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ABSTRACT

The main question in applying the Linear Quadratic Gaussian/Loop Transfer
Recovery (LQG/LTR) design methodology to discrete-time systems is whether asymp-
totic recovery can be achieved in discrete-time. The answer is no. The loop
recovery error matrix is developed as a tool for studying this problem. Existing
quadratic optimization approaches are examined both as eigenvalue/eigenvector
placement techniques and as matrix norm minimizations. The discrete optimal
quadratic regulator (DLQR) is derived as the corresponding discrete-time norm _
minimization. The modal properties of the DLQR solution are shown to be qualita-
tively similar to the continuous-time results. An expression for the error
resulting from the DLQR approach is derived and shown to be dependent on sampling
time. A sampled data example of controlling a CH-47 helicopter illustrates this
sampling time dependence.
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CHAPTER 1: INTRODUCTION

1.1 Background

The linear-quadratic-Gaussian optimization procedure with loop transfer
recovery (LQG/LTR) has recently emerged as a powerful design tool for linear,
multivariable control systems [1],[21,[3].

The LQG/LTR methodology consists of three steps [1],[2],[3]:

Step 1: Formulate all system performance specifications and stability
robustness requirements as limitations on the singular values of the open loop
transfer function matrix obtained by breaking the control loop at the plant
outpﬁt;

Step 2: Design a Kalman-Bucy filter (KBF) whose loop transfer function meets
the system specs;

Step 3: Recover (i.e. approximate) this KBF loop shape using a quadratic
optimal regulator (LQR) adjusted according to the Kwakernaak sensitivity recovery
procedure [4].

(The. dual to this procedure may also be used. In that case, the loop breaking
point for system specs is at the plant input, an LQR design meets these specs,
and a KBF, adjusted according fo the Doyle and Stein procedure [5], recoveré the
LQR loop shape). |

The resulting compensatér has the structure of a full-order observer followed
by # state feedback_gain‘matrix. If the observer gain matrix is the solution to
an optimal filtering problém, as described in»Step (2), then the observer is a
KBF with all the attendant desirable loop properties guaranteed by the Kalman

frequency domain equality [2]. Hence, the LQG in the name LQG/LTR.



However, any matrix that stabilizes the observer error dynamics and
produces a desirable loop shape may be substituted in Step (2). In that case,
the term model based compensator with loop transfer recovery (MBC/LTR) more
appropiiately describes the result.

To date, this MBC/LTR methodology has been developed only for continuous-time
systems. Can the technique be extended to discrete-time systems, as well?

The use of the frequency domain for discrete SISO (single input, single output)
system design is\already well established (see, for example [6],[7]). By using
singular values, discrete SISO frequehcy domain concepts may be generalized to the
MIMO (multi-input, multi-output) case, just as in continuous-time. Step (1) of
the methodology, therefore, may be readily applied in discrete-time.

As for Step (2), unlike their continuous-time counterparts, discrete Kalman
fiiters provide no significant robustnéss propertieé [8]. They do, however,
guarantee stability and offer a methodical way of adjusting the loop bandwidth.
Thus, Step (2), or an appropriate MBC substitute, may also be readily applied in
discrete-time.

Tﬁe real question in discrete-time MBC/LTR concerns Step (3). In continuous-
time, the actual loop shape may be made to abproach the target loop shape pointwise
in freQuency(”asymptotic recovery'). Can a similar procedure be found for

discrete-time systems?

1.2 OQutline and Scope

The purpose of this thesis is to answer that question and the answer is no.
To arrive at this result we first address the question, 'How does continuous-

time LTR work?" Chapter 2 presents the mathematical statement of the LTR problem



for continuous systems. In Chapter 3, we introduce the loop recovery error

matrix and derive necessary and sufficient conditions for exact loop recovery
(Theorem 3.2). We then interpret these results in terms of pole/zero cancellations
(Theorem 3.7). In general, exact recovery is impossible (Theorem 3.8), but we
present these results in ofder to improve our understanding of the mechanism by
which asymptotic recovery occurs.

Chapter 4 discusses the basic issues behind approximate recovery. We present
the Kwakernaak asymptotic recovery procedure from two perspectives: as an eigen-
value/eigenvector placement technique (Theorem 4.3) and as a matrix norm
minimization (Theorem 4.4).

Chapter 5 presents the mathematical statement of the discrete-time LTR
problem. The telling difference from continuous-time is the stability requirement:
poles inside the unit circle for discrete systems, versus poles in the left half-
plane for continuous ones.

Apart from the stability issue, the discrete, exact recovery question is
identical to the continuous one. Chapter 6, therefore, merely summarizes the
exact recovery results analogous to those of Chapter 3.

The stability issue, however, makes discrete, asymptotic recovery impossible.
Chapter 7 discusses this issue and suggests a matrix norm minimization approach
analogous to the Kwakernaak procedure as described in Chapter 4. We, thus, derive
the discrete LQR problem (DLQR) as a means of approximating discrete LTR
(Theorem 7.1). Again paralleling the development of Chapter 4, we examine the
modal properties of the DLdk solution (Theorem 7.2). We see that qualitatively

the DLQR approach and Kwakernaak's approach are similar, but that DLQR produces a




non-zero recovery error. An expression for this error is then presented
(Theorem 7.3) from which we see that recovery error is a function of sampling
time for sampled data systems.

Chapter 8 presents some examples to illustrate the key concepts. A SISO
example shows how exact recovery works. We then give a MIMO, sampled data
example to show the dependence of Tecovery error on sampling time.

Chapter 9 concludes the thesis with a summary and suggestions for further

research.

1.3 Research Contributions

The main contributions of this thesis are:
(1) An equation for the loop recovery error matrix that is useful for
examining proposed recovery schemes;
(2) An analysis of the Kwakernaak recovery procedure in light of the
above equation;
(3) The demonstration that discrete asymptotic recovery is impossible;
(4) The derivation of the discrete LQR recovery approach as a matrix norm
minimization analogous to the Kwakernaak procedure;
(5) The derivation of‘an ekpression for the recovery error resulting from

the DLQR approach.




CHAPTER 2: CONTINUOUS—TIME PROBLEM DEFINITION

2.1 Introduction

In order to gain insight into the problem of LTR for discrete-time systems,
we first examine the problem for continuous-time systems. This chapter presents

the mathematical statement of the continuous LTR problem.

2.2 Problem Statement

Figure 2.1 shows the structure of an LQG/LTR control system. We assume a
minimal realization, (A,B,C) of the given plant transfer function matrix,

G(s). That is

x(t) = A x(t) + B u(t) + B d (t) | (2.1)

y(8) = C x(8) + d_(t) | @2
where

x(t)e R" = plant state

u(t)e R" £ control input

gI(t)e R" é input disturbance

y(t)e R™ é plant output

go(t)G R" 4 output disturbance

and A,B,C are appropriately dimensioned constant matrices. We further assume,

for convenience,



|+
+

K(s)

G(s)

Figure 2.1:

LQG/LTR Control System.




rank(B) = rank(C) = m . (2.3)

With these definitions we see that

G(s) = C 2(s)B : (2.4)

where

(s1-8)"! (2.5)

2(s)

The compensator has the structure of a full-order KBF:

() = A + B u(®) - HIC R(E)-y(£)+x(e)] (2.6)

u(t) = -G X(t) | (2.7) .
where

K(t)€ R = filter state

r(t)€ R" £ reference input

and G and H are the LQR and KBF gain matrices, respectively. We see that

K(s) = G(sI-A+B G+ C) ' . (2.8)

Because of the special structure of the compensator, the closed loop eigen-
values are those of the matrices A-B G and A-H C. Define Ai, 1<i<n, to be the
eigenvalues of A-B G and Ei’ 1<i<n, the eigenvalues of A-H C. With these

definitions we may pose the following problems:



Problem 1: LTR at Plant Output (LTRO)

Given H such that
(i) Re(u;)< 0, for all 1<i<n;

(ii) The singular values of C 2(jw)H meet all design
requirements;

find_g such that

(iii) Re(Ai)< 0, for alil 1<i<n;
(iv) GjwK(jw) = C 2(jw)H, for all wESR,

where Q is the set of all

defined (i.e. all required inverses exist).

Problem 2: LTR at Plant Input (LTRI)

Given G such that
(1) Re(ki)< 0, for all 1<i<n;

(ii) The singular values of G 2(jw)B meet all de51gn
requirements;

find H such that
(iii) Re(ui)< 0, for all 1<i<n;
(iv) K(jw)G(jw) ~ gg(jw)g, for all weqQ',

where

defined.

O0<w<e for which G(iw)K(jw) and g_g{jw)g

are well-

' is the set of all 0<w<e for which K(jw)G(jw) and G 2(jw)B are well



Remarks

(1) In Problem 1, the matrix H is given so that the target full state
design shown in Figure 2.2 meets the system specifications for command following,
disturbance rejection and robustness to uncertainties. In this case, all
disturbances and plant uncertainties are referenced to the plant output.

Figure 2.3 shows the analogous target full state design for Problem 2. Here
the primary mission is disturbance rejection. All disturbances and plant uncer-
tainties are modelled as occurring at the plant input.

(2) Problems 1 and 2 are dual in the same sense that the LQR and KBF
problems are dual. Therefore, in the remainder of this thesis we prove only those
theorems which address LTR at the plant output (Problem 1). We merely state the
analogous results for LTR at the plant input (Problem 2) and appeal to the principle

of duality for proof.

2.3 Concluding Remarks

The MBC structure reduces compensator design to the selection of two matrices-
G and H. In Problem 1, for example, the tacit assumption is that most of the
creative effort goes into designing H. Success hinges, therefore, on the existence
of a routine procedure for designing G. How does one go about finding such a

procedure? Chapter 3 lays the groundwork for the answer.
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Figure 2.2: Target Full State Design for LTR at Plant Output.
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Figure Z.3: Target Full State Design for LTR at Plant Input.
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CHAPTER 3: EXACT RECOVERY IN CONTINUOUS TIME

3.1 Introduction

In their seminal 1979 paper [5], Doyle and Stein present the following

sufficient condition for exact loop recovery at the plant input:

H[I+C 2(s)H]™" = B[C o(s)B] ™! . (3.1)

Since (3.1) is equivalent to B=0, this condition can only be met asymptotically.
Doyle and Stein therefore suggest that if H can be parametrized by a scalar

variable q such that as g+

H(q)
—~ > BW, (3-2)

for any non-singular W, then Equation (3.1) holds asymptotically and recovery

occurs in the limit. For every value of q along the way, though, the matrix

A-H(q)C must be stable. Before the reader even has time to wonder at how unlikely

it would be to stumble across just such a parametrization, Doyle and Stein uncover

their modified KBF design approach which has exactly the right properties [5].

Equations (3.1) and (3.2) offer a perspective on the recovery problem that is

ideally suited for explaining the Doyle/Stein recovery procedure, but rather

poorly suited as a starting point for searching for new recovery schemes. In this

chapter, therefore, we also consider the problem of exact LTR (i.e.

G(wXK(jw) = C 2(jwH, for all weER (3.3)
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or, dually,

K(jw)G(jw) = G 2(jw)B, for all weQ') (3.4)

in order to establish a more useful perspective from which to view the discrete-
time recovery problem.

Section 3.2 exposes the structure of the loop recovery error matrix and
derives equivalent conditidns for exact recovery at the plant butput. Section 3.3
shows how these conditions imply certain pole/zero cancellations that support the
intuitive idea of how recovery should work. Section 3.4 reinforces the notion
that exact recovery is, in general, impossible, but suggests a design criterion
for those cases when it is impossible. Finally, Section 3.5 states the correspond-

ing results for recovery at the plant input.

3.2 Equivalent Conditions

Lemma 3.1 and Theorem 3.2 introduce the output recovery error matrix,

Eo(s); as a tool for investigating LTR.

Lemma. 3.1: Let

E_(s) 3 C a(s)H - G(s)K(s) . (3.5)
Then

E (s) = [1+C 2(s)H][LM ()] M, () (3.6)
where

M (s) 2 C(sI-A+B ©)'H (3.7)
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[I+C ®(s)H]C[I+(sI-A+B G) H C] (s1-A+B G)lH

[1+C 8(s)H] [1+C(s1-A+B G) 'H] 'c(sI-a+B & 'H

-1
[1+C 2(s)H][L+M ()] "M, (s)
where we get from (3.12) to (3.13) using the identity

@A)t = (1A'

Theorem 3.2: Let A-B G be a non-defective1 matrix with right eigenvectors

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

u,, 1<i<n, and corresponding left eigenvectors Vis 1<i<n. Then, with Eo(s)

1A matrix is said to be non-defective if it has a complete set of 1ndependent

elgenvectors
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and Mo(s) as defined in Lemma 3.1 the following statements are equivalent:

(1) Eo(Jw) =0 for all we€R
(ii) Mo(Jw) =0 for all weER
(iii) E-Ei =0 or Xg H=0, for all 1<i<n

Proof: We show the equivalence of all three statements by proving

Part (a): (i) if and only if (ii)
followed by

Part (b): (ii) if and only if (iii)

Part (a): By Lemma 3.1 we may write

E (o) = [1+C 9(jw)H] [l+n_40(jw)]'lyo(jw) for all weR . (3.18)
(Necessity) If M_(jw) = 0 then (3.18) implies E (jw) = 0.
(Sufficiency) Assume Eo(jw) = 0. Now, A-H C stable implies [I+C ®(jw)H]
" is nén-singular for all weR. Therefore, (3.18)»implie§ Mo(jw) = 0.
Part (b): Let Ai’ I<i<n be the eigenvalues of A-B G and let A = diag(ll,...,kn).
Define

4 .oy 2
H— [Els---,E_n]: _‘{' [ll"..’!n] (3'19)

with Ei’ Xi scaled so that

8] VH = VHU =1I. (3.20)

2The notation AH indicates the Hermitian (i.e. complex conjugate transpose of
matrix A).
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It follows that
ABG=UAV . (3.21)

We now rewrite the definition of Mo(s) in matrix residue form:

_ -1
M (s) = C(sI-A+B G) 'H (3.22)
-1 .
=ceuviuavh w (3.23)
= CUGsI-M TV (3.24)
121 Egil’_l;_lﬂ_
is1 s-Xi (3.25)
(Necessity) Assume (iii) holds. Then (3.25) implies that Mo(s) =0
for all s.
(Sufficiency) Assume Mo(jw) = 0 for all w€R. Then (3.25) implies
n Egixglﬂ
0 = —— = for all we€Q . 3.26
- 121 Jw=hy ’ | (3.26)
which implies each term of the sum must vanish individually. Therefore,
g_u.ng =0 for all 1<i<n . (3.27)

—]—]1— —

Let % gie R" such that %y & E-Ei and EE C !EE_. Then (3.27) implies

1]
=
o
H

B. = 0 (or both) for all i<i<n.

o §? = 0 which implies either a. 8,

—1

Therefore, (iii) is true.
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Remarks:

(1) Statements (i) and (ii) are equivalent even if A-B G is defective.
In that case, of course, the modal expansion is not defined so (iii) cannot be
asserted.

(2) If the eigenvalues of A-B G are distinct, then (iii) is equivalent to
the statement:

(iv) Every mode of A-B G is either unobservable from C or uncontrollable
from H (or both).

If the eigenvaluesof A-B G are repeated, but A-B G is still non-defective,
then (iii) is more restrictive than (iv). That is (iii) is a sufficient condition

for (iv) but not a necessary one.

3.3 Pole/Zero Cancellation

In general, the loop transfer function, G(s)K(s), has 2n poles. The target
loop transfer function, C @(s)H, has only n poles - the same n poles as the plant
G(s) = E_QIS)E} Intuitively, then, exact recovery requires the cancellation of the
n extraneous poles of the compensator. Lemmas 3.3 through 3.6 and Theorem 3.7

demonstrate this cancellation.

Definitions: Let X be an eigenvalue of A-B G with corresponding eigenvector
B E Rm, B#0, such that g;§;=_g. Let p be an eigenvalue of A-B G with corresponding

left eigenvector y € Rm, Y#0, such that YHH = 0.
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Lemma 3.3: X is an eigenvalue of K(s) with corresponding eigenvector B.

Proof: By definition,

(A-BGB = A8 . (3.28)
Then

0=CB=HCB (3.29)
implies

(A-B G-H C)B = AR . (3.30)

Lemma 3.4: There exists a number, &, such that £ is a transmission zero of

G(s) and & = .
Proof: Rewrite (3.28) as

=--0 BB A0 (3.31)

|
[

Now

0=CB=-CAM-A)'BGB (3.32)

|6

and (1) implies G B # 0. Therefore

det [C(AI-A) 1B] = 0 (3.33)

and A is a transmission zero of G(s).

Lemma 3.5: The eigenvalue of K(s), X, cancels the transmission zero of

G(s), E&.
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Proof: For multivariable systems Lemmas 3.3 and 3.4 are not enough to prove pole/

zero cancellation. Loss of either controllability or observability is also required.
We therefore show that the mode corresponding to A in the product G(s)K(s) is
unobservable.

Define the state equations for G(s)K(s) by:

| &<
[}

| =

]

| oo

T

|
+

|o
=<

d
S (3.34)

P4
lo
v
[+ =]
o
]
.
(@]
~
1
e

y=1c ofZ% . (3.35)
x

Since A is a pole of G(s)K(s) we may write

M-A BG

— o
. =0 (3.36)
0 M-A+B GHH C | | &
for some eigenvector comprised of q, @ € R". We expand (3.36) as
(M-A)a +B G & =0 (3.37)
(AI-A+B G+H C)a = 0 (3.38)

From Lemma 3.3 and (3.38) we deduce §_=‘§. Then (3.37) implies
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a=-(AI-A)BGA (3.39)
-1
=-(Al-A) 'BGB (3.40)
= B (see proof of Lemma 3.4) (3.41)
We see, therefore, that

o
[€C 0]}|-| =Ca=CB=0, (3.42)

a

so that the mode corresponding to A is unobservable and cancels &.

Lemma 3.6: U is an eigenvalue of K(s) with corresponding left eigenvector vy,

and p cancels a zero of K(s).

Proof: We prove cancellation

by showing the mode corresponding to u is

uncontrollable in K(s). By definition,

Ya-B 6 = !

Then

implies

2
'E
L)
a
™
P
o sy
(@]
| —
I

(3.43)
(3.44)
e (3.45)
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K(s) = G(sI-A+B G+H C)-lﬂ ' (3.46)

and lﬁg;o imply  the mode corresponding to p is uncontrollable.

Theorem 3.7: 1If Eo(jw) = 0 for all w€f, and A-B G is non-defective, then every

eigenvalue of K(s) cancels either a zero of G(s) or a zero of K(s).

Proof: Assume Eo(jm) = 0 for all w€R, and that A-B G is non-defective. If u.

and v., 1<i<n are the right and left eigenvectors of A-B G, then Theorem 3.2

implies that for every eigenvalue Ai, 1<i<n, either E.Ei =0 or X?ﬂ.= 0.

Lemma 3.5 and 3.6, therefore, imply the required cancellations.

Remarks:

(1) We see from Theorem 3.7 that in order to achieve exact recovery the com-
pensator must effect a partial inversion of the plant. That is, the poles of the
plant are left untouched (they are the desired open loop poles), while the plant
zeroes are cancelled by compensator poles and the compensator zeroes provide the
proper loop shaping.

(2) If the plant has right-half-plane zeroes, then exact recovery conflicts
with the requirement of asymptotic stability since compensator poles must cancel

those zeroes.
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5.4 Exactly Recoverable Loop Shapes

Exact loop transfer recovery is possible only for a restricted class of H
matrices. Theorem 3.8 defines this class and suggests a design criterion for G

to achieve exact recovery.

Theorem 3.8: Let A-B G be a non-defective matrix with right eigenvectorskﬁf 1<i<n,

such that Cu =0 for all I<i<n-m.

Then the following statements are equivalent:
(1) Eo(Jw) =0 for all weER
(ii) CH=0

Proof: Define the corresponding left eigenvectors Vis 1<i<n , and matrices

U and V such that

ne>

A

U=fu,....ul; v=[y,....v ] (3.47)
scaled so that
HV_H=_H=l~ . (3.48)

(Sufficiency) Assume Eo(jm) = 0 for all we€Q. Then Theorem 3.2 implies

Q_EJVHH =0 for all 1<i<n _ (3.49)

Therefore,

n
0= 1 cuvh (3.50)
i=1
n
= Q[z Eifil]ﬂ (3.51)
i=1
=cu v (3.52)

=CH  (3.53)
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(Necessity) Assume C H = 0. Partition U such that

U= [y U]
where

Uyt Ly gl o By 2yl
so that Cu, =0 for all 1<i<n-m implies €y, = 0.
Partition V, conformable with U, as
where

Vi =Yl Yo = Dyt Yal
Then,

= C U VIH + C U,VH

Now, since rank (C)=m, the vectors U 1<i<n-m are a basis for the null space

(3.

(3.

(3.

(3.

(3.

(3.

(3

(3.

54)

55)

56)

57)

58)

59)

.60)

61)

of C. The remaining eigenvectors u., n-m+1<i<n, are independent and are not in

the null space of C which implies 9-22 is nonsingular.

Equation (3.61) therefore

yields Yg§.= 0 which implies ng = 0 for all n-m+1<i<n. By Theorem 3.2, then,

Eo(Jw) = 0 for all wef.
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Remarks
(1) Condition (ii) is necessary for exact recovery even without the
condition E.Ei = 0, 1<i<n-m. For arbitrary H, therefore, exact recovery is
impossible. However, should we be lucky enough to have C H = 0, the conditions
of the theorem present a design criterion for G. That is, we must choose G so
that A-B G is non-defective with n-m eigenvectors in the null space of C. The
left eigenvectors of the remaining m modes are automatically in the left null space
of H thus satisfying condition (iii) of Theorem 3.2.
(2) How severe a restriction is CH=0? We answer this question by

considering the SISO case. Suppose the plant is realized in observable canonical

form. That is

- I
0 0 -a
o]
0 -al
0 1 - .
A = 0 . (3.62)
: “4h-2
_0 O eceoees 1 -a -1 |
C = 00 ..oov...... 0 1] (3.63)
™ h
o
H = h (3.64)
n-2
L. n-1
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The zeroes of C &(s)H are the roots of the polynomial

h s “+....+h_ =0 : (3.65)

If we impose the restriction (ii) we have

0=CH=h (3.66)

n-1

so the numerator of C ®(s)H is constrained to have order less than or equal to
n-2. At high frequencies, therefore, the slope of C o(jw)H 1is at least as

steep as -40 db/decade. Thus, any H which is a solution to a KBF problem is di55
qualified since every KBF loop rolls off with a slope of only -20 db/decade.

(3) We see from Theorem 3.7 that in order to achieve exact recovery we must
"hide" all of the poles of K(s) underneath zeroes of G(s)K(s). This hiding '‘uses
up" zeroes that might otherwise be used to shape the loop. The requirement CH=20
ensures that the remaining number of zeroes is adequate to reproduce the desired
loop shape, C @(jw)H.

For example, consider the case where rank(C B) = rank(§_§)=ﬁ. The total number
of zeroes of G(s)K(s) is then 2(n-m) which is the maximum any cascade of two mxm,
nth order systems may have. If we use up n zeroes as hiding places, then n-2m
zeroes are left for shaping the loop. Suppose rank (C H)=r>0. Then the number of
zeroes of C ®(s)H may be as high as n-2m+r. But with only n-2m zeroes left for
shaping the loop we may find ourselves r zeroes short. By requiring

r=0 (in other words, C H = 0) we preclude this possibility.
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3.5 Summary of LTRI Results

We present eight lemmas and theorems, analogous to those of Sections 3.2

through 3.4, for the problem of exact LTR at the plant input.

Lemma 3.9: Let

E;(s) 26 9(s)B - K()G(s) (3.67)
Then

E; () = M () [I+M; ()] [1+G 8(s)B] (3.68)
where

M (s) £ G(sI-asH O 7' (3.69)

Proof: Dual of proof of Lemma 3.1.

Theorem 3.10: Let A-H C be a non-defective matrix with right eigenvectors

Ei’ 1<i<n, and corresponding left eigenvectors !i’ 1<i<n. Then, with §{(s)and

MI(S) as defined in Lemma 3.9 the following statements are equivalent:

1) _El(jw) =0 for all weR'
(ii) Ml(jw) =0 for all weQ'
(iii) E~Ei =0 or ng =0, for all 1<i<n

Proof: Dual to proof of Theorem 3.2.
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Definitions: Let A be an eigenvalue of A-H C with corresponding eigenvector
B € Rm, B#0, such that G B =10. Let u be an eigenvalue of A - H C with

corresponding left eigenvector y € Rm, Y#0, such that IﬁB = 0.

Lemma 3.11: p is an eigenvalue of K(s) with corresponding left eigenvector Y.

Lemma 3.12: There exists a number, g, such that 7 is a transmission zero of

G(s) and ¢ = u.

Lemma 3.13: The eigenvalue of K(s), u, cancels the transmission zero of G(s),

C.

Lemma 3.14: A is an eigenvalue of K(s) with corresponding eigenvector B, and A

cancels a zero of K(s).
Proof: Dual to proofs of Lemma 3.3 through 3.6.

Theorem 3.15: If El(jw) = 0 for all w€R', and A-H C is non-defective, then every

eigenvalue of K(s) cancels either a zero of G(s) or a zero of K(s).

Proof: Dual to proof of Theorem 3.7.

Theorem 3.16: Let A-H C be a non-defective matrix with left eigenvectors Vs 1<i<n

such that !gg = 0 for all 1<i<n-m. Then the following statements are equivalent:
(1) EI(jw) = 0, for all weEQR'

(i) 6B=0.
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Proof: Dual to proof of Theorem 3.8.

3.6 Concluding Remarks

The chief purpose in discussing exact recovery has been to expose the basic
mechanism by which recovery occurs. We have seen that for arbitrary H, exact
output recovery is impossible. The next chapter explores the question of approximate

recovery.
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CHAPTER 4: APPROXIMATE RECOVERY IN CONTINUOUS TIME

4.1 Introduction

This chapter discusses approximations to loop transfer recovery for those
loop shapes which are not exactly recoverable. Section 4.2 discusses the basic
issues in terms of the matrix, Mo(s), introduced in Chapter 3. Section 4.3
presents Kwakernaak's method of asymptotic recovery; Section 4.4 re-discovers this

method by seeking to minimize an Ll

,-norm of Mo(s). Dual results for the LTRI problems

are presented in Section 4.5.

4.2 Basic Issues

This section discusses the basic issues in approximating LTR for continuous-

time systems. Theorems 4.1 and 4.2 establish some useful background material.

Theorem 4.1: If Eo(jw) = 0 for all we€Q, then

¢K(s) ¢R(s) for all s
where

d¢(s) 2 det(sI-A+B G C)

characteristic polynomial of the compensator

ne>

9g(s) = det(sI-A+B G)

ne>

characteristic polynomial of the regulator

dynamics

1L2 denotes the space of square-integrable functions.
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Proof: Assume go(jw) = 0 for all wE€Q.

Then, by Theorem 3.2 Mo(jm) = 0 for all weQ. Therefore,

I=1+ Mo(Jw) for all weQ. 4.1

Taking determinants on both sides yields

1= det[I+M_(ju)] (4.2)
= det[I+C(jwI-A+B G) ] | (4.3)
= det[L+(jwI-A+B G) H C] (4.4)
= det[(jWI-A+B 6) ' (JuI-A+B G+H C) ] (4.5)
= det(jwI-A+B G+H C)/det(jwI-A+B G) (4.6)
= ¢ogGw)/¢p(Gw) for all weQ (4.7)

Therefore, ¢K(s) = ¢R(s) for all s.
Theorem 4.2: If m=1, then Eo(jm) = 0, for all w€R, if and only if ¢K(s) = ¢R(s),
for all s.

Proof: (Sufficiency) Assume Eo(jw) = 0 for all w€R. Then, by Theorem 4.1,
o (s) = p(s).

(Necessity) Assume ¢K(s) = ¢R(s), for all s.

Define the following polynomials.

>

¢G(s) det (sI-A)

ne>

characteristic polynomial of the plant
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¢F(s) det (sI-A+H C)

characteristic polynomial of the KBF error

dynamics,

and recall the identities:

1+ C(sI1-A) H = Pp(5)/94(s) (4.8)

1+ C(SI-AYE ©)TH = 94(5)/0,(5) : 4.9)

By Lemma 3.1,

E (s) = [1+C 9(s)H] [14M_(5)] "M _(s) (4.10)
-1
dp(s) [ oy(s) WO
= — -1
N [¢R(s) ] [ch(s) | (4-11)
=0 | (4,12)'

since we have assumed ¢K(s) = ¢R(s).

Remarks
(1) As in Theorem 3.2, define the matrix residue expansion of Mo(s):

C u.vHH

n
M(s) = § —— (4.13)
i=1 i

where Xi is an eigenvalue of A-B G and Ei’ v, the corresponding right and left
eigenvectors.
It is clear from Lemma 3.1 that to make Eo(s) small one must make Mo(s)

small.
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Equation 4.13 suggests three mechanisms for reducing the size of Mo(s):

(1) Choose G so that E-Ei =0 or X? H=0 for all 1<i<n;

(2) Choose G so that Ai< 0 and_IAi|>>1, for all 1<i<n;

(3) Choose G so that Cu,~ 0, for all 1<i<n-m, and Ai< 0, |Xi|>>l for

n-m+1<i<n.

If it were possible to implement the first mechanism, we would achieve exact
recovery. Since, in this chapter, we are concerned with approximate recovery, we
assume C ?(jw)H is not exactly recoverable so the first option is not available.

Doyle and Stein [5] have shown that, in general, the second mechanism does
not ensure adequate recovery. For scalar systems, the réason for this failure is

clear. Rewriting (4.11) as

dg(s) ¢g(s) .
EO(S) = %TS) 1- m)— (4.14)

shows that the recovery error is proportional to the term
1 9r(%) 4.15
T 5 ) (4:1%)

The Ai's are the roots of ¢R(s), but choosing them according to scheme (2) does
nothing to guarantee the smallness of (4.15).

For multivariable systems, the necessity of ¢K(s) = ¢R[s) for exact recovery
suggests a similar explanation for the failure of scheme (2), although the relation-

ship among Eo(s), ¢K[s) and ¢R(s) is less apparent. It is apparent, however,
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on re-examing (4.13), that the magnitude of the residue, Q_Eing, is as

important as the magnitude of the pole. We may well imagine a design procedure
in which successive iterations increase the magnitude of the poles, yet simul-
taneously increase the magnitude of the residues. Such a procedure would fail to
decrease Mo(s) and therefore fail to recover the desired loop shape.

Scheme (3) is a compromise between schemes (1) and (2). Again, one must be
‘careful to keep the residues small as the m poles are made large. We see in the

next section that a systematic procedure exists for implementing scheme (3).

4.3 Kwakernaak's Method

The accepted approach to approximating LTR is generally referred to as
Kwakernaak's sensitivity recovery procedure [3]. The gain matrix, G, is found as
the solution to an LQR problem with state weighting matrix C'C in the limit as the

control weighting approaches zero. We therefore seek

min J = f[g (£)C'C x(t) + pu' (t)u(t)]dt. (4.16)
u(t) 0
subject to
x(t) = A x(t) +Bu(t); x(0) = x_ (4.17)

The well-known solution is
u(t) = -G x(t) (4.18)

G = B'K/p (4.19)
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where K = K'> 0 satisfies

o
|

= -K A-A'K-C'C+K B B'K/p (4.20)

Since (A,B,C) is given as a minimal realization we have (A,B) controllable and
" (A,C) observable so that A-B G is guaranteed stable.
Doyle and Stein [1] have shown that as p>0 the loop transmission
G(s)K(s) = C @(s)H pointwise in s. The following theorem describes this approxima-

tion in the terms outlined in Section 4.2.

Definitions: Let Xi, u;, 1<i<n, be the eigenvalues and eigenvectors of A-B G.
Let Ci be the i-th transmission zero of G(s). Let o, 1<i<n be the eigenvalues

of A.

Theorem 4.3: Let

(1) rank(C B) = m

(ii) ci#aj, for all 1<i<n-m, 1<j<n
(iii) Re(;i)< 0, for all 1<i<n-m
(iv) If i#j then ci#;j, for all 1<i,j<n-m.

If G is the solution to the optimal control problem (4.16), (4.17), in the limit

as p>*0, then

Cu, >0, for all 1<i<n-m (4.21)
_-—1 —" — —

and
A< 0,]A,|» », for all n-m+l<i<n (4.22)
i i ——
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Proof: See Harvey and Stein [9], pp. 378-380.

Remarks

(1) According to Theorem 4.3, the Kwakernaak recovery method implements
the approximation scheme (3) described in Section 4.2 - n-m eigenvectors are
placed in the nullspace of C while the eigenvalues of the remaining modes
approach infinity in m first order Butterworth patterns.

(2) How do we know whether, at the m asymptotically infinite modes, the
residues remain finite? We somewhat skirt this issue by noting that the residues
in question must be well behaved since Doyle and Stein [1] prove asymptotic

recovery without reference to the modal properties of A-B G.

4.4 L2-norm Minimization

With appropriately defined norm, the Kwakernaak procedure chooses G to

minimize the norm of Mo(jw).

Definitions: Let the L2-norm of a complex, mxm matrix A(jw) be defined as

[AG®) |1, ¢ max  SAGwVIAGYId 5 veR, |]y]]=1 (4.23)
v 0

Theorem 4.4: Let the transmission zeroes of G(s) all have negative real parts.
If G is the solution to the optimal control problem (4.16), (4.17) in the limit

as p>0, then G minimizes IIMO(jw)|Iz.
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Proof: By definition

[ 1M G [], = fmocjw)v]ﬁmo(jwmdw; vl [=1 (4.24)
= f[C(Jw_AEE zolH[g(ij-yg o 'n v, ldw (4.25)
where !06 R™ maximizes the integral. Let X, = E-!o' Then, by Parseval's
Theorem [10],
|,|Mo(jm)||2 = 7 j{g exp[(A-B §)t]x }' , (4.26)
{C exp[(A-B G)t]x }dt
Let
X(t) = exp[(A-B ©)t]x, (4.27)
so that
x(t) = A x(t) + B u(t); x, = x(0) - (4.28)
u(t) = -G x(t) (4.29)
then
MGl = 7 fle x®]'[c x(0)]de (4.30)
0
Now, with
3 ¢ frrmee xm o muma (4.31)

0
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Kwakernaak [4] has shown that

2]

lim J(p) = fy (£)C'C x(t)dt (4.32)
p>0 0

provided G(s) has no right-half-plane zeroes. Therefore

[IM Gw [ [, = 7 Lim  J(p) (4.33)
>0

and G minimizes IIMO(jw)llz.’

Remarks

(1) Although we cannot always ensure Mo(jw)=gg if G(s) has no RHP zeroes
we may find a minimum norm solution. If G(s) has RHP zéroes, then this minimum
norm interpretation requires revision.

(2) The role of Theorem 4.4 in this paper is mainly to motivate the use of
the discrete LQR (DLQR) problem as a means of approximating LTR for discrete-time
systems. We see in Section 7.2 that the DLQR also minimizes IIMO(jw)||2 with a

slight change in definition of the norm.

4.5 Summary of LTRI Results

The following four theorems are the duals of those presented in Section 4.2

through 4.4.

Theorem 4.5: If El(jw) = 0 for all we€Q',
then ¢K(s) = ¢F(s) for all s,

where

I
[a ¥
o
t

~
w0
v
>
+
=~}
()
+
st
@]
~—

b (s) 2

>

¢p(s) = det(sI-A#H ).
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Theorem 4.6:

3

If m=1, then EI(jm) =0

tg(s) = ¢R(s), for all s.

Doyle/Stein Robustness Recovery Method [5]
Definitions:
A-H C. Let Ci be the i-th zero of G(s).

Theorem 4.7: Let

(1) rank(C B) = m
(ii) ci#aj, 1<i<n-m, 1<j<n
(iii) Re(ci)< 0, 1<i<n-m
(iv) i#j implies ci#;j, 1<i,j<n-m .
If £ =12' >0 satisfies
0=AZ+ZA"+BB'-ZLC'CZ/u
in the limit as p=0, and
H=1C'"u
then
!gg_ + 0, for all 1<i<n-m
and

A, <0, |A |
1 1

for all we€QR', if and only if

Let Ai’ Vis 1<i<n be the eigenvalues and left eigenvectors of

Let a. s 1<i<n, be the eigenvalues of A.

(4.34)

(4.35)

(4.36)

(4.37)

for all n-m+1§;§p .
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Theorem 4.8: Let the transmission zeroes of G(s) all have negative real parts.

If I =1'>0 satisfies (4.34) in the limit as w0, then H = £ C'/u minimizes

llMI(Jw) | lz'

Proof: Dual to proofs of Theorems 4.1, 4.2, 4.3, and 4.4.

4.6 Concluding Remarks

We have identified the basic issues in approximate recovery in terms of the
matrix Mo(s) (dually, MI(S))' We have also.seen how the Kwakernaak recovery scheme
may be viewed from two perspectives - as an eigenvalue/eigenvector placement procedure
and as a minimization of the norm of Mo' The second perspective will be used in
discrete-time to motivate the analogous discrete LQR approach to approximate

recovery.
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CHAPTER 5: DISCRETE-TIME PROBLEM DEFINITION

5.1 Introduction

This chapter presents the formal statement of the loop transfer recovery
problem for discrete-time, linear, MIMO control systems. We consider only the
MBC structure that results in strictly proper compensators (i.e. no direct
feedthrough in the compensator output equation).

Section 5.2 contains a brief review of discrete frequency response concepts
and establishes the notation to be used. Section 5.3 presents the actual LTR

problem.

5.2 Discrete Frequency Response

As in common practice, we define the discrete transfer function (sometimes
called the pulse transfer function) of a linear, time-invariant discrete-time
system to be the z-transform of the system's unit pulse response. The z-transform,
F(z), of a causal discrete signal, f(nT), where T is the sampling time, is defined

by

F(z) £ § famz X (5.1)
k=0 |

Like its continuous-time counterpart, the discrete transfer function is a
handy tool for calculating steady state responses to sinusoidal inputs. Consider

a discrete time plant with transfer function G(z) (pulse response g(nT)) excited

jw nT
by a sampled sinusoid u(nT) = e ° Its output y(nT), is found by discrete

convolution to be [7]:
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® jwo(nT—kT)
y@T) = ) gkTe (5.2)

k=0
jwonT w -jwokT

= e ) g(kT) o (5.3)

k=0

jwonT

= e G(z) (5.4)

jon
z=¢€

which is a sinusoid of the same frequency as the input but scaled in amplitude
Jw, T jw T ~
by |G(e )| and shifted in phase by arg G(e ). We define the discrete

frequency response, G*(jw):

¢+ (jw) 2 6(2) .
zZ=€ ’

from which we see that a system is completely characterized by specifying G*(jw)
for all O<w< m/T. We use this means of specifying discrete-time system performance

in the remainder of this paper.

5.3 Problem Statement

Figure 5.1 shows the structure of a discrete-time LQG/LTR control system.
We assume a minimal realization, (A,B,C) of the given plant transfer function

matrix, G(z). That is
x(k+1) = A x(k) + B u(k) + E_gl(k) . (5.6)

y(k) = C x(k) + d_(k) (5.7)
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K(z)

G(2)

Figure 5.1:

Discrete LQG/LTR Control System.




-42-

where the argument kT has been abbreviated as k and

x(k)€ R"

plant state

u(k)€ R"

control input
d (K€ R % input disturbance
y(k)€ R™ 4 plant output

gO(k)e R" & output disturbance

and A,B,C are appropriately dimensioned constant matrices.

- for convenience,
rank(B) = rank(C)=m

~ With these definitions we see that

G(z) = C 2(2)B

where

8(z) & (z1-0)71

The compensator has the structure of a full-order KBF:

x(k+1) = A X(k) + B u(k) - H[C X(k)-y(k)+r (k)]

u(k) = -G x(k)

where

ue>

gﬁk)e R" filter state

r(k)e R"

reference input

We further assume,

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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and G and H are the LQR and KBF gain matrices, respectively. We see that

K(z) = G(zI-A+B G+H C)‘lg_. (5.13)

Again, because of the special structure of the compensator, the closed loop
eigenvalues are those of the matrices A-B G and A-H C. Define Ai, 1<i<n, to be
the eigenvalues of A-B G and b, 1<i<n, the eigenvalues of A-H C. With these

definitions we may pose the following problems:
Problem 3: Discrete LTR at Plant Output (DLTRO)
Given H such that
(1) lul< 1, for all 1<i<n;

(ii) The singular values of C 2*(jw)H meet all
design requirements;
find G such that

(ii1) [r;[< 1, for all 1<i<n;

(iv) G*(jw)K*(jw) = C 9*(jw)H, for all wGQD,
where QD- is the set of all O<w<m/T for which G*(jw)K*(jw) and C 9*(jw)H are
well-defined.

Problem 4: Discrete LTR at Plant Input (DLTRI)

Given G such that
(1) A l< 1, for all 1<i<n;

(ii) The singular values of G ¢*(jw)B

meet all design requirements;
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find H such that
(iii) |u;[< 1, for all 1<izn;
(iv) K*(jw)G*(jw)= G ¢*(jw)B, for all wEQ]') ,

where QB is the set of all O0<w<m/T for which K*(jw)G*(jw)

well defined.

and G ¢*(jw)B are
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CHAPTER 6: EXACT RECOVERY IN DISCRETE TIME

6.1 Introduction

This chapter summarizesthe discrete-time theorems concerning exact LTR

b

analogous to the theorems presented in Chapter 3. By exact LTR we mean

E*(JWK*(jw) = C &*(ju)H, for all weq , (6.1)

or, dually,

K*(Jw)G*(Jw) = G 2*(jw)B for all weR} (6.2)

6.2 Summary of DLTRO Results

Lemma 6.1: Let

E () 2 C 9(2)H - G(2)K(z) . (6.3)
Then

E,(2) = [1+C o(2)H] [I+M ()] 'M_(2) (6.4)
where

M (2) 2 C(al-A+B © 7'

Theorem 6.2: Let A-B G be a non-defective matrix with right eigenvectorsgi,
1<i<n, and corresponding left eigenvectors Vi 1<i<n. Then, with Eo(z) and

Mo(z) as defined in Lemma 6.1 the following statements are equivalent:
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. * - _
(1) Eo(Jw) = 0 for all wGQD

°© = * . -

(ii) Mo(Jw) =0 for all wEQD

(iii) C u, = 0 or vl:lH = 0, for all 1<i<n

—_1—

Definitions: Let A be an eigenvalue of A-B G with corresponding eigenvector
B € Rm, B#0, such that C B = 0. Let u be an eigenvalue of A-B G with corresponding

left eigenvector Yy € Rm, 1#0, such that YH]i = 0.

Lemma 6.3: A is an eigenvalue of K(z) with corresponding eigenvector B.

Lemma 6.4: There exists a number, Z, such that ¢ is a transmission zero of

G(z) and 7 = A.
Lemma 6.5: The eigenvalue of K(z), A, cancels the transmission zero of G(z), Z.

Lemma 6.6: U is an eigenvalue of K(z) with corresponding left eigenvector Y,

and p cancels a zero of K(z).

Theorem 6.7: If g:)‘(jw) =0 for all wGQD, and A - B G is non-defective, then

every eigenvalue of K(z) cancels either a zero of G(z) or a zero of K(z).

Theorem 6.8: Let A - B G be a non-defective matrix with right eigenvectors u,
1<i<n, such that E_Lli = 0 for all 1<i<n-m. Then the following statements are
equivalent: k

o ] -

(1) EO(JU)) = 0 for all wEQD

(ii) CH=0.
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Theorem 6.9: If g;(jw) = 0 for all wGQD, then

¢K(Z) ¢R(Z) for all z

where

1]
[N
o
t

~
N
—

!
>
+
v}
[*p]
+
st
(9]

A —

4 (2) £ det(z1-A%B Goi C

characteristic polynomial of the compensator

6p(2) £ det(z1-A+B ©)

characteristic polynomial of the regulator dynamics.

Theorem 6.10: If m=1, then gé(jw) = 0, for all wGQD, if and only if

¢K(Z) = ¢R(2), for all z.

Proof: The proofs of Lemmas 6.1, 6.2-6.6 and Theorems 6.2, 6.7-6.10 are identical
to the proofs of Lemmas 3.1, 3.3-3.6 and Theorems 3.2, 3.7, 3.8, 4.1 and 4.2 if
the following substitutions are made:

1) - z for s

(1) E () for E_(jw)

(iii) M) (jw) for M Gw)

(iv) G*(jw) for G(jw)
) K*(jw) for K(jw)
(vi) . for @

D
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6.3 Summary of DLTRI Results

Lemma 6.11: Let

E;(2) £ 6 2(2)B - K(2)6(2) (6.6)
Then

E (2) & M (2) [I+M, (2)] ' [I+G 8(2)B] (6.7)
where

M (2) £ Glal-avi 0B (6.8)

Theorem 6.12: Let A-H C be a non-defective matrix with right eigenvectors

u., 1<i<n, and corresponding left eigenvectdrs vy 1<i<n. Then with E{(Z) and

Ml(z) as defined in Lemma 3.9 the following statements are equivalent:

it
[e]

(1) g;(jw) 0 for all wGQB A

(ii) M;(jw) 0 for all weﬂb

(iii) Gu, = or!g§_= 0; for all 1<i<n

(=]

Definitions: Let A be an eigenvalue of A-H C with corresponding eigenvector

g € Rm, B#0, such that G B = 0. Let U be an eigenvalue of A-H C with corresponding

S
left eigenvector Yy € Rm, Y#0, such that XHE = 0.
Lemma 6.13: u is an eigenvalue of K(z) with corresponding left eigenvector Y.

Lemma 6.14: There exists a number, Z, such that Z is a transmission zero of G(z)

and ¢ = U.
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Lemma 6.15: The eigenvalue of K(z), u, cancels the transmission zero of G(z), t.

Lemma 6.16: A is an eigenvalue of K(z) with corresponding eigenvector B, and A

cancels a zero of K(z).

Theorem 6.17: 1If E;(ij = 0 for all w696 » and A-H C is non-defective, then

every eigenvalue of K(z) cancels either a zero of G(z) or a zero of K(z).

Theorem 6.18: Let A-H C be a non-defective matrix with left eigenvectors Vs
1<i<n such that ng = 0 for all 1<i<n-m. Then the following statements are

equivalent:
(1) E;(w) =0, for all weLY

(i) 6B =0

Theorem 6.19: If Ei(jw) = 0 for all wGQB, then

.¢K(z)'= ¢F(z) for all z,
where

¢K(z) é det(zI-A+B G+H ()
A
¢F(z) = det(zI-A+H C).

Theorem 6.20: If m=1, then E;(jw) = 0, for all wGQB, if and only if

¢x(z) = ¢gp(z), for all z.
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Proof: The proofs of Lemmas6.11, 6.13-6.16 and Theorems 6.12, 6.17-6.20 are

dual to the proofsof Lemmas 6.1, 6.3-6.6 and Theorems 6.2, 6.7-6.10.

6.4 Concluding Remarks

As in Chapter 3, we have presented these exact recovery results only to set

the stage for the discussion of approximate recovery that follows.
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CHAPTER 7: APPROXIMATE RECOVERY IN DISCRETE TIME

7.1: Introduction

Consider the matrix residue expansion of Mo(z):

ViH

; (7.1)

M
-0

N|c‘-

n
(z) = Z

where Ai’ 1<i<n are the eigenvalues of A-B G and u, v, the corresponding right
and left eigenvectors appropriately scaled. By Lemma 6.1, it is apparent that
approximate recovery entails reducing the size of Mo(z).

Unlike the continuous time case, however, we do not have the option of
increasing the magnitudes of the poles since stability requires IAi|< 1 for all
1<i<n. Any form of asymptotic recovery is, therefore, impossible.

Recall, however, the interpretation of Kwakernaak's method as a minimization
of the norm of Mo(z). Section 7.2 poses the analogous discrete domain minimization

problem to derive the discrete LQR (DLQR) problem. Section 7.3 discusses the

solution to this problem.

7.2 L2—norm Minimization

Discrete frequency response functions are periodic and, therefore, not
actually elements of L2. We skirt this issue by modifying the limits of integration

in the definition of the norm so that only one period of the function contributes.
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Definition: Let the discrete 2-norm of a complex, mxm matrix A(z) be defined

as
2m/T
[AG2) 15y = max f (A* Gyl [a* Gu)vldes veR™, |[v][=1 (7.2)
- 0

Theorem 7.1: G minimizes ||1\_/10(z)||2D if and only G is a solution to the DLQR

problem

min J = ) x'(k)C'C x(k) (7.3)
u(k) k=0 ‘
subject to
x(k+#1) = A x(k) + B u(k); x(0) = x, (7.4)
where
u(k) = -G x(k) (7.5)

Proof: By definition

2n/T
M, () | 5p = max f M G v] M Gy vldw; | |v] [=1 (7.6)
B 0
- fre@®an 971 v @ s 9 Ky w7
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where Xoe R™ maximizes the integral. Let X, = H Then, by Parseval's

Theorem [11],

o k k
M@ ], = = kZO [Ca-B &) x ]'[C(A-B &k ] - (7.8)
Let
k
x(k) = (A-B G) X, » (7.9)
so that
x(k+1) = A x(k) + B u(k); x(0) = x_ (7.10)
u(k) = -G x(k) . (7.11)
Then
IR OZD [Cx()]'[C x(})] . (7.12)
- 2D k=0

Therefore, G minimizes IIMO(Z)IIZD if and only if G is a solution to the DLQR

problem (7.3)-(7.5).

7.3 The DLQR Problem

Consider the optimization problem

x' (K)C'C x(k) + pu' (k)u(k) (7.13)

min J = )
u(k) k=0

subject to

x(k+1) = A x(k) + B u(k) . (7.14)
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The well known solution is [12]:
u(k) = -G x(k) (7.15)
G = (pL+B'K B) B'K A (7.16)
where K = K'> 0 satisfies

K=A'KA+C'C- A'KB(PL+B'K B) 'B'K A - (7.17)

Unlike the continuous time LQR, the inverse of the control weighting is not

required here. We may let p=0, therefore, to yield

6= (B'KB)B'KA (7.18)
K=A'KA+C'C-A'KB(B'KB) 'BKA . (7.19)
It may be verified by substitution in (7.19) that, if rank(C B)=m , then
K=C'C (7.20)
is a solution, which implies
= (C B) CA. : (7.21)

The following theorem exposes the nature of this solution.

Theorem 7.2: Let Ai’ 1<i<n be the eigenvalues of A-B G and u,, 1<i<n corresponding

eigenvectors. If G = (g_g)-lg_é_and A-B G is non-defective, then

If rank(C B)< m a closed form solution to (7.19) is not known. However, we
conjecture that the modal properties of the solution would be similar to those
expressed in Theorem 7.2.
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(1) Cuy

i 0, 1<i<n-m

(ii) Ai=0, n-m+1<i<n

'

Proof: Assume G = (g §)_1g.A, Then

C(A-B 6 = CIA-B(C B) ' A] (7.22)
=C _'gé. (7.23)
=0 (7.24)

Since rank(C)=m, the rows of C are m independent left eigenvectars of A-B G
corresponding to m zero eigenvalues. We label these zero eigenvalues Ai,
n-m+1<i<n and (ii) is proved.

Define the modal matrix U, its inverse !ﬂ, and A = diag(ll...An) so that

VH(A-E QU =47 . (7.25)

Now !g may be partitioned.

VH

T (7.26)

c
where rank(V1)=n—m. Matrix U may be partitioned conformally as

with rank(yi)=n-m, and scaled so that
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Wy iy

-1 ~1=2 |
I1=VU-= : (7.28)

¢y

Therefore 9_y1 = 0 which implies

E-Ed = 0, for all 1<i<n-m (7.29)

and (i) is proved.

Remarks

(1) Theorem 7.2 is the discrete-time analog of Theorem 4.3. As in the
continuous-time case, n-m eigenvectors of A-B G find their way into the nullspace
of C. Unlike the continuous-time case, however, the eigenvalues of the other m
modes remain finite, but note that they wind up at the origin - the fastest any
discrete-time mode can be.

(2) According to (i) and Lemma 6.4, n-m poles are equal to plant zeroes.

The requirement of stability then restricts this approach to minimum phase plants.

7.4 Discrete Recovery Error

By Theorem 7.2 we see that the DLQR solution places n-m closed loop system
poles at the plant zeroes and the remaining m poles at the origin. These m poles
at the origin are the source of the finite recovery error resulting from the DLQR

approach. This error is quantified in the following theorem.
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Theorem 7.3: 1If

G=(CB) CA ' (7.30)

then

E_(2) = [1+C 9(2)HIC H[zI+C H] (7.31)

Proof: By definition of Mo(z) and using the Laurent expansion we have:

-1
M, (z) = C(zI-A+B G) "H (7.32)
1% i-i

=Cz ] (A-BG z 'H (7.33)

i=0
= C H/z (7.34)

where (7.34) follows from

CA-BG =0 . (7.35)

By Lemma 6.1 and (7.34), then,
E,(2) = [I+C 8(2)HIC H[z I+C H] ! (7.36)

Remarks
(1) Equation (7.36) demonstrates again the dependence of the recovery error
on the product C H. We see that if indeed CH =0 then (7.30) is the gain that

achieves exact recovery.
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(2) The SISO case of Equation (7.36) reveals the fact that recovery error
is a function of sampling time.

Consider a SISO plant realized in observable canonical form (see Equations
(3.62)-(3.64)). The characteristic polynomial of the matrix A-H C can be written

as:
n n-1

0=s" + (an_1+hn_1)s +°"+(aq+ho) (7.37)

Suppose Ai’ 1<i<n are the eigenvalues of A, and M s 1<i<n are the eigenvalues

of A-H C. For any nth order monic polynomial, the coefficient of the (n-l)th

order term is equal to the negative sum of the roots of the polynomial. Therefore,

n
a = - ¥ A , (7.38)
and
n ‘
a + h =-) (7.39)

Combining these two yields:

n |
hoo= 3 A (7.40)
i=1
n .
= ] Re(d;)-Re(y;) (7.41)
i=1

since the eigenvalues occur in complex conjugate pairs. We may then say that

hn 1 is equal to the '"net leftward movement in the z-plane of the dominant
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system poles." Noting that hn-l = CH we see that the error (7.36) is an

increasing function of-hn_1 for fixed z. The dependence of hn- on sampling time

1
is best illustrated by a simple example.

Suppose we have a continuous time plant,

G(s) =

s+5 ° (7.42)

that we wish to control with a piecewise-constant input (samﬁled data system).
Further, suppose we know that all our specs will be met if we only move the pole
to s=-10. We may translate this spec into a discrete pole location problem, but
the translation depends on sampling time, T.

Suppose T=.01. Then the open loop pole is at:

r=e G0 g o (7.43)

The desired closed loop pole is:

. e-10(.01)_

M 0.90 (7.44)

So that

CH=h_ _, =Au-=0.05. (7.45)

Suppose now that T=.05. Then the open loop pole is:

_ e-5(.05)_

A 0.78 (7.46)

and the desired closed loop pole is:

_ &-10(.05)_

H 0.61 (7.47)

so that

@]
|z
I
=2
i

A-u = 0.17 (7.48)




-60-

We see that the same pole re-location in the s-plane corresponds to different

pole movement in the z-plane depending on T, and that the poles move further

if the sampling time is longer. Thus the recovery error is an increasing function
of the sampling time. (We expect this, of course, since we know that as T>0 we
should approach the continuous-time case of asymptotic recovery). Section 8.3

demonstrates this sampling time dependence in a MIMO example.

7.5 Summary of DLTRI Results

Theorem 7.4: H minimizes |[M1(2)||2D if and only if H is a solution to the
DLQR problem
®

‘min J = )} x'(k)B B'x(k) (7.49)

u(k) k=0 ‘
subject to

x(k+1) = A'x(k) + C'u(k); x(0) = x_ (7.50)
where

u(k) = -H'x(k) (7.51)

Theorem 7.5: Let Ai’ 1<i<n be eigenvalues of A-H C and Vs 1<i<n corresponding

left eigenvectors. If H = A B(C B)_1 and A-H C is non-defective, then

(1) VB =0, lsicnem

(ii) Ai=0, n-m+1<i<n




Theorem 7.6: If

then

Proofs: Proofs of Theorems 7.4

through 7.3.

7.6 Concluding Remarks
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(7.52)

B] 1 [1+G @(2)B] (7.53)

through 7.6 and dual to those of Theorems 7.1

We have shown that asymptotic recovery is impossible. The DLQR approach

represents ''the best you can do" (in the quadratic minimization sense) to reduce

the recovery error for arbitrary H (dually, G). We see, in the next chapter,

some numerical examples of how good '"the best" really is.
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CHAPTER 8: EXAMPLES

8.1: Introduction

This chapter presents some examples of discrete-time control system design
using MBC/LTR. Section 8.2 uses a purely hypothetical SISO plant to illustrate
an exact recovery. Section 8.3 uses a model of a CH47 helicopter [1] to illustrate
approximate recovery in the MIMO case and the dependence of recovery error on

sampling time.

8.2: SISO Exact Recovery

Consider the SISO plant:

_ z-0.8
6(z) = Z1.00(z-0.9 (8.1)
We obtain the observable canonical realization:
0 -0.9 -0.8
A = B = (8.2)
1 1.9 1
c=1[0 1]

Suppose we are given the full state design matrix H:

[0.0025]
H = (8.3)
o 0
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which places both eigenvalues of A-H C at z=0.95. We note that we have

(1) rank(C B)=1
(ii) CH=0

(iii) C ¢(z)B minimum phase

SO we expect to be able to recover exactly the desired loop shape

_.0025

C2@H = F.0yz09)

We implicitly solve the discrete LQR problem

==}
min J = )} x'(k)C'C x(k)
u(k) k=0
by choosing
-1

G= (B CA= [1.0 1.9]

The eigenvalues of

0.8 0.62
A-B G =
0 0
are at z= 0.8, 0.0 - one at the plant zero and one at the origin.
compensator is given by
K(z) = G(zI-A+B G+H C)~'n

0 A

0.0025z
z(z-0.8)

[1.0 1.9] [2z-0.8 -0.6175

-1

0.0025

0

(8

(8

(8

(8.

(8

(8.

(8.

.4)

.5)

.6)

7)4

.8)

9)

10)
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0.0025
= —3-0.8 (8.11)

So the actual loop transmission is

z-0.8 0.0025

G(z)K(2) = 1.07(2-0.9)  (2-0.8) (8.12)
0.0025
(z-1.0) (z-0.9) (8.13)
and the recovery is exact.
8.3 MIMO Approximate Recovery
A continuous time model of a CH47 tandem rotor helicopter at 40 knot
airspeed is [1]:
r-0.02 0.005 2.4 -32
-0.14 0.44 -1.3 -30
)= | o o.018 -1.6  1.2) X(®
| 0 0 1 0 |
- -
0.14 -0.12
0.36 -8.6
+
0.35 0.009 | u(t) (8.14)
| 0 o0

y = x(t) (8.15)
0 0 0 57.3

" where the outputs are vertical velocity and pitch attitude.

We assume a simpling time

T =0.01 sec . (8.16)
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If the input, u(t), is piecewise constant, that is,

u(t) = u(kT), KT<t<(k+L)T
k=0,1,....

then the system obeys the difference equation,

r0.9998 0.0001 0.0222 -0.3198
x(k+1) = ]-0.0014 1.0044 -0.0144 -0.3005 x(t)
0.0000 0.0002 0.9842 0.0119
0.0000 0.0000 0.0099 1.0001J

[ 0.0014 ~0.0012 |
0.0036 -0.0862
+| 0.0035  0.0001 | 20K
0.0000  0.0000
A J
[0.0000  1.0000  0.0000 0.0000

y (&) x(k)

0.0000 0.0000 0.0000 57.3000

Suppose we are given H:

[ 0.0031 0.0023 |
0.2421  -0.0018
H=10.0002 0.0080

0.0000 0.0017

which results in the loop shape, C $*(jw)H shown in Figure 8.1.

to recover this loop by choosing

(8.17)

(8.18)

(8.19)

(8.20)

We attempt
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Magnitude
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Frequency (r/s)

Figure 8.1: Singular Values of C ®*(jw)H T=0.01.
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The singular values of G*(jw)K*(jw) are plotted along with the target singular
values of C ¢*(jw)H (Fig. 8.2). As predicted in Section 7.3 the recovery error
is non-zero.

We repeat the above procedure changing the sampling time to

T = 0.05 sec . - (8.22)
With
ro,ooge 0.0023
0.7423 -0.0165
H=19.0011 0.0311 (8.23)
0.0000 0.0084

the loop shape of Figure 8.3 results.
Choosing

0o 1 113 2350
(8.24)

-l
c=0CHB 95‘[0 2.3 4.7 97.4

produces the loop shape of Figure 8.4. Both H matrices were chosen to produce
roughly the same open loop crossover frequency (~ 10 r/s). As expected, the

recovery error is greater with the larger sampling time.
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Figure 8.2: Loop Recovery T=0.0l.
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Figure 8.3: Singular Values of C &*(jw)H
T=0.05
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Figure 8.4: Loop Recovery T=0.05.
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CHAPTER 9: CONCLUSION

9.1 Summary
We have reached the following conclusions concerning discrete-time LTR:
(1) Asymptotic recovery is impossible;

(2) Recovery using DLQR is qualitatively similar to Kwakernaak's continuous-

time recovery-both techniques minimize a norm of Mo; both make n-m modes of
A-B G unobservable from C and make the remaining modes as fast as possible; and
(3) The recovery error using DLQR is non-zero and a function of sampling
time for sampled-data systems.
Whether the MBC/LTR approach is attractive in light of these conclusions is

a matter for individual designers to decide for themselves.

9.2 Suggestions for Future Research

(1) The compensators in this thesis are all strictly proper. Since exact
recovery depends on successfully hiding all of the compensator poles, the use of
non-strictly proper (though, of course, still proper) compensators seems promising
in applications where such a compensator can be implemented.

(2) Since exact recovery with a strictly proper compensator requires
CH = 0, research into full-state design techniqueé that comply with this constraint

may prove worthwhile.
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