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Abstract

Inter-agent relative localization is critical for any multi-robot system operating in
the absence of external positioning infrastructure or prior environmental knowledge.
Motivated by the applications of nuclear non-proliferation, radiological search, and
radiological mapping, this thesis explores leveraging multiple ultra-wideband (UWB)
ranging sensors to produce frequent inter-agent pose estimates with minimal com-
munication overhead. This work is intended as a component of a larger multi-agent
simultaneous localization and mapping (SLAM) system (also known as collaborative
SLAM or CSLAM), where persistent UWB-based inter-agent pose estimates provide
a valuable alternative source of inter-agent loop closures. By collecting and analyzing
real data, we develop improved sensor models, which in turn inform our algorithm
design process – thus, this work produces competitive or improved results to state-
of-the-art approaches with significantly less overall communication. By comparison,
prior work typically supplements noisy UWB range measurements with additional
continuously transmitted data, such as odometry, leading to potential scaling issues
with increased team size and/or decreased communication network capability.

This thesis’s main technical contributions are as follows: (1) Exploration of current
commercially available off-the-shelf (COTS) UWB devices for use in mobile robotics.
By analyzing real data, insights into commonly overlooked sensor quirks are addressed
through our improved sensor models. (2) Development and testing of a novel 2D rela-
tive pose estimation system based on trilateration, leveraging multiple UWB ranging
sensors per agent. (3) Extension of said system to 3D environments. (4) A list of
recommendations and continuations for future work.

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Multi-robot systems can be used to improve the efficiency and robustness of large-

scale tasks such as search & rescue [1], warehouse automation [2], and planetary

exploration [3]. To operate and parallelize effectively, these systems typically need

to know where each agent (and its peers) are located in a common reference frame.

In practice this is often achieved by localizing within an a priori map or using an

external measurement system like GPS or motion capture (mocap) [4, 5]. If these

technologies are unavailable or infeasible, common approaches utilize both relative

localization [6] and multi-agent SLAM [7–10] techniques. Motivated by nuclear non-

proliferation, two such tasks that benefit from said approaches, are radiological search

and mapping.

Radiological search is the task of localizing one or more radioactive point sources

within a large environment. Detection is probabilistic in nature and dependent on

numerous parameters such as source strength, cross sectional area of the sensor, and

overall distance between sensor and source [11]. Additionally, even if a source is

strong, typical shielding weakens externally detectable signals, in turn greatly reduc-

ing the distance for a reliable detection. This makes it infeasible to survey large

areas from afar for shielded sources, and thus groups of up-close searchers can greatly

improve search speeds.

The importance of radiological search made international headlines last year dur-

ing the Western Australian radioactive capsule incident of 2023 [12]. Here, a haz-
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ardous – potentially deadly – capsule of radioactive caesium-137 was lost during

truck transportation. It was safely recovered from alongside a road after approxi-

mately three weeks at large, luckily with no reported injury or loss of life.

A related problem, radiological mapping, occurs when nuclear plumes are mapped

and monitored as they evolve via changing wind patterns and general spread. The

persistent nature and potentially large area of interest makes this a challenging dis-

tributed sensing problem.

The importance of radiological mapping became apparent to the international

public through the tragic Fukushima nuclear power plant disaster of 2011 [13]. Here,

a chain of complications stemming from a significant earthquake and subsequent

tsunami caused the Fukushima Daiichi nuclear power plant to contaminate the area

with radioactive materials. Documents from the National Nuclear Security Admin-

istration (NNSA) [14] show that over the year following the incident, the evolution

of the primary plumes delivered significant radiation doses within an 80km radius,

with lesser plumes traveling significantly beyond – most notably towards the major

population center of Tokyo. According to [15], over 100,000 residents were displaced

during evacuation and official counts show over 2,000 disaster-related deaths. In the

aftermath, the Fukushima nuclear accident has served as a valuable academic case

study to improve future nuclear incident response [16].

These types of nuclear first-response and disaster prevention technologies are of

obvious great importance to our collaborators at the Enabling Technologies & In-

novation (ETI) consortium and Lawrence Berkeley National Laboratory (LBNL), as

well as the Department of Energy (DOE) at large. Some recent relevant work in this

space includes [17–20]. Recently our LBNL collaborators developed a state-of-the-

art system for detecting special nuclear materials (SNM) in real-time, the neutron

gamma localization and mapping platform (NG-LAMP) [21, 22]. For this system to

be effective in real-world first-response and disaster scenarios, it is advised to avoid

reliance on a priori maps or GPS – specifically, the environment may have drastically

changed due to earthquakes, tsunamis, explosions, etc. and GPS can be easily denied

or become unreliable. Thus, simultaneous localization and mapping (SLAM) must

20



be used to navigate the unfamiliar changed environment (see Section 1.2.1).

Leveraging the prior NG-LAMP work, as well as Torgesen’s thesis [23], we aim

to extend NG-LAMP into a coordinated multi-agent system. Specifically, with ad-

ditional agents and effective inter-agent collaboration, an autonomous swarm will

increase search speed (e.g., parallel search), accuracy (e.g., search redundancy), and

robustness (e.g., hardware redundancy) compared to a single agent – invaluable im-

provements due to the often dangerous and time-sensitive circumstances in which

the NG-LAMP may be deployed. Works such as [24–26] highlight the advantages of

multi-agent teaming for rapid radiological point source detection and mapping. Thus,

to enable multi-agent radiological search, NG-LAMP’s onboard SLAM engine must

be extended to support multi-agent collaborative SLAM (CSLAM).

CSLAM differs from SLAM in that each agent makes its own local map, that then

must be joined into a global map via inter-agent loop closures. Conventional SLAM

sensors (e.g., cameras, LiDARs, and IMUs) compute inter-agent loop closures by

visually detecting that two local maps share a point of commonality (i.e., two agents

have “crossed paths”) through a process called inter-agent place recognition. This

has two clear limitations: (1) Agents must intentionally “cross paths” to create inter-

agent loop closures, a sub-optimal search pattern for a time-sensitive mission. (2)

To detect inter-agent loop closures, agents must continuously compare visual data

to find commonalities, leading to potential scaling issues with increased team size

and/or decreased communication network capability.

For these reasons we explore equipping each agent with multiple ultra-wideband

(UWB) ranging sensors as a cost-effective way to produce frequent inter-agent pose

estimates without the need to “cross paths” or strain communication systems. Thus,

our work, when integrated as a component of this larger future CSLAM system,

will allow for frequent inter-agent loop closures without retracing steps, enabling the

creation of better maps in less time, which in turn improves the overall multi-agent

radiological search system. Figure 1-1 demonstrates the current proposed system,

thoroughly developed in Chapter 5.
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Figure 1-1: Diagram of proposed system. Here three agents fly at different altitudes while perform-
ing real-time 3D relative pose estimation. Each agent is equipped with six ultra-wideband (UWB)
antennas, each capable of performing pairwise relative ranging between all other agents’ individual
antennas. By using trilateration, an improved sensor model, and a priori state constraints about al-
titude/roll/pitch, agents can perform instantaneous estimation entirely with locally collected UWB
measurements (i.e., without the need to continuously transmit other measurements, such as odome-
try). Additionally, each agent locally monitors its a priori constraints via downward facing LiDAR
and IMU, and thus only needs to transmit one-off messages with the swarm if these assumptions
change or are violated.
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1.1 Design Priorities

Toward the goal of achieving frequent inter-agent relative pose estimates with a mini-

mal communication footprint, we take the following design approach in the upcoming

chapters. See Chapter 2 for a literature review on UWB in robotics.

1. Each agent is equipped with multiple UWB ranging sensors in a known onboard

configuration. This allows for a fully observable, infrastructure-free, instanta-

neous estimation of inter-agent relative pose with only current range measure-

ments via a nonlinear least squares (NLLS) trilateration optimization problem.

2. Our work is intended as a component of a larger distributed multi-agent collabo-

rative SLAM system with potentially hundreds/thousands of agents and limited

communication network capabilities. Thus, to promote overall system scala-

bility, our work prioritizes a minimal communication footprint over absolute

estimation accuracy – in other words, although our system’s absolute accuracy

would be improved with the continuous sharing of odometry between agents,

we do not want to rely on a centralized server or constant 𝑂(𝑛2) inter-agent

data exchange. This allows the finite communication budget to be allocated

to other mission critical tasks such as swarm coordination/planning, detecting

inter-agent visual loop closures, etc. How the overall system can best leverage

our inter-agent relative pose estimates remains the subject of future work (see

Chapter 6).

3. Since we do not rely on continuously transmitted measurements, we must make

do with only locally collected UWB range measurements, a priori constraints,

and local detections of when assumed state constraints are violated. This

places a high importance on the error model of our UWB ranging sensors –

that is, where other works can overlook or compensate for systematic rang-

ing errors through the fusion of other continuously shared measurements (e.g.,

odometry), our estimation accuracy is highly reliant on understanding and ac-

counting for these idiosyncrasies algorithmically. As such, we propose various
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pose-dependent noise models that would benefit most other UWB-based mobile

robotics work, even if they are not as reliant on it.

1.2 Background Topics

This section provides a gentle introduction to the core concepts utilized in this work.

The provided citations and book recommendations can provide more thorough expla-

nations as needed.

1.2.1 Simultaneous Localization and Mapping (SLAM)

In a surprisingly rare technical feat, the fully expanded name “simultaneous local-

ization and mapping” is actually a very descriptive definition of what SLAM is –

specifically, SLAM is a computational robotics problem where an agent needs to

both build a map of an unknown environment (i.e., mapping) while simultaneously

tracking its location within said map (i.e., localization). In practice, there are many

different types of SLAM, varying based on problem assumptions (e.g., feature-based

vs. feature-less), environmental assumptions (e.g., static environment vs. time vary-

ing/deformable environment), computational machinery (e.g., filter vs. factor graph),

etc. – the extensive survey paper [27] provides an excellent overview and historical

account of the space.

A noteworthy open source full-stack visual SLAM system is 2015’s ORB-SLAM

[28], with its successor, ORB-SLAM3 [29], remaining relevant to this day. Addition-

ally, Kimera [30,31] is a popular SLAM library noteworthy for its novel 3D dynamic

scene graph (DSG) representation, which allows it to capture metric and semantic

aspects of the environment.

There are many references that provide an in-depth mathematical formulation

of SLAM. The textbooks [32] and [33] cover general estimation theory, developing

mathematical prerequisites that culminate in precise formulations of various SLAM

approaches. In contrast, [34] is a text focused exclusively on developing modern

visual SLAM. The book takes great care to discuss both the visual front-end and
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optimization back-end, and comes with source code examples. Alternatively, the open

source course materials for MIT’s Visual Navigation (VNAV) class [35] covers similar

material to [34], but in course structure. Finally, the tutorial paper [36] builds up

factor graph theory, the back-end workhorse of many modern state-of-the-art SLAM

systems. The related hands-on tutorial [37] is a shorter alternative formulated as a

tutorial for GTSAM [38], a popular back-end optimization library.

Collaborative SLAM (CSLAM) is a multi-agent extension to SLAM, with some

notable examples being DOOR-SLAM [39] and Kimera-Multi [7, 8], the multi-agent

extension of Kimera [30,31]. Although implementation details vary between systems,

generally, agents create individual local maps that are then placed into a common

reference frame via inter-agent loop closures (i.e., inter-agent relative pose estimates).

For typical visual CSLAM systems, these take the form of visual inter-agent loop clo-

sures, which in turn requires the agents to perform frequent inter-agent place recog-

nition – that is, agents communicate compact bag-of-words representations of their

current viewpoint to see if their maps share a point of commonality (i.e., they have

“crossed paths”). Although these transmissions can be prioritized with estimates of

loop closure detection likelihood, doing this in an intelligent, resource-aware way is a

research topic in itself [40]. As the swarm grows, these techniques can scale poorly,

becoming either more strenuous on the communications or necessitating the omission

of lower priority potential loop closures. Additionally, Chapter 10 of [34] deals ex-

clusively with loop closures and can be helpful for understanding how this thesis can

contribute to an overall SLAM system.
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(a) Localization with an a priori map (b) Landmark SLAM

(c) Single-agent loop closure (d) Visual inter-agent loop closure

(e) Multi-UWB relative pose (f) UWB inter-agent loop closure

Figure 1-2: Visual summary of all core SLAM concepts as they relate to this thesis. Due to the
length of each description, individual subfigures are discussed in Section 1.2.1.
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The high-level core concepts of SLAM as they relate to this thesis are visually

summarized in Figure 1-2 and discussed here:

• Figure 1-2a: Here, we see an agent (i.e., the boat) and three landmarks (i.e.,

the lighthouses). The agent has an a priori map, so it knows precisely where

the landmarks are. It also has known correspondences (i.e., it can identify

which landmark is which). Thus, by taking a measurement with respect to each

landmark, it can solve for its current location. This process is called localization.

• Figure 1-2b: Here, we see an agent (i.e., the boat) and one landmark (i.e., the

lighthouse). The agent does not have an a priori map (i.e., it doesn’t know

where the lighthouse is), but it knows the landmark is stationary. Initially

at 𝑡 = 0, the agent (represented by the black boat) sees the landmark and

takes a measurement with respect to it. The agent then starts moving and

integrating its odometry to estimate its position. Integrating noisy odometry

causes gradual positional drift. Thus, at 𝑡 = 1 the agent thinks it is at the

red dot, when in reality it is at the blue dot. The agent then changes direction

and continues to track and integrate its odometry. Then, at 𝑡 = 2, the agent

initially thinks it is at the red boat, when in reality it is at the blue boat. It

then notices the landmark and takes a measurement with respect to it. The

agent is able to correspond the landmark seen at 𝑡 = 0 and 𝑡 = 2 (i.e., it

realizes it is the same lighthouse), and, since the landmark cannot move and

measurements with respect to it are more certain than integrated odometry,

the agent realizes its positional estimate has drifted significantly. Incorporating

its new landmark measurement, it updates its positional estimate to the green

boat location. We note that while the updated estimated location (i.e., the

green boat) is not the same as the true location (i.e., the blue boat), it is a

significantly better estimate than the initial 𝑡 = 2 estimate (i.e., the red boat).

This process of building a map of landmarks and localizing with respect to it is

called simultaneous localization and mapping (SLAM).

• Figure 1-2c: Here, we see an agent (i.e., the boat) and one landmark (i.e.,
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the lighthouse). The agent does not have an a priori map (i.e., it does not

know where the lighthouse is), but it knows the landmark is stationary. The

agent (initially at the black boat), starts moving and integrating its odometry

to estimate its position. Integrating noisy odometry causes gradual positional

drift. At some later time, the agent thinks it is at some arbitrary position (i.e.,

the red boat), but by performing place recognition, it realizes it has actually

returned to its starting location (i.e., the black/blue boat). Since the agent’s

starting position is stationary, it realized it has looped back to a previously

explored location (i.e., it has “closed the loop”). The entire estimated trajectory

can then be updated by constraining the first and last position to be related

by some high confidence relative pose. This process of relating two states by a

non-odometry relative pose constraint is called loop closure and is an important

way to correct drift in a SLAM system. We note this is a distinct and separate

process from the landmark based relation discussed in the previous description –

here, this constraint relates two states directly, whereas the previous description

related two states through a static landmark.

• Figure 1-2d: Here, we see three agents (i.e., the UAVs) each flying along its own

search path constructing an individual local map. Since each agent initially

has no information about where the other agents are relative to itself, and

there is no means to determine an absolute position (e.g., the scenario is GPS-

denied), there is no way to relate the local maps or odometry measurements

between agents. The agents try to perform inter-agent place recognition – if

any agents discover they have “crossed paths” with another (i.e., multiple agents

have visited the same location), there is now a relationship between a pose in

each agent’s local trajectory, an inter-agent loop closure. This relationship now

allows the local maps to be united into a shared reference frame. Additional

inter-agent loop closures can further connect two local maps, but without any

type of absolute position landmarks, a unified map can still suffer global drift

(i.e., if both local maps drifted in similar ways, the agents would not be able
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to recognize this). Since the agents are only equipped with conventional SLAM

sensors (e.g., cameras, LiDARs, and IMUs), inter-agent loop closures can only

be found visually, requiring that agents “cross paths” to discover inter-agent

loop closures. This process is called inter-agent visual loop closures and is how

two local maps are related into a common reference frame in CSLAM.

• Figure 1-2e: The UWB sensors used in this work are relative range sensors (see

Section 1.2.5). Thus, a pair of antennas can only determine an ambiguous 1D

distance between each other – not a relative pose, which is 3-DoF in 2D (i.e.,

𝑥, 𝑦, and yaw) or 6-DoF in 3D (i.e., 𝑥, 𝑦, 𝑧, roll, pitch, and yaw). That being

said, equipping each agent with multiple UWB ranging sensors in specific known

configurations, allows us to instantaneously (i.e., using only current measure-

ments) recover a full inter-agent relative pose (see Section 1.2.3). This process

is additionally highlighted in Figures 4-1 and 1-1 for 2D and 3D respectively.

• Figure 1-2f: Here, we see three agents (i.e., the UAVs) each flying along its own

search path constructing an individual local map. Since each agent is equipped

with multiple UWB ranging sensors in a specific known configuration, each

agent continuously receives full inter-agent relative pose measurements. These

UWB-based inter-agent loop closures allow the local maps to be united into a

shared reference frame without the need to “cross paths” (i.e., as with visual

inter-agent loop closures). In the context of time-sensitive radiological search,

this allows the creation of a unified CSLAM map, without requiring agents to

“cross paths” for visual inter-agent loop closures.

1.2.2 Instantaneous Localization Problems

The goal of localization is to estimate an agent’s pose (i.e., position and orientation)

within a frame. Instantaneous localization algorithms are often geometric (and thus

nonlinear) in nature, but have the advantage of being model-free and requiring only

current-time measurements [41]. Typical approaches leverage a set of angular, range,
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or pseudorange1 measurements, which in turn allows one to produce a position esti-

mate via triangulation, trilateration, or multilateration2 respectively [43]. Examples

of such systems include radar and GPS [44]. In reality, these measurements are actu-

ally indirectly observed by directly measuring features of a received signal, for example

received signal strength (RSS) – that is, to indirectly observe angular, range, or pseu-

dorange measurements, what is directly measured is actually often angle of arrival

(AOA), time of arrival (TOA), or time difference of arrival (TDOA) respectively [45].

In robotics, these signals can take many possible forms: acoustic [46], Bluetooth

Low Energy (BLE) [47], Radio Frequency Identification (RFID) [48], WiFi [49,50], or

ultra-wideband (UWB) (see Section 1.2.5). Survey paper [51] provides an overview on

indoor positioning systems and how different measurement technologies (i.e., WLAN,

GSM, Bluetooth, UWB, etc.) can be used to compute position.

There are many references that provide an in-depth mathematical handling of

these localization topics. The textbook [44] is an exhaustive resource on all things

position location system related. Alternatively, specialized textbooks such as [52,53]

are primarily concerned with GPS, whereas [54] is mostly an introductory linear

algebra book with a special focus on GPS. Furthermore, early discussions can be

found in old laboratory technical reports for various satellite systems [55–57].

1.2.3 Trilateration for Pose Estimation

Trilateration is ultimately a fundamental 2D/3D geometry problem built upon the

intersection of circles/spheres respectively [52,53,58,59].

To understand how we can reconstruct relative pose with trilateration, we consider

two agents, a base and a target, each equipped with multiple relative range sensors in

a sufficient known configuration. Since the base agent is sufficiently equipped, it can

estimate the position of one of the target’s antennas through standard trilateration.

That process can then be carried out independently for each target antenna. This in

1Here, pseudorange is a biased range measurement resulting from an unknown time offset [42].
It is commonly associated with GPS and other TDOA-based multilateration positioning systems.

2Multilateration can also be called hyperbolic positioning [43].
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(a) 2D environment, 1 antenna per agent: Cannot
distinguish between any poses along the circle

(b) 2D environment, 2 antennas per agent: Cannot
distinguish between 2 poses, reflection over blue line

(c) 2D environment, 3 antennas per agent: Unique
solution, fully observable

(d) 2D environment, 4 antennas per agent: Unique
solution, fully observable

Figure 1-3: Diagrams showing agent 𝐴’s ability to observe agent 𝐵’s pose in a 2D environment when
each is equipped with 𝑖 = {1, 2, 3, 4} antenna(s) respectively. Antennas maximally span their space.
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(a) 3D environment, 1 antenna per agent: Cannot
distinguish between any poses along the sphere

(b) 3D environment, 2 antennas per agent: Cannot
distinguish between any poses along the circle

(c) 3D environment, 3 antennas per agent: Cannot
distinguish between 2 poses, reflection over blue plane

(d) 3D environment, 4 antennas per agent: Unique
solution, fully observable

Figure 1-4: Diagrams showing agent 𝐴’s ability to observe agent 𝐵’s pose in a 3D environment when
each is equipped with 𝑖 = {1, 2, 3, 4} antenna(s) respectively. Antennas maximally span their space.
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turn gives us several trilaterated points on the target agent. Since the target’s antenna

layout is known and sufficient, it allows us to determine how it must be positioned

and oriented without any ambiguities. Thus, for relative pose to be observable from

relative range measurements, we must have: (1) The base agent being able to observe

the location of a single target antenna. (2) Relative pose being observable from two

sets of points with known correspondences (i.e., the known configuration and the

measured points).

Observability of a Single Antenna: In 3D trilateration, a minimum of 4 non-

coplanar antennas are required to uniquely determine a target’s position [60]. That

being said, 3 or more planar (but not colinear) antennas produce only a pair of solu-

tions that are a reflection across the antenna plane (see Figure 5-1c). This ambiguity

can be resolved with a simple 𝑧 measurement (i.e., altitude). In 2D, these require-

ments are simplified to 3 nonlinear antennas [52].

Observability of Pose from Correspondences: Common in camera-robot reg-

istration, Horn’s Method is a closed-form solution for finding the pose between two

Cartesian coordinate systems from a set of corresponding point pairs [61–63]. Specifi-

cally, given exactly 3 planar points in two frames with known correspondences, Horn’s

Method fully specifies the 3D translation and orientation. Thus, by using trilatera-

tion to measure 3 points in a known configuration on our target, we can recover full

pose. Additionally, we know this must also work in 2D since the 2D system requires

3 nonlinear (i.e., planar) antennas, thus satisfying Horn’s Method.

Thus, we have reasoned 3D pose is observable when each agent has either 4 non-

coplanar antennas, or 3 nonlinear antennas with a altitude measurement. Likewise,

2D pose is fully observable when each agent has 3 nonlinear antennas. In the presence

of noise, we will have to solve an optimization problem (e.g., nonlinear least squares)

instead of a closed form algebraic expression. That being said, this also allows us to

add extra measurements, for redundancy and resilience against individual erroneous

measurements. Figures 1-3 and 1-4 show the observability of different numbers of

antennas in 2D environments and 3D environments respectively.
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1.2.4 Dilution of Precision (DOP)

Most commonly associated with GPS, dilution of precision (DOP) is a trilateration

(or multilateration) sensitivity analysis for quantifying how 1D ranging errors propa-

gate to 2D/3D point estimation error [64]. Specifically, given trilateration’s inherent

nonlinearity, even identically noisy 1D range measurements can produce significantly

different 2D/3D positional uncertainties – this is entirely determined by the given

base station and target geometry (Figure 1-5). A lower DOP is good (i.e., less uncer-

tainty), while a higher DOP is bad (i.e., more uncertainty). In general we note that

increasing the “baseline” distance between base stations (i.e., the antenna separation

on a single vehicle), or having a target closer to the base stations (i.e., decreasing dis-

tance between two vehicles), reduces trilateration’s 2D/3D uncertainty (i.e., lowers

DOP). See Figure 1-5 for several examples of DOP in a 2D scenario.

DOP can also make comparing results between works challenging. Specifically,

even if two systems implement the exact same algorithm, if the baselines or operating

ranges are vastly different, we would expect to see changes in the absolute accuracy

of the trilateration-based results – this can be seen in action in [65], where otherwise

identical configurations with larger baselines yield improved accuracy.

There are many references that provide an in-depth mathematical handling of

DOP. The article [64] provides a brief but complete introduction, while [66] provides

an analytic DOP analysis. The pair of volumes [67, 68] are near exhaustive on all

things GPS. See [69, 70] for two very relevant UWB robotics papers discussing DOP

as it pertains to 2D UWB localization.

1.2.5 Ultra-Wideband

Ultra-wideband (UWB) is a multipurpose radio technology named for its character-

istically large bandwidth [71, 72] – by definition “-10 dB bandwidth of at least 500

MHz or a -10 dB fractional bandwidth greater than 0.2” [71].

Within the last decade, ultra-wideband (UWB) has matured into a reliable, in-

expensive, and commercially available RF solution for data transmission, relative
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(a) DOP with small baseline (b) DOP with medium baseline

(c) DOP with large baseline (d) DOP with disproportionately large baseline

Figure 1-5: Simple example demonstrating dilution of precision (DOP) in several 2D ranging scenar-
ios. Here, the red and green points are the base stations, and have a baseline distance of 𝑑. Both the
red and green points measure the distance to the blue point with a consistent uncertainty of ±1m.
The position of the blue point is estimated by intersecting the measurement uncertainties, creating
a blue feasibility region. Despite having the same 1D ranging uncertainty in all scenarios, we see the
shape and size of the feasibility region changes. In general we see as the baseline gets larger (i.e.,
(a) → (b) → (c)), the estimation uncertainty shrinks (i.e., the DOP decreases). That being said,
(d) shows that with disproportionately large baseline, DOP can begin to increase again. Ultimately,
this shows when placing multiple antennas on each robot, we want to maximize the baseline distance
to give us lowest uncertainty (i.e., best DOP geometry).
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ranging, and localization [73] – UWB now comes as standard issue in many popular

smartphone devices [74]. For robotics, UWB has several properties of note: preci-

sion of approximately 10cm, ranges up to 100m, resilience to multipath, operates in

non-line of sight (NLOS) conditions, low power consumption, and 100Mbit/s commu-

nication speeds [75]. Recent devices even extend the recommended and operational

ranges to 300m and 500m respectively [76]. Nevertheless, UWB measurements are

not immune from ranging errors or noise (see Chapter 3), the modeling and correction

of which is an active area of research [77–80]. See Chapter 2, for a discussion of how

UWB is being used in robotics research.

1.3 Thesis Contributions

Following a literature review of UWB in robotics (Chapter 2), this thesis’s main

technical contributions are as follows:

(a) Exploration of current commercially available off-the-shelf (COTS) UWB de-

vices for use in mobile robotics. By analyzing real data, insights into commonly

overlooked sensor quirks are addressed through our improved sensor models.

(Chapter 3)

(b) Development and testing of a novel 2D relative pose estimation system based on

trilateration, leveraging multiple UWB ranging sensors per agent. (Chapter 4)

(c) Extension of said system to 3D environments. (Chapter 5)

(d) A list of recommendations and continuations for future work. (Chapter 6)

This thesis is based on the following papers [81,82].

36



Chapter 2

Related Work

The survey [83] provides a general synopsis of aerial swarm robotics, while [84] is an

overview of current UWB usage in robotics and IoT pipelines. While this thesis uses

UWB for infrastructure-free inter-agent relative measurements, UWB technology can

be leveraged by robotics in multiple seemingly orthogonal ways. First, in Section 2.1

we will briefly review various uses of UWB in robotics. Then in Section 2.2, we will

discuss Table 2.1, which highlights the unique capability gap our work fills, as well as

the most immediately relevant works to this thesis.

2.1 UWB in Robotics

UWB in mobile robotics naturally separates into several categories, each of which we

discuss briefly.

Known Anchor Points: In these systems a target with a single UWB tag is localized

by several UWB anchor points at known global locations via trilateration. Anchors

are often assumed to be static with respect to each other. Since the target has a

single tag, the target’s orientation is not observable from just UWB measurements.

These works produce improved state estimation results by fusing the global UWB

position estimation with some combination of dynamics models, odometry (e.g. wheel

odometry or visual odometry), and IMU data [85–90]. A recent outlier [91], uses an

agent equipped with multiple UWB tags to estimate continuous-time relative pose
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from several static anchor points – by modeling the system as a Gaussian process,

they achieve comparable performance to state-of-the-art sensor-fusion methods with

only UWB ranging measurements.

Static Features: These works assume there are one or more static UWB anchors

with not necessarily known positions. The observed anchor(s) are treated like static

SLAM feature(s) and fused with odometry data to perform localization [49, 92, 93].

This is also comparable to [50], but WiFi hotspot relative bearing measurements are

used instead of UWB ranging measurements. Also in this category is [3, 94], where

the robot deploys a stationary UWB node during exploration, effectively marking a

static point in the environment useful for future loop-closure detection.

Swarm Ranging with GPS: Many projects – including ours – motivates UWB as

a localization tool in GPS-denied environments. Works like [95–97], however, fuse

UWB range measurements with GPS for improved results. The inclusion of absolute

position information differentiates how these works generally leverage their UWB

measurements. For instance, [95] uses a UWB pose estimate to adaptively improve

GPS performance.

Observability Results: Mobile agents, each equipped with one (or possibly two

in the case of [98]) ranging tags, take several temporally spaced relative range mea-

surements while each traversing some trajectory. Agents track their local trajectory

through odometry or IMU dead reckoning and share it with other agents. As shown

in [6, 99], if the trajectories have sufficient relative motion then the relative pose

between agents can be recovered.

Correcting UWB Ranging Errors: Since UWB manufacturers typically hide their

algorithmic choices and calibration parameters, works modeling and correcting the

ranging errors or design calibration schemes are valuable [77–80]. Additionally, recent

papers with large datasets, like [100], have started to include UWB data, making it

easier for future work in this space.

Range Aided Optimization Relaxations: In an increasingly popular trend, UWB

relative range measurements are being incorporated into sophisticated optimization
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relaxation protocols [101–104]. Specifically, with the addition of range measurements,

problems can be carefully relaxed to semi-definite programs. This allows the original

extremely non-convex problems to become less dependent on good initialization.

Multi-Tag Pose Estimation: Mobile agents are each equipped with multiple non-

colocated tags at known relative positions on the agent. With sufficient tags, relative

position and orientation can be observed with UWB measurements alone [105–107].

Furthermore, additional measurements, such as odometry, optical flow, IMU readings,

and altitude measurements can be communicated between agents and fused with

the UWB measurements, as in [108] and [109], improving result and observability

respectively. Ref. [108] presents work most similar to our proposed 2D solution in

Chapter 4. Their work differs by using a particle filter and needing to continuously

share odometry between agents. The similarities between the hardware setup and

experiments allow for a useful baseline of comparison for our experimental results in

Chapter 4. A recent outlier [110], only uses one tag per agent, but achieves behavior

like multi-tag by placing said tag on a large wheel rotating about the gravity vector.

Miscellaneous Works of Interest: Steup et al. [111] provides an interesting full

pipeline approach, where each agent’s role alternates between active swarm mem-

ber and static anchor node. This provides an interesting way to reduce global map

drift by having fixed UWB landmarks. Although not directly relevant to this thesis,

architectures like these are relevant to future radiological search systems.

Wang et al. [112] uses a combination of UWB range and Wi artFi angle measure-

ments as a way to exclude computation of unlikely inter-agent loop closures. This

has similarities to ways our system can be leveraged by the larger CSLAM system.

2.2 Discussion of Most Comparable Work

All works in Table 2.1 use UWB for inter-agent ranging, and are thus most similar

to our work in Chapters 4 and 5. That being said, it is challenging to directly com-

pare numerical results given the vastly different operating assumptions and priorities

– specifically access to additional sensors (e.g., cameras, LiDAR, etc.), the size of
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Table 2.1: Comparison of relevant related works to highlight the capability gap this letter fills. Color
emphasizes how a work fits in with our goals. Specifically, green indicates our needs are met, yellow
indicates our needs are partially met, and red indicates our needs are not met.

2D / 3D Related Work # UWB Per
Agent UWB Noise Model Data Exchanged

2D

Guo et al.
(2020) [113] Single Bounded Error Assumption UWB + Velocity

Cao et al.
(2021) [108] Many (4) NLLS UWB + Odometry

Zheng et al.
(2022) [69] Many (2 or 4) ZM Gaussian + NLOS Rejection UWB + VIO

Zhang et al.
(2023) [70] Many (2 or 4) ZM Gaussian + Outlier

Rejection
UWB + Point Clouds + Odom +

Keyframes

[Chapter 4]
(2022) [81] Many (4) NLLS + Data Informed Sensor

Model UWB

3D

Xu et al.
(2020) [114] Single ZM Gaussian UWB + VIO + Visual Tracks

Qi et al.
(2020) [97] Single ZM Gaussian UWB + IMU + GPS Heading

Xianjia et al.
(2021) [65] Many (2 or 4) NLLS UWB

Xu et al.
(2022) [115] Single ZM Gaussian + Occlusion

Rejection UWB + VIO + Visual Tracks

Xun et al.
(2023) [116] Single ZM Gaussian UWB + IMU + IR Visual Tracks

[Chapter 5]
(2023) [82] Many (4 or 6) NLLS + Data Informed Sensor

Model
UWB + One-Off Assumption

Violations

agents with respect to their environment (see Section 1.2.4), and overall communi-

cation model (e.g., unlimited vs constrained communication) all significantly change

performance and scalability. To contextualize this work, we discuss [70] and [115]

since they are the most complete and comprehensive 2D and 3D UWB systems re-

spectively, [116] since it has a unique compact hardware solution, and [65] since it is

the most directly comparable to this work.

Zhang et al. [70] presents a centralized 2D range-aided cooperative localization

and consistent reconstruction system, merging a tightly coupled visual odometry and

multi-tag ranging front-end with a pose graph optimization (PGO) back-end. This

work differs from ours by being 2D and relying on continuous transmission of point

cloud, odometry, and keyframe information.

Omni-swarm [115] is a decentralized 3D swarm estimation system. This work dif-

fers from ours by relying primarily on visual tracks of neighboring agents from each

agent’s omnidirectional camera – omitting UWB measurements only degrades esti-

mation by approximately 0.01m. Additionally, each agent has only a single UWB tag

and requires continuously sharing measurements between all pairs of agents, scaling
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poorly with larger swarms.

CREPES [116] presents a custom compact hardware module, which tightly couples

an IMU, UWB, IR LEDs, and IR fish-eye camera. The measurements are fused into 6-

DoF relative pose via a centralized error-state Kalman filter (ESKF) and PGO, while

also having the ability to provide an instantaneous estimate from a single frame of

sensor measurements. This work differs from ours by relying heavily on visual tracks

over UWB (similar to [115]). Additionally, the system relies on continuously trans-

mitted measurements. Thus the state-of-the-art approaches in [70, 115, 116] achieve

APE and AHE on the order of 0.10m and 1∘, respectively, but they require additional

sensors (e.g., LiDAR, fish-eye cameras, etc.) that must continuously transmit mea-

surements, making them scale poorly to scenarios with larger swarm sizes or reduced

communication throughput.

Xianjia et al. [65] is the most similar to our work in Chapter 5 (i.e., 3D environ-

ment, multiple UWB tags per agent, and using only UWB measurements). Thus we

directly compare their work to our results in Chapter 5.
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Chapter 3

UWB Sensors & Noise Modeling

This section overviews our hardware selection process and sensor noise modeling.

These sensors and noise models are used throughout the rest of this thesis.

3.1 Hardware Selection

Figure 3-1 shows all sensors that, at some point, have been purchased and tested

in some capacity. When purchasing the first batch in 2021, only three sensors were

available – the Nooploop LinkTrack P, DWM1000 (and its variants), and the Pozyx

UWB Tag. While the DWM1000 is not very user friendly (i.e., it is meant as a

module to be soldered onto a circuit board), the Pozyx UWB Tag is a end-user board

built with the same integrated circuit as the DWM10001. Ultimately, we settled

on the LinkTrack P because: (1) the LinkTrack P has a slim form factor (5.5cm x

3cm x 0.75cm), light weight (33g), and easy mounting via a 1/4-20 screw hole. (2)

Nooploop provides an out of the box ROS driver. (3) In our trials using 8 tags, the

LinkTrack P provided measurements at steady 50Hz, while the Pozyx Developer Tag

fluctuated around 5Hz – they both had similar accuracy. (4) Most works in Table 2.1

use a version of the Nooploop LinkTrack P [76] for UWB ranging, except for [65,113],

which use the PulsON 440 and an unspecified device respectively.

1According to [116], the LinkTrack P modules are also based on DW1000 chips. We have not,
however, been able to verify this in the official documentation.
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(a) Nooploop
LinkTrack P2

(b) Nooploop
LinkTrack P-B3 (c) DWM10004 (d) DWM30005

(e) DWM3000EVB6 (f) Pozyx UWB Tag7 (g) ESP32 UWB
DW30008

Figure 3-1: Commercially available off-the-shelf UWB sensors considered for this work.

3.2 Nooploop LinkTrack P and P-B – Helpful Notes

This section contains miscellaneous notes regarding the LinkTrack P and P-B and its

configuration settings.

• The LinkTrack P advertises 1D and 2D typical positioning accuracy is 10cm,

and 3D typical positioning accuracy is 30cm [76], maximum of 200 concurrent

nodes, maximum refresh rate of 200Hz (refresh rate drops as nodes increase).

• The work in Chapter 4 uses the LinkTrack P. The work in Chapter 5 changed

to use the newer LinkTrack P-B due to supply issues. According to [117],

upgrading from the LinkTrack P (retroactively referred to as the P-A) to the

P-B did the following: (1) Maximum communication distance: 120m → 500m;

(2) Recommended distance: 40m → 300m; (3) Frequencies: 4,4.5,6.5GHz →
2Image reference: https://www.nooploop.com/wp-content/uploads/2020/03/LinkTrack-P_800.png, retrieved August 15, 2023
3Image reference: https://www.nooploop.com/media/uploads/2023/02/LinkTrack-P-B-600x600.png, retrieved August 15, 2023
4Image reference: https://www.mouser.com/images/marketingid/2020/img/159215248.png, retrieved August 15, 2023
5Image reference: https://www.mouser.com/images/marketingid/2020/img/136958127.png, retrieved August 15, 2023
6Image reference: https://www.mouser.com/images/marketingid/2020/img/177838291.png?v=070223.0226, retrieved August 15, 2023
7Image reference: https://global-uploads.webflow.com/612f4c781c90a5752d371287/615ac829a3248542e5e300ef_Developer-Tag.webp, re-

trieved August 15, 2023
8Image reference: https://www.makerfabs.com/image/cache/makerfabs/DW3000/ESP32%20UWB%20DW3000-1000x750.jpg, retrieved August 15,

2023
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4,4.5GHz; (4) Small increase in physical size and weight (see Figures 3-1a and

3-1b). (5) When upgrading from LinkTrack P to LinkTrack P-B, we saw a

decrease in mean bias error.

• All experiments are run in Channel 3 (3,744-4,243.2MHz) [118].

• The LinkTrack P has three different modes: (1) Local Positioning (LP) Mode:

Sensors are configured as either mobile tag or static anchor. (2) Distributed

Ranging (DR) Mode: All sensors are configured as nodes and perform pair-

wise relative ranging with all sensors. (3) Digital Transmission (DT): For data

transmission only. All experiments are run in Distributed Ranging (DR) Mode

to enable measuring relative range without stationary anchors.

• In accordance to the LinkTrack manual [119], all antennas are all positioned

upright, since their 𝑥𝑦-plane has better omni-directivity than their 𝑧-axis.

• As per [119], when RSSI is less than 6dB, it is likely to be in the line-of-sight

state, and when greater than 10dB, it is likely to be in the non-line-of-sight or

multipath state. Despite this, we consistently observe fp_rssi and rx_rssi

of approximately −81.0 dB and −78.0db respectively, with a 0.5dB minimum

resolution.

• When in DR mode the sensor appears to use a time-division multiple access

(TDMA) two-way ranging (TWR) scheme under the hood. TWR schemes have

the advantage of removing the need to synchronize clocks between sensors while

also observing the distance on both ends [120].

3.3 LinkTrack P Noise in 2D Environments

These experiments were conducted as part of [81] and are used in Chapter 4.
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(a) (b)

(c) (d)

Figure 3-2: Histograms showing the measurement error for two separate data collections of 𝑧11
(50Hz for 30s). Measurement error 𝑧11 is the difference between the UWB range measurement
and ground truth distance as measured by a Vicon system. Histogram (a)/(b) correspond to the
error from the direct line-of-sight/obstructed configuration shown in (c)/(d) respectively. Neither of
these distributions would be well-modeled as Gaussian. The orange lines and green lines show the
calculated sample mean and ± two standard deviation boundaries respectively. With no obstruction,
we see an average of 23cm over-estimation of 𝑧11, and when obstructed, this increases by 41cm, to an
average of 64cm over-estimation. Thus the error is not zero mean (and the mean increases further
when obstructed).

3.3.1 Range Measurement Bias & Noise

Experiments were performed to characterize the UWB ranging noise. Figure 3-2a

shows a sample of measurement error between two stationary UWB nodes with di-

rect line-of-sight (LOS), as shown in Figure 3-2c. Three important observations are:

(1) Contrary to the common measurement noise assumption, the error appears nei-

ther zero mean nor Gaussian (i.e. shown sample fails the scipy.stats.normaltest

function [121], an implementation of the D’Agostino and Pearson’s normal test [122],

with a 𝑝-value of 2.36× 10−6). (2) Sensors tend to consistently over-estimate the rel-

ative distance between nodes. (3) Within our operating environment, the mean error

between a pair of unobstructed UWB nodes remains approximately constant inde-
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pendent of distance between nodes or when data was collected. Additional evidence

of this claim can be seen in unobstructed portions of Figures 3-3b-3-3e, a follow-on

experiment motivated in Section 3.3.2.

3.3.2 Antenna Obstruction & Interference

Since UWB relative range measurements are a TOA measuring scheme, any delays on

receiving a signal (i.e. propagating through an obstruction) will result in a ranging

over-estimation. This helps make sense of the substantial 41cm increase of mean error

shown in Figures 3-2b and 3-2d when compared to Figures 3-2a and 3-2c. Further-

more, the LinkTrack P manual [119] offers several notes regarding obstruction: (1)

Signal can propagate through 2 or 3 solid walls, but each wall introduces approxi-

mately 30cm of error and a decreased maximum ranging distance. (2) The distance

between each node and the obstruction affects ranging accuracy; the best results occur

when the obstruction is equally spaced between the antennas, the worst results occur

when the obstruction is close to one of the antennas. This presents a noteworthy

concern: as agents move relative to each other, fixed obstructions on the robot, such

as a third antenna, can pass between the ranging pair causing an obstructed mea-

surement. This obstruction is worsened by its guaranteed proximity to at least one

of the ranging antennas. This eclipse-like effect can be observed in Figures 3-3b-3-3e,

where clear over-estimation error spikes occur predictably at specific relative heading

for each pair of antennas.

While it is difficult to pinpoint the exact cause of this obstruction, it appears

to be a combination of proximity to other antennas, metal, and other components.

Though it would be possible to mount these sensors in a different configuration to

mitigate this, in reality there are times when obstructions cannot be avoided. Thus,

we will treat this interference as part of the given hardware setup which in turn must

be mitigated algorithmically.9

9Inspection of the received RSSI does not appear to provide any meaningful way to detect the
current obstruction. As per [119], when RSSI is less than 6 dB, it is likely to be in the line-of-
sight state, and when greater than 10dB, it is likely to be in the non-line-of-sight or multipath state.
Despite this, we consistently observe fp_rssi and rx_rssi of approximately −81.0 dB and −78.0db
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(a)

(b) (c)

(d) (e)

Figure 3-3: (a) Weight function primitive 𝑤(𝜓) with parameters 𝜎 = 30∘ and 𝜌 = 90∘ (see Eq. 4.4).
Colors represent the segments of the piecewise function, and align with the colors in Figure 4-2.
(b-d) Plots of 𝑧11 through 𝑧14 with respect to 𝑅𝐵 ’s relative heading. Shown data is all from the
same data collection where 𝑅𝐴 was kept stationary while 𝑅𝐵 performed 5 in place counter-clockwise
revolutions at approximately 60 deg/s. Each revolution is denoted in a different color to highlight
this noise pattern is repeatable. The overlaid weight function 𝑤𝐵,𝑗(x) (see Eq. 4.7) shows that
areas with error spikes correspond to relative headings correctly predicted and devalued by 𝑤𝐵,𝑗(x).
Additionally, when the error is not spiking, we see additional evidence that the noise is not zero
mean, as discussed in Section 3.3.1.
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3.4 LinkTrack P-B Noise in 3D Environments

These experiments were conducted as part of [82] and are used in Chapter 5.

The following subsections motivate our hardware and algorithmic choices for op-

erating in 3D (Section 5.1).

3.4.1 Characterizing UWB Noise

Long Tail Distributions: Contrary to common noise assumptions in Table 2.1,

individual UWB ranging errors appear neither zero mean nor Gaussian. Instead,

error distributions have long positive tails (see Figure 3-4a). A trend towards positive

bias can be attributed to the many ways positive ranging error can be introduced to a

UWB measurement (e.g., change of propagation medium, multipath). Furthermore,

installing SMA cables between the RF device and antenna adds a consistent positive

bias to all measurements.

Sensitivity to Obstruction: Antenna obstruction (i.e., NLOS conditions) intro-

duces positive bias and increased variance to collected ranging measurements (see

Figure 5-2b). While the UWB protocol is resilient to multipath and NLOS, UWB

ranging is not completely absolved of these concerns. Furthermore, auxiliary met-

rics, like RSSI, do not appear to meaningfully indicate an obstructed measurement.

Ref. [69,70,81,115] address this by rejecting suspect measurements, whether detected

via statistical tests, robust loss functions, or hardcoded rejection criteria.

Dependence on Relative Pose: Measurement noise is dependent on relative pose

between antennas. The interplay of antenna attenuation patterns is a core concern of

RF designers, but gets understandably overlooked by many end users. The LinkTrack

P series comes equipped with a standard dipole antenna which we would expect to

produce the behavior observed in Figure 3-4b when aligned upright [76] – specifically,

approximately uniform performance within an 𝑥𝑦-plane (i.e., varying azimuth) and

degraded performance outside the ground plane 𝑧 = 0 (i.e., non-zero elevation). We

note that both the mean bias and variance change with elevation. A relationship to

respectively, with a 0.5dB minimum resolution.
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elevation is noted in [115], although it is attributed to NLOS conditions similar to

Figure 5-2b, but [115] chooses to address this by simply omitting range measurements

with more than 37∘ relative elevation (feasible only because of their reliance on other

measurements).
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(a)

(b)

Figure 3-4: Plots demonstrating the UWB noise and geometry characteristics outlined in Section 3.4.
(a) Histogram of our entire set of UWB measurements binned by range error. Demonstrates a non-
zero mean and long tail (i.e., violates the zero mean Gaussian assumption that is typically used). (b)
Same data plotted as error with respect to relative elevation showing that the measurement error’s
mean and variance change significantly with relative elevation. The dotted blue line represents a
learned 6-degree polynomial fit of measurement bias.
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Chapter 4

UWB-Based Inter-Agent Relative

Pose Estimation in 2D

This chapter is based upon [81]. In this chapter we use UWB to demonstrate an

instantaneous multi-tag approach to relative 2D pose estimation that achieved supe-

rior mean position accuracy and competitive performance on other metrics to Cao et

al. [108] (the most comparable state-of-the-art work) using only local UWB measure-

ments.

4.1 Optimization Formulation

The definitions and terminology presented here are specific to Chapter 4.

Consider two robots, RobotA and RobotB, denoted as 𝑅𝐴 and 𝑅𝐵 respectively.

Labels are assigned such that 𝑅𝐴 is trying to estimate 𝑅𝐵’s relative pose with respect

to 𝑅𝐴’s reference frame. Let 𝑅𝐵’s relative pose be described by the state vector x.

Each robot has 𝑁 UWB range sensors, uniquely identified with an integer index from

the set 𝑆 := {1, . . . , 𝑁}. Assuming 𝑅𝐴 and 𝑅𝐵 have the same antenna layout, the

relative position vector of the 𝑘th antenna of a robot with a pose vector of T is defined

as 𝛼𝑘(T). Since we are in 𝑅𝐴’s reference frame, 𝛼𝑖(0) gives the position vector of

𝑅𝐴’s 𝑖th antenna, while 𝛼𝑗(x) gives the position vector of 𝑅𝐵’s 𝑗th antenna. Thus,

let 𝑑𝑖𝑗 be the distance between 𝑅𝐴’s 𝑖th antenna and 𝑅𝐵’s 𝑗th antenna when 𝑅𝐵 is
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Figure 4-1: Diagram of two agents, RobotA and RobotB, each with their respective relative coordinate
frames and UWB sensors labeled. Relative range measurements are shown between each pair of inter-
agent antennas in blue (N.B.: the dashed and dotted blue lines are only differentiated for the sake
of visual clarity, they represent the same type of measurements). These 16 unique measurements
are denoted as 𝑧𝑖𝑗 where 𝑖 and 𝑗 are the corresponding antenna indices for RobotA and RobotB
respectively.

at x, such that:

𝑑𝑖𝑗(x) = ‖𝛼𝑖(0)−𝛼𝑗(x)‖2 (4.1)

For each discrete timestep 𝑡, 𝑁2 raw relative range measurements are taken, one per

unique pair of 𝑅𝐴 and 𝑅𝐵 antennas. These measurements are denoted as 𝑧(𝑡)𝑖𝑗 where

𝑖 is 𝑅𝐴’s 𝑖th antenna, 𝑗 is 𝑅𝐵’s 𝑗th antenna, and 𝑡 is the given discrete timestep.

Note that as long as we use only our locally collected 𝑧(𝑡)𝑖𝑗 measurements, we will not

require any additional information be exchanged between agents.

4.1.1 Calibrated Range Measurements

As noted in Section 3.3.1, raw UWB relative range measurements 𝑧(𝑡)𝑖𝑗 are subject to

biases between pairs of antennas 𝜇𝑖𝑗 as well as general non-Gaussian noise. Thus,
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we can improve quality and robustness of our UWB relative range measurement by:

(1) Performing a one-time calibration process to measure the consistent measurement

bias 𝜇𝑖𝑗 between nodes 𝑖 and 𝑗 respectively (implementation discussed in Section

4.2.3). (2) Smoothing sequential UWB relative range measurements with a simple

moving average filter, which should make the signal more closely track the mean while

introducing a slight signal delay.

Let 𝑧(𝑡)𝑖𝑗 be a calibrated relative range measurement,

𝑧
(𝑡)
𝑖𝑗 = −𝜇𝑖𝑗 +

1

𝑊

𝑊−1∑︁
𝑘=0

𝑧
(𝑡−𝑘)
𝑖𝑗 . (4.2)

Here we are effectively running a moving average filter over the 𝑊 most recent 𝑧𝑖𝑗

range measurements and subtracting out the mean bias 𝜇𝑖𝑗. The choice of 𝑊 can be

selected to trade-off between noise robustness and signal delay, but choosing it to be

too large will make rapid relative yaw maneuvers unobservable (i.e., an in-place 360∘

spin within a single 𝑊 period would appear as if the sensor did not move).

4.1.2 2D Formulation - Simple Trilateration on (𝑥, 𝑦, 𝜃)

Let 𝑅𝐴 and 𝑅𝐵 be operating in 2D space, making 𝑅𝐵’s relative pose be described as

x = [𝑥, 𝑦, 𝜃]𝑇 , where 𝑥, 𝑦, 𝜃 are the relative 𝑥-coordinate, 𝑦-coordinate, and heading

(yaw) respectively. Let each robot be equipped with 𝑁 ≥ 3 UWB relative range

sensors and have their antennas arranged in a non-degenerative layout. Consider the

nonlinear least square (NLLS) trilateration pose estimation problem:

argmin
x

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆

(︁
𝑑𝑖𝑗(x)− 𝑧(𝑡)𝑖𝑗

)︁2
(4.3)

This formulation can be thought of as our baseline implementation that will be aug-

mented in Section 4.1.3.
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4.1.3 2D Formulation - Antenna Weighting

As noted in Section 3.3.2, antennas provide unreliable range measurements when

obstructed by another antenna. Since these obstructions are reliably predictable

given a specific hardware layout and state, we want to devalue NLLS terms involving

an obstructed antenna. This approach is preferable since we are encoding our a

priori system knowledge directly into our optimization problem, while more general

techniques, such as the use of a Huber loss function, rely on rejecting data based

on general outlier criteria. Our approach can be thought of as an analogue to a

Maximum Likelihood Estimator formulation where a measurement covariance matrix

is specified as a function of state.

Consider the 2𝜋 periodic weight function 𝑤(𝜓), specified here on the angular

interval 𝜓 ∈ [−𝜋, 𝜋], and shown plotted in Figure 3-3a:

𝑤(𝜓) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 𝜌 ≤ |𝜓| ≤ 𝜋

1
2
cos
(︁
𝜋(𝜓+𝜌)
(𝜌−𝜎)

)︁
+ 1

2
−𝜌 < 𝜓 < −𝜎

1
2
cos
(︁
𝜋(𝜓−𝜎)
(𝜌−𝜎) + 𝜋

)︁
+ 1

2
𝜎 < 𝜓 < 𝜌

0 0 ≤ |𝜓| ≤ 𝜎

(4.4)

where 𝜎 and 𝜌, related by 0 ≤ 𝜎 ≤ 𝜌 ≤ 𝜋, are predefined constants defining the

“stop-band” end angle and “pass-band” begin angle respectively. This function can

be thought of as a piecewise step function with a smooth transition between high

and low values, in the form of re-scaled and shifted cos segments. Compared to a

standard step function, this weight function is differentiable, a useful property for

optimization. This function will serve as a primitive for the more specialized weight

functions developed in Eqs. 4.6, 4.7, and 4.8.

Although this overall formulation is agnostic to exact sensor numbers and layout,

we will develop the remainder of this section using the experimental hardware setup

described in Section 4.2.1. Let our 2D robots have an antenna layout as shown in
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Figure 4-4a and described by the expression:

𝛼𝑘(T) =

⎡⎣𝑥+𝑅 cos(𝜋
2
(𝑘 − 1) + 𝜃)

𝑦 +𝑅 sin(𝜋
2
(𝑘 − 1) + 𝜃)

⎤⎦ (4.5)

where relative pose 𝑇 has relative components 𝑥, 𝑦, 𝜃 and 𝑅 = 0.35m.

Based on our hardware layout, consider the specialized weight functions 𝑤𝐴,𝑖(x)

and 𝑤𝐵,𝑗(x) for discounting nonlinear least squared terms involving 𝑅𝐴’s 𝑖th antenna

and 𝑅𝐵’s 𝑗th antenna respectively:

𝑤𝐴,𝑖(x) = 𝑤(arctan(𝑦, 𝑥)− 𝜋

2
(𝑖+ 1)) (4.6)

𝑤𝐵,𝑗(x) = 𝑤(𝜃 − arctan(𝑦, 𝑥)− 𝜋

2
(𝑗 − 1)) (4.7)

Note that 𝑤𝐴,𝑖(x) and 𝑤𝐵,𝑗(x) are just phase shifted versions of 𝑤(𝜓) based on the

components in x = [𝑥, 𝑦, 𝜃]𝑇 . As shown in Figures 3-3b-3-3e, these weight functions

are aligned so that they devalue measurements involving antennas on the “far” side

of either robot. See Figure 4-2 for a visual example.

For convenience, we can then combine 𝑤𝐴,𝑖(x) and 𝑤𝐵,𝑗(x) into a single weighting

𝑤𝑖𝑗(x) = 𝑤𝐴,𝑖(x) · 𝑤𝐵,𝑗(x). Augmenting Eq. 4.3 with this weighting yields

argmin
x

∑︁
𝑖∈{1,...,𝑁}

∑︁
𝑗∈{1,...,𝑁}

𝑤𝑖𝑗(x)
(︁
𝑑𝑖𝑗(x)− 𝑧(𝑡)𝑖𝑗

)︁2
. (4.8)

When using the parameters 𝜎 = 30∘ and 𝜌 = 90∘, this means that, at any given

time, at most 7 of 16 measurements between a pair of robots can be ignored (i.e.

four measurements coming from 𝑅𝐴’s ignored antenna, four measurements coming

from 𝑅𝐵’s ignored antenna, with one measurement being ignored twice). Although

with reliable measurements only three antennas per agent are needed to have a fully

observable 2D system, the redundant fourth antenna allows us to entirely ignore the

obstructed measurements within a given pair of agents while maintaining full 2D

observability.
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Figure 4-2: Visualization of weighting functions 𝑤𝐴,𝑖(x) and 𝑤𝐵,𝑖(x) when x = [3,−1, 100∘]𝑇 . Here,
the green, yellow, and red colors correspond to the colored weight segments of 𝑤(𝜓) in Figure 3-3a.
In this scenario, optimization terms involving 𝑅𝐴’s 𝑖 = 3 antenna are ignored, while terms involving
𝑅𝐴’s 𝑖 = 2 antenna and/or 𝑅𝐵 ’s 𝑗 = 3 or 𝑗 = 4 antennas are devalued.

4.1.4 Optimization Initialization

When computationally solving the nonlinear problems in Eq. 4.3 or 4.8, the optimizer

requires initial relative pose x0. Although we cannot guarantee convexity on either

equation, as sufficiently erroneous measurements 𝑧(𝑡)𝑖𝑗 can make either equation be-

have irregularly, typically we observe that optimizing Eq. 4.3 yields the same result

regardless of selected the x0, while Eq. 4.8 very much depends on the selected x0.

To address this, in practice we perform a two staged optimization, i.e. we initialize

Eq. 4.8 with x𝑟𝑒𝑠, which is the result of solving Eq. 4.3 when initialized at x0 = 0.

To demonstrate the utility of this two-step process, a simulation was writ-

ten in which ground truth state x𝑔𝑡 was sampled from the uniform distribution

[𝒰[−5,5],𝒰[−5,5],𝒰[0,360]]𝑇 such that ‖[𝑥, 𝑦]𝑇‖2 ≥ 1 and 𝑧𝑖𝑗 was sampled by adding

𝒩 (0, 0.2) to the ground truth distances. Table 4.1 shows the results after 10000

trials, which highlight that solving Eq. 4.3 effectively finds the same local minimum

whether initialized with 0 or x𝑔𝑡, but Eq. 4.8 often finds the “wrong” local minimum

if initialized with 0 and the “correct” local minimum if initialized with x𝑟𝑒𝑠 (i.e., the

proposed two-step process).
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(a) Estimated trajectory of 𝑅𝐵 w.r.t. 𝑅𝐴

(b) Log-Scale Position Error vs. Time

(c) Log-Scale Absolute Heading Error vs. Time

Figure 4-3: Results from experimental trial where 𝑅𝐵 is manually driven in a kidney bean shape
while pausing briefly throughout the trajectory. Within the trial, 𝑅𝐵 has a maximum 1m/s velocity
and 1rad/s rotation rate. To prevent visual clutter, only estimations from the Raw, Unweighted, and
Weighted (Proposed) algorithms are shown alongside the mocap ground truth. Where applicable
the parameters 𝜎 = 30∘, 𝜌 = 90∘, and 𝑊 = 50 (i.e. 1 sec of samples since measurements occur
at 50Hz) are used. (a) Shows each algorithm’s predicted position estimate (at 1Hz) and draws
an error line between each estimated point and its corresponding ground truth point. (b) Shows
each algorithm’s log-scale positional error verses time for the given trial. (c) Similarly shows each
algorithm’s log-scale absolute heading error for the given trial. Examining the plots (b) and (c), we
see Weighted (Proposed) provides the best estimate of position and heading a vast majority of the
times within the trajectory. See specific calculated mean, max, and standard deviation values, as
well as all other results, in Tables 5.2 and 4.3.
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Table 4.1: Comparison of Mean Difference Predicted Position (MDPP) and Mean Difference Pre-
dicted Absolute Heading (MDPAH) over 10, 000 trials for different optimization equations initialized
with various x0. Note that MDPP and MDPAH are indicative of how the optimization results differ
between the selected initial conditions.

Opt. Eq. Compared x0 MDPP [m] MDPAH [deg]
Eq. 4.3 0 vs x𝑔𝑡 0.002 0.067
Eq. 4.8 0 vs x𝑔𝑡 1.109 41.704
Eq. 4.8 x𝑟𝑒𝑠 vs x𝑔𝑡 0.018 0.884

4.2 Experimental Results

4.2.1 Robot and UWB Setup

All experiments were conducted with a set of robots (see Figure 4-4a) each equipped

with a Turtlebot2 base, NVIDIA Jetson Nano, and four Nooploop UWB sensors.

UWB sensors are positioned 𝑅 = 0.35m from the center of the robot to the upright

UWB antenna.1 The mounting bracket is made of aluminum and UWB modules are

mounted radially for antenna clearance (see Figure 4-4b). UWB nodes are numbered

as in Figure 4-1. All tests were performed in a motion capture space for high-precision

ground truth pose.

4.2.2 Experimental Setup & Implementation

Experimental trials were conducted using the hardware in Section 4.2.1 and the

algorithms in Section 4.1. All code was written using Python 3 and ROS [123].

Optimization was done using scipy.optimize.minimize with the trust-constr

method [121]. Calibrated measurements 𝑧(𝑡)𝑖𝑗 are generated at 50Hz, the sensor op-

erating rate, and sampled by the optimization code as needed. The optimization

implementation runs in real-time at approximately 10Hz on an Intel i7-6700 with

8GB of RAM. This could easily be sped up by switching to a C++ implementation.

1As the robustness and accuracy of the estimated pose computed from trilateration is positively
correlated with the length of the sensor baseline the 𝑅 separation was selected to closely resemble
the arm length of a medium-sized quadrotor, in anticipation for future work, as well as allowing for
a fair comparison to the results of [108], who tested a similar baseline.
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(a) (b)

Figure 4-4: (a) Photo of our experimental robots. Each is comprised of a Turtlebot2 base, a Jetson
Nano, and four Nooploop UWB sensors. Robots are manually controlled with a wireless Logitech
Gamepad. (b) A close up showing how UWB sensors are attached radially from the aluminum
mounting bracket. This is done to ensure antenna clearance and to avoid direct contact with metal.

Collected UWB data is post-processed with several alternative algorithms to com-

pare results. When applicable, we use parameters 𝜎 = 30∘, 𝜌 = 90∘, and 𝑊 = 50.

Specifically, these algorithms are:

• Raw: Optimizes Eq. 4.3, but uses the “raw” 𝑧(𝑡)𝑖𝑗 measurement instead of the

calibrated 𝑧(𝑡)𝑖𝑗 .

• Shift only: Refers to Eq. 4.3, but uses the 𝑧(𝑡)𝑖𝑗 − 𝜇𝑖𝑗 instead of the calibrated

𝑧
(𝑡)
𝑖𝑗 .

• MovingAvg only: Refers to Eq. 4.3, but uses 1
𝑊

∑︀𝑊−1
𝑘=0 𝑧

(𝑡−𝑘)
𝑖𝑗 instead of the

calibrated 𝑧(𝑡)𝑖𝑗 .

• Unweighted: Refers to Eq. 4.3 as written.

• Weighted (Proposed): Optimizes Eq. 4.8.

Comparing the results of Raw, Shift only, and MovingAvg only with Unweighted

will clearly show the benefits of using the calibrated 𝑧
(𝑡)
𝑖𝑗 . Similarly, comparing the

results of Unweighted and Weighted shows the benefits of adding the NLLS weighting

𝑤𝑖𝑗(x).
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4.2.3 Calibration

Calibration means 𝜇𝑖𝑗 were found by placing 𝑅𝐴 and 𝑅𝐵 a known distance apart

(3m) and rotating 𝑅𝐵 in place at approximately 60∘/sec. After 𝑅𝐵 completed a

full revolution, 𝑅𝐴 was rotated approximately 30∘ before 𝑅𝐵 resumed rotating. The

process took approximately 90 seconds and, afterwards, 𝜇𝑖𝑗 values were calculated by

averaging 𝑧𝑖𝑗 while omitting regions of antenna obstructions spikes, similar to Figures

3-3b-3-3e. The following 𝜇𝑖𝑗 values were computed:

𝜇11 = 0.268 𝜇12 = 0.266 𝜇13 = 0.277 𝜇14 = 0.230

𝜇21 = 0.093 𝜇22 = 0.112 𝜇23 = 0.227 𝜇24 = 0.188

𝜇31 = 0.046 𝜇32 = 0.018 𝜇33 = 0.170 𝜇34 = 0.078

𝜇41 = 0.041 𝜇42 = 0.065 𝜇43 = 0.178 𝜇44 = 0.095

Although these values are specific to our hardware, they show the significance of these

biases given the current operating scale as well as how much variation there is between

pairs of sensors (i.e., as much as 25.9cm between our observed best and worst pair).

4.2.4 Trials

Several experiments were run with different trajectories and durations. In all trials

the Turtlebots were driven at the maximum velocity and rotation rate (1m/s of 1rad/s

respectively). The specific trials were:

• rot-cw/rot-ccw: 𝑅𝐴 is kept stationary. 𝑅𝐵 is placed a fixed distance away

and rotated clockwise/counter-clockwise in place.

• traj-cw/traj-ccw: 𝑅𝐴 is kept stationary. 𝑅𝐵 is manually driven in a circular

trajectory about 𝑅𝐴 in a clockwise/counter-clockwise direction.

• kidney-bean: 𝑅𝐴 is kept stationary. 𝑅𝐵 is manually driven in a kidney bean

shape while pausing briefly throughout the trajectory (See Figure 4-3).
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• box: 𝑅𝐴 is kept stationary. 𝑅𝐵 is manually driven in an approximately 8m by

6m rectangle.

• both-move: Both 𝑅𝐴 and 𝑅𝐵 are manually driven arbitrarily within a 10m by

10m space without getting within 1m of each other.

All results are compiled into Tables 5.2 and 4.3, showing the mean, max, and standard

deviation of the position and absolute heading errors respectively.

4.2.5 Interpreting Results

The results in Tables 5.2 and 4.3 show that Weighted and Unweighted consistently

outperform the other approaches; this makes clear the advantage of the calibrated

𝑧
(𝑡)
𝑖𝑗 over the raw 𝑧

(𝑡)
𝑖𝑗 or the individual mean shift/moving average corrections. Ad-

ditionally, Weighted consistently outperforms Unweighted in mean positional error.

Next, while Unweighted outperforms Weighted in a few select metrics in the simpler

rot-* and traj-* trials, this is only by relatively small margins (i.e., at most 4cm

or 5.1∘ respectively). When considering the more challenging kidney-bean and box

trajectories, we see Weighted substantially outperforms Unweighted in all metrics.

Finally, when examining both-move, we see Weighted outperforms all other methods

in the three positional error metrics as well as mean absolute heading error. The

spike observed in Weighted’s other two heading metrics appears to be the result of

rapid relative yawing, possible when 𝑅𝐴 and 𝑅𝐵 yaw simultaneously at max speed in

opposite directions.

4.2.6 Comparison to Literature

Our box trial was designed so that it can be compared to a similar experiment in [108].

Note that both experiments used two Turtlebots (one stationary, one moving), each

equipped with four Nooploop LinkTrack P UWB modules separated by an approx-

imately 70cm baseline, and performed relative pose estimation while traversing an

approximately 8m by 6m rectangle. When comparing our results to the reported
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results in [108], our proposed approach, Weighted, achieved slightly better position

error (0.21m vs 0.25m), but with slightly worse mean heading error (4.22∘ vs 2.02∘)

and standard deviations (our 0.17m and 3.03∘ vs their 0.09m and 1.47∘ respectively).

Thus, our approach is competitive with the performance in [108], but that work as-

sumes access to continuously transmitted odometry estimates, whereas our

approach does not.
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Chapter 5

UWB-Based Inter-Agent Relative

Pose Estimation in 3D

This chapter is based upon [82]. In this chapter we use UWB to demonstrate an in-

stantaneous multi-tag approach to relative 3D. By equipping each agent with multiple

UWB antennas, our approach addresses these concerns by using only locally collected

UWB range measurements, a priori state constraints, and detections of when said

constraints are violated. Leveraging our learned mean ranging bias correction, we

gain a 19% positional error improvement giving us experimental mean absolute po-

sition and heading errors of 0.24m and 9.5∘ respectively. When compared to other

state-of-the-art approaches, our work demonstrates improved performance over sim-

ilar systems [65], while remaining competitive with methods that have significantly

higher communication costs.

5.1 System Design

Based on the noise characteristics (Section 3.4.1) and underlying geometry (Section

1.2.3), we propose the system design shown in Figure 1-1 for our multirotor drones.

Specifically, each agent is equipped with 6 ranging antennas (attached 0.31m from the

center at the end of each propeller arms) to maximize the baselines and improve DOP

geometry. Since there are 6 coplanar antennas, this is an over-constrained problem
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that still has a ±𝑧 ambiguity across the 𝑧 = 0 plane. Although an additional nonpla-

nar antenna could be added to each agent, it is challenging to get a large 𝑧-baseline

without impacting the flight characteristics (i.e., heavy/awkward configuration). In-

stead, we note that altitude/roll/pitch can be measured within the flat-ground world

frame locally via altimeter or downward facing LiDAR and onboard IMU. In many

drone applications, it is common for multirotors to maintain roll/pitch near 0∘ and

a constant altitude. Thus, we can specify a minimalist communication protocol that

shares these intended constraints a priori and then monitors them locally to ensure

they are satisfied. One-off communication would then only occur if a constraint is

locally detected to have been violated/changed (Figure 5-1b). Additionally, having a

constant 𝑧 constraint helps mitigate the increased variance associated with relative

elevation (Figure 3-4b).

5.2 Preliminaries

5.2.1 Pose Parameterization

Given a set of 3D reference frames ℱ , consider any pair of frames 𝐴 ∈ ℱ and 𝐵 ∈ ℱ .

Let T𝐴
𝐵 ∈ 𝑆𝐸(3) be the relative pose between frames 𝐴 and 𝐵 (i.e., transforms a point

from 𝐵’s frame into 𝐴’s frame). We note T𝐴
𝐵 is a 6-DoF value that can be equivalently

parameterized as the 2-tuple ⟨R𝐴
𝐵, t

𝐴
𝐵⟩ or 6-tuple ⟨𝑥𝐴𝐵, 𝑦𝐴𝐵, 𝑧𝐴𝐵 , 𝛼𝐴𝐵, 𝛽𝐴𝐵 , 𝛾𝐴𝐵⟩, where:

• R𝐴
𝐵 ∈ 𝑆𝑂(3) is the relative rotation between 𝐴 and 𝐵 parameterized by the

3-tuple of Euler angles ⟨𝛼, 𝛽, 𝛾⟩, where 𝛼𝐴𝐵 ∈ [−180∘, 180∘] is relative roll, 𝛽𝐴𝐵 ∈

[−90∘, 90∘] is relative pitch, and 𝛾𝐴𝐵 ∈ [−180∘, 180∘] is relative yaw. The use of

Euler angles over quaternions is motivated by the direct roll/pitch constraints

to be introduced Equation 5.7. We define R(𝛼, 𝛽, 𝛾) as the R3×3 rotation matrix

with respect to R𝑥(𝛼), R𝑦(𝛽), R𝑧(𝛾), the R3×3 rotation matrices about the 𝑥, 𝑦,

𝑧 axes respectively. Thus R𝐴
𝐵 can be equivalently represented as a R3×3 rotation
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(a) (b)

(c)

Figure 5-1: (a) Annotated diagram of three UGV agents used in Section 5.4.2. UGV agents are
designed with the same baseline as the UAV in Figure 1-1, making them comparable surrogates to
the UAV and its experiments in Section 5.4.1. (b) Diagram demonstrating agent 𝐵 locally detecting
violations in its a priori constraints, triggering a one-off communication. (c) Demonstrates how
three (or more) ranging antennas within a single plane produce a pair of ambiguous solutions (i.e., if
all antennas are in the base’s plane 𝑧 = 0, while the target’s 𝑥 and 𝑦 coordinates are fully observable,
the target’s altitude has an ambiguity between ±𝑧).
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matrix in the following ways:

R𝐴
𝐵 , R(𝛼𝐴𝐵, 𝛽

𝐴
𝐵 , 𝛾

𝐴
𝐵) , R𝑧(𝛾

𝐴
𝐵)R𝑦(𝛽

𝐴
𝐵)R𝑥(𝛼

𝐴
𝐵)

• t𝐴𝐵 ∈ R3 is a relative translation vector between 𝐴 and 𝐵 parameterized by

the 3-tuple ⟨𝑥𝐴𝐵, 𝑦𝐴𝐵, 𝑧𝐴𝐵⟩. Thus, t𝐴𝐵 can be equivalently representedas 3 in the

following ways:

t𝐴𝐵 , t(𝑥𝐴𝐵, 𝑦
𝐴
𝐵, 𝑧

𝐴
𝐵) ,

[︁
𝑥𝐴𝐵 𝑦𝐴𝐵 𝑧𝐴𝐵

]︁⊤

5.2.2 Rigid Body Transformations

For any frame 𝐹 ∈ ℱ , let p𝐹 ∈ R3 be a point in frame 𝐹 . Given T𝐴
𝐵 (i.e., the relative

pose between frames 𝐴 and 𝐵), points p𝐴 and p𝐵 (i.e., the same point but in 𝐴’s or

𝐵’s frame respectively) are related by p𝐴 = R𝐴
𝐵p

𝐵 + t𝐴𝐵, which can equivalently and

succinctly be written in homogeneous coordinate notation [33] as p̆𝐴 = T𝐴
𝐵p̆

𝐵, where

T𝐴
𝐵 ∈ R4×4 and p̆𝐹 ∈ R4 are defined as:

T𝐴
𝐵 ,

⎡⎣R𝐴
𝐵 t𝐴𝐵

0⊤ 1

⎤⎦ p̆𝐹 ,

⎡⎣p𝐹
1

⎤⎦
Thus T𝐴

𝐵 is equivalently represented in the following ways:

T𝐴
𝐵 , T(𝑥𝐴𝐵, 𝑦

𝐴
𝐵, 𝑧

𝐴
𝐵 , 𝛼

𝐴
𝐵, 𝛽

𝐴
𝐵 , 𝛾

𝐴
𝐵)

,

⎡⎣R𝐴
𝐵 t𝐴𝐵

0⊤ 1

⎤⎦ ,
⎡⎣R(𝛼𝐴𝐵, 𝛽

𝐴
𝐵 , 𝛾

𝐴
𝐵) t(𝑥𝐴𝐵, 𝑦

𝐴
𝐵, 𝑧

𝐴
𝐵)

0⊤ 1

⎤⎦

5.3 Technical Approach

5.3.1 Local Robot Definitions

Let there be some 3D world frame 𝑊 defined with respect to the level ground and

gravity vector (i.e., 𝑧 = 0 is the “floor” and gravity faces down). Consider ℛ, a set
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of 𝑁ℛ robots operating in 𝑊 . Each robot 𝑅 ∈ ℛ, has 𝑁𝑅 relative ranging antennas

rigidly affixed to 𝑅’s body, where 𝑅𝑘 denotes 𝑅’s 𝑘th antenna. Additionally, for each

𝑅 let there be an a priori and static 3-tuple of known information ℐ𝑅 = ⟨�̂�𝑅, �̌�𝑅,𝒫𝑅⟩,

where:

• �̂�𝑅 =
[︁
𝑧𝑊𝑅 �̂�𝑊𝑅 𝛽𝑊𝑅

]︁⊤
is a vector of constant global state constraints on 𝑅

with respect to world frame 𝑊 . In other words, 𝑧𝑊𝑅 is the commanded altitude,

while �̂�𝑊𝑅 and 𝛽𝑊𝑅 are commanded relative roll and pitch.

• �̌�𝑅 =
[︁
𝑧𝑊𝑅 �̌�𝑊𝑅 𝛽𝑊𝑅

]︁⊤
is a vector of constant absolute (i.e., ±) tolerances on

global constraints �̂�𝑅.

• 𝒫𝑅 = {T𝑅
𝑅1
,T𝑅

𝑅2
, . . . ,T𝑅

𝑅𝑁𝑅
} is an ordered set of 𝑁𝑅 constant relative poses from

𝑅’s body frame to 𝑅’s 𝑘th antenna’s frame. Additionally, from the information

in T𝑅
𝑅𝑘

, we can succinctly denote the point coordinate of 𝑅’s 𝑘th antenna in 𝑅’s

frame as p𝑅𝑘 .

Since 𝑊 is defined with respect to a level ground and gravity vector, the parame-

ters ⟨𝑧𝑊𝑅 , 𝛼𝑊𝑅 , 𝛽𝑊𝑅 ⟩ – unlike ⟨𝑥𝑊𝑅 , 𝑦𝑊𝑅 , 𝛾𝑊𝑅 ⟩ – are instantaneously observable and directly

measurable from 𝑅 (e.g., via altimeter or downward facing LiDAR and onboard IMU).

Thus, the directly measured values �̃�𝑅 =
[︁
𝑧𝑊𝑅 �̃�𝑊𝑅 𝛽𝑊𝑅

]︁⊤
can be continuously mon-

itored by 𝑅 locally (i.e., without relying on swarm communication). After an initial

one-off transmission of ℐ𝑅 to all agents ℛ, agent 𝑅 only needs to transmit again in

the event of (1) wanting to change its commanded altitude/roll/pitch �̂�𝑅, or (2) it

locally observes a violation of its previously communicated constraints, specifically:

|�̂�𝑅 − �̃�𝑅|⏟  ⏞  
element-wise abs deviation

≤ �̌�𝑅⏟ ⏞ 
constraint tolerance

(5.1)

where | · | and ≤ are performed element-wise. In other words, all agents ℛ can treat

�̂�𝑅 as known states during estimation, unless 𝑅 communicates otherwise.
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5.3.2 Inter-Agent Robot Definitions

Consider any arbitrary pair of robots 𝐴 ∈ ℛ and 𝐵 ∈ ℛ. With a slight abuse of

notation, let 𝐴 and 𝐵 also denote the robots respective reference frames, making

T𝐴
𝐵 denote the relative pose between robots 𝐴 and 𝐵. From our known information

tuples ℐ𝐴 and ℐ𝐵 we know each agent has 𝑁𝐴 and 𝑁𝐵 antennas at relative poses 𝒫𝐴
and 𝒫𝐵 respectively. This in turn allows us to define our observation model as just

a function of T𝐴
𝐵. In other words, the distance between 𝐴’s 𝑖th antenna and 𝐵’s 𝑗th

antenna is defined as:

𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵) , ||T𝐴
𝐵p̆

𝐵
𝑗 − p̆𝐴𝑖 ||2 (5.2)

where 𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵) ∈ R≥0, as distances are non-negative, and || · ||2 denotes the 𝐿2

norm. Similarly, let 𝑑𝐴𝑖
𝐵𝑗

be the current (i.e., most recent) noisy measurement between

𝐴’s 𝑖th antenna and 𝐵’s 𝑗th antenna as measured locally by 𝐴.1 For convenience,

d̃𝐴𝐵 ∈ R𝑁𝐴𝑁𝐵 denotes the stacked vector of all current pairwise 𝑑𝐴𝑖
𝐵𝑗

measurements.

5.3.3 Noise Model Definition

Let T𝐴𝑖
𝐵𝑗

denote the relative pose between 𝐴’s 𝑖th antenna and 𝐵’s 𝑗th antenna. Given

a known 𝒫𝐴 and 𝒫𝐵, and an arbitrary T𝐴
𝐵, we have:

T𝐴𝑖
𝐵𝑗

= (T𝐴
𝐴𝑖
)−1T𝐴

𝐵T
𝐵
𝐵𝑗

= T𝐴𝑖
𝐴 T𝐴

𝐵T
𝐵
𝐵𝑗

(5.3)

so that T𝐴𝑖
𝐵𝑗

is a function of T𝐴
𝐵 given known 𝒫𝐴 and 𝒫𝐵. Let 𝑑(T𝐴𝑖

𝐵𝑗
) ∈ R be

some provided (e.g., learned) sensor mean bias model as a function of T𝐴𝑖
𝐵𝑗

(i.e.,

antenna measurement bias is modeled as some function of the relative position and/or

orientation between a pair of ranging antennas). We can then equivalently define:

𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵) , 𝑑(T𝐴𝑖
𝐴 T𝐴

𝐵T
𝐵
𝐵𝑗
) (5.4)

1Note that while 𝑑𝐴𝑖

𝐵𝑗
(T𝐴

𝐵) = 𝑑
𝐵𝑗

𝐴𝑖
(T𝐵

𝐴) (i.e., the observation model is symmetric), since each
agent locally and separately measures antenna distances, measurement noise makes it that generally
𝑑𝐴𝑖

𝐵𝑗
̸= 𝑑

𝐵𝑗

𝐴𝑖
.
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where 𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵) ∈ R is a state-dependent mean bias estimate for measurement 𝑑𝐴𝑖
𝐵𝑗

.

5.3.4 Optimization Definition

Using our current measurements 𝑑𝐴𝑖
𝐵𝑗

, measurement bias correction function 𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵),

and observation model 𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵), we can formulate the error residual function with

respect to antenna pair 𝐴𝑖 and 𝐵𝑗 as:

𝑒𝐴𝑖
𝐵𝑗
(T𝐴

𝐵) ,
(︁
𝑑𝐴𝑖
𝐵𝑗
− 𝑑𝐴𝑖

𝐵𝑗
(T𝐴

𝐵)
)︁

⏟  ⏞  
bias adjusted measurement

− 𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵)⏟  ⏞  
expected measurement

(5.5)

Using our error residual function 𝑒𝐴𝑖
𝐵𝑗
(T𝐴

𝐵), and some loss function ℓ, we can calculate

an instantaneous estimate of T𝐴
𝐵 by minimizing the sum of loss of all error residuals

for all inter-agent antenna pairs with respect to T𝐴
𝐵. That is:

min
T𝐴

𝐵∈𝑆𝐸(3)

𝑁𝐴∑︁
𝑖=1

𝑁𝐵∑︁
𝑗=1

ℓ
(︁
𝑒𝐴𝑖
𝐵𝑗
(T𝐴

𝐵)
)︁

(5.6)

Recall that T𝐴
𝐵 is a 6-DoF variable parameterized by ⟨𝑥𝐴𝐵, 𝑦𝐴𝐵, 𝑧𝐴𝐵 , 𝛼𝐴𝐵, 𝛽𝐴𝐵 , 𝛾𝐴𝐵⟩. From

known information tuples ℐ𝐴 and ℐ𝐵, we have �̂�𝐴 and �̂�𝐵, which provide us with

constraints ⟨𝑧𝑊𝐴 , �̂�𝑊𝐴 , 𝛽𝑊𝐴 ⟩ and ⟨𝑧𝑊𝐵 , �̂�𝑊𝐵 , 𝛽𝑊𝐵 ⟩. Furthermore, since these constraints are

with respect to a common world frame 𝑊 , see that: 𝑧𝐴𝐵 = 𝑧𝑊𝐵 − 𝑧𝑊𝐴 , �̂�𝐴𝐵 = �̂�𝑊𝐵 − �̂�𝑊𝐴 ,

and 𝛽𝐴𝐵 = 𝛽𝑊𝐵 − 𝛽𝑊𝐴 . Thus, given �̂�𝐴 and �̂�𝐵, we have the following constrained

optimization:

min
T𝐴

𝐵∈𝑆𝐸(3)

𝑁𝐴∑︁
𝑖=1

𝑁𝐵∑︁
𝑗=1

ℓ
(︁
𝑒𝐴𝑖
𝐵𝑗
(T𝐴

𝐵)
)︁

s.t. 𝑧𝐴𝐵 = 𝑧𝐴𝐵 = 𝑧𝑊𝐵 − 𝑧𝑊𝐴

𝛼𝐴𝐵 = �̂�𝐴𝐵 = �̂�𝑊𝐵 − �̂�𝑊𝐴

𝛽𝐴𝐵 = 𝛽𝐴𝐵 = 𝛽𝑊𝐵 − 𝛽𝑊𝐴

(5.7)

73



which can then be simplified to an equivalent 3-DoF unconstrained optimization prob-

lem:

min
𝑥𝐴𝐵 ,𝑦

𝐴
𝐵∈R

𝛾𝐴𝐵∈[−180∘,180∘]

𝑁𝐴∑︁
𝑖=1

𝑁𝐵∑︁
𝑗=1

ℓ

(︃
𝑒𝐴𝑖
𝐵𝑗

(︁
T(𝑥𝐴𝐵, 𝑦

𝐴
𝐵⏟  ⏞  

free

, 𝑧𝐴𝐵 , �̂�
𝐴
𝐵, 𝛽

𝐴
𝐵⏟  ⏞  

constrained

, 𝛾𝐴𝐵⏟ ⏞ 
free

)
)︁)︃

(5.8)

which can be rewritten as 𝑓 to clearly see the dependencies:

min
𝑥𝐴𝐵 ,𝑦

𝐴
𝐵∈R

𝛾𝐴𝐵∈[−180∘,180∘]

𝑓(𝑥𝐴𝐵, 𝑦
𝐴
𝐵, 𝛾

𝐴
𝐵 | d̃𝐴𝐵, ℐ𝐴, ℐ𝐵, ℓ) (5.9)

That is, given our current ranging measurements d̃𝐴𝐵, our known information tuples

ℐ𝐴 and ℐ𝐵, and some loss function ℓ, our 3D pose can be found as aoutliers s 3-DoF

minimization of our free variables ⟨𝑥𝐴𝐵, 𝑦𝐴𝐵, 𝛾𝐴𝐵⟩.

Using Equation 5.9, Algorithm 1 outlines a procedure independently followed by

each agent 𝐴 in a swarm ℛ to individually estimate T𝐴
𝐵 between itself and all other

agents 𝐵 ∈ (ℛ ∖ {𝐴}). Observe that one-off communication (i.e., transmit) only

occurs on Line 4, when an agent locally detects it has violated its a priori constraints

– this is then used by other agents on Line 7 (i.e., invalid) to skip calculating T𝐴
𝐵

for agents with violated constraints.

5.4 Experimental Results

We present two sets of experiments: UAV (Section 5.4.1) and UGV (Section 5.4.2).

We first verify the 3D noise properties, flight hardware, and show altitude/roll/pitch

constraints can be sufficiently locally monitored on a UAV. Once this is verified, we

confidently attach surrogate UAVs at different altitudes to UGVs – this allows us to

collect data more efficiently to evaluate our approach.

5.4.1 UAV Experiments

Hardware: Two agents, 𝐴 and 𝐵, were used. 𝐴, a surrogate quadcopter, was a

stationary Turtlebot2 UGV with 4 UWB sensors evenly distributed in the 𝑥𝑦-plane

0.37m from the center (same robot used in Chapter 4). As pictured in Figure 1-1,
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Algorithm 1 Procedure for robot 𝐴 ∈ ℛ, a member of robot swarm ℛ, to generate
instantaneous relative poses w.r.t. all other agents in swarm 𝐵 ∈ (ℛ ∖ {𝐴})
Input: ℛ, 𝐴 ∈ ℛ, {ℐ𝑅 ∀ 𝑅 ∈ ℛ}, ℓ
Output: { T𝐴

𝐵 ∀ 𝐵 ∈ (ℛ ∖ {𝐴}) s.t. ¬invalid(𝐵) }
1: function LocalProcedure
2: �̃�𝐴 ← local measurements of 𝐴 w.r.t. 𝑊
3: if ¬(|�̂�𝐴 − �̃�𝐴| ≤ �̌�𝐴) then
4: transmit(𝐴)
5: end if
6: 𝒯 ← {}
7: for 𝐵 ∈ (ℛ ∖ {𝐴}) s.t. ¬invalid(𝐵) do
8: d̃𝐴𝐵 ← local measurements of 𝐵 w.r.t. 𝐴
9: ⟨𝑧𝐴𝐵 , �̂�𝐴𝐵, 𝛽𝐴𝐵⟩ ← �̂�𝑊𝐵 − �̂�𝑊𝐴

10: ⟨𝑥𝐴𝐵, 𝑦𝐴𝐵, 𝛾𝐴𝐵⟩ ← optimize Eq. 5.9
11: T𝐴

𝐵 ← T(𝑥𝐴𝐵, 𝑦
𝐴
𝐵, 𝑧

𝐴
𝐵 , �̂�

𝐴
𝐵, 𝛽

𝐴
𝐵 , 𝛾

𝐴
𝐵)

12: 𝒯 ← 𝒯 ∪ {T𝐴
𝐵}

13: end for
14: return 𝒯
15: end function

𝐵 is a custom hexrotor equipped with 6 UWB sensors evenly distributed in the 𝑥𝑦-

plane 0.31m from the center. Additionally, 𝐵 is equipped with a downward facing

TeraRanger Evo 15m LiDAR for altitude measurements [124].

Trials: Five experimental trials were conducted in a large 10m×10m mocap space.

For all trials, 𝐴 was placed on a table for additional height and kept stationary, while

𝐵 flew around. In the first three trials, 𝐵 took off and flew simple line patterns at

different altitudes (see Table 5.1 and Figure 5-2a). For the latter two trials, 𝐵 flew

tight circles in the center of the room – first 1m above and then level with 𝐴 (see

Figure 5-2b). Each trial had a max speed of 1m/s and lasted approximately 3-5min

(i.e., the length of a battery charge).

Discussion of Results: Results are shown in Table 5.1 and Figure 5-2. The main

takeaways are as follows. (1) Verified UWB measurements were not corrupted by EMI

of nearby propeller motors. (2) Confirmed the robot’s body and other antennas cause

significant NLOS measurement noise and bias when eclipsing a measurement path.

In our Chapter 4, obstruction was only a function of relative azimuth and yaw and

was addressed by a custom weighting function. In 3D, the addition of ⟨𝑧, 𝛼, 𝛽⟩ makes
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this relationship overall more complex – when agents are not in the same 𝑧-plane and

remain level, these NLOS effects go away (Figure 5-2b). (3) Confirmed the onboard

downward facing LiDAR and IMU can locally monitor altitude/roll/pitch accurately

with only small variation from the mocap ground truth. Figure 5-2a shows data from

Table 5.1’s Trial 2, demonstrating the TeraRanger Evo provides a reasonable local

measurement of altitude. (4) Confirmed varying within our a priori tolerances are

not a major source of APE error, supported by the small APE differences between

the latter three rows of Table 5.1. Specifically, this table shows the results of the

proposed algorithm when 𝑧 is free (z_free), or fixed to the commanded (z_comm),

LiDAR measured (z_meas), or true (z_true) value. Together, takeaways (3) and

(4) show that our minimal communication model introduces only a small amount of

additional error. Furthermore, all the takeaways together indicate our extensive UGV

tests are sufficient to fairly evaluate our approach in Section 5.4.2.
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Table 5.1: Evaluation of positional error in meters with different 𝑧-constraints. In practice, the
second row (i.e., a priori constraints) will be used, but the small difference between z_comm, z_meas,
and z_true shows these constraints are not a major source of error. See Section 5.4.1.

Abs Position Error [m] Scenarios (Section 5.4.1)
Trial 1 Trial 2 Trial 3

color alt constraint Mean Max Std Mean Max Std Mean Max Std
z_free 1.17 2.83 1.06 1.04 1.53 0.24 0.45 0.94 0.19

� z_comm 0.26 0.45 0.09 0.28 0.87 0.14 0.25 0.64 0.13
� z_meas 0.26 0.44 0.09 0.27 0.87 0.14 0.24 0.66 0.14
� z_true 0.25 0.44 0.10 0.26 0.87 0.15 0.22 0.64 0.14

(a) Shows Table 5.1’s Trial 2 alongside the commanded, measured, and ground truth altitude, where the colors
correspond with Table 5.1. While the TeraRanger Evo does not perfectly track ground truth, it stays within the
expected commanded tolerance providing a reasonable local measurement of altitude.

(b) Top plot shows calibrated ranging error (i.e., mean bias subtracted) w.r.t. relative yaw for the 1m above and
level flights (i.e., Trial 4 and 5 respectively). Observe the error of 1m above flight remains consistent, while the level
flight has anomalous error peaks corresponding to specific relative yaws. The lower left and right diagrams show the
relative pose of the agents at the two most prominent peaks, where the path between antennas 𝐴1 and 𝐵5 is eclipsed
by antennas 𝐵3 and 𝐵1 respectively. While this NLOS effect is consistent with Figure 3-3, we note the more complex
3D relationship resolves the occlusion with varying elevation.

Figure 5-2: Plots from the UAV flight experiments.
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Figure 5-3: Image of mocap system tracking UGVs.

5.4.2 UGV Experiments

Hardware: Three agents, 𝐴, 𝐵 and 𝐶, were used (see Figure 5-1a). All are Turtle-

bot2 UGV with 6 UWB sensors evenly distributed in the 𝑥𝑦-plane 0.32m from the

center. Agent 𝐴, 𝐵, and 𝐶’s sensors are mounted 1.75m, 0.5m, and 0.5m above the

ground respectively (i.e., 𝑧𝐴𝐵 = −1.25m).

Trials: A full 22 datasets were collected with all three agents, each with 6 anten-

nas, moving in various ways within the mocap space. Ranging measurements are

performed by each pair of antennas between agents at 25Hz. Together the datasets

total to nearly 6h (effectively creating over 200h of pairwise measurements). This

dataset was used for Figures 3-4a and 3-4b. Tables 5.2 and 5.3 show results for the

5 trials where all three agents are continuously moving in various arbitrary patterns

with max positional and angular velocities of 1m/s and 1rad/s respectively.

Parameters: Our approach, outlined in Section 5.3 and culminating in Equation

5.9 and Algorithm 1, is configured as such: (1) Our mean bias correction function,

𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵), is set to the learned 6-degree polynomial shown in Figure 3-4b. This incor-

porates the observed mean bias with respect to elevation into our approach. (2) The

current range measurements, 𝑑𝐴𝑖
𝐵𝑗

, and pose estimates are smoothed by a moving av-

erage filter with a 1s and 4s window length respectively. (3) Our loss function, ℓ, is

78



selected to be the Huber loss 𝜌𝛿(𝑎) with 𝛿 = 0.06, where:

𝜌𝛿(𝑎) =

⎧⎪⎨⎪⎩
1
2
𝑎2 for |𝑎| ≤ 𝛿

𝛿 · (|𝑎| − 1
2
𝛿) otherwise

As with [69,70,115], Huber loss was selected due to its reduced outlierggles sensitivity

compared to a traditional squared error loss [125]. The parameter 𝛿 = 0.06 was

selected after doing a parameter search over our results (see Figure 5-4).

Discussion of Results: Results are shown in Tables 5.2 and 5.3 and Figure 5-

5. To demonstrate the value of individual algorithmic decisions, the tables toggle

el_bias, z_fixed, Huber, where the final row (red) represents the proposed approach.

Specifically, a check indicates:

• el_bias: 𝑑𝐴𝑖
𝐵𝑗
(T𝐴

𝐵) is the learned mean bias correction (see Figure 3-4b), other-

wise 0.

• z_fixed: 𝑧 is constrained to 𝑧𝐴𝐵 , otherwise free.

• Huber: ℓ(𝑎) , 𝜌0.06(𝑎), otherwise squared error loss.

Our data shows the proposed approach (red) provides a 9x improvement over a direct

NLLS trilateration (purple), similar to that used by [65]. The addition of the el_bias

improves our approach’s mean APE by an average of 19% (i.e., red vs orange). Over-

all, constraining 𝑧 leads to the largest APE gains. Unlike APE, there is not a clear

best approach for AHE, but the proposed (red) is only at most 1∘ behind the best

for any given trial.

When their agents have similar antenna baselines to our work, they achieve a mean

𝑥𝑦-positional error of approximately 0.40m, 0.65m, and 0.85m for simulated 8m×8m

flights at various fixed altitudes. Furthermore, for real flights the mean 𝑥𝑦-positional

error becomes approximately 1m with a variable altitude and a (beneficial) larger

baseline. By comparison, although our experimental environment differs, we achieve

a mean APE and AHE of 0.24m and 9.5∘ respectively with real experiments operating

in a 10m×10m mocap space. Ref. [65] differs from our approach in two important

79



(a)

(b)

Figure 5-4: Plots from Huber loss parameter search.
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(a) Proposed approach (red) generally outperforms other approaches with respect to absolute position error – only a
few select points being the exception.

(b) Proposed approach (red) generally equivalent to other approaches with respect to absolute heading error, but is
outperformed at a few select points.

Figure 5-5: Error vs. Time plots for Trial 2 in Table 5.2 and 5.3 respectively. The line color
corresponds with the algorithm’s color column in the associated tables. Each colored dashed line
represent that algorithm’s overall mean in that trial.
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ways: (1) the authors model UWB ranging error as a zero mean Gaussian with a

0.10m standard deviation, which does not reflect real data (see Section 3.4.1); and

(2) we define an explicit communication protocol that allows us to address several

capability gaps without continuously transmitting measurements. Specifically, by

constraining altitude/roll/pitch and improving our UWB noise model, we can better

address UWB noise (see Section 3.4.1) and an observability ambiguity (see Section

1.2.3 and Figure 5-1c). See Section 5.1 for more details.
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Chapter 6

Conclusion

Motivated by the applications of nuclear non-proliferation, radiological search, and

radiological mapping, this thesis explores leveraging multiple ultra-wideband (UWB)

ranging sensors to produce frequent inter-agent pose estimates with minimal com-

munication overhead. This work is intended as a component of a larger multi-agent

simultaneous localization and mapping (SLAM) system (also known as collaborative

SLAM or CSLAM), where persistent UWB-based inter-agent pose estimates provide

a valuable alternative source of inter-agent loop closures. When compared to other

state-of-the-art approaches, our work demonstrates improved performance over simi-

lar systems, while remaining competitive with methods that have significantly higher

communication costs.

In the future, we hope to extend this work in the following ways:

• As planned, integrate the UWB relative pose system into a full SLAM stack.

Use relative pose as a heuristic for performing inter-agent visual loop closures.

• Starting from [126–128], use a neural network to learn the sensor model – mean

bias correction, NLOS conditions, etc.

• Extend CORA [104] to use multiple antennas per agent.

• Continue flight tests at LBNL (see Figure 6-2) – fly multiple large drones fast!
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Figure 6-1: The UWB fleet used for past and future testing.
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(a) (b)

(c) (d)

(e)

Figure 6-2: Images from initial LBNL flight tests. (a)-(d) show the test paths flown. The area flown
in trajectory 04 is approximately 250m by 100m. (e) Shows the UAV and surrogate UGV.
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