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ABSTRACT

Hearing allows organisms to derive information about the world from sound. The ears
convert pressure waves into patterns of neural activity which the brain can use to make pow-
erful inferences about the source. While extensive modeling efforts in the past few decades
have resulted in well-established computational descriptions of peripheral auditory coding,
comparatively less is known about how this neural code supports complex auditory behavior.
Humans with normal hearing are remarkably adept at recognizing and localizing sounds in
noisy environments with multiple competing sources. However, these abilities are fragile and
are greatly compromised in listeners with hearing loss or cochlear implants, often leading to
frustration and social isolation. Current assistive devices largely fail to aid impaired listeners
in noisy environments, and the development of more effective devices is currently limited by
an incomplete understanding of which features of neural coding underlie perception. This
thesis develops computational models for explicitly linking specific features of peripheral
auditory processing and perception. In a series of three studies, we optimized deep artificial
neural network models to perform real-world hearing tasks using simulated auditory nerve
input. The first study outlined a framework for optimizing models under different conditions
to test how perception is constrained by our ears and acoustic environment in the domain of
pitch perception. The second study extended the framework to examine the widely debated
perceptual role of auditory nerve spike timing in hearing more broadly. The third study
explored a practical application of task-optimized models by leveraging intermediate model
representations as a perceptual metric for speech enhancement. Collectively, the results link
aspects of hearing to environmental and neural coding constraints, illustrating the utility of
artificial networks to reveal underpinnings of behavior.
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Chapter 1

Introduction

1.1 Motivation

Sound pressure waves in the environment wiggle our ear drums back and forth. The cochlea
transduces these mechanical vibrations into electrical signals, which are transmitted to the
brainstem via the auditory nerve. The signal processing of these peripheral auditory stages
has been extensively characterized [1], [2]. Decades of neurophysiological and computational
research has resulted in quantitative models of the ear that faithfully capture the spiking
responses of auditory nerve fibers to arbitrary sound stimuli [3]–[5]. Comparatively less is
understood about how patterns of auditory nerve spikes give rise to auditory perception.

Humans with normal hearing can recognize and localize sources, make sense of musical
melodies, and hold conservations in noisy environments with multiple competing sources.
These remarkable perceptual abilities are fragile and are greatly compromised in listeners
with hearing loss or cochlear implants, often leading to frustration and social isolation [6].
Sensorineural hearing loss – an umbrella term for impairments in the transduction of sound
energy to electrical signals or in their transmission to brain – is a ubiquitous and growing
public health issue, with 1 in every 10 people projected to have disabling hearing loss by
2050 [7]. Current assistive devices restore some aspects of hearing but largely fail to provide
benefit in the noisy environments where listeners are most impaired. One factor limiting
the development of more effective devices is our incomplete understanding of how peripheral
auditory coding relates to perception [8]. Though much is known separately about the phys-
iological and perceptual consequences of sensorineural hearing loss, quantitatively linking
the two has long posed a challenge.

Classic computational approaches from signal detection and ideal observer theory have
made headway in this direction; however, they have been limited to very constrained percep-
tual tasks such as simple frequency and level discrimination [9], [10]. These methods involve
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deriving statistically optimal solutions to perceptual tasks given the information available
in a neural representation. Deriving task solutions for different neural representations and
comparing the behavior of resulting models to humans can provide insight into which aspects
of neural coding are important for human perception [11]. While these classic methods have
been fruitful, they quickly become intractable for more complicated, real-world perceptual
tasks. It is not feasible to derive statistically optimal solutions to many of the tasks that
hearing-impaired listeners struggle with, such as speech recognition in noise.

The emergence of deep learning models presents an opportunity to resurrect these classic
approaches for real-world perceptual problems. Deep artificial neural networks are highly
expressive mathematical functions that can be optimized to perform complex tasks. Net-
works optimized to classify natural images and sounds have emerged as leading candidate
models of sensory systems in vision [12] and hearing [13]. They provide state-of-the-art
matches to human behavior [13]–[18] and predictions of neural activity [13], [19]–[21]. This
thesis demonstrates how networks can also be used to uncover the environmental and neural
coding factors that determine perception. In a series of studies, we optimized deep artificial
neural networks to perform real-world hearing tasks using input from a detailed model of
the auditory nerve. The resulting models replicated many characteristics of human hearing
behavior. To analyze why, we separately optimized models under different constraints. We
investigated links between perception and neural coding by optimizing models with altered
cochlear input.

1.2 Organization of thesis

The first study [17] focused on pitch perception, which is among the best-characterized
aspects of human hearing. Despite a wealth of available behavioral data, the underlying
computations and constraints that determine pitch perception have long been debated [22],
[23]. Particular controversy persists over the relative importance of auditory nerve spike
timing and cochlear frequency selectivity [24]–[28]. By contrast, little attention has been
given to the possibility that pitch perception might instead or additionally be shaped by
the constraints of estimating the F0 of natural sounds in natural environments [29]. We
investigated the issue with artificial neural networks optimized to estimate fundamental fre-
quency (F0), the perceptual correlate of pitch. Our networks replicated many characteristics
of human pitch perception, but only when optimized for naturalistic sounds and cochleae
with high temporal fidelity. The results suggest pitch perception is critically shaped by the
constraints of natural environments in addition to those of the cochlea.

The second study extends the approach of the first to investigate the role of temporal
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coding in hearing more broadly. It is well established that spike timing is exquisitely precise
in the auditory nerve, where action potentials phase lock to the individual pressure oscil-
lations of sound waveforms up to 3 to 5 kHz [30]–[32]. The perceptual role of this precise
temporal coding remains controversial because physiological mechanisms for extracting in-
formation from it have yet to be discovered despite significant efforts to identify them [27],
[33]. Nonetheless, the information encoded in relatively high frequency phase locking is
widely suspected to be critical for sound localization and is often proposed to underlie hear-
ing in noise [34]–[36]. We investigated the issue with artificial neural networks optimized
for sound localization, pitch estimation, and speech perception in noise. We separately op-
timized models with four different auditory nerve phase locking limits and compared them
to humans across 21 behavioral experiments. Models with access to precise auditory nerve
spike timing comprehensively accounted for human behavior. Models with degraded tempo-
ral coding could not, providing new evidence for the role of phase locking in hearing. The
results link neural coding to real-world perception and clarify conditions in which prosthe-
ses that fail to restore high-fidelity temporal coding (e.g., contemporary cochlear implants)
could in principle restore near-normal hearing.

The third study [37] explores a practical application of task-optimized hearing models
by leveraging intermediate model representations as a perceptual metric for speech enhance-
ment. Contemporary speech enhancement predominantly relies on audio transforms op-
timized for waveform-based loss functions [38]–[45]. We investigated whether the learned
intermediate representations from task-optimized auditory models might serve as a more
perceptually aligned loss function. We trained a speech enhancement system to reconstruct
clean speech waveforms from noisy speech waveforms with different loss functions. The
baseline system minimized distances between model outputs and clean speech targets in
waveform space. Our proposed systems minimized distances between outputs and targets in
representational space from different auditory models [46]. We found these auditory model-
based loss functions yielded better speech denoising than waveform-based losses, but most of
the benefit could be attributed to the model’s cochlear representation rather than the task-
optimized features. The results suggest learned deep network features do not yet improve
upon simple cochlear filter bank features for speech denoising.
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Chapter 2

Deep neural network models reveal
interplay of peripheral coding and
stimulus statistics in pitch perception

Mark R. Saddler, Ray Gonzalez, Josh H. McDermott

Abstract

Perception is thought to be shaped by the environments for which organisms are optimized.
These influences are difficult to test in biological organisms but may be revealed by machine
perceptual systems optimized under different conditions. We investigated environmental
and physiological influences on pitch perception, whose properties are commonly linked to
peripheral neural coding limits. We first trained artificial neural networks to estimate funda-
mental frequency from biologically faithful cochlear representations of natural sounds. The
best-performing networks replicated many characteristics of human pitch judgments. To
probe the origins of these characteristics, we then optimized networks given altered cochleae
or sound statistics. Human-like behavior emerged only when cochleae had high temporal
fidelity and when models were optimized for naturalistic sounds. The results suggest pitch
perception is critically shaped by the constraints of natural environments in addition to those
of the cochlea, illustrating the use of artificial neural networks to reveal underpinnings of
behavior.
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2.1 Introduction

A key goal of perceptual science is to understand why sensory-driven behavior takes the form
that it does. In some cases, it is natural to relate behavior to physiology, and in particular
to the constraints imposed by sensory transduction. For instance, color discrimination is
limited by the number of cone types in the retina [47]. Olfactory discrimination is similarly
constrained by the receptor classes in the nose [48]. In other cases, behavior can be related
to properties of environmental stimulation that are largely divorced from the constraints of
peripheral transduction. For example, face recognition in humans is much better for upright
faces, presumably because we predominantly encounter upright faces in our environment
[49].

Understanding how physiological and environmental factors shape behavior is important
both for fundamental scientific understanding and for practical applications such as sensory
prostheses, the engineering of which might benefit from knowing how sensory encoding con-
strains behavior. Yet the constraints on behavior are often difficult to pin down. For instance,
the auditory periphery encodes sound with exquisite temporal fidelity [32], but the role of
this information in hearing remains controversial [50]–[52]. Part of the challenge is that the
requisite experiments – altering sensory receptors or environmental conditions during evo-
lution or development, for instance – are practically difficult (and ethically unacceptable in
humans).

The constraints on behavior can sometimes instead be revealed by computational mod-
els. Ideal observer models, which optimally perform perceptual tasks given particular sen-
sory inputs and sensory receptor responses, have been the method of choice for investigating
such constraints [11]. While biological perceptual systems likely never reach optimal perfor-
mance, in some cases humans share behavioral characteristics of ideal observers, suggesting
that those behaviors are consequences of having been optimized under particular biological
or environmental constraints [10], [53]–[55]. Ideal observers provide a powerful framework
for normative analysis, but for many real-world tasks, deriving provably optimal solutions is
analytically intractable. The relevant sensory transduction properties are often prohibitively
complicated, and the task-relevant parameters of natural stimuli and environments are diffi-
cult to specify mathematically. An attractive alternative might be to collect many real-world
stimuli and optimize a model to perform the task on these stimuli. Even if not fully optimal,
such models might reveal consequences of optimization under constraints that could provide
insights into behavior.

In this paper, we explore whether contemporary “deep” artificial neural networks (DNNs)
can be used in this way to gain normative insights about complex perceptual tasks. DNNs
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provide general-purpose architectures that can be optimized to perform challenging real-
world tasks [56]. While DNNs are unlikely to fully achieve optimal performance, they might
reveal the effects of optimizing a system under particular constraints [18], [57]. Previous
work has documented similarities between human and network behavior for neural networks
trained on vision or hearing tasks [13], [14], [19]. However, we know little about the extent
to which human-DNN similarities depend on either biological constraints that are built
into the model architecture or the sensory signals for which the models are optimized. By
manipulating the properties of simulated sensory transduction processes and the stimuli on
which the DNN is trained, we hoped to get insight into the origins of behaviors of interest.

Here, we test this approach in the domain of pitch – traditionally conceived as the
perceptual correlate of a sound’s fundamental frequency (F0) [22]. Pitch is believed to enable
a wide range of auditory-driven behaviors, such as voice and melody recognition [58], and
has been the subject of a long history of work in psychology [59]–[63] and neuroscience [24],
[26], [64], [65]. Yet despite a wealth of data, the underlying computations and constraints
that determine pitch perception remain debated [22]. In particular, controversy persists
over the role of spike timing in the auditory nerve, for which a physiological extraction
mechanism has remained elusive [27], [33]. The role of cochlear frequency selectivity, which
has also been proposed to constrain pitch discrimination, remains similarly debated [24],
[66]. By contrast, little attention has been given to the possibility that pitch perception
might instead or additionally be shaped by the constraints of estimating the F0 of natural
sounds in natural environments.

One factor limiting resolution of these debates is that previous models of pitch have
generally not attained quantitatively accurate matches to human behavior [63], [67]–[74].
Moreover, because most previous models have been mechanistic rather than normative, they
do not speak to the potential adaptation of pitch perception to particular types of sounds
or peripheral neural codes. Here we used DNNs in the role traditionally occupied by ideal
observers, optimizing them to extract pitch information from peripheral neural represen-
tations of natural sounds. DNNs have become the method of choice for pitch tracking in
engineering applications [75], but have not been combined with realistic models of the pe-
ripheral auditory system, and have not been compared to human perception. We then tested
the influence of peripheral auditory physiology and natural sound statistics on human pitch
perception by manipulating them during model optimization. The results provide new evi-
dence for the importance of peripheral phase locking in human pitch perception. However,
they also indicate that the properties of pitch perception reflect adaptation to natural sound
statistics, in that systems optimized for alternative stimulus statistics deviate substantially
from human-like behavior.

22



2.2 Results

2.2.1 Training task and stimuli

We used supervised deep learning to build a model of pitch perception optimized for natural
speech and music. DNNs were trained to estimate the F0 of short (50ms) segments of speech
and musical instrument recordings, selected to have high periodicity and well-defined F0s. To
emulate natural listening conditions, the speech and music clips were embedded in aperiodic
background noise taken from YouTube soundtracks. The networks’ task was to classify each
stimulus into one of 700 F0 classes (log-spaced between 80 Hz and 1000 Hz, bin width =
1/16 semitones = 0.36% F0). We generated a dataset of 2.1 million stimuli. Networks were
trained using 80% of this dataset and the remaining 20% was used as a validation set to
measure the success of the optimization.

2.2.2 Peripheral auditory model

In our primary training condition, we hard-coded the input representation for our networks
to be as faithful as possible to known peripheral auditory physiology. We used a detailed
phenomenological model of the auditory nerve [5] to simulate peripheral representations
of each stimulus (Fig. 3.1A). The input representations to our networks consisted of 100
simulated auditory nerve fibers. Each stimulus was represented as a 100-fiber by 1000-
timestep array of instantaneous firing rates (sampled at 20 kHz).

An example simulated auditory nerve representation for a harmonic tone is shown in
Fig. 3.1B. Theories of pitch have tended to gravitate toward one of the two axes of such
representations: the frequency-to-place mapping along the cochlea’s length, or the time axis.
However, it is visually apparent that the nerve representation of even this relatively simple
sound is quite rich, with a variety of potential cues: phase locking to individual frequencies,
phase shifts between these phase-locked responses, peaks in the time-averaged response (the
“excitation” pattern) for low-numbered harmonics, and phase locking to the F0 for the higher-
numbered harmonics. The DNN models have access to all of this information. Through
optimization for the training task, the DNNs should learn to use whichever peripheral cues
best allow them to extract F0.

2.2.3 Neural network architecture search

The performance of an artificial neural network is influenced both by the particular weights
that are learned during training and by the various parameters that define the architecture
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Figure 2.1: Pitch model overview.
(A) Schematic of model structure. DNNs were trained to estimate the F0 of speech and music sounds embedded in real-world
background noise. Networks received simulated auditory nerve representations of acoustic stimuli as input. Green outlines depict
the extent of example convolutional filter kernels in time and frequency (horizontal and vertical dimensions, respectively). (B)
Simulated auditory nerve representation of a harmonic tone with a fundamental frequency (F0) of 200 Hz. The sound waveform
is shown above and its power spectrum to the left. The waveform is periodic in time, with a period of 5ms. The spectrum
is harmonic (i.e., containing multiples of the fundamental frequency). Network inputs were arrays of instantaneous auditory
nerve firing rates (depicted in greyscale, with lighter hues indicating higher firing rates). Each row plots the firing rate of a
frequency-tuned auditory nerve fiber, arranged in order of their place along the cochlea (with low frequencies at the bottom).
Individual fibers phase-lock to low-numbered harmonics in the stimulus (lower portion of the nerve representation), or to the
combination of high-numbered harmonics (upper portion). Time-averaged responses on the right show the pattern of nerve
fiber excitation across the cochlear frequency axis (the “excitation pattern”). Low-numbered harmonics produce distinct peaks
in the excitation pattern. (C) Schematics of six example DNN architectures trained to estimate F0. Network architectures
varied in the number of layers, the number of units per layer, the extent of pooling between layers, and the size and shape of
convolutional filter kernels (D) Summary of network architecture search. F0 classification performance on the validation set
(noisy speech and instrument stimuli not seen during training) is shown as a function of training steps for all 400 networks
trained. The highlighted curves correspond to the architectures depicted in A and C. The relatively low overall accuracy reflects
the fine-grained F0 bins we used. (E) Histogram of accuracy, expressed as the median F0 error on the validation set, for all
trained networks (F0 error in percent is more interpretable than the classification accuracy, the absolute value of which is
dependent on the width of the F0 bins). (F) Confusion matrix for the best-performing network (depicted in A) tested on the
validation set.
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of the network [19]. To obtain a high-performing model, we performed a large-scale random
architecture search. Each architecture consisted of a feedforward series of layers instantiating
linear convolution, nonlinear rectification, normalization, and pooling operations. Within
this family, we trained 400 networks varying in their number of layers, number of units per
layer, extent of pooling between layers, and the size and shape of convolutional filters (Fig.
3.1C).

The different architectures produced a broad distribution of training task performances
(Fig. 3.1D). In absolute terms accuracy was good – the median error was well below 1%
(Fig. 3.1E), which is on par with good human F0 discrimination thresholds [63], [76]. The
vast majority of misclassifications fell within bins neighboring the true F0 or at an integer
number octaves away (Fig. 3.1F), as in human pitch-matching judgments [77].

2.2.4 Characteristics of pitch perception emerge in optimized DNNs

Having obtained a model that can estimate F0 from natural sounds, we simulated a suite
of well-known psychophysical experiments to assess whether the model replicated known
properties of human pitch perception. Each experiment measures the effect of particular
cues on pitch discrimination or estimation using synthetic tones (Fig. 3.2, left column),
and produces an established result in human listeners (Fig. 3.2, center column). We tested
the effect of these stimulus manipulations on our 10 best-performing network architectures.
Given evidence for individual differences across different networks optimized for the same
task [78], most figures feature results averaged across the 10 best networks identified in
our architecture search (which we collectively refer to as “the model”). Averaging across an
ensemble of networks effectively allows us to marginalize over architectural hyperparameters
and provide uncertainty estimates for our model’s results [79], [80]. Individual results for
the 10 networks are shown in Supplementary Fig. 3.8.

As shown in Fig. 3.2, the model (right column) qualitatively and in most cases quan-
titatively replicates the result of each of the five different experiments in humans (center
column). We emphasize that none of the stimuli were included in the networks’ training set,
and that the model was not fit to match human results in any way. These results collectively
suggest that the model relies on similar cues as the human pitch system. We describe these
results in turn.

2.2.5 Dependence on low-numbered harmonics

First, human pitch discrimination is more accurate for stimuli containing low-numbered
harmonics (Fig. 3.2A, center, solid line) [60], [63], [76], [81]. This finding is often interpreted
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Human results Model results

a.  Effect of harmonic number and phase on pitch discrimination (Bernstein & Oxenham, 2005)

b.  Pitch of alternating-phase harmonic complexes (Shackleton & Carlyon, 1994)

e. Necessity of correct tonotopic representation for pitch discrimination (Oxenham et al., 2004)

d. Pitch of complexes with individually mistuned harmonics (Moore et al., 1985)

c. Pitch of frequency-shifted complexes (Moore & Moore, 2003)

Stimulus manipulation and task

Pitch discrimination
Human task: was the pitch of tone 1 
or tone 2 higher?
Model task: was the reported F0 for 
tone 1 or tone 2 higher?

Trial with lowest harmonic number = 5

6th harmonic is 
mistuned by +6%

Axes legends to the 
right indicate which 

harmonic is mistuned

Pitch estimation
Human task: adjust F0 
of sine-phase harmonic 
complex to match pitch 
of test stimulus
Model task: report F0 
estimate for test stimulus
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shifted by +24%

of F0
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Figure 2.2: Pitch model validation: human and neural network psychophysics.
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Five classic experiments from the pitch psychoacoustics literature (A-E) were simulated on neural networks trained to estimate
the F0 of natural sounds. Each row corresponds to a different experiment and contains (from left to right) a schematic of the
experimental stimuli, results from human listeners (re-plotted from the original studies), and results from networks. Error bars
indicate bootstrapped 95% confidence intervals around the mean of the 10 best network architectures ranked by F0 estimation
performance on natural sounds (individual network results are shown in Supplementary Fig. 3.8). (A) F0 discrimination
thresholds for bandpass synthetic tones, as a function of lowest harmonic number and phase. Human listeners and networks
discriminated pairs of sine-phase or random-phase harmonic tones with similar F0s. Stimuli were bandpass-filtered to control
which harmonics were audible. (B) Perceived pitch of alternating-phase complex tones containing either low or high-numbered
harmonics. Alternating-phase tones (i.e., with odd-numbered harmonics in sine phase and even-numbered harmonics in cosine
phase) contain twice as many peaks in the waveform envelope as sine-phase tones with the same F0. Human listeners adjusted
a sine-phase tone to match the pitch of the alternating-phase tone. Networks made F0 estimates for the alternating-phase
tones directly. Histograms show distributions of pitch judgments as the ratio between the reported F0 and the stimulus F0.
(C) Pitch of frequency-shifted complexes. Harmonic complexes (containing either low or high-numbered harmonics) were made
inharmonic by shifting all component frequencies by the same number of Hz. Human listeners and networks reported the F0s
they perceived for these stimuli (same experimental methods as in B). Shifts in the perceived F0 are shown as a function of the
shift applied to the component frequencies. (D) Pitch of complexes with individually mistuned harmonics. Human listeners and
networks reported the F0s they perceived for complex tones in which a single harmonic frequency was shifted (same experimental
methods as in B). Shifts in the perceived F0 are shown as a function of the mistuning applied to seven different harmonics
within the tone (harmonic numbers indicated in different colors at top of graphs). Note that the y-axis limits are different in
the human and model graphs – they exhibit qualitative but not quantitative similarity. This could be because the networks are
better able to isolate the contribution of the harmonic to the F0, whereas human listeners may sometimes erroneously be biased
by the harmonic itself. (E) Frequency discrimination thresholds measured with pure tones and transposed tones. Transposed
tones are high-frequency tones that are amplitude-modulated so as to instantiate the temporal cues from low-frequency pure
tones at a higher-frequency place on the cochlea. Human and network listeners discriminated pairs of pure tones with similar
frequencies and pairs of transposed tones with similar envelope frequencies.

as evidence for the importance of “place” cues to pitch, which are only present for low-
numbered harmonics (Fig. 3.1B, right). The model reproduced this effect, though the
inflection point was somewhat lower than in human listeners: discrimination thresholds were
low only for stimuli containing the fifth or lower harmonic (Fig. 3.2A, right, solid line).

2.2.6 Phase effects are limited to high-numbered harmonics

Second, human perception is affected by harmonic phases only for high-numbered harmonics.
When harmonic phases are randomized, human discrimination thresholds are elevated for
stimuli that lack low-numbered harmonics (Fig. 3.2A, center, dashed vs. solid line) [63]. In
addition, when odd and even harmonics are summed in sine and cosine phase, respectively
(“alternating phase”, a manipulation that doubles the number of peaks in the waveform’s
temporal envelope; Fig. 3.2B, left), listeners report the pitch to be twice as high as the
corresponding sine-phase complex, but only for high-numbered harmonics (Fig. 3.2B, center)
[60]. These results are typically thought to indicate use of temporal fluctuations in a sound’s
envelope when cues for low-numbered harmonics are not available [24], [60], [76]. The model
replicates both effects (Fig. 3.2A&B, right), indicating that it uses similar temporal cues to
pitch as humans, and in similar conditions.
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2.2.7 Pitch shifts for shifted low-numbered harmonics

Third, frequency-shifted complex tones (in which all of the component frequencies have been
shifted by the same number of Hz; Fig. 3.2C, left) produce linear shifts in the pitch reported
by humans, but only if the tones contain low-numbered harmonics (Fig. 3.2C, center) [61].
The model’s F0 predictions for these stimuli resemble those measured from human listeners
(Fig. 3.2C, right).

Fourth, shifting individual harmonics in a complex tone (“mistuning”; Fig. 3.2D, left)
can also produce pitch shifts in humans under certain conditions [59]: the mistuning must
be small (effects are largest for 3-4% mistunings) and applied to a low-numbered harmonic
(Fig. 3.2D, center). The model replicates this effect as well, although the size of the shift is
smaller than that observed in humans (Fig. 3.2D, right).

2.2.8 Poor discrimination of transposed tones

Fifth, "transposed tones" designed to instantiate the temporal cues from low frequencies
at a higher-frequency place on the cochlea (Fig. 3.2E, left) elicit weak pitch percepts in
humans and thus yield higher discrimination thresholds than pure tones (Fig. 3.2E, center)
[62]. This finding is taken to indicate that to the extent that temporal cues to pitch matter
perceptually, they must occur at the correct place on the cochlea. The model reproduced
this effect: discrimination thresholds were worse for transposed tones than they are for pure
tones (Fig. 3.2E, right).

2.2.9 DNNs with better F0 estimation show more human-like be-

havior

To evaluate whether the human-model similarity evident in Fig. 3.2 depends on having
optimized the model architecture for F0 estimation of natural sounds, we simulated the
full suite of psychophysical experiments on each of our 400 trained networks. These 400
networks varied in how well they estimated F0 for the validation set (Fig. 3.1D&E). For
each psychophysical experiment and network, we quantified the similarity between human
and network results with a correlation coefficient. We then compared this human-model
similarity to each network’s performance on the validation set (Fig. 3.3A-E).

For four of the five experiments (Fig. 3.3A-D), there was a significant positive correlation
between training task performance and human-model similarity (p<0.001 in each case).
The transposed tones experiment (Fig. 3.3E) was the exception, as all networks similarly
replicated the main human result regardless of their training task performance. We suspect
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Figure 2.3: Network architectures producing better F0 estimation for natural sounds exhibit
more human-like pitch behavior.
A-E plot human-model similarity for all 400 architectures as a function of the accuracy of the trained architecture on the
validation set (a set of stimuli distinct from the training dataset, but generated with the same procedure). The similarity
between human and model results was quantified for each experiment as the correlation coefficient between analogous data
points (see Methods). Pearson correlations between validation set accuracy and human-model similarity for each experiment
are noted in the legends. Each graph (A-E) corresponds to one of the five main psychophysical experiments (see Fig. 3.2A-E):
(A) F0 discrimination as a function of harmonic number and phase, (B) pitch estimation of alternating-phase stimuli, (C)
pitch estimation of frequency-shifted complexes, (D) pitch estimation of complexes with individually mistuned harmonics, and
(E) frequency discrimination with pure and transposed tones. (F) The results of the experiment from A (F0 discrimination
thresholds as a function of lowest harmonic number and harmonic phase) measured from the 40 worst, middle, and best
architectures ranked by F0 estimation performance on natural sounds (indicated with green patches in A). Lines plot means
across the 40 networks. Error bars indicate 95% confidence intervals via bootstrapping across the 40 networks. Human F0
discrimination thresholds from the same experiment are re-plotted for comparison.

this is because transposed tones cause patterns of peripheral stimulation that rarely occur
for natural sounds. Thus, virtually any model that learns to associate naturally occurring
peripheral cues with F0 will exhibit poor performance for transposed tones.

To illustrate the effect of optimization for one experiment, Fig. 3.3F displays the average
F0 discrimination thresholds for each of the worst, middle, and best 10% of networks (sorted
by performance on the validation set). It is visually apparent that top-performing networks
exhibit more similar psychophysical behavior to humans than worse-performing networks.
See Supplementary Fig. 3.9 for analogous results for the other four experiments from Fig. 3.2.
Overall, these results indicate that networks with better performance on the F0-estimation
training task generally exhibit more human-like pitch behavior, consistent with the idea that
these patterns of behavior are byproducts of optimization under natural constraints.

Because the space of network architectures is large, it is a challenge to definitively asso-
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ciate particular network motifs with good performance and/or human-like behavior. How-
ever, we found that very shallow networks both performed poorly on the training task and
exhibited less similarity with human behavior (Supplementary Fig. 3.10). This result pro-
vides evidence that deep networks (with multiple hierarchical stages of processing) better
account for human pitch behavior than relatively shallow networks.

2.2.10 Human-like behavior requires a biologically-constrained cochlea

To test whether a biologically-constrained cochlear model was necessary for human-like pitch
behavior, we trained networks to estimate F0 directly from sound waveforms (Fig. 3.4A).
We replaced the cochlear model with a bank of 100 one-dimensional convolutional filters
operating directly on the audio. The weights of these first-layer filters were optimized for
the F0 estimation task along with the rest of the network.

The learned filters deviated from those in the ear, with best frequencies tending to be
lower than those of the hardwired peripheral model (Fig. 3.4B). Networks with learned
cochlear filters also exhibited less human-like behavior than their counterparts with the fixed
cochlear model (Fig, 4C&D). In particular, networks with learned cochlear filters showed
little ability to extract pitch information from high-numbered harmonics. Discrimination
thresholds for higher harmonics were poor (Fig. 3.4C, Expt. A) and networks did not
exhibit phase effects (Fig. 3.4C, Expt. A & B). Accordingly, human-model similarity was
substantially lower with learned cochlear filters for two of five psychophysical experiments
(Fig. 3.4D; Expt. A: t(18) = 5.23, p < 0.001, d = 2.47; Expt. B: t(18) = 12.69, p <

0.001, d = 5.98). This result suggests that a human-like cochlear representation is necessary
to obtain human-like behavior, but also that the F0 estimation task on its own is insufficient
to produce a human-like cochlear representation, likely because the cochlea is shaped by
many auditory tasks. Thus, the cochlea may be best considered as a constraint on pitch
perception rather than the other way around.

2.2.11 Dependence of pitch behavior on the cochlea

To gain insight into what aspects of the cochlea underlie the characteristics of pitch per-
ception, we investigated how the model behavior depends on its peripheral input. Decades
of research has sought to determine the aspects of peripheral auditory representations that
underlie pitch judgments, but experimental research has been limited by the difficulty of
manipulating properties of peripheral representations. We took advantage of the ability to
perform experiments on the model that are not possible in biology, training networks with
peripheral representations that were altered in various ways. To streamline presentation, we
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Figure 2.4: Networks trained to estimate F0 directly from sound waveforms exhibit less
human-like pitch behavior.
(A) Schematic of model structure. Model architecture was identical to that depicted in Fig. 3.1A, except that the hardwired
cochlear input representation was replaced by a layer of 1-dimensional convolutional filters operating directly on sound wave-
forms. The first-layer filter kernels were optimized for the F0 estimation task along with the rest of the network weights.
We trained the 10 best networks from our architecture search with these learnable first-layer filters. (B) The best frequencies
(sorted from lowest to highest) of the 100 learned filters for each of the 10 network architectures are plotted in magenta. For
comparison, the best frequencies of the 100 cochlear filters in the hardwired peripheral model are plotted in black. (C) Effect of
learned cochlear filters on network behavior in all five main psychophysical experiments (see Fig. 3.2A-E): F0 discrimination as
a function of harmonic number and phase (Expt. A), pitch estimation of alternating-phase stimuli (Expt. B), pitch estimation
of frequency-shifted complexes (Expt. C), pitch estimation of complexes with individually mistuned harmonics (Expt. D),
and frequency discrimination with pure and transposed tones (Expt. E). Lines plot means across the 10 networks; error bars
plot 95% confidence intervals, obtained by bootstrapping across the 10 networks. (D) Comparison of human-model similarity
metrics between networks trained with either the hardwired cochlear model (black) or the learned cochlear filters (magenta)
for each psychophysical experiment. Asterisks indicate statistical significance of two-sample t-tests comparing the two cochlear
model conditions: ∗∗∗p < 0.001, ∗p = 0.016. Error bars indicate 95% confidence intervals bootstrapped across the 10 network
architectures.
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present results for a single psychophysical result that was particularly diagnostic: the effect
of lowest harmonic number on F0 discrimination thresholds (Fig. 3.2A, solid line). Results
for other experiments are generally congruent with the overall conclusions and are shown in
Supplementary Figures. We first present experiments manipulating the fidelity of tempo-
ral coding, followed by experiments manipulating frequency selectivity along the cochlea’s
length.

2.2.12 Human-like behavior depends critically on phase locking

To investigate the role of temporal coding in the auditory periphery, we trained networks
with alternative upper limits of auditory nerve phase locking. Phase locking is limited by
biophysical properties of inner hair cell transduction [32], which are impractical to alter in
vivo but which can be modified in silico via the simulated inner hair cell’s lowpass filter [5].
We separately trained networks with lowpass cutoff frequencies of 50 Hz, 320 Hz, 1000 Hz,
3000 Hz (the nerve model’s default value, commonly presumed to roughly match that of the
human auditory nerve), 6000 Hz, and 9000 Hz. With a cutoff frequency of 50 Hz, virtually all
temporal structure in the peripheral representation of our stimuli was eliminated, meaning
the network only had access to cues from the place of excitation along the cochlea (Fig.
3.5A). As the cutoff frequency was increased, the network gained access to progressively finer-
grained spike-timing information (in addition to the place cues). The 10 best-performing
networks from the architecture search were retrained separately with each of these altered
cochleae.

Reducing the upper limit of phase locking qualitatively changed the model’s psychophys-
ical behavior and made it less human-like. As shown in Fig. 3.5B&C, F0 discrimina-
tion thresholds became worse, with the best threshold (the left-most data point, corre-
sponding to a lowest harmonic number of 1) increasing as the cutoff was lowered (signifi-
cantly worse for all three conditions: 1000 Hz, t(18) = 4.39, p < 0.001, d = 1.96; 320 Hz,
t(18) = 11.57, p < 0.001, d = 5.17; 50 Hz, t(18) = 9.30, p < 0.001, d = 4.16; two-sample
t-tests comparing to thresholds in the 3000 Hz condition). This in itself is not surprising, as
it has long been known that phase locking enables better frequency discrimination than place
information alone [9], [10]. However, thresholds also showed a different dependence on har-
monic number as the phase locking cutoff was lowered. Specifically, the transition from good
to poor thresholds, here defined as the left-most point where thresholds exceeded 1%, was
lower with degraded phase locking. This difference was significant for two of the three con-
ditions (1000 Hz, t(18) = 5.15, p < 0.001, d = 2.30; 50 Hz, t(18) = 10.10, p < 0.001, d = 4.52;
two-sample t-tests comparing to the 3000 Hz condition; the transition point was on average
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Figure 2.5: Pitch perception is impaired in networks optimized with degraded spike timing
in the auditory nerve.

33



(A) Simulated auditory nerve representations of the same stimulus (harmonic tone with 200 Hz F0) under six configurations of
the peripheral auditory model. Configurations differed in the cutoff frequency of the inner hair cell lowpass filter, which sets the
upper limit of auditory nerve phase locking. The 3000 Hz setting is that normally used to model the human auditory system.
As in Fig. 3.1A, each peripheral representation is flanked by the stimulus power spectrum and the time-averaged cochlear
excitation pattern. (B) Schematic of stimuli used to measure F0 discrimination thresholds as a function of lowest harmonic
number. Gray level denotes amplitude. Two example trials are shown, with two different lowest harmonic numbers. (C) F0
discrimination thresholds as a function of lowest harmonic number measured from networks trained and tested with each of the
six peripheral model configurations depicted in A. The best thresholds and the transition points from good to poor thresholds
(defined as the lowest harmonic number for which thresholds first exceeded 1%) are re-plotted to the left of and below the main
axes, respectively. Here and in E, lines plot means across the 10 networks; error bars plot 95% confidence intervals, obtained
by bootstrapping across the 10 networks. (D) Schematic of stimuli used to measure frequency discrimination thresholds as a
function of sound level. Gray level denotes amplitude. (E) Frequency discrimination thresholds as a function of sound level
measured from human listeners (left) and from the same networks as C (right). Human thresholds, which are reported as a
function of sensation level, are re-plotted from[50].

lower for the 320 Hz condition, but the results were more variable across architectures, and
so the difference was not statistically significant). Increasing the cutoff to 6000 Hz or 9000
Hz had minimal effects on both of these features (Fig. 3.5C), suggesting that superhuman
temporal resolution would not continue to improve pitch perception (at least as assessed
here). Discrimination thresholds for high-numbered harmonics were in fact slightly worse
for increased cutoff frequencies. One explanation is that increasing the model’s access to fine
timing information biases the learned strategy to rely more on this information, which is less
useful for determining the F0 of stimuli containing only high-numbered harmonics. Overall,
these results suggest that auditory nerve phase locking like that believed to be present in
the human ear is critical for human-like pitch perception.

A common criticism of place-based pitch models is that they fail to account for the robust-
ness of pitch across sound level, because cochlear excitation patterns saturate at high levels
[24]. Consistent with this idea, frequency discrimination thresholds (Fig. 3.5D) measured
from networks with lower phase locking cutoffs were less invariant to level than networks
trained with normal spike-timing information (Fig. 3.5E, right). Thresholds for models with
limited phase locking became progressively worse for louder tones, unlike those for humans
(Fig. 3.5E, left) [82]. This effect produced an interaction between the effect of stimulus
level and the phase locking cutoff on discrimination thresholds (F (13.80, 149.08) = 4.63, p <

0.001, η2partial = 0.30), in addition to the main effect of the cutoff (F (5, 54) = 23.37, p <

0.001, η2partial = 0.68; also evident in Fig. 3.5C). Similar effects were observed when thresh-
olds were measured with complex tones (data not shown).

To control for the possibility that the poor performance of the networks trained with
lower phase locking cutoffs might be specific to the relatively small number of simulated
auditory nerve fibers in the model, we generated an alternative representation for the 50 Hz
cutoff condition, using 1000 nerve fibers and 100 timesteps (sampled at 2 kHz). We then
trained and tested the 10 best-performing networks from our architecture search on these
representations (transposing the nerve fiber and time dimensions to maintain the input size
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and thus be able to use the same network architecture). Increasing the number of simulated
auditory nerve fibers by a full order of magnitude modestly improved thresholds but did
not qualitatively change the results: networks without high-fidelity temporal information
still exhibited abnormal F0 discrimination behavior. The 50 Hz condition results in Fig.
3.5C&E are taken from the 1000 nerve fiber networks, as this seemed the most conservative
comparison. Results for different numbers of nerve fibers are provided in Supplementary
Fig. 3.11.

We simulated the full suite of psychophysical experiments on all networks with altered
cochlear temporal resolution (Supplementary Fig. 3.12). Several other experimental results
were also visibly different from those of humans in models with altered phase locking cutoffs
(in particular, the alternating-phase and mistuned harmonics experiments). Overall, the
results indicate that normal human pitch perception depends on phase locking up to 3000
Hz.

2.2.13 Human-like behavior depends less on cochlear filter band-

widths

The role of cochlear frequency tuning in pitch perception has also been the source of long-
standing debates [60], [66], [76], [81], [83], [84]. Classic “place” theories of pitch postulate that
F0 is inferred from the peaks and valleys in the excitation pattern. Contrary to this idea,
we found that simply eliminating all excitation pattern cues (by separately re-scaling each
frequency channel in the peripheral representation to have the same time-averaged response,
without retraining the model) had almost no effect on network behavior (Supplementary
Fig. 3.13). This result suggests that F0 estimation does not require the excitation pattern
per se, but it remains possible it that might still be constrained by the frequency tuning of
the cochlea.

To investigate the perceptual effects of cochlear frequency tuning, we trained networks
with altered tuning. We first scaled cochlear filter bandwidths to be two times narrower
and two times broader than those estimated for human listeners [85]. The effect of this
manipulation is visually apparent in the width of nerve fiber tuning curves as well as in the
number of harmonics that produce distinct peaks in the cochlear excitation patterns (Fig.
3.6A).

We also modified the cochlear model to be linearly spaced (Fig. 3.6B), uniformly dis-
tributing the characteristic frequencies of the model nerve fibers along the frequency axis and
equating their filter bandwidths. Unlike a normal cochlea, which resolves only low-numbered
harmonics, the linearly spaced alteration yielded a peripheral representation where all har-
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Figure 2.6: Cochlear frequency tuning has relatively little effect on pitch perception.
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(A) Cochlear filter bandwidths were scaled to be two times narrower or two times broader than those estimated for normal-
hearing humans. This manipulation is evident in the width of auditory nerve tuning curves measured from five individual fibers
per condition (upper left panel). Tuning curves plot thresholds for each fiber as a function of pure tone frequency. Right and
lower left panels show simulated auditory nerve representations of the same stimulus (harmonic tone with 200 Hz F0) for each
bandwidth condition. Each peripheral representation is flanked by the stimulus power spectrum and the time-averaged auditory
nerve excitation pattern. The excitation patterns are altered by changes in frequency selectivity, with coarser tuning yielding
less pronounced peaks for individual harmonics, as expected. (B) Cochlear filters modeled on the human ear were replaced with
a set of linearly spaced filters with constant bandwidths in Hz. Pure tone tuning curves measured with linearly spaced filters are
much sharper than those estimated for humans at higher frequencies (left panel; note the log-spaced frequency scale). The right
panel shows the simulated auditory nerve representation of the stimulus from A with linearly spaced cochlear filters. In this
condition, all harmonics are equally resolved by the cochlear filters and thus equally likely to produce peaks in the time-averaged
excitation pattern. (C) Schematic of stimuli used to measure F0 discrimination thresholds. Gray level denotes amplitude. Two
example trials are shown, with two different lowest harmonic numbers. (D) F0 discrimination thresholds as a function of lowest
harmonic number, measured from networks trained and tested with each of the four peripheral model configurations depicted in
A and B. The best thresholds and the transition points from good to poor thresholds (defined as the lowest harmonic number
for which thresholds first exceeded 1%) are re-plotted to the left of and below the main axes, respectively. Lines plot means
across the 10 networks; error bars indicate 95% confidence intervals bootstrapped across the 10 networks.

monics are equally resolved by the cochlear filters, providing another test of the role of
frequency selectivity.

Contrary to the notion that cochlear frequency selectivity strongly constrains pitch dis-
crimination, networks trained with different cochlear bandwidths exhibit relatively similar
F0 discrimination behavior (Fig. 3.6C&D). Broadening filters by a factor of two had no
significant effect on the best thresholds (t(18) = 0.40, p = 0.69, t-test comparing thresholds
when lowest harmonic number = 1 to the human tuning condition). Narrowing filters by
a factor of two yielded an improvement in best thresholds that was statistically significant
(t(18) = 2.74, p = 0.01, d = 1.23) but very small (0.27% vs. 0.32% for the networks with
normal human tuning). Linearly spaced cochlear filters also yielded best thresholds that
were not significantly different from those for normal human tuning (t(18) = 1.88, p = 0.08).
In addition, the dependence of thresholds on harmonic number was fairly similar in all cases
(Fig. 3.6D). The transition between good and poor thresholds occurred around the sixth
harmonic irrespective of the cochlear bandwidths (not significantly different for any of the
three altered tuning conditions: two times broader, t(18) = 1.33, p = 0.20; two times nar-
rower, t(18) = 1.00, p = 0.33; linearly spaced, t(18) = 0.37, p = 0.71; t-tests comparing to
the normal human tuning condition).

All three models with altered cochlear filter bandwidths produced worse thresholds for
stimuli containing only high-numbered harmonics (Fig. 3.6D). This effect is expected for the
narrower and linearly-spaced conditions (smaller bandwidths result in reduced envelope cues
from beating of adjacent harmonics), but we do not have an explanation for why networks
with broader filters also produced poorer thresholds. One possibility that we ruled out is
overfitting of the network architectures to the human cochlear filter bandwidths; validation
set accuracies were no worse with broader filters (t(18) = 0.66, p = 0.52). However, we
note that all of the models exhibit what would be considered poor performance for stimuli
containing only high harmonics (thresholds are at least an order of magnitude worse than
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they are for low harmonics), and are thus all generally consistent with human perception in
this regime.

We also simulated the full suite of psychophysical experiments from Fig. 3.2 on networks
with altered frequency tuning. Most experimental results were robust to peripheral frequency
tuning (Supplementary Fig. 3.14).

2.2.14 Dependence of pitch behavior on training set sound statistics

In contrast to the widely debated roles of peripheral cues, the role of natural sound statistics
in pitch has been little discussed throughout the history of hearing research. To investigate
how optimization for natural sounds may have shaped pitch perception, we fixed the cochlear
representation to its normal human settings and instead manipulated the characteristics of
the sounds on which networks were trained.

2.2.15 Altered training set spectra produce altered behavior

One salient property of speech and instrument sounds is that they typically have more
energy at low frequencies than high frequencies (Fig. 3.7A, left column, black line). To test
if this lowpass characteristic shapes pitch behavior, we trained networks on highpass-filtered
versions of the same stimuli (Fig. 3.7A, left column, orange line) and then measured their F0
discrimination thresholds (Fig. 3.7B). For comparison, we performed the same experiment
with lowpass-filtered sounds.

Thresholds measured from networks optimized for highpass sounds exhibited a much
weaker dependence on harmonic number than if optimized for natural sounds (Fig. 3.7C,
left column). This difference produced an interaction between the effects of harmonic number
and the training condition (F (2.16, 38.85) = 72.33, p < 0.001, η2partial = 0.80). By contrast,
the dependence on harmonic number was accentuated for lowpass-filtered stimuli, again
producing an interaction between the effects of harmonic number and the training condition
(F (4.25, 76.42) = 30.81, p < 0.001, η2partial = 0.63).

We also simulated the full suite of psychophysical experiments on these networks (Sup-
plementary Fig. 3.15) and observed several other striking differences in their performance
characteristics. In particular, networks optimized for highpass-filtered natural sounds exhib-
ited better discrimination thresholds for transposed tones than pure tones (t(18) = 9.92, p <

0.001, d = 4.43, two-sided two-sample t-test comparing pure tone and transposed tone thresh-
olds averaged across frequency), a complete reversal of the human result. These results
illustrate that the properties of pitch perception are not strictly a function of the informa-
tion available in the periphery – performance characteristics can depend strongly on the
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Trained on filtered
speech and music

Trained on
synthetic tones

Trained separately on
speech and music

Was the reported F0 for 
tone 1 or tone 2 higher?

b. F0 discrimination experiment (identical for all networks)

a. Average power spectrum of training stimuli

c.  Effect of training set sound statistics on network F0 discrimination behavior

Example stimuli: manipulating 
lowest harmonic number

Figure 2.7: Pitch perception depends on training set sound statistics.
(A) Average power spectrum of training stimuli under different training conditions. Networks were trained on datasets with
lowpass- and highpass-filtered versions of the primary speech and music stimuli (column 1), as well as datasets of synthetic
tones with spectral statistics either matched or anti-matched (see Methods) to those of the primary dataset (column 2), and
datasets containing exclusively speech or music (column 3). Filtering indicated in column 1 was applied to the speech and
music stimuli prior to their superposition on background noise. Grey shaded regions plot the average power spectrum of the
background noise that pitch-evoking sounds were embedded in for training purposes. (B) Schematic of stimuli used to measure
F0 discrimination thresholds as a function of lowest harmonic number. Two example trials are shown, with two different lowest
harmonic numbers. (C) F0 discrimination thresholds as a function of lowest harmonic number, measured from networks trained
on each dataset shown in A. Lines plot means across the 10 networks; error bars indicate 95% confidence intervals bootstrapped
across the 10 networks.

39



“environment” in which a system is optimized.

2.2.16 Natural spectral statistics account for human-like behavior

To isolate the acoustic properties needed to reproduce human-like pitch behavior, we also
trained networks on synthetic tones embedded in masking noise, with spectral statistics
matched to those of the natural sound training set (Fig. 3.7A, center column). Specifically,
we fit multivariate Gaussians to the spectral envelopes of the speech/instrument sounds
and the noise from the original training set, and synthesized stimuli with spectral envelopes
sampled from these distributions. Although discrimination thresholds were overall somewhat
better than when trained on natural sounds, the resulting network again exhibited human-
like pitch characteristics (Fig. 3.7C, center column, black line). Because the synthetic tones
were constrained only by the mean and covariance of the spectral envelopes of our natural
training data, the results suggest that such low-order spectral statistics capture much of
the natural sound properties that matter for obtaining human-like pitch perception (see
Supplementary Fig. 3.15 for results on the full suite of psychophysical experiments).

For comparison, we also trained networks on synthetic tones with spectral statistics
that deviate considerably from speech and instrument sounds. We generated these "anti-
matched" synthetic tones by multiplying the mean of the fitted multivariate Gaussian by
negative one (see Methods) and sampling spectral envelopes from the resulting distribu-
tion. Training on the resulting highpass synthetic tones (Fig. 3.7A, center column, orange
line) completely reversed the pattern of behavior seen in humans: discrimination thresholds
were poor for stimuli containing low-numbered harmonics and good for stimuli contain-
ing only high-numbered harmonics (producing a negative correlation with human results:
r = −0.98, p < 0.001, Pearson correlation) (Fig. 3.7C, center column, orange line). These
results further illustrate that the dominance of low-numbered harmonics in human percep-
tion is not an inevitable consequence of cochlear transduction – good pitch perception is
possible in domains where it is poor in humans, provided the system is trained to extract
the relevant information.

2.2.17 Music-trained networks exhibit better pitch acuity

We also trained networks separately using only speech or only music stimuli (Fig. 3.7A,
right column). Consistent with the more accurate pitch discrimination found in human
listeners with musical training [86], networks optimized specifically for music have lower
discrimination thresholds for stimuli with low-numbered harmonics (Fig. 3.7C, right column;
t(18) = 9.73, p < 0.001, d = 4.35, two-sample t-test comparing left-most conditions – which
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produce the best thresholds – for speech and music training). As a test of whether this result
could be explained by cochlear processing, we repeated this experiment on networks with
learnable first-layer filters (as in Fig. 3.4A) and found that networks optimized specifically
for music still produced lower absolute thresholds (Supplementary Fig. 2.18). This result
likely reflects the greater similarity of the synthetic test tones (standardly used to assess
pitch perception) to instrument notes compared to speech excerpts, the latter of which are
less perfectly periodic over the stimulus duration.

2.2.18 Training set noise required for "missing fundamental" illu-

sion

One of the core challenges of hearing is the ubiquity of background noise. To investigate
how pitch behavior may have been shaped by the need to hear in noise, we varied the level
of the background noise in our training set. Networks trained in noisy environments (Fig.
2.8, left) resembled humans in accurately inferring F0 even when the F0 was not physically
present in the stimuli (thresholds for stimuli with lowest harmonic number between 2 and
5 were all under 1%). This "missing fundamental illusion" was progressively weakened in
networks trained in higher SNRs (Fig. 2.8, center and right), with discrimination thresholds
sharply elevated when the lowest harmonic number exceeded two (F (2, 27) = 6.79, p <

0.01, η2partial = 0.33; main effect of training condition when comparing thresholds for lowest
harmonic numbers between 2 and 5).

Networks trained in noiseless environments also deviated from human behavior when
tested on alternating-phase (Fig. 2.8B, row 2) and frequency-shifted complexes (Fig. 2.8B,
row 3), apparently ignoring high-numbered harmonics (correlations with human results were
lower in both experiments; t(18) = 9.08, p < 0.001, d = 4.06 and t(18) = 4.41, p < 0.001, d =

1.97, comparing high vs. no training noise). Conversely, discrimination thresholds for pure
tones (Fig. 2.8B, row 5) remained good (below 1%), as though the networks learned to focus
primarily on the first harmonic. Collectively, these results suggest the ability to extract
F0 information from high-numbered harmonics in part reflects an adaptation for hearing in
noise.

2.2.19 Network neurophysiology

Although our primary focus in this paper was to use DNNs to understand behavior in
normative terms, we also examined whether the internal representations of our model might
exhibit established neural phenomena.
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Figure 2.8: Key characteristics of human pitch behavior only emerge in noisy training con-
ditions.
(A) Average power spectrum of training stimuli. Networks were trained on speech and music stimuli embedded in three
different levels of background noise: high (column 1), low (column 2), and none (column 3). (B) Effect of training set noise
level on network behavior in all five main psychophysical experiments (see Fig. 3.2A-E): F0 discrimination as a function of
harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli (row 2), pitch estimation of frequency-shifted
complexes (row 3), pitch estimation of complexes with individually mistuned harmonics (row 4), and frequency discrimination
with pure and transposed tones (row 5). Lines plot means across the 10 networks; error bars indicate 95% confidence intervals
bootstrapped across the 10 networks.
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Figure 2.9: Network neurophysiology.
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Network activations were measured in response to pure tones and complex tones with four different harmonic compositions.
(A) Left: Power spectra for stimuli with 200 Hz F0. Center: expected F0 tuning curves for an idealized frequency-tuned unit.
The tuning curves are color-matched to the corresponding stimulus (e.g., black for pure tones and red for harmonics 6-14).
A frequency-tuned unit should respond to pure tones near its preferred frequency (414 Hz) or to complex tones containing
harmonics near its preferred frequency (e.g., when F0 = 212, 138, 103.5, or 82.8 Hz, i.e. 414/2, 414/3 or 414/4 Hz). Right:
expected F0 tuning curves for an idealized F0-tuned unit. An F0-tuned unit should produce tuning curves that are robust to
harmonic composition. The strength of a unit’s F0 tuning can thus be quantified as the mean correlation between the pure tone
(frequency) tuning curve and each of the complex tone tuning curves. (B) F0 tuning curves measured from five representative
units in each of five network layers. Units in the first layer (relu0) seem to exhibit frequency tuning. Units in the last layer
(fctop) exhibit F0 tuning. (C) Left: Nominal F0 tuning curves were measured for complex tones made inharmonic by jittering
component frequencies. Center: Such curves are shown for one example unit in the network’s last layer. Unlike for harmonic
tones, the tuning curves for tones with different frequency compositions do not align. Right: The overall F0 tuning of a network
layer was computed by averaging the F0 tuning strength across all units in the layer. A unit’s F0 tuning strength was quantified
as the mean correlation between the pure tone (frequency) tuning curve and each of the complex tone tuning curves. For each of
our 10 best network architectures, overall F0 tuning (computed separately using either harmonic or inharmonic complex tones)
is plotted as a function of network layer. Network units become progressively more F0-tuned deeper into the networks, but
only for harmonic tones. (D) Left: Population responses of pitch-selective units in marmoset auditory cortex, human auditory
cortex, and our model’s output layer, plotted as a function of lowest harmonic number. Marmoset single-unit recordings were
made from 3 animals and error bars indicate SEM across 50 neurons (re-plotted from [28]). Center: Human fMRI responses
to harmonic tones, as a function of their lowest harmonic number. Data were collected from 13 participants and error bars
indicate within-subject SEM (re-plotted from [29]). Responses were measured from a functional region of interest defined by
a contrast between harmonic tones and frequency-matched noise. Responses were measured in independent data (to avoid
double dipping). Right: Network unit activations to harmonic tones as a function of lowest harmonic number. Activations
were averaged across all units in the final fully connected layer of our 10 best network architectures (error bars indicate 95%
confidence intervals bootstrapped across the 10 best network architectures).

We simulated electrophysiology experiments on our best-performing network architecture
by measuring time-averaged model unit activations to pure and complex tones varying in
harmonic composition (Fig. 2.9A). F0 tuning curves of units in different network layers (Fig.
2.9B) illustrate a transition from frequency-tuned units in the first layer (relu0, where units
responded whenever a harmonic of a complex tone aligned with their pure-tone tuning) to
complex tuning in intermediate layers (relu2, relu4, and fcint) to unambiguous F0 tuning
in the final layer (fctop), where units responded selectively to specific F0s across different
harmonic compositions. These latter units thus resemble pitch-selective neurons identified
in primate auditory cortex [64] in which tuning to the F0 of missing-fundamental complexes
aligns with pure tone tuning.

We quantified the F0 tuning of individual units by measuring the correlation between
pure tone and complex tone tuning curves. High correlations between tuning curves indicate
F0 tuning invariant to harmonic composition. In each of the 10 best-performing networks,
units became progressively more F0-tuned deeper into the network (Fig. 2.9C, right, solid
symbols). Critically, this result depended on the harmonicity of the tones. When we repeated
the analysis with complex tones made inharmonic by jittering component frequencies [58]
(Fig. 2.9C, left), network units no longer showed F0 tuning (Fig. 2.9B, center) and the
dependence on network layer was eliminated (Fig. 2.9C, right, open symbols). In this
respect the units exhibit a signature of human F0-based pitch, which is also disrupted by
inharmonicity [58], [87], and of pitch-tuned neurons in non-human primates [88].

To compare the population tuning to that observed in the auditory system, we also
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measured unit activations to harmonic complexes as a function of the lowest harmonic in
the stimulus. The F0-tuned units in our model’s final layer responded more strongly when
stimuli contained low-numbered harmonics (Fig. 2.9D, right; main effect of lowest harmonic
number on mean activation, F (1.99, 17.91) = 134.69, p < 0.001, η2partial = 0.94). This result
mirrors the response characteristics of pitch-selective neurons (measured with single-unit
electrophysiology) in marmoset auditory cortex (Fig. 2.9D, left) [64] and pitch-selective
voxels (measured with fMRI) in human auditory cortex (Fig. 2.9D, center) [65].
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2.3 Discussion

We developed a model of pitch perception by optimizing artificial neural networks to estimate
the fundamental frequency of their acoustic input. The networks were trained on simulated
auditory nerve representations of speech and music embedded in background noise. The best-
performing networks closely replicated human pitch judgments in simulated psychophysical
experiments despite never being trained on the psychophysical stimuli. To investigate which
aspects of the auditory periphery and acoustical environment contribute to human-like pitch
behavior, we optimized networks with altered cochleae and sound statistics. Lowering the
upper-limit of phase locking in the auditory nerve yielded models with behavior unlike that
of humans: F0 discrimination was substantially worse than in humans and had a distinct
dependence on stimulus characteristics. Model behavior was substantially less sensitive to
changes in cochlear frequency tuning. However, the results were also strongly dependent
on the sound statistics the model was optimized for. Optimizing for stimuli with unnatural
spectra, or without concurrent background noise yielded behavior qualitatively different
from that of humans. The results suggest that the characteristics of human pitch perception
reflect the demands of estimating the fundamental frequency of natural sounds, in natural
conditions, given a human cochlea.

Our model innovates on prior work in pitch perception in two main respects. First,
the model was optimized to achieve accurate pitch estimation in realistic conditions. By
contrast, most previous pitch models have instantiated particular mechanistic or algorithmic
hypotheses [63], [67]–[74]. Our model’s initial stages incorporated detailed simulations of the
auditory nerve, but the rest of the model was free to implement any of a wide set of strategies
that optimized performance. Optimization enabled us to test normative explanations of pitch
perception that have previously been neglected. Second, the model achieved reasonable
quantitative matches to human pitch behavior. This match to behavior allowed strong tests
of the role of different elements of peripheral coding in the auditory nerve. Prior work
attempted to derive optimal decoders of frequency from the auditory nerve [9], [10], but was
unable to assess pitch perception (i.e., F0 estimation) due to the added complexity of this
task.

Both of these innovations were enabled by contemporary “deep” neural networks. For
our purposes, DNNs instantiate general-purpose functions that can be optimized to perform
a training task. They learn to use task-relevant information present in the sensory input,
and avoid the need for hand-designed methods to extract such information. This generality
is important for achieving good performance on real-world tasks. Hand-designed models, or
simpler model classes, would likely not provide human-level performance. For instance, we
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found that very shallow networks both produced worse overall performance, and a poorer
match to human behavior (Supplementary Fig. 3.10).

Although mechanistic explanations of pitch perception are widely discussed [63], [67]–
[72], [74], there have been few attempts to explain pitch in normative terms. But like other
aspects of perception, pitch is plausibly the outcome of an optimization process (realized
through some combination of evolution and development) that produces good performance
under natural conditions. We found evidence that these natural conditions have a large
influence on the nature of pitch perception, in that human-like behavior emerged only in
models optimized for naturalistic sounds heard in naturalistic conditions (with background
noise).

In particular, the demands of extracting the F0 of natural sounds appear to explain
one of the signature characteristics of human pitch perception: the dependence on low-
numbered harmonics. This characteristic has traditionally been proposed to reflect limi-
tations of cochlear filtering, with filter bandwidths determining the frequencies that can be
resolved in a harmonic sound [60], [76], [81], [84]. However, we found that the dependence on
harmonic number could be fully reversed for sufficiently unnatural sound training sets (Fig.
3.7C). Moreover, the dependence was stable across changes in cochlear filter bandwidths
(Fig. 3.6C). These results suggest that pitch characteristics primarily reflect the constraints
of natural sound statistics (specifically, lowpass power spectra) coupled with the high tem-
poral fidelity of the auditory nerve. In the language of machine learning, discrimination
thresholds appear to partly be a function of the match between the test stimuli and the
training set (i.e., the sensory signals a perceptual system was optimized for). Our results
suggest that this match is critical to explaining many of the well-known features of pitch
perception.

A second influence of the natural environment was evident when we eliminated back-
ground noise from the training set (Fig. 2.8). Networks trained without background noise
did not extract F0 information from high-numbered harmonics, relying entirely on the lowest-
numbered harmonics. Such a strategy evidently works well for idealized environments (where
the lowest harmonics are never masked by noise), but not for realistic environments contain-
ing noise, and diverges from the strategy employed by human listeners. This result suggests
that pitch is also in part a consequence of needing to hear in noise, and is consistent with
evidence that human pitch perception is highly noise-robust [89]. Together, these two re-
sults suggest that explanations of pitch perception cannot be separated from the natural
environment.

The approach we propose here contrasts with prior work that derived optimal strategies
for psychophysical tasks on synthetic stimuli [9], [10], [90], [91]. Although human listeners
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often improve on such tasks with practice, there is not much reason to expect humans to
approach optimal behavior for arbitrary tasks and stimuli (because these do not drive natural
selection, or learning during development). By contrast, it is plausible that humans are near-
optimal for important tasks in the natural environment, and that the consequences of this
optimization will be evident in patterns of psychophysical performance, as we found here.

Debates over pitch mechanisms have historically been couched in terms of the two axes of
the cochlear representation: place and time. Place models analyze the signature of harmonic
frequency spectra in the excitation pattern along the length of the cochlea [68], [69], whereas
temporal models quantify signatures of periodicity in temporal patterns of spikes [67], [71].
Our model makes no distinction between place and time per se, using whatever information
in the cochlear representation is useful for the training task. However, we were able to
assess its dependence on peripheral resolution in place and time by altering the simulated
cochlea. These manipulations provided evidence that fine-grained peripheral timing is critical
for normal pitch perception (Fig. 3.5C&E), and that fine-grained place-based frequency
tuning is less so (Fig. 3.6). Some degree of cochlear frequency selectivity is likely critical to
enabling phase locking to low-numbered harmonics, but such effects evidently do not depend
sensitively on tuning bandwidth. These conclusions were enabled by combining a realistic
model of the auditory periphery with task-optimized neural networks.

Our model is consistent with most available pitch perception data, but it is not perfect.
For instance, the inflection point in the graph of Fig. 3.2A occurs at a somewhat lower
harmonic number in the model than in humans. Given the evidence presented here that
pitch perception reflects the stimulus statistics a system is optimized for, some discrepancies
might be expected from the training set, which (due to the limitations of available corpora)
consisted entirely of speech and musical instrument sounds, and omitted other types of
natural sounds that are periodic in time. The range of F0s we trained on was similarly
limited by available audio data sets, and prevents us from making predictions about the
perception of very high frequencies [28]. The uniform distributions over sound level and
SNR in our training dataset were also not matched in a principled way to the natural world.
Discrepancies may also reflect shortcomings of our F0 estimation task (which used only 50ms
clips) or peripheral model, which although state-of-the-art and relatively well validated, is
imperfect (e.g., peripheral representations consisted of firing rates rather than spikes).

We note that the ear itself is the product of evolution and thus likely itself reflects
properties of the natural environment [92]. We chose to train models on a fixed representation
of the ear in part to address longstanding debates over the role of established features of
peripheral neural coding on pitch perception. We view this approach as sensible on the
grounds that the evolution of the cochlea was plausibly influenced by many different natural
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behaviors, such that it is more appropriately treated as a constraint on a model of pitch rather
than a model stage to be derived along with the rest of the model. Consistent with this view,
when we replaced the fixed peripheral model with a set of learnable filters operating directly
on sound waveforms, networks exhibited less human-like pitch behavior (Fig. 3.4). This
result suggests it could be fruitful to incorporate additional stages of peripheral physiology,
which might similarly provide constraints on pitch perception.

Our model shares many of the commonly-noted limitations of DNNs as models of the
brain [93], [94]. Our optimization procedure is not a model of biological learning and/or
evolution, but rather provides a way to obtain a system that is optimized for the training
conditions given a particular peripheral representation of sound. Biological organisms are
almost certainly not learning to estimate F0 from thousands of explicitly labeled examples,
and in the case of pitch may leverage their vocal ability to produce harmonic stimuli to
hone their perceptual mechanisms. These differences could cause the behavior of biological
systems to deviate from optimized neural networks in some ways.

The neural network architectures we used here are also far from fully consistent with
biology, being only a coarse approximation to neural networks in the brain. Although sim-
ilarities have been documented between trained neural network representations and brain
representations [13], [19], and although we saw some such similarities ourselves in the net-
work’s activations (Fig. 2.9C), the inconsistencies with biology could lead to behavioral
differences compared to humans.

And although our approach is inspired by classical ideal observer models, the model class
and optimization methods likely bias the solutions to some extent, and are not provably
optimal like classic ideal observer models. Nonetheless, the relatively good match to available
data suggests that the optimization is sufficiently successful as to be useful for our purposes.

The model developed here performs a single task – that of estimating the F0 of a short
sound. Human pitch behavior is often substantially more complex, in part because infor-
mation is conveyed by how the F0 changes over time, as in prosody [95] or melody [96].
In some cases relative pitch involves comparisons of the spectrum rather than the F0 [58],
[87] and/or can be biased by changes in the timbre of a sound [97], for reasons that are not
well understood. The framework used here could help to develop normative understanding
of such effects, by incorporating more complicated tasks (e.g., involving speech or music)
and then characterizing the pitch-related behavior that results. DNNs that perform more
complex pitch tasks might also exhibit multiple stages of pitch representations that could
provide insight into putative hierarchical stages of auditory cortex [13], [26], [98].

The approach we used here has natural extensions to understanding other aspects of
hearing [34], in which similar questions about the roles of peripheral cues have remained
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unresolved. Our methods could also be extended to investigate hearing impairment, which
can be simulated with alterations to standard models of the cochlea [4] and which often
entails particular types of deficits in pitch perception [83]. Prostheses such as cochlear
implants are another natural application of task-optimized modeling. Current implants
restore some aspects of hearing relatively well, but pitch perception is not one of them
[99]. Models optimized with different types of simulated electrical stimulation could clarify
the patterns of behavior to expect. Models trained with either acoustically- or electrically-
stimulated peripheral auditory representations (or combinations thereof) and then tested
with electrically-stimulated input could yield insights into the variable outcomes of pediatric
cochlear implantation. Similar approaches could be applied to study acclimatization to
hearing aids in adults.

There is also growing evidence for species differences in pitch perception [100], [101]. Our
approach could be used to relate species differences in perception to species differences in
the cochlea [102] or to differences in the acoustic environment and/or tasks a species may
be optimized for. While our results suggest that differences in cochlear filters alone are
unlikely to explain differences in pitch perception abilities across species, they leave open
the possibility that human pitch abilities reflect the demands of speech and music, which
plausibly require humans to be more sensitive to small F0 differences than other species.
This issue could be clarified by optimizing network representations for different auditory
tasks.

More generally, the results here illustrate how supervised machine learning enables nor-
mative analysis in domains where traditional ideal observers are intractable, an approach
that is broadly applicable outside of pitch and audition.
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2.4 Methods

2.4.1 Natural sounds training dataset - overview

The main training set consisted of 50ms excerpts of speech and musical instruments. This
duration was chosen to enable accurate pitch perception in human listeners [103], but to be
short enough that the F0 would be relatively stable even in natural sounds such as speech that
have time-varying F0s. The F0 label for a training example was estimated from a “clean”
speech or music excerpt. These excerpts were then superimposed on natural background
noise. Overall stimulus presentation levels were drawn uniformly between 30 dB SPL and
90 dB SPL. All training stimuli were sampled at 32 kHz.

2.4.2 Speech and music training excerpts

We used STRAIGHT [104] to compute time-varying F0 and periodicity traces for sounds in
several large corpora of recorded speech and instrumental music: Spoken Wikipedia Corpora
(SWC) [105], Wall Street Journal (WSJ), CMU Kids Corpus, CSLU Kids Speech, NSynth
[106], and RWC Music Database. STRAIGHT provides accurate estimates of the F0 pro-
vided the background noise is low, as it was in each of the corpora. Musical instrument
recordings were notes from the chromatic scale, and thus were spaced roughly in semitones.
To ensure that sounds would span a continuous range of F0s, we randomly pitch-shifted each
instrumental music recording by a small amount (up to ±3% F0, via resampling).

Source libraries were constructed for each corpus by extracting all highly periodic (time-
averaged periodicity level > 0.8) and non-overlapping 50ms segments from each recording.
We then generated our natural sounds training dataset by sampling segments with replace-
ment from these source libraries to uniformly populate 700 log-spaced F0 bins between 80
Hz and 1000 Hz (bin width = 1/16 semitones = 0.36% F0). Segments were assigned to bins
according to their time-averaged F0. The resulting training dataset consisted of 3000 exem-
plars per F0 bin for a total of 2.1 million exemplars. The relative contribution of each corpus
to the final dataset was constrained both by the number of segments per F0 bin available
in each source library (the higher the F0, the harder it is to find speech clips) and the goal
of using audio from many different speakers, instruments, and corpora. The composition we
settled on is:

• F0 bins between 80 Hz and 320 Hz

– 50% instrumental music (1000 NSynth and 500 RWC clips per bin),

– 50% adult speech (1000 SWC and 500 WSJ clips per bin)
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• F0 bins between 320 Hz and 450 Hz

– 50% instrumental music (1000 NSynth and 500 RWC clips per bin)

– 50% child speech (750 CSLU and 750 CMU clips per bin)

• F0 bins between 450 Hz and 1000 Hz

– 100% instrumental music (2500 NSynth and 500 RWC clips per bin)

2.4.3 Background noise for training data

To make the F0 estimation task more difficult and to simulate naturalistic listening condi-
tions, each speech or instrument excerpt in the training dataset was embedded in natural
background noise. The signal-to-noise ratio for each training example was drawn uniformly
between -10 dB and +10 dB. Noise source clips were taken from a subset of the AudioSet
corpus [107], screened to remove nonstationary sounds (e.g., speech or music). The screen-
ing procedure involved measuring auditory texture statistics (envelope means, correlations,
and modulation power in and across cochlear frequency channels) [108] from all recordings,
and discarding segments over which these statistics were not stable in time, as in previous
studies [109]. To ensure the F0 estimation task remained well defined for the noisy stimuli,
background noise clips were also screened for periodicity by computing their autocorrela-
tion functions. Noise clips with peaks greater than 0.8 at lags greater than 1ms in their
normalized autocorrelation function were excluded.

2.4.4 Peripheral auditory model

The Bruce et al. (2018) auditory nerve model was used to simulate the peripheral auditory
representation of every stimulus. This model was chosen because it captures many of the
complex response properties of auditory nerve fibers and has been extensively validated
against electrophysiological data from cats [4], [5]. Stages of peripheral signal processing in
the model include: a fixed middle-ear filter, a nonlinear cochlear filter bank to simulate level-
dependent frequency tuning of the basilar membrane, inner and outer hair cell transduction
functions, and a synaptic vesicle release/re-docking model of the synapse between inner hair
cells and auditory nerve fibers. Although the model’s responses have only been directly
compared to recordings made in nonhuman animals, some model parameters have been
inferred for humans (such as the bandwidths of cochlear filters) on the basis of behavioral
and otoacoustic measurements [85].
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Because the majority of auditory nerve fibers, especially those linked to feedforward
projections to higher auditory centers, have high spontaneous firing rates [110], [111], we
used exclusively high spontaneous rate fibers (70 spikes/s) as the input to our model. To
control for the possibility that spontaneous auditory nerve fiber activity could influence
pitch behavior (for instance, at conversational speech levels, firing rates of high spontaneous
rate fibers are typically saturated, which may degrade excitation pattern cues to F0) we
additionally trained and tested the 10 best-performing networks from the architecture search
using exclusively low spontaneous rate fibers (0.1 spikes/s). The average results for these
networks are shown in Supplementary Fig. 2.19. We found that psychophysical behavior
was qualitatively unaffected by nerve fiber spontaneous rate. These results suggested to us
that high spontaneous rate fibers were sufficient to yield human-like pitch behavior, so we
exclusively used high spontaneous rate fibers in all other experiments.

In most cases the input to the neural network models consisted of the instantaneous
firing rate responses of 100 auditory nerve fibers with characteristic frequencies spaced uni-
formly on an ERB-number scale [112] between 125 Hz and 14000 Hz. Firing rates were
used to approximate the information that would be available in a moderate group of spiking
nerve fibers receiving input from the same inner hair cell. The use of 100 frequency channels
primarily reflects computational constraints (CPU time for simulating peripheral representa-
tions, storage costs, and GPU memory for training), but we note that this number is similar
to that used in other auditory models with cochlear front-ends [113]. We confirmed that
increasing the number of channels by a factor of 10 had little effect on the behavioral results
from our main natural sound training condition (Supplementary Figs. 4 and 5), and given
that 100 channels was sufficient to obtain model thresholds on par with those of humans, it
appears that there is little benefit to additional channels for the task we studied.

To prevent the stimuli being dominated by sound onset/offset effects, each stimulus was
padded with 100ms of the original waveform before being passed through the nerve model.
The resulting 150ms auditory nerve responses were resampled to 20 kHz. The middle 50ms
was then excerpted, leaving a 100-fiber by 1000-timestep array of instantaneous firing rates
that constituted the input to the neural networks.

2.4.5 Deep neural network models - overview

The 100-by-1000 simulated auditory nerve representations were passed into deep convolu-
tional neural networks, each consisting of a series of feedforward layers. These layers were
hierarchically organized and instantiated one of a number of simple operations: linear con-
volution, pointwise nonlinear rectification, weighted average pooling, batch normalization,
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linear transformation, dropout regularization, and softmax classification.
The last layer of each network performed F0 classification. We opted to use classification

with narrow F0 bins rather than regression in order to soften the assumption that output F0
distributions for a stimulus should be unimodal. For example, an octave error would incur a
very large penalty under standard regression loss functions (e.g., L1 or L2), which measure
the distance between the predicted and target F0. Classification loss functions, such as the
softmax cross-entropy used here, penalize all misclassifications equally. In preliminary work,
we found classification networks were empirically easier to train than regression networks
and yielded smaller median F0 errors.

The precision of the network’s F0 estimate is limited by the bin width of the output layer
(and by the precision of the training set labels). We chose a bin width of 1/16 semitones
(0.36%). We found empirically that the median F0 estimation error increased for bins wider
than this value, and did not improve for narrower bins (Supplementary Fig. 2.20A). This
performance asymptote could reflect the limits of the F0 labels the network was trained
on. As it happened, with this bin width of 1/16 of a semitone it was possible to attain
discrimination thresholds for synthetic tones that were on par with the best thresholds
typically measured in human listeners (∼ 0.1− 0.4%) [76], [81] for some model architectures
and auditory nerve settings. Discrimination thresholds were worse for wider classification
bins (Supplementary Fig. 2.20B). We otherwise observed no qualitative change in the pattern
of psychophysical results as the bin width was changed. The bin width might thus be
considered analogous to decision noise that is sometimes added to models to match human
performance (though our choice of bin width appears near-optimal for the dataset we worked
with). We note that discrimination thresholds for synthetic tones were also plausibly limited
by the similarity of the tones to the training data.

2.4.6 Definitions of constituent neural network operations

Convolutional layer: A convolutional layer implements the convolution of a bank of Nk two-
dimensional linear filter kernels with an input X. Convolution performs the same operation
at each point in the input, which for the 2D auditory nerve representations we used entails
convolving in both time and frequency. Convolution in time is a natural choice for mod-
els of sensory systems as their input has translation-invariant temporal statistics. Because
translation invariance does not hold for the frequency dimension, convolution in frequency
is less obviously a natural model constraint. However, many types of sound signals are well
described by approximate translation invariance in local neighborhoods of the frequency
domain, and classical auditory models can often be described as imposing convolution in
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frequency [114], [115]. Moreover, imposing convolution greatly reduces the number of pa-
rameters to be learned. We have empirically found that auditory neural network models
often train more readily when convolution in frequency is imposed, suggesting that it is a
useful form of model regularization.

The input is a three-dimensional array with shape [Mf ,Mt,Mk]. For the first convo-
lutional layer in our networks, the input shape was [100, 1000, 1], corresponding to 100 fre-
quency bins (nerve fibers), 1000 timesteps, and a placeholder 1 in the filter kernel dimension.

A convolutional layer is defined by five parameters:

• h : height of the convolutional filter kernels (number of filter taps in the frequency
dimension)

• w : width of the convolutional filter kernels (number of filter taps in the time dimension)

• Nk : number of different convolutional filter kernels

• W : Trainable weights for each of the

• Nk filter kernels; W has shape [h,w,Mk, Nk]

• B : Trainable bias vector with shape [Nk]

The output of the convolutional layer Y has shape [Nf , Nt, Nk] and is given by:

Y [nf , nt, nk] = B[nk] +

h,w,Mk∑
i,j,mk=1

W [i, j,mk, nk]⊙X[nf + i− ⌊h/2⌋, nt + j − ⌊w/2⌋,mk]

where ⊙ denotes pointwise multiplication and ⌊·/·⌋ denotes integer division. Convo-
lutional layers all used a stride of 1 (i.e., non-strided convolution) and "valid" padding,
meaning filters were only applied at positions where every element of the kernel overlapped
the input. Due to this boundary handling, the frequency and time dimensions of the output
were smaller than those of the input: Nf = Mf − h+ 1 and Nt = Mt − w + 1.

Pointwise nonlinear rectification: To learn a nonlinear function, a neural network must
contain nonlinear operations. We incorporate nonlinearity via the rectified linear unit
(ReLU) activation function, which is applied pointwise to every element x in some input
X:

ReLU(x) =

x x > 0

0 x ≤ 0

Weighted average pooling: Pooling operations reduce the dimensionality of inputs by
aggregating information across adjacent frequency and time bins. To reduce aliasing in our
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networks (which would otherwise occur from downsampling without first lowpass-filtering),
we used weighted average pooling with Hanning windows [93]. This pooling operation was
implemented as the strided convolution of a two-dimensional (frequency-by-time) Hanning
filter kernel H with an input X: Y = H(sf ,st) ∗X

where ∗ denotes convolution and sf and st indicate the stride length in frequency and
time, respectively. The Hanning window H had a stride-dependent shape [hf , ht], where

hf =

1 sf = 1

4 · sf sf > 1
and ht =

1 st = 1

4 · st st > 1

For an input X with shape [Nf , Nt, Nk], the shape of the output Y is [Nf/sf , Nt/st, Nk].
Note that when either sf or st is set to 1, there is no pooling along the corresponding
dimension.

Batch normalization: Batch normalization is an operation that normalizes its inputs
in a pointwise manner using running statistics computed from every batch of training data.
Normalizing activations between layers greatly improves DNN training efficiency by reducing
the risk of exploding and vanishing gradients: small changes to network parameters in one
layer are less likely to be amplified in successive layers if they are separately normalized. For
every batch of inputs B during training, the pointwise batch mean (µB) and batch variance
(σ2

B) are computed and then used to normalize each input Xb ∈ B:

X(b,normalized) = γ

(
Xb − µB√
σ2
B + ϵ

)
+ β

where all operations are applied pointwise, ϵ = 0.001 to prevent division by zero, and γ

and β are learnable scale and offset parameters. Throughout training, single-batch statistics
are used to update the running mean (µtotal) and variance σ2

total. During evaluation mode,
X(b,normalized) is computed using µtotal and σ2

total in place of µB and σ2
B.

Fully connected layer: A fully connected (or dense) layer applies a linear transformation
to its input without any notion of localized frequency or time. An input X with shape
[Nf , Nt, Nk], is first reshaped to a vector Xflat with shape [Nf × Nt × Nk]. Then, Xflat is
linearly transformed to give an output Y with shape [Nout]:

Yout[nout] = B[nout] +

Nf ·Nt·Nk∑
nin=1

W [nout, nin] ·Xflat[nin]

where B is a bias vector with shape [Nout] and W is a weight matrix with shape [Nout, Nin].
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The values of B and W are learned during the optimization procedure.
Dropout regularization: The dropout operation receives as input a vector X with shape

[Nin] and randomly selects a fraction (r) of its values to set to zero. The remaining values
are scaled by 1/(1 − r), so that the expected sum over all outputs is equal to the expected
sum over all inputs. The r×Nin positions in X that get set to zero are chosen at random for
every new batch of data. Dropout is commonly used to reduce overfitting in artificial neural
networks. It can be thought of as a form of model averaging across the exponentially many
sub-networks generated by zeroing-out different combinations of units. All of our networks
contained exactly one dropout operation immediately preceding the final fully connected
layer. We used a dropout rate of 50% during both training and evaluation.

Softmax classifier: The final operation of every network is a softmax activation function,
which receives as input a vector X of length Nclasses (equal to the number of output classes;
700 in our case). The input vector is passed through a normalized exponential function to
produce a vector Y of the same length:

Y [nout] =
expX[nout]∑Nclasses

nclasses=1 expX[nclasses]

The values of the output vector are all greater than zero and sum to one. Y can be interpreted
as a probability distribution over F0 classes for the given input sound.

2.4.7 Model optimization - architecture search

All of our DNN architectures had the general form of one to eight convolutional layers plus
one to two fully connected layers. Each convolutional layer was always immediately followed
by three successive operations: ReLU activation function, weighed average pooling, and
batch normalization. Fully connected layers were always situated at the end of the network,
after the last convolution-ReLU-pooling-normalization block. The final fully connected layer
was always immediately followed by the softmax classifier. For architectures with two fully
connected layers, the first fully connected layer was followed by a ReLU activation function
and a batch normalization operation. In our analyses, we sometimes grouped networks by
their number of convolutional layers (e.g., single vs. multi-convolutional-layer networks;
Supplementary Fig. 3.10) regardless of the number of fully connected layers. When we
refer to network "activations" in a given convolutional layer (Fig. 2.9), we always mean the
outputs of the ReLU activation function immediately following that convolutional layer.

Within the family of models considered, we generated 400 distinct DNN architectures
by randomly sampling from a large space of hyperparameters. The number of convolutional
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layers was first uniformly drawn from 1 to 8. Within each layer, the number and dimensions
of convolutional filter kernels were then sampled based on the size of the layer’s input. The
number of filter kernels in the first layer was 16, 32, or 64 (each sampled with probabil-
ity=1/3). The number of kernels in each successive layer could increase by a factor of 2
(probability=1/2), stay the same (probability=1/3), or decrease by a factor of 2 (proba-
bility=1/6) relative to the previous layer. Frequency dimensions of the filter kernels were
integers sampled uniformly between 1 and Nf/2, where Nf is the frequency dimension of the
layer’s input. Time dimensions of the filter kernels were integers sampled uniformly between
Nt/20 and Nt/2, where Nt is the time dimension of the layer’s input. These sampling ranges
tended to produce rectangular filters (longer in the time dimension than the frequency di-
mension), especially in the early layers. We felt this was a reasonable design choice given the
rectangular dimensions of the input (100-by-1000, frequency-by-time). To limit the memory
footprint of the generated DNNs, we imposed 16 and 1024 as lower and upper bounds on the
number of kernels in a single layer and capped the frequency × time area of convolutional
filter kernels at 256.

The stride lengths for the weighted average pooling operations after each convolutional
layer were also sampled from distributions. Pooling stride lengths were drawn uniformly
between 1 and 4 for the frequency dimension and 1 and 8 for the time dimension. The
existence (probability=1/2) and size (128, 256, 512, or 1024 units) of a penultimate fully
connected layer were also randomly sampled. The final fully connected layer always contained
700 units to support classification into the 700 F0 bins.

2.4.8 Model optimization - network training

All 400 network architectures were trained to classify F0 of our natural sounds dataset via
stochastic gradient descent with gradients computed via back-propagation. We used a batch
size of 64 and the ADAM optimizer with a learning rate of 0.0001. Network weights were
trained using 80% of the dataset and the remaining 20% was held-out as a validation set.
Performance on the validation set was measured every 5000 training steps and, to reduce
overfitting, training was stopped once classification accuracy stopped increasing by at least
0.5% every 5000 training steps. Training was also stopped for networks that failed to achieve
5% classification accuracy after 10000 training steps. Each network was able to reach these
early-stopping criteria in less than 48 hours when trained on a single NVIDIA Tesla V100
GPU.

To ensure conclusions were not based on the idiosyncrasies of any single DNN architec-
ture, we selected the 10 architectures that produced the highest validation set accuracies
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to use as our model experimental “participants” (collectively referred to as “the model”).
We re-trained all 10 architectures for each manipulation of the peripheral auditory model
(Figs. 4-6) and the training set sound statistics (Figs. 7 and 8). The 10 different network
architectures are described in Supplementary Table 3.1.

2.4.9 Network psychophysics - overview

To investigate network pitch behavior, we simulated a set of classic psychophysical exper-
iments on all trained networks. The general procedure was to (1) pass each experimen-
tal stimulus through a network, (2) compute F0 discrimination thresholds or shifts in the
"perceived" F0 (depending on the experiment) from network predictions, and (3) compare
network results to published data from human listeners tested on the same stimulus manip-
ulations. We selected five psychophysical experiments. These experiments are denoted A
through E in the following sections to align with Fig. 3.2 (which contains schematics of the
stimulus manipulations in each experiment). We attempted to reproduce stimuli from these
studies as closely as possible, though some modifications were necessary (e.g., all stimuli
were truncated to 50ms to accommodate the input length for the networks). Because the
cost of running experiments on networks is negligible, networks were tested on many more
(by 1 to 3 orders of magnitude) stimuli than were human participants. Human data from
the original studies was obtained either directly from the original authors (Experiments A-
B) or by extracting data points from published figures (Experiments C-E) using Engauge
Digitizer. In most cases, individual subject data was not available (the original studies were
performed 17 to 36 years prior to this work), so we report only across-subject means and do
not include error bars for human data.

2.4.10 Experiment A: effect of harmonic number and phase on pitch

discrimination

Experiment A reproduced the stimulus manipulation of Bernstein and Oxenham (2005) to
measure F0 discrimination thresholds as a function of lowest harmonic number and phase.

Stimuli

Stimuli were harmonic complex tones, bandpass-filtered and embedded in masking noise to
control the lowest audible harmonic, and whose harmonics were in sine or random phase. In
the original study, the bandpass filter was kept fixed while the F0 was roved to set the lowest
harmonic number. Here, to measure thresholds at many combinations of F0 and lowest
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harmonic number, we roved both the F0 and the location of the filter. We took the 4th-
order Butterworth filter (2500 to 3500 Hz -3 dB passband) described in the original study and
translated its frequency response along the frequency axis to set the lowest audible harmonic
for a given stimulus. Before filtering, the level of each individual harmonic was set to 48.3
dB SPL, which corresponds to 15 dB above the masked thresholds of the original study’s
normal-hearing participants. After filtering, harmonic tones were embedded in modified
uniform masking noise [81], which has a spectrum that is flat (15 dB/Hz SPL) below 600
Hz and rolls off at 2 dB/octave above 600 Hz. This noise was designed to ensure that only
harmonics within the filter’s -15 dB passband were audible.

Human experiment

The human F0 discrimination thresholds (previously published by Bernstein and Oxenham)
were measured from 5 normal-hearing participants (3 female) between the ages of 18 and 21
years old, all self-described amateur musicians with at least 5 years of experience [63]. Each
participant completed 4 adaptive tracks per condition (where a condition had a particular
lowest harmonic number and either random or sine phase). Bernstein and Oxenham (2005)
reported very similar F0 discrimination thresholds for two different spectral conditions ("low
spectrum" with 2500 to 3500 Hz filter passband and "high spectrum" with 5000 to 7000 Hz
filter passband). To simplify presentation and because our network experiment measured
average thresholds across a wide range of bandpass filter positions, here we report their
human data averaged across spectral condition.

Model experiment

The F0 discrimination experiment we ran on each network had 600 conditions corresponding
to all combinations of 2 harmonic phases (sine or random), 30 lowest harmonic numbers
(nlow = 1, 2, 3, . . . 30), and 10 reference F0s (F(0,ref)) spaced uniformly on a logarithmic scale
between 100 and 300 Hz. Within each condition, each network was evaluated on 121 stimuli
with slightly different F0s (within ±6% of F(0,ref)) but the same bandpass filter. The filter
was positioned such that the low frequency cutoff of its -15 dB passband was equal to the
frequency of the lowest harmonic for that condition and F0 (nlow ×F(0,ref)). On the grounds
that human listeners likely employ a strong prior that stimuli should have fairly similar F0s
within single trials of a pitch discrimination experiment, we limited network F0 predictions
to fall within a one-octave range (centered at F(0,ref))). We simulated a two-alternative
forced choice paradigm by making all 7,260 possible pairwise comparisons between the 121
stimuli for a condition. In each trial, we asked if the network predicted a higher F0 for
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the stimulus in the pair with the higher F0 (i.e., if the network correctly identified which
of two stimuli had a higher F0). A small random noise term was used to break ties when
the network predicted the same F0 for both stimuli. We next constructed a psychometric
function by plotting the percentage of correct trials as a function of %F0 difference between
two stimuli. We then averaged psychometric functions across the 10 reference F0s with the
same harmonic phase and lowest harmonic number. Network thresholds were thus based
on 1210 stimuli (72,600 pairwise F0 discriminations) per condition. Normal cumulative
distribution functions were fit to the 60 resulting psychometric functions (2 phase conditions
x 30 lowest harmonic numbers). To match human F0 discrimination thresholds, which were
measured with a 2-down-1-up adaptive algorithm, we defined the network F0 discrimination
threshold as the F0 difference (in percent, capped at 100%) that yielded 70.7% of trials
correct.

Human-model comparison

We quantified the similarity between human and network F0 discrimination thresholds as
the correlation between vectors of analogous data points. The network vector contained
60 F0 discrimination thresholds, one for each combination of phase and lowest harmonic
number. To get a human vector with 60 analogous F0 discrimination thresholds, we a)
linearly interpolated the human data between lowest harmonic numbers and b) assumed
that F0 discrimination thresholds were constant for lowest harmonic numbers between 1 and
5 (supported by other published data [65], [81]). We then computed the Pearson correlation
coefficient between log-transformed vectors of human and network thresholds.

2.4.11 Experiment B: pitch of alternating-phase harmonic com-

plexes

Experiment B reproduced the stimulus manipulation of Shackleton and Carlyon (1994) to
test if our networks exhibited pitch-doubling for alternating-phase harmonic stimuli.

Stimuli

Stimuli consisted of consecutive harmonics (each presented at 50 dB SPL) summed together
in alternating sine/cosine phase: odd-numbered harmonics in sine phase (0° offset between
frequency components) and even-numbered harmonics in cosine phase (90° offset, such that
components align at their peaks). As in Experiment A, these harmonic tones were bandpass-
filtered and embedded in masking noise to control which harmonics were audible. The
original study used pink noise and analog filters. Here, we used modified uniform masking
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noise and digital Butterworth filters (designed to approximate the original passbands). We
generated stimuli with three different 4th-order Butterworth filters specified by their -3 dB
passbands: 125 to 625 Hz ("low harmonics"), 1375 to 1875 Hz ("mid harmonics"), and 3900
to 5400 Hz ("high harmonics"). The exact harmonic numbers that are audible in each of
these passbands depends on the F0. The original study used stimuli with F0s near 62.5, 125,
and 250 Hz (sometimes offset by ±4% from the nominal F0 to avoid stereotyped responses).
The 62.5 Hz condition was excluded here because the lowest F0 our networks could report
was 80 Hz. We generated 354 stimuli with F0s near 125 Hz (120-130 Hz) and 250 Hz (240-260
Hz), in both cases uniformly sampled on a logarithmic scale, for each filter condition (2124
stimuli in total).

Human experiment

In the original experiment of Shackleton and Carlyon (1994), participants adjusted the F0
of a sine-phase control tone to match the pitch of a given alternating-phase test stimulus.
The matched F0 provides a proxy for the perceived F0 for the test stimulus. The previously
published human data were obtained from 8 normal-hearing listeners who had a wide range
of musical experience. Each participant made 18 pitch matches per condition.

Model experiment

To simulate the human paradigm in our model, we simply took the network’s F0 prediction
(within a 3-octave range centered at the stimulus F0) as the "perceived" F0 of the alternating-
phase test stimulus. For each stimulus, we computed the ratio of the predicted F0 to the
stimulus F0. Histograms of these frequency ratios (bin width = 2%) were generated for
each of the 6 conditions (3 filter conditions × 2 nominal F0s). To simplify presentation,
histograms are only shown for 2 conditions: "low harmonics" and "high harmonics", both
with F0s near 125 Hz.

Human-model comparison

Shackleton and Carlyon (1994) constructed histograms from their pitch matching data, pool-
ing responses across participants (144 pitch matches per histogram). We quantified the simi-
larity between human and network responses by measuring linear correlations between human
and network histograms for the same condition. Human histograms were first re-binned to
have the same 2% bin width as network histograms. Pearson correlation coefficients were
computed separately for each of the 6 conditions and then averaged across conditions to give
a single number quantifying human-network similarity.
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2.4.12 Experiment C: pitch of frequency-shifted complexes

Experiment C reproduced the stimulus manipulation of Moore and Moore (2003) to test if
our networks exhibited pitch shifts for frequency-shifted complexes.

Stimuli

Stimuli were modifications of harmonic complex tones with consecutive harmonic frequencies
in cosine phase. We imposed three different F0-dependent spectral envelopes – as described
by Moore and Moore (2003) – on the stimuli. The first, which we termed the "low harmonics"
spectral envelope, had a flat 3-harmonic-wide passband centered at the 5th harmonic. The
second (termed "mid harmonics") had a flat 5-harmonic-wide passband centered at the
11th harmonic. The third (termed "high harmonics") had a flat 5-harmonic-wide passband
centered at the 16th harmonic. All three of these spectral envelopes had sloping regions
flanking the flat passband. Amplitudes (relative to the flat passband) at a given frequency
F in the sloping regions were always given by (10x−1)/9 where x = 1−|(F −Fe)/(1.5×F0)|
and Fe is the edge of the flat region. The amplitude was set to zero for x ≤ 0.

For a given F0 and (fixed) spectral envelope, we made stimuli inharmonic by shifting
every component frequency by a common offset in Hz specified as a percentage of the F0.
As a concrete example, consider a stimulus with F0 = 100 Hz and the "low harmonics"
spectral envelope. This stimulus contains nonzero energy at 200, 300, 400, 500, 600, and
700 Hz. Frequency-shifting this harmonic tone by +8% of the F0 results in an inharmonic
tone with energy at 208, 308, 408, 508, 608, and 708 Hz. For each of the three spectral
envelopes, we generated stimuli with frequency component shifts of +0, +4, +8, +12, +16,
+20, and +24 %F0. For each combination of spectral envelope and frequency component
shift, we generated stimuli with 3917 nominal F0s spaced log-uniformly between 80 and
480 Hz (83,391 stimuli in total). These stimuli are a superset of those used in the human
experiment, which measured shifts for three F0s (100, 200, and 400 Hz) and four component
shifts (+0, +8, +16, +24 %F0). As in the original study, stimuli were presented at overall
levels of 70 dB SPL.

Human experiment

Moore and Moore (2003) used a pitch matching paradigm to allow listeners to report the
perceived F0s for frequency-shifted complex tones. 5 normal-hearing listeners (all musically
trained) between the ages of 19 and 31 years old participated in the study. Each participant
made 108 pitch matches. Moore and Moore (2003) reported quantitatively similar patterns
of pitch shifts for the three F0s tested (100, 200, and 400 Hz). To simplify presentation and
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because we used many more F0s in the network experiment, here we present their human
data averaged across F0 conditions.

Model experiment

For the model experiment, we again took network F0 predictions for the 83,391 frequency-
shifted complexes as the "perceived" F0s. F0 predictions were restricted to a one-octave
range centered at the target F0 (the F0 of the stimulus before frequency-shifting). We
summarize these values as shifts in the predicted F0, which are given by (F0predicted −
F0target)/F0target. These shifts are reported as the median across all tested F0s and plotted
as a function of component shift and spectral envelope. To simplify presentation, results are
only shown for two spectral envelopes, "low harmonics" and "high harmonics".

Human-model comparison

We quantified the similarity between human and network pitch shifts as the Pearson corre-
lation coefficient between vectors of analogous data points. The network vector contained
21 median shifts, one for each combination of spectral envelope and component shift. To
obtain a human vector with 21 analogous pitch shifts, we linearly interpolated the human
data between component shifts.

2.4.13 Experiment D: pitch of complexes with individually mis-

tuned harmonics

Experiment D reproduced the stimulus manipulation of Moore et al. (1985) to test if our
networks exhibited pitch shifts for complexes with individually mistuned harmonics.

Stimuli

Stimuli were modifications of harmonic complex tones containing 12 equal-amplitude har-
monics (60 dB SPL per component) in sine phase. We generated such tones with F0s near
100 Hz, 200 Hz, and 400 Hz (178 F0s uniformly spaced on a logarithmic scale within ±4% of
each nominal F0). Stimuli were then made inharmonic by shifting the frequency of a single
component at a time. We applied +0, +1, +2, +3, +4, +6, and +8 % frequency shifts to
each of the following harmonic numbers: 1, 2, 3, 4, 5, 6, and 12. In total there were 178
stimuli in each of the 147 conditions (3 nominal F0s × 7 component shifts × 7 harmonic
numbers).
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Human experiment

Moore et al. (1985) used a pitch-matching paradigm in which participants adjusted the
F0 of a comparison tone to match the perceived pitch of the complex with the mistuned
harmonic. Three participants (all highly experienced in psychoacoustic tasks) completed the
experiment. Participants each made 10 pitch matches per condition tested. Humans were
tested on 126 of the 147 conditions in the model experiment (3 nominal F0s x 7 component
shifts x 6 harmonic numbers) – the conditions with a harmonic number of 12 were not
included.

Model experiment

For the model experiment, we used the procedure described for Experiment C to measure
shifts in the network’s predicted F0 for all 26,166 stimuli. Shifts were averaged across similar
F0s (within ±4% of the same nominal F0) and reported as a function of component shift
and harmonic number. To simplify presentation, results are only shown for F0s near 200 Hz.
Results were similar for F0s near 100 and 400 Hz.

Human-model comparison

We compared the network’s pattern of pitch shifts to those averaged across the three par-
ticipants from Moore et al. (1985). Human-model similarity was again quantified as the
Pearson correlation coefficient between vectors of analogous data points. The network vec-
tor contained 147 mean shift values corresponding to the 147 conditions. Though Moore
et al. (1985) did not report pitch shifts for the 12th harmonic, they explicitly stated they
were unable to measure significant shifts when harmonics above the 6th were shifted. We
thus inferred pitch shifts were always equal to zero for the 12th harmonic when compiling
the vector of 147 analogous pitch shifts. We included this condition because some networks
exhibited pitch shifts for high-numbered harmonics and we wanted our similarity metric to
be sensitive to this deviation from human behavior.

2.4.14 Experiment E: frequency discrimination with pure and trans-

posed tones

Experiment E measured network discrimination thresholds for pure tones and transposed
tones as described by Oxenham et al. (2004).
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Stimuli

Transposed tones were generated by multiplying a half-wave rectified low-frequency sinusoid
(the "envelope") with a high-frequency sinusoid (the "carrier"). Before multiplication, the
envelope was lowpass filtered (4th order Butterworth filter) with a cutoff frequency equal
to 20% of the carrier frequency. To match the original study, we used carrier frequencies of
4000, 6350, and 10,080 Hz. For each carrier frequency, we generated 6144 transposed tones
with envelope frequencies spaced uniformly on a logarithmic scale between 80 and 320 Hz.
We also generated 6144 pure tones with frequencies spanning the same range. All stimuli
were presented at 70 dB SPL and embedded in the same modified uniform masking noise as
Experiment A. The original study embedded only the transposed tones in lowpass-filtered
noise to mask distortion products. To ensure that the noise would not produce differences in
the model’s performance for the two types of stimuli, we included it for pure tones as well.

Human experiment

Oxenham et al. (2004) reported discrimination thresholds for these same 4 conditions (trans-
posed tones with 3 different carrier frequencies + pure tones) at 5 reference frequencies be-
tween 55 and 320 Hz. Data was collected from 4 young (<30 years old) adult participants
who had at least 1 hour of training on the frequency discrimination task. Discrimination
thresholds were based on 3 adaptive tracks per participant per condition.

Model experiment

The procedure for measuring network discrimination thresholds for pure tones was analogous
to the one used in Experiment A. We first took network F0 predictions (within a one-octave
range centered at the stimulus frequency) for all 6144 stimuli. We then simulated a two-
alternative forced choice paradigm by making pairwise comparisons between predictions for
stimuli with similar frequencies (within 2.7 semitones of 5 "reference frequencies" spaced
log-uniformly between 80 and 320 Hz). For each pair of stimuli, we asked if the network
correctly predicted a higher F0 for the stimulus with the higher frequency. From all trials
at a given reference frequency, we constructed a psychometric function plotting the percent-
age of correct trials as a function of percent frequency difference between the two stimuli.
Normal cumulative distribution functions were fit to each psychometric function and thresh-
olds were defined as the percent frequency difference (capped at 100%) that yielded 70.7%
correct. Each threshold was based on 233,586 pairwise discriminations made between 684
stimuli. The procedure for measuring thresholds with transposed tones was identical, except
that the correct answer was determined by the envelope frequency rather than the carrier
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frequency. Thresholds were measured separately for transposed tones with different carrier
frequencies. To simplify presentation, we show transposed tone thresholds averaged across
carrier frequencies (results were similar for different carrier frequencies).

Human-model comparison

We again quantified human-network similarity as the Pearson correlation coefficient between
vectors of analogous log-transformed discrimination thresholds. Both vectors contained 20
discrimination thresholds corresponding to 5 reference frequencies × 4 stimulus classes (trans-
posed tones with 3 different carrier frequencies + pure tones). Human thresholds were lin-
early interpolated to estimate thresholds at the same reference frequencies used for networks.
This step was necessary because our networks were not trained to make F0 predictions below
80 Hz.

2.4.15 Effect of stimulus level on frequency discrimination

To investigate how phase locking in the periphery contributes to the level-robustness of pitch
perception, we measured pure tone frequency discrimination thresholds from our networks
as a function of stimulus level (Fig. 3.5D).

Stimuli

We generated pure tones at 6,144 frequencies spaced uniformly on a logarithmic scale between
200 and 800 Hz. Tones were embedded in the same modified uniform masking noise as
Experiment A. The signal-to-noise ratio was fixed at 20 dB and the overall stimulus levels
were varied between 10 and 100 dB SPL in increments of 10 dB.

Human experiment

Wier et al. (1977) reported frequency discrimination thresholds for pure tones in low-level
broadband noise as a function of frequency and sensation level (i.e., the amount by which
the stimulus is above its detection threshold). Thresholds were measured from four partic-
ipants with at least 20 hours of training on the frequency discrimination task. Participants
completed four or five 2-down-1-up adaptive tracks of 100 trials per condition. Stimuli were
presented at five different sensation levels: 5, 10, 20, 40, and 80 dB relative to masked
thresholds in 0 dB spectrum level noise (broadband, lowpass-filtered at 10000 Hz). We av-
eraged the reported thresholds across four test frequencies (200, 400, 600, and 800 Hz) and
re-plotted them as a function of sensation level in Fig. 3.5E.
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Model experiment

We used the same procedure used in Experiments A and E to measure frequency discrimina-
tion thresholds. The simulated frequency discrimination experiment considered all possible
pairings of stimuli with similar frequencies (within 2.7 semitones). Reported discrimination
thresholds were pooled across all tested frequencies (200 to 800 Hz).

Human-model comparison

Because the human results were reported in terms of sensation level rather than SPL, we did
not compute a quantitative measure of the match between model and human results, and
instead plot the results side-by-side for qualitative comparison.

2.4.16 Auditory nerve manipulations - overview

The general procedure for investigating the dependence of network behavior on aspects of
the auditory nerve representation was to (1) modify the auditory nerve model, (2) retrain
networks (starting from a random initialization) on modified auditory nerve representations
of the same natural sounds dataset, and (3) simulate psychophysical experiments on the
trained networks using modified auditory nerve representations of the same test stimuli. We
used this approach to investigate whether a biologically-constrained cochlea is necessary to
obtain human-like pitch behavior and to evaluate the dependence of network pitch behavior
on both temporal and “place” information in the auditory nerve representation. The only
exception to this general procedure was in the experiment that tested the effect of flatten-
ing the excitation pattern, which was performed on networks that were trained on normal
auditory nerve representations (see below).

2.4.17 Replacing the hardwired cochlear model with learnable fil-

ters

We replaced the hardwired auditory nerve model with a convolutional layer whose weights
could be optimized alongside the rest of the DNN (Fig. 3.4). The convolutional layer
consisted of 100 one-dimensional filter kernels (each with 801 taps) that operated directly
on 32 kHz audio, applied using “valid” convolution. The audio input to the network was
75ms in duration such that the valid output of convolution was 50ms, as in the hardwired
cochlear representation. Outputs from the 100 filters were stacked, half-wave rectified, and
then resampled to 20 kHz, resulting in a first-layer representation with 100 “nerve fibers”
and 1000 timesteps to match the size and temporal resolution of the hardwired cochlear
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representations. We separately trained the 10 best network architectures from the original
architecture search with this learnable “cochlear” layer. The best frequency of a learned filter
was determined after training from the maximum value of its transfer function.

2.4.18 Manipulating fine timing information in the auditory nerve

We modified the upper frequency limit of phase locking in the auditory nerve by adjusting
the cutoff frequency of the inner hair cell lowpass filter within the auditory nerve model. By
default, the lowpass characteristics of the inner hair cell’s membrane potential are modeled
as a 7th order filter with a cutoff frequency of 3000 Hz [5]. We trained and tested networks
with this cutoff frequency set to 50, 250, 1000, 3000, 6000, and 9000 Hz. In each of these
cases, the sampling rate of the peripheral representation used as input to the networks was
20 kHz so that spike-timing information would not be limited by the Nyquist frequency.

When the inner hair cell cutoff frequency is set to 50 Hz, virtually all temporal information
in the short-duration stimuli we used was eliminated, leaving only place information (Fig.
3.5A). To control for the possibility that the performance characteristics of networks trained
on such representations could be limited by the number of model nerve fibers (set to 100
for most of our experiments), we repeated this manipulation with 1000 auditory nerve fibers
(characteristic frequencies again spaced uniformly on an ERB-number scale between 125 Hz
and 14000 Hz). To keep the network architecture constant, we reduced the sampling rate to 2
kHz (which for the 50 Hz hair cell cutoff preserved all stimulus-related information), yielding
peripheral representations that were 1000-fiber by 100-timestep arrays of instantaneous firing
rates. We then simply transposed the nerve fiber and time dimensions so that networks still
operated on 100-by-1000 inputs, allowing us to use the same network architectures as in all
other training conditions. Note that by transposing the input representation, we effectively
changed the orientation of the convolutional filter kernels. Kernels that were previously
long in the time dimension and short in the nerve fiber dimension became short in the time
dimension and long in the nerve fiber dimension. We saw this as desirable as it allowed us
to rule out the additional possibility that the performance characteristics of networks with
lower limits of phase locking were due to convolutional kernel shapes that were optimized for
input representations with high temporal fidelity and thus perhaps less suited for extracting
place information (which requires pooling information across nerve fibers).

To more closely examine how the performance with degraded phase locking (i.e., the
50 Hz inner hair cell cutoff frequency condition) might be limited by the number of model
nerve fibers, we also generated peripheral representations with either 100, 250, or 500 nerve
fibers (with characteristics frequencies uniformly spaced on an ERB-number scale between
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125 Hz and 14000 Hz in each case). To keep the network’s input size fixed at 100-by-1000
(necessary to use the same network architecture), we transposed the input array, again using
100 timesteps instead of 1000 (sampled at 2 kHz), and upsampled the frequency (nerve
fiber) dimension to 1000 via linear interpolation. In this way the input dimensionality was
preserved across conditions even though the information was limited by the original number
of nerve fibers. Median %F0 error on the validation set and discrimination thresholds and
were measured for networks trained and tested with each of these peripheral representations
(Supplementary Fig. 3.11).

2.4.19 Eliminating place cues by flattening the excitation pattern

To test if our trained networks made use of peaks and valleys in the time-averaged exci-
tation pattern (which provide “place” cues to F0), we tested networks on nerve represen-
tations with artificially flattened excitation patterns. Nerve representations were flattened
by separately scaling each frequency channel of the nerve representation to have the same
time-averaged response. Each row (nerve fiber) of the nerve representation was divided by
its time-averaged firing rate and multiplied by the mean firing rate across all rows, yielding
an excitation-flattened nerve representation with the same mean firing rate as the original.
This manipulation was separately applied to each psychophysical stimulus.

2.4.20 Manipulating cochlear filter bandwidths

Cochlear filter bandwidths in the auditory nerve model were set based on estimates of human
frequency tuning from otoacoustic and behavioral experiments [85]. We modified the fre-
quency tuning to be two times narrower and two times broader than these human estimates
by scaling the filter bandwidths by 0.5 and 2.0, respectively.

To investigate the importance of the frequency scaling found in the cochlea, we also
generated a peripheral representation with linearly spaced cochlear filters. The characteristic
frequencies of 100 model nerve fibers were linearly spaced between 125 Hz and 8125 Hz and
the 10-dB-down bandwidth of each cochlear filter was set to 80 Hz. This bandwidth (which is
approximately equal to that of a “human” model fiber with 400 Hz characteristic frequency)
was chosen to be as narrow as possible without introducing frequency “gaps” between adjacent
cochlear filters.

To verify that these manipulations had the anticipated effects, we measured tuning curves
(detection thresholds as a function of frequency) for simulated nerve fibers with characteristic
frequencies of 250, 500, 1000, 2000, 4000 Hz (Fig. 3.6A&B). Mean firing rate responses were
computed for each fiber to 50ms pure tones with frequencies between 125 Hz and 8000 Hz.
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Thresholds were defined as the minimum sound level required to increase the fiber’s mean
firing rate response 10% above its spontaneous rate (i.e., dB SPL required for 77 spike/s).

2.4.21 Sound statistics manipulations - overview

The general procedure for investigating the dependence of network behavior on sound statis-
tics was to (1) modify the sounds in training dataset, (2) retrain networks (starting from
a random initialization) on auditory nerve representations of the modified training dataset,
and (3) simulate psychophysical experiments on trained networks, always using the same
test stimuli.

2.4.22 Training on filtered natural sounds

We generated lowpass and highpass versions of our natural sounds training dataset by ap-
plying randomly-generated lowpass or highpass Butterworth filters to every speech and in-
strument sound excerpt. For the lowpass-filtered dataset, 3-dB-down filter cutoff frequencies
were drawn uniformly on a logarithmic scale between 500 and 5000 Hz. For the highpass-
filtered dataset, cutoff frequencies were drawn uniformly from a logarithmic scale between
1000 and 10000 Hz. The order of each filter was drawn uniformly from 1 to 5 and all filters
were applied twice, once forward and once backwards, to eliminate phase shifts. Filtered
speech and instrument sounds were then combined with the unmodified background noise
signals used in the original dataset (SNRs drawn uniformly from -10 to +10 dB).

2.4.23 Training on spectrally matched and anti-matched synthetic

tones

To investigate the extent to which network pitch behavior could be explained by low-order
spectral statistics of our natural sounds dataset, we generated a dataset of 2.1 million syn-
thetic stimuli with spectral statistics matched to those measured from our primary dataset.
STRAIGHT [104] was used to measure the spectral envelope (by averaging the estimated
filter spectrogram across time) of every speech and instrument sound in our dataset. We
then measured the mean and covariance of the first 13 Mel-frequency cepstral coefficients
(MFCCs), defining a multivariate Gaussian. We sampled new spectral envelopes from this
distribution by drawing MFCC coefficients and inverting them to produce a spectral en-
velope. These enveloped were imposed (via multiplication in the frequency domain) on
harmonic complex tones with F0s sampled to uniformly populate the 700 log-spaced F0 bins
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in the network’s classification layer. Before envelope imposition, tones initially contained all
harmonics up to 16 kHz in cosine phase, with equal amplitudes.

To generate a synthetic dataset with spectral statistics that deviate considerably from
those measured from our primary dataset, we simply multiplied the mean of the fitted
multivariate Gaussian (a vector of 13 MFCCs) by negative one, which inverts the mean
spectral envelope. Spectral envelopes sampled from the distribution defined by the negated
mean (and unaltered covariance matrix) were imposed on 2.1 million harmonic complex tones
to generate an "anti-matched" synthetic tones dataset.

Both the matched and anti-matched synthetic tones were embedded in synthetic noise
spectrally matched to the background noise in our primary natural sounds dataset. The pro-
cedure for synthesizing spectrally-matched noise was analogous to the one used to generate
spectrally-matched tones, except that we estimated the spectral envelope using the power
spectrum. We measured the power spectrum of every background noise clip in our primary
dataset, computed the mean and covariance of the first 13 MFCCs, and imposed spectral
envelopes sampled from the resulting multivariate Gaussian on white noise via multiplica-
tion in the frequency domain. Synthetic tones and noise were combined with SNRs drawn
uniformly from -10 to +10 dB and overall stimulus presentation levels were drawn uniformly
from 30 to 90 dB SPL.

2.4.24 Training on speech and music separately

We generated speech-only and music-only training datasets by selectively sampling from the
same source libraries used to populate the combined dataset. Due to the lack of speech clips
in our source libraries with high F0s, we decided to limit both datasets to F0s between 80
and 450 Hz (spanning 480 of 700 F0 bins). This ensured that differences between networks
trained on speech or music would not be due to differences in the F0 range. The composition
of the speech-only dataset was:

• F0 bins between 80 Hz and 320 Hz: 100% adult speech (2000 SWC and 1000
WSJ clips per bin)

• F0 bins between 320 Hz and 450 Hz: 100% child speech (1500 CSLU and 1500
CMU clips per bin)

The composition of our music-only dataset was:

• F0 bins between 80 Hz and 450 Hz: 100% instrumental music (2000 NSynth and
1000 RWC clips per bin)
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Stimuli in both datasets were added to background noise clips sampled from the same
sources used for the combined dataset (SNRs drawn uniformly from -10 to +10 dB).

2.4.25 Training on natural sounds with reduced background noise

To train networks in a low-noise environment, we regenerated our natural sounds training
dataset with SNRs drawn uniformly from +10 to +30 dB rather than -10 to +10 dB. For
the noiseless case, we entirely omitted the addition of background noise to the speech and
instruments sounds before training. To ensure F0 discrimination thresholds measured from
networks trained with reduced background noise would not be limited by masking noise in
the psychophysical stimuli, we evaluated these networks on noiseless versions of the psy-
chophysical stimuli (Experiments A and E). The amplitudes of harmonics that were masked
by noise in the original stimuli (i.e., harmonics inaudible to human listeners in the original
studies) were set to zero in the noiseless stimuli. When these networks were evaluated on
psychophysical stimuli that did include masking noise, F0 discrimination behavior was quali-
tatively similar, but absolute thresholds were elevated relative to networks that were trained
on the -10 to +10 dB SNR dataset.

2.4.26 Network neurophysiology

We simulated electrophysiological recordings and functional imaging experiments on our
trained networks by examining the internal activations of networks in response to stimuli. We
treated units in the network layers as model "neurons" and looked at their tuning using their
average activations across time to different stimuli. We measured tuning properties using
equal-amplitude sine-phase harmonic complex tones (45 dB SPL per frequency component)
in threshold equalizing noise (10 dB SPL per ERB). We used a total of 11,520 stimuli: 5
unique harmonic compositions (pure tones or successive harmonics 1-9, 2-10, 4-12, or 6-14)
× 2304 unique F0s (logarithmically-spaced between 80 and 640 Hz). For each unit, we
constructed an F0 tuning curve for each harmonic composition by averaging activations to
stimuli within the same F0 classification bin (i.e., within 1/16 semitone bins). Tuning curves
were normalized separately for each unit by dividing by the unit’s maximum response across
the full stimulus set. Units that produced a response of zero to all of the test stimuli were
excluded from analysis (<1% of units).

As a measure of the strength of F0 tuning in a single model unit, we computed the mean
Pearson correlation coefficient between the pure tone (frequency) tuning curve and each of
the complex tone tuning curves. A perfectly F0-tuned unit should selectively respond to
pure and complex tones of a preferred F0 independent of harmonic composition (Fig. 2.9A),
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yielding a high mean correlation coefficient. We measured the F0 tuning correlation of each
unit in each layer (all ReLU activations following convolutional layers and fully connected
layers) of the 10 best-performing network architectures. The F0 tuning strength of a network
layer was computed by averaging this metric across all units in the layer.

To test if the observed F0 tuning depended on the harmonicity of the stimuli, we re-
peated this analysis with complex tones made inharmonic by randomly shifting component
frequencies with a fixed jitter pattern [58]. The jitter pattern allowed for each individual
component (after the F0 component) to be shifted by up to ±50% of the F0. Jitter values
for each component were drawn uniformly from -50% to +50% with rejection sampling to
ensure adjacent components were separated by at least 30 Hz to minimize salient differences
in beating. Each component’s frequency was the original harmonic’s frequency plus the jitter
value multiplied by the nominal F0. Like harmonic tones, inharmonic tones generated in
this way have frequency components that increase in spacing as the nominal F0 is increased,
but unlike harmonic tones they lack a fundamental frequency in the range of audible pitch
(i.e., above 30Hz [115]). Empirically, human perceptual signatures of F0-based pitch are
disrupted by inharmonicity [58], [87], [89], making it a way to distinguish human-like repre-
sentations of F0 from coarser representations of frequency spacing. The same jitter pattern
(i.e., the same mapping of nominal harmonic numbers to jitter value) was applied to all
stimuli regardless of F0 and harmonic composition. As in the F0-tuning analysis with har-
monic tones, we measured the average strength of nominal F0 tuning for each layer in the
10 networks. To ensure results were not unduly biased by a single random jitter pattern, the
analysis was repeated five times with different random seeds. F0 tuning summary metrics
reported in Fig. 2.9C are averaged across these five random seeds.

We measured population responses as a function of lowest harmonic number (Fig. 2.9D)
using a superset of the harmonic complex tones used to measure F0 tuning. The dataset was
expanded to include all complexes containing 9 successive harmonics, with lowest harmonic
numbers 1 to 15 (e.g., 1− 9, 2− 10, 3− 11, . . . 15− 26). We first identified the best F0 (i.e.,
the F0 producing the largest normalized mean response across all lowest harmonic numbers)
for each of the 700 units in each network’s final fully connected layer. We then constructed
lowest-harmonic-number tuning curves by taking responses to stimuli at the best F0 with
lowest harmonic numbers 1 to 15. These tuning curves were averaged across units to give
the population response.

We qualitatively compared the network’s population response to those of pitch-selective
neurons in marmoset auditory cortex [64] and pitch-selective voxels in human auditory cor-
tex [65]. Bendor and Wang used single-unit electrophysiology to measure the spiking rates
of 50 pitch-selective neurons (from 3 marmosets) in response to complexes containing 3 to 9

74



consecutive harmonics in either cosine or Schroeder phase. Recordings were repeated a min-
imum of 10 times per stimulus condition. Norman-Haignere and colleagues measured fMRI
responses to bandpass-filtered sine-phase harmonic complex tones and frequency-matched
noise. The 12 participants (4 male, 8 female, ages 21-28) were non-musicians with normal
hearing. Pitch-selective voxels were defined as those whose responses were larger for complex
tones than for frequency-matched noise. We re-plotted data extracted from figures in both
published studies.

2.4.27 Statistics - analysis of human data

Human data was scanned from original figures or provided by the authors of the original
papers. We did not have access to data from individual human participants, and so did not
plot error bars on the graphs of human results.

2.4.28 Statistics - analysis of human-model comparison metrics

Human-model comparison metrics were computed separately for each psychophysical experi-
ment (as described in the above sections on each experiment and its analysis) and for each of
the 400 networks trained in our architecture search. To test if networks with better perfor-
mance on the F0 estimation training task produce better matches to human psychophysical
behavior, we computed the Pearson correlation between validation set accuracies and human-
model comparison metrics for each experiment (Fig. 3.3, right-most column).

To test if "deep" networks (defined here as networks with more than one convolutional
layer) tended to produce better performance on the training task than the networks with
just one convolutional layer (Supplementary Fig. 3.10), we performed a Wilcoxon rank-sum
test comparing the validation set accuracies of the 54 single-convolutional-layer networks to
those of the other 346 networks. To test if the "deep" networks tended to produce better
matches to human behavior we performed a Wilcoxon rank-sum test comparing the human-
model similarity metrics of the 54 single-convolutional-layer networks to those of the other
346 networks. To obtain a single human-model similarity score per network for this test, we
pooled metrics across the five main psychophysical experiments. This was accomplished by
first rank ordering the human-model similarity metrics of all networks within experiments
and then averaging ranks across experiments.

These human-model similarity metrics were used to analyze two other experiments (in all
others we used more fine-grained analysis of best thresholds and transition points, described
below). To assess the statistical significance of changes in human-model similarity when
networks were optimized with a learned “cochlea” (Fig. 3.4) or in the absence of background
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noise, we compared metrics measured from 10 networks trained per condition. The networks
had 10 different architectures, corresponding to the 10 best-performing architectures identi-
fied in our search (Supplementary Table 1). We performed two-sample t-tests (each sample
containing results from the 10 independently trained networks) to compare human-model
comparison metrics between training conditions. Effect sizes were quantified as Cohen’s d
and reported for all such tests that indicated statistically significant differences. Because
human-model similarity metrics were bounded between -1 and 1, we passed the metrics
through an inverse normal cumulative distribution function before performing t-tests. All
t-tests and rank-sum tests were two-sided.

2.4.29 Statistics - analysis of best thresholds and transition points

One of the key signatures of human pitch perception is that listeners are very good at making
fine F0 discriminations (thresholds typically below 1%) if and only if stimuli contain low-
numbered harmonics. F0 discrimination thresholds increase by an order of magnitude for
stimuli containing only higher-numbered harmonics [76], [81]. To assess the effect of altered
cochlear input or training sound statistics (Figs. 5, 6, 7), we thus focused on two measures:
first, the absolute F0 discrimination acuity of our model when all low-numbered harmonics
were present (“best threshold”), and second, the harmonic number at which discrimination
ability transitioned from good to poor (“transition point”). In each case we used two-sample
t-tests, comparing either the F0 discrimination thresholds (log-transformed) for tones con-
taining the first harmonic, or the lowest harmonic number where thresholds first exceeded
1%. In each case we compared results for networks with different auditory nerve models or
training sets. To quantify effect sizes, Cohen’s d is reported for all two-sample t-tests that
indicated statistically significant differences.

2.4.30 Statistics - ANOVAs on discrimination thresholds

We performed analyses of variance (ANOVAs) on log-transformed F0 discrimination thresh-
olds to help satisfy the assumptions of equal variance and normality (normality was evaluated
by eye). Mixed model ANOVAs were performed with training conditions (peripheral model
and training set manipulations) as between-subject factors and psychophysical stimulus pa-
rameters (lowest harmonic number and stimulus presentation level) as within-subject factors.
The specific pairings of these different factors were: stimulus presentation level vs. auditory
nerve phase locking cutoff (Fig. 3.5E), lowest harmonic number vs. training set spectral
statistics (Fig. 3.7C), and lowest harmonic number vs. training set noise level (Fig. 2.8).
We also performed a repeated-measures ANOVA to test for a main effect of lowest har-
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monic number on population responses in the network’s last layer (Fig. 2.9C). F-statistics,
p-values, and η2partial are reported for main effects and interactions of interest. Greenhouse-
Geisser corrections were applied in all cases where Mauchly’s test indicated the assumption
of sphericity had been violated.
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2.5 Supplementary information

2.5.1 Data availability

The Wall Street Journal (LDC93S6A), CMU Kids Corpus (LDC97S63), and CSLU Kids
Speech (LDC2007S18) audio datasets used in this study are available from the Linguis-
tic Data Consortium (https://www.ldc.upenn.edu). The Spoken Wikipedia Corpora audio
dataset is available at https://nats.gitlab.io/swc. The RWC Music Database is available
at https://staff.aist.go.jp/m.goto/RWC-MDB. The pitch datasets we compiled from these
publicly available corpora, along with the psychophysical test stimulus sets, are available at:
https://github.com/msaddler/pitchnet.

2.5.2 Code availability

Source code for the Bruce et al. (2018) auditory nerve model is available from the authors.
We developed a Python wrapper around the model, which supports flexible manipulation of
cochlear filter bandwidths and the upper limit of phase locking. This wrapper is available
at https://github.com/msaddler/bez2018model. Code to implement and analyze our deep
neural network pitch models (including trained network weights) is available at https://
github.com/msaddler/pitchnet.
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We thank Alex Durango and Jenelle Feather for providing the AudioSet background noise
stimuli, Jenelle Feather and Andrew Francl for contributions to a shared codebase used
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drew Oxenham, Trevor Shackleton, and Bob Carlyon for sharing human psychophysics data
and stimuli, Sam Norman-Haignere and the McDermott lab for helpful feedback on the
manuscript, and Ian Bruce, Laurel Carney, Bertrand Delgutte, Oded Barzelay, Brian Moore,
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the data, and made the figures. M.R.S. and J.H.M. drafted the manuscript. All authors
edited the manuscript.

2.5.5 Supplementary figures
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arch_0191 arch_0302 arch_0288 arch_0335 arch_0346 arch_0286 arch_0083 arch_0154 arch_0190 arch_0338

Figure 2.10: Pitch behavior of the 10 best network architectures ranked by F0 estimation
performance on natural sounds.

Each column shows results from a single neural network architecture (depicted at the top). Detailed
descriptions of each architecture are provided in Supplementary Table 1. The five rows in this grid
correspond to the five main psychophysical experiments (see Fig. 3.2a-e): F0 discrimination as a
function of harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli (row
2), pitch estimation of frequency-shifted complexes (row 3), pitch estimation of complexes with
individually mistuned harmonics (row 4), and frequency discrimination with pure and transposed
tones (row 5).
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Networks grouped by F0 estimation performance on natural sounds
(middle 10%)

Human
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Human-model
comparisons(best 10%)(worst 10%)

Figure 2.11: Network architectures producing better F0 estimation for natural sounds exhibit
more human-like pitch behavior.

The five rows in this grid correspond to the five main psychophysical experiments (see Fig. 3.2a-
e): F0 discrimination as a function of harmonic number and phase (row 1), pitch estimation of
alternating-phase stimuli (row 2), pitch estimation of frequency-shifted complexes (row 3), pitch
estimation of complexes with individually mistuned harmonics (row 4), and frequency discrimination
with pure and transposed tones (row 5). First three columns show results measured from the 40
worst, middle, and best-performing network architectures (out of the 400 architectures trained in
our architecture search, ranked by F0 estimation performance on natural sounds), respectively.
Error bars plot bootstrapped 95% confidence intervals around the mean across the 40 networks.
Human results (reproduced from Fig. 3.1) are shown in column 4. Column 5 contains scatter plots
of human-model behavioral similarity (quantified as a correlation between the results of each model
and that of humans) vs. validation set accuracy for all trained networks (reproduced from Fig.
3.3). Pearson correlations between validation set accuracy and human-model similarity for each
experiment are noted in the legends.
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Figure 2.12: Deep networks better account for human psychophysical behavior than networks
with just one convolutional layer.
Of the 400 randomly-generated networks we considered, 54 contained only one convolutional layer. These 54 single-convolutional-
layer networks produced lower validation set accuracies (z = 7.31, p < 0.001, Wilcoxon rank-sum test), shown on the x-axis of
the graphs in the right column. The single-convolutional-layer networks also produce less human-like psychophysical results.
The five rows in this grid correspond to the five main psychophysical experiments (see Fig. 3.2a-e): F0 discrimination as
a function of harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli (row 2), pitch estimation of
frequency-shifted complexes (row 3), pitch estimation of complexes with individually mistuned harmonics (row 4), and frequency
discrimination with pure and transposed tones (row 5). In column 1, network psychophysical results are shown averaged across
the top 10% (34 of 346) of networks (ranked by validation set performance) containing more than one convolutional layer. In
column 2, results are shown averaged across the top 10% (5 of 54) of networks containing just one convolutional layer. Human
results are shown in column 3. Column 4 contains scatter plots of human-model behavioral similarity (quantified as a correlation
between the results of each model and that of humans) vs. validation set accuracy for all trained networks. Gray and magenta
data points correspond to multi-convolutional-layer and single-convolutional-layer networks, respectively. Median data points
are included for each group to illustrate how single-layer networks generally both performed worse on the F0 estimation task
and produced poorer matches to human behavior. Error bars plot bootstrapped 95% confidence intervals around the mean
across architectures. When pooled across all five experiments, human-model similarity was lower for single-convolutional-layer
networks than the remaining 346 multi-convolutional-layer networks (z = 9.24, p < 0.001, two-sided Wilcoxon rank-sum test).
Moreover, the top 40% of networks ranked according to overall human-model similarity consisted entirely of multi-convolutional-
layer networks.
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a. b.

Figure 2.13: Effect of number of auditory nerve fibers on F0 estimation error and discrimi-
nation thresholds measured from networks without spike-timing information.

(a) Median F0 estimation error on the natural sounds validation set for 10 networks trained and
tested with five different peripheral model configurations varying in the number of input auditory
nerve fibers (ANFs) and in whether the frequency and time dimensions were "transposed" (indicated
by superscript T). The network architectures were constrained to take a 100-by-1000 array as
input. The default input representation was 100 frequency channels (auditory nerve fibers) by 1000
timesteps. A transposed input representation consists of 1000 frequency channels by 100 timesteps.
To manipulate the number of nerve fibers while keeping the size of the input representation fixed,
transposed peripheral representations with fewer than 1000 nerve fibers were upsampled to 1000 (via
linear interpolation) along the frequency (auditory nerve fiber) dimension. Time was sampled at 2
kHz to yield 100 timesteps. For all networks included in the plot, the IHC filter cutoff frequency was
set to 50 Hz to eliminate all phase-locked temporal information (see Fig. 3.5). (b) F0 discrimination
thresholds as a function of lowest harmonic number of synthetic tones, measured from the same
networks as (a). The best thresholds are re-plotted to the left of the main axes. Error bars plot
bootstrapped 95% confidence intervals around the mean across the 10 best network architectures.
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Figure 2.14: Effects of phase locking cutoff on network pitch behavior.

Columns correspond to networks trained and tested with seven different configurations of the pe-
ripheral auditory model. Configurations differed in the upper frequency limit of auditory nerve
phase locking (inner hair cell lowpass filter cutoff) and the number of auditory nerve fibers (ANFs)
(see Fig. 3.5). Rows correspond to the five main psychophysical experiments (see Fig. 3.2a-e): F0
discrimination as a function of harmonic number and phase (row 1), pitch estimation of alternating-
phase stimuli (row 2), pitch estimation of frequency-shifted complexes (row 3), pitch estimation of
complexes with individually mistuned harmonics (row 4), and frequency discrimination with pure
and transposed tones (row 5). Error bars plot bootstrapped 95% confidence intervals around the
mean across the 10 best network architectures.
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Unmodified
excitation pattern

a. Example auditory nerve representations

b. Effect of excitation pattern on network pitch behavior

Flattened
excitation pattern

Figure 2.15: Networks do not rely on place cues to F0 in the excitation pattern to produce
human-like pitch behavior.
(a) Simulated peripheral representations of the same stimulus (harmonic tone with 200 Hz F0) with unmodified (left column) or
flattened (right column) time-averaged excitation patterns. The peaks and valleys in the unmodified excitation pattern, which
provide place cues to F0, were eliminated by separately scaling each frequency channel of the nerve representation to have the
same time-averaged response. (b) Psychophysical results from the best-performing network architecture tested on auditory nerve
representations with either unmodified or flattened excitation patterns. In both cases, the model was trained on auditory nerve
representations with unmodified excitation patterns. Rows correspond to the five main psychophysical experiments (see Fig.
3.2a-e): F0 discrimination as a function of harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli
(row 2), frequency-shifted complexes (row 3), and complexes with individually mistuned harmonics (row 4), and frequency
discrimination with pure and transposed tones (row 5). Error bars plot bootstrapped 95% confidence intervals around the mean
across the 10 best network architectures.
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Figure 2.16: Effects of altered cochlear frequency selectivity on network pitch behavior.
The four columns correspond to networks trained and tested with four different settings of cochlear frequency selectivity:
linearly spaced cochlear filters with constant bandwidths (column 1), cochlear filters with bandwidths two times narrower than
those estimated for normal hearing-humans but normally spaced (i.e., evenly spaced on an ERB scale, to best approximate
the spacing believed to characterize the ear) (column 2), normally spaced cochlear filters with bandwidths matched to those of
normal-hearing humans (column 3), and cochlear filters with two times broader bandwidths but normally spaced (column 4) (see
Fig. 3.6). Rows correspond to the five main psychophysical experiments (see Fig. 3.2a-e): F0 discrimination as a function of
harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli (row 2), pitch estimation of frequency-shifted
complexes (row 3), pitch estimation of complexes with individually mistuned harmonics (row 4), and frequency discrimination
with pure and transposed tones (row 5). Error bars plot bootstrapped 95% confidence intervals around the mean across the
10 best network architectures. Psychophysical results were qualitatively robust to changes in peripheral frequency tuning. The
main exceptions were the effects of harmonic phase, which were reduced for the linearly spaced models (correlations between
human and model results for the phase randomization and alternating phase experiments were lower in the linearly spaced
condition than in the human tuning condition; phase randomization: t(18) = 3.13, p < 0.01, d = 1.40; alternating phase:
t(18) = 6.50, p < 0.001, d = 2.91; two-sided two-sample t-tests). These results are to be expected because the sharp tuning of
the linearly spaced filters (Fig. 3.6B) results in less interaction between adjacent harmonics, which is believed to drive phase
effects.
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Figure 2.17: Effects of training set sound statistics on network pitch behavior.

Columns correspond to different training datasets (described in column titles). Rows correspond
to the five main psychophysical experiments (see Fig. 3.2a-e): F0 discrimination as a function of
harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli (row 2), pitch
estimation of frequency-shifted complexes (row 3), pitch estimation of complexes with individually
mistuned harmonics (row 4), and frequency discrimination with pure and transposed tones (row
5). Results are shown for the best-performing network architecture, averaged across 10 instances
of the architecture trained from different random initializations. Error bars plot bootstrapped 95%
confidence intervals around the mean across the 10 best network architectures.
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a. b.

Figure 2.18: F0 discrimination thresholds as a function of lowest harmonic number, measured
from networks trained separately on speech-only and music-only datasets.

Results from networks trained on simulated auditory nerve representations produced by a fixed
peripheral auditory model (reproduced from Fig. 3.7c). (b) Results from networks trained directly
on sound waveforms (first-layer “cochlear” filters were learned alongside the rest of the network
weights; see Fig. 3.4). Error bars plot bootstrapped 95% confidence intervals around the mean
across the 10 best network architectures.
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Figure 2.19: Effects of auditory nerve fiber type (high vs. low spontaneous rate) on network
pitch behavior.
(a) Simulated peripheral representations of the same stimulus (harmonic tone with 200 Hz F0) with high (70 spikes/s; left
column) and low (0.1 spikes/s; right column) spontaneous rate auditory nerve fibers. (b) Psychophysical results from the best-
performing network architecture trained and tested with each of the two different nerve fiber types. Rows correspond to the five
main psychophysical experiments (see Fig. 3.2a-e): F0 discrimination as a function of harmonic number and phase (row 1), pitch
estimation of alternating-phase stimuli (row 2), frequency-shifted complexes (row 3), and complexes with individually mistuned
harmonics (row 4), and frequency discrimination with pure and transposed tones (row 5). Error bars plot bootstrapped 95%
confidence intervals around the mean across the 10 best network architectures.
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a. b.

Figure 2.20: Effects of F0 classification bin width on F0 estimation error and discrimination
thresholds.

(a) Median F0 estimation error on the natural sounds validation set for 10 networks trained and
tested with five different F0 classification bin widths. (b) F0 discrimination thresholds as a function
of lowest harmonic number of synthetic tones, measured from the same networks as a. The best
thresholds are re-plotted to the left of the main axes. Error bars plot bootstrapped 95% confidence
intervals around the mean across the 10 best network architectures.
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Architecture arch_0191 arch_0302 arch_0288 arch_0335 arch_0346 arch_0286 arch_0083 arch_0154 arch_0190 arch_0338

Validation set 
rank (of 400)

1 2 3 4 5 6 7 8 9 10

Validation set 
accuracy (%)

24.9 24.6 24.1 23.6 23.6 23.5 23.4 23.2 22.7 22.7

Operation input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1] input [100, 1000, 1]

1 conv_1 [2, 83, 32] conv_1 [1, 250, 32] conv_1 [3, 77, 64] conv_1 [1, 71, 32] conv_1 [3, 53, 32] conv_1 [1, 180, 64] conv_1 [2, 82, 32] conv_1 [1, 70, 64] conv_1 [2, 97, 32] conv_1 [2, 110, 64]

2 relu_1 [99, 918, 32] relu_1 [100, 751, 32] relu_1 [98, 924, 64] relu_1 [100, 930, 32] relu_1 [98, 948, 32] relu_1 [100, 821, 64] relu_1 [99, 919, 32] relu_1 [100, 931, 64] relu_1 [99, 904, 32] relu_1 [99, 891, 64]

3 pool_1 [1, 2] pool_1 [1, 5] pool_1 [1, 2] pool_1 [1, 1] pool_1 [1, 2] pool_1 [2, 6] pool_1 [1, 2] pool_1 [1, 5] pool_1 [1, 6] pool_1 [3, 2]

4 norm_1 [99, 459, 32]
norm_1 [100, 151, 
32]

norm_1 [98, 462, 64]
norm_1 [100, 930, 
32]

norm_1 [98, 474, 32] norm_1 [50, 137, 64] norm_1 [99, 460, 32]
norm_1 [100, 187, 
64]

norm_1 [99, 151, 32] norm_1 [33, 446, 64]

5 conv_2 [1, 164, 64] conv_2 [19, 11, 64] conv_2 [1, 193, 128] conv_2 [1, 114, 32] conv_2 [1, 60, 64] conv_2 [2, 37, 128] conv_2 [1, 162, 64] conv_2 [7, 21, 128] conv_2 [5, 11, 64] conv_2 [1, 126, 128]

6 relu_2 [99, 296, 64] relu_2 [82, 141, 64] relu_2 [98, 270, 128] relu_2 [100, 817, 32] relu_2 [98, 415, 64] relu_2 [49, 101, 128] relu_2 [99, 299, 64] relu_2 [94, 167, 128] relu_2 [95, 141, 64] relu_2 [33, 321, 128]

7 pool_2 [3, 7] pool_2 [1, 7] pool_2 [4, 3] pool_2 [1, 3] pool_2 [2, 4] pool_2 [1, 1] pool_2 [2, 2] pool_2 [4, 3] pool_2 [1, 1] pool_2 [3, 3]

8 norm_2 [33, 43, 64] norm_2 [82, 21, 64] norm_2 [25, 90, 128]
norm_2 [100, 273, 
32]

norm_2 [49, 104, 64]
norm_2 [49, 101, 
128]

norm_2 [50, 150, 64] norm_2 [24, 56, 128] norm_2 [95, 141, 64]
norm_2 [11, 107, 
128]

9 conv_3 [5, 9, 128] conv_3 [12, 9, 128] conv_3 [8, 10, 128] conv_3 [1, 86, 64] conv_3 [3, 46, 128] conv_3 [15, 10, 128] conv_3 [1, 72, 128] conv_3 [4, 26, 256] conv_3 [1, 56, 128] conv_3 [4, 30, 256]

10 relu_3 [29, 35, 128] relu_3 [71, 13, 128] relu_3 [18, 81, 128] relu_3 [100, 188, 64] relu_3 [47, 59, 128] relu_3 [35, 92, 128] relu_3 [50, 79, 128] relu_3 [21, 31, 256] relu_3 [95, 86, 128] relu_3 [8, 78, 256]

11 pool_3 [1, 7] pool_3 [3, 1] pool_3 [2, 6] pool_3 [4, 1] pool_3 [1, 6] pool_3 [1, 1] pool_3 [4, 2] pool_3 [1, 6] pool_3 [4, 7] pool_3 [2, 5]

12 norm_3 [29, 5, 128] norm_3 [24, 13, 128] norm_3 [9, 14, 128] norm_3 [25, 188, 64] norm_3 [47, 10, 128] norm_3 [35, 92, 128] norm_3 [13, 40, 128] norm_3 [21, 6, 256] norm_3 [24, 13, 128] norm_3 [4, 16, 256]

13 conv_4 [4, 3, 256] conv_4 [7, 7, 256] conv_4 [2, 2, 256] conv_4 [13, 13, 128] conv_4 [8, 1, 256] fc_1 [512] conv_4 [6, 3, 128] conv_4 [2, 1, 512] conv_4 [8, 5, 256] conv_4 [1, 5, 256]

14 relu_4 [26, 3, 256] relu_4 [18, 7, 256] relu_4 [8, 13, 256] relu_4 [13, 176, 128] relu_4 [40, 10, 256] relu_fc_1 [512] relu_4 [8, 38, 128] relu_4 [20, 6, 512] relu_4 [17, 9, 256] relu_4 [4, 12, 256]

15 pool_4 [2, 1] pool_4 [1, 1] pool_4 [2, 2] pool_4 [1, 8] pool_4 [2, 2] norm_fc_1 [512] pool_4 [2, 5] pool_4 [2, 1] pool_4 [1, 2] pool_4 [1, 3]

16 norm_4 [13, 3, 256] norm_4 [18, 7, 256] norm_4 [4, 7, 256] norm_4 [13, 22, 128] norm_4 [20, 5, 256] dropout [512] norm_4 [4, 8, 128] norm_4 [10, 6, 512] norm_4 [17, 5, 256] norm_4 [4, 4, 256]

17 conv_5 [5, 2, 512] conv_5 [5, 3, 512] conv_5 [2, 1, 512] conv_5 [2, 10, 256] conv_5 [7, 2, 256] fc_out [700] fc_1 [128] conv_5 [5, 3, 256] conv_5 [1, 3, 256] conv_5 [2, 2, 512]

18 relu_5 [9, 2, 512] relu_5 [14, 5, 512] relu_5 [3, 7, 512] relu_5 [12, 13, 256] relu_5 [14, 4, 256] relu_fc_1 [128] relu_5 [6, 4, 256] relu_5 [17, 3, 256] relu_5 [3, 3, 512]

19 pool_5 [1, 1] pool_5 [3, 1] pool_5 [1, 1] pool_5 [1, 3] pool_5 [1, 1] norm_fc_1 [128] pool_5 [1, 1] pool_5 [2, 1] pool_5 [1, 1]

20 norm_5 [9, 2, 512] norm_5 [5, 5, 512] norm_5 [3, 7, 512] norm_5 [12, 5, 256] norm_5 [14, 4, 256] dropout [128] norm_5 [6, 4, 256] norm_5 [9, 3, 256] norm_5 [3, 3, 512]

21 fc_1 [256] fc_1 [1024] conv_6 [2, 4, 1024] conv_6 [3, 2, 512] conv_6 [2, 2, 512] fc_out [700] conv_6 [2, 2, 256] dropout [6912] conv_6 [1, 1, 1024]

22 relu_fc_1 [256] relu_fc_1 [1024] relu_6 [2, 4, 1024] relu_6 [10, 4, 512] relu_6 [13, 3, 512] relu_6 [5, 3, 256] fc_out [700] relu_6 [3, 3, 1024]

23 norm_fc_1 [256] norm_fc_1 [1024] pool_6 [1, 1] pool_6 [2, 1] pool_6 [2, 1] pool_6 [1, 1] pool_6 [1, 1]

24 dropout [256] dropout [1024] norm_6 [2, 4, 1024] norm_6 [5, 4, 512] norm_6 [7, 3, 512] norm_6 [5, 3, 256] norm_6 [3, 3, 1024]

25 fc_out [700] fc_out [700] fc_1 [256] dropout [10240] conv_7 [1, 1, 512] conv_7 [3, 1, 256] conv_7 [1, 1, 1024]

26 relu_fc_1 [256] fc_out [700] relu_7 [7, 3, 512] relu_7 [3, 3, 256] relu_7 [3, 3, 1024]

27 norm_fc_1 [256] pool_7 [1, 1] pool_7 [1, 1] pool_7 [1, 1]

28 dropout [256] norm_7 [7, 3, 512] norm_7 [3, 3, 256] norm_7 [3, 3, 1024]

29 fc_out [700] fc_1 [512] dropout [2304] fc_1 [256]

30 relu_fc_1 [512] fc_out [700] relu_fc_1 [256]

31 norm_fc_1 [512] norm_fc_1 [256]

32 dropout [512] dropout [256]

33 fc_out [700] fc_out [700]

34

Table 2.1: Details of 10 best network architectures.
Columns correspond to 10 distinct convolutional neural network architectures (the 10 best-performing networks identified in
our random architecture search). Rows include descriptors of constituent network operations. Grey horizontal bands group
operations by convolutional layer. With two exceptions, all results figures present results averaged across all 10 architectures.
The two exceptions are Fig. 2.9a, which features only the best-performing architecture (arch_0191), and Supplementary Fig.
3.8, which displays results separately for each of these 10 architectures. Legend:

••••••• conv[h,w, k] : convolutional layer with h = kernel height (frequency dimension), w = kernel width (time dimension),
and k = number of kernels

• relu[Nf , Nt, Nk] : rectified linear unit activation function operating on inputs with the specified shape (Nf = frequency
dimension, Nt = time dimension, and Nk= kernel dimension)

• pool[sf , st]: weighted averaged pooling operation with stride sf in the frequency dimension and stride st in the time
dimension

• norm[Nf , Nt, Nk] : batch normalization operating on inputs with the specified shape (Nf = frequency dimension, Nt

= time dimension, and Nk = kernel dimension)

• fc[N ] : fully-connected layer with N units

• dropout : dropout regularization with 50% dropout rate
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Chapter 3

The role of temporal coding in hearing:
evidence from task-optimization

Mark R. Saddler, Josh H. McDermott

Abstract

Neurons encode information in the timing of their spikes in addition to their firing rates. The
fidelity of spike timing is particularly high in the auditory nerve, whose action potentials are
phase-locked to the fine-grained temporal structure of sound with sub-millisecond precision.
However, the perceptual role of this temporal coding in hearing remains controversial. We
investigated the issue with machine learning models optimized for real-world hearing tasks,
asking whether phase-locked spike timing in a model’s cochlear input was necessary to obtain
human-like behavior. Models with high-frequency phase locking replicated human behavior
across all tested regimes. Degraded phase-locking produced inhuman performance on some
tasks, impairing sound localization, pitch perception, and voice recognition while leaving
word recognition largely intact. The results link neural coding to real-world perception and
clarify conditions in which prostheses that fail to restore high-fidelity temporal coding (e.g.,
contemporary cochlear implants) could in principle restore near-normal hearing.
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3.1 Introduction

Sensory systems encode information about an organism’s environment in the spiking activity
of neurons. From electrophysiology, we know a great deal about how stimulus properties are
represented at different stages of neural processing. Comparatively less is known about how
this information gives rise to complex human behavior. In perceptual science, ideal observer
models have long been used to analyze which features of a neural code contribute to behavior
[9], [116], [117]. An ideal observer derives the statistically optimal solution to a perceptual
task given the information available at some stage of neural processing [11]. Since evolu-
tionary pressures presumably drive biological perceptual systems in the direction of optimal
performance, models that instantiate optimal task solutions under different biological con-
straints might elucidate the underpinnings of human behavior. This approach has produced
elegant computational accounts for many aspects of vision [53]–[55], [118], [119] and hear-
ing [9], [10], [68], [120]–[122]; however, it is limited to tasks and stimuli for which provably
optimal solutions can be derived (i.e., for which probability distributions of the generative
parameters can be specified). This limitation precludes much of real-world behavior as in
most cases it is not clear what the generative parameters of natural stimuli even are, much
less how to analytically describe their distributions or relate them to neural coding. Because
natural stimuli and tasks are precisely those that biological systems are likely to have been
optimized for, ideal observers have had limited applicability in domains where they might
otherwise be most useful.

Here, we propose machine learning as an alternative approach to link neural coding
to behavior. Contemporary machine learning models are highly expressive mathematical
functions that can be optimized to perform natural tasks with natural stimuli1. These new
tools – used in place of provably ideal observers – may offer a way to resurrect this classic
approach for real-world perception problems. Previous work has documented how human-
like behavior emerges in deep artificial neural networks optimized for natural tasks [12]–[15],
[17], [18], [123]. In this work, we show how comparing the behavior of networks optimized
to perform tasks using different neural representations can reveal which aspects of neural
coding underlie human behavior.

Neurons transmit information in the precise timing of their spikes [124] in addition to
1Natural tasks with natural stimuli refer to tasks that operationalize perceptual judgments humans make

in their daily lives. Examples in hearing include recognizing and localizing everyday sounds in noisy or
reverberant environments. We use this terminology to distinguish from less ecological tasks with artificial
stimuli that humans only encounter in perceptual experiments, such as discriminating simple synthetic tones
and noise bursts. Note, it is possible to have artificial tasks with natural stimuli (e.g., counting phonemes
in natural speech) and natural tasks with artificial stimuli (e.g., recognizing words in artificially distorted
speech).
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their time-averaged firing rates. Temporal coding has been identified across multiple sensory
modalities [125]–[128], but spike timing is arguably most precise in the auditory nerve, where
action potentials align to the temporal structure of sound. While the temporal envelopes
of sound waveforms may be represented with changes in time-averaged firing rates, infor-
mation in the temporal fine structure (i.e., the individual pressure oscillations) can only be
encoded with precise spike timing. As mammalian auditory nerve fibers phase-lock to sound
frequencies as high as 3 to 5 kHz [30]–[32], it is clear the auditory system has access to
this information from the outset. However, the perceptual role of this information remains
debated [33]. The precision of temporal coding decays with each synapse along the ascend-
ing auditory pathway, such that physiological mechanisms for extracting information from
high-frequency phase locking are likely to be situated early. Despite longstanding interest,
no such mechanisms have been discovered [27], [33]. Without a mechanism for reformatting
information encoded in peripheral spike timing, it is unclear whether later stages of the
auditory system can use this information to mediate behavior.

Information encoded in high-frequency phase locking is widely suspected to be important
for sound localization, which relies on microsecond-level timing differences between the two
ears. Behavioral evidence is argued to suggest that human pitch and speech perception
also rely on cues in the temporal fine structure of sound [35], but, because the auditory
nerve cannot be directly observed and manipulated in humans, the perceptual role of high-
frequency phase locking remains controversial [28]. Nonetheless, impaired temporal coding
is often proposed to underlie speech perception difficulties in people with hearing loss and
cochlear implants, particularly in noise [34], [36], [129].

Previous computational evidence in support of a perceptual role comes from ideal ob-
servers for simple tasks with artificial stimuli (e.g., discrimination of single frequencies),
where incorporating spike timing information sometimes leads to better qualitative fits to
human behavior [10]. However, these models generally overestimate human performance [9],
plausibly because human perceptual systems were never optimized for psychophysical tasks
with artificial stimuli. We investigated the issue in models optimized for ecological tasks
by training deep artificial neural networks to perform real-world hearing tasks using simu-
lated auditory nerve representations as input. To ask whether the information encoded in
phase-locked auditory nerve spike timing is necessary to account for human behavior, we sep-
arately optimized networks with altered phase locking and compared the behavior of trained
networks to that of human listeners (Fig. 3.1a). The results provide new evidence for the
importance of high-fidelity temporal coding in perception, but indicate that it is implicated
in some aspects of perception (sound localization, pitch perception, and voice recognition)
more than others (speech recognition), even in noise.
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3.2 Results

3.2.1 Auditory nerve model stage

We hard-coded the model input representation to approximate the information the ear sends
to the brain. We used a phenomenological model [5] of the auditory periphery to simulate
instantaneous firing rate responses of a population of auditory nerve fibers whose frequency
tuning and sensitivity was intended to match that of the human ear. Each stimulus was
represented as a three-dimensional array of firing rates with shape [N frequency channels,
T timesteps, S fiber types]. Due to computational constraints, we limited N to 50 or 100
frequency channels. The number of timesteps T depended on the length of the stimulus
(always sampled at 10 or 20 kHz). We used S = 3 to simulate the 3 canonical auditory nerve
fiber types which have different spiking thresholds and spontaneous activity [130]. High
spontaneous rate fibers have very low thresholds but narrow dynamic ranges such that their
firing rates quickly saturate at conversational sound levels. Medium and low spontaneous rate
fibers have higher thresholds and broader dynamic ranges but are less numerous in the ear.
This frequency-by-time-by-fiber-type array of instantaneous firing rates was then converted
to an array of sampled spike counts, representing the population response of 32000 individual
auditory nerve fibers per ear (60% high spontaneous rate, 25% medium spontaneous rate,
and 15% low spontaneous rate), which served as the input representation to the networks.
To our knowledge, our models are the first to perform naturalistic tasks using a near-realistic
representation of the information from a sensory receptor organ.

3.2.2 Temporal coding manipulation

The fidelity of temporal coding in the mammalian ear is limited by ion channels in the hair
cell membrane, which act as a low-pass filter [32]. While not feasible to manipulate in vivo
(particularly in an animal with complex auditory behavior), the upper limit of phase locking
can be altered in silico by changing the cutoff frequency of the low-pass filter governing
the inner hair cell potential in the peripheral model. We optimized machine models with
different cutoffs to ask whether phase locking was necessary to obtain humanlike behavior.

In one training condition, this low-pass cutoff was set to a default value of 3000 Hz, which
causes a roll-off in auditory nerve phase locking on par with electrophysiological recordings
made in non-human animals. This upper limit is presumed to be shared by humans but is not
directly measurable [51], [52], [131]. To investigate the behavioral relevance of temporal cod-
ing, we lowered this cutoff to 1000 Hz (eliminating phase locking to high-frequency temporal
fine structure), 320 Hz (eliminating phase locking above the fundamental frequency of most
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Figure 3.1: Overview.
a. Schematic of the approach. Human hearing behavior is shaped by the ears and the acoustic environment. Models optimized
to perform naturalistic tasks with human-like auditory nerve input exhibit human-like behavior. Models optimized with altered
auditory nerve input may reveal which features of neural coding underlie human behavior. b. Simulated auditory nerve
representations of the same speech waveform with four different configurations of the auditory nerve model. Configurations
differed in the inner hair cell low-pass filter cutoff which determines the upper frequency limit of phase locking. The 3000 Hz
cutoff is commonly used to model the human auditory system. c. Instantaneous firing rates from example auditory nerve fibers
illustrate the degradation of precise spike timing as the phase locking limit is lowered. d. Time-averaged firing rates (across the
50ms window depicted in c) illustrate that lowering the phase locking limit does not disrupt place cues in the overall pattern
of excitation across the cochlear frequency axis. e. The roll-off in phase locking strength as a function of frequency has been
measured in the auditory nerve fibers of many nonhuman mammals. Classic data in guinea pigs is re-plotted from Palmer and
Russel (1986). f. The roll-off in phase locking strength as a function of frequency is plotted for model auditory nerve fibers
with four different phase locking limits. The vector strength of phase locking was calculated for a simulated high, medium, and
low-spontaneous rate auditory nerve fiber at each frequency and inner hair cell low-pass filter cutoff.
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human speech pitch), or 50 Hz (eliminating all phase locking to temporal fine structure).
Lowering this cutoff degrades the fidelity of temporal coding, progressively blurring the audi-
tory nerve representation along the time-axis (Fig. 3.1b and c). However, the manipulation
had very little effect on the pattern of firing across the cochlear frequency axis (Fig. 3.1d):
nerve fibers with very low phase locking limits still encode high frequency sounds in their
firing rates, just not with precise spike timing. We separately optimized neural networks
operating on auditory nerve representations with these four different cutoff frequencies.

3.2.3 Simplified cochlear model stage

State-of-the-art cochlear models that best capture the nonlinear response properties of the
auditory nerve are computationally expensive, which can limit their integration into larger-
scale models of the auditory system. To investigate whether the fine-grained details of these
models are critical to account for naturalistic behavior, we also optimized networks with a
simplified cochlear front-end. The simplified front-end consisted of a linear cochlear filter
bank followed by half-wave rectification and low-pass filtering (to impose an upper limit
on phase locking), the output of which was passed through sigmoid functions approximat-
ing the rate-level functions of high-, medium-, and low-spontaneous-rate fibers [5]. These
stages yielded a three-dimensional array of instantaneous auditory nerve firing rates with the
same dimensions as the detailed auditory nerve model. The spike sampling procedure was
identical for the simplified and detailed cochlear models. We repeated the temporal coding
manipulation in the simplified cochlear model (by setting the low-pass filter cutoff to 3000,
1000, 320, and 50 Hz). In addition to testing the importance of a detailed cochlear model,
the simplified model also served to rule out the possibility that effects observed with the
detailed cochlear model were driven by unintended nonlinear consequences of adjusting filter
parameters rather than degraded temporal coding per se.

3.2.4 Artificial neural network model stages and training

The neural network portion of each model consisted of a feedforward series of stages instanti-
ating linear convolution, nonlinear rectification, normalization, and pooling. The parameters
of these model stages were optimized to perform auditory tasks via supervised machine learn-
ing. Each task was operationalized as a classification problem with a single ground-truth
label per stimulus. Training stimuli were compiled from large-scale corpora of natural sounds
and were meant to approximate the “auditory diet” that likely shaped biological hearing sys-
tems over the course of evolution and development.

The performance of a neural network depends on both the weights directly optimized
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for training task performance and the hyperparameters that define the network architecture
(e.g., the number of layers and the size and shape of convolutional filter kernels). To ensure
these hyperparameters were also optimized for the tasks, we used the top 10 best-performing
network architectures previously identified in large-scale random architecture searches con-
ducted for each task (Supplementary Tables 3.1, 3.2, and 3.3) [17], [18], [37]. Results for each
task and cochlear model configuration are presented as the average of 10 network architec-
tures, allowing us to provide uncertainty estimates and marginalize across the idiosyncrasies
of any single network architecture.

3.2.5 Model tasks and roadmap

Models were optimized to perform four different auditory tasks: sound localization, pitch
perception, voice recognition, and word recognition. For each task, we separately trained
models with four different auditory nerve phase locking limits and then compared their be-
havior to that of humans. In the following sections, we consider each task in turn. In each
case, we first compare humans and models tested on naturalistic stimuli in noise, asking
whether phase-locked spike timing is needed to obtain human-level performance. We then
simulate a battery of psychoacoustic experiments to investigate whether specific character-
istics of human behavior depend on phase locking. We then quantify overall human-model
similarity for each phase locking condition by measuring correlations between analogous
behavioral data points across all experiments and phase locking limits.

We previously found that many characteristics of human behavior emerge in artificial
neural networks optimized under naturalistic conditions [17], [18]. The models featured here
built on these results, but were improved in several respects to provide a strong test of the
importance of temporal coding. Specifically, they operated on more realistic input repre-
sentations (incorporating spikes and multiple types of auditory nerve fibers), were trained
on more realistic datasets, and were evaluated with an expanded set of psychoacoustic ex-
periments. The phase locking manipulation that is the central focus of this work was first
introduced in our previous pitch modeling work [17]. For the voice and word recognition
tasks, only the base network architecture and training dataset are borrowed from previous
work [18].

If only models with high phase locking limits can account for human behavior, this would
provide evidence that precise auditory nerve spike timing contributes to perception and thus
physiological mechanisms for extracting it must exist. Such a result was a priori plausible
for sound localization, where microsecond-level timing differences between the two ears can
plausibly only be transduced via spike timing. However, it was unclear how any deficits from
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impaired temporal coding should translate to sound localization behavior. It was also unclear
what to expect for pitch and speech perception. We previously found that pitch perception
characteristics were dependent on phase locking in a simpler model with less realistic nerve
fiber responses, and here sought to test the issue more definitively. It was likewise unclear
whether voice and speech recognition could be accounted for without temporal coding.

3.2.6 Model optimization – sound localization

To assess sound localization behavior, models were tasked with reporting the location of
target sound sources in naturalistic auditory scenes rendered as binaural audio with a vir-
tual acoustic room and head simulator (Fig. 3.2a). There were 1.8 million training scenes
(rendered in 1800 unique rooms of varying size, wall materials, and reverberation), each
consisting of a target source rendered at a single location in the presence of diffusely local-
ized texture-like background noise. The model’s task was to classify scenes according to the
azimuth and elevation of the target source relative to the simulated listener’s head (504-way
classification into 5° azimuth by 10° elevation bins). The model operated on the auditory
nerve responses from the simulated listener’s left and right ears, and thus had access to
the same monaural and binaural cues as a human listener in the same scene (Fig. 3.2b).
Models optimized for this task with access to high-fidelity temporal coding in the peripheral
representation have previously been shown to replicate characteristics of human sound local-
ization [18], including the frequency-dependent use of interaural time and level differences
for azimuth judgments [132] and the use of ear-specific spectral cues for elevation judgments
[133], [134].

3.2.7 Degraded temporal coding impairs sound localization

We compared human and model sound localization accuracy for a set of 460 natural sounds
presented in different levels of background noise (Fig. 3.2c). Humans were asked to report
which of 95 loudspeakers (in a 19-by-5 array spanning -90° to 90° azimuth and 0° to 40°
elevation in steps of 10°) produced the target sound. On each trial threshold equalizing noise
[136] played diffusely from 9 other randomly selected speaker locations. Models performed
the same task in a virtual rendering of the loudspeaker array room. Overall task performance
was quantified with mean absolute localization error as a function of SNR. Although human
listeners outperformed all models at the very lowest SNR conditions, models with access
to high-frequency phase locking in their auditory nerve input produced the best match to
human behavior (Fig. 3.2d). Models with 3000 and 1000 Hz phase locking limits exhibited
near-human-level robustness to noise, while models with degraded temporal coding made
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a. Localization model schematic. Deep artificial neural networks optimized for sound localization operated on binaural auditory
nerve representations of virtually rendered auditory scenes. b. Sound localization cues available to human listeners. Left:
interaural time and level differences (ITDs and ILDs) are schematized with pure tones recorded at the left and right ear.
Right: spectral differences in the anatomical transfer function provide a monaural cue to elevation. c. Schematic of the sound
localization in noise experiment. d. Mean absolute localization error for humans and models localizing natural sounds in noise
are plotted as a function of SNR. The three axes separately plot spherical, azimuth, and elevation errors. e. Schematic of the
ITD / ILD cue weighting experiment. Computed perceptual weights indicate the extent to which imposing additional ITDs or
ILDs shifts the perceived azimuth of a virtual sound presented over headphones. f. ITD and ILD perceptual weights measured
with low-pass and high-pass noise from human and model listeners. g. Schematic of minimum audible angle experiment. h.
Minimum audible angles were measured as a function of azimuth from human and model listeners. Model error bars always
indicate ±2 standard errors of the mean across 10 network architectures per phase locking condition. In d and f, human error
bars indicate ±2 standard errors of the mean across participants. In h, human error bars indicate ±2 standard errors from 1
listener averaged across 4 different pure tone frequencies. Human data in f and h are re-plotted from the original studies[132],
[135].

progressively larger localization errors as the phase locking limit was lowered. Degraded
temporal coding impaired localization performance in both azimuth and elevation though
the effect was larger for azimuth (Fig. 3.2d, middle vs. right). These results show that
precise spike timing is important for sound localization.

3.2.8 Sound localization psychoacoustics

Biological sound localization relies on three main cues. Small time and level differences
between the sound at the ears are two important binaural cues to a source’s location in the
azimuthal plane (Fig. 3.2b, left). Before impinging on the ear drum, a sound waveform
is transformed by the pinna, head, and torso, which boost some frequencies and attenuate
others. This anatomical filtering is direction-specific and provides a third spectral cue to a
source’s location (Fig. 3.2b, right). Humans rely on these spectral cues to judge elevation
[137], [138]. To investigate the contribution of temporal coding to each of these localization
cues, we simulated a set of classic psychoacoustic experiments on the models.

3.2.9 Auditory nerve phase locking is critical for ITD-based sound

localization

Localization in the horizontal plane relies on interaural time differences (ITDs) and interaural
level differences (ILDs), but these cues are not equally informative for all sounds. Humans
rely more on ITDs at low frequencies and ILDs at high frequencies. First proposed [139] as
‘duplex theory’ in 1907, measurements of human sensitivity to interaural cue manipulations
with virtual sounds provided an elegant modern demonstration of this frequency-specific
cue dependence [132] (Fig. 3.2e). In the original experiment, sounds were rendered at
different azimuths using a virtual acoustic simulator. Interaural cue sensitivity was revealed
by how much a sound’s perceived location appeared to shift as additional ITDs or ILDs were
added to the binaural waveforms. Shifts in perceived azimuth were mapped back to units
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of ITD or ILD (as the ITD or ILD change corresponding to an actual shift in azimuth by
the same amount), allowing interaural cue sensitivity to be quantified as a dimensionless
weight: the slope of the response cue relative to the imposed cue. For low frequency sounds,
ITD manipulations have a much larger effect than ILD manipulations on human azimuth
judgments (ITD slope is much larger than ILD slope). The reverse is true for high frequency
sounds.

Although the encoding of ITDs is thought to make use of phase locking, it was a priori not
entirely clear what to expect from the models with altered phase locking limits. The ITDs
of natural sounds are present in amplitude envelopes in addition to the fine structure within
frequency channels [140]–[142], and because the amplitude envelope is lowpass, interaural
envelope delays should in principle be detectable even if the effective sampling rate of cochlear
transduction is lowered via the phase locking limit.

To investigate the contribution of phase locking to this frequency-specific cue dependence,
we simulated this experiment on our models, measuring interaural cue sensitivity of models
with different phase locking limits (Fig. 3.2f). Models with high phase locking limits repli-
cated human behavior, exhibiting high ITD sensitivity only for low frequencies and high ILD
sensitivity only for low frequencies. Models with degraded temporal coding (320 and 50 Hz
phase locking limits) deviated from human behavior, progressively losing ITD sensitivity at
all frequencies and gaining ILD sensitivity at low frequencies, suggesting phase-locked spike
timing up to 1000 Hz is necessary for ITD-based sound localization. Models without ac-
cess to fine timing information become increasingly reliant on ILD-based sound localization,
exhibiting superhuman ILD-sensitivity for low frequencies.

3.2.10 Azimuth dependence of human localization requires phase

locking

The inhuman cue dependence under degraded phase locking was also strikingly evident when
measuring localization acuity as a function of azimuth. Human sound localization is best near
the midline and becomes less accurate toward the periphery [143]–[145], as can be quantified
by minimum audible angle thresholds [135] (the smallest detectable angular distance between
two sources) (Fig. 3.2g). We simulated an experiment measuring minimum audible angle
thresholds for pure tones. Thresholds measured from the 3000 and 1000 Hz phase locking
models resembled those of human listeners (Fig. 3.2h). By contrast, the 320 and 50 Hz phase
locking models exhibited a qualitatively different, nonmonotonic dependence on azimuth,
yielding significantly higher minimum audible angle thresholds away from the midline. These
results suggest that ITD cues conveyed by precise spike timing are particularly important
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Figure 3.3: Upper frequency limit of ITD sensitivity.
a. Schematic of ITD lateralization experiment used to measure ITD sensitivity as a function of frequency. On each trial,
listeners heard a pair of pure tones with two different ITDs and judged whether the second tone sounded to the right or left
of the first. b. ITD lateralization thresholds measured as a function of frequency from humans and models. c. Schematic of
network architecture modification to delay binaural integration. Replacing the first couple convolutional layers with grouped
convolutions (1 group for each ear) forces networks to process the ears separately before binaural integration occurs in the first
standard convolutional layer. Blue and red represent information from the left and right ears, respectively. d. ITD lateralization
thresholds measured as a function of frequency from humans and models with and without the modified network architectures
(both models had the same human-like phase locking limit). Error bars indicate ±2 standard errors of the mean across human
participants or network architectures. Human data are re-plotted from the original study[146].

for accurate localization away from the midline.

3.2.11 Human ITD sensitivity is not limited only by auditory nerve

phase locking

Human listeners are remarkably sensitive to ITDs at low frequencies, but this sensitivity
deteriorates at higher frequencies [147]. In principle this sensitivity could be limited by the
upper limit of phase locking in the auditory nerve, but human sensitivity instead declines
rapidly above 1 kHz and is fully lost by 1.5 kHz [146] – well below the 3-5 kHz presumptive
frequency limit of auditory nerve phase locking. To better understand this discrepancy, we
studied the frequency limits of ITD sensitivity in our models.
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ITD sensitivity as a function of frequency has been characterized by measuring ∆ITD
thresholds with pure tones (Fig. 3.3a). In such experiments, listeners judge which of two
spatialized tones with different ITDs sounds further to the right. The ∆ITD threshold is
the smallest change in ITD needed to reliably discriminate tones by azimuth. We simulated
an azimuth discrimination experiment with pure tones to measure network ∆ITD thresholds
as a function of frequency. Model ∆ITD thresholds were unmeasurably high for frequencies
above a model’s respective phase locking limits (Fig. 3.3b). Thresholds measured from the
1000 Hz phase locking network produced the closest match to human behavior. The 3000
Hz phase locking model exhibited superhuman ITD sensitivity, with thresholds on the order
of 20µs even up to 2.5 kHz. This discrepancy with humans suggests that some additional
factor limits human ITD sensitivity.

Because input from the two ears needs to be compared to extract ITDs, perceptual
sensitivity to high-frequency ITDs requires temporal coding at that frequency to persist
until information from the two ears can be compared [148], [149]. One explanation for the
lower limit of ITD sensitivity in humans is that there are anatomical constraints on this
comparison process, whereby information from each ear passes through additional synapses
before being combined, with some loss of temporal precision at each synapse. Why would the
auditory system not have evolved a way to make the comparison happen earlier? When tested
on naturalistic auditory scenes (natural sounds in noise), the 1000 Hz phase locking model
localizes just as well as the 3000 Hz model. And across all other psychoacoustic experiments
we simulated, there was no significant difference in human-model similarity between the 1000
and 3000 Hz phase locking models. These results suggest that preserving temporal coding
above 1000 Hz provides little adaptive benefit, such that delaying the comparison incurs
little cost.

To test the idea that “early” interaural comparisons accounted for our model’s superhu-
man ITD sensitivity, we altered the network architectures slightly to delay binaural integra-
tion (Fig. 3.3c). We replaced the standard convolution operations in the earliest neural net-
work stages with grouped convolution operations (2 groups), such that the resulting models
must initially process information from the left and right auditory nerve separately. Reason-
ing that synapses introduce temporal jitter that effectively imposes low-pass filtering [150],
binaural integration was only allowed to occur in the models after early temporal pooling
layers. We trained these modified neural network architectures with 3000 Hz phase locking
auditory nerve input and evaluated them on the full set of sound localization experiments.
Consistent with our hypothesis, the models lost sensitivity to high-frequency ITDs (Fig.
3.3d) but were otherwise unaffected. These results indicate that additional physiological
constraints can in some cases produce better matches to human behavior. And the model
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results provide a normative explanation for the solution that biological auditory systems
have arrived at over evolution.

3.2.12 Models without access to phase locking exhibit inhuman

spectral cue dependence

Whereas localization in azimuth is dominated by binaural cues, localization in elevation is
mediated in large part by spectral cues. Humans rely on cues specific to their own ears to
make accurate elevation judgments (Fig. 3.4a). Manipulating these spectral cues (either
physically by altering pinna shape with an ear mold [134] or virtually by altering the head-
related transfer function used to spatialize a sound [133] via earphones) impairs elevation
judgments in humans. These same manipulations have minimal effects on azimuth judg-
ments. We tested whether this spectral cue dependence relies on fine timing information
in the ear by simulating these experiments on models optimized with different phase lock-
ing cutoffs. Our models were always trained using a set of head-related transfer functions
(HRTFs) measured from a standard model of the human head and torso [151] (KEMAR).
We evaluated the models with virtual sounds rendered with altered HRTFs. We tested each
model on 45 alternative sets of ears (HRTFs measured from 45 different people) as well on
spectrally smoothed versions of the KEMAR HRTFs used to train models.

A priori it was not clear to expect. For instance, it seemed plausible that phase locking
might help to obtain precise estimates of the spectral shape that underlies ear-specific lo-
calization cues, such that localization in elevation would be impaired at lower phase locking
limits.

When tested with the alternative ears, elevation judgments collapsed in all models, as
in human listeners with molds in their ears, indicating that spectral cues to elevation are
not strongly dependent on phase locking (Fig. 3.4b). However, the effect of alternative ears
on azimuth varied depending on the phase locking cutoff. In human listeners and in models
with high-fidelity temporal coding, changing ears had little effect on mean azimuth error.
But in models with degraded temporal coding, azimuthal localization accuracy was worse
with alternative ears (Fig. 3.4c). As the phase locking limit was lowered, models became
increasingly reliant on ear-specific cues to localize in azimuth as well as elevation. These
results suggest that human-like dependence on ear-specific cues (i.e., only for elevation)
emerges only when models have access to phase-locked spike timing.

This inhuman dependence of azimuthal localization on spectral cues was also evident
in the effects of removing fine spectral details from the trained HRTFs (Fig. 3.4d). As the
peaks and valleys of the trained HRTFs were parametrically smoothed away, model elevation
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Figure 3.4: Localization models with degraded phase locking rely on spectral cues to judge
azimuth as well as elevation.
a. Photographs and human data from the original study[134]. Hofman et al. (1998) measured human sound localization before
and after inserting plastic molds into participants’ ears to change the pinnae’s direction-specific filtering. Sound localization
judgments (thick lines, circle markers) with the participants original (left) and modified (ears) are plotted as a function of
azimuth and elevation, superimposed on a grid of the true locations (thin lines, no markers). b. Model results for an analogous
experiment, in which networks were evaluated on sounds rendered with the HRTFs used for training (trained ears) and a
different set of HRTFs (untrained ears), are plotted with the same format for each of the phase locking conditions. c. The
increase in mean absolute azimuth and elevation error due to changing ears is plotted side-by-side for humans and for each
model. Error bars indicate ±2 standard errors of the mean across participants or network architectures. d. Power spectra of
HRTFs progressively smoothed by lowering the number of cosines used to approximate the discrete cosine transform. e. Effect
of the spectral smoothing manipulation on model azimuth and elevation judgments. Mean absolute azimuth (top) and elevation
(bottom) errors are plotted as a function of the HRTF smoothing parameter used to render stimuli for the models. Error bars
indicate ±2 standard errors of the mean across network architectures. f. Human-model similarity scores for each phase locking
condition and localization experiment. Similarity scores were Pearson correlation coefficients between corresponding human
and model behavioral data points. The rightmost column averages scores across all experiments. Error bars indicate 95%
confidence intervals computed by bootstrapping the mean of 10 network architectures. Asterisks denote statistically significant
differences between phase locking conditions (p < 0.001, two-tailed), evaluated by comparing mean similarity scores against a
null distribution bootstrapped from the 3000 Hz condition with delayed binaural integration.
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judgments progressively collapse, regardless of phase locking limit, as expected (Fig. 3.4e).
By contrast, azimuth judgments are significantly more impaired by HRTF smoothing in
models with lower phase locking limits, suggesting models without access to phase locking
rely on fine spectral details to localize in azimuth as well as elevation (unlike humans).

3.2.13 Not all localization phenomena are inextricably linked to

phase-locked spike timing

Although removing phase locking caused pronounced discrepancies with human behavior,
some behaviors were relatively unaffected. All models exhibited the “precedence effect”, in
which localization judgments are dominated by the initial part of a sound [152] (Supplemen-
tary Fig. 3.8g). Our results suggest this effect – which likely reflects a strategy for echo-
robust localization in reverberant environments [18] – does not rely on precise spike-timing.
All models also exhibited human-like dependences of localization accuracy on bandwidth
[153] (Supplementary Fig. 3.8h) and of elevation accuracy on high-frequency spectral cues
[154] (Supplementary Fig. 3.8i).

3.2.14 Quantitative measures of human-model similarity – sound

localization

To quantify human-model behavioral similarity on each localization experiment, we mea-
sured correlations between human and model results graphs (Fig. 3.4f). Of models without
modified network architectures, the 1000 Hz phase locking model produced the most human-
like behavior. The overall human-model similarity was lower for the 3000 Hz phase locking
model because of the resulting superhuman ITD sensitivity at high frequencies. Simply mod-
ifying the network architectures to delay binaural integration in the 3000 Hz phase locking
model was sufficient to restore human-model similarity to the level of the 1000 Hz phase
locking model. Collectively, the results suggest that human-like sound localization relies on
information conveyed by phase-locked spike timing up to, but not much beyond, 1000 Hz.

3.2.15 Model optimization – pitch perception

We modeled pitch perception as the estimation of fundamental frequency (F0). Each training
stimulus consisted of a short (50ms) speech or music excerpt (selected to be periodic with a
well-defined F0) embedded in aperiodic background noise taken from YouTube soundtracks
(Fig. 3.5a). Models were tasked with classifying each stimulus into one of 700 F0 classes
(log-spaced between 80 Hz and 1000 Hz, bin width = 1/16 semitones = 0.36% F0). We
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Figure 3.5: Models with degraded auditory nerve spike-timing exhibit less human-like pitch
perception.
a. Pitch model schematic. Deep artificial neural networks were optimized to estimate F0 from simulated auditory nerve repre-
sentations of natural sounds. b. Stimuli for frequency discrimination in noise task. Human and model listeners discriminated
pairs of pure tones with similar frequencies presented in masking noise. c. Frequency discrimination thresholds measured from
humans and models are plotted as a function of SNR. d. Stimuli for pitch discrimination in noise task. Human and model
listeners discriminated pairs of 10-harmonic complex tones with similar F0s presented in masking noise. e. F0 discrimination
thresholds measured from humans and models are plotted as a function of SNR. Error bars in c and e indicate ±2 standard
errors of the mean across human participants or network architectures. Human data are re-plotted from the original study[89].
f. Human-model similarity scores for each phase locking condition and pitch experiment. Similarity scores were Pearson correla-
tion coefficients between corresponding human and model behavioral data points. The rightmost column averages scores across
all experiments. Error bars indicate 95% confidence intervals computed by bootstrapping the mean of 10 network architectures.
Asterisks denote statistically significant differences between phase locking conditions (p < 0.001, two-tailed), evaluated by
comparing mean similarity scores against a null distribution bootstrapped from the 3000 Hz condition.
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previously found that models optimized for this task replicated many characteristics of hu-
man perception, but only when optimized for naturalistic stimuli with high-fidelity temporal
coding in the input [17]. Here we replicate and extend these previous findings with models
optimized with more realistic auditory nerve input, simulating the full set of psychoacoustic
experiments from our previous work and a new experiment comparing human and model
pitch discrimination in noise.

3.2.16 Human-like pitch perception depends critically on auditory

nerve phase locking

To compare the pitch-related behavior of models and human listeners, we simulated a set
of six experiments used in our previous work, along with measuring pitch discrimination
thresholds in noise. The six original psychoacoustic experiments yielded results like those in
previous work, with worse matches to human behavior in some experiments when the phase
locking limit was lowered (F0 discrimination as a function of harmonic number and phase [63]
(Supplementary Fig. 3.9a), pitch estimation of alternating-phase stimuli [60] (Supplementary
Fig. 3.9b), pitch estimation of frequency-shifted complexes [61] (Supplementary Fig. 3.9c),
pitch estimation of complexes with individually mistuned harmonics [59] (Supplementary
Fig. 3.9d), frequency discrimination with pure and transposed tones [62] (Supplementary Fig.
3.9e), and pure tone frequency discrimination as a function of sound level [82] (Supplementary
Fig. 3.9f). The present results show that this result holds even when a more realistic
simulation of the auditory nerve is used.

We then measured network F0 discrimination thresholds (i.e., the minimum %F0 differ-
ence between two tones needed to reliably judge which of two tones had a higher F0) with
pure and complex tones in noise (F0s log-uniformly distributed between 178 and 300 Hz),
comparing them to previously reported human thresholds in the same conditions [89]. Model
discrimination thresholds for pure tones (Fig. 3.5b) closely matched those of humans and
showed little effect of phase locking limit across the SNRs tested (Fig. 3.5c). These results
are consistent with the idea that human-like pure tone discrimination in this frequency range
does not require phase-locked spike timing, likely because rate-place cues are sufficient for
such simple stimuli. But for harmonic complex tones (Fig. 3.5d), model thresholds did
benefit from phase locking, with only the 3000 and 1000 Hz phase locking models achieving
human-level performance at low SNRs (Fig. 3.5e). We note that the 320 Hz model signif-
icantly underperformed humans and models with higher phase locking limits at low SNRs,
even though the 320 Hz limit was above the highest F0 used in the experiment. This result
suggests that human-level discrimination for complex tones in noise relies on temporal cues
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conveyed by phase locking to harmonics above the fundamental. This finding is consistent
with the effect of phase locking limit on the dependence on harmonic number, wherein mod-
els with lower phase locking limits were progressively more dependent on the first harmonic
being present (unlike humans).

3.2.17 Quantitative measures of human-model similarity – pitch

perception

We again quantified human-model behavioral similarity on each experiment by measuring
correlations between analogous human and model data points (Fig. 3.5f). Collectively, the
results suggest that human-like pitch perception relies on information conveyed by phase-
locked spike timing, potentially as high as 1000 Hz (p = 0.01, d = 2.61 comparing 3000
vs. 1000 Hz conditions; p < 0.001, d = 27.4 and 33.2 comparing 3000 vs. 320 and 50 Hz
conditions).

3.2.18 Model optimization – voice and word recognition

To model speech perception, we optimized models to recognize voices and words using the
Word-Speaker-Noise dataset [93] (Fig. 3.6a). This dataset consists of 6 million 2-second
speech excerpts superimposed on real-world background noise. Models were jointly opti-
mized to classify stimuli according to the talker that produced the utterance (433-way voice
recognition task) and the word that appeared in the middle of the excerpt (794-way word
recognition task). The optimization objective was to simultaneously minimize voice and
word classification error, and the two tasks shared all neural network stages up to the final
linear read-out layers, which were task specific. We also trained models on each task indi-
vidually and found similar results. We present results from the joint-task model here; results
from the single-task models are shown in Supplementary Fig. 3.10.

3.2.19 Phase locking to the fundamental improves voice recognition

in noise

We first measured model voice recognition performance in different types of background noise
at SNRs ranging from -9 dB to Inf (quiet) (Fig. 3.6b). At low SNRs, models with access
to phase locking performed better than models without. Almost all the benefit from phase
locking incurred below 320 Hz, suggesting phase locking up to but not above the F0 of most
human speech improves voice recognition in noise.
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Figure 3.6: Models with degraded auditory nerve spike-timing exhibit less human-like voice
recognition.
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a. Speech model schematic. Deep artificial neural networks were jointly optimized to recognize voices and words from simulated
auditory nerve representations of speech in noise. The two tasks shared all model stages before for the final task-specific
output layers. b. Model voice recognition in noise. Different axes plot model performance as a function of SNR in different
naturalistic noise conditions. c. Stimuli for the unfamiliar voice discrimination in noise task. Human and model listeners
were played three 1s speech-in-noise excerpts from two unknown talkers. The task was to judge which talker only spoke once.
d. Voice discrimination in noise results. Performance for human listeners and models with different phase locking limits is
plotted as a function of SNR in stationary (open circles) and amplitude-modulated (closed circles) noise. e. Stimuli for pitch-
altered voice and word recognition experiments. Spectrograms show the same speech clip in four different pitch conditions:
unmodified (natural), pitch-shifted down 12 semitones, pitch-shifted up 12 semitones, and inharmonic. In the inharmonic
condition, harmonic frequency components are randomly frequency-shifted such that they are no longer integer multiples of a
common F0 and no longer linearly spaced in frequency. f. Voice and word recognition accuracy for humans and models tested
on pitch-shifted speech. g. Voice and word recognition accuracy for humans and models tested on harmonic and inharmonic
speech. All error bars indicate ±2 standard errors of the mean across human participants or network architectures.

To compare the models to humans we first considered absolute performance. Measuring
human voice recognition is practically challenging because listeners do not all recognize the
same voices and overall accuracy depends strongly on listener familiarity with voices. To
compare human and model voice perception in noise, we instead simulated a voice discrim-
ination experiment [58] (Fig. 3.6c). Participants heard three speech utterances from two
different talkers and were tasked with identifying which talker (either first or last) only spoke
once. We used speech excerpts from talkers that were unfamiliar to both human listeners
and models (i.e., were not included in the training data). Model judgments were obtained
by comparing the Kullback-Leibler divergence of the model’s voice recognition output prob-
ability distributions for the first and second, and second and third voice excerpts, and taking
the maximum. The experiment measured discrimination performance as a function of SNR
in stationary and amplitude-modulated speech-shaped noise (Fig. 3.6d). Models, regard-
less of phase locking limit, achieved near human-level performance at high SNRs. At low
SNRs, all models underperformed human listeners, but models with lower phase locking lim-
its were especially impaired. Like humans, models with high phase locking limits performed
substantially better when background noise was amplitude modulated (10 dB difference in
threshold). This fluctuating masker benefit for voice recognition was smaller in the 50 Hz
phase locking model (8 dB difference in threshold).

3.2.20 The dependence of human voice recognition on absolute pitch

requires phase locking

We next considered whether phase locking would be critical for reproducing the pitch de-
pendence of human voice recognition. Absolute pitch is an important cue humans use to
recognize voices. When a familiar talker’s voice is pitch-shifted or made inharmonic (by fre-
quency jittering its harmonic components to be inconsistent with any single F0) (Fig. 3.6e),
the voice is less recognizable [58]. To investigate whether this dependence on absolute pitch
requires phase locking, we measured human and model voice recognition with pitch-shifted
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(Fig. 3.6f, closed symbols) and inharmonic speech (Fig. 3.6g, closed symbols). Models were
tested on familiar voices (but held-out speech utterances) from the training set. Humans
were tested on celebrity voices [58]. Though we attempted to evaluate human performance
only on celebrity voices that participants were highly familiar with (by including check trials
and having participants identify which celebrities they expected to recognize by voice), it
is difficult to match the relative familiarity of test voices between human and model par-
ticipants, confounding comparisons of absolute performance between humans and models.
Qualitatively, however, models with access to phase-locked spike timing best replicated hu-
man behavior. Human voice recognition was best for voices at their natural F0 and fell
off with progressively larger shifts in either direction. Human performance was also im-
paired by making voices inharmonic. Networks with the 50 Hz phase locking limit exhibited
superhuman robustness to these pitch manipulations, suggesting models without access to
phase-locked spike timing do not rely on absolute pitch to identify voices as much as humans
do. These results provide additional evidence for a role of phase locking (up to 320 Hz) in
human voice recognition and pitch perception.

We also measured human and model word recognition with pitch-shifted and inharmonic
speech (Fig. 3.6f and g, open symbols). Human performance was unaffected by these pitch
manipulations. Model performance, regardless of phase-locking limit, was similarly robust,
remaining comparable to humans for very large pitch shifts. These results suggest human
word recognition in quiet is not critically dependent on either absolute pitch or phase-locked
spike timing.

3.2.21 Phase locking offers little benefit for word recognition in

real-world noise

Relative to model voice recognition, phase locking provided little benefit for word recognition,
even in noise (Fig. 3.7a). Lowering the phase locking limit produced negligible deficits in
model word recognition accuracy in any of four tested noise classes: recorded auditory scenes,
speech babble, instrumental music, and stationary speech-shaped noise. Models performed
comparably to humans tested on the same stimuli, regardless of phase locking limit. The
one exception was amplitude-modulated speech-shaped noise, where the 50 Hz model was
appreciably impaired and underperformed human listeners (Fig. 3.7b). Deficits in modulated
noise are consistent with psychophysical evidence suggesting temporal fine structure cues
help humans “listen in the dips” of fluctuating maskers [34], [36], [129]. Like humans, models
with access to phase-locked spike timing performed better in amplitude-modulated than
stationary speech-shaped noise. This fluctuating masker benefit was much smaller for the 50
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Figure 3.7: Models with degraded temporal coding achieve human-level word recognition in
noise but fail to account for psychoacoustic phenomena.
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a. Human and model word recognition in naturalistic noise. Different axes plot model performance as a function of SNR in
different naturalistic noise conditions. b. Fluctuating masker benefit results. Word recognition performance for human listeners
and models with different phase locking limits is plotted as a function of SNR in stationary (open circles) and amplitude-
modulated (closed circles) noise. c. Schematic of tone vocoding stimulus manipulation with a “cutoff channel” of 10. A speech
waveform was separated into 32 frequency subbands by a bank of band-pass filters that mimic the cochlea’s frequency tuning.
Frequency channels up to and including the cutoff channel were left intact. In the 22 higher frequency channels, temporal
fine structure was disrupted by replacing the channel subband with an envelope-modulated pure tone carrier at the channel’s
center frequency. d. The benefit from temporal fine structure was quantified by measuring leftward shifts in psychometric
functions plotting word recognition accuracy vs. SNR as the cutoff channel (i.e., the number of channels with intact temporal
fine structure) is increased. All shifts are computed relative to performance with fully tone-vocoded speech (0 channels intact,
orange circles). e. Tone vocoding results. The benefit from temporal fine structure – measured from humans and models – is
plotted as a function of the number of channels with intact temporal fine structure. Open circles plot the benefit in stationary
noise and closed circles plot the benefit in amplitude-modulated noise. Human data in e is re-plotted from the original study[36]
and errors bars indicate ±1 standard error of the mean across participants. All other error bars in a, b, and e indicate ±2
standard errors of the mean across human participants or network architectures. f. Human-model similarity scores for each
phase locking condition and speech experiment. Similarity scores were Pearson correlation coefficients between corresponding
human and model behavioral data points. The rightmost column averages scores across all experiments. Error bars indicate 95%
confidence intervals computed by bootstrapping the mean of 10 network architectures. Asterisks denote statistically significant
differences between phase locking conditions (p < 0.001, two-tailed), evaluated by comparing mean similarity scores against a
null distribution bootstrapped from the 3000 Hz condition.

Hz phase locking model. However, this deficit evidently did not substantially hinder word
recognition in the real-world noise conditions. The auditory scenes and instrumental music
contained drastic amplitude modulation, but are spectrally quite different from the target
speech, perhaps allowing networks to solve the task without cues that depend critically on
phase locking.

3.2.22 Phase locking is needed to account for vocoding effects in

human word recognition

The minimal effects of phase locking limit on model word recognition in noise seemed counter
to psychophysical evidence from “tone vocoding” suggesting temporal fine structure (TFS)
cues contribute to human speech recognition in noise [36]. Tone vocoding is a stimulus
manipulation in which a speech waveform is first decomposed into frequency channels with a
cochlear filter bank (Fig. 3.7c). The temporal envelopes of each channel are then extracted
and imposed on pure tone carriers at the center frequency of each channel. The resulting
amplitude-modulated tones are passed through their respective cochlear filters and summed
to produce a new waveform with similar envelope cues but different TFS from the original.
Hopkins and Moore investigated the contribution of high frequency TFS by tone vocoding
all frequency channels above a given cutoff. The authors increased this cutoff from 0 (all
channels vocoded) to 32 (no channels vocoded), progressively increasing the upper frequency
limit of TFS information preserved in the stimulus increased from 100 to 10000 Hz. Speech
reception thresholds in stationary and modulated noise were measured as a function of this
cutoff (Fig. 3.7d). In stationary noise, thresholds improved modestly but significantly as
this frequency limit increased from 100 to 548 Hz (intact TFS in 8 of 32 channels). TFS
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information provided a larger benefit in modulated noise, with significant improvements
up to 4102 Hz (intact TFS in 24 of 32 channels) (Fig. 3.7e, left). This result was taken to
suggest that humans benefit from the information in the TFS of sound waveforms, potentially
upwards of 1000 Hz.

We tested our models on the same stimulus manipulation (Fig. 3.7e, right panels). Mod-
els with 3000 and 1000 Hz phase locking limits qualitatively and quantitatively replicated the
human pattern of behavior, with speech reception thresholds continuing to improve as more
high frequency TFS was preserved, particularly in modulated noise. The benefit from TFS
information was reduced in the 320 Hz phase locking model and fully eliminated by 50 Hz.
Collectively, these results suggest phase-locked spike timing is needed to comprehensively ac-
count for human word recognition behavior. Only models optimized with high-fidelity phase
locking learned a word recognition strategy with human-like sensitivity to TFS manipu-
lations. Models optimized without fine timing information learned a similarly performant
(at least in the real-world noise conditions tested here) but less human-like strategy for
recognizing words. This could imply the effect of vocoding on human word recognition is
epiphenomenal (e.g., a consequence of sharing machinery with tasks that benefit more from
phase locking) or advantageous in listening conditions beyond those considered here (e.g.,
multi-talker situations).

3.2.23 Quantitative measures of human-model similarity – voice

and word recognition

We quantified human-model similarity for the voice and word recognition model by measuring
correlations between analogous human and model data points in each experiment (Fig. 3.7f).
Collectively, the results suggest that human-like speech perception relies on information
conveyed by phase-locked spike timing, but virtually all the benefit incurs between 50 and
320 Hz (p < 0.001, d = 27.7 comparing 3000 vs. 50 Hz condition; p < 0.001, d = 7.8
comparing 3000 vs. 320 Hz condition).

3.2.24 Replication with simplified cochlear model

Networks equipped with the greatly simplified cochlear model qualitatively and in most cases
quantitatively replicated all results from networks equipped with the highly detailed model of
the auditory nerve (Supplementary Fig. 3.11, 3.12, 3.13, and 3.14). This result suggests that
the effects we saw with the detailed cochlear model are not due to unintended interactions
between its components. The results also indicate that future work could use the simplified
model in many settings without a cost.
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3.3 Discussion

We developed models of real-world sound localization, pitch perception, and speech percep-
tion by optimizing artificial neural networks to classify simulated auditory nerve representa-
tions of natural sounds. The resulting models closely replicated human behavior in simulated
experiments with both real-world sounds and synthetic stimulus manipulations despite being
optimized solely for natural sounds. To investigate the perceptual role of precise temporal
coding in human hearing, we separately optimized models with lower auditory nerve phase
locking limits. This manipulation had a larger effect on some tasks than others, impairing
sound localization, pitch perception, and voice recognition, while leaving naturalistic word
recognition largely intact. Accurate and human-like sound localization, pitch discrimination,
and voice recognition only emerged in models optimized with access to phase-locked spike
timing in the auditory nerve. Models with no access to phase locking above 50 Hz were
particularly impaired for these tasks in noisy conditions. Comparatively, phase-locked spike
timing offered little benefit for word recognition in noise, with models producing accurate
and human-like word recognition in many types of real-world noise regardless of auditory
nerve phase locking limit. Nonetheless, phase-locked spike timing was necessary to compre-
hensively account for speech recognition phenomena such as the fluctuating masker benefit
and the effect of tone vocoding. Our results provide new evidence for a perceptual role of
auditory nerve phase locking and suggest monaural mechanisms for extracting information
from spike timing must exist in the auditory system.

The upper limit at which phase locking incurs a perceptual benefit places constraints
on the underlying circuit mechanisms. For localization and pitch tasks, phase-locked spike
timing up to 1000 Hz seems to be critical. For the voice and word tasks virtually all benefit of
phase locking incurs between 50 and 320 Hz. Our model results suggest phase locking to the
fundamental may provide an important pitch cue for voice recognition and word recognition
in amplitude-modulated maskers, perhaps by facilitating pitch-related streaming.

Some evidence for the use of phase locking came from qualitative properties of human
perception rather than absolute performance. Our speech perception model without access
to phase locking has no trouble recognizing words in noise as well as humans did, but it
appeared to learn a qualitatively different strategy than humans (lacking sensitivity to cues
that disrupt human performance like the tone vocoding and pitch manipulations). Similarly,
phase locking was not needed to accurately classify voices, but models optimized without it
learned to weight cues very differently from human listeners (i.e., only weakly associating
absolute F0 with voice identity).
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3.3.1 Relation to prior experimental work

One strong interpretation of the tone vocoding effect in human word recognition [36] is that
the human auditory system extracts information from spike timing that is phase locked to
stimulus frequencies as high as 1000 to 4000 Hz. Our model results are inconsistent with
this explanation. Speech reception thresholds from our models continued to benefit from
increasingly high frequency TFS, even beyond their respective phase locking limits. For
instance, the 1000 Hz model received a benefit from frequencies above 1000 Hz. Since our
simulated auditory nerve representations cannot, by definition, encode TFS above the set
phase locking limit, the task-relevant information contributed by high frequency TFS cannot
be represented by high frequency phase-locked spike timing.

An alternative explanation for the effect of tone vocoding on human behavior relates to
pitch. Tone vocoding is not a perfectly selective stimulus manipulation and vocoding away
high frequency TFS also interferes with harmonic frequency relationships in speech. When
high-numbered harmonics are vocoded, they no longer produce temporal envelope cues to
pitch, which the auditory nerve encodes via phase locking to the F0 (typically below 300
Hz). Pitch is an important cue for sound segregation and disrupting the encoding of F0
could account for speech perception deficits. Consistent with this alternative explanation,
network word recognition exhibited very similar deficits in noise when tested with inharmonic
speech and with tone-vocoded speech (Supplementary Fig. 3.15). These manipulations both
disrupt F0, but inharmonic speech preserves the TFS of non-periodic (unvoiced) phonemes
[155]. Making speech inharmonic had less of an effect on models without access to phase
locking. Models with degraded temporal coding performed better on inharmonic speech than
models with high-fidelity phase locking. This was the case for both word recognition and
voice recognition, where effect sizes were even larger. Collectively, these results suggest that
F0 cues encoded in phase-locked spike timing are important for hearing in noise.

3.3.2 Relation to prior modeling work

Our approach draws inspiration from ideal observer theory, which has a rich history interro-
gating the role of temporal coding in hearing [9], [10]. In the 1960s, Siebert first derived the
optimal solutions to simple psychoacoustic tasks given the information available in auditory
nerve responses to simple stimuli. This classic approach has yielded valuable insights about
which features of neural coding are needed to qualitatively account for human behavior, but
the resulting models severely overestimate human performance. This is perhaps unsurprising
because there is little reason to believe that the human auditory system is near-optimal for
the simple psychoacoustic tasks and stimuli for which it is tractable to derive provable ideal
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observers. Over evolutionary and developmental timescales, naturally behaving humans are
rarely tasked with discriminating pure tones. For the perceptual tasks that humans real-
istically are optimized for (e.g., recognizing and localizing natural sounds) [57], deriving
provably ideal observers quickly becomes intractable. Here, we showed the toolbox of con-
temporary deep learning provides an avenue to resurrect this classic approach for real-world
perceptual tasks.

3.3.3 Limitations

Our approach is not without drawbacks. There is no guarantee that current deep opti-
mization methods converge on optimal task solutions. Comparisons of absolute performance
should thus be interpreted with caution. Does a model without access to phase locking fail
to achieve human-level performance because precise spike-timing information is strictly nec-
essary for the task or because the model is insufficiently optimized? It is not impossible that
ever more expressive network architectures and optimization methods could lead to human-
level performance without precise spike-timing. We hedged against this possibility in two
ways. First, we used multiple network architectures for each model, ensuring reported results
do not reflect the idiosyncrasies of any single network architecture. Second, our conclusions
do not hinge solely on differences in absolute performance. We compared human and model
behavior across a broad range of psychoacoustic experiments, allowing us to identify qual-
itative differences in how models solve tasks given different peripheral input. Even though
our different phase locking models equally accounted for human performance in some condi-
tions, only models with higher phase locking limits exhibited human-like cue dependencies
suggesting the perceptual strategies employed by humans rely on phase locking.

Like ideal observers, artificial neural networks are also susceptible to overestimating hu-
man performance. Some of this can be attributed to human participants tiring or suffering
attentional lapses during experiments. Besides spike sampling in their auditory nerve input,
our network models are deterministic systems. Ideal observers often posit decision stage
noise to bring model performance down to the level of humans [9], [10], and the same logic
could be applied to our networks. Another possibility is optimizing with insufficient con-
straints. We found evidence of this in our 3000 Hz phase locking networks optimized for
localization. Networks with immediate access to the left and right auditory nerve represen-
tations exhibited sensitivity to ITDs at much higher frequencies than humans. Consistent
with the idea that insufficiently constrained optimization (i.e., neglecting any cost of binaural
circuitry) led to this superhuman ITD sensitivity, simply altering the network architecture
to require monaural processing stages before binaural integration produced more human-like
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behavior. Our results suggest that one reason the human auditory system did not evolve to
use ITDs much above 1000 Hz is because they do not benefit sound localization in natural
settings. This manipulation provides one example of how our modeling approach enables
normative analysis of sensory physiology. Additional architectural manipulations may yield
further insights. For instance, restricting interactions between frequency channels might help
elucidate the functional role of tonotopy throughout the auditory hierarchy.

Our models offer insight into which neural coding cues underlie perception but not how.
In our framing, the deep artificial neural network portions of our models may as well be
black boxes. They instantiate optimized solutions to tasks by performing opaque series of
linear and nonlinear operations. They are no more a mechanistic hypothesis of how the brain
works than the equations specifying an ideal observer are. Our approach is complementary
to mechanistic models, however, and future work could powerfully combine the two. Mecha-
nistic hypotheses – such as proposals for how brainstem circuitry may extract task-relevant
cues [111], [114] – can be built into our models. Task-optimizing the deep network backend
and asking if the resulting model still accounts for behavior would be a strong test of these
hypotheses. Mechanisms that preclude human-like behavior in a backend optimized for nat-
ural tasks can potentially be ruled out as mechanisms in the brain. Building in interpretable
but optimizable signal processing [156] stages could lead to mechanistic insights that are
adapted to the demands of natural tasks.

Insufficient task demands may have contributed to the relatively small effect of phase
locking observed for word recognition. Speech models optimized for cocktail party situations,
where accurate pitch and localization cues help segregate multiple concurrent voices [155],
[157], may reveal larger contributions of phase locking to speech recognition.

Model predictions are sometimes limited by the availability of naturalistic training data.
Our pitch model was optimized with a limited range of F0s (constrained by available speech
and music corpora), which prevented our model from making predictions about the per-
ception of very high frequencies[28]. Similarly, the availability of low-elevation anatomical
transfer functions and word- and voice-labeled speech limited our localization and speech
model predictions to classes in the training datasets.

3.3.4 Future directions

Our approach has natural extensions for modeling sensorineural hearing loss and cochlear
implants. The healthy auditory periphery hard-wired into our models can be altered to
simulate hair cell loss [4], cochlear neuropathy [158], or electrical stimulation from a cochlear
implant [159]. Optimizing models with different hearing loss etiologies may yield insights into
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the diverse behavioral outcomes of people with hearing loss. We found that similarly accurate
predictions of human behavior were possible with a greatly simplified cochlear through which
gradients can be backpropagated. This raises the possibility of directly optimizing front-
end processors [37] (or even individual sounds [93], [160]) for perceptual outcomes in the
model, which could be useful for developing hearing aids, cochlear implants, and diagnostic
behavioral tests.

Our results place strong constraints on future models of the auditory system. Accurate
models of human localization, pitch perceptions, and speech perception should all operate
on high temporal resolution input. Future work may enhance ecological validity by jointly
optimizing for more tasks – for instance, training to recognize and localize words and voices.
Though not the focus of this work, network representations could also be compared to
brain representations, perhaps yielding insights into hierarchical processing for different tasks
[13], [21]. Relating network processing stages to human EEG and ABR measures could be
particularly impactful in the clinic [161].

The general approach of investigating neural coding features with models optimized for
ecological tasks is not limited to hearing. Similar analysis of tactile perception could, for
instance, elucidate the perceptual role of high-fidelity temporal coding in touch [128]. Op-
timization methods that simulate the inescapable forces of evolution and development may
offer far-ranging insights into how neural codes give rise to behavior.
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3.4 Methods

3.4.1 Peripheral auditory model

The Bruce et al. (2018) auditory nerve model [5] served as the peripheral front-end to our
artificial neural networks. This model was chosen because it captures many of the com-
plex response properties of auditory nerve fibers and has been extensively validated against
electrophysiological data from nonhuman animals. Stages of peripheral signal processing
in the model include: a fixed middle-ear filter, a nonlinear cochlear filter bank to simulate
level-dependent frequency tuning of the basilar membrane, inner and outer hair cell trans-
duction functions, and a synaptic vesicle release/re-docking model of the synapse between
inner hair cells and auditory nerve fibers. Although the model’s responses have only been
directly compared to recordings made in nonhuman animals, some model parameters have
been inferred for humans (such as the bandwidths of cochlear filters) based on behavioral
and otoacoustic measurements.

The output of the auditory nerve model was a three-dimensional array of instantaneous
auditory nerve firing rates with shape [N frequency channels, T timesteps, S fiber types].
We simulated instantaneous auditory nerve firing rates at N=50 (localization and speech
model) or N=100 (pitch model) points along the cochlear frequency axis. Auditory nerve
fiber characteristic frequencies were spaced uniformly on an ERB-number scale between 125
and 16000 Hz for the localization model. For the pitch and speech models, the highest
characteristic frequency was 14000 and 8000 Hz respectively. The use of 50 to 100 frequency
channels primarily reflects computational constraints (CPU time for simulating peripheral
representations, storage costs, and GPU memory during training). In previous work we found
that increasing the number of frequency channels tenfold had little effect on model behavior
[17]. The instantaneous firing rates were downsampled from audio sampling rates to 10 kHz
for the localization and speech model or 20 kHz for the pitch model. The localization model
operated on 1s inputs (T=10000). The speech model operated on 2s inputs (T=20000).
The pitch model operated on 50ms inputs (T=1000). The high sampling rates of auditory
nerve responses ensured the information in high-frequency phase locking up to 3000 Hz could
be represented. At each characteristic frequency, we simulated responses of S=3 different
auditory nerve fiber types to represent canonical high (70 spikes/s), medium (4 spikes/s) and
low (0.1 spikes/s) spontaneous rate fibers [130]. Fibers with different spontaneous rates vary
systematically in their thresholds and dynamic ranges. High spontaneous rate fibers having
the lowest thresholds but smallest dynamic ranges such that their firing rates saturate at
conversational speech levels.
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This array of instantaneous firing rates was then converted to an array of binomially
sampled spike counts representing the population response of 32000 individual auditory
nerve fibers per ear. The number of spikes occurring at each time-frequency-fiber in was
sampled from a binomial distribution with p = firing rate / sampling rate and n determined
by the relative numerosity of different fiber types (n = fraction of fibers × 32000 total fibers
/ N frequency channels). We used 60% high, 25% medium, and 15% low spontaneous rate
fibers [130]. To reduce the computational cost of sampling from 1.5 million (N × F × T )
independent binomial distributions per ear and stimulus, we approximated sampling from
Binomial(n, p) by rounding samples from Normal(np, np(1− p)) in the localization model.

3.4.2 Phase locking manipulation

The phase locking manipulation was identical to that introduced in our previous work [17].
We modified the upper frequency limit of phase locking in the auditory nerve by adjusting
the cutoff frequency of the inner hair cell low-pass filter within the auditory nerve model. By
default, the low-pass characteristics of the inner hair cell’s membrane potential are modeled
as a 7th order filter with a cutoff frequency of 3000 Hz. We set this cutoff set to 3000, 1000,
320 and 50 Hz.

3.4.3 Simplified cochlear model

The Bruce et al. (2018) auditory nerve model is computationally expensive to run, requiring
peripheral representations to be precomputed and stored on disk rather than generated on-
the-fly during network optimization. Simulated auditory nerve representations of the training
datasets alone required 12 TB (localization), 1 TB (pitch), and 26 TB (speech) per phase
locking condition. We repeated experiments with a simplified cochlear model hard-wired
into the network’s computation graph, eliminating the need to store precomputed peripheral
representations. This simplified front-end consisted of a linear cochlear filter bank followed
by half-wave rectification and low-pass filtering to impose the upper limit on phase locking.
Simplified cochlear models operated on 50, 32 and 20 kHz audio for the localization, pitch,
and speech tasks respectively. After low-pass filtering (with a 50ms Kaiser-windowed sinc
filter), cochlear representations were downsampled from audio sampling rates to 10 kHz for
the localization and speech models or 20 kHz for the pitch models. The simplified localiza-
tion model used a gammatone filter bank with impulse responses truncated to 50ms. The
simplified pitch and speech models used a rounded exponential filter bank in the frequency
domain. Half-wave rectified and low-pass filtered subbands were passed through pointwise
sigmoid functions approximating the rate-level functions of high, medium, and low spon-
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taneous rate fibers. These sigmoid rate-level functions ranged from a spontaneous rate to
a maximum firing rate of 250 spikes/s over a dynamic range of 20, 40, or 80 dB for high,
medium, and low spontaneous rate fibers with respective thresholds of 0, 12, and 28 dB
SPL. These stages yielded an array of instantaneous auditory nerve firing rates with the
same dimensions as the detailed auditory nerve model. The spike sampling procedure was
identical between the simplified and detailed cochlear models. We repeated the temporal
coding manipulation in the simplified cochlear model by setting the low-pass cutoff of the
Kaiser-windowed sinc filter to 3000, 1000, 320, and 50 Hz.

3.4.4 Artificial neural network architectures

Simulated auditory nerve representations were passed as input to deep convolutional neural
networks, each consisting of a series of feedforward layers. These layers were hierarchically
organized and instantiated one of several simple operations: linear convolution, pointwise
nonlinear rectification, pooling, normalization, linear transformation, dropout regularization,
and softmax classification.

For each task, we used 10 distinct network architectures previously identified in large-
scale random searches over architectural hyperparameters (e.g., number of layers, units per
layer, convolutional kernel size and shape, and pooling extent). The individual network
architectures for each task are summarized in Supplementary Tables 3.1, 3.2, and 3.3. For the
localization model, we used the top-10 performing architectures from Francl and McDermott
(2022) which implement pooling and normalization via max pooling and batch normalization
operations. For the pitch models, we used the top-10 performing architectures from Saddler
et al. (2021) which implement pooling and normalization via Hanning-weighted average
pooling and batch normalization operations. For the speech models, we used the best-
performing network architecture from Saddler and Francl et al. (2021) as a starting point.
We first modified the initial network to use Hanning-weighted average pooling and layer
normalization operations. We then performed a local architecture search by making 20
new architectures via single hyperparameter modifications from the starting point (e.g.,
add/subtract one layer or change the convolutional kernel shape in one layer at a time).
We used the 10 best-performing networks from this local architecture search for the speech
models in this work.

3.4.5 Localization network architecture modification

Unlike the pitch and speech models, localization models operated on binaural input. We
concatenated the simulated auditory nerve representations from the left and right ear along
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the last axis into a single array with shape [N frequency channels, T timesteps, 2S fiber types].
Standard convolutional layers have three-dimensional kernels, which allow the optimizable
filters to integrate information across the last feature axis (i.e., between the ears). Our
default convolutional neural network architectures imposed no restriction on where in the
processing hierarchy interaural cues can be extracted. To test the effect of delaying binaural
integration, we replaced standard convolution operations in the earliest layers with grouped
convolutions. Grouped convolutions split their input representation along the feature axis
and use a separate convolutional kernel filter for each group [162]. Setting the number
of groups to 2 in the first convolutional layer separates the input for the left and right
ear. Successive convolutional layers with 2 groups maintain separate monaural processing
streams. Binaural integration only occurs at the first convolutional layer there the number
of groups is set to 1 (standard convolution). To delay binaural integration in our networks
until after significant temporal pooling had occurred, we set the number of groups to 2 for
all convolutional layers before the representation was downsampled by a factor of at least 4
(from 10 kHz to no greater than 2.5 kHz). In Supplementary Table 3.1, the convolutional
layers replaced with grouped convolutions in the delayed binaural integration models are
highlighted.

3.4.6 Transposed pitch network architectures

Lowering the phase locking limit to 50 Hz eliminates virtually all temporal structure in the
short-duration (50ms) stimuli used for the pitch model, leaving only rate-place information
in the auditory nerve responses. In our previous work we controlled for the possibility that
models with access only to rate-place information could be limited by the relatively small
number of frequency channels simulated. Instead of using nerve representations with 100
frequency channels and 1000 timesteps (sampled at 20 kHz), we used 1000 frequency channels
and 100 timesteps (sampled at 2 kHz) for the lowest phase locking condition. We transposed
the time and frequency axes before passing these representations to the networks to maintain
the expected input shape. Transposing the input representation effectively changes the
orientation of a network’s convolutional filters, such that kernels that were previously long
in time became long in frequency. We found this manipulation yielded better absolute pitch
discrimination thresholds but did not qualitatively change model behavior. To report effects
of our phase locking manipulation more conservatively, we applied this same modification to
our 320 and 50 Hz phase locking pitch models here.
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3.4.7 Model optimization – overview

Artificial neural networks were optimized to perform real-world hearing tasks operational-
ized as classification tasks. The training datasets and individual tasks are described in the
subsequent sections. In general, training stimuli were class-labelled (one label per task)
and network parameters were iteratively updated to minimize the softmax cross-entropy loss
function via stochastic gradient descent (ADAM optimizer) with gradients computed via
back-propagation. Localization networks trained for 200,000 steps with a batch size of 32
and learning rate of 0.0001. Pitch networks trained for 150,000 steps with a batch size of
64 and learning rate of 0.00001. Voice and word recognition networks trained for 400,000
steps with a batch size of 32 and learning rate of 0.00001. Classification performance on
held-out validation sets was recorded after every 5000 to 10000 training steps. The network
weights producing the highest validation set performance during the training routine were
used as the trained model. The number of steps in each model’s training routine was chosen
to produce plateauing validation set performance under all phase locking conditions. Net-
work training times vary by architecture, but each model could be trained in 96 hours on a
single NVIDIA A100 GPU on the MIT OpenMind Computing Cluster. Localization models
trained in under 48 hours and the much smaller pitch models trained in under 12 hours.

3.4.8 Model optimization – sound localization

We used the sound localization task of Francl and McDermott (2022) in which models clas-
sified noisy 1s auditory scenes according to the azimuth and elevation of a target natural
sound. The source location classes spanned 360° in azimuth (5° bin width) and 0 to 60° in
elevation (10° bin width), yielding a total of 504 output classes (72 azimuth × 7 elevation
classes). To ensure the task was well-defined, naturalistic auditory scenes always consisted of
a single natural sound rendered at one target location and real-world noise textures diffusely
localized at 3 to 12 different distractor locations. Target sounds were taken from the Glas-
gow Isolated Sound Events (GISE-51) [163] subset of Freesound Dataset 50k (FSD50K) [164],
which consists of variable-length recordings of individual sources spanning 51 categories of
everyday sounds. We only used source clips for which the original 44.1 kHz sampling rate
audio could be found in FSD50K. Our training and validation datasets consisted of 12465
and 1716 unique source clips, respectively. For model evaluation and human experiments,
we used 460 sounds from the GISE-51 evaluation set equally distributed across 46 sound
categories (discarding 5 categories, each with fewer than 10 evaluation clips).

Texture-like background noise was sourced from a subset of the Audioset [107] corpus
screened to remove nonstationary sounds (e.g., speech or music). The screening procedure
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involved measuring auditory texture statistics [108] (envelope means, correlations, and mod-
ulation power in and across cochlear frequency channels) from all recordings, and discarding
segments over which these statistics were not stable in time, as in previous studies. The
screening procedure yielded 26515 and 562 unique 10s noise clips for the training and val-
idation datasets, respectively. Naturalistic auditory scenes were constructed by combining
randomly sampled pairs of target sounds and texture-like noise samples (sliced into 1s seg-
ments). As in previous work [18], we augmented the number of unique target waveforms by
applying a randomly generated band-pass filter to the target in 50% of training and valida-
tion examples. Band-pass filter center frequencies were sampled log-uniformly between 160
and 16000 Hz. Bandwidths were sampled log-uniformly between 2 and 4 octaves and the
filter order was drawn uniformly between 1 and 4. Individual target and noise sources were
first spatialized and then summed together at SNRs uniformly drawn between -15 and +25
dB, except for 5% of scenes which included no noise. For all localization experiments, SNR
referred to the target sound’s level relative to the sum of all background noise sources.

To spatialize scenes, we used a virtual acoustic room simulator [165] to render sets of
binaural room impulses responses (BRIRs) for a KEMAR in 2000 unique listener environ-
ments. The simulator used the image-source method and incorporated KEMAR’s HRTFs
[151]. We randomly generated 2000 unique listener environments by sampling different shoe-
box rooms (varying in size and wall materials) and listener positions (x, y, z coordinates and
head angle) within each room. For each listener environment, we rendered BRIRs at 1008
source locations (2 distances at each of the 504 azimuth and elevation pairs). 1800 unique
listener environments were included in the training set and the remaining 200 were used
for validation. The final training and validation datasets consisted of 1,814,400 and 201,600
binaural auditory scenes, respectively. Target natural sounds were placed once at each of
the 2000 × 1008 source locations to ensure the dataset was balanced across the 504 target
location classes. Auditory scenes were presented to the model during training at sound levels
drawn uniformly between 30 and 90 dB SPL.

3.4.9 Model optimization – pitch perception

The pitch task and training dataset used here were unchanged from our previous work [17].
In short, we operationalized pitch perception as F0 estimation by having networks classify
50ms excerpts of speech and music embedded in nonperiodic texture-like background noise
according to F0. There were 700 F0 bins spanning 80 to 1000 Hz on a logarithmic scale
(bin width = 1/16 semitones = 0.36% F0). F0 labels for the training stimuli were computed
via the STRAIGHT algorithm [104] applied to clean speech and music excerpts. The final
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training consisted of 2.1 million exemplars sampled at 32kHz with SNRs drawn uniformly
between -10 and +10 dB and sound levels drawn uniformly between 30 and 90 dB SPL.
Models were trained on 80% of the dataset and 20% was used for validation.

3.4.10 Model optimization – voice and word recognition

Voice and word recognition are intertwined in this work because the same dataset was used
to train both tasks. We used an augmented version of the Word-Speaker-Noise dataset
[93], which consists of 230,356 unique speech clips embedded in 718,625 unique nonspeech
background noise clips from Audioset [107]. Randomly sampled pairs of 2s speech and noise
clips were combined to yield a training dataset of 5.8 million examples. A validation set
of 370,000 examples was similarly constructed from speech and noise clips excluded from
training. Each example is labeled with the talker that produced the speech utterance and
the word that appeared in the middle of the utterance (i.e., overlapped the 1s mark of the
2s utterance). The datasets contain 433 unique talker labels and 794 unique word labels.

Training models for robust voice recognition is complicated by the fact that large speech
corpora are often crowd-sourced online, with individuals contributing recordings of them-
selves reading passages or responding to prompts. The resulting dataset is accurately talker-
labeled but models optimized for talker classification may pick up on non-voice cues that
predict these labels (e.g., characteristics of the recording device or environment). To en-
sure our models learned robust voice representations, we applied a set of randomly sampled
audio manipulations to the speech to approximate the variable conditions in which human
listeners may encounter the same voices. In 25% of the dataset, speech clips were augmented
to increase natural voice variability by applying small pitch (± 0.5 semitones) and tempo
shifts (± 20%) or simulating whispering (less than 0.5% of examples) via the STRAIGHT
algorithm [104]. In an independently drawn 25%, we applied commonly encountered audio
distortions like band-pass / equalization filters, lossy audio compression / transmission, and
dynamic range companding. In another independently drawn 5%, we replaced background
noise with 12 to 36-talker babble to give the model some exposure to multi-talker situations.
SNRs for the augmented speech clips were drawn uniformly between -10 and +10 dB and
sound levels were drawn uniformly between 30 and 90 dB SPL.

We jointly optimized individual networks to recognize both voices and words using the
augmented dataset. Multi-task optimization was accomplished with a separate output layer
for each task. All other network stages were shared between the two tasks and parameters
were updated to minimize the sum of the softmax cross entropy loss from both tasks.
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3.4.11 Model evaluation – overview

For each task, we compared naturalistic human and model behavior in noise. Humans and
models were evaluated on the same tasks with the same stimuli wherever possible. For the
localization and speech models, we collected new human behavioral data to compare against.
For the pitch task model, we measured model F0 discrimination thresholds in noise using
stimuli from a recent human study. For each task, we also tested models on classic stimu-
lus manipulations from the psychoacoustics literature and compared behavior to published
human results. Human-model behavioral similarity was quantified for each experiment and
model by measuring Pearson correlation coefficients between analogous human and model
data points.

3.4.12 Localization model evaluation – sound localization in noise

Human experiment

We measured human’s ability to localize natural sounds in noise using a 19-by-5 array of
loudspeakers arranged on a hemisphere with 2m radius. The array spanned the 180° in
azimuth (frontal hemifield) and 0° to 40° in elevation (10° spacing in both azimuth and
elevation) relative to the listener’s head at the center. 11 normal hearing listeners (5 female)
with ages between 10 and 30 each performed 460 trials with 460 unique target natural sounds
from the GISE-51 evaluation dataset. On each trial a target natural sound was played from
one of the 95 loudspeakers and threshold equalizing noise played from 9 distinct loudspeakers.
Target and noise locations were randomly sampled each trial. The listener’s task was to
report which loudspeaker produced the target by entering the loudspeaker’s identifier on a
keypad. Target sounds were presented at 60 dBA and noise levels were determined such that
the SNR of the target relative to the sum of the 9 noise sources was -12, -6, 0, +6, +12 dB or
infinite (no noise). All stimuli were sampled at 44.1kHz and were 1s in duration, including
15ms onset and offset ramps (Hanning window).

Model experiment

Models were tested on all combinations of the 460 target natural sounds, 6 SNRs, and
95 target locations (262,200 total stimuli) used in the human experiments. Sources were
spatialized in a virtual rendering of the speaker array room human listeners were evaluated in.
To match the task between human and models, we restricted network localization judgments
to just azimuth and elevations corresponding to the 95 loudspeaker locations.
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Human-model comparison

Human and model performance was quantified by measuring mean absolute spherical error
(great circle distance), azimuth error, and elevation between the true and reported target
sound location. Human-model similarity scores report the correlation between these human
and model error metrics as a function of SNR. We also reported mean absolute azimuth and
elevation errors as a function of SNR.

3.4.13 Localization model evaluation – psychoacoustics

We simulated an expanded version of the battery of localization experiments used in Francl
and McDermott (2022). The stimuli and analysis of 6 of 8 psychoacoustic experiments
were unchanged from previous work. The minimum audible angle and ITD lateralization
experiments are new additions. All psychoacoustic stimuli for model localization experiments
were sampled at 44.1 kHz.

3.4.14 Minimum audible angle vs. azimuth

Human experiment

Mills (1958) measured human localization acuity as a function of frequency and azimuth by
playing pure tones to a blindfolded listener from a rotating boom in an anechoic chamber.
Minimum audible angle thresholds were defined as the smallest change in azimuth required
for the listener to discriminate whether a tone’s location shifted left or right between two
presentations. Though Mills (1958) only reported thresholds measured from a single human
listener, the key result that localization acuity is best near the midline and decays steadily
towards the periphery is well-established and holds across different experimental paradigms.

Model experiment

We measured model thresholds by simulating a left/right lateralization experiment. Pure
tones (1s duration including 70ms onset and offset Hanning window ramps) were spatialized
in a virtual anechoic room at 0° elevation and azimuths of -90 to +90° in steps of 0.5°
(using linear interpolations of BRIRs spaced 5° apart). For each tone, we collected model
predicted location probability distributions. These distributions were then multiplied by
a mask assigning zero probability to nonzero elevations and azimuths outside the frontal
hemifield. This resulted in probability distributions over predicted azimuth in the frontal
hemifield for each stimulus. Left/right discrimination trials were simulated by comparing
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the means of these distributions for pairs of stimuli rendered at different azimuths. Trials in
which the signed predicted azimuth of the second tone was larger than the signed predicted
azimuth of the first were considered rightward shifts. Minimum audible angle thresholds for
different frequencies (250, 500, 750 and 1000 Hz) and reference azimuths (0° to 75° in steps
of 5°) were inferred from separate psychometric functions (proportion of rightward shifts as a
function of azimuth difference) constructed from all possible trials within ±10° azimuth of the
reference. Model minimum audible angle thresholds were defined as the azimuth difference
that yielded 70.7% rightward shifts (calculated by fitting Normal cumulative distribution
functions to the psychometric functions).

Human-model comparison

We averaged human and model thresholds across pure tone frequencies of 250, 500, 750, and
1000 Hz. Human-model similarity was quantified by correlating average model thresholds
with linearly interpolated human thresholds as a function of absolute azimuth between 0°
and 75°.

3.4.15 ITD / ILD cue weighting

Human experiment

We simulated the experiment of Macpherson and Middlebrooks (2002), which measured
shifts in perceived azimuth for virtual sounds with additional ITDs and ILDs imposed. In
the original experiment, 13 participants (5 female) were played sounds over headphones and
reported perceived azimuth by turning their head to face the virtual source. The experiment
took place in an anechoic chamber and used both low-pass (0.5 to 2 kHz) and high-pass (4
to 16 kHz) 100ms noise bursts with 1ms squared-cosine ramps at the onset and offset.

Model experiment

We used identical stimuli spatialized in a virtual anechoic room at 0° elevation and 0° to 360°
azimuth in steps of 5°. For each of the source locations and noise bands, we also separately
created ITD- and ILD-biased versions of the stimuli. ITD-biased versions were modified im-
posed additional ±300µs and ±600µs time delays between the two ears. ILD-biased versions
imposed additional ±10 and ±20 dB level differences between the two ears. We collected
model azimuth predictions for each stimulus. Azimuth predictions in the rear hemifield were
mapped to the frontal hemifield by reflecting across the coronal plane. We paired the model
azimuth prediction for each ITD- and ILD-biased stimulus (“the biased azimuth”) with the
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azimuth prediction for the corresponding unbiased stimulus (“the unbiased azimuth”). We
then computed shifts in the biased azimuth relative to the unbiased azimuth. Azimuth shifts
for ITD-biased stimuli were expressed in µs by subtracting the ITD of a real source at the
biased azimuth from the ITD of a real source at the unbiased azimuth. Azimuth shifts for
ILD-based stimuli were expressed in dB by subtracting the ILD of a real source at the biased
azimuth from the ILD of a real source at the unbiased azimuth. Expressing azimuth shifts in
cue units enables calculation of a dimensionless perceptual weight by dividing the azimuth
shift by the imposed cue amount. Separate ITD and ILD perceptual weights were computed
for low-pass and high-pass noise by averaging across all azimuths and bias magnitudes. An
ITD perceptual weight of 1 indicates that, for a given virtual stimulus, imposing 600µs of ad-
ditional ITD shifts the perceived azimuth by an angle corresponding to a 600µs ITD change
between two real source locations. Perceptual weights of 0 indicates that imposing additional
ITDs or ILDs has no effect on the perceived the azimuth.

Human-model comparison

Human-model similarity was quantified by correlating ITD and ILD perceptual weights mea-
sured for low-pass and high-pass noise between humans and models.

3.4.16 ITD lateralization vs. frequency

Human experiment

The upper frequency limit of fine structure ITD use in humans has classically been measured
by asking listeners to make left/right lateralization judgments with pure tones presented over
headphones. The pure tones have variable fine structure ITDs but identical envelopes (fixed
window to eliminate onset ITDs) and zero ILD (identical amplitude between the two ears).
Listeners hear pairs of tones with different ITDs and judge whether the second tone sounded
left or right of the first. The ∆ITD threshold is the smallest change in ITD between two tones
that a listener can reliably lateralize. Brughera et al. (2013) measured ∆ITD thresholds of
4 young adult listeners (1 female) with 250, 500, 700, 800, 900, 1000, 1200, 1250, 1300, 1350,
and 1400 Hz pure tones.

Model experiment

We simulated the experiment on our models by collecting predicted location probability
distributions from our networks tested on 500ms pure tone stimuli (including 100ms linear
onset and offset ramps). Fine structure ITDs ranged from -160µs to 160µs in steps of 1µs.
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Frequencies ranged from 50 to 4000 Hz in steps of 50 Hz. Lateralization ∆ITD thresholds
were inferred from model judgments using the same method as the minimum audible angle
experiment. Model predictions were compared for pairs of stimuli with different ITD, and
rightward shifts were defined as trials in which the signed azimuth prediction was larger for
the second tone than the first. Psychometric functions were constructed for each frequency
(proportion of rightward shifts as a function of ∆ITD) and the ∆ITD threshold was defined
as the difference in azimuth yielding 70.7% rightward shifts.

Human-model comparison

Human-model similarity was quantified by correlating log-transformed model thresholds with
linearly interpolated human thresholds as a function of frequency between 250 and 1500 Hz.

3.4.17 Effect of changing ears

Human experiment

We simulated a change in our models’ ears analogous to the manipulation of Hofman et al.
(1998). In the original experiment, 4 participants localized white noise bursts presented in
a 4-by-4 grid uniformly tiling ±20° in azimuth and ±20° elevation. Participants reported
perceived locations by making eye movements to the source. After collecting baseline azimuth
and elevation judgments, plastic molds were inserted in the participants ears, which altered
the direction-specific filtering of their pinnae. Participants then repeated the localization
task with modified ears.

Model experiment

We simulated the experiment by collecting baseline model azimuth and elevation judgments
with the same stimuli (500ms noise bursts with a frequency band of 0.2 to 2 kHz) and then
switching out KEMAR’s HRTFs for 45 different sets of HRTFs from the CIPIC dataset.
Model azimuth and elevation predictions were collected for stimuli spatialized on 4-by-4 grid
uniformly tiling ±30° in azimuth and 0° to 30° in elevation. Azimuths and elevations were
not matched exactly to the human experiments due to constraints of the available HRTFs.
We averaged model judgments across the 45 different sets of HRTFs not used to train the
model to compare against human judgments with modified ears.
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Human-model comparison

To summarize the effects of changing ears on azimuth and elevation accuracy, we computed
changes in mean absolute azimuth and elevation error with the untrained ears relative to
the trained ears, averaging across all 16 source locations. Human-model similarity was
quantifying by correlating absolute azimuth and elevation errors as a function of grid position
and ear condition between humans and models.

3.4.18 Effect of smoothing spectral cues

Human experiment

We simulated a modified version of the experiment by Kulkarni and Colburn (1998), which
measured the effect of HRTF spectral details on sound localization. In the original ex-
periment, 4 listeners were played white noise bursts in an anechoic chamber. Sounds were
presented from either a physical loudspeaker in the room or virtually over open-backed head-
phones. The virtual sounds were spatially rendered at the loudspeaker’s location using the
participant’s own HRTFs. Participants were tasked with reporting whether the sound came
from the loudspeaker or the headphones. When the participants’ full HRTFs were used,
performance was at chance (50%). As the spectral details of the HRTFs were smoothed out
by approximating the HRTF’s discrete cosine transform with progressively fewer cosines,
performance rose above chance as participants no longer perceived the virtual stimuli at the
loudspeaker’s location.

Model experiment

We applied the same smoothing manipulation to KEMARs HRTFs (approximating the dis-
crete cosine transform with 256, 128, 64, 32, 16, 8, 2, and 1 cosines) and evaluated model
performance in a virtual anechoic room using 1s broadband (0.2 to 20 kHz) noise bursts.
Model localization judgments were collected for each smoothing condition at 413 locations
spanning 0° to 60° in elevation and 0° to 360° in azimuth (spacing determined by the loca-
tions of the measured KEMAR HRTFs). We computed mean absolute spherical, azimuth,
and elevation errors as a function of the number of cosines used to approximate the HRTFs.

Human-model comparison

Reasoning that higher absolute localization errors in the model would correspond to better
performance on the human real/virtual discrimination experiment, we quantified human-
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model similarity by correlating model absolute error with human percent correct scores as a
function of the smoothing parameter.

3.4.19 Median plane spectral cues

Human experiment

We simulated a modified version of the experiment by Hebrank and Wright (1974), which
measured the accuracy of human elevation judgments as a function of noise burst frequency
content. In the original experiment, 10 participants were played 1s noise bursts from a
vertical array of speakers along the median plane spanning -30° to +210° in elevation with 30°
spacing (0° is frontal). The experiment took place in an anechoic chamber and participants
were tasked with reporting which speaker produced the noise burst. Noise bursts were either
low-pass or high-pass with varying cutoff frequencies: 3.9, 6.0, 8.0, 10.3, 12.0, 14.5 or 16.0
kHz for the low-pass noise and 3.8, 5.8, 7.5, 10.0, 13.2 or 15.3 kHz for the high-pass noise.

Model experiment

We evaluated our model on noise bursts with the same cutoff frequencies rendered in a virtual
anechoic room at elevations of 0°, 30°, 60°, 120°, 150°, and 180° along the median plane. To
match the task between human and models, we restricted network localization judgments to
just azimuth and elevations along the median plane.

Human-model comparison

Human-model similarity was quantified by correlating human and model percent correct
scores as a function of noise type and frequency cutoff.

3.4.20 Precedence effect

Human experiment

To quantitatively compare the precedence effect between human and models we simulated
the experiment of Litovsky and Godar (2010), which measured localization accuracy for
25ms (including 2ms cosine onset and offset ramps) pink noise bursts played at two different
locations. The bursts were played from two loudspeakers in an array spanning -60° to +60°
in azimuth (20° spacing, 0° elevation) and were delayed relative to one another by 5, 10,
25, 50, or 100ms. 10 listeners (all female) with ages between 19 and 26 were tasked with
reporting whether they heard one or two sounds as well the loudspeaker that produced each
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sound. Root-mean-squared azimuth errors were calculated separately for the lead and lag
noise burst and reported as a function of the delay between the lead and lag bursts.

Model experiment

We evaluated models on the same stimuli rendered in a virtual anechoic room. Our models
always reported a single location which we used to compute the root-mean-squared azimuth
error relative to both the lead and lag burst.

Human-model comparison

Human-model similarity was quantified by correlating human and model azimuth error for
both the lead and lag burst as a function of the inter-burst delay.

3.4.21 Bandwidth dependency of localization

Human experiment

We simulated the experiment of Yost and Zhong (2014), measuring the effect of bandwidth
on localization accuracy with an array of 8 loudspeaker positioned between -15° to +90° in
azimuth (15° spacing) relative to the midline. 33 participants (26 female) with ages between
18 and 36 were tasked with reporting which loudspeaker produced a 200ms (including 20ms
squared cosine onset and offset ramps) sound. Stimuli were pure tones or band-pass filtered
white noise bursts with bandwidths of 1/20, 1/10, 1/6, 1/3, 1, and 2 octaves. Pure tone and
center frequencies were set to 250, 2000, and 4000 Hz. Human listeners made 20 localization
judgments per bandwidth, center frequency, and loudspeaker position.

Model experiment

We evaluated our models on the same stimuli rendered in a virtual anechoic room at azimuth
-90° to +90° in steps of 5°. Model localization judgments were restricted to the frontal
hemifield and 0° elevation.

Human-model comparison

Human-model similarity was quantified by correlating human and model root-mean-squared
error as a function of bandwidth (averaged across center frequencies).
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3.4.22 Pitch model evaluation – pitch discrimination in noise

Human experiment

We simulated the pitch discrimination experiment of McPherson et al. (2022) which mea-
sured human discrimination thresholds as a function of SNR using pure and harmonic com-
plex tones. The original experiment also included inharmonic complex tones, but we excluded
these because our models were optimized for F0 estimation. All stimuli were 500ms in du-
ration including 10ms Hanning window onset and offset ramps. Harmonic complex tones
contained the first 10 harmonics in random phase with equal amplitudes. F0s and pure tone
frequencies were drawn log-uniformly between 200 and 267 Hz. Tones were presented in
threshold equalizing noise low-pass filtered above 6 kHz with a 6th-order Butterworth filter.
Participants heard pairs of tones in noise and judged whether the second tone had a higher
or lower pitch than the first. F0 discrimination thresholds were measured with a 2-down-
1-up adaptive procedure that tracked 70.7% of trials correct. Thresholds were measured
at SNRs of -19, -17.5, -16, -14.5, and -13 dB for pure tones and -22, -20.5, -19, -17.5, -16,
-14.5, and -13 dB per component for complex tones. SNRs for the harmonic complexes are
expressed per individual harmonic component such that pure and complex tone thresholds
can be meaningfully plotted on the same axes. The experiment was run online and included
52 participants (20 female) who passed a headphone check.

Model experiment

We measured model F0 discrimination thresholds by evaluating networks on a superset of
the stimuli from the human experiment. For each of 3329 F0s log-uniformly distributed
between 158 and 337 Hz (±1/3 octave relative to the human experiment), we generated a
pure tone and a random-phase 10-harmonic complex. We embedded these stimuli in the
modified threshold equalizing noise from the human experiment at SNRs between -23.5 and
-11.5 dB per component in 1.5 dB increments. We simulated a two-alternative forced choice
paradigm by making pairwise comparisons between model F0 predictions (restricted to be
within a 1-octave band centered at the true F0) for stimuli within the same condition. In
each trial, we asked if the network predicted a higher F0 for the stimulus in the pair with the
higher F0 (i.e., if the network correctly identified which of two stimuli had a higher F0). F0
discrimination judgments across trials were then used to construct a psychometric function
plotting the percentage of correct trials as a function of %F0 difference between two stimuli.
Normal cumulative distribution functions were fit to the psychometric functions for each
condition and thresholds were defined as the F0 difference (in percent, capped at 100%) that
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yielded 70.7% of trials correct.

Human-model comparison

Human-model similarity was quantified by correlating log-transformed discrimination thresh-
olds as a function of SNR and tone condition. To ensure our similarity metric was dominated
by performance in noise and because the human experiment was run online, we excluded
noiseless conditions from the correlation.

3.4.23 Pitch model evaluation – psychoacoustics

We simulated the full battery of pitch psychoacoustic experiments from our previous work
with only minor changes to simplify presentation. All stimuli for pitch model experiments
were sampled at 32 kHz.

3.4.24 Effect of harmonic number and phase on pitch discrimination

We reproduced the stimulus manipulation of Bernstein and Oxenham (2005) to measure
model F0 discrimination thresholds as a function of lowest harmonic number and phase.

Stimuli

Stimuli were harmonic complex tones, band-pass filtered and embedded in masking noise to
control the lowest audible harmonic, and whose harmonics were in sine or random phase.
In the original study, the band-pass filter was kept fixed while the F0 was roved to set
the lowest harmonic number. Here, to measure thresholds at many combinations of F0
and lowest harmonic number, we roved both the F0 and the location of the filter. We
took the 4th-order Butterworth filter (2500 to 3500 Hz -3 dB passband) described in the
original study and translated its frequency response along the frequency axis to set the lowest
audible harmonic for a given stimulus. Before filtering, the level of each individual harmonic
was set to 48.3 dB SPL, which corresponds to 15 dB above the masked thresholds of the
original study’s normal-hearing participants. After filtering, harmonic tones were embedded
in modified uniform masking noise, which has a spectrum that is flat (15 dB/Hz SPL) below
600 Hz and rolls off at 2 dB/octave above 600 Hz. This noise was designed to ensure that
only harmonics within the filter’s -15 dB passband are presented above participants’ masked
audibility thresholds.
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Human experiment

The previously published human F0 discrimination thresholds were measured from 5 normal-
hearing participants (3 female) between the ages of 18 and 21 years old, all self-described
amateur musicians with at least 5 years of experience. Each participant completed 4 adaptive
tracks per condition.

Model experiment

The F0 discrimination experiment we ran on our networks had 600 conditions corresponding
to all combinations of 2 harmonic phases (sine or random), 30 lowest harmonic numbers
(nlow = 1, 2, 3, . . . 30), and 10 reference F0s (F0,ref ) spaced uniformly on a logarithmic scale
between 100 and 300 Hz. Within each condition, the network was evaluated on 121 stimuli
with slightly different F0s (within ±6% of F0,ref ) but the same band-pass filter. The filter was
positioned such that the low frequency cutoff of its -15 dB passband was equal to nlow×F0,ref .
On the grounds that human listeners likely employ a strong prior that stimuli should have
fairly similar F0s within single trials of a pitch discrimination experiment, we limited network
F0 predictions to fall within a one-octave range (centered at F0,ref ). We simulated a two-
alternative forced choice paradigm by making all 7260 possible pairwise comparisons between
the 121 stimuli. In each trial, we asked if the network predicted a higher F0 for the stimulus
in the pair with the higher F0. F0 discrimination judgments across trials were then used
to construct a psychometric function plotting the percentage of correct trials as a function
of %F0 difference between two stimuli. We combined psychometric functions across the 10
reference F0s by pooling trials with the same harmonic phase and lowest harmonic number.
Network thresholds were thus based on 1210 stimuli (72600 pairwise F0 discriminations) per
condition. Normal cumulative distribution functions were fit to the 60 (2 phase conditions
x 30 lowest harmonic numbers) resulting psychometric functions. To match human F0
discrimination thresholds, which were measured with a 2-down-1-up adaptive algorithm, we
defined the network F0 discrimination threshold as the F0 difference (in percent, capped at
100%) that yielded 70.7% of trials correct.

Human-model comparison

Bernstein and Oxenham (2005) reported very similar F0 discrimination thresholds for two
different spectral conditions ("low spectrum" with 2500 to 3500 Hz filter passband and "high
spectrum" with 5000 to 7000 Hz filter passband). To simplify presentation and because our
network experiment measured average thresholds across a wide range of band-pass filter po-
sitions, here we report their human data averaged across spectral condition. We quantified
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the similarity between human and network F0 discrimination thresholds as the correlation
between vectors of analogous data points. The network vector contained 60 F0 discrimina-
tion thresholds, one for each combination of phase and lowest harmonic number. To get a
human vector with 60 analogous F0 discrimination thresholds, we a) linearly interpolated
the human data between lowest harmonic numbers and b) extrapolated that F0 discrim-
ination thresholds are constant for lowest harmonic numbers between 1 and 5 (supported
by other published data). We then computed the Pearson correlation coefficient between
log-transformed vectors of human and network thresholds.

3.4.25 Pitch of alternating-phase harmonic complexes

We reproduced the stimulus manipulation of Shackleton and Carlyon (1994) to test if our
models exhibit pitch-doubling for alternating-phase harmonic stimuli.

Stimuli

Stimuli consisted of consecutive harmonics (each presented at 50 dB SPL) summed together
in alternating sine/cosine phase: odd-numbered harmonics in sine phase (0° offset between
frequency components) and even-numbered harmonics in cosine phase (90° offset, such that
components align at their peaks). As in the prior experiment, these harmonic tones were
band-pass filtered and embedded in masking noise to control which harmonics were audible.
The original study used pink noise and analog filters. Here, we used modified uniform mask-
ing noise and digital Butterworth filters (designed to approximate the original passbands).
We generated stimuli with two different 4th-order Butterworth filters specified by their -3
dB passbands: 125 to 625 Hz ("low harmonics") and 3900 to 5400 Hz ("high harmonics").
The exact harmonic numbers that are audible in each of these passbands depends on the
F0. The original study used stimuli with F0s near 62.5, 125, and 250 Hz (sometimes offset
by ±4% from the nominal F0 to avoid stereotyped responses), but we restricted our analysis
to just the 125 Hz condition to simplify presentation. We generated 354 stimuli with F0s
between 120 and 130 Hz for eac filter condition.

Human experiment

In the original experiment of Shackleton and Carlyon (1994), participants adjusted the F0
of a sine-phase control tone to match the pitch of a given alternating-phase test stimulus.
The matched F0 thus gives the perceived F0 for the test stimulus. The previously published
human data were obtained from 8 normal-hearing listeners who had a wide range of musical
experience. Each participant made 18 pitch matches per condition.
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Model experiment

To simulate the human paradigm in our model, we simply took the network’s F0 predic-
tion (within a 3-octave range centered at the stimulus F0) for the "perceived" F0 of the
alternating-phase test stimulus. For each stimulus, we computed the ratio of the predicted
F0 to the stimulus F0. Histograms of these frequency ratios (bin width = 2%) were generated
for the two filter conditions.

Human-model comparison

Shackleton and Carlyon (1994) constructed histograms from their pitch matching data, pool-
ing responses across participants (144 pitch matches per histogram). We quantified the
similarity between human and network responses by measuring the Pearson correlation co-
efficient between analogous human and network histograms (after re-binning both to use 4%
bin widths).

3.4.26 Pitch of frequency-shifted complexes

We reproduced the stimulus manipulation of Moore and Moore (2003) to test if our networks
exhibited pitch shifts for frequency-shifted complexes.

Stimuli

Stimuli were modifications of harmonic complex tones with consecutive harmonic frequencies
in cosine phase. We imposed two different F0-dependent spectral envelopes – as described by
Moore and Moore (2003) – on the stimuli. The first, which we termed the "low harmonics"
spectral envelope had a flat 3-harmonic wide passband centered at the 5th harmonic. The
second (termed "high harmonics") had a flat 5-harmonic wide passband centered at the
16th harmonic. Both spectral envelopes had sloping regions flanking the flat passband.
Amplitudes (relative to the flat passband) at a given frequency F in the sloping regions were
always given by (10x − 1)/9 where x = 1− |(F − Fe)/(1.5× F0)| and Fe is the edge of the
flat region. The amplitude was set to zero for x ≤ 0.

For a given F0 and fixed spectral envelope, we made stimuli inharmonic by shifting every
component frequency by a common offset in Hz specified as a percentage of the F0. As a
concrete example, consider a stimulus with F0 = 100 Hz and the "low harmonics" spectral
envelope. This stimulus contains nonzero energy at 200, 300, 400, 500, 600, and 700 Hz.
Frequency-shifting this harmonic tone by +8% of the F0 results in an inharmonic tone with
energy at 208, 308, 408, 508, 608, and 708 Hz. For each of the three spectral envelopes, we

141



generated stimuli with component shifts of +0, +4, +8, +12, +16, +20, and +24 %F0. For
each combination of spectral envelope and component shift, we generated stimuli with 3917
nominal F0s spaced log-uniformly between 80 and 480 Hz. Stimuli were presented at overall
levels of 70 dB SPL to match the original study.

Human experiment

Moore and Moore (2003) used a pitch matching paradigm to allow listeners to report the
perceived F0s for frequency-shifted complex tones. 5 normal-hearing listeners (all musically
trained) between the ages of 19 and 31 years old participated in the study. Each participant
made 108 pitch matches.

Model experiment

For the model experiment, we again took network F0 predictions for the frequency-shifted
complexes as the "perceived" F0s. F0 predictions were limited to a one-octave range centered
at the target F0 (the F0 of the stimulus before frequency-shifting). We summarize these
values as shifts in the predicted F0, which are given by (F0predicted − F0target)/(F0target).
These shifts are reported as the median across all tested F0s and plotted as a function of
component shift and spectral envelope.

Human-model comparison

Moore and Moore (2003) reported quantitatively similar patterns of pitch shifts for the three
F0s tested (100, 200, and 400 Hz). To simplify presentation and because we used many
more F0s in the network experiment, here we present their human data averaged across
F0 conditions. We quantified the similarity between human and network pitch shifts as the
Pearson correlation coefficient between vectors of analogous data points. The network vector
contained 14 median shifts, one for each combination of spectral envelope and component
shift. To obtain a human vector with 14 analogous pitch shifts, we linearly interpolated the
human data between component shifts.

3.4.27 Pitch of complexes with individually mistuned harmonics

We reproduced the stimulus manipulation of Moore et al. (1985) to test if our networks
exhibit pitch shifts for complexes with individually mistuned harmonics.
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Stimuli

Stimuli were modifications of harmonic complex tones containing 12 equal-amplitude har-
monics (60 dB SPL per component) in sine phase. We generated 178 tones with F0s near
200 Hz (logarithmic scale within ±4% of 200 Hz). Stimuli were then made inharmonic by
shifting the frequency of a single component at a time. We applied +0, +1, +2, +3, +4, +6,
and +8 % frequency shifts to each of the following harmonic numbers: 1, 2, 3, 4, 5, 6, and
12. In total there were 8722 stimuli (178 F0s × 7 component shifts × 7 harmonic numbers).

Human experiment

Moore et al. (1985) used a pitch-matching paradigm in which participants adjusted the
F0 of a comparison tone to match the perceived pitch of the complex with the mistuned
harmonic. Three participants (all highly experienced in psychoacoustic tasks) completed the
experiment. Participants each made 10 pitch matches per condition tested.

Model experiment

For the model experiment, we used the procedure from the previous experiment to measure
shifts in the network’s predicted F0 for all stimuli. F0 shifts were reported as a function of
component shift and harmonic number.

Human-model comparison

We compared the network’s pattern of pitch shifts to those averaged across the three par-
ticipants from Moore et al. (1985). Human-model similarity was again quantified as the
Pearson correlation coefficient between vectors of analogous data points. The network vec-
tor contained 49 mean shift values corresponding to the 49 conditions. Though Moore et
al. (1985) did not report pitch shifts for the 12th harmonic, they explicitly stated they
were unable to measure significant shifts when harmonics above the 6th were shifted. We
thus inferred pitch shifts were always equal to zero for the 12th harmonic when compiling
the vector of 49 analogous pitch shifts. We included this condition because some networks
exhibited pitch shifts for high-numbered harmonics, and we wanted our similarity metric to
be sensitive to this deviation from human behavior.

3.4.28 Pitch discrimination with pure and transposed tones

To investigate the necessity of correct tonotopic representation for accurate pitch percep-
tion, we measured network discrimination thresholds for pure tones and transposed tones as
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described by Oxenham et al. (2004).

Stimuli

Transposed tones were generated by multiplying a half-wave rectified low-frequency sinusoid
(the "envelope") with a high frequency sinusoid (the "carrier"). Before multiplication, the
"envelope" was low-pass filtered (4th order Butterworth filter) with a cutoff frequency equal
to 20% of the carrier frequency. To match the original study, we used carrier frequencies
of 4000, 6350, and 10080 Hz. For each carrier frequency, we generated 6144 transposed
tones with envelope frequencies spaced uniformly on a logarithmic scale between 80 and
320 Hz. We also generated 6144 pure tones with frequencies spanning the same range. All
stimuli were presented at 70 dB SPL and embedded in the modified uniform masking noise.
The original study embedded only the transposed tones in low-pass filtered noise to mask
distortion products. To ensure that the noise would not produce differences in the model’s
performance for the two types of stimuli, we included it for pure tones as well.

Human experiment

Oxenham et al. (2004) reported discrimination thresholds for these same 4 conditions (trans-
posed tones with 3 different carrier frequencies + pure tones) at 5 reference frequencies be-
tween 55 and 320 Hz. Data was collected from 4 young (<30 years old) adult participants
who had at least 1 hour of training on the frequency discrimination task. Discrimination
thresholds were based on 3 adaptive tracks per participant per condition.

Model experiment

The procedure for measuring network discrimination thresholds for pure tones was analogous
to the one used in other F0 discrimination experiments. We first took network F0 predictions
(within a one-octave range centered at the stimulus frequency) for all 6144 stimuli. We
then simulated a two-alternative forced choice paradigm by making pairwise comparisons
between predictions for stimuli with similar frequencies (within 2.7 semitones of 5 "reference
frequencies" spaced log-uniformly between 80 and 320 Hz). For each pair of stimuli, we asked
if the network correctly predicted a higher F0 for the stimulus with the higher frequency.
From all trials at a given reference frequency, we constructed a psychometric function plotting
the percentage of correct trials as a function of percent frequency difference between the two
stimuli. Normal cumulative distribution functions were fit to each psychometric function and
thresholds were defined as the percent frequency difference (capped at 100%) that yielded
70.7% correct. Each threshold was based on 233586 pairwise discriminations made between
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684 stimuli. The procedure for measuring thresholds with transposed tones was identical,
except that the correct answer was determined by the envelope frequency rather than the
carrier frequency. Thresholds were measured separately for transposed tones with different
carrier frequencies. To simplify presentation, we averaged transposed tone thresholds across
carrier frequencies (results were similar for different carrier frequencies).

Human-model comparison

We again quantified human-network similarity as the Pearson correlation coefficient between
vectors of analogous log-transformed discrimination thresholds. Both vectors contained 10
discrimination thresholds corresponding to pure tones and transposed tones at each of the
5 reference frequencies. Human thresholds were linearly interpolated to estimate thresholds
at the same reference frequencies used for networks. This step was necessary because our
networks were not trained to make F0 predictions below 80 Hz.

3.4.29 Effect of level on pure tone frequency discrimination

To investigate how phase-locking in the periphery contributes to the level-robustness of pitch
perception, we measured pure tone frequency discrimination thresholds from our networks
as a function of stimulus level.

Stimuli

We generated pure tones with 6144 frequencies spaced uniformly on a logarithmic scale
between 200 and 800 Hz. Tones were embedded in modified uniform masking noise. The
signal-to-noise ratio was fixed at 20 dB and the overall stimulus levels were varied between
10 and 80 dB SPL in increments of 10 dB.

Human experiment

Wier et al. (1977) reported frequency discrimination thresholds for pure tones in low-level
broadband noise as a function of frequency and sensation level (i.e., the amount by which
the stimulus is above its detection threshold). Thresholds were measured from four partic-
ipants with at least 20 hours of training on the frequency discrimination task. Participants
completed four or five 2-down-1-up adaptive tracks of 100 trials per condition. Stimuli were
presented at five different sensation levels: 5, 10, 20, 40, and 80 dB relative to masked thresh-
olds in 0 dB spectrum level noise (broadband, low-pass filtered at 10000 Hz). We averaged
the reported thresholds across four test frequencies (200, 400, 600, and 800 Hz).
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Model experiment

We used the procedure from previously described F0 discrimination experiments to measure
frequency discrimination thresholds as a function of stimulus presentation level. The sim-
ulated frequency discrimination experiment considered all possible pairings of stimuli with
similar frequencies (within 2.7 semitones). Reported discrimination thresholds were pooled
across all tested frequencies (200 to 800 Hz).

Human-model comparison

Human-model similarity was quantified my measuring the Pearson correlation coefficient
between log-transformed human thresholds as a function of dB sensation level and log-
transformed model thresholds as a function of dB SPL. Human thresholds were linearly
interpolated between 10 and 80 dB sensation level to facilitate this.

3.4.30 Speech model evaluation – voice and word recognition in

noise

Model experiment

We measured model voice and word recognition accuracy as a function of SNR in five different
types of background noise using an evaluation set of 376 speech clips not used for training or
validation. Each clip had a voice and word label included in the training dataset (376 unique
word labels from 164 unique talkers). Unique background noise clips (376 per condition) were
sourced from IEEE AASP CASA Challenge [166] (auditory scenes), CommonVoice [167] (8-
talker speech babble), and MUSDB18 [168] (instrumental music). Stationary speech-shaped
noise was synthesized by imposing the power spectrum of each evaluation speech clip on white
noise. Amplitude-modulated noise was synthesized by imposing the temporal envelope from
a randomly selected speech clip on the stationary speech-shaped noise [169]. Speech clips
were combined with background noise from each condition at 6 SNRs (noiseless and -9, -6,
-3, 0, +3 dB) yielding 11280 stimuli (376 speech clips × 5 noise type × 6 SNRs). Stimuli
were 2s in duration and sampled at 20 kHz. The speech level was held fixed at 60 dB SPL
and noise levels were adjusted to the desired SNRs. Networks were evaluated on the full
evaluation set.

Human experiment

We measured human word recognition as a function of SNR and noise type using same stimuli
and task as the model experiment. Humans were presented 2s stimuli and asked to report
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which word (from a list of 793) appeared in the middle of the utterance (overlapped the 1s
mark). Participants typed responses into a textbox and, as they typed, the displayed list
of 793 was filtered to include only words that matched the entered string. Only responses
from the word list could be submitted. The experiment was run online and included 82
participants (21 female, 60 male, 1 nonbinary) who passed a headphone check, completed at
least 100 trials, and responded correctly to at least 75% of a attention check trials (isolated
words presented in silence). Participants ages were between 18 and 64 (median 35) years.

Human-model comparison

We quantified human-model similarity by correlating human and model percent words correct
as a function of SNR and noise types. We report correlations for the experiment in two parts:
once for the auditory scenes, 8-talker babble, instrumental music, and stationary speech-
shaped noise and once for just stationary and modulated speech-shaped noise. This allowed
our human-model similarity metrics to distinguish between the four more naturalistic noise
conditions (where we saw little effect of phase locking) and the fluctuating masker benefit
experiment (where an effect was evident).

3.4.31 Voice discrimination in noise

Human experiment

To evaluate human voice recognition in noise without the confound of voice familiarity,
we performed an unfamiliar voice discrimination experiment. In the experiment human
listeners heard 3 different 1s speech clips spoken by two different talkers with 500ms silent
gaps between. Listeners were asked to judge which talker (always either the first or last)
only spoke once. We used from 252 unique voices (126 female, 126 male) from TIMIT [170]
which our models were never trained on. Listeners attempted up to 504 trials such that no
voice was the correct response more than once. For each participant, the 504 trials were
randomly distributed across 16 noise conditions and 1 attention check condition (in which
there was no noise and the same clip played twice). The 16 noise conditions were, stationary
speech-shaped noise at 9 SNRs (-18 to +6 dB in increments of 3 dB), amplitude-modulated
speech-shaped noise at 6 SNRs (-24 to +6 dB in increments of 6 dB), and noiseless. Speech-
shaped noise for the discrimination experiment was synthesized by imposing the mean power
spectrum of all speech stimuli on white noise to ensure the noise spectrum could not be used
to solve the task. The experiment was conducted online and included 44 participants (19
female, 25 male) who passed a headphone check, passed at least 95% of attention check
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trials, and completed at least 20 trials per noise condition. Participant ages were between
19 and 71 (median 36) years.

Model experiment

We evaluated our models on all 12096 stimuli (252 voices × 3 unique utterances × 16
noise conditions) generated for the human experiment and stored the network predicted
voice class probabilities. For each noise condition, we simulated the same set of 504 voice
discrimination trials human listeners were tested on by comparing triplets of these probability
distributions. On each trial, we measured the Kullback-Leibler divergence between the
predicted distributions for the first and second voice and the third and second voice. The
voice producing a larger divergence from the second was deemed the model’s judgment as
to which talker only spoke once.

Human-model comparison

We quantified human-model similarity by measuring the correlation between human and
model voice discrimination accuracy (percent trials correct) as a function of SNR and noise
condition.

3.4.32 Voice and word recognition with pitch-altered speech

Human voice recognition experiment

We replicated the voice recognition experiment of McPherson and McDermott (2018), which
measured listeners’ ability to recognize pitch-altered voices from famous celebrities. Stimuli
were 4s speech clips from 37 recognizable politicians, actors, singers, and television hosts. In
the first block of 37 trials, each participant heard all 37 voices randomly assigned to one of
8 pitch-manipulation conditions (inharmonic or shifted ±12, ±6, ±3, 0 semitones from the
original F0). In the second block of 37 trials, each participant heard different excerpts of the
same 37 voices with no pitch shift. Each participants results were analyzed only for first the
block, limited to just the celebrity voices they successfully recognized in the second block
and identified as familiar in a pre-experiment survey. All stimuli were resynthesized with the
STRAIGHT algorithm [104]. Voices were made inharmonic by shifting harmonic frequency
components above the fundamental by random amounts uniformly sampled between -50%
and +50% of F0 [58], [155]. Jitter values were sampled independently for each harmonic
frequency and voice clip but were constrained (via rejection sampling) such that adjacent
harmonics were always separated by at least 30 Hz. The experiment was a 100-alternative
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forced-choice task. Participants entered responses into a textbox which filtered a displayed
list of 100 celebrity names and descriptors (e.g., “Dolly Parton (country singer-songwriter)”)
until there was only a single match, which the participant could submit. The experiment
included 112 participants (45 female, 65 male, 1 nonbinary) with ages between 20 and 73
(median 39) years. Because analysis was limited to voices for which participants demon-
strated familiarity and each voice could only be assigned to one pitch condition, the number
of participants for each condition ranged from 87 to 95.

Human word recognition experiment

We measured human word recognition accuracy for the same 8 pitch conditions using the
376 model evaluation set speech clips. The experiment was identical to our word recognition
in noise experiment, except clips were randomly assigned to one of 8 pitch conditions and
presented in quiet. The online experiment included 31 participants (10 female, 21 male) who
passed a headphone check, passed at least 95% of attention check trials, and completed at
least 20 trials condition. Participants ages were between 24 and 71 (median 36) years.

Model voice and word recognition experiment

We measured model voice and word recognition accuracy on the pitch-manipulated evalua-
tion set used in the human word recognition experiment. We collect model voice and word
predictions for the 376 speech clips in each of 10 pitch conditions (inharmonic or shifted
±12, ±9, ±6, ±3, 0 semitones from the original F0).

Human-model comparison

Human-model similarity across all pitch conditions and both tasks was quantified with a
single correlation coefficient. We concatenated voice and word recognition scores as a function
of pitch condition into a single vector of length 16 (8 voice + 8 word recognition scores) and
correlated analogous vectors between humans and models.

3.4.33 Word recognition with tone-vocoded speech

Human experiment

We simulated the word recognition in noise experiment of Hopkins and Moore (2009), which
measured speech reception thresholds in stationary and modulated noise using progressively
tone-vocoded speech. In the original experiment, speech stimuli were split into frequency
subbands with a 32-channel cochlear band-pass filter bank with center frequencies equally
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spaced on an ERB-number scale between 100 and 10000 Hz. Frequency channels above a
set cutoff channel (which determined the “number of channels with intact TFS”) were tone
vocoded to disrupt TFS. Channels were tone vocoded by imposing the temporal envelope
(absolute value of the Hilbert transform) of the subband on a pure tone carrier at the chan-
nel’s center frequency. Tone-vocoded subbands were band-pass filtered using the cochlear
filter bank and summed together with the unmodified subbands. The resulting stimuli were
presented to listeners in both stationary and modulated speech-shaped noise. Noise was
amplitude-modulated with an 8 Hz sinusoid on a decibel scale with a peak-to-valley ratio
of 30 dB to match the human experiment. Human speech reception thresholds were mea-
sured from 10 normal hearing participants using an adaptive procedure that tracked the
SNR needed to achieve 50% of words correct. Hopkins and Moore (2009) reported speech
reception thresholds with the cutoff channel set to 0, 8, 16, 24, and 32.

Model experiment

We applied the same stimulus manipulation to our 376 evaluation set speech clips and mea-
sured model word recognition accuracy in stationary and modulated noise at SNRs of -15
to +15 dB in increments of 3 dB. We used the stationary speech-shaped noise from our
previous word recognition in noise experiment. Amplitude-modulated noise was matched
to the human experiment by applying the same 8 Hz sinusoidal envelope to our stationary
noise. Speech reception thresholds were calculated for the model by fitting a sigmoid to the
psychometric metric function (word recognition accuracy as a function of SNR) for each con-
dition and selecting the SNR that yielded half-maximal performance. We measured model
speech reception thresholds with the TFS cutoff channel set between 0 (all channels tone
vocoded) and 32 (all channels intact) in steps of 4. Because our models were trained with
speech sampled at 20 kHz, the 32-channel Gammatone filter bank used to synthesize model
stimuli had center frequencies equally spaced on an ERB-number scale between 80 and 8000
Hz rather than 100 to 10000 Hz.

Human-model comparison

Human and model speech reception thresholds for both noise types were expressed relative
to speech with no intact TFS (i.e., subtracted from the threshold with cutoff channel set
to 0). Human-model similarity was quantified by correlating this “benefit from TFS” as a
function of SNR and noise type between humans and models.
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3.4.34 Statistics

Human-model behavioral similarity was quantified separately for each model and experi-
ment with a Pearson correlation coefficient. In each case, we compared mean model behav-
ior (averaged across 10 network architectures) with mean human behavior (averaged across
experiment participants). We calculated 95% confidence intervals for each human-model
comparison by bootstrapping the model mean (sampling 10 network architectures with re-
placement 2000 times). The statistical significance of the effect of degraded phase locking
was assessed by comparing human-model similarity scores against null distributions from
the 3000 Hz phase locking models. Null distributions were Gaussian fits to the histograms
of the bootstrapped human-model similarity scores for the 3000 Hz phase locking models.
We then calculated the two-tailed p-values of obtaining the mean similarity scores from each
degraded phase locking model under the null distribution. Effect sizes were quantified by
measuring Cohen’s d between bootstrapped distributions of human-model similarity scores
from different phase locking conditions.
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3.5 Supplementary Information
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Figure 3.8: Effect of phase locking manipulation on all localization experiments.
This grid summarizes the behavioral data used to measure human-model similarity scores for the localization
models. Columns correspond to human listeners and models optimized with different phase locking limits.
The second (orange) column corresponds to the 3000 Hz phase locking model with network architectures
modified to delay binaural integration. Rows correspond to 9 different sound localization experiments. a.
Sound localization in noise. b. Minimum audible angle vs. frequency. c. ITD / ILD cue weighting. d. ITD
lateralization vs. frequency. e. Effect of changing ears. f. Effect of smoothing spectral cues. g. Precedence
effect. h. Bandwidth dependency of localization. i. Median plane spectral cues. All model error bars
indicate ±2 standard errors of the mean across 10 network architectures. Human data in b-i is re-plotted
from the original studies [132]–[135], [146], [153], [154], [171].
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Figure 3.9: Effect of phase locking manipulation on all pitch experiments.
This grid summarizes the behavioral data used to measure human-model similarity scores for the pitch
models. Columns correspond to human listeners and models optimized with different phase locking limits.
Rows correspond to 7 different pitch perception experiments. a. Pitch discrimination with pure and complex
tones in noise. b. Effect of harmonic number and phase on pitch discrimination. c. Pitch of alternating-
phase harmonic complexes. d. Pitch of frequency-shifted complexes. e. Pitch of complexes with individually
mistuned harmonics. f. Pitch discrimination with pure and transposed tones. g. Effect of level on pure tone
frequency discrimination. All model error bars indicate ±2 standard errors of the mean across 10 network
architectures. Human data is re-plotted from the original studies [59]–[63], [82], [89].
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Figure 3.10: Models optimized separately for voice and word recognition – effect of phase
locking manipulation on all speech experiments.
The same network architectures optimized jointly for voice and word recognition in the main text were also
optimized separately for the voice and word recognition tasks for each phase locking condition. This yielded
similar results to the jointly optimized models. Columns correspond to human listeners and models optimized
with different phase locking limits. Rows correspond to 7 speech experiments. a. Voice recognition in real-
world noise conditions (model only experiment). b. Voice discrimination in stationary and modulated noise.
c. Voice and word recognition with pitch-shifted speech. d. Voice and word recognition with harmonic and
inharmonic speech. e. Word recognition in real-world noise conditions. f. Word recognition in stationary
and modulated noise. g. Effect of tone vocoding on word recognition in stationary and modulated noise. All
model error bars indicate ±2 standard errors of the mean across 10 network architectures. Human data in
g is re-plotted from the original study [36].
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Figure 3.11: Simplified cochlear model – effect of phase locking manipulation on all local-
ization experiments.
Columns correspond to human listeners and models optimized with different phase locking limits. The second
(orange) column corresponds to the 3000 Hz phase locking model with network architectures modified to delay
binaural integration. Rows correspond to 9 different sound localization experiments. a. Sound localization
in noise. b. Minimum audible angle vs. frequency. c. ITD / ILD cue weighting. d. ITD lateralization
vs. frequency. e. Effect of changing ears. f. Effect of smoothing spectral cues. g. Precedence effect.
h. Bandwidth dependency of localization. i. Median plane spectral cues. All model error bars indicate
±2 standard errors of the mean across 10 network architectures. Human data in b-i is re-plotted from the
original studies [132]–[135], [146], [153], [154], [171].
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Figure 3.12: Simplified cochlear model – effect of phase locking manipulation on all pitch
experiments.
Columns correspond to human listeners and models optimized with different phase locking limits. Rows
correspond to 7 different pitch perception experiments. a. Pitch discrimination with pure and complex tones
in noise. b. Effect of harmonic number and phase on pitch discrimination. c. Pitch of alternating-phase
harmonic complexes. d. Pitch of frequency-shifted complexes. e. Pitch of complexes with individually
mistuned harmonics. f. Pitch discrimination with pure and transposed tones. g. Effect of level on pure tone
frequency discrimination. All model error bars indicate ±2 standard errors of the mean across 10 network
architectures. Human data is re-plotted from the original studies [59]–[63], [82], [89].
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Figure 3.13: Simplified cochlear model – effect of phase locking manipulation on all speech
experiments.
Columns correspond to human listeners and models optimized with different phase locking limits. Rows
correspond to 7 speech experiments. a. Voice recognition in real-world noise conditions (model only exper-
iment). b. Voice discrimination in stationary and modulated noise. c. Voice and word recognition with
pitch-shifted speech. d. Voice and word recognition with harmonic and inharmonic speech. e. Word recogni-
tion in real-world noise conditions. f. Word recognition in stationary and modulated noise. g. Effect of tone
vocoding on word recognition in stationary and modulated noise. All model error bars indicate ±2 standard
errors of the mean across 10 network architectures. Human data in g is re-plotted from the original study
[36].
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Figure 3.14: Simplified cochlear model – human-model similarity scores.
Analogous to Fig. 3.4f, Fig. 3.5f, and Fig. 3.7f in the main text but for models operating on simplified
cochlear input representations. Human-model similarity scores for each phase locking condition are plotted
for every (a.) localization, (b.) pitch, and (c.) speech experiment. Similarity scores were Pearson correlation
coefficients between corresponding human and model behavioral data points. The rightmost columns present
similarity scores averaged across all experiments within the same model. Error bars indicate 95% confidence
intervals computed by bootstrapping the mean of 10 network architectures. Asterisks denote statistically
significant differences between phase locking conditions (p < 0.001, two-tailed), evaluated by comparing
mean similarity scores against null distributions bootstrapped from the 3000 Hz conditions.
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Figure 3.15: Model voice and word recognition with inharmonic speech in noise.
To directly compare effects of the inharmonicity and tone vocoding stimulus manipulations on model word
recognition in noise, we measured word recognition accuracy in stationary and modulated speech-shaped
noise at SNRs between -18 and +15 dB in 3 dB increments using (a.) natural, (b.) tone-vocoded, and (c.)
inharmonic versions of the same speech. The tone-vocoded speech was fully vocoded (0 channels with intact
TFS). d. Model voice recognition with inharmonic speech as a function of SNR in four different types of real-
world noise. e. Model word recognition with inharmonic speech as a function of SNR in four different types
of real-world noise. All error bars indicate ±2 standard errors of the mean across 10 network architectures.
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Architecture arch_01 arch_02 arch_03 arch_04 arch_05 arch_06 arch_07 arch_08 arch_09 arch_10
Operation input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6]

1 conv0 [1, 8, 32] conv0 [2, 8, 32] conv0 [1, 4, 32] conv0 [3, 8, 32] conv0 [2, 32, 32] conv0 [1, 64, 32] conv0 [1, 16, 32] conv0 [1, 64, 32] conv0 [3, 32, 32] conv0 [2, 4, 32]

2 mpool0 [1, 1] mpool0 [1, 1] mpool0 [1, 1] mpool0 [1, 1] mpool0 [1, 2] mpool0 [1, 8] mpool0 [1, 1] mpool0 [1, 1] mpool0 [1, 1] mpool0 [2, 2]

3 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0

4 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0

5 conv1 [1, 64, 32] conv1 [3, 16, 32] conv1 [3, 32, 32] conv1 [3, 8, 32] conv1 [1, 4, 64] conv1 [2, 4, 64] conv1 [1, 8, 32] conv1 [2, 16, 32] conv1 [2, 16, 32] conv1 [2, 4, 32]

6 mpool1 [1, 1] mpool1 [1, 1] mpool1 [1, 8] mpool1 [1, 2] mpool1 [1, 4] mpool1 [1, 1] mpool1 [1, 2] mpool1 [1, 8] mpool1 [1, 4] mpool1 [1, 4]

7 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1

8 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1

9 conv2 [1, 64, 32] conv2 [2, 4, 32] conv2 [3, 32, 64] conv2 [1, 32, 64] conv2 [3, 2, 64] conv2 [1, 32, 64] conv2 [2, 4, 64] conv2 [2, 4, 64] conv2 [2, 32, 64] conv2 [3, 16, 64]

10 mpool2 [1, 8] mpool2 [1, 8] mpool2 [1, 1] mpool2 [1, 1] mpool2 [1, 1] mpool2 [2, 4] mpool2 [1, 1] mpool2 [1, 1] mpool2 [1, 1] mpool2 [1, 2]

11 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2

12 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2

13 conv3 [2, 4, 64] conv3 [3, 16, 64] conv3 [1, 8, 64] conv3 [3, 8, 64] conv3 [2, 8, 64] conv3 [3, 4, 128] conv3 [2, 32, 64] conv3 [2, 16, 64] conv3 [3, 4, 64] conv3 [1, 2, 128]

14 mpool3 [2, 4] mpool3 [1, 1] mpool3 [1, 4] mpool3 [2, 4] mpool3 [1, 1] mpool3 [1, 1] mpool3 [1, 4] mpool3 [1, 1] mpool3 [1, 4] mpool3 [1, 2]

15 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3

16 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3

17 conv4 [3, 8, 128] conv4 [1, 8, 64] conv4 [3, 8, 64] conv4 [2, 2, 128] conv4 [1, 16, 64] conv4 [2, 16, 128] conv4 [3, 2, 64] conv4 [1, 16, 64] conv4 [3, 8, 128] flatten

18 mpool4 [1, 1] mpool4 [1, 4] mpool4 [1, 1] mpool4 [1, 4] mpool4 [1, 4] mpool4 [1, 2] mpool4 [1, 1] mpool4 [1, 2] mpool4 [1, 4] fc0 [512]

19 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu_fc0

20 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 norm_fc0

21 conv5 [3, 32, 128] conv5 [3, 8, 128] conv5 [1, 2, 64] conv5 [1, 4, 256] conv5 [3, 4, 128] conv5 [1, 2, 256] conv5 [1, 2, 64] conv5 [2, 32, 128] conv5 [3, 2, 256] dropout

22 mpool5 [1, 4] mpool5 [1, 4] mpool5 [1, 1] mpool5 [1, 1] mpool5 [1, 2] mpool5 [1, 1] mpool5 [2, 4] mpool5 [1, 4] mpool5 [1, 2] fc [504]

23 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5

24 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5

25 conv6 [3, 4, 256] conv6 [2, 2, 128] conv6 [2, 2, 64] conv6 [3, 2, 256] conv6 [3, 4, 256] conv6 [3, 4, 256] conv6 [1, 8, 128] conv6 [2, 16, 128] conv6 [2, 8, 512]

26 mpool6 [1, 1] mpool6 [1, 2] mpool6 [2, 4] mpool6 [1, 1] mpool6 [1, 1] mpool6 [1, 2] mpool6 [1, 1] mpool6 [1, 1] mpool6 [1, 1]

27 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6

28 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6

29 conv7 [3, 8, 256] conv7 [3, 2, 256] conv7 [2, 4, 128] conv7 [2, 2, 256] conv7 [3, 4, 256] flatten flatten conv7 [1, 2, 128] conv7 [3, 4, 512]

30 mpool7 [1, 2] mpool7 [1, 2] mpool7 [1, 1] mpool7 [1, 2] mpool7 [1, 1] fc0 [512] fc0 [512] mpool7 [1, 1] mpool7 [1, 2]

31 relu7 relu7 relu7 relu7 relu7 relu_fc0 relu_fc0 relu7 relu7

32 bnorm7 bnorm7 bnorm7 bnorm7 bnorm7 norm_fc0 norm_fc0 bnorm7 bnorm7

33 flatten conv8 [1, 8, 512] conv8 [1, 8, 128] flatten conv8 [2, 4, 256] dropout dropout conv8 [3, 16, 128] conv8 [1, 3, 512]

34 fc0 [512] mpool8 [1, 2] mpool8 [1, 1] fc0 [512] mpool8 [1, 2] fc [504] fc [504] mpool8 [1, 4] mpool8 [1, 1]

35 relu_fc0 relu8 relu8 relu_fc0 relu8 relu8 relu8

36 norm_fc0 bnorm8 bnorm8 norm_fc0 bnorm8 bnorm8 bnorm8

37 dropout flatten conv9 [3, 2, 128] dropout flatten flatten flatten

38 fc [504] fc0 [512] mpool9 [1, 4] fc [504] fc0 [512] fc0 [512] fc0 [512]

39 relu_fc0 relu9 relu_fc0 relu_fc0 relu_fc0

40 norm_fc0 bnorm9 norm_fc0 norm_fc0 norm_fc0

41 dropout flatten dropout dropout dropout

42 fc [504] fc0 [512] fc [504] fc [504] fc [504]

43 relu_fc0

44 norm_fc0

45 dropout

46 fc [504]

47

Table 3.1: Neural network architectures for sound localization models.
Grey bands indicate blocks of convolution, pooling, nonlinear rectification, and normalization operations.
The convolution operations highlighted in orange were replaced with grouped convolutions (2 groups for the
left and right ear) when network architectures were modified to delay binaural integration. Legend:

•••••••• conv[h,w, k] : convolutional layer with h = kernel height (frequency dimension), w = kernel width
(time dimension), and k = number of kernels

• relu : rectified linear unit activation function

• mpool[sf , st]: max pooling operation with stride sf in the frequency dimension and stride st in the
time dimension

• bnorm : batch normalization operation

• flatten : multidimensional representation reshaped to a vector

• fc[N ] : fully-connected layer with N units

• dropout : dropout regularization with 50% dropout rate
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Architecture arch_0083 arch_0154 arch_0190 arch_0191 arch_0286 arch_0288 arch_0302 arch_0335 arch_0338 arch_0346
Operation input [100, 1000, 3] input [100, 1000, 3] input [100, 1000, 3] input [100, 1000, 3] input [100, 1000, 3] input [100, 1000, 3] input [100, 1000, 3] input [100, 1000, 3] input [100, 1000, 3] input [100, 1000, 3]

1 conv0 [2, 82, 32] conv0 [1, 70, 64] conv0 [2, 97, 32] conv0 [2, 83, 32] conv0 [1, 180, 64] conv0 [3, 77, 64] conv0 [1, 250, 32] conv0 [1, 71, 32] conv0 [2, 110, 64] conv0 [3, 53, 32]

2 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0

3 hpool0 [1, 2] hpool0 [1, 5] hpool0 [1, 6] hpool0 [1, 2] hpool0 [2, 6] hpool0 [1, 2] hpool0 [1, 5] hpool0 [1, 1] hpool0 [3, 2] hpool0 [1, 2]

4 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0

5 conv1 [1, 162, 64] conv1 [7, 21, 128] conv1 [5, 11, 64] conv1 [1, 164, 64] conv1 [2, 37, 128] conv1 [1, 193, 128] conv1 [19, 11, 64] conv1 [1, 114, 32] conv1 [1, 126, 128] conv1 [1, 60, 64]

6 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1

7 hpool1 [2, 2] hpool1 [4, 3] hpool1 [1, 1] hpool1 [3, 7] hpool1 [1, 1] hpool1 [4, 3] hpool1 [1, 7] hpool1 [1, 3] hpool1 [3, 3] hpool1 [2, 4]

8 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1

9 conv2 [1, 72, 128] conv2 [4, 26, 256] conv2 [1, 56, 128] conv2 [5, 9, 128] conv2 [15, 10, 128] conv2 [8, 10, 128] conv2 [12, 9, 128] conv2 [1, 86, 64] conv2 [4, 30, 256] conv2 [3, 46, 128]

10 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2

11 hpool2 [4, 2] hpool2 [1, 6] hpool2 [4, 7] hpool2 [1, 7] hpool2 [1, 1] hpool2 [2, 6] hpool2 [3, 1] hpool2 [4, 1] hpool2 [2, 5] hpool2 [1, 6]

12 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2

13 conv3 [6, 3, 128] conv3 [2, 1, 512] conv3 [8, 5, 256] conv3 [4, 3, 256] flatten conv3 [2, 2, 256] conv3 [7, 7, 256] conv3 [13, 13, 128] conv3 [1, 5, 256] conv3 [8, 1, 256]

14 relu3 relu3 relu3 relu3 fc0 [512] relu3 relu3 relu3 relu3 relu3

15 hpool3 [2, 5] hpool3 [2, 1] hpool3 [1, 2] hpool3 [2, 1] relu_fc0 hpool3 [2, 2] hpool3 [1, 1] hpool3 [1, 8] hpool3 [1, 3] hpool3 [2, 2]

16 bnorm3 bnorm3 bnorm3 bnorm3 norm_fc0 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3

17 flatten conv4 [5, 3, 256] conv4 [1, 3, 256] conv4 [5, 2, 512] dropout conv4 [2, 1, 512] conv4 [5, 3, 512] conv4 [2, 10, 256] conv4 [2, 2, 512] conv4 [7, 2, 256]

18 fc0 [128] relu4 relu4 relu4 fc [700] relu4 relu4 relu4 relu4 relu4

19 relu_fc0 hpool4 [1, 1] hpool4 [2, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [3, 1] hpool4 [1, 3] hpool4 [1, 1] hpool4 [1, 1]

20 norm_fc0 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4

21 dropout conv5 [2, 2, 256] flatten flatten conv5 [2, 4, 1024] flatten conv5 [3, 2, 512] conv5 [1, 1, 1024] conv5 [2, 2, 512]

22 fc [700] relu5 dropout fc0 [256] relu5 fc0 [1024] relu5 relu5 relu5

23 hpool5 [1, 1] fc [700] relu_fc0 hpool5 [1, 1] relu_fc0 hpool5 [2, 1] hpool5 [1, 1] hpool5 [2, 1]

24 bnorm5 norm_fc0 bnorm5 norm_fc0 bnorm5 bnorm5 bnorm5

25 conv6 [3, 1, 256] dropout flatten dropout flatten conv6 [1, 1, 1024] conv6 [1, 1, 512]

26 relu6 fc [700] fc0 [256] fc [700] dropout relu6 relu6

27 hpool6 [1, 1] relu_fc0 fc [700] hpool6 [1, 1] hpool6 [1, 1]

28 bnorm6 norm_fc0 bnorm6 bnorm6

29 flatten dropout flatten flatten

30 dropout fc [700] fc0 [256] fc0 [512]

31 fc [700] relu_fc0 relu_fc0

32 norm_fc0 norm_fc0

33 dropout dropout

34 fc [700] fc [700]

35

Table 3.2: Neural network architectures for pitch models.
Grey bands indicate blocks of convolution, pooling, nonlinear rectification, and normalization operations.
Legend:

•••••••• conv[h,w, k] : convolutional layer with h = kernel height (frequency dimension), w = kernel width
(time dimension), and k = number of kernels

• relu : rectified linear unit activation function

• hpool[sf , st]: Hanning window weighted average pooling operation with stride sf in the frequency
dimension and stride st in the time dimension

• bnorm : batch normalization operation

• flatten : multidimensional representation reshaped to a vector

• fc[N ] : fully-connected layer with N units

• dropout : dropout regularization with 50% dropout rate
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Architecture arch0_0000 arch0_0001 arch0_0002 arch0_0004 arch0_0006 arch0_0007 arch0_0008 arch0_0009 arch0_0016 arch0_0017
Operation input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3]

1 input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm

2 conv0 [2, 42, 32] conv0 [1, 84, 32] conv0 [4, 21, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32]

3 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0

4 hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4]

5 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0

6 conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [4, 9, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64]

7 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1

8 hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4]

9 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1

10 conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [12, 3, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128]

11 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2

12 hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4]

13 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2

14 conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [3, 12, 256] conv3 [12, 3, 256] conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [6, 6, 256]

15 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3

16 hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4]

17 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3

18 conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [4, 16, 512] conv4 [8, 8, 512] conv4 [8, 8, 512]

19 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4

20 hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1]

21 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4

22 conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512]

23 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5

24 hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1]

25 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5

26 conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512]

27 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6

28 hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4]

29 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6

30 flatten flatten flatten flatten flatten flatten flatten flatten conv7 [2, 8, 512] conv7 [8, 2, 512]

31 fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] relu7 relu7

32 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 hpool7 [1, 1] hpool7 [1, 1]

33 norm_fc0 norm_fc0 norm_fc0 norm_fc0 norm_fc0 norm_fc0 norm_fc0 norm_fc0 lnorm7 lnorm7

34 dropout dropout dropout dropout dropout dropout dropout dropout flatten flatten

35 fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc0 [512] fc0 [512]

36 relu_fc0 relu_fc0

37 norm_fc0 norm_fc0

38 dropout dropout

39 fc [433, 794] fc [433, 794]

40

Table 3.3: Neural network architectures for voice and word recognition models.
Grey bands indicate blocks of convolution, pooling, nonlinear rectification, and normalization operations.
Legend:

••••••••• conv[h,w, k] : convolutional layer with h = kernel height (frequency dimension), w = kernel width
(time dimension), and k = number of kernels

• relu : rectified linear unit activation function

• hpool[sf , st]: Hanning window weighted average pooling operation with stride sf in the frequency
dimension and stride st in the time dimension

• lnorm : layer normalization operation

• flatten : multidimensional representation reshaped to a vector

• fc[N ] : fully-connected layer with N units

• fc[Nvoice, Nword] : two parallel fully-connected layers operating on the same input, one with Nvoice
units and one with Nword units

• dropout : dropout regularization with 50% dropout rate
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Chapter 4

Speech denoising with auditory models

Mark R. Saddler, Andrew Francl, Jenelle Feather, Kaizhi

Quan, Yang Zhang, Josh H. McDermott

Abstract

Contemporary speech enhancement predominantly relies on audio transforms that are trained
to reconstruct a clean speech waveform. The development of high-performing neural network
sound recognition systems has raised the possibility of using deep feature representations as
‘perceptual’ losses with which to train denoising systems. We explored their utility by first
training deep neural networks to classify either spoken words or environmental sounds from
audio. We then trained an audio transform to map noisy speech to an audio waveform that
minimized the difference in the deep feature representations between the output audio and
the corresponding clean audio. The resulting transforms removed noise substantially better
than baseline methods trained to reconstruct clean waveforms, and also outperformed pre-
vious methods using deep feature losses. However, a similar benefit was obtained simply by
using losses derived from the filter bank inputs to the deep networks. The results show that
deep features can guide speech enhancement, but suggest that they do not yet outperform
simple alternatives that do not involve learned features.

Index Terms: speech enhancement, denoising, deep neural networks, cochlear model, per-
ceptual metrics
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4.1 Introduction

Recent advances in speech enhancement have been driven by neural network models trained
to reconstruct speech sample-by-sample [38]–[45]. These methods provide substantial ben-
efits over previous approaches, but nonetheless leave room for improvement. The resulting
processed speech usually contains audible artifacts, and noise removal is usually incomplete
at lower SNRs.

A parallel line of work has explored the use of deep artificial neural networks as models of
sensory systems [19], [57]. Although substantial discrepancies remain [15], [93], such trained
neural networks currently provide the best predictive models of brain responses and behavior
in both the visual and auditory systems [13], [19]. The apparent similarities between deep
supervised feature representations and representations in the brain raises the possibility that
such representations could be used as perceptual metrics. Such metrics have been successfully
employed in image processing [172], but are not widely used in audio applications.

Deep feature losses for denoising were previously proposed in [46], [173]–[176], but were
explored only for relatively high signal-to-noise ratios (SNRs), a single task and network, or
were not compared to baseline methods using the same transform architecture. Additionally,
direct comparisons have not been made to simpler losses derived from conventional filter
banks. It was thus unclear the extent to which deep feature losses could improve on simpler
approaches, and what choices in the feature training would produce the best results. The
goal of this paper was to directly compare deep perceptual losses to alternative losses, and
to explore the conditions in which benefits might be achieved. We found that deep feature
losses produced more natural denoising compared to waveform losses, but that a similar
benefit could be achieved using a loss derived from standard filter bank representations.

4.2 Methods

There were two components to our denoising approach (Figure 4.1). The first component
was a recognition network trained to recognize either speech or environmental sounds. Once
trained, this network was used to define deep feature losses. Speech recognition is a natural
choice in this context, but it also seemed plausible that more general-purpose audio features
learned for environmental sound recognition might help to achieve natural-sounding audio
even in speech applications. The input to the network was the output of a filter bank modeled
on the human cochlea.

The second component was a waveform-to-waveform audio transform whose parameters
were adjusted via gradient descent to minimize a loss function (evaluated on features of the
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Audio	transform	weights	are	
updated	via	gradient	descent

Figure 4.1: Schematic of audio transform training.

recognition network, or the outputs of a filter bank, or on the waveform). We used a Wave-U-
Net [177], which has been found to perform comparably to WaveNet [178] based on objective
metrics of noise reduction, but which can be specified with many fewer parameters and run
with a much lower memory footprint. Code, models, and audio examples are available at:
https://mcdermottlab.mit.edu/denoising/demo.html.

4.2.1 Recognition networks

The recognition networks took as input simulated cochlear representations of 2s sound clips
(audio sampled at 20 kHz). The cochlear model consisted of a bank of 40 bandpass filters
whose frequency tuning mimics that of the human ear (evenly spaced on an Equivalent
Rectangular Bandwidth scale [112]), followed by half-wave rectification, downsampling to 10
kHz, and 0.3 power compression [108].

Recognition network architectures

We used three feed-forward CNN architectures for the recognition networks. Each consisted
of stages of convolution, rectification, batch normalization, and weighted average pooling
with a hanning kernel to minimize aliasing [93], [179]. The three architectures were selected
based on word recognition task performance from 3097 randomly-generated architectures
varying in number of convolutional layers (from 4 to 8), size and shape of convolutional
kernels, and extent of pooling. The selected architectures had 6 (arch1) or 7 (arch2,3)
convolutional layers.
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Recognition network training

The recognition networks were trained to perform either word recognition or environmental
sound recognition. For the speech task, each training example was a speech excerpt (from the
Wall Street Journal [180] or Spoken Wikipedia Corpora [105]). The task was to recognize the
word overlapping with the center of the clip [13], [93] (out of 793 word classes sourced from
432 unique speakers, with 230,357 unique clips in the training set and 40,651 segments in the
validation set). For the environmental sound recognition task, each training example was a
non-speech YouTube soundtrack excerpt (from a subset of 718,625 AudioSet examples [107]),
and the task was to predict the AudioSet labels (spanning 516 categories in our dataset).

The three network architectures were trained on each task until performance on the
validation set task plateaued. Word task classification accuracies for the three architectures
were: arch1 = 90.4%, arch2 = 88.5%, and arch3 = 80.6%. AudioSet task AUC values were:
arch1 = 0.845, arch2 = 0.861, and arch3 = 0.869.

4.2.2 Audio transforms

Wave-U-Net architecture

The Wave-U-Net architecture was the same as in [178]: 12 layers in the contracting path, a
1-layer bottleneck, and 12 layers in the expanding path. All layers utilized 1D convolutions
with learned filters and LeakyReLU activation functions. There were 24 filters in the first
layer, and the number of filters increased by a factor of 2 with each successive layer prior to
the bottleneck.

Deep feature Losses

The recognition networks were used to define a deep feature loss function as the L1 distance
between network representations of noisy speech and clean speech. The total loss for a
single recognition network and single training example was the sum of the L1 distances
between the noisy speech and clean speech activations for each convolutional layer, weighted
to approximately balance the contribution of each layer.

Cochlear model losses

We also trained transforms using losses derived from the cochlear model that provided input
to the recognition network, as well as variants of the model that varied in i) the number of
filters (5, 10, 20, 40, 80 and 160 filters, evenly spaced on an ERB-scale [112], with bandwidths
scaled to tile the spectrum in all cases), ii) the dependence of filter bandwidth on frequency
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(linearly-spaced and ‘reversed’, with broad low-frequency filters and narrow high-frequency
filters, opposite to what is found in the ear), and iii) in their phase invariance (subband
envelopes computed by lowpass-filtering the rectified subbands; cutoff of 100 Hz).

Wave-U-Net training

Out of concern that the audio transform might overfit to idiosyncrasies of any individual
recognition network, we trained some transforms on losses computed simultaneously from
an ensemble of three different networks (arch1,2,3), and some on just a single network (arch1).

In all cases the Wave-U-Net was trained on speech superimposed on non-speech AudioSet
excerpts (the same corpora used to train the recognition networks) with SNR drawn uni-
formly from [−20,+10] dB. AudioSet excerpts were used as the training ‘noise’ as they were
highly varied and diverse. All Wave-U-Net models were trained with the ADAM optimizer
for 600,000 steps (batch size=8, learning rate=10−4).

Baselines

We used two baseline models, both trained to explicitly reconstruct clean speech waveforms
from noisy speech waveforms drawn from the same training set described above. The first
was a previously described WaveNet [42] and the second was the Wave-U-Net [178] used
with the deep feature and filter losses.

We also compared our results to those of a previously published denoising transform
trained with a deep feature loss [46], using both the pre-trained model made available by
Germain et al. and a Wave-U-Net that we trained on our dataset using the feature loss
from [46] (deep network features trained on the DCASE 2016 [181] environmental sound
challenge).

4.2.3 Evaluation

We evaluated the trained models on 40 speech excerpts (from a separate validation set)
superimposed separately on each of four types of noise signals: speech-shaped Gaussian
noise, auditory scenes from the DCASE 2013 dataset [166], instrumental music from the
Million Song Dataset [182], and 8-speaker babble made from public-domain audiobooks
(librivox.org). These noise sources were chosen to be distinct from those in the training set,
and to span a variety of noise types to assess the generality of the trained transforms.
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Table 4.1: Experiment 1 results. Reported metrics are averaged across the five tested SNR
levels. Higher is better for all metrics.

Model name Loss function Natural. PESQ STOI SDR

Cochlear model (N=40; human) 40 ERB-spaced subbands 4.43 1.55 0.75 7.16
A123 AudioSet features (arch123) 4.43 1.66 0.77 4.06

A1+W1 AudioSet + Word features (arch1) 4.36 1.68 0.79 6.18
A123+W123 AudioSet + Word features (arch123) 4.33 1.67 0.77 4.18

A1 AudioSet features (arch1) 4.33 1.65 0.78 3.63
W123 Word features (archs123) 4.24 1.67 0.79 6.64
W1 Word features (arch1) 4.22 1.63 0.77 3.30

Random1 Random features (arch1) 3.91 1.57 0.78 5.64
Random123 Random features (arch123) 3.84 1.57 0.77 5.08

Germain DeepFeatures DCASE features from [46] 3.83 1.47 0.77 6.72
Germain (pre-trained) DCASE features from [46] 2.36 1.14 0.64 0.93

Waveform (Wave-U-Net) Waveform 4.17 1.51 0.76 7.35
Waveform (WaveNet) Waveform 3.72 1.40 0.75 6.00
Unprocessed input 2.67 1.15 0.70 0.21

Human perceptual evaluation and objective metrics

We evaluated the audio transforms by conducting perceptual experiments on Amazon Me-
chanical Turk. Participants first completed a screening task to help ensure that they were
wearing headphones or earphones [183]. The participants who passed this screening task
then rated the naturalness of a set of processed speech signals, presented seven at a time
in a MUSHRA-like paradigm. Listeners could listen to each clip as many times as they
wished and then gave each a numerical rating on a scale of 1-7. Listeners were provided with
anchors corresponding to the ends of the rating scale (1 and 7). The anchor at the high end
was always the original clean speech. The low-end anchor was 4-bit-quantized speech (an
example of very high distortion). To help ensure that participants were using the scale as
instructed, each experiment included 3 catch trials where two of the stimuli were the two
anchors. In order to be included in the analysis, participants had to rate all instances of the
high and low anchors as 7 and 1, respectively.

We ran two identically structured experiments to evaluate all of our audio transforms.
Experiment 1 compared various deep feature losses to baselines and contained all of the
conditions listed in Table 4.1. Experiment 2 compared losses derived from different cochlear
filter banks and contained all of the conditions listed in Table 4.2. 54 and 105 participants
met the inclusion criteria for Experiments 1 and 2, respectively.

We also used three standard objective measures for evaluation: perceptual evaluation of
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Figure 4.2: Rated naturalness vs. SNR for speech processed by Wave-U-Nets trained on deep
feature losses, in addition to baseline models trained to reconstruct clean speech waveforms,
and two versions of a related prior method [46]. Error bars plot SEM (across 54 participants).

speech quality (PESQ) [184], short-time objective intelligibility measure (STOI) [185], and
the signal-to-distortion ratio (SDR) [186].

4.3 Results

4.3.1 Deep feature losses yield improved denoising

The best-performing systems trained with deep perceptual feature losses outperformed both
waveform-based baselines. The average objective and subjective evaluation results are shown
in Table 4.1. Human listeners found the speech processed by the deep feature models to be
more natural than the speech processed by the baseline models. We plot the naturalness
results in more detail (Figure 4.2) for two of the best-performing models trained on each of
AudioSet features (A123) and word recognition features (W123), as well as a model trained
on random features (Random123), the two baselines, and the two versions of the denoising
network from [46].

4.3.2 Learned vs. random deep features

The benefit of deep feature losses was specific to models trained with learned features. Audio
transforms trained to reconstruct random features did not produce better naturalism than
the baseline WaveNet, and performed worse overall than the baseline Wave-U-Net (Figure
4.2; Table 4.1).
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Table 4.2: Experiment 2 results. Reported metrics are averaged across the five tested SNR
levels. Higher is better for all metrics.

Model name Loss function Natural. PESQ STOI SDR

Cochlear model (N=20) 20 ERB-spaced subbands 4.33 1.54 0.77 7.61
Cochlear model (N=40; human) 40 ERB-spaced subbands 4.30 1.55 0.75 7.16

Cochlear model (N=160) 160 ERB-spaced subbands 4.26 1.60 0.77 7.51
Cochlear model (N=10) 10 ERB-spaced subbands 4.22 1.49 0.76 7.08
Cochlear model (N=80) 80 ERB-spaced subbands 4.21 1.53 0.74 6.69
Cochlear model (N=5) 5 ERB-spaced subbands 3.93 1.42 0.75 6.02

Cochlear model (N=40; linear) 40 linearly-spaced subbands 4.32 1.51 0.76 6.82
Cochlear model (N=40; env.) Envelopes of 40 ERB subbands 4.16 1.59 0.75 6.94

Cochlear model (N=40; reverse) 40 reverse-ERB-spaced subbands 4.08 1.47 0.73 4.73
A123 AudioSet features (arch123) 4.27 1.66 0.77 4.06

Waveform (Wave-U-Net) Waveform 4.17 1.51 0.76 7.35
Unprocessed input 2.47 1.15 0.70 0.21

4.3.3 Comparison to previous deep feature systems

Our best-performing deep feature-based systems also outperformed previously published
systems with deep feature losses. The pre-trained system from Germain et al. [46] generalized
poorly to our test set. Furthermore, the Wave-U-Net we trained using the deep feature loss
from [46] also performed worse than the baseline Wave-U-Net. These findings suggest that
the features used for the perceptual loss are important, and that the DCASE task used in
[46] may not have produced sufficiently general features.

4.3.4 Effect of task used to train deep features

The best results occurred for features trained on the environmental sound recognition task
– naturalism was consistently higher than for features trained on word recognition (Figure
4.2; Table 4.1). However, all of the models trained with feature losses from our recognition
networks produced more natural-sounding speech than the baselines, and than the systems
trained with DCASE features based on [46]. There was no obvious benefit from training on
features from three different networks.

4.3.5 Cochlear model losses match deep feature losses

Although deep features produced better performance than baselines trained using waveform
losses, we found that we could reproduce their benefit using losses derived from the cochlear
model inputs to the recognition networks. Based on rated naturalness, the transform trained
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Figure 4.3: Rated naturalness vs. SNR for speech processed by Wave-U-Nets trained on
cochlear model losses with different filter banks (select examples depicted above). Error
bars plot SEM (across 105 participants).

with this ‘cochlear’ loss performed just as well as our best model trained with deep feature
losses (Table 4.1).

4.3.6 Effect of filter bank characteristics

The benefit of the cochlear loss depended to some extent on the filter characteristics (Table
4.2; Figure 4.3, left). Worse performance was obtained with a ‘reversed’ filter bank, with
wide filters at low frequencies and narrower filters at high frequencies, opposite to that of
the ear. Using the envelope of the filter outputs also produced worse performance (counter
to the hypothesis that phase invariance might be critical). However, filters that were linearly
spaced along the frequency axis worked about as well as those modeled on the ear.

Worse performance was also obtained using only five filters (scaled to cover the frequency
spectrum), but good results were obtained provided at least 10 filters were used (Figure 4.3,
right). This result suggests that splitting the audio up into multiple frequency channels is
sufficient to replicate the benefit of deep features provided there are enough channels with
reasonably sensible frequency tuning.
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4.3.7 Objective metrics

The models trained on deep recognition features also performed better than the baselines
according to PESQ and STOI. Notably, this advantage was not evident when measured with
SDR. The filter bank-trained models showed the opposite trend – better performance as
measured by SDR, and worse via PESQ and STOI (Table 4.2). These differences suggest
that the filter bank and deep feature losses are not fully interchangeable despite having
similar effects on overall naturalness. The results also underscore the limitations of objective
metrics for capturing human perception of altered speech.

4.4 Discussion

Prior work has proposed denoising based on deep feature losses [46], [173]–[176], but has not
evaluated it relative to methods using simpler waveform- or subband-based losses. We found
that deep recognition features could be used to train denoising systems that outperform
waveform-based methods, but that their benefit could be matched using a standard one-
layer auditory filter bank. The results thus provide no evidence that deep features provide
a unique benefit for denoising.

Although deep neural networks yield the best current models of biological sensory systems
[19], [57], our results indicate that these similarities are not yet sufficient to produce audio
enhancement algorithms above and beyond what can be obtained from simple filter bank
models. However, it is possible that building better models of human perceptual systems
will also yield feature losses [187], [188] that would better transfer their perceptual benefits
to humans, and produce benefits relative to simpler approaches. It also remains possible
that the audio quality is limited more by the audio transform than the feature loss. More
expressive transforms, or transforms with stronger generative constraints, might yield a
clearer benefit of deep features.

The benefits of deep feature and cochlear model losses relative to waveform-based losses
were clear from the ratings of human listeners, but were less evident in the objective metrics
we tested (PESQ, STOI, SDR). This result indicates that optimizing for auditory model-
based losses may provide perceptual benefits that conventional objective metrics are poorly
suited to measuring, and suggests to the potential value of auditory model features as new
objective metrics.

In sum, we found that audio transforms trained to modify noisy speech so as to recon-
struct deep feature representations of clean speech produce better denoising performance
than transforms trained to reconstruct clean speech waveforms, as measured by the ratings
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of human listeners. However, a similar benefit was obtained using one-layer auditory filter
banks, suggesting the importance of multi-channel, overcomplete representations rather than
learned features per se.
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Chapter 5

Conclusion

5.1 Contributions

We developed new models of hearing by combining detailed signal processing descriptions of
the auditory periphery with deep artificial neural networks. When optimized for real-world
hearing tasks, these models accounted for a broad array of human pitch perception, sound
localization, voice recognition, and word recognition behavior. We used these models to
investigate the underpinnings of human behavior, identifying environmental and peripheral
neural coding factors that constrain auditory perception.

In Chapter 2, we introduced this modeling approach in the domain of pitch perception
by optimizing networks to estimate F0 from speech and music in noise. The resulting pitch
model innovated on prior work in two key regards. First, the model was optimized for
naturalistic stimuli and listening conditions. By contrast, most prior models instantiate
mechanistic hypotheses for how pitch information might be extracted from specific cues in
the periphery [24], [63], [67]–[72]. Our model had access to all the cues available in the
periphery and was free to use whichever combination of cues maximized task performance.
Our optimization approach allowed us to explicitly test how human pitch computations may
be adapted to the constraints of natural sounds. Second, our model produced quantitative
matches to human behavior across a suite of classic psychoacoustic experiments. Importantly,
the model was never trained on the psychoacoustic stimuli or fit to human data in any
way. The characteristics of human pitch perception simply emerged when the model was
optimized to estimate F0 from natural sounds in natural listening conditions heard through a
human-like cochlea. To probe the origins of these characteristics, we optimized models with
altered environmental and neural coding constraints. The results suggest pitch perception
is critically shaped by the constraints of natural environments in addition to those of the
cochlea.
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In Chapter 3, we extended the approach to investigate the widely debated role of pre-
cise auditory nerve spike timing across hearing more broadly. Models were optimized to
perform real-world hearing tasks using simulated auditory nerve input with different phase
locking limits. Models with high phase locking limits replicated human behavior across all
21 experiments considered. Models with lower phase locking limits produced less human-like
behavior, but some tasks were more sensitive than others. Degraded phase locking impaired
sound localization, pitch perception, and voice recognition but left word recognition largely
intact. The results suggest the information encoded in precise auditory nerve spike timing
contributes to perception and therefore must be extracted in the auditory system. These
findings place strong constraints on future models of the auditory system and clarify condi-
tions in which prostheses that fail to restore high-fidelity temporal coding (e.g., contemporary
cochlear implants) could in principle restore near-normal hearing.

More generally, these studies illustrate how highly expressive and optimizable models
from deep learning can enable normative analysis in domains where traditional ideal observers
are intractable. Models optimized for perceptual tasks under different constraints can provide
insights into why human behavior exhibits certain characteristics [57], [189].

Our approach draws inspiration from classic ideal observer theory but differs in the im-
portant regard that current deep optimization methods provide no guarantee of optimality.
Comparisons of absolute model performance should thus be interpreted with caution. Does
a model optimized with altered neural coding fail to achieve human-level performance be-
cause a critical cue is disrupted or simply because the model is insufficiently optimized?
Without a provably optimal task solution, the second possibility is theoretically impossible
to rule out. In practice, we hedged against this possibility by ensuring conclusions gener-
alized across neural network architectures and by comparing model behavior across many
experiments. Simulating suites of psychophysical experiments probing different aspects of
human perception allowed us to identify qualitative differences between human and model
perceptual strategies in addition to any quantitative differences in overall task performance.

This thesis argues that foregoing provably optimal solutions has an invaluable upside:
the ability to analyze real-world tasks. There is little reason to believe human perceptual
systems are optimized for the simple tasks and stimuli for which provably optimal solutions
can be derived. More plausibly, human perceptual systems are optimized for important
tasks in the natural environment [18]. Our results suggest that many of the psychophysical
characteristics of human hearing can be understood as consequences of this optimization.
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5.2 Future directions

The general approach of this thesis was to relate environmental and peripheral neural coding
features to perception by comparing models in terms of behavioral similarity to humans. The
power of our approach is tied to the sensitivity of our behavioral metrics. We aimed to evalu-
ate human-model similarity across as many psychoacoustic experiments as we could plausibly
simulate in our networks. In addition to simply increasing the number of experiments, future
work should increase the power to adjudicate between models by making finer-grained be-
havioral comparisons within the same experiments [15]. Rather than comparing overall task
performance, finer-grained behavioral judgments like word and voice-level confusions or lo-
calization biases could be compared at the level of stimuli or individual trials. Finer-grained
behavioral comparisons may elucidate links between progressively finer-grained details of
neural coding and perception.

Despite their evocative name, the artificial neural networks in this work share little in
common with biological neural networks in the brain. Under our approach, artificial neural
networks may be viewed as just one class of highly expressive mathematical functions that
can be optimized to perform tasks. At some level, our networks are no more a mechanistic
hypothesis of brain function than the set of equations specifying an ideal observer are. How-
ever, this view should be tempered when considering the reality that deep artificial neural
networks, despite their implausible learning rules and coarse approximations of biology, are
the current state of the art for predicting brain responses in sensory systems [20]. Model
manipulations that better align network and brain representations may in turn improve be-
havioral predictions. We saw evidence for this in Chapter 3, where incorporating a simple
architectural constraint that made networks more brain-like (requiring localization networks
to initially process inputs from the two ears separately) yielded a more human-like task so-
lution. Additional constraints that future models could incorporate include more plausible
learning rules [190], biological resource limitations [191], and joint optimization for many
tasks.

Our approach has natural extensions to modeling hearing loss and cochlear implants.
The detailed auditory nerve model used as input to our networks can be altered to simulate
peripheral consequences of hair cell loss [4] or electrical stimulation by a cochlear implant
[159]. Cochlear neuropathy can realistically be simulated in our models by adjusting the
numbers of different nerve fiber types [158]. Models optimized for auditory nerve represen-
tations with different impairments could clarify the patterns of behavior to expect under
different hearing loss etiologies or cochlear implant processors [192]. Models optimized with
either healthy or impaired input and then evaluated with impaired input (potentially with
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partial re-optimization for impaired input) could yield insights into the role of plasticity after
hearing loss. Such experiments may shed light on hearing aid acclimatization or cochlear
implant outcomes.

The causes and consequences of hearing loss are highly variable. Distinguishing different
types of sensorineural hearing loss is important for remediation but remains challenging be-
cause the state of the auditory periphery cannot be directly observed in humans. Diagnostic
tests for inferring peripheral state from behavior are needed in the clinic but have been
difficult to identify [193]. Task-optimized models that predict behavioral consequences of
different hearing loss etiologies could enable efficient searches over tasks and stimuli to iden-
tify such tests. For instance, stimuli could be synthesized to produce maximally disparate
perceptual judgments between auditory models with different peripheral states [160].

Task-optimized models of impaired auditory perception could potentially be used to de-
velop hearing aid and cochlear implant processing strategies. In Chapter 3, we found that
the human-like behavior of our networks did not critically depend on many of the com-
plex, nonlinear response properties of the auditory nerve. Very similar behavior emerged
in models optimized with a much simpler cochlear front-end through which gradients can
be back-propagated. This raises the possibility of using model-based loss functions to ar-
tificially learn novel hearing aid strategies [194]. Chapter 4 explored a precursor to this,
investigating the utility of task-optimized auditory models as perceptual metrics for speech
denoising. We found that loss functions based on deep network features outperformed stan-
dard waveform-based losses but not simple cochlear model-based losses. However, it remains
to be seen whether our networks confer benefit for hearing aids, which must contend with
altered cochlear processing. A hearing aid processor optimized to reconstruct healthy audi-
tory nerve representations may be suboptimal for a person with a severely degraded auditory
nerve. Processors optimized for perceptual outcomes in a network equipped with impaired
ears may yet provide benefit and warrant future investigation.
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