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ABSTRACT

Despite success across various tasks, self-supervised speech models face significant chal-
lenges in enhancing content-related performance with unlabeled data, requiring substantial
computational resources. Meanwhile, learning from clustered discrete units has been shown
to facilitate accurate phonetic representations. Thus, this thesis investigates speaker and
noise-invariant speech representations. First, Speaker-invariant Clustering (Spin) is proposed
to extract content representations through online clustering and speaker-invariant cross-view
prediction. Second, Robust Spin (R-Spin) is devised to extend Spin to handle more distorted
speech signals by leveraging acoustic pieces. Furthermore, this thesis includes a diverse set
of evaluation and visualization techniques to quantitatively and qualitatively analyze the
perturbation invariability of the proposed methods. This thesis offers approaches to produc-
ing perturbation-invariant speech representations and deeply investigates the characteristics
of the learned representations, providing insights into these models and cultivating future
extension possibilities.
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Chapter 1

Introduction

1.1 Motivation

Conventional machine learning for speech processing, like automatic speech recognition (ASR),
requires large human-transcribed speech corpora to perform well. Commonly used datasets
consist of hundreds and thousands of hours of speech recordings. Unfortunately, corrupted
audio files and annotation mistakes can jeopardize the training of machine learning models.
Thus, obtaining high-quality annotations at this scale is expensive and challenging. To ad-
dress the issue of collecting labeled speech corpora, researchers have developed approaches
that can make the best out of limited data.

Data augmentation is used to generate more diverse data (Park et al., 2019; Ko et al.,
2015). Semi-supervised learning first trains an initial model with labeled data and then labels
an unlabeled corpus for further training (Xu et al., 2020; Likhomanenko et al., 2020). Unlike
semi-supervised learning, self-supervised learning (SSL) leverages large-scale unlabeled
data to train an encoder to offer good initialization and representations for downstream
applications. After pre-training, the model can be fine-tuned with a small amount of labeled
data to perform tasks like ASR. SSL pre-trained models have been shown to outperform

conventional machine learning approaches in various speech processing tasks (Yang et al.,
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2021; Chang et al., 2021b; Tsai et al., 2022; Mohamed et al., 2022).

SSL methods produce pseudo-targets from raw data for the model to learn. Some models
learn to predict unknown Mel filterbank features given the partial context of audio utter-
ances (Chung et al., 2019; Liu et al., 2021b,a). Contrastive learning (Oord et al., 2018)
serves as a good training objective by encouraging models to distinguish hidden representa-
tions from the same or different audio segments (Baevski et al., 2020). Cluster IDs obtained
by clustering continuous audio representations can also be used as pseudo-labels (Hsu et al.,
2021a). Finally, some methods learn to distill knowledge from the exponential moving aver-
age of the model itself (Baevski et al., 2022). Some other approaches combine techniques in
a multi-task learning style (Chung et al., 2021).

Many applications of SSL models focus on speech recognition to reduce the need for large-
scale transcribed corpora (Hsu et al., 2021a; Baevski et al., 2022; Liu et al., 2023). As a result,
extracting content representations has become a crucial aspect of speech SSL research (Tjan-
dra et al., 2021; Chan and Ghosh, 2022; Peyser et al., 2022; Williams, 2022). While a good
speech representation encompasses information from multiple aspects, most SSL methods
lack explicit speaker disentanglement, making the models fail when perturbation is present
in the input signals. A desirable SSL pre-trained speech encoder for content-related appli-
cations should be invariant to perturbations like the talker’s voice and background noise.
Thus, removing unrelated information from speech representations to make speech encoders
perturbation-invariant is the goal of this thesis, making it easier for downstream applications
to extract content from these models.

Despite the success of SSL for speech processing, the pre-training process requires thou-
sands of GPU hours and leaves huge memory footprints, making training perturbation-
invariant models from scratch infeasible. Alternatively, self-supervised fine-tuning (SSFT)
methods are proposed to fine-tune pre-trained SSL models with lower computation costs for
certain applications (Qian et al., 2022; Zhu et al., 2023). Nevertheless, prior SSFT meth-

ods are also costly because of the nature of their training objectives. Hence, due to the
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benefits suggested by previous studies (Liu et al., 2023), we incorporate online clustering
into the SSF'T framework, simultaneously learning linguistic units from speech and reducing

perturbation effects through perturbation-invariant training.

1.2 Thesis Contributions

This thesis proposes two self-supervised fine-tuning frameworks with online clustering objec-
tives to produce perturbation-invariant speech representations. In Chapter 2, we introduce
the novel speaker-invariant clustering (Spin) framework to make speech models invariant to
the talker’s voice. This method successfully improves pre-trained SSL models for speech
recognition with limited data and resources. Next, Chapter 3 introduces Robust Spin (R-
Spin) to enhance Spin with noise-invariant training and advanced learning targets. R-Spin
inherits the benefits of Spin but has more freedom to adapt to more diverse acoustic scenar-
ios. In Chapter 4, we offer comprehensive analyses of Spin and R-Spin to understand the
mechanisms of these methods, including visualizing hidden representations and measuring
the quality of discrete acoustic units. Finally, we conclude this thesis and discuss future

work in Chapter 5.
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Chapter 2

Speaker-invariant Clustering (Spin)

This chapter introduces speaker-invariant clustering (Spin), a novel self-supervised fine-
tuning framework for learning better content representations via online clustering. This
method improves pre-trained SSL models to capture phonetic units with minimal training
costs.

We provide the background for learning from clustering in Section 2.1. Next, we intro-
duce the Spin SSFT framework in Section 2.2. The experimental results are discussed in

Section 2.3. Parts of this chapter were published at Interspeech 2023 (Chang et al., 2023a).

2.1 Background

Before Spin, ContentVec was proposed by Qian et al. (2022) to boost HuBERT (Hsu et al.,
2021a), one of the large-scale and powerful SSL models, for capturing better content repre-
sentations from speech signals. ContentVec is fine-tuned on top of a pre-trained HuBERT
model, but the inputs are augmented with speaker perturbation so that the model learns to
produce representations invariant to the speaker. ContentVec’s learning targets are obtained
by converting all LibriSpeech data into the same speaker with a voice conversion model and
then applying K-means clustering to the hidden features of HuBERT, given the converted

inputs. Although showing promising results, ContentVec suffers from the requirement of a

22



S ® .
oo °
E 20 ® .
o @
60 PY b p = —0.817
2 * .
@
ﬁ 40 ® HuBERT ContentVec ® o
= WavLM Spin (Ours
20 pin ( ) ..L.
0.45 0.50 0.55 0.60 0.65
PNMI

Figure 2.1: Content representation quality (PNMI) vs. phoneme/ word error rates
(PER/WER) of SSL model hidden layer representations under a simplified setup in SU-
PERB Yang et al. (2021). p is Spearman’s rank correlation coefficient.

voice conversion model and high computational costs (6004+ GPU hours). Thus, this prior
study inspired us to develop a more efficient algorithm to offer the same performance.

Meanwhile, previous SSL methods utilize clustering continuous representations to capture
better linguistic units from speech. For instance, HuBERT (Hsu et al., 2021a) learns from
cluster IDs of K-means clustered hidden features from SSL models. Similarly, DinoSR (Liu
et al., 2023) incorporates online clustering into the data2vec (Baevski et al., 2022) SSL frame-
work to extract content for ASR. These works both found that learning from discrete units
obtained by clustering features yields better ASR performance. Nonetheless, no quantitative
analyses were reported to verify whether representations closer to the underlying phonetic
content yield better performance for speaker-invariant downstream tasks like ASR.

To verify this assumption, we extract speech representations from each layer of three pre-
trained SSL models (HuBERT, WavLM (Chen et al., 2022), and ContentVec (Qian et al.,
2022)) and compute two metrics: 1) the phone-normalized mutual information (PNMI; Sec-
tion 4.5.1) that measures the similarity between phonemes and the discrete units derived by
running K-means clustering on the extracted representation (K = 256); 2) the phone/word
recognition error rate using the extracted features and a lightweight predictor as detailed in

Section 2.3.3.
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In Figure 2.1, higher PNMI representations generally offer better recognition results

across all models and layers. The Spearman’s rank correlation coefficients for PNMI-PER

and PNMI-WER verify the strong correlation between the content encoded and downstream

performance, leading us to propose an SSF'T method that learns from discrete acoustic units

to focus on content encoding.

2.2 Proposed Method

2.2.1 The Spin Framework

An overview of the proposed Spin framework is illustrated in Figure 2.2. Inspired by Swap-

ping Assignments between Views (SwAV) (Caron et al., 2020) for image representation learn-

ing, our idea is to learn speaker-invariant clusters that capture the same content shared

between perturbed speech and the original speech.
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2.2.2 Speaker Perturbation

To alter speaker identity without changing the spoken content, we adopt an algorithm pro-
posed by Choi et al. (2021) as ContentVec (Qian et al., 2022). The algorithm randomly and
uniformly scales formant frequencies and F0, and random equalization is applied. Because
voice information resides in the formant frequencies and FO (Eide and Gish, 1996), and
the content is stored in the relative ratio between formant frequencies (Stevens, 1987), this

algorithm efficiently alters speakers with little content loss.

2.2.3 Online Clustering

With the speaker-augmented and the original speech pair, we aim to discover the consistent
underlying content via speaker-invariant clustering. As illustrated in Figure 2.2, the output of
the original view from the encoder is linearly projected and L2-normalized to representation
Z = [z,...2p]" € RP*P where D is the dimension of the representation, and B is the
number of frames in a batch. A probability distribution is computed per frame by taking a
softmax over the scaled cosine similarity between Z and a learnable codebook of K codewords

C=lc...cx]" € REXD a5

_exp(zper/T)
p(k|z) = > w exXp (Zew /7))

for k € [K], b € [B],! ||lck|]l2 = 1, and 7 > 0 is a scaling temperature. We define q (k|2;) the
distribution over the same codebook using augmented speech. To learn speaker-invariant
clusters that capture the unchanged content, distributions over the codebook should ideally

be similar regardless of the speaker, i.e., minimizing the cross-entropy —q (k|2s) logp (k|2).

1[N] is defined as {1,2,...,N}.
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2.2.4 Codebook Smoothing

In practice, minimizing the aforementioned cross-entropy term leads to a trivial solution
where all representations are clustered into a single codeword if ¢ is obtained similarly with
p. To address the issue, we smooth the target distribution ¢ to encourage higher utilization

of the codewords. Following Asano et al. (2020), ¢ is obtained by
Q" € arg max Tr (QCZ") +¢H (Q), (2.1)

where Q* € [0,1]%*%, ¢ (k|z) = Q;;, and H (Q) = — >i; Qijlog Qi is the entropy. The
optimized variable Q is constrained so that each row is a probability distribution over the K
codewords. When ¢ = 0, ¢ is a categorical distribution and easily collapses to using only one
codeword. When € > 0, the entropy term smooths the distribution so that all codewords can
be utilized more evenly, whereas a higher € leads to a more uniform distribution. Equation 2.1
can be efficiently solved by the Sinkhorn-Knopp algorithm on GPUs (Cuturi, 2013). Note

that no gradient is applied to q.

2.2.5 Speaker-invariant Swapped Prediction

With the smoothed target distribution ¢, the goal is to perform speaker-invariant swapped

prediction by minimizing the cross-entropy loss

Lopn = —57= 3 3 la (k15) ogp (klz1) +q (kl2) logp (k12)],

where the second term emerges from the interchangeability of the role of the augmented and
original speech.

This objective encourages the model to produce similar representations at the same posi-
tion between two different views by learning a codebook encoding speaker-invariant acoustic

units. Since learning fewer parameters reduces computation, and top layers encode phonetic

26



content (Pasad et al., 2021; Chang et al., 2022; Tseng et al., 2022), we propose fine-tuning
some of the top layers to balance the tradeoff between downstream performance and training
computation. Unlike previous methods, Spin does not require random masking, so all frames
are utilized and contribute to updating the network. Spin is limited to pre-trained models

because only the positional information is learned if the model is trained from scratch.

2.3 Experiments

2.3.1 Data

Spin is trained with the LibriSpeech train-clean 100 hours subset (Panayotov et al., 2015).

We found that training with more data does not improve performance.

2.3.2 Implementation

We apply the Spin method to HuBERT (Hsu et al., 2021a) and WavLM (Chen et al., 2022),
with only the last two layers being fine-tuned (7M parameters per layer).? We set D = 256,
7 = 0.1, ¢ = 0.02, and sweep the codebook sizes K € {128, 256, 512, 1024, 2048}. Each
view’s mini-batch has at most 256 seconds of speech, corresponding to B = 12.8k frames.
The learning rate is first linearly increased from 0 to 10~* for 2.5k updates, then linearly
decreased to 107° for 2.5k updates. The Sinkhorn-Knopp algorithm iterates three times to
compute Q* per view. Spin is trained on a single RTX A5000 GPU, taking approximately
45 minutes. We select models that are trained with all 5k updates.

HuBERT and WavLM are pre-trained to predict cluster IDs of masked audio frames
from clustering MFCC features or hidden representations of pre-trained models. These
models serve as baselines for Spin. data2vec (Baevski et al., 2022) is trained to masked-
predicting hidden representations of the exponential moving average of the model itself.

We avoid applying Spin to data2vec because the phonetic content resides at the bottom

2Checkpoints: https://github.com/s3prl/s3prl
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Table 2.1: SUPERB (Yang et al., 2021) phoneme recognition (PR), automatic speech recog-
nition (ASR), keyword spotting (KS), query-by-example (QbE), intent classification (IC),
and slot filling (SF). Metrics include accuracy (Acc%), phoneme error rate (PER%), word
error rate (WER%), maximum term weighted value (MTWYV), F1 score, and concept error
rate (CER%). PT and SSFT denote pre-training and self-supervised fine-tuning. Top-3 best
results are underlined. The number of hours of processed speech is computed with Eq. 2.2.

Training Processed Content Semantic

Speechin Hours — pp - Aqr  KS  QbE  IC SF
Method PT SSFT PER] WER] Acct MTWVtT Acct F1t  CERJ
wav2vec 2.0% 640k 0 5.74 6.43  96.23 0.0233  92.35 88.30 24.77
HuBERT* 506k 0 5.41 6.42  96.30 0.0736  98.34 88.53 25.20
WavLM* 1439k 0 4.84 6.31  96.79  0.0870  98.63 89.38 22.86
data2vec® 420k 0 4.69 4.94 96.56 0.0576 97.63 88.59 25.27
Content Vecsgo® 506k 76k 4.54¢ 5.70 96.40 0.0590 99.10 89.60 23.60
HuBERT + Spingsg 506k 356 4.39 6.34 96.53 0.0912 98.34 89.00 24.32
WavLM + Spingse 1439k 356 4.18 5.88  96.20 0.0879  98.52 88.84 24.06

# Source: https://superbbenchmark.org/leaderboard (as of March 7, 2023).
* Reported in the original ContentVec paper (Qian et al., 2022).
¢ Re-implement for a fair comparison (original: 4.90).

layers (Table 4.1), requiring fine-tuning many more top layers, and thus increasing compu-
tation costs. ContentVec is a stronger baseline as it is also trained to improve extracting
content with speaker disentanglement. ContentVec learns to mask-predict a pre-trained
HuBERT hidden representation K-means clusters. Based on the number of clusters in the
target, there are two versions: ContentVecigy and ContentVecsgg. These SSL models share
a similar architecture: a 7-layer CNN feature extractor followed by a 12-layer transformer
encoder (Vaswani et al., 2017), having approximately 95M parameters each. All models are
frozen in evaluation tasks, and continuous transformer encoder hidden representations are

used unless otherwise specified.

2.3.3 SUPERB Benchmark

This section evaluates Spin on content and semantic tasks in the Speech processing Universal
PERformance Benchmark (SUPERB) (Yang et al., 2021). Each task and SSL model uses

a set of learnable weights to compute weighted-sum representations across hidden layers of
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https://superbbenchmark.org/leaderboard

ContentVecsgo Spini2g  Spinzsg  Spinsiz  Spinig2a  Spinzoas
HuBERT 0.00017 0.00000 0.00000 0.00000 0.00000 0.00000
WavLM 0.07486 0.00284 0.00222 0.00300 0.00012 0.00000

ContentVecsgg 0.25110 0.22849 0.25472 0.04632 0.00837

Figure 2.3: t-test p-values of SUPERB Yang et al. (2021) phoneme recognition error rates.
All Spin models here are based on HuBERT. The blue and red cells indicate p-values less
and greater than 0.05, respectively.

the frozen SSL model. The aggregated features are then fed to a prediction head for super-
vised training. We report phoneme recognition (PR), automatic speech recognition (ASR),
keyword spotting (KS), query-by-example spoken term discovery (QbE), intent classifica-
tion (IC), and slot filling (SF). We choose K = 256 for Spin as it offers the best overall
results.

In Table 2.1, Spin benefits learning content representations because HuBERT and WavLM
are improved in content-related tasks (PR, ASR, and QbE) while reducing the performance
gap with ContentVec. According to the significance test on PR in Figure 2.3, Spin passes a
t-test when compared with HuBERT and WavLM. Increasing the codebook size (K = 1024
and 2048) outperforms ContentVec with a p < 0.05.

In order to quantify machine-independent costs, we examine the hours of processed speech

during training, where:

processed speech = training steps X effective batch size (2.2)

Based on these data, Spin requires less than 0.5% of the computation of ContentVec in
order to outperform it in PR and QbE while offering similar performance in other tasks.
Moreover, most models perform similarly in KS and IC, and we found these tasks sensitive
to hyperparameters, making them less suitable for comparison. Overall, Spin improves SSL

models with a meager budget.
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Figure 2.4: PNMI and PER of HuBERT + Spin with different (a) codebook sizes and (b)
fine-tuning layers. Fine-tuning zero layers in (b) denotes the HuBERT baseline. Results in
(b) use K = 256.

2.3.4 Analysis

This section analyzes the design of the Spin training framework. As plotted in Figure 2.4a,
we find that a larger codebook size improves discrete unit quality and PER. Even when K is
only 128, Spin outperforms ContentVec, indicating the effectiveness of the proposed method.
In Figure 2.4b, Spin surpasses HuBERT and ContentVec when fine-tuning two or three layers.
However, fine-tuning the top four layers simultaneously leads to worse performance, and we
also observed this phenomenon when fine-tuning more layers. This suggests that providing
too much freedom to the model training leads to collapsing because a trivial solution to
the Spin objective is to produce representations irrelevant to the inputs. E.g., each frame
represents the corresponding position (similar to positional encoding in (Vaswani et al.,
2017)). Therefore, this finding implies that this framework cannot be used to process audio
recordings from other acoustic domains since prior work has found that the lower layers highly
correlate to low-level audio processing like denoising (Chang et al., 2021a; Gong et al., 2023).

We address this issue in the next chapter.
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2.4 Chapter Summary

This chapter proposes Spin, a self-supervised fine-tuning method that improves content
representations motivated by speaker disentanglement and the strong relationship between
discrete unit quality and downstream performance. We offer empirical evidence that the
proposed method benefits various content-related tasks. Although Spin was only applied to
HuBERT and WavL.M, Spin provides a new method to further enhance speech representation

models after pre-training at a very low cost.
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Chapter 3

Robust Spin (R-Spin)

This chapter introduces Robust Spin (R-Spin), a data-efficient self-supervised fine-tuning
framework for speaker and noise-invariant speech representations by learning discrete acous-
tic units with Spin. R-Spin resolves Spin’s issues and enhances content representations by
learning to predict acoustic pieces. R-Spin offers a 12X reduction in computational re-
sources compared to previous state-of-the-art methods while outperforming them in severely
distorted speech scenarios.

In this chapter, we first provide the background of noise-invariant training methods in
Section 3.1. We then introduce the proposed R-Spin framework in Section 3.2. Finally,

experiments are presented and discussed in Section 3.3.

3.1 Background

In the previous chapter, we focused on capturing linguistic content information in speech sig-
nals with the Spin model. However, in addition to modeling content information in speech,
numerous studies are dedicated to investigating the robustness of speech SSL representa-
tions. While current methods perform well on clean speech datasets, they are vulnerable to
out-of-domain data like distorted audio signals (Hsu et al., 2021b). To mitigate this vulner-

ability, researchers have proposed noise-invariant training techniques. Huang et al. (2022a)
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propose HUIBERT-MGR via domain adversarial training to render the fine-tuned HuBERT
model invariant to domain shifts. WavLM (Chen et al., 2022) integrates denoising with the
HuBERT pre-training framework, achieving state-of-the-art performance in many speech
processing downstream tasks. Similarly, Zhu et al. (2023) propose Robust data2vec, intro-
ducing perturbations to the input to predict the exponential moving average teacher model’s
representations. In deHuBERT (Ng et al., 2023), the Barlow Twins loss (Zbontar et al., 2021)
is applied to encourage representation invariability to input perturbations. Although many
methods have shown success in noisy speech recognition (Wang et al., 2022; Zhu et al., 2022;
Huang et al., 2022b; Hu et al., 2023), to our knowledge, none have concurrently addressed
the disentanglement of speaker and noise while enhancing content information. Furthermore,
these approaches exhibit inefficiency, often requiring high computation costs and iterating
large corpora over numerous epochs. Due to the need for efficiently obtaining good content
and robust representations in real-world applications, we extend Spin with noise-invariant

training and acoustic piece pseudo-label learning.

3.2 Proposed Method

3.2.1 The R-Spin Framework

The proposed R-Spin framework is shown in Figure 3.1. R-Spin is based on Spin, which is
described in Section 2.2. We introduce noise-invariant training by perturbing inputs (Sec-
tion 3.2.2) to improve robustness. Moreover, an auxiliary pseudo-label prediction loss (Sec-
tion 3.2.3) enables fine-tuning the entire model without collapsing. Acoustic Pieces (Sec-

tion 3.2.4) are incorporated with the auxiliary loss to improve performance further.

33



Original View Fixed Pseudo Labels

F Y LA )
— SSL Pre-trained ()] = ()

] Distortion Encoder Layers () ; Pseud9 L.abel @
(Background Noise) . Prediction {1’

) )

| ) v Lsoin &

P Speeta)kgr Speaker-Invariant | AAAA
erturbation Clustering (Spin) (Izeadmt?bli

odeboo -
Y - I @
= ) ; @

— Aux ~
- Distortion — — ) —— <
] (Background Noise) D Pseudo Label I

C] Prediction e

{-\)

Perturbed View

Figure 3.1: The proposed R-Spin self-supervised fine-tuning framework. The input utterance
is perturbed into a different voice and distorted with random noise or reverberation. Both
the original and perturbed views are fed into an encoder initialized with an SSL pre-trained
model. The model is optimized with Speaker-invariant Clustering (Spin) objective (Lspin)
and frame-wise pseudo-label prediction loss (Lux)-

3.2.2 Noise-invariant Training

To improve the robustness of SSL models, we introduce noise-invariant training by intro-
ducing audio distortions after speaker perturbation. After adding background noises to the
input signals, the utterances are processed with the Spin SSFT framework. We anticipate
the model will acquire the capacity to concurrently eliminate both noise and speaker-related

information, thereby enabling the trained model to generate robust content representations.

3.2.3 Auxiliary Pseudo-label Prediction Loss

As mentioned in Chapter 2, Spin is constrained to fine-tuning solely the uppermost layers of
pre-trained SSL encoders. Otherwise, the model converges towards a trivial solution, yielding
outputs irrelevant to the corresponding inputs. This limitation may not be overly problem-
atic when the application domain closely aligns with the pre-training data. However, given
that the lower layers are associated with low-level signal processing like denoising (Chang

et al., 2021a; Gong et al., 2023), subjecting these layers to fine-tuning is imperative. This
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adjustment is particularly beneficial in enhancing the model’s robustness to out-of-domain
data. Consequently, we propose a pseudo-label prediction loss to prevent models from col-
lapsing.

The pseudo-label prediction task is a frame-wise classification problem similar to Hu-

BERT (Hsu et al., 2021a). The loss function is

L = —% [logp (yp|hy) + log p (yb ‘%)] : (3.1)

be[B]

where y, is the pseudo-label at frame b. The probability distributions are computed by
projecting h with a fully connected layer followed by a softmax. The choice of pseudo-labels
is flexible, including K-means clusters of acoustic features and codewords produced by Spin.
With this loss, the fine-tuned models are expected to preserve content even when all layers

are fine-tuned. Combining Equation 2.2.5 and 3.1, the overall loss function is
L= »CSpin + )\EAux, (32)

where A\ > 0 is a hyper-parameter. L£a,, has learning targets independent of the model, reg-
ularizing and stabilizing the training process. Meanwhile, Lg;, optimizes on varying labels
from a codebook, offering flexibility to improve upon the pseudo-labels in £.c. Therefore,
the combined loss function is expected to enhance pre-trained speech SSL encoders and

mitigate Spin’s limitations.

3.2.4 Acoustic Pieces

This section introduces acoustic pieces (APs) (Ren et al., 2022) to Laux to further improve
R-Spin. APs are learned by applying byte-pair encoding (BPE) (Sennrich et al., 2016) to
discrete acoustic units like K-means clusters of HuBERT representations. APs capture high-

level units close to phonemes and characters, useful for pre-training (Wu et al., 2023) and
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generation (Shen et al., 2023). Hence, we propose to set APs as the target of L4,y to extract
better content representations.

Following (Ren et al., 2022), we first merge identical consecutive units in time for each
utterance. The BPE algorithm is then applied to the reduced sequences to learn acoustic
pieces. Next, we encode the entire training corpus into APs and duplicate the encoded units
to the original utterance length. The encoded corpus is then used as the pseudo-labels for
Equation 3.1, which is expected to encourage the fine-tuned SSL model to encode better

phoneme and character representations.

3.3 Experiments

3.3.1 Data

The 960 hours of unlabeled English speech in LibriSpeech is used for R-Spin training (Panay-
otov et al., 2015). Audio distortions are generated with torch-audiomentations.! Following
Robust data2vec (Zhu et al., 2023), background noises are sampled from MUSAN (Snyder
et al., 2015) and CHiIME-4 (Vincent et al., 2017) corpora, covering music, speech, and out-
door noise. The signal-to-noise (SNR) ratios are uniformly sampled from [—10, 10| during
training. We add distortions to each utterance during evaluation, including Gaussian noise,
MUSAN noise, and reverberation. The noise and perturbation data sources are listed as

follows.
1. Gaussian Noise: Gaussian noise is generated with a PyTorch Library.
2. Background Noise: Background noise is sampled from the MUSAN dataset.

3. Reverberation: We filter waveforms with real and simulated room impulse responses
in the RIRS (Ko et al., 2017). The scores for the real and simulated reverberation are

averaged.

thttps://github.com /asteroid-team /torch-audiomentations
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3.3.2 Implementation

The experiments are mostly based on WavLM (Chen et al., 2022) because WavLM is pre-
trained with a denoising objective, offering a good initialization. HuBERT (Hsu et al., 2021a)
is also considered to demonstrate R-Spin’s generalizability to SSL models trained with clean
speech. The acoustic pieces are generated by learning BPE tokens on top of a HuBERT +

Spinggss model.

Speech SSL Models

HuBERT-MGR (Huang et al., 2022a) continues the HuBERT pre-training process with
noisy speech and an auxiliary domain adversarial training objective to enhance robust-
ness. HUBERT-MGR is trained with a mix of clean and distorted speech, where the dis-
tortions include MUSAN background noise, Gaussian noise, and reverberation. Robust
data2vec (Zhu et al., 2023) fine-tunes a pre-trained data2vec model. Unlike data2vec, the
inputs to the student model include background noise so that the model learns denoising.
An additional contrastive learning objective is incorporated to enhance robustness. The

pre-trained model weights are obtained from the s3prl toolkit.?

Spin Training

Since R-Spin is trained with 960 hours of data speech in LibriSpeech, the pseudo labels for
L aux should be generated for all those data with Spin. To avoid generating unseen data with
Spin, we train another Spinggys model with the same data (originally 100 hours Section 2.3.2).
Each mini-batch before data perturbation has 2,560 seconds of speech, equivalent to 32k
frames. The learning rate first linearly increases from 107 to 10~* in the first 2.5k updates,
then linearly decreases to 107¢ in the last 7.5k updates. The implementation of the Spin

loss follows (Caron et al., 2020).> This model takes four hours of training time on four RTX

Zhttps://github.com/s3prl/s3prl/tree/main /s3prl/upstream
3https://github.com/facebookresearch /swav
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A6000 GPUs. Models trained with all 10k updates are used for generating pseudo labels. In

total, roughly 7.1k hours of unlabeled speech data are processed.

R-Spin Training

Each SSL model used in this paper has a 7-layer CNN feature extractor and a 12-layer
transformer encoder, having roughly 95M parameters in total. Each mini-batch before data
perturbation has 384 seconds of speech, equivalent to 19.2k frames in each view of the R-
Spin framework. The learning rate first linearly increases from 1076 to 10™* in the first 5k
updates, then linearly decreases to 107¢ in the last 5k updates. A in Equation 3.2 is set to 5.
Each R-Spin SSFT training takes less than eight hours on two RTX A6000 GPUs. Models
trained with all 10k updates are used for evaluation. For the R-Spin training, 1.1k hours of
unlabeled speech data are processed. Combined with the Spin training, 8.2k hours of data

are used.

Low-budget Robust data2vec

We follow the implementation of (Zhu et al., 2023) with fairseq (Ott et al., 2019).* We
changed the unlabeled training data from CHiME-4 to the LibriSpeech 960 hours corpus for
a fair comparison with our method. Because we observed that a long training schedule is
necessary for Robust data2vec converge, the number of updates is the same as the original
implementation (100k). Meanwhile, the mini-batch size is reduced from 63 to 6.25 minutes
so that the amount of speech data processed is the same as R-Spin. The rest of the hy-
perparameters remain the same since we found the original ones are sufficiently good. As
shown in Table 3.1, the low-budget Robust data2vec model has a significant performance
degradation compared with the fully-trained version, implying the necessity to train this
model with a large batch size. In contrast, R-Spin achieves superior results under the same

budget, indicating that our approach is more efficient.

4https://github.com/zqs01/data2vecnoisy
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Table 3.1: Phoneme recognition on LibriSpeech and ASR on CHiME-4 test sets. Gaussian
noise, MUSAN background noise, and reverberation (Reverb) are respectively added to sim-
ulate noisy conditions, where the SNRs are fixed to 0dB. The calculation of the number of
hours of processed speech during SSFT follows Eq. 2.2.

SSFT LibriSpeech test-other CHiME-4
Processed Phoneme Recognition (PERJ) ASR (WERJ)

Method Speech (hours) Clean Gaussian MUSAN Reverb Real  Sim
No SSFT Baselines

HuBERT (Hsu et al., 2021a) 0 10.7 74.5 50.2 23.2 72.7 63.1

WavLM (Chen et al., 2022) 0 10.3 59.9 45.1 194 52.4 46.4
SSFT Baselines

HuBERT + Spinggss (Chang et al., 2023a) 0.4k 8.4 70.8 47.8 18.4 71.3 62.0

WavLM + Spinggss (Chang et al., 2023a) 0.4k 8.2 59.2 41.2 16.7 52.1 46.6

Robust data2vec (Low-budget) 10.4k 38.8 68.2 52.9 53.7 80.9 782
Proposed

HuBERT + R-Spings, apaok 8.2k 8.3 36.4 18.2 16.3 34.3 34.1

WavLM + R-Spings apaox 8.2k 8.2 33.7 16.7 14.9 26.4 26.6
High-budget SSFT Toplines

ContentVecsg (Qian et al., 2022) 76k 8.7 71.4 47.2 16.8 61.4  55.1

HuBERT-MGR (Huang et al., 2022a) 78k 9.5 37.1 36.3 18.3 49.7 443

Robust data2vec (Zhu et al., 2023) 105k 6.5 56.7 27.7 19.2 175 20.1
Supervised Toplines

Whisper Base (Radford et al., 2022) - - - - - 179 233

Whisper Small (Radford et al., 2022) - - - - - 10.8 143

tUnseen perturbation types for R-Spin and Robust data2vec.

Notations

We denote X + Sping as an SSL model X fine-tuned with Spin with a codebook size of K.
In X + R-Sping, k,, K; and Ky are respectively the codebook size of Lgpi, and the number
of classes of pseudo labels for £4,.. If the pseudo labels are acoustic pieces, “AP” is added

to K. Unless specified otherwise R-Spin denotes R-Spings apaok.

3.3.3 Noisy Phoneme Recognition

We compare the phoneme recognition performance of SSL and SSFT methods under noisy
conditions. The training setup is similar to the SUPERB phoneme recognition task (Yang

et al., 2021), where the SSL models are frozen and only a lightweight prediction head is fine-
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Figure 3.2: Phoneme error rates (PER) under different noise types and SNRs. R-Spinss, apaok
is used here.

tuned.® The LibriSpeech train-clean-100 and the test-other subsets are used as the training
and evaluation datasets, respectively. We apply distortions only to testing data to obtain
phoneme error rates (PER). We divide results into two categories by the amount of speech
processed during SSFT, directly related to the resources used.

As shown in the middle columns of Table 3.1, R-Spin improves SSL models in all con-
ditions, surpassing both low and high-budget methods. WavLM -+ R-Spin has the best
overall PERs because WavLM is pre-trained with a denoising task, showing that model ini-
tialization contributes largely to the recognition performance after SSFT. Gaussian noise
and reverberation conditions are unseen during R-Spin training. Still, the proposed method
improves performance on these tasks, indicating that noise-invariant training generalizes to
some out-of-domain perturbations. Furthermore, comparing Robust data2vec with R-Spin
is unfair since the training costs are 12 times greater. Hence, we reduce the batch size to
train a low-budget version of the Robust data2vec. The noticeable performance drop in the
low-budget model implies Robust data2vec requires high computation resources, but our
approach still offers competitive results with even fewer training data.

For a more detailed comparison, we plot PERs under different SNRs in Figure 3.2. Note
that these models are trained with MUSAN noise except for WavLM, and only HuBERT-

MGR uses Gaussian noise. The proposed method achieves the overall lowest PERs. HuBERT-

Shttps://github.com /s3prl/s3prl
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MGR excels in Gaussian noise, but R-Spin slightly outperforms this model even though this
type of noise is unseen. Still, our method offers improvements even when the SNR is high.
Overall, the proposed R-Spin improves capturing content under severe distortions with min-

imal effort.

3.3.4 Noisy Speech Recognition

This section evaluates R-Spin with a noisy ASR task. We follow the ASR task of SU-
PERB, but the prediction heads (two-layer BLSTM) are trained with the clean portion of
the CHiME-4 speech corpus obtained from the WSJ0 corpus (Paul and Baker, 1992), consist-
ing of 14 hours of clean English speech. The number of training updates is 100k (originally
200k). The trained ASR models are evaluated on the 1-channel track of the CHIME-4 chal-
lenge. We report the averaged WERs over each subset (real and simulated data). We apply
Whisper normalization to all ASR results for a fair comparison with the Whisper toplines.®

The results in the right columns of Table 3.1 reveal that R-Spin surpasses low-budget
baseline models. While R-Spin demonstrates commendable performance on CHiME-4, this
method falls short compared to Robust data2vec, which benefits from training with a sub-
stantially higher budget. Furthermore, we set Whisper Base and Small as toplines due
to their robustness demonstrated through large-scale weakly-supervised learning (Radford
et al., 2022). R-Spin successfully mitigates the performance gap between WavLM and the
Whisper toplines by over 60%. Combining phoneme and speech recognition findings, we con-
clude that R-Spin effectively enhances pre-trained SSL models in capturing robust content

representations.

3.3.5 Data-efficiency

The objective behind developing R-Spin is to enhance speech SSL models with minimal

resources, including reducing training data to improve data efficiency. Following Table 2.1,

Shttps://github.com/openai/whisper
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Table 3.2: SSL and SSFT costs of models with 95M parameters. The “Init” column shows
the pre-trained models used for initialization. A denotes models in this paper, which will
be made publicly available in the near future. Note that the duplicated input utterances by
data augmentation are not included when calculating the hours of speech processed. The
number of GPU hours required for training is roughly estimated so that the true values might
differ slightly. The availability of the models listed is updated in November 2023. Unknown
data are left blank.

Batch  Processed

Size Speech aPU Open

Model Init Updates  (minutes) (hours) #GPUs Hours Model
SSL (Clean Speech)

wav2vec 2.0 (Baevski et al., 2020) - 400k 96 640k 64 2458 v/

HuBERT (Hsu et al., 2021a) ~ 250k + 400k 47 505k 32 1976 v

WavLM (Chen et al., 2022) - 250k + 400k 187 1439k 32 v

data2vec (Baevski et al., 2022) - 400k 63 420k 16 v

DinoSR (Liu et al., 2023) - 400k 63 420k 16 2880 X
SSL (Noisy Speech)

wav2vec-Switch (Wang et al., 2022) 400k 96 640k 32 X

SPIRAL (Huang et al., 2022b) - 200k 100 333k 16 499 v
SSFT

ContentVec (Qian et al., 2022) HuBERT 100k 46 76k 36 684 v

HuBERT-MGR (Huang et al., 2022a) HuBERT 400k 12 78k 8 768 v

Robust data2vec (Zhu et al., 2023) data2vec 100k 63 105k 16 v

deHuBERT (Ng et al., 2023) HuBERT 250k X

Spinggs (Chang et al., 2023a) HuBERT 5k 43 0.4k 1 1 v
This Paper

Robust data2vec (low budget) data2vec 100k 6.3 10.4k 2 44 A

Spingggs (for AP40k) HuBERT 10k 43 7.1k 2 8 A

R-Spinss, apaok HuBERT 10k 6.4 1.1k 2 16 VAN

an analysis of the duration of speech data processed during training is undertaken to quantify
the computational expenses associated with each method. As depicted in the second column
of Table 3.1, these values are derived by multiplying the number of training updates and
the effective batch size for each update. Compared with the high-budget SSFT methods, R-
Spin requires significantly lower training costs, concurrently exhibiting superior performance
across diverse conditions. The costs of self-supervised pre-training and fine-tuning of various

models are shown in Table 3.2.
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Table 3.3: CHIME-4 ASR results for ablation studies based on fine-tuned WavLM models.

CHiME-4 CHIME-4
Method Real Sim Method Real Sim
Spinggss 52.1 46.6 Layer to Apply Laux
R-Spinga, Ap40k 26.4 26.6 Layer 11 28.1 2838
no L aux 47.8 45.6 Layer 10 34.7 33.8
no Lspin 319 324
no spgaker perturbation 28.3  28.0 Layer to Apply Lspin
no additive noise 494  46.8 Layer 11 272 21.9
Layer 10 27.0 278
PSG}J.dO Label for f Aux Fine-tuned Layers
Spinggyg codebook 28.3 29.1 Top 10 Layers 997 300
MFCC (K-means 512) 46.9 45.4 Tov 6 L ‘ 39'4 37'5
MFCC (K-means 2048) 485 45.5 ob b mavers ' '
HuBERT L9 (K-means 512)*  28.8 29.1 Dataset
HuBERT L9 (K-means 2048)* 282 28.4 LibriSpeech 100h 272 276
LibriSpeech 360h 26.6 27.6
Hyperparameters
A=1 26.3 27.7 Noise SNR Range
A=0.5 26.6 27.3 0 -20dB 29.0 28.6

*Pairwise t-tests between these results all have
p > 0.05. Also, p < 0.05 when they are compared
with R—Spingg7 AP40k-

3.3.6 Ablation Studies

Under the same CHiME-4 ASR setup in Section 3.3.4, we conduct ablation studies to analyze
the design of the proposed methods.

As shown in Table 3.3, by removing the proposed auxiliary loss (no La,), the WERs
increase significantly, showing that L£a,, not only helps ASR performance but allows fine-
tuning the entire model without collapsing. Second, WERs increase by about 5% without the
Spin loss (no Lgpin), implying that this loss is essential for achieving perturbation-invariant
representations. Speaker perturbation also plays an important role in offering good content
representations according to the degraded WERs (no speaker perturbation). Moreover, the
fine-tuned model performs poorly without the additive noise during training, demonstrating
the loss of robustness without the noise-invariant training (no additive noise). The above

results verified the necessity of the proposed approaches.
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Pseudo Label for £a,.x

We investigate the effect of choosing different pseudo labels for L£a.. First, acoustic pieces
are essential to the R-Spin training since learning from the original Spin model’s 2048 code-
word labels increases WERs by over 2%. Next, we replace the pseudo labels with the more
commonly used K-means clustered representations (Hsu et al., 2021a). Clustered MFCC
features degrade R-Spin the most, no matter the number of clusters used, corroborating the
findings by Hsu et al. (2021a). In contrast, clustered HuBERT representations from layer
9 (L9) have similar results compared with Spinggss, and t-test results imply the differences
between applying these pseudo labels are statistically insignificant. This suggests that using
clustered discrete units from a speech SSL model is an alternative solution if a pre-trained

Spin model is unavailable.

Hyperparameter

To examine the impact of the auxiliary loss, we change the value of A in Equation 3.2. As
shown in the bottom left part of Table 3.3, the differences of ASR WERSs between different
MN's are negligible. We can conclude that combining Lgpi, and La,x is necessary, and the

ratio between the two objectives is robust.

Layer to Apply L£aux

In the R-Spin design, L. is applied to the last layer. We next apply Lau to other hidden
layers to verify that our approach leads to the best overall result. When we move the auxiliary
loss L aux to lower layers, the performance degrades significantly, showing that this loss should

regularize the entire model. Otherwise, the Spin loss still makes the representations collapse.

Layer to Apply Lspin

Similar to the previous experiments, we apply Lgpin to lower layers to find the optimal

design. When we move the Spin objective function to lower layers, the ASR performance
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also degrades slightly. With the results of L4, we conclude that a relatively good strategy

for applying the two proposed loss functions is adding both to the top layer.

Fine-tuned Layers

R-Spin is designed to fine-tune SSL models entirely, but Spin allows fine-tuning the top two
layers. Hence, we reduce the number of fine-tuned layers to compare R-Spin with Spin. The
results indicate that by fine-tuning only the top layers, the model cannot adapt to noisy
scenarios. Thus, R-Spin is beneficial since we can now fine-tune the entire model in contrast

to Spin.

Data

We further change the data for R-Spin SSFT to reveal the impact of training corpora on the
performance. We found that WERs degrade slightly (LibriSpeech 960 — 360 — 100 hours)
when the training corpus size is reduced. The ASR performance degrades prominently by
increasing the SNRs of the background noise for the noise-invariant training. Hence, the
choice of noise data and SNRs has a greater impact on the downstream performance than

the choice of the clean speech corpus.

3.4 Chapter Summary

This chapter introduces R-Spin, a self-supervised fine-tuning method with speaker and noise-
invariant clustering for robust content representations. Results demonstrate R-Spin’s effec-
tiveness and generalizability to diverse acoustic scenarios under limited computation budgets.

The ablation studies support the necessity of the R-spin design.
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Chapter 4

Representation Analysis

This chapter comprehensively analyzes the learned representations and discrete acoustic
units in the proposed Spin and R-Spin frameworks to offer insights and further understand
the properties of SSL models.

We first provide the background of prior methods for analyzing speech SSL. models in
Section 4.1. Second, we inspect the speaker identification capabilities of different models
to reveal their speaker invariability. Third, we visualize the hidden representations under
various perturbation types in Section 4.3. Fourth, we explore the quality of continuous and
discrete representations respectively in Sections 4.4 and Section 4.5. Finally, we discuss the

phoneme segmentation capabilities of learned discrete units in Section 4.6.

4.1 Background

Although existing speech SSL models perform well on various downstream tasks, fine-tuning
the models or learning additional parameters requires hyperparameter tuning, thereby in-
troducing more uncertainties to the evaluation of these models. Moreover, many previ-
ous studies focus on analyzing and utilizing the continuous representations of SSL mod-
els (Pasad et al., 2021), but recent works have shown promising results with discrete acoustic

units (Chang et al., 2023b). Due to the above two issues, the true capabilities of SSL models
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Figure 4.1: Layer-wise speaker identification accuracy.

remain unknown. Thus, we dive into the analysis of both continuous and discrete features
in SSL models with numerous techniques.

Pasad et al. (2021) have conducted an extensive study to understand the behavior of
wav2vec 2.0. They utilize the Canonical Correlation Analysis (CCA) and mutual information
to compute the similarity between continuous speech representations and linguistic units like
phonemes and words. Sicherman and Adi analyze the discrete units obtained by SSL models
to understand the properties of these units (Sicherman and Adi, 2023). Chang et al. (2023b)
report a comprehensive study of the usefulness of discrete speech units via the application
of these units to various downstream tasks.

In this chapter, we extensively examine the characteristics of speech SSL representations
with several metrics, tasks, and visualization approaches, aiming to reveal the perturbation-

invariability and proximity to linguistic units.

4.2 Speaker Identification

This section inspects each model’s invariability to speaker changes by computing the speaker
identification (SID) accuracy with different hidden layer representations. The SID task

follows SUPERB’s setup but with 50k training updates. As shown in Figure 4.1, R-Spin has
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significantly lower SID accuracy for the top layers, demonstrating the effect of fine-tuning
the whole model with a speaker-invariant objective. Moreover, requiring 9X less training
costs, our method produces representations with less speaker information than ContentVec.
Therefore, the proposed method outperforms prior speaker-invariant training approaches in

removing speaker ID.

4.3 Visualization of Hidden Representations

4.3.1 Speaker Invariability

This section explores the robustness of SSL models regarding representation invariability
by examining the characteristics of representations under diverse perturbations. The visu-
alization of these representations articulated by distinct speakers is facilitated by applying
t-SNE (Van der Maaten and Hinton, 2008). We show the layer with the lowest speaker iden-
tification (SID) rate according to Figure 4.1. In Figures 4.2a and 4.2b, there is a discernible
clustering of frames uttered by the same speaker, suggesting that lower layers retain more
speaker-specific information. Conversely, Figures 4.2c and 4.2d illustrate that top layer fea-
tures are grouped according to phonemes rather than speakers. Moreover, the top layer rep-
resentations are context-dependent, as exemplified by the spatial arrangement of phonemes
such as “carry” (/k/ /eh/ /x/ /iy/) and the same phoneme /iy/ in the word “oily” (/oy/
/1/ /iy/) in Figure 4.2d. Besides, a comparative analysis between Figures 4.2¢ and 4.2d re-
veals that R-Spin features exhibit a more prominent overlap among speakers than HuBERT.
As a result, this section substantiates the speaker-invariability of the proposed approach.

Detailed visualizations are shown in Figures 4.3 and 4.4.
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(c) HuBERT (d) HuBERT + R-Spin
Layer 9 Layer 12

Figure 4.2: t-SNE Van der Maaten and Hinton (2008) visualization of the CNN and the
layer with the lowest speaker identification rate given the same clean utterance spoken by
three different speakers from TIMIT Garofolo (1993). Each color represents a speaker, while
each label visualizes a frame representation and the corresponding phoneme label. The
transcription is “Don’t ask me to carry an oily rag like that.” The silence frames are omitted
for clarity.
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Figure 4.3: t-SNE visualization of HuBERT representations of the same utterance spoken
by three speakers (see Fig. 4.2 for details).
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Figure 4.4: t-SNE visualization of HuBERT -+ R-Spin representations of the same utterance
spoken by three speakers (see Fig. 4.2 for details).
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4.3.2 Noise Invariability

In this section, we examine the response of continuous representations to input distortions.
As in Section 4.3.1, we employ t-SNE visualization to explore hidden representations under
different distortions. As shown in Figure 4.5, the R-Spin representations exhibit a more
pronounced overlap than those subjected to HuBERT, suggesting that R-Spin demonstrates
greater robustness to noise. Figure 4.5d reveals that features exposed to MUSAN background
noise exhibit a high degree of overlap with unperturbed features, whereas the other two per-
turbation types diverge more significantly from clean speech features. This divergence is
attributed to Gaussian noise and reverberation being unseen during R-Spin training. Never-
theless, HuBERT + R-Spin yields similar representations under various distortions, resulting
in closely located visualized frames.

Subsequently, we compute linear centered kernel alignment (CKA) similarities (Kornblith
et al., 2019) of frame-wise features with and without noisy inputs, where a higher similarity
indicates a higher invariability to distortions. The evaluation involves the construction of
datasets derived from the LibriSpeech dev-clean and dev-other sets, augmented with various
distortions. Figure 4.6 illustrates that R-Spin exhibits superior noise invariability for the
upper layers than other models, indicating the efficacy of noise-invariant training even if the
noise types are unseen. In contrast, Robust data2vec has a greater noise invariability starting
from the bottom layers. Lower layers tend to demonstrate lower similarities, suggesting a
higher sensitivity to perturbations. This observation aligns with existing research discussed
in Section 3.2.3, which associates lower layers with fundamental signal processing functions.
Overall, the analysis underscores the notable noise invariability offered by R-Spin. Detailed

visualizations are shown in Figures 4.7 and 4.8.
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Figure 4.5: t-SNE visualization of hidden representations of the same audio utterance in
Fig. 4.2 with different distortions indicated by colors, where SNR = 0dB.
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Figure 4.6: Layer-wise perturbation invariability analyses with Linear CKA, where higher
values indicate higher invariability to perturbations. The zeroth layer denotes the CNN
feature extractor.
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Figure 4.7: t-SNE visualization of HuBERT representations of the same utterance under
different distortions (see Fig. 4.5 for details).
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Table 4.1: ABX error rates (%) on the ZeroSpeech 2021 phonetic dev set (Nguyen et al.,
2020). Within and Cross denote within and across speakers. Clean and Other denote clean
and other corpus partitions. Only the layer with the lowest average score is reported for
each model and is specified in column “Layer”.

Within Speaker  Across Speaker

Method Layer Clean  Other Clean Other Avg
Nguyen et al. (Nguyen et al., 2022) - 3.26 3.81 4.00 5.91 4.25
Chorowski et al. (Chorowski et al., 2021) - 2.95 3.54 4.50 7.05 451
HuBERT 11 3.07 3.90 3.71 6.19 4.22
WavLM 11 2.73 3.41 3.21 4.95 3.58
data2vec 4 4.03 5.09 4.72 6.97  5.20
DinoSR 5 3.08 3.43 3.42 4.42 3.59
ContentVecygg 12 2.98 3.70 3.44 5.17 3.82
Content Vecsgg 12 3.91 4.37 4.46 5.80 4.64
HuBERT + Spingoas 12 2.44 3.00 2.81 3.76  3.00
WavLM + Spinggss 12 2.75 3.33 3.24 4.17 3.37
HuBERT-MGR 11 3.38 3.81 3.96 548  4.16
Robust data2vec 4 4.18 5.12 4.92 7.24 5.37
HuBERT + R-Spinga, Apaok 12 3.56 3.94 3.95 4.92  4.09
WavLM + R-Spinsa apaok 12 3.58 3.71 3.87 4.71 3.97
WavLM + R-Spingpas, AP40k 12 3.34 3.53 3.64 4.57  3.77

4.4 Acoustic Unit Discovery

This section inspects linguistic units captured in representations with Zero Resource Speech
Benchmark (ZeroSpeech) 2021 (Nguyen et al., 2020). The phonetic task measures how well
speech representations distinguish between different phonemes via the ABX discrimination
test (Schatz, 2016). We report K = 2048 for Spin since it performs the best in this task.
As shown in Table 4.1, Spin boosts both models and surpasses the baselines, especially for
HuBERT, surpassing prior art and reducing the average ABX error rate by a relative 29%.
Although the performance gain for WavLM is minor, error rates of other corpus partitions
are reduced, indicating that Spin helps WavLM in a noisier scenario. The results directly
demonstrate that Spin improves extracting phonemes. Moreover, we observed that R-Spin

does not offer significant improvements in this task because R-Spin models are aimed to

57



handle more complex audio types, thereby losing some capabilities for clean speech. Still,

R-Spin offers better ABX scores compared with other noise-robust SSFT approaches.

4.5 Discrete Unit Quality

This section analyzes discrete acoustic unit quality to reveal the relationship between speech
representations and phonemes. To inspect this property, we take discrete units produced
by an SSL model like the codeword IDs in the Spin model. For other models that cannot
directly extract discrete codes, we apply K-means clustering on the hidden representations

of a model and take the cluster IDs as pseudo labels (Hsu et al., 2021a).

4.5.1 Metrics

We adopt three metrics proposed in (Hsu et al., 2021a), where higher values imply better

quality.
1. Cluster Purity measures the purity of each phoneme’s associated discrete units.

2. Phone Purity measures the average phoneme purity within one class of discrete units.

3. Phone-normalized mutual information (PNMI) measures the uncertainty reduc-

tion for the underlying phone when observing the codeword of a frame.

K-means clustering is performed on a random 10-hour subset of the LibriSpeech train-
clean-100 split. The discrete units are evaluated on the combination of LibriSpeech dev-clean

and dev-other splits. The offline clustering scores are averaged over three runs.

4.5.2 Results

First, we cluster continuous representations into 256 clusters and report the layer with the

highest PNMI, as shown in the upper part of Table 4.2. Independent of codebook sizes and
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Table 4.2: Discrete unit quality. Only the layer with the highest PNMI is reported for each
model and is specified in column “Layer”.

Active
Method Layer Clusters Cluster Purity Phone Purity PNMI
K-means Clustering (K = 256)
HuBERT 7 256 0.154 0.639 0.630
WavL.M 11 256 0.178 0.624 0.640
data2vec 4 256 0.173 0.652 0.630
DinoSR 5 256 0.168 0.631 0.616
Content Vecygg 12 256 0.169 0.650 0.643
Content Vecsgg 8 256 0.154 0.639 0.629
HuBERT + R-Spingsg 12 256 0.150 0.641 0.655
HuBERT + R-Spinggs 12 256 0.151 0.654 0.666
WavLM + Spinggys 12 256 0.153 0.650 0.666
HuBERT + R-Spinss, apaok 12 256 0.152 0.608 0.607
WavLM + R—Spingg, AP40k 12 256 0.162 0.612 0.613
WavLM + R—Spin204g, AP40k 12 256 0.153 0.627 0.632
Online Clustering (Codebook)
VQ-APC (Chung et al., 2020) - 98 0.078 0.240 0.189
Co-training APC (Yeh and Tang, 2022) - 164 0.089 0.308 0.294
DinoSR - 217 0.189 0.582 0.569
HuBERT + Spingsg - 256 0.138 0.642 0.658
WavLM + Spingsg - 9256 0.133 0.646 0.659
HuBERT + R—Spingm AP40k - 256 0.135 0.547 0.568
WavLM -+ R—SpiH256’ AP40k - 256 0.144 0.620 0.636

pre-trained models, Spin outperforms all baselines in PNMI. Increasing the codebook size
in Spin improves all three metrics (Spingsg vs. Spinggss), indicating that a larger codebook
learns more fine-grained phoneme representations.

For online clustering (codebook learning), we compare the codebook in Spingsg with VQ-
APC (Chung et al., 2020) and Co-training APC (Yeh and Tang, 2022), where the latter
two methods leverage codebook learning to improve content modeling. We produce discrete
units for Spin by taking arg max over p per frame. In the lower part of Table 4.2, codebooks
in Spin achieve high PNMI compared with prior works. Unlike prior methods, because of
the constraint in Equation 2.1, all learned codewords are utilized in Spin. Besides, similar
to the previous observations in Section 4.4, R-Spin offers worse discrete unit quality, which

is also caused by noise-invariant training.
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(a) K = 256
(b) K = 2048

Figure 4.9: P(phone|code) for HuBERT + Sping. The vertical axes represent the phones
sorted from high to low frequencies.

Next, we visualize P(phone|code) in Figure 4.9 to demonstrate the relation between
learned codewords and phonemes. Since the vertical axes are sorted by phoneme occurrence
frequency in human speech, the figures show that Spin applies more codewords to represent
high-frequency phonemes. Furthermore, because off-diagonal values of K = 2048 are lower
than those of K = 256 (Figure 4.9b vs. 4.9a), a larger codebook helps each code to focus
on encoding one phoneme, consistent with phone purity in Table 4.2. Overall, Spin learns
good discrete acoustic units and improves continuous representations in SSL models.

Besides, we inspect the importance of the codebook size in Spin. As highlighted in Sec-
tion 2.3.4, the codebook size positively correlates with phoneme recognition. A similar trend
can be found in Figure 4.10a but has an inverted trend for ASR. However, the observed per-
formance discrepancy is less than 1%, suggesting that the impact of codebook size on R-Spin
is marginal. In contrast, substantial improvements in ASR are observed with larger acoustic

piece vocabularies, as evidenced by Figures 4.10c and 4.10b, while such improvements are
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Figure 4.10: WavLM + R-Spin results with different (a) codebook size K’s and (b)(c)
AP vocabulary sizes in Lau. (b) and (c) depict the phoneme and character segmentation
R-values, where the dotted curves are the baselines by segmenting each utterance with equal-
length segments given the number of boundaries obtained by the acoustic pieces. The PERs
are calculated by averaging over different noise conditions on LibriSpeech test-other. The
WERs are the averaged scores of the real and simulated evaluation sets of CHiME-4.

not in phoneme recognition. To analyze this phenomenon, we investigate the phoneme and

character segmentation capabilities using discrete units.

4.6 Phoneme Segmentation with Discrete Units

In this section, we segment speech with acoustic pieces and show the R-values in Figures 4.10b
and 4.10c. R-value is a robust metric for evaluating word or phoneme segmentation (Résénen
et al., 2009), which is calculated with recall (R) and precision (P):

71| + |72

R-value =1 —
value 5 ,

where

- =+/(1—-R)*>+ (05)?
ry = (—0S+R—1)/V2
OS =R/P—-1
The predicted boundaries are computed by finding the locations where the adjacent discrete
units differ. We perform this task on the force-aligned LibriSpeech dev-clean and dev-other

sets, including both phonetic and word level alignments (Lugosch et al., 2019; McAuliffe
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Figure 4.11: An example of phoneme alignment of an utterance “This had some effect in calm-
ing him.” from LibriSpeech dev-clean. The black lines indicate the force-aligned boundaries,
while the red dashed lines are the predicted boundaries with AP40k.

et al., 2017).! The character boundaries are obtained by dividing each force-aligned word
segment into equal-length segments corresponding to individual characters within the word.
More accurate boundaries can be computed with character-based aligners, but we only need
a rough estimation of the character segmentation quality.

As depicted in both Figures 4.10b and 4.10c¢, larger AP vocabulary sizes have superior
segmentation, indicating that a greater number of APs contribute to forming units that
closely resemble linguistic units. The baseline, which involves uniformly segmenting utter-
ances based on the number of boundaries derived from APs, underscores the non-random
nature of AP boundaries. Although the segmentation capability of APs is incomparable
with other unsupervised speech segmentation algorithms (Kreuk et al., 2020), they present
significantly improved targets for L.y, consequently enhancing the accuracy of ASR.

Furthermore, we show an example of segmenting an utterance with acoustic pieces of 40k
vocabularies in Figure 4.11. The red dashed stripes visually depict that the boundaries of APs
are mostly aligned with phoneme boundaries. Notably, the predicted boundaries occasionally
exhibit a slight temporal lag compared to the ground truth, like the initial occurrences of
ah and m. We suspect the 50Hz framerate of HuBERT or the Spin training objective causes
this phenomenon since they could reduce time resolution and introduce temporal shifts in

representations. Still, the actual cause remains a subject for future investigation.

Thttps://zenodo.org/record /2619474 (CC-BY 4.0)
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4.7 Chapter Summary

This chapter comprehensively analyzed the characteristics of perturbation-invariant speech
representations and discrete units like acoustic pieces. The analyses demonstrate the pertur-
bation invariability of Spin and R-Spin, indicating the effectiveness of the proposed methods.
Finally, the findings offer insights into the properties and applications of continuous and dis-

crete acoustic representations, thereby benefiting future studies.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

This thesis introduces two novel and efficient methods for learning perturbation-invariant
speech representations for content-related tasks. First, Speaker-invariant Clustering (Spin)
is proposed to remove speaker information and preserve content. Second, building on top
of Spin, Robust Spin (R-Spin) mitigates the shortcomings of Spin and extends Spin to
process more diverse audio recordings. Both approaches offer significant improvements in
phoneme recognition and automatic speech recognition tasks. Furthermore, to understand
the characteristics of the perturbation-invariant representations, we conduct a wide range
of analyses, including quantitative and qualitative. The analyses offer insights into the
properties of continuous and discrete acoustic representations, benefiting future studies and

developments.

5.2 Future Work

Beyond this thesis, there are some potential extensions to fully understand and leverage
perturbation-invariant speech representation models. First, the dataset employed consists

of English utterances spoken by native speakers, predominantly of North American dialects,
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leaving the performance in other accents unexplored. Thus, it is suggested that the impact
of English accents and dialects on Spin and R-Spin be examined. Second, Spin and R-
Spin are both good at learning linguistic units from English speech, so extending these
methods to other languages or multilingual situations is worth studying. Third, scaling the
proposed frameworks in this thesis to larger scales is crucial for real-world applications since
the experiments are conducted on 95M parameters models. Last, to fully comprehend the
capabilities of the proposed method, further analyses and extensions to other applications

are recommended for future exploration (Sicherman and Adi, 2023).
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