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ABSTRACT 

Non-linear biological macromolecules, such as glycans, participate in a wide range of key 

structural, metabolic, and regulatory functions in all living organisms. Many of these essential 

roles involve interactions with glycan-binding proteins called lectins. As a result, there is particular 

interest in the design of highly specific glycan binders to critical lectins such as dendritic cell-

specific ICAM-grabbing non-integrin (DC-SIGN). However, insufficient knowledge of the 

binding specificity of lectins, combined with the enormous structural complexity of glycans that 

range from linear to highly branched, serve as a barrier to the rational computational and 

experimental design of effective glycan binders. Here, using mammalian microarray data from the 

Consortium of Functional Glycomics, we predict glycan-lectin binding affinity and lectin 

specificity using an interpretable graph-based supervised learning framework. For the first time, 

we uncovered both monomers and motifs more precise than the monomer unit critical for lectin 

specificity. Furthermore, we developed a general graph-based optimization framework for 

macromolecules that employs the trained regression model ensembles to design glycans with high 

binding strength, low uncertainty in binding strength prediction, and low probability of human 

immunogenicity. Our work provides a general framework for iterative, chemistry-informed and 

topology-agnostic design in the macromolecular chemical space. 
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1   INTRODUCTION 

Glycans are a diverse class of macromolecules made by all living organisms with critical roles in 

a wide range of life-sustaining processes. Because glycans participate in many physiological 

processes through interactions with glycan-binding proteins called lectins, the design of highly 

specific glycan binders presents an enormous opportunity for the development of novel diagnostics, 

therapeutics, and vaccines (Amon et al., 2014; Geissner & Seeberger, 2016). However, rational 

design of novel glycan binders is impeded by incomplete knowledge of the binding specificity of 

lectins (Blixt et al., 2004).  

Existing computational attempts to study glycan interactions and microarrays have encoded 

glycans as “glycowords” composed of polysaccharide units with characters representing 

monosaccharides and bonds (Bojar et al., 2021), as well as constituent monomer, dimers, and 

trimers (Carpenter et al., 2021) to predict glycan immunogenicity and binding strength to lectins. 

Others have employed frequent subtree mining to identify glycan motifs with a high frequency 

among strongly binding glycans and a low frequency among weakly binding glycans to predict 

lectin-glycan binding (Coff et al., 2020; Choletti et al., 2012). Although these prior attempts to 

study glycan interactions have predictive power, they lack the ability to reveal important motifs 

for binding, particularly substructures more precise than the individual monomer unit.  

The vast diversity in glycan composition and topology presents another barrier in the design and 

optimization of novel glycan binders. In the design of novel chemical sequences, much existing 

work focuses on small molecules. Jensen et al. (2017) employed both a graph-based genetic 

algorithm approach and a graph-based generative model combined with Monte Carlo tree search 

to optimize the partition coefficient and synthetic accessibility of small molecules. Bengio et al. 
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(2021) applied GFlowNet, a novel generative method based on flow networks and local flow-

matching conditions, to generate diverse drug molecules in large-scale synthesis tasks.  

Following the success of optimization approaches to small molecules, several other works extend 

to the synthetic and biological macromolecular space. For linear macromolecules, such as proteins 

and linear copolymers, several works have utilized methods such as Monte Carlo Tree Search 

(MCTS) (Patra et al., 2020) and genetic algorithm (Meenakshisundaram et al., 2017; Schissel et 

al., 2021), often in conjunction with molecular dynamics (MD) simulations. Patra et al. (2020) 

interfaced MCTS and MD to identify linear copolymer sequences of up to 30 monomer units with 

zero interfacial energy between two immiscible homopolymers, while Meenakshisundaram et al. 

(2017) employed an MD-based genetic algorithm to minimize the interfacial energy at the 

polymer-polymer interface. Schissel et al. (2021) utilized a predictor-optimizer loop based on 

directed evolution to design novel abiotic nuclear-targeting miniproteins. However, the 

aforementioned methods for linear macromolecules do not extend to macromolecules with non-

linear topologies, such as branched glycans. 

In this work, we predicted glycan-lectin binding strength and specificity using an interpretable 

supervised learning framework developed in Mohapatra et al. (2022), and developed a graph-based 

genetic algorithm (GBGA) optimization framework to design glycans binders with improved 

properties. We employed mammalian glycan array data from the Consortium of Functional 

Glycomics (CFG) for dendritic cell-specific ICAM-grabbing non-integrin (DC-SIGN) and 

Concanavalin A (ConA) (Blixt et al., 2004). By training graph neural network (GNN) regression 

models to predict binding affinity and performing graph attribution on these trained models, we 

uncovered motifs critical to lectin-glycan specificity, for the first time revealing critical 

substructures more precise than the individual monomer unit. Finally, using the GBGA approach 



 6 

we proposed a novel approach to rationally design glycans and macromolecules of diverse 

topologies. 
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2   GRAPH REPRESENTATION LEARNING AND GRAPH ATTRIBUTION 

2.1  DATASET 

After preprocessing to remove any data points with binding strength values more than three 

standard deviations outside of the mean, the DC-SIGN mammalian glycan microarray dataset 

consists of 3411 total data points with a mean binding strength in RFU of 156.264 and a standard 

deviation of 789.929 (Figure 1). 

Although previous studies on glycan microarrays have employed log transformation of the RFU 

values to normalize the dataset, we found that standard scaling from scikit-learn on the raw, 

untransformed RFU values resulted in stronger model performance compared to log 

transformation of the RFU values followed by standard scaling, particularly with regards to 

prediction of the highest binding strengths. Therefore, we employed standard scaling on the 

original RFU values to transform the data for model training. 
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Figure 1. Distribution of binding strength values in relative fluorescence units (RFU) for the 

mammalian glycan microarray dataset for DC-SIGN. A. The original, non-log transformed 

average binding strengths for each glycan in RFU. B. The log-transformed average binding 

strengths for each glycan in RFU. C. The original, non-log transformed binding strengths for all 

the replicate data, resulting in 6 RFU values for each glycan. D. The log-transformed binding 

strengths for all the replicate data, resulting in 6 RFU values for each glycan. 
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2.2  REGRESSION 

Despite the critical role lectins like DC-SIGN play in physiological processes such as human 

immunity, the lack of understanding of the specificity of these lectins serves as a barrier to greater 

understanding of biological mechanisms and design of promising glycan binders. Comparing 

glycans in the CFG dataset using a dissimilarity score computation developed in Mohapatra et al. 

(2021) illustrates the extremely high glycan-lectin specificity of DC-SIGN. Computing the 

dissimilarity score of all glycans in the dataset with reference to a random glycan with high binding 

affinity to DC-SIGN, there exists no clear correlation between glycan structure and binding affinity 

(Figure 2).  

 

Figure 2. Dissimilarity score computation reveals no clear correlation between structural 

similarity to a strong binder and binding affinity. Using the reference point of a random glycan 

with high binding affinity in RFU to DC-SIGN, other glycans with varying RFU values follow a 

Gaussian distribution for dissimilarity, indicating high glycan-lectin specificity.  
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We aimed to predict glycan-lectin binding affinity and elucidate lectin specificity using a novel 

graph-based interpretable supervised learning approach. Representing the glycans as 

macromolecule graphs, we trained a suite of graph attention models to predict the lectin-glycan 

binding strength in relative fluorescence units (RFU) (Velickovic et al., 2017). We employed the 

Attentive FP GNN model architecture due to its superior performance in previous regression tasks 

and incorporated all replicate data, which includes 6 binding strength values in relative 

fluorescence units (RFU) for each glycan. For each glycan, monomers and bonds were featurized 

using circular fingerprints to capture the glycan’s local chemistry and global topology (Figure 3A). 

Regression was performed over minimization of root mean square error (RMSE) on the validation 

dataset. We trained on 60 percent, validated on 20 percent, and tested on 20 percent of the data set. 

Hyperparameter optimization was performed on SigOpt over 300 iterations. To determine the final 

validation and test metrics, we averaged over 25 total model implementations, the top 5 optimized 

hyperparameter sets with 5 random seeds. On the held-out test data sets for DC-SIGN, the top-

performing model ensemble had a root mean square error of 0.782 of the standard deviation of the 

training data set (Figure 3B, Table 1). It is important to note that in training the models there was 

unintentional leakage of some of the training points into the validation and test datasets; therefore, 

the models must be retrained for the final iteration of this work. However, the existing model 

ensembles can nonetheless serve as a basis for demonstrating the multi-step framework for rational 

design of novel glycans.  

To identify the top-performing model ensemble, we benchmarked against a range of input graph 

features, including spacer length and physicochemical properties (Figure 4). Due to the well-

documented dependence of lectin-glycan binding strength on the length of the spacers that link the 

glycans to the substrate in the microarray, we incorporated information about the estimated spacer 
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length in select models. With all edges featurized using circular fingerprints alone, we used 4 sets 

of graph node features: fingerprints alone, fingerprints and the estimated lengths of the spacer 

molecules in angstroms, fingerprints and 29 physicochemical descriptors from RDKit (Landrum 

et al., 2006), and fingerprints, spacer lengths, and physicochemical properties combined. In 

addition to the 4 sets of node features, we performed a control with estimated spacer lengths alone 

as both the node and edge features to determine the dependence of binding strength on spacer 

length alone. Although the models trained with only spacer lengths as node features demonstrate 

that a positive correlation between spacer length and binding strength exists (Table 1, Figure 4E), 

neither the presence of estimated spacer lengths nor physicochemical descriptors in the node 

features significantly impacted model performance, indicating that fingerprint featurization alone 

may effectively capture glycan features and properties essential for model prediction (Table 1, 

Figure 4). The top-performing model ensemble employs molecular fingerprints and 

physicochemical descriptors as input graph features, with the presence of spacers having little 

impact on model performance.  
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Figure 3. Supervised learning and graph attribution enable state-of-the-art prediction of 

lectin-glycan binding strength and identification of critical glycan substructures for lectin 

specificity. A. Combinations of monomers and bond features in the glycan graphs and RFU 

value transformations tested to find the optimal combinations. B. Parity plot obtained from 

training the optimal GNN model, representing an improvement over existing results in the 

literature. C. For a random glycan with high binding strength, N-acetylglucosamine (GlcNAc) 

and fucose (Fuc) contribute most to the model’s prediction of high binding strength. The highest 

weighted substructures within both the highlighted GlcNAc and Fuc contain a cis, vicinal 

hydroxyl group. 
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Figure 4. Parity plots for the DC-SIGN mammalian dataset consisting of all 6 RFU values 

for each glycan, resulting from training using the Attentive FP model architecture, fingerprint 

featurization, standard scaling normalization, and spacers in the glycan graphs. Each parity plot 

represents a distinct combination of node features: the presence of absence of fingerprints (fp), the 

presence or absence of estimated spacer lengths (spacer), and the presence or absence of 

physicochemical descriptors (pcp) and shows the predictions on the held-out test dataset for the 

top seed of the top hyperparameter set for each combination. 
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Include 
Finger-
prints 

Include 
Spacer 
Length 

Include 
Physico- 
chemical 

Properties 

Pearson r2 MAE RMSE Spearman r Kendall's 
Tau Loss 

   𝝻 𝞼 𝝻 𝞼 𝝻 𝞼 𝝻 𝞼 𝝻 𝞼 𝝻 𝞼 

Yes Yes Yes 0.54 0.19 0.28 0.00 0.70 0.20 0.36 0.05 0.26 0.03 0.12 0.03 

Yes Yes No 0.55 0.19 0.28 0.03 0.74 0.22 0.34 0.03 0.25 0.02 0.12 0.03 

Yes No Yes 0.55 0.19 0.28 0.03 0.74 0.23 0.36 0.03 0.27 0.02 0.12 0.03 

Yes No No 0.50 0.26 0.29 0.06 0.76 0.27 0.34 0.06 0.25 0.04 0.12 0.04 

No Yes No 0.14 0.05 0.37 0.02 1.03 0.11 0.24 0.05 0.17 0.02 0.19 0.09 

 

Table 1. The test metrics for the top hyperparameter set for each combination of node features. 

All models were run with the Attentive FP model architecture, fingerprint featurization, standard 

scaling normalization, all 6 RFU values for each glycan, and spacers in the glycan graphs. For 

each metric, the top value among all the model combinations is bolded for clarity. 
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2.3  GRAPH ATTRIBUTION 

Graph attribution helped to decipher opaque structure-property relationships using the pre-trained 

GNNs, providing significant information in the absence of ground-truth understanding. Using the 

Integrated Gradients (IG) graph attribution method due to its consistency in previous attribution 

tasks, we obtained the node weights indicating the importance of each node in the glycans for 

model decision-making. For a randomly selected glycan with high binding strength to DC-SIGN, 

we found that N-acetylglucosamine and fucose contributed most to binding specificity.  

In addition to the importance of individual monomers, for the first time critical substructures for 

lectin specificity more precise than the monomer level were also uncovered using attribution by 

multiplying the node weights with the corresponding monomer fingerprint. The highest weighted 

substructures within both highlighted monomers of the random glycan contain a cis, vicinal 

hydroxyl group, which is a characteristic feature present in the binding motifs of sugar ligands that 

interact with lectins like DC-SIGN, as reported in the literature (Feinberg et al., 2001) (Figure 3C). 

 
We also performed an alternative analysis to determine the most prevalent glycan n-mers 

(monomers, dimers, and trimers) in glycans with the highest binding affinity, or RFU values, to 

two lectins: DC-SIGN and ConA. For each n-mer, the number of occurrences of the n-mer in each 

glycan was multiplied by the RFU value of the corresponding glycan. The sum of these values 

pooled across all glycans was divided by the total number of occurrences of the n-mer in the dataset 

to produce an “RFU score” for the n-mer denoting the weighted average of the RFU of values of 

glycans containing that n-mer. The top monomers contributing to high binding affinity to DC-

SIGN include N-acetylglucosamine and fucose, agreeing with findings from graph attribution for 

the random strong glycan binder to DC-SIGN (Tables 2-4).   
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Monomer RFU Score 

Fuc 126.955 

Man 102.663 

GlcNAc 87.112 

Gal 81.838 

6S-GlcNAc 75.603 

6S-Gal 54.124 

GalNAc 53.681 

3S-Gal 53.379 

3S-GalNAc 48.732 

6S-Glc 41.474 

Table 2. The top 10 glycan monomers out of 32 total monomer types (not including spacers) 

contributing to high binding strength with DC-SIGN. Only monomers with at least 3 occurrences 

in the dataset are reported. 

Dimer RFU Score 

GalNAc, 6S-GlcNAc 184.543 

Fuc, GlcNAc 173.563 

Fuc, 6S-GlcNAc 171.625 

6S-Gal, 6S-GlcNAc 137.811 

Man, Man 110.759 

Gal, GlcNAc 97.074 

Fuc, Gal 88.076 

GlcNAc, GlcNAc 85.438 

Man, GlcNAc 83.278 

3S-Gal, GlcNAc 69.372 
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Table 3. The top 10 glycan dimers out of 56 total dimer types (not including those containing 

spacers) contributing to high binding strength with DC-SIGN. Only dimers with at least 3 

occurrences in the dataset are reported. 

Trimer RFU Score 

Fuc, GlcNAc, Man 212.008 

Fuc, GlcNAc, Gal 211.756 

Man, Man, Man 142.495 

Gal, GlcNAc, Gal 113.672 

GlcNAc, Gal, GlcNAc 110.111 

Fuc, GlcNAc, 3S-Gal 103.094 

Fuc, GlcNAc, GalNAc 98.058 

Fuc, Gal, GlcNAc 95.719 

Man, GlcNAc, GlcNAc 92.956 

Man, Man, GlcNAc 91.877 

Table 4. The top 10 glycan trimers out of 75 total trimer types (not including those containing 

spacers) contributing to high binding strength with DC-SIGN. Only trimers with at least 3 

occurrences in the dataset are reported. 
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3   GRAPH-BASED OPTIMIZATION OF GLYCANS USING GENETIC ALGORITHM 

By leveraging the effective representation of glycans as graphs, we developed GBGA optimization 

framework for glycans. The approach is applicable to macromolecules of any topology. Taking a 

featurized glycan graph as input and using an ensemble of trained GNN models representing 5 

different hyperparameter sets trained on 2 distinct dataset splits for a specified number of iterations, 

the optimizer mutates the graph against the objective function of increasing the mean model 

ensemble prediction of binding affinity to DC-SIGN subtracted by the standard deviation of the 

ensemble prediction; in other words, the optimizer maximizes the lower bound of the model 

ensemble prediction, In the meantime, the optimizer maintains the probability of human 

immunogenicity under a given threshold. Depending on the predicted probability of human 

immunogenicity of the inputted glycan, two optimization pathways are possible: 

1. Initial probability of human immunogenicity under threshold: the algorithm proceeds with 

a series of mutations, only replacing the glycan seed for structures with both a higher 

predicted binding affinity than the previous seed and a probability of human 

immunogenicity below the threshold. For each prediction of human immunogenicity and 

binding affinity, GBGA employs pre-trained models developed in this work and in 

(Mohapatra et al., 2022). 

2. Initial probability of human immunogenicity above threshold: the algorithm repeatedly 

mutates the graph, only replacing the glycan seed for structures with both a lower 

immunogenicity probability than the previous seed and binding affinity no lower than 80% 

of that of the previous seed. Once the immunogenicity threshold is reached, the algorithm 

proceeds as described in case 1.  
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For each mutation, the optimizer randomly chooses between addition, deletion, or swapping of 

monomers (Figure 5A). In the addition mutation, the optimizer selects an edge at random followed 

by a node connected to that edge. The optimizer then either inserts the new node directly in the 

chain adjacent to the selected node, or if the selected node is not saturated with the maximum 

possible number of neighboring nodes, forms a branch with a specified branching probability. The 

identity of the added monomer is randomly chosen from 900 commonly occurring monomers in 

the CFG and GlycoBase datasets (Blixt et al., 2004; Bojar et al., 2021) (Figure 6). In the deletion 

mutation, the optimizer deletes a node at random, as well as all n edges originally connected to the 

deleted node. The optimizer then forms n − 1 new edges between the previously connected nodes, 

selecting the specific combination of connected nodes at random (Figure 7). In the swapping 

mutation, an existing node in the graph and the identity of the replacement node are selected at 

random (Figure 8). The three mutation types allow for. traversal of the vast compositional and 

topological diversity of the glycan space.  



 20 

 



 21 

Figure 5. GBGA generates optimal structures with both high binding affinity and low 

immunogenicity. A. Glycan graphs are seeded in a GA-predictor optimization loop, where 

structures undergo a random mutation in each optimization loop against an objective function. B. 

Unsupervised learning of optimized glycans using similarity matrices, UMAP, and weighted 

clustering aids selection of diverse top sequences. C. Relationship between immunogenicity 

probability and binding affinity for both top 5 optimized glycans and original data set with, t=0.5 

as indicated by the dotted line. D. Top 5 optimized glycans, with legend in the panel. 

 

 

 

Figure 6. The addition mutation selects an edge at random, followed by a node connected to that 

edge. A new branch is formed with probability pbranching.  
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Figure 7. The deletion mutation deletes a node at random, as well as all n edges connected to the 

deleted node. It forms $n-1$ new edges between the formerly connected nodes. 

 

 

Figure 8. The swapping mutation selects both a node in the graph and a new node identity at 

random. 
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Starting with the top 50 strongest binders to DC-SIGN as the original seeds and optimizing over 

6000 iterations for each seed, we generated over 1000 glycans with high binding affinity to DC- 

SIGN and a probability of human immunogenicity under the threshold of 0.5 (Figure 9).  

We employed unsupervised learning over the pairwise similarity matrix to select diverse top 

sequences among the optimized glycan structures. Using two-component UMAP and weighted 

clustering using k-means, we identified four distinct clusters and selected the glycan with the 

highest binding affinity from each cluster (McInnes et al., 2018; Likas et al., 2003) (Figures 4B, 

C). The resulting top four glycans encompass a wide range of topologies and compositions 

(Figures 4C, D, Figure 9). 

The uncertainty of the model ensemble predictions provides insight into the limitations of the 

GBGA approach. The standard deviation and standard error of the model ensemble predictions of 

binding affinity for glycans in the dataset are on par with the standard deviation and standard error 

of glycan microarray data when replicate measurements at multiple spots on the microarray. 

However, the standard deviation and standard error of the model predictions for the top 50 

optimized glycans generated through GBGA is much higher, indicating that while the model 

ensemble can effectively interpolate among relatively similar glycans within the dataset, it is less 

successful at extrapolating to predict binding affinity for novel glycans structurally distinct from 

those it has seen during training (Table 5).  

In addition to DC-SIGN, we also optimized glycans that bind with ConA, using a similar model 

training, optimization and unsupervised learning protocol. Consistent with experimental observa- 

tions, we noted that most glycans that were predicted to bind with ConA were rich in mannose 

(Maupin et al., 2012). 
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Figure 8. Evolution of glycan binding affinity to DC-SIGN and probability of human 

immunogenicity over the glycan index, as well as visualization of each glycan before and after all 

iterations of GBGA optimization with monomer legend in panel. The glycan index refers to the 

number of new glycans generated in the optimization loop with improved properties compared to 

the previous top glycan, and the seed numbers indicate the IDs of the original glycans that enter 

the optimization loop. 

 

 Average Standard Deviation Standard Error 
Experimental (Dataset) 45.9 18.7 
Experimental (Dataset, 
RFU > 500) 

155.4 63.4 

Model Ensemble (Dataset) 13.7 4.3 
Model Ensemble 
(Optimized, RFU > 500) 

236.2 74.7 

Table 5. Average standard deviation and standard error for experimental data at six distinct spots 

on the glycan microarray for each glycan for both the entire dataset and the top 16 glycan binders 

to DC-SIGN with RFU > 500, as well as standard deviation and standard error for the model 

ensemble predictions for both the entire dataset and the top 50 optimized glycans generated 

through GBGA.  

 

 

 

 



 26 

4    FUTURE WORK AND CONCLUSION 

We predicted lectin-glycan binding strength with state-of-the-art accuracy and uncovered motifs 

critical to the model’s prediction of binding strength using an interpretable supervised learning 

framework. In addition, we designed glycans with high binding affinity to DC-SIGN and low 

probability of human immunogenicity using a novel graph-based optimization framework. 

Supervised learning with GNNs provides a generalized system to learn over diverse glycan 

structures and lectin identities. Graph attribution provides explanations for model predictions, for 

the first time revealing both key monomers and substructures more precise than the individual 

monomer level. Graph-based optimization leverages the effective representation of 

macromolecules as graphs to design glycans with a wide range of topologies and monomer 

compositions. This work illustrates a robust method for the rational design in the general 

macromolecular space. In the future, we aim to perform graph attribution both across the entire 

dataset and for the top optimized glycans to elucidate key glycan features responsible for high 

binding affinity to DC-SIGN in both existing and novel glycan structures. As an ultimate step, we 

hope to extend this approach to include multiple lectins, as well as experimentally validate the 

highly specific glycans that we design. 
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7    APPENDIX 

The following sections demonstrate results of the interpretable supervised learning and graph-

based optimization framework for another lectin, Concanavalin A (ConA). 

7.1   DATASET 

The ConA mammalian glycan microarray dataset consists of a majority of weak or non-binders, 

along with a small portion of strong binders to form a bimodal distribution of binding strength 

values (Figure A.1). After preprocessing to remove any data points with binding strength values 

more than three standard deviations outside of the mean, the total number of average RFU values 

in the ConA mammalian dataset is 590 with a mean binding strength in RFU of 3242.828 and a 

standard deviation of 7844.175. The CFG dataset provides 6 binding strength values for each 

glycan corresponding with 6 different spots on the glycan microarray (Blixt et al., 2004). The total 

number of replicate data points, 6 RFU values for each glycan, in the dataset is 3364 with a mean 

binding strength of 3414.378 and a standard deviation of 8078.214. 
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Figure A.1. Distribution of binding strength values in relative fluorescence units (RFU) for 

the mammalian glycan microarray dataset for ConA. A. The original, non-log transformed 

average binding strengths for each glycan in RFU. B. The log-transformed average binding 

strengths for each glycan in RFU. C. The original, non-log transformed binding strengths for all 

the replicate data, 6 RFU values for each glycan. D. The log-transformed binding strengths for 

all the replicate data, 6 RFU values for each glycan. 

 

 

 



 33 

7.2   REGRESSION 

Employing the Attentive FP model architecture (Xiong et al., 2019) with fingerprint featurization, 

we trained on 8 distinct combinations, composed of 2 different sets of binding strength values 

(average RFU values or all 6 RFU values for each glycan), 2 different normalization types 

(standard scaling (Pedregosa et al., 2011) alone or log10 transformation followed by standard 

scaling), and 2 different graph types (with or without spacers).  

We employed the same model training process as for DC-SIGN: we utilized a 0.6, 0.2, 0.2 train, 

validation, test split, performed hyperparameter optimization on SigOpt over 300 iterations, and 

obtained final validation and test metrics by averaging over 25 total model implementations for 

each of the 8 combinations. Among the models trained on the average RFU values for each glycan, 

the combination that results in the strongest model performance consists of log10 transformation 

before standard scaling and no spacers in the glycan graphs (Table A.1, Figure A.2). Among the 

models trained on all 6 RFU values for each glycan, the strongest combination consists of standard 

scaling alone without log10 transformation and spacers in the glycan graphs (Table A.1, Figure 

A.2). Comparison between the models trained on the average RFU values versus all RFU values 

indicates that employing all the replicate data results in stronger model performance. Therefore, 

we focused on using all 6 RFU values for each glycan in future analysis of additional lectins. 
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Figure A.2. Parity plots for the ConA mammalian dataset consisting of average RFU values for 

each glycan, resulting from training using the Attentive FP model architecture and fingerprint 

featurization. Each parity plot represents a distinct combination of normalization type (either 

standard scaling alone or log transformation followed by standard scaling) and graph types 

(including or not including spacers in graphs) and shows the predictions on the held-out test dataset 

for the top seed of the top hyperparameter set for each combination. 
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7.3   GRAPH-BASED GENETIC ALGORITHM (GBGA) 

We employed the same process for optimizing glycan binders to DC-SIGN for ConA: we took the 

top 50 glycans with the highest binding affinity to ConA from the dataset, optimized over 6000 

iterations, and used unsupervised learning to select diverse top sequences (Figures A.3, A.4). The 

resulting optimized glycan structures primarily consist of mannose and mannose-adjacent 

monomers, consistent with literature on the specificity of ConA (Mangold and Cloninger, 2006). 

Over the course of optimization, the predicted binding affinity generally rises sharply with the first 

few iterations and gradually stabilizes with a higher number of optimization loops (Figure A.4).  
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Figure A.3. GBGA generates optimal structures with both high binding affinity to lectin 

ConA and low immunogenicity. A. Unsupervised learning of optimized glycans using similarity 
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matrices, UMAP, and weighted clustering aids selection of diverse top sequences. B. Relationship 

between immunogenicity probability and binding affinity for both top 8 optimized glycans and 

original data set with, t=0.5, as indicated by the dotted line. C. Top 8 optimized glycans, with 

legend in the panel. 
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Figure A.4. Evolution of glycan binding affinity to ConA and probability of human 

immunogenicity over the glycan index, or the number of new glycans generated in the optimization 

loop with improved properties compared to the previous top glycan. The seed numbers indicate 

the IDs of the original glycans that enter the optimization loop. 

 
 
 
 

 


