, we will work with the predicted cost distribu-

tion ϕt+τ for a particular τ and for a particular motion plan xe
t:t+T . For the sake of

notational compactness, we drop the explicit dependence of ϕ on t + τ and xe
t:t+T

to express the predicted cost distribution as ϕ(c|x0:t). Similarly, the plausible scene

distribution ζ(x̂t|x0:t,f) on the plausible world state x̂t induces the cost distribution

ϕ (c|x0:t,f).

We are now ready to formalize our task-aware notion of risk in the following

definition.

Definition 45 (Relative Scenario Risk (RSR)). Let x0:t be the world state history for

the perceived scene and let ζ(x̂t|x0:t,f) be the distribution of the generated plausible

scenes due to the perception faults f , detected by a perception failure detection and

identification module. Let ϕA := ϕ(c|x0:t) be the distribution of the costs for the

perceived scene and ϕB := ϕ (c|x0:t,f) be the distribution of the costs for the plausible

scenes. Let θ ∈ R+ be the cost threshold that the planner desires to stay below. The

relative scenario risk (RSR) between the plausible and the perceived scenes is then

defined as:

R̂ : θ 7→ Pr
A∼ϕA,B∼ϕB

(B > θ | A ≤ θ). (4.1)

For a given θ, the higher the RSR is, the further the plausible scene cost distri-

bution ϕB is skewed toward higher costs, as illustrated in Fig. 1-2. Hence, larger

values of R̂ imply that the plausible scenes are riskier than the perceived scene. Note

that, in the general, ϕA and ϕB will not be independent since the underlying scene is

largely the same.

The choice of θ defines a desired safety threshold: for instance, if the cost is

the distance between agents, θ can be the smallest acceptable distance between the

ego and the nearest agent. The choice of θ may be scenario dependent (e.g., the

141



minimum distance might be different when driving on a highway vs. a traffic jam).

To overcome this dependency, we take θ to capture the bulk of the probability mass

in the perceived scene cost distribution (ϕA). To make this more concrete, let ΦA be

the marginal cumulative distribution function (CDF) of ϕA and ΦB be the CDF of

ϕB. Recall that the generalized inverse of a CDF Φ, here denoted by Φ−1, is defined

as:

Φ−1(p) := inf {c ∈ R : Φ(c) ≥ p} . (4.2)

Then, we choose θ = Φ−1
A (p). This is equivalent to taking θ to be the maximum value

of the risk cost, among the most common situations in the perceived scene. We call p

the risk aversion parameter as it denotes the amount of risk the ego agent is willing

to accept in its motion plan.

We can now define the p-quantile relative scenario risk.

Definition 46 (p-quantile Relative Scenario Risk). Let R̂ be the relative scenario

risk in Definition 45. Let p ∈ (0, 1) be the risk aversion parameter described above.

Then, the p-quantile relative scenario risk (p-RSR) is defined as:

R : p 7→ R̂ ◦ Φ−1
A (p). (4.3)

Note that the definition above is simply restating Definition 45 in terms of the

risk aversion parameter p.

Problem Statement. Given the perceived world state history x0:t, the percep-

tion module fault modes f , and the risk aversion p, we want to estimate the p-quantile

relative scenario risk R(p) in Definition 46. It is worth noting that this is a challeng-

ing problem because the distributions ϕA and ϕB are not independent, and we do

not have an explicit analytical representation for them or their CDFs ΦA, ΦB; hence,

we cannot analytically compute Φ−1
A (p) or R(p). However, we can sample from these

distributions independently. In particular, we take samples from these distributions

in such a way that they are independent (each new sample does not depend on the

previous one) and identically distributed (the underlying scene and the behavior of

the agents are fixed). In the next section, we present a method to estimate R(p)

142



using these samples.

4.2 Plausible Scene Generation

The goal of the plausible scene generator is to generate a probabilistic description of

the plausible scenes that are consistent with the perceived scene and the active failure

modes. Let xt ∈ X ⊆ Rn be an estimate of the world state at time t, provided by the

perception module (this is the “perceived scene”). We assume that the world state

includes the ego vehicle’s state xe, non-ego agents’ states xne, and map attributes

xm, e.g., lane lines, stop signs, traffic signals, etc. Given the perceived world state

xt from the perception module, and the active perception failure modes information

f from the perception failure detection and identification, the plausible scene gen-

erator returns alternative plausible scenes in the form of a probability distribution

ζ(x̂t|x0:t,f) over the plausible world states x̂t ∈ X at time t; we require the plausible

scene generator to support the actual world state.

Our framework does not not assume a particular implementation of the plausible

scene generator, which might depend on the perception system architecture. While

there are some approaches that can be used for scenario generation [38], [39], [222],

[223], the approach we adopt here is model-based approach that leverages the results

of the perception failure identification method discussed in Chapter 3.

In particular, our plausible scene generator leverages the output of diagnostic tests

in conjunction with the active failure modes information f provided by the Failure

Identification module. Each failing diagnostic test ti outputs a set of candidates Ci
that are likely to cause the failure mode i. For example, consider the case where

the radar-based detection module detects an obstacle in front of the ego-vehicle, but

the same obstacle is missed by the camera-based detection module: in this case,

the perception system could prioritize the camera detection and discard the radar

detection as a false positive; therefore, the perceived scene would have no obstacle

in front of the ego-vehicle. However, a tcomparing the two sensor modalities can

detect the inconsistency between them and, taking spatiotemporal considerations

143



into account, infer that the missing vehicle is the source of the failure.

In general the diagnostic test cannot distinguish between a missing obstacle and

a ghost obstacle, but it can still provide useful information about the failure mode.

The task of distinguishing the two cases is left to fault identification module. Once

the fault identification module has identified the active failure modes (in our case, a

missing obstacle in the camera detections), the plausible scene generator can then use

the information about the candidate associated with the active failure to generate an

alternative plausible scene that contains an obstacle as detected by the radar. Also,

some of the diagnostic tests might fail to detect the failure mode in their scope

as active (false negative), even though the failure identification module detects it

as active. Therefore, plausible scene generator must also trace back the candidates

associated with the active failure modes from other diagnostic tests that are connected

in the diagnostic graph.

In general, the plausible scene may not be unique. For example, since the radar-

based detection module may only be able to detect the position and the velocity of

the missing obstacle, but not its class (e.g., car, pedestrian, etc.), such a detected fail-

ure may give rise to a probability distribution over plausible scenes ζ(x̂t|x0:t,f) (e.g.,

the uniform distribution over the missing obstacle’s class). Similarly, this distribu-

tion ζ(x̂t|x0:t,f) can also model the uncertainty in the radar position and velocity

measurements. Assuming that at least a module in the perception pipeline computed

(even partially) the correct result, the distribution of generated scenes will support

the actual scene.1 It is worth noting that since the plausible scene generator pro-

duces a probabilistic distribution, as opposed to a deterministic scenario, re-planning

can be computationally infeasible or overly conservative because the distribution can

support arbitrarily many plausible scenes.

The plausible scene generator is used in this paper supports the real scene 96.24%

of the time, it correctly remove the closest ghost obstacle 99.77% of the time, and it

correctly adds the closest missing obstacle 91.56% of the time. This proves that the

1This approach can also be generalized to early-fusion and middle-fusion perception systems as
spatio-temporal information across frames can provide useful diagnostic information regardless of
the perception architecture.

144



plausible scene generator supports the actual scene in even in challenging scenarios.

4.3 Estimating Relative Risk

In this section, we use copulas [224], a statistical tool used to model tail dependen-

cies between distributions, to provide an algorithm to estimate the RSR defined in

Definition 46.

4.3.1 Introduction to Copulas

To model the dependence between the two univariate distributions ϕA and ϕB, we

use the concept of copula (for a more detailed introduction see [224, Chapter 1]).

Copulas are tools for modeling the dependence of multiple random variables, and

the name “copula” was chosen to emphasize the way in which a copula couples a

joint distribution function to its univariate marginals. We make this mathematically

precise in the following definition.

Definition 47 (Copula [45]). A d-dimensional copula C : [0, 1]d → [0, 1] is a function

defined on a d-dimensional unit cube [0, 1]d that satisfies the following:

1. C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0 for any ui, i ∈ {1, . . . , d},

2. C(1, . . . , 1, u, 1, . . . , 1) = u for any u ∈ [0, 1] in any position, and

3. C is d-non-decreasing.2

These three properties ensure that the copula behaves like a joint distribution

function. To gain intuition, consider each ui to be a probability in the range [0, 1].

The first condition says that if the probability of the event associated to ui is zero,

then, regardless of the probability of the other events, the joint probability of all

events happening at the same time is zero. Conversely, if all events are sure to occur

except one, then the probability of the joint event is the probability of the single

2That is, for each hyper-rectangle B =
∏d

i=1[xi, yi] ⊆ [0, 1]d, the C-volume of B is non-negative:∫
B
dC(u) =

∑
z∈

∏d
i=1{xi,y+i}(−1)N(z)C(z) ≥ 0, where N(z) = #{k : zk = xk}

145



non-sure event. Finally, the last condition imposes the copula to be non-decreasing

in each component.

Sklar’s theorem [225], presented next, provides the theoretical foundation for the

application of copulas together with the conditions for the existence (and uniqueness)

of the copula. Note that In this thesis, we only require the existence of the copula,

but we include the uniqueness conditions as well below for the sake of completeness.

Theorem 48 (Sklar’s theorem [225]). Let Φ(x1, . . . , nd) be a joint distribution func-

tion, and let Φi, i = 1, . . . , d be the marginal distributions. Then, there exists a copula

C : [0, 1]d → [0, 1] such that for all x1, . . . , xd in [−∞,+∞]

Φ(x1, . . . , xd) = C(Φ1(x1), . . . ,Φd(xd)). (4.4)

Moreover, if the marginals are continuous, then C is unique; otherwise, C is uniquely

determined on RangeΦ1 × · · · ×RangeΦd where RangeΦi denotes the range (image)

of Φi.

The importance of copulas in the study of multivariate distributions is empha-

sized by Sklar’s theorem, which shows, firstly, that all multivariate distributions can

be expressed in terms of copulas, and secondly, that copulas may be used to con-

struct multivariate distribution functions from univariate ones. The latter point is

particularly important for us because, as we noted in the previous section, we cannot

sample from the joint distribution Pr(A,B), but we can sample from the marginals

Pr(A) and Pr(B).

4.3.2 Estimating p-RSR using copulas

Let A, B be random variables drawn from ϕA and ϕB with CDFs ΦA and ΦB, re-

spectively (notation introduced in Definition 45); as a quick reminder, ϕA is the cost

distribution of the perceived scene and ϕB of the plausible scene. Let’s assume for

a moment that we can estimate the copula relating ϕA and ϕB. Since the copula

C(A,B) contains the information on the dependence structure between (A,B), we

146



can use it to measure the tail dependency between the two distributions. Hence,

using the definition of conditional probability and Eq. (4.4) from Theorem 48, we can

express p-RSR in Eq. (4.1) as follows:3

R(p) = Pr(B > Φ−1
A (p) | A ≤ Φ−1

A (p))

= 1− Pr(B ≤ Φ−1
A (p) | A ≤ Φ−1

A (p))

= 1− Pr(A ≤ Φ−1
A (p), B ≤ Φ−1

A (p))

Pr(A ≤ Φ−1
A (p))

= 1− C(ΦA ◦ Φ−1
A (p),ΦB ◦ Φ−1

A (p))

ΦA ◦ Φ−1
A (p)

= 1− C(p,ΦB ◦ Φ−1
A (p))

p
.

(4.5)

Unfortunately, we do not have access to the explicit expression of the two CDFs ΦA

and ΦB and the copula C, therefore, R cannot be computed analytically. In what

follows, we will provably bound R by constructing empirical estimates Φ
(n)
A and Φ

(n)
B

of the CDFs ΦA and ΦB, respectively, with n i.i.d. samples from both, ϕA and ϕB.

Theorem 49 (PAC bound on p-RSR). Let {Ai}ni=1 and {Bi}ni=1 be n i.i.d. samples

from CDFs ΦA and ΦB, respectively. Let

Φ
(n)
A (A) =

1

n

n∑
i=1

1[Ai ≤ A], Φ
(n)
B (B) =

1

n

n∑
i=1

1[Bi ≤ B]

be empirical estimates of ΦA and ΦB, respectively. Let the risk aversion parameter

p ∈ (0, 1) be as described in Section 4.1 and let α ∈ (0, 1). Then, with probability at

least 1− α:

1− min{p, v̄(p, α, n)}
p

≤ R(p) ≤ 1− max{p+
¯
v(p, α, n)− 1, 0}

p
,

where

¯
v(p, α, n) = Φ

(n)
B ◦

[
Φ

(n)
A + ϵ(α, n)

]−1

(p)− ϵ(α, n)

v̄(p, α, n) = Φ
(n)
B ◦

[
Φ

(n)
A − ϵ(α, n)

]−1

(p) + ϵ(α, n)

3For notational brevity, we are dropping the distributions from which the random variables A
and B are drawn from under the probability sign Pr.

147



and ϵ(α, n) =
√

ln(2/α)/(2n).

Both bounds are sharp in the sense that they can be attained. In particular, the

lower bound is attained when ϕA and ϕB are perfectly positively dependent in the

sense that B is almost surely a strictly increasing function of A. Conversely, the

upper bound is attained when ϕA and ϕB are perfectly negatively dependent, meaning

that B is almost surely a strictly decreasing function of A.

The PAC bounds in Theorem 49 are tractable to compute and allow us to esti-

mate p-RSR R(p) at runtime. In particular the assumption on i.i.d. samples is not

restrictive: as we noted in Section 4.1, our problem formulation allows i.i.d. samples.

Also we do not assume a particular copula, but only its existence, which is proved by

Sklar’s theorem.

4.3.3 Triggering Safety Maneuvers

With the results presented in Theorem 49, we have a way to measure whether the

plausible scene, compared to the perceived scene, exposes the ego-vehicle to an un-

wanted risk in terms of probability. However, if the probability is low, it may be

detrimental to the ego-vehicle’s performance to initiate safety maneuvers to mitigate

the risk. In the following, we design a detection algorithm (Algorithm 5) that can be

used to detect whether the system is likely to experience a high-risk situation that

can be used to trigger safety maneuvers.

Consider a risk threshold γ ∈ (0, 1) that denotes high-risk situations. If the lower

bound onR(p) in Theorem 49 is above γ, it means that with probability at least 1−α,

the current scene indeed corresponds to a high-risk situation (in the sense of p-RSR).

In such a case, Algorithm 5 detects a task-relevant failure (line 5), which can be used to

trigger a safety maneuver. This reasoning can easily be extended to consider multiple

thresholds for multiple criticality levels, each associated with different mitigation

strategies or different driving scenarios (e.g., highway, urban driving, pick-up/drop-

off, etc.).

Algorithm 5 can be summarized as follows: after identifying a failure and gener-

148



Algorithm 5: p-RSR Detection Algorithm

Input: The state x0:t, the faults f , the cost metric c, the risk aversion p, the
confidence level 1− α, and the risk threshold γ.

Output: TRUE if critical scenario, FALSE otherwise.

1 {Ai}ni=1 ∼ ϕ(c|x0:t), {Bi}ni=1 ∼ ϕ(c|x0:t,f) ;

2 Φ
(n)
A (A)← 1/n

∑n
i=1 1[Ai ≤ a] ;

3 Φ
(n)
B (B)← 1/n

∑n
i=1 1[Bi ≤ b] ;

4 if min{p, v̄(p, α, n)} < p(1− γ) then
5 return TRUE
6 else
7 return FALSE
8 end

ating the plausible scene, the algorithm samples the two scenes (line 1) and estimates

the empirical CDFs (lines 2-3). It then returns TRUE if the lower bound in Theo-

rem 49 is above the risk threshold γ, or FALSE otherwise (line 4). The algorithm

steps are depicted in Fig. 4-1.

The algorithm has four parameters: the risk aversion p ∈ (0, 1), the risk threshold

γ ∈ (0, 1), the number of samples n ∈ N, and the confidence level 1−α ∈ (0, 1). The

risk aversion p measures the risk tolerance of the ego-vehicle in terms of quantiles of

the perceived scene risk distribution. The ego-vehicle is expected to behave safely

(e.g., avoid collisions) in situations where the risk cost is below the p-quantile, so

higher values indicate higher risk tolerance. Our risk metric p-RSR represents the

probability that the plausible scene is riskier than the perceived scene. If this prob-

ability is significant, i.e., above the risk threshold γ, the algorithm will classify the

scene as high risk. To estimate p-RSR we use the PAC bounds in Theorem 49, which

requires choosing a desired confidence level 1−α and the number n of predicted cost

samples. Clearly, n should be as large as possible to provide tighter bounds, but this

is limited by the computational budget of the system. If the values of p, γ, and 1−α

are close to 1 the algorithm will be imprudent, i.e., it will classify most of the scenes

as low risk; on the other hand, if these values are small, the algorithm will be overly

prudent, i.e., it will classify most of the scenes as high risk. In our experiments, we

found that the values of p, γ, and 1−α in the range [0.9, 0.99] provide a good trade-off

149



Perceived Scene

Plausible Scene

Plausible Scene Generator

Failure Mode: Missing Obstacle

Perceived Scene Emp. CDF

Prediction Sampling

Cost

Cost Time

Plausible Scene Emp. CDF

       PAC Bounds (from Thm. 2)

Figure 4-1: Depiction of Algorithm 5. The perceived scene, which is subject to a
missed-obstacle failure, is processed by the plausible scene generator which produces
the plausible scene. The two scenes are sampled and the empirical CDFs of the costs
are estimated. The perceived scene empirical CDF has a low risk since the only
vehicle in the scene is stationary, since it is giving the ego vehicle the right-of-way.
However, the plausible scene has a higher risk since the ego vehicle is now in a collision
path with a moving vehicle. The two CDFs are used to compute the PAC bounds
in Theorem 49. The solid red line represent the upper bound, the solid green line the
lower bound, while the dashed red line represent the risk threshold γ. Whenever the
lower bound is above γ, the algorithm labels the scenario as high risk.

between prudence and imprudence for the task of detecting collision-prone situations.

4.4 Experimental Results

In this section, we compare the performance of our task-aware risk estimator against

various other baselines. Our experiments were conducted on a desktop computer with

an Intel i9-10980XE 4.7GHz CPU (36 cores) and an NVIDIA GeForce RTX 3090

GPU.

4.4.1 Dataset

We tested the proposed approach using the publicly available NuPlan dataset [46].

To test the risk estimation we implement a fault injection mechanism into a NuPlan

scenario. We considered 4 classes of failures, namely, Misdetection, Missed Obstacle,

Ghost Obstacle, and Mislocalization. Each of these classes is further divided into

various subclasses.

Misdetection. A misdetection represents an error in the estimation of one of the

150



agents/objects around the vehicle. We consider:

1. Orientation: the ego perception system estimates the wrong orientation of the

agent;

2. Size: the ego perception estimates the wrong size of an agent;

3. Velocity : the ego perception estimates the wrong velocity (both direction and/or

magnitude) of the agent; and finally

4. Traffic Light : the ego perception estimates the wrong status for the traffic light.

All misdetection subtypes (except traffic light) are subject to noise, that can vary

across scenarios. For example, an orientation misdetection might offset the vehicle

heading with a Gaussian distribution with mean π/6 and standard deviation of 0.1.

Ghost Obstacle. The ego perception system wrongly detects an obstacle that does

not exist (i.e., a ghost obstacle). The ghost obstacle can be:

1. in-path, if it lays on the ego trajectory, or

2. not in-path, if it is not on the ego trajectory.

Missing Obstacle. The ego perception system fails to detect an agent; the missed

obstacle can be:

1. in-path, if it is on the ego trajectory, or

2. not in-path, if it is not on the ego trajectory.

Mislocalization. The ego perception system fails to localize itself in the map. Each

failure mode can be:

1. static if the failure persists for the entire duration of a scenario (20 s), or

2. dynamic, if it randomly appears/disappears over time.

151



In our experiments, a dynamic failure mode appears with probability 0.25 and lasts

at least 1 s before disappearing.

We manually designed 100 realistic scenarios for evaluation, each with at least

one common failure mode typically found in autonomous vehicles; see Table 3.2 for

a breakdown of the failures across scenarios. Examples of such realistic scenarios

include ghost obstacles, flickering detections, misdetection of a pedestrian crossing

the road,incorrect orientation/velocity estimation of a vehicle with the right-of-way,

misdetection of the traffic light with incoming traffic, etc.

4.4.2 Implementation Details

We implemented all the components of the proposed approach in Python. As men-

tioned in Section 4.1, the proposed approach is planner agnostic. In our experi-

ments, we used the Intelligent-Driver Model (IDM) planner [226], [227] provided in

the NuPlan-devkit [228]. The planner is designed to move toward the goal, following

the lane, while avoiding collisions with the leading agent in front of the ego vehicle.

For the non-ego-prediction module, we instead used Trajectron++ [220].

To create high-risk situations, such as collisions, we use the closed-loop capability

provided by NuPlan. Closed-loop simulations enable the ego vehicle and other agents

to deviate from what was originally recorded in the dataset by the expert driver. In

our simulations, each vehicle also behaves according to the IDM policy [226], [227].

However, due to a limitation of the NuPlan simulator, pedestrians and bicycles follow

the original trajectory recorded in the dataset (open-loop).

Plausible Scene Generation

The primary goal of the experimental evaluation in this section is to focus on the task-

relevant risk-estimation. We use a plausible scene generation method that, given the

perception failure mode, proposes a plausible scene by corrupting the ground-truth

information (i.e., velocity, size, orientation or location of the agents) with Gaussian

noise. In particular, we add zero-mean Gaussian noise with standard deviation 0.2m

152



to the position, 0.1rad to the heading, and 0.1m/s to the velocity magnitude and

direction. This approach yields similar results compared to the plausible scene gener-

ation presented in Section 4.2 and is also motivated by the following common scenario.

Consider a perception system with two sensor modalities, e.g., camera and radar, and

a sensor fusion algorithm. Suppose, without loss of generality, that the sensor fusion

is misdetecting the velocity of an agent due to a camera-based detection error, while

the radar is fault-free. Once the fault detection and identification module recognizes

the camera as the cause for the wrong perceived scene, the plausible scene generator

could use a Kalman filter to track the radar detections (non-failing sensor modality)

to propose a plausible velocity of the vehicle. Since the Kalman filter produces a

Gaussian estimate of the uncertainty, the velocity of the vehicle is also Gaussian.

This logic can be extended to other failure modes (e.g., missing vehicle), and the

plausible scene generator used In this thesis emulates it.

Baselines

We tested our approach against two baselines, one based on the Hamilton-Jacobi (HJ)

reachability analysis [229] and another based on the collision probability. HJ Reach-

ability. The core idea of HJ-Reachability is computing a set of target states that

agents reason about either seeking or avoiding collision within a fixed time horizon.

There are two types of agent reactions in HJ-reachability, namely, collision-seeking

(min) and collision-avoiding (max). The idea behind the approach presented in [229]

is to compensate for the lack of information about the perception failure by consider-

ing the conservative case in which both the agent and the ego vehicle are in a situation

where the preferred actions are collision-seeking, namely the min-min strategy. For

each agent in the scene, the HJ-reachability computes a value function (in our case

based on the signed distance between the two bounding boxes), where its zero-sublevel

set indicates the existence of a set of control inputs that lead to a collision. The value

function is pre-computed offline, and at runtime we perform look-ups, making this

approach extremely fast. Since there are multiple agents in the scene, we compute

the value function for each agent and then we take the minimum value over the whole

153



scene, if this value is smaller than zero, we say that the scene is high-risk. Collision

Probability. The second baseline uses the trajectory prediction module to compute

the probability of collision with any agents in the scene. Analogous to our proposed

approach, this baseline uses the plausible scene to estimate the risk. It samples the

trajectories using the trajectory prediction module in both the perceived scene and

the plausible scene, and if the collision probability in the plausible scene is greater

than in the perceived scene, and the former is above the threshold γ, we say that the

scene is high-risk. The key difference between our approach and the collision probabil-

ity baseline is that the latter does not capture the dependency between the perceived

and the plausible scene. Both baselines, Collision Probability and HJ-Reachability,

use absolute risk thresholds that do not adapt to the scenarios. In contrast, p-RSR

measures the shift in the risk distribution due to the perceptual error between the

perceived and plausible scenes, implicitly adapting the risk threshold to the scenario.

For example, suppose a correctly detected vehicle cuts into the ego vehicle’s lane (high

risk), but the speed of a distant cyclist (low risk) is underestimated. Both baselines

consider this a high risk scenario because the correctly perceived vehicle is making a

risky maneuver, even though the perception error is a low risk. Since the failure does

not significantly shift the risk distribution, our approach correctly classifies it as low

risk.

154



A
lg
or
it
h
m

P
ar
am

et
er
s

F
1
S
co
re

A
cc
u
ra
cy

P
re
ci
si
o
n

R
ec
a
ll

A
la
rm

-t
o
-C

o
ll
is
io
n
[s
]

R
u
n
ti
m
e
[s
]

A
ve
ra
g
e

M
ed
ia
n

A
ve
ra
g
e

M
ed
ia
n

M
om

en
tu
m
-S
h
ap

ed
D
is
ta
n
ce

(P
ro
p
os
ed
)

p
=

0.
90

,γ
=

0.
9
,α

=
0.
1

0
.7
0

0
.8
0

0
.5
5

0
.9
6

5
.2
8

3
.6
0

0
.2
9

0
.2

p
=

0.
95

,γ
=

0.
9
,α

=
0.
1

0
.7
9

0
.8
8

0
.6
8

0
.9
6

5
.1
8

3
.6
0

p
=

0.
99

,γ
=

0.
9
,α

=
0.
1

0
.8
6

0
.9
3

0
.8
1

0
.9
2

4
.7
2

3
.0
3

T
im

e-
T
o-
C
ol
li
si
on

(P
ro
p
os
ed
)

p
=

0.
90

,γ
=

0.
9
,α

=
0.
1

0
.7
0

0
.8
0

0
.5
5

0
.9
6

4
.6
1

2
.4
5

0
.2
6

0
.1
7

p
=

0.
95

,γ
=

0.
9
,α

=
0.
1

0
.7
6

0
.8
6

0
.6
5

0
.9
2

4
.1
6

2
.0
5

p
=

0.
99

,γ
=

0.
9
,α

=
0.
1

0
.7
9

0
.9
0

0
.7
9

0
.7
9

4
.1
3

2
.2
5

C
ol
li
si
on

P
ro
b
ab

il
it
y

γ
=

0.
9
0

0
.4
0

0
.3
2

0
.2
6

0
.9
6

6
.5
3

4
.9
5

0
.2
5

0
.1
7

γ
=

0.
9
5

0
.4
1

0
.3
3

0
.2
6

0
.9
6

6
.3
1

4
.9
5

γ
=

0.
9
9

0
.4
3

0
.4
1

0
.2
8

0
.9
2

4
.3
3

3
.4
8

H
J
-R

ea
ch
ab

il
it
y

γ
=

0
0
.3
9

0
.2
8

0
.2
4

0
.9
6

7
.1
0

5
.7
5

0
.0
1

0
.0
1

T
ab

le
4.
1:

R
is
k
e
st
im

a
ti
o
n

re
su

lt
s.

T
h
e
p
ro
p
os
ed

ap
p
ro
ac
h
ou

tp
er
fo
rm

s
th
e
ot
h
er

m
et
h
o
d
s
in

al
l
m
et
ri
cs
.
In

p
ar
ti
cu
la
r,

it
ex
h
ib
it
s
th
e
h
ig
h
es
t
p
re
ci
si
on

w
h
il
e
b
ei
n
g
on

p
ar

w
it
h
th
e
m
os
t
co
n
se
rv
at
iv
e
m
et
h
o
d
s
in

te
rm

s
of

re
ca
ll
.

155



Predicted
High-Risk Low-Risk

A
ct
u
al High-Risk

22
True Positive

2
False Negative

Low-Risk
5

False Positive
71

True Negative

Table 4.2: Momentum-Shaped Distance Confusion Matrix. The proposed
approach is able to detect both high-risk and low-risk scenarios reliably, with very
few misclassifications. Among the misclassifications, the majority are false positives,
which is a desirable property for a safety monitor.

4.4.3 Results

In our experiments we use n = 1000 samples from each scene, the confidence 1−α and

the risk threshold γ are set to 0.9. We tested several values of risk aversion, namely,

p = {0.9, 0.95, 0.99}, reported in Table 4.1. We tested the time-to-collision [221] and

the Momentum-Shaped Distance cost metrics (described in Appendix J) to assess the

risk. As mentioned before, the time-to-collision computes the time before a collision

happens between two actors if their speeds and orientations remain the same. The

Momentum-Shaped Distance instead computes the distance between the bounding

boxes of two actors, taking into account the relative velocity and orientation of the

two actors. The two metrics are described in greater details in Appendix J. We

consider a scenario to be high-risk if there is a collision. This also allows us to

compute the Alarm-To-Collision metric, which measures the time between the first

alarm raised by the perception monitor and the actual collision.

Table 4.1 reports the results averaged across the 100 scenarios. As mentioned

above, we consider a scenario to be high-risk if there is a collision (ground-truth la-

bel), and report the F1 score, precision, recall, accuracy, and the Alarm-To-Collision

metric. The proposed approach outperforms both baselines, i.e., HJ-Reachability and

collision probability, in terms of F1 Score, precision, recall, and accuracy. In particu-

lar, our approach outperforms all others when using the Momentum-Shaped Distance

with risk aversion 0.99. Thus, while the baselines achieve similar performance on ev-

156



idently risky situations (similar recall), our approach demonstrates greater finesse in

subtle situations, increasing precision (and hence the F1 score). Besides the relevant

classification results, it anticipates the collision by an average of 4.72 s, giving the AV

enough time to take risk mitigation actions. HJ-Reachability has the fastest runtime

(recall that the value function is precomputed and, at runtime, the approach simply

uses a lookup-table), but also the most conservative; it exhibits a high recall (on par

with our approach) but the lowest precision, accuracy, and F1 Score.

Table 4.2 reports the confusion matrix for the Momentum-Shaped Distance metric.

The table shows that our approach is able to detect both high-risk and low-risk

scenarios reliably, with very few misclassifications. It is worth noting that several of

the false positives result from situations where there is a failure associated with an

agent that is close to the ego vehicle, but the ego vehicle does not collide with it.

Other Runtime Considerations. The Momentum-Shaped Distance with risk

aversion 0.99 averages a runtime of 0.29 s and a median of 0.2 s. The bottleneck of the

proposed approach is the trajectory sampling, which is performed by the trajectory

prediction module, in our case Trajectron++ [220]. From Fig. 4-3 we can see that

the trajectory prediction module takes 0.22 s on average, roughly 75% of the total

runtime. This limitation can be easily overcome by using a faster trajectory prediction

module, such as PredictionNet [230], which is two orders of magnitude faster than

Trajectron++ [230]. Moreover, the proposed approach can be easily parallelized, as

the cost computation can be computed in parallel for each agent in the scene and

the two scenes can be batched into a single query for the prediction network. With

the suggested implementation improvements, we expect to achieve significantly faster

runtimes.

4.5 Related Work

We discuss prior art for all of the three stages of our perception monitoring scheme,

i.e., perception failure detection, plausible scene generation, and task-relevant risk

estimation.

157



2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Ri
sk

(a) Misdetection (Size)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Ri
sk

(b) Missing Obstacle

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Ri
sk

(c) Missing Pedestrian

Figure 4-2: Examples of scenarios and the associated estimated risk. The
top row shows the scenario, where the ego vehicle is represented as a white box, other
vehicles as green boxes, and pedestrians as blue boxes. A dashed red line indicates
the ground truth position and size of an agent, a solid line instead the one perceived
by the ego perception system. The bottom row shows the estimated risk for the
corresponding scenario in the top row. The horizontal dashed line represents the risk
threshold γ. The red solid line represents the risk upper bound while the green line
represents the risk lower bound. The vertical dashed blue line represents the time
of the collision. It is worth noting that in our simulations, the behavior of the ego
vehicle and the non-ego agents does not change after a collision, i.e., the simulation
continues running until the end of the scenario.

158



0.0 0.2 0.4 0.6 0.8 1.0 1.2
Runtime [s]

0

2

4

6

8

10

12

Pe
rc

en
t [

%
]

(a) Prediction Runtime

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Runtime [s]

0

2

4

6

8

10

Pe
rc

en
t [

%
]

(b) Risk Estimation Runtime

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Runtime [s]

0

2

4

6

8

10

12

Pe
rc

en
t [

%
]

(c) Total Runtime

Figure 4-3: Timing breakdown for the proposed approach using Momentum-
Shaped Distance. The prediction runtime averages at 0.22 s (median runtime:
0.14 s). The risk estimation runtime averages at 0.07 s (median runtime: 0.06 s). The
total runtime averages at 0.29 s (median runtime: 0.2 s).

Perception Failure Detection and Identification. Autonomous vehicles rely

on onboard perception systems to provide situational awareness and inform the on-

board decision-making and control systems. Reliability of the perception system is

critical for safe operation of AVs. While it is desirable for the perception system to

be fault-free under any conditions, it is hard to guarantee it [37]; therefore, detec-

tion and identification of failures in the perception system at runtime have gained

increasing attention. The problem of fault detection and identification is studied

in [40] where the authors proposed a system-level framework for online monitoring of

the perception system of an AV. Besides failure detection, the framework in [40] also

identifies, at runtime, the failure modes that the system is experiencing, from an a pri-

ori known list of failures. Other approaches in the literature include spatio-temporal

information from motion prediction to assess 3D object detection [206], Timed Qual-

ity Temporal Logic (TQTL) to reason about desirable spatio-temporal properties of

a perception algorithm [186], [207], or detect anomalies by placing logical-constraint

model assertions [208]. Since perception systems are composed of multiple modules,

failure detection for specific submodules has also received attention. Previous works

focused on object detection [34], semantic segmentation [33], [198], localization [31],

[32], out-of-distribution (OOD) detection [127], [231], or changes in high-definition

map [199]. All of the above works focus on detecting and identifying failures in the

perception system, but do not assess their impact on the AV’s motion plan.

159



Plausible Scene Generation. While there is limited prior work on explicit plau-

sible scene generation, many works in the literature reason about plausible alternative

scenes in order to detect or avoid failures. Indeed, failure detection methods often

use spatio-temporal inconsistencies between different sensor modalities, where each

modality implicitly proposes a plausible scene. You et al. [206] use historical infor-

mation from a number of previous 3D scenes to predict a plausible scene, that is then

compared with the perceived scene to detect errors. Similarly, [126] correlates camera

images and LIDAR point clouds to detect missing (or ghost) obstacles. Beside ob-

stacle detection, previous work also tackled the mislocalization error. Li et al. [232]

use particle filters to retain multiple likely positions of the AV. Furthermore, the

literature on planning under occlusions contains both model-based [233]–[235] and

learning based approaches [38], [39], [223]. These works augment the scene to include

possible missing (occluded) obstacles in the scene. The same techniques can be used

to generate plausible scenes whenever the failure detection does not provide enough

information about the plausible scene.

Risk Assessment. There are several risk assessment techniques in the litera-

ture [221], [236]. One approach to “measure” the risk is to monitor the deterioration

of the cost of the motion plan, as was done in [237]–[239]. Another approach is to

use a criticality metric, such as Time To Collision (TTC), which computes the time

before a collision happens between two actors if their speeds and orientations remain

the same. There is a large variety of criticality metrics in the literature, and the inter-

ested reader is referred to [221] for a comprehensive overview; however, these metrics

generally only assess whether a scenario is dangerous, while assuming that the inferred

scene from perception is correct. A recent approach uses a neural network to classify

the risk level using labeled data [240]. However, learning-based methods suffer from

lack of OOD robustness, and are usually less interpretable and lack guarantees. Other

works on perception-aware risk assessment, such as [241], which proposes risk-ranked

recall for object detection systems, and [242], which develops perception-uncertainty-

based risk envelopes, do not reason about the future actions of other agents. Topan

et al. [229] do account for the future actions of other agents for perception failures

160



by computing “inevitable” collision sets (ICS) via Hamilton-Jacobi (HJ) reachability

analysis [243], and flagging a situation as unsafe if another agent is close to entering

the ICS [244]–[246]. However, [229] assumes the worst-case scenario will occur, i.e.,

the AV and other road agents will try to collide with each other, and does not con-

sider the interactions between multiple agents, resulting in over-conservatism. In this

thesis, we estimate the risk to the AV’s motion plan in the presence of a perception

failure while accounting for future actions of other agents by leveraging a trajectory

prediction network [220]. Furthermore, our approach is accompanied by PAC bounds

and is run-time capable.

161



THIS PAGE INTENTIONALLY LEFT BLANK

162



Chapter 5

Conclusions

In this thesis, we have presented a toolkit that combines advances in outlier-robust

estimation, runtime monitoring of perception systems, and risk assessment of au-

tonomous vehicle perception failures, offering contributions to the field of safe and

reliable robotic perception.

In Chapter 2 we investigated fundamental computational limits and general-

purpose algorithms for outlier-robust estimation. We proved that, in the worst-case,

outlier-robust estimation is inapproximable even in quasi-polynomial time. We pre-

sented two robust algorithms, ADAPT and GNC, and established convergence results

and connections between the corresponding formulations. We proposed the first min-

imally tuned algorithms, ADAPT-MinT and GNC-MinT. These algorithms offer a new

paradigm for resilient life-long estimation, being robust not only against outliers but

also against unknown inlier noise statistics. We provided interpretations of maximum

consensus and truncated least squares estimation.

In Chapter 3 we proposed a novel approach to fault detection and identification

for perception systems. Toward this goal, we formalized the concept of diagnostic

tests, a generalization of runtime monitors, that return diagnostic information about

the presence of failure modes. We then introduced the concept of diagnostic graph,

as a structure for organizing diagnostic information and its relations with the moni-

tored perception system. We then provided a set of deterministic, probabilistic, and

learning-based algorithms that use diagnostic graphs to perform fault detection and

163



identification. In addition to the algorithms, we investigated fundamental limits and

provided deterministic and probabilistic guarantees on the fault detection and iden-

tification results. These include results on the maximum number of faults that can

be correctly identified in a given perception system as well as PAC-bounds on the

number of mistakes our fault identification algorithms are expected to make.

Finally, in Chapter 4 we proposed a novel approach to risk assessment of au-

tonomous vehicles perception failures. The risk assessment, together with the fault

detection and identification module, allowed us to build a task-aware perception mon-

itor that not only identifies the failure modes that perception system is experiencing,

but also quantifies the risk that the AV faces in the current scene. We achieved this

by first identifying the perception failure mode, followed by synthesizing plausible al-

ternatives for the current scene, and then assessing how much more risk the AV faces

in the plausible scene as compared to the perceived one. We formalized the notion of

task-aware risk as the p-quantile relative scenario risk, and then developed an algo-

rithm to estimate it using i.i.d. samples. Additionally, we provide PAC bounds for

our risk estimate which ensure the correctness of our algorithm with high probability.

5.1 Future Work

The research described in this thesis paves the way for several avenues of future

research.

The diagnostic graph is a powerful tool for organizing the diagnostic informa-

tion of a perception system. However, in this thesis, we only used the diagnostic

graph to detect and identify faults in a single perception system. In recent years, we

saw the emergence of vehicle-to-vehicle (V2V) [247]–[249] and vehicle-to-everything

(V2X) [250], [251] communication technology. This technology enables vehicles to

communicate with each other and with the infrastructure, and it is expected to play

a key role in the development of autonomous vehicles. Therefore, it is a logical next

step to extend the diagnostic graph to a distributed setting, where multiple vehicles

and infrastructure nodes can share their diagnostic information. We can envision

164



an augmented diagnostic graph where multiple diagnostic graphs represent the per-

ception system of collaborating vehicles, each connected to the other according to

the communication network topology. This opens up the possibility of developing

distributed fault detection and identification algorithms, where the additional shared

information can improve the accuracy of the fault detection and identification process.

In the experimental sections of this thesis, we assumed that all the diagnostic tests

are computed by the perception system at all times. However, sometimes diagnostic

tests can be computationally expensive, and it might be desirable to compute them

only when needed. One interesting direction is to develop a fault identification al-

gorithm that uses a minimal number of diagnostic tests to identify the active failure

modes in the most common cases with sufficient accuracy (diagnosability can be used

to guide the selection of the diagnostic tests to request), but in cases where the al-

gorithm is undecided it selectively requests additional diagnostic tests to resolve the

ambiguity. This approach can significantly reduce the computational cost of the fault

identification process, while maintaining the same (or improve) level of accuracy.

In this work, we estimated the relative scenario risk using a single metric: the

momentum-shaped distance or time-to-collision. Our primary goal was to gauge the

potential for collision, thus we utilized metrics that capture that risk. However, it’s

important to note that the relative scenario risk encompasses a broader notion of

risk beyond just collision likelihood. Specifically, this metric captures the influence

of perception failures on decision-making processes in driving scenarios, as indicated

by the selected metric - for example, the risk of collision. A promising direction for

future research lies in the development of a comprehensive set of risk metrics that

address various concerns relevant to the decision-making layer. Such concerns could

include, for instance, collision risk, passenger comfort, or the likelihood of traffic rule

violations. Implementing our task-aware risk estimation algorithm alongside diverse

metrics could effectively assess the impact of perception failures on these different

aspects. Consequently, the decision-making layer could leverage this detailed risk

analysis to adapt its behavior to the current situation. Moreover, this work did not

explore how to use the risk estimate to inform the decision making process.

165



We acknowledge the critical importance of advancing decision-making algorithms

within autonomous systems to effectively leverage risk-aware perception systems.

Currently, our efforts have been concentrated on understanding and quantifying var-

ious risk factors. However, the actual development of a risk-aware decision-making

algorithm that can dynamically respond to these quantified risks remains an ambi-

tious and vital goal. This development, crucial for enhancing the safety and reliability

of autonomous systems, is designated as a key area of future work. We envision an

algorithm that not only comprehends the multifaceted nature of risk but also adeptly

navigates through it, thereby ensuring safer and more effective decision-making pro-

cesses in real-time scenarios.

The plausible scene generator is a key component of our risk estimation algorithm.

In this thesis, we developed a model-based algorithm that generates plausible scenes

by leveraging the candidates produced by the diagnostic tests and by sampling un-

known features (e.g., obstacle class) from pre-defined distributions. However, this

approach is limited by the ability of the diagnostic test to produce candidates and by

the ability of the system designer to model the uncertainty of the unknown features.

While the approach is sufficient for many critical scenarios, the development of gener-

ative models [38], [222] opens up the possibility of developing a data-driven plausible

scene generator that can generate plausible scenes in a more general setting.

Finally, the integration of our algorithms with real-world datasets and other per-

ception subsystems will enhance the practical applicability of our framework. While

this research was mainly motivated by safety concerns in autonomous vehicles, the

proposed framework can be applied to other perception systems, such the ones used

fod manipulation, industrial automation, and mobile robotics. This work does not ex-

plore the integration of our algorithms with other perception systems, but we believe

that this is a promising direction for future research.

Safety in autonomous systems is a complex problem, and our work is only a small

step towards a more comprehensive solution.

166



Appendix A

Proofs from Chapter 2

A.1 Proof of Proposition 2

We prove that any optimal solution to MC (Eq. (1.2)) is also an optimal solution to

Eq. (2.3), and vice versa. To argue this, we use the method of contradiction.

First, assume (xMC,OMC) is an optimal solution to MC but not to Eq. (2.3),

i.e., there exists an optimal solution (xeq.Eq. (2.3),Oeq.Eq. (2.3)) to Eq. (2.3) such that

|Oeq.Eq. (2.3)| < |OMC| and
∏

i ∈ M\Oeq.Eq. (2.3)
u(r(yi,xeq.Eq. (2.3)), ϵ) > 0. But the

latter inequality implies r(yi,xeq.Eq. (2.3)) ≤ ϵ for all i ∈ M \ Oeq.Eq. (2.3) (since

the uniform distribution has non-zero probability only in [0, ϵ]), and, as a result,

(xeq.Eq. (2.3),Oeq.Eq. (2.3)) is feasible in MC and, yet, |Oeq.Eq. (2.3)| < |OMC|, which con-

tradicts optimality.

Now assume (xeq.Eq. (2.3),Oeq.Eq. (2.3)) is a solution to Eq. (2.3) but not to MC,

i.e., there exist a solution (xMC,OMC) to MC such that |OMC| < |Oeq.Eq. (2.3)| and

r(yi,xMC) ≤ ϵ for all i ∈M\OMC. But the latter implies that
∏

i ∈ M\OMC
u(r(yi,xMC), ϵ) =

ϵ−|M\OMC| > 0, and, as a result, (xMC,OMC) is feasible for Eq. (2.3) and, yet, |OMC| <

|Oeq.Eq. (2.3)|, which again contradicts optimality.

167



A.2 Proof of Proposition 3

The proof follows from taking the log of Eq. (2.4).

168



A.3 Proof of Proposition 4

Assuming a known number of outliers |O| = |O◦|, the TLS formulation in Eq. (2.2)

becomes

min
x ∈ X

O ⊆ M, |O| =|O◦|

∑
i ∈ M\O

r2(yi,x) + ϵ2|O◦|, (A.1)

where ϵ2|O◦| becomes a constant and is irrelevant for the optimization. It can be

now seen that taking the − log(·) of the objective in Eq. (2.5) leads to the same

optimization as in Eq. (A.1).

169



A.4 Proof of Proposition 5

Since x◦ is feasible in Eq. (2.7) and
∏

i ∈ M ĝ(r(yi,x
◦)) > 0 (since r(yi,x

◦) ≤ α

for any i ∈ M), for any optimal solution x to Eq. (2.7), it also holds true that∏
i ∈ M ĝ(r(yi,x)) > 0, and, as a result, r(yi,x) ≤ α for any i ∈M. Therefore, after

simplifying constants, Eq. (2.7) is equivalent to

max
x ∈ X

∏
i ∈ M

max
{
e−r2/2, e−ϵ2/2

}
, (A.2)

which is equivalent to

max
x ∈ X

∑
i ∈ M

max
{
−r2/2 ,−ϵ2/2

}
, (A.3)

since maximizing the objective function in Eq. (A.2) is equivalent to maximizing the

log of it. Finally, Eq. (A.3) is equivalent to maxx ∈ X
∑

i ∈ M min {r2, ϵ2}, which is

equivalent to TLS.

170



A.5 Proof of Theorem 6

Denote by (xG−TLS,OG−TLS) any optimal solution to G-TLS. We first prove (xG−TLS,OG−TLS)

is feasible to G-MC (i.e., ∥ r(yM\OG−TLS
,xG−TLS) ∥∞ ≤ ϵ), and, then, prove (xG−TLS,OG−TLS)

is actually an optimal solution to G-MC.

To prove ∥ r(yM\OG−TLS
,xG−TLS) ∥∞ ≤ ϵ, first observe

|M \ OG−TLS| · ∥ r(yM\OG−TLS
,xG−TLS) ∥2∞ +

ϵ2|OG−TLS| ≤ ϵ2|M|,
(A.4)

since ϵ2 is the value of G-TLS’s objective function for O =M (given any x ∈ X ), while

(xG−TLS,OG−TLS) is an optimal solution to G-TLS. Now, assume ∥r(yM\OG−TLS
,xG−TLS)∥∞ >

ϵ. Then, the value of G-TLS’s objective function at (xG−TLS,OG−TLS) is strictly more

than ϵ2|M|, which contradicts Eq. (A.4). Hence, ∥ r(yM\OG−TLS
,xG−TLS) ∥∞ ≤ ϵ,

and, as a result, (xG−TLS,OG−TLS) is feasible to G-MC.

We now prove OG−TLS is also optimal for G-MC. Assume by contradiction OG−TLS

is not optimal for G-MC. Then, |OG−MC| < |OG−TLS| (or, equivalently, |OG−MC|+1 ≤

|OG−TLS|), since OG−MC is optimal. Since also ∥r(yM\OG−MC
,x) ∥∞ < ϵ, the following

hold:

∥r(yM\OG−MC
,x) ∥2∞+ϵ2|OG−MC|< (A.5)

ϵ2 + ϵ2|OG−MC|= (A.6)

ϵ2(|OG−MC|+1) ≤ ϵ2|OG−TLS|≤ (A.7)

|M \ OG−TLS| · ∥r(yM\OG−TLS
,x) ∥2∞+ϵ2|OG−TLS|. (A.8)

Comparing Eq. (A.5) and Eq. (A.8), we notice that OG−MC achieves a better cost in

G-TLS, contradicting the optimality of OG−TLS.

171



A.6 Proof of Theorem 7

To prove the theorem, consider the following problem:

min
x ∈ X
O ⊆ M

∥ r(yM\O,x) ∥22 s.t. |O| = |OMTS|. (A.9)

Note that OMTS is feasible for MTS, hence the optimal objective of Eq. (A.9) is smaller

than τ 2.

Now consider the Lagrangian of Eq. (A.9):

l(ϵ) ≜ min
x ∈ X
O ⊆ M

∥ r(yM\O,x) ∥22 +ϵ2 (|O|−|OMTS|)

= fTLS(ϵ)− ϵ2|OMTS|. (A.10)

By weak duality [252]:

fTLS(ϵ)− ϵ2|OMTS| ≤ ∥ r(yM\OEq. (A.9)
,xEq. (A.9)) ∥22, (A.11)

where (xEq. (A.9),OEq. (A.9)) is an optimal solution to Eq. (A.9). Since ∥ r(yM\OEq. (A.9)
,xEq. (A.9)) ∥2 ≤

τ , then

fTLS(ϵ)− ϵ2|OMTS| ≤ τ 2, (A.12)

From the inequality Eq. (A.12) it follows:

• if τ 2 = r2TLS(ϵ), then Eq. (A.12) implies |OTLS| ≤ |OMTS|; since (xTLS,OTLS) is

also feasible for Eq. (G-MC), |OTLS| = |OMTS|, and (xTLS, OTLS) is also a solution

to MTS.

• if τ 2 > r2TLS(ϵ), then |OTLS| ≥ |OMTS|, since (xTLS,OTLS) is feasible in Eq. (G-

MC).

• if τ 2 < r2TLS(ϵ), then |OTLS| < |OMTS|, since (xTLS,OTLS) is infeasible in Eq. (G-

MC).

172



A.7 Proof of Theorem 12

We prove the theorem based on the inapproximability of the variable selection prob-

lem, reviewed in A.7. In particular, we first prove the inapproximability of G-MC, by

proving the inapproximability of MTS and MC (A.8 and A.9, respectively). Then, we

prove the inapproximability of G-TLS, by proving the inapproximability of TLS (A.10).

For all cases we consider a linear measurement model, which results in residuals of

the form:

r(yi,x) = |yi − aT
i x|,

for all i ∈M, where yi is scalar, and ai is a column vector.

Preliminary Definitions and Results

We present the variable selection problem, recall a known result on its inapproxima-

bility in even quasi-polynomial time, and review results that we will subsequently

use for the proof of Theorem 12. We use the standard notation ∥x∥0 to denote the

number of non-zero elements in x.

Problem 3 (Variable selection). Assume a matrix U ∈ Rϕ×m, a vector z ∈ Rϕ, and

a non-negative scalar ξ. Find a vector d ∈ Rm that solves the optimization problem

min
d ∈ Rm

∥ d ∥0, s.t. ∥ Ud− z ∥2 ≤ b. (A.13)

The following lemma describes inapproximable instances of variable selection even

in quasi-polynomial time.

Lemma 50 (Inapproximability of Variable Selection in Quasi-polynomial Time [253,

Proposition 6]). For any δ ∈ (0, 1), unless NP /∈ BPTIME(mpoly logm), there exist

• a function q1(m) = 2Ω(log1−δ m),

• a polynomial p1(m) = O(m),

• a polynomial ξ(m),

173



• a polynomial ϕ(m),

• and a zero-one matrix U ∈ Rϕ(m)×m,

such that, for large enough m, no quasi-polynomial algorithm finds a d ∈ Rm distin-

guishing the mutually-exclusive cases:1

S1. There exists a vector d ∈ Rm such that Ud = 1ϕ(m) and || d ||0 ≤ p1(m).

S2. For any d ∈ Rm, if || Ud− 1ϕ(m) ∥22 ≤ ξ(m), then || d ∥0 ≥ p1(m)q1(m).

The observation holds true even if the algorithm knows that Ud = 1ϕ(m) is feasible

for some y ∈ Rm, where y itself is unknown to the algorithm but ∥ y ∥0 is known.

In the next section, we use the inapproximability of variable selection to prove

that MTS is inapproximable. Towards this goal, we prove two intermediate results.

We start with the following optimization problem and prove that it is also inap-

proximable:

min
d ∈ Rm

∥ d ∥0, s.t. Ud = 1ϕ(m). (A.14)

Proof that Eq. (A.14) is inapproximable: It suffices to set b = 0 in Eq. (A.13),

and then apply Lemma 50. □

Given Eq. (A.14)’s inapproximability, we now prove the inapproximability of the

optimization problem

min
d ∈ Rm

x ∈ Rn

∥ d ∥0, s.t. y = Ax+ d, (A.15)

for an appropriate class of matrices A.

Proof that Eq. (A.15) is inapproximable: Given the inapproximable in-

stances of Eq. (A.14) (see Lemma 50), consider the instances for Eq. (A.15) where (i)

y is any solution to Uy = 1ϕ(m) (because of Lemma 50, such a y exists), and (ii) A

is a matrix in Rm×n, where n = m− rank(U), such that the columns of A span the

null space of U (UA = 0). Any such instance is constructed in polynomial time in

1If m is large enough, then q1(m) > 1 (since q1(m) = 2Ω(log1−δ m), where δ ∈ (0, 1)), and, as a
result, S1 and S2 are mutually exclusive.

174



m, since solving a system of equations and finding eigenvectors that span a matrix’s

null space happen in polynomial time.

We now prove the following statements are indistinguishable, where we consider

ξ′(m) ≜ ϕ−2.5(m)ξ(m):

S′
1. There exist d ∈ Rm and x ∈ Rn such that y = Ax+ d and || d ||0 ≤ p1(m).

S′
2. For any d ∈ Rm and x ∈ Rn, if ||y − Ax − d||22 ≤ ξ′(m), then || d ∥0 ≥

p1(m)q1(m).

To this end, we prove that (i) if S1 is true (which is for any feasible d in Eq. (A.14)),

then S′
1 also is, and (ii) if S2 is true, then also S′

2 is. Therefore, no quasi-polynomial

time algorithm can distinguish S′
1 and S′

2, since the opposite would contradict that

S1 and S2 are indistinguishable. In particular:

a) Proof that when S1 is true then S′
1 also is Since Uy = UAx+Ud implies

that 1ϕ(m) = Ud, if S1 is true, then S′
1 also is; moreover, x is the unique solution to

Ax = y − d (x is unique since A is full column rank).

b) Proof that when S2 is true then S′
2 also is Assume d ∈ Rm and x ∈ Rn

such that || y −Ax− d ||22 ≤ ξ′(m) and || d ∥0 < p1(m)q1(m). If ||y −Ax− d||22 ≤

ξ′(m), then || y −Ax − d ||21 ≤ [ϕ(m)]0.5 ξ′(m), due to norms’ equivalence. Hence,

|| U ||21 ||y−Ax−d||21 ≤ || U ||21 [ϕ(m)]0.5 ξ′(m), which implies || U(y−Ax−d) ||21 ≤

|| U ||21 [ϕ(m)]0.5 ξ′(m), i.e., || 1ϕ(m) − Ud ||21 ≤ || U ||21 [ϕ(m)]0.5 ξ′(m), and

as a result || 1ϕ(m) − Ud ||21 ≤ ϕ(m)2.5 ξ′(m), where the last holds true because

U is a zero-one matrix. Consequently, ||1ϕ(m) − Ud||22 ≤ [ϕ(m)]2.5 ξ′(m), due to

norms’ equivalence. Finally, due to ξ′(m)’s definition, [ϕ(m)]2.5 ξ′(m) = ξ(m); thus,

|| 1ϕ(m) − Ud ||22 ≤ ξ(m). Overall, there exist d such that || 1ϕ(m) − Ud ||22 ≤ ξ(m)

and || d ∥0 < p1(m)q1(m), which contradicts S2. □

175



A.8 Proof that MTS is Inapproximable

We use the notation:

• yM\O ≜ {yi}i ∈ M\O, i.e., yM\O is the stack of all measurements i ∈M \O;

• dM\O ≜ {di}i ∈ M\O, i.e., dM\O is the stack of all noises i ∈M \O;

• AM\O ≜ {aT
i }i ∈ M\O, i.e., AM\O is the matrix with rows the row-vectors aT

i ,

i ∈M \O.

The MTS problem in Eq. (2.1) now takes the form

min
O ⊆ M
x ∈ Rn

|O|, s.t. ∥ yM\O −AM\Ox ∥22 ≤ τ 2. (A.16)

To prove Eq. (A.16)’s inapproximability, we first consider an inapproximable in-

stance of Eq. (A.15), and in Eq. (A.16) letM = {1, 2, . . . ,m} and τ 2 = ξ′(m). Then,

we prove the following statements are indistinguishable:

S′′
1. There exist O ⊆M and x ∈ Rn such that yM\O = AM\Ox and |O| ≤ p1(m).

S′′
2. For any O ⊆ M and x ∈ Rn, if || yM\O − AM\Ox ||22 ≤ ξ′(m), then |O| ≥

p1(m)q1(m).

To this end, we prove that (i) if S′
1 is true, then S′′

1 also is, and (ii) if S′
2 is true, then

also S′′
2 is. In more detail:

a) Proof that if S′
1 is true then S′′

1 also is Assume S′
1 is true and let O =

{i s.t. di ̸= 0, i ∈ M}. Then, yM\O = AM\Ox, since dM\O = 0 and |O| =

|| d ∥0 ≤ p1(m).

b) Proof that if S′
2 is true then S′′

2 also is Assume O ⊆ M and x ∈ Rn

such that || yM\O − AM\Ox ||22 ≤ ξ′(m) and |O| < p1(m)q1(m). Let dM\O = 0,

and dO = yO − AOx. Then, || d ∥0= |O| < p1(m)q1(m) and || y − Ax − d ||22=

|| yM\O −AM\Ox ||22 ≤ ξ′(m), which contradicts S′
2.

176



A.9 Proof that MC is Inapproximable

The proof proceeds along the same line of MTS’s proof. We use the same notation

used in Appendix A.8.

We first consider an inapproximable instance of Eq. (A.15), and in Eq. (1.2) set

ϵ2 = ξ′(m). We then prove that the following statements are indistinguishable:

S′′′
1 . There exist O ⊆M and x ∈ Rn such that yM\O = AM\Ox and |O| ≤ p1(m).

S′′′
2 . For any O ⊆ M and x ∈ Rn, if ||yM\O − AM\Ox∥2∞ ≤ ξ′(m), then |O| ≥

p1(m)q1(m).

To this end, we prove that (i) if S′′
1 is true, then S′′′

1 also is, and (ii) if S′′
2 is true, then

also S′′′
2 is. Specifically:

a) Proof that if S′
1 is true then S′′′

1 also is Assume S′
1 is true and let O =

{i s.t. di ̸= 0, i ∈ M}. Then, yM\O = AM\Ox, since dM\O = 0 and |O| =

|| d ∥0 ≤ p1(m).

b) Proof that if S′
2 is true then S′′′

2 also is Consider O ⊆ M and x ∈ Rn

such that || yM\O − AM\Ox ||21 ≤ ξ′(m) and |O| < p1(m)q1(m). Let dM\O = 0,

and dO = yO −AOx. Then, || d ∥0 = |O| < p1(m)q1(m) and || y −Ax − d ||21 ≤

|| y −Ax − d ||22 = || yM\O −AM\Ox ||22 ≤ ξ′(m), where the first inequality holds

due to the norms’ equivalence, while the latter inequality contradicts S′
2.

177



A.10 Proof that TLS problem is Inapproximable

We prove the inapproximability of Eq. (TLS) by using the inapproximability of Eq. (A.16).

To this end, we use the notation in A.8, along with the notation

f(x,w) ≜
∑
i ∈ M

min
wi ∈ {0,1}

[
wi (yi − aT

i x)
2 + (1− wi) ϵ

2
]
.

Consider an inapproximable instance of Eq. (A.16), and in Eq. (TLS) set ϵ2 =

1/p1(m). We prove the following are indistinguishable:

S̄1. There exist w ∈ {0, 1}m and x ∈ Rn such that f(x,w) ≤ 1 and || w ||0 ≤

p1(m).

S̄2. For any w ∈ {0, 1}m and x ∈ Rn, if f(x,w) ≤ ξ′(m), then || w ||0 ≥

p1(m)q1(m).

To this end, we prove that (i) if S′′
1 is true, then S̄1 also is, and (ii) if S′′

2 is true, then

also S̄2 is. Specifically:

a) Proof that if S′′
1 is true then S̄1 also is Assume S′′

1 is true and let wi = 1

for all i ∈ O, and 0 otherwise. Then, ||w||0 = |O| ≤ p1(m), and f(x,w) = |O|ϵ2 ≤

p1(m)ϵ2 = 1.

b) Proof that if S′′
2 is true then S̄2 also is Assume w ∈ {0, 1}m and x ∈ Rn such

that f(x,w) ≤ ξ′(m) and || w ||0 < p1(m)q1(m). Let O = {i s.t. wi = 1}, and as a

result, |O| < p1(m)q1(m). Since f(x,w) ≤ ξ′(m) and f(x,w) = ∥yM\O−AM\Ox∥22,

it holds true that ∥yM\O −AM\Ox∥22 ≤ ξ′(m), which contradicts S′′
2.

A.11 Proof of Theorem 15

The proof follows by taking t→ +∞ (or, equivalently µ(t) → +∞) in Eq. (2.12). In

more detail, it suffices to observe that limt→+∞ µ(t−1) / (µ(t−1)+1) = 1, limt→+∞ (µ(t−1)+

1)/µ(t−1) = 1, and limt→+∞ (ϵ
√
µ(t−1)(µ(t−1) + 1)/r

(t)
i − µ(t−1)) = 1/2. In particular,

178



the latter is true since limt→+∞ (ϵ
√
µ(t−1)(µ(t−1) + 1)/r

(t)
i −µ(t−1)) = limt→+∞[ϵ

√
µ(t−1) + 1/(

√
µ(t−1)r

(t)
i )−

1]/(1/µ(t−1)), where now L’Hôspital’s rule implies the latter is equal to

lim
t→+∞

d
dµ(t−1)

(
ϵ
√

µ(t−1)+1

r
(t)
i

√
µ(t−1)

− 1

)
d

dµ(t−1)

(
1

µ(t−1)

) =

lim
t→+∞

ϵ

r
(t)
i

√
µ(t−1)

2
√

µ(t−1)+1
−
√

µ(t−1)+1

2
√

µ(t−1)

µ(t−1) −1
(µ(t−1))2

=

lim
t→+∞

ϵ

r
(t)
i

−1

2
√

µ(t−1)
√

µ(t−1)+1

µ(t−1) −1
(µ(t−1))2

=
1

2
,

where to derive the last equation we also took into account that limt→+∞ϵ/r
(t)
i = 1

(since the domain of ϵ
√
µ(t−1)(µ(t−1) + 1)/r

(t)
i − µ(t−1), with respect to r

(t)
i , becomes

the set {ϵ} for t→ +∞).

179



THIS PAGE INTENTIONALLY LEFT BLANK

180



Appendix B

Alternative Justification for TLS

Proposition 51 (Weibull Distribution Leads to TLS). Assume r(yi,x
◦) ≤ ϵ for any

i ∈M\O◦. If r(yi,x
◦) is a Weibull random variable for each i ∈M, with cumulative

probability distribution Weib(r) ≜ 1 − exp (−r2/2), then TLS is equivalent to the

maximum likelihood estimator

max
x ∈ X
O ⊆ M

∏
i ∈ M\O

[1−Weib(r(yi,x))]
∏
i ∈ O

[1−Weib(ϵ)] . (B.1)

Broadly speaking, the Weibull distribution is commonly used in statistics to model

the probability of an outcome’s failure when the failure depends on sub-constituent

failures: e.g., a chain breaks if any of its rings breaks [254]. Similarly, an outlier-robust

estimate “breaks” if measurements are misclassified as inliers instead of outliers and

vice versa, and if the inliers’ residuals are unnecessarily large:

• if a measurement i is classified as an outlier (i ∈ O), then 1 −Weib(ϵ) models

the probability of a successful estimation given that i’s residual is at least ϵ;

• if a measurement i is classified as an inlier (i ∈M\O), then 1−Weib(r(yi,x))

models the probability of a successful estimation given that i’s residual is at

least r(yi,x) but not more than ϵ: indeed, if r(yi,x) > ϵ, then Eq. (B.1)

classifies i as an outlier, so to maximize the joint probability likelihood, since

1−Weib(r(yi,x)) < 1−Weib(ϵ). Therefore, for all i ∈M \O, r(yi,x) ≤ ϵ.

181



In summary, Eq. (B.1) aims to find (x,O) that maximize the probability of the

estimator’s success, and, particularly, it does so by forcing the inliers’ r(yi,x) to be

as small as possible, since indeed 1−Weib(r(yi,x))→ 1 when r(yi,x)→ 0.

Proof of Proposition 51

The proof is derived by taking the − log(·) of the objective function in Eq. (B.1),

resulting in the TLS cost in Eq. (2.2).

182



Appendix C

Bound for Pose Graph

Optimization

Let us consider the following SLAM problem (Pose Graph Optimization):

min
Ti∈SE(d)

∑
(i,j)∈Eo

∥Tj − TiT̄ij∥2Ω+
∑

(ik,jk)∈Elc

∥Tjk − TikT̄k∥2Ω (C.1)

where Eo are the (reliable) odometry edges, while Elc are the (possibly unreliable) loop

closures. Note that we indexed the loop closures using k = 1, . . . , |Elc|, such that the

k-th loop closure connects poses (ik, jk).

Let us define the set function:

f(S) = min
Ti∈SE(d)

∑
(i,j)∈Eo

∥Tj − TiT̄ij∥2Ω+
∑

(ik,jk)∈Elc\S

∥Tjk − TikT̄k∥2Ω (C.2)

and it’s normalized version:

f̄(S) = f(∅)− f(S) (C.3)

which is also positive (f̄(S) ≥ 0,∀S ⊆ Elc) and non-decreasing (f̄(S1) ≤ f̄(S2),∀S1 ⊆

S2 ⊆ Elc, since f(S1) ≥ f(S2),∀S1 ⊆ S2 ⊆ Elc). Eventually, we would like to solve:

max
|S|=β

f̄(S) (C.4)

183



which looks for the set S that makes f(S) as small as possible.

Finally, define the marginal gain:

f̄({s}|S) ≜ f̄(S ∪ {s})− f̄(S) = f(S)− f(S ∪ {s}) (C.5)

Our goal now is to compute a good and computationally-inexpensive upper-bound

for f̄({s}|S), which can be used in the Lazy greedy algorithm. In particular:

• we want to avoid computing f(S ∪ {s}) at each iteration of the greedy.

• we can leverage the knowledge of f(S) which has been computed at the previous

iteration.

We also remark that computing an upper-bound for f̄({s}|S) for a fixed f(S) is

the same as computing a lower-bound for f(S ∪ {s}).

Therefore in the following we compute a lower bound for f(S ∪ {s}). For this

purpose, we note that the original cost function can be written as:

min
Ti∈SE(d)

∑
(ik,jk)∈Elc

∥Tjk − TikT̄k∥2Ω+
∑

(i,j)∈Ek
o

1

nij(Elc)
∥Tj − TiT̄ij∥2Ω

 (C.6)

where nij(Elc) is the number of loops the odometry edge is involved in, within the

184



graph with loop closures Elc. Similarly:

f(S) = min
Ti∈SE(d)

∑
(ik,jk)∈S

 ∑
(i,j)∈Ek

o

1

nij(Elc)
∥Tj − TiT̄ij∥2Ω

 (C.7)

+
∑

(ik,jk)∈Elc\S

∥Tjk − TikT̄k∥2Ω+
∑

(i,j)∈Ek
o

1

nij(Elc)
∥Tj − TiT̄ij∥2Ω

 (C.8)

≥ (C.9)

∑
(ik,jk)∈S

min
Ti∈SE(d)

 ∑
(i,j)∈Ek

o

1

nij(Elc)
∥Tj − TiT̄ij∥2Ω

 (C.10)

+
∑

(ik,jk)∈Elc\S

min
Ti∈SE(d)

∥Tjk − TikT̄k∥2Ω+
∑

(i,j)∈Ek
o

1

nij(Elc)
∥Tj − TiT̄ij∥2Ω

 (C.11)

= (C.12)

∑
(ik,jk)∈Elc\S

min
Ti∈SE(d)

∥Tjk − TikT̄k∥2Ω+
∑

(i,j)∈Ek
o

1

nij(Elc)
∥Tj − TiT̄ij∥2Ω

 (C.13)

Therefore we can compute the following (independent) quantities, for each s ∈ Elc:

bk
.
= min

Ti∈SE(d)

∥Tjk − TikT̄k∥2Ω+
∑

(i,j)∈Ek
o

1

nij(Elc)
∥Tj − TiT̄ij∥2Ω

 (C.14)

And the desired lower bound for f(S ∪ {s})

f(S ∪ {s}) ≥
∑

k∈S∪{s}

bk (C.15)

Note that

• bk must be computed only once, at the beginning of the greedy

• each computation of bk involves an optimization over a single cycle, which is

faster than optimizing over the entire graph.

We also expect that outliers have large bk since they do not agree with the odom-

etry and produce large errors even along the cycle they create in the graph, while

185



inliers have small bk since they mostly agree with the odometry.

186



Appendix D

Routines for parameter-free

algorithms

D.1 ClustersSeparation algorithm

ADAPT-MinT’s subroutine ClustersSeparation is presented in Algorithm 6. Therein,

for any real-vector z ∈ Rl such that zi ≥ 0, and for all i = 1, 2, . . . , l, diam(z) ≜∑l
i=1 |zi − mean(z)|2, and mean(z) = 1

l

∑l
i=1 zi; i.e., diam captures the cumula-

tive deviation of all zi from their mean —their “centroid”— and, as such, can be

interpreted as a diameter.

Algorithm 6: ClustersSeparation (ADAPT-MinT’s subroutine).

Input: A real-valued vector r ∈ Rl.
Output: Centroids’ distance that separates two clusters of entries in r.

1 z = sort(r1, r2, . . . , rl); // increasing order

2 i = argminj∈{1,2,...,l−1} diam(z1:j) + diam(zj+1:end);

3 cleft = mean(z1:i); cright = mean(zi+1:end);
4 return cright − cleft.

187



D.2 Chi2Fit algorithm

Chi2Fit is presented in Algorithm 7. Chi2Fit scores the fit of the empirical distri-

bution of the residuals to the Gamma(d/2, 2σ2) distribution, which is equivalent to

the desired χ2 with degree of freedom d and variance σ2. Since ϵ is unknown, the

true variance of the residuals’ error is also unknown. For this reason, in Chi2Fit’s

Line 1 an unbiased estimator for the variance is employed [255]. Then, Line 2 uses

the Cramér–von Mises test to score the fit.

Algorithm 7: Chi2Fit (GNC-MinT’s subroutine).

Input: Real-valued vector r ∈ Rn;
χ2 distribution’s degrees of freedom d > 0.

Output: Similarity statistic of χ2 distribution with empi- rical distribution
of r’s squared elements.

1 σ2 = 1
(n−1)d

∑n
i=1 r

2
i ;

2 s = CramerVonMises(r,Gamma(d
2
, 2σ2)); // Gamma(d

2
, 2σ2) = χ2 with

degree of freedom d and variance σ2

3 return s.

188



D.3 Bisection algorithm

GNC-MinT’s subroutine Bisection is presented in Algorithm Algorithm 8. Bisection

aims to improve the inlier noise ϵ initial guess trying when the noise upper bound

NoiseUpBnd scores a bad χ2 fit. The algorithm initialize the upper and lower bound

for ϵ with resp., NoiseUpBnd and NoiseLowBnd and evaluates the fitness score after

the outlier rejection (lines 1-2). Until the score it not close to the target value γ,

it performs a binary search, stopping if (i) the fitness score does not improve across

iterations (line 7), or (iii) the spread (a− b)/a is too small (line 10). It then returns

the next ϵ to test.

Algorithm 8: Bisection (GNC-MinT’s subroutine).

Input: Measurements yi, ∀i ∈M; NoiseUpBnd ≥ 0;
NoiseLowBnd ≥ 0;Target critical value γ

Output: Initial guess for ϵ

1 a = c = NoiseUpBnd ; b = NoiseLowBnd ;
2 (x, I) = GNC(y, c); s = Chi2Fit(r(yI ,x), d);
3 e = s/γ;
4 while e > 1.1 or e < 0.9 do
5 c = (a+ b)/2;
6 (x, I) = GNC(y, c); s = Chi2Fit(r(yI ,x), d);
7 if |s/γ − e|< 1× 10−3 then break;
8 else if s/γ > 1.1 then a = c ;
9 else if s/γ > 0.9 then b = c ;

10 if (a− b)/a < 0.1 then break;
11 e = s/γ;

12 end
13 return max

i ∈ I
{r(yi,x) s.t. r(yi,x)<c}.

189



THIS PAGE INTENTIONALLY LEFT BLANK

190



Appendix E

Limitations of ADAPT and ADAPT-MinT

We discuss failure modes of ADAPT and ADAPT-MinT. While ADAPT self-correction

mechanism often improve the estimation sometimes it can harm the estimation, this

can happen if ADAPT converged to the wrong estimate (thus the outliers residuals

look like inliers) or if there are too many outliers and some of them fit the current

estimation.

Inaccurate τ and θ. If τ and θ are set too low, lower than their true values,

ADAPT will typically over-reject measurements. Conversely, if they are set too high,

ADAPT is more likely to return sets containing outliers. Both scenarios can result to

less accurate estimates.

Adversarial Outliers. ADAPT (and similarly GNC) can fail due to adversarial

outliers. In Fig. E-1, we present such a scenario for a problem of linear regression,

where there are three inliers (points 2-4) and one outlier (point 1). For appropriate

ThrDiscount , ADAPT first rejects the inlier point 4, moving the new estimate (based

on points 1-3) towards the outlier 1. Then, ADAPT rejects point 3, and, then, ter-

minates. Conversely, if ThrDiscount < 1/α, in one iteration ADAPT will reject both

measurements (1 and 2), in the next iteration the remaining inliers (now in the set

of estimated inliers) will move the estimate closer to 1 that will be re-included in the

set of inliers through the self-correction mechanism.

High Measurement Noise. High measurement noise can cause the cluster

separation δ, used in ADAPT-MinT, to oscillate more than the chosen ConvergThr ,

191



 1

 2

 3

 4
(a) Initilization

 1

 2

 3

 4
(b) Step 1

 1
 2

 3

 4
(c) Step 2

Figure E-1: A single outlier (point 1) leads ADAPT to the wrong solution.

thus making the algorithm to reject more measurements than the true number of

outliers.

192



Appendix F

Limitations of GNC and GNC-MinT

We analyze failure modes of GNC and GNC-MinT.

Inaccurate ϵ. If ϵ is chosen lower than the real inlier threshold, then GNC can

reject more measurements than the true number of outliers. Instead, if ϵ is too high,

then GNC tends to reject less measurements, keeping outliers as inliers. Both scenarios

can result to less accurate estimates.

Non-Gaussian Measurement Noise. If the residual’s distribution is not close

to a Gaussian, the χ2 fitness score may not accurately indicate the presence of outliers.

Thus, GNC-MinT may return less accurate estimates.

Arbitrarily Low NoiseUpBnd , and Arbitrarily Large NoiseLowBnd . If

NoiseLowBnd −NoiseUpBnd is unnecessarily large, then GNC-MinT, trying to find the

true but unknown inlier threshold, will explore more ϵ values, and, as a result, it will

run for longer time. Also, GNC-MinT stops as soon as the fitness score becomes worse

(cf. GNC-MinT’s lines 13-17). This point, however, may correspond to a local minima

(thinking of the fitness score as a function of the inlier threshold guess). Therefore,

if the NoiseUpBnd is unnecessarily high, there is a higher probability GNC-MinT stops

prematurely.

Finally, GNC-MinT can under- or over-estimate the true inlier threshold: sup-

pose at some iteration t, ϵ(t) > ϵ◦, ϵ◦ being the true inlier threshold, and that

the set I(t) still contains few outliers but all the residuals are smaller than ϵ◦, i.e.,

193



max
i ∈ I(t)

{r(yi,x
(t)) s.t. r(yi,x

(t)) < ϵ(t)} < ϵ◦, then GNC-MinT will underestimate the

inlier threshold ϵ.

194



Appendix G

Limitation of the greedy algorithm

A failure mode of the causal greedy is that it can never correct mistakes made in earlier

steps. An example where this behavior leads to a wrong estimate (while ADAPT is

able to correct the mistake) is shown in Fig. G-1. The example depict a line fitting

problem where three points (1, 3 and 5) are inliers and two points (2 and 4) are

outliers.

Let us first follow the execution of the greedy algorithm. The Greedy initialize

its initial estimate x(0) using all available measurements (iteration 0). In the first

iteration, the Greedy removes point 1 (an inlier) permanently from the set of estimated

inliers because it has the biggest residual, and computes the new estimate x(1) using

all remaining points (2, . . . , 5). In the second iteration, removes permanently point 5

(another inlier) from the set of estimated inliers and computes the new estimate x(2).

In the last iteration, the last ground truth inlier (point 3) has the biggest residual,

therefore the greedy algorithm removes it from set of estimated inliers converging to

the set of two outliers as the estimated set of inliers. Since the fit of the two points

is below the inlier threshold, it stops. ADAPT on the other hand initialize its estimate

using all available measurements and set the inlier threshold ϵ(0) =
√
0.99 · r(y1,x

(0))

since 1 is the point with the biggest residual. In the first iteration, ADAPT removes

all points above the current threshold, in our example it removes point 1 (an inlier)

and 2 (an outlier) from the set of estimated inliers as their residuals is bigger than

ϵ(0). It than computes the new estimate x(1) and decrease the inlier threshold to

195



ϵ(1) =
√
0.99 · r(y4,x

(1)) (point 4 has the biggest residual). In the second iteration

point 1 is within the current inlier threshold ϵ(1) so it is included in the set of estimated

inliers while the two outliers (point 2 and point 4) are above the threshold, in other

words it recovered from a wrong choice made in past iterations, and the new estimate

x(2) is computed using the correct set of inliers thus estimating the correct line. ADAPT

then decrease the inlier threshold ϵ(2) to a value that is below the τ and stops.

196



 1

 2

 3

 4

 5

ADAPT

Iteration: 0

 1

 2

 3

 4

 5

Greedy

Iteration: 0

 1

 2

 3

 4

 5

ADAPT

Iteration: 1

 1

 2

 3

 4

 5

Greedy

Iteration: 1

 1

 2

 3

 4

 5

ADAPT

Iteration: 2

 1

 2

 3

 4

 5

Greedy

Iteration: 2

 1

 2

 3

 4

 5

ADAPT

Iteration: 3

 1

 2

 3

 4

 5

Greedy

Iteration: 3

Figure G-1: An example of Greedy vs. ADAPT. The Greedy algorithm fails to recover
the true solution while the ADAPT algorithm is able to recover from a wrong choice
made in past iterations.

197



THIS PAGE INTENTIONALLY LEFT BLANK

198



Appendix H

Pose Graph: g2o vs. SE-Sync

 
 

 
 

 MinT(g2o)
MinT(g2o)MinT(Se-Sync)

MinT(Se-Sync)

(a) Average Trajectory Error (logarithmic scale)

MinT(Se-Sync)
MinT(Se-Sync)

MinT(g2o)
MinT(g2o)

(b) Running Time (logarithmic scale)

Figure H-1: Average Trajectory Error and Running time of the proposed algorithms
on 2D SLAM (Grid) with two different non-minimal solvers: g2o and SE-Sync. The
average performance is comparable while g2o offers a better running time.

199



THIS PAGE INTENTIONALLY LEFT BLANK

200



Appendix I

Proof of Theorem 49

Before proving Theorem 49, we introduce two useful results. Let’s start by noticing

that the risk function in Eq. (4.5) relies on the copula, and the CDFs of A and B,

namely ΦA and ΦB. Therefore, to provide the performance bound on the risk function

R, we first need to bound the copula value. To this end, we can use the well-known

Fréchet–Hoeffding copula bounds.

Theorem 52 (Fréchet–Hoeffding Theorem ([45], Theorem 2.2.3)). For any copula

C : [0, 1]d → [0, 1] and any (u1, . . . , ud) ∈ [0, 1]d, the following bounds hold:

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤M(u1, . . . , ud), (I.1)

where

W (u1, . . . , ud) = max

{
1− d+

d∑
i=1

ui, 0

}
,

M(u1, . . . , ud) = min {u1, . . . , ud} .

In this thesis, we are interested in the bi-dimensional copula, so we can apply

Theorem 52 to a copula C(p, v) and obtain:

max {p+ v − 1, 0} ≤ C(p, v) ≤ min {p, v} .

In particular, for the risk estimation, we take v = ΦB ◦ Φ−1
A (p). However, we do not

have access to the explicit expression of the two CDFs ΦA and ΦB; therefore, we need

201



to estimate them empirically. The following theorem provides estimation bounds on

the empirical CDFs.

Theorem 53 (Dvoretzky–Kiefer–Wolfowitz Confidence Interval [256], [257]). Let Φ

be the CDF of an unknown distribution, and let Φ(n) the empirical CDF computed

using n i.i.d. samples from Φ, then, with probability at least 1− α,

Φ(n)(x)− ϵ(n, α) ≤ Φ(x) ≤ Φ(n)(x) + ϵ(n, α), (I.2)

where ϵ(n, α) =
√

ln(2/α)/(2n).

We use Theorem 53 to estlablish bounds on ΦB ◦ Φ−1
A (p) in the next lemma.

Lemma 54. Let A, B be two random variables with CDFs ΦA and ΦB, respectively.

Let Φ
(n)
A and Φ

(n)
B be the empirical CDFs estimated using n i.i.d. samples from ΦA

and ΦB, respectively. Then, with probability at least 1− α we have:

¯
v(p, α, n) ≤ ΦB ◦ Φ−1

A (p) ≤ v̄(p, α, n),

where

v̄(p, α, n) = Φ
(n)
B ◦

[
Φ

(n)
A − ϵ(α, n)

]−1

(p) + ϵ(α, n)

¯
v(p, α, n) = Φ

(n)
B ◦

[
Φ

(n)
A + ϵ(α, n)

]−1

(p)− ϵ(α, n)

and ϵ(α, n) =
√

ln(2/α)/(2n).

Proof. We are interested in the quantity ΦB ◦ Φ−1
A (p). Notice that Φ

(n)
A and Φ

(n)
B are

increasing functions. From Theorem 53 we know that
¯
x ≤ Φ−1

A (p) ≤ x̄ (see Fig. I-1),

where

x̄(p, α, n) =
[
Φ

(n)
A − ϵ(α, n)

]−1

(p)

¯
x(p, α, n) =

[
Φ

(n)
A + ϵ(α, n)

]−1

(p)
(I.3)

Similarly, we have
¯
v ≤ ΦB ◦ Φ−1

A (p) ≤ v̄ where

v̄(p, α, n) = Φ
(n)
B ◦ x̄(p, α, n) + ϵ(α, n)

¯
v(p, α, n) = Φ

(n)
B ◦ ¯x(p, α, n)− ϵ(α, n)

(I.4)

202



Substituting Eq. (I.3) into Eq. (I.4) we complete the proof

Figure I-1: CDF composition bounds. The shaded regions represent the the confi-
dence intervals for the two CDFs, i.e., Φ(n)(x) − ϵ(n, α) ≤ Φ(x) ≤ Φ(n)(x) + ϵ(n, α).
The blue and orange regions represent ΦA and ΦB respectively.

We are now ready to prove Theorem 49.

Proof of Theorem 49. From Theorem 52 we know that

max {p+ v − 1, 0} ≤ C(p, v) ≤ min {p, v} ,

where v = ΦB ◦ Φ−1
A (p). We can use Lemma 54 to bound v, obtaining

max(p+
¯
v − 1, 0) ≤ C(p, v) ≤ min(p, v̄). (I.5)

Since R(p) = 1 − C(p,ΦB◦Φ−1
A (p))/p, we have C(p,ΦB ◦ Φ−1

A (p)) = p (1−R(p)). Substi-

tuting this into Eq. (I.5) completes the proof.

203



THIS PAGE INTENTIONALLY LEFT BLANK

204



Appendix J

Risk Estimation Cost Functions

Let xe, ve be the position and velocity of the ego vehicle. Similarly, let xa, va be

the position and velocity of any non-ego agent. Moreover, let ν be a term used to

penalize the violation of traffic rules, such as driving on the wrong side of the road,

or driving in the opposite direction of the traffic, or crossing an intersection with a

red traffic light.

The time-to-collision cost is defined as:

cTTC = 1− max
a∈Agents

min

{
TTC(xe, xa, ve, va)

m
, 1

}
+ ν,

where m represent a maximum value for the TTC function, which outputs the time

until a collision between the ego vehicle and another agent occurs (assuming constant

velocity at their current heading direction), or is infinite if no collision occurs. In our

experiments we use m = 3. This cost function takes values in [0, 1], and higher values

indicate smaller Time-To-Collisions, thus higher risk.

The Momentum Shape Distance is instead defined as:

cMSD = max
a∈Agents

e
ϵδ/2 + ν,

δ =
(
(xa,∥ − xe,∥)(va,∥ − ve,∥)

)2
+ ((xa,⊥ − xe,⊥)(va,⊥ − ve,⊥))

2

were we used the subscript ∥ and ⊥ to denote the projection of a vector along the

205



parallel and perpendicular direction to the ego vehicle’s heading, respectively. The

scaling factor ϵ weighs the importance of an agent: in our experiments we set ϵ = 0.5

when the agent is a vehicle, and ϵ = 1 when the agent is a pedestrian.

206



Appendix K

Proof of Lemma 37

We prove “κ-diagnosability ⇒ syndrome(A1) ∩ syndrome(A2) = ∅” and its reverse

implication below. In both, we define X = {A ⊆ {1, . . . , Nf} | |A|≤ κ} to be the set

of subsets of {1, . . . , Nf} of cardinality no larger than κ.

⇒ Suppose D is κ-diagnosable. Suppose by contradiction that there exists a syn-

drome z such that z ∈ syndrome(A1)∩syndrome(A2), withA1,A2 ∈ X andA1 ̸= A2.

Since z ∈ syndrome(A1) and z ∈ syndrome(A2), we are unable to say if the syndrome

z is produced by the set of active failure modes is A1 or A2, contradicting the defi-

nition of κ-diagnosability of D.

⇐ Call Y =
⋃

A∈X syndrome(A) the set of all possible syndromes assuming there

are less than κ active failure modes. From the assumptions we know that any

two A1,A2 ∈ X have syndrome(A1) ∩ syndrome(A2) = ∅, which means that we

can uniquely map a syndrome to any set A. This is exactly the definition of κ-

diagnosability.

207



THIS PAGE INTENTIONALLY LEFT BLANK

208



Appendix L

Proof of Theorem 38

The assumption on the cardinality allows us to transform our general diagnostic graph

into an undirected graph akin to the one used in [146], [150]. Then, the conditions (i),

(ii) and (iii) are a straightforward application of Theorem 2 in [146] to the resulting

graph.

209



THIS PAGE INTENTIONALLY LEFT BLANK

210



Appendix M

Proof of Theorem 39

Let z be a syndrome for the temporal diagnostic graph D[K], generated by a set

of active failure mode A, such that |A|= m ≤ mini∈{1,...,K} κ(D(i)). Clearly, each

element of A is a variable node of one of the regular diagnostic graphs D(1), . . . ,D(K)

that compose D[K], therefore we can split A into the variables nodes of each regular

diagnostic graph, obtaining A(1), . . . ,A(K) (these sets are non-overlapping and are

such that ∪K
i=1A(i) = A). Similarly, we can project the syndrome z into K sub-

syndromes z(1), . . . ,z(K) each containing only the test outcomes of the corresponding

regular diagnostic graphs (notice that doing the projection we lose the temporal tests,

if any). By construction |A(i)| ≤ m for each i = 1, . . . , K. From the assumption, we

know that each sub-graph D(i) is m-diagnosable. Therefore, each sub-graph D(i) will

be able to correctly identify the set of active failure modes A(i) from the syndrome

z(i). This means that D[K] is at least m-diagnosable, concluding the proof.

211



THIS PAGE INTENTIONALLY LEFT BLANK

212



Appendix N

Proof of Theorem 42

For each sample (z(i),f (i)) in W , the result of each Hamming distance will less or

equal than Nf . From the Hoeffding’s inequality we have that

Pr
[
|hdistF (ΨD)− ĥW(ΨD)|≥ ϵ

]
≤ 2exp

(
−2ϵ2|W|

Nf
2

)
(N.1)

Setting the right-hand side of Eq. (N.1) to be equal to δ and solving for ϵ yields:

ϵ = Nf

√
log(2/δ)

2|W|
(N.2)

After setting the right-hand side to δ, Eq. (N.1) can be rewritten as:

Pr
[
|hdistF (ΨD)− ĥW(ΨD)|≤ ϵ

]
≥ δ (N.3)

Combining Eq. (N.2) and Eq. (N.3) and removing the absolute value we get:

Pr

[
hdistF (ΨD)− ĥW(ΨD) ≤ Nf

√
log(2/δ)

2|W|

]
≥ δ (N.4)

from which the result easily follows.

213



THIS PAGE INTENTIONALLY LEFT BLANK

214



Appendix O

Proof of Corollary 43

Let γ = hdistF (ΨD) and p = 1− δ, substituting into Eq. (3.23), and solving for p yield

the result.

215



THIS PAGE INTENTIONALLY LEFT BLANK

216



Appendix P

Using Fault Detection to Prevent

Accidents

Here we show how fault detection and identification can be effectively used to prevent

dangerous situations. To this aim, we developed an additional scenario (not included

in Table 3.2) where a deer crosses the road while the ego vehicle cruises on a straight

road (Fig. P-1).

Figure P-1: Example scenario involving a deer crossing the road in front of the ego
vehicle.

The scenario is novel to the identification algorithm, i.e., not used for training,

test, or validation. The results of the failure identification are shown in Fig. P-2,

where we used the probabilistic fault identification. Initially, the monitor detects no

217



Figure P-2: Fault identification results for the example scenario in Fig. P-1. The
car travels from right to left. Initially, the monitor detects no failure (rightmost,
green section). As the ego vehicle gets closer to the obstacle, the LiDAR-based and
camera-based obstacle detectors fail to detect the deer while the radar-based obstacle
detector correctly locates the obstacle; as a result the fault identification/detection
triggers an alarm (red sections).

failure (rightmost green section). As the ego vehicle gets closer to the undetected

obstacle, the radar detects the obstacle but the camera does not. The inconsistency

between the two sets of obstacles causes the test between camera and radar to return

FAIL. Given the test’s outcomes, the factor graph correctly detects and identifies

the failure, triggering an alarm (rightmost red section). As the ego vehicle gets even

closer, the deer goes out of the field-of-view of the radar while entering the LiDAR

field-of-view. For a few meters, both camera and LiDAR fail to detect the deer Fig. P-

3, but since it is out of the field-of-view of the radar, the diagnostic test fails to report

the failure1. As the obstacle re-enters the field-of-view of the radar, the diagnostic

test again returns FAIL, signaling the presence of a failure.

The first alarm is raised 7.19 s before the collision, flagging the camera misdetec-

tion as an active failure mode. Before the collision, the AV has a speed of 8.43m/s.

The car can reach a maximum deceleration of 6m s−2. As result, the car would need

1.4 s to come to a complete stop. We note that after detecting the fault, for a short

interval of time the monitor detects no failure: this is due to the fact that the deer

goes out of the radar field-of-view, and no other obstacle detector is capable of de-

tecting it, thus lacking redundancy to diagnose the failure; see the visualization and

1This could be solved by improving the logic of the diagnostic test; for instance, it could predict
that —while the obstacle moved outside the field-of-view— it is unlikely it disappeared.

218



Figure P-3: Camera Image for the scenario in Fig. P-1. Blue bounding box is the
ground truth detection. The camera fails to detect the deer crossing the road (mis-
detection failure).

explanation in Fig. P-4.

To gather statistical evidence of the effectiveness of the fault detection, we run

the same scenario 10 times at different times of the day (sun, twilight, and night) and

different weather conditions (including fog and rain). The probabilistic fault detection

approach never raised false alarms in these tests, and the average time between the

alarm and the collision was 7.54 s. The car traveled at an average speed of 6.16m/s,

requiring 1.03 s to come to a complete stop. The fault identification exhibited an

average accuracy of 93.75%.

219



The radar detects the obsta-
cle, but the camera fails to
do so

Camera and LiDAR fail to
detect the obstacle while it
is outside the radar field-of-
view

Figure P-4: Two snapshots from the example scenario of Fig. P-1. Shaded areas rep-
resent the sensor field-of-view (FOV): green, blue, and orange represent the LiDAR,
camera, and radar FOVs, respectively. On the left, the deer is outside the LiDAR
FOV (so the LiDAR obstacle detector is not supposed to detect the obstacle); the
radar detects the obstacle, while the camera fails to detect it even if it is inside its
FOV. Since the corresponding diagnostic test fails, our monitors can detect the fail-
ure. On the right, the deer is outside the radar FOV; in this case, both the camera
and the LiDAR fail to detect the obstacles (even though it is within their FOVs),
hence no diagnostic test fails and our monitor fails to detect the fault.

220



References

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. Leonard, “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Trans. Robotics, vol. 32,
no. 6, pp. 1309–1332, 2016, arxiv preprint: 1606.05830, issn: 1552-3098. doi:
10.1109/TRO.2016.2624754.

[2] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Certifiable Point Cloud
Registration,” IEEE Trans. Robotics, vol. 37, no. 2, pp. 314–333, 2020.

[3] H. Yang and L. Carlone, “In perfect shape: Certifiably optimal 3D shape re-
construction from 2D landmarks,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), Arxiv version: 1911.11924, 2020.

[4] S. Choi, Q. Y. Zhou, and V. Koltun, “Robust reconstruction of indoor scenes,”
in cvpr, 2015, pp. 5556–5565.

[5] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift, robust,
and fast,” in icra, IEEE, 2015, pp. 2174–2181.

[6] H. Maron, N. Dym, I. Kezurer, S. Kovalsky, and Y. Lipman, “Point registra-
tion via efficient convex relaxation,” ACM Transactions on Graphics (TOG),
vol. 35, no. 4, pp. 1–12, 2016.

[7] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas, “Func-
tional maps: A flexible representation of maps between shapes,” ACM Trans-
actions on Graphics (TOG), vol. 31, no. 4, pp. 1–11, 2012.

[8] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,”
in 2007 6th IEEE and ACM international symposium on mixed and augmented
reality, IEEE, 2007, pp. 225–234.

[9] M. A. Audette, F. P. Ferrie, and T. M. Peters, “An algorithmic overview of
surface registration techniques for medical imaging,” Med. Image Anal., vol. 4,
no. 3, pp. 201–217, 2000.

[10] D. Rosen, L. Carlone, A. Bandeira, and J. Leonard, “SE-Sync: A certifiably
correct algorithm for synchronization over the Special Euclidean group,” Intl.
J. of Robotics Research, 2018.

[11] D. Lowe, “Object recognition from local scale-invariant features,” in Intl. Conf.
on Computer Vision (ICCV), 1999, pp. 1150–1157.

221

https://doi.org/10.1109/TRO.2016.2624754


[12] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match: 3d
point cloud matching with smoothed densities,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 5545–5554.

[13] T.-J. Chin, Z. Cai, and F. Neumann, “Robust fitting in computer vision: Easy
or hard?” In European Conf. on Computer Vision (ECCV), 2018.

[14] T. J. Chin and D. Suter, “The maximum consensus problem: Recent algorith-
mic advances,” Synthesis Lectures on Computer Vision, vol. 7, no. 2, pp. 1–
194, 2017.

[15] M. Fischler and R. Bolles, “Random sample consensus: A paradigm for model
fitting with application to image analysis and automated cartography,” Com-
mun. ACM, vol. 24, pp. 381–395, 1981.

[16] Á. P. Bustos and T. J. Chin, “Guaranteed outlier removal for point cloud reg-
istration with correspondences,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 40, no. 12, pp. 2868–2882, 2018.

[17] P. Huber, Robust Statistics. John Wiley & Sons, New York, NY, 1981.

[18] M. J. Black and A. Rangarajan, “On the unification of line processes, outlier
rejection, and robust statistics with applications in early vision,” Intl. J. of
Computer Vision, vol. 19, no. 1, pp. 57–91, 1996.

[19] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A
general framework for graph optimization,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2011.

[20] N. Sunderhauf and P. Protzel, “Towards a robust back-end for pose graph
SLAM,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2012,
pp. 1254–1261.

[21] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard, “Robust
map optimization using dynamic covariance scaling,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2013.

[22] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe
and scalable self-driving cars,” ArXiv, vol. abs/1708.06374, 2017.

[23] EASA and Daedalean, Concepts of Design Assurance for Neural Networks,
2020.

[24] B. Chen, J. Cao, A. Parra, and T.-J. Chin, “Satellite pose estimation with
deep landmark regression and nonlinear pose refinement,” in 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), IEEE,
2019, pp. 2816–2824.

[25] G. Silberg, R. Wallace, G. Matuszak, J. Plessers, C. Brower, and D. Subra-
manian, “Self-driving cars: The next revolution,” White paper, KPMG LLP &
Center of Automotive Research, vol. 9, no. 2, pp. 132–146, 2012.

[26] American Automobile Association, Active driving assistance system perfor-
mance, https://newsroom.aaa.com/asset/active-driving-assistance-
system-performance-may-2022/, 2022.

222

https://newsroom.aaa.com/asset/active-driving-assistance-system-performance-may-2022/
https://newsroom.aaa.com/asset/active-driving-assistance-system-performance-may-2022/


[27] Waymo and Cruise self-driving cars took over San Francisco streets at record
levels in 2021, https://www.businessinsider.com/self-driving-car-
accidents-waymo-cruise-tesla-zoox-san-francisco-2022-1, Accessed:
2022-05-14.

[28] R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of iso 26262: Using ma-
chine learning safely in automotive software,” arXiv preprint arXiv:1709.02435,
2017.

[29] ISO Standard, Road vehicles — safety of the intended functionality, ISO/PAS
21448:2019(en), 2019.

[30] Aptiv, Audi, B. Apollo, et al., Safety First for Automated Driving, 2019. [On-
line]. Available: https://www.daimler.com/innovation/case/autonomous/
safety-first-for-automated-driving-2.html.

[31] H. Jing, Y. Gao, S. Shahbeigi, and M. Dianati, “Integrity monitoring of gnss/ins
based positioning systems for autonomous vehicles: State-of-the-art and open
challenges,” IEEE Transactions on Intelligent Transportation Systems, 2022.

[32] O. A. Hafez, G. D. Arana, M. Joerger, and M. Spenko, “Quantifying robot lo-
calization safety: A new integrity monitoring method for fixed-lag smoothing,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3182–3189, 2020.

[33] V. Besnier, A. Bursuc, D. Picard, and A. Briot, “Triggering failures: Out-of-
distribution detection by learning from local adversarial attacks in semantic
segmentation,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 15 701–15 710.

[34] D. Miller, P. Moghadam, M. Cox, M. Wildie, and R. Jurdak, “What’s in
the black box? the false negative mechanisms inside object detectors,” arXiv
preprint arXiv:2203.07662, 2022.

[35] P. Antonante, D. I. Spivak, and L. Carlone, “Monitoring and diagnosability
of perception systems,” in Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021, pp. 168–175. doi: 10.1109/
IROS51168.2021.9636497.

[36] M. S. Ramanagopal, C. Anderson, R. Vasudevan, and M. Johnson-Roberson,
“Failing to learn: Autonomously identifying perception failures for self-driving
cars,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3860–3867,
2018.

[37] D. Bogdoll, M. Nitsche, and J. M. Zöllner, “Anomaly detection in autonomous
driving: A survey,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 4488–4499.

[38] F. Christianos, P. Karkus, B. Ivanovic, S. V. Albrecht, and M. Pavone, “Plan-
ning with occluded traffic agents using bi-level variational occlusion models,”
arXiv preprint arXiv:2210.14584, 2022.

223

https://www.businessinsider.com/self-driving-car-accidents-waymo-cruise-tesla-zoox-san-francisco-2022-1
https://www.businessinsider.com/self-driving-car-accidents-waymo-cruise-tesla-zoox-san-francisco-2022-1
https://www.daimler.com/innovation/case/autonomous/safety-first-for-automated-driving-2.html
https://www.daimler.com/innovation/case/autonomous/safety-first-for-automated-driving-2.html
https://doi.org/10.1109/IROS51168.2021.9636497
https://doi.org/10.1109/IROS51168.2021.9636497


[39] M. Itkina, Y.-J. Mun, K. Driggs-Campbell, and M. J. Kochenderfer, “Multi-
agent variational occlusion inference using people as sensors,” in Proceed-
ings of International Conference on Robotics and Automation (ICRA), 2022,
pp. 4585–4591.

[40] P. Antonante, H. Nilsen, and L. Carlone, “Monitoring of perception systems:
Deterministic, probabilistic, and learning-based fault detection and identifica-
tion,” arXiv preprint: 2205.10906, 2022.

[41] V. Tzoumas, P. Antonante, and L. Carlone, “Outlier-robust spatial percep-
tion: Hardness, general-purpose algorithms, and guarantees,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Extended arxiv version:
1903.11683, 2019.

[42] S. Arora and B. Barak, Computational complexity: A modern approach. Cam-
bridge University Press, 2009.

[43] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated non-convexity
for robust spatial perception: From non-minimal solvers to global outlier rejec-
tion,” IEEE Robotics and Automation Letters (RA-L), vol. 5, no. 2, pp. 1127–
1134, 2020, arXiv preprint:1909.08605 (with supplemental material), , ICRA
Best paper award in Robot Vision.

[44] F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assignment
problem of diagnosable systems,” IEEE Transactions on Electronic Comput-
ers, no. 6, pp. 848–854, 1967.

[45] R. B. Nelsen, An introduction to copulas. Springer Science & Business Media,
2007.

[46] K. T. e. a. H. Caesar J. Kabzan, “Nuplan: A closed-loop ml-based planning
benchmark for autonomous vehicles,” in Proceedings of CVPR ADP3 work-
shop, 2021.

[47] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection.
John Wiley & Sons, New York, NY, 1987.

[48] P. Lajoie, S. Hu, G. Beltrame, and L. Carlone, “Modeling perceptual alias-
ing in SLAM via discrete-continuous graphical models,” IEEE Robotics and
Automation Letters (RA-L), 2019.

[49] H. Yang and L. Carlone, “A quaternion-based certifiably optimal solution to
the Wahba problem with outliers,” in Intl. Conf. on Computer Vision (ICCV),
(Oral Presentation, accept rate: 4%), Arxiv version: 1905.12536, 2019.

[50] National Institute of Standards and Technology (NIST), Table of the stan-
dard normal distribution. [Online]. Available: https://www.itl.nist.gov/
div898/handbook/eda/section3/eda3671.htm.

[51] National Institute of Standards and Technology (NIST), Table of the chi-square
distribution. [Online]. Available: https : / / www . itl . nist . gov / div898 /
handbook/eda/section3/eda3674.htm.

224

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3671.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3671.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm


[52] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions – I,” Mathematical Programming,
vol. 14, no. 1, pp. 265–294, 1978.

[53] C. Zach, “Robust bundle adjustment revisited,” in European Conf. on Com-
puter Vision (ECCV), 2014, pp. 772–787.

[54] H. Mobahi and J. W. Fisher, “On the link between gaussian homotopy continu-
ation and convex envelopes,” in International Workshop on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, Springer, 2015,
pp. 43–56.

[55] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with
formulas, graphs, and mathematical tables. US Government printing office,
1948, vol. 55.

[56] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond PASCAL: A benchmark for
3d object detection in the wild,” in IEEE Winter Conf. on Appl. of Computer
Vision, IEEE, 2014, pp. 75–82.

[57] J. Briales and J. Gonzalez-Jimenez, “Convex Global 3D Registration with
Lagrangian Duality,” in IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[58] K. Khoshelham, “Closed-form solutions for estimating a rigid motion from
plane correspondences extracted from point clouds,” ISPRS Journal of Pho-
togrammetry and Remote Sensing, vol. 114, pp. 78–91, 2016.

[59] Y.-L. Lin, V. I. Morariu, W. H. Hsu, and L. S. Davis, “Jointly optimizing 3D
model fitting and fine-grained classification,” in European Conf. on Computer
Vision (ECCV), 2014.

[60] V. Ramakrishna, T. Kanade, and Y. Sheikh, “Reconstructing 3D human pose
from 2D image landmarks,” in European Conf. on Computer Vision (ECCV),
2012.

[61] X. Zhou, M. Zhu, S. Leonardos, and K. Daniilidis, “Sparse representation for
3D shape estimation: A convex relaxation approach,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 39, no. 8, pp. 1648–1661, 2017.

[62] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization techniques
for 3D SLAM: A survey on rotation estimation and its use in pose graph
optimization,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2015,
pp. 4597–4604.

[63] L. Carlone, D. Rosen, G. Calafiore, J. Leonard, and F. Dellaert, “Lagrangian
duality in 3D SLAM: Verification techniques and optimal solutions,” in iros,
PDF: https://arxiv.org/abs/1506.00746, Code: https://www.bitbucket.
org/lucacarlone/pgo3d-duality-opencode, Datasets: https://lucacarlone.
mit.edu/datasets/, Supplemental Material: https://arxiv.org/abs/
1506.00746, 2015, pp. 125–132.

225

https://arxiv.org/abs/1506.00746
https://www.bitbucket.org/lucacarlone/pgo3d-duality-opencode
https://www.bitbucket.org/lucacarlone/pgo3d-duality-opencode
https://lucacarlone.mit.edu/datasets/
https://lucacarlone.mit.edu/datasets/
https://arxiv.org/abs/1506.00746
https://arxiv.org/abs/1506.00746


[64] L. Carlone, G. Calafiore, C. Tommolillo, and F. Dellaert, “Planar pose graph
optimization: Duality, optimal solutions, and verification,” IEEE Trans. Robotics,
vol. 32, no. 3, pp. 545–565, 2016.

[65] L. Carlone, R. Aragues, J. Castellanos, and B. Bona, “A fast and accurate ap-
proximation for planar pose graph optimization,” Intl. J. of Robotics Research,
vol. 33, no. 7, pp. 965–987, 2014.

[66] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan, “Pairwise con-
sistent measurement set maximization for robust multi-robot map merging,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2018, pp. 2916–2923.

[67] P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim, “Robust regression methods
for computer vision: A review,” Intl. J. of Computer Vision, vol. 6, no. 1,
pp. 59–70, Apr. 1991.

[68] C. Stewart, “Robust parameter estimation in computer vision,” SIAM Review,
vol. 41, no. 3, pp. 513–537, 1999. doi: 10.1137/S0036144598345802. eprint:
https://doi.org/10.1137/S0036144598345802.

[69] M. Bosse, G. Agamennoni, and I. Gilitschenski, “Robust estimation and appli-
cations in robotics,” Foundations and Trends in Robotics, vol. 4, no. 4, pp. 225–
269, 2016, issn: 1935-8253. doi: 10.1561/2300000047.

[70] D. Barath, J. Noskova, M. Ivashechkin, and J. Matas, “Magsac++, a fast,
reliable and accurate robust estimator,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 1304–1312.

[71] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 4104–4113.

[72] A. Chatterjee and V. M. Govindu, “Efficient and robust large-scale rotation
averaging,” in Intl. Conf. on Computer Vision (ICCV), 2013, pp. 521–528.

[73] Q. Zhou, J. Park, and V. Koltun, “Fast global registration,” in European Conf.
on Computer Vision (ECCV), Springer, 2016, pp. 766–782.

[74] J. T. Barron, “A general and adaptive robust loss function,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 4331–4339.

[75] N. Chebrolu, T. Läbe, O. Vysotska, J. Behley, and C. Stachniss, “Adaptive
robust kernels for non-linear least squares problems,” IEEE Robotics and Au-
tomation Letters, vol. 6, no. 2, pp. 2240–2247, 2021.

[76] J. Bazin, Y. Seo, R. Hartley, and M. Pollefeys, “Globally optimal inlier set
maximization with unknown rotation and focal length,” in European Conf. on
Computer Vision (ECCV), 2014, pp. 803–817.

[77] R. Hartley and F. Kahl, “Global optimization through rotation space search,”
Intl. J. of Computer Vision, vol. 82, no. 1, pp. 64–79, 2009.

226

https://doi.org/10.1137/S0036144598345802
https://doi.org/10.1137/S0036144598345802
https://doi.org/10.1561/2300000047


[78] Y. Zheng, S. Sugimoto, and M. Okutomi, “Deterministically maximizing fea-
sible subsystem for robust model fitting with unit norm constraint,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 1825–
1832.

[79] H. Li, “Consensus set maximization with guaranteed global optimality for
robust geometry estimation,” in Intl. Conf. on Computer Vision (ICCV), 2009,
pp. 1074–1080.

[80] P. Speciale, D. P. Paudel, M. R. Oswald, T. Kroeger, L. V. Gool, and M.
Pollefeys, “Consensus maximization with linear matrix inequality constraints,”
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Jul.
2017, pp. 5048–5056. doi: 10.1109/CVPR.2017.536.

[81] T. Chin, Y. H. Kee, A. Eriksson, and F. Neumann, “Guaranteed outlier re-
moval with mixed integer linear programs,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), Jun. 2016, pp. 5858–5866. doi: 10.1109/
CVPR.2016.631.

[82] G. Izatt, H. Dai, and R. Tedrake, “Globally optimal object pose estimation in
point clouds with mixed-integer programming,” in Proc. of the Intl. Symp. of
Robotics Research (ISRR), 2017.

[83] J. Yang, H. Li, and Y. Jia, “Optimal essential matrix estimation via inlier-set
maximization,” in European Conf. on Computer Vision (ECCV), Springer,
2014, pp. 111–126.

[84] J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-ICP: A globally optimal solution
to 3D ICP point-set registration,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 38, no. 11, pp. 2241–2254, Nov. 2016, issn: 0162-8828.

[85] O. Enqvist, E. Ask, F. Kahl, and K. Åström, “Robust fitting for multiple view
geometry,” in European Conf. on Computer Vision (ECCV), Springer, 2012,
pp. 738–751.

[86] C. Olsson, O. Enqvist, and F. Kahl, “A polynomial-time bound for match-
ing and registration with outliers,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), IEEE, 2008, pp. 1–8.

[87] H. Yang and L. Carlone, “One ring to rule them all: Certifiably robust geo-
metric perception with outliers,” in Conf. on Neural Information Processing
Systems (NeurIPS), vol. 33, 2020, pp. 18 846–18 859.

[88] L. Carlone and G. Calafiore, “Convex relaxations for pose graph optimization
with outliers,” IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 2,
pp. 1160–1167, 2018.

[89] H. Yang and L. Carlone, “A polynomial-time solution for robust registration
with extreme outlier rates,” in Robotics: Science and Systems (RSS), 2019.

[90] A. P. Bustos, T.-J. Chin, F. Neumann, T. Friedrich, and M. Katzmann, “A
practical maximum clique algorithm for matching with pairwise constraints,”
arXiv preprint arXiv:1902.01534, 2019.

227

https://doi.org/10.1109/CVPR.2017.536
https://doi.org/10.1109/CVPR.2016.631
https://doi.org/10.1109/CVPR.2016.631


[91] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 14, no. 2, 1992.

[92] R. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for
3d registration,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
Citeseer, 2009, pp. 3212–3217.

[93] C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric features,” in
Intl. Conf. on Computer Vision (ICCV), 2019, pp. 8958–8966.

[94] C. S. Chen, Y. P. Hung, and J. B. Cheng, “RANSAC-based DARCES: A new
approach to fast automatic registration of partially overlapping range images,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 21, no. 11, pp. 1229–1234,
1999.

[95] K. Arun, T. Huang, and S. Blostein, “Least-squares fitting of two 3-D point
sets,” IEEE Trans. Pattern Anal. Machine Intell., vol. 9, no. 5, pp. 698–700,
Sep. 1987.

[96] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quater-
nions,” J. Opt. Soc. Amer., vol. 4, no. 4, pp. 629–642, Apr. 1987.

[97] J. C. Bazin, Y. Seo, and M. Pollefeys, “Globally optimal consensus set maxi-
mization through rotation search,” in Asian Conference on Computer Vision,
Springer, 2012, pp. 539–551.

[98] X. Zhou, M. Zhu, G. Pavlakos, S. Leonardos, K. G. Derpanis, and K. Daniilidis,
“MonoCap: Monocular human motion capture using a CNN coupled with a
geometric prior,” IEEE Trans. Pattern Anal. Machine Intell., vol. 41, no. 4,
pp. 901–914, 2018.

[99] L. Kneip, H. Li, and Y. Seo, “UPnP: An optimal o(n) solution to the absolute
pose problem with universal applicability,” in European Conf. on Computer
Vision (ECCV), Springer, 2014, pp. 127–142.

[100] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution classi-
fication for the perspective-three-point problem,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 25, no. 8, pp. 930–943, 2003.

[101] L. Ferraz, X. Binefa, and F. Moreno-Noguer, “Very fast solution to the pnp
problem with algebraic outlier rejection,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2014, pp. 501–508.

[102] E. Olson and P. Agarwal, “Inference on networks of mixtures for robust robot
mapping,” in Robotics: Science and Systems (RSS), Jul. 2012.

[103] N. Sünderhauf and P. Protzel, “Switchable constraints for robust pose graph
SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2012.

[104] C. H. Tong and T. D. Barfoot, “Batch heterogeneous outlier rejection for
feature-poor slam,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
2011, pp. 2630–2637.

228



[105] C. H. Tong and T. D. Barfoot, “Evaluation of heterogeneous measurement
outlier rejection schemes for robotic planetary surface mapping,” Acta Astro-
nautica, vol. 88, pp. 146–162, 2013.

[106] Y. Latif, C. D. C. Lerma, and J. Neira, “Robust loop closing over time.,” in
Robotics: Science and Systems (RSS), 2012.

[107] G. Lee, F. Fraundorfer, and M. Pollefeys, “Robust pose-graph loop-closures
with expectation-maximization,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2013.

[108] L. Wang and A. Singer, “Exact and stable recovery of rotations for robust
synchronization,” Information and Inference: A Journal of the IMA, vol. 30,
2013.

[109] F. Arrigoni, B. Rossi, P. Fragneto, and A. Fusiello, “Robust synchronization
in SO(3) and SE(3) via low-rank and sparse matrix decomposition,” Comput.
Vis. Image Underst., 2018.

[110] P. J. Huber, “Robust estimation of a location parameter,” The Annals of
Mathematical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[111] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Trans. ASME, Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.

[112] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stewart, “Ro-
bust estimators in high-dimensions without the computational intractability,”
SIAM Journal on Computing, vol. 48, no. 2, pp. 742–864, 2019.

[113] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.
on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[114] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identification
in cyber-physical systems,” IEEE Transactions on Automatic Control, vol. 58,
no. 11, pp. 2715–2729, 2013.

[115] L. Liu, T. Li, and C. Caramanis, “High dimensional robust estimation of sparse
models via trimmed hard thresholding,” arXiv preprint: 1901.08237, 2019.

[116] P. Rousseeuw and M. Hubert, “Robust statistics for outlier detection,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1,
pp. 73–79, 2011.

[117] T. Zhang, “Adaptive forward-backward greedy algorithm for learning sparse
representations,” IEEE Trans. on Information Theory, vol. 57, no. 7, pp. 4689–
4708, 2011.

[118] J. Liu, P. C. Cosman, and B. D. Rao, “Robust linear regression via ℓ0 regular-
ization,” IEEE Transactions on Signal Processing, vol. 66, no. 3, pp. 698–713,
2018.

[119] S. Mishra, Y. Shoukry, N. Karamchandani, S. Diggavi, and P. Tabuada, “Se-
cure state estimation against sensor attacks in the presence of noise,” IEEE
Trans. on Control of Network Systems, vol. 4, no. 1, pp. 49–59, 2017.

229



[120] E. Aghapour, F. Rahman, and J. Farrell, “Outlier accommodation by risk-
averse performance-specified linear state estimation,” in 2018 IEEE Confer-
ence on Decision and Control, IEEE, 2018, pp. 2310–2315.

[121] H. Yang and L. Carlone, “Certifiably optimal outlier-robust geometric percep-
tion: Semidefinite relaxations and scalable global optimization,” IEEE Trans.
Pattern Anal. Machine Intell., 2022.

[122] J. Yang, M. Ward, and J. Akhtar, “The development of safety cases for an au-
tonomous vehicle: A comparative study on different methods,” SAE Technical
Paper, Tech. Rep., 2017.

[123] R. Yan, S. J. Dunnett, and L. M. Jackson, “Reliability modelling of automated
guided vehicles by the use of failure modes effects and criticality analysis, and
fault tree analysis,” in 5th student conference on operational research (SCOR
2016), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[124] P. Antonante, D. Spivak, and L. Carlone, “Monitoring and diagnosability of
perception systems,” arXiv preprint: 2011.07010, 2020.

[125] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan kaufmann, 1988.

[126] J. Liu and J.-M. Park, ““seeing is not always believing”: Detecting perception
error attacks against autonomous vehicles,” IEEE Transactions on Dependable
and Secure Computing, vol. 18, no. 5, pp. 2209–2223, 2021.

[127] A. Sharma, N. Azizan, and M. Pavone, “Sketching curvature for efficient out-
of-distribution detection for deep neural networks,” in Uncertainty in Artificial
Intelligence, PMLR, 2021, pp. 1958–1967.

[128] A. Dokhanchi, H. B. Amor, J. Deshmukh, and G. Fainekos, “Evaluating per-
ception systems for autonomous vehicles using quality temporal logic,” in Intl.
Conf. on Runtime Verification (RV), 2018.

[129] L. A. Wolsey, Integer programming. John Wiley & Sons, 2020.

[130] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint programming.
Elsevier, 2006.

[131] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and
Techniques. The MIT Press, 2009.

[132] S. E. Shimony, “Finding maps for belief networks is np-hard,” Artificial intel-
ligence, vol. 68, no. 2, pp. 399–410, 1994.

[133] S. Nowozin and C. H. Lampert, Structured learning and prediction in computer
vision. Now publishers Inc, 2011, vol. 6.

[134] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[135] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Ar-
tifical Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

230



[136] T. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” in Intl. Conf. on Learning Representations (ICLR), Apr.
2017.

[137] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional net-
works for semi-supervised learning,” in Thirty-Second AAAI conference on
artificial intelligence, 2018.

[138] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph
convolutional networks,” in International Conference on Machine Learning,
PMLR, 2020, pp. 1725–1735.

[139] W. L. Hamilton., R. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Advances in Neural Information Processing Systems
(NIPS), Dec. 2017, pp. 1025–1035.

[140] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” In Intl. Conf. on Learning Representations (ICLR), May 2019.

[141] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural information processing
systems, vol. 32, 2019.

[142] Z. Zhang, D. Lyu, P. Arcaini, L. Ma, I. Hasuo, and J. Zhao, “Falsifai: Falsi-
fication of ai-enabled hybrid control systems guided by time-aware coverage
criteria,” IEEE Transactions on Software Engineering, 2022.

[143] H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. Wolff, A. Lang, L. Fletcher, O.
Beijbom, and S. Omari, “Nuplan: A closed-loop ml-based planning benchmark
for autonomous vehicles,” arXiv preprint arXiv:2106.11810, 2021.

[144] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi, “Calibrating
probability with undersampling for unbalanced classification,” in In proceed-
ings of IEEE Symposium Series on Computational Intelligence, IEEE, 2015,
pp. 159–166.

[145] A. Sengupta and A. T. Dahbura, “On self-diagnosable multiprocessor systems:
Diagnosis by the comparison approach,” IEEE Transactions on Computers,
vol. 41, no. 11, pp. 1386–1396, 1992.

[146] S. L. Hakimi and A. T. Amin, “Characterization of connection assignment
of diagnosable systems,” IEEE Transactions on Computers, vol. 100, no. 1,
pp. 86–88, 1974.

[147] LG, LGSVL Simulator. [Online]. Available: https://www.lgsvlsimulator.
com.

[148] Baidu, Apollo Auto. [Online]. Available: https://apollo.auto/.

[149] Baidu, Apollo Auto. [Online]. Available: https://github.com/ApolloAuto/
apollo.

231

https://www.lgsvlsimulator.com
https://www.lgsvlsimulator.com
https://apollo.auto/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo


[150] P. Antonante, D. Spivak, and L. Carlone, “Monitoring and diagnosability of
perception systems,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tems (IROS), 2021.

[151] Z. Liu, Z. Wu, and R. Tóth, “SMOKE: Single-stage monocular 3d object
detection via keypoint estimation,” arXiv preprint arXiv:2002.10111, 2020.

[152] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine, et al., “Scalability in perception for autonomous
driving: Waymo open dataset,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 2446–2454.

[153] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Point-
pillars: Fast encoders for object detection from point clouds,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 12 697–12 705.

[154] Google’s self-driving startup Waymo is introducing fully driverless rides to San
Francisco, https://www.continental-automotive.com/getattachment/
5430d956- 1ed7- 464b- afa3- cd9cdc98ad63/ARS408- 21_datasheet_en_

170707_V07.pdf.pdf, Accessed: 2022-05-15.

[155] D. F. Crouse, “On implementing 2d rectangular assignment algorithms,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 52, no. 4, pp. 1679–
1696, 2016.

[156] Google, Google OR-Tools. [Online]. Available: https://developers.google.
com/optimization.

[157] Grante Library for Inference and Estimation on Discrete Factor Graph Model,
http://www.nowozin.net/sebastian/grante/, Accessed: 2022-05-15.

[158] W. Falcon et al., Pytorch lightning, https://github.com/PytorchLightning/
pytorch-lightning, 2019.

[159] L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017
IEEE winter conference on applications of computer vision (WACV), IEEE,
2017, pp. 464–472.

[160] The Guardian, Tesla driver dies in first fatal crash while using autopilot mode,
www . theguardian . com / technology / 2016 / jun / 30 / tesla - autopilot -

death-self-driving-car-elon-musk, Accessed: 2022-05-15, 2016.

[161] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving
would it take to demonstrate autonomous vehicle reliability?” Transportation
Research Part A: Policy and Practice, vol. 94, pp. 182–193, 2016.

[162] ISO Standard, Road vehicles – functional safety, ISO 26262-1:2011, 2011.

[163] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and
validation,” SAE Int. J. Trans. Safety, vol. 4, no. 1, 2016.

[164] F. Concas, J. K. Nurminen, T. Mikkonen, and S. Tarkoma, Validation Frame-
works for Self-Driving Vehicles: A Survey. Springer, 2021, pp. 197–212.

232

https://www.continental-automotive.com/getattachment/5430d956-1ed7-464b-afa3-cd9cdc98ad63/ARS408-21_datasheet_en_170707_V07.pdf.pdf
https://www.continental-automotive.com/getattachment/5430d956-1ed7-464b-afa3-cd9cdc98ad63/ARS408-21_datasheet_en_170707_V07.pdf.pdf
https://www.continental-automotive.com/getattachment/5430d956-1ed7-464b-afa3-cd9cdc98ad63/ARS408-21_datasheet_en_170707_V07.pdf.pdf
https://developers.google.com/optimization
https://developers.google.com/optimization
http://www.nowozin.net/sebastian/grante/
https://github.com/PytorchLightning/pytorch-lightning
https://github.com/PytorchLightning/pytorch-lightning
www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk


[165] P. Koopman, U. Ferrell, F. Fratrik, and M. Wagner, “A safety standard ap-
proach for fully autonomous vehicles,” in International Conference on Com-
puter Safety, Reliability, and Security, Springer, 2019, pp. 326–332.

[166] Underwriters Laboratories, ANSI/UL 4600 Standard for Safety for the Evalu-
ation of Autonomous Products. [Online]. Available: https://ul.org/UL4600.

[167] F. Ingrand, “Recent trends in formal validation and verification of autonomous
robots software,” in 2019 Third IEEE International Conference on Robotic
Computing (IRC), 2019, pp. 321–328.

[168] A. Desai, T. Dreossi, and S. Seshia, “Combining model checking and runtime
verification for safe robotics,” in International Conference on Runtime Verifi-
cation, Springer, 2017, pp. 172–189.

[169] B. Hoxha and G. Fainekos, “Planning in dynamic environments through tem-
poral logic monitoring,” in AAAI Workshop: Planning for Hybrid Systems,
vol. 16, 2016, p. 12.

[170] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-violation
scLTL motion planning for mobility-on-demand,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2017, pp. 1481–1488.

[171] S. Dathathri and R. Murray, “Decomposing GR(1) games with singleton live-
ness guarantees for efficient synthesis,” arXiv, vol. abs/1709.07094, 2017.

[172] S. Ghosh, D. Sadigh, P. Nuzzo, V. Raman, A. Donzé, A. L. Sangiovanni-
Vincentelli, S. S. Sastry, and S. A. Seshia, “Diagnosis and repair for synthesis
from signal temporal logic specifications,” in Proceedings of the 19th Interna-
tional Conference on Hybrid Systems: Computation and Control, ser. HSCC
’16, ACM, 2016, pp. 31–40.

[173] W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for synthesis,” in
Ninth ACM/IEEE International Conference on Formal Methods and Models
for Codesign (MEMPCODE2011), 2011, pp. 43–50.

[174] W. Li, D. Sadigh, S. Sastry, and S. Seshia, “Synthesis for human-in-the-loop
control systems,” in Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2014.

[175] M. Kloetzer and C. Belta, “A fully automated framework for control of lin-
ear systems from temporal logic specifications,” IEEE Trans. on Automatic
Control, vol. 53, no. 1, pp. 287–297, 2008.

[176] S. Mitsch, K. Ghorbal, D. Vogelbacher, and A. Platzer, “Formal verification
of obstacle avoidance and navigation of ground robots,” The International
Journal of Robotics Research, vol. 36, no. 12, pp. 1312–1340, 2017.

[177] N. Roohi, R. Kaur, J. Weimer, O. Sokolsky, and I. Lee, “Self-driving vehicle
verification towards a benchmark,” arXiv preprint arXiv:1806.08810, 2018.

[178] R. C. Cardoso, M. Farrell, M. Luckcuck, A. Ferrando, and M. Fisher, “Het-
erogeneous verification of an autonomous curiosity rover,” pp. 353–360, 2020.

233

https://ul.org/UL4600


[179] S. Jha, V. Raman, D. Sadigh, and S. Seshia, “Safe autonomy under perception
uncertainty using chance-constrained temporal logic,” Journal of Automated
Reasoning, vol. 60, pp. 43–62, 2017.

[180] M. Foughali, B. Berthomieu, S. Dal Zilio, P.-E. Hladik, F. Ingrand, and A. Mal-
let, “Formal verification of complex robotic systems on resource-constrained
platforms,” in 2018 IEEE/ACM 6th International FME Workshop on Formal
Methods in Software Engineering (FormaliSE), 2018, pp. 2–9.

[181] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Toward verified artificial intelli-
gence,” Communications of the ACM, vol. 65, no. 7, pp. 46–55, 2022.

[182] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher, “Formal
specification and verification of autonomous robotic systems: A survey,” ACM
Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–41, 2019.

[183] T. Dreossi, D. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh, M. Vazquez-
Chanlatte, and S. Seshia, “VERIFAI: A toolkit for the design and analysis of
artificial intelligence-based systems,” ArXiv:1902.04245, 2019.

[184] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and
S. A. Seshia, “Scenic: A language for scenario specification and scene genera-
tion,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2019, pp. 63–78.

[185] K. Leahy, E. Cristofalo, C. Vasile, A. Jones, E. Montijano, M. Schwager, and C.
Belta, “Control in belief space with temporal logic specifications using vision-
based localization,” Intl. J. of Robotics Research, vol. 38, Apr. 2019.

[186] A. Balakrishnan, A. G. Puranic, X. Qin, A. Dokhanchi, J. V. Deshmukh,
H. Ben Amor, and G. Fainekos, “Specifying and evaluating quality metrics
for vision-based perception systems,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2019, pp. 1433–1438.

[187] T. Dreossi, S. Ghosh, A. Sangiovanni-Vincentelli, and S. Seshia, “System-
atic testing of convolutional neural networks for autonomous driving,” ArXiv,
vol. abs/1708.03309, 2017.

[188] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K.
Fu, and Z. M. Mao, “Adversarial sensor attack on lidar-based perception in
autonomous driving,” in Proceedings of the 2019 ACM SIGSAC conference on
computer and communications security, 2019, pp. 2267–2281.

[189] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang, “At-
tacking vision-based perception in end-to-end autonomous driving models,”
Journal of Systems Architecture, vol. 110, p. 101 766, 2020.

[190] H. Delecki, M. Itkina, B. Lange, R. Senanayake, and M. J. Kochenderfer, “How
do we fail? stress testing perception in autonomous vehicles,” arXiv preprint
arXiv:2203.14155, 2022.

[191] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in
computer vision: A survey,” Ieee Access, vol. 6, pp. 14 410–14 430, 2018.

234



[192] Q. M. Rahman, P. Corke, and F. Dayoub, “Run-time monitoring of machine
learning for robotic perception: A survey of emerging trends,” IEEE Access,
vol. 9, pp. 20 067–20 075, 2021.

[193] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution detection:
A survey,” arXiv preprint arXiv:2110.11334, 2021.

[194] S. Mohseni, M. Pitale, J. Yadawa, and Z. Wang, “Self-supervised learning
for generalizable out-of-distribution detection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, 2020, pp. 5216–5223.

[195] J. Nitsch, M. Itkina, R. Senanayake, J. Nieto, M. Schmidt, R. Siegwart, M. J.
Kochenderfer, and C. Cadena, “Out-of-distribution detection for automotive
perception,” in In proceedings of IEEE International Intelligent Transportation
Systems Conference (ITSC), IEEE, 2021, pp. 2938–2943.

[196] R. Sinha, A. Sharma, S. Banerjee, T. Lew, R. Luo, S. M. Richards, Y. Sun, E.
Schmerling, and M. Pavone, “A system-level view on out-of-distribution data
in robotics,” arXiv preprint arXiv:2212.14020, 2022.

[197] P. Oberdiek, M. Rottmann, and G. A. Fink, “Detection and retrieval of out-of-
distribution objects in semantic segmentation,” in Proceedings of the ieee/cvf
conference on computer vision and pattern recognition workshops, 2020, pp. 328–
329.

[198] Q. M. Rahman, N. Sünderhauf, P. Corke, and F. Dayoub, “Fsnet: A failure
detection framework for semantic segmentation,” 2, vol. 7, 2022, pp. 3030–
3037. doi: 10.1109/LRA.2022.3143219.

[199] J. Lambert and J. Hays, “Trust, but verify: Cross-modality fusion for hd map
change detection,” in Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2), 2021.

[200] D. Knowles and G. Gao, “Euclidean distance matrix-based rapid fault de-
tection and exclusion,” NAVIGATION: Journal of the Institute of Navigation,
vol. 70, no. 1, 2023, issn: 0028-1522. doi: 10.33012/navi.555. eprint: https:
//navi.ion.org/content/70/1/navi.555.full.pdf. [Online]. Available:
https://navi.ion.org/content/70/1/navi.555.

[201] M. Joerger, S. Pullen, and R. Capua, “Development of gnss augmentation in-
tegrity messaging standards for automotive applications,” in Navigation Con-
ference, vol. 2021, 2021.

[202] H. Jiang, T. Li, D. Song, and C. Shi, “An effective integrity monitoring scheme
for gnss/ins/vision integration based on error state ekf model,” IEEE Sensors
Journal, vol. 22, no. 7, pp. 7063–7073, 2022.

[203] A. El-Mowafy and N. Kubo, “Integrity monitoring of vehicle positioning in ur-
ban environment using rtk-gnss, imu and speedometer,” Measurement Science
and Technology, vol. 28, no. 5, p. 055 102, 2017.

[204] F. A. C. de Oliveira, F. S. Torres, and A. Garćıa-Ortiz, “Recent advances in
sensor integrity monitoring methods-a review,” IEEE Sensors Journal, 2022.

235

https://doi.org/10.1109/LRA.2022.3143219
https://doi.org/10.33012/navi.555
https://navi.ion.org/content/70/1/navi.555.full.pdf
https://navi.ion.org/content/70/1/navi.555.full.pdf
https://navi.ion.org/content/70/1/navi.555


[205] X. Wang, C. Toth, and D. Grejner-Brzezinska, “A survey on integrity moni-
toring of gnss navigation for ground vehicles,” in In proceedings of the Inter-
national Technical Meeting of the Satellite Division of The Institute of Navi-
gation, 2021, pp. 2591–2601.

[206] C. You, Z. Hau, and S. Demetriou, “Temporal consistency checks to detect
lidar spoofing attacks on autonomous vehicle perception,” in Proceedings of
the 1st Workshop on Security and Privacy for Mobile AI, 2021, pp. 13–18.

[207] A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, and G. Fainekos,
“Percemon: Online monitoring for perception systems,” in International Con-
ference on Runtime Verification, Springer, 2021, pp. 297–308.

[208] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia, “Model assertions for de-
bugging machine learning,” in NIPS, 2018.

[209] A. Santamaria-Navarro, R. Thakker, D. D. Fan, B. Morrell, and A.-a. Agha-
mohammadi, Towards resilient autonomous navigation of drones, 2020. eprint:
2008.09679.

[210] B. Cai, L. Huang, and M. Xie, “Bayesian networks in fault diagnosis,” IEEE
Transactions on industrial informatics, vol. 13, no. 5, pp. 2227–2240, 2017.

[211] A. Abdollahi, K. R. Pattipati, A. Kodali, S. Singh, S. Zhang, and P. B. Luh,
“Probabilistic graphical models for fault diagnosis in complex systems,” in
Principles of Performance and Reliability Modeling and Evaluation, Springer,
2016, pp. 109–139.

[212] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, “Applications of ma-
chine learning to machine fault diagnosis: A review and roadmap,” Mechanical
Systems and Signal Processing, vol. 138, p. 106 587, 2020.

[213] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu,
“A comprehensive survey on graph anomaly detection with deep learning,”
IEEE Transactions on Knowledge and Data Engineering, 2021.

[214] J. De Kleer and B. C. Williams, “Diagnosing multiple faults,” Artificial intel-
ligence, vol. 32, no. 1, pp. 97–130, 1987.

[215] K. Bhat, “Algorithms for finding diagnosability level and t-diagnosis in a net-
work of processors,” in Proceedings of the ACM’82 conference, 1982, pp. 164–
168.

[216] A. T. Dahbura, “System-level diagnosis: A perspective for the third decade,”
in Concurrent Computations, Springer, 1988, pp. 411–434.

[217] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis,
“Diagnosability of discrete-event systems,” IEEE Transactions on automatic
control, vol. 40, no. 9, pp. 1555–1575, 1995.

[218] J. Zaytoon and S. Lafortune, “Overview of fault diagnosis methods for discrete
event systems,” Annual Reviews in Control, vol. 37, no. 2, pp. 308–320, 2013.

236

2008.09679


[219] T. M. Tuxi, L. K. Carvalho, E. V. Nunes, and A. E. da Cunha, “Diagnosability
verification using ltl model checking,” Discrete Event Dynamic Systems, pp. 1–
35, 2022.

[220] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data,” in Eu-
ropean Conference on Computer Vision, Springer, 2020, pp. 683–700.

[221] L. Westhofen, C. Neurohr, T. Koopmann, M. Butz, B. Schütt, F. Utesch,
B. Neurohr, C. Gutenkunst, and E. Böde, “Criticality metrics for automated
driving: A review and suitability analysis of the state of the art,” Archives of
Computational Methods in Engineering, vol. 30, no. 1, pp. 1–35, 2023.

[222] J. Ngiam, V. Vasudevan, B. Caine, Z. Zhang, H.-T. L. Chiang, J. Ling, R.
Roelofs, A. Bewley, C. Liu, A. Venugopal, et al., “Scene transformer: A unified
architecture for predicting future trajectories of multiple agents,” in Interna-
tional Conference on Learning Representations, 2021.

[223] Y. Han, J. Banfi, and M. Campbell, “Planning paths through unknown space
by imagining what lies therein,” in Proceedings of Conference on Robot Learn-
ing (CoRL), 2021, pp. 905–914.

[224] H. Joe, Dependence modeling with copulas. CRC press, 2014.

[225] M. Sklar, “Fonctions de repartition an dimensions et leurs marges,” Publica-
tions de l’Institut de Statistique de l’Université de Paris, vol. 8, pp. 229–231,
1959.

[226] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical
observations and microscopic simulations,” Physical Review E, vol. 62, no. 2,
p. 1805, 2000.

[227] S. Albeaik, A. Bayen, M. T. Chiri, X. Gong, A. Hayat, N. Kardous, A. Keimer,
S. T. McQuade, B. Piccoli, and Y. You, “Limitations and improvements of
the intelligent driver model (IDM),” SIAM Journal on Applied Dynamical
Systems, vol. 21, no. 3, pp. 1862–1892, 2022.

[228] Motional,NuPlan-devkit. [Online]. Available: https://github.com/motional/
nuplan-devkit.

[229] S. Topan, K. Leung, Y. Chen, P. Tupekar, E. Schmerling, J. Nilsson, M. Cox,
and M. Pavone, “Interaction-dynamics-aware perception zones for obstacle
detection safety evaluation,” in Proceedings of IEEE Intelligent Vehicles Sym-
posium (IV), 2022, pp. 1201–1210. doi: 10.1109/IV51971.2022.9827409.

[230] A. Kamenev, L. Wang, O. B. Bohan, I. Kulkarni, B. Kartal, A. Molchanov,
S. Birchfield, D. Nistér, and N. Smolyanskiy, “Predictionnet: Real-time joint
probabilistic traffic prediction for planning, control, and simulation,” in Pro-
ceedings of International Conference on Robotics and Automation (ICRA),
2022, pp. 8936–8942.

237

https://github.com/motional/nuplan-devkit
https://github.com/motional/nuplan-devkit
https://doi.org/10.1109/IV51971.2022.9827409


[231] D. Hendrycks, S. Basart, M. Mazeika, M. Mostajabi, J. Steinhardt, and D.
Song, “Scaling out-of-distribution detection for real-world settings,” arXiv
preprint arXiv:1911.11132, 2019.

[232] F. Li, P. Bonnifait, and J. Ibañez-Guzmán, “Map-aided dead-reckoning with
lane-level maps and integrity monitoring,” IEEE Transactions on Intelligent
Vehicles, vol. 3, no. 1, pp. 81–91, 2018.

[233] E. Galceran, E. Olson, and R. M. Eustice, “Augmented vehicle tracking un-
der occlusions for decision-making in autonomous driving,” in Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015, pp. 3559–3565.

[234] M. Koschi and M. Althoff, “Set-based prediction of traffic participants consid-
ering occlusions and traffic rules,” IEEE Transactions on Intelligent Vehicles,
vol. 6, no. 2, pp. 249–265, 2020.

[235] P. Zechel, R. Streiter, K. Bogenberger, and U. Göhner, “Pedestrian occupancy
prediction for autonomous vehicles,” in Proceedings of IEEE International
Conference on Robotic Computing (IRC), 2019, pp. 230–235.

[236] J. Dahl, G. R. de Campos, C. Olsson, and J. Fredriksson, “Collision avoidance:
A literature review on threat-assessment techniques,” IEEE Transactions on
Intelligent Vehicles, vol. 4, no. 1, pp. 101–113, 2018.

[237] A. Farid, D. Snyder, A. Z. Ren, and A. Majumdar, “Failure prediction with sta-
tistical guarantees for vision-based robot control,” arXiv preprint arXiv:2202.05894,
2022.

[238] A. Farid, S. Veer, and A. Majumdar, “Task-driven out-of-distribution detection
with statistical guarantees for robot learning,” in Proceedings of Conference
on Robot Learning (CoRL), 2021, pp. 970–980.

[239] A. Farid, S. Veer, B. Ivanovic, K. Leung, and M. Pavone, “Task-relevant failure
detection for trajectory predictors in autonomous vehicles,” arXiv preprint
arXiv:2207.12380, 2022.

[240] N. Agarwal and Y.-T. Chen, “Risk perception in driving scenes,” in Proceedings
of Workshop on Machine Learning for Autonomous Driving at NeurIPS, 2022.

[241] A. Bansal, J. Singh, M. Verucchi, M. Caccamo, and L. Sha, “Risk ranked recall:
Collision safety metric for object detection systems in autonomous vehicles,” in
Proceedings of Mediterranean Conference on Embedded Computing (MECO),
2021, pp. 1–4.

[242] J. Bernhard, P. Hart, A. Sahu, C. Schöller, and M. G. Cancimance, “Risk-
based safety envelopes for autonomous vehicles under perception uncertainty,”
in Proceedings of IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 104–
111.

[243] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-
jacobi formulation of reachable sets for continuous dynamic games,” IEEE
Transactions on automatic control, vol. 50, no. 7, pp. 947–957, 2005.

238



[244] K. Leung, E. Schmerling, M. Zhang, M. Chen, J. Talbot, J. C. Gerdes, and
M. Pavone, “On infusing reachability-based safety assurance within planning
frameworks for human–robot vehicle interactions,” The International Journal
of Robotics Research, vol. 39, no. 10-11, pp. 1326–1345, 2020.

[245] K.-C. Hsu, A. Z. Ren, D. P. Nguyen, A. Majumdar, and J. F. Fisac, “Sim-
to-lab-to-real: Safe reinforcement learning with shielding and generalization
guarantees,” arXiv preprint arXiv:2201.08355, 2022.

[246] H. Hu, K. Nakamura, and J. F. Fisac, “Sharp: Shielding-aware robust planning
for safe and efficient human-robot interaction,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 5591–5598, 2022.

[247] M. N. Ahangar, Q. Z. Ahmed, F. A. Khan, and M. Hafeez, “A survey of
autonomous vehicles: Enabling communication technologies and challenges,”
Sensors, vol. 21, no. 3, 2021, issn: 1424-8220. doi: 10 . 3390 / s21030706.
[Online]. Available: https://www.mdpi.com/1424-8220/21/3/706.

[248] S. Darbha, S. Konduri, and P. R. Pagilla, “Benefits of v2v communication
for autonomous and connected vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 5, pp. 1954–1963, 2019. doi: 10.1109/
TITS.2018.2859765.

[249] J. Cui, G. Sabaliauskaite, L. S. Liew, F. Zhou, and B. Zhang, “Collaborative
analysis framework of safety and security for autonomous vehicles,” IEEE Ac-
cess, vol. 7, pp. 148 672–148 683, 2019. doi: 10.1109/ACCESS.2019.2946632.

[250] C. Jung, D. Lee, S. Lee, and D. H. Shim, “V2x-communication-aided au-
tonomous driving: System design and experimental validation,” Sensors, vol. 20,
no. 10, 2020, issn: 1424-8220. doi: 10.3390/s20102903. [Online]. Available:
https://www.mdpi.com/1424-8220/20/10/2903.

[251] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and A. Kovacs,
“Enhancements of v2x communication in support of cooperative autonomous
driving,” IEEE Communications Magazine, vol. 53, no. 12, pp. 64–70, 2015.
doi: 10.1109/MCOM.2015.7355568.

[252] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University
Press, 2004.

[253] D. Foster, H. Karloff, and J. Thaler, “Variable selection is hard,” in Conference
on Learning Theory (COLT), 2015, pp. 696–709.

[254] W. Weibull, “A statistical distribution function of wide applicability,” ap-
plmech, vol. 18, pp. 293–297, 1951.

[255] B. W. Bolch, “The teacher’s corner: More on unbiased estimation of the stan-
dard deviation,” The American Statistician, vol. 22, no. 3, pp. 27–27, 1968.

[256] A. Dvoretzky, J. Kiefer, and J. Wolfowitz, “Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator,”
The Annals of Mathematical Statistics, pp. 642–669, 1956.

239

https://doi.org/10.3390/s21030706
https://www.mdpi.com/1424-8220/21/3/706
https://doi.org/10.1109/TITS.2018.2859765
https://doi.org/10.1109/TITS.2018.2859765
https://doi.org/10.1109/ACCESS.2019.2946632
https://doi.org/10.3390/s20102903
https://www.mdpi.com/1424-8220/20/10/2903
https://doi.org/10.1109/MCOM.2015.7355568


[257] P. Massart, “The tight constant in the dvoretzky-kiefer-wolfowitz inequality,”
The Annals of Probability, pp. 1269–1283, 1990.

240


	List of Figures
	List of Tables
	Introduction
	Outlier-Robust Estimation
	Fault Detection and Identification
	Task-Aware Perception Monitor
	Contributions
	Structure of the Thesis

	Outlier-Robust Estimation
	Generalized MC and TLS Formulations
	Generalized Maximum Consensus (G-MC)
	Generalized Truncated Least Squares (G-TLS)
	Probabilistic Justification of G-MC and G-TLS
	Relationship Between G-MC and G-TLS

	Inapproximability of G-MC and G-TLS
	Adaptive Trimming (ADAPT) Algorithm
	Gentle Start: Greedy Outlier Rejection
	Beyond Greedy: ADAPT Algorithm

	Graduated Non-convexity (GNC) Algorithm
	Preliminaries on Graduated Non-convexity
	GNC-TLS Algorithm

	Minimally Tuned ADAPT and GNC
	ADAPT-MinT Algorithm
	GNC-MinT Algorithm

	Experiments and Applications
	Mesh Registration
	Shape Alignment
	Pose Graph Optimization (PGO)

	Extended Literature Review
	Outlier-robust Estimation in Robotics and Computer Vision
	Outlier-robust Estimation in Statistics and Control


	Perception Fault Detection and Identification
	Fault Detection and Identification
	Perception System: Modules and Outputs
	Fault Detection and Fault Identification

	Modeling Fault Identification with Diagnostic Graphs
	Diagnostic Tests
	Diagnostic Graph

	Algorithms for Fault Identification
	Inference in the Deterministic Model
	Inference in the Probabilistic Model
	Graph Neural Networks for Fault Identification

	Fundamental Limits
	Deterministic Diagnosability
	Probabilistic Diagnosability

	Experimental Evaluation
	Apollo Auto
	Diagnostic Graph
	Fault Identification: Implementation Details
	Scenarios
	Fault Detection and Identification Results

	Extended Literature Review
	State of Practice
	State of the Art


	Task-Aware Perception Monitoring
	Risk Estimation Formulation
	Plausible Scene Generation
	Estimating Relative Risk
	Introduction to Copulas
	Estimating p-RSR using copulas
	Triggering Safety Maneuvers

	Experimental Results
	Dataset
	Implementation Details
	Results

	Related Work

	Conclusions
	Future Work

	Proofs from chap:robust_estimation
	Proof of th:mle_for_mc
	Proof of th:mle_for_mts
	Proof of th:mle_for_tls
	Proof of th:mle_for_tls-normalAndUni
	Proof of th:relationship_linf
	Proof of th:relationship
	Proof of Theorem 12
	Proof that MTS is Inapproximable
	Proof that MC is Inapproximable
	Proof that TLS problem is Inapproximable
	Proof of th:weightsTLSlimit

	Alternative Justification for TLS
	Bound for Pose Graph Optimization
	Routines for parameter-free algorithms
	`3́9`42`"̇613A`45`47`"603AClustersSeparation algorithm
	`3́9`42`"̇613A`45`47`"603AChi2Fit algorithm
	`3́9`42`"̇613A`45`47`"603ABisection algorithm

	Limitations of ADAPT and ADAPT-MinT
	Limitations of GNC and GNC-MinT
	Limitation of the greedy algorithm
	Pose Graph: g2o vs. SE-Sync
	Proof of thm:risk-bound
	Risk Estimation Cost Functions
	Proof of th:diagnosability
	Proof of thm:characterization-deterministic-diagnosability
	Proof of thm:kappa_of_composition
	Proof of thm:pac-diagnosability-bound
	Proof of thm:corollary-pac-diagnosability-bound
	Using Fault Detection to Prevent Accidents
	References

