
1

System-Theoretic Safety Analysis for
Teams of Collaborative Controllers

By

Andrew N. Kopeikin

B.S. Aerospace Engineering, University of Illinois Urbana-Champaign, 2006
S.M. Aeronautics and Astronautics, Massachusetts Institute of Technology, 2012

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2024

©2024 Andrew N. Kopeikin. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to exercise any and all

rights under copyright, including to reproduce, preserve, distribute and publicly display copies of the thesis, or
release the thesis under an open-access license.

Authored by: Andrew N. Kopeikin
 Department of Aeronautics and Astronautics
 September 15, 2023

Certified by: Nancy G. Leveson
 J. C. Hunsaker Professor of Aeronautics and Astronautics
 Thesis Supervisor

 David A. Mindell
 Professor of Aeronautics and Astronautics
 Dibner Professor of History of Engineering and Manufacturing

 Natasha A. Neogi
 Ph.D., Subproject Manager, System-Wide Safety Project, NASA

 John P. Thomas
 Ph.D., Research Engineer, Department of Aeronautics and Astronautics

Accepted by: Jonathan P. How
 R. C. Maclaurin Professor of Aeronautics and Astronautics
 Chair, Graduate Program Committee

2

Disclaimer

This material is based upon work supported by the United States Air Force under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the
United States Air Force.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

3

System-Theoretic Safety Analysis for Teams of Collaborative Controllers

by

Andrew N. Kopeikin

Submitted to the Department of Aeronautics and Astronautics
On September 15, 2023, in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Human teams collaborate by establishing roles, changing functional authorities, maintaining
team cognition, coordinating, and helping one another close control loops. These complex
interactions are inspiring novel system concepts to improve human-machine and multi-machine
collaboration. However, these new systems challenge existing methods to model, analyze, design,
and assure their safety. As such, few have been fielded in safety-critical domains like aerospace.

To address this gap, this work develops a rigorous and systematic approach to analyze safety
and enable safety-guided design of systems that exhibit collaborative control. It introduces a
system-theoretic framework to describe multi-controller interactions. This includes a taxonomy
of seven structural dimensions that influence such interactions and nine dynamics observed in
collaborative control that are defined using System-Theoretic Accident Model and Processes
(STAMP). An analyzed set of controller interactions in aerospace systems demonstrates the
framework and highlights how designers are trying to create more sophisticated systems.

The framework provides the necessary foundation to extend the state-of-the-art in hazard
analysis, System Theoretic Process Analysis (STPA), to systematically address collaboration.
First, a mechanism is developed to incorporate the nine collaborative control dynamics into
STAMP control structure models so that they are explicitly considered in hazard analysis.
Second, a process is derived from STPA to identify unsafe combinations of control actions
between multiple controllers. The procedure systematically considers potential issues involving
gaps, overlaps, transfers, and mismatches in authority that are found in teams. It is executed
using an abstraction-based algorithm that manages combinatorial complexity and provides
automation support. Third, a method is introduced to identify causal factors from these unsafe
control combinations that relate to the collaborative dynamics. The new technique, STPA-
Teaming, is applied to a manned-unmanned aircraft teaming case study, and it finds new causal
factors not previously found in a past hazard analysis of the same system.

Finally, a structure is derived from Intent Specification to (1) integrate design and assurance
processes, (2) support system modeling and analysis at different levels of abstraction, and (3)
trace engineering activities using a means-end hierarchy. The framework integrates STPA-
Teaming into a broader systems engineering approach. It also leverages the analytical structure
of STPA-Teaming to provide novel traceability of its results directly to architectural design
decisions. The safety-guided approach is illustrated using the same case study as above.

Thesis Supervisor: Nancy G. Leveson, Ph.D.
Title: J. C. Hunsaker Professor of Aeronautics and Astronautics

4

Acknowledgments

Completing my doctorate in aerospace engineering has long been an aspiration of mine, but until
recently, seemed far out of reach and vanishing given my work and family responsibilities. I am
incredibly fortunate to have been given this opportunity. This journey has been both very
rewarding as well as challenging, and this dissertation is the result of the support of the following
people, without whom I would have been adrift.

First, I cannot convey the depth of my gratitude to Prof Nancy Leveson for welcoming me
into her research group and opening my eyes to a whole new view of engineering. Her ideas are
revolutionizing how many industries address development challenges and I am privileged to
take part in her paradigm change. Prof Leveson spent an enormous amount of time mentoring,
developing, and guiding me in my research. Thanks to her, I see the world in control structures,
embrace holism, and have solutions to address the most complex systems engineering problems.

My Ph.D. committee included leading experts in their fields and I am especially appreciative
of their mentorship. Dr. Natasha Neogi spent countless hours outside her busy role at NASA to
meet and carefully review my work. I am grateful for her incredible breadth and depth of ideas,
and for the way she challenged me to improve my precision and logic in reasoning. Dr. John
Thomas was instrumental in helping me understand the fundamental concepts in my research.
His ideas and passion for safety engineering were a key influence on my thought process
throughout this journey. Prof David Mindell, whose book on humans and robots inspired my
work, provided invaluable perspectives to navigate the often-foggy route of doctoral research.

Other top researchers played key roles during my thesis proposal, defense, and as readers.
Dr./Col Bill “$” Young took me under his wing early on and enabled me to apply my research to
real-world problems. Prof Elizabeth Baker undertook the massive effort of carefully combing
through my dissertation to help me perfect my message. To all my committee members and
readers, thank you for sharing your wisdom and time, which molded me into a researcher.

I am grateful for all my interactions with the students in the Engineering Systems Lab. Special
thanks to Dr. Lawrence Young for sharing his experiences and to future doctors Michael Schmidt,
Justin Poh, and Alex Hillman for our discussions. Also, thank you to those I worked closely with
in research efforts: Elias Johnson, Sam Yoo, Dro Gregorian, Adam Munekata, and Brittany Bishop.

I am eternally thankful for the support of the Lincoln Scholar Program. Without it, I could
not have earned a Ph.D. while also raising my family. I thank several leaders at MIT Lincoln Lab,
including Dr. Marc Viera, Dr. Jenn Watson, Scott Van Broekhoven, and Dr. Caroline Lamb for
their professional support throughout my studies. I also appreciate the many conversations I had
with Lincoln Lab colleagues that helped frame my research.

Finally, I would like to thank my friends and family who visited and helped us during this
journey. Most of all, I thank my two boys and wife for supporting me every step of the way. I
love you three more than anything and could not have finished this work without your love.
Alex and Aiden, thank you for providing an infinite source of study breaks and for all the joy you
have brought me. May this work inspire you to challenge yourselves to aim high and seek new
horizons in life, whatever they may be. Ashley (the original Dr. Kopeikin), thank you so much
for your support, encouragement, and patience while I spent long days and nights away from
you, again, to complete more graduate work. You are forever my inspiration.

5

Contents
Disclaimer .. 2

Abstract ... 3

Acknowledgments ... 4

List of Figures... 8

List of Tables .. 10

Chapter 1: Introduction ... 12

1.1 Motivation... 12

1.2 Challenges ... 14

1.2.1 Relevant Challenges in Contemporary Systems .. 14

1.2.2 Open Challenges to Address ... 15

1.3 Research Overview .. 16

1.3.1 Research Objective ... 16

1.3.2 Gap .. 16

1.3.3 Research Contributions .. 17

1.3.4 Hypotheses and Evaluation .. 18

1.3.5 Scope .. 19

1.4 Organization of Dissertation .. 20

Chapter 2: Literature Review ... 21

2.1 Theoretical Foundations of Team Interactions.. 21

2.1.1 Human Teams .. 21

2.1.2 Human – Machine Teams (HMT) .. 24

2.1.3 Machine Teams .. 26

2.2 Architecture Design for Collaborative Systems .. 27

2.2.1 Introduction to System Architectures ... 28

2.2.2 Functional Analysis ... 30

2.2.3 Architecture Design Approaches for Collaborative Systems .. 32

2.3 Safety Assurance of Teaming Systems .. 37

2.3.1 Hazard Analysis ... 38

2.3.2 Verification & Validation (V&V) ... 41

2.3.3 Certification ... 44

2.4 Systems Theory and STAMP .. 45

6

2.4.1 Introduction to Systems Theory, STAMP, and STPA .. 45

2.4.2 Why Use STAMP for this Research Topic .. 49

2.4.3 Previous Relevant STAMP Work ... 51

2.5 Summary of the Literature ... 53

Chapter 3: Defining Collaborative Control Using Systems Theory .. 54

3.1 Taxonomy of the Structure of Controller Interactions ... 55

3.2 Collaborative Control Dynamics.. 58

3.3 Analyzing Systems for Collaborative Control Dynamics .. 61

3.3.1 Demonstration of the Framework .. 62

3.3.2 Results of the Categorization in Different Types of Systems .. 65

3.3.3 Relationships between the Categorized Dynamics ... 67

3.4 Summary of Collaborative Control Definition.. 69

Chapter 4: Extending STAMP and STPA for Collaborative Control .. 70

4.1 Generic Collaborative Control Structure ... 72

4.1.1 Overview of the Model.. 74

4.1.2 Cognitive Functions ... 75

4.1.3 Collaborative Control Dynamics in the Control Structure .. 79

4.1.4 Additional Recommendations for the Model.. 80

4.2 Unsafe Combinations of Control Actions (UCCAs) ... 81

4.2.1 Types of UCCAs... 82

4.2.2 Managing Combinatorial Complexity with Abstraction.. 84

4.2.3 Linearizing Growth by Abstracting Further ... 92

4.2.4 UCCA Identification Algorithm ... 100

4.3 Causal Scenarios in Collaborative Control .. 109

4.3.1 Step 1: Top-Level Scenarios to Reason about Internal Control 112

4.3.2 Step 2: Internal Control Causal Factors .. 115

4.3.3 Step 3: Collaborative Control Causal Factors .. 117

4.3.4 Step 5: Other Causal Factors .. 119

4.3.5 Final Thoughts on Iterative Refinement Process ... 120

4.4 Summary of Extended Hazard Analysis ... 120

Chapter 5: Case Study and Evaluation .. 122

5.1 Baseline MUM-T System & Analysis Overview ... 123

5.2 MUM-T Collaborative Control Structure .. 125

7

5.3 MUM-T Unsafe Combinations of Control Actions ... 127

5.4 MUM-T Causal Scenarios ... 130

5.5 Case Study Comparison of Results .. 139

5.5.1 Comparing the Identification of Unsafe Control .. 140

5.5.2 Comparing the Identification of Causal Scenarios ... 142

5.6 Dynamic Hierarchy Demonstration .. 151

5.7 Summary .. 155

Chapter 6: A Framework for Safety-Guided Design of Collaborative Systems 157

6.1 Framework Description .. 158

6.1.1 Design-Assurance Processes Axis .. 158

6.1.2 Abstraction-Refinement Axis ... 159

6.1.3 Engineering Intent Axis ... 159

6.2 Example Application of the Framework ... 161

6.2.1 Example: MUM-T Level 1 - System Purpose View ... 161

6.2.2 Example: MUM-T Level 2 - Conceptual Architecture View .. 162

6.3 Design Guidance from Safety Constraints .. 164

6.3.1 Tracing Safety constraints to Losses ... 166

6.3.2 Tracing Safety constraints to Design Decisions .. 167

6.3.3 V&V of Safety Constraints ... 168

6.4 Summary .. 169

Chapter 7: Conclusion and Future Work .. 170

7.1 Contribution 1: Collaborative Control Definition ... 170

7.2 Contribution 2: STPA-Teaming Analytical Extensions .. 172

7.3 Contribution 3: Safety-Guided Design Framework .. 173

7.4 Final Note... 175

Acronyms .. 176

Bibliography .. 178

Appendix 1: Categorization Data for Set of Systems Analyzed .. 192

Appendix 2: MUM-T Case Study Unsafe Combination of Control Actions (UCCAs) 196

Appendix 3: MUM-T Case Study - Unsafe Causal Scenarios .. 201

Appendix 4: MUM-T Case Study – Dynamic Hierarchy Causal Scenarios 303

Appendix 5: MUM-T Case Study – Safety-Guided Requirements & Constraints 317

8

List of Figures
Figure 1-1. Interactions in Human Teams Inspire Designs of New Complex Systems................. 12

Figure 2-1: Model of effective human teamwork (adapted from [59]) ... 23

Figure 2-2: Systems Engineering “V-Model” (adapted from [93]).. 28

Figure 2-3: Means-Ends Functional Abstraction of Aircraft Control (recreated from [116]) 32

Figure 2-4: Coactive System Model (adapted from [2]) ... 36

Figure 2-5: Coactive Design Process (derived from [2]) .. 37

Figure 2-6: Example STAMP Hierarchical Control Structure ... 47

Figure 2-7: Four Steps of the System-Theoretic Process Analysis (STPA) [50] 47

Figure 2-8: STPA Example Multi-UAS System Control Structure (adapted from [143]) 48

Figure 2-9. Fundamental Coordination Relationships (adapted from [191]) 51

Figure 3-1: Contrasting Interactions in Fielded Human-Machine Systems and Human Teams .. 54

Figure 3-2. Taxonomy of Structure of Interactions between Multiple Controllers........................ 56

Figure 3-3. System-Theoretic Collaborative Control Dynamics.. 58

Figure 3-4. Categorization of Interactions between ACAS-X Aircraft.. 62

Figure 3-5. Categorization of Human-Digital Copilot Interaction .. 64

Figure 3-6. Comparison of the Structure of Controller Interactions ... 66

Figure 3-7. Mean Number of Collaborative Control Dynamics Found in Each Interaction 66

Figure 3-8. Percentage of Interactions that Exhibit Each Collaborative Control Dynamic 67

Figure 3-9. Relationship between Collaborative Control Dynamics in Sampled Systems 67

Figure 4-1: “Teaming Controller” in Future Helicopter Control Structure (adapted from [28]) .. 71

Figure 4-2. Three Analytical Extensions Involved in STPA-Teaming .. 72

Figure 4-3. Baseline Generic Control Structure from STPA Handbook Appendix G [50] 73

Figure 4-4. Generic Collaborative Control Structure ... 74

Figure 4-5. System Concepts Demonstrating Various Collaborative Control Configurations 75

Figure 4-6. Cognitive Functions in Collaborative Control Structure .. 76

Figure 4-7. Structure of a UCA in STPA ... 82

Figure 4-8. Start and End of a Control Effort Considered in UCA Type 3 and 4........................... 83

Figure 4-9. Type 3-4 UCCA Example .. 84

Figure 4-10. Illustrative Multi-UAS Team Example (left) and its Generalized Form (right) 85

Figure 4-11. General Team of Multiple Controllers Issuing Multiple Control Actions 86

Figure 4-12. Managing Combinatorial Complexity Using Abstraction.. 88

9

Figure 4-13. Updated Multi-UxS Control Structure (left) and its Generalized Form (right) 92

Figure 4-14. Abstraction of a Collaborative System to Models 2a and 2b 93

Figure 4-15. Interchangeable Controllers in Arbitrary Collaborative System 108

Figure 4-16. Areas of Potential Breakdown in a Feedback Control Loop (derived from [50]) ... 110

Figure 4-17. Process to Develop Causal Scenarios from a UCCA ... 110

Figure 4-18. Four Areas of Potential Breakdown in Multiple Feedback Control Loops 111

Figure 4-19. Possible Internal Control Actions that Can Lead to Type 1-2 UCCA 112

Figure 4-20. Possible Internal Control Actions that Can Lead to Type 3-4 UCCA 114

Figure 4-21. Iterative Refinement Template for Causal Scenario Development 116

Figure 4-22. Refocused Control Structure for Mutually Closing Control Loops 117

Figure 5-1. Manned-Unmanned Teaming System Control Structure (adapted from [53]) 123

Figure 5-2. Categorization of the Human-Machine & Multi-Machine Interactions in MUM-T . 125

Figure 5-3. Collaborative Control Structure for the MUM-T System ... 127

Figure 5-4. Internal Control Combinations that Result in No Controller Providing a Fix.......... 131

Figure 5-5. Coupled Control Loops for Controllers Fixing and Firing on a Target..................... 133

Figure 5-6. Misalignment of Hypothetical Models between MUM-T Controllers 134

Figure 5-7. Internal Control Combinations that Result in an Unsafe Gap in a Search Handoff . 138

Figure 5-8. Modified MUM-T Control Structure that Includes Dynamic Hierarchy 152

Figure 5-9. Internal Control Combinations that Result in No Controller Providing the Search 153

Figure 6-1. Framework for Safety-Guided Design of Collaborative Systems 158

Figure 6-2. Different Abstracted Views of MUM-T Conceptual Architecture 163

Figure 6-3. End-to-End Traceability of Safety constraints to Losses Using STPA 165

Figure 6-4. Traceability (Black Arrows) of Safety Constraints to Losses & Design Decisions 165

10

List of Tables
Table 2-1: Levels of Automation (based on [122]) .. 34

Table 2-2: STPA Example Multi-UAS System Hazards [143] .. 48

Table 2-3: STPA Example Multi-UAS Unsafe Control Actions (UCAs) (adapted from [143]) 49

Table 2-4. Nine Coordination Elements Defined by Johnson [191] .. 51

Table 4-1. Full Enumeration of Type 1-2 UCCAs for the Multi-UAS Example 86

Table 4-2. Number of UCCAs Enumerable for Different Hypothetical Teams 87

Table 4-3. Abstraction 1a Type 1-2 UCCAs for Multi-UAS Example ... 89

Table 4-4. Abstraction 1a Type 3-4 UCCAs for Multi-UAS Example ... 89

Table 4-5. Abstraction 1b Type 1-2 UCCAs for Multi-UAS Example ... 91

Table 4-6. Abstraction 1b Type 3-4 UCCAs for Multi-UAS Example ... 91

Table 4-7. Abstraction 2a Type 1-2 UCCAs for Multi-UxS Example .. 94

Table 4-8. Abstraction 2a Type 3-4 UCCAs for Multi-UxS Example .. 95

Table 4-9. Refinement of Example UCCA 4.. 95

Table 4-10. Abstraction 2b Type 1-2 UCCAs for Multi-UxS Example .. 96

Table 4-11. Refinement of Example UCCA 5 .. 97

Table 4-12. Abstraction 2b Type 3-4 UCCAs for Multi-UxS Example .. 97

Table 4-13. Examples of Control Combinations Not Addressed Using Full Abstraction 99

Table 4-14. Formalized Method of Enumerating Combinations of Control Actions 102

Table 4-15. Pruning and Prioritizing Combinations in Refined UCCA 4..................................... 107

Table 4-16. Top-Level Scenarios that Address Internal Control Issues for Type 1-2 UCCAs 113

Table 4-17. Top-Level Scenarios that Address Internal Control Issues for Type 3-4 UCCAs 115

Table 4-18. Where Collaborative Control Dynamics are Analyzed in STPA-Teaming 121

Table 5-1. MUM-T Abstraction 2a Type 1-2 UCCAs (Green: Human Inputs) 128

Table 5-2. MUM-T Abstraction 2a Type 3-4 UCCAs (Green: Human Inputs) 129

Table 5-3. MUM-T Abstraction 2b Type 1-2 UCCAs (Green: Human Inputs) 129

Table 5-4. MUM-T Abstraction 2b Type 3-4 UCCAs (Green: Human Inputs) 129

Table 5-5. MUM-T Refinement of UCCA 10 (Example for Type 1-2 UCCA) 130

Table 5-6. MUM-T Refinement of UCCA 15 (Example for Type 3-4 UCCA) 130

Table 5-7. Number of UCAs and Causal Scenarios in the Compared Analyses 140

Table 5-8. Summary of Unsafe Controls Identified in Both Analyses .. 140

Table 5-9. Comparison of Select Unsafe Control Identified by Both Techniques 141

11

Table 5-10. Number of Unique Scenarios Not Found / Found in Baseline 144

Table 5-11. Examples Comparing Cognitive Alignment & Lateral Coordination Scenarios 145

Table 5-12. Examples Comparing Mutually Closing Control Loop Scenarios 146

Table 5-13. Comparison Example of Dynamic Membership Scenarios .. 147

Table 5-14. Comparison Example of Dynamic Connectivity Scenarios 148

Table 5-15. Comparison Example of Dynamic Authority Scenarios .. 149

Table 5-16. Comparison Example of Transfer of Authority Scenarios ... 150

Table 5-17. Comparison Example of Shared Authority Scenarios .. 151

Table 5-18. UCCAs Relevant to Dynamic Hierarchy Analysis Demonstration 152

Table 6-1: Examples of UCAs and UCCAs Produced at Each Level of Analysis 164

Table 6-2. Example Safety constraints Derived from UCCA and Top-Level Scenarios 166

12

Chapter 1 : Introduction

1.1 Motivation

A system is “a set of components that act together as a whole to achieve some common goal,
objective, or end” [1, p. 40]. Aerospace systems components consist of hardware, software, and
humans. Human-to-human interactions in systems can be complex. The social process of teaming
involves dynamics in establishing roles, changing functional authorities, team cognition,
coordination, and helping one another close control loops [2]. These mutually influential
interactions allow teammates to leverage each other’s contributions to joint activity to improve
performance in a task or to achieve something they cannot do alone.

The recognized benefits of software control in precision, efficiency, cost, and operational
reliability [3], [4] have helped permeate automation in many facets of fielded aerospace systems.
However, despite amazing technological progress and expanding applications, the basic
interactions between humans and software controllers have remained relatively limited in these
safety-critical systems. Most follow the same basic concept. Automated machines control various
processes using feedback loops. Humans generally set goal conditions for the control effort,
supervise the machines, and in some cases, intervene by changing parameters and modes or by
disabling them altogether.

Technological advances, limitations of current systems, and market pressures are all
energizing interest in developing designed systems with new types of component interactions
inspired by human teams (Figure 1-1). The goal is to extend this social process to enable humans
and machines, or multiple machines, to work better together by contributing different strengths
and mitigating each other’s weaknesses.

Figure 1-1. Interactions in Human Teams Inspire Designs of New Complex Systems

For example, software controllers, while faster and more precise than humans, are also brittle
and cannot handle situations that exceed their programmed bounds or were unforeseen in design
[4], [5]. Conversely, by nature, humans are creative problem solvers that can help overcome such
situations but are generally poor at serving in passive monitoring roles and cannot effectively
intervene if they have been out of the control loop [4]. The outcome of their actions can be
improved if the two form a collaborative partnership. Similarly, teams of multiple machines offer
opportunities for different systems to leverage potentially disparate capabilities or harness their
combined effects to improve their output synergistically.

13

The past decade has witnessed numerous proposed concepts to implement these more
complex interactions in aerospace systems. For example, the potentially $500B market of Urban
Air Mobility (UAM)1 [6], [7] is confronted with an anticipated pilot shortage [8], and its demands
are expected to exceed human pilot and air traffic controller workload capacities [9]. As such,
some in the aviation industry envision partnering humans with future automated controllers that
would be certified to safely take on some of the operating responsibilities [10]. The industry is
also exploring how teams of ground-based human operators can share remote control of multiple
UAM aircraft, possibly without any vehicle operator on board [6], [8].

Other aerospace organizations are exploring similar concepts. The airline industry is
studying whether flight crews can be reduced to a single pilot using support from onboard
automated systems [11], [12] or from ground-based human-machine systems [5], [13], [14]. Civil
aviation authorities are researching how distributed decision-making and dynamic switching
between human and automated controllers can help integrate UAM and Unmanned Aircraft
Systems (UAS) traffic into the National Airspace System [8], [9], [15]–[17]. Similarly, the space
industry is seeking to implement distributed control of new multi-satellite constellations [18], and
it is exploring how human-robot partnerships improve deep space and planetary exploration [19].

Defense sector roadmaps show similar ambitions in improving how autonomous systems
partner with humans and other machines [20], [21]. For example, new defense system goals
include collaboratively pairing pilots with automation that acts as an additional crewmember and
dynamically offloads some operating tasks [22], [23]. Numerous early prototypes of distributed
control multi-UAS and multi-munition systems have demonstrated they can achieve collective
group effects [24]–[27]. Several conceptual designs include teaming human-piloted aircraft with
UAS to jointly execute complex missions [28]–[31]. Finally, some argue the military should
increase its use of smaller collaborative heterogeneous unmanned systems to deliver more
overwhelming effects [32].

Despite the high interest in engineering aerospace systems with these more complex
interactions, few (except for the simplest designs) have actually been fielded. Design options are
constrained by a gap in the existing systems engineering processes, which cannot effectively
model, analyze, design, and assure the safety of such systems. The goal of this dissertation is to
solve part of this gap by developing a novel framework that supports the analysis and design of
systems with degrees of freedom in component interactions that go beyond those fielded today
in aerospace.

1 Urban Air Mobility (UAM) is part of the larger Advanced Air Mobility (AAM) concept, which envisions

large numbers of increasingly autonomous aircraft operating densely in airspaces to transport people and

goods [6]. The terms UAM and AAM are used interchangeably in this work.

14

1.2 Challenges

Safety in aviation systems is non-negotiable and is arguably the most critical constraint to satisfy.
If an aviation system is viewed as unsafe, it will not be accepted by society and will not be
adopted, regardless of how well the system performs in other aspects.

Historical trends in aviation indicate that the introduction of new generations of automated
technologies is typically immediately followed by an initial increase in accident rates [33]. To
improve safety, potential unsafe causal factors must be systematically identified, understood, and
eliminated or mitigated over the life cycle of the system. New systems that involve more complex
human-machine and multi-machine interactions will be no different.

This section first describes some of the challenges observed in relevant contemporary systems
that have led to accidents. These systems include the simpler interactions found in modern
supervisory control of automation, as well more complex interactions in teams of human
operators. Next, it explores the numerous open questions expressed in the literature regarding
how to design more collaborative relationships into systems.

1.2.1 Relevant Challenges in Contemporary Systems

Aviation's history is fraught with unsafe interactions involving human supervisory control of
automated systems. These are important to consider as they form a subset of the expanded types
of relationships being considered in future designed systems.

In 2009, Air France flight 447 (AF 447), with its fully functional Airbus A330 and highly
trained flight crew, lost control in cruise, crashed, and killed all 228 people onboard. A temporary
blockage of the airspeed sensors led the aircraft automation to change flight-control modes and
displays and created confusion in the cockpit on how to interact with the aircraft [34], [35]. In
2013, a Boeing 777 crashed short of its landing runway when the flight crew issued manual flight
control inputs on a diverged mental model of the auto-throttle operating mode [36]. More
recently, several Boeing 737-MAX flight crews had to “fight” unsafe automated flight control
inputs to regain aircraft control. In these cases, design defects and certification oversights that
occurred in market-driven haste to field the new aircraft contributed to two crashes, 346 lives lost,
and a costly worldwide grounding of the new aircraft fleet [37].

Contemporary aviation systems also include human teams, which exhibit the complex
dynamics of interest, but in doing so, have also contributed to accidents. In the same AF 447
example, the confusion that arose in diagnosing the flight control system also led to a catastrophic
breakdown in teamwork within the crew of three. Inadequate coordination and rapid changes
in control authority resulted in two pilots issuing simultaneous opposite control inputs, which
canceled each other out [35]. The system was not designed to prevent getting into such a
hazardous state from this contributing factor.

Military aviation has also suffered from unsafe human teaming. In 1994, two US Air Force F-
15s accidentally shot down two US Army Blackhawk Helicopters, killing all 26 personnel
onboard. Some of the causal factors of this friendly-fire accident relate to unsafe teamwork
between two airborne controllers on the AWACS (Airborne Warning And Control System) that

15

managed the Iraqi No-Fly Zone [38]. Overlaps, gaps, and evolutionary changes in control
authority of the air traffic resulted in an unsafe collective output from the AWACS controller
team.

1.2.2 Open Challenges to Address

The community is becoming increasingly aware of some of the difficulties associated with
expanding the nature of component interactions in aerospace systems. Several recent studies
describe key challenges and research gaps [8], [23], [39]–[44], and highlight three recurring topics:
(1) it is challenging to engineer human-team inspired interactions, (2) there is a need for new
associated design methods, and (3) existing safety assurance processes are unable to address these
more complex interactions. The state-of-the-art in modeling, design, and analysis for each of
these topics is further reviewed in Chapter 2.

All eight studies describe the difficulty of engineering the attributes that exist in human teams
into systems that facilitate safe teaming between humans and automation. System components
(humans and machines) may need to handle context-dependent dynamics such as establishing
and transitioning roles, responsibilities, and functional authorities. Collaborators may have to
establish and maintain shared situational awareness of a joint control problem. Controllers, both
human and automated, may help close each other’s control loops and perform mutual
monitoring. These dynamics are further complicated by inherent differences in how controllers
interpret information and time, especially when humans partner with machines.

Other attributes, which current systems already struggle with, may be further challenged by
more complex interactions. The level to which humans trust machines and understand how they
work heavily influences their interactions [45]. The age-old open question of how to effectively
keep humans in the control loop when working with automation also remains. As more functions
become reliably automated, it is less likely human operators working with them will be able to
detect off-nominal events or recover control [4], [44]. More dynamic and interdependent
relationships between humans and automation can further strain these issues.

The next recurring topic highlights how current design techniques fall short in engineering
more complex systems. There is a clear need to improve how interdependence is modeled
between system components. Systematic and rigorous processes are also lacking to guide
architectural decisions, such as functional allocation [39]. The community increasingly
recognizes that the traditional reductionist approaches commonly used are inadequate to design
complex and safety-critical systems. For instance, the typical method of divide and conquer does
not account for interactions between entities [38], [46], and the more recently popular practice of
deriving design decisions based on a Level-of-Automation number is too simplistic to handle real-
world complexities [47]. More sophisticated methods (see Chapter 2) have their own challenges
and limitations and, therefore, have not been operationally applied in aerospace.

The last common theme centers on our inability to assure novel aerospace systems. Assuring
safety requires a holistic systems engineering approach that spans requirements generation,
design, verification and validation (V&V), certification, operations, and evolution. The studies
point to challenges associated with developing requirements and metrics for collaborative
systems that are end-to-end traceable and analyzable. They all describe shortfalls in traditional
V&V methods, which are challenged against complex software-intensive systems, do not address

16

the influence of dynamic partnerships with automation on human performance [48], and are
unable to validate if a system will degrade gracefully.

In addition, many of the new technologies proposed are not addressed by prescribed
certification standards. For example, many new systems want to incorporate recent advances in
Machine-Learning, which employ non-deterministic and adaptive algorithms that have never
been successfully certified in safety-critical applications. Furthermore, the aviation regulatory
framework is predicated on a human pilot having final authority and responsibility for the
operation of an aircraft [49]. This premise creates tension with concepts that shift some of these
responsibilities over to autonomous functions. Finally, the significant costs of assurance activities
can be prohibitive to new, and often small, manufacturers of future UAM aircraft or UAS that
have limited resources.

1.3 Research Overview

The goal of this dissertation is to advance the state-of-the-art in system safety engineering to
address some of the challenges listed in Section 1.2.2. The following describes the overall research
objective, gap, contributions, hypotheses, and scope.

1.3.1 Research Objective

The objective of this research is to develop a rigorous and systematic framework that enables
safety analysis and safety-guided design of systems that exhibit collaborative control interactions.

1.3.2 Gap

The aerospace industry is clearly interested in engineering systems that enable “teaming”
between humans and machines and among multiple machines. While the term “teaming”
implies something new, it is vague and used to describe many different types of concepts, much
like other buzzwords. What it truly implies is that the community is pursuing system designs
that push the boundaries in the complexity of component interactions beyond what is currently
fielded.

Despite the interest, there is a distinct gap in the ability of systems engineers to describe the
different types of component interactions. Current modeling techniques are inadequate to
account for some of the dynamics observed in human teams that are inspiring new designs.
Finally, there are no rigorous and systematic processes to define and analyze system architectures
with these more complex interactions, nor to assure their safety in a cost-effective way [39].

Analysis techniques based on System-Theoretic Accident Model and Processes (STAMP) have
successfully guided the design of systems and their emergent properties, such as safety and
security, starting early in the engineering lifecycle. STAMP is an accident causality model
grounded in Systems Theory [38]. It enables systematic analysis of non-linear causal relations
between hardware, software, and human controllers that interact in systems. Its use of

17

abstraction manages complexity, and its hierarchical framework helps reason about socio-
technical factors holistically and top-down. System-Theoretic Process Analysis (STPA) is a
hazard analysis method built onto STAMP that has become popular in many industries because
of its ability to identify potential causal factors early in design [50].

STAMP and STPA have attributes well-suited to address some of the challenges associated
with fielding the novel aerospace systems introduced earlier. However, they lack a framework
to systematically consider the collaborative dynamics sought in these systems. This dissertation
aims to address this gap to improve the analytical performance of these sophisticated techniques.

1.3.3 Research Contributions

Contribution 1: The system-theoretic definition of interactions observed in collaborative control.

A widely cited definition for team is: “A team consists of two or more entities who interact
dynamically, interdependently, and adaptively toward a common and valued goal, with unique
roles and functions to perform” [51, p. 3]. It is nearly identical to that of a system (see Section 1.1)
and, therefore, is not very useful by itself in distinguishing teams from other systems.

What makes teams different and so challenging to engineer is that their component
interactions are more complex than those in previously fielded designed systems in safety-critical
applications. Despite the strengths of system-theoretic methods to analyze complex systems,
many of the types of interactions that may be designed into systems have not been defined using
Systems Theory. This dissertation provides a framework to define interactions observed in
collaborative control so that they can be more completely analyzed using STAMP and the analysis
tools built on it.

The system-theoretic framework consists of (1) a taxonomy of the structure of interactions
between multiple controllers and (2) a set of dynamics observed in collaborative control. It creates
the necessary foundation to extend system-theoretic hazard analysis methods needed to
systematically identify causal factors associated with these interactions.

Contribution 2: Extensions to STAMP and STPA that enable systematic analysis of safety in
systems that exhibit collaborative control interactions.

STAMP and its analysis tools need extended guidance to systematically handle the more
complex, team-inspired component relationships sought in novel systems. Current STAMP
models tend to represent systems with rigidly assigned control authorities. The procedure in
STPA lends the focus of analysis to one controller and one process at a time. These methods do
not emphasize complex dynamics in collaboration, such as shared process models, joint control,
and shifting roles and responsibilities.

This dissertation introduces several extensions to STAMP and STPA to systematically identify
causal factors associated with collaborative control. First, a generic collaborative control structure
provides a mechanism to incorporate collaborative interactions in STAMP models. Second, a
process is established to identify unsafe combinations of control actions between multiple
controllers. The procedure systematically considers potential issues involving gaps, overlaps,
transfers, and mismatches in authority that are found in teams. Finally, a method is designed to
identify causal scenarios from these unsafe control combinations that are guided by the system-

18

theoretic definition of collaborative interactions (Contribution 1). These extensions are
collectively referred to as STPA-Teaming.

Contribution 3: A framework to integrate safety-guided architecture design with assurance through
enhanced traceability.

Safety assurance processes are typically conducted separately from design and not until later
stages of development. By the time they are applied, it is often impractical to (1) modify the
system if safety issues are found, and (2) perform effective V&V to ensure hazards are properly
eliminated or mitigated. One of the strengths of STPA is its ability to analyze systems throughout
their engineering lifecycles, including in early conceptual design stages. This allows safety
requirements to be identified early when they are most useful and can establish traceability that
supports a more effective assurance by construction program [4].

This dissertation provides a framework derived from Intent Specification [52] to help
integrate design and assurance. The framework enables navigation and traceability between
three axes. First, the results of the hazard analysis are traced to derived safety constraints and
then to the selected V&V strategy. Second, the system is modeled at different levels of abstraction,
which represent a team as a whole at a higher level, but also capture collaborative interactions
within the team at a lower level. And third, the system is described using different views in a
means-end hierarchy, starting from concept of operation, down to low-level component
implementation.

Given the focus of this research, the dissertation emphasizes how Contributions 1 and 2
integrate into the framework, on all three axes, to support conceptual design decisions regarding
collaborative control systems. However, a similar construct may be generalizable to other types
of systems beyond those that exhibit complex team-inspired interactions.

1.3.4 Hypotheses and Evaluation

The research explores the following three hypotheses. Their evaluation supports an argument
toward validation of Contributions 1 and 2 to the state-of-the-art provided by this dissertation.
Contribution 3 includes a demonstration of the vision for how this work fits within a broader
systems engineering context, but no formal evaluation is provided.

Hypothesis 1

The system-theoretic collaborative interactions framework provides a mechanism to categorize and describe
component interactions that are, or planned to be, designed into aerospace systems.

The evaluation of this hypothesis is conducted in Chapter 3 over a set of fielded and unfielded
aerospace systems reviewed in the literature. It provides a demonstration of how to categorize
interactions within these systems using the framework. Analysis of the categorized interactions
supports the conclusion that the component interactions are being sought.

19

Hypothesis 2

The system-theoretic collaborative interactions framework describes component interactions that are not
specifically addressed by existing hazard analysis techniques, including STPA.

This hypothesis is evaluated in Chapter 4 by qualitatively showing that one or more of the
component interactions identified in the framework, which are sought out in the design of
aerospace systems, are not systematically addressed in the existing hazard analysis techniques.

Hypothesis 3

The STAMP and STPA extensions identify causal factors associated with collaborative control
interactions, which are not systematically found using the existing STPA guidance.

This hypothesis is evaluated in Chapter 5 using a case study of a real-world system concept
involving Manned-Unmanned Teaming (MUM-T). The system involves a human-piloted
military aircraft that collaborates with multiple UAS to execute mission tasks. The evaluation
includes two parts.

First, the extended hazard analysis technique, STPA-Teaming, is performed on the same
MUM-T concept that was previously and independently analyzed using STPA [53]. The
evaluation demonstrates how new scenarios related to collaborative control are uncovered using
the analytical extensions developed in this work. However, the system in this case study does
not exhibit all of the collaborative interactions defined in this dissertation.

The second part of the evaluation fills this gap. The original case study is expanded by
hypothesizing new collaborative control interactions that could be incorporated into MUM-T.
Hazard analysis of the new concept completes the demonstration that STPA-Teaming finds
causal scenarios associated with all of the collaborative control dynamics defined.

1.3.5 Scope

The research is scoped in three ways to ensure timely completion with the appropriate depth and
level of contribution of a Ph.D. dissertation. First, the analysis of collaborative interactions is
restricted to safety. Here, safety is defined as the absence of unplanned and unacceptable losses [38].
These losses may include loss of life, injury, or damage to property, as often described in accident
reports. However, they can also include broader items, such as loss of mission, loss of reputation,
etc., which may also be unacceptable to stakeholders for some systems.

There can be numerous and often competing objectives in design. As previously described,
safety is arguably the most important constraint to satisfy in aerospace applications. However, it
does not necessarily reflect other figures of merit that influence design optimization. In addition,
while STAMP and STPA can address other emerging system properties, like security, these are
not the focus of this work.

Second, the analytical extensions target a subset of all possible system interactions. They
specifically concentrate on those observed in collaborative control as defined in this work. Many
other types of component interactions are well-studied in the STAMP literature. For example,
feedback control loops for supervisory control or automated decision aid systems are well

20

understood in STAMP and do not need to be redefined here. The goal is to enable analysis of
system designs that go beyond these more traditional relationships. However, it is also possible
that other types of interactions beyond those identified in this dissertation may be proposed. As
such, this work aims to address the most important and distinctive aspects needed to extend
STAMP and STPA for collaborative control.

Third, this research focuses on designed systems in the aerospace domain. It is expected that
many of the techniques developed will also apply to other fields. However, the set of
collaborative interactions studied is bounded to those anticipated in aerospace.

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows.

Chapter 2 reviews and evaluates the literature relevant to the research objective. It describes
the state-of-the-art in modeling, designing, and analyzing systems inspired by teams. The
literature reviewed includes theoretical foundations of teaming interactions, methods used to
design their architectures, and assurance processes to get them fielded. The chapter also provides
the necessary background in Systems Theory, STAMP, and STPA to justify their use and the need
for analytical extension to address the research gap.

Chapter 3 introduces the system-theoretic framework to analyze collaborative control
interactions. It defines a taxonomy of the structure of interactions between multiple controllers
and a set of dynamics observed in collaborative control. The chapter applies the framework to a
sample of interactions found in fielded and unfielded aerospace systems to demonstrate its use
and support its relevance.

Chapter 4 leverages the theoretical foundation from Chapter 3 to develop extensions to
STAMP and STPA that enable systematic analysis of causal factors associated with collaborative
control. The new techniques include guidance to model collaborative control structures, a
mechanism to identify when control actions by multiple controllers are unsafe together, and a
method to develop causal scenarios framed by the collaborative dynamics.

Chapter 5 applies the extended hazard analysis technique to a case study of a real-world
aerospace concept. First, the new method is applied to the same system previously analyzed
using STPA to demonstrate how it finds new causal scenarios. Next, the concept in the case study
is expanded to demonstrate how the new technique addresses all of the types of collaborative
control dynamics defined in this work.

Chapter 6 describes a framework derived from Intent Specification that integrates safety-
guided design with assurance processes using the results of the extended hazard analysis
techniques from Chapter 4. A demonstration illustrates how the framework can support safety-
guided design by rigorously deriving and tracing safety considerations to potential design
decisions.

Chapter 7 concludes by summarizing the dissertation, acknowledging its limitations, and
recommending future work to expand this research.

21

Chapter 2 : Literature Review

This section reviews the state-of-the-art in the literature related to the research objective. The
following concepts are necessary to have engineering control over modeling, analyzing,
designing, and assuring the safety of systems with complex interactions inspired by human
teaming. Four perspectives are explored.

Section 2.1 studies the theoretical foundations available to model and analyze interactions in
teams. Section 2.2 examines the methods employed to design architectures that seek these
interactions. Section 2.3 explores the processes available to assure the safety of such systems.
Finally, Section 2.4 reviews the relevance of system-theoretic approaches to engineer these
systems.

2.1 Theoretical Foundations of Team Interactions
Theoretical research on teaming originated as a human-centered study. In 1955, Marschak
published the first known “Theory of Teams” to describe interactions between teammates [54].
The field has since produced a significant body of research devoted to better understanding how
multi-person teams function.

More recently, a new community has extended the human teaming knowledge base to
explore how humans can collaborate with automated software-controlled systems. In parallel, a
separate research area has focused on distributed and collaborative control of multiple unmanned
systems. Many of their component interactions are relatable to those found in human teams.

It is important to understand the similarities in the interactions between these different types
of entities to develop a unified high-level framework for analysis and design, regardless of the
system composition. Similarly, differences must also be understood to enable refinement once
lower-level details are needed. To this end, this section surveys theoretical principles associated
with human, human-machine, and multi-machine teams. These lay the foundation for models
needed to design architectures and assure safety for systems with such complex component
interactions.

2.1.1 Human Teams

Sports teams, music bands, professional partnerships, and small military units are a few examples
of the multi-person teams ubiquitous in society. Teams in aviation include flight crews, flight
formations, pilots interacting with air traffic controllers (ATC), and multiple ATC facilities
collaborating to manage traffic.

Several accidents in the 1970s stressed the importance for airline flight crews to function as a
team instead of as a set of individuals with technical expertise in operating aircraft [23]. This
fueled a surge in teaming research [55] and launched the concept of Crew Resource Management

22

to train pilots on the effective teamwork necessary for flight operations [56]. The resulting body
of knowledge summarized below focuses on attributes in team models, theories of team
cognition, and integration of teams within larger systems.

The foundational literature on teaming is mostly grounded in Human Factors and
Organizational Psychology. It describes teaming attributes in many different ways. For example,
MIT’s Humans Systems Engineering course associates teams with association, interdependence,
communication, interaction, influence, and structure [57]. In another example, Paris et al. explain
how teammates must handle multiple sources of information, task interdependence, coordination and
communication between members, common valued goals, specialized roles and responsibilities, task-
relevant knowledge, and adaptive strategies [58]. The same authors also acknowledge that the
literature provides a vast variety of different taxonomies and models, which have varied in
emphasis over the decades.

This wide disparity of models is also echoed in a well-cited paper by Salas et al. [59] who
surveyed 138 related studies on teams. To provide focus, they distill the results of their survey
into a set of “five core components” needed for effective teamwork. First, Team Leadership is
needed to direct and coordinate the activities of other team members, assess overall performance,
reassign tasks, and synchronize contributions. Second, Mutual Performance Monitoring helps
develop common understanding and identify mistakes or lapses in teammates. Third, Backup
Behaviors enable responsibilities and workloads to be shifted. Fourth, Adaptability allows the team
to identify a need to change strategy and turn to a backup behavior. And Fifth, Team Orientation
is an attitudinal attribute describing the willingness of a member to work in a team and accept
feedback from teammates [59].

Salas also highlights that the five core components must be supported by three “coordinating
mechanisms”: Shared-Mental Models, Mutual Trust, and Closed-Loop Communications [59]. This
model, visually represented in Figure 2-1, represents the state-of-the-art in defining the elements
of effective human teamwork from an organizational psychology perspective.

The more specific study of team cognition has also generated a lot of interest. There are two
complementary theories to describe how teams establish situational awareness (SA) [57]. The
first, developed by Endsley [60], focuses on shared elements of SA. In this model, teammates form
overlaps in SA to coordinate in joint activity. These overlaps define the information that must be
shared, or held in common, between different members. The second model, proposed by Stanton
et al. [61], considers SA as distributed. Here, instead of focusing on common knowledge, the
emphasis shifts to knowledge the system possesses as a whole and whether teammates have SA
of who on the team knows what and when. This process drives coordination requirements.

These two theories are now viewed as complementary, where team cognition includes both
shared-mental models (models of activity and environment held in common) and transactive
memory [57]. The latter term refers to benefits that can be obtained on a team when there are
useful divergences in knowledge between teammates, and when teammates have SA of who
knows what [62].

23

Figure 2-1: Model of effective human teamwork (adapted from [59])

Another common theme in the literature, which is relevant to this work, is that “teams are
more than collections of individuals, and teamwork is more than the aggregate of their individual
behaviors” [58, p. 1]. This depicts teaming as an emergent system property, which can therefore
be analyzed from a system-theoretic lens. While this concept is existent in the literature, the
models that claim to use such an approach only do so superficially. They treat the team as an
open system with inputs to the team, team processes, and outputs of the team [58], [61] but do
not address the core theoretical principles of Systems Theory (see Section 2.4). Most importantly,
these models provide little guidance on how to analyze the team when integrated into a larger
system context.

This last topic is touched on in Ilgen’s research summary on the behavior of teams embedded
within larger organizations [55]. In it, he notes that the consideration for the larger system
increases the analytical emphasis on inputs and outputs rather than just focusing on team
processes. More notably, Kozlowski & Salas [63] employ Organizational Systems Theory to
model the transfer of team training between multiple hierarchal levels: organization, team, and
individuals. The authors note that the use of hierarchy and emergence helps uncover training
issues that would otherwise go neglected. However, their model is specific to their training topic,
and no path is provided to generalize the approach to a broader analysis of team dynamics.

In summary, this body of research provides useful considerations to understand how teams
function, but some gaps require further investigation. First, the majority of the models surveyed
by Paris [58] and Salas [59] are aimed at improving various aspects of team performance, but
none of them focus explicitly on ensuring safety. Second, these studies rarely provide tangible
guidance to systematically analyze or design a team as a system. Many of them provide a model
but no instructions on how to use it. Third, the available direction is even sparser on how to
analyze or design a team that interacts within a larger socio-technical context, and no general
framework to guide such activities is available. Finally, the models in this section are limited to

24

interactions between humans only. The implications of introducing machines as teammates are
explored in the next two subsections.

2.1.2 Human – Machine Teams (HMT)

The Human-Machine Teaming (HMT)2 research community has derived much of its theory from
the study of human teams described above. Its literature is summarized below with the intent to
(1) highlight different types of Human-Automation Interactions (HAI), (2) identify attributes of
HMTs important in modeling, and (3) distinguish the fundamental differences between HMTs
and human-only teams.

The concept of HMT is interpreted in many different ways. To some, it loosely represents any
human interaction with a machine, and therefore a person using a simple gas meter can be
classified as an HMT, as is done by Stanton [61]. However, most have higher expectations and
sometimes label machines that do not rise to the level of teammates as tools [64], [65].

Novel HMT concepts generally seek to shift the paradigm of HAI from the traditional human
supervisory control model over to more collaborative partnerships. These partnerships are still
generally expected to be human-directed [39]. However, concepts are also theoretically possible
where machines may supervise humans [60], [66]. Furthermore, Mixed-Initiative Interaction
systems even consider how this hierarchy may dynamically change during operation given
different types of collective work [67].

Mosier et al. provide a useful orientation to different types of HAIs found in aviation
autonomous technologies [23]. In their work, Information Automation technologies such as
Enhanced Vision Systems (EVS), Traffic Collision Avoidance Systems (TCAS), navigation
systems, and decision support systems are considered tools with limited capability to function as
a teammate. They then classify supervisory control systems as more proactive, human-initiated
and supervised, and as including a sense of shared mental models and collaboration [23].
Automated copilots like the one described by Dropkin et al. [22] are exemplified as such systems.

They then describe novel HMT concepts as forming even tighter interdependence between
humans and automation. Distinguishing features include mutual monitoring, providing
feedback to each other, and adapting together dynamically [23]. Early prototypes of these
systems exist [2], [68], but none have actually been fielded in aerospace [23], [39]. While these
categorizations are helpful to differentiate some HMTs from more basic HAIs, the delineation is
still left too ambiguous to determine fundamental architectural differences.

The literature offers many different lists of HMT effectiveness characteristics to include in
modeling, much like what was found in human teaming. Some common characteristics distilled
from the following studies [5], [13], [43], [60], [69] include bi-directional information flow, shared and
team cognition, coordination and collaboration, shared authority, shared goals, directable (human
directable [5], [13]), and automation transparency. These are considered in a variety of modeling

2 Human-Automation Teaming (HAT) is also commonly used and is interchangeable with Human-Machine Teaming

(HMT) in this work.

25

techniques, including look-up tables, finite-state machines, network theory, and computational
operator function models [70].

Unsurprisingly, many of the proposed performance attributes are drawn from the human
teaming theoretical foundations described previously. For example, Battiste et al. describe how
they leveraged key principles of Crew Resource Management (CRM), the 40+ year-old
benchmark for effective aircrew teamwork, to design an automated decision aid for a ground
control station operator [5]. Similarly, Mosier et al. derive key HMT characteristics from the “five
core components” and “coordinating mechanisms” previously discussed by Salas [59] (see Figure
2-1), and translate their meaning to the context of machine teammates [23].

However, it is insufficient to rely just on human factors and organizational psychology
research in human teaming to engineer a safe HMT system. Automated software-based entities
are not sentient beings, and concepts like knowledge, awareness, trust, or even intelligence do
not apply to them. As Klein et al. state: “the inherent asymmetry in competencies between people
and machines will always create difficulties for designing Human-Automation teams” [69, p. 93].

In fact, some have suggested that automation should never be labeled as a teammate since it
lacks affective and cognitive processes comparable to those of humans [71]. For example,
machines do not have a sense of responsibility, motivation, loyalty, or values to guide critical
problem-solving [39]. Unlike humans who employ creativity when they face the unknown,
machines are unable to perform beyond their programmed bounds [4]. They do not have good
capabilities to anticipate the needs of the team, particularly those of humans [39], [69]. They
handle information processing and timing differently than humans do [42]. Machines are
challenged by both syntactic and semantic nuances that humans can handle in natural languages
[65]. Finally, machines lack expected team etiquette and unduly interrupt humans [5], [39].

Many of these issues are the subject of dedicated research topics and an integrated approach
will be required to handle diverse technical disciplines. Clearly, HMT models must be able to
account for differences from human-only teams.

Trust-based effects are also different in HMTs. Trust is unidirectional as only humans can
trust automation, and not vice-versa. It is a key factor in determining how a human interacts with
automation or intervenes. Under-trust in automation leads to disuse when it would actually
benefit team performance. Over-trust can lead to misuse and abuse where team performance can
degrade or a hazard can arise [45]. A human that does not trust the automation must allocate
resources to checking it as opposed to collaborating with it to accomplish team goals [59].

These effects have fueled calls to make automation transparent and explainable. When
automation lacks transparency, aviation operators face difficulty in answering “What is the
automation doing? Why is it doing it? What will it do next?” without being overwhelmed with
large quantities of information [3].

This is particularly challenging when using non-deterministic Machine-Learning (ML)
techniques that have permeated many automation applications. For example, a recent study
showed that humans preferred to collaborate with a more predictable rule-based software
system, rather than with a “state-of-the-art” ML system with higher stand-alone performance
[72]. Similarly, in another study where humans were trained to understand when an ML decision
aid was prone to making good or bad decisions, researchers found mixed results in the ability of
humans to properly calibrate their trust in such systems [73].

26

Different models of trust exist in the literature. For example, Muir models trust as an
aggregation of different factors that allows it to progress through stages of predictability,
dependability, and faith [74], [75]. Cofta proposes another model in which trust and control are
two mechanisms for one to gain confidence in another entity: if they do not trust it, they must be
able to control it to have confidence in it [76]. Lee & See handle trust as a compilation of three
information bases regarding what, how, and why an automated system behaves a certain way [77].

NASA connects Lee & See’s model [77] to the human operator mental model in an analysis of
HMT effectiveness [78]. They then propose to assess operator mental models using various
measurements to adapt the system to better calibrate human trust in it, either through design
iterations and experimentations or during live operations. Unfortunately, those ideas are too
conceptual and unvalidated to be of any use at this stage.

Despite all the interest, the literature also recognizes that trust in HMTs still needs a better
definition and more precise analysis mechanisms to be useful in guiding design decisions [70]. It
is noted that the relationship of trust to Control Theory in Cofta [76], and mental models in Lee
& See [78], provides a pathway to integrate trust into a system-theoretic framework, such as the
one introduced in Section 2.4.

Another key challenge to address in HMTs is effectively maintaining the human in the control
loop. Humans are needed in complex system operations because of their creative and adaptable
behavior [4]. However, their ability to serve as effective monitors and backup controllers to
automation is inherently limited. Human monitoring vigilance cannot be maintained long,
especially in the presence of perceived reliability, and it can be difficult to recognize that the
automation is faulting if feedback is only coming from the automation itself [4].

Humans also face difficulties in intervening for several reasons [4]. They need time to rebuild
an accurate mental model of the system state to recover it. Humans are also often tasked with
recovering from difficult situations. Finally, their control skills may be diminished due to lack of
exercise because of the autonomy. This is also known as the “automation conundrum”: as more
functions become reliably automated, the less likely human operators will be able to detect and
recover control [44]. This phenomenon is described as a “fundamental barrier” in human
supervisory control of automation, and it is a motivator to expand the types of interactions to be
more collaborative in nature [4], [39], [44].

The HMT literature has similar gaps to those found in human teaming. There are many
different models with many different modeled attributes, and most are focused on effectiveness
rather than safety. They generally provide very little direction on how to use the models for
analysis or design. The models do not clearly determine if there are fundamental differences
between different types of HAIs, and which interactions specifically go beyond those
traditionally fielded in aerospace systems. Finally, the literature does not rigorously address how
to analyze HMT interactions with the environment, higher-level socio-technical systems, and
lower-level components.

2.1.3 Machine Teams

The study of collaborative behaviors achievable by multiple machines originated in controls [79]
and computer science [80]. Despite having different theoretical origins than research in human

27

teams or HMTs, these systems exhibit complex interactions and dynamics that are relatable to
those involved in teamwork. The following is a brief review of multi-machine architectures, how
some of their system attributes relate to the previously surveyed teaming literature, and the
general gap observed in this basis of the literature.

The concept of executing a complex mission using a collection of robots has generated an
entire field of research, as illustrated in one recent survey on multi-Unmanned Aircraft Systems
(multi-UAS) studies [81]. Coordinated control of these systems can either be centralized, where
a single controller determines all the actions for all other systems, distributed, or some hybrid of
the two [82]. In distributed control, each individual system makes its own decisions about its
actions based on its goals, a reward function, and information shared with its peers [80].
Distributed architectures are most beneficial in highly complex and dynamic environments since
they reduce computational latencies and can handle communication losses better than centralized
solutions [83].

Many key attributes that enable distributed control of unmanned systems are relatable to
those previously described in human teams and HMTs. Like other teams, distributed systems
must be directable and share a variable common set of goals [80]. The very concept of distributed
control inherently relates to that of shared authority in teaming because multiple controllers can
influence a common process.

Distributed systems also rely on coordination and collaboration to achieve synergistic effects
[80]. This requires bi-directional information exchange between systems [83]–[86], whether
through active messaging, or passive observation of one another [79]. They employ algorithmic
processes to reach information consistency, or consensus [83], [84], [87], which is strongly related
to the concept of team cognitive alignment. Finally, they must do all this while being subjected
to time delays and asynchronization [87], [88], as observed in other types of teams.

While there is a very technically deep literature base for all the distributed control topics
described above, much of it treats these systems as fully autonomous and does not consider the
human interaction aspect. However, complete automation is a myth, and the safety of these
technologies must account for the human roles and ensure robot actions reflect their intentions
[34]. The challenges of human-in-the-loop control and trust play a greater role in these systems
than is often acknowledged, regardless of whether the human interacts as a “teammate” or as a
“supervisor”.

In addition, most of these studies are focused on performance optimization rather than safety.
The few examples that do emphasize safety [89]–[91] typically address it using a narrow
definition and lack the rigor required for safety-critical systems. Finally, the algorithmic nature
of these works often provides no path to analyze the system when integrated with its higher-level
socio-technical context. These shortfalls are likely part of the reason why these systems have not
yet been operationally fielded despite the high interest in them.

2.2 Architecture Design for Collaborative Systems
A system architecture has a strong influence on how a system as a whole will behave in its
intended functions [92]. For this reason, it is critical that the design of novel aerospace teaming

28

system architectures be safety-guided. This section reviews the fundamental principles of system
architectures, techniques used to analyze the collaborative functions they enable, and the current
state-of-the-art methods to guide their design.

2.2.1 Introduction to System Architectures

The following discussion defines what a system architecture is, describes its role within the
development lifecycle, and highlights challenges that arise using common architecture
development techniques. This provides the foundation needed to (1) scope the meaning of
architecture with regard to collaborative control systems and (2) review analysis and design
techniques employed specifically for them.

In basic terms, a system architecture is a model of the system entities and the relationships
between them [92]. In the traditional V-model of systems engineering, architecting is a design
process that occurs on the left side of the “V” (Figure 2-2). Its inputs are high-level system
requirements generated from early conceptual processes such as the stakeholder analysis and
Concept of Operations. Its outputs then feed the more detailed design requirements of the system
and its components.

Figure 2-2: Systems Engineering “V-Model” (adapted from [93])

Ideally, the system architecture facilitates end-to-end traceability between design
requirements, design decisions, and verification and validation (V&V) strategies [94]. This
traceability is critical to safety assurance processes, but it is seldom considered in this context
early in design, as will be described in Section 2.3.

A common architecting approach is to reason about a system in terms of (1) its form (what it
is) and its function (what it does), (2) the entities that make up the system and their forms and
functions, (3) the relationships between those entities, and (4) the emergent properties that result
from those interactions [95]. From this perspective, a system architect “maps forms and
functions”.

Four common techniques help manage the complexity of the architecture [96]. First,
decomposition breaks up entities into smaller entities to reduce the scope of consideration in the
analysis. Second, abstraction hides internal complexity and maintains the form and function

29

necessary for a given level of analysis. Third, hierarchy helps organize entities at different levels.
And fourth, concept creates the notion needed to guide the eventual architecture [96].

Several methods are commonly used to model system architectures. Model-Based Systems
Engineering tools, such as the System Modeling Language (SysML) [97], are intended to link the
architecture to other systems engineering artifacts using a common model instead of different
documents. Numerical methods such as Dependency Structure Matrices (DSM) [98] and
Network Theory [99] can help organize and quantify interactions between entities in an
architecture. Finally, architectures modeled using the Department of Defense Architecture
Framework (DoDAF) provide different views of the system to facilitate design from different
engineering, operational, and managerial perspectives [100]. A variety of decision analysis and
optimization methods to help steer architectural decisions are described by Crawley et al. in [98].

Unfortunately, there are two significant limitations to just using these approaches in the
design of modern complex systems. First, to go from high-level requirements defined in natural
language to a physical and logical architecture that informs detailed design activities requires a
significant cognitive leap. Even though hierarchy, abstraction, and concept are supposed to help,
the process of early decomposition often leads engineers to enumerate components before
important functions of the system are identified. In practice, this often results in them falling
back on previously developed architectures and their components to seed the design [101]. By
doing so, they do not consider potentially better architectures to solve a problem.

Second, these modeling techniques overemphasize the objects of the system. However, in
control-oriented systems, such as the novel aerospace systems of interest in this research, the
representation of control becomes diluted among the objects, difficult to trace, and therefore
nearly impossible to properly validate [101].

Leveson argues these limitations can be overcome by initially developing a conceptual
architecture focused on top-down control interactions in a system [101]. Systematic analysis of
this model can help identify and trace system-level requirements early to enforce desired
emergent properties top-down and can then improve the use of conventional architecting
techniques for more detailed design.

The above fundamentals and inspiration from several literature sources [39], [58], [98], [101]
help scope the following definition for a system architecture, which is applied in this work:

At a higher level of abstraction, the architecture consists of the interactions supported by a
control structure to determine the behavior of the collective system in the context of a
broader system and environment. At a lower level, it consists of the components, their
interactions, and their supporting control structure to determine how they contribute to
the collective behavior.

The remainder of this section surveys approaches that have been employed to identify
functions the team must perform and methods to allocate these functions to collaborative entities
within the team architecture.

30

2.2.2 Functional Analysis

Functional analysis is a process to identify the set of tasks to be performed by a collective system.
It is often used in architecture design to allocate the function of those tasks to the system
components (see Section 2.2.3). It is also a common input to various assurance analyses (see
Section 2.3). This section explores existing functional analysis methods applicable to collaborative
systems, including those used to analyze flight crew interactions, and how they are being adapted
to explore human-machine teaming in novel aerospace systems like Urban Air Mobility (UAM).

Many functional analyses organize tasks in hierarchical structures to manage complexity. For
example, Hierarchical Task Analysis (HTA) treats tasks as goal-specified behaviors that are
attained through actions and feedback [102]. Tasks are identified through a systematic
decomposition of goals and subgoals and are then used as input for other analysis and design
techniques [2], [103].

Critical Task Analysis (CTA) employs this type of hierarchal task decomposition to analyze
military flight crew responsibilities during mission execution [104], [105]. The process begins with
identifying a limited set of high-level functions performed by pilots, such as Aviate, Navigate,
Communicate, and Manage [106]. These are decomposed into activities that have defined time
horizons, then into tasks needed complete the activities, and finally into subtasks as the primitive
elements of execution. CTA supports behavioral, cognitive, information requirements, safety,
and failure and degraded modes analyses used in military aircraft certification [105].

Civil aviation employs a similar functional analysis method in the advanced qualification
program for air carrier flight crews operating under 14 Code of Federal Regulation (CFR) Part
121 and 14 CFR 135 [107], [108]. The Job Task Analysis (JTA) breaks up a mission into flight
segments, similar to those in the military CTA, and hierarchically decomposes job functions into
tasks, subtasks, and elements associated with each segment. Elements identify the knowledge,
cognitive skills, motor skills, and attitudes required by humans to execute the subtasks. The
output forms a basis for Crew Resource Management training curriculums.

Task decompositions based on existing aviation architectures are often used in the functional
analysis of architectures for new aviation operations, like UAM. For example, NASA recently
modified an existing JTA to identify low-level tasks potentially applicable to future UAM
operators [109]. It then used a bottom-up approach to regroup tasks into higher-level categories
to seed future human-automation functional allocation research. Another NASA report proposed
a different functional decomposition of UAM functions akin to existing CTAs to demonstrate
how to analyze safety using the guidance in Aviation Recommended Practice ARP-4761 [110].

There are other similar examples. The General Aviation Manufacturing Association (GAMA)
developed a list of 13 “skill categories” based on a review of 14 CFR 61, with the intent to shift
the responsibility for some of these skills away from the human and over to the automation [10].
NASA, in partnership with the FAA, also proposed 13 draft high-level functions, called Mission
Task Elements (MTE), considered as fundamental building blocks to identify the relationship
between aircraft performance, flight characteristics, and means of demonstrating compliance
with future certification requirements [111]. Finally, the MITRE Corporation consulted with pilots
to assemble a list of functions as part of its Behavior Competency Model (BCM), which explores
safety assurance approaches for highly automated aviation applications [112].

31

There are significant drawbacks to these functional analysis methods. First, the process of
decomposition reduces the analysis to focus on one function at a time and therefore does not
consider emerging effects associated with interactions between functions. For example, the
separate “skill categories” of Landing and Emergency Procedures proposed by GAMA [10] cannot
be fully decoupled as there will be Emergency Landings.

In addition, the decomposition according to existing aviation operations implicitly guides
future design decisions to mimic past architectures, and it does not consider potentially better
solutions to address challenges in these new aviation operations. This may lead to similar
supervisory control architectures, which face inherent limitations given the “automation
conundrum” previously discussed in Section 2.1 [39], [44]. As described in the previous section,
this shortsightedness is common in system architecting [101].

Alternative functional analysis methods have been proposed for new architectures. For
example, NASA employed a top-down approach to systematically identify UAM aircraft control
tasks for human-automation functional allocation research [113]. The process starts by
decomposing high-level functions like Mission Management, Flightpath Management, Tactical
Operations, and Vehicle Control associated with different flight segments. Next, subfunctions are
identified for each by considering each of the four attributes of Resilience Engineering, which
include Monitor, Respond, Learn, and Anticipate obtained from Hollnagel [114]. This novel method
could be reframed to focus on abstraction-refinement and principles of system safety [38].

In Cognitive Work Analysis (CWA), tasks are organized hierarchically using a means-end
abstraction of constraints and information requirements [115]. Each level of abstraction
represents a different view of the overall work and explains what tasks are to be completed. The
level above explains why those tasks need to be completed, or in other words, what higher-level
ends they address. The level below explains how tasks need to be completed by describing
children subtasks. This avoids some of the pitfalls of pure decomposition by acknowledging that
functions at each level interact with multiple higher-level functions.

Pritchett et al. use this technique to model aircraft control in a functional allocation study
described in the next section (see Figure 2-3) [116]. This arrangement, derived from the work of
Rasmussen et al. [117], is well suited for systems theoretic analysis, as well as mapping resulting
requirements in the form of an Intent Specification [52].

32

Figure 2-3: Means-Ends Functional Abstraction of Aircraft Control (recreated from [116])

The key takeaways from this survey of functional analysis methods are the following. First,
most methods turn to analytical decomposition to outline functions to be performed by the team.
This reductionist approach does not consider interactions between functions, and therefore it
cannot help properly analyze emergent properties of the system, such as safety. Second,
functional identification is often based on a bottom-up analysis of old architectures, which
hinders the exploration of novel options potentially better suited for a given application. Third,
there are elements of newer analysis methods that may help overcome some of these limitations.
However, they are not currently implemented within a framework to analyze system safety and
require further work to be useful toward the research objectives of this work.

2.2.3 Architecture Design Approaches for Collaborative Systems

Once designers have identified the system functions using methods like those described above,
the next step in architecture design typically consists of allocating those functions to the system
components. When doing so, engineers must also ensure that the system structure, such as its
communication and control channels, can support that allocation.

The importance of functional allocation is emphasized in the literature. It is the earliest
Human Factors design decision that can be made in a human-operated system [118]. It is a key
property of human team architectures [58] and informs early decisions that later affect design,
training, policies, and procedures [45], [46], [118]. Functional allocation, of course, also influences
the safety of the system. When accidents occur with complex aerospace systems, it is nearly
impossible to separate human actions from design flaws. It is therefore imperative to avoid
human-task mismatches in these architectural decisions, as those often get mislabeled as human error
in accident investigations [4].

Despite its importance, the proper way to allocate functions in collaborative systems remains
open, as emphasized by a recent NATO working group [41]. When designing interdependent
systems, there is a need to translate high-level concepts like teamwork and cooperation into the

33

implementation of control, interface, and behaviors of the system [2]. Some important
considerations listed in the literature are to determine (1) if a problem benefits from collaboration
between entities, (2) which tasks to delegate to each and when, and (3) to evaluate whether the
design outcome meets system performance expectations [119].

However, the reality is even more complex than this for two key reasons. First, the design of
these systems spans multiple technical disciplines, which in practice often work independently
or in sequence from one another without effective collaboration. This is particularly challenging
in the design of human-automation interactions (HAI), which requires integrated expertise in
human factors and autonomy. Second, the designed systems are not closed. They interact with
other systems and the environment, and it is the higher-level socio-technical system that must be
safe. Little guidance is currently provided to engineers on how to make systematic architectural
decisions with these considerations [39].

The rest of this section presents general approaches that have been employed to guide
functional allocation architectural decisions for interdependent collaborative systems. Some of
the common shortfalls encountered in these methods are discussed. Next, key methods are
described in greater detail to showcase the state-of-the-art in this domain. While many of these
tools were developed to help HAI design decisions, they are generally applicable to systems that
seek the complex interdependent and collaborative interactions described in this work.

General Design Approaches

Very few structured approaches exist to design collaborative interactions in systems. At best,
designers are equipped with general systems engineering practices and separate highly
specialized and siloed domains to integrate. The disparate natures of disciplines, like human
factors and autonomy, make this particularly challenging. To bridge this gap, designers often
turn to high-level design patterns to guide functional allocation architecture decisions.

One of the earliest frameworks for functional allocation between humans and machines,
proposed by Fitts in 1951, is called Men Are Better At – Machines Are Better At (MABA-MABA)
[66]. In this approach, decomposed functions are individually assigned in a binary fashion to
either the human or the autonomy based on a lookup table listing their relative strengths for
different types of tasks. The simplicity of this method has kept it attractive over the years.

However, MABA-MABA has also received wide criticism that the approach does not consider
the emerging effects of the allocation. For example, naively assigning taskwork to the automation
does not necessarily reduce human operator workload, but instead, it transforms its nature [120].
It often creates new higher-level tasks for the operator to direct, monitor, and adjust the
automation in its execution. Another side effect of this reductionist approach is that no
consideration is given to the holistic set of tasks assigned to each entity. In practice, this results
in attempting to automate as much as possible and leaves a non-cohesive patchwork of tasks for
the human to deal with [4]. Finally, this oversimplified framework provides no avenue to
promote collaborative task work.

More recently, Crouser et al. proposed a modern take on the MABA-MABA lookup tables by
reframing them to emphasize collaborative work [119], [121]. They distill an extensive survey of
human-computer collaborative systems into a set of affordances, described as partnership
opportunities for collaborative action. While this framework does shift emphasis away from

34

binary allocation and toward collaboration, it is still limited to a set of design patterns to apply to
decomposed tasks that provide little systematic and holistic system design guidance.

Another popular design pattern called Levels of Automation (LOA) was developed by Sheridan
and Verplank in the late 1970s through the study of human supervisory control of automated
systems. The first version of the LOA framework consists of a scale of 1 to 10, where 1 represents
full human manual control with no computer assistance, and 10 is fully autonomous with no
human involvement (see Table 2-1) [122]. The LOA is often used to set the tone on the general
level of authority provided to the automation in the design of a system. Since, multiple variants
of this taxonomy have been proposed [70], [111], [123]. A 1 to 5 scale version of LOA developed
by the Society of Automotive Engineers (SAE) has come to dominate the design of “self-driving”
cars [124].

Table 2-1: Levels of Automation (based on [122])

Level Description

1
2
3
4
5
6
7
8
9

10

Human does it all
Computer offers alternatives
Computer narrows alternatives down to a few
Computer suggests a recommended alternative
Computer executes alternative if human approves
Computer executes alternative; human can veto
Computer executes alternative and informs human
Computer executes selected alternative and informs human only if asked
Computer executes selected alternative and informs human only if it decides to
Computer acts entirely autonomously

The same simplicity that has made the LOA framework so popular is also often criticized in
the literature. LOAs explicitly describe machine capabilities alone and not those of humans or
other machines working with it [39]. LOAs do not facilitate a collaborative behavior [120], they
are too coarse to be useful given a complex set of tasks to be allocated within a team [116], and
they do not address authority-responsibility mismatch where the controller is ultimately
accountable for the successful outcome of the task is different from the one performing it [125].
The National Academy of Sciences concluded: “The application of autonomy concepts and
technology to a system is inherently a complex issue, with several degrees of freedom that must
be addressed. Thus, it is impossible to characterize the implemented degree of autonomy
completely with a single number” [47].

To provide additional flexibility in functional allocation, one popular version of the LOA
taxonomy decomposes each function into four subfunctions: (1) information acquisition, (2)
information analysis, (3) decision and action selection, and (4) action implementation [126]. This
framework acknowledges that each function performed by the system can be implemented at a
different LOA, and its associated subfunctions can vary in LOA too.

This type of approach has invigorated calls to continue updating the Levels of Automation
frameworks with additional details, including the metric of Satisficing in which the human selects
an allocation that is “good enough” [123]. However, even if more detailed LOAs help designers

35

cognitively reason with a design concept, they alone still do not provide systematic guidance on
how to assess architectural decisions holistically.

In addition to these high-level frameworks, the literature also offers multiple sets of design
best practices for teaming systems. Endsley presents a table of design guidelines for Human-
Autonomy systems [44], which provides guidance like “automate only if necessary – avoid out-
of-the-loop problems if possible”. Similar lists include the ten “Human-Autonomy design first
principles” by Mosier et al. [23], five “Human-Autonomy key design principles” enumerated by
Ho et al. [14], and “Human-Autonomy Teaming design tenets” described by Battiste and Shively
[5], [13].

While these guidelines can be useful for general reference, they do not provide systematic
guidance to inform design decisions for complex systems. However, more specific collaborative
architecture design strategies are also found in the literature, as described below.

Specific Design Approaches

One approach by Miller & Parasuraman uses a means-end hierarchical decomposition of the team
activity to formulate a set of “plays” that allow operators to efficiently delegate tasks to
autonomous systems [127]. Instead of forcing the system engineer to perform a final functional
allocation during design, this approach lets the operator make flexible allocation decisions during
operation. Tasks can be delegated at high or low LOAs, tailoring how involved the human
supervisor wants to be in planning and execution details, much like what is done in human
supervision [127]. Unfortunately, no guidance is provided to design “plays”, so the detailed
implementation and how it is analyzed for safety or other properties are not addressed.

Another framework developed by Heisey et al. helps systematically identify system
requirements for teams of unmanned systems and traces them from Concept of Operations,
through architectural design, and to V&V [89]. The process employs organized Subject Matter
Expert interview templates to define team-level architectural requirements, which then feed
lower individual system entity requirements for implementation, and then validation. The
process is top-down and has feedback loops between each level. However, it provides no
systematic way of exploring emerging properties of design decisions, other than implementing
them into a simulator to observe the behavior of the system. This method of validation is
inherently limited, as will be described in the next section.

A method by Dearden et al. [46] allocates human and automation functions by first treating
the team as a black box to identify high-level functions it must perform in the context of an
operational scenario. Some functions are initially allocated based on physical constraints (e.g.,
automation must be used for low-level control of an aerodynamically unstable aircraft) or
regulations (e.g., decisions to release weapons must be made by humans). Next, candidate
functions for total and partial automation are evaluated for implementation feasibility.
Coordination tasks between the human and automation that emerge from the selected functional
allocation are identified and fed back as new functions for additional iterations of the design
process. Finally, the design decisions for different scenarios are compared to consider global
tradeoffs, and changes are fed back into the process for more interactions [46].

The key strengths of Dearden’s method are its ability to maintain a system-level view and to
produce systematic design decisions that produce traceability and rationale. However, there are

36

several concerns. First, as acknowledged in his paper, the framework is rigidly defined between
a single operator and automation, and it must be expanded to handle more general system
compositions. Second, there is no clear process to move up or down in abstraction to analyze
different levels of details. Finally, this leads to scalability concerns for complex systems that
would require a large number of these workload-intensive algorithmic iterations.

Coactive Design, by Johnson et al., helps design systems with any number of interdependent
humans and/or machines [2]. It emphasizes three key points. First, components have various
capacities (e.g., knowledge, information, skills, and abilities) that define how well they can
perform certain tasks or support teammates. Second, teammates can help close each other’s
control loops. For instance, a robot can sense obstacles, but a human can help interpret how to
interact with them. This requires teammates to be able to Observe, Predict, and Direct (OPD) each
other, as shown in Figure 2-4. Finally, design decisions relating to these interactions are evaluated
in the context of the other decisions made for the system, similar to Dearden’s method above [46].

Figure 2-4: Coactive System Model (adapted from [2])

The process, shown in Figure 2-5, begins with a functional analysis using HTA decomposition
(see Section 2.2.2). For each task, each teammate is enumerated as having a primary and a
supporting role. Capacities required to support those roles are listed, beneficial interdependent
relationships are identified, and OPD requirements are generated to support those relationships.
After solutions are designed to meet these requirements, those designs are analyzed to see how
they impact the other relationships in the system. Any changes that occur in those relationships
are fed back into the process for iteration until the design converges with no changes.

The literature identifies Coactive Design as the state-of-the-art in designing interdependent
systems [23], [39]. However, a weakness of the approach is that the initial task decomposition
leads to a bottom-up approach to design, which is less effective than top-down approaches in
proactively enforcing emergent properties like safety [38]. Similar to Dearden’s method [46], this
approach does not offer a path to navigate between different levels of abstraction and is difficult
to scale for large complex systems. Finally, it does not explicitly consider interactions between
the interdependent entities and the higher-level socio-technical system it integrates with.

37

Figure 2-5: Coactive Design Process (derived from [2])

One final architecture design approach, by Pritchett, Feigh, and Kim explores functional
allocation using computational simulation of collaborative work [116], [118], [125]. Their method
starts with a means-end decomposition of the collective taskwork, which is then allocated to the
teammates in different ways to simulate the joint activity. If an entity is allocated a task for which
another teammate is responsible, then monitoring tasks are created for that teammate as part of
the emergent teamwork in the activity.

The simulations are bounded by formal requirements that must be met by the architecture
design and help observe the performance and resulting total work involved in each functional
allocation trial. The results of these simulations are used to develop parameters for a network
representation of the team architecture to optimize functional allocation [99].

The key strengths of Pritchett’s work are the formal requirements and metrics specified to
support architectural decisions and the ability to assess emergence in teamwork based on those
decisions. However, the use of simulation alone is not sufficient to produce a robust verification
and validation of the design, as discussed in the next section. In addition, a global optimization
scheme like this ultimately boils down to a decomposed set of cost function parameters, which
are difficult to define objectively [46].

2.3 Safety Assurance of Teaming Systems

Safety Assurance refers to the set of activities taken to provide confidence that system hazards
have been eliminated or controlled [4]. This research focuses on the subset of activities most
relevant to initially field an aerospace system: hazard analysis, verification and validation (V&V),
and certification. As identified in Chapter 1.2, the literature recognizes there are significant
challenges associated with these processes, especially for systems with complex interdependent
and collaborative interactions.

Typical assurance processes are both applied too late and are inadequate [4], [38].
Unfortunately, safety assurance is often applied as a separate discipline from system design and
only becomes emphasized in later development stages, on the right side of the Systems

38

Engineering “V” (Figure 2-2). This practice hinders the ability to build safety into the system
from the beginning. Instead, it often results in only having less effective and more expensive
design change options to address safety problems that are recognized later in the lifecycle.

In addition, existing processes are unable to handle complex systems holistically and must
therefore conduct separate assurance methods for hardware, software, and humans. The
collaborative and interdependent interactions sought in the novel aerospace systems described
in Chapter 1 exacerbate these issues. This is especially true when human and software control is
highly coupled.

The following is a discussion of typical methods to conduct hazard analysis, V&V, and
certification in aerospace systems. In addition, it addresses some of the recent attempts to tailor
these processes to handle novel aerospace systems with complex, team-inspired, component
interactions.

2.3.1 Hazard Analysis

Hazard analysis is a process to systematically identify causal factors that can lead a system to enter
a hazardous state. Its output is the foundation for other assurance processes, including definition
of system requirements and constraints to enforce safety, implementation of these requirements,
V&V, and documenting results for certification. For this reason, hazard analysis should begin
influencing system design early in its conceptual stages, on the left side of the Systems
Engineering “V”. However, in practice, this does not happen until much later [4].

There are different types of hazard analyses, but they all consist of the following four basic
functions [4]. First, they specify the system losses that are unacceptable to the stakeholders. Next,
they define the scope of the system analyzed, which typically is defined by the system boundary,
over which designers have engineering control. Third, they identify hazards, which are system
states or sets of conditions that, together with a particular set of worst-case environmental
conditions, will lead to a loss [50]. Finally, they help find causal factors that can lead to these
hazards. Results can then be used to establish design recommendations to eliminate or mitigate
the hazards.

There are numerous hazard analysis techniques, and some of the most common ones are
described in detail by Ericson [128]. These techniques are founded on causality models, which
impose patterns on observed events and represent assumptions about how the world operates
[4]. In safety engineering, these models help explain why accidents occur. Leveson has
categorized causality models into four types: Energy, Epidemiological, Linear Chain of Events, and
System-Theoretic [4]. Brief descriptions of techniques associated with these models follow.

Energy Models

Energy models assume accidents are caused by an uncontrolled and undesired flow of energy
from a source to an object at-risk [4]. Sources of energy that may be considered include kinetic,
radiation, chemical, thermal, electrical, acoustic, or biological. Hazard analysis techniques built
on these models typically consider flow control mechanisms, such as barriers and alerts on the
state of the flows help mitigate hazards [128].

39

This type of simple analysis can be used to identify hazards to be further explored using other
techniques [129]. However, its limited scope is not adequate by itself to address complex control-
oriented systems like those found in advanced aerospace concepts.

Epidemiological Models

Epidemiological models treat accidents as a public health problem by conceptualizing them in
terms of an agent (physical energy), the environment, and a host (victim). Accidents are explained
as resulting from complex and random interactions between these three factors and cannot be
rationalized by considering only one of them or by a simple sequence of events [4]. The statistical
reasoning used in public health problems is then applied to analyze accidents.

Unfortunately, there is no known hazard analysis technique built onto epidemiological models
[4]. In addition, complex systems are too structured to be analyzed using the same statistical
processes applied to large populations [130]. Furthermore, the quality of the records of designed
system anomalies may be too limited for this type of statistical analysis. These reasons limit the
use of epidemiological models in safety assurance activities.

Linear Chain of Events Models

The majority of hazard analysis techniques used in traditional safety assurance programs are
based on Linear Chain of Events causality models. Linear causality implies that if variable A has a
causal influence on B, then B has no influence on A. While this assumption makes it easier to
identify the “chains of failures” often reported in accident reports, it is an oversimplification that
actually hinders effective safety engineering [38]. The following are the associated techniques
most commonly used in aerospace safety analysis.

Functional Hazard Analysis (FHA) is an inductive and qualitative technique in which system
functions are systematically decomposed, and then individually analyzed for how they could fail.
The analysis documents the failed function, its associated hazard, causal factors, mitigation
recommendations, and assessed risks [128]. Civil aviation practices recommend conducting an
FHA for qualitative analysis early in design to then feed follow-on quantitative analyses later in
the engineering lifecycle [131].

Failure Modes and Effects Analysis (FMEA) follows similar inductive reasoning as FHA. The
analyzed system is decomposed into components. Next, the consequence associated with the
failure of each of these components is evaluated using a bottom-up approach. This analysis is
often expanded quantitatively by including failure rates for the components using service
experience, accelerated testing, or industry standards [132]. Because FMEA considers all
component failures and not just those that lead to hazards, it focuses more on reliability than
safety [128].

Failure Modes and Effects Criticality Analysis (FMECA) is a more detailed version of the
FMEA. It includes an assessment of the criticality of component failures and considers
mechanisms to detect them [128]. FMECA is commonly applied to military aviation systems
[133].

Fault Tree Analysis (FTA) uses deductive reasoning by starting with a hazard, and
systematically searching for potential chains of events that can lead to it. The relationships in

40

these sequences of events are described using Boolean logic. FTAs are often used quantitatively,
by similarly adding failure rates of components, and computing the overall probability of any
given event chain [128].

There are major limitations associated with these hazard analysis techniques. They all focus
on component failures and do not consider how the interactions between fully functional
components can lead to hazardous states [38]. The assumption that causality is linear is a
significant weakness recognized by the community since cyclic relations are common in real
systems [134], [135]. All of these methods are hardware-oriented, and none can effectively handle
the contributions of human and software control to accidents [38].

The quantitative aspects of these methods are also problematic. Failure rates cannot be
accurately determined except for standard hardware components and designs with extensive
historical use. These numbers cannot be incorporated until sufficient design detail is available,
which limits the ability to analyze and influence early design concepts [4]. Furthermore, failure
rates are unknown for software, sophisticated human behaviors, and new technologies and
designs.

Quantitative assessments must also often rely on flawed or oversimplified assumptions, such
as probabilistic independence between events [135]. Some techniques do exist to evaluate
common cause failures in FTAs. However, those methods are challenging to execute rigorously
[128], and they also often rely on their own superficial common failure rate assumptions [136].
As a result, probabilistic assessments are usually inaccurate, and they can even be misleading in
characterizing hazards.

Despite their limitations, these hazard analysis techniques are precisely the ones that are
called for in aerospace system safety standards, such as ARP-4761 [131] for civil aviation and
MIL-STD-882E [133] for the military. These standards acknowledge some of the challenges in
applying these techniques to software components, and they only superficially address the role
of human control. Separate systems engineering standards, such as DO-178C [137] and MIL-STD-
46885A [104], provide some safety considerations for software and humans respectively, but they
lack actual hazard analysis techniques. This patchwork creates a disjointed approach to aviation
system safety, which is ill-suited to handle the complexity of modern systems [4], [105].

Hazards and Operability Analysis (HAZOP) is another technique based on a linear chain of
events model. It is not called out in the aviation standards listed above, but it has been employed
in modern aerospace systems, such as the Airborne Collision Avoidance System [138]. HAZOP
overcomes some of the limitations by using guidewords to systematize a search of causal factors
in a physical design specification. It encourages multi-disciplinary qualitative reasoning and
considers deviations from operating intentions that go beyond failures [4].

However, HAZOP also shares some of the weaknesses found in the other techniques. These
include the assumption of linear causality, the focus on physical objects instead of software
control, and the inability to apply it at the earliest stages of design. In addition, this method,
much like the others, is often criticized for being labor-intensive, time-consuming, and difficult
to review [4].

41

System Theoretic Models

System Theoretic models, which are generally newer than chain-of-event techniques, break away
from the assumption that causality is linear [4]. They acknowledge causal loops exist between
components, where variable A can influence B, and B can also influence A.

System-Theoretic Accident Model and Processes (STAMP) is one such causality model, which
treats safety as a control problem rather than a failure problem [38]. STAMP provides a unified
framework to look at how component interactions between hardware, software, and humans can
lead to unsafe system behaviors.

System-Theoretic Process Analysis (STPA) is a qualitative hazard analysis technique built
upon the STAMP causality model [50]. Its foundation in Systems Theory allows it to overcome
many of the limitations of other methods. For this reason, this technique is becoming increasingly
popular in many industries, including aerospace.

Systems Theory, STAMP, and STPA provide the foundation for how safety will be analyzed
in this work. They are described in greater detail in Section 2.4, along with an argument for their
selection.

Hazard Analysis in Systems with Team-Inspired Interactions

There is an overwhelming recognition that new aerospace systems with interaction inspired by
teams face significant challenges in V&V and certification (see Chapter 1.2). Despite this, the
literature is relatively silent regarding the limitations associated with hazard analysis techniques
for these systems. This is surprising given the critical role of hazard analysis in the other safety
assurance activities.

NASA demonstrated how to employ methods like FHA and STPA in new aviation
applications like UAM and is still exploring different methods to best address these novel
technologies [110], [139]. Belcastro et al. describe a need to evolve hazard analysis techniques to
address distributed multi-UAS operations. However, their analysis is limited to the study of
historical data to identify potential hazards for the analysis of future systems [140]. Baig et al.
survey applications of FTAs and highlight how they fall short in human-machine interactions,
leading them to use Fuzzy Logic or other augmentation mechanisms to account for the non-
deterministic nature of humans [141].

Finally, a growing body of research using STAMP-based techniques and STPA, described in
Section 2.4, demonstrates how to apply these methods to aerospace systems with complex
interactions. However, it also illustrates some of the challenges that must be overcome so that
these interactions can be rigorously analyzed.

Simply put, there is a clear gap in the literature in addressing hazard analysis specifically for
systems that exhibit complex interactions, such as those inspired by human teams.

2.3.2 Verification & Validation (V&V)

Verification and Validation (V&V) is a broad term to describe a set of activities that take place
throughout the development lifecycle, but that are most often emphasized on the right side of the

42

Systems Engineering “V”. Verification determines if the system meets its design requirements,
and is commonly referred to answering “Did you build the thing right?”. Validation assesses if
the planned system meets the user’s operational needs, and answers “Did you build the right
thing?”.

In the context of safety assurance, V&V determines if causal factors identified in the hazard
analysis have been eliminated or mitigated. This determination is usually based on the results of
simulations, testing, and formal mathematical reasoning [4]. Each method has strengths and
limitations described below.

Simulation and Testing

Simulation and testing are the most common tools used in V&V. They can be effective at
evaluating design decisions, characterizing system performance, and finding design flaws.
However, there are many examples in the teaming literature where the hazard analysis is
bypassed, and causal factors are identified using only simulation and testing [5], [89], [91], [116],
[142].

The hope with this strategy is to address discrepancies found in simulation by modifying
design requirements, implementing them, confirming their success in additional simulations, and
then gaining confidence in the system behavior through live testing. While this practice can be
helpful in early concept exploration, it is inadequate if those are the only assurance steps
performed to field safety-critical applications. Simulations only reveal what they were intended
to simulate and rely on assumptions and simplifications in the dynamics of the system and its
environment [143].

Testing is typically expensive and cannot be performed exhaustively to cover the large
number of states achievable by complex systems in complex environments, especially for
software-intensive systems [144]. Testing may reveal the presence of a problem but cannot show
the absence of it3. In addition, systems are tested against requirements, but that does not prevent
the requirements from being incomplete with respect to safety. In fact, most accidents can be
traced back to incomplete or otherwise flawed requirements [4].

Formal Methods

The costs and limitations associated with testing have led to a growing interest in using Formal
Methods (FM) to support assurance in novel aviation systems. Formal Verification involves
applying inputs to a system to check if all its executions meet its requirements set R [150]. Either
a counter-example is found that shows R can be violated, or the algorithm provides proof that the
design is correct. The verification is sound if its proof is valid and all behaviors meet R, or if the
counter-example is an actual behavior of the system that violates R. It is complete if it provides a
solution for all inputs to the system [150].

New aviation certification standards developed to address software and automation define
and encourage the use of FM, including DO-333 [151], ASTM-TR1 [111], and ASTM-F3269 [152].

3 The author has observed this lesson many times over years of developing and flight-testing complex

multi-UAS systems under distributed control [145]–[149].

43

Several aviation software systems have employed formal verification on portions of their
software using techniques such as Model Checking, Theorem Proving, and Abstract Interpretation
[153], [154].

Formal methods have been employed in applications relevant to teaming. A large body of
Human-Automation Interactions (HAI) studies aim to prove the correctness of HAI interfaces
[155], [156]. The systems are often modeled as finite-state transition systems, and temporal logic
is used to check (1) the reachability of states, (2) the visibility of visual feedback as a result of
actions, (3) task-related properties to support the human, and (4) the consistency of the software
implementation with its requirements. These types of studies do not depend on a model of the
human to ensure the interface behaves as intended [157].

However, other HAI research applications do attempt to create a “formal model” of the
human operator. Studies apply FM to model operator mode confusion [157], operator activity
sequences [158], humans motor capabilities [159], the effects of human control latency on HAI
performance [160], and human-robot interactions when in close proximity to one another [161].
Unfortunately, the concept of a formal mathematical model to describe the complex, adaptive,
and often unpredictable nature of human behavior is inherently limited and presumptive. While
this practice can explore design states to help designers identify areas that need improvement or
to select follow-on candidate test scenarios with real humans, as exemplified by Bolton et al. [158],
formal guarantees derived uniquely using FM in this context may be misleading.

Three different applications illustrate the state-of-the-art in applying FM to aerospace systems
with collaborative component interactions. First, formal models of teamwork have been used to
guide functional allocation design decisions in aviation human teams and human-machine teams.
For example, interactions between pilots and air traffic controllers were modeled as a task tree
with temporal relationships to formally verify the behavior of aircraft heading changes [162]. A
similar formulation, previously discussed in Section 2.2, formally verified that aircraft control
functional allocations between humans and automation met specified requirements [116], [118],
[125].

In a second application, FM are employed to formalize aircraft control activities and decisions
made by human pilots to shift some of those responsibilities to automated systems. For instance,
a body of NASA research formalizes how human pilots see and avoid other aircraft. This has
resulted in the development and formal verification of several detect and avoid algorithms for
UAS or automated copilots [163], [164]. However, this research also illustrates challenges in
creating valid formal models of these complex systems [165]. In addition, it shows that
unexpected behaviors not identified by the formal methods can arise when the system interacts
with a human pilot during flight testing [166].

Finally, formal verification has been applied in Run-Time Assurance (RTA) research. The
hope of RTA is to provide a simpler and fully certified pedigreed controller to monitor a non-
pedigreed complex function and, if necessary, recover to a safe state [152]. Proponents of RTA
argue the protected system is equivalent in terms of safety to a fully verified system [90], [167].
Some also promote it as a mechanism to transfer responsibility from a human pilot over to
automation in new aviation applications [78], [111], [168]. RTA has been studied to monitor
control of a distributed multi-UAS system [90] and real-time monitoring has been actually fielded
on fighter aircraft to protect pilots from colliding with terrain [169]. However, it is also noted that

44

the later fielded example was verified through flight testing, and no known RTA system has been
operationalized using FM to date.

Despite the interest, FM face challenges that have kept their adoption rate low for assuring
fielded systems. Some FM techniques, like theorem proving, require a high amount of expertise
to execute and limit the pool of people that can successfully apply them [153], [158]. The low
adoption also means few developers get exposed to how to use it [153]. Furthermore, this
framework does not yet address some of the latest concepts in autonomous control that involve
adaptive and non-deterministic functions like those popular in Machine Learning (ML) [150].

Formal techniques face other inherent limitations. The process of developing formal
specifications from informally stated customer requirements introduces a risk of formally
representing the wrong requirements [170], [171]. Ensuring model validity is challenging as the
mathematical formulation of a problem is only an approximation of the real world and differs
from implementation using programming languages [165], [167]. FM are difficult to scale up
beyond simple problems and are limited in their ability to handle complex real-world systems
[90], [158], [167], [170]–[172]. Finally, the environment the system interacts with is impossible to
formally describe due to its unpredictable nature and unanticipated behaviors [170].

These challenges and limitations do not mean FM cannot play a role in safety assurance. But
FM is not the solution to all problems, and it is just one of several tools available including hazard
analysis, simulation, and testing.

2.3.3 Certification

Certification is a mandatory activity for safety-critical applications like aviation. It consists of
providing the results of earlier assurance efforts, like system behavior specifications and their
V&V, to a governing body to legally recognize that the system complies with requirements,
including safety [153]. Certification requires demonstration, with appropriate and accessible
substantiation, that (1) the system achieves its intended function, and (2) unsafe system behaviors
are known, understood, and mitigated [110].

Certification bodies establish regulations to govern the certification process, such as 14 CFR
Part 21 [49] for aircraft certification by the FAA or AR 70-62 [173] for the US Army. These
regulations point to standards developed with industry, such as ARP-4761 [131], DO-178C [137],
and MIL-STD-882E [133], which define recommended practices to follow to achieve certification.
These standards all point to the hazard analysis and V&V techniques previously surveyed, and
therefore they suffer from the same limitations previously described. However, the literature
describes additional challenges in certifying teaming systems, as reviewed below.

One significant difficulty is that technologies enabling autonomous systems are so novel that
they are not addressed by prescribed regulatory certification requirements [110]. For example,
non-deterministic and adaptive technologies, like those found in ML, are not covered at all by
existing regulations, and therefore, not one has been certified to date [39], [42], [150], [152].

For this reason, the FAA recently shifted from a prescriptive-based to a performance-based
approach to certification. This offers flexibility to consider rapidly evolving novel technologies
but also creates concerns. A performance-based approach does not encode past lessons learned
like prescriptive methods do and does not provide any unified guidance to manufacturers and

45

regulators on a specific approach to demonstrate the system is safe [4]. This opens up the risk of
making “Safety Cases” for certification, which tend to be based on informal arguments, are prone
to confirmation bias and omission of information, and may be made under significant pressure
to get a finished product out to market [174], [175].

Another challenge specific to aviation is that the regulatory framework is predicated on a
human pilot in command having direct responsibility and final authority for the operation of an
aircraft [49]. This creates a barrier in certifying novel human-machine collaborative control
paradigms that shift some of these responsibilities onto autonomous systems. While this topic
was previously raised for existing autonomous systems like flight envelop protection, it is still an
open debate [3]. As a result, industry is advocating for regulatory changes to allow autonomy to
become increasingly, if not fully, responsible for flight operations [176], [177].

Some preliminary certification frameworks have been proposed to reason about the division
of functional responsibilities between multiple human and machine entities [111], [112]. They
document V&V strategies based on functional allocation decisions, risk, and technology maturity.
However, aside from providing basic heuristics, these frameworks lack rigor in their decision
support, they do not address some of the fundamental aspects of team interactions described in
Section 2.1, and their functional decomposition approach does not lend itself to assessing safety
at the system level.

One final certification challenge to note is that current standards are vehicle-centric for
insertion into a rigid aviation infrastructure and framework. Processes currently exist to certify
Unmanned Aircraft System (UAS) operations on a case-by-case basis, which do not fit within the
traditional aviation ecosystem. However, the resulting certifications are highly restrictive and
narrowly scoped [178]. This approach increases the certification burden, and there is concern that
it will create a barrier to entry for non-traditional aviation manufacturers in new aviation markets
[179]. NASA is interested in creating a more holistic certification program, but no such framework
is known to exist today [39], [110], [180].

2.4 Systems Theory and STAMP

The approach developed in this dissertation to model, analyze, and design the safety of systems
with complex team-inspired interactions is grounded in Systems Theory and the System-
Theoretic Accident Model and Processes (STAMP) causality model. This section provides a brief
overview of this foundation. It highlights the strength of STAMP-based hazard analysis
techniques compared to other methods as an argument to select it for this work. It also describes
past research in STAMP related to teaming to motivate the need for analytical expansion.

2.4.1 Introduction to Systems Theory, STAMP, and STPA

A system is defined as “a set of components that act together as a whole to achieve some common
goal, objective, or end” [1]. Systems exhibit emergent properties, such as safety, which arise from
the interactions among these components. These properties can only be analyzed for a system as
a whole and cannot be treated as a composition of individual component behaviors. Most

46

designed systems are considered open as they interact with the environment, which is the set of
components and their properties that are not part of the system but can affect its state [1].

Systems Theory

Systems Theory was developed over the last half-century to augment the scientific method in
studying increasingly complex and interactive systems developed by humans [181]. Prior to
Systems Theory, analysts were limited to using analytical decomposition or statistical methods.

Unfortunately, modern systems can no longer be analyzed using only reductionist
approaches. These systematically break a system down into smaller components and synthesize
their individual behaviors to predict that of the system as a whole. Decomposition distorts the
analysis of the collective behavior since components (1) do not operate independently, (2) do not
behave the same when examined singly, (3) are subject to feedback loops, and (4) face more than
simple pairwise interactions [1]. In addition, modern systems also have too much structure to
behave randomly. As a result, they cannot be analyzed using statistical methods used to study
much larger natural systems, like populations [130].

Systems Theory complements these other methods by focusing on the system as a whole
rather than a conglomeration of parts. It emphasizes holism, interconnectedness,
interdependence, context, dynamic complexity, and non-linear causality [181]. In Systems
Theory, the term system is recursive in that systems are made of systems. Any level can represent
a system, a system of subsystems, or a system of systems. These terms all represent the same
thing, so there is no need to treat them differently [182].

Systems Theory is founded on two guiding principles: Emergence and Hierarchy, and
Communication and Control [183]. The first principle means that systems are modeled using
hierarchal levels, where each level is more complex than the level below. The second principle
implies that controls can be applied from any level in the hierarchy onto the level below to
constrain degrees of freedom on its emergent behavior. These two concepts are at the core of
STAMP.

System-Theoretic Accident Model and Processes (STAMP)

STAMP is a relatively new causality model grounded in Systems Theory, which treats safety as a
control problem rather than a failure problem [38]. It assumes that accidents are caused by unsafe
component behaviors as well as unsafe interactions among system components. These
components can be hardware, software, and human in nature. STAMP, as in Systems Theory,
employs abstraction as a means to understand system complexity.

The three main parts of STAMP are Safety Constraints, Hierarchical Control Structures, and
Process Models [38]. Constraints are imposed by any system level on the level below to enforce
emergent properties and behaviors. Functions are modeled with control structures using
feedback control loops between controllers and controlled processes at different hierarchal levels.
Each controller may be controlled by a higher-level controller, each controlled process may be the
controller of a lower-level entity, and feedback loops may exist between multiple different levels
(see Figure 2-6). Feedback control loops are defined by four conditions grounded in Control
Theory: goal condition(s), controllability, process model, and observability [38].

47

Figure 2-6: Example STAMP Hierarchical Control Structure

STAMP, and its analysis tools, such as STPA described in the next subsection, have recently
gained popularity in many industries. In the past decade, an entire body of literature has
emerged involving applications of STAMP, extensions, and comparisons of its tools with other
methods [184].

System-Theoretic Process Analysis (STPA)

System-Theoretic Process Analysis (STPA) is a hazard analysis tool built with STAMP as its
theoretical foundation. The analysis is conducted in four steps as described in the STPA
Handbook [50] and shown in Figure 2-7. These are briefly described below with an illustrative
example analyzing the safety of a multi-UAS system under human supervisory control described
by Johnson, Kopeikin, & Leveson [143].

Figure 2-7: Four Steps of the System-Theoretic Process Analysis (STPA) [50]

Step 1 first defines the purpose of the analysis and the assumptions about the system and the
environment. In the illustrative example, it is to analyze safety hazards for the multi-UAS system
starting early in conceptual design.

48

Next, system losses that are unacceptable to the stakeholders are identified. For the multi-
UAS system, these may include (L-1) loss of mission, (L-2) loss of life or permanent disabling
injury, and (L-3) loss or damage to the UAS or equipment [143].

Finally, system-level hazards are defined and traced to the losses they can lead to, as shown in
Table 2-2. A hazard is “a system state or set of conditions that, together with a particular set of
worst-case environmental conditions, will lead to a loss” [50, p. 17]. System-level constraints can
then be derived to eliminate or mitigate these hazards.

Table 2-2: STPA Example Multi-UAS System Hazards [143]

Hazard ID Hazard Description Loss Traceability

1
2
3

UAS does not complete mission objectives
Structural integrity of UAS is violated
UAS separation standards are violated

L-1, L-2
L-3
L-1, L-2, L-3

Step 2 models the system as a hierarchical control structure, in which responsibilities, control
actions, and feedback elements are defined for each controller. It is encouraged to start the
analysis at a high level of abstraction before considering adding additional details in refinement.
Figure 2-8 shows the control structure for the multi-UAS system example [143].

Figure 2-8: STPA Example Multi-UAS System Control Structure (adapted from [143])

49

Step 3 identifies unsafe control actions (UCAs), which are control actions that, in a particular
context, and worse-case environment, will lead to a hazardous state [50]. There are four possible
ways to consider how each control action in the control structure can lead to a hazard: (1) not
providing the control action, (2) providing the control action, (3) providing a safe control action
but too early, too late, or in the wrong order, and (4) providing a control action for too long or
stopping it too soon. Table 2-3 shows one example of each type of UCA for the multi-UAS system
example [143]. Many UCAs of each type can be derived.

Table 2-3: STPA Example Multi-UAS Unsafe Control Actions (UCAs) (adapted from [143])

UCA Type UCA Hazard Traceability

Not Providing [UCA-1] Operator does not provide “Approve COA”
when the COA fulfills mission objectives

H-1

Providing [UCA-2] Operator provides “Approve COA” when
the COA has UAS violate minimum separation

H-2

Too Early / Late /
Wrong Order

[UCA-3] Operator provides “Approve COA” too late
when the COA no longer fulfills mission objectives

H-1, H-2, H-3

Applied too long /
Stopped too short

Not applicable for this analysis because “Approve
COA” is a discrete command

N/A

Finally, Step 4 identifies causal scenarios (CS) that can lead to unsafe control actions and
hazardous states. This is accomplished by systematically exploring potential breakdowns in the
feedback control loop in the model. The following example scenario is derived from UCA-3 in
Table 2-3. Many scenarios may be found for each UCA, and some scenarios may be linked to
multiple UCAs.

CS-1: The Fleet Controller updates the COA request so frequently that the operator
cannot assess its validity before it is replanned. Thus, the operator is in a cycle of
perpetual COA review. [UCA-3] [143]

The output of the analysis is a set of constraints to eliminate or mitigate UCAs and causal
scenarios. These can form the basis for requirements or recommendations to build safety into the
design throughout its lifecycle. For example, the following design requirement (DR) can be
derived from CS-1.

DR-1: The system must not enter a state where the operator cannot provide input
because of a perpetual COA update. [UCA-3, CS-1] [143]

2.4.2 Why Use STAMP for this Research Topic

There are several reasons why the system-theoretic foundation of STAMP and STPA are well-
suited to address some of the challenges in fielding novel aerospace systems with more complex
component interactions and dynamics. The following strengths enable the holistic modeling and
analysis necessary to design and assure such systems are safe.

First, the STAMP causality model can handle non-linear or circular relationships between
system components, unlike the chain-of-event models described in Section 2.3.1. This is critical

50

to model collaborative relationships between system controllers engaged in joint activity. As
previously described in the Coactive system model (Figure 2-4), teammates reciprocally help
close each other’s control loops [2]. Linear causality models simply cannot represent this
fundamental relationship. While Systems Theory does underlie other analysis approaches, such
as System Dynamics [185] and Cynefin [186], these methods were developed to model social
systems, whereas STAMP is more appropriate for engineered systems.

The second attribute that makes STAMP appropriate for analyzing the safety of collaborative
systems is its ability to explore interactions between hardware, software, and human controllers.
Traditional hazard analysis tools are more hardware-focused and require separate approaches
for software and human factors. However, the separation of analysis for these different types of
components is reductionist and, therefore, incapable of properly predicting the emergent
property of system-level safety. STAMP provides the necessary unified approach to integrate the
different technical domains that influence these collaborative interactions.

The third advantage of STAMP is that it does not assume that accidents are only the result of
random component failures like most other techniques do. It also considers how many accidents
have occurred as a result of unsafe relationships between fully functioning entities [38]. This is
important because software does not fail. It always executes exactly as it was programmed, and
unsafe behaviors that arise from it can almost always be traced to flawed requirements [144]. In
addition, some system failures are not hazardous and do not lead to accidents. From this
perspective, STAMP remains focused on system safety rather than on factors that may only create
a reliability concern [38].

The fourth reason is that STAMP emphasizes system context. All engineered systems are
integrated within a larger socio-technical system which must holistically exhibit safe behavior.
The non-traditional human and machine roles proposed in many novel aerospace systems need
to be analyzed in the context of the broader aviation system they will operate in. It is insufficient
only to analyze the interactions between team members, which is what most of the teaming
models and design processes described in Sections 2.1 and 2.2 focus on.

The fifth strength of STAMP and STPA is the ability to use abstraction to model and analyze
arbitrarily complex systems. This addresses the scalability concerns found in leading
collaborative system design approaches like Dearden [46] and Coactive Design [2]. It is also
conducive to first analyzing what the system or team must accomplish as a whole, as
recommended in several design techniques, and then using refinement to explore functional
allocation within its components.

Finally, abstraction enables STPA to be applied at the very early stages of design, when little
design detail is available, and where safety requirements can be the most effective. This can
facilitate early traceability of architecture requirements and support V&V to integrate safety
assurance into the design process. Such an attribute is necessary to enable an assurance by
construction paradigm that may overcome some of the limitations associated with certifying
complex systems today.

51

2.4.3 Previous Relevant STAMP Work

The System-Theoretic foundation of STAMP provides a general framework that supports
modeling and analysis of any type of system and any type of emergent property. However,
extensions of STAMP and STPA have been developed to provide additional guidance when
needed for specific problems. Examples include techniques to focus on system security [187],
adding depth to analyzing human factors [188], [189], and providing a framework to use STPA
actively during operations [190].

In this light, the following explores past STAMP work related to systems that exhibit
collaborative behaviors. The goal is to provide orientation on where additional guidance is
needed to address this topic systematically and rigorously.

STAMP Extension for Coordination

STPA-Coordination was developed by Johnson [191] to enhance the identification of causal factors
when multiple controllers engage in coordinated activity. The framework identifies four
fundamental coordination relationships, shown in Figure 2-9, and nine elements necessary for
coordination, listed in Table 2-4. Occurrences of missing, inadequate, or late establishment of
these elements help identify flawed coordination cases that could lead to system hazards.

Figure 2-9. Fundamental Coordination Relationships (adapted from [191])

Table 2-4. Nine Coordination Elements Defined by Johnson [191]

Coordination Components:
Goals
Strategy (Activities)
Decision Systems

Enabling Processes:
Communications
Group Decision Making
Observation of Common Objects

Enabling Conditions:
Authority, Responsibility, Accountability
Common Understanding
Predictability

52

Johnson’s framework is strongly related to this research topic because coordination is one of
the attributes required for effective team interactions [59]. For this reason, several of the
coordination elements are accounted for in the techniques introduced in this work.

However, the scope is different as not all coordinated systems are necessarily collaborative.
A common type of collaborative relationship sought in novel systems is represented by Case (b)
in Figure 2-9. Given recursion in Systems Theory [182], Cases (c) and (d) can arguably be treated
as abstractions of (b) from the perspective of collaborative relationships. Conversely, Case (a)
represents the centralized or supervisory control interactions that are widely fielded in traditional
systems and therefore, not the focus of this research.

Additional work is needed to rigorously consider fundamental dynamics exhibited when
Case (b) behaves as a collaborative system with interactions akin to those in human teams. For
example, clear guidance must be provided on handling shared control, alignment of team
cognition, and changes of authority. Similarly, Case (b) may involve a hierarchy between the
controllers, which may even be dynamic, as considered in Mixed-Initiative Interactions [67].

Johnson also recognizes that more specific direction is required to consider coordinated
interactions between humans and machines [191]. A clear path to integrate this model into a
broader socio-technical system and guidance to refine the analysis to different levels of interest
systematically is also necessary. Finally, a framework is needed to use the outputs of the analysis
to guide architectural design and assurance processes.

Observations of Relevant STPA Analyses

In addition to Johnson’s work, multiple recent analyses have applied STPA on systems that
exhibit some of the complex interactions of interest in this research. Eight of these were reviewed
to study their types of causal relationships and examine how they were addressed in the analysis.

Robertson [53], Montes [188], and Horney [192] analyzed interactions between human-piloted
aircraft and UAS executing military missions and formations using STPA. Abrecht [193] and
Mackovjak [194] studied the design and accidents of similar concepts in the naval domain.
Kharsansky explored architecture options of multi-satellite constellation systems [18]. Peper
applied STPA to an assembly system with three remotely operated vehicles that collaboratively
transport a large product [195]. Finally, Wong used STAMP to investigate communication
breakdowns that occurred when two airliners collided after receiving conflicting directions from
Air Traffic Control (ATC) and the Traffic Collision Avoidance Systems (TCAS) [196].

Because these studies were all performed for different purposes, comparing them to one
another or to the intent of this research is unfair. Furthermore, not all of these systems were fully
representative of the novel aerospace systems introduced in Chapter 1. However, several
common trends and challenges related to collaborative control were noted.

In most studies, the lowest level of the hierarchal control structure stops at the collaborative
entities, such as the multiple UAS or satellites, and does not show the shared mission or formation
they are collectively responsible for controlling. Many of the studies shy away from analyzing
the distributed control that occurs when each individual controller makes its own decisions about
how it controls the shared process using information received from its peers.

53

The definition of Unsafe Control Actions (UCAs) in STPA tends to focus the analysis on one
controller and one controlled process at a time, whereas teaming involves a collection of control
actions from multiple controllers. Finally, mechanisms associated with changing control
responsibilities and shared process models between multiple controllers are not explicitly
considered. Such challenges present an opportunity to extend how STAMP models are
developed and analyzed to more systematically address interactions exhibited in collaborative
control.

2.5 Summary of the Literature

This Section reviewed a wide basis of literature related to engineering systems that exhibit
collaborative interactions inspired by human teams. The key takeaways are the following.

First, there are many ways to characterize and model teaming interactions. Some properties
are common across different team compositions, whereas some are more specific to human,
human-machine, or multi-machine teams. However, most models that describe some of the
intricacies of teaming dynamics lack actional guidance for system designers and do not focus on
safety.

Second, there are very few systematic processes available to guide the architectural design of
interdependent systems. The majority of the frameworks are based on high-level or reductionist
design patterns which offer little rigor in reasoning about the system as a whole. The most
advanced methods provide some mechanisms to reason about systems holistically, but they face
various drawbacks in being able to design safety top-down.

Third, conventional safety assurance processes are generally expensive, are applied too late
in the development life cycle and are inadequate to handle interdependent and collaborative
systems. This means there is currently no effective path to certify many of the novel systems
introduced in Chapter 1.

Finally, Systems Theory and STAMP provide an avenue to integrate system design and safety
assurance activities from the earliest phases of development. Their principles were shown to be
well-suited to handle the collaborative and interdependent relationships of interest in this
research. However, they require additional guidance to rigorously and systematically handle the
complex attributes associated with these interactions. The next two chapters extend their
analytical scope to address this need.

54

Chapter 3 : Defining Collaborative Control

using Systems Theory

Despite the many strengths STAMP-based techniques possess to analyze the safety of complex
systems, some of the types of complex interactions sought in novel aerospace designs have not
been specifically defined using Systems Theory. The lack of definition in the underlying causality
model means the hazard analysis may omit certain causal factors or not handle others
systematically. This chapter defines the collaborative control interactions observed in teaming so
that they can be more completely analyzed using STAMP and the analysis tools built on it.

A widely cited team definition is: “A team consists of two or more entities who interact
dynamically, interdependently, and adaptively toward a common and valued goal, with unique
roles and functions to perform” [51, p. 3]. It is nearly identical to that of a system (see Chapter 1)
and, therefore, is not very useful by itself in distinguishing teams from other systems. Similarly,
characterizing teamwork as “more than the aggregate of individual behaviors,” [58] defines it as
an emergent property, which is again fundamental to systems. This means teams can be defined
as identical to systems.

So why are the new human-machine teaming or multi-machine teaming concepts proposed
in aerospace so challenging to engineer? What makes them different from other systems that
have been successfully fielded? The reason is that their component interactions are more complex
and/or less well understood than those in previously fielded systems in safety-critical
applications.

Figure 3-1 conceptualizes some of the differences in the types of interactions exhibited by

human teams compared to those in existing human-machine systems in a similar setting. The left

is a traditional Human-Automation Interaction (HAI), with a pilot supervising an autopilot to

control an aircraft. The pilot delegates some control authority to the autopilot using predefined

modes and sets goal conditions accordingly. Beyond that, the control structure is static, and the

autopilot-aircraft feedback control loop is not closed by the pilot.

Figure 3-1: Contrasting Interactions in Fielded Human-Machine Systems and Human Teams

55

Conversely, the right shows a human flight crew controlling the aircraft. Some interactions

are supervisory in nature, such as the captain delegating flight control roles. However, others are

more collaborative. The pilots are part of each other’s control loops in operating the aircraft as

they coordinate, direct each other, transfer tasks, and mutually monitor their activities. This

collaborative control paradigm observed in human teaming goes beyond what current fielded

human-automation systems are able to exhibit. But these teaming interactions are inspiring novel

system concepts.

To analyze the safety of such novel systems, it is necessary to more precisely identify the
complex human interactions described in the example. A few taxonomies have previously been
proposed to describe system and component interactions for the purpose of hazard analysis. For
example, Perrow [197] classifies system interactions using two dimensions: (1) tight vs loose
coupling and (2) linear vs complex. However, this framework is highly subjective, and the theory
it supports emphasizes that accidents occur due to component failures, which is inconsistent with
modern system safety.

More recently Saurin & Patriarca [198] developed a 9-dimensional taxonomy for socio-
technical system interactions. The axes include: nature of agents, output nature, levelling, waiting
time, distance, degree of coupling, visibility, hazards, and parallel replication. This model is
specifically designed to feed Functional Resonance Analysis Method (FRAM). Unfortunately,
this technique assumes sequential, or acyclic, causality, which is an oversimplification of non-
linear interactions that contribute to accidents [4].

Other research domains have categorized system interactions, but not necessarily for safety
analysis. HAIs are often described along the popular Levels of Automation (LOA) axis [122],
which is helpful to conceptualize how automation is intended to support humans in a design.
However, as reviewed in Chapter 2.2, the LOA construct is too simplistic and does not
characterize collaborative behavior [120]. Distributed control theory is employed by Murphey &
Pardalos [79] to define increasingly coupled interactions between multiple controllers, ranging
from collective to coordinated. Finally, multi-agent control theory is used by Parunak et al. [199]
to classify interactions according to the different types of communication, intent, and congruence
of system-level goals.

Various elements of these frameworks helped inspire the formulation proposed in this
dissertation. However, these sources are still insufficient to describe the teaming interactions
reviewed in Chapter 2.1 using Systems Theory. This requires a new taxonomy to be developed.

The system-theoretic framework introduced in this chapter consists of (1) a taxonomy of the
structure of interactions between multiple controllers and (2) a set of dynamics observed in
collaborative control. It creates the necessary foundation to extend system-theoretic hazard
analysis methods to systematically identify causal factors associated with these interactions.

3.1 Taxonomy of the Structure of Controller Interactions

The dynamics between multiple interacting system entities, including those observed in
collaborative control, are influenced by the structure of the interaction. A taxonomy of seven

56

structural dimensions was developed to help reason about causal relationships between
controllers (Figure 3-2). The taxonomy is inspired by the literature covered in Chapter 2, a review
of various aerospace systems, and discussions with researchers that provided various
perspectives and examples on teaming systems4.

Figure 3-2. Taxonomy of Structure of Interactions between Multiple Controllers

First, the dynamics are shaped by the types of controllers [A] interacting, which may be humans
only, human(s) and machine(s), or machines only. These interactions can also form the basis of
higher-level systems, such as human organizations, teams of teams, or multiple human-machine
systems interacting as a whole. Finally, the types of controllers may not be determined yet if the
system is in design. The nature and differences between interacting controllers have significant
implications for how they coordinate and make control decisions. It is noted that the framework
could also include interactions with other biological controllers, such as pets or viruses, but those
are omitted because they are less relevant to aerospace systems.

Next, the hierarchal structure [B] between controllers can vary from a hierarchal control
relationship to a partnership between peers. Some interactions can exhibit a mix of both traits. For
example, interactions among human pilots involve both hierarchal control and peer partnership
at different levels of work. The captain directs the roles and responsibilities of the first officer
(FO) by designating her/him as Pilot Flying versus Pilot Not Flying. However, the captain and
FO also work together at a lower level to aviate, navigate, and communicate.

Entities can exhibit a range of behavioral intent [C] toward one another. Designed systems
often consist of components that are mutually cooperative to achieve a common objective. On
the opposite end, some systems contend with adversarial interactions, such as those found in
competition and conflict, as described by Parunak [199].

4 Discussions with Emily Cowen, Andrew Heier, Kyle Ingols, Reed Jensen, Dr. Kevin Lahey, Dr. Caroline
Lamb, Dr. Vincent Mancuso, Col (ret) Mike Pietrucha, and Dr. Rohan Paleja helped, in part, shape the

taxonomy. Thank you.

57

Between these two ends, there are also interactions without reciprocal intent. For example,
two entities may consist of one behaving cooperatively whereas the other is not, as is the case in
formation rendezvous with a non-cooperative target. Adversarial intent can also be unilateral,
as observed in insider threat scenarios. Furthermore, interactions may also be influenced by
mixed motives, as is experienced between drivers in merging traffic where a lane ends. Drivers
must cooperate to allow each other through and avoid crashing into each other, but they are also
driven by non-cooperative intentions to reach their respective destinations on time.

Multi-controller interactions are also influenced by their level of connectivity [D]. Connectivity
may be global, in which all controllers involved in joint activity can directly exchange information
with one another. It can also be local, where two controllers that are not directly connected may
exchange information indirectly through other entities. Finally, some controllers or groups of
controllers may be disconnected and not be able to exchange information.

Next, there are different types of information exchange [E] that can occur along these
connections, as described by Murphey [79]. Communications can involve active messaging
where content, such as controller states and intentions, is encoded and shared. Communication
can also be passive, in which a controller observes the behavior of another to estimate its state
[79]. Finally, the existence of lines of communication does not mean information exchange
actually takes place. The activity of multiple controllers can be coordinated a priori in an open
loop via preplanned policies and behavioral predictions.

The roles and responsibilities [F] of interacting entities can range from prescribed to ad-hoc. In
simpler systems, the responsibility, authority, and accountability for controllers are prescribed
using modes so that control boundaries are defined to avoid overlaps. For example, a pilot can
turn on “heading hold” mode on an autopilot to entirely delegate that task to the machine.

Other systems may intentionally allow more dynamic control boundaries with overlap
between multiple entities to improve performance. For example, there are many concepts of
teams of multiple robots that share a common set of tasks and must coordinate and deconflict
task allocation during operation. Furthermore, roles and responsibilities may even be ad-hoc and
determined only during execution. This ad hoc teaming occurs in human interactions, for
instance, when a team forms to handle a roadside accident.

Finally, interactions are also influenced by their developmental origins [G], i.e., the time when
they are considered in the engineering lifecycle. Some controllers are co-designed to interact from
the beginning, while for others, new functional interactions are only considered post-fielding. In
between, this axis also includes separate designs of interacting controllers according to a common
specification. It also contains unilateral relationships, where one controller is developed to
interact with another that is already fielded.

Categorizing the interactions between multiple controllers according to these structural
dimensions does mean assigning a value on a numerical scale. The Types of Controllers axis
represents nominal data, and the remaining six axes are ordinal. Some interactions may exhibit
multiple labels on each axis. Furthermore, there is no claim that these axes are independent. The
purpose of this taxonomy is to qualitatively consider structural factors that influence causality
between multiple interacting controllers.

58

3.2 Collaborative Control Dynamics

To determine the causal effects of different types of interactions in hazard analysis, those
relationships must be included in the underlying causality model. The system-theoretic
foundation of STAMP provides a mechanism to model causality in any arbitrary control system,
no matter how complex. However, as highlighted in Chapter 2, STAMP-based techniques like
STPA need additional guidance on how to systematically handle some of the more complex team-
inspired interactions.

To address this gap, this section defines nine dynamics that are observed in collaborative
control systems. These interactions are derived from the teaming fundamentals reviewed in
Chapter 2 and the study of novel aerospace systems described in the literature. The definitions
are grounded in the principles of Systems Theory and are formulated using STAMP. The
structural dimensions in the taxonomy above influence if and how these dynamics are exhibited
by a system.

Using Systems Theory, the concept of emergence implies that the collaborative control
dynamics can only be described in terms of the interactions among multiple entities. In this case,
the interacting components are two or more controllers engaged in joint activity. The
collaborative control dynamics are irreducible in that they have no meaning for any individual
controller. The concepts of hierarchy, communication, and control are all explicitly represented
in the models shown in Figure 3-3.

Figure 3-3. System-Theoretic Collaborative Control Dynamics

The collaborative control dynamics are defined according to the three parts of STAMP. The
causal relationship between the controllers is represented using a hierarchal control structure. Each
controller has a process model which contributes to the system behavior. By adequately analyzing
the system, safety constraints can be identified to enforce the safe collective behavior of the team.

59

The following discussion describes what the collaborative control dynamics mean in STAMP
models. Examples of each of these interactions are presented in Section 3.3.

1. Cognitive alignment is the process multiple controllers use to establish and maintain
consistency in their process models and control decisions. The dynamic can involve
synchronizing information held in common as performed in shared situational awareness [60]. It
may also require controllers to leverage distributed situational awareness by coordinating about
who knows what and when within the team [61].

As emphasized in STAMP, accidents often occur because controllers have flawed models of
the process they are controlling [38]. For collaborative control, this concept is extended to account
for how the models of multiple controllers sharing a process may be flawed relative to one
another. Any single controller may not have a full model of the controlled process and may
depend on model variables held by its collaborators. Furthermore, a controller may consider
estimates of the states of the collaborating controllers as part of their decision-making.

Mutual confidence is also part of cognitive alignment. It relates to mutual trust, a key
mechanism for effective teamwork [59]. Confidence is relevant in this research because it is
encodable in machines, unlike trust, which is inherently a human property. As proposed for trust
by Chancey et al. [78], confidence is an element of the process model for each controller regarding
the expected behavior of other interacting controller(s). Levels of confidence can be mutually
assessed for the behaviors of interacting entities. A controller’s confidence in other controllers
may influence its own control decisions.

The ability of controllers to align their cognition is heavily influenced by different dimensions
in the taxonomy introduced in the previous section. The process is more challenging if the
controllers are of different types. The hierarchy, connectivity, and information exchange define
the mechanisms available to maintain the alignment. The rigidity of controller roles and
responsibilities may affect the complexity of the process models that need to be synchronized.
Finally, the developmental origins can impact the compatibility of the cognitive functions in
multiple controllers.

2. Lateral coordination is a causal process between peers that does not imply control [191], [199].
It describes how a component provides information to another component in a way that
influences its behavior, but without imposing constraints. Controllers can achieve this dynamic
using communication exchanges that are deliberately intended to facilitate coordination. For
example, pilots of multiple aircraft at an uncontrolled airport laterally coordinate by radioing
their position and intentions.

Lateral coordination can also involve passive observations. Controllers that monitor each
other’s behaviors can be implicitly influenced by the interpretation of information that was not
deliberately provided for coordination [200]. In the same example as above, pilots at an
uncontrolled airport also observe each other visually and consider implicit factors (e.g., their tone
of voice) to update their models of each other.

Lateral coordination is one of the mechanisms that may be used by a team to maintain
cognitive alignment. It is distinct from vertical coordination, as defined by Johnson [191], which
occurs when a central controller coordinates the decisions of the components over which it has
authority. An example of this is when Air Traffic Control coordinates the trajectories of multiple
aircraft with respect to each other.

60

The lateral coordination dynamic is enabled by the hierarchal structure of the interacting
controllers, as described in the taxonomy. It is also supported by the connectivity and the ability
to actively communicate. Johnson’s extension of STPA proposed a framework of nine
coordination elements to consider as missing or inadequate when analyzing safety in coordinated
systems [191]. The current work employs some of these ideas to consider how coordination can
lead to unsafe collaborative control.

3. Mutually closing control loops is a central concept in interdependence analysis in coactive
design [2]. Controllers observe, predict, and direct each other bi-directionally to execute joint
activity (see Figure 2-4). In a STAMP control structure, this dynamic indicates a controller may
depend on another controller to receive feedback about the process it is controlling. It also means
a controller may depend on feedback from its controlled process to determine how to interact
with a collaborator. The interaction implies that controllers are inherently part of each other’s
feedback control loops, and as such the actions of those controllers cannot be analyzed
individually.

4. Shared authority occurs when multiple controllers have authority over one process or
multiple interdependent subprocesses. This dynamic is common in hierarchal systems, in which
a supervisor (typically human) can delegate certain functions to another controller under its
supervision (often automated systems) but can also intervene and reclaim control. However,
shared authority can also occur when controllers interact as peers. In some cases, a system may
require simultaneous inputs from multiple controllers to control the same process.

In STAMP, shared authority is fundamental to modeling collaborative control as it describes
the joint activity executed by multiple controllers. The key implication of this dynamic is that
hazards may occur because of how multiple control actions are provided collectively to the
shared process. Therefore, these control actions must be analyzed in the context of one another.

5. Transfer of authority is a dynamic that can only occur in the presence of shared authority. It
specifically describes how some systems perform handoffs of a common control action between
multiple controllers over time. Handoffs may be done to dynamically reallocate control
authorities to address shortfalls identified during operation. Not all systems with shared authority
exhibit transfer of authority.

6. Dynamic authority also requires the presence of but is not implied by shared authority.
Dynamic Authority enables multiple controllers with overlapping control boundaries to shift the
division of labor during the execution of joint activity. As previously described, some systems
are intentionally designed with this overlap so that they can adjust the allocation of tasks
dynamically and improve performance.

The ability to adapt, redirect resources, and change collective behavior are important in
effective teamwork [59]. However, dynamic authority can lead to conflicts or gaps in authority,
which are well-known causal factors that lead to hazardous behavior in collaborative control [38],
[201]. The significance of transfer of authority and dynamic authority in STAMP is that the authority
of some of the controllers to provide some of their control actions will vary over time.

7. Dynamic hierarchy occurs in mixed-initiative interactions [67]. Controllers alternate in
leading the team to execute various parts of the joint activity. This dynamic can be beneficial in
improving performance when certain controllers are contextually better suited to control others.
Such interactions are commonly observed in human dialog and are of interest for designing

61

collaborative systems [67]. The implication of dynamic hierarchy in STAMP is that some systems
have multiple controllers that have the ability to provide control actions to one another.

8. Dynamic membership means the set of controllers engaged in joint activity can change over
time. Collaborative teams may lose, replace, or gain members during activity. This dynamic may
require controllers to track the set of active collaborators as a process model variable. Similarly,
the controlled process may be composed of dynamic subprocesses that come and go over time.
As a consequence of dynamic membership, STAMP models must account for the variable
participation of some of its controllers.

9. Dynamic connectivity indicates the network topology among controllers changes over time
while the controllers are interacting. Most systems may be subject to failed channels of control,
feedback, and information flow, as currently emphasized in STAMP. However, this dynamic
specifically focuses on systems for which these channels are expected to vary as part of the
operation. It implies that both global connectivity and communication links between any
controller pair are not always guaranteed. Note that dynamic connectivity can also apply to the
controlled subprocesses and will affect dynamic membership.

In addition to these dynamics, the collaborating controllers {C1,…,Cn} have their own
accountabilities, which may be different from one another. This concept is important because the
system is open and interacts across its boundary with a larger system, which also has causal
implications. Figure 3-3 accounts for this notion by including separate feedback control
connections to higher authority controllers for each of the controllers shown.

3.3 Analyzing Systems for Collaborative Control Dynamics

The system-theoretic framework introduced in this chapter was evaluated on a set of 101
component interactions that are part of aerospace systems. These systems, which are described
in the literature and listed in Appendix 1, represent both fielded systems and unfielded systems,
e.g., systems in concept development, systems that have been prototyped but not yet fielded, etc.
Most of the systems were encountered while reviewing the teaming literature, and they include
all of the motivating examples listed in Chapter 1. However, the set is not necessarily
representative of all possible and actual aerospace systems.

 The analysis explores interactions between the main entities for each of the sampled systems.
Some systems have multiple interactions to categorize. For example, the Aircraft Collision
Avoidance System (ACAS-X) involves interactions between aircraft, aircraft flight crews, and Air
Traffic Controllers (ATC), where components can also interact with one another. Each of these
interactions can be categorized differently (see Example 1 below).

 The goal of this analysis is (1) to demonstrate how to categorize controller interactions, (2) to
compare the presence of collaborative control dynamics in different types of systems, and (3) to
describe the relationships observed between dynamics.

62

3.3.1 Demonstration of the Framework

Two examples illustrate how to categorize the structure of interactions and the presence of
collaborative control dynamics in multi-controller systems. This section also describes how to
handle some of the nuances encountered in the set of interactions analyzed.

Example 1: ACAS-X Aircraft Interactions

The first example is the interaction between aircraft using the Airborne Collision Avoidance
System (ACAS-X). ACAS-X is a series of developmental upgrades to the fielded Traffic Collision
Avoidance System (TCAS) to handle a wider range of aircraft operations [138], [202]. ACAS-X
units on different aircraft interact as a collaborative machine team to jointly ensure collision
avoidance. The categorization shown in Figure 3-4 and described below focuses on interactions
between ACAS-X controllers on deconflicting aircraft. It does not describe ACAS-X to Flight
Crew or ACAS-X to ATC interactions, which would be categorized differently.

Figure 3-4. Categorization of Interactions between ACAS-X Aircraft

 The structure of interactions is categorized according to dimensions [A-G] as follows. First,
the types of controllers [A] are machines, which consist of transponder-computer units that
autonomously exchange information with one another. These machines communicate their
decisions to human flight crews and ATC using other interactions.

 The hierarchal structure [B] between these controllers exhibits both hierarchal control and
peer-level interactions. A hierarchy is established between aircraft based on their transponder
identifiers to allow the higher-ranked aircraft to overrule the lower-ranked aircraft in certain
situations. However, the lower-ranked aircraft may also share its resolution intent first, in such
a way that influences the higher-ranked aircraft’s decision.

 The behavioral intent [C] between ACAS-X controllers is cooperative. The connectivity [D] in
networks of ACAS-X aircraft is local as resolution advisories are coordinated between aircraft
pairs only. The information exchanged [E] consists of active coordination with content-based
messages.

63

 The roles and responsibilities [F] of the controllers are dynamic. In every encounter, the
entities must determine their relative hierarchy, which specifies their respective responsibilities
and authorities. Finally, the developmental origins [G] of individual ACAS-X systems are not all
co-developed, but they are all designed according to a common standard intended to work
collaboratively.

 Aircraft interactions using ACAS-X exhibit seven of the nine collaborative control dynamics.
They facilitate cognitive alignment through shared information about the state and intended
behavior of each entity. This alignment also includes mutual confidence because logic is in place
to assess whether a peer is executing the expected deconfliction maneuver. The cognitive
alignment employs lateral coordination in the form of exchanged resolution advisories and
position information. They mutually close each other’s control loop of collision avoidance by
selecting both aircraft control inputs and messages to one another based both on their relative
position and their exchanged intent.

 This multi-controller system exhibits shared authority over the controlled process of collision
avoidance. Dynamic authority is also observed as each ACAS-X controller pair must determine
its hierarchal structure, and as a result, define during operation the control boundaries of each
participant. The team also has dynamic membership as the set of aircraft that needs to mutually
deconflict changes throughout execution. Finally, there is dynamic connectivity given that
ACAS-X aircraft cannot assume fully reliable communications.

 Some collaborative control dynamics are not observed between interacting ACAS-X aircraft.
First, ACAS-X controllers do not transfer the authority of their controlled process over to other
ACAS-X controllers. When interacting, each ACAS-X controller maintains its control authority
over collision avoidance, which is actuated by its flight crew controlling the aircraft according to
its resolution advisories. Similarly, the system does not exhibit dynamic hierarchy. While two
ACAS-X units interact, there is no provision for one to be the ranking unit for part of the time,
and then dynamically switch this role with the other.

Example 2: Human-Digital Copilot Interactions

The second example categorizes the interaction between a human pilot and an automated digital
copilot featured in a variety of concepts that aim to simplify aircraft piloting operations (Figure
3-5). Specifically, the concept proposed by Dropkin et al. [22] involves a human and an automated
assistant that collaboratively execute checklists. The human can delegate checklist execution to
the assistant, as s/he would with a human copilot. From there, the automation can request the
human to perform certain checklist actions while it takes care of others.

With regards to structural dimensions [A-G], in [A], the interaction is between a human and
a machine. For [B], this system features a mix of hierarchal control and peer interactions. The
human can delegate tasks to the automation in a supervisory relationship. However, within those
tasks, the automation can request assistance, ask the human to execute certain subtasks, seek and
provide clarifications, and monitor human execution as a peer. Next, the interaction is mutually
cooperative in intent [C].

 For [D], connectivity is global. While this case only involves two controllers, and therefore
global connectivity is arguably no different than local, the important point is that nominally all
collaborators are mutually connected. Dimension [E] involves both active and passive

64

information exchange. Controllers actively exchange content-based messages, for example, using
voice commands, and also passively observe each other’s process control activities.

 In [F], the system has dynamic roles and responsibilities. There is an intended overlap
between the human and automation control boundaries to allow task allocation to be specified
during operation. Finally, for [G], it is assumed the system interaction is co-designed. The
automation is designed from the beginning to interact with a human pilot, and that the human
pilot is trained specifically to work with this automation.

Figure 3-5. Categorization of Human-Digital Copilot Interaction

 This interaction exhibits seven of the nine collaborative control dynamics. The controllers
perform cognitive alignment by sharing information and relying on different knowledge they
each possess about the state of the aircraft under control. There are also mechanisms for mutual
assessment of confidence in peer actions. The pilot and digital copilot laterally coordinate using
both deliberate voice communications and mutual monitoring of their behaviors.

 As in human-crewed flight operations, they mutually close each other’s control loops by
receiving feedback pertaining to their control actions through their peer. Similarly, their
decisions to interact with each other are influenced by feedback they receive from the aircraft.
Shared authority and dynamic authority are present because controller boundaries over the
operation of the aircraft overlap and must be resolved during execution.

 Unlike the previous example, this interaction also exhibits transfer of authority, as one
controller can hand off the responsibility to execute a task to the other. There is also dynamic
hierarchy at different levels of work. The human, as a supervisor, can delegate overall checklist
execution responsibilities to the automated assistant. However, the automated assistant can then
direct the human to execute certain assistive tasks within the scope of the checklist.

 Another way this example differs is that it does not exhibit dynamic membership or dynamic
connectivity. The system prescribes a fixed set of collaborating controllers throughout execution,
the human and the digital copilot. Because the controllers are collocated, their network topology
is not expected to vary during nominal execution. Unsafe control paths and feedback paths in
the system are sufficiently covered by STPA, and the implications of these two dynamics would
not need to be further emphasized in hazard analysis.

65

Nuances Encountered in Categorization

The categorization of controller interactions in the sample was based on the description of the
system in the literature. In some cases, insufficient information was available to label one or more
of the dimensions, and those items were not evaluated for that interaction.

 In other cases, the description made it possible for different versions of the system to be
categorized differently. For example, one multi-UAS system explicitly stated that UAS control
could be distributed or centralized [143], and therefore with or without lateral coordination. In
such instances, dynamics were rated as 0.5 on the 0-1 scale of whether or not the dynamic is
present. Similarly, multiple labels were assigned for the structure of interaction in such cases.

3.3.2 Results of the Categorization in Different Types of Systems

Observations noted in categorizing analyzed interactions are grouped into four categories: (1)
human-machine (HM) or machine-machine (MM) interactions in fielded systems, (2) HM or MM
interactions in conceptual unfielded systems, (3) human-to-human (HH) interactions in fielded
systems, and (4) HH interactions in unfielded systems.

These four groups imply a categorization in the types of controllers dimension from the
taxonomy introduced in Figure 3-2. Figure 3-6 shows the relative distribution of how the other
six dimensions were labeled for each of the four groups.

 Three dimensions have distributions for which HM and MM interactions in unfielded
systems are closer to those found in HH interactions (fielded and not) than those seen in fielded
HM and MM interactions. In the analyzed set, the unfielded systems have more peer-level
structures, local connectivity, and dynamic roles and responsibilities in their interactions than the
currently fielded systems.

 Two dimensions have similar distributions across all the groups. Nearly all of the systems
studied have cooperative intent, and most of the systems use active communications to coordinate
activities. This observation may indicate that differences in these structural elements of multi-
controller interaction are less pronounced between systems with collaborative control and those
with simpler relationships.

 Finally, the developmental origin axis actually aligns fielded HM and MM interactions more
closely with HH interactions. In these cases, most fielded HM and MM interaction systems were
developed separately to a common standard. Conversely, the majority of unfielded HM and MM
interactions occurred between co-designed controllers. This outcome is more than likely
influenced by the very nature of whether a system is fielded or still in design. Many novel
systems do not yet have common standards.

66

Figure 3-6. Comparison of the Structure of Controller Interactions

 Next, the prevalence of the nine collaborative control dynamics is compared between the four
groups. Figure 3-7 shows the mean total number of these dynamics exhibited by each interaction
sampled, and Figure 3-8 captures the percentage of systems that present each dynamic. For the
most part, HH interactions in the studied set exhibit more of each of these dynamics than HM
and MM interactions. However, the results also indicate that HM and MM interactions in
unfielded systems exhibit more of every one of the dynamics than in fielded systems in the
analyzed set.

Figure 3-7. Mean Number of Collaborative Control Dynamics Found in Each Interaction

 These results are not intended to quantitatively suggest that all aerospace systems follow
these trends. The systems analyzed were chosen from the literature related to teaming, and they
are therefore not representative of the overall population of systems.

However, there are two important takeaways from this analysis. First, there is evidence in
the literature that systems are being designed to exhibit each of these complex collaborative
control dynamics. And second, of the systems analyzed, those that have not yet been fielded tend

67

to exhibit more of these complex interactions. These points support the argument that causal
factors associated with these dynamics must be considered in safety analysis and design.

Figure 3-8. Percentage of Interactions that Exhibit Each Collaborative Control Dynamic

3.3.3 Relationships between the Categorized Dynamics

The labeling of the presence of collaborative control dynamics was compared against one another.
These relationships are shown in Figure 3-9.

Figure 3-9. Relationship between Collaborative Control Dynamics in Sampled Systems

68

 The left plot shows the percentage of all interactions for which two collaborative control
dynamics were assessed similarly (i.e., both present or both absent). The matrix is symmetric
about its diagonal, and only the bottom half is shown. The important takeaway is that no two
non-identical dynamics are completely correlated in the dataset, as would be indicated by a 1 or
a 0 respectively. The only 1s appear as expected on the diagonal, where each dynamic is
compared to itself.

 A complete overlap between two dynamics, as represented by a 1, could suggest that they are
functionally equivalent when modeling the system. If so, these dynamics could be candidates to
be combined. A complete lack of overlap, as indicated by a 0, could suggest that the two
dynamics are mutually exclusive, perhaps due to an inverse definition of one of two equivalent
properties. Neither of these instances occurred in the sample.

 The plot on the right shows whether the dynamics on the vertical axis were identified only in
the presence of the dynamics on the horizontal axis. Formally, the value in each cell provides the
propositional logic truth value of the statement 𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 → 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 for dynamics 𝑑 over the set
of interactions studied. If for any of the interactions in the set 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 is false when 𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is
true, the cell value equals zero.

 The plot shows six correlations in which one of the dynamics was only active when one of the
other dynamics was also present. These are represented by the six 1s off of the diagonal. Some
of these relationships were expected. For example, transfer of authority and dynamic authority
imply, as defined in Section 3.2, that the system also exhibits shared authority.

 Some of the other correlations may reflect how the dynamics are described. The plot indicates
that mutually closing control loops only occur in the set when there is shared authority, which makes
sense. A controller may sense feedback from the process due to an action provided by another
controller on that same process. However, while this notion suggests a connection exists between
multiple controllers and the same process, it does not necessarily imply that all the controllers
must have authority over that process. So, beyond the analyzed set, it is conceivable that some
systems would have mutually closing control loops without shared authority.

 The plot also suggests that both dynamic hierarchy and dynamic authority only occur in the set
when the interaction also involves cognitive alignment. Both of these dynamics require the team
to resolve which controller is in control of part of the process or which controller is in control of
other controllers over time. As such, it intuitively makes sense that the controllers would need
to align their models and decisions accordingly.

 Similarly, mutually closing control loops was found only in the presence of cognitive alignment.
This correlation may reflect the system-theoretic foundation of this work. In mutually closing
control loops, feedback loops to the process are closed through multiple controllers. If those
controllers were abstracted as one controller as a whole, that controller would need a process
model to control the process. As such, in a refined view of the system, the multiple controllers
involved in the feedback loop must have cognitive alignment to safely close those loops.

 Despite the proposed explanations for these correlations, examples may exist beyond the
systems studied for which the relationships do not hold true. No definitive conclusions can be
drawn on the six correlations between dynamics based on the results of this study alone.
However, the knowledge of these potential implications can help steer an analyst or a designer
to look out for certain collaborative dynamics if others have been identified.

69

3.4 Summary of Collaborative Control Definition

Current systems engineering processes are challenged by some of the more complex team-
inspired component interactions sought in aerospace system designs. As such, the community is
unable to properly model, analyze, and design for assurance of such systems. This research aims
to overcome some of these limitations by developing a rigorous and systematic technique to
analyze the safety of multi-controller collaborative systems.

As a first step to accomplishing this goal, this chapter defined the diverse types of
collaborative relationships that multi-controller teams may exhibit. It introduced a system-
theoretic framework to describe different types of interactions that are—or are planned to be—
designed into aerospace systems. A taxonomy helps reason about seven different structural
dimensions in controller interactions. In addition, a set of nine dynamics observed in
collaborative control were defined using Systems Theory and are grounded in STAMP.

 To determine whether and how this taxonomy relates to fielded and proposed systems, a set
of 101 system interactions studied in this work were categorized using the framework. The
associated analysis demonstrated that each of the collaborative control dynamics is found in
system concepts the aerospace community wants to field. It also showed that these dynamics are
more prevalent in conceptual systems than in those already fielded. The results support
Hypothesis 1 of this dissertation, which underlies the need for the framework.

Hypothesis 1: The system-theoretic collaborative interactions framework provides a
mechanism to categorize and describe component interactions that are, or planned to be,
designed into aerospace systems.

 No claim is made that the taxonomy or the set of collaborative control dynamics is complete.
There may be additional dimensions that are determined to be important in some other
applications, and additional collaborative control dynamics of interest may be uncovered.
Furthermore, the framework developed in this chapter can be employed to explore other types
of interactions between controllers, beyond collaboration. This is the subject of future work.

 The system-theoretic definition of collaborative control dynamics presented in this chapter
provides the necessary foundation to incorporate these relationships into the underlying
causality model of STAMP-based techniques. The extensions to STAMP and STPA developed to
systematically identify causal factors associated with these interactions are developed in the next
chapter.

70

Chapter 4 : Extending STAMP and STPA

for Collaborative Control

The system-theoretic foundation of STAMP and STPA is well-suited to address some of the
challenges in modeling and analyzing the novel aerospace systems introduced in Chapter 1.1.
However, these methods need additional guidance to clarify how to handle causality associated
with the more complex team-inspired component interactions sought in new designs. While
STPA may find some causal factors associated with collaborative control, it is vulnerable to
missing others because it lacks a systematic approach to address such relationships.

This problem was evident when analyzing the safety of a future helicopter concept that

executes missions optionally-manned5 and in collaboration with multiple UAS [28]. The system

was modeled with a control structure that includes a “teaming controller” to help STPA explore

teaming interactions (Figure 4-1). The function of the teaming controller is to dynamically

coordinate resources in the multi-aircraft team to address mission needs. The teaming controller

could be implemented as a centralized, distributed, or hybrid controller.

The model did help identify several causal scenarios that resulted from the breakdown of

collaborative control among the aircraft. The results include examples of conflicting control,

unsafe control handoffs, human-machine trust issues, inconsistent semantics in the team,

incompatible system configurations, and more [28]. While these results are good and useful,

several challenges were encountered during the analysis.

For instance, the causal relationships for many of the unsafe collaborative control issues listed

above are not expressed in the control structure. The results were only obtained by analyzing the

model creatively, through the lens of teaming, and drawing on past expertise in collaborative

control. Earlier versions of the analysis, without that perspective, did not consider the issues

listed above. For a technique to be repeatable by different analysis teams, the causal influences

that occur in collaboration must be explicitly accounted for by the model and analyzable using a

systematic process.

The teaming controller also led to ambiguity in the hierarchy of components in the model. For

example, by controlling team resources, which include the operator’s aircraft, the teaming

controller may issue control actions to the operator and therefore be hierarchically superior.

However, the reverse also occurs when the operator directs the actions for the team, as

represented in the control structure.

Challenges also occurred in abstracting the model to a higher level. It is ambiguous if the

teaming controller belongs to the operator, the aircraft software controller, the UAS, or all three

5 Optionally-manned means a human pilot may or may not be physically onboard the aircraft. If no pilot is

onboard, the aircraft receives piloting commands remotely.

71

if distributed. Similarly, it is unclear how a higher-level model of such a distributed system

would be consistently refined to produce the representation in Figure 4-1.

Figure 4-1: “Teaming Controller” in Future Helicopter Control Structure (adapted from [28])

Despite the useful results obtained with the teaming controller as represented, the lack of a

systematic approach to handle collaborative control could have resulted in the system being

modeled differently. This variation can lead to different results in the hazard analysis and

increases the risk of missing causal factors. As such, further guidance is needed in STAMP and

STPA to handle these situations more consistently.

This chapter introduces extensions to STAMP and STPA to add guidance and rigor in the
analysis of collaborative control interactions. The new methods are grounded in the collaborative
control framework defined in Chapter 3. They are also derived from the existing guidance in
STAMP and STPA so that they remain consistent with these proven techniques. The following is
an overview of the three extensions, which are illustrated in Figure 4-2 and are collectively
referred to as STPA-Teaming.

First, a generic collaborative control structure is developed to incorporate the types of
interactions exhibited in teaming into STAMP models. It serves as a reconfigurable template to
assist in modeling the relationships between multiple humans and/or machines that collaborate
in the control of a process. The goal is to explicitly express these mutual influences so that causal
factors associated with them can later be systematically identified.

72

Figure 4-2. Three Analytical Extensions Involved in STPA-Teaming

Second, the process to identify unsafe control actions (UCAs) in STPA is expanded to explore
how combinations of multiple control actions provided together may lead to hazards. The actions
of multiple controllers are systematically analyzed relative to one another using an approach
derived from the four types of UCAs defined in STPA [50]. A method of abstracting and refining
the control structure helps manage combinatorial complexity in this process. Finally, a prototype
automation tool is introduced to support an analyst with enumerations, refinement, and
prioritization of the unsafe combinations of control actions to analyze. The overall procedure
systematically considers potential issues involving control gaps, overlaps, transfers, and
controller-task mismatches that are found in collaborative control.

Third, an analytical procedure is introduced to develop causal scenarios that explain how
these unsafe combinations of control actions (UCCAs) could occur. It follows a structured search
process inspired by Thomas [203] and is framed by the collaborative control dynamics defined in
Chapter 3. The method emphasizes defining scenarios at a high level and refining them
iteratively, as necessary, and guided by the types of interactions between controllers.

The remainder of the Chapter provides details associated with the development of each of
these extensions. These techniques are then demonstrated in a case study on a real-world
aerospace system concept in Chapter 5.

4.1 Generic Collaborative Control Structure

STAMP hierarchal control structures provide a powerful mechanism to model complex systems
holistically and top-down. The ability to represent causal relationships between components at
multiple levels of the system is one of the reasons why STAMP is so successful at finding factors

73

that threaten safety. In recent years, several efforts have aimed to enhance STAMP models so that
they produce more complete analyses.

The synthesis of these efforts helped define the generic control structure shown in Figure 4-3
and found in Appendix G of the STPA Handbook [50]. This reference also explains how each
element of the model can contribute to causal scenarios found using STPA. The model consists
of a human operator that supervises automation, which controls a process. It is representative of
many supervisory control systems currently fielded.

Figure 4-3. Baseline Generic Control Structure from STPA Handbook Appendix G [50]

Unfortunately, the collaborative control dynamics defined in Chapter 3 are not explicitly
represented in this model, nor in other existing control structures. This increases the risk that
those causal relationships will either be missed or will not be systematically handled in the
ensuing hazard analysis. To address this gap, this dissertation introduces the Generic Collaborative

74

Control Structure shown in Figure 4-4 as a reconfigurable template to represent various teaming
systems. The model is grounded in STAMP, but it also extends the available guidance to
incorporate collaborative interactions.

Figure 4-4. Generic Collaborative Control Structure

The remainder of this section is organized as follows. Section 4.1.1 provides an overview of
the model and relates it to STAMP. Section 4.1.2 describes the cognitive functions of the
controllers in the model, which underpin several of the collaborative control dynamics. Section
4.1.3 explains how the collaborative control dynamics are integrated into the control structure.
Finally, Section 4.1.4 provides additional modeling recommendations.

4.1.1 Overview of the Model

The generic collaborative control structure builds on the baseline in Figure 4-3 to express
collaborative interactions while remaining consistent with STAMP. Every element described in
the baseline applies to the extension. However, abstraction allows some of the details to be
hidden so that other features more aligned with the research focus on collaboration can be

75

highlighted. For example, the actuators in Figure 4-3 are abstracted away from the control paths,
as are the sensors in the feedback paths. These lower-level components are still part of the
collaborative control model, and if needed can be handled using the guidance from the baseline.

Each controller in the extended model includes the same high-level cognitive functions
described in the baseline. The relationship of these functions to collaborative control is further
discussed in Section 4.1.2. The interactions the controllers have with higher authority controllers,
with other controllers (beyond the set of collaborators), and with the environment are also shown
and are handled no differently than they are in STPA.

The generic collaborative control structure shown in Figure 4-4 represents one of any arbitrary
collaborative system configurations. In this case, it includes a human controller (H1) working as
a peer with an automated controller (A1). Together, H1 and A1 have authority over another
automated controller (A2). All three controllers collaborate in controlling a shared process.

These building blocks can be reorganized into any other configurations. For instance, Figure
4-5 shows the collaborative control structures of different systems in development for Urban Air
Mobility (UAM). These concepts involve different potential architectures for human and/or
automated controller collaborations [8], [10], [204]. The authority bus in the figure indicates shared
authority by the controllers over the subprocesses and is further discussed in Section 4.1.4.

Figure 4-5. System Concepts Demonstrating Various Collaborative Control Configurations

The system-theoretic framework allows collaboration to be represented at multiple levels of
abstraction and hierarchy. For example, while Figure 4-4 shows all three controllers collaborating
to control the shared process, it can also be analyzed as H1 and A1 collaborating in the shared
control of A2. Similarly, the human-machine system modeled could be abstracted as a whole, and
work collaboratively with other human-machine systems on a shared process. The interactions
highlighted in the collaborative control structure can be applied to any set of collaborators sharing
a process. Strategies to navigate between these different views are presented in Chapter 6.

4.1.2 Cognitive Functions

The baseline causal model (Figure 4-3) defines two sets of high-level cognitive functions for each
controller [50]. The first processes information to make control decisions. The second consists of
various models that support the decision-making process. STPA provides guidance to consider
how a controller may have flaws in these functions that contribute to its unsafe control actions.

76

The collaborative control structure carries over these concepts, but it emphasizes instead how
these functions can be flawed relative to one another across multiple collaborating controllers.
Figure 4-6 provides an overview of how cognitive functions are integrated into the extended
model. The following discussion explains these functions and how they were derived from the
baseline guidance and other references. These processes are highly relevant to many of the
collaborative control interactions further discussed in Section 4.1.3.

Figure 4-6. Cognitive Functions in Collaborative Control Structure

Information Processing and Decision Making

As explained in the baseline, automated controllers have a control algorithm that processes inputs
to the controller to (1) generate control actions, and (2) maintain accurate information about the
state of the system by interacting with the controller models. The behavior of the control
algorithm is shaped by the operational modes of the system [50].

The extended model integrates all these components. One subtle difference is that the control
algorithm is emphasized to generate actions, which include control actions as in the baseline, but it
also consists of other communication actions to coordinate with and influence the behavior of other
controllers without using control. For example, the Aircraft Collision Avoidance System (ACAS-
X) system described in Chapter 3.3 allows the control algorithm of a lower-ranked aircraft to
output a deconfliction solution first, which influences the decision of the higher-ranked aircraft.

Another consideration added to the model is the limitations placed on the control algorithm
due to controller capacity. In Johnson’s work, limited capacity is a key factor in determining how
controllers form dependencies on one another to execute joint activities [2]. He broadly defines
capacity as the set of knowledge, skills, abilities, and resources a controller needs to perform an
action. Some of these elements are already explicitly considered in STAMP in the form of control
paths, feedback paths, and models. However, other aspects require attention and are important
in collaborative interactions.

In this work, the capacity of a control algorithm refers to the factors that can limit its ability
to track and update models and select appropriate output actions. Limited internal resources,
including computational, data, or communication, may prevent a controller under a certain
workload to output the behavior that was expected by its collaborators. Such issues can cause a
misalignment in cognition across multiple controllers and contribute to an unsafe team output.

77

These concepts also apply to the human controllers in the extended model. The baseline
represents the human with a cognitive function for control action generation & mental processing
[50]. While its purpose is comparable to that of the control algorithm in machines, the STPA
guidance emphasizes that humans are more complex and are subject to different causal factors.

The collaborative control structure similarly broadens the scope of the function to action
generation & mental processing so that it accounts for the coordination outputs in addition to the
control actions. Humans working collaboratively often deliberately provide coordination actions
to influence the behavior of others they cannot control. For example, flight crews often verbalize
hints to each other regarding recommended actions.

Similarly, humans are also subject to capacity limitations in their ability, skill, or workload that
influence how well they maintain situational awareness and make decisions. For instance, an
inexperienced pilot who is still learning to process information efficiently will more easily be
overwhelmed, “fall behind the airplane”, and make bad decisions.

Model of the Process

The cognitive function described above updates, maintains, and relies on multiple models of the
system to select the actions to generate [50]. The purpose of the models is similar between
humans and automated controllers, but the reasons for their flaws can vary greatly. As with other
baseline STPA elements, these models are integrated into the generic collaborative control
structure and related to the process of collaboration.

In STAMP, the model of the process represents the state that the controller believes the
process to be in. The controller relies on this model to select control actions that will constrain
the behavior of the process so that it does not enter a hazardous state [38]. The STPA guidance
provides many reasons why an automated controller may have a flawed process model. These
include inadequate feedback from the process, delays in receiving or processing the feedback,
and flawed assumptions based on control inputs. Human controllers may, in addition, be subject
to mode confusion, lack of situational awareness, confusion due to lack of transparency, or even
complacency [50]. These all apply to the collaborative control structure.

However, collaborative control brings on additional considerations as the control process is
shared between multiple controllers. It is not sufficient to just consider what state one controller
believes the process to be in. The consistency of the process models across multiple controllers is
critical. As reviewed in Chapter 2.1, teams rely on both shared and distributed cognition.

Shared cognition relates to information held in common between multiple controllers [60]. If
information is misaligned, the controllers may have different beliefs regarding the process state
and may issue commands that are inconsistent with one another. This was likely a contributing
factor in the Air France Flight 447 accident (see Chapter 1.2), when the two pilots had misaligned
models about the state of the aircraft, leading one to pitch up and the other to pitch down [35].

Shared cognition may also cause a controller that has a valid model of the process to drift
toward incorrect beliefs provided by a collaborator. This can occur in the psychological
phenomenon of groupthink. In addition, a controller that has a flawed process model may receive
negative reinforcement from the flawed model of a collaborator. This can also occur in groupthink
and in confirmation bias. As such, the model flaws in one controller can propagate to others.

78

Distributed cognition focuses on differences in knowledge between collaborators and
emphasizes the need to coordinate around who knows what and when on the team. The key
implication of this concept is that in collaboration, any one controller may not have direct access
to the complete state of the process to decide what actions to take. It may rely on other controllers
to receive the necessary feedback to inform its actions.

Flawed distributed cognition contributed to the 1994 friendly fire shootdown of two U.S.
Army helicopters (see Chapter 1.2). Two combat air traffic controllers had split responsibilities to
respectively maintain mental models of aircraft within and outside a prescribed area. The
responsibility to track low-flying helicopters evolved over time and was eventually left
unassigned for particular situations. In the accident, the controller for inside the area relied on
an incomplete model from the other controller and, as a result, made an unsafe decision [38].

Model of the Collaborating Controllers

The STPA guidance also describes how a controller may have a model of other controllers it
interacts with. For example, a human controller must have a model of the automation to
supervise its control of the process. Similarly, some sophisticated automated controllers have
models of the humans that are supervising them [50]. In this work, the generic collaborative
control structure incorporates this concept as a model of collaborators.

Several information items may form the model of collaborators. Examples found in the
systems sampled in Appendix 1 are illustrated on the right of Figure 4-6. While the content of
these models can vary widely, the intent of the figure is to help reason about the type of
information controllers track about their teammates to shape their individual output decisions.

The model of collaborators may include knowledge of the set of collaborators involved in the
activity. This becomes particularly important in teams that exhibit dynamic membership when
this set changes over time. A controller may exhibit unsafe behavior if it is not aware that it has
a teammate or if it falsely believes that it does.

Some systems require controllers to track the state of their collaborators, such as their location
and trajectory. For example, in implicit coordination algorithms, each controller uses the state
information for all members of the team to compute a plan for the whole team and execute their
portion of the plan. If the state information and the algorithms are consistent across controllers,
they can produce safe, coordinated solutions [83].

In some cases, teammates may be required to track the responsibilities of other collaborators.
Such information can be necessary for collaborative systems that exhibit dynamic authority, in
which controllers determine the allocation of control during execution. In some coordination
schemes, such as market-based algorithms, teammates form consensus over their responsibilities
only and do not have to rely on other state information [83].

Controllers on a team may need to estimate the network topology. Many systems exhibit
dynamic connectivity, in which communication channels between controllers are expected to
vary. The knowledge of which controllers can be reached at any time, either directly or indirectly,
may influence how a control decides to output coordination and control actions.

Beyond connectivity, controllers may track information requirements between controllers. In
distributed cognition, controllers must understand what information they need from others and
what information others need from them [39]. The timing requirements for information sharing

79

may also vary based on the context and the types of controllers involved. There are many
examples of automated controllers that unduly interrupt the workflow of humans, or that update
information too quickly for humans to process [23].

Finally, controllers may assess their confidence in the behavior of other controllers. A
controller that has no confidence in the output of a teammate may choose a different action than
if it did. Asymmetric assessments of confidence lead to misaligned decisions in joint control.

Models of Other Controllers and the Environment

As described for STPA, controllers can rely on additional models in selecting their actions. They
may have a model of other controllers involved in the system. In this work, these are controllers
beyond the set of collaborative controllers considered above. These other controllers may interact
with the team, the process, or some other part of the system in a different way. Similarly, the
controllers may also maintain models of the environment, or components beyond the system
boundary that the system interacts with. In this work, these models are as they are in STPA [50].

4.1.3 Collaborative Control Dynamics in the Control Structure

A key goal of the extended control structure is to express the collaborative control dynamics
defined in Chapter 3 that are exhibited by the system. This section explains how this is
accomplished using the items labeled with the green arrows in Figure 4-4.

A key consideration in collaborative control is shared authority. It is expressed in the control
structure with the shared controlled process, which is the joint control activity over which multiple
controllers have authority. It may represent a set of mission tasks, a formation, trajectory
deconfliction, or any other process that is jointly controlled.

Many past STPA studies relevant to teaming, including the one referenced in Figure 4-1, do
not show this process in the control structure, and instead, only list the various controllers that
collaborate. The inclusion of a shared process is necessary to reason about how combinations of
control actions by multiple controllers may be hazardous. This concept is central to the Unsafe
Combination of Control Action (UCCA) identification technique introduced in Section 4.2.

The use of dashed lines in the collaborative control structure symbolizes the dynamic
presence of an item. This convention is repeated in multiple ways. The dashed control and
feedback arrows that lead to and from the shared process indicate dynamic authority or transfer of
authority. The significance in both is that the controller from which the dashed control line
originates may not always be responsible for issuing the control action.

In dynamic authority, the control path is allocated, or possibly reallocated multiple times, to
one of the collaborative controllers during execution. In transfer of authority, the control path is
handed off from one controller to another over time. Control gaps, overlaps, and mismatches
that can arise from these dynamics may lead the system into a hazardous state. These two
concepts are also inherently captured by the UCCA extension described in Section 4.2.

The arrows between the controllers are dashed to symbolize dynamic connectivity. Those
connections may or may not be available at any given time. Similarly, some of the controllers
have dashed frames to indicate dynamic membership. This means that those controllers are not

80

always part of the control structure. The causal implications of dynamic connectivity and
dynamic membership, as well as those for all the remaining collaborative control interactions, are
covered in the scenario identification process in Section 4.3.

In STPA, items listed on downward arrows from one controller to another are typically
treated as control actions and analyzed for UCAs. The arrows pointing up are feedback items
and those connecting controllers laterally consist of other information [50]. This convention is
relaxed in the extended control structure to account for additional interactions in collaboration.
While the control structure is still organized hierarchically, not every item flowing down is
necessarily a control action, and control actions may be included on lateral and upward arrows.

In Figure 4-4, each connection from one controller to another includes two arrows. One arrow,
shown in bold, originates from the action generation cognitive function. The other arrow, not bold,
stems instead from the overall controller frame. Both arrows terminate at the cognitive function
of a receiving controller as inputs to inform its decisions.

The bold arrow flowing out of the cognitive function reflects information deliberately
provided by the controller to influence another controller. It consists of control actions (bold and
blue) and communication actions to enable lateral coordination (bold not blue). To clarify
authority, if the arrow has a control action, then it is shown in blue even if it also includes
communication items. In the ensuing hazard analysis, control actions are analyzed for UCCAs
(see Section 4.2) and communication actions are considered in causal scenario development (see
Section 4.3).

The thinner arrow, which does not originate from the cognitive function, represents the
information obtained by observing a controller, as part of lateral coordination. As described in
Chapter 3.2, even though this information is not deliberately provided to coordinate, it can
implicitly influence the decisions of collaborators. Observation items are also considered in the
scenario development process (see Section 4.3).

In Figure 4-4, both A1 and A2 can provide control actions to one another. This is indicative of
dynamic hierarchy, in which a controller leads part of the interaction, and another controller leads
in another part. This dynamic is also captured in the scenario development process.

The extended model shows how mutually closing control loops can be identified between
multiple controllers and the shared process. However, this dynamic is further explored in
scenario development using a more focused control structure for the control loops being
analyzed. Similarly, a label for cognitive alignment is also shown in Figure 4-4, but it is more
closely considered by accounting for the cognitive functions of multiple controllers in scenario
development. These topics are detailed in Section 4.3.

4.1.4 Additional Recommendations for the Model

The following additional recommendations can help analysts model collaborative systems. In
some cases, it may be easier to include an authority bus to represent shared authority over multiple
processes, as shown in Figure 4-5. The bus indicates that all the controllers that feed into it can
have authority over the processes that receive an output from it.

81

In addition, an indexing scheme of {1, … , 𝑛} controllers, also shown in Figure 4-5, helps
account for a variable number of similar types of controllers. In such cases, it is recommended
that at least two controllers be shown so that the interactions between them can be expressed and
considered in causal analysis. Including more than two similar controllers is often not necessary
and adds complexity to the analysis.

4.2 Unsafe Combinations of Control Actions (UCCAs)

STPA employs a systematic method derived from Control Theory to identify unsafe control
actions (UCAs). The method has been shown to be complete in its ability to describe how a
particular command may be provided in an unsafe way [50], [205]. However, this process often
lends itself to considering one controller and one of its feedback control loops at a time.

Collaborative control fundamentally involves multiple controllers working together to
control a shared process. A key implication of shared authority, as defined in Chapter 3, is that the
control actions from collaborating controllers cannot be analyzed individually. There may be
unsafe causal factors that can only be identified when the actions of these multiple controllers are
analyzed together.

For example, a flight crew may involve a pilot that controls aircraft attitude and trajectory
using the flight control yoke and throttle, and a second pilot that controls aircraft configuration
by selecting flaps and landing gear settings. Configuration changes alter the aerodynamic
properties of the aircraft and therefore alter how attitude and trajectory are controlled. Similarly,
variations in attitude and trajectory may cause the aircraft to enter an operating state that
necessitates a configuration change. The control actions of each controller may be unsafe in the
context of the actions provided by the other controller.

Collaborative control may also involve dynamic authority that enables multiple controllers to
adjust task allocation during execution (see Chapter 3). However, that may result in control gaps,
conflict in overlaps, or controller-task mismatches. Similarly, a system may allow transfer of
authority, which can lead to unsafe control handoffs. These types of relationships were exhibited
by the operator teams involved in the infamous Air France 447 and 1994 Friendly Fire accidents
described in Chapter 1.

In STPA, a human analyst specifies the context in which a control action is unsafe [50].
Suggestions are provided in the STPA Handbook for how to do this. Thomas provides formalism
to identify context using process variables derived from the system hazards [205]. However,
these methods do not explicitly define how to explore a control action that may be unsafe relative
to other commands.

Placke’s work provides a useful first step to address this gap. His approach explores how one
controller may interfere with another [206]. Specifically, he defines Conflict UCAs of the form:
<Controller 1 provides Command A> prior to <Controller 2 provides Command B> violates <design
assumptions>. However, the method does not address different types of multi-controller
interactions, such as control gaps, unsafe handoffs, and dynamic tasking. Furthermore, the
analysis is limited to pairwise comparisons of two control actions. Finally, the formulation only

82

relates to a subset of the four Types of UCAs defined in STPA. This means that there are other
ways to issue control actions relative to one another that must be considered.

This section introduces an extension to STPA to explore how multiple control actions may be
unsafe together. The process identifies Unsafe Combinations of Control Actions (UCCAs) and
has the following attributes. First, it follows a systematic approach derived from STPA to ensure
all relevant types of control combinations are considered. Second, it leverages multiple levels of
abstraction to manage combinatorial complexity. And finally, the UCCAs enable the analysis of
their causal factors to be framed by the collaborative control dynamics defined in Chapter 3.

The remainder of this section is organized as follows. Section 4.2.1 derives the different types
of UCCAs and provides the foundation necessary to enumerate them algorithmically. Section
4.2.2 introduces an initial framework of abstraction to reduce the combinatorial complexity of the
enumeration. Section 4.2.3 adds further abstraction to linearize the growth of UCCAs for more
complex systems. Finally, Section 4.2.4 integrates these concepts into an algorithm to identify,
refine, and prioritize UCCAs for their follow-on causal analysis. A prototype tool built on the
formalism of this algorithm supports its execution by automating some of the steps.

4.2.1 Types of UCCAs

One of the strengths of STPA is its systematic process of considering how a control action, given
a particular context, can lead to a hazardous state. UCAs are identified using the specific
structure shown in Figure 4-7 [50].

 1 2 3 4 5

UCA Structure: <Controller> <UCA Type> <Control Action> <Context> [H]

Figure 4-7. Structure of a UCA in STPA

The controller (item 1) and the control action (item 3) are obtained from the control structure.
STPA defines four types of UCAs (item 2), listed below, in which a control action may be unsafe.
The set of four types is provably complete to describe a given control effort [50].

• UCA Type 1: not providing the control action

• UCA Type 2: providing the control action

• UCA Type 3: providing the control action too early or too late

• UCA Type 4: providing the control action for too long or stopping it too soon

The structure in Figure 4-7 allows items 1-3 to be machine enumerated. This reduces the
burden on a human analyst, who can instead focus on determining if there is a context for the
UCA (item 4), and, if so, trace it to the hazard(s) it leads to (item 5). Examples of each type of
UCA are provided in Table 2-3.

The process to identify Unsafe Combinations of Control Actions (UCCAs) builds on the
approach for UCAs. The UCA structure is expanded to incorporate combinations of control
actions. Different types of UCCAs are derived from the types of UCAs to maintain the rigor
provided by STPA. The resulting formulation provides the foundation necessary to enumerate
combinations of control actions algorithmically. As such, the potential UCCAs can be machine-

83

generated and, again, focus the human analyst on specifying the context in which the control
combinations are unsafe.

Two UCCA types are defined. The first, UCCA Type 1-2, combines UCA Types 1 and 2, which
describe whether or not a control action is provided at all. Type 1-2 UCCAs help find contexts in
which providing none, some, or all of multiple control actions is unsafe. As a simple example,
consider two controllers 𝑐𝑖 and 𝑐𝑗 , that can each provide control action 𝑢𝑎 and 𝑢𝑏 respectively.

Potential Type 1-2 UCCAs can be enumerated as follows, using an extended UCA structure with
the same color coding as in Figure 4-7:

Type 1-2 UCCA Example:

1. 𝑐𝑖 does not provide 𝑢𝑎 and 𝑐𝑗 does not provide 𝑢𝑏 when… [H]

2. 𝑐𝑖 does not provide 𝑢𝑎 and 𝑐𝑗 provides 𝑢𝑏 when… [H]

3. 𝑐𝑖 provides 𝑢𝑎 and 𝑐𝑗 does not provide 𝑢𝑏 when… [H]

4. 𝑐𝑖 provides 𝑢𝑎 and 𝑐𝑗 provides 𝑢𝑏 when… [H]

Second, the Type 3-4 UCCA combines UCA Types 3 and 4, which assume that the control
action is provided, and instead focuses on the temporal sequence in which it occurs. Specifically,
a Type 3 UCA considers when the control effort starts, rising from OFF to ON, as shown with a
step function in Figure 4-8. A Type 4 UCA accounts for when the control effort ends, falling from
ON to OFF. For a discrete command not provided over time, only the rising edge is considered,
and Type 4 UCAs do not apply [50].

Figure 4-8. Start and End of a Control Effort Considered in UCA Type 3 and 4

As such, Type 3-4 UCCAs explore the temporal sequences of multiple control actions in
relation to each other that are unsafe. Specifically, they analyze how starting or ending certain
control actions before or after starting or ending other control actions may be unsafe. The Type
3-4 UCCAs are enumerated using the extended UCA structure in Figure 4-9 for the same example
as above.

To maintain generality, no assumption is made that a control action, if started first, has not
ended before the second action starts or ends. This subtlety accounts for discrete commands,
which are not applied over time, as shown in Figure 4-9. The same assumption also allows the
first command, if continuous, to be started and ended before the second action starts or ends.
Similarly, the first command can be ended and then started again before the second command
changes.

84

To remain consistent with UCA Type 4 in STPA, the end of a discrete command is not
considered6. As such, if 𝑢𝑎 is discrete, enumerations {3,4,7,8} in Figure 4-9 are not applicable.
Similarly, if 𝑢𝑏 is discrete, enumerations {2,4,6,8} are excluded. If both are discrete, only items
{1,5} apply.

Figure 4-9. Type 3-4 UCCA Example

The two types of UCCAs provide the foundation for a machine to enumerate all possible
control combinations. However, that does not by itself solve the problem of analyzing how
multiple control actions are unsafe together. The example above consists of a simple pairwise
comparison of two control actions. Additional processes, introduced in the next subsections, are
needed to handle more complex combinations.

4.2.2 Managing Combinatorial Complexity with Abstraction

This section introduces a method to systematically manage the combinatorial complexity that
occurs when enumerating UCCAs. First, a simple example illustrates the need for the process.
Next, a process of abstraction is developed to solve the problem.

6 This defines discrete commands as different than continuous commands. As such, a discrete command

cannot be treated as, or converted to, a continuous command in later steps of the hazard analysis. If a

discrete command must be changed to a continuous command, the Type 4 UCA and Type 3-4 UCCA

identification must be re-addressed with this change.

85

Combinatorial Complexity of UCCA Enumeration

Consider the following multi-UAS system concept used in the STPA example in Chapter 2.4 [143].
An operator controls two collaborative UAS by specifying mission tasks for the collective team to
perform. These tasks represent control actions the UAS must provide to the shared mission
process, such as jamming a radar and striking a target. In this example, the system enters a
hazardous state if the team strikes the target without jamming the radar or if multiple UAS jam
the radar simultaneously.

Figure 4-10 shows the control structure for this simple example. The two UAS can provide
both the jam and the strike commands. They coordinate with each other to determine which UAS
will perform each task. The goal in this work is to systematically explore how combinations of
UAS1 and UAS2 issuing the jam and strike commands may be unsafe.

Figure 4-10 also includes a generalized form of the model, with 𝑛 = 2 controllers that can each
issue the 𝑚 = 2 different control actions. This representation is referenced in the algorithmic
enumeration discussion below.

Figure 4-10. Illustrative Multi-UAS Team Example (left) and its Generalized Form (right)

The Types of UCCAs defined in the previous section help enumerate all the combinations of
control actions provided by the two controllers in this example. Using the extended UCA
structure, Type 1-2 UCCAs are formulated as:

1. 𝑐1 does not provide {𝑢1 𝑜𝑟 𝑢2}; 𝑐2 does not provide {𝑢1 𝑜𝑟 𝑢2} when… [H]

2. 𝑐1 does not provide {𝑢1 𝑜𝑟 𝑢2}; 𝑐2 does not provide 𝑢1and provides 𝑢2 when… [H]

3. 𝑐1 does not provide {𝑢1 𝑜𝑟 𝑢2}; 𝑐2 provides 𝑢1and does not provide 𝑢2 when… [H]

4. …

It is simpler to enumerate combinations using a format inspired by truth tables, as shown in
Table 4-1. The top row designates the controllers that issue the control actions in each
subsequent row. Here, ¬𝑢 means “does not provide 𝑢”. Rows 1-3 in the table match one-to-one
the three UCCAs specified in English above.

86

In this relatively simple problem, there are already 16 potential Type 1-2 UCCAs for the
analyst to evaluate. There are even more potential Type 3-4 UCCAs. As shown in Figure 4-9,
there are 8 ways to order the start and end of two different control actions. This example features
6 possible pairs of control actions, so there are 6 × 8 = 48 potential Type 3-4 UCCAs involving
two actions. But the problem is actually more complicated because there can be sequences of
three or even all four control actions to consider. Evaluating every potential combination
becomes quickly intractable.

Table 4-1. Full Enumeration of Type 1-2 UCCAs for the Multi-UAS Example

𝑐1 𝑐2 # UAS1 UAS2 Context

1 ¬𝑢1 ¬𝑢2 ¬𝑢1 ¬𝑢2 1 ¬jam ¬strike ¬jam ¬strike when…

2 ¬𝑢1 ¬𝑢2 ¬𝑢1 𝑢2 2 ¬jam ¬strike ¬jam strike when…

3 ¬𝑢1 ¬𝑢2 𝑢1 ¬𝑢2 3 ¬jam ¬strike jam ¬strike when…

4 ¬𝑢1 ¬𝑢2 𝑢1 𝑢2 4 ¬jam ¬strike jam strike when…

5 ¬𝑢1 𝑢2 ¬𝑢1 ¬𝑢2 5 ¬jam strike ¬jam ¬strike when…

6 ¬𝑢1 𝑢2 ¬𝑢1 𝑢2 6 ¬jam strike ¬jam strike when…

7 ¬𝑢1 𝑢2 𝑢1 ¬𝑢2 7 ¬jam strike jam ¬strike when…

8 ¬𝑢1 𝑢2 𝑢1 𝑢2 8 ¬jam strike jam strike when…

9 𝑢1 ¬𝑢2 ¬𝑢1 ¬𝑢2 9 jam ¬strike ¬jam ¬strike when…

10 𝑢1 ¬𝑢2 ¬𝑢1 𝑢2 10 jam ¬strike ¬jam strike when…

11 𝑢1 ¬𝑢2 𝑢1 ¬𝑢2 11 jam ¬strike jam strike when…

12 𝑢1 ¬𝑢2 𝑢1 𝑢2 12 jam ¬strike jam strike when…

13 𝑢1 𝑢2 ¬𝑢1 ¬𝑢2 13 jam strike ¬jam ¬strike when…

14 𝑢1 𝑢2 ¬𝑢1 𝑢2 14 jam strike ¬jam strike when…

15 𝑢1 𝑢2 𝑢1 ¬𝑢2 15 jam strike jam ¬strike when…

16 𝑢1 𝑢2 𝑢1 𝑢2 16 jam strike jam strike when…

Figure 4-11 illustrates the general problem with a team of 𝑛 controllers that can issue 𝑚 types
of control actions to a shared process. The controllers may overlap in their ability to provide the
same type of command for any number of these control actions. For generality, the figure shows
the system having full overlap for all control actions.

Figure 4-11. General Team of Multiple Controllers Issuing Multiple Control Actions

This team can provide up to 𝑝 total control actions to the shared process, where 𝑝 is defined
by Equation (1). Here, 𝑈𝑎(𝑐𝑖) = 1 if controller 𝑐𝑖 can provide control action 𝑢𝑎, and 𝑵 and 𝑴 are
the domains of all control actions and controllers respectively.

87

 𝑝 = ∑𝑈𝑖(𝑐𝑎);𝑖 ∈ 𝑵,𝑎 ∈ 𝑴 (1)

In the general problem, there are 𝑑𝑇12 = 2𝑝 possible Type 1-2 UCCA combinations of 𝑛
controllers providing or not providing each of the 𝑚 control actions. This number grows
exponentially with 𝑛 and 𝑚. The number of Type 3-4 UCCA permutations, or ordered sequences,
in which up to any of these 𝑝 control actions can be started and ended relative to one another grows
even faster, as found in Equation (2).

𝑑𝑇34 = ∑

2𝑘𝑝!

(𝑝 − 𝑘)!

𝑝

𝑘=2

 (2)

Table 4-2 illustrates the total number of UCCAs for different hypothetical teams. For
simplification, here every controller on the team can provide every control action, so 𝑝 = 𝑛 ×𝑚.

Table 4-2. Number of UCCAs Enumerable for Different Hypothetical Teams

Controllers
𝑛

Types of
Control Actions

𝑚

Total Control
Actions
𝑝

Type 1-2
UCCAs
𝑑𝑇12

Type 3-4
UCCAs
𝑑𝑇34

Total
UCCAs

𝑑𝑇12 + 𝑑𝑇34

2 1 2 4 8 12
2 2 4 16 624 640
2 3 6 64 75,960 76,024
2 4 8 256 17,017,952 17,018,208
3 1 3 8 72 80
3 2 6 64 75,960 76,024
3 3 9 512 3.06x108 3.06x108
3 4 12 4096 3.23x1012 3.23x1012

As shown, teams of even modest sizes produce too many potential UCCAs to enumerate fully.
It is not practical for a human analyst to identify the context(s) in which all these UCCAs are
unsafe, and then develop causal scenarios to explain how they could occur. Such an effort would
also be inefficient as it would produce similar information repeated across multiple similar
UCCAs. Finally, the volume of data would be too overwhelming for designers to derive useful
engineering and assurance decisions. Simplification is necessary.

Process of Abstraction to Manage Combinatorial Complexity

The ability to use abstraction to manage complexity is one of the key strengths of system-theoretic
approaches. As shown below, collaborative systems can be systematically abstracted to reduce
the combinatorial complexity associated with enumerating UCCAs. The approach, summarized
in Figure 4-12, helps identify the context in which multiple control actions are unsafe together at
a higher level of abstraction, where fewer combinations exist. Then, only those combinations
found to be unsafe need to be further explored through refinement.

The approach begins with two different model representations, Abstractions 1a and 1b, which
are shown one level up from the problem formulation in Figure 4-12. Each one focuses on a

88

different way to combine multiple control actions. The following discussion explains each of
these abstractions and demonstrates how they enumerate UCCAs in the Multi-UAS example
above. This is a necessary step to then abstract the model further to Abstraction 2a and 2b to
handle more complex systems, as addressed later in Section 4.2.3.

Figure 4-12. Managing Combinatorial Complexity Using Abstraction

UCCAs in Abstractions 1a: Combinations of Control Actions by Collective Team

Abstraction 1a combines the multiple controllers that share authority over a process into one
collective controller (see Figure 4-12). This helps to identify the unsafe combinations of different
types of control actions issued by the overall team to the process.

The use of this abstraction is predicated on several conditions. The system must exhibit shared
authority between multiple controllers over a common process, or similarly, over different

89

interdependent subprocesses. It is also only useful if there are multiple different types of control
actions to consider, or in other words for a set of control actions ({𝑢1, … , 𝑢𝑚} | 𝑚 > 1). However,
it does not require the controllers to have any overlap in the types of control actions they provide.

For example, if in the multi-UAS system in Figure 4-10, only UAS1 can jam, and only UAS2
can strike, Abstraction 1a can be applied to explore combinations of these two commands issued
by the collective team. Conversely, if the two UAS can only jam, and no UAS can strike, then this
abstraction is not useful. Although in this case, Abstraction 1b is, as will be described later.

Table 4-3 shows the Type 1-2 UCCAs generated using Abstraction 1a for the multi-UAS
example as defined in Figure 4-10. The table shows the combinations of control actions provided
or not provided by the collective controller team, 𝑐𝑁.

Table 4-3. Abstraction 1a Type 1-2 UCCAs for Multi-UAS Example

𝑐𝑁 # UAS Team Context

1 ¬𝑢1 ¬𝑢2 1 ¬jam ¬strike when…

2 ¬𝑢1 𝑢2 2 ¬jam strike when…

3 𝑢1 ¬𝑢2 3 jam ¬strike when…

4 𝑢1 𝑢2 4 jam strike when…

Table 4-4 lists the Abstraction 1a Type 3-4 UCCAs, or sequences in which the collective team
can start and end its control actions. In the table, 𝑆(𝑢) means “start control action 𝑢”, 𝐸(𝑢) means
“end 𝑢”, and F is the Linear Temporal Logic operator for Some Future Step [207]. The table has
two columns headed by controllers, and it is read as the first controller starts/ends the control
action in any row before the second controller listed starts/ends its control action in the same
row. In this case, the controller is the collective team, 𝑐𝑁, so it is the same in both columns.

Table 4-4. Abstraction 1a Type 3-4 UCCAs for Multi-UAS Example

𝑐𝑁 F 𝑐𝑁 # Team before Team Context

1 𝑆(𝑢1) 𝑆(𝑢2) 1 starts jam starts strike when…

2 𝑆(𝑢1) 𝐸(𝑢2) 2 starts jam ends strike when…

3 𝐸(𝑢1) 𝑆(𝑢2) 3 ends jam starts strike when…

4 𝐸(𝑢1) 𝐸(𝑢2) 4 ends jam ends strike when…

5 𝑆(𝑢2) 𝑆(𝑢1) 5 starts strike starts jam when…

6 𝑆(𝑢2) 𝐸(𝑢1) 6 starts strike ends jam when…

7 𝐸(𝑢2) 𝑆(𝑢1) 7 ends strike starts jam when…

8 𝐸(𝑢2) 𝐸(𝑢1) 8 ends strike ends jam when…

These tables can be generated using automation. The human analyst then evaluates each item
and determines if there are any context(s) in which that combination can lead to hazard(s). For
instance, based on assumptions in the example, item 2 in Table 4-3 can be written as:

UCCA 1: UAS Team does not provide jam and provides strike when an enemy radar
is surveilling the target area [H1].

Similarly, item 3 in Table 4-4 forms the following UCCA:

90

UCCA 2: UAS Team ends providing jam before it starts providing strike when an
enemy radar is surveilling the target area [H1].

In each case, the abstracted team can later be refined, again using automation, to
explore how different combinations of controllers can issue control actions that lead to
that collective UCCA output. The context and hazard traceability generated at the higher
level are carried over to the refined UCCA. For example, UCCA 1 can be refined as:

UCCA 1.1: UAS1 does not provide {jam or strike}; UAS2 does not provide jam and
provides strike when an enemy radar is surveilling target area [H1].

UCCA 1.2: UAS1 does not provide jam and provides strike; UAS2 does not

provide {jam or strike} when an enemy radar is surveilling target area [H1].

UCCA 1.3: UAS1 does not provide jam and provides strike; UAS2 does not

provide jam and provides strike when an enemy radar is surveilling target area [H1].

The same process of refinement can be applied to UCCA 2. The reason for refining
the UCCA is that the causal factors later analyzed by developing loss scenarios may be
different for the different controllers involved. The refinement of UCCAs is further
explained and formalized in Section 4.2.4.

UCCAs in Abstractions 1b: Combinations of Controllers Issuing Shared Control Action

Abstraction 1b helps to determine the unsafe combinations of controllers issuing a common
control action. As reflected in Figure 4-12, it represents the multiple controllers and focuses only
on one common type of control action at a time.

As was the case in Abstraction 1a, the application of 1b is also predicated on the shared
authority of multiple controllers over a common process. There must also be some overlap
between at least two of the controllers in their ability to issue a common type of control action.
This overlap may be enabled by dynamic authority or transfer of authority over that control action,
but that is not always the case. For example, multiple aircraft flying in formation have a standing
shared control authority over aircraft separation, which can be analyzed using this abstraction.

The abstraction does not require all controllers to have common authority over all tasks. In
the Multi-UAS example (Figure 4-10), if only UAS1 can strike, but both UAS can jam, then
Abstraction 1b can be applied to analyze the combination of multiple controllers issuing the jam
command. Conversely, if only UAS1 can strike and only UAS2 can jam, then this abstraction is not
relevant. Although in this case, it should still be analyzed with respect to Abstraction 1a as
previously described.

Table 4-5 and Table 4-6 enumerate Type 1-2 and Type 3-4 combinations of controllers issuing
the same control action using Abstraction 1b. The tables focus on control action 𝑢1, the jam
command in the multi-UAS example, and would be duplicated for 𝑢2, strike. Here, 𝑈(𝑥) means
“control action 𝑢 is provided by controller 𝑥”, where 𝑥 is enumerated as 𝑐1 and 𝑐2. All other
conventions are consistent with those previously defined.

91

Table 4-5. Abstraction 1b Type 1-2 UCCAs for Multi-UAS Example

𝑈1(𝑥) Common Issues # jam provided by Context

1 ¬𝑈1(𝑐1) ¬𝑈1(𝑐2) control gap 1 ¬UAS1 ¬UAS2 when…

2 ¬𝑈1(𝑐1) 𝑈1(𝑐2) controller-task
mismatch

 2 ¬UAS1 UAS2 when…

3 𝑈1(𝑐1) ¬𝑈1(𝑐2) 3 UAS1 ¬UAS2 when…

4 𝑈1(𝑐1) 𝑈1(𝑐2) control overlap 4 UAS1 UAS2 when…

Table 4-6. Abstraction 1b Type 3-4 UCCAs for Multi-UAS Example

𝑈1(𝑥) F 𝑈1(𝑥) Common Issues # jam by before jam by Context

1 𝑆(𝑈1(𝑐1)) 𝑆(𝑈1(𝑐2)) 1 UAS1 starts UAS2 starts when…

2 𝑆(𝑈1(𝑐1)) 𝐸(𝑈1(𝑐2)) handoff overlap 2 UAS1 starts UAS2 ends when…

3 𝐸(𝑈1(𝑐1)) 𝑆(𝑈1(𝑐2)) handoff gap 3 UAS1 ends UAS2 starts when…

4 𝐸(𝑈1(𝑐1)) 𝐸(𝑈1(𝑐2)) 4 UAS1 ends UAS2 ends when…

5 𝑆(𝑈1(𝑐2)) 𝑆(𝑈1(𝑐1)) 5 UAS2 starts UAS1 starts when…

6 𝑆(𝑈1(𝑐2)) 𝐸(𝑈1(𝑐1)) handoff overlap 6 UAS2 starts UAS1 ends when…

7 𝐸(𝑈1(𝑐2)) 𝑆(𝑈1(𝑐1)) handoff gap 7 UAS2 ends UAS1 starts when…

8 𝐸(𝑈1(𝑐2)) 𝐸(𝑈1(𝑐1)) 8 UAS2 ends UAS1 ends when…

The systematic consideration of how different controllers provide, don’t provide, start, and
end a particular command highlights potential gaps, overlaps, mismatches, and handoff issues
that are common in shared control. For example, item 1 in Table 4-5, which involves no controller
providing the command, may be due to a gap in task allocation associated with dynamic authority.
Items 2 and 3 explore how the “wrong” controller provides an action as can occur in a controller-
task mismatch. Item 4 considers multiple controllers providing the action, which may lead to
control conflicts.

Table 4-6 highlights related issues. In items 2 and 6, one controller starts providing the
command before another controller ends it. This may occur in a transfer of authority when the
handoff involves an excessive period of overlap between the two controllers, which can result in
conflicting control. Items 3 and 7 reflect the opposite problem when one controller ends before
the next starts. This can lead to a period of gap in authority when the process is not controlled.
The overlap and gap in control are visible in items 2 and 3, respectively, in Figure 4-9.

As mentioned for Abstraction 1a, the tables can be generated using automation, and an
analyst can then specify if there are any context(s) and hazard(s) that apply to each item. For
example, item 4 in Table 4-5 can generate the following UCCA. In this case, there is no need to
refine the UCCA as it already provides the controllers and control actions involved.

UCCA 3: UAS1 provides jam and UAS2 provides jam when both controllers interfere
with each other [H2].

Summary of Abstractions 1a and 1b

By applying Abstractions 1a and 1b to the multi-UAS example, the number of potential UCCAs
is reduced from 640 in the fully enumerated set, as listed in Table 4-2 for 𝑛 = 2 and 𝑚 = 2, down
to 36. There are now 12 Type 1-2 UCCAs and 24 Type 3-4 UCCAs for a human to analyze.

92

Unfortunately, while the number of UCCAs grows more slowly than in the fully refined
problem, at this level of abstraction, it still scales exponentially. Abstraction 1a is, by definition,
combinatorial in the number of different types of control actions 𝑚. Abstraction 1b grows
exponentially with the number of controllers 𝑛. And in both cases, the permutations of Type 3-
4 UCCAs scale even faster once they involve more than the simple pairwise comparisons
illustrated so far. Further simplification is necessary.

4.2.3 Linearizing Growth by Abstracting Further

The method of abstraction applied in the previous section provides the first step to mitigate
exponential scaling in the number of UCCAs. This section introduces an additional level of
abstraction, shown at the top of Figure 4-12, which linearizes the growth of potential UCCAs for
collaborative systems of any number of controllers and control actions.

The previous multi-UAS example is slightly modified to illustrate the process. Consider now
a team of three unmanned systems (UxS), consisting of 2 UAS and 1 ground robot (𝑛 = 3). Each
controller can execute the same types of control actions: jam, strike, and track a target (𝑚 = 3).
Figure 4-13 shows the updated control structure for this concept alongside its generalized form.

Figure 4-13. Updated Multi-UxS Control Structure (left) and its Generalized Form (right)

To reduce the number of potential UCCAs, the system is first represented using Abstractions
1a and 1b as described in the previous section. Each model is then further abstracted,
respectively, to Abstractions 2a and 2b, as shown in Figure 4-12.

Figure 4-14 shows this process for the multi-UxS example. The figure only depicts one
iteration of Abstractions 2a and 2b centered on control action 𝑢1. It also explains how to reiterate
the cases for 𝑢2 and 𝑢3. Finally, the figure clarifies that a system can be directly represented by
Abstractions 2a and 2b. Abstractions 1a and 1b simply provide the system-theoretic foundation
for the higher-level representation, but no analysis is necessary at that level.

93

Figure 4-14. Abstraction of a Collaborative System to Models 2a and 2b

UCCAs in Abstraction 2a

Abstraction 2a is based on Abstraction 1a, and it iteratively considers any one of the control
actions in combination with any of the others abstracted together (see Figure 4-14). At this level,
Type 1-2 UCCAs explore how the collective team provides (or does not provide) any one control
action and provides (or does not provide) any of the others. One iteration of this process
comparing 𝑢1 with {𝑢2 ∨ 𝑢3} for the modified multi-UxS example is:

1. 𝑐𝑁 does not provide 𝑢1 and does not provide {𝑢2 or 𝑢3} when… [H]

2. 𝑐𝑁 does not provide 𝑢1 and provides {𝑢2 or 𝑢3} when… [H]

3. 𝑐𝑁 provides 𝑢1 and does not provide {𝑢2 or 𝑢3} when… [H]

4. 𝑐𝑁 provides 𝑢1 and provides {𝑢2 or 𝑢3} when… [H]

94

In these statements, {𝑢2 or 𝑢3} is true under the following conditions: 𝑢2 alone is true, 𝑢3 alone
is true, or 𝑢2 and 𝑢3 are both true. Two additional iterations compare 𝑢2 with {𝑢1 ∨ 𝑢3} and 𝑢3
with {𝑢1 ∨ 𝑢2}. Their formulations are comparable to those listed above. The full set of potential
Type 1-2 UCCAs for Abstraction 2a of the multi-UxS system is shown in Table 4-7.

Table 4-7. Abstraction 2a Type 1-2 UCCAs for Multi-UxS Example

𝑐𝑵 # UxS Team Context

1 ¬𝑢1 ¬{𝑢2 ∨ 𝑢3} 1 ¬jam ¬any in{strike, track} when…

2 ¬𝑢1 {𝑢2 ∨ 𝑢3} 2 ¬jam any in{strike, track} when…

3 𝑢1 ¬{𝑢2 ∨ 𝑢3} 3 jam ¬any in{strike, track} when…

4 𝑢1 {𝑢2 ∨ 𝑢3} 4 jam any in{strike, track} when…

5 ¬𝑢2 ¬{𝑢1 ∨ 𝑢3} 5 ¬strike ¬any in{jam, track} when…

6 ¬𝑢2 {𝑢1 ∨ 𝑢3} 6 ¬strike any in{jam, track} when…

7 𝑢2 ¬{𝑢1 ∨ 𝑢3} 7 strike ¬any in{jam, track} when…

8 𝑢2 {𝑢1 ∨ 𝑢3} 8 strike any in{jam, track} when…

9 ¬𝑢3 ¬{𝑢1 ∨ 𝑢2} 9 ¬track ¬any in{jam, strike} when…

10 ¬𝑢3 {𝑢1 ∨ 𝑢2} 10 ¬track any in{jam, strike} when…

11 𝑢3 ¬{𝑢1 ∨ 𝑢2} 11 track ¬any in{jam, strike} when…

12 𝑢3 {𝑢1 ∨ 𝑢2} 12 track any in{jam, strike} when…

Type 3-4 UCCAs follow a similar concept. They represent ways in which the collective team
may start or end any one control action before starting or ending any of the others. One of three
iterations of Type 3-4 UCCAs in Abstraction 2a is listed below and the full set for the multi-UxS
example is provided in Table 4-8.

1. 𝑐𝑁 starts providing 𝑢1 before it starts providing {𝑢2 or 𝑢3} when… [H]

2. 𝑐𝑁 starts providing 𝑢1 before it ends providing {𝑢2 or 𝑢3} when… [H]

3. 𝑐𝑁 ends providing 𝑢1 before it starts providing {𝑢2 or 𝑢3} when… [H]

4. 𝑐𝑁 ends providing 𝑢1 before it ends providing {𝑢2 or 𝑢3} when… [H]

In the statements above, if either 𝑢2 or 𝑢3 is a discrete command, it must be removed from
consideration in specifying the UCCA contexts that involve “ends providing {𝑢2 or 𝑢3}”. This
removal can be automated. For example, if 𝑢2 is a discrete command and 𝑢3 is a continuous
command, then the second line must be interpreted as:

2. 𝑐𝑁 starts providing 𝑢1 before it ends providing 𝑢3 when… [H]

Similarly, if both 𝑢2 and 𝑢3 are discrete commands, the statement is removed altogether.
However, statements 1 and 3, which involve starting these discrete commands, would still be
valid to consider.

95

Table 4-8. Abstraction 2a Type 3-4 UCCAs for Multi-UxS Example

𝑐𝑵 F 𝑐𝑵 # Team before Team Context

1 𝑆(𝑢1) 𝑆({𝑢2 ∨ 𝑢3}) 1 starts jam starts any in{strike, track} when…

2 𝑆(𝑢1) 𝐸({𝑢2 ∨ 𝑢3}) 2 starts jam ends any in{strike, track} when…

3 𝐸(𝑢1) 𝑆({𝑢2 ∨ 𝑢3}) 3 ends jam starts any in{strike, track} when…

4 𝐸(𝑢1) 𝐸({𝑢2 ∨ 𝑢3}) 4 ends jam ends any in{strike, track} when…

5 𝑆(𝑢2) 𝑆({𝑢1 ∨ 𝑢3}) 5 starts strike starts any in{jam, track} when…

6 𝑆(𝑢2) 𝐸({𝑢1 ∨ 𝑢3}) 6 starts strike ends any in{jam, track} when…

7 𝐸(𝑢2) 𝑆({𝑢1 ∨ 𝑢3}) 7 ends strike starts any in{jam, track} when…

8 𝐸(𝑢2) 𝐸({𝑢1 ∨ 𝑢3}) 8 ends strike ends any in{jam, track} when…

9 𝑆(𝑢3) 𝑆({𝑢1 ∨ 𝑢2}) 9 starts track starts any in{jam, strike} when…

10 𝑆(𝑢3) 𝐸({𝑢1 ∨ 𝑢2}) 10 starts track ends any in{jam, strike} when…

11 𝐸(𝑢3) 𝑆({𝑢1 ∨ 𝑢2}) 11 ends track starts any in{jam, strike} when…

12 𝐸(𝑢3) 𝐸({𝑢1 ∨ 𝑢2}) 12 ends track ends any in{jam, strike} when…

13* 𝑆({𝑢2 ∨ 𝑢3}) 𝑆(𝑢1) 13* starts any in{strike, track} starts jam when…

… … … … … … …

24* 𝐸({𝑢1 ∨ 𝑢2}) 𝐸(𝑢3) 24* ends any in{jam, strike} ends track when…

*Items 13-24 are the reverse sequences of Items 1-12 respectively

 As in Abstractions 1a and 1b, these tables can also be generated by automation, and the same
approach is employed to identify and refine UCCAs (see Section 4.2.2). However, one notable
difference is that in Abstraction 2a the UCCA must also specify what control actions in the
abstracted set are relevant to the context. This determination must be made by the human analyst
because the context is defined by the analyst. For example, item 10 in Table 4-7 may produce:

UCCA 4: UAS Team does not provide track and provides strike when an enemy
must be tracked as a strike occurs to ensure custody of the target [H3].

 This UCCA is uncovered by analyzing the ¬track and {jam ∨ strike} combination of commands.
However, in the set {jam ∨ strike}, only the strike command is relevant. Under the context
specified, it does not matter if jam is provided or not. By designating the relevant commands, the
refined UCCA only includes the different controller options that lead to collectively not tracking
and striking (see Table 4-9). The exclusion of jam eliminates additional combinations that are
invariant to the context and subsequent causal analysis of the UCCA.

Table 4-9. Refinement of Example UCCA 4

UCCA Team Team Context

4 ¬track {jam ∨ strike} when enemy must be tracked as strike occurs [H3]

Refined UAS1 UAS2 robot Same Context and Hazard

4.1 ¬track ¬track strike when enemy must be tracked as strike occurs [H3]

4.2 ¬track strike ¬track when enemy must be tracked as strike occurs [H3]

4.3 strike ¬track ¬track when enemy must be tracked as strike occurs [H3]

4.4 ¬track strike strike when enemy must be tracked as strike occurs [H3]

4.5 strike ¬track strike when enemy must be tracked as strike occurs [H3]

4.6 strike strike ¬track when enemy must be tracked as strike occurs [H3]

4.7 strike strike strike when enemy must be tracked as strike occurs [H3]

96

In other UCCAs, the analyst may choose to include all of the control actions listed in the
combination. For example, a version of the previous UCCA 1 updated for this modified UxS
example may form UCCA 5 below.

UCCA 5: UAS Team does not provide jam and provides track and strike when an
enemy radar is surveilling the target area [H1].

UCCAs in Abstraction 2b

Abstraction 2b follows a similar logic as in 2a and uses Abstraction 1b as a foundation to consider
how any one controller in combination with any of the others abstracted together may issue a
common control action (see Figure 4-14). Here, Type 1-2 UCCAs explore ways the one controller
and the others provide or do not provide the action, as shown in Table 4-10. The process is
reiterated for each control action.

Table 4-10. Abstraction 2b Type 1-2 UCCAs for Multi-UxS Example

𝑈1(𝑥) Common Issues # jam provided by Context

1 ¬𝑈1(𝑐𝑖) ¬𝑈1({𝑐𝑗1 ∨ 𝑐𝑗2}) gap 1 ¬any one ¬any of others when…

* ¬𝑈1(𝑐𝑖) 𝑈1({𝑐𝑗1 ∨ 𝑐𝑗2}) * ¬any one any of others when…

2 𝑈1(𝑐𝑖) ¬𝑈1({𝑐𝑗1 ∨ 𝑐𝑗2}) mismatch 2 any one ¬any of others when…

3 𝑈1(𝑐𝑖) 𝑈1({𝑐𝑗1 ∨ 𝑐𝑗2}) overlap 3 any one any of others when…

*Does not need to be considered, included in items 2 and 3 (see discussion)

A key difference in how UCCAs are defined in Abstraction 2b, in this work, is that the specific
controllers do not need to be listed in the abstracted form. For the systems explored in this
research, it is assumed that the context in which a control action, or a combination of control
actions, is unsafe is controller agnostic. As such, the controllers listed in the abstracted UCCA
(e.g., those in Table 4-10) are generalized, which reduces the number of combinations that need
to be analyzed at this level.

However, it is important to note that the specific controllers must be considered in the
refinement of the UCCA. This is a necessary step to explore how those different controllers can
contribute to that higher-level output. By listing these options, the causal factors that are
controller-specific can later be identified in the last step of the hazard analysis, scenario
development. These factors would otherwise be missed. The process of refining a UCCA can be
fully automated, and the context and hazard identified by the human analyst at the higher level
are carried over to the refined level, as shown below.

An example of a UCCA found in the multi-UxS system using Abstraction 2b follows. The last
combination in Table 4-10, in which multiple controllers provided the jam command, is refined
in Table 4-11.

UCCA 6: any one Ci provides jam and any other Cj provide(s) jam when multiple
controllers interfere with each other [H2].

97

Table 4-11. Refinement of Example UCCA 5

UCCA Ci Any other Cj Context

6 jam jam when multiple controllers mutually interfere [H2]

Refined UAS1 UAS2 robot Same Context and Hazard

6.1 jam jam when multiple controllers mutually interfere [H2]

6.2 jam jam when multiple controllers mutually interfere [H2]

6.3 jam jam when multiple controllers mutually interfere [H2]

6.4 jam jam jam when multiple controllers mutually interfere [H2]

The refinement in Table 4-11 assumes all controllers can issue all control actions. If instead,
only UAS1 and UAS2 could provide the jam command, and not the robot, then item 6.3 would be
the only option in the refinement.

Another advantage to generalizing the controllers in the UCCA identification is that the
second row labeled (*) in Table 4-10 can be skipped. This line represents one controller 𝑐𝑖 not
providing the command when any of the others in {𝑐𝑗≠𝑖} provide it. If only one controller in {𝑐𝑗≠𝑖}

provides the command, that is addressed by item 2 of the table. If multiple controllers in {𝑐𝑗≠𝑖}

provide it, that is considered in item 3.

Despite the benefits, there may be circumstances in which an engineering team chooses not
to make the assumption that context is controller agnostic. In such cases, the same mechanism
used to enumerate multiple different control actions in Abstraction 2a can be applied to
enumerate multiple specific controllers. All four items per iteration in Table 4-10 would need to
be considered, the process would be reiterated to compare each controller to the others, and the
analyst could specify which controllers are relevant to the contexts identified. The reasons for
selecting this approach are beyond the scope of this dissertation.

Type 3-4 UCCAs in this abstraction explore the sequences in which any one controller and
any other start or end a common control action. Table 4-12 shows the process for one control
action (𝑢1), and similar iterations are necessary for each of the other control actions.

By again assuming that the context is controller agnostic, the process only needs to consider
any one of the other controllers in {𝑐𝑗≠𝑖} at a time. Similar to above, if an engineering team does

not want to make this assumption, it can enumerate options such as 𝑐𝑖 starts/ends 𝑢1 before any
controllers in {𝑐𝑗1 , … , 𝑐𝑗(𝑛−1)} start/end 𝑢1. The enumeration would also need to include the

reverse sequences, and the analyst would specify the controllers relevant to the context identified.

Table 4-12. Abstraction 2b Type 3-4 UCCAs for Multi-UxS Example

𝑈1(𝑥) F 𝑈1(𝑥) Common Issues # jam by before jam by Context

1 𝑆(𝑈1(𝑐𝑖)) 𝑆(𝑈1(𝑐𝑗)) 1 any one starts any other starts when…

2 𝑆(𝑈1(𝑐𝑖)) 𝐸(𝑈1(𝑐𝑗)) handoff overlap 2 any one starts any other ends when…

3 𝐸(𝑈1(𝑐𝑖)) 𝑆(𝑈1(𝑐𝑗)) handoff gap 3 any one ends any other starts when…

4 𝐸(𝑈1(𝑐𝑖)) 𝐸(𝑈1(𝑐𝑗)) 4 any one ends any other ends when…

98

As discussed for Abstraction 1b, Abstraction 2b also highlights the same common issues with
shared control that may contribute to entering a hazardous state. The ability to systematically
identify potential control gaps, overlaps, mismatches, and unsafe handoffs as listed in Table 4-10
and Table 4-12 is a key strength of the overall UCCA approach.

Assumptions and Limitations

The abstractions employed to enumerate UCCAs presented in this section provide tractability to
an otherwise combinatorial problem. However, the method involves certain assumptions and
has some limitations that are important to understand.

The following are the key assumptions. First, the abstractions are predicated on multiple
controllers sharing authority over a common process or over different interdependent
subprocesses. Second, Abstractions 1a and 2a assume these controllers, collectively, can provide
multiple types of control actions to the shared process. Third, Abstractions 1b and 2b assume
multiple controllers can provide the same type of control action to the process. Fourth, in this
work, the context of the UCCA is assumed to be agnostic to the controllers that provide the
actions. Mechanisms to relax this assumption are addressed in the discussion above. Finally, it is
assumed a human analyst is able to identify the unsafe context of a UCCA given the abstracted
combination of control actions or controllers.

The main objective of the abstractions is to reduce the number of potential UCCAs to consider
in arbitrarily complex systems. However, in the multi-UxS example (Figure 4-13), the process
generates more Type 1-2 UCCAs (provide / not provide) in Abstraction 2a than in Abstraction
1a. In Abstraction 2a, the UCCA count grows linearly by 4𝑚, instead of exponentially by 2𝑚 in
1a, where 𝑚 is the number of different types of control actions (here, 𝑚 = 3).

The numerical advantage of the additional abstraction is realized when 𝑚 > 4. This means an
argument can be made to enumerate Type 1-2 UCCAs using Abstraction 1a instead of 2a for
systems with 4 or fewer control actions. Anecdotally, the author found it easier cognitively to
explore combinations of more than 3 control actions using Abstraction 2a. Similarly, because
controllers are defined generally, Abstraction 2b is advantageous over Abstraction 1b when there
are three or more controllers.

Abstractions 2a and 2b provide even greater benefits for Type 3-4 UCCAs (start/end before
others start/end). The abstraction leverages some of the numerical advantages of pairwise
analysis by avoiding permutations of sequences greater than two. However, by maintaining
consideration for all controllers or control actions at a time, the abstraction retains a broader
analytical scope than if the problem was reduced to only evaluate pairs. Such a reduction could
never consider interactions that involve more than two controllers or control actions.

One limitation is that some control combinations may be missed due to the method of
abstraction. Table 4-13 provides representative examples of UCCAs that are omitted from the
abstracted enumeration and an explanation for why they are not covered.

In all cases, simpler combinations that address a subset of the overall interaction are
identified. However, as informed by Systems Theory, the aggregate of these reduced cases may
not necessarily represent the behavior of the full interaction. Still, these cases may help analysts
consider the more complex combinations that are missed by the abstraction.

99

Table 4-13. Examples of Control Combinations Not Addressed Using Full Abstraction

Missed UCCA Reason it is Missed

CN provides u1 and u2 and
does not provide u3 and u4

u1 ∧ u2 ∧ ¬u3 ∧ ¬u4

Abstraction 2a considers whether 1 control action is provided
(or not), and if any of the others are provided (or not).
However, this UCCA is considered in Abstraction 1a.

Simpler combinations addressed in Abstraction 2a:
(u1 ∧u2∧¬u3); (u1 ∧u2∧¬u4); (u1 ∧¬u3∧¬u4); (u2 ∧¬u3∧¬u4)

Ci ends u1 before
(Cj starts u2 and Cj ends u3)

Similar to above, the abstraction applies Start or End to the
other commands together.

Simpler combinations addressed:
Ci ends u1 before Cj starts u2; Ci ends u1 before Cj ends u3

Ci ends u1 before
(Cj starts u1 and Ci starts u2)

The combination bridges over the initial decision to look at
combinations of different control actions, and combinations of
controllers issuing the same control action.

Simpler combinations addressed:
Ci ends u1 before Cj starts u1; Ci ends u1 before Ci starts u2

Ci ends u1 before Cj starts u2

before Ci starts u3
This is a sequence of three events, which is beyond what is
considered.

Simpler combinations addressed:
Ci ends u1 before {Cj starts u2 and Ci starts u3};

Cj starts u2 before Ci starts u3

C1 ends u1 before
(C2 starts u1 and C3 starts u1)

Abstraction 2b Type 3-4 UCCAs only consider any one
controller and any other one by assuming the context is
controller agnostic (by choice only, see discussion)

Simpler combinations addressed:
C1 ends u1 before C2 starts u1; C1 ends u1 before C3 starts u1

To illustrate one of these missed combinations and its simpler cases considered, the second
line of the table may represent the following ordered sequence for the multi-UxS example in
Figure 4-13.

Missed: Any Ci ends jam before any others in Cj start strike and ends track when …

Simpler considered: Any Ci ends jam before any other Cj starts strike when …

Simpler considered: Any Ci ends jam before any other Cj ends track when …

The last item in Table 4-13 occurs because of the decision to assume the context of a UCCA is
controller agnostic. Here, the missed UCCA does not need to be considered as long as the simpler
combinations listed are addressed. However, as discussed in the previous subsection, the
analysis team can choose not to make this assumption and recover the ability to find the missed
UCCA. As such, this case represents a deliberate implementation decision rather than a limitation
of the method.

100

Some of the other cases in the table may be found by arbitrarily extending the scope of the
abstraction. For example, Type 1-2 UCCAs could have an additional step to compare any two
controllers with all the others. Similarly, Type 3-4 UCCAs could consider some sequences of
three changes in actions. These strategies may help if an analyst finds a pattern of combinations
to consider that is just beyond the reach of the current approach.

However, if all higher-order combinations must be found, the guaranteed method to find
them is to perform a full enumeration as described at the beginning of this section. Despite the
limitations above, the overall approach to identifying UCCAs is shown in the Chapter 5 case
study to be practical and find causal information that was previously not identified.

4.2.4 UCCA Identification Algorithm

The concepts developed in the previous subsections are now integrated into an end-to-end
algorithm (Algorithm 1) to identify Unsafe Combinations of Control Actions (UCCAs). The
algorithm introduces new concepts to reduce and prioritize the output set of UCCAs and improve
the efficiency of scenario development.

Algorithm 1: UCCA Identification

Input: 𝓐, 𝑪𝒊𝒏𝒕, 𝓢

Output: 𝓤𝑎𝑏𝑠 , 𝓤𝑟𝑒𝑓 sets of UCCAs, abstracted & refined (Tuple)
// 𝓐: what controller can provide what control action (Tuple)

// 𝑪𝒊𝒏𝒕: set of interchangeable controllers (Set)
// 𝓢: special interactions to consider in refinement (Tuple)

1. 𝓒𝒂𝒃𝒔 ← Enumerate-Combinations (𝓐) // [Table 4-14]*

2. for 𝑥 ∈ 𝓒𝒂𝒃𝒔**

3. if Context(𝓒𝒙
𝒂𝒃𝒔) ≠ ∅**

4. 𝓤𝑎𝑏𝑠 = 𝓤𝑎𝑏𝑠 ∪ (𝓒𝒙
𝒂𝒃𝒔, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑥 , 𝑼𝒙

𝒓𝒆𝒍)**

5. for 𝑥 ∈ 𝓤𝑎𝑏𝑠*

6. 𝓒𝒙
𝒓𝒆𝒇
 ← Refine-Combinations (𝓤𝒙

𝒂𝒃𝒔, 𝓐, 𝓢) // [Equation (17)]*

7. 𝓒𝒙
𝒓𝒆𝒇′

← Prune-Equivalent(𝓒𝒙
𝒓𝒆𝒇
, 𝑪𝒊𝒏𝒕) // [Equation (21)]*

8. 𝓤𝒙
𝒓𝒆𝒇
← Prioritize(𝓒𝒙

𝒓𝒆𝒇′
, 𝓢) // [Heuristic, see discussion]*

9. return (𝓤𝑎𝑏𝑠 , 𝓤𝑟𝑒𝑓)*
// * Step automated; ** Step performed by human

The UCCA Identification Algorithm includes portions that are automated (denoted by *) and
others that are performed by a human analyst (**). A description of each component in the
algorithm follows and includes reasoning for allocating that part of the process to the automation
or the human. Some of the components are illustrated using the multi-UxS system example from
Figure 4-13. A prototype tool that executes the automated portions of Algorithm 1 was developed
in MATLAB and is employed in the case study in Chapter 5. The implementation of the tool is
discussed where relevant.

101

Inputs

The first input to the algorithm is the authority tuple, 𝓐 = 𝑓(𝑵,𝑴,𝑨), which describes the set of
control actions each controller can provide to the shared process. 𝓐 is derived from the control
structure, and its components are:

𝑵 ≔ vector of controllers that share authority over the process

𝑴≔ vector of control actions that can be provided to the process

𝑨 ≔ vector {𝐴𝑎(𝑐𝑖)}, 𝑎 ∈ 𝑴, 𝑖 ∈ 𝑵, for which elements are true if controller 𝑐𝑖 can
provide command 𝑢𝑎

The second input is the set of interchangeable controllers, 𝑪𝒊𝒏𝒕. It is used to prune refined
UCCAs that are considered equivalent to others in terms of potential causal factors. This topic is
further addressed in the discussion about Line 7.

The third input is a set of special interactions, 𝓢, encoded to add or remove refined UCCAs
when enumerated. Special interactions can also be used to influence prioritization. They are
further discussed in the descriptions of Lines 6 and 8.

Example: for the multi-UxS system in Figure 4-13, these terms are captured in Equations (3)-
(7) below. 𝓢 is addressed later in the discussion.

 𝑵 = {𝑈𝐴𝑆1, 𝑈𝐴𝑆1, 𝑟𝑜𝑏𝑜𝑡}

𝑴 = {𝑗𝑎𝑚, 𝑠𝑡𝑟𝑖𝑘𝑒, 𝑡𝑟𝑎𝑐𝑘}

𝑨 = {𝐴𝑗𝑎𝑚(𝑈𝐴𝑆1), 𝐴𝑠𝑡𝑟𝑖𝑘𝑒(𝑈𝐴𝑆1), … , 𝐴𝑡𝑟𝑎𝑐𝑘(𝑟𝑜𝑏𝑜𝑡)} = {1,1, … ,1}

(3)

(4)

(5)

𝓐 =

(

𝑈𝐴𝑆1
𝑈𝐴𝑆1
𝑈𝐴𝑆1

𝑗𝑎𝑚
𝑠𝑡𝑟𝑖𝑘𝑒
𝑡𝑟𝑎𝑐𝑘

1
1
1

𝑈𝐴𝑆2
𝑈𝐴𝑆2
𝑈𝐴𝑆2

𝑗𝑎𝑚
𝑠𝑡𝑟𝑖𝑘𝑒
𝑡𝑟𝑎𝑐𝑘

1
1
1

𝑟𝑜𝑏𝑜𝑡
𝑟𝑜𝑏𝑜𝑡
𝑟𝑜𝑏𝑜𝑡

𝑗𝑎𝑚
𝑠𝑡𝑟𝑖𝑘𝑒
𝑡𝑟𝑎𝑐𝑘

1
1
1)

 (6)

 𝑪𝒊𝒏𝒕 = {𝑈𝐴𝑆1, 𝑈𝐴𝑆2} (7)

Line 1: Automated Enumeration of Control Action Combinations

The first line in Algorithm 1 is a function that enumerates all the combinations of control actions
by implementing the procedures introduced in Sections 4.2.1-4.2.3. It finds the Type 1-2
(provide/not provide) and the Type 3-4 (start/end before start/end) UCCAs using Abstractions
2a (combination of actions issued by the team) and 2b (combinations of controllers issuing a
common action).

Table 4-14 formalizes this process. The first row outputs potential Type 1-2 UCCAs using
Abstraction 2a in a format consistent with Table 4-7 for the multi-UxS example. These

102

combinations are provided by the collective team 𝑐𝑁 of 𝑵 controllers. The four cases are reiterated
for every 𝑢𝑎 in 𝑴. For example, item (c) in that row describes the team providing 𝑢𝑎 and not
providing any of the other control actions, denoted by ¬∃𝑢𝑏.

The second row finds Type 1-2 UCCAs using Abstraction 2b like those shown in Table 4-8.
The output keeps the controllers 𝑐𝑖 and ∃𝑐𝑗 general, where ∃𝑐𝑗 denotes any the other controllers

that are not 𝑐𝑖, and iterates for every 𝑢𝑎 in 𝑴. Here, item (c) in that row describes any one
controller 𝑐𝑖 providing 𝑢𝑎 and any of the other controllers, ∃𝑐𝑗, providing the same action.

Table 4-14. Formalized Method of Enumerating Combinations of Control Actions

Abstraction &
UCCA Type

Cases to Consider
Enumerate
Each Case

Abs 2a
Type 1-2

a. ¬𝑢𝑎 ∧ ¬∃𝑢𝑏
b. ¬𝑢𝑎 ∧ ∃𝑢𝑏

c. 𝑢𝑎 ∧ ¬∃𝑢𝑏

d. 𝑢𝑎 ∧ ∃𝑢𝑏

given 𝑈𝑎(𝑐𝑁), 𝑈𝑏(𝑐𝑁)
for
 𝑎 ≠ 𝑏 ∈ 𝑴

Abs 2b
Type 1-2

a. ¬𝑈𝑎(𝑐𝑖) ∧ ¬∃𝑐𝑗 𝑈𝑎(𝑐𝑗)

b. 𝑈𝑎(𝑐𝑖) ∧ ¬∃𝑐𝑗 𝑈𝑎(𝑐𝑗)

c. 𝑈𝑎(𝑐𝑖) ∧ ∃𝑐𝑗 𝑈𝑎(𝑐𝑗)

given 𝑖 ≠ 𝑗 ∈ 𝑵
for
 𝑎 ∈ 𝑴

Abs 2a
Type 3-4

a. ∃𝑢𝑏[(¬𝑢𝑎 ∧ ¬𝑢𝑏) 𝐔 (𝑢𝑎 ∧ ¬𝑢𝑏) 𝐅 𝑢𝑏]

b. ∃𝑢𝑏[(¬𝑢𝑎 ∧ 𝑢𝑏) 𝐔 (𝑢𝑎 ∧ 𝑢𝑏) 𝐅 ¬𝑢𝑏]
c. ∃𝑢𝑏[(𝑢𝑎 ∧ ¬𝑢𝑏) 𝐔 (¬𝑢𝑎 ∧ ¬𝑢𝑏) 𝐅 𝑢𝑏]

d. ∃𝑢𝑏[(𝑢𝑎 ∧ 𝑢𝑏) 𝐔 (¬𝑢𝑎 ∧ 𝑢𝑏) 𝐅 ¬𝑢𝑏]
e. ∃𝑢𝑏[(¬𝑢𝑎 ∧ ¬𝑢𝑏) 𝐔 (¬𝑢𝑎 ∧ 𝑢𝑏) 𝐅 𝑢𝑎]

f. ∃𝑢𝑏[(¬𝑢𝑎 ∧ 𝑢𝑏) 𝐔 (¬𝑢𝑎 ∧ ¬𝑢𝑏)𝐅 𝑢𝑎]
g. ∃𝑢𝑏[(𝑢𝑎 ∧ ¬𝑢𝑏) 𝐔 (𝑢𝑎 ∧ 𝑢𝑏) 𝐅 ¬𝑢𝑎]

h. ∃𝑢𝑏[(𝑢𝑎 ∧ 𝑢𝑏) 𝐔 (𝑢𝑎 ∧ ¬𝑢𝑏) 𝐅 ¬𝑢𝑎]

given

𝑈𝑎(𝑐𝑁), 𝑈𝑏(𝑐𝑁)

for
 𝑎 ≠ 𝑏 ∈ 𝑴

Abs 2b
Type 3-4

a. (¬𝑈𝑎(𝑐𝑖) ∧ ¬𝑈𝑎(𝑐𝑗)) 𝐔 (𝑈𝑎(𝑐𝑖) ∧ ¬𝑈𝑎(𝑐𝑗)) 𝐅 𝑈𝑎(𝑐𝑗)

b. (¬𝑈𝑎(𝑐𝑖) ∧ 𝑈𝑎(𝑐𝑗)) 𝐔 (𝑈𝑎(𝑐𝑖) ∧ 𝑈𝑎(𝑐𝑗)) 𝐅 ¬𝑈𝑎(𝑐𝑗)

c. (𝑈𝑎(𝑐𝑖) ∧ ¬𝑈𝑎(𝑐𝑗)) 𝐔 (¬𝑈𝑎(𝑐𝑖) ∧ ¬𝑈𝑎(𝑐𝑗)) 𝐅 𝑈𝑎(𝑐𝑗)

d. (𝑈𝑎(𝑐𝑖) ∧ 𝑈𝑎(𝑐𝑗)) 𝐔 (¬𝑈𝑎(𝑐𝑖) ∧ 𝑈𝑎(𝑐𝑗)) 𝐅 ¬𝑈𝑎(𝑐𝑗)

given 𝑖 ≠ 𝑗 ∈ 𝑵

for
 𝑎 ∈ 𝑴

The third row finds Type 3-4 UCCAs using Abstraction 2a and produces an output consistent
with Table 4-10. The notation employs Linear Temporal Logic (LTL) to describe the different
sequences of starting and ending different control actions relative to one another.

Each equation is a sequence of three time periods. Item (a) in the list describes those three
periods as they pertain to starting 𝑢𝑎 before starting 𝑢𝑏. First, the initial condition treats both 𝑢𝑎
and 𝑢𝑏 as not provided because they have not yet started. This condition holds Until the second
step, represented by LTL temporal operator 𝐔 [207], when 𝑢𝑎 is started and, therefore, is now
provided. Finally, in some Future third step, denoted by LTL operator 𝐅, 𝑢𝑏 is started. As

103

discussed in Section 4.2.1, no assumption is made that 𝑢𝑎 is still provided by the time this last
step occurs.

The fourth row in Table 4-14 uses Abstraction 2b to output Type 3-4 UCCAs like those shown
in Table 4-12. The cases in that row follow the same three temporal steps defined above in LTL.
As such, item (c) in that row represents any one controller 𝑐𝑖 ending 𝑢𝑎 before any other controller
𝑐𝑗 starts 𝑢𝑎.

Each enumerated control combination is encoded into a tuple, 𝓒𝒙 = (𝑪𝒙, 𝑼𝒙 , 𝑻𝒙), as defined
below. By abuse of notation, the abstracted set of multiple controllers or of multiple control

actions can be encoded as any single element in 𝑪𝒙 and 𝑼𝒙. A superscript on 𝓒𝒙 (i.e., 𝓒𝒙
𝑨𝒃𝒔𝟐𝒂,𝑻𝟏𝟐),

informs which abstraction and type of UCCA is enumerated. For Type 3-4 UCCAs, the order of

the elements in vectors 𝑼𝒙 and 𝑻𝒙
𝟑𝟒 reflects the temporal sequence.

𝑪𝒙 ≔ vector of controllers involved in enumeration

𝑼𝒙 ≔ vector of control actions paired with 𝑪𝒙

𝑻𝒙
𝟏𝟐 = {𝑛𝑜𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒}; represents if elements 𝑪𝒙 provide elements in 𝑼𝒙

𝑻𝒙
𝟑𝟒 = {𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, ø}; applied by 𝑪𝒙 to 𝑼𝒙

 Example: for the multi-UxS system, if 𝑢𝑎 = 𝑗𝑎𝑚, the third item of each row in Table 4-14
encodes 𝑪𝒙 as Equations (8)-(11).

 𝓒𝒙
𝑨𝒃𝒔𝟐𝒂,𝑻𝟏𝟐 = ({𝑡𝑒𝑎𝑚, 𝑡𝑒𝑎𝑚} {[𝑗𝑎𝑚], [𝑠𝑡𝑟𝑖𝑘𝑒 ∨ 𝑡𝑟𝑎𝑐𝑘]} {0,1})

𝓒𝒙
𝑨𝒃𝒔𝟐𝒃,𝑻𝟏𝟐 = ({𝑐𝑖 , ∃𝑐𝑗} {[𝑗𝑎𝑚], [𝑗𝑎𝑚]} {1,1})

𝓒𝒙
𝑨𝒃𝒔𝟐𝒂,𝑻𝟑𝟒 = ({𝑡𝑒𝑎𝑚, 𝑡𝑒𝑎𝑚} {[𝑗𝑎𝑚], [𝑠𝑡𝑟𝑖𝑘𝑒 ∨ 𝑡𝑟𝑎𝑐𝑘]} {𝑒𝑛𝑑, 𝑠𝑡𝑎𝑟𝑡})

𝓒𝒙
𝑨𝒃𝒔𝟐𝒃,𝑻𝟑𝟒 = ({𝑐𝑖 , ∃𝑐𝑗} {[𝑗𝑎𝑚], [𝑗𝑎𝑚]} {𝑒𝑛𝑑, 𝑠𝑡𝑎𝑟𝑡})

(8)

(9)

(10)

(11)

𝓒𝑨𝒃𝒔denotes the set of all 𝓒𝒙 created in the above enumeration. A MATLAB prototype
developed to demonstrate this concept automatically produces four tables with the control
combinations and placeholders for an analyst to enter potential contexts and other information
described in the next step of the Algorithm. Examples of UCCA tables created using the
automation are shown in Appendix 2.

Lines 2-4: Human-Identified Context of UCCAs

Once the automation has produced all the potential UCCAs, a human analyst determines for each
one (Line 2) if there is a context, or multiple contexts, in which that control combination is
hazardous (Line 3). As part of this, the analyst also traces each context to the hazard(s) the UCCA
leads to. The context may describe the violation of safety constraints previously identified in the
analysis. This part of the algorithm requires human expertise and intuition across multiple
domains.

While some contexts can be formally described so that they are automatically found, it is
challenging to scale that up beyond simple problems. In addition, the context may involve the
environment the system interacts with, which is too unpredictable to fully describe formally [170].

104

The same concerns have limited the adoption of formal methods in certification (see Chapter 2.3).
Humans, as creative and critical thinkers, are better suited for this step.

If a hazardous context is found, it is appended to the control combination (Line 4). For UCCAs

defined using Abstractions 2a, the analyst also specifies vector 𝑼𝒙
𝒓𝒆𝒍 to designate the control

actions in 𝑢𝑎 and 𝑢𝑏 that are relevant to the context. Abstractions 2b UCCAs only include one

control action and therefore do not require 𝑼𝒙
𝒓𝒆𝒍 to be specified.

Lines 5-6: Automated Refinement of UCCAs

After the human specifies the context(s), the hazard traceability, and the relevant control actions,

the automation reads in each unique abstracted UCCA as tuple 𝓤𝒙
𝒂𝒃𝒔 =

 (𝑪𝒙, 𝑼𝒙, 𝑻𝒙, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑥 , 𝑼𝒙
𝒓𝒆𝒍) (Line 5). The potential UCCAs that are repeated or not considered

unsafe are removed from further consideration.

Example: for the multi-UxS system, the 𝓤𝒙
𝒂𝒃𝒔 encoded for abstracted UCCA 4 specified in

Section 4.2.3 is shown in Equation (12). In this case, only the track and strike commands are
relevant to the context.

 𝓤𝒙
𝒂𝒃𝒔 = ({𝑡𝑒𝑎𝑚, 𝑡𝑒𝑎𝑚} {[𝑡𝑟𝑎𝑐𝑘], [𝑗𝑎𝑚 ∨ 𝑠𝑡𝑟𝑖𝑘𝑒]} {0,1} {′𝑤ℎ𝑒𝑛… ′} {𝑡𝑟𝑎𝑐𝑘, 𝑠𝑡𝑟𝑖𝑘𝑒}) (12)

Next, Algorithm 1 calls a function to refine each abstracted UCCA (Line 6). Here, the
automation finds every combination of specific controllers that can contribute to the collective
control output in the abstracted UCCA.

For Type 1-2 UCCAs, the tool first considers all the possible control combinations 𝓟 =
𝑓(𝑵,𝑴,𝑨, 𝑻) by listing every combination of every controller 𝑵, with every control action 𝑴 it has
the authority 𝑨 to provide it, and the options 𝑻 for providing or not providing that action. Each

combination is represented by tuple 𝓟𝒆 = (𝑪𝒆, 𝑼𝒆 , 𝑻𝒆
𝑻𝟏𝟐) using the same format as 𝓒𝒙

𝑻𝟏𝟐.

Example: for the multi-UxS system, one 𝓟𝒆 is shown in Equation (13). To shorten the equation,
the jam, strike, and track commands are listed a j, s, t respectively. By abuse of notation, each
controller in 𝑪𝒆 is reiterated for each element in the vectors the controller is matched with with in

both 𝑼𝒆 and 𝑻𝒆
𝑻𝟏𝟐. In other words, {𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡} should be interpreted here as

{[𝑈𝐴𝑆1, 𝑈𝐴𝑆1, 𝑈𝐴𝑆1], [𝑈𝐴𝑆2, 𝑈𝐴𝑆2, 𝑈𝐴𝑆2], [𝑟𝑜𝑏𝑜𝑡, 𝑟𝑜𝑏𝑜𝑡, 𝑟𝑜𝑏𝑜𝑡]}.

 𝓟𝒆 = ({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡} {[𝑗, 𝑠, 𝑡], [𝑗, 𝑠, 𝑡], [𝑗, 𝑠, 𝑡]} {[0,0,1], [0,1,0], [0,1,0]}) (13)

The function then looks for equivalence of the union of control actions provided by all

controllers in 𝓟𝒆 to the relevant control actions specified in the abstracted UCCA 𝓤𝒙
𝒂𝒃𝒔. This step

is simplified using the earlier assumption that the context of the UCCA is agnostic to which
controllers issue the control actions. Equivalence can therefore be determined using subsets 𝓟𝒆

′ =

(𝑼𝒆 , 𝑻𝒆) and 𝓤𝒙
𝒂𝒃𝒔′ = (𝑼𝒙, 𝑻𝒙), which remove the controllers, the contexts, and the irrelevant

control actions from consideration. In simple terms, if a relevant control action is provided in the
abstracted Type 1-2 UCCA, equivalence is achieved if any controller in the refined set provides
that control action.

Example: for the multi-UxS system, Table 4-9 refines a UCCA in which the team provides
¬track and strike. In this case, any combination where no controller tracks and one or more
controllers strike meets this criterion. As such, items 4.4-4.7, which include multiple controllers

105

providing the strike command, are considered equivalent to the collective team output. The

associated 𝓤𝒙
𝒂𝒃𝒔′ and equivalent 𝓟𝒆

′ defined for item 4.4 are listed in Equations (14)-(15).

 𝓤𝒙
𝒂𝒃𝒔′ = ({𝑗𝑎𝑚, 𝑠𝑡𝑟𝑖𝑘𝑒} {0,1})

𝓟𝒆
′ = ({[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]} {[0,0], [0,1], [0,1]})

(14)

(15)

However, special interactions may also be defined to influence how equivalence is determined
given the context of the UCCA. These interactions may reduce or expand the set of combinations
that are considered equivalent. For instance, if multiple controllers provide the jam command,
they may interfere with each other and yield a collective output equivalent to no jam being
provided. In this case, if a high-level UCCA states the team provides ¬jam and strike, any refined
UCCA that involves both UAS1 and UAS2 providing jam and any controller providing strike is
treated as equivalent. This example would expand the set of combinations to consider.

The special interaction is defined as a tuple 𝓢 = (𝑼, 𝑻𝒊𝒏, 𝜮, 𝑻𝒐𝒖𝒕), where 𝜮 specifies the rules
that are applied to the control actions in 𝑼 and whether or not they are provided 𝑻𝒊𝒏. The rules
indicate how to treat the collective output of those commands using items in vector 𝑻𝒐𝒖𝒕. In the
jam example above, 𝜮 includes the rule that if the number of controllers providing the jam control

action in 𝑼 exceeds 1, treat jam collectively as 𝑻𝒐𝒖𝒕
𝟏𝟐 = 𝑛𝑜𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒.

Example: for the multi-UxS system, according to this special interaction, the 𝓟𝒆
′ defined in

Equation (16) would be considered equivalent to the 𝓤𝒙
𝒂𝒃𝒔′ previously listed in Equation (14).

 𝓟𝒆
′ = ({[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]} {[1,0], [1,1], [0,1]}) (16)

The output of this part of the algorithm is a set of refined control combinations 𝓒𝒙
𝒓𝒆𝒇

 that are

considered equivalent to the abstracted UCCA 𝓤𝒙
𝒂𝒃𝒔 . 𝓒𝒙

𝒓𝒆𝒇
 is evaluated using Equation (17) for

Type 1-2 UCCAs, which is the mathematical representation of the concepts described above.

𝓒𝒙
𝒓𝒆𝒇,𝑻𝟏𝟐

= ⋃𝓟𝒆
𝒆

| (𝓤𝒙
𝒂𝒃𝒔′ ≡⋃𝓟𝒆

′

𝑖

 | 𝓢, 𝑖 ∈ 𝑵) , 𝑒 ∈ 𝓟 (17)

Example: for the multi-UxS system, the Equation (18) shows 𝓒𝒙
𝒓𝒆𝒇,𝑻𝟏𝟐

 represented by Table 4-9

and repeated in the discussion below in Table 4-15. The same abuse of notation used in Equation
(13) applies.

𝓒𝒙
𝒓𝒆𝒇,𝑻𝟏𝟐

=

|

|

({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡} {[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]} {[0,0], [0,0], [0,1]})
({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡} {[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]} {[0,0], [0,1], [0,0]})

({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡}
({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡}
({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡}

({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡}
({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡}

{[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]}
{[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]}
{[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]}

{[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]}
{[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]}

{[0,1], [0,0], [0,0]})
{[0,0], [0,1], [0,1]})
{[0,1], [0,0], [0,1]})

{[0,1], [0,1], [0,0]})
{[0,1], [0,1], [0,1]})

|

|

 (18)

Type 3-4 UCCAs are refined using a similar process. For Abstraction 2a, every possible
combination of any one controller, with the proper authority, issuing each of the relevant control
actions in the UCCA is enumerated. For Abstraction 2b, every possible combination of one
controller issuing the earlier and the later common command signal is found. In both cases, each

106

enumerated item is labeled with start or end as designated by 𝑻𝒙
𝟑𝟒 in 𝓤𝒙

𝒂𝒃𝒔 . The terms are

rearranged into set 𝓒𝒙
𝒓𝒆𝒇,𝑻𝟑𝟒

 using similar conventions as in 𝓒𝒙
𝒓𝒆𝒇,𝑻𝟏𝟐

.

Example: for the multi-UxS system, Equations (19) and (20) represent, respectively, 𝓤𝒙
𝒂𝒃𝒔 and

𝓒𝒙
𝒓𝒆𝒇,𝑻𝟏𝟐

 for the unsafe sequence that involves ending jam (𝑗) before starting strike (𝑠) and track (𝑡).
To shorten the representation, UAS1, UAS2, robot, start and end are listed as 𝑈1, 𝑈2, 𝑟, 𝑆 and 𝐸
respectively. Furthermore, the backets around the jam [𝑗] and its end [𝐸] or null [ø] are not shown,
but are implied in Equation (20). The same abuse of notation described in Equation (13) applies
in Equation (20).

𝓤𝒙
𝒂𝒃𝒔 = ({𝑡𝑒𝑎𝑚, 𝑡𝑒𝑎𝑚} {[𝑗], [𝑠 ∨ 𝑡]} {𝑒𝑛𝑑 (𝐸), 𝑠𝑡𝑎𝑟𝑡 (𝑆)} {′𝑤ℎ𝑒𝑛… ′} {𝑗, 𝑠, 𝑡}) (19)

𝓒𝒙
𝒓𝒆𝒇,𝑻𝟑𝟒

=

|

|

({𝑈1, 𝑈2, 𝑟} {[𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]]} {[𝐸, [𝑆, 𝑆]], [ø, [ø, ø]], [ø, [ø, ø]]})

({𝑈1, 𝑈2, 𝑟} {[𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]]} {[𝐸, [𝑆, ø]], [ø, [ø, 𝑆]], [ø, [ø, ø]]})

({𝑈1, 𝑈2, 𝑟}

({𝑈1, 𝑈2, 𝑟}
⋮

({𝑈1, 𝑈2, 𝑟}

{[𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]]}

{[𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]]}

⋮
{[𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]], [𝑗, [𝑠, 𝑡]]}

{[𝐸, [𝑆, ø]], [ø, [ø, ø]], [ø, [ø, 𝑆]]})

{[𝐸, [ø, 𝑆]], [ø, [𝑆, ø]], [ø, [ø, ø]]})

⋮
{[ø, [ø, ø]], [ø, [ø, ø]], [𝐸, [𝑆, 𝑆]]})

|

|

 (20)

In this work, Type 3-4 UCCAs do not employ special interactions 𝓢 to specify how different
refined sequences of actions should be considered equivalent to the collective sequencing. Such
interactions were not considered to be relevant to the problems analyzed as part of this research.
However, if a need arises to include such special considerations, a version of Equation (17) that
applies to Type 3-4 UCCAs could be derived. That is beyond the scope of this work.

Lines 7: Automated Pruning of Additional Equivalent Combinations

In the development of loss scenarios, which occurs later in the hazard analysis, causal factors are
analyzed to explain how the control combinations in the UCCA may occur. This process needs
the refined UCCAs to consider what controllers issued what control actions, as different
controllers may have different causal factors. However, some of the controllers may be
considered interchangeable from a scenario perspective. In such cases, the additional refined
UCCAs that lead to the same causal analysis must be eliminated to avoid duplication of effort.

In the multi-UxS example (Figure 4-13), the engineering team may consider UAS1 and UAS2
to be interchangeable. Causal scenarios will be no different if it is UAS1 that provides part of the
UCCA, or instead, UAS2. As a result, items 4.2 and 4.3 in Table 4-15 are equivalent as they both
involve one UAS providing the strike command. No additional information is gained from 4.3 if
4.2 is analyzed. As such, UCCA 4.3 is pruned from the set.

Similarly, items 4.4 and 4.5 both involve one UAS and the robot providing the strike command
and, therefore, 4.5 is pruned because it is duplicative. In contrast, items 4.2 and 4.5 are not
equivalent even though they alternate the one UAS that provides strike. In item 4.2, UAS2
provides the strike alone, while in 4.5, UAS1 and the robot provide the strike.

107

Table 4-15. Pruning and Prioritizing Combinations in Refined UCCA 4

UCCA Team Team Context

4 ¬track {jam ∨ strike} when enemy must be tracked as strike occurs [H3]

Refined UAS1 UAS2 robot Pruned? Priority

4.1 ¬track ¬track strike No High

4.2 ¬track strike ¬track No High

4.3 strike ¬track ¬track Yes (4.3 ≡ 4.2) N/A - Pruned

4.4 ¬track strike strike No Low

4.5 strike ¬track strike Yes (4.5 ≡ 4.4) N/A - Pruned

4.6 strike strike ¬track No Low

4.7 strike strike strike No Low

One of the inputs to Algorithm 1 is set 𝑪𝒊𝒏𝒕 that contains 𝑧 vectors of interchangeable controllers.
In Line 7, a function uses this input to prune the equivalent duplicated control combinations from

the set 𝓒𝒙
𝒓𝒆𝒇

 generated in Line 6. The process takes any two combinations 𝓒𝒙,𝒎
𝒓𝒆𝒇
 and 𝓒𝒙,𝒏

𝒓𝒆𝒇
 from 𝓒𝒙

𝒓𝒆𝒇
,

checks if the vector of control efforts between any two interchangeable controllers are equivalent,
and also checks that all control efforts by the other controllers are consistent. These conditions

are captured in Equation (21), and if met, then the UCCAs are equivalent and 𝓒𝒙,𝒏
𝒓𝒆𝒇

 is pruned from

𝓒𝒙
𝒓𝒆𝒇

.

 𝓒𝒙,𝒎
𝒓𝒆𝒇

≡ 𝓒𝒙,𝒏
𝒓𝒆𝒇
| ([𝑈𝑚(𝑐𝑖)] = [𝑈𝑛(𝑐𝑗)]) ∧ ([𝑈𝑚(𝑐𝑗)] = [𝑈𝑛(𝑐𝑖)]) ∧ ([𝑈𝑚(𝑐𝑘)] = [𝑈𝑛(𝑐𝑘)]),

 𝑚 ∈ 𝑪𝒎 , 𝑛 ∈ 𝑪𝒏, 𝑖 ≠ 𝑗 ∈ 𝑪𝒛
𝒊𝒏𝒕, 𝑘 ∉ 𝑪𝒛

𝒊𝒏𝒕, 𝑧 ∈ 𝑪𝒊𝒏𝒕
(21)

Example: for the multi-UxS system, UAS1 and UAS2 are interchangeable as defined by 𝑪𝒊𝒏𝒕 in

Equation (7), and one possible 𝓒𝒙
𝒓𝒆𝒇

 is represented by Equation (18). The two items 𝓒𝒙,𝒎
𝒓𝒆𝒇

 and 𝓒𝒙,𝒏
𝒓𝒆𝒇

,

respectively shown in Equations (22) and (23), are members of 𝓒𝒙
𝒓𝒆𝒇

. They represent items 4.2 and
4.3 described in the same example above and shown in Table 4-15.

 𝓒𝒙,𝒎
𝒓𝒆𝒇,𝑻𝟏𝟐

= ({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡} {[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]} {[0,0], [0,1], [0,0]})

𝓒𝒙,𝒏
𝒓𝒆𝒇,𝑻𝟏𝟐

= ({𝑈𝐴𝑆1, 𝑈𝐴𝑆2, 𝑟𝑜𝑏𝑜𝑡} {[𝑗, 𝑠], [𝑗, 𝑠], [𝑗, 𝑠]} {[0,1], [0,0], [0,0]})

(22)

(23)

Here, 𝑐𝑖 = 𝑈𝐴𝑆1 ∈ 𝑪
𝒊𝒏𝒕, 𝑐𝑗 = 𝑈𝐴𝑆2 ∈ 𝑪

𝒊𝒏𝒕, 𝑐𝑘 = 𝑟𝑜𝑏𝑜𝑡 ∉ 𝑪
𝒊𝒏𝒕. The components of Equation

(21) for this example are captured in Equations (24)-(27), and the three conditions necessary to

prune 𝓒𝒙,𝒏
𝒓𝒆𝒇,𝑻𝟏𝟐

 are met in Equation (28).

 [𝑈𝑚(𝑐𝑖)], 𝑚 ∈ 𝑪𝒎 = [𝑈𝑚(𝑈𝐴𝑆1)], 𝑢𝑚 ∈ [𝑗𝑎𝑚, 𝑠𝑡𝑟𝑖𝑘𝑒] = [0,0];

[𝑈𝑚(𝑐𝑗)], 𝑚 ∈ 𝑪𝒎 = [𝑈𝑚(𝑈𝐴𝑆2)], 𝑢𝑚 ∈ [𝑗𝑎𝑚, 𝑠𝑡𝑟𝑖𝑘𝑒] = [0,1];

[𝑈𝑚(𝑐𝑘)], 𝑚 ∈ 𝑪𝒎 = [𝑈𝑚(𝑟𝑜𝑏𝑜𝑡)], 𝑢𝑚 ∈ [𝑗𝑎𝑚, 𝑠𝑡𝑟𝑖𝑘𝑒] = [0,0];

[𝑈𝑛(𝑐𝑖)],𝑛 ∈ 𝑪𝒏 = [1,0]; [𝑈𝑛(𝑐𝑗)],𝑛 ∈ 𝑪𝒏 = [0,0]; [𝑈𝑛(𝑐𝑘)],𝑛 ∈ 𝑪𝒏 = [0,0];

[𝑈𝑚(𝑐𝑖)] = [𝑈𝑛(𝑐𝑗)]; [𝑈𝑚(𝑐𝑗)] = [𝑈𝑛(𝑐𝑖)]; [𝑈𝑚(𝑐𝑘)] = [𝑈𝑛(𝑐𝑘)]

(24)

(25)

(26)

(27)

(28)

108

Conditions to specify controllers as interchangeable may vary by application. The taxonomy
introduced in Figure 3-2 can help reason about what controllers lead to similar causal scenarios.
It describes the structure of the interactions between controllers, which influences causality and
the system dynamics. Commonality in some of the axes may help determine interchangeability.

As an example, consider the arbitrary collaborative system in Figure 4-15, in which five
controllers share a process. The controllers are differentiable on at least the first two dimensions
of the taxonomy. The interactions involved are human-human, human-machine, and machine-
machine. The hierarchal structure includes supervisory control and peer interactions. Based on

the controller types and hierarchy, the set of interchangeable controllers may be specified as 𝑪𝒊𝒏𝒕=

{{ℎ𝑢𝑚𝑎𝑛1, ℎ𝑢𝑚𝑎𝑛2}, {𝑚𝑎𝑐ℎ𝑖𝑛𝑒1,𝑚𝑎𝑐ℎ𝑖𝑛𝑒2}}. The other five dimensions in the taxonomy could
also be included in this consideration if of interest to the analysis.

Figure 4-15. Interchangeable Controllers in Arbitrary Collaborative System

Lines 8-9: Automated Prioritization and Output of UCCAs

The refined UCCAs may optionally be prioritized to focus the remainder of the hazard analysis
(Line 8). The goal is to highlight the UCCAs that will contribute more new information in causal
scenario analysis and devalue those that provide more repetitive information. The prioritization
scheme implemented in this dissertation is a heuristic formed on engineering judgment, but it
could be implemented differently based on other application needs.

The concept is illustrated using again the ¬track and strike UCCA from the multi-UxS example
refined in Table 4-15. Scenarios for this UCCA must explain why (1) any controller would provide
strike when (2) no controller provides track, and vice versa. It is arguably less important in the
context of the UCCA to focus on why multiple controllers would provide strike. As such, in the
remaining set of refined UCCAs that were not pruned, those with one controller providing strike
are prioritized over those with multiple controllers issuing that command.

It is also important to note, in this example, that if there is a context in which multiple
controllers providing strike is unsafe, that interaction is specifically addressed in Abstraction 2b,
where combinations of controllers provide the same action (e.g., 𝑐𝑖 𝑠𝑡𝑟𝑖𝑘𝑒 ∧ ∃𝑐𝑗 𝑠𝑡𝑟𝑖𝑘𝑒). For this

reason, the prioritization scheme does not devalue combinations of two controllers providing the
action in Abstraction 2b. However, using a similar logic as above, it does deprioritize
combinations of three or more controllers providing the same action, as those may be repetitive.

109

In this dissertation, the prioritization scheme is also employed to devalue UCCAs in which
all the control actions are provided by one controller. For example, if commands 𝑢1 and 𝑢2 are
unsafe together, and if controller 𝑐1 is the only one to provide those two commands, the UCCA
is deprioritized. Such instances are arguably less related to collaborative control. However, other
applications may choose to treat such occurrences with higher priority.

The special interactions specified in 𝓢 can also be used to influence prioritization. In the
example previously used to illustrate 𝓢, multiple controllers providing the jam command are
treated collectively as not providing jam. Here, 𝓢 ensures that cases of two controllers providing
jam in a UCCA are not deprioritized. However, by the same reasoning provided for Abstraction
2b UCCAs above, those with any three controllers providing jam are deprioritized.

Because the assumptions underpinning prioritization are softer than those used in the
pruning process, the deprioritized UCCAs are not eliminated. UCCAs are presented to the
analyst by order of priority, and the option remains to analyze those labeled as lower in priority
in scenario development.

The set of UCCAs refined, pruned, and prioritized using automation is returned by Algorithm

1 as set 𝓤𝒓𝒆𝒇 (Line 9). An example of the output produced by the prototyped automation tool is
provided in Appendix 2. The UCCAs, both abstracted and refined, are now ready for the analyst
to proceed to the last step in the hazard analysis: the development of causal scenarios.

4.3 Causal Scenarios in Collaborative Control

The fourth and final step in STPA develops loss scenarios to identify causal factors that can lead
to the unsafe control actions (UCAs) [50]. Safety constraints can then be specified to guide the
design and operation of a system to eliminate or control these factors to prevent losses.

In STPA, scenarios are identified by analyzing each UCA to determine (1) why the controller
would provide the UCA and (2) why a control action would be improperly executed or not
executed leading to the outcome of the UCA. The process explores potential breakdowns in four
different parts of a feedback control loop. The STPA guidance describes common factors to
consider in each part to assist in the analysis (see Figure 4-16).

An approach proposed by Thomas aims to add structure and enhance the ability to build
scenarios top-down [208]. The process starts by formulating four basic scenarios, generically listed
below, which originate from the four parts of the feedback control loop. The basic scenarios are
then further refined as necessary to develop safety constraints to mitigate the associated factors.

1. Basic Scenario 1: Unsafe Controller Behavior: the controller receives adequate feedback,

but still makes unsafe decisions.

2. Basic Scenario 2: Unsafe Feedback or Other Information: the controller receives

inadequate feedback leading to an unsafe decision.

3. Basic Scenario 3: Unsafe Control Path: the controller provides a safe control action, but the

controlled process receives a control action that is unsafe.

4. Basic Scenario 4: Unsafe Process Behavior: the safe control action is received by the

controlled process, but the process behaves in an unsafe way. [208]

110

Figure 4-16. Areas of Potential Breakdown in a Feedback Control Loop (derived from [50])

The scenario development process in STPA is able to uncover causal factors not found by
other hazard analysis techniques [209]. However, the approach focuses on one unsafe control
action provided by one controller at a time. As described in Section 4.2, some causal factors may
only be identified by exploring how multiple control actions are unsafe together.

Now that unsafe combinations of control actions (UCCAs) are identified, a process outlined
in Figure 4-17 is introduced to develop causal scenarios from these UCCAs. The process has the
following goals. First, it aligns with STPA by considering both (1) why unsafe control actions
would be provided and (2) why control actions would not be properly executed. Second, it
provides a mechanism to analyze the multiple feedback control loops involved in the UCCAs
collectively. Third, it accounts for the collaborative control dynamics defined in Chapter 3. And
fourth, the approach is systematic in scenario identification and refinement.

Figure 4-17. Process to Develop Causal Scenarios from a UCCA

111

The input to the process is a UCCA identified using the technique in Section 4.2. Each UCCA
represents an unsafe collective control output by the team to the shared process. As in STPA, the
scenario identification process explores factors that lead to unsafe behaviors of the team of
controllers, its feedback paths, its control paths, and the controlled process. However, this work
emphasizes how the interactions among the controllers on the team contribute to unsafe collective
team behavior. The analysis of the feedback paths, control paths, and controlled processes
follows the same reasoning as in STPA. This key idea is illustrated in Figure 4-18.

Figure 4-18. Four Areas of Potential Breakdown in Multiple Feedback Control Loops

In Step 1, the scenario identification process (Figure 4-17) explores how hierarchal control
within the team contributes to the unsafe collective controller behavior in the UCCA. To illustrate
this concept, consider the system in Figure 4-18, where C1 has control authority over the other
controllers on the team in addition to the shared process. The first step considers how the
different potential control actions from C1 to the other controllers relate to the UCCA.

In simple terms, this step investigates how the UCCA could occur if, for example, C1
commands the team to provide an unsafe output, or as another example, if the other controllers
do not properly execute commands from C1. Each example represents a new scenario to consider.
A method defined in Section 4.3.1 helps to systematically account for the different possible
internal control actions that lead to unsafe collective team behavior using top-level scenarios.

Each of these scenarios is then iteratively refined using a template introduced in Section 4.3.2.
In Step 2, the template finds causal factors in the control loops internal to the team. In Step 3, the
template identifies factors related to the collaborative control dynamics of the team.

Finally, Step 4 identifies factors that relate to unsafe feedback paths from the controlled
process, unsafe control paths to the controlled process, and unsafe controlled process behavior.
These items follow the same approach as used in STPA.

The output of the process is a set of causal scenarios from which engineers can derive safety
constraints to eliminate or mitigate the factors that lead to hazards. The remainder of the section

112

describes each step of the process in more detail. Examples of its application and of the safety
constraints that are derived from it are provided in the Chapter 5 case study.

4.3.1 Step 1: Top-Level Scenarios to Reason about Internal Control

Step 1 of the scenario identification process examines how the collective output in a UCCA relates
to the different possible control actions internal to the team. To illustrate this concept, assume
that the system shown in Figure 4-18 has a UCCA that involves multiple controllers providing
control action 𝑢1. This case occurs in the multi-UxS example in Section 4.2, when multiple
controllers provide the jam command (see Table 4-11), and it is a Type 1-2 UCCA.

Using the process described in Section 4.2.4, the two priority refined UCCAs, in this case, are
(1) 𝑐1 and 𝑐2 both provide 𝑢1, and (2) 𝑐2 and 𝑐𝑛 both provide 𝑢1. Step 1 now explores how the
commands provided by 𝑐1 to {𝑐2, … , 𝑐𝑛} may have contributed to these outcomes. Assuming 𝑐1
can task the other controllers to execute 𝑢1, Figure 4-19 enumerates the four different possible 𝑐1
internal control actions that are relevant to each of the two refined UCCAs.

Figure 4-19. Possible Internal Control Actions that Can Lead to Type 1-2 UCCA

Each different set of internal control actions represents a new potential scenario to analyze.
For instance, in item 1a, 𝑐1 does not command any other controller to provide 𝑢1, and instead,
provides the command itself. Yet, 𝑐2 also issues the command despite not being tasked. This
forms a scenario that can be further refined to explain the unsafe behavior of the team as a whole.

Reasons for this outcome may include 𝑐1 unintentionally providing the task, 𝑐2 receiving the
command from another controller, 𝑐2 unintentionally providing the command, and so on. A
systematic process to explore these causal factors is introduced in the next section. The other
items in Figure 4-19 may also be developed into additional scenarios.

While this simple example only involves one type of control action (𝑢1), it still results in eight
potential scenarios to further analyze. This number grows exponentially with the number of
different types of internal control actions involved {𝑢1, … , 𝑢𝑛}. Therefore, a full enumeration with
any more complexity can produce an intractable number of scenarios. This is similar to the
problem encountered in UCCA identification. Simplification is again necessary.

113

Abstraction is again applied to manage the combinatorial complexity. The different possible
internal control actions are abstracted into top-level scenarios that cover their general concern
toward the unsafe collective output. Table 4-16 lists the generic top-level scenarios that help reason
about how internal control relates to Type 1-2 UCCAs. These scenarios are directly traceable to
UCA Types 1 and 2 in STPA and have a similar intent to the basic scenarios by Thomas [208].

Table 4-16. Top-Level Scenarios that Address Internal Control Issues for Type 1-2 UCCAs

Top-Level Scenario Full Top-Level Description

1 Direction Not
Provided (Unsafe)

A controller does not direct other controllers on the team as
necessary for the team to execute safe collective control of the
shared process.

2 Direction Provided
(Unsafe)

A controller directs other controllers on the team in a way that
leads to unsafe collective control.

Includes: directing wrong controller to provide command,
directing multiple controllers in a way that conflicts with one
another, and directing controller to provide incorrect command

3 Direction Provided
(Safe) but Not
Executed Properly
(Unsafe)

A controller directs other controllers on the team adequately, but
some of those controllers do not execute directions properly, which
leads to unsafe collective control.

Includes: controllers do not provide some commands,
controllers provide commands improperly, wrong controller
provides command

4 Direction Not
Provided (Safe) but
Executed (Unsafe)

A controller adequately does not direct other controllers on the
team to provide certain commands, but some of those controllers
provide them anyways, which leads to unsafe collective control.

5 Controller Actions
to Process and
Directions it
Provides (Unsafe)

A controller provides control actions to the shared process that are
unsafe in combination with how it directs other controllers on the
team.

Includes: improperly providing a control action that is
necessary in combination with directed actions, providing a
control action that conflicts with directed actions

While the top-level scenarios are designed to provide coverage over the different possible
internal control combinations, they are not mutually exclusive of one another. Figure 4-19
illustrates this point by mapping each control combination into these scenarios. Some of the cases
fit into multiple scenarios. The analytical overlap is intentional to avoid potential gaps.

For example, in item 1c, 𝑐1 tasks a specific controller to provide 𝑢1, but a different controller
provides it instead. This situation fits into top-level scenario #3 in Table 4-16. In addition, despite
tasking another controller to provide 𝑢1, 𝑐1 also provides the command itself, which is captured
by top-level scenario #5. The scenarios help systematically consider these issues and are then
further refined in the context of the UCCA, as described in the next subsection.

As defined in Chapter 3, dynamic hierarchy occurs when multiple controllers can mutually
command each other. As such, dynamic hierarchy contributes to the possible control actions

114

internal to the team. For this reason, this interaction is addressed in the causal analysis using the
top-level scenarios defined above. Multiple instances of each of the scenarios can be created to
cover changes in the controller, providing directions to others on the team.

 For example, the Pilot - Digital Copilot system surveyed in Chapter 3.3 exhibits dynamic
hierarchy in collaborative checklist execution. Top-Level Scenario #1 can explore how the pilot
does not direct the automation to execute certain functions and vice-versa, it can also examine
how the automation does not direct the pilot. Examples of scenario development related to
dynamic hierarchy are provided in the case study in Chapter 5.

Type 3-4 UCCAs, which describe how starting and ending control actions relative to one
another are unsafe, face similar combinatorial challenges. For example, consider an unsafe gap
in the handoff of control action 𝑢1 between any two controllers in the same system analyzed
above. In other words, 𝑐𝑖 ends 𝑢1 before 𝑐𝑗 starts 𝑢1.

This UCCA refines into the three priority UCCAs shown in Figure 4-20. Each may be related
to different command options provided by 𝑐1. In the figure 𝑭 is the temporal operator for some
Future step and designates the later of the control action(s) started (S) or ended (E) in the sequence.

Figure 4-20. Possible Internal Control Actions that Can Lead to Type 3-4 UCCA

Using the same reasoning applied to Type 1-2 UCCAs, Table 4-17 provides the top-level
scenarios to abstract the different possible internal controls that lead to Type 3-4 UCCAs. A
demonstration of how to tailor top-level scenarios to analyze a system is provided in Chapter 5
for the case study. The next subsection explains how to refine these scenarios in the context of the
UCCA.

115

Table 4-17. Top-Level Scenarios that Address Internal Control Issues for Type 3-4 UCCAs

Top-Level Scenario Full Top-Level Description

6 Directed Sequence
Unsafe

A controller directs other controllers on the team in a way that
leads to unsafe temporal sequencing.

7 Directed (Safe) but
Executed in Unsafe
Sequencing

A controller adequately directs other controllers on the team, but
the way in which those controllers execute the directions leads to
unsafe temporal sequencing.

8 Controller Actions to
Process and Directions
Unsafe in Sequencing

A controller on the team provides control actions to the shared
process that are unsafe in temporal sequencing with how it
directs other controllers on the team.

In some systems, the set of collaborating controllers that share authority over a process are all
peers and do not have authority to provide control actions to one another. In such cases, top-level
scenarios 1-4 and 6-7 are still applicable to explore the different possible combinations of control
actions provided to these controllers by supervising controller(s). Top-level scenarios 5 and 8 do
not apply if the supervisor(s) do not issue control commands directly to the shared process. The
multi-UxS system in Figure 4-13 illustrates this structure, where the UAS and the robot
collaborate as peers, and the operator is the supervisor.

4.3.2 Step 2: Internal Control Causal Factors

Steps 2 and 3 in the extended scenario identification process identify causal factors that lead to
the unsafe collective controller behavior in each top-level scenario. The template introduced in
Figure 4-21, which is a refinement of the process overview in Figure 4-17, provides a systematic
approach to consider these causal factors at a high level and then iteratively refine them as
necessary. This section and the next introduce the key concepts in this template. Its application
is demonstrated in the Chapter 5 case study.

Step 2 of the scenario identification is illustrated by the top yellow box in Figure 4-21. It
involves finding, for each top-level scenario, the causal factors associated with feedback control
loops internal to the team. The control loops explored are those where a controller provides
control actions to the other controllers on the team. In the example shown in Figure 4-19, these
are the feedback control loops from 𝑐1 to 𝑐2 and 𝑐1 to 𝑐𝑛.

This step explores how the controller providing the direction (𝑐1 in the example) may have
unsafe control inputs, an inadequate control algorithm, inadequate models of the controllers it is
directing (𝑐2, … , 𝑐𝑛), and unsafe control paths to those controllers. These are the same factors
considered in STPA [50]. The only difference is that multiple internal control loops may be
considered at once.

The lower yellow box is a refinement template for one of the high-level causal factors. If more
detail is needed to explain why the controller providing direction has an inadequate process
model of the directed controller, the template points to different reasons for inadequate feedback.
For example, 𝑐2 may not send feedback to 𝑐1, or 𝑐1 may not receive the feedback, or 𝑐1 may
interpret the feedback incorrectly, and so on. Once again, this guidance is from STPA [50].

116

Figure 4-21. Iterative Refinement Template for Causal Scenario Development

117

4.3.3 Step 3: Collaborative Control Causal Factors

A key goal of this research is to extend the analysis to cover the collaborative control dynamics
defined in Chapter 3. Up to this point in the analysis, four of the nine collaborative interactions
have already been addressed. As explained in Section 4.2, shared authority, dynamic authority, and
transfer of authority are inherently included in the UCCA identification. Similarly, dynamic
hierarchy is captured in the top-level scenarios that describe internal control (see Section 4.3.1).

The five remaining collaborative control dynamics are addressed in Step 3 of the scenario
development process, as illustrated in the top blue box in Figure 4-21. These include mutually
closing control loops, cognitive alignment, lateral coordination, dynamic membership, and dynamic
connectivity. The following describes how each is handled.

Mutually Closing Control Loop Causal Factors

In mutually closing control loops, feedback control loops are closed across multiple controllers. For
scenario development, it is useful to refocus the control structure on this interaction. If in the
example system above in Figure 4-18, 𝑢1 and 𝑢2 involve mutually closing loops, Figure 4-22
represents the refocused control structure to explore this dynamic, where “FB” means feedback.

Figure 4-22. Refocused Control Structure for Mutually Closing Control Loops

In the refocused control structure, the controllers are generic (𝑐𝑖 and 𝑐𝑗) to account for different

controllers involved in the refined UCCAs. The hierarchy between controllers does not need to
be shown, as it is not the focus of this dynamic. The key concept to represent is that 𝑐𝑖 senses
feedback from a control action provided by 𝑐𝑗 , and passes that feedback to 𝑐𝑗 , which may

otherwise not have access to it. This feedback also influences how 𝑐𝑖 controls its part of the
process and interactions with 𝑐𝑗 .

A scenario refinement template is provided in Figure 4-21 (see the Mutually Closed Loop blue
box) to further explore causal factors associated with such control loops. The analyst first
considers the consequences of a controller receiving inadequate feedback from collaborators
regarding its control actions to the shared process. In Figure 4-22, 𝑐𝑗 may provide 𝑢2 in an unsafe

way if the feedback from 𝑐𝑖 is inadequate.

Next, the analyst examines how a controller is influenced by inadequate feedback from the
shared process regarding the actions of its collaborators. In the example, 𝑐𝑖 may provide 𝑢1 in an
unsafe way if inadequate feedback from the process leads it to misinterprets how 𝑐𝑗 is controlling

the process. Reasons for the inadequate feedback can then be further refined using the same
bottom yellow refinement template in Figure 4-21 previously discussed.

118

Cognitive Alignment and Lateral Coordination Causal Factors

In the cognitive alignment dynamic, scenario development focuses on why multiple controllers
have process models and make decisions that are inconsistent with one another. A refinement
template was developed using ideas synthesized from Thomas [210], France [189], and Johnson
[191]. This template is shown in Figure 4-21 (see the Alignment Across Controllers blue box). To
explore the causal factors in it explores, it is helpful to consider some of the items tracked in the
process models of each controller as previously described in Figure 4-6.

The template first accounts for potential differences in how the cognitive functions were
constructed. For example, two machines working together may be loaded with different software
versions that make them incompatible with one another. Similarly, humans may have been
trained differently than their teammates. These same concerns apply to human-machine teams.

The template then studies how process models may be initialized inconsistently across a team.
Even if the controllers are aligned in cognitive construction, the different initial conditions
available to each can prevent their models from synchronizing. For example, in the Air France
447 accident (see Chapter 1.2), the captain returned from crew rest after the initial aircraft control
disturbance [35]. His mental model of aircraft control at that moment was initialized differently
than the other two crew members, which contributed to the confusion in the cockpit.

The analysis then examines how the models of the collaborative controllers may be updated
inconsistently with one another. Even if the cognitive functions are constructed and initialized
similarly, flawed interactions may cause them to drift from one another over time. Several items
are considered here. One is inconsistent vertical coordination as defined by Johnson [191]. The
synchronization of models between multiple teammates may be influenced using hierarchal
control. This occurs, for instance, when an Air Traffic Controller (ATC) provides traffic advisories
to two merging aircraft.

The next items include communications and observations that lead to flawed lateral
coordination. These relationships, which are expressed in the collaborative control structure,
represent how controllers deliberately and non-deliberately influence each other without using
control. For example, pilots of multiple aircraft at an uncontrolled airport laterally coordinate via
active communication and passive observations. Inadequate exchange and interpretation of this
information can lead models to drift. A template to further refine these factors is shown in the
bottom blue box in Figure 4-21.

Here, lateral coordination is included as part of the broader cognitive alignment process
because this model fits most of the aerospace systems studied in Chapter 3.3. However, if a
system includes lateral coordination but not cognitive alignment, as occurs in some cases, the
analyst can still use the lateral coordination refinement template shown in Figure 4-21 separately.

Models may also update inconsistently due to flawed predictions made by controllers
regarding each other. Controllers often project what the future state of a process will be based on
previous knowledge. Many machines employ such predictions in state estimation techniques to
overcome noisy, infrequent, or missing feedback [211]. Humans use predictions to estimate
where a teammate will be in the future to pass the ball or to determine how a pilot will navigate
under lost communications [212]. Flawed predictions can contribute to model drift, especially in
the absence of other information.

119

Lastly, misaligned model updates may result from inconsistencies in other sources of
information. These may include differences in observations of common objects, as specified by
Johnson [191]. They can also be misaligned feedback received from the shared controlled process
or differences in the information received from the environment or controllers beyond the team.

The template for cognitive alignment then examines why decision-making may be inadequate
as a team. This can occur even if the controllers are synchronized in cognitive construction, model
initialization, and model updates. Controllers on a team may have consensus on how they will
make a decision, but if it takes them too long to reach that decision or if the decision they
collectively reach is incorrect, their output may be unsafe. An example of this is algorithmic churn
in distributed systems, when controllers try to reoptimize too frequently based on each other’s
actions and ultimately do nothing [145].

Finally, the template considers the impact of controller capacity on cognitive alignment. As
explained in Section 4.1, a controller may be limited by its workload and capabilities. It may not
have the capacity to follow commands, coordinate, and make observations, predictions, and
decisions that are synchronized with others.

Dynamic Membership and Dynamic Connectivity Causal Factors

The last two collaborative control dynamics shown in Figure 4-21 must be examined. Dynamic
membership simply explores how a UCCA could occur because controllers come and go on the
team. For example, if a controller takes on a task but that controller is subsequently removed
from the team, it could affect the actions of collaborators and the collective output. The addition
of a new controller or the uncertainty in the team composition may also be causal factors in unsafe
control.

Dynamic connectivity considers how expected changes in the team topology can lead to the
unsafe collective behavior. This factor is already covered, to some extent, in STPA by examining
unsafe control paths and unsafe feedback paths that inhibit information flow. This work extends
the consideration to include flawed information relaying, asynchronous information
propagation, and temporary disconnects across the team.

Because these two dynamics are conceptually simpler than the others, no dedicated
refinement templates were deemed necessary for them in this research. However, such templates
can be created and added to the process as necessary in future work.

4.3.4 Step 5: Other Causal Factors

Steps 1, 2, and 3 in the scenario development process aim to explain the unsafe controller behavior
of the collective team. As shown in Figure 4-18, the process also considers the other elements in
the feedback control loop examined in STPA, including unsafe feedback paths from the shared
controlled process, unsafe control paths to that process, and unsafe process behavior.

The analysis here follows the STPA guidance. A controller on the team may have an unsafe
model of the shared process because of inadequate feedback it receives from the process. A
controller may unintentionally provide or not provide a control action due to a flaw in the control
path. Finally, the shared process may adequately receive the collective control inputs from the
team but still exhibit unsafe behavior due to other inputs and disturbances.

120

Some of these factors may already be identified in the scenarios involving collaborative
control, which is not a problem. The analytical process favors overlap instead of gaps in
consideration.

4.3.5 Final Thoughts on Iterative Refinement Process

The scenario refinement process is demonstrated in the Chapter 5 case study, and a full dataset
is available in Appendix 3 and 4. As in STPA, the development of causal scenarios in this work
depends on human reasoning and leverages the experience and creativity of the analysis team.
The refinement template aims to reduce some of the cognitive burden on human analysts by
systematically directing their thought processes across the various factors.

However, the template should not be used as a checklist. The analysts cannot simply hit every
item on the list and assume the analysis is complete. Some factors in the template may not be
relevant, and others may require careful consideration at multiple levels of abstraction.
Furthermore, no claim is made that the template is complete. Other factors beyond those listed
may also be uncovered.

Finally, the determination of how much refinement is necessary to complete the analysis
remains an open research question. The process encourages iterative refinement so that the high-
level scenarios provide as complete coverage as possible. As shown in Chapter 6, the results of
the hazard analysis can influence designers to remove complexity from the design to eliminate
scenarios at a high level. However, in other cases, the analysis must provide further details to
build safety into the design. How detailed is detailed enough varies on a case-by-case basis.

4.4 Summary of Extended Hazard Analysis

This chapter introduced techniques to fill a critical gap in the ability to conduct hazard analysis
on systems that exhibit the complex interactions defined in Chapter 3. Prior to this work, no
known method was available to systematically and rigorously analyze system safety for
collaborative control systems.

As described in Chapter 2, the common hazard analysis techniques employed in aerospace,
such as FHA, FMEA, FMECA, FTA, and HAZOP, are based on Linear Chain-of-Events causality
models, which do not consider cyclic influence. Their very foundation makes them unable to
analyze collaborative relationships involving mutual influence between controllers. Most of
these methods also decompose the system into individual components, which fundamentally
overlooks the interactions that occur in collaboration. Finally, these techniques are hardware
focused and are unable to analyze causal factors related to human and software control
effectively, much less when multiple humans and automated controllers work together.

The System Theoretic model in STAMP, on which STPA is built, is able to overcome these
limitations, as explained in Chapter 2. However, STPA does not specifically address eight of the
nine collaborative control dynamics. This makes the technique vulnerable to omitting these
interactions from consideration or to ambiguity in how to handle them. The only exception is
dynamic connectivity, which is explored, to some extent, in the analysis of unsafe feedback paths

121

and unsafe control paths in STPA [50]. In addition, a past STPA extension does address lateral
coordination [191], but it does not comprehensively explore the other collaborative dynamics.

For this reason, three extensions, collectively known as STPA-Teaming, were developed to
provide a capability to analyze safety in collaborative control systems. First, the generic
collaborative control structure provides a mechanism to express collaborative interactions in
STAMP models so that they are explicitly considered in the hazard analysis.

Second, the identification of Unsafe Combinations of Control Actions (UCCAs) provides a
systematic approach to analyzing joint control contributions from multiple controllers. The
system-theoretic foundation employs abstraction to manage the combinatorial complexity as
needed to remain practical for real-world systems. The method maintains the rigor of STPA as it
was derived from the specification of Unsafe Control Actions (UCAs). However, the extended
formulation directly covers the dynamics of shared authority, dynamic authority, and transfer of
authority.

Finally, the extended scenario development process provides a structured method to analyze
causal factors that lead to a UCCA. The approach focuses on how the interactions between the
multiple controllers on the team can contribute to unsafe collective team behavior. Furthermore,
it provides a mechanism to specifically consider the causal influence of the remaining six
collaborative control dynamics. Finally, the process emphasizes defining scenarios at a high level
and iteratively refining them to the level required to develop safety constraints. Table 4-18
summarizes how STPA-Teaming analyzes causality associated with each of the nine collaborative
control dynamics.

Table 4-18. Where Collaborative Control Dynamics are Analyzed in STPA-Teaming

Collaborative Control Dynamics Causal relationships covered by

Shared Authority UCCA identification (Section 4.2)
Dynamic Authority UCCA identification (Section 4.2.2)
Transfer of Authority UCCA identification (Section 4.2.2)
Dynamic Hierarchy Top-level scenario identification (Section 4.3.1)
Mutually Closing Control Loops Scenario refinement (Section 4.3.2)
Cognitive Alignment Scenario refinement (Section 4.3.2)
Lateral Coordination Scenario refinement (Section 4.3.2)
Dynamic Membership Scenario refinement (Section 4.3.2)
Dynamic Connectivity Scenario refinement (Section 4.3.2)

The inherent shortfalls identified in the common hazard analysis techniques and the
explanation of why and how STPA was extended in this chapter support Hypothesis 2 of this
dissertation.

Hypothesis 2: The system-theoretic collaborative interactions framework describes
component interactions that are not specifically addressed by existing hazard analysis
techniques, including STPA.

The next chapter demonstrates the application of the extended hazard analysis on a real-
world system concept and evaluates the performance of the technique compared to baseline
STPA. Appendices 2-4 include the case study data that was produced using the methods
developed in this chapter.

122

Chapter 5 : Case Study and Evaluation

The military is actively pursuing the development of multiple aviation concepts that aim to
partner human-piloted aircraft with unmanned aircraft [28]–[31]. These novel systems typically
involve a human pilot as the leader of a flight with one or more UAS acting as wingmen. Together
they fly in formation and collaboratively execute complex mission tasks at the direction of the
human.

These concepts are motivated by the potential cost savings and the suggested new capabilities
they may provide. However, their designs face the significant challenges involved in engineering
systems with team-inspired interactions described in Chapter 1.2. Multiple STPA analyses have
previously explored some of the hazardous factors associated with these systems. But, as
explained in Chapters 2 and 4, some of the more advanced interactions were not systematically
addressed using STPA.

This chapter applies the extended hazard analysis technique developed in Chapter 4, STPA-
Teaming, to one specific version of the concept: the Manned-Unmanned Teaming (MUM-T)
system studied by Robertson and Hobbs [53], [213], [214]. This case study was selected for
multiple reasons. The original system analyzed exhibits most of the collaborative control
dynamics defined in Chapter 3. Furthermore, by relaxing some of the original assumptions, an
expanded version of the system can be conceived to include all nine of the interactions. This
provides an opportunity to demonstrate how STPA-Teaming systematically addresses the
collaborative dynamics defined in this work.

This case study was also selected because Robertson’s original analysis is the most
comprehensive STPA dataset available for such a collaborative system [53]. The extensive
breadth and depth of his analysis offers a good baseline of the data produced by the state-of-the-
art in hazard analysis. This is important to evaluate the ability of STPA-Teaming to identify
causal factors that were not otherwise considered.

Finally, this case study involves a real-world system concept that is important to the future of
military aviation. Therefore, it demonstrates how STPA-Teaming can be applied to relevant
systems. Furthermore, the results of the analysis can directly benefit the community to inform
the development of these types of collaborative combat aircraft.

The remainder of this chapter is organized as follows. First, an overview of the MUM-T
system originally and independently analyzed using STPA is provided. Next, the STPA-Teaming
extensions are applied to the same system by developing the collaborative control structure,
identifying unsafe combinations of control actions (UCCAs), and developing causal scenarios
from the UCCAs. Then, the results of the extended and original analyses are compared. Finally,
the case study is expanded to incorporate all the collaborative control dynamics and demonstrate
how they are handled in the new technique.

123

5.1 Baseline MUM-T System & Analysis Overview

The Manned-Unmanned Teaming (MUM-T) system analyzed in the case study was originally
modeled by Hobbs in STAMP to identify unsafe control actions for the system during multiple
phases of flight [213]. Robertson then built off of this study to conduct an in-depth STPA analysis
of the system executing a mission [53]. Those results fed a subsequent analysis of this system
conducting formation flight with a single UAS [214].

The case study presented in this chapter is derived from Robertson’s work [53]. Henceforth,
his model of the system and its analysis are referred to as the baseline. The assumptions described
in the baseline are initially adopted in the case study to align the foundation of the two studies so
that their methods of analysis can be compared.

System Overview

An adaptation of the baseline control structure is shown in Figure 5-1. While the case study
presented in this chapter considers the whole system, it focuses on the collaborative interactions
between the human pilot and the UAS in the execution of shared mission tasks. This is
represented by the blue region of the figure, and it is also where the causal scenario analysis in
the baseline primarily focuses. In this chapter, the other controllers are abstracted away.

Figure 5-1. Manned-Unmanned Teaming System Control Structure (adapted from [53])

The system includes a human pilot, the Team Lead (TL), who controls her/his own aircraft
and its weapon system. The TL also has authority over the Autonomous Controller that controls

124

the UAS airframes and their weapons. The TL is responsible for executing mission tasks, either
by performing them herself/himself or by tasking UAS to do them.

For some of the tasks in the baseline, if the TL delegates them to the UAS, they must also
specify which UAS is assigned to those tasks. The fix and fire commands follow this model. The
fix command in this work represents target designation and is necessary to fire a weapon safely.
The fire command means launching a weapon at a target. The baseline assumes that it is unsafe
for multiple aircraft to fix on the same target or for multiple to fire on it.

Other tasks are delegated by the TL without designating a specific UAS. In these cases, the
autonomy determines how to best allocate them to one of the UAS. The search for a target
command is one such example, and the baseline assumes that it is not unsafe for multiple aircraft
to search simultaneously. Other commands, including track a target and identify (ID) a target
follow the same assumptions. For this reason, the case study abstracts the consideration for these
three commands into one and applies the method to the search command only.

The baseline also includes a Ground Station (GS) that controls the UAS. Its primary
responsibility is to launch and recover the UAS and to get them to and from the mission.
However, the GS can also provide the same mission tasks as the TL (e.g., fix, fire, search) if the
need arises. The interactions between the GS and the TL in their shared control of the UAS could
also be analyzed using STPA-Teaming. However, the baseline does not explore this interaction
in-depth and therefore, provides less of an opportunity to compare results. The method to
analyze the TL-GS collaboration as part of the overall system hazard analysis is discussed in
Chapter 6.

Finally, there are higher-level controllers in the baseline that provide control actions to the TL
and the GS. These controllers, which include Air Traffic Control (ATC), the Crew Chief, and
Mission Planners, are abstracted as higher authorities in the analysis presented in this chapter.

STPA Step 1 in the Baseline

The first step in hazard analysis is to identify (1) the losses that are unacceptable to the
stakeholders and (2) the hazardous states of the system that could lead the system to these losses.
In this case study, the losses and hazards are carried over directly from the baseline to be able to
compare the information produced by the extended and the original techniques. As such, the
losses and hazards for the case study are:

Losses [53]
L1: Death or injury of a person
L2: Destruction or damage to aircraft
L3: Non-achievement of mission
L4: Ground property damage (either military or civilian)

Hazards [53]
H1: Aircraft violate minimum separation from other aircraft or terrain [L1, L2, L3, L4]
H2: Aircraft control is lost (includes departure from stable flight) [L1, L2, L3]
H3: The system does not execute planned operations [L3]
H4: Aircraft depart approved airspace [L2, L3]
H5: The system fires at friendly forces [L1, L2, L4]

125

Minor modifications were made to the hazards from the baseline to emphasize the MUM-T
system as a whole. The word “aircraft” is now used in plural form to recognize that the system
consists of multiple aircraft. H3 replaces “aircraft” with “the system”. Finally, H5 combines two
hazards in the baseline originally written as: “UAV fires at friendly forces”, and “Team Lead fires
at friendly forces”.

5.2 MUM-T Collaborative Control Structure

The second step in STPA is to model the control structure. For the case study, this involves
remodeling the MUM-T system to account for its collaborative control dynamics using the
conventions introduced in Chapter 4.1. The extended hazard analysis focuses on the
collaboration between the human Team Lead (TL) and the UAS and those between the multiple
UAS. Their interactions are first categorized using the framework developed in Chapter 3 so that
the collaborative interactions can be properly reflected in the control structure (Figure 5-2).

Figure 5-2. Categorization of the Human-Machine & Multi-Machine Interactions in MUM-T

The types of controllers [A] involve both human-machine and multi-machine interactions.
The hierarchal structure between the human and the machines has a mix of both supervisory
control and peer interactions [B]. In MUM-T, the human tasks the UAS using control, but s/he
also coordinates with UAS as a peer, for instance, when the UAS provides a fix on a target for the
TL to fire on. Conversely, the UAS interact exclusively as peers.

The next four dimensions are common between the two relationships. All controllers are
cooperative in intent [C]. Connectivity is local only [D], as there are no guarantees that every
member of the team can communicate with everyone else. Information exchange includes active
messaging, but controllers may also observe the behaviors of their teammates [E]. Roles and

126

responsibilities are dynamic as the team must determine which controller will close which control
loop during execution [F]. Finally, the developmental origins may vary if the UAS are co-
designed, but the human pilot is originally trained to operate with human wingmen [G].

Given the baseline assumptions, the MUM-T system exhibits up to eight of the nine
collaborative control dynamics defined in Chapter 3. As previously mentioned, all controllers
may laterally coordinate with each other, especially to execute coupled tasks such as fix and fire.
Similarly, the controllers exercise team cognition by relying on shared and distributed
information to synchronize their models and decisions.

The controllers can mutually close each other’s control loops when one provides a fix for
another to fire. There are a number of mechanisms employed in the real world to accomplish
target designation. In some cases, the designating controller uses a sensor, such as a camera, to
observe information about the target and passes that feedback to the firing controller. However,
in other situations, the designator illuminates the target for the firer to sense directly, as is the
case in laser designation or bistatic radar returns. To maintain generality, both paradigms are
considered.

The MUM-T controllers share authority over the joint mission process. There is dynamic
authority as they must determine task allocation during execution. Similarly, transfer of
authority occurs as the system may hand off the responsibility to issue certain control actions
between controllers on the team. The membership of the UAS is dynamic as they can be added
or removed from the team. Finally, the network topology is expected to vary leading to dynamic
connectivity.

The only collaborative control dynamic not exhibited given the baseline assumptions is
dynamic hierarchy. Therefore, the case study excludes this type of interaction in the main
analysis (Sections 5.2-5.5) so that the assumptions are consistent with the baseline for the purpose
of comparing the results. However, the MUM-T assumptions are later relaxed in Section 5.6 to
introduce dynamic hierarchy into the system and demonstrate how STPA-Teaming handles this
interaction.

While remaining consistent with the baseline assumptions, the MUM-T system is remodeled
according to the generic collaborative control structure conventions introduced in Chapter 4.1
(Figure 5-3). The control structure now includes the shared process controlled by both the TL and
the UAS. The control lines from the TL to the UAS also include non-control items, such as
coordination messages and observations. The two UAS shown represent a variable number of
such interchangeable controllers.

The baseline does not include the ability for the TL to provide a fix using her/his own aircraft.
As such, the TL does not have this ability in the present case study. Similarly, because the TL can
navigate her/his aircraft, the following analysis assumes the TL can navigate to search for a target.

127

Figure 5-3. Collaborative Control Structure for the MUM-T System

5.3 MUM-T Unsafe Combinations of Control Actions

The third step of STPA identifies the Unsafe Control Actions (UCAs) for the commands specified
in the control structure. The extended hazard analysis mirrors this step by finding the Unsafe
Combinations of Control Actions (UCCAs) for the commands to the shared process.

In the MUM-T case study, the control output consists of various combinations of fix, fire, and
search commands provided by the different controllers on the team. The UCCA Identification
Algorithm from Chapter 4.2 is executed using the tool prototyped in MATLAB, which supports
the analyst by automating some of the steps of the process.

Inputs

The following three inputs are specified from the MUM-T system for the algorithm. First, a tuple
encodes the control actions that each of the three controllers can contribute to the shared process.
Second, UAS1 and UASn are designated as interchangeable controllers, as they are of the same
type and at the same level of hierarchy.

The third input is a special interaction to influence the refinement of UCCAs with the fix
command. The baseline states that it is unsafe for multiple controllers to fix a target
simultaneously. A possible reason for this is mutual interference, whether in the spatial or in the
radio frequency (RF) domain. The resulting effect of multiple controllers providing a fix can be
equivalent to no fix provided collectively. Therefore, a heuristic is created to include instances of
multiple controllers providing a fix in the refinement of UCCAs that involve no collective fix
being provided.

128

Abstracted UCCAs

The automation first creates four tables that enumerate all the potential abstracted UCCAs using
the formulation from Table 4-14. The tables cover Type 1-2 UCCAs (provide/not provide) and
Type 3-4 UCCAs (start/end before/after another), each using Abstraction 2a (team issues
combinations of control actions) and Abstraction 2b (combinations of controllers issue common
control action).

Table 5-1 presents the full automated output for the MUM-T Abstraction 2a Type 1-2 UCCAs.
The human analyst then reviews the table and specifies the context, if one exists, in which each
combination is unsafe. If a combination has multiple contexts, the analyst can add new lines as
necessary and track multiple instances using the subindex (sid). In the table, items italicized and in
green font are human inputs.

The analyst also designates the control actions that are relevant in the context. This is
accomplished by listing the identifier of the control actions from the third column, where 1 = fix,
2 = fire, and 3 = search. In cases where duplicate combinations are found, with the same context
and the same relevant control actions, they are tracked using the same column and excluded from
the remainder of the analysis. In Table 5-1, six unique UCCAs are identified: items 1-4 and 10-11.

Table 5-1. MUM-T Abstraction 2a Type 1-2 UCCAs (Green: Human Inputs)

id team team sid same context relevant*

1 ¬fix ¬{fire,search} 1 0 when there are mission tasks to execute
[H3]

2,3

2 fix ¬{fire,search} 2 0 when target will compromise mission if
fixed but not fired on [H3]

2

3 ¬fix {fire,search} 3 0 when target fired-on must be fixed [H3,
H5]

2

4 fix {fire,search} 4 0 when fixed target is different than target
fired-on [H3, H5]

2

5 ¬fire ¬{fix,search} 0 1 when there are mission tasks to execute
[H3]

2,3

6 fire ¬{fix,search} 0 3 when target fired-on must be fixed [H3,
H5]

2

7 ¬fire {fix,search} 0 2 when target will compromise mission if
fixed but not fired on [H3]

2

8 fire {fix,search} 0 4 when fixed target is different than target
fired-on [H3, H5]

2

9 ¬search ¬{fix,fire} 0 1 when there are mission tasks to execute
[H3]

2,3

10 search ¬{fix,fire} 5 0 when engaging a known target is higher
priority than searching [H3]

1,2

11 ¬search {fix,fire} 6 0 when searching for another target has
higher priority [H3]

1,2

12 search {fix,fire} 0 0

* Control actions relevant to the UCCA in column 3. 1 = fix, 2 = fire, 3 = search

129

Table 5-2, Table 5-3, and Table 5-4 list the unique abstracted UCCAs identified for Abstraction
2a Type 3-4, Abstraction 2b Type 1-2, and Abstraction 2b Type 3-4 respectively. The full set of
combinations produced by the automation in each case is included in Appendix 2. The items in
these three tables, along the six items found in Table 5-1, form the set of 19 abstracted UCCAs
carried forward in the analysis.

Table 5-2. MUM-T Abstraction 2a Type 3-4 UCCAs (Green: Human Inputs)

id Team ... then ... sid context relevant*

15 E(fix) S(fire,search) 1 when target fired on must be fixed [H3, H5] 2

17 S(fire) S(fix,search) 2 when target fired on must be fixed [H3, H5] 1

* Control actions relevant to the UCCA in column 3. 1 = fix, 2 = fire, 3 = search

Table 5-3. MUM-T Abstraction 2b Type 1-2 UCCAs (Green: Human Inputs)

id Ci Cj(s) sid context

37 ¬fix ¬fix 1 when there is a priority target to engage & a teammate can fire [H3]

38 fix ¬fix 2 when tasked entity is not capable and another is [H3]
39 fix fix 3 when that creates mutual interference [H1, H3]
40 ¬fire ¬fire 4 when there is a priority target to engage and a teammate can fix [H3]

41 fire ¬fire 5 when tasked entity is not capable and another is [H3]
42 fire fire 6 when that creates excessive effects [H3, H5]
43 ¬search ¬search 7 when no targets have been found [H3]
44 search ¬search 8 when tasked entity is the only one capable for higher priority task and

teammate can search [H3]

Table 5-4. MUM-T Abstraction 2b Type 3-4 UCCAs (Green: Human Inputs)

id Ci ... then Cj ... sid context

47 S(fix) E(fix) 1 when that creates mutual interference [H1, H3]

48 E(fix) S(fix) 2 when that creates a large gap in a fix handoff [H3]

56 E(search) S(search) 3 when that creates an excessive gap in the search [H3]

Refined UCCAs

The abstracted UCCAs identified in the four tables above are then refined by automation. The
tool determines all the ways the different controllers can contribute to the collective output of
each UCCA using Equation (17) and the discussion in Section 4.2.4. It then prunes combinations
that are duplicated across the interchangeable controllers UAS1 and UASn with Equation (21).

Finally, the algorithm prioritizes the remaining refined UCCAs and sorts the output by
decreasing priority. The following prioritization heuristic is implemented for this case study.
Instances in which a single controller provides all the unsafe control actions are assigned the
lowest priority (priority 4), as they do not involve collaborative control.

Next, for Abstraction 2a, which explores combinations of different control actions, cases that
include two or more instances of the same control action are downgraded to priority 3. These
items are repetitive over those that just include one instance of that action. An exception is made
based on the special interaction for the fix command, and instances of two fixes are given priority

130

2. For Abstraction 2b, which specifically examines multiple controllers providing the same action,
instances of three or more of the same action are given priority 3. All other cases are labeled with
the highest priority value of 1.

Table 5-5 shows the refined, pruned, and prioritized output of UCCA 10 initially identified in
Table 5-1 as an example for Type 1-2 UCCAs. The same context specified for the abstracted UCCA
applies to all of its refined children, which is not shown in Table 5-5 due to lack of space. Similarly,
Table 5-6 refines UCCA 15 from above to exemplify the output for Type 3-4 UCCAs.

Table 5-5. MUM-T Refinement of UCCA 10 (Example for Type 1-2 UCCA)

id TL UAS1 UASn priority

10.5.1 ¬fire search ¬fix ¬fire ¬search ¬fix ¬fire ¬search 1

10.5.2 ¬fire ¬search ¬fix ¬fire search ¬fix ¬fire ¬search 1

10.5.4 ¬fire search fix ¬fire ¬search fix ¬fire ¬search 2

10.5.3 ¬fire search ¬fix ¬fire search ¬fix ¬fire ¬search 3

10.5.5 ¬fire ¬search ¬fix ¬fire search ¬fix ¬fire search 3

10.5.6 ¬fire search ¬fix ¬fire search ¬fix ¬fire search 3

Table 5-6. MUM-T Refinement of UCCA 15 (Example for Type 3-4 UCCA)

id TL UAS1 UAS2 priority Context

15.1.1 F S(fire) E(fix) 1
when target fired on must be fixed
[H3, H5]

15.1.3 E(fix) F S(fire) 1

15.1.2 E(fix) F S(fire) 4

Overall, the tool generates 63 refined, pruned, and prioritized UCCAs from the original list
of 19 abstracted UCCAs. In this case study only the 35 UCCAs of priority 1 and 2 are evaluated
in scenario development. Lower priority items are still available and could be analyzed in future
work to assess how much additional information they contribute to identifying causal factors.

5.4 MUM-T Causal Scenarios

In the fourth step of STPA, loss scenarios are developed to identify the causal factors that
contribute to unsafe control. Using STPA-Teaming, scenarios are identified to explain how the
MUM-T UCCAs defined above could occur. The process, as described in Chapter 4.3, first defines
top-level scenarios to reason about control actions internal to the team. It then iteratively refines
those scenarios using the template shown in Figure 4-21.

The notation informs the part of the process being executed. For example, “S-37.1.X” indicates
the scenario is traced to UCCA 37.1 and its refined scenarios. The last digit designates the top-
level scenario called in Step 1 (see Table 4-16), so S-37.1.1 is for top-level scenario #1. The
refinement specifies the causal factors considered in internal control (Step 2) and collaborative
control (Step 3). Because there are eight different top-level scenarios specified (recall Table 4-16
and Table 4-17), the other factors explored in Step 4 are included under S-37.1.9.

131

Two examples follow to collectively illustrate the whole process. The first demonstrates the
general process to develop scenarios on a Type 1-2 UCCA using the framework detailed in Figure
4-21. All the top-level scenarios are defined, and then two of them, #1 and #3, are iteratively
refined to show how a subset of the causal factors are identified. The second example
demonstrates how to define the top-level scenarios for a Type 3-4 UCCA. Appendix 3 contains
the full dataset of the scenarios identified in the case study.

Example 1. Scenario Development for Type 1-2 UCCA

UCCA 37.1 (abstracted UCCA): Controller Ci does not fix and no other Cj fixes when there is a
priority target to engage and a teammate able to fire [H3]

UCCA 37.1.1 (refined UCCA): UAS1 does not fix and UASn does not fix when there is a
priority target to engage and a teammate able to fire [H3] (refined in Appendix 2)

Figure 5-4 shows the four relevant internal control combinations that can lead to the collective
output of the UCCA. It enumerates whether or not the Team Lead (TL) tasks either UAS1 or UASn
to fix. The figure is only provided here to demonstrate how the internal control combinations are
captured into the top-level scenarios, as listed below each case in the figure. It is not itself
necessary to execute the analysis. Because UAS1 and UASn are interchangeable, case 1c in the
figure is a duplication of 1b.

Figure 5-4. Internal Control Combinations that Result in No Controller Providing a Fix

S-37.1.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to provide safe collective control. Here, the TL does not task any UAS to fix.

• (Step 2: Internal Control) Unsafe Control Input: TL misinterprets direction from higher

authorities that the team should not fix any targets. Refinement:

o TL previously received a command not to provide a fix. However, that command

is now outdated, but the TL does not receive the updates.

o More listed in Appendix 3…

• (Step 2: Internal Control) Inadequate Process Model: TL has one or more of the following

inadequate process model variables: (1) TL does not believe there is a target to engage,

(2) TL does not believe there is a teammate able to fire (to couple with the fix), (3) TL

believes that a UAS has already been tasked to fix, or (4) TL does not believe there is a

teammate available to task the fix. Refinement:

132

o Incorrect feedback. The interface displays stale feedback of the team state, which

shows one of the UAS as tasked to fix from a now outdated tasking.

o More listed in Appendix 3 (Incorrectly Interpreted Feedback, Feedback not sent) …

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the target and the team capabilities, but still chooses not to task a UAS to issue the

fix. Refinement:

o TL is currently busy and prioritizing other operating tasks but intends to task a

UAS soon. However, s/he later forgets to do this due high workload.

o More listed in Appendix 3…

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task a UAS but is unable

to do so. Refinement:

o The communication channel to do so is currently inadequate. This could be due

to RF jamming, communications fading, misconfigured encryption settings, or

other reasons.

o More listed in Appendix 3…

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. The top-

level scenario focuses on the TL decision not to task the fix. This internal control loop is not closed

through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. The top-level

scenario focuses on the TL decision not to task the fix. No other controller is involved in this

decision. See Inadequate Process Model, Inadequate Control Algorithm instead.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL intends to task a UAS; however, the set of UAS participating on the team

fluctuates too much at the moment for the TL to have sufficient confidence that

the assigned UAS will still be in the team to carry out the task. Refinement:

▪ The Ground Station is swapping out UAS that need to be refueled with

new ones.

o More listed in Appendix 3…

• (Step 2: Internal Control) Dynamic Connectivity:

o TL tasks a UAS to fix, but due to the dynamic topology, the tasking is not

adequately routed to the intended UAS(s). This could occur because the message

is degraded over too many hops or because the changing topology does not

support information routing requirements (e.g., path, timing, …).

o More listed in Appendix 3…

S-37.1.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control. Here, (1) the TL tasks multiple UAS to fix and, therefore, none execute it, or (2)
the TL tasks a UAS to fix that cannot fix. See Appendix 3 for refinement…

S-37.1.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, TL tasks a
single capable UAS to fix, but the UAS does not fix.

133

• (Step 2: Internal Control) Unsafe Control Input:

o The UAS tasked to fix is overridden by another controller (e.g., the Ground Station,

a different Team Lead, or a cyber attacker) to perform a different action.

• (Step 2: Internal Control) Inadequate Process Model: The tasked controller has the

following inadequate process model variable: (1) it does not know how to provide the fix

command, (2) it incorrectly believes the fix command has already been provided.

o Inadequate Feedback: The controller tasked to fix has inadequate sensor feedback of

the target to execute the fix.

• (Step 2: Internal Control) Inadequate Control Algorithm: addressed in cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path: the controller tasked to fix intends to

provide its assigned command. However, it does not deliver the command to the

controlled process. Refinement:

o The targeting equipment malfunctions, and it is unable to do so.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: In this system, if the

controller that provides the fix is different from the controller that fires, the two controllers

collaborate to fix and fire on the target. Their two control loops can be coupled as

represented in Figure 5-5. Refinement:

Figure 5-5. Coupled Control Loops for Controllers Fixing and Firing on a Target

o Feedback about Controlled Process from Collaborators: The feedback the UAS

tasked to fix receives from collaborators leads it to believe it does not need to

provide the fix command. Refinement:

▪ The UAS tasked to fix (e.g., UAS1), prior to starting the fix, receives

incorrect feedback from a teammate that the current fix is adequate to fire.

Based on this feedback UAS1 does not provide the fix. Refinement:

• The teammate broadcasts feedback for a different fix, of a different

target, provided by a different teammate.

• (Human-Machine) UAS1 provides the fix for the TL (human) to fire.

The TL inadvertently labels feedback for UAS1’s fix as adequate.

This may occur because the TL is under heavy workload and makes

a mistake. It could also occur because there is a human-machine

semantic mismatch in the feedback.

▪ More listed in Appendix 3…

134

o Feedback about Collaborator Control Actions from Controlled Process: The

feedback the UAS tasked to fix receives from the process leads it to believe it does

not need to provide the fix command. Refinement:

▪ The UAS tasked to fix a target (e.g., UAS1) temporarily receives fix energy

off the target provided by another UAS (e.g., UAS2). This leads UAS1 to

drop the task in the belief that UAS2 is executing it. However, this may

have been a stray command from UAS2 (e.g., in its process to fix a different

target, temporary system malfunction, …). As a result, no UAS provides

the fix command as tasked by the TL.

Note: The UCCA analyzed does not explicitly show the fire command. If this control

action coupling was not considered in this step, it would be explicitly covered in UCCA

3.3, in which the Team provides the fire command and does not provide the fix command.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Figure 5-6 illustrates a possible

misalignment of hypothetical model elements between MUM-T controllers to

conceptualize this dynamic for analysis. The figure is derived from Figure 4-6 and items

highlighted in yellow are inconsistent between the two controllers. Refinement:

Figure 5-6. Misalignment of Hypothetical Models between MUM-T Controllers

o Construction: The process models and/or control algorithms are not adequately

or consistently built across the team to support collaborative control. Refinement:

▪ (Human-Machine) The control algorithms on the UAS are not compatible

with how the TL specifies the fix task. This prevents the UAS from

accepting the task or being able to collaborate with another controller in a

coupled fire task. This could occur due to configuration management

problems with the UAS or the TL interface software, variation in how the

TL was trained to work with the UAS, and conflicting past experience the

TL has working with human wingmen instead.

▪ More listed in Appendix 3…

135

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ The different UAS receive different versions of the <fix, fire> task

specification by the TL. This could occur because the TL periodically

updates how the task is specified, given slight changes in her/his model of

the mission. The different UAS may receive the task specification across

different replan cycles. As a result, the controllers on the team do not have

sufficient common knowledge of the task to coordinate in coupled fix &

fire tasks.

▪ The different UAS have different beliefs about how many and which UAS

are participating on the team. This may occur due to dynamic

membership, with UAS cycling on and offline, and dynamic connectivity

that prevents timely distribution of this information. This could result in

the UAS assigned to fix (e.g., UAS1) not believing that the UAS assigned to

fire (e.g., UAS2) is currently participating in the team. As such, UAS1 does

not believe conditions are satisfied for it to provide a fix.

▪ More listed in Appendix 3…

o Model Updates: Some elements of some of the process models are not adequately

or consistently updated across the team. Refinement:

▪ Vertical Coordination (Control):

• The TL overrides one of the UAS with a command inconsistent with

the laterally coordinated task execution. For example, UAS1 (tasked

to fix) and UAS2 (tasked to fire) have laterally coordinated the

details of the coupled fix and fire tasks. However, the TL

accelerates the UAS2 timeline to make it available for other tasks but

is not aware that this now conflicts with the coordinated plan.

• More listed in Appendix 3…

▪ Lateral Coordination (Communication):

• (Human-Machine) Lateral coordination between UAS1 (tasked to

fix) and TL (self-tasked to fire) is hindered by human-machine

asymmetry in information semantics. Both controllers interpret

shared information differently. The TL encodes subtleties and

ambiguities, which are common for humans to handle, but difficult

for machines to process precisely. The UAS is unable to describe

task parameters that exceed its programmed bounds but may be

necessary to overcome unforeseen issues. This hinders the

execution of the coupled fix-fire commands.

• (Human-Machine) Lateral coordination between UAS1 (tasked to

fix) and TL (self-tasked to fire) is hindered by human-machine

asymmetry in information timing. For example, the machine

provides excessive information requests, which interrupt the flow

of the TL in the execution of the coupled fix-fire commands.

• More listed in Appendix 3…

136

▪ Lateral Coordination (Observation): The controller selected to execute the

fix task observes another controller maneuvering in a way that is consistent

with executing that task and incorrectly believes it will provide it. The

maneuvering controller is not aware of this misinterpretation. As a result,

the assigned controller does not provide the fix.

▪ Prediction: UAS1 (tasked to fix) has a model of the coupled fix & fire task

that expects to receive certain coordination messages and observations by

certain milestones. If the other controller <TL, UAS2> (tasked to fire) is

delayed or takes an unexpected trajectory to fire, UAS1 may lose confidence

in its ability to fulfill the task and, therefore, incorrectly decide not to

provide the fix task either.

▪ Other Information Sources: UAS1 (tasked to fix) observes a change in the

environment (e.g., change of weather) that leads it to believe that the other

controller <TL, UAS2> (tasked to fire) will not be able to support the fire

command.

o Decision-Making: The process controllers use to decide what control and

communications actions they provide are inadequate or inconsistent across the

team. Refinement:

▪ Despite adequate communication channels, the distributed decision-

making process is too slow to keep up with the dynamic state of the shared-

controlled process and does not converge fast enough on a solution.

Refinement:

• Two controllers attempt to coordinate the coupling of the fix and

fire commands. However, at the conclusion of every iteration of

distributed planning, the state of the system has changed enough

that the plan is no longer relevant. As a result, the team is unable

to reach a valid plan.

▪ More listed in Appendix 3…

o Capacity: The capacity of one of the controllers is inadequate to enable effective

alignment of team cognition. Refinement:

▪ One of the controllers, TL or UAS, has a runaway internal process that is

using up processing resources (e.g., system failure, denial of service). As a

result, the controller is unable to keep up with the coordination demands

of the rest of the team, which prevents the whole team from reaching

consensus or achieving execution goals.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o The loss of a teammate makes the UAS tasked to fix drop its task. For example, at

the time the UAS was tasked to fix (e.g., UAS1), another controller was tasked to

fire collaboratively with it (e.g., UAS2). UAS2 then departs the team (e.g., taken

offline by another controller, lost in mission, …), and its fire task gets reassigned.

However, the retasking is not known to UAS1, which therefore does not know

whom to coordinate with to couple its fix task.

137

o More listed in Appendix 3…

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o The process of providing the fix command leads UAS1 to temporarily disconnect

from the team (e.g., physically traveling to the location to fix causes it to

disconnect). Because connectivity is required to coordinate the coupled fix and

fire tasks with another controller, UAS1 drops its task. However, it also does not

reclaim the task when connectivity is regained.

o More listed in Appendix 3…

S-37.1.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyway, which leads to unsafe collective
control.

Note: The context of this UCCA does not apply to this high-level scenario (see Figure 5-4). The
UCCA assumes that it is necessary to provide tasks.

S-37.1.5 (Step 1: Top-Level Scenarios #5): The TL control actions to the shared process are
unsafe in combination with how it directs the UAS.

Note: The context of this UCCA does not apply to this high-level scenario (see Figure 5-4). The TL
does not have the ability to provide the fix command, as specified in the system assumptions.

S-37.1.9 (Step 4: Other Factors): The controllers on the team do not provide any commands due
to other factors beyond the interactions between the controllers on the team.

• Unsafe Feedback Path: see Inadequate Process Model in S-37.1.3

• Unsafe Control Path: see Unsafe Control Path in S-37.1.3

• Unsafe Process Behavior: the UAS provides a fix, but the target deploys countermeasures or

performs defensive maneuvers that overcome its effects.

As shown in the example, there can be some overlap between the top-level scenarios. For
example, the unsafe feedback path and unsafe control path factors here were found both in S-
37.1.3 and S-37.1.9. As stated in Chapter 4.3, the analytical process favors overlap instead of gaps
in consideration. Because the purpose is to identify causal factors to eliminate or mitigate them,
it is acceptable to reiterate a factor, even if it reduces the analytical efficiency.

Example 2. Scenario Development for Type 3-4 UCCA (Top-Level Scenarios Only)

The second example demonstrates how the top-level scenarios defined in Table 4-17 are
created for a Type 3-4 UCCA. The refinement of the top-level scenarios follows the same process
as in the first example. So, they are excluded here for brevity but are available in Appendix 3.

UCCA 56.3: Controller Cj ends providing the search command before Ci starts providing the
search command when that creates an excessive gap in a search handoff [H3]

UCCA 56.3.1: TL ends search before UAS1 starts search when (same context as above)

UCCA 56.3.2: UAS1 ends search before TL starts search when (same context as above)

UCCA 56.3.3: UASn ends search before UAS1 starts search when (same context as above)

138

Figure 5-7 shows the two relevant internal control combinations for each of the collective outputs
in the three refined UCCAs. UCCA 56.3.1 is covered by cases 1a and 1b, UCCA 56.3.2 by 2a and
2b, and UCCA 56.3.3 by 3a and 3b. As in the previous example, the figure is not necessary for the
process, but it is included here to show how the possible internal control are covered by the top-
level scenarios.

Figure 5-7. Internal Control Combinations that Result in an Unsafe Gap in a Search Handoff

S-56.3.6 (Step 1: Top-Level Scenarios #6): TL directs the UAS in a way that leads to unsafe
temporal sequencing. Here, the TL tasks the UAS to start or end the search in a way that creates
a gap with the TL’s planned start or end to the search.

Note: By system definition, the TL specifies a general search task for the UAS team, and the automation is
responsible to assign UAS(s) to fulfill the task. This implies that the autonomy is responsible to manage
the specification of handoffs between two UAS.

• Refinement in Appendix 3…

S-56.3.7 (Step 1: Top-Level Scenarios #7): TL adequately directs the UAS, but the way in which
the UAS execute directions leads to unsafe temporal sequencing. Here, a UAS starts or stops the
search in a way that creates a gap (1) with the TL start or stop of the search or (2) with the start or
stop from other UAS.

• Refinement in Appendix 3…

S-56.3.8 (Step 1: Top-Level Scenarios #8): TL provides control actions to the controlled process
that are unsafe in temporal sequencing with how it directs the UAS. Here, the TL starts or ends
the search in a way that creates a gap with how the TL tasked the UAS.

• Refinement in Appendix 3…

139

Heuristics Employed in Scenario Development for this Case Study

Two heuristics are applied to the development of scenarios for this case study. First, the scenarios
are developed in a non-linear sequence. This means each scenario is initially developed to
address the specific UCCA listed above it, as shown in Example 1. Then, as additional UCCAs
are found to have similar causal factors, the original scenario is modified to integrate the lower-
level variations. The scenarios for the later UCCAs are then traced to the original scenarios
instead of repeating the same information multiple times.

As an example, an excerpt of Scenario S-37.1.1 for UCCA 37.1, “Ci does not fix and no other
Cj fixes when …” (see Example 1 above) is originally written as:

Initial Version - S-37.1.1 Unsafe Control Input: TL misinterprets direction from higher

authorities that the team should not fix any targets.

Several UCCAs subsequently analyzed have similar control combinations, such as UCCA 40.4
“Ci does not fire and no other Cj fires when …” and UCCA 43.7 “Ci does not search and no other
Cj searches when …”. To avoid repetition, the excerpt of S-37.1.1 above is modified to the form
below, which covers the later UCCAs. Then, the matching scenario headers under S-40.4.1 and
S-48.7.1 are traced to S-37.1.1. The following excerpt of S-37.1.1, which is not traced to any other
scenario, is then labeled as a unique scenario in the data analysis performed in Section 5.5.

Modified Version - S-37.1.1 Unsafe Control Input: TL misinterprets direction from higher

authorities that the team should not <fix, fire on, search for> any targets.

S-40.4.1 Unsafe Control Input: see S-37.1.1.

S-48.7.1 Unsafe Control Input: see S-37.1.1.

The non-linear sequence consolidates multiple similar scenarios together to reduce the
duplication of information. The aim is to make the analysis more readable and efficient to derive
safety constraints from it.

The second heuristic focuses the search by analyzing Abstraction 2b UCCAs (combination of
controllers issuing a common control action) before Abstraction 2a UCCAs (combinations of
different control actions provided by the team). For example, by first analyzing UCCA 37.1, “Ci
does not fix and Cj does not fix when …” (see Example 1 above), numerous causal factors are
found that are relevant to UCCA 3.3 “the team provides the fire command but does not provide
the fix command when…”. UCCA 3.3 can leverage the analysis of UCCA 37.1 and focus more on
why no controller would provide the fix if a controller fires and vice versa.

5.5 Case Study Comparison of Results

The results of the MUM-T case study presented above are compared to those produced by STPA
in the baseline analysis [53]. The objective of the comparison is to evaluate if the extended hazard
analysis technique, STPA-Teaming, identifies causal factors associated with collaborative control
that were not previously considered.

140

Table 5-7 describes the scope of the two analyses. The baseline only includes the UCAs and
scenarios relevant to the Team Lead (TL) – UAS collaboration analyzed in the case study (i.e.,
those in the blue region of Figure 5-1). The case study only counts the unique scenarios, which are
not traced to or derived from other scenarios identified earlier in the analysis. The values in the
table illustrate the number of data points available to determine whether STPA-Teaming
identifies causal factors associated with collaboration that are not systematically found using
STPA.

Table 5-7. Number of UCAs and Causal Scenarios in the Compared Analyses

Baseline STPA Analysis Extended STPA-Teaming Analysis

UCAs (in scope of comparison) 37
 19

39
Abstracted UCCAs
Refined UCCAs (High Priority)

N/A - 67 Top-Level Scenarios

Higher-level scenarios (in scope)
Lower-level scenarios (in scope)
Total Scenarios (higher + lower)

89
174
263

 313
95

408

Higher-level scenarios (unique)
Lower-level scenarios (unique)
Total Scenarios (higher + lower)

The numbers on both sides are similar, which suggests that the two analyses are reasonably
balanced relative to one another in breadth and depth. In addition, the two studies are grounded
in the same losses, hazards, controller responsibilities, and assumptions as specified in the
baseline (see Section 5.1). These are both important considerations to make a fair comparison.
The next subsections outline the differences and overlaps between the two techniques in
identifying unsafe control and causal scenarios.

5.5.1 Comparing the Identification of Unsafe Control

To explain why some causal factors are found only in one of the techniques and not the other, it
is important first to examine the differences in unsafe controls considered by both methods. The
unsafe combinations of control actions (UCCAs) in the extension are defined at a higher level of
abstraction than the simpler UCAs in STPA. As such, the two are not directly comparable.

Instead, the top-level scenarios in STPA-Teaming, which explore control actions internal to
the team (see Chapter 4.3), provide a better way to highlight how the techniques differ in focus
in analyzing unsafe control. Table 5-8 outlines the numbers related to unsafe control items
uncovered in both studies.

Table 5-8. Summary of Unsafe Controls Identified in Both Analyses

Baseline STPA Analysis Extended STPA-Teaming Analysis

UCAs (in scope of comparison) 37 67 Top-Level Scenarios
Subset* not covered by extension 10 40 Subset* not covered by baseline
Uniqueness of scenarios N/A - 26 Subset* that lead to unique scenarios
*Subset of the row directly above

The table shows that 40 of the 67 top-level scenarios uncovered in the case study cannot be
reasonably traced to a UCA or a causal scenario in the baseline. In refinement, 26 of those produce

141

unique scenarios. Similarly, 10 of the UCAs analyzed in the baseline are not covered by the top-
level scenarios or the refined causal factors. The uniqueness of the scenarios in the baseline was
not evaluated.

Table 5-9 exemplifies the differences and overlaps in a subset of unsafe controls identified by
both techniques. Appendix 3 includes the full dataset and annotates whether or not each top-level
scenario in the full analysis was also found in the baseline.

Table 5-9. Comparison of Select Unsafe Control Identified by Both Techniques

Found in # STPA-Teaming Top Level Scenario* or Baseline STPA UCA**

Extension
Only

1 S-3.3.3*: a UAS does not provide a fix despite being tasked and another UAS
fires as tasked when the target fired on must be fixed.

2 S-15.1.6*: TL tasks a UAS to end providing a fix early and tasks another UAS to
start firing late relative to each other when the target fired on must be fixed.

3 S-42.6.5*: TL fires and tasks a UAS to provide the fire command when that
creates excessive damage.

Extension
&

Baseline

4 S-38.2.2*: TL tasks a UAS to fix that is not capable when another controller is.
UCA 2**: TL provides “fix on target” command to the wrong UAV.

5 S-43.7.3*: TL tasks the UAS team to search, but no UAS searches when no targets
have been found.
UCA 29**: Autonomous Controller does not implement a task from the TL

6 S-3.3.1*: TL tasks a UAS to fire and does not task any UAS to fix when the
target fired-on must be fixed.
S-3.3.5*: TL fires and does not task any UAS to fix when the target fired-on
must be fixed.
UCA 22**: TL provides fire command before the right target has been targeted.

Baseline
Only

7 UCA 14**: TL provides the track target command when the targets are already
out of range or in a restricted area.

8 UCA 23**: TL provides the fire command early before receiving authorization
from higher authorities.

9 UCA 38**: Autonomous Controller releases a missile after target is out of range

The first three examples in Table 5-9 illustrate the types of unsafe control combinations not
systematically considered using STPA. Example 1 explores why some of the controllers tasked
to work together do not contribute to the joint effort. Example 2 analyzes how multiple
controllers are tasked together in an unsafe way. Example 3 investigates how a controller tasks a
collaborator in a way incompatible with its own execution. These top-level scenarios all produce
refined scenarios not found in STPA.

The next examples highlight some of the overlaps in the two analyses. The baseline explores
cases when the wrong controller on the team is tasked (Example 4). It also generically looks at
why a controller does not provide a command as tasked (Example 5). In most of these cases,
STPA still only considers one type of controller and one type of command at a time. The broader

142

scope of unsafe control specified in STPA-Teaming allows it to later uncover causal factors in
these examples that are not found in the baseline, as shown in Section 5.5.2.

Conversely, Example 6 illustrates how STPA can consider multiple control actions if the
analyst includes some of them in the context. This is the case in baseline UCA 22, in which a
controller provides a control action (firing) that is unsafe in the context of another control action
(not providing a fix). However, unlike in STPA-Teaming, this consideration is not systematic, and
therefore similar combinations of different control actions are missed.

There are several other limitations with how the baseline handles UCA 22. Most importantly,
the causal scenarios focus only on why the first control action (firing) would occur in that context.
It does not analyze the second control action (not providing a fix) in the context of the first. As
such, the interaction in Example 1 of Table 5-9 and others like it are missed. In addition, UCA 22
is ambiguous regarding which controller actually provides the fire command, as it could
represent the TL firing directly or the TL tasking a UAS to fire. In STPA-Teaming, two different
top-level scenarios are systematically created to cover these two cases, and each is then refined
into its own unique scenarios not found in the baseline.

The last three examples in Table 5-9 demonstrate UCAs that are found in the baseline but not
in the extension. The reason these are missed relates to the different focus of STPA-Teaming,
which concentrates primarily on how multiple control actions are unsafe relative to one another.
As such, it can miss contexts in which any single control action is unsafe, which is the focus of
STPA.

The results in this section suggest that STPA and STPA-Teaming complement each other. A
method to navigate between the two techniques is introduced in Chapter 6.

5.5.2 Comparing the Identification of Causal Scenarios

The loss scenarios and their causal factors are the ultimate outputs of STPA and STPA-Teaming.
The information they provide helps specify safety constraints that inform system design. This
section highlights the new causal factors that are uncovered in the MUM-T case study using
STPA-Teaming, which are not found in the baseline.

Method of Comparison

Scenarios in STPA-Teaming are uncovered by systematically considering different types of causal
factors in the refinement process (see Figure 4-21). These relate to internal feedback control
factors (Step 2), collaborative control factors (Step 3), and other factors (Step 4). Step 3 of this
process addresses five of the eight collaborative control dynamics exhibited by the MUM-T
system. These are cognitive alignment, lateral coordination, mutually closing control loops, dynamic
membership, and dynamic connectivity.

For these five dynamics, the evaluation compares each unique scenario to all the scenarios
developed in the baseline analysis. Any unique scenario that contributes new information that
cannot be reasonably related to any finding in the baseline is tracked as a new scenario. However,
the goal is to offer the baseline the “benefit of the doubt” to ensure that the new causal factors are
truly not found by STPA.

143

For this reason, several heuristics are employed to avoid over-counting new scenarios in STPA-
Teaming. First, significant leeway is afforded to match any of the factors in the overall baseline
to any one specific scenario found in the STPA-Teaming analysis. For example, if a factor in the
baseline associated with a UAS providing the fix command is reasonably relevant to a scenario in
the new analysis involving the TL providing the fire command, then no new scenario is
designated.

In addition, any one baseline factor is allowed to count against multiple different unique
scenarios in the new analysis. Finally, only unique scenarios from the STPA-Teaming analysis are
included in the comparison. The derived scenarios, which still can provide new useful design
information, are excluded.

As described in Chapter 4, the other three collaborative control dynamics are addressed as
part of the UCCA identification process. Specifically, in this case study, dynamic authority applies
to Type 1-2 UCCAs found using Abstraction 2b (combination of controllers issuing a common
control action). Transfer of authority is addressed in Abstraction 2b Type 3-4 UCCAs, as those
focus on handoffs. Finally, shared authority is exhibited in all UCCAs, but most uniquely applies
to Abstraction 2a UCCAs (combinations of different control actions provided by the team).

For these three dynamics, the evaluation focuses on unique scenarios found in refinement Steps
2 and 4 since they exclude the other collaborative control dynamics addressed in Step 3. The
same heuristics are used to not overcount new scenarios.

In addition, the comparison excludes refined scenarios developed in Step 2 if the top-level
scenario is covered by a UCA in the baseline. In such cases, the evaluation conservatively
assumes that those scenarios could have been found in the baseline, even if they were not, because
the causal factors considered in Step 2 come from STPA.

Quantitative Comparison of Scenarios Found Using Each Technique

System-theoretic approaches encourage analysts to abstract concepts as needed to manage
complexity. As such, in both analyses, causal scenarios are developed at different levels of
abstraction. A higher-level scenario may contain broad information that can be refined into many
lower-level scenarios, and those may, in turn, be further refined, and so on. The various levels
are not necessarily aligned across scenarios within each analysis. This means that what is
considered higher-level in one scenario may be similar to a lower-level scenario elsewhere.

The different levels of abstraction make it impractical to use the number of scenarios as a
quantitative measure to compare the amount of information gained in the two analyses. As such,
the comparison must be qualitative in focus. However, the number of scenarios uncovered
illustrates the scope of the two analyses. They also help show that multiple causal factors were
found in the extension that were not considered in STPA.

Table 5-10 outlines the number of unique scenarios in the extended hazard analysis that are
both not found (new) and found in the baseline. It provides two important takeaways. First,
multiple new scenarios are found using STPA-Teaming by considering each of the eight
collaborative control dynamics exhibited by the system. These scenarios have causal factors that
are not systematically found in the baseline using STPA.

Second, the baseline does find causal factors that align with scenarios found for each of these
collaborative control dynamics. This is important because it again suggests a reasonable balance

144

between the two analyses. The remodeled case study and the extensions do not steer the analysis
down a tangent completely unrelated to the baseline.

Table 5-10. Number of Unique Scenarios Not Found / Found in Baseline

Collaborative Control Dynamic
New: Not Found

in Baseline
Previously Found

in Baseline

Cognitive Alignment* 75 34
Lateral Coordination 29 4
Mutually Closing Control Loops 36 4
Dynamic Membership 25 5
Dynamic Connectivity 13 5
Transfer of Authority** 6 7
Dynamic Authority** 15 7
Shared Authority** 41 23

Total 240 89

* Excludes Lateral Coordination scenarios embedded in Cognitive Alignment
** Excludes scenarios refined in Step 3, which focus on the first five collaborative dynamics

The numbers in Table 5-10 are the sum of the higher-level and lower-level scenarios in each

category. If a higher-level scenario was found in the baseline, its lower-level scenarios were not
considered in the count.

The remainder of this section provides examples of causal scenarios that relate to the eight
collaborative control dynamics counted in Table 5-10. In most cases, the examples include both
new scenarios not found in the baseline and scenarios from the baseline that contain similar causal
factors. The qualitative discussion aims to contrast the types of scenarios created by the new
technique with those developed using baseline STPA.

Qualitative Discussion: Cognitive Alignment and Lateral Coordination

Table 5-11 highlights example scenarios that relate to lateral coordination and cognitive
alignment. Some of these scenarios are taken from Example 1 in Section 5.4 to show how they fit
into the broader analysis.

There are several reasons why the baseline analysis does not find the scenarios listed. First,
and most importantly, the baseline control structure does not represent the controlled process
shared between the controllers on the team (i.e., Mission Processes). As such, it is difficult to
systematically recognize that there is interdependence between the fix and fire control loops,
regardless of which controller provides those control actions. This coupling, in this case,
necessitates lateral coordination to occur. Both controllers must be able to bilaterally influence
one another by sharing status information (e.g., “2 min to start”, or “ready”).

Second, information shared in lateral coordination can be obfuscated in a hierarchal control
structure. Because the TL is hierarchically superior to the UAS, STPA typically treats all the
information flowing down from the TL to the UAS as control actions. While the TL does control
the UAS by providing tasking commands, at a lower level the TL and UAS must also coordinate
as illustrated above. By recognizing lateral coordination can occur between the two levels, the

145

extended hazard analysis can reason about how inadequate information flow, beyond control,
contributes to the unsafe collective control output.

Third, and related to cognitive alignment in general, the analysis does not consider just the
process model of the controller that issues the fix command. It considers the process models of
all the controllers on the team together. This is why in the last new scenario example, a controller
that is not necessarily involved in the control loop but has an inadequate process model of the
shared control process, has the ability to negatively influence the controllers directly involved.

Table 5-11. Examples Comparing Cognitive Alignment & Lateral Coordination Scenarios

UCCA 37.1: Controller Ci does not fix and no other Cj fixes when there is a priority target to
engage and a teammate able to fire [H3]

Top-Level Scenario S-37.1.3: TL adequately directs UAS, but some of the UAS do not execute
directions properly. Here, the TL tasks a single capable UAS to fix, but the UAS does not fix.

New:
not in

baseline

• Lateral coordination between UAS1 (tasked to fix) and TL (to fire) is hindered by

human-machine asymmetry in information semantics. Both controllers interpret

shared information differently… (see full scenario in Example 1, Section 5.4)

• Lateral coordination between UAS1 (to fix) and TL (to fire) is hindered by human-

machine asymmetry in information timing… (see full scenario in Example 1,

Section 5.4)

• UAS2 is temporarily disconnected and its model of the target diverges from that

of the team. UAS2 reconnects and now contributes its divergent model variables.

This disturbs team consensus regarding how to engage the target, changes the

process model of UAS1 assigned a task, and contributes it to not do it.

Found
in

baseline

• The information controllers use to coordinate the coupled fix-fire task is

inconsistent. For example, UAS1 (tasked to fix) receives state estimate from UAS2

(to fire) that becomes slightly outdated due to small communications and

processing delays. It compares the now slightly outdated UAS2 state estimate with

its own current UAS1 state, and incorrectly determines that UAS2 lags too much

to provide the fix command. The same effect also impacts UAS2 plans to fire.

Baseline
Scenario

Scenario: The Autonomous Controller has incorrect feedback about the UAV’s
attitude, altitude, velocity, etc. [So it does not implement a task from the TL]

• The FMS is sending data delayed so the Autonomous Controller is calculating

states behind where the UAV is actually located or its current speed

The table also includes an example of a scenario that was found in the baseline.
Fundamentally the scenario involves delayed state feedback that contributes to the unsafe control
provided by a UAS. However, the scenario in the extended analysis goes further and explores
how delays in receiving state information from collaborating controllers can affect joint execution.
As such, the delays are again assessed as problematic across multiple controllers.

146

Qualitative Discussion: Mutually Closing Control Loops

Table 5-12 provides examples related to the mutually closing control loops dynamic. Some of the

scenarios are from Example 1 in Section 5.4 and relate to the same UCCA in the cognitive
alignment discussion above.

Table 5-12. Examples Comparing Mutually Closing Control Loop Scenarios

New:
not in

baseline

UCCA 37.1 and Top-Level Scenario S-37.1.3 same as in Table 5-11

• Feedback about Controlled Process from Collaborators: The UAS tasked to fix (e.g.,

UAS1), prior to starting the fix, receives incorrect feedback from a teammate that

the current fix is adequate to fire. The teammate is broadcasting feedback for a

different fix, provided by a different UAS, for a different target. … (See full

scenario in Example 1, Section 5.4)

• Feedback about Collaborator Control Actions from Controlled Process: The UAS tasked

to fix a target (e.g., UAS1) temporarily receives fix energy off the target provided

by another UAS (e.g., UAS2). This leads UAS1 to drop the task in the belief that

UAS2 is executing it… (See full scenario in Example 1, Section 5.4)

Found
in

baseline

UCCA 40.4: Controller Ci does not fire and no other Cj fires when there is a priority
target to engage and a teammate able to fix [H3]

Top-Level Scenario S-40.4.5: TL control actions to the process are unsafe with how
it directs UAS. Here, TL does not fire and does not task a UAS to fire.

• Feedback about Collaborator Control Actions from Controlled Process: TL does not

receive the fix feedback necessary to close the fire loop that should be provided

by a collaborating UAS. Similarly, the UAS does not receive feedback from the

TL that the fix it is providing is inadequate.

Baseline
Scenario

Scenario: Autonomous Controller receives feedback about the target, but cannot
identify the target designation, so [it does not release missile as intended]

In scenario development, STPA tends to focus on the feedback control loop that involves the
controller providing the UCA and the controlled process. In the mutually closing control loops
dynamic, the feedback loops are closed through multiple collaborating controllers. Without this
consideration, STPA does not systematically consider how the feedback necessary for a controller
to provide its control actions is received from a collaborator. Similarly, it does not systematically
explore how control actions provided by a collaborator impact the feedback received by a
controller. This is why both of the top scenarios in Table 5-12 are missed in the baseline.

Conversely, the bottom scenario in Table 5-12 shows how STPA can find causal factors
associated with this dynamic if the analyst has the creativity to reason about it. However, as
previously stated, the lack of specific guidance regarding this type of interaction leaves the
technique vulnerable to missing this factor. Furthermore, the scenario in the baseline is more
focused on a single controller, whereas the STPA-Teaming scenario considers the multiple
controllers involved.

147

Qualitative Discussion: Dynamic Membership

Table 5-13 has examples of dynamic membership causal scenarios. Most of the causal factors not
found in the baseline are related to changes in the set of controllers involved in joint control,
similar to the example listed. Conversely, out of the few related causal factors that were found in
the baseline, most were focused on a variable set of subprocesses to control.

Table 5-13. Comparison Example of Dynamic Membership Scenarios

UCCA 1.1: The Team does not provide the fix, fire, or search commands when there are mission
tasks to execute [H3]

Top-Level Scenario S-1.1.2: TL directs UAS in a way that leads to unsafe collective control.
Here, the TL selects incorrect controllers for each task.

New:
not in

baseline

• Dynamic Membership: TL tasks two UAS on the team to fix and search. UAS1 is

assigned to fix and both UAS receive the search tasking, which is rated as a higher

priority than the fix. UAS2 is assigned by the automation to search but later drops

out of the team (e.g., taken offline by Ground Station). The autonomy reassigns

UAS1 to the higher priority search task, which now opens the fix task. Then UAS2

rejoins, and the TL proactively assigns it to provide the fix. The autonomy falsely

assumes UAS2 will resume the search, and releases UAS1 back to its original task

of providing a fix. Because two UAS are now assigned to fix, they both drop the

task and no controller fixes nor searches.

Found
in

baseline

• Dynamic Membership: The set of mission tasks is highly dynamic. By the time the

TL tasks a UAS to fix or fire, that task is no longer relevant. However, the

autonomy applies the previous tasking to the next target that appears, against TL

intent (related to Unsafe Control Path). In parallel, TL tasks another UAS to fix or

fire on the new target, which creates a conflict.

Baseline
Scenario

Scenario: TL initially authorizes a fix on target command. There is a delay in
another command from the TL to delete the command. AuC receives a fix on
target command without authorization.

In several cases, the factors found in the baseline were not directly related to dynamic
membership. However, it is by considering this type of interaction that those causal factors were
found in STPA-Teaming, as is the case in the example provided. This is why the baseline scenario
is counted as part of this dynamic. Similar situations occur in the baseline scenarios related to
the other collaborative control dynamics.

Qualitative Discussion: Dynamic Connectivity

STPA does consider dynamic connectivity, in part, by exploring unsafe control paths and
feedback paths. Several such scenarios found in the baseline are listed in Table 5-14. STPA-
Teaming goes further by exploring how the network dynamics can lead to unsafe control. The
example in the table exemplifies this situation and is beyond what STPA typically examines for
unsafe paths in a single feedback loop.

148

The top-level scenario listed in Table 5-14 is aligned to a UCA found in the baseline. This
example demonstrates how, in such situations, the extended hazard analysis is still able to
uncover causal factors that are not considered in the analysis of the UCA in the baseline. This is
because the extension systematically investigates causal interactions that occur in collaboration,
beyond those in simpler feedback control that are found in STPA.

Table 5-14. Comparison Example of Dynamic Connectivity Scenarios

New:
not in

baseline

Top-Level Scenario S-38.2.3: TL adequately directs UAS, but some of the UAS do
not execute directions properly. Here, TL tasks a UAS to fix, but another incapable
UAS fixes.

• Dynamic Connectivity: UAS2 is indirectly connected to TL via UAS1 as a relay.

When TL tasks UAS2 to fix via UAS1, UAS1 misinterprets the message as it being

assigned the task. As a result, UAS1 provides the fix, and UAS2 does not.

Found
in

baseline

Top-Level Scenario S-37.1.1: TL does not direct the UAS as necessary for the team
to provide safe collective control. Here, TL does not task any UAS to fix.

• Unsafe Control Path: TL intends to task a UAS but is unable to do so. The

communication channel to do so is currently inadequate. This could be due to RF

jamming, communications fading, misconfigured encryption settings, or other…

Baseline
Scenario

Scenario: TL provides “fix on target” command, but the Autonomous Controller
does not receive it. This can occur because: Autonomous Controller is out of range
from the TL, there is not enough power to transfer the command, or the command
is corrupted in transmission.

Qualitative Discussion: Dynamic Authority, Transfer of Authority, Shared Authority

Dynamic authority, transfer of authority, and shared authority are addressed earlier in STPA-Teaming
as part of the identification of UCCAs. These interactions can influence any of the scenarios
created later in the process, including all of the previous examples, which are found when the
scenario refinement process focuses on collaborative control (Step 3 of Figure 4-21).

To focus more directly on causality related to shared, dynamic, and transfer of authority, the
examples below only include scenarios developed in Steps 2 and 4 of the refinement process. As
a reminder, Step 2 explores causal factors associated with internal feedback control loops. Step 4
analyzes other factors beyond the team interactions, which include unsafe feedback paths from
the process, unsafe control paths to the process, and unsafe shared process behavior.

Table 5-15 highlights scenarios traced to dynamic authority. For the MUM-T case study, these
scenarios are derived from Type 1-2 UCCAs found using Abstraction 2b (combination of
controllers issuing a common control action).

149

Table 5-15. Comparison Example of Dynamic Authority Scenarios

UCCA 41.5: Controller Ci fires and no other Cj fires when Ci is not capable and a Cj is [H3]

Top-Level Scenario S-41.5.5: TL control actions to the process are unsafe with how it directs
the UAS. Here, TL fires her/himself when they are not capable to, instead of tasking a UAS
that can.

New:
not in

baseline

• Inadequate Process Model: Inadequate feedback. TL interface hides the TL’s own

aircraft status and capabilities behind that of the UAS (or vice versa) and makes it

difficult to consider all resource options available on the team.

Found
in

baseline

• Unsafe Control Path: TL weapon system malfunctions and fires unintentionally.

The UAS that was assigned to the task observes this and drops its task.

Baseline
Scenario

Scenario: The UAS [or any controller] does not intentionally release a missile, but
there is electrical interference that causes the bay to unlock, or a missile is loose in
the bay, so a missile is released.

The example of the scenario not found in the baseline illustrates a key strength of STPA-
Teaming. Instead of looking separately at why the TL does not fire, or why a UAS does not fire,
the analysis explores why none of the controllers together are able to fire. This highlights a need
for the TL’s mental model to consider her/his own capabilities and that of the UAS together.
STPA will point to mental model gaps regarding the TL or the UAS capabilities, but it may not
emphasize the mental model gap of the collective team capability.

The same idea also applies to the causal factor that was found in the baseline, which
fundamentally relates to a weapon malfunction in both analyses. However, the STPA scenario is
again more focused on one controller, whereas the extension considers how the malfunction
affects the collaborators as well.

Examples related to transfer of authority are shown in Table 5-16. In this case study, these
scenarios are associated with Abstraction 2b Type 3-4 UCCAs, in which controllers start and end
a common control action in an unsafe sequence. Because STPA does not systematically consider
this type of control relationship, none of the top-level scenarios produced in STPA-Teaming are
addressed by UCAs in the baseline.

But as was explained previously, the baseline does find lower-level causal factors that relate
to some of the transfer of authority scenarios found in the extension. In the example provided,
both analyses recognize that the TL has an inadequate mental model of the UAS execution
timeline. However, the scenario from the extension considers the implication of this gap for
multiple controllers working together.

150

Table 5-16. Comparison Example of Transfer of Authority Scenarios

UCCA 47.1: Controller Ci starts providing fix command before Cj ends providing fix command
when that creates mutual interference [H1, H3]

Top-Level Scenario S-47.1.6: TL directs UAS in a way that leads to unsafe temporal
sequencing. Here, TL tasks a UAS to start fix too soon and another to end fix too late relative
to each other.

New:
not in

baseline

• Inadequate Control Algorithm: TL has accurate information about the target and the

execution timelines of controllers on the team, but s/he still chooses to task the

UAS to issue the fix with excessive overlap. Refinement:

o TL has a misunderstanding of how the UAS operate, and s/he believes that

the UAS will coordinate with one another to avoid the unsafe handoff.

Found
in

baseline

• Inadequate Process Model: TL incorrectly believes (1) the time windows tasked do

not excessively overlap, (2) the UAS will not provide a fix over their entire time

window, (3) multiple UAS will not cause hazardous effects if they fix

simultaneously. Refinement:

o Missing Feedback. TL interface does not provide a way to effectively compare

UAS tasking timelines.

Baseline
Scenario

Scenario: TL has accurate feedback related to timing but has an inaccurate mental
model of how long it takes the Automated Controller to implement a command
upon receiving it, so TL issues the command late.

The last of the dynamics discussed in the case study is shared authority. This dynamic is
fundamental to all teaming interactions modeled in the generic collaborative control structure
(Chapter 4.1). As such, it influences all UCCAs and all scenarios. For the MUM-T case study, the
scenarios developed from Abstraction 2a UCCAs (combinations of different control actions
provided by the team) and refined in Steps 2 and 4 are the most uniquely related to shared
authority. Table 5-17 provides some examples.

In this case, two scenarios found in STPA-Teaming are refined from the same higher-level
scenario. The example found in the baseline illustrates how STPA can create scenarios that
involve multiple control actions if the analyst is able to reason about this complexity. However,
the lack of a systematic approach on this point is why the baseline only finds one of the two
scenarios identified by the extension.

151

Table 5-17. Comparison Example of Shared Authority Scenarios

UCCA 3.3: Team fires but does not provide a fix when target fired-on must be fixed. [H3, H5]

Top-Level Scenario S-3.3.1: TL does not direct the UAS as necessary for the team to provide
safe collective control. Here, TL does not task a UAS to fix but s/he fires or tasks a UAS to fire.

New:
not in

baseline

• Inadequate Control Algorithm: TL has accurate information about a controller

intending to fire and no controller is tasked to provide the coupled fix, but s/he

still chooses not to task the coupled command. Refinement:

o TL misunderstands how TL or UAS weapons systems operate. S/he

incorrectly believes that if there is no fix, the weapon system will not fire.

Found
in

baseline

• Inadequate Control Algorithm: same as above. Refinement:

o TL misunderstands how the UAS operate. S/he incorrectly believes that if a

UAS is approved to fire, the UAS automatically provides the coupled fix.

Baseline
Scenario

Scenario: TL does not provide fire [or fix] because he believes the UAV(s) can
automatically fire upon identifying targets. TL assumes system works similarly to
other MUM-T systems where UAV(s) have automatic firing [or fix] capabilities.

5.6 Dynamic Hierarchy Demonstration

As shown in Figure 5-2, the MUM-T system modeled in the baseline exhibits all of the
collaborative control dynamics defined in Chapter 3 except for dynamic hierarchy. Up to this point,
the case study has remained consistent with the baseline to compare the results of STPA-Teaming
with those produced using STPA. In this section, the baseline assumptions are relaxed to
incorporate dynamic hierarchy and demonstrate how the new technique handles it.

The system is modified as follows. In the baseline concept, the human Team Lead (TL) tasks
the UAS team as a whole to execute the search task. In effect, the TL delegates to the autonomy
the authority to allocate that task to one of the UAS. In a modified concept of MUM-T, the
autonomy could include the TL as one of the controllers, in addition to the UAS, to which it can
assign the task. This creates dynamic hierarchy, as the TL generally oversees the UAS team, but
at a lower level the UAS can command the TL to go search.

The remainder of the section demonstrates of how the extended hazard analysis identifies
causal factors related to dynamic hierarchy. It is not a full analysis. Causal scenarios are
developed for only two of the relevant Unsafe Combinations of Control Actions (UCCAs).
However, the effort reflects the type of safety analysis that can be performed when exploring
different conceptual design alternatives.

The first step of the hazard analysis is unchanged from the original case study. The losses,
hazards, and system boundary remain unchanged from those introduced in Section 5.1. In the
next step, the collaborative control structure of the system is updated to reflect the ability of the
UAS to retask the search to the TL, as shown in red in Figure 5-8.

152

Figure 5-8. Modified MUM-T Control Structure that Includes Dynamic Hierarchy

No change occurs in the third step of the analysis. The UCCAs, which represent the collective
control output of the team, remain the same as those generated in Section 5.3. The modification
to the system only impacts the UCCAs that involve the search command, which are consolidated
into Table 5-18. The refinement for each of those UCCAs is also unchanged.

Table 5-18. UCCAs Relevant to Dynamic Hierarchy Analysis Demonstration

id controllers context

 team team Abstraction 2a UCCAs

1.1 ¬fix ¬{fire,search} when there are mission tasks to execute [H3]

10.5 search ¬{fix,fire} when engaging known target is higher priority than searching [H3]

11.6 ¬search {fix,fire} when searching for another target has higher priority [H3]

 Ci Cj(s) Abstraction 2b UCCAs

43.7 ¬search ¬search when no targets have been found [H3]

44.8 search ¬search when entity needed for priority task and teammate can search [H3]

56.3 E(search) F S(search) when that creates an excessive gap in the search [H3]

In the fourth step of the analysis, the causal scenarios are developed using the same process
defined in Chapter 4.3. They are initialized with top-level scenarios, which describe the different
possible control actions provided internally to the team that are relevant to the unsafe collective
output. Dynamic hierarchy reflects internal control, so this is where it is addressed in STPA-
Teaming. The addition of a new internal control action from the UAS to the TL generates new
top-level scenarios. The scenarios are then refined using the same process defined in Figure 4-21.

Two examples follow to show the development of scenarios related to dynamic hierarchy.
The first identifies all top-level scenarios for a Type 1-2 UCCA and refines one of them using the
Figure 4-21 template. The second defines the top-level scenarios for a Type 3-4 UCCA. Appendix

153

4 contains the full set of dynamic hierarchy causal scenarios for these two UCCAs. The other
UCCAs listed in Table 5-18 are not analyzed as part of the scope of this work, but their scenarios
could be developed using the same method. The causal scenarios related to dynamic hierarchy
are indexed as SDH to differentiate them from the main case study in the previous sections.

Example 1. Dynamic Hierarchy Scenario Development for Type 1-2 UCCA

UCCA 43.7 (abstracted UCCA): Controller Ci does not search and no other Cj searches when no
targets have been found [H3]

UCCA 43.7.1 (refined UCCA): TL, UAS1, and UASn do not provide the search command

Figure 5-9 shows how the Team Lead (TL) and the UAS can task each other to search given the
dynamic hierarchy. Each case is traced to its relevant top-level scenario(s). The third case is not
logical in the context of the UCCA.

Figure 5-9. Internal Control Combinations that Result in No Controller Providing the Search

SDH-43.7.1 (Step 1: Top-Level Scenarios #1): A controller does direct other controllers on the team
as necessary for the team to execute safe collective control of the shared process. In the UCCA
context:
(1) TL does not task UAS team to search (and does not search her/himself) (see old S-43.7.1)

(2) UAS team does not retask TL to search (and does not allocate a UAS to search) [NEW]:

• (Step 2: Internal Control) Unsafe Control Input: UAS team interprets direction from

another controller (e.g., Ground Station, another TL, a cyber attacker) that it should never

retask the search command to the TL, even if the TL is the only controller capable of

searching. [NEW]

• (Step 2: Internal Control) Inadequate Process Model: UAS Team has inadequate process

model variables: (1) does not believe it has authority to task TL, (2) believes that TL is

intending to search, or (3) does not believe TL can search. [NEW] Refined in Appendix 4…

• (Step 2: Internal Control) Inadequate Control Algorithm: UAS are programmed to

assume that the TL will search if a UAS is not allocated (instead of actively retasking TL

to search). [NEW] Refined in Appendix 4…

• (Step 2: Internal Control) Unsafe Control Path: UAS Team intends to retask TL but is

unable to do so. TL does not want to be interrupted by the UAS and blocks the control

154

path for that command. The UAS Team continues to send the retask command without

knowing the TL is purposefully ignoring them. [NEW] More listed in Appendix 4…

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable.

• (Step 3: Collaborative Dynamic) Cognitive Alignment:

o Initialization: UAS receive different information regarding the availability of the

TL. This could occur as TL periodically updates her/his plans given slight

changes in their understanding of the mission. The UAS are updated across

different exchanges. As a result, they do not reach consensus that the TL can be

retasked to search. [NEW]

o More listed in Appendix 4…

• (Step 3: Collaborative Dynamic) Dynamic Membership: The team requires some majority

or unanimity among the automated controllers to retask the search to the TL. However,

the set of controllers fluctuates too much to achieve this threshold, so the team is unable

to retask. This could happen, for example, if a UAS is cycled repeatedly in and out of the

team due to some anomaly. [NEW]

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: UAS Team has consensus and

its members broadcasts to the TL the retasking for the search. Then, another UAS, which

was disconnected from the team, connects and shares its default values with no plans to

task anything to the TL. As a result, the assignment is dropped. [NEW]

SDH-43.7.2 (Step 1: Top-Level Scenarios #2): A controller directs other controllers on the team in
a way that leads to unsafe collective control. In the UCCA context: the UAS team incorrectly
retasks the TL, who cannot search, instead of allocating the task to a UAS. [NEW]

• Refined in Appendix 4…

SDH-43.7.3 (Step 1: Top-Level Scenarios #3): A controller directs other controllers on the team
adequately, but some of those controllers do not execute directions properly, which leads to
unsafe collective control. In the UCCA context:
(1) TL tasks the UAS team to search, and no UAS searches (see old S-43.7.3)

(2) UAS team retasks the search, but the TL does not execute it [NEW]

SDH-43.7.4 (Step 1: Top-Level Scenarios #4): A controller adequately does not direct others on
the team to provide certain commands, but some of those controllers provide them anyways,
which leads to unsafe collective control. Not applicable in the UCCA context (same as old S-43.7.4)

SDH-43.7.5 (Step 1: Top-Level Scenarios #5): A controller provides control actions to the shared
process that are unsafe in combination with how it directs other controllers on the team. In the
UCCA context:

(1) TL does not search when s/he does not task the UAS team to search (see old S-43.7.5)

(2) UAS team does not allocate a UAS when it does not retask the TL to search (see old S-43.7.3)

SDH-43.7.9 (Step 4: Other Factors): Not specific to dynamic hierarchy (see old S-43.7.9)

155

Example 2. Dynamic Hierarchy Scenarios for Type 3-4 UCCA (Top-Level Scenarios Only)

UCCA 56.3 (abstracted UCCA): Controller Cj ends search before Ci starts search when that creates
a large gap in a search handoff [H3]

UCCA 56.3.1 (refined UCCA): TL ends search before UAS1 starts search
UCCA 56.3.2 (refined UCCA): UAS1 ends search before TL starts search
UCCA 56.3.3 (refined UCCA): UAS2 ends search before UAS1 starts search

SDH-56.3.6 (Step 1: Top-Level Scenarios #6): A controller directs other controllers on the team in
a way that leads to unsafe sequencing. In the UCCA context:
(1) TL tasks the UAS to start or end the search in a way that creates a gap with the TL’s planned

start or end to the search (see old S-56.3.6)

(2) UAS team retasks TL to start/end search in a way that creates a gap with the UAS’s planned

start or end to the search [NEW]

SDH-56.3.7 (Step 1: Top-Level Scenarios #7): A controller adequately directs other controllers on
the team, but those controllers execute the directions in a way that leads to unsafe temporal
sequencing. In the UCCA context:
(1) UAS1 stops providing the search before UAS2 starts providing the search (see old S-56.3.7)

(2) The retasked TL starts/ends providing the searching too late/early in a way that leads to a

gap in a TL-UAS handoff [NEW]

SDH-56.3.8 (Step 1: Top-Level Scenarios #8): A controller provides control actions to the shared
process that are unsafe in temporal sequencing with how it directs other controllers on the team.
In the UCCA context:
(1) TL executes her/his search in a time window inconsistent with the one s/he tasked to the

UAS for a TL-UAS handoff (see old S-56.3.8)

(2) UAS allocate a portion of the search to a UAS in a way that is inconsistent with how they

retasked the other portion to the TL for a TL-UAS handoff [NEW].

5.7 Summary

This chapter applied the extended hazard analysis technique developed in Chapter 4 to a
manned-unmanned aircraft teaming aerospace system concept. The case study had two
purposes. First, it demonstrated how to analyze the safety of a real-world system in development
that exhibits the complex collaborative interactions defined in Chapter 3. Second, it helped
evaluate whether STPA-Teaming is able to uncover new causal factors not identified by STPA.

The case-study started with the same losses and hazards defined in an independent STPA
analysis of MUM-T that served as a baseline for comparison. Next, the system was remodeled
using the generic collaborative control structure template introduced in Chapter 4.1. The new
MUM-T model adheres to all the assumptions specified in the baseline, but it also highlights the
eight collaborative control dynamics exhibited by the system.

156

The case study then identified Unsafe Collaborative Control Action (UCCA) using the
algorithm developed in Chapter 4.2. This began with an automated enumeration of potential
UCCAs at an abstracted level. The analyst then specified the context for the UCCAs that were
deemed unsafe. Next, the automation refined, pruned, and prioritized those UCCAs. Finally,
scenarios were developed using the process defined in Chapter 4.3 to identify causal factors
related to collaborative control in the MUM-T system.

The results of STPA-Teaming were then compared to those provided by STPA in the baseline
analysis. The new technique was able to find new unsafe control relationships and new causal
scenarios that were not previously considered. The results were followed by a qualitative
discussion of the differences in the findings between the two techniques.

Finally, the MUM-T case study was expanded beyond the baseline to incorporate dynamic
hierarchy interactions into the system architecture. By applying STPA-Teaming on this design
variation, the case study demonstrated how the new technique is able to handle all of the
collaborative interactions defined in Chapter 3.

The demonstrated ability of STPA-Teaming to (1) find causal scenarios not found using STPA
and (2) address all of the collaborative control dynamics defined in this work provide an
argument to validate Hypothesis 3 of this dissertation.

Hypothesis 3: The STAMP and STPA extensions identify causal factors associated with
collaborative control interactions, which are not systematically found using the existing
STPA guidance.

The next chapter introduces a framework to integrate STPA-Teaming into a systems
engineering approach that supports safety-guided design. It builds on the MUM-T case study by
deriving generalized safety constraints from the analysis in this chapter and by showing how
those constraints can help integrate design decisions and assurance activities.

157

Chapter 6 : A Framework for Safety-

Guided Design of Collaborative Systems

Safety assurance is typically carried out separately from system design and in later stages of
development. As discussed in Chapter 2, this practice is problematic. By the time assurance
processes are applied, it is often too late to effectively modify a system to address safety issues
that are found. In addition, the design may be so complex that it challenges the Verification and
Validation (V&V) process to ensure hazards have been properly eliminated or mitigated. These
shortfalls are exacerbated by the types of complex interactions sought in novel aerospace systems,
and they are a major reason why these systems have not been fielded to date.

To overcome these problems, Leveson advocates for integrating system design and safety
assurance activities from the earliest phases of development [4]. By conducting hazard analysis
in early conceptual design, system requirements can be generated to address hazards by
designing safety into the system from the beginning. This process can continue throughout the
development lifecycle to assure the system is constructed to be safe. By doing this, final assurance
activities like certification can consist of a review that hazards have been properly identified and
handled throughout the design [4].

Chapters 3-5 develop and demonstrate the necessary foundation and techniques to analyze
hazards rigorously and systematically for systems with complex team-inspired component
interactions. What is now needed is a mechanism to incorporate the new analytical method,
STPA-Teaming, into the design process. To this end, this chapter introduces a systems
engineering framework that integrates safety-guided design with assurance activities through
enhanced traceability.

The structure introduced is derived from Intent Specification [52], and it enables the
traceability of information across three engineering axes relevant to system development. First,
it aligns each model of a system with the hazard analysis, the derived safety constraints, and the
selected V&V strategy. Second, it supports modeling the system at different levels of abstraction.
In the case of collaborative systems, as emphasized in this work, the engineering focus shifts from
the team as a whole, to interactions within the team, and then to lower-level component
interactions. Third, the framework engineers the system using a means-end hierarchy, starting
from concept of operation, down to low-level component implementation.

The remainder of this chapter is organized as follows. Section 6.1 details each of the three
engineering axes of the framework. Section 6.2 demonstrates the top two levels of the framework
on the Manned-Unmanned Teaming (MUM-T) system from the Chapter 5 case study. It explains
how to conduct hazard analysis using STPA and STPA-Teaming on different model abstractions.
Finally, Section 6.3 describes how the safety constraints derived from the hazard analysis can,
through rigorous traceability, guide conceptual architectural decisions. While the discussion is
focused on collaborative control, the general construct may be useful to more general systems.

158

6.1 Framework Description

The framework for safety-guided design of collaborative systems is shown in Figure 6-1. It is
derived from the Intent Specification methodology, which was designed to enhance human
problem-solving in the design of systems [52].

Figure 6-1. Framework for Safety-Guided Design of Collaborative Systems

The Intent Specification supports the systems engineering process of defining objectives, and
iteratively developing, evaluating, and selecting design alternatives. Its content is governed by
the principles of Systems Theory described in Chapter 2.4. Its structure organizes information in
a way that improves information pickup in the face of complex system designs [52].

The general Intent Specification construct is tailored to formulate the framework introduced
in this Chapter. Some of the implementation details on each axis are updated to reflect the
author’s vision for safety-guided design. A description of each axis follows.

6.1.1 Design-Assurance Processes Axis

The horizontal (width) axis of the framework traces the different processes involved in system
design and assurance to one another. These processes can occur at different levels of abstraction
(depth axis) and may vary for different engineering intents (vertical axis). However, they
generally involve modeling, specification, analysis, and V&V activities.

The first two horizontal components in the framework, the environment and the designed
system, are composed of system models and specifications. The system under design is modeled
in its socio-technical context interacting with the environment. The designed system includes the
components within the boundary over which there is engineering control, which includes human
operators. The environment consists of all the components beyond this boundary, which
constrain or influence the designed system.

159

The specifications define how a system must be built to achieve its goals within its constraints.
Specifications include design requirements aimed to achieve various measures of performance.
They also include design constraints, such as safety constraints, to prevent the system from
exhibiting an unacceptable behavior. The rationale for the specifications must be traced to the
assumptions or analyses that support them.

The design-assurance axis ensures that the safety constraints specified for the system are traced
to the results of the hazard analysis from which they are derived. This work employs STPA and
STPA-Teaming as the techniques to conduct hazard analysis for all of the reasons cited in Chapter
2. However, the framework is not restricted to those techniques, and can still be employed using
other methods.

Finally, the specifications, including the safety constraints, are traced to the V&V strategy
selected to ensure the system is built to specification (Verification) and that the specification is
correct (Validation). More specific examples of some of the content on this axis are provided in
Section 6.2.

6.1.2 Abstraction-Refinement Axis

The depth axis employs the System Theoretic foundation of the framework to model and analyze
the system at different levels of abstraction. STAMP-based techniques emphasize starting at a
high level of abstraction to analyze the system as a whole. Then, the model can be iteratively
refined to add the detail necessary for the specification.

Figure 6-1 frames the levels of abstraction in the context of collaborative control systems. At
the system level, a team of controllers is abstracted as a whole to explore how it collectively
interacts with other controllers and the environment. At the team level the analysis focuses on
interactions between the collaborators to examine how they contribute to the collective output of
the team. Finally, the controller level explores interactions between any controller or its
subcomponents with the rest of the system.

The abstraction-refinement axis is both iterative and recursive. Different views of the system
may be represented at a similar level of abstraction to shift the analytical focus to different parts
of the system, or to explore different design alternatives. Recursion is implied by Systems Theory,
as teams are composed of controllers, teams may be composed of other teams, and controllers
may be composed of teams. Section 6.2 demonstrates different model representations of the
MUM-T system from the case study.

6.1.3 Engineering Intent Axis

The vertical axis traces the different types of specification information used in different
engineering lifecycle activities. It employs a means-end hierarchy that describes for any level
what the specification is, at the level above why the system is specified that way, and at the level
below how the specification is implemented.

The levels are, to some extent, representative of activities that occur on the left side of the
Systems Engineering “V” (Figure 2-2). However, this framework integrates at each level the
assurance processes such as hazard analysis and V&V, which are more commonly considered
only later in development, on the right side of the “V”.

160

The first level represents the solution-neutral system to address the customer need. As
described in Intent Specification, this begins by specifying the system goal, environmental
assumptions, and environmental constraints that influence the system [52].

Next, high-level system requirements are derived from the system goals and may be
supported by various systems engineering analyses, including business analysis, concept of
operations analysis, and stakeholders analysis [215]. A V&V strategy must be considered for each
requirement. At this level, verification may be conducted by construction of the verification
activities performed at lower levels. Requirements may be validated by approval of a validation
authority established by the customer [216].

The first level also includes safety constraints that are derived from the hazard analysis. At
this level, the system is solution neutral so the hazard analysis is limited to the activities
performed in Step 1 of STPA. These consist of identifying the losses and system-level hazards.
As such, the safety constraints only include the system-level constraints derived from the
hazards, also identified in STPA Step 1. The remainder of the hazard analysis is conducted at the
levels below. As with the other requirements, safety constraints are also traced to a V&V strategy.

The second engineering intent level centers on the model, analysis, and specification of the
conceptual architecture(s) for the system. As described in Chapter 2.2, a conceptual architecture
represents the top-down control interactions of a system. Its analysis can help identify
requirements early to enforce desired emergent properties before conventional architecting
techniques are applied at the level below [101]. In this work, the conceptual architectures are
instantiated using STAMP hierarchal control structures.

As described in the depth axis, multiple views of the control structure may exist to analyze
the same system at different levels of abstraction. In addition, variations of the control structure
may be included to explore different design alternatives to implement the costumer view
specified at the level above. For example, the case study in Chapter 5 described two variants of
the MUM-T conceptual architecture: one aligned with assumptions from previous work (i.e., the
baseline [53]), and another added new control channels for the UAS to task the human pilot.

Each version of the control structure is traced to its hazard analysis, the derived safety
constraints, and their selected V&V method. At this level, the hazard analysis is carried out using
STPA, or STPA-Teaming, Steps 2-4. The technique selected depends on the level of abstraction
being analyzed. At the system level, STPA analyzes the interactions of the collective team with
the rest of the system and the environment. At the team level, STPA-Teaming examines the causal
relationships between the collaborators on the team. STPA is again applied at the controller level
to analyze sub-component interactions. This analytical sequence is exemplified in Section 6.2.

The third level of engineering intent describes how to implement the selected conceptual
architecture using more traditional architecting techniques that “map forms and functions” [95].
A variety the methods that support this phase of engineering are described by Crawley et al. [98].
While the specific activities at this level are beyond the scope of this research, the framework still
emphasizes the need to conduct hazard analysis on the more detailed architecture and to trace
the specifications to V&V strategies.

Similarly, the lower levels of the framework, which are dedicated to component design,
implementation, and operations to realize the architecture, are beyond the scope of this work. An
example of the type of lower-level component detail they include is available in an example Intent

161

Specification for TCAS [217]. However, at these levels the framework continues to promote
traceability between design and assurance activities and across different levels of abstraction.

6.2 Example Application of the Framework

The following is a short demonstration of the safety-guided design framework applied to the case
study in Chapter 5. The MUM-T system analyzed is in conceptual design stages, so the following
example focuses on the first two levels of engineering intent. The development of a full
specification exceeds the scope of this dissertation.

6.2.1 Example: MUM-T Level 1 - System Purpose View

The following outlines the Level 1 - System Purpose View content for the MUM-T system. For
brevity, it only includes a subset of each of the design-assurance elements. Some of the items are
refined to illustrate how they are handled in the depth axis.

Environment

Environmental Assumptions:

• EA1: The MUM-T system will operate in environments where the performance of

communication channels is degraded.

o EA1.1: The MUM-T system will operate in the presence of hostile electronic warfare that

interferes with the ability to communicate.

o EA1.2: list more items (beyond research scope) …

• EA2: list more items (beyond research scope) …

Environmental Constraints:

• EC1: The MUM-T system must not interfere with civilian air traffic and airport operations.

• EC2: list more items (beyond research scope) …

Designed System

Designed System Boundary: Team Lead and aircraft, Ground Stations, UAS

System Goals:

• G1: Provide a military air strike capability equivalent to that provided by a flight of four

human piloted modern fighter/attack aircraft, but with only one human pilot.

• G2: list more items (beyond research scope) …

System-Level Requirements (non-safety):

• R1.1: The MUM-T system must enable collaboration between one human piloted aircraft and

four or more unmanned aircraft. [trace to supporting analysis]

• R1.2: list more items (beyond research scope) …

162

System-Level Safety Constraints: derived from hazards identified in STPA Step 1

• SC-1.1.1: Aircraft must satisfy minimum separation requirements from other aircraft and

objects [H1] [53]

• SC-1.1.2: If aircraft violates minimum separation, then the violation must be detected, and

measures must be taken to prevent a collision. [H1] [53]

• SC-1.2.1: Aircraft control must not be lost given any possible input provided by the flight

controller. [H2]

• SC-1.2.2: If aircraft control is lost, the loss of control must be detected, and measures must be

taken to regain aircraft control [H2]

• SC-1.3.1: The system must accomplish planned mission operations [H3]

• SC-1.3.2: If the system does not accomplish planned mission operations, the lack of

accomplishment must be detected, and measures must be taken to regain the ability to

accomplish those operations [H3]

• SC-1.3.3: If the system performed unplanned operations that violate rules of engagement,

those operations must be detected, and measures must be taken to stop them. [H3]

• SC-1.4.1: Aircraft should not depart approved airspace [H4] [53]

• SC-1.4.2: If aircraft violates approved airspace constraint, then the violation must be detected

and measures taken to prevent encounters with enemy [H4] [53]

• SC-1.5.1: The system must not fire at friendly assets or forces [H5] [53]

• SC-1.5.2: If the system fires at a friendly, then the violation must be detected, and measures

taken to prevent impact [H5]

Hazard Analysis

At this level this only includes information from STPA Step 1

Losses: L1-L4 as listed in Chapter 5.1 and defined in baseline [53].

Hazards: H1-H5 as listed in Chapter 5.1 and defined in baseline [53].

Verification and Validation

Verification: by construction of levels below [SC-1, R1]

Validation: by approval of validation authority [SC-1, R1]

6.2.2 Example: MUM-T Level 2 - Conceptual Architecture View

Level 2 models and analyzes various conceptual architecture abstractions and design alternatives.
Figure 6-2 exemplifies this process by presenting multiple abstractions of the MUM-T concept
described in the baseline. This system actually includes two different teams of components. The
first involves the Team Lead (TL) and the UAS collaborating to control the mission targets (Figure
6-2 left). This is the collaborative system analyzed in Chapter 5. The second team consists of the
TL and the Ground Station (GS) that share control of the UAS (Figure 6-2 right).

For each of the two teams, the hazard analysis starts at the system level and uses STPA to
explore how the team as a whole interacts with the rest of the system (Figure 6-2 top row). Next,

163

at the team level, the focus shifts to collaborative interactions between the controllers on each team.
STPA-Teaming analyzes how those relationships contribute to the collective control output
(middle-row). Finally, controllers are refined at the controller level to analyze, using STPA, how
their component interactions can lead unsafe behaviors (bottom-row).

Figure 6-2. Different Abstracted Views of MUM-T Conceptual Architecture

Figure 6-2 designates which hazard analysis technique is applied to each control structure. In
each case, the analysis focuses primarily on the control actions that are labeled, which are the

164

most relevant to the interactions emphasized by the abstraction. The goal is to produce a more
complete analysis by selectively applying each technique to the types of interactions it is best
equipped to handle.

Table 6-1 lists examples of the unsafe control actions (UCAs) and the unsafe combinations of
control actions (UCCAs) found using each technique at each level. Each row includes an unsafe
control item that was not found by the other analysis technique in the case study, as previously
discussed in Table 5-9. In other words, the UCAs listed are part of the 10 items found to not be
covered by STPA-Teaming. At the system level, the controller in these UCAs is reframed, from
TL or UAS to MUM-T, to align with the level of abstraction at which they are explored. Similarly,
the UCCAs are one of the many control relationships not considered in the baseline. The
techniques are thus able to complement each other.

Table 6-1: Examples of UCAs and UCCAs Produced at Each Level of Analysis

Level Unsafe Control Actions and Combinations of Control Actions

System
Level

UCA-6: MUM-T provides fix too late after the target is out of range
UCA-10: MUM-T provides search after the object is out of range (H3)
UCA-16: MUM-T provides search too late after mission window closes (H3)

Team
Level

UCCA-15: MUM-T ends fix before it starts to fire when a target fired on must be
fixed (H3, H5)
UCCA-15.1: a UAS ends fix before TL starts to fire when… (same as above)
UCCA-15.2: a UAS ends fix before it starts to fire when… (same as above)
UCCA-15.3: a UAS ends fix before another UAS starts to fire when… (same)

Controller
Level

UCA-28: UAS Autonomous Controller powers on payload before the conserve
power option is no longer implemented

UCA-38: UAS Autonomous Controller releases a missile after the target is out of
range (H3, H5)

The causal scenarios developed for each of these UCAs and UCCAs are available in their
respective analyses. Safety constraints can then be derived from them to include in the
specification. Examples of safety constraint derived from the STPA analysis are provided in the
baseline [53]. Safety constraints derived from the results of STPA-Teaming and their V&V are
addressed in Section 6.3.

In addition to the conceptual architecture shown in Figure 6-2, different design alternatives
can also be explored and analyzed using the same process. An example of this is in Chapter 5.6,
where a new control channel is added to allow the UAS to task the TL to search (Figure 5-8). This
interaction is analyzed at the team level and produces UCCAs, scenarios, and safety constraints
that are traced to the design variation.

6.3 Design Guidance from Safety Constraints

Safety-guided design aims to proactively influence how a system is engineered throughout its
developmental lifecycle so that it is built to be safe. STPA facilitates this by enabling the hazard
analysis to start in early conceptual stages before the details of the design are known. The safety

165

constraints it produces are end-to-end traceable to the identified losses (Figure 6-3). These
constraints are derived from the various STPA artifacts, including the hazards, the UCAs, and
the loss scenarios. They inform how to design (or operate) the system to prevent these losses [50].

Figure 6-3. End-to-End Traceability of Safety constraints to Losses Using STPA

The framework developed in this chapter adopts this strategy for STPA-Teaming, but it also
introduces a novel traceability concept to enhance safety-guided design. It establishes traceability
between (1) the design decisions that shape how the control structure is modeled and (2) the
safety constraints that are derived from the hazard analysis of that model. The intent is to provide
direct insight into how certain design decisions influence the system safety requirements. This
can influence whether or not those design decisions are implemented, and if so how.

The traceability of safety constraints to both losses and design decisions is summarized within
the safety-guided framework in Figure 6-4. Examples from the MUM-T case study for how these
paths are traced follow. A full set of safety constraints generated for MUM-T and traced using
this approach is available in Appendix 5.

Figure 6-4. Traceability (Black Arrows) of Safety Constraints to Losses & Design Decisions

166

6.3.1 Tracing Safety constraints to Losses

All of the artifacts produced in STPA-Teaming are end-to-end traceable to the losses, as is also
the case in STPA. The safety constraints derived from the hazards are the same as those
considered in STPA. Those are generated at Level 1, as previously shown in Section 6.2.1.

At Level 2, where STPA-Teaming is executed in the case study, safety constraints can be
derived directly from the UCCAs, the top-level scenarios, and the refined scenario causal factors.
As in SPTA, these constraints inform how to implement the system design to avoid these items.
For traceability, each safety constraint is tagged with the artifact(s) from which it is derived.

Table 6-2 illustrates how high-level constraints are derived from a UCCA and its top-level
scenarios. Each safety constraint is generalized and is therefore applicable to multiple other
UCCAs and their top-level scenarios, as listed in the traceability. The “[DA]” also included in the
traceability is discussed next in Section 6.3.2.

Table 6-2. Example Safety constraints Derived from UCCA and Top-Level Scenarios

UCCA and Top-Level Scenarios Derived Safety Constraints

UCCA 40.4: Ci does not fire and no
other Cj fires when there is a
priority target to engage and a
teammate able to fix [H3] [DA]

SC-2.1: One of the controllers on the team must provide
a control action if that action is necessary and the
necessary resources to provide it are available. [UCCA
37.1, UCCA 40.4, UCCA 43.7, UCCA 1.1] [DA]

S-40.4.1: TL does not provide tasks
necessary for the team to provide
safe collective control. Here, TL
does not task any UAS to fire (and
does not fire her/himself).

SC-2.1.1: The team leadership must direct its teammate(s)
to provide the control action if it does not plan to provide
it itself. [S-37.1.1, S-40.4.1, S-43.7.1, S-1.1.1] [DA]

S-40.4.2: TL provides tasks to the
team in a way that leads to unsafe
collective control. Here, TL tasks
multiple UAS to fire.

SC-2.1.2: The team leadership must not direct multiple
teammates to provide a control action if multiple
controllers providing that action results in an unsafe
conflict. [S-37.1.2, S-3.1.2, S-40.4.2, S-42.6.2, S-1.1.2] [DA]

S-40.4.3: TL provides proper tasks
to UAS, but some UAS do not
execute them as provided. Here,
TL tasks a UAS to fire, but it does
not fire

SC-2.1.3: If a controller is properly directed by its team
leadership to provide a control action, that controller
must provide that action as directed. [S-37.1.3, S-40.4.3, S-
1.1.3] [DA]

SC-2.1.3.1: If a set of controllers as a whole is properly
directed by the team leadership to provide a control
action, then that set must allocate a controller to provide
the action. [S-43.7.3, S-1.1.3] [DA]

S-40.4.4: Not-Applicable to UCCA Not-Applicable

S-40.4.5: TL control actions to the
process are unsafe with otherwise
adequate tasks provided to the
UAS. Here, TL does not intend to
fire and does not task a UAS to fire.

SC-2.1.5: The team leadership must provide a control
action itself if it is capable, that action is necessary, and it
does not direct its teammate(s) to provide the action. [S-
40.4.5, S-43.7.5, S-1.1.5] [DA]

167

6.3.2 Tracing Safety constraints to Design Decisions

The analytical structure of STPA-Teaming allows some of its artifacts to be related to the types of
collaborative interactions explored. As was highlighted in Table 4-18, three of the collaborative
dynamics are addressed in the identification of UCCAs, one other is found using top-level
scenarios, and the remaining five are captured in the refinement of causal scenarios. As such,
there is a link between the design decision to incorporate these interactions and the safety
constraints, which is traced in Figure 6-4.

To enable this novel concept of traceability, the STPA-Teaming artifacts are labeled with the
collaborative dynamic they relate to. The following convention is used.

CA: Cognitive Alignment

DA: Dynamic Authority

DC: Dynamic Connectivity

DH: Dynamic Hierarchy

DM: Dynamic Membership

MC: Mutually Closing Loops

LC: Lateral Coordination

SA: Shared Authority

TA: Transfer of Authority

Table 6-2 illustrates this concept. UCCA 40.4 reflects the decision to incorporate dynamic
authority into the system, which results in the unsafe control gap identified by the UCCA.
Therefore, the safety constraints derived from this UCCA and its scenarios are traceable to
dynamic authority and are labeled with a “[DA]”.

The scenario refinement process, introduced in Figure 4-21, systematically explores causal
factors associated with five collaborative control dynamics. The safety constraints derived from
the refined scenarios are therefore readily traceable to those types of interactions. For this reason,
the safety constraints in the overall conceptual architecture specification can be clustered by, or
searched for by, the collaborative interactions they are traced to. Some constraints may be
traceable to multiple different collaborative control dynamics.

This grouping is demonstrated below using a partial set of the constraints traced to the
mutually-closing control loops dynamic in the MUM-T case study. As in the example above, the
general form of each constraint makes it traceable to multiple scenarios uncovered in the overall
analysis. The traceability to both the loss and the collaborative dynamic is included for each
constraint. Here, the indexing “SC-2.MC” means Level 2 Safety constraint found in Mutually
Closing Control Loops.

SC-2.MC.1: A controller that relies on a teammate for feedback on its control action(s) to the
shared process must adequately receive and accurately interpret that feedback. [MC]

• SC-2.MC.1.1: The controller must be able to interpret which control action the feedback from

the teammate pertains to. [MC]

o SC-2.MC.1.1.1: The controller must be able to interpret which controlled subprocess the

feedback from the teammate pertains to. [S-37.1.3, S-40.4.3, S-40.4.5, S-1.1.3, S-1.1.5, S-4.4.3,

S-4.4.5] [MC]

o SC-2.MC.1.1.2: The controller must be able to interpret which controller the feedback from

the teammate pertains to. [S-37.1.3, S-40.4.3, S-40.4.5, S-1.1.3, S-1.1.5, S-17.2.7] [MC]

• SC-2.MC.1.2: Feedback exchanged between two different types of controllers (e.g., a human

controller and a machine controller) must adhere to a syntax that enables semantic alignment

between the two. [S-37.1.3, S-38.2.3, S-40.4.3, S-40.4.5, S-1.1.3, S-1.1.5, S-3.3.3] [MC]

168

• SC-2.MC.1.6: The controller must be able to determine which teammate provided the

feedback. [S-37.1.3, S-38.2.3, S-1.1.3] [MC]

• More items in Appendix 5…

SC-2.MC.2: A controller that relies on feedback from the process that is generated in response to
a teammate’s control action must be able to adequately receive and accurately interpret that
feedback. [MC]

• SC-2.MC.2.1: The controller must verify that the feedback is in response to the expected

control action provided by a teammate. [MC]

o SC-2.MC.2.1.1: The controller must verify that the feedback is in response to the expected

controlled subprocess. [S-40.4.3, S-40.4.5, S-1.1.5, S-4.4.3, S-4.4.5, S-15.1.7, S-15.1.8] [MC]

o SC-2.MC.2.1.2: The controller must verify that the feedback is in response to the expected

teammate. [S-37.1.3, 2.2.3, S-1.1.3, S-3.3.3, S-3.3.4, S-3.3.5, S-15.1.7, S-15.1.8] [MC]

• SC-2.MC.2.2: The controller and the teammate must be coordinated on when and how the

teammate provides its control action so that the controller can adequately receive the

feedback. [S-40.4.3, S-40.4.5] [MC]

• More items in Appendix 5…

The traceability offered in this framework enables designers to search for all the system-
constraints associated with certain design decisions. The example above highlights some of the
requirements necessary to implement a safe architecture where multiple controllers close each
other’s control loops. If those requirements are too difficult or costly to meet, designers may
choose to eliminate the associated features altogether and simplify the architecture.

In the case of the MUM-T, the safety constraint examples above may guide an engineering
decision to simplify the system by only allowing the same controller to provide both the fix and
fire commands for a given target. This decision, guided by safety, eliminates many of the
mutually closing control loop interactions and their design constraints. However, it may also
limit the ability of the system to meet other measures of performance. Therefore, other design
considerations beyond just safety must also be considered in the decision.

6.3.3 V&V of Safety Constraints

STPA and STPA-Teaming rigorously trace how the safety constraints are derived and why they
are important. However, the constraints must still be validated and determined to be verifiable
before they are formally incorporated into the design.

A variety of methods are available for this process. For example, one aircraft manufacturer
conducts engineering and stakeholder reviews to determine the V&V maturity of requirements
generated by STPA [218]. When necessary, this organization modifies the requirements to ensure
their correctness while maintaining the rationale traced by the hazard analysis.

While designating a specific V&V approach is beyond the scope of this dissertation, the
emphasis of the framework on tracing safety constraints to V&V is important to the integrated
design-assurance paradigm. A properly V&V’d safety constraint provides a path to design safety

169

into the system and perform assurance by construction [4]. Similarly, an invalid or unverifiable
safety constraint can inform design modification to avoid challenges in assurance.

6.4 Summary

The limitations in existing design and assurance processes, as reviewed in Chapter 2, have stifled
the ability to field aerospace systems with complex team-inspired interactions. Existing
techniques are founded on reductionism and do not scale well. Assurance is typically separated
from design and considered too late in the engineering lifecycle. This chapter introduced a
framework that aims to overcome some of these problems by integrating design and assurance
activities using a system-theoretic approach.

The framework for safety-guided design is derived from Intent Specification [52], and it traces
information across different design and assurance processes, levels of abstraction, and
engineering views. The structure informs how to incorporate the extended hazard analysis
technique, STPA-Teaming, into a broader systems engineering process.

As demonstrated in the MUM-T system case study, the framework integrates STPA and
STPA-Teaming by shifting the focus of analysis to different interactions of interest. By selectively
employing both techniques, their explanatory strengths complement one another to produce a
more comprehensive analysis. The safety constraints produced by the analyses are rigorously
traceable to the losses they are specified to prevent.

In addition to tracing safety constraints to losses, as done in STPA, the analytical structure of
STPA-Teaming was leveraged to introduce novel traceability. The development of UCCAs and
scenarios is grounded in the collaborative control dynamics defined in Chapter 3. As such, the
safety constraints derived from these artifacts are also traceable to those dynamics. This
empowers engineers to examine, with rigor, how the decisions to incorporate these complex
interactions into the architecture affect the safety requirements.

As presented here, this new traceability concept focused on safety-guided design decisions to
implement collaborative control interactions. However, the idea can be generalized to achieve
other system emergent properties, such as security. The way in which the hazard analysis
artifacts are connected to the conceptual architecture design decisions can also be expanded
beyond collaborative control design decisions. The method to generalize this type of approach
provides an opportunity to expand this research in future work.

170

Chapter 7 : Conclusion and Future Work

The aerospace community is pursuing new system concepts that aim to improve how humans
and machines, and multiple machines, work collaboratively. Many of their component
interactions are inspired by the complex dynamics that occur in human teaming. Unfortunately,
existing systems engineering processes are limited in their ability to model, analyze, design, and
assure the safety of systems with such interactions. This gap has restricted the types of designs
that can be fielded in safety-critical domains, and as such, few of the novel aerospace “teaming”
systems have successfully been deployed.

The objective of this dissertation was to address part of this gap by developing a rigorous and
systematic framework to analyze safety and perform safety-guided design of systems that exhibit
collaborative control interactions. This objective was achieved through three technical
contributions that advance the state-of-the-art in system safety engineering. The first is a
mechanism to describe the different types of collaborative control interactions using the
principles of Systems Theory. The second is an extended hazard analysis technique, named
STPA-Teaming, which enhances the modeling and analysis of safety in collaborative control
systems. The third is a framework that facilitates safety-guided design using the results of the
extended hazard analysis process.

The methods developed in this work were demonstrated on a real-world aerospace system
concept for manned-unmanned aircraft teaming (MUM-T). The MUM-T system was modeled in
a way that explicitly captured its different collaborative control interactions. Using STPA-
Teaming, new causal factors were identified that were not previously found in a past hazard
analysis of the same system. Finally, the safety-guided design framework enabled direct
traceability between the decision to incorporate different collaborative interactions into the
MUM-T architecture and the safety requirements they impose on the design.

The following subsections summarize each of the three research contributions and review
their limitations. They also suggest how, in many cases, these limitations open opportunities to
expand this research in future work.

7.1 Contribution 1: Collaborative Control Definition

Chapter 3 introduced a system-theoretic framework to define collaborative control interactions
so that they can be more completely analyzed using STAMP. It includes a taxonomy of seven
dimensions to describe the structure of interactions between multiple controllers. These
dimensions influence the causal relationships between controllers. They consider:

• The types of controllers: humans, machines, or a combination

• Hierarchal structure: from hierarchal control to peer interactions

• Behavioral intent: from cooperative to adversarial

• Connectivity: whether global, local, or disconnected

171

• Information exchange: active, passive, or none

• How roles & responsibilities are defined: prescribed, dynamic, ad-hoc

• Developmental origins: from co-designed to meeting in the field

The framework also defines nine dynamics observed in collaborative control systems. Their
definitions are grounded in the principles of Systems Theory and the elements of STAMP. The
dynamics include:

• Cognitive Alignment

• Lateral Coordination

• Mutually Closing Control Loops

• Shared Authority

• Dynamic Authority

• Transfer of Authority

• Dynamic Hierarchy

• Dynamic Membership

• Dynamic Connectivity

The framework creates the necessary foundation to extend system-theoretic hazard analysis
methods to systematically explore causal factors associated with these collaborative relationships.
It was evaluated over a set of 101 controller interactions found in aerospace systems described in
the literature. The findings support Hypothesis 1: the framework provides a mechanism to categorize
and describe component interactions that are, or are planned to be, designed into aerospace systems. The
analysis also suggests that these complex collaborative dynamics are more prevalent in
conceptual human-machine and multi-machine systems than in those already fielded.

There are several limitations recognized for this part of the work. First, no claim can be made
that the set of dimensions in the taxonomy nor the set of collaborative control dynamics are
complete. There are arguably other notable factors that influence how multiple controllers
interact, especially in other domains beyond aerospace. There may also be other dynamics that
are found to be important to account for in collaborative control.

Next, the evaluation of the framework over the set of controller interactions is limited in its
quantitative power and is subject to author bias. The analyzed set of systems originated from the
literature review and was expanded through interactions with subject matter experts from
various technology domains. It was not a randomly selected sample, and the results are not
necessarily representative of all aerospace systems.

Because the framework introduced in this work is new, the systems evaluated generally did
not describe the component interactions using the same terms. The categorization of the
interactions was based on the engineering judgment of the author, which involves subjectivity
and bias. However, due diligence was employed to apply the framework as consistently as
possible across the evaluated set.

These limitations offer opportunities to further develop the framework in future work. One
exciting prospect is to leverage the way in which the taxonomy and the collaborative dynamics
were developed to explore other broad types of control interactions beyond teaming. For
example, this type of theoretical framework could be adapted to define and model competitive
control interactions. The general approach of defining new interactions using system-theoretic
principles to then specialize STPA for such relationships may help provide greater analytical
depth in new research domains.

172

7.2 Contribution 2: STPA-Teaming Analytical Extensions

Chapter 4 extended the state-of-the-art for hazard analysis, STPA, to systematically address
collaborative control. Three new techniques, collectively known as STPA-Teaming, were
developed based on the foundation provided by the first contribution. STPA-Teaming aims to
systematically analyze each of the nine collaborative control dynamics.

The first STPA-Teaming extension provides a mechanism to incorporate these dynamics into
STAMP hierarchal control structure models. This ensures that the dynamics are consistently
considered in hazard analysis. A generic collaborative control structure was expanded from the
existing STAMP and STPA guidance to express how controllers collaborate to share control of a
process. It serves as a template that can be reconfigured to model various human and/or machine
team compositions.

The second extension establishes a process to identify unsafe combinations of control actions
(UCCAs) to explore how the control actions of multiple teammates are unsafe together. It
expanded the unsafe control action (UCA) structure defined in STPA to systematically consider
potential unsafe gaps, overlaps, mismatches, and transfers of authority that are found in teams.
An algorithm was developed to systematically abstract and refine the system model to linearize
the combinatorial growth of UCCAs for arbitrarily complex systems. Its formalism enabled a tool
to be created to automate the enumeration, refinement, pruning, and prioritization of UCCAs.
This tool allows the human analyst to focus more on identifying the context in which the UCCAs
are unsafe.

The third extension is a systematic approach to developing causal scenarios from the UCCAs.
The process first defines scenarios at a high level, and then, iteratively refines them using a
template that investigates various causal factors. These factors were derived from the STPA
guidance that explores breakdowns in feedback control, and they were also framed by the
collaborative control dynamics defined in the first contribution of this work.

Chapter 5 evaluated STPA-Teaming on the same MUM-T case study that was previously and
independently analyzed using STPA. The extended technique was able to find new causal factors
that were not considered in the previous analysis. The case study was then expanded to
demonstrate how STPA-Teaming is able to handle all nine of the defined collaborative control
dynamics.

The described rationale to extend STPA and the reviewed shortfalls of traditional hazard
analysis techniques support Hypothesis 2: the system-theoretic collaborative control framework
describes component interactions that are not specifically addressed by existing hazard analysis techniques,

including STPA. The combined results of the case study support Hypothesis 3: the hazard analysis
extensions identify causal factors associated with collaborative control interactions, which are not
systematically found using the existing STPA guidance.

Several limitations of STPA-Teaming are acknowledged. First, the generic collaborative
control structure is subject to the same limitations as in the first contribution. If new types of
collaborative interactions were to be defined, they would need to be expressed in the collaborative
control structure, and they may require some of the conventions introduced in this work to be
modified to accommodate them.

Next, the limitations of the UCCA identification process were discussed in Chapter 4. As with
any other linearization process, the approach used to manage combinatorial growth can only

173

approximate the different potential control combinations. While the approach provides a
comprehensive and systematic search process using abstraction, certain refined combinations
may be missed. Arbitrary expansions to the abstractions or full enumeration of all combinations
can overcome this limitation.

The refined UCCA prioritization process in the last step of the algorithm relied on
assumptions and engineering judgment. For this reason, the lower-priority UCCAs were
retained in the output of the algorithm, so that they could be analyzed for scenarios if desired.
Further work is necessary to specify a more general prioritization approach and to determine
when lower-priority UCCAs can be skipped because of the diminishing return on new
information their scenarios provide.

Finally, the scenario identification method cannot be claimed to be complete, as is also the
case in baseline STPA. The structured approach that was developed is just one way to guide the
process, and others may be conceived. Additional guidance may also be helpful to determine
how far to refine each scenario. This also remains an open research question for baseline STPA.

There are many other opportunities to expand this method of analysis in future research.
Because STPA-Teaming is nascent, it will benefit from lessons learned by applying it to additional
case studies performed by other analysts. Some of this work is already underway as the
technique is being employed by other graduate students for their research projects.

One prospect is to explore the conditions that allow STPA-Teaming to be simplified. The goal
in this dissertation was to provide a comprehensive approach to analyze any collaborative
system, no matter how complex. The solution was a procedure that is more complicated than
STPA. Certain system conditions, beyond those specified in Section 4.2 regarding the
applicability of the different abstractions, may help to reduce the types of control combinations
that need to be considered. For example, some control actions may be shown to be independent
of one another. Furthermore, the refinement of UCCAs may not always be necessary to generate
causal scenarios. Practical approaches to reduce the complexity of the analysis will help expand
the adoption of this technique.

Another opportunity is to expand the use of UCCAs beyond collaborative control
interactions. New insights can be gained by exploring how multiple controllers acting on
separate processes may be unsafe, as was initially studied by Placke using conflict UCAs [206].
The UCCA process provides a more comprehensive way to account for how multiple actions
relate to each other. Similarly, the UCCA approach can uncover issues with one controller issuing
combinations of multiple control actions. Further research is needed to understand when the
benefits of the additional analytical complexity outweigh the costs.

7.3 Contribution 3: Safety-Guided Design Framework

Chapter 6 developed a framework that facilitates the safety-guided design of collaborative control
systems. Its goal is to mitigate the problems encountered with existing practices, where safety
assurance is typically carried out separately from design and too late in the engineering lifecycle.
By integrating safety and assurance starting in early conceptual design stages, safety can be built

174

into the system from the beginning. It can also help ensure there is a feasible path to verification
and validation (V&V) given the system complexity.

The approach, derived from Intent Specification, traces information across three dimensions
of system development. First, the design-assurance axis aligns models of the system with their
hazard analysis, derived safety constraints, and selected V&V strategies. Second, the abstraction-
refinement axis supports the specification of the system at different levels of abstraction. For the
collaborative systems emphasized in this work, the engineering focus shifts from (1) the
interactions of a team as a whole, to (2) the interactions between the controllers within the team,
and then (3) to lower-level component interactions for each controller. Third, the engineering intent
axis describes the system using a means-end hierarchy, starting from concept of operation, down
to lower-level component implementation.

The framework was demonstrated in the early engineering conceptual stages of the same
MUM-T case study. This showed how to model the system at different levels of abstraction, and
how to analyze those models with STPA and STPA-Teaming. A novel concept was also
introduced to rigorously trace safety specifications derived from the analysis to conceptual
architecture decisions, thereby enabling safety-guided design.

The scope of the research limited this portion of the work to a demonstration of how to
integrate the first two contributions into a broader systems engineering framework. No formal
evaluation of the correctness or performance of the framework was performed. Such an
evaluation would require access to the safety engineering data for a collaborative control system
developed using an alternate process, which was not available.

As with STPA-Teaming, the framework will benefit from future experiences applying it to
additional system case studies and by more engineers. There are several other exciting
opportunities for future research.

The first is to investigate how to generalize the novel approach to trace the safety constraints
output from STPA-Teaming directly to conceptual architecture decisions. While this research
focused on collaborative control, the same overall approach can be extended to link the results of
the analysis directly to many other types of architectural decisions. The key is to determine how
those decisions are addressed in the method of analysis and its artifacts.

Another important area to explore is how to more directly ensure the safety constraints
derived from the hazard analysis are valid and verifiable. As described in Chapter 6, existing
approaches do this iteratively by first specifying the constraints and then evaluating their
maturity for V&V. Further research may be able to determine a way to specify safety constraints
so that they meet V&V requirements upfront. This would help further couple design and
assurance processes.

In addition, tools must be developed to facilitate traceability and operationalize this process
for systems engineers. In this dissertation, automation was developed to support the
identification of UCCAs. However, the traceability beyond that step was performed manually,
which is intensive and error-prone.

Many commercial requirements management tools exist to link artifacts to one another, and
some even support traceability in the baseline STPA technique [219]. Other tools are available to
model designed systems using different systems engineering views similar to those on the
vertical axis in the safety-guided framework [220]. These software systems illustrate that this

175

type of functionality is both feasible and in demand by professional engineers. However, the
selection of a baseline tool and the implementation of the concepts introduced in this work is a
substantial development effort itself that exceeded the scope of this research.

Finally, the analysis technique and the design framework may also be applied to achieve other
emergent system properties beyond safety in collaborative control systems. Numerous studies
have demonstrated how STAMP-based techniques can address cybersecurity [187] and other
system behaviors. However, future work must fully specify how to do this so that it can be
implemented in practice.

7.4 Final Note

This dissertation provides an avenue to support the analysis and design of systems with degrees
of freedom in component interactions that go beyond those fielded today in aerospace. It alone
does not solve all the engineering challenges associated with the development and deployment
of such complex systems. Significant contributions from many different engineering domains are
still required to ensure human-machine and multi-machine collaborative systems are safe.

This work does offers one approach to solicit and integrate contributions from these different
technical disciplines to achieve safety. Opinions may differ on how to define, model, analyze,
design, and assure systems with teaming interactions. However, the need for these systems to be
safe when they become operational in society is incontrovertible. Regardless of how we get there,
the author hopes that this dissertation inspires new ideas or empowers practitioners to engineer
safety into teaming.

176

Acronyms
AAM: Advanced Air Mobility

AF: Air France

ACAS-X: Aircraft Collision Avoidance
System

ARP: Aviation Recommended Practice

ATC: Air Traffic Control

ATM: Air Traffic Management

AuC: Autonomous Controller

AWACS: Airborne Warning And Control
System

BCM: Behavior Competency Model

CA: Cognitive Alignment

CFR: Code of Federal Regulation

COA: Course of Action

ConOps: Concept of Operations

CTA: Critical Task Analysis

CRM: Crew Resource Management

CS: Causal Scenarios

CWA: Cognitive Work Analysis

DA: Dynamic Authority

DC: Dynamic Connectivity

DH: Dynamic Hierarchy

DM: Dynamic Membership

DoDAF: DoD Architecture Framework

DSM: Dependency Structure Matrix

EA: Environmental Assumption

EC: Environmental Constraint

EVS: Enhanced Vision System

FAA: Federal Aviation Administration

FHA: Functional Hazard Analysis

FM: Formal Methods

FMEA: Failure Modes and Effects Analysis

FMECA: Failure Modes and Effects
Criticality Analysis

FRAM: Functional Resonance Analysis
Method

FO: First Officer

FTA: Fault Tree Analysis

GAMA: General Aviation Manufacturing
Association

GS: Ground Station

HAI: Human Automation Interaction

HAZOP: Hazards and Operability Analysis

HH: Human-Human Interaction

HM: Human-Machine Interaction

HMT: Human-Machine Teaming

HTA: Hierarchal Task Analysis

JTA: Job Training Analysis

LOA: Level of Automation

LC: Lateral Coordination

MABA-MABA: Men Are Better At –
Machines Are Better At

MC: Mutually Closing Control Loops

MIT: Massachusetts Institute of Technology

ML: Machine Learning

MM: Machine-Machine Interaction

MTE: Mission Task Element

MUM-T: Manned-Unmanned Teaming

NAS: National Airspace System

NATO: North Atlantic Treaty Organization

OPD: Observe Predict Direct

RF: Radio Frequency

RTA: Run Time Assurance

177

RSO: Remote Supervisory Operations

SA: Shared Authority

SC: Safety Constraint

STAMP: System Theoretic Accident Model
and Processes

STPA: System Theoretic Process Analysis

SVO: Simplified Vehicle Operation

SysML: System Modeling Language

TA: Transfer of Authority

TCAS: Traffic Collision Avoidance System

TL: Team Lead

UAM: Urban Air Mobility

UAS: Unmanned Aircraft System

UAV: Unmanned Air Vehicle

UCA: Unsafe Control Action

UCCA: Unsafe Combination of Control
Actions

UxS: Unmanned System

V&V: Verification and Validation

178

Bibliography

[1] N. G. Leveson, “Safety III: A Systems Approach to Safety and Resilience,” 2020.

[2] M. Johnson, J. M. Bradshaw, P. J. Feltovich, C. M. Jonker, M. B. Van Riemsdijk, and M.
Sierhuis, “Coactive Design: Designing Support for Interdependence in Joint Activity,” J.
Hum.-Robot Interact., vol. 3, no. 1, p. 43, Mar. 2014, doi: 10.5898/JHRI.3.1.Johnson.

[3] C. E. Billings, Aviation automation: The search for a human-centered approach. CRC
Press, 2018.

[4] N. G. Leveson, Introduction to System Safety Engineering, In Production. Cambridge, MA:
MIT Press, 2023.

[5] V. Battiste, J. Lachter, S. Brandt, A. Alvarez, T. Z. Strybel, and K.-P. L. Vu, “Human-
Automation Teaming: Lessons Learned and Future Directions,” in Human Interface and
the Management of Information. Information in Applications and Services, S. Yamamoto
and H. Mori, Eds., Springer International Publishing, 2018, pp. 479–493.

[6] NASA and Deloitte, “Urban Air Mobility Concept of Operations (ConOps) - UAM Maturity
Level (UML) 4.” NASA, Dec. 02, 2020. [Online]. Available:
www.nasa.gov/aeroresearch/uam-vision-conops-uml-4

[7] Booz Allen Hamilton, “Urban Air Mobility (UAM) Market Study - Final Report Submitted
to NASA,” Nov. 2018.

[8] J. Holbrook et al., “Enabling Urban Air Mobility: Human-Autonomy Teaming Research
Challenges and Recommendations,” presented at the AIAA AVIATION 2020 FORUM, Jun.
2020. doi: 10.2514/6.2020-3250.

[9] National Academies of Sciences, Engineering, and Medicine, Advanced Aerial Mobility: A
National Blueprint. in Committee on Enhancing Air Mobility—A National Blueprint;
Aeronautics and Space Engineering Board; Division on Engineering and Physical Sciences.
Washington, D.C.: National Academies Press, 2020. doi: 10.17226/25646.

[10] GAMA, “A Rational Construct for Simplified Vehicle Operations (SVO).” General Aviation
Manufacturers Association EPIC SVO Subcommittee Whitepaper, May 20, 2019.

[11] R. E. Bailey, L. J. Kramer, K. D. Kennedy, C. L. Stephens, and T. J. Etherington, “An
assessment of reduced crew and single pilot operations in commercial transport aircraft
operations,” presented at the 2017 IEEE/AIAA 36th Digital Avionics Systems Conference
(DASC), Sep. 2017, pp. 1–15. doi: 10.1109/DASC.2017.8101988.

[12] T. Pallini, “Your packages may soon be flown on a massive jet with only one pilot, and it’s
only a matter of time before you could be too,” Business Insider, Dec. 05, 2021. Accessed:
Jan. 19, 2022. [Online]. Available: www.businessinsider.com/airbus-cargo-plane-may-be-
candidate-for-single-pilot-operations-2021-11

[13] J. Shively, “Tech Activity Update US (NASA) - Human Autonomy Teaming - Model, Agent,
Principles & Patterns,” NASA Ames Res. Cent., May 2017, [Online]. Available:
ntrs.nasa.gov/citations/20170000308

[14] N. Ho et al., “Application of human-autonomy teaming to an advanced ground station for
reduced crew operations,” in 2017 IEEE/AIAA 36th Digital Avionics Systems Conference
(DASC), St. Petersburg, FL: IEEE, Sep. 2017, pp. 1–4. doi: 10.1109/DASC.2017.8102124.

179

[15] “Next Generation Air Transportation System: Next Gen UAS Research, Development and
Demonstration Roadmap.” NextGen Joint Planning and Development Office, Mar. 15, 2012.
[Online]. Available: https://irp.fas.org/program/collect/uas-nextgen.pdf

[16] NASA, “NASA Technology Roadmaps TA 15: Aeronautics.” 2015. [Online]. Available:
nasa.gov/sites/default/files/atoms/files/2015_nasa_technology_roadmaps_ta_15_aeron
autics_final.pdf

[17] NASA, “NASA Aeronautics Strategic Implementation Plan.” 2017. [Online]. Available:
www.nasa.gov/sites/default/files/atoms/files/sip-2017-03-23-17-high.pdf

[18] A. Kharsansky, “A systemic approach toward scalable, reliable and safe satellite
constellations,” Masters Thesis, Massachusetts Institute of Technology, Cambridge, MA,
2020.

[19] T. Fong, “Human-robot teaming for space exploration.” NASA Intelligent Robotics Group,
Oct. 11, 2017. [Online]. Available: ntrs.nasa.gov/api/citations/

[20] DoD, “Unmanned Systems Integrated Roadmap FY2011-2036.” Department of Defense,
2011. [Online]. Available: https://irp.fas.org/program/collect/usroadmap2011.pdf

[21] USAF, “Autonomous Horizons: System Autonomy in the Air Force - A Path to the Future.
Volume I: Human-Autonomy Teaming.” United States Air Force Office of the Chief
Scientist, 2015.

[22] A. M. Dropkin et al., “Aircrew Labor In-Cockpit Automation System Flight Testing,” in
Aurora Flight Sciences, p. 18.

[23] K. L. Mosier, U. Fischer, B. K. Burian, and J. A. Kochan, “Autonomous, Context-Sensitive,
Task Management Systems and Decision Support Tools I: Human-Autonomy Teaming
Fundamentals and State of the Art,” NASA Rep., 2017, doi: 10.13140/RG.2.2.25859.60966.

[24] DoD, “Perdix Fact Sheet.” Department of Defense - Strategic Capabilities Office, 2017.

[25] A. Hudson, “The Looming Swarm,” Air Force Magazine, Mar. 22, 2019.
www.airforcemag.com/article/the-looming-swarm/ (accessed Jan. 21, 2022).

[26] V. Insinna, “US Air Force completes tests of swarming munitions, but will they ever see
battle?,” Defense News, Jun. 07, 2021. www.defensenews.com/air/2021/06/07/us-air-
force-successfully-completes-tests-of-swarming-munitions-but-their-future-is-unclear/
(accessed Jan. 21, 2022).

[27] P. Calhoun, “Gremlins.” Defense Advanced Research Projects Agency, 2021. Accessed: Jan.
21, 2022. [Online]. Available: www.darpa.mil/program/gremlins

[28] A. Kopeikin et al., “Rotary-Wing Aircraft Development Cybersecurity and Safety STPA
Status Report.” MIT / MIT Lincoln Lab Research Report, Jan. 22, 2021.

[29] J. R. Fabijanowicz, “Design of Experiments for Air Launched Effects Unmanned Aerial
Vehicles,” Masters Thesis, Naval Postgraduate School, Monterey, CA, 2020.

[30] Lockheed Martin, “HAVE RAIDER Demo - U.S. Air Force, Lockheed Martin Demonstrate
Manned/Unmanned Teaming,” Feb. 06, 2018. www.lockheedmartin.com/en-
us/capabilities/autonomous-unmanned-systems/unmanned-military-case-study-have-
raider-demo.html (accessed Jan. 28, 2022).

[31] V. Insinna, “Under Skyborg program, F-35 and F-15EX jets could control drone sidekicks,”
Defense News, May 22, 2019. www.defensenews.com/air/2019/05/22/under-skyborg-
program-f-35-and-f-15ex-jets-could-control-drone-sidekicks/ (accessed Jan. 28, 2022).

180

[32] B. Clark, D. Patt, and H. Schramm, “Mosaic Warfare: Exploiting Artificial Intelligence and
Autonomous Systems to Implement Decision-Centric Operations.” Center for Strategic and
Budgetary Assessments (CSBA), Feb. 11, 2020. [Online]. Available:
https://csbaonline.org/research/publications/mosaic-warfare-exploiting-artificial-
intelligence-and-autonomous-systems-to-implement-decision-centric-operations

[33] Airbus, “A Statistical Analysis of Commercial Aviation Accidents 1958-2016,” 2017.
Accessed: Feb. 01, 2022. [Online]. Available: https://accidentstats.airbus.com/

[34] D. A. Mindell, Our Robots, Ourselves: Robotics and the Myths of Autonomy. Penguin
Publishing Group, 2015.

[35] “Final Report – On the Accident on 1st June 2009 to the Airbus A330-203 Registered F-
GZCP Operated by Air France flight AF 447 Rio de Janeiro-Paris.” Bureau D’Enquetes et
d’Analyses pour la security de l’aviation civile, 2012.

[36] S. S. Silva and R. J. Hansman, “Divergence Between Flight Crew Mental Model and Aircraft
System State in Auto-Throttle Mode Confusion Accident and Incident Cases,” J. Cogn. Eng.
Decis. Mak., vol. 9, no. 4, pp. 312–328, Dec. 2015, doi: 10.1177/1555343415597344.

[37] P. Robinson, Flying Blind - The 737 MAX Tragedy and the Fall of Boeing. Doubleday, 2021.

[38] N. G. Leveson, Engineering a safer world: systems thinking applied to safety. in
Engineering systems. Cambridge, MA: MIT Press, 2011.

[39] A. Pritchett, M. Portman, and T. Nolan, “Research & Technology Development for Human-
Autonomy Teaming Final Report: Literature Review and Findings from Stakeholder
Interviews,” 2018.

[40] L. J. Prinzel, “Human-Autonomy Teaming - A Review of Literature and Preliminary
Recommendations.” NASA Langley Research Center, Transformational Tools and
Technologies, Autonomous Systems, 2019.

[41] NATO HFM247, Human-Autonomy Teaming: Supporting Dynamically Adjustable
Collaboration. Neuilly-sur-Seine: NATO, Research and Technology Organisation, 2020.

[42] M. M. Connors, “Concepts for the Design of Human-Autonomy Systems,” NASA Ames Res.
Cent., 2017.

[43] K. Kearns, “DoD Autonomy Roadmap - Autonomy Community of Interest,” presented at the
NDIA 19th Annual Science & Engineering Technology Conference, Mar. 2018. [Online].
Available: https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2018/science/Kearns.pdf

[44] M. R. Endsley, “From Here to Autonomy: Lessons Learned From Human–Automation
Research,” Hum. Factors, vol. 59, no. 1, pp. 5–27, Feb. 2017, doi:
10.1177/0018720816681350.

[45] R. Parasuraman and V. Riley, “Humans and Automation: Use, Misuse, Disuse, Abuse,”
Hum. Factors J. Hum. Factors Ergon. Soc., vol. 39, no. 2, pp. 230–253, Jun. 1997, doi:
10.1518/001872097778543886.

[46] A. Dearden, M. Harrison, and P. Wright, “Allocation of function: scenarios, context and the
economics of effort,” Int. J. Hum.-Comput. Stud., vol. 52, no. 2, pp. 289–318, Feb. 2000,
doi: 10.1006/ijhc.1999.0290.

[47] National Research Council (U.S.) and Committee on Autonomous Vehicles in Support of
Naval Operations, Autonomous vehicles in support of naval operations. Washington, D.C.:
National Academies Press, 2005. Accessed: Jan. 22, 2022. [Online]. Available:
http://public.eblib.com/choice/publicfullrecord.aspx?p=3377980

181

[48] E. E. Alves, D. Bhatt, B. Hall, K. Driscoll, A. Murugesan, and J. Rushby, “Considerations in
Assuring Safety of Increasingly Autonomous Systems.” NASA Report, 2018. [Online].
Available:
https://ntrs.nasa.gov/api/citations/20180006312/downloads/20180006312.pdf

[49] Federal Aviation Administration, “14 CFR 21 - Certification Procedures for Products and
Articles.” 2022. [Online]. Available: ecfr.gov/current/title-14/part-21

[50] N. G. Leveson and J. P. Thomas, STPA Handbook. 2018. [Online]. Available:
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

[51] E. Salas, T. Dickinson, S. Converse, and S. Tannenbaum, “Toward an understanding of team
performance and training,” in Teams: Their training and performance, in Teams: Their
training and performance. Westport, CT, US: Ablex Publishing, 1992, pp. xvi, 415.

[52] N. G. Leveson, “Intent Specifications: An Approach to Building Human-Centered
Specifications,” IEEE Trans. Softw. Eng., vol. 26, no. 1, p. 21, 2000.

[53] J. Robertson, “System Theoretic Process Analysis Applied to Manned-Unmanned Teaming,”
Masters Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2019.

[54] J. Marschak, “Elements for a Theory of Teams,” Manag. Sci., vol. 1.2, pp. 127–137, 1955.

[55] D. R. Ilgen, “Teams embedded in organizations: Some implications,” Am. Psychol., vol. 54,
no. 2, pp. 129–139, 1999, doi: 10.1037/0003-066X.54.2.129.

[56] Federal Aviation Administration, “Advisory Circular - AC 120-51E - Crew Resource
Management Training.” 2004. [Online]. Available:
www.faa.gov/documentLibrary/media/Advisory_Circular/AC_120-51E.pdf

[57] V. Mancuso, “Lecture: Social Factors and Team Dynamics,” presented at the 16.453 Human
Systems Engineering, MIT, Cambridge, MA, Nov. 10, 2020.

[58] C. R. Paris, E. Salas, and J. A. Cannon-Bowers, “Teamwork in multi-person systems: a
review and analysis,” Ergonomics, vol. 43, no. 8, pp. 1052–1075, Aug. 2000, doi:
10.1080/00140130050084879.

[59] E. Salas, D. E. Sims, and C. S. Burke, “Is there a ‘Big Five’ in Teamwork?,” Small Group Res.,
vol. 36, no. 5, pp. 555–599, Oct. 2005, doi: 10.1177/1046496405277134.

[60] M. R. Endsley, “Toward a Theory of Situation Awareness in Dynamic Systems,” Hum.
Factors, vol. 37, no. 1, pp. 32–64, Mar. 1995, doi: 10.1518/001872095779049543.

[61] N. A. Stanton et al., “Distributed situation awareness in dynamic systems: theoretical
development and application of an ergonomics methodology,” Ergonomics, vol. 49, no. 12–
13, pp. 1288–1311, Oct. 2006, doi: 10.1080/00140130600612762.

[62] V. F. Mancuso, “Information Sciences and Technology,” PhD Dissertation, Pennsylvania
State University, State College, PA, 2012.

[63] S. Kozlowski and E. Salas, “A multilevel organizational systems approach for the
implementation and transfer of training,” in Improving Training Effectiveness in Work
Organizations, K. Ford, Ed., Psychology Press, 2014, p. 287.

[64] A. Myne, “Introductions and Objectives,” presented at the 2020 Human-Machine Teaming
Technical Interchange Meeting, MIT Lincoln Lab, Lexington MA, Oct. 2020.

[65] J. Laird, C. Ranganath, and S. Gershman, “Future Directions in Human Machine Teaming
Workshop,” presented at the Future Directions Workshop Series Sponsored by Office of
Under Secretary of Defense for Research and Engineering, Arlington, VA, 2019.

182

[66] P. Fitts, “Human Engineering for an Effective Air-Navigation and Traffic-Control System,”
National Research Council, Washington, D.C., 1951. [Online]. Available:
https://apps.dtic.mil/sti/pdfs/ADB815893.pdf

[67] J. E. Allen, C. I. Guinn, and E. Horvtz, “Mixed-initiative interaction,” IEEE Intell. Syst. Their
Appl., vol. 14, no. 5, pp. 14–23, Sep. 1999, doi: 10.1109/5254.796083.

[68] V. V. Unhelkar, S. Li, and J. A. Shah, “Decision-Making for Bidirectional Communication in
Sequential Human-Robot Collaborative Tasks,” in Proceedings of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, Cambridge United Kingdom:
ACM, Mar. 2020, pp. 329–341. doi: 10.1145/3319502.3374779.

[69] G. Klein, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, and P. J. Feltovich, “Ten challenges
for making automation a ‘team player’ in joint human-agent activity,” IEEE Intell. Syst., vol.
19, no. 6, pp. 91–95, Nov. 2004, doi: 10.1109/MIS.2004.74.

[70] D. B. Kaber, “Issues in Human–Automation Interaction Modeling: Presumptive Aspects of
Frameworks of Types and Levels of Automation,” J. Cogn. Eng. Decis. Mak., vol. 12, no. 1,
pp. 7–24, Mar. 2018, doi: 10.1177/1555343417737203.

[71] A. R. Pritchett, “Aviation Automation: General Perspectives and Specific Guidance for the
Design of Modes and Alerts,” Rev. Hum. Factors Ergon., vol. 5, no. 1, pp. 82–113, Jun. 2009,
doi: 10.1518/155723409X448026.

[72] H. C. Siu et al., “Evaluation of Human-AI Teams for Learned and Rule-Based Agents in
Hanabi,” Adv. Neural Inf. Process. Syst., vol. 34, 2021.

[73] H. Mozannar, A. Satyanarayan, and D. Sontag, “Teaching Humans when to Defer to a
Classifier via Exemplars,” ArXiv211111297 Cs, Dec. 2021, Accessed: Jan. 31, 2022. [Online].
Available: http://arxiv.org/abs/2111.11297

[74] B. M. Muir, “Trust in automation: Part I. Theoretical issues in the study of trust and human
intervention in automated systems,” Ergonomics, vol. 37, no. 11, pp. 1905–1922, Nov. 1994,
doi: 10.1080/00140139408964957.

[75] B. M. Muir and N. Moray, “Trust in automation. Part II. Experimental studies of trust and
human intervention in a process control simulation,” Ergonomics, vol. 39, no. 3, pp. 429–
460, Mar. 1996, doi: 10.1080/00140139608964474.

[76] P. Cofta, Trust, Complexity and Control. Chichester, UK: John Wiley & Sons, Ltd, 2007. doi:
10.1002/9780470517857.

[77] J. D. Lee and K. A. See, “Trust in Automation: Designing for Appropriate Reliance,” Hum.
Factors, vol. 46, no. 1, pp. 50–80, 2004.

[78] E. T. Chancey, M. S. Politowicz, and L. Le Vie, “Enabling Advanced Air Mobility Operations
through Appropriate Trust in Human-Autonomy Teaming: Foundational Research
Approaches and Applications,” presented at the AIAA Scitech 2021 Forum, Jan. 2021. doi:
10.2514/6.2021-0880.

[79] R. Murphey and P. M. Pardalos, Cooperative Control and Optimization, vol. 66. in Applied
Optimization, vol. 66. Kluwer Academic Publishers, 2002.

[80] J. Ferber and G. Weiss, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence, vol. 1. Reading: Addison-Wesley, 1999.

[81] G. Skorobogatov, C. Barrado, and E. Salamí, “Multiple UAV Systems: A Survey,” Unmanned
Syst., vol. 08, no. 02, pp. 149–169, Apr. 2020, doi: 10.1142/S2301385020500090.

183

[82] J. Hu et al., “To Centralize or Not to Centralize: A Tale of Swarm Coordination,”
ArXiv180501786 Cs, May 2018, Accessed: Jan. 14, 2022. [Online]. Available:
http://arxiv.org/abs/1805.01786

[83] L. B. Johnson, “Decentralized Task Allocation in Communication Contested Environments,”
PhD Dissertation, Massachusetts Institute of Technology, Cambridge, MA, 2016.

[84] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control. in
Communications and Control Engineering. London: Springer London, 2008. doi:
10.1007/978-1-84800-015-5.

[85] A. Kopeikin, S. S. Ponda, and J. P. How, “Control of Communication Networks for Teams of
UAVs,” in Handbook of Unmanned Aerial Vehicles, K. P. Valavanis and G. J. Vachtsevanos,
Eds., Dordrecht: Springer Netherlands, 2015. doi: 10.1007/978-90-481-9707-1.

[86] A. N. Kopeikin, “Dynamic Mission Planning for Communication Control in Multiple
Unmanned Aircraft Teams,” Massachusetts Institute of Technology, Cambridge, MA, 2012.

[87] R. Olfati-Saber and R. M. Murray, “Consensus Problems in Networks of Agents With
Switching Topology and Time-Delays,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp.
1520–1533, Sep. 2004, doi: 10.1109/TAC.2004.834113.

[88] W. Yu, Ed., Distributed cooperative control of multi-agent systems. Singapore: Wiley, 2017.

[89] C. Heisey, M. Brittain, D. Maki, and K. Bush, “Multi-Agent Systems Collaborative Teaming
(MASCOT) Definition Process to Create Specifications for Multi-Agent System (MAS)
Development,” Nov. 2020.

[90] J. D. Schierman, M. D. DeVore, N. D. Richards, and M. A. Clark, “Runtime Assurance for
Autonomous Aerospace Systems,” J. Guid. Control Dyn., vol. 43, no. 12, pp. 2205–2217,
Dec. 2020, doi: 10.2514/1.G004862.

[91] E. Ordoukhanian and A. Madni, “Model-Based Approach to Engineering Resilience in
Multi-UAV Systems,” Systems, vol. 7, no. 1, Feb. 2019, doi: 10.3390/systems7010011.

[92] E. Crawley et al., “The Influence of Architecture in Engineering Systems,” in Engineering
Systems Monograph, Cambridge, MA, 2004.

[93] L. F. Osborne, J. Brummond, R. Hart, M. Zarean, S. M. Conger, and Inc. Iteris, “Clarus:
Concept of Operations,” Federal Highway Administration, US Department of
Transportation, FHWA-JPO-05-072, Oct. 2005. Accessed: Feb. 01, 2022. [Online].
Available: https://rosap.ntl.bts.gov/view/dot/3710

[94] INCOSE, Systems Engineering Handbook - A Guide for System Life Cycle Processes and
Activities, INCOSE-TP-2003-002-03. International Council on Systems Engineering
(INCOSE), 2006.

[95] E. Crawley, “16.842 Fundamentals of Systems Engineering - Session 3: Creating Value
Through System Thinking,” Massachusetts Institute of Technology, Cambridge MA, Sep. 15,
2020.

[96] E. Crawley, “16.842 Fundamentals of Systems Engineering - Session 4: System Architecture
and Concept Generation,” Massachusetts Institute of Technology, Cambridge MA, Sep. 22,
2020.

[97] L. Delligatti, SysML Distilled - A Brief Guid to the System Modeling Language. Addison-
Wesly, 2014.

[98] E. Crawley, B. Cameron, and D. Selva, System Architecture - Strategy and Product
Development for Complex Systems. Pearson, 2016.

184

[99] R. P. Bhattacharyya and A. R. Pritchett, “Designing Function Allocations in Air Traffic
Concepts of Operation Using Network Optimization,” J. Air Transp., vol. 25, no. 2, pp. 61–
72, Apr. 2017, doi: 10.2514/1.D0075.

[100] “DoD Architecture Framework V2.02,” ASD(NII)/DoD CIO, Washington, D.C., 2011.

[101] N. Leveson, “An Improved Design Process for Complex, Control-Based Systems Using STPA
and a Conceptual Architecture,” Cambridge, MA, White Paper, 2020. [Online]. Available:
http://sunnyday.mit.edu/conceptual-architecture-final.pdf

[102] J. Annett, “Hierarchical Task Analysis,” in Handbook of cognitive task design 2, 2003, pp.
17–35.

[103] G. H. Walker, H. Gibson, N. A. Stanton, C. Baber, P. Salmon, and D. Green, “Event analysis
of systemic teamwork (EAST): a novel integration of ergonomics methods to analyse C4i
activity,” Ergonomics, vol. 49, no. 12–13, pp. 1345–1369, Oct. 2006, doi:
10.1080/00140130600612846.

[104] Department of Defense, “MIL-STD-46855A – Human Engineering Requirements for
Military Systems, Equipment, and Facilities.” DoD Standard Practice, 2011.

[105] R. R. Copeland, “An Analysis and Classification Process towards the Qualification of
Autonomous Functions in Army Aviation,” presented at the Vertical Flight Society’s 75th
Annual Forum & Technology Display, Philadelphia PA, 2019.

[106] GTRAC, “Degraded Visual Environment (DVE) Critical Task Analysis - Task 2 Final Report,”
Georgia Tech Applied Research Corporation, Atlanta, GA, Oct. 2020.

[107] Federal Aviation Administration, “Advisory Circular - AC 120-54A - Crew Resource
Management Training.” 2017. [Online]. Available:
www.faa.gov/documentLibrary/media/Advisory_Circular/AC_120-54A.pdf

[108] T. M. Longridge, “Overview of the Advanced Qualification Program,” Proc. Hum. Factors
Ergon. Soc. Annu. Meet., vol. 41, no. 2, pp. 898–901, Oct. 1997, doi:
10.1177/107118139704100240.

[109] M. Feary, “A First Look at the Evolution of Flight Crew Requirements,” p. 11.

[110] K. Wasson, N. Neogi, M. Graydon, J. Maddalon, P. Miner, and G. F. McCormick, “Functional
Hazard Assessment for the eVTOL Aircraft Supporting Urban Air Mobility (UAM)
Applications: Exploratory Demonstrations,” NASA Rep., p. 68, 2020.

[111] Administrative Committee 377 (AC377), “ASTM TR-1: Autonomy Design and Operations in
Aviation: Terminology and Requirements Framework.” ASTM International, Jan. 01, 2019.
doi: 10.1520/TR1-EB.

[112] B. Lascara, A. Lacher, M. DeGarmo, L. Vempati, and R. Zimmerman, “Behavioral
Competency Model for Safety Assurance of Automated Aviation Systems,” in AIAA Aviation
2019 Forum, Dallas, Texas: American Institute of Aeronautics and Astronautics, Jun. 2019.
doi: 10.2514/6.2019-3256.

[113] D. Wing, E. Chancey, M. Politowicz, and M. Ballin, Achieving Resilient In-Flight
Performance for Advanced Air Mobility through Simplified Vehicle Operations. 2020. doi:
10.2514/6.2020-2915.

[114] E. Hollnagel, “RAG-The resilience analysis grid,” in Resilience engineering in practice - A
guidebook, Farnham, UK: Ashgate, 2011, pp. 275–296.

[115] K. J. Vincente, Cognitive work analysis: Toward safe, productive, and healthy computer-
based work. CRC Press, 1999.

185

[116] A. R. Pritchett, S. Y. Kim, and K. M. Feigh, “Modeling Human–Automation Function
Allocation,” J. Cogn. Eng. Decis. Mak., vol. 8, no. 1, pp. 33–51, Mar. 2014, doi:
10.1177/1555343413490944.

[117] J. Rasmussen, A. M. Pejtersen, and L. P. Goodstein, Cognitive systems engineering. in
Wiley series in systems engineering. New York: Wiley, 1994.

[118] K. M. Feigh and A. R. Pritchett, “Requirements for Effective Function Allocation: A Critical
Review,” J. Cogn. Eng. Decis. Mak., vol. 8, no. 1, pp. 23–32, Mar. 2014, doi:
10.1177/1555343413490945.

[119] R. J. Crouser and R. Chang, “An Affordance-Based Framework for Human Computation and
Human-Computer Collaboration,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp.
2859–2868, Dec. 2012, doi: 10.1109/TVCG.2012.195.

[120] S. W. A. Dekker and D. D. Woods, “MABA-MABA or Abracadabra? Progress on Human-
Automation Co-ordination,” Cogn. Technol. Work, vol. 4, no. 4, pp. 240–244, Nov. 2002,
doi: 10.1007/s101110200022.

[121] R. J. Crouser, A. Ottley, and R. Chang, “Balancing Human and Machine Contributions in
Human Computation Systems,” in Handbook of Human Computation, P. Michelucci, Ed.,
New York, NY: Springer New York, 2013, pp. 615–623. doi: 10.1007/978-1-4614-8806-
4_48.

[122] T. B. Sheridan and W. L. Verplank, Human and computer control of undersea
teleoperators. Massachusetts Institute of Technology, Cambridge Man-Machine Systems
Lab, 1978.

[123] M. R. Endsley and D. B. Kaber, “Level of automation effects on performance, situation
awareness and workload in a dynamic control task,” Ergonomics, vol. 42, no. 3, pp. 462–
492, Mar. 1999, doi: 10.1080/001401399185595.

[124] SAE, “Taxonomy and definitions for terms related to on-road motor vehicle automated
driving systems,” Soc. Automot. Eng. -Road Autom. Veh. Stand. Comm., vol. SAE Standard
J 3016, 2014.

[125] A. R. Pritchett, K. M. Feigh, S. Y. Kim, and S. K. Kannan, “Work Models that Compute to
Describe Multiagent Concepts of Operation: Part 1,” J. Aerosp. Inf. Syst., vol. 11, no. 10, pp.
610–622, Oct. 2014, doi: 10.2514/1.I010146.

[126] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types and levels of human
interaction with automation,” IEEE Trans. Syst. Man Cybern. - Part Syst. Hum., vol. 30,
no. 3, pp. 286–297, May 2000, doi: 10.1109/3468.844354.

[127] C. A. Miller and R. Parasuraman, “Designing for Flexible Interaction Between Humans and
Automation: Delegation Interfaces for Supervisory Control,” Hum. Factors J. Hum. Factors
Ergon. Soc., vol. 49, no. 1, pp. 57–75, Feb. 2007, doi: 10.1518/001872007779598037.

[128] C. Ericson, Hazard Analysis Techniques for System Safety. John Wiley & Sons, Ltd, 2005.

[129] USAF, “Air Force System Safety Handbook.” Air Force Safety Agency, Kirtland AFB NM,
2000.

[130] G. Weinberg, An Introduction to General Systems Thinking. Dorcet House Publishing, New
York, NY, 2001.

[131] SAE, “ARP-4761: Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment.” Society of Automotive Engineers, SAE ARP4761,
SAE International, Warrendale, PA, 1996.

186

[132] FAA, “Advisory Circular AC 23.1309: System Safety Analysis and Assessment for Part 23
Airplanes.” Department of Transportation - Federal Aviation Administration, 2011.

[133] Department of Defense, “MIL-STD-882E - System Safety.” May 11, 2012.

[134] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation, prediction, and
search. MIT Press, 2000.

[135] D. M. Hausman, “Review Article: The Mathematical Theory of Causation,” Br. J. Philos. Sci.,
vol. 50, no. 1, pp. 151–162, 1999.

[136] N. G. Leveson and J. Thomas, “16-858 Introduction to Discrete Mathematics and System
Theory - Lecture Notes,” Massachusetts Institute of Technology, Cambridge MA, 2021.

[137] RTCA, “DO-178C: Software Considerations in Airborne Systems and Equipment
Certification.” Radio Technical Commission for Aeronautics, Washington DC, 2011.

[138] Standard Committee SC-147, “DO-385: Test Suite Encounter Set for Airborne Collision
Avoidance System X (ACAS X) (ACAS Xa and ACAS Xo).” RTCA Inc., Washington DC, 2018.

[139] M. Graydon, N. A. Neogi, and K. Wasson, “Guidance for Designing Safety into Urban Air
Mobility: Hazard Analysis Techniques,” in AIAA Scitech 2020 Forum, Orlando, FL:
American Institute of Aeronautics and Astronautics, Jan. 2020. doi: 10.2514/6.2020-2099.

[140] C. Belcastro, R. Newman, J. Evans, D. Klyde, L. Barr, and E. Ancel, Hazards Identification
and Analysis for Unmanned Aircraft System Operations. 2017. doi: 10.2514/6.2017-3269.

[141] A. A. Baig, R. Ruzli, and A. B. Buang, “Reliability Analysis Using Fault Tree Analysis: A
Review,” Int. J. Chem. Eng. Appl., pp. 169–173, 2013, doi: 10.7763/IJCEA.2013.V4.287.

[142] S. J. Levulis, P. R. DeLucia, and S. Y. Kim, “Effects of Touch, Voice, and Multimodal Input,
and Task Load on Multiple-UAV Monitoring Performance During Simulated Manned-
Unmanned Teaming in a Military Helicopter,” Hum. Factors, vol. 60, no. 8, pp. 1117–1129,
Dec. 2018, doi: 10.1177/0018720818788995.

[143] E. B. Johnson, A. N. Kopeikin, N. G. Leveson, and A. W. Drysdale, “Hazard Analysis for
Human Supervisory Control of Multiple Unmanned Aircraft Systems,” presented at the 56th
International Symposium on Aviation Psychology, 2021, p. 274.

[144] N. G. Leveson, “16-355 Systems Engineering for Software Intensive Systems - Lecture
Notes,” Massachusetts Institute of Technology, Cambridge MA, 2021.

[145] A. Kopeikin, A. Clare, O. Toupet, J. How, and M. Cummings, Flight Testing a
Heterogeneous Multi-UAV System with Human Supervision. 2012. doi: 10.2514/6.2012-
4825.

[146] A. N. Kopeikin, S. S. Ponda, L. B. Johnson, and J. P. How, “Dynamic Mission Planning for
Communication Control in Multiple Unmanned Aircraft Teams,” Unmanned Syst., vol. 01,
no. 01, pp. 41–58, Jul. 2013, doi: 10.1142/S2301385013500039.

[147] “New generation of drones set to revolutionize warfare,” CBS 60 Minutes, Jan. 21, 2017.
[Online]. Available: https://www.cbsnews.com/news/60-minutes-autonomous-drones-
set-to-revolutionize-military-technology/

[148] A. Kopeikin, S. Heider, D. Larkin, C. Korpela, R. Morales, and J. E. Bluman, “Unmanned
Aircraft System Swarm for Radiological and Imagery Data Collection,” in AIAA Scitech 2019
Forum, American Institute of Aeronautics and Astronautics, 2019. doi: 10.2514/6.2019-
2286.

187

[149] A. Kopeikin et al., “Designing and Flight-Testing a Swarm of Small UAS to Assist Post-
Nuclear Blast Forensics,” in 2020 International Conference on Unmanned Aircraft
Systems (ICUAS), Sep. 2020, pp. 466–472. doi: 10.1109/ICUAS48674.2020.9213863.

[150] S. Mitra, Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT Press, 2021.

[151] RTCA, “DO-333: Formal methods supplement to DO-178C.” Radio Technical Commission
for Aeronautics, Washington DC, 2011.

[152] F38 Committee, “ASTM F3269-17: Standard Practice for Methods to Safely Bound Flight
Behavior of Unmanned Aircraft Systems Containing Complex Functions,” ASTM
International. doi: 10.1520/F3269-17.

[153] D. Cofer and S. Miller, “DO-333 Certification Case Studies,” in NASA Formal Methods, in
Lecture Notes in Computer Science, vol. 8430. Cham: Springer International Publishing,
2014, pp. 1–15. doi: 10.1007/978-3-319-06200-6_1.

[154] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate, “Testing or Formal Verification:
DO-178C Alternatives and Industrial Experience,” IEEE Softw., vol. 30, no. 3, pp. 50–57,
May 2013, doi: 10.1109/MS.2013.43.

[155] B. Weyers, J. Bowen, A. Dix, and P. Palanque, Eds., The Handbook of Formal Methods in
Human-Computer Interaction. in Human–Computer Interaction Series. Cham: Springer
International Publishing, 2017. doi: 10.1007/978-3-319-51838-1.

[156] A. Degani and M. Heymann, “Formal Verification of Human-Automation Interaction,”
Hum. Factors, vol. 44, no. 1, pp. 28–43, Mar. 2002, doi: 10.1518/0018720024494838.

[157] M. L. Bolton, “Novel Developments in Formal Methods for Human Factors Engineering,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 61, no. 1, pp. 715–717, Sep. 2017, doi:
10.1177/1541931213601664.

[158] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using Formal Verification to Evaluate
Human-Automation Interaction: A Review,” IEEE Trans. Syst. Man Cybern. Syst., vol. 43,
no. 3, pp. 488–503, May 2013, doi: 10.1109/TSMCA.2012.2210406.

[159] A. J. Abbate and E. J. Bass, “Modeling Affordance Using Formal Methods,” Proc. Hum.
Factors Ergon. Soc. Annu. Meet., vol. 61, no. 1, pp. 723–727, Sep. 2017, doi:
10.1177/1541931213601666.

[160] M. Cubuktepe and U. Topcu, “Intent Prediction in Shared Control with Delayed Feedback,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 61, no. 1, pp. 733–734, Sep. 2017, doi:
10.1177/1541931213601668.

[161] F. Vicentini, M. Askarpour, M. G. Rossi, and D. Mandrioli, “Safety Assessment of
Collaborative Robotics Through Automated Formal Verification,” IEEE Trans. Robot., vol.
36, no. 1, pp. 42–61, Feb. 2020, doi: 10.1109/TRO.2019.2937471.

[162] E. J. Bass et al., “Toward a multi-method approach to formalizing human-automation
interaction and human-human communications,” in 2011 IEEE International Conference
on Systems, Man, and Cybernetics, Anchorage, AK, USA: IEEE, Oct. 2011, pp. 1817–1824.
doi: 10.1109/ICSMC.2011.6083935.

[163] C. Muñoz and A. Narkawicz, “Formal Analysis of Extended Well-Clear Boundaries for
Unmanned Aircraft,” in NASA Formal Methods, S. Rayadurgam and O. Tkachuk, Eds., in
Lecture Notes in Computer Science, vol. 9690. Cham: Springer International Publishing,
2016, pp. 221–226. doi: 10.1007/978-3-319-40648-0_17.

188

[164] A. Narkawicz, C. Munoz, and A. Dutle, “Sensor Uncertainty Mitigation and Dynamic Well
Clear Volumes in DAIDALUS,” in 2018 IEEE/AIAA 37th Digital Avionics Systems
Conference (DASC), London: IEEE, Sep. 2018, pp. 1–8. doi: 10.1109/DASC.2018.8569468.

[165] A. M. Dutle, C. A. Muñoz, A. J. Narkawicz, and R. W. Butler, “Software Validation via Model
Animation,” in Tests and Proofs, J. C. Blanchette and N. Kosmatov, Eds., in Lecture Notes
in Computer Science, vol. 9154. Cham: Springer International Publishing, 2015, pp. 92–108.
doi: 10.1007/978-3-319-21215-9_6.

[166] V. A. Carreño, “Evaluation, Analysis and Results of the DANTi Flight Test Data, the
DAIDALUS Detect and Avoid Algorithm, and the DANTi Concept for Detect and Avoid in
the Cockpit,” NASA Rep., p. 65, 2020.

[167] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “Runtime Assurance Based
On Formal Specifications,” Dep. Pap. CIS, p. 14, 1999.

[168] S. D. Young, C. Quach, K. Goebel, and J. Nowinski, “In- Time Safety Assurance Systems for
Emerging Autonomous Flight Operations,” in 2018 IEEE/AIAA 37th Digital Avionics
Systems Conference (DASC), Sep. 2018, pp. 1–10. doi: 10.1109/DASC.2018.8569689.

[169] D. E. Swihart et al., “Automatic Ground Collision Avoidance System design, integration, &
flight test,” IEEE Aerosp. Electron. Syst. Mag., vol. 26, no. 5, pp. 4–11, May 2011, doi:
10.1109/MAES.2011.5871385.

[170] J. M. Wing, “A specifier’s introduction to formal methods,” Computer, vol. 23, no. 9, pp. 8–
22, Sep. 1990, doi: 10.1109/2.58215.

[171] R. A. De Millo, R. J. Lipton, and A. J. Perlis, “Social processes and proofs of theorems and
programs,” Commun. ACM, vol. 22, no. 5, pp. 271–280, May 1979, doi:
10.1145/359104.359106.

[172] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12,
no. 10, pp. 576–580, Oct. 1969, doi: 10.1145/363235.363259.

[173] US Army, “Army Regulation AR 70-62: Airworthiness of Aircraft Systems.” May 11, 2016.

[174] N. G. Leveson, “White Paper on the Use of Safety Cases in Certification and Regulation.”
2012. [Online]. Available: http://sunnyday.mit.edu/SafetyCases.pdf

[175] N. G. Leveson, “White Paper on Limitations of Safety Assurance and Goal Structuring
Notation (GSN).” 2012. [Online]. Available: http://sunnyday.mit.edu/safety-assurance.pdf

[176] S. Cook, A. Dietrich, L. Hook, and A. Lacher, “Promoting Autonomy Design and Operations
in Aviation,” in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), Sep.
2019, pp. 1–9. doi: 10.1109/DASC43569.2019.9081809.

[177] S. Cook, A. Dietrich, L. Hook, W. Ryan, and D. M. Stevens, “Advancing Autonomy in
Aviation: A Holistic Approach,” in 2020 AIAA/IEEE 39th Digital Avionics Systems
Conference (DASC), San Antonio, TX, USA: IEEE, Oct. 2020, pp. 1–8. doi:
10.1109/DASC50938.2020.9256568.

[178] FAA, “Certificates of Waiver or Authorization (COA).”
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/systemop
s/aaim/organizations/uas/coa

[179] M. Aust, E. Pennington, and W. Young, “STPA in Agility Prime,” presented at the STAMP
Conference, Massachusetts Institute of Technology, Cambridge MA, Jun. 2021. [Online].
Available: http://psas.scripts.mit.edu/home/wp-content/uploads/2021/06/2021-06-29-
1210__Aust.pdf

189

[180] “System Wide Safety Project – Assuring Increasingly Autonomous Systems with Non-
Traditional Human Machine Roles,” NASA Langley Research Center, Oct. 05, 2020.

[181] N. Leveson, “Healthcare Safety Research Grant Proposal.” 2022.

[182] N. Leveson, “The Drawbacks in Using The Term ‘System of Systems,’” Biomed. Instrum.
Technol., vol. 47, no. 2, pp. 115–118, Apr. 2013, doi: 10.2345/0899-8205-47.2.115.

[183] P. Checkland, Systems Thinking, Systems Practice. Wiley, 1999.

[184] Y. Zhang, C. Dong, W. Guo, J. Dai, and Z. Zhao, “Systems theoretic accident model and
process (STAMP): A literature review,” Saf. Sci., p. 105596, Nov. 2021, doi:
10.1016/j.ssci.2021.105596.

[185] J. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World.
Massachusetts Institute of Technology, Cambridge MA: McGraw-Hill Companies Inc.,
2000.

[186] C. F. Kurtz and D. J. Snowden, “The new dynamics of strategy: Sense-making in a complex
and complicated world,” IBM Syst. J., vol. 42, p. 22, 2003.

[187] W. E. Young, “Systems-Theoretic Security Engineering Analysis,” PhD Dissertation,
Massachusetts Institute of Technology, Cambridge, MA, 2016.

[188] D. R. Montes, “Using STPA to inform developmental product testing,” PhD Dissertation,
Massachusetts Institute of Technology, 2016.

[189] M. E. France, “STPA - Engineering for Humans,” Masters Thesis, Massachusetts Institute
of Technology, Cambridge, MA, 2017.

[190] D. S. Castilho, “Active STPA: Integration of Hazard Analysis into a Safety Management
System Framework,” PhD Dissertation, Massachusetts Institute of Technology, Cambridge,
MA, 2019.

[191] K. E. Johnson, “Systems-Theoretic Safety Analyses Extended for Coordination,” PhD
Dissertation, Massachusetts Institute of Technology, Cambridge, MA, 2017.

[192] D. C. Horney, “Systems-Theoretic Process Analysis and Safety-Guided Design of Military
Systems,” Masters Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2015.

[193] B. R. Abrecht, “Systems Theoretic Process Analysis Applied to an Offshore Supply Vessel
Dynamic Positioning System,” Masters Thesis, Massachusetts Institute of Technology,
Cambridge, MA, 2016.

[194] J. M. Mackovjak, “Systems Theoretic Accident Analysis of an Offshore Supply Vessel
Collision,” Masters Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2016.

[195] N. A. Peper, “Systems Thinking Applied to Automation and Workplace Safety,” Masters
Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2017.

[196] B. Wong, “A STAMP Model of the Oberlingen Aircraft Collision Accident,” Masters Thesis,
Massachusetts Institute of Technology, Cambridge, MA, 2004.

[197] C. Perrow, Normal Accidents: Living with High Risk Technologies. Princeton University
Press, 1984.

[198] T. A. Saurin and R. Patriarca, “A taxonomy of interactions in socio-technical systems: A
functional perspective,” Appl. Ergon., vol. 82, p. 102980, Jan. 2020, doi:
10.1016/j.apergo.2019.102980.

190

[199] H. V. D. Parunak, S. Brueckner, M. Fleischner, and J. J. Odell, “A Design Taxonomy of Multi-
Agent Interactions,” in Agent-oriented software engineering IV: 4th international
workshop, AOSE., P. Giorgini, J. P. Müller, and J. J. Odell, Eds., New York: Springer, 2004,
pp. 132–146.

[200] A. Espinosa, J. Lerch, and R. Kraut, “Explicit vs. Implicit Coordination Mechanisms and
Task Dependencies: One Size Does Not Fit All,” in Team Cognition: Process and
Performance at the Inter- and Intro-Indivdual Level, 2002.

[201] J. Leplat, “Occupational accident research and systems approach,” J. Occup. Accid., vol. 6,
no. 1–3, pp. 77–89, Sep. 1984, doi: 10.1016/0376-6349(84)90036-1.

[202] SC-147, “DO-386: Minimum Operational Performance Standards for Airborne Collision
Avoidance System Xu (ACAS Xu).” RTCA Inc., Washington DC, 2020.

[203] J. Thomas, L. Leveson Nancy G., N. Ishimama, M. Katahira, N. Hoshino, and K. Kakimoto,
“STAMP Accident Model of HITOMI and Expansion to Future Safety Culture,” presented at
the STAMP Workshop, Massachusetts Institute of Technology, Cambridge MA, 2017.
[Online]. Available: http://psas.scripts.mit.edu/home/wp-
content/uploads/2017/04/Thomas-A-Process-for-STPA.pdf

[204] S. Bharadwaj, S. Carr, N. Neogi, and U. Topcu, “Decentralized Control Synthesis for Air
Traffic Management in Urban Air Mobility,” IEEE Trans. Control Netw. Syst., vol. 8, no. 2,
pp. 598–608, Jun. 2021, doi: 10.1109/TCNS.2021.3059847.

[205] J. Thomas, “Extending and automating a Systems-Theoretic hazard analysis for
requirements generation and analysis.,” PhD Dissertation, Massachusetts Institute of
Technology, Cambridge, MA, 2012. doi: 10.2172/1044959.

[206] M. S. Placke, “Application of STPA to the Integration of Multipole Control Systems: A Case
Study and New Approach,” Masters Thesis, Massachusetts Institute of Technology,
Cambridge, MA, 2014.

[207] C. Fan and J. Deshmukh, “16.S398 Formal Methods for Safe Autonomous Systems - Lecture
on Specifications: Temporal Logics.” Apr. 2021.

[208] J. P. Thomas, “A New Process for Building STPA Causal Scenarios,” presented at the
STAMP Workshop, Massachusetts Institute of Technology, Cambridge MA, 2016.

[209] J. P. Thomas, “Empirical Evaluations of STPA in the Aviation Industry,” presented at the
STAMP Workshop, Massachusetts Institute of Technology, Cambridge MA, 2023.

[210] J. Thomas, “Enhancing Human Factors Analysis with STPA,” presented at the STAMP
Workshop, Massachusetts Institute of Technology, Cambridge MA, 2021.

[211] J. P. How, “16.31: Feedback Control Systems - Lecture Notes,” Massachusetts Institute of
Technology, Cambridge MA, 2011.

[212] Federal Aviation Administration, “14 CFR 91 - General Operating and Flight Rules.” 2022.
[Online]. Available: www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-91

[213] K. L. Hobbs, C. Cargal, E. Feron, and R. S. Burns, “Early Safety Analysis of Manned-
Unmanned Team System,” in 2018 AIAA Information Systems-AIAA Infotech @
Aerospace, Kissimmee, Florida: American Institute of Aeronautics and Astronautics, Jan.
2018. doi: 10.2514/6.2018-1984.

[214] K. L. Hobbs et al., “Systems Theoretic Process Analysis of a Run Time Assured Neural
Network Control System.” arXiv, Sep. 01, 2022. [Online]. Available:
http://arxiv.org/abs/2209.00552

191

[215] IEEE, “ISO/IEC/IEEE 29148: Systems and Software Engineering - Life Cycle Processes -
Requirements Engineering.” 2018.

[216] DoD, “DoD Instruction 5000.85: Major Capability Acquisition.” Office of the Under
Secretary of Defense for Acquisition and Sustainment, 2021.

[217] N. G. Leveson and J. D. Reese, “Sample TCAS Intent Specification.” 1999. [Online].
Available: http://sunnyday.mit.edu/papers/tcas-intent.pdf

[218] P. Stanley and V. A. Barraquero, “STPA Evaluation of Potential Conflicts Between Large
Commercial Air Traffic and Small Uncrewed Aircraft Systems in the Terminal Airspace,”
presented at the STAMP Workshop, Massachusetts Institute of Technology, Cambridge MA,
2021.

[219] VWay Corporation, “VisualPro SA STPA,” 2023.
https://eng.vway.co.kr/solutions/visualpro-stpa/

[220] Capella, “Arcadia Method - A Comprehensive Methodological and Tool-Supported Model-
Based Engineering Guidance,” 2023. www.eclipse.org/capella/arcadia.html

[221] “NextGen Implementation Plan 2018-19.” Federal Aviation Administration, 2018. [Online].
Available: www.faa.gov/nextgen/media/NextGen_Implementation_Plan-2018-19.pdf

[222] FAA, “Time−Based Flow Management (TBFM).”
www.faa.gov/air_traffic/publications/atpubs/foa_html/chap18_section_25.html
(accessed Aug. 19, 2022).

[223] M. Ekal, K. Albee, B. Doerr, P. Roque, R. Ventura, and R. Linares, “MIT/IST/KTH
ReSWARM,” presented at the NASA Spheres / Astrobee Working Group, 2022. [Online].
Available: www.nasa.gov/content/spheresastrobee-working-group

[224] M. G. Bualat, T. Smith, E. E. Smith, T. Fong, and D. Wheeler, “Astrobee: A New Tool for ISS
Operations,” in 2018 SpaceOps Conference, Marseille, France: American Institute of
Aeronautics and Astronautics, May 2018. doi: 10.2514/6.2018-2517.

[225] C. H. Fleming and N. G. Leveson, “Improving Hazard Analysis and Certification of
Integrated Modular Avionics,” J. Aerosp. Inf. Syst., vol. 11, no. 6, pp. 397–411, Jun. 2014,
doi: 10.2514/1.I010164.

[226] S. L. Estes, K. J. Burns, J. R. Helleberg, K. M. Long, M. E. Pollack, and J. L. Stein, “Digital
Copilot: Cognitive Assistance for Pilots,” presented at the Association for the Advancement
of Artificial Intelligence - Fall Series, 2016, pp. 141–144.

192

Appendix 1: Categorization Data for Set of

Systems Analyzed

Table A1-2 shows categorization data of major controller interactions for systems sampled from
the literature reviewed for this work. Each interaction is categorized according to the taxonomy
of structure of interactions between controllers, and for the presence of the collaborative control
dynamics described in Chapter 3. The legend in Table A1-1 explains the meaning of symbols in
the data.

Table A1-1. Legend for Categorization Data

Header Symbol and Meaning

Fielded 0: system is not fielded (still in various development stages)
1: system is fielded

Type of Controllers HH: Human – Human Interaction
HM: Human – Machine Interaction
MM: Machine – Machine Interaction
SS: Higher-level abstractions with combination of above

Hierarchical Structure H: Hierarchal Control Interaction
P: Peer Interaction
HP: Mix of Hierarchal and Peer Interactions

Behavioral Intent 1: Primarily cooperative in intent
2: Primarily unknown and/or mixed-motive intent
3: Primarily adversarial in intent

Connectivity G: Controllers globally connected
L: Controllers locally connected
N: Controllers not connected
Multiple: different modes of interaction can exist

Information Exchange A: Active (deliberate content-based messaging)
P: Passive (observation only)
N: No Information Exchange
Multiple: different modes or multiple simultaneous types of exchanges

Roles & Responsibilities P: Prescribed (control boundaries delineated to avoid overlap per mode)
D: Dynamic (control boundaries overlap coordinated during execution)
A: Ad-hoc (control boundaries not predefined, determined in execution)

Collaborative Control
Dynamics

0: Dynamic not exhibited
1: Dynamic exhibited
0.5: Dynamic may or may not be exhibited in different system versions

193

Table A1-2. Categorization Data for Interactions in Systems Sampled

 # System (Interacting Entities)

Structural Dimensions of

Controller Interaction

Collaborative Control

Dynamics

 F

ie
ld

ed

T
y
p

e
C

o
n

tr
o
ll

er
s

H
ie

ra
rc

h
a
l

S
tr

u
ct

B
eh

a
v
io

r
a
l

In
te

n
t

C
o
n

n
ec

ti
v
it

y

In
fo

 E
x
ch

a
n

g
e

R
o
le

s
&

 R
es

p

D
ev

 O
ri

g
in

s

C
o
g
n

it
iv

e
A

li
g
n

m
en

t

L
a
te

ra
l

C
o
o
rd

M
u

tu
a
l

C
lo

se
 L

o
o
p

S
h

a
re

d
 A

u
th

o
ri

ty

T
ra

n
sf

er
 A

u
th

o
ri

ty

D
y
n

a
m

ic
 A

u
th

o
ri

ty

D
y
n

a
m

ic
 H

ie
ra

rc
h

y

D
y
n

 M
em

b
er

sh
ip

D
y
n

 C
o
n

n
ec

ti
v
it

y

1 Cockpit Situation Display (Pilot – CSD) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

2 Enhanced Vision Sys (Pilot - EVS) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

3 Synthetic Vision Sys (Pilot - SVS) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

4 Combine Vision Sys (Pilot - CVS) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

5 External Vision Sys (Pilot - XVS) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

6 Heads Up/Mounted Display (Pilot - HUD/HMD) [23] 1 HM H 1 L A P 2 0 0 0 0 0 0 0 0 0

7 Ground Prox Warning Sys (Pilot - GPWS) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

8 Terrain Awareness & Warning Sys (Pilot - TAWS) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

9 Cockpit Display of Traffic Info (Pilot–Display) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

10 Auto Dependent Surv Broadcast In (Pilot - ADS-B In) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 1

11 NextGen SURF-IA (Pilot – Display) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

12 RNAV & RNP Display Tools (Pilot – Tool) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

13 NextGen On-Demand NAS Info (Human – Tool) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

14 Overrun Protection Sys (ROPS) (Pilot – Tool) [23] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

15 Emergency Landing Planner (Pilot – ELP) [23] 0 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

16 Electronic Centralized A/C Monitor (ECAM) [23] 1 HM H 1 G A P 1 0 0 0 0 0 0 0 0 0

17 Auto Ground Collision Avoidance Sys (Pilot – AGCAS) [23] 1 HM H 1 G A P 2 0 0 0 1 1 0 0 0 0

18 NextGen Collaborative ATM (ATC-Dispatchers) [221] 1 HH P 1 G A P 2 1 1 1 1 0 0 0 1 1

19 NextGen Collab ATM (ATC or Dispatchers - Pilot) [221] 0 HH H 1 L A P 2 1 0 1 1 0 0 0 1 1

20 NextGen Collab ATM (Humans – Decision Tool) [221] 0 HM H 1 G A P 2 0 0 0 0 0 0 0 1 1

21 Time-Based Flow Management (ATC - ATC) [222] 1 HH H 1 L A P 2 1 1 1 1 1 0 0 1 1

22 Time-Based Flow Management (ATC - Decision Tool) [222] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 1 1

23 Traffic Collision Avoid Sys (TCAS Aircraft - TCAS A/C) [138] 1 MM HP 1 L A D 2 1 1 1 1 0 1 0 1 1

24 Traffic Collision Avoid Sys (TCAS – Flight Crew) [138] 1 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

25 Traffic Collision Avoid Sys (TCAS – ATC) [138] 1 MH P 1 G A P 2 0 1 0 1 1 0 0 1 1

26 ACAS-X Active & Passive Coord (Peer-Peer Aircraft) [202] 0 MM HP 1 L A D 2 1 1 1 1 0 1 0 1 1

27 ACAS-X Responsive Coord (Senior - Junior Aircraft) [202] 0 MM HP 1 L A D 3 1 1 1 1 0 1 0 1 1

28 ACAS-X (ACAS Aircraft – Non-ACAS Aircraft) [202] 0 MM P 12 L P D 3 0 1 0 1 0 0 0 1 1

29 ACAS-X (ACAS – Flight Crew, ACAS - Autopilot) [202] 0 HM H 1 G A P 2 0 0 0 0 0 0 0 0 0

30 ACAS-X (ACAS – ATC) [202] 0 HM P 1 G A P 2 0 1 0 1 1 0 0 1 1

31 UAS Detect And Avoid (Operator - DAA) [191] 0 HM H 1 G A P 1,2 0 0 0 0 0 0 0 0 0

32 UAS Detect And Avoid (UAS - other Aircraft) [191] 0 SS HP 12 L A D 3 1 1 1 1 0 1 0 1 1

33 UAS Detect And Avoid (ATC - Traffic) [191] 0 SS H 1 L AP P 2 1 0 0 0 0 0 0 1 1

34 Patriot Friendly Fire (Aircraft - Patriot Battery) [191] 1 SS P 1 L AP P 3 1 1 0 0 0 0 0 1 1

35 Patriot Friendly Fire (JFAC Air Cmd – JFLC Land Cmd) [191] 1 HH P 1 L AP D 2 1 1 1 1 0 1 0 0 1

36 “Playbook” (Human - Automation) [127] 0 HM H 1 GL A D 2 1 0 0 1 1 1 0 0 0

37 Common Autopilot or Auto-throttle (Pilot – Auto) 1 HM H 1 G AP P 1 0 0 0 1 1 0 0 0 0

38 Full Authority Digital Engine Control (Pilot - FADEC) 1 HM H 1 G A P 1 0 0 0 0 0 0 0 0 0

39 Future Multi-Rotor Flight Control System (Pilot - FCS) 0 HM H 1 G AP P 1 0 0 0 0 0 0 0 0 0

40 Terrain Following Radar (Pilot - TFR) 1 HM H 1 G AP P 1 0 0 0 1 1 0 0 0 0

41 Airliner Autoland (Pilot - Autoland) 1 HM H 1 G AP P 1 0 0 0 1 1 0 0 0 0

194

 # System (Interacting Entities)

Structural Dimensions of

Controller Interaction

Collaborative Control

Dynamics

 F

ie
ld

ed

T
y
p

e
C

o
n

tr
o
ll

er
s

H
ie

ra
rc

h
a
l

S
tr

u
ct

B
eh

a
v
io

r
a
l

In
te

n
t

C
o
n

n
ec

ti
v
it

y

In
fo

 E
x
ch

a
n

g
e

R
o
le

s
&

 R
es

p

D
ev

 O
ri

g
in

s

C
o
g
n

it
iv

e
A

li
g
n

m
en

t

L
a
te

ra
l

C
o
o
rd

M
u

tu
a
l

C
lo

se
 L

o
o
p

S
h

a
re

d
 A

u
th

o
ri

ty

T
ra

n
sf

er
 A

u
th

o
ri

ty

D
y
n

a
m

ic
 A

u
th

o
ri

ty

D
y
n

a
m

ic
 H

ie
ra

rc
h

y

D
y
n

 M
em

b
er

sh
ip

D
y
n

 C
o
n

n
ec

ti
v
it

y

42 Triple Modular Avionics on Adv Aircraft (Modules) 1 MM P 1 G A P 1 0 0 0 1 0 0 0 0 0

43 Emergency Descent Mode (Pilot - EDM) [Garmin Ltd.] 1 HM H 1 G AP P 2 0 0 0 1 1 0 0 0 1

44 Electronic Stability and Protection (Pilot - ESP) [Garmin Ltd.] 1 HM H 1 G AP P 2 0 0 0 1 1 0 0 0 1

45 Emergency Autoland (Human – Autoland) [Garmin Ltd.] 1 HM H 1 G AP P 2 0 0 0 1 1 0 0 0 1

46 Brake Control Unit (Flight Crew - BSCU) [50] 1 HM H 1 G AP P 2 0 0 0 1 1 0 0 0 0

47 Common Single UAS Op (Operator - Autopilot) 1 HM H 1 GL AP P 1 0 0 0 1 1 0 0 0 1

48 Common Single UAS Op (Operator – Operator Team) 1 HH P 1 G AP D 2 1 1 1 1 1 1 1 1 1

49 Communications Denied UAS (Operator - Autopilot) 0 HM H 1 LN AN P 1 0 0 0 1 1 0 0 0 1

50 Auto Track Cinematography UAS (Operator - UAS) [Skydio] 1 HM H 1 L AP P 1,3,4 1 1 1 1 0 0 0 0 1

51 Multi-Munition (Munitions) [26] 0 MM P 1 L A D 1 1 1 1 1 0 1 0 1 1

52 Multi-Munition (Operator - Munitions) [26] 0 HM H 1 L A D 1 0 0 1 1 1 0 1 1

53 Common Distributed Multi-UAS (Operator - UAS) [24], [145] 0 HM H 1 L A D 1 1 0 0 1 1 1 0 1 1

54 Common Distributed Multi-UAS (UASs) [24], [145] 0 MM P 1 G A D 1 1 1 1 1 0 1 0 1 1

55 HIPC Multi-UAS Distributed Control (UASs) [83] 0 MM P 1 L A D 1 1 1 1 1 0 1 0 1 1

56 USMA Service Academy Swarm Challenge (UASs) [148] 0 MM P 1 G A D 1 1 1 1 1 1 1 0 1 1

57 Multi-UAS Hazard Analysis (UASs) [143] 0 MM P 1 L A D 1 0.5 0.5 0.5 1 0 1 0 1 1

58 Leader-Subordinate Multi-UAS Control (UASs) [91] 0 MM HP 1 L A D 1 0.5 0.5 0.5 1 1 1 0.5 1 1

59 Multi-UAS Light Shows (UASs) 1 MM P 1 L N P 1 0 0 0 0 0 0 0 1 1

60 Multi-UAS Light Shows (Operator - UAS) 1 HM H 1 L A P 1 0 0 0 0 0 0 0 1 1

61 UAS-UGV Teaming (UAS – UGV) 0 MM P 1 G A P 1 1 1 0.5 1 0 0 0 0 1

62 Human Piloted Flight Formation 1 HH HP 1 G AP P 1 1 1 1 1 1 0 0 1 1

63 Manned Unmanned Teaming (MUM-T) (UASs) [53] 0 MM P 1 L A D - 1 1 1 1 1 1 - 1 1

64 MUM-T (Team Lead - GCS) [53] 0 HH P 1 GL A D 2 1 1 1 1 1 1 0.5 1 1

65 MUM-T (TL or GCS - UAS) [53] 0 HM HP 1 L A P 1 1 1 1 1 0.5 1 0 1 1

66 MUM-T (Neural Net Control Sys – Runtime Assurance) [214] 0 MM P 1 G AP P 2 1 1 1 1 1 0 0 0 0

67 MUM-T (Safety Pilot – Automated Formation Control) [214] 0 HM H 1 G AP P 1 - 0 - 1 1 0 0 0 0

68 Tethered UAS (PIC - UAS) [192] 0 HM HP 1 L A P 1 1 1 1 1 0 0 0 1 1

69 Tethered UAS (UASs) [192] 0 MM P 1 G A D 1 1 1 1 1 0 1 0.5 1 1

70 Satellite Constellation (Satellites) [18] 1 MM P 1 N N P 1 0 0 0 0 0 0 0 1 1

71 Satellite Constellation (Orbital - Payload Teams) [18] 1 HH P 1 G A P 1 1 1 1 1 0 0 0 0 -

72 Satellite Constellation (Operator - Satellite) [18] 1 HM H 1 L A P 1 0 0 0 0 0 0 0 1 1

73 Distributed Satellite Constellation (Satellites) [18] 0 MM P 1 L A P 1 1 1 1 1 1 1 0 1 1

74 Distributed Formation Control Astrobee [223] 0 MM P 1 G AP P 1 1 1 1 1 0 1 0 0 0

75 Astrobee ConOps(Human-Auto) [224] 1 HM H 1 L AP P 1 0 0 0 0 0 0 0 0 1

76 Combined Product Transportation Sys (Operators) [195] 0 HH P 1 G A - 1 1 1 1 1 0 - - 0 -

77 Combined Product Transportation Sys (Operator - AGV) [195] 0 HM H 1 L A P 1 0 0 0 0 0 0 0 0 0

78 Combined Product Transportation Sys (AGV - AGV) [195] 0 MM P 1 L P P 1 1 1 0.5 1 0 0 0 0 1

79 Supply Vessel Dynamic Positioning (Operators) [193] 0 HH P 1 L A D 2 1 1 1 1 1 1 1 1 1

80 Supply Vessel Dynamic Positioning (AGV-AGV) [193] 0 MM P 1 L AP D 1 1 1 1 1 0 1 0 1 1

81 Supply Vessel Dynamic Positioning (Operator - AGV) [193] 0 HM H 1 G AP P 1 0 0 0 1 1 0 0 0 0

82 Airliner Flight Crew (Pilots) [190] 1 HH HP 1 G AP D 2 1 1 1 1 1 1 1 1 0

83 Integrated Modular Avionics (Flap - Thrust) [225] 0 MM P 1 G A P 2 1 1 0 0 0 0 0 0 0

195

 # System (Interacting Entities)

Structural Dimensions of

Controller Interaction

Collaborative Control

Dynamics

 F

ie
ld

ed

T
y
p

e
C

o
n

tr
o
ll

er
s

H
ie

ra
rc

h
a
l

S
tr

u
ct

B
eh

a
v
io

r
a
l

In
te

n
t

C
o
n

n
ec

ti
v
it

y

In
fo

 E
x
ch

a
n

g
e

R
o
le

s
&

 R
es

p

D
ev

 O
ri

g
in

s

C
o
g
n

it
iv

e
A

li
g
n

m
en

t

L
a
te

ra
l

C
o
o
rd

M
u

tu
a
l

C
lo

se
 L

o
o
p

S
h

a
re

d
 A

u
th

o
ri

ty

T
ra

n
sf

er
 A

u
th

o
ri

ty

D
y
n

a
m

ic
 A

u
th

o
ri

ty

D
y
n

a
m

ic
 H

ie
ra

rc
h

y

D
y
n

 M
em

b
er

sh
ip

D
y
n

 C
o
n

n
ec

ti
v
it

y

84 In-Trail Procedure (ITP) (Aircraft-Aircraft) [188] 1 SS P 2 L A P 3 0 1 0 0 0 0 0 1 1

85 In-Trail Procedure (ITP) (ATC Controllers) [188] 1 HH P 1 L AP D 2 1 1 1 1 1 1 0 0 1

86 NASA & JAXA Coordination (2 Organizations) [50] 1 HH P 1 L A P 2 1 1 0 0 0 0 0 0 1

87 1994 Friendly Fire (AWACS controllers) [38] 1 HH P 1 L AP D 1 1 1 1 1 1 1 0 0 1

88 Embedded Vehicle Software Subsys (Subsystems) [206] 1 MM P 1 G AP P 2,3 0 0 0 1 0 0 0 0 0

89 Digital Copilot [Collaborative Checklist] (Pilot – Auto) [22] 0 HM HP 1 G AP D 1 1 1 1 1 1 1 1 0 0

90 Digital Copilot [Cognitive Assistance] (Pilot – Auto) [226] 0 HM H 1 G A P 2 1 0 0 0 0 0 0 0 0

91 Pilot Assistant [NATO] [41] 0 HM H 1 G A D 1,2 1 0 0 0 0 0 0.5 0 0

92 Reduced Crew Ops Test (Pilot - Remote Pilot) [5] 0 HH P 1 G AP D 2 1 1 1 0.5 0.5 0.5 - 1 1

93 Reduced Crew Ops Test (Human - Autonomy) [5] 0 HM H 1 G A P 2 1 0 0 1 1 0 0 0 0

94 Co-Active Design Model (TBD - TBD) [2] 0 any P 1 GLN AP PD 1 1 1 1 1 1 0.5 0 0 0.5

95 UAM Simplified Vehicle Ops (Human - Autonomy) [8], [10] 0 HM HP 1 G AP D 1 1 1 0.5 1 1 1 1 0 0

96 UAM Remote Supervisory Ops (Humans) [8] 0 HH P 1 - A D 2 1 1 - 1 1 1 - 1 1

97 UAM Remote Supervisory Ops (Human - Auto) [8] 0 HM H 1 G A D 1 1 0 0 0 0 0 0 1 1

98 UAM Remote Supervisory Ops (Machines) [8] 0 MM P 2 N N P 2 0 0 0 0 0 0 0 1 0

99 UAM Distributed ATM Concept (ATM-ATM) [204] 0 MM P 1 L A D 1 1 1 1 1 1 1 0 1 1

100 UAM Distributed ATM Concept (ATM-UAM) [204] 0 MM H 1 L AP D 1 1 0 0 0 0 0 0 1 1

101 Mosaic of Warfare (Overall Concept) [32] 0 HM HP 1 L A D 1-4 1 1 1 1 1 1 1 1 1

196

Appendix 2: MUM-T Case Study Unsafe

Combination of Control Actions (UCCAs)

Abstraction 2a – Combinations of Control Actions Provided by the Team

Abstraction 2a – Type 1-2: Team provides / does not provide control actions

Table A2-1. Abstraction 2a - Type 1-2 (Provide / Not Provide Command) – Abstracted

id team team sid same context relevant

1 ¬fix ¬{fire,search} 1 0 when there are mission tasks to execute [H3]

2,3

2 fix ¬{fire,search} 2 0 when target will compromise mission if fixed
but not fired on [H3]

2

3 ¬fix {fire,search} 3 0 when target fired-on must be fixed [H3,H5]

2

4 fix {fire,search} 4 0 when fixed target is different than target
fired-on [H3,H5]

2

5 ¬fire ¬{fix,search} 0 1 when there are mission tasks to execute [H3]

2,3

6 fire ¬{fix,search} 0 3 when target fired-on must be fixed [H3,H5]

2

7 ¬fire {fix,search} 0 2 when target will compromise mission if fixed
but not fired on [H3]

2

8 fire {fix,search} 0 4 when fixed target is different than target
fired-on [H3,H5]

2

9 ¬search ¬{fix,fire} 0 1 when there are mission tasks to execute [H3]

2,3

10 search ¬{fix,fire} 5 0 when engaging a known target is higher
priority than searching [H3]

1,2

11 ¬search {fix,fire} 6 0 when searching for another target has higher
priority [H3]

1,2

12 search {fix,fire} 0 0

197

Table A2-2. Abstraction 2a - Type 1-2 (Provide / Not Provide Command) – Refined

Id sid ssid TL TL UAS1 UAS1 UAS1 UASn UASn UASn priority context*

1 1 1 ¬fire ¬search ¬fix ¬fire ¬search ¬fix ¬fire ¬search 1 when…

2 2 1 ¬fire fix ¬fire ¬fix ¬fire 1 when…

3 3 1 fire ¬fix ¬fire ¬fix ¬fire 1 when…

3 3 2 ¬fire ¬fix fire ¬fix ¬fire 1 when…

4 4 1 fire fix ¬fire ¬fix ¬fire 1 when…

4 4 5 ¬fire fix ¬fire ¬fix fire 1 when…

10 5 1 ¬fire search ¬fix ¬fire ¬search ¬fix ¬fire ¬search 1 when…

10 5 2 ¬fire ¬search ¬fix ¬fire search ¬fix ¬fire ¬search 1 when…

11 6 1 fire ¬search fix ¬fire ¬search ¬fix ¬fire ¬search 1 when…

11 6 3 ¬fire ¬search fix ¬fire ¬search ¬fix fire ¬search 1 when…

11 6 5 ¬fire ¬search fix fire ¬search ¬fix ¬fire ¬search 1 when…

1 1 2 ¬fire ¬search fix ¬fire ¬search fix ¬fire ¬search 2 when…

2 2 2 ¬fire fix ¬fire fix ¬fire 2 when…

3 3 4 fire fix ¬fire fix ¬fire 2 when…

3 3 5 ¬fire fix fire fix ¬fire 2 when…

4 4 4 fire fix ¬fire fix ¬fire 2 when…

4 4 7 ¬fire fix fire fix ¬fire 2 when…

10 5 4 ¬fire search fix ¬fire ¬search fix ¬fire ¬search 2 when…

11 6 2 fire ¬search fix ¬fire ¬search fix ¬fire ¬search 2 when…

3 3 3 fire ¬fix fire ¬fix ¬fire 3 when…

3 3 6 fire fix fire fix ¬fire 3 when…

3 3 7 ¬fire ¬fix fire ¬fix fire 3 when…

3 3 8 fire ¬fix fire ¬fix fire 3 when…

3 3 9 ¬fire fix fire fix fire 3 when…

3 3 10 fire fix fire fix fire 3 when…

4 4 3 fire fix fire ¬fix ¬fire 3 when…

4 4 6 fire fix ¬fire ¬fix fire 3 when…

4 4 8 fire fix fire fix ¬fire 3 when…

4 4 9 ¬fire fix fire ¬fix fire 3 when…

4 4 10 fire fix fire ¬fix fire 3 when…

4 4 11 ¬fire fix fire fix fire 3 when…

4 4 12 fire fix fire fix fire 3 when…

10 5 3 ¬fire search ¬fix ¬fire search ¬fix ¬fire ¬search 3 when…

10 5 5 ¬fire ¬search ¬fix ¬fire search ¬fix ¬fire search 3 when…

10 5 6 ¬fire search ¬fix ¬fire search ¬fix ¬fire search 3 when…

11 6 4 fire ¬search fix ¬fire ¬search ¬fix fire ¬search 3 when…

11 6 6 fire ¬search fix fire ¬search ¬fix ¬fire ¬search 3 when…

11 6 7 ¬fire ¬search fix fire ¬search ¬fix fire ¬search 3 when…

11 6 8 fire ¬search fix fire ¬search ¬fix fire ¬search 3 when…

4 4 2 ¬fire fix fire ¬fix ¬fire 4 when…

* Context removed for legibility of the table, but traceable to the abstracted Table

198

Abstraction 2a – Type 3-4: Control actions start / end too early / too late relative to one
another

Table A2-3. Abstraction 2a - Type 3-4 (Start / End Command too Early / Late) – Abstracted

id Team ... then ... sid same context relevant

13 S(fix) S(fire,search) 0 0
14 S(fix) E(fire,search) 0 0
15 E(fix) S(fire,search) 1 0 when target fired on must be fixed [H3,H5] 2

16 E(fix) E(fire,search) 0 0
17 S(fire) S(fix,search) 2 0 when target fired on must be fixed [H3,H5] 1

18 S(fire) E(fix,search) 0 0
19 E(fire) S(fix,search) 0 0
20 E(fire) E(fix,search) 0 0
21 S(search) S(fix,fire) 0 0
22 S(search) E(fix,fire) 0 0
23 E(search) S(fix,fire) 0 0
24 E(search) E(fix,fire) 0 0
25 S(fire,search) S(fix) 0 2 when target fired on must be fixed [H3,H5] 2

26 S(fire,search) E(fix) 0 0
27 E(fire,search) S(fix) 0 0
28 E(fire,search) E(fix) 0 0
29 S(fix,search) S(fire) 0 0
30 S(fix,search) E(fire) 0 0
31 E(fix,search) S(fire) 0 1 when target fired on must be fixed [H3,H5] 1

32 E(fix,search) E(fire) 0 0
33 S(fix,fire) S(search) 0 0
34 S(fix,fire) E(search) 0 0
35 E(fix,fire) S(search) 0 0
36 E(fix,fire) E(search) 0 0

Table A2-4. Abstraction 2a - Type 3-4 (Start / End Command too Early / Late) – Refined

id sid ssid TL UAS1 UAS1 UASn priority Context*

15 1 1 F S(fire) E(fix) 1 when…

15 1 3 E(fix) F S(fire) 1 when…

17 2 1 S(fire) F S(fix) 1 when…

17 2 3 F S(fix) S(fire) 1 when…

15 1 2 E(fix) F S(fire) 4 when…

17 2 2 F S(fix) S(fire) 4 when…

* Context removed for legibility of the table, but traceable to the abstracted Table

199

Abstraction 2b – Combinations of Controllers Issuing Common Control
Action

Abstraction 2b – Type 1-2: Controllers provide / don’t provide control actions

Table A2-5. Abstraction 2b - Type 1-2 (Provide / Not Provide Command) – Abstracted

id Ci Cj(s) sid same context

37 ¬fix ¬fix 1 0 when there is a priority target to engage and a teammate
able to fire [H3]

38 fix ¬fix 2 0 when tasked entity is not capable and another is [H3]

39 fix fix 3 0 when that creates mutual interference [H1,H3]

40 ¬fire ¬fire 4 0 when there is a priority target to engage and a teammate
able to fix [H3]

41 fire ¬fire 5 0 when tasked entity is not capable and another is [H3]

42 fire fire 6 0 when that creates excessive effects [H3,H5]

43 ¬search ¬search 7 0 when no targets have been found [H3]

44 search ¬search 8 0 when tasked entity is the only one capable for higher
priority task and teammate can search [H3]

45 search search 0 0

Table A2-6. Abstraction 2b - Type 1-2 (Provide / Not Provide Command) – Refined

id sid ssid TL TL UAS1 UAS1 UAS1 UASn UASn UASn pri context*

37 1 1

¬fix

¬fix

1 when…

38 2 1

fix

¬fix

1 when…

39 3 1

fix

fix

1 when…

40 4 1 ¬fire

¬fire

¬fire

1 when…

41 5 1 fire

¬fire

¬fire

1 when…

41 5 2 ¬fire

fire

¬fire

1 when…

42 6 1 fire

fire

¬fire

1 when…

42 6 2 ¬fire

fire

fire

1 when…

43 7 1

¬search

¬search

¬search 1 when…

44 8 1

search

¬search

¬search 1 when…

44 8 2

¬search

search

¬search 1 when…

42 6 3 fire

fire

fire

3 when…

* Context removed for legibility of the table, but traceable to the Team-Level Table

200

Abstraction 2b – Type 3-4: Controllers start / end providing control actions too early /
too late relative to one another

Table A2-7. Abstraction 2b - Type 3-4 (Start / End Command too Early / Late) – Abstracted

id Ci ... then Cj ... sid same context

46 S(fix) S(fix) 0 0
47 S(fix) E(fix) 1 0 when that creates mutual interference [H1,H3]

48 E(fix) S(fix) 2 0 when that creates a large gap in a fix handoff [H3]

49 E(fix) E(fix) 0 0
50 S(fire) S(fire) 0 0
51 S(fire) E(fire) 0 0 N/A: Fire Discrete Command

52 E(fire) S(fire) 0 0 N/A: Fire Discrete Command

53 E(fire) E(fire) 0 0 N/A: Fire Discrete Command

54 S(search) S(search) 0 0
55 S(search) E(search) 0 0
56 E(search) S(search) 3 0 when that creates an excessive gap in the search [H3]

57 E(search) E(search) 0 0

Table A2-8. Abstraction 2b - Type 3-4 (Start / End Command too Early / Late) – Refined

id sid ssid TL UAS1 UAS1 UASn UASn pri context*

47 1 1 F E(fix) S(fix) 1 when…

48 2 1 F S(fix) E(fix) 1 when…

56 3 1 E(search) F S(search) 1 when…

56 3 2 F S(search) E(search) 1 when…

56 3 3 F S(search) E(search) 1 when…

* Context removed for legibility of the table, but traceable to the Team-Level Table

201

Appendix 3: MUM-T Case Study - Unsafe

Causal Scenarios
The following analysis presents causal scenarios for the Manned-Unmanned Teaming case study
that are developed (1) using a process of iterative refinement and (2) in a non-linear sequence.

Iterative refinement is accomplished using the process defined in Chapter 4.3. It first develops
top-level scenarios to reason about the different potential control actions internal to the team that
relates to the output in the UCCA (Step 1). Next, each scenario is refined by systematically
exploring causal factors associated with these internal feedback control loops (Step 2) and those
related to collaborative control dynamics (Step 3). Finally, other factors are identified that relate
to unsafe control paths to the process, unsafe feedback from the process, or unsafe process
behaviors (Step 4). The refinement template defined in Figure 4.21 helps add details to these
scenarios as necessary.

Scenarios are also developed in a non-linear sequence. This means that scenarios are initially
developed to address the UCCA listed above it. However, over the course of the analysis, as
more UCCAs are analyzed and found to have similar scenarios, the original scenarios are
modified to integrate some of those variations. The modified, and more inclusive scenarios are
then also traced to those UCCAs. The intent is to consolidate multiple similar scenarios together,
make the analysis more readable, and enhance the development of design requirements.

As an example, an excerpt of Scenario S-37.1.1 for UCCA 37.1 “Ci does not fix and no other Cj
fixes when …” (see Example 1 above) is originally written as:

Initial Version - S-37.1.1 Unsafe Control Input: TL misinterprets direction from higher

authorities that the team should not fix any targets.

Several UCCAs subsequently analyzed have similar control combinations, such as UCCA 40.4
“Ci does not fire and no other Cj fires when …” and UCCA 43.7 “Ci does not search and no other
Cj searches when …”. To avoid repetition, the excerpt of S-37.1.1 above is modified to the form
below, which covers the later UCCAs. Then, the matching scenario headers under S-40.4.1 and
S-48.7.1 are traced to S-37.1.1. The following excerpt of S-37.1.1, which is not traced to any other
scenario, is then labeled as a unique scenario in the data analysis performed in Section 5.5.

Modified Version - S-37.1.1 Unsafe Control Input: TL misinterprets direction from higher

authorities that the team should not <fix, fire on, search for> any targets.

S-40.4.1 Unsafe Control Input: see S-37.1.1.

S-48.7.1 Unsafe Control Input: see S-37.1.1.

202

Abstraction 2b – Combinations of Controllers Providing Shared Control
Actions

Abstraction 2b – Type 1-2: Controllers provide / don’t provide control actions

The following are the causal scenarios associated with all Abstraction 2b – Type 1-2 UCCA. Each
high-level UCCA is analyzed together with its refined UCCAs. Scenario identification for each
UCCA starts with the following six top-level scenarios for all Type 1-2 UCCAs. These are
intended to provide focus and coverage over different possible control actions internal to the team
that could lead to the unsafe collective output.

1. Direction Not Provided (Unsafe): TL does not direct the UAS as necessary for the team to

execute safe collective control of the shared process.

2. Direction Provided (Unsafe): TL directs the UAS in a way that leads to unsafe collective

control. This includes:

a. TL directs multiple UAS to provide commands that conflict with one another.

b. TL directs the UAS to provide an incorrect command.

c. TL directs an incorrect UAS to provide a command.

3. Direction Provided (Safe) but Not Executed Properly (Unsafe): TL directs the UAS

adequately, but some of the UAS do not execute the directions properly, which leads to

unsafe collective control. This includes:

a. UAS do not execute some of the tasks provided.

b. UAS execute incorrectly some of the tasks provided.

c. Incorrect UAS execute some of the tasks provided.

4. Direction Not Provided (Safe) but Executed (Unsafe): TL adequately does not direct the

UAS to provide certain commands, but some of the UAS provide them anyways, which

leads to unsafe collective control.

5. Controller Actions to Process and Directions it Provides (Unsafe): TL control actions to

the controlled process are unsafe in combination with how it directs the UAS. This

includes:

a. TL does not provide a control action that is necessary in combination with actions

it directed to the UAS.

b. TL provides a control action incorrectly or in a way that conflicts with actions it

directed to the UAS.

9. Other factors beyond those explored in interactions between the controllers on the team.

UCCA 37.1 (abstracted UCCA): Controller Ci does not provide fix and no other Cj provides fix
when there is a priority target to engage and a teammate able to fire [H3] [DA]

 UCCA 37.1.1 (refined UCCA): UAS1 does not provide fix and UAS2 does not provide fix

Figure A3-1Figure 5-4 shows the four relevant internal control combinations that can lead to the
collective output of the UCCA. It enumerates whether or not the Team Lead (TL) tasks either
UAS1 or UASn to fix. The figure is only provided here to demonstrate how the internal control
combinations are captured into the top-level scenarios, as listed below each case in the figure.

203

However, the analyst could go straight into listing the top-level scenarios. Because UAS1 and
UASn are interchangeable, case 1c in the figure is a duplication of 1b.

Figure A3-1. Internal control combinations that result in no controller providing a fix

S-37.1.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to execute safe collective control. Here, the TL does not task any UAS to fix.7 [DA]

• (Step 2: Internal Control) Unsafe Control Input: TL misinterprets direction from higher

authorities that the team should not <fix on, fire on, search for> any targets. Refinement:

o TL previously received a command not to provide a <fix, fire, search>. However,

that command is now outdated, but the TL does not receive the updates.

o TL receives a correct command to <fix on, fire on, search for > targets as necessary,

but misinterprets it due to ambiguous communications.

o …

• (Step 2: Internal Control) Inadequate Process Model: TL has one or more of the following

inadequate process model variables: TL does not believe (1) there is a target to <engage,

search for>, (2) there is a teammate able to fire (to couple with fix), (3) that a UAS has

already been tasked to <fix, search>, or (4) there is a teammate available to task the <fix,

search>. Refinement:

o Incorrect feedback. The interface provides stale feedback of the team state, which

shows one of the UAS as tasked to <fix, fire, search> from a now outdated tasking.

o Incorrectly Interpreted Feedback. TL misinterprets sensor data about the target, due

to heavy workload, and believes there is no target to <engage, search for>.

o Feedback not sent. UAS are temporarily disconnected, so TL is not aware there is a

UAS able to <fix, fire, search>.

o …

(Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the target and the team capabilities, but still chooses not to task a UAS to issue the

fix. Refinement:

o TL is currently busy and prioritizes other operating tasks, but intends to task a

UAS soon. However, s/he later forgets to do this due to high workload.

7 Baseline (B) UCA 1: TL does not provide fix command to UAS when targets/enemies are within range

204

o TL misunderstands how the UAS operate. S/he believes that the UAS tasked to

fire will by default provide its own fix.

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task a UAS, but is unable

to do so. Refinement:

o The communication channel to do so is currently inadequate. This could be due

to RF jamming, communications fading, misconfigured encryption settings, or

other reasons.

o The interface has a complicated or confusing workflow to specify a task. This is

aggravated in a high workload environments.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-

level scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on a control decision from the TL only. (See Inadequate Process Model / Control

Algorithm)

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL intends to task a UAS, however, the set of UAS participating on the team

fluctuates too much at the moment for the TL to have sufficient confidence that

the assigned UAS will still be in the team to carry out the task. Refinement:

▪ The Ground Station is swapping out UAS that need to be refueled with

new ones.

o TL incorrectly anticipates that a new UAS will be added to the team that is better

suited to execute the <fix, fire, search> task. S/he purposefully holds off on

providing the task until that UAS is online. However, that UAS never arrives and

the task goes unfulfilled. Refinement:

▪ The new UAS has a malfunction before it can join the team and must

return to base. However, the TL is not notified.

o TL tasks a UAS. However, that UAS is momentarily removed from the team.

When it rejoins, TL incorrectly assumes that the UAS will resume its previous

tasking, and takes no further action (e.g., retask the same UAS, task another UAS).

o TL intends to task a UAS, however, the authority over that UAS is transferred to

a different Team Lead, and it can no longer be tasked as part of the original team.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o TL is uncertain if tasking a UAS to <fix, fire, search> will result in the UAS

traveling to a location where it will be disconnected from the team. As such, TL

chooses to not provide the tasking.

o TL tasks a UAS to <fix, fire, search>, but due to the dynamic topology, the tasking

is not adequately routed to the intended UAS(s). This could occur because the

message is degraded over too many hops, or because the changing topology does

not support information routing requirements (e.g., path, timing, …).8

8 (B) Scenario: Command corrupted in transmission by fault injection or SQL injection

205

S-37.1.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control. Here, (1) the TL tasks multiple UAS to fix and therefore none execute it, or (2)
the TL tasks a UAS to fix that cannot fix. [DA]

Note: because (2) is emphasized in the context of UCCA 38.2, this scenario focuses on item (1).

• (Step 2: Internal Control) Unsafe Control Input: TL interprets a command from higher

authority as direction to task multiple UAS to <fix, fire>.

o TL had already tasked a UAS to <fix, fire>, but it then receives additional direction

from higher authorities that it interprets as direction to have a specific controller

provide the <fix, fire> command, which is different than the one already tasked.

• (Step 2: Internal Control) Inadequate Process Model: TL has one or more of the following

inadequate process model variables: (1) a UAS has not been tasked to <fix, fire> when it

actually has, (2) multiple UAS will not cause hazardous effects if they <fix, fire>

simultaneously, or (3) what the set of active controllers is at any given time. Refinement:

o Delayed feedback. TL tasks UAS1 to <fix, fire>, but feedback from UAS1

acknowledging the tasking is delayed back to the TL (e.g., degraded

communication channel, hidden in layers of the interface, …). As a result, the TL

incorrectly believes UAS1 was not tasked, and tasks UAS2.9

o Feedback Not Available. The UAS detect that multiple of them are tasked to <fix,

fire>, which will create hazardous effects <interference, excessive damage>.

However, the system is not designed to alert the TL of this problem so that s/he

can take corrective action.

o Feedback Not Received. UAS1 and UAS2 are part of the team. Feedback from UAS2

is not received by the TL, so TL believes UAS2 is not on the team. As such, TL

provides the <fix, fire> command without specifying the intended UAS because

s/he believes UAS1 is the only one that can be tasked. However, UAS2 does

receive the task and executes it in addition to UAS1.

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the target and the team, but still chooses to task multiple UAS to issue the fix.

Refinement:

o TL misunderstands how the UAS operate and believes they will coordinate

among themselves to determine which one takes on the task (similar to how the

allocation occurs for the search command).10

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task a single UAS but

inadvertently tasks multiple UAS or the wrong UAS. Refinement:

o The tasking interface is inadequate given the workload and operating

environment.11

9 (B) Scenario: The FMS is experiencing delayed processing and is unable to update target selections
10 (B) Scenario: TL incorrectly believes that another UAV can fix on the target if he selects for the UAV to
perform the command (incorrect assumption about the FMS control algorithm)
11 (B) Scenario: TL chooses a different UAV because he is confused by the user interface

206

o TL had originally tasked UAS1 to <fix, fire> but changes the plan and instead tasks

UAS2. However, the communication channel to UAS1 is degraded and it does not

receive the task cancellation. Both UAS are now tasked.12

o The identification parameters of UAS2 are inadvertently reset. UAS2 now

consumes all information intended by TL for UAS1.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-level

scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL tasks UAS1 to <fix, fire>. UAS1 is temporarily taken offline from the team (e.g.,

it is temporarily redirected by the Ground Station). So, TL tasks UAS2 to <fix, fire>.

But then UAS1 rejoins the team and resumes its task.

o TL intentionally tasks multiple UAS to compensate for fluctuations in the

participation of the UAS.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o TL tasked UAS1 to <fix, fire>. UAS1 travels out to execute its task, and in the

process loses connectivity with the team. The TL creatively implements a solution

to regain connectivity by tasking UAS2 to the same task. S/he anticipates that

UAS1 and UAS2 will either interfere with each other (if fix only) or they will

recognize via coordination that they have the same task. This should prompt them

to drop their tasks and reconnect with the team.

S-37.1.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, TL tasks a
single capable UAS to fix, but the UAS does not fix.13 [DA]

• (Step 2: Internal Control) Unsafe Control Input:

o The UAS tasked to <fix, fire, search> is overridden by another controller (e.g., the

Ground Station, a different Team Lead, or a cyber attacker) to perform a different

action.

• (Step 2: Internal Control) Inadequate Process Model: The tasked controller has the

following inadequate process model variable: (1) it does not know how to provide the

<fix, fire, search> command, (2) it incorrectly believes the <fix, fire, search> command has

already been provided.

o Inadequate Feedback: The controller <TL, UAS> tasked to provide the <fix, fire,

search> has inadequate sensor feedback of the <target, search area> to execute the

fix.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

12 (B) Scenario: There is a delay in another command from the Team Lead to delete the command
13 (B) UCA 29: UAS does not implement a task from the TL (H3)

207

• (Step 2: Internal Control) Unsafe Control Path: the controller <TL, UAS> tasked to <fix,

fire, search> intends to provide the assigned command. However, it does not deliver the

command to the controlled process. Refinement:

o Its <targeting, weapon system, search sensor> equipment malfunctions and is

unable to do so.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: In this system, if the

controller that provides the fix is different from the controller that fires, those two

controllers work collaboratively to fix and fire on the target. These two control loops are

coupled as represented by Figure A3-2. Refinement:

Figure A3-2. Control structure for controllers collaborating by fixing and firing on a target

o Feedback about Controlled Process from Collaborators: The feedback the UAS

tasked to fix receives from collaborators leads it to believe it does not need to

provide the <fix, fire> command. Refinement:

▪ The UAS tasked to fix (e.g., UAS1), prior to starting the fix, receives

incorrect feedback from a teammate that the current fix is adequate to fire.

Based on this feedback UAS1 does not provide the fix. Refinement:

• The teammate broadcasts feedback for a different fix, of a different

target, provided by a different teammate.

• (Human-Machine) UAS1 provides the fix for the TL (human) to fire.

The TL inadvertently labels feedback for UAS1’s fix as adequate.

This may occur because the TL is under heavy workload and makes

a mistake. It could also occur because there is a human-machine

semantic mismatch in the feedback.

• UAS1 provides inadequate feedback regarding the fire command

to the teammate responsible for firing (e.g., informs the target is

destroyed). Reasons for this inadequate feedback can be further

refined. The teammate decides it will no longer fire and therefore,

it provides feedback that the current fix from UAV1 (i.e., no fix) is

adequate. As such, UAV1 continues to not provide a fix.

▪ The UAS tasked to fix (e.g., UAS1), receives feedback from a teammate

other than the one assigned to fire that the fix is inadequate. As a result,

UAS1 provides a fix in response to the feedback from that other teammate,

instead of providing a fix adequate for the teammate assigned to fire.

208

o Feedback about Collaborator Control Actions from Controlled Process: The

feedback the UAS tasked to fix receives from the process leads it to believe it does

not need to provide the fix command. Refinement:

▪ The UAS tasked to fix a target (e.g., UAS1) temporarily receives fix energy

off the target provided by another UAS (e.g., UAS2). This leads UAS1 to

drop the task in the belief that UAS2 is executing it. However, this may

have been a stray command from UAS2 (e.g., in the process of fixing a

different target, temporary system malfunction, …). As a result, no UAS

provides the fix command as tasked by the TL.

Note: The UCCA analyzed does not explicitly show the fire command. If this control

action coupling was not considered in this step, it would be explicitly covered in UCCA

3.3, in which the Team provides the fire command and does not provide the fix command.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Figure A3-3 illustrates a possible

misalignment of hypothetical model elements between MUM-T controllers to

conceptualize this dynamic for analysis.

Figure A3-3. Misalignment of Hypothetical Models between MUM-T Controllers

o Construction: The process models and/or control algorithms are not adequately

or consistently built across the team to support collaborative control. Refinement:

▪ (Human-Machine) The control algorithms on the UAS are not compatible

with how the TL specifies the <fix, fire> task. This prevents the controller

from accepting the task or being able to collaborate with another controller

in a coupled <fire, fix> task. This could occur due to configuration

management problems with the UAS or TL interface software, variation in

how the TL was trained to work with the UAS, and conflicting past

experience the TL has in working with human wingmen instead.14

14 (B) Scenario: The AuC cannot interpret the command due to a recent firmware update

209

▪ The control algorithms on the different UAS are not compatible with one

another. As a result, the UAS lack the ability to coordinate in coupled fix

& fire tasks. This could be due to a configuration management issue.

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refined:

▪ The different UAS receive different versions of the <fix, fire> task

specification by the TL. This could occur because the TL periodically

updates how the task is specified given slight changes in her/his model of

the mission. The different UAS may receive the task specification across

different replan cycles. As such, the controllers do not have sufficient

common knowledge of the task to coordinate the coupled fix & fire tasks.

▪ The different UAS have different beliefs about how many and which UAS

are participating on the team. This may occur due to dynamic

membership, with UAS cycling on and offline, and dynamic connectivity

that prevents the timely distribution of this information. This could result

in the UAS assigned to fix (e.g., UAS1) not believing that the UAS assigned

to fire (e.g., UAS2) is currently participating in the team. As such, UAS1

does not believe conditions are satisfied for it to provide a fix.

▪ UAS have different beliefs about the current roles and responsibilities of

other controllers on the team.

• For example, one UAS believes that UAS2 has taken on the <fix,

fire> task based on stale information, and disseminates this belief

to the rest of the team. As a result, UAS1 loses confidence in its

assignment and drops the <fix, fire> task.15

• As another example, the controller assigned to <fix, fire> is not

informed about which teammate is responsible for the coupled

<fire, fix> task. As a result, it does not know whom to coordinate

the coupled task with.

o Model Updates: elements of the process models are not adequately or consistently

updated across the team. Refinement:

▪ Vertical Coordination (Control):

• The TL controls the coordination details between UAS1 (tasked to

fix) and UAS2 (tasked to fire). However, the information the TL

provides is inconsistent between UAS1 and UAS2, or it conflicts

with their ability to execute the coupled task.

• The TL overrides one of the UAS with a command inconsistent with

the laterally coordinated task execution. For example, UAS1

(tasked to fix) and UAS2 (tasked to fire) have laterally coordinated

the details of the coupled fix and fire tasks. The TL then accelerates

the UAS2 timeline to make it available for other tasks, but s/he is

not aware that this now conflicts with the coordinated plan.

15 (B) Scenario: The AuC has an incorrect process model that the target is already fixed on.

210

• TL keeps changing the plan and delegates different UAS to <fix,

fire, search> before they have the opportunity to carry out the tasks.

▪ Lateral Coordination (Communication):

• Communication channels between the UAS assigned to fix and the

controller assigned to fire are not adequate to coordinate the

coupled tasks. Too many coordination messages needed for the

UAS to reach consensus on when or how to provide the commands

are dropped. Communication channels may be degraded due to

jamming, fading, and equipment damage.

• (Human-Machine) Lateral coordination between UAS1 (tasked to

fix) and TL (self-tasked to fire) is hindered by human-machine

asymmetry in information semantics. Both controllers interpret

shared information differently. The TL encodes subtleties and

ambiguities, which are common for humans to handle, but difficult

for machines to process precisely. The UAS is unable to describe

task parameters that exceed its programmed bounds, but which

may be necessary to overcome unforeseen issues. This hinders the

execution of the coupled fix-fire commands.

• (Human-Machine) Lateral coordination between UAS1 (tasked to

fix) and TL (self-tasked to fire) is hindered by human-machine

asymmetry in information timing. For example, the machine

provides excessive information requests, which interrupt the flow

of the TL in the execution of the coupled fix-fire commands.

• The information controllers use to coordinate the coupled fix and

fire tasks is inconsistent. For example, UAS1 (tasked to fix) receives

a state estimate from UAS2 (tasked to fire) that becomes slightly

outdated due to small communications and processing delays. For

planning, it then compares this now slightly outdated UAS2 state

estimate with its own current UAS1 state estimate and incorrectly

concludes that UAS2 is lagging too much to provide the fix

command. The same effect also occurs when UAS2 plans to fire.16

• UAS share parameters about different targets without specifying

which target they are describing. Each teammate then incorrectly

associates that information with the target they are focused on.

This creates disturbances in the process model, which may

contribute to a UAS not executing its task.

• UAS2 is temporarily disconnected and its model of the target

diverges from that of the team. UAS2 then reconnects and

contributes its divergent variables. That disturbs team consensus

16 (B) Scenario: Autonomous Controller has incorrect feedback about the UAV’s attitude, altitude,
velocity. The FMS is sending data delayed so the AuC is calculating states behind where the UAV is
actually located or its current speed.

211

regarding how to engage the target, changes the process model of

UAS1 assigned a task, and contributes to not doing it.

▪ Lateral Coordination (Observation): The <UAS, TL> controller selected to

execute the <fix, fire, search> task observes another controller

maneuvering in a way that is consistent with executing that task and

incorrectly believes it will provide it. The maneuvering controller is not

aware of this misinterpretation. As a result, the assigned controller does

not provide the <fix, fire, search> task.17

▪ Prediction: UAS1 (tasked to fix) has a model of the coupled fix & fire task

that expects to receive certain coordination messages and observations by

certain milestones. If the other controller <TL, UAS2> (tasked to fire) is

delayed or takes an unexpected trajectory to fire, UAS1 may lose

confidence in its ability to fulfill the task, and therefore incorrectly decide

not to provide the fix task either.18

o Decision-Making: The process controllers use to decide what control and

communications actions they provide is inadequate or inconsistent across the

team. Refinement:

▪ Despite adequate communication channels, the distributed decision-

making process is too slow to keep up with the dynamic state of the shared-

controlled process, and does not converge fast enough on a solution.

• Two controllers attempt to coordinate the coupling of fix and fire

commands. However, at the conclusion of every iteration of

distributed planning, the state of the system has changed enough

that the plan is no longer relevant. As a result, the team is unable

to reach a valid plan.

▪ Despite adequate information sharing between the UAS, the control

algorithm “churns”. It replans or reoptimizes too frequently, overrides

previous solutions before they can be executed, and ultimately causes the

<fix, fire> tasks to not be performed.19

• For example, UAS1 (tasked to fix) is at location that influences

where <TL, UAS2> (tasked to fire) should be for the coupled task.

However, by the time <TL, UAS2> reaches its new location, UAS1

has repositioned, which prompts a replan. The process repeats

itself and the task is not executed.

▪ Controllers on the team share a relatively consistent set of common

information. However, the automated controllers employ a non-

deterministic decision-making algorithm (e.g., Machine Learning based).

This leads to unpredictable or inconsistent control and information

17 (B) Scenario: TL notices UAV(s) begin following target so he believes they are already tracking target
18 (B) Scenario: machine learning algorithm has a false positive because the command occurred at an
unusual time in the mission
19 (B) Scenario: The AuC uses a machine learning algorithm that dynamically changes which UAV should
implement the task too often such that it cannot select a UAV to perform the task

212

outputs. As a result, consensus on how to effectively execute a coupled fix

and fire task may not be achievable.20

▪ Controllers on the team have a relatively consistent set of common current

information. However, the controller (e.g., UAS1) assigned to the <fix,

fire> task has low confidence in the behavior of its partner (e.g., UAS2) in

the joint activity assigned to <fire, fix>. This low confidence may be due

to many of the factors listed above. As a result, UAS1 precautionarily

chooses not to <fix, fire>.21

▪ Controllers have a common set of planning information and are configured

with common, deterministic, decision-making algorithms. However, they

differ in their contextual factors, and as a result, use the decision-making

algorithm differently.

• For example, UAS1 may be dealing with an internal system

malfunction, or maybe be targeted by an enemy, and prioritizes

resolving those issues over collaborating with <TL, UAS2>.

• (Human-Machine) As another example, the human TL recognizes

a contextual nuance in the joint engagement process (coupled fix &

fire task) that requires adapting the typical procedure. However,

such changes cannot be effectively conveyed to an automated

controller.

o Capacity: The capacity of one of the controllers is inadequate to enable the

effective alignment of team cognition. Refined:

▪ One of the controllers, TL or UAS, has a runaway internal process that is

using up processing resources (e.g., system failure, denial of service). As a

result, the controller is unable to keep up with the coordination demands

of the rest of the team, which prevents the whole team from being able to

reach consensus or achieve execution goals.22

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o The UAS tasked to <fix, fire, search> is not operating in a control mode that

enables it to take on mission tasks as part of the team (e.g., “Team Mode”).23

▪ For example, it is operated in a mode that only accepts basic waypoints and

not higher-level tasks.

▪ As another example, the identifier of the UAS may be different from the

one the TL and other members of the team are tracking. As a result, the TL

does not consider the UAS to be part of the team.

20 (B) Scenario: AuC machine learning algorithm determines that the [payload] is insufficient to complete
the task and does not power it on as a result
21 (B) Scenario: TL does not provide fire command because does not trust UAV(s) to accurately hit targets.
22 (B) Scenario: software algorithm is busy processing requests from the Ground Station; MFC processor is

slowed due to high temperatures and consistent operation.
23 (B) Scenario: AuC cannot accept command without a prerequisite on the aircraft (e.g., master arm on).

213

o The UAS tasked to <fix, fire, search> is removed from the team. For example, it is

overridden by another controller, such as a Ground Station, to return to base.24

o The loss of a teammate makes the UAS tasked to <fix, fire> drop its task. For

example, at the time the UAS was tasked to fix (e.g., UAS1), another controller was

tasked to collaborate with it by firing (e.g., UAS2). UAS2 is taken offline (by

another controller, lost in mission, …) and its fire task is reassigned. However, the

retask is not made known to UAS1, which therefore does not know whom to

coordinate with to couple its fix task.

o The addition of a teammate makes the UAS tasked to <fix, fire> drop its task (e.g.,

UAS1). For example, since the time UAS1 was tasked, a new UAS is added to the

team, which is better positioned for the task. UAS1 has logic to anticipate a

retasking from the TL and drops the task. However, the task is never reassigned.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o The process of providing the <fix, fire> command leads UAS1 to temporarily

disconnect from the team (e.g., physically traveling to the location to <fix, fire>

causes it to disconnect). Because connectivity is required to coordinate the coupled

fix-fire tasks with another controller, UAS1 drops its task and does not reclaim it

when connectivity is regained.

o The UAS tasked to <fix, fire> (e.g., UAS1) is not directly connected to the TL, and

therefore receives the command by relay from another UAS (e.g., UAS2).

However, because UAS2 does not have authority over UAS1, UAS1 rejects the

command as invalid.

o The UAS tasked to <fix, fire, search> (e.g., UAS1) is momentarily disconnected

from the team. This triggers a change in the automation operating modes that

removes the UAS from the team (see Dynamic Membership) until it is explicitly

commanded to rejoin the team.

S-37.1.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyways, which leads to unsafe collective
control. The context of this UCCA does not apply to this top-level scenario.

Note: The UCCA assumes that it is necessary to provide tasks.

S-37.1.5 (Step 1: Top-Level Scenarios #5): TL control actions to the controlled process are unsafe
in combination with how it directs the UAS. The context of this UCCA does not apply to this top-level
scenario.

Note: N/A because the TL cannot provide the fix command, as specified in the system assumptions.

S-37.1.9 (Step 4: Other Factors): The controllers on the team do not provide any commands due
to factors beyond those explored in interactions between the controllers on the team.

• Unsafe Feedback Path: see S-37.1.3

24 (B) Scenario: An attacker causes a mode change to a friendly flight mode that eliminates the ability to
provide “fix on target” commands.

214

• Unsafe Control Path: see S-37.1.3

• Unsafe Process Behavior: the UAS provides a <fix, fire>, but the target deploys

countermeasures or performs defensive maneuvers that overcome its effects.

UCCA 38.2 (abstracted UCCA): Controller Ci provides fix and no other Cj provides fix when Ci
is not capable and a Cj is [H3] [DA]

UCCA 38.2.1 (refined UCCA): UAS1 provides fix and UAS2 does not provide fix when
UAS1 is incapable and UAS2 is.

The figure below shows the relevant internal control combinations that can lead to the collective
output in the UCCA. Each case is traced to the relevant high-level scenarios using labels. Cases
1a and 1d involve multiple unsafe actions that are less logical together. In 1a, the TL does not
task any UAS to fix, but an untasked UAS provides the fix, and that UAS is the “wrong UAS” for
the task. In 1d, the TL tasks multiple UAS to fix, but only one of those UAS provide fix, and that
UAS is the “wrong UAS” for the task. These contrived combinations are skipped in the analysis.

Figure A3-5. Internal control combinations that result in the wrong UAS providing a fix

S-38.2.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to execute safe collective control. The UCCA context does not apply to this top-level scenario.

Note: the scenario could reference instances when (1) the TL does not task UAS to fix and (2) only an
incorrect UAS provides a fix. Item (1) is analyzed in the context of S-37.1.1. Item (1) and (2) are less
logical together.

S-38.2.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control. Here, TL tasks a UAS to fix, which cannot provide the fix.25 [DA]

Note: the scenario could also include the TL tasking multiple UAS to fix, as addressed in S-37.1.2.

• (Step 2: Internal Control) Unsafe Control Input: TL interprets direction from higher

authorities that a specific controller <TL, UAS1, UAS2> must be used to provide a specific

command <fix, fire, search>, even if it is not capable of doing so. TL could also interpret

direction that a specific controller must not be used to provide a specific command.

Refinement: similar to S-37.1.1.

25 (B) UCA 2: Team Lead provides “fix on target” command to the wrong UAV (H3)

215

• (Step 2: Internal Control) Inadequate Process Model: TL has one or more of the following

inadequate process model variables: (1) TL believes a specific controller <TL, UAS1,

UAS2> can perform the <fix, fire, search> task, (2) TL does not believe a specific controller

<TL, UAS1, UAS2> can perform the <fix, fire, search> task. Refinement:

o Missing Feedback: The feedback does not provide information regarding the

capability of each UAS to execute a task.

o Missing Feedback: The feedback does not provide information regarding if the

UAS mode of operation of the automation allows it to take on mission tasks.

The UAS may be in a mode that only accepts basic waypoints and not higher-

level tasks.

o Inadequate feedback. The interface that displays the UAS capabilities is difficult to

access or read in a high workload environment.

o Delayed Feedback. UAS1 loses the ability to provide a <fix, fire, search> command

(e.g., equipment malfunction, low fuel). However, communication degradations

(e.g., jammed links) prevent a timely status update from reaching TL.

o Feedback not sent. UAS2 is temporarily disconnected. The TL is not aware it is

capable of providing a fix.

o …

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the team capabilities, but still chooses to task UAS1 to provide the <fix, fire>

command. Refinement:

o TL misunderstands how the UAS operate. He believes the UAS will automatically

change the assignment to a UAS that is capable.

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task UAS2 but

inadvertently tasks UAS1. This can occur, for example, if the tasking interface design

does not guard against such slips given the workload and operating environment.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-

level scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only. (See Inadequate Process Model / Control

Algorithm)

• (Step 3: Collaborative Dynamic) Dynamic Membership: UAS1 was recently added to the

team. Until then, all the UAS working with the TL were capable of providing the fix

command. Therefore, the TL was not mentally tracking the possibility that a UAS would

not be. UAS1 is added, and TL tasks it to fix without considering its ability to do so.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No scenario conceived.

S-38.2.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, TL tasks
UAS2 to fix, but UAS1 provides the fix instead, even though it is not capable to do so26. [DA]

• (Step 2: Internal Control) Unsafe Control Input:

26 (B) UCA 30: Autonomous Controller implements a task using the wrong UAV (H3)

216

o UAS1 is tasked to <fix, fire> by another controller (e.g., ground station, another

team lead, or a cyber attacker), which causes UAS2 to drop its task. (Similar to S-

37.1.3)

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path:

o UAS1 does not intend to <fix, fire>. However, its <targeting, weapon system>

equipment malfunctions and it releases <energy, weapon> anyways. UAS2,

which is assigned the task, observes this action, assumes UAS1 has taken on that

task, and drops its own plans to provide it.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same coupling as in

S-37.1.3 (Figure A3-2).

o Feedback about Controlled Process from Collaborators: Before UAS2 starts to fix,

the controller assigned to fire provides feedback to the team that the fix on the

target is inadequate to fire. UAS1 receives this feedback and misinterprets it as a

request for it to provide a fix. UAS1, therefore, claims the task, even though it

lacks the capability for it, and UAS2 drops its task to avoid creating interferences.

o Feedback about Collaborator Control Actions from Controlled Process: Same as

S-37.1.3. But leads to the wrong UAS taking on the task and the correct one

dropping it.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Same illustration as in S-37.1.3

(Figure A3-3).

o Construction: The control algorithms on the different UAS are not compatible with

one another. UAS1 (tasked to fire), has a control algorithm that assumes it must

also provide the fix. Therefore, it claims the fix task, and UAS2 drops it. This

could be due to a misconfiguration.

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ The different UAS have different beliefs about the current roles and

responsibilities of other controllers on the team. Examples:

• One UAS believes that UAS1 has taken on the <fix, fire> task based

on stale information. It disseminates this belief to the rest of the

team. As a result, UAS2 loses confidence in its assignment, drops

the <fix, fire> task, and UAS1 takes it on. (Similar to S-37.1.3)

• TL and UAS1 have different models of which controllers are active

in the team (related to Dynamic Membership). UAS1 believes it is

the only UAS that can be tasked on the team. It incorrectly

interprets the tasking TL provides to UAS2 as intended for UAS1.27

o Model Updates: Elements of the process models are not adequately or consistently

updated across the team. Refinement:

27 (B) Scenario: AuC cannot identify the selected UAV and chooses an alternate UAV based on optimal
firing position and weapon type

217

▪ Vertical Coordination (Control): No scenario conceived.

▪ Lateral Coordination (Communication): UAS1 receives information from a

teammate that leads it to believe it was tasked by the TL to provide the

<fix, fire> command. Thus, it takes on the task and <TL, UAS2> drops it.

For example:

• A UAS tasked to <fire, fix> has stale information that leads it to

collaborate with UAS1 to engage the target. That UAS incorrectly

starts coordinating the joint-task with UAS1. This prompts UAS1 to

believe it has been assigned to provide the fix.

• A UAS is disconnected from the team and has stale information on

the current designation of roles and responsibilities. Once it

reconnects, its shares its understanding of the delegation of

authorities, which includes UAS1 providing the <fix, fire>

command. This prompts UAS1 to believe it has been assigned to

provide the <fix, fire> command.

▪ Lateral Coordination (Observation): Same scenario as S-37.1.3, but leads to

wrong UAS taking on the task and the correct one dropping it.

▪ Prediction: No scenario conceived.

o Decision-Making: Due to reasons listed above, the properly tasked UAS2 drops

its task. The UAS team is programmed with a heuristic to force the assignment to

the UAS with, for example, the lowest ID number (UAS1). UAS1 takes on the <fix,

fire, search> task, without considering its capability or suitability to do it.28

o Capacity: UAS1 has an internal process malfunction and is incapable of processing

new task assignments from the TL. Its roles and responsibilities are “stuck” on

those from the previous plan. As a result, UAS1 continues to execute the <fix, fire>

command, which prevents the correctly assigned UAS from executing it.29

• Dynamic Membership:

o UAS1, previously tasked by TL to provide the fire command, is taken offline due

to malfunction(s) that impact its ability to fulfill mission tasks such as <fix, fire>.

However, it temporarily rejoins the team, after the TL re-tasks the command to

UAS2, and shares its intent to fulfill that original task with the team. This prompts

UAS2 to drop its tasks.

o UAS1 was offline as the TL was formulating the plan to task UAS2 to provide the

<fix, fire> command. UAS1 suddenly becomes online just before the TL issues

tasking. The TL inadvertently tasks UAS1 to instead of UAS2.

• Dynamic Connectivity:

28 (B) Scenario: AuC control algorithm changes UAV to select the most optimal firing position; AuC
calculates that it is more optimal for another UAV to implement task so it diverts the task to other UAV
29 (B) Scenario: AuC implements a delayed command from TL when a different UAV was selected for the
target

218

o UAS2 is indirectly connected to TL via UAS1 as a relay. When TL tasks UAS2 to

<fix, fire> via UAS1, UAS1 misinterprets the message as it being assigned the task.

As a result, UAS1 provides the <fix, fire>, and UAS2 does not.

S-38.2.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyways, which leads to unsafe collective
control. The context of this UCCA does not apply to this top-level scenario.

Note: The UCCA assumes that it is necessary to fix, as such there is no adequate way to not provide
the fix task.

S-38.2.5 (Step 1: Top-Level Scenarios #5): TL control actions to the controlled process are unsafe
in combination with how it directs the UAS. The context of this UCCA does not apply to this top-level
scenario.

Note: The TL does not have the option to provide the fix command by system definition.

S-38.2.9 (Step 4: Other Factors): The “wrong” UAS provides a fix due to factors beyond those
explored in interactions between the controllers on the team. [DA]

• Inadequate Process Feedback: The feedback the team senses from the target leads controllers

on the team to believe UAS1 is better suited to provide the fix task than UAS2. For

example, it is incorrectly believed the target will be better fixed in a wavelength available

to UAS1 and not UAS2.

• Unsafe Process Behavior: The target employs countermeasures that cause the team to

believe UAS1 has more adequate capabilities to provide the <fix, fire> task.

UCCA 39.3 (abstracted UCCA): Controller Ci provides fix and another Cj provides fix when that
creates mutual interference [H1,3] [DA]

UCCA 39.3.1 (refined UCCA): UAS1 provides fix and UAS2 provides fix

The figure below shows the relevant internal control actions that can lead to the collective UCCA
output and traces them to the top-level scenarios. Case 1a is contrived, in that the TL does not
task any UAS to fix and multiple UAS provide a fix in a way that interferes with each other. It is
skipped from the analysis.

Figure A3-6. Internal control combinations that result in the wrong UAS providing a fix

219

S-39.3.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to execute safe collective control. The context of this UCCA does not apply to this top-level scenario.

Note: the scenario could reference instances when (1) the TL does not task UAS to fix and (2) multiple
UAS provide a fix. However, items (1) and (2) are less logical together.

S-39.3.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control. Here, TL tasks UAS1 and UAS2 to fix. As a result, the multiple UAS provide a
fix and interfere with each other. [DA]

• All factors: Same as S-37.1.2

S-39.3.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, TL tasks
UAS2 to fix, but UAS1 provides a fix in addition. [DA]

• (Step 2: Internal Control) Unsafe Control Input: Same as S-38.2.3

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path: Same S-38.2.3, but leads to two UAS

executing the task.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same coupling as in

S-37.1.3 (Figure A3-2).

o Feedback about Controlled Process from Collaborators: Same scenario as S-38.2.3, but

leads to two UAS providing a fix.

o Feedback about Collaborator Control Actions from Controlled Process: Same scenario as

S-37.1.3, but leads to two UAS providing a fix.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: as illustrated in Figure A3-3.

o Construction, Initialization, Model Updates, and Capacity: Same scenario as S-

38.2.3, but leads to two UAS providing a fix.

o Decision-Making: The UAS team is programmed with a heuristic to force the

assignment of the task to a UAS in case there is conflict. However, in some corner

cases, the heuristic leads to two different UAS being assigned. (Similar to S-38.2.3)

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.2

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.2

S-39.3.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyways, which leads to unsafe collective
control. The context of this UCCA does not apply to this top-level scenario. (Same as S-38.2.4)

S-39.3.5 (Step 1: Top-Level Scenarios #5): TL control actions to the controlled process are unsafe
in combination with how it directs the UAS. The context of this UCCA does not apply to this top-level
scenario. (Same as S-38.2.5)

S-39.3.9 (Step 4: Other Factors): Multiple UAS produce a fix due to factors beyond those explored
in interactions between the controllers on the team. [DA]

220

• Inadequate Process Feedback: Shortly after being tasked to fix, UAS1 loses adequate feedback

of the target, and reports this to the TL. Therefore, TL tasks UAS2 to provide the fix, but

does not untask UAS1. UAS1 then regains sufficient feedback and provides a fix.

• Unsafe Control Path to Process: Same as S-38.2.3, but leads to two UAS executing the task.

• Unsafe Process Behavior: No scenario conceived.

UCCA 40.4 (abstracted UCCA): Controller Ci does not fire and no other Cj fires when there is a
priority target to engage and a teammate able to fix [H3] [DA]

UCCA 40.4.1 (refined): TL does not fire, UAS1 does not fire, and UAS2 does not fire

Figure A3-7. Internal control combinations that can contribute to no controller firing

S-40.4.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to execute safe collective control. Here, TL does not task any UAS to fire (and does not intend to
fire her/himself). As a result, no fire command is provided30. [DA]

• All factors: Same as S-37.1.1

S-40.4.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control. Here, (1) TL tasks multiple UAS to fire, or (2) the TL tasks a UAS to fire that
cannot fire. [DA]

Note: because (2) is emphasized in the context of UCCA 41.5, this scenario focuses on item (1).

• All factors: Same as S-37.1.2

S-40.4.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, TL tasks a
UAS to fire, but the tasked UAS does not fire.31 [DA]

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Similar to S-40.4.5, but

in Machine-Machine interactions

• All other factors: Same as S-37.1.3

30 (B) UCA 17: Team Lead does not provide fire command when the mission requires it (H3)
31 (B) UCA 35: Autonomous Controller does not release weapon when the Team Lead commands it (H3)

221

S-40.4.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyways, which leads to unsafe collective
control. The context of this UCCA does not apply to this top-level scenario. Same as S-37.1.4

S-40.4.5 (Step 1: Top-Level Scenarios #5): TL control actions to the controlled process are unsafe
in combination with how it directs the UAS. Here, the TL does not fire (and does not task a UAS
to fire). Emphasis is placed both on when the TL does not intend to fire, and when s/he does
intend to fire but does not do so32. [DA]

Note: The fire command is coupled to the fix command. In this system, only UAS (machines) provide
the fix command. If the TL (human) intends to provide the fire command, as in this UCCA, scenario
analysis focuses on human-machine collaboration.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.1

• (Step 2: Internal Control) Inadequate Process Model: Same as S-37.1.1. In addition: TL

does not believe there is a team member (including her/himself) available to task the fire.

Refinement:

o Feedback not available. TL is fixated on tasking UAS and forgets that s/he can fire

on the target her/himself. The feedback describes the set of UAS resources

available, but it does not append the resources the TL can contribute to the tasks.

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the target and the team capabilities but still chooses not to fire or task a UAS to fire.

Refinement:

o TL is currently busy and prioritizing other operating tasks, but intends to fire.

However, s/he later forgets to do this due to heavy workload. (Similar to S-37.1.1)

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.1

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: see Figure A3-2.

o Feedback about Controlled Process from Collaborators:

▪ Prior to firing, TL misinterprets feedback from a UAS that the target being

fixed was destroyed and there is no need to fire. Refinement:

• The UAS broadcasts feedback for a fix of a different target, for a

different teammate to fire on. (Similar to S-37.1.3)

• The UAS actually provided feedback that the target was not

destroyed, but the TL interface is inadequate and leads to

misinterpretation, especially in high workload.

• (Human-Machine) Prior to the TL firing, the UAS provides an alert

to the TL indicating the target is ready to fire on. However, the alert

is too vigorous in tone and is similar to how a human wingman

would advise NOT to fire. TL misinterprets it and does not fire.

• (Human-Machine) The UAS provides feedback that is semantically

misaligned with how the TL interprets it. For instance, the UAS

labels a damaged target as destroyed, even though the target is not

disabled and should still be fired on.

32 (B) UCA 17: Team Lead does not provide fire command when the mission requires it (H3)

222

o Feedback about Collaborator Control Actions from Controlled Process:

▪ TL does not receive the fix feedback necessary to close the fire loop that

should be provided by a collaborating UAS. Similarly, the UAS does not

receive feedback from the TL that the fix it is providing is inadequate.33

Refinement:

• Coordination between TL and UAS leading up to execution is

flawed (e.g., reasons include incorrect, delayed, misinterpreted,

and missing coordination). Specifically, coordination is hindered

by inherent differences in human and machine interpretation of the

joint task.

• The fix signal received by the TL from the UAS is degraded (e.g.,

malfunction, lack of compatibility, interference).

• Similarly, the feedback provided by the TL regarding the degraded

fix signal is not adequately received by the UAS.

▪ The TL receives fix feedback that is not consistent with the target it was

expecting to fire on, and therefore chooses not to fire. For example, it the

feedback that is more aligned with a friendly target.34 Refinement:

• This signature or location of the fix is similar to that of another

(friendly) target.

• (Step 3: Collaborative Dynamic) Cognitive Alignment:

o Construction:

▪ (Human-Machine) The control algorithms on the UAS are not compatible

with how the TL specifies the <fix, fire> task, which inhibits collaborative

control in coupled tasks. (Same as S-37.1.3). For example, their general

strategy to execute the task is different due to differences in how the TL

was trained and the version of the autonomy programmed into the UAS.

o Initialization:

▪ (Human-Machine) The TL lacks awareness of how task parameters

provided to a UAS contribute to its execution plan for a fix task. As such,

the TL cannot fully anticipate how the UAS will behave to provide the fix

that supports the TL fire command. This hinders implicit coordination and

prevents the controllers from executing the coupled fix-fire task.

▪ (Human-Machine) The fix task parameters provided to the UAS by the TL

(coupled with TL fire command) do not include multiple subconscious

variables tracked by the TL to execute the task. These variables are

founded on creativity and past experience from the TL. As a result, the TL

and UAS start with an inherently different set of assumptions for their

collaborative task. This hinders effective coordination during execution

and ultimately prevents them from executing the joint fix-fire task.

33 (B) Scenario: Autonomous Controller receives feedback about the target, but cannot identify the target
designation, so AuC releases the missile for another target.
34 (B) Scenario: AuC algorithm determines the target the TL is locked on is a friendly or civilian target, so
AuC does not implement the command

223

o Model Updates:

▪ Vertical Coordination (Control): TL micromanages the activities of the UAS

tasked to fix (e.g., UAS1) so that they are coordinated with the TL fire

command. However, the ability to manage both the UAS and the TL’s own

aircraft exceeds her/his workload capacity. The TL makes mistakes (e.g.,

inconsistent information provided, omissions, …) and the UAS does not

issue the necessary fix, so the TL does not fire.35

▪ Lateral Coordination (Communication):

• (Human-Machine) Lateral coordination between UAS1 (tasked to

fix) and TL (self-tasked to fire) is hindered by human-machine

asymmetry in information semantics and timing. (Same as S-37.1.3)

• There is a lack of consensus on the joint process to control. During

execution, a UAS expresses differences in the target to engage,

where, or when to do it. The TL anticipates this will confuse the

UAS providing the fix, loses confidence it will do so, and thus

decides not to fire. For example:

o A teammate shares general information about a different

target it is tasked to engage (Similar to S-37.1.3).

o A teammate was temporarily disconnected and its model of

the target diverged from that of the team. (Similar to S-

37.1.3)

▪ Lateral Coordination (Observation): Same as S-37.1.3, in addition:

• (Human-Machine) The information the TL gains by observing a

collaborating UAS lacks implicit coordination information that is

typically provided by a human teammate (e.g., tone of voice,

reaction time, demeanor, …). Similarly, this type of information,

which the TL subconsciously outputs to communicate with

humans, is not recognized by the UAS.

▪ Prediction: Same as S-37.1.3, but with roles reversed (TL fires, UAS fixes).

• (Human-Machine) Human and Machine training experiences have

evolved separately. The TL, which previously trained with

humans, can anticipate when a human teammate will provide a fix

based on implicit observations and messages. Similarly, the

machines may have been trained using simulation data, which does

not precisely recreate human behavior. As a result, both controllers

lack context or misinterpret certain cues that affect when and how

to provide their respective commands (Similar to Observation).

o Decision-Making:

35 (B) Scenario: Team Lead is pre-occupied with another task so provides command late

224

▪ Despite adequate communication channels, the distributed decision-

making process is too slow to keep up with the dynamic state of shared-

controlled process. (Same as S-37.1.3)

▪ The TL has low confidence that the collaborating UAS will provide a

reliable fix at the time that s/he fires. Thus, the TL precautionarily does

not fire. Reduced confidence may occur due to the flawed coordination

factors listed above. The TL may also have previously received a faded fix

signal from the UAS that suggested degraded reliability of the system.

o Capacity: Same as S-37.1.3, in addition:

▪ The TL lacks the cognitive capability to direct the joint process execution.

This may be due to excessive workload requirements imposed by the

mission complexity, an inadequate system design, and/or insufficient

experience in a relevant environment.36

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL anticipates that the UAS tasked to fix may exit the team (e.g., retasked by

Ground Station or attached to a different team). As such TL holds off on firing.

o A new UAS is added to the team that is better suited to issue the fire command.

The TL now intends to task that UAS, but does not do so due to factors described

in S-37.1.1.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o During execution, the TL becomes only able to communicate with the UAS

intended to fix (e.g., UAS1) indirectly, through another UAS (e.g., UAS2).

However, the TL anticipates that UAS2 will relocate for other tasks, which may

lead to a disconnect with UAS1. The TL holds off on firing.

S-40.4.9 (Step 4: Other Factors): No member of the team fires due to factors beyond those
explored in interactions between the controllers on the team. [DA]

• Same as S-37.1.9

UCCA 41.5 (abstracted UCCA): Controller Ci fires and no other Cj fires when Ci is not capable
and a Cj is [H3] [DA]

UCCA 41.5.1 (refined UCCA): TL fires, UAS1 does not fire, and UAS2 does not fire when
TL is not capable and UAS1 or UAS2 is.

UCCA 41.5.2 (refined UCCA): TL does not fire, UAS1 fires, and UAS2 does not fire when
UAS1 is not capable and TL or UAS2 is.

The figure shows the relevant internal control actions and traces them to top-level scenarios.
Cases 1d and 2d are contrived and are not analyzed for similar reasons as in previous UCCAs.

36 (B) Scenario: Team Lead is pre-occupied with another task so provides command late

225

Figure A3-8. Internal control combinations that result in the wrong UAS providing fire

S-41.5.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to execute safe collective control. The context of this UCCA does not apply to this top-level scenario.
(Similar to S-38.2.1)

S-41.5.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control. Here, TL tasks a UAS to fire, which cannot provide the fire.37 [DA]

• All factors: Same as S-38.2.2

S-41.5.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, TL tasks
UAS2 to fire, but UAS1 provides the fire instead, even though it is not capable to do so.38 [DA]

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops:

o Feedback about Controlled Process from Collaborators: Same as S-38.2.3. But

leads to the wrong UAS taking on the fire task.

o Feedback about Collaborator Control Actions from Controlled Process: Same as

S-37.1.3. But leads to the wrong UAS taking on the task and the correct one

dropping it.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Same as S-38.2.3

• All factors: Same as S-38.2.3 and S-41.5.5

S-41.5.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyways, which leads to unsafe collective

37(B) UCA 19: TL provides firing command for the wrong UAV (incorrect weapon target pairing) (H3)
38(B) UCA 30: Autonomous Controller implements a task using the wrong UAV (H3)

226

control. Here, TL intends to fire or tasks a UAS to fire, but instead an untasked UAS without
adequate capability fires.39 [DA]

• (Step 2: Internal Control) Unsafe Control Input: Same as S-38.2.3

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path: Same as S-38.2.3

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Before <TL, UAS2>

can fire UAS1 misinterprets the following factors as a request for it to fire on the target.

Therefore, it claims the task and broadcasts its intent to the team. As a result, <TL, UAS2>

does not provide its fire command.

o Feedback about Controlled Process from Collaborators: UAS1 receives general

feedback from the UAS providing the fix that the target is not destroyed.

o Feedback about Collaborator Control Actions from Controlled Process: UAS1

receives the targeting energy provided by another UAS’s fix.40

• (Step 3: Collaborative Dynamic) Cognitive Alignment: as illustrated in Figure A3-3.

o Construction: Same as S-38.2.3, but leads UAS1 to claim the fire task.

o Initialization: No scenario conceived.

o Model Updates: Same as S-38.2.3. In addition:

▪ Lateral Coordination (Observation): TL observes UAS1 maneuvering in a way

consistent with providing a fire command. TL loses confidence in her/his

understanding that UAS1 cannot fire and misinterprets this observed

behavior as an ability to fire tasked by another controller (Ground Station).

As a result, the TL (reluctantly) retasks UAS1 to fire to match the observed

behavior of the system.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-38.2.3

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: UAS1 is disconnected from the

team. In such circumstances, it switches to a control mode that authorizes it to fire under

certain circumstances (e.g., aware that a teammate was planning tasked to fire, in self-

defense, …). Such modes are built into the system to enable continuity of operation

should the team become disconnected or suffer severe losses. However, in this case, UAS1

takes on the task even though it is not capable, and TL drops it in observation of this.

S-41.5.5 (Step 1: Top-Level Scenarios #5): TL control actions to the controlled process are unsafe
in combination with how it directs the UAS. Here, TL fires her/himself when they are not capable
to, instead of tasking a UAS that can. [DA]

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.2 and S-38.2.2

• (Step 2: Internal Control) Inadequate Process Model: Same as S-38.2.2. Refinement:

39(B) UCA 31: Autonomous Controller implements a task when there is no command from an authorized

command provider (H3)
40 (B) Scenario: AuC receives a target designation that it determines can lead to releasing a missile as long
as parameters are satisfied, so AuC decides to release the weapon without a Team Lead command

227

o Inadequate feedback: TL interface hides the TL’s own aircraft status and capabilities

behind that of the UAS (or vice versa) and makes it difficult to consider all

resource options available on the team.

• (Step 2: Internal Control) Inadequate Control Algorithm: See Cognitive Alignment.

• (Step 2: Internal Control) Unsafe Control Path:

o TL has a weapons system malfunction and fires unintentionally, even if it is not

configured appropriately to strike the target. The UAS assigned to fire observes

this and drops its task41.

o TL intends to task a capable UAS to fire but gets lost in the user interface and is

not capable of doing so. Out of frustration or desperation, TL fire her/himself.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Before a tasked UAS

can fire, TL misinterprets the following factors as an indication that the UAS tasked to

fire is not executing its task. This contributes to the TL attempting to fire her/himself even

if s/he is unable: (Similar to S-41.5.4)

o Feedback about Controlled Process from Collaborators: TL receives general

feedback from the UAS providing the fix that the target is not destroyed. (Similar

to S-41.5.4)

o Feedback about Collaborator Control Actions from Controlled Process: TL

receives the targeting energy provided by another UAS’s fix. (Similar to S-41.5.4)

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Refined:

o Construction:

▪ (Human-Machine) The control algorithms on the UAS are not configured

to respond in the way that the TL expects. For example, the UAS do not

acknowledge the <fire, search> task, and do not provide feedback of

<firing parameters, search area>, … This is different from the TL’s

previous interactions with a MUM-T system. As a result, the TL loses

confidence in the ability of the UAS to execute the <fire, search> command,

fixates on executing it, and takes it on her/himself.

o Initialization:

▪ (Human-Machine) The <fire, search> task parameters provided to the UAS

by the TL do not include multiple subconscious variables tracked by the

TL. As a result, the response of the UAS team to the task is unsatisfactory

to the TL. S/he cancels the tasking and executes the <fire, search>

command her/himself. (Similar to S-40.4.5)

o Model Updates: Elements of the UAS’s process models are not adequately or

consistently updated. Refined:

▪ Vertical Coordination (Control): TL prescribes certain coordination

parameters associated with the fix-fire tasks that are assigned to UAS.

These parameters are typically determined by the controllers assigned to

41 (B) Scenario: The UAS [or any controller] does not intentionally release a missile, but there is electrical
interference that causes the bay to unlock, or a missile is loose in the bay, so a missile is released.

228

the tasks. As a result, the UAS tasked to fire incorrectly believes that the TL

will fire instead, and therefore, drops its task. This possibly repeats its self

with other UAS. Because the TL is unable to provide these coordination

parameters with the UAS believing it has taken on the fire task, the TL

decides to take on the task her/himself.

▪ Lateral Coordination (Communication): For the reason above (vertical

coordination), some of the UAS incorrectly believe the TL has taken on the

<fire, search> task. They communicate this belief to the rest of the team,

which causes the assigned UAS to drop the task. Because the TL is unable

to provide these coordination parameters with the UAS believing it has

taken on the fire task, the TL decides to take on the task her/himself.

▪ Lateral Coordination (Observation): The TL loses the ability to observe the

UAS tasked to <fire, search> and is no longer confident the task is being

executed. As a result, the TL decides to take on the search task her/himself,

even if in addition to other UAS executing it.

▪ Prediction: Based on current observations, the TL does not believe a UAS

was successfully tasked with the <fire, search> task, nor will one be able to

be tasked with it or perform it (anti-access environment). As a result, the

TL takes on the task her/himself.

o Decision-Making: See all the model update scenarios above.

o Capacity: Same as S-40.4.5

• (Step 3: Collaborative Dynamic) Dynamic Membership: The set of active UAS changes so

often that the TL has no confidence that tasking the UAS team will result in an assigned

UAS that actually completes the task. S/he chooses to take on the task her/himself.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

S-41.5.9 (Step 4: Other Factors): The “wrong” controller provides the fire command due to factors
beyond those explored in interactions between the controllers on the team. [DA]

• No new scenarios conceived.

UCCA 42.6 (abstracted UCCA): Controller Ci fires and another Cj fires when that creates
excessive damage [H3, H5] [DA]

UCCA 42.6.1 (refined UCCA): TL provides fire and UAS1 provides fire

UCCA 42.6.2 (refined UCCA): UAS1 provides fire and UAS2 provides fire

Another UCCA listed in Table A2-5 leads to the same outcome but is lower in priority. UCCA
42.6.3 consists of every controller providing fire, which has similar factors to the analysis below.

The figure below shows how internal control combinations relevant to the UCCA trace to top-
level scenarios. Cases 1d and 2d are not analyzed for similar reasons as in previous UCCAs.

229

Figure A3-9. Internal control combinations that can lead to multiple controllers firing

S-42.6.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to execute safe collective control. The context of this UCCA does not apply to this top-level scenario.

S-42.6.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control. Here, TL tasks UAS1 to fire and tasks UAS2 to fire, so both fire. [DA]

• All factors: Same as S-37.1.2

S-42.6.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, TL tasks a
single UAS appropriately to fire, but multiple UAS perform the task. [DA]

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-41.5.4.

• (Step 3: Collaborative Dynamic) Cognitive Alignment, Dynamic Membership, Dynamic

Connectivity: Same as S-39.3.3.

Note: S-42.6.3 is nearly identical to S-39.3.3. Both involve a machine tasked and a machine
untasked that execute a common command <fix, fire>, which leads to a hazard. As such, their causal
factors are nearly identical, with the exception of details on of how control loops are mutually closed.

S-42.6.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyways, which leads to unsafe
collective control. Here, TL fires as intended, and an untasked UAS fires in addition.42 [DA]

42 (B) UCA 31: Autonomous Controller implements a task when there is no command from an authorized

command provider (H3)

230

• All factors: Same as S-41.5.4, but leads to TL and UAS firing.

S-42.6.5 (Step 1: Top-Level Scenarios #5): TL control actions to the controlled process are unsafe
in combination with how it directs the UAS. Here, TL provides fire and tasks UAS1 to fire. [DA]

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.2

• (Step 2: Internal Control) Inadequate Process Model: Similar to S-37.1.2, with further

refinement:

o Delayed feedback. TL tasks UAS1 to <fix, fire>, but feedback from UAS1

acknowledging the tasking is delayed back to the TL (e.g., degraded

communication channel, hidden in layers of the interface). Thus, TL incorrectly

assumes UAS1 was not tasked and decides to execute the task her/himself.

o Inadequate feedback. TL has inadequate feedback of the target to make the

determination that multiple controllers firing will create excessive damage. As

such, TL elects to conservatively assign multiple controllers to fire.

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the target and the team, but still chooses to task multiple UAS to fire. Refinement:

o TL has previously experienced weapon system failures on the team. This leads

her/him to believe that assigning multiple controllers to fire (including

her/himself) is necessary to ensure at least one weapon is successfully fired.

However, here, all weapon systems function and fire together.

• (Step 2: Internal Control) Unsafe Control Path:

o TL intends to provide the fire command and not task a UAS, but inadvertently

tasks a UAS to fire in addition. Refinement:

▪ The tasking interface is inadequate given the workload and operating

environment. (Same as S-37.1.2)

▪ TL had originally tasks UAS1 to <fix, fire> but changes the plan, and

instead plans to fire. However, the communication channel to UAS1 is

degraded and it does not receive the task cancellation.43

o TL tasks a UAS to fire, but s/he inadvertently fires in addition. Refinement:

▪ The tasking interface is inadequate given the workload and operating

environment. (Same as S-37.1.2)

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-41.5.5, but

leads to TL firing in addition to a UAS.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Same as S-41.5.5, but leads to TL

firing in addition to a UAS.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.2

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No scenario conceived.

S-42.6.9 (Step 4: Other Factors): Multiple controllers provide the fire command due to factors
beyond those explored in interactions between the controllers on the team. [DA]

43 (S) Scenario: FMS has a fix on target command with authorization, there is a delay in another command
from the Team Lead to delete the command, so AuC receives a fix command without authorization

231

• Same as S-39.3.9

UCCA 43.7 (abstracted UCCA): Controller Ci does not provide search and no other Cj provides
search when no targets have been found [H3] [DA]

UCCA 43.7.1 (refined UCCA): TL, UAS1, and UAS2 do not provide search command

The figure below shows the relevant internal control actions for the UCCA. The way the TL issues
a search task is different than how s/he issues the fix, fire tasks. The search task is provided to
the UAS team, which allocates it to a UAS. The figure below show the “Task Search” command
going to the overall set of UAS to highlight this distinction in the analysis that follows.

Figure A3-10. Internal control combinations to consider that can lead to no controller searching.

S-43.7.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to execute safe collective control. Here, TL does not task the UAS team to search (and does not
intend to search her/himself)44. [DA]

• (Step 2: Internal Control) Inadequate Process Model: Same as S-37.1.1, in addition:

o Inadequate Feedback. Mission feedback provided to TL is stale and shows an

outdated target location. The TL believes s/he has an accurate target location, and

therefore does not need to search.

• All other factors: Same as S-37.1.1

S-43.7.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control.

Note: for the search task, tasking multiple UAS is not unsafe. Scenarios in which the TL tasks the
UAS to search in a way that contributes to the UAS not searching are covered in S-43.7.3

S-43.7.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, TL tasks
the UAS team to search, but no UAS searches.45 [DA]

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.3

44 (B) UCA 8: Team Lead does not provide identify target command when the mission requires a

determination of the objects in a region (H3)
45 (B) UCA 29: Autonomous Controller does not implement a task from the Team Lead (H3)

232

• (Step 2: Internal Control) Inadequate Process Model: Same as S-37.1.3

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.3

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: If the search tasks are

statically defined per planning cycle, then this collaborative dynamic does not apply.

However, if the UAS exchange and use information gathered during searches to

dynamically update their model of the remaining task, then this dynamic applies, as

illustrated in Figure A3-11. Refinement:

Figure A3-11. Control structure for controllers collaborating on a search task

o Feedback about Controlled Process from Collaborators: UAS1 is selected by the

automation to complete the search task. UAS2 is in the vicinity of the search area

and points its search sensor to gather feedback of opportunity. UAS1 incorrectly

uses that feedback to update its belief that the search task is no longer necessary,

and therefore drops the task, even though it is still needed.

o Feedback about Collaborator Control Actions from Controlled Process: N/A

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The UAS on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: The process models and/or control algorithms of the UAS are not

adequately or consistently built to support collaborative control. Refinement:

▪ The control algorithms on the UAS are not compatible with how the TL

specifies the search task. This prevents the task allocation process from

initializing This could occur due to a misconfiguration of the UAS, the TL

software, or degrees of freedom available to the TL in defining search tasks

that go beyond what the UAS can handle. (Similar to S-37.1.3)

▪ The control algorithms on the different UAS are not compatible with one

another (e.g., misconfiguration). As a result, the UAS lack the ability to

coordinate and select who will take on the task. (Similar to S-37.1.3)

o Initialization: Elements of the UAS’s process models are not adequately or

consistently initialized across the team. Refinement:

▪ The UAS receive different versions of the task specification by the TL. This

could occur because the TL periodically updates how the task is specified

given slight changes in her/his model of the mission. The UAS receive the

task specification across different replan cycles. As a result, the UAS do

not have sufficient common knowledge of the task to form consensus on

which one should be assigned. (Similar to S-37.1.3)

233

▪ UAS have different beliefs about how many and which UAS are

participating on the team. This may occur due to dynamic membership

when UAS are periodically taken offline and added, and dynamic

connectivity that prevents timely distribution of this information. As a

result, UAS are unable to effectively coordinate on which one is best suited

for the task. Alternatively, they could also come to consensus that a UAS

that is not actually part of the team is best suited, and “relinquish” the

search command to it, even though it will not do it. (Similar to S-37.1.3)

▪ UAS have different beliefs about the current roles and responsibilities of

other controllers on the team. For example, one UAS believes that the TL

has taken on the search task based on stale information, which gets

disseminated to the rest of the team. This forces the control algorithms to

not coordinate on which UAS should take it. (Similar to S-37.1.3)

o Model Updates: Elements of the UAS’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): The TL unknowingly over-specifies the

search task, and imposes constraints that are too strict for the UAS team to

reach an assignment solution. For example, TL specifies an execution time

window that is unnecessarily narrow and cannot be satisfied by any UAS.46

▪ Lateral Coordination (Communication):

• Communications between UAS are not adequate to execute a

distributed decision-making algorithm, such as allocation of the

search task. Too many coordination messages needed for the UAS

to reach consensus are dropped, and the team does not converge

on a solution. Communication channels may be degraded due to

jamming, fading, and equipment damage. (Similar to S-37.1.3)

• The information UAS use to run the distributed decision-making

algorithm is inconsistent from UAS to UAS. For example, UAS1

receives a state estimate from UAS2, which becomes slightly

outdated due to small communications and processing delays.

Then for planning, it compares this now slightly outdated UAS2

state estimate with its own current UAS1 state estimate. The same

effect also occurs when UAS2 plans. As a result, UAS plan on

inconsistent information, and both conclude that the other UAS is

better suited for the search task. (Similar to S-37.1.3)

▪ Lateral Coordination (Observation): (Similar to S-37.1.3)

▪ Prediction: The UAS team assigns the search task using predictions of each

other’s future states. However, those projections are inaccurate and lead

to lack of consensus or reaching an unfeasible solution. For example, UAS1

is tasked to fix at a certain time window. The location of that fix is used to

predict where UAS1 will be and to determine that it will best be suited to

46 (B) Scenario: task exceeds a limit for hydraulic system [or any other control limit], so does not actuate

234

execute the search. However, the fix task is later modified such that UAS1

can no longer meet the constraints of the search task. But by this time, it is

too late to retask another UAS.47

o Decision-Making: The process UAS use to decide what control and

communications actions they provide is inadequate or inconsistent across the

team. Refinement:

▪ Despite adequate information sharing between UAS, the control algorithm

is too slow to converge on a solution and “times out” without determining

which UAS is most suitable to execute the task. (Similar to S-37.1.3)

▪ Despite adequate information sharing between UAS, the control algorithm

“churns”. It replans or reoptimizes too frequently, overrides previous

solutions before they can be executed, and ultimately the search task does

not get performed. For example, UAS1 may be closer to the search task

and deemed better suited to take it on. However, by the time this decision

is made, UAS2, which was traveling for other reasons, is now slightly

closer. The algorithm runs again, and re-assigns the task to UAS2 instead,

but by then UAS1 has overtaken UAS2. The process repeats itself and no

UAS performs the search. (Similar to S-37.1.3)

▪ The UAS have a relatively consistent set of common information. But they

each employ a non-deterministic decision-making algorithm (e.g., Machine

Learning based) and reach inconsistent solutions for which UAS gets

assigned the task. As a result, no UAS is assigned. (Similar to S-37.1.3)

▪ The UAS have common planning information and are configured with

common deterministic decision-making algorithms. However, their

differences in contextual factors lead them to use the algorithm differently.

For example, UAS1 has an internal system malfunction or is targeted by an

enemy, and prioritizes resolving those issues over collaborating with

UAS2. UAS2 does not receive coordination messages as expected. As a

result, no UAS is assigned to search. (Similar to S-37.1.3)

o Capacity: Same as S-37.1.3

• (Step 3: Collaborative Dynamic) Dynamic Membership: Changes in the set of UAS that

participate in the team contribute to this UCCA. Refinement:

o The assigned UAS is then taken out of the team by a different controller (e.g., the

Ground Station or a different team lead), or has an internal system failure that

prevents it from executing its collaborative responsibilities. (Similar to S-37.1.3)

o One of the UAS has an internal problem that leads it to repeatedly change control

modes and its participation with the team. Every time the set of participants

changes, the algorithm replans. This causes “churn” and no UAS performs the

search task. (Related to Cognitive Alignment and Decision-Making above).

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

47 (B) Autonomous Controller calculates that the current state is sufficient to accomplish the task

235

o UAS2 is temporarily indirectly connected to the TL via UAS1. A new tasking

provided by the TL and relayed to UAS2 by UAS1 conflicts with a previous tasking

received by UAS2. Because of the source, UAS2 dismisses the new tasking and

prevents the team from adequately coordinating a task assignment.

S-43.7.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyways, which leads to unsafe
collective control. The context of this UCCA does not apply to this top-level scenario. (Same as S-
37.1.4)

S-43.7.5 (Step 1: Top-Level Scenarios #5): TL control actions to the controlled process are unsafe
in combination with how it directs the UAS. Here, TL does not search (and does not task the UAS
team to search). Emphasis is placed both on when the TL does not intend to search, and when
s/he does intend to search but does not do so.48 Refinement:

• (Step 2: Internal Control) Unsafe Control Input, Unsafe Control Path: Similar to S-37.1.1

• (Step 2: Internal Control) Inadequate Process Model: Similar to S-37.1.1. In addition:

o Feedback not available. TL is fixated on tasking UAS and forgets that s/he can search

her/himself. Feedback from the interface highlights the UAS resources available,

but it excludes resources the TL can contribute to the mission. (Similar to S-40.4.5)

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the need to search for a target and the team capabilities, but still chooses not to

search or task a UAS to search. Refinement:

o TL is currently busy and prioritizes other tasks, but intends to search or task a

UAS. However, s/he then forgets due to heavy workload. (Similar to S-37.1.1)

o TL misunderstands the system and incorrectly believes that the UAS that are not

tasked to fix or fire will default to executing preplanned searches. This was how

the system was configured in past training exercises.49

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Does not apply.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Model Update:

▪ Prediction: TL intends to search. However, s/he predicts that one of the

UAS will navigate across the search area and should by default have its

search sensor pointed out to gather information. The TL predicts the intent

of the search task will be fulfilled by the UAS without formal tasking.

However, the UAS takes a different path or does not collect data as

anticipated. (Relates to construction of control algorithm).

o Capacity: TL intends to perform the search task but is too busy monitoring the

activities of the other UAS.50

48 (B) UCA 25: The Team Lead does not provide waypoints for his FMS (H2).
49 (B) Scenario: Team Lead believes the AuC can track targets [or search] without providing an explicit
command, so TL does not provide track target [or search] command.
50 (B) Scenario: Team Lead is so focused on the UAV(s) locations that he forgets to update his own position.

236

• (Step 3: Collaborative Dynamic) Dynamic Membership: Similar to S-37.1.1

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o TL starts to execute the search task but, but then anticipates that performing this

will disconnect her/him from the team. S/he intends to retask another UAS to

do it, but does not do so due to factors described in S-37.1.1.

o The UAS team is tasked to search, but some of the UAS are indirectly connected

to the TL, and receive their commands by relay through other UAS. Because the

relays lack authority, those receiving the tasking indirectly reject it as invalid and

do not perform it if selected by the automation. (Similar to S-37.1.3)

S-43.7.9 (Step 4: Other Factors): No member of the team searches due to factors beyond those
explored in interactions between the controllers on the team. [DA]

• Inadequate Process Feedback: the controller performing the search receives inadequate state

estimates to control its trajectory. This could be due to a system failure or interference.

• Unsafe Process Behavior: the TL or UAS does provide a search, but the target outmaneuvers

the search process or conceals itself to make it ineffective.

UCCA 44.8 (abstracted UCCA): Controller Ci provides search and no other Cj provides search
when the tasked entity is the only one capable for a higher-priority task and teammate can search
[H3] [DA]

UCCA 44.8.1 (UCCA): TL searches, UAS1 does not search, and UAS2 does not search
when TL is the only one capable for higher-priority task and any UAS can search.

UCCA 44.8.2 (UCCA): TL does not search, UAS1 searches, and UAS2 does not search
when UAS1 is the only one capable for higher-priority task and TL or UAS2 can search.

The figure below shows how internal control combinations relevant to the UCCA and traces them
to top-level scenarios. Case 1b is not analyzed for similar reasons as in previous UCCAs.

Figure A3-12. Internal control combinations that result in the wrong UAS providing the search

S-44.8.1 (Step 1: Top-Level Scenarios #1): TL does not direct the UAS as necessary for the team
to execute safe collective control. The context of this UCCA does not apply to this top-level scenario.
(Similar to S-38.2.1)

S-44.8.2 (Step 1: Top-Level Scenarios #2): TL directs the UAS in a way that leads to unsafe
collective control. Here, TL tasks the UAS team to search, even though the selected UAS is needed
for a higher-priority task, instead of executing the search task her/himself. [DA]

237

• (Step 2: Internal Control) Unsafe Control Input: (Same as S-38.2.2)

• (Step 2: Internal Control) Inadequate Process Model: (Same as S-38.2.2, S-41.5.1). In

addition:

o TL does not have sufficient working knowledge of the multi-UAS control

algorithm to anticipate which UAS will be selected to search if the team is tasked.

This may be due to lack of transparency or feedback in the distributed task

allocation algorithm. The TL incorrectly believes that the automation will not

assign the UAS that is needed for a higher-priority task, or that it will update the

assignment later as needed. (Same as S-44.8.5)

o TL over-trusts the automation to produce an effective task assignment. TL over-

relies on the automation to assign UAS in a way that is consistent with task

priorities, even though it will not.

• (Step 2: Internal Control) Inadequate Control Algorithm:

o TL does not adequately prioritize tasks to perform. S/he selects the search as the

most important task to provide to the UAS team, and instead of prioritizing

something else. (Similar to S-44.8.5)

• (Step 2: Internal Control) Unsafe Control Path: (Same as S-37.1.1). In addition:

o TL intends to task the UAS onto the higher-priority task, but s/he unintentionally

tasks the team to search. (Can be due to inadequate interface as in S-37.1.1)

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-

level scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL anticipated that the UAS that would be assigned would not be the one needed

for a higher-priority task. However, the UAS expected to be selected is taken

offline by another controller (e.g., Ground Station or different team lead). As a

result, the algorithm selects a UAS different than the one the TL expected.

o TL assigns the search task to the UAS team, knowing that it will likely be assigned

to a UAS that is needed for a higher-priority task. However, TL also anticipates

that a new UAS will be added to the team shortly and that the algorithm will

reassign the search task to the UAS at that time. This does not occur (e.g., the new

UAS is unable to join the team, the algorithm does not replan when it joins, …).

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No scenario conceived.

S-44.8.3 (Step 1: Top-Level Scenarios #3): TL directs the UAS adequately, but some of the UAS
do not execute the directions properly, which leads to unsafe collective control. Here, the UAS
team is tasked, but the wrong UAS conducts the search. The only UAS capable of performing a
higher-priority task is assigned, and other UAS that can conduct the search are not.51 [DA]

• (Step 2: Internal Control) Unsafe Control Input:

51 (B) UCA 30: Autonomous Controller implements a task using the wrong UAV (H3)

238

o The UAS team is overridden by another controller (e.g., the Ground Station,

another team lead, or a cyber attacker) that designates the wrong UAS to conduct

the search. (Similar to S-37.1.3)

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.3

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops:

o Feedback about Controlled Process from Collaborators: UAS2 (assigned to search)

shares its feedback with the team. UAS1 uses this feedback to update its model of

the search task (e.g., larger area to survey, needs increased precision), and

determines that it is the only UAS that can execute the search. The team reassigns

UAS1 to search even though it is need for a higher-priority task. (Similar to S-

43.7.3)

o Feedback about Collaborator Control Actions from Controlled Process: N/A

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The UAS on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: The process models and/or control algorithms of the UAS are not

adequately or consistently built across the team to support collaborative control.

Refinement:

▪ The control algorithms on the UAS are not consistent with how the TL

specifies taskings. Specifically, UAS do not account for task prioritization

in the same way that the TL does. For example, TL simultaneously tasks

the UAS team in general to conduct a search and UAS1 specifically to

provide a <fix, fire>. The automation selects UAS1 for the search task and

prioritizes the search over the other TL-directed task.52

▪ The control algorithms on the UAS are not consistent with one another.

Specifically, some UAS(s) are configured to treat a search task as an

individually directed task from the TL (similar to fix, fire tasks), and not as

a team task that gets automatically allocated. In this example, UAS1 is

configured as such and interprets the search task as an individual tasking.

It takes it on regardless of how the rest of the UAS team wants to allocate

it, and regardless of TL intent.

o Initialization: Elements of the UAS’s process models are not adequately or

consistently initialized across the team. Refinement:

▪ UAS receive different versions of the task specification from the TL. This

occurs because the TL periodically updates how the task is specified given

slight changes in her/his model of the mission. The UAS receive the task

specification across different replan cycles (Similar to S-43.7.3) and reach

consensus over initial conditions that diverge from the intent of the TL.

52 (B) Scenario: AuC algorithm calculates that other tasks within its system have a higher-priority.
algorithm determines that the task is not a priority, so Auc does not implement command.

239

• For example, TL initially specifies a high priority for the search task.

A higher-priority <fix, fire> arises and the TL updates the initial

tasking accordingly. However, multiple UAS do not receive the

updated parameters, still operate on the belief the search is high

priority, and outvote UAS(s) that received the updated parameter.

▪ UAS have different beliefs about the current roles and responsibilities of

other controllers on the team. For example, certain UAS(s) believe that the

TL or another UAS has taken on the higher-priority task based on stale

information, and they disseminate this information across the team. This

causes the UAS team to then incorrectly assign UAS1 to execute the search,

when in fact it is needed for that higher-priority task. (Similar to S-43.7.3)

o Model Updates: Elements of the UAS’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control):

• TL imposes different tasking constraints on different UAS that

makes some of them unavailable to do the search. As a result, the

UAS team has no other option but to allocate the search to the UAS

that is needed for a higher-priority task.

• TL tasks search in such a way that the UAS team misinterprets it as

a command to task a specific UAS. However, that UAS is the only

one that can accomplish the other higher-priority task.

▪ Lateral Coordination (Communication):

• UAS share and use inconsistent state information in selecting the

optimal UAS to execute the search. This can be due to inadequate

communication channels between them, or delays in processing

and sending information. UAS1 incorrectly determines that it is the

only UAS that can execute the search. Thus, UAS1 searches instead

of doing the higher-priority task. (Similar to S-37.1.3)

• UAS share parameters about different tasks without specifying

which one they are describing. Each teammate incorrectly

correlates the information received to the wrong task. For example,

UAS1 shares that it is the only UAS capable of executing a different

task, but the UAS team interprets this statement as UAS1 being the

only UAS capable of executing the search. (Similar to S-37.1.3)

▪ Lateral Coordination (Observation): UAS1, which was not selected to search,

observes the UAS that was selected to search (e.g., UAS2) not maneuvering

in a way consistent with that task. As a result, UAS1 loses confidence that

UAS2 will execute the search, and is programmed to take over that task in

such cases. Thus, UAS1 takes on the search and does not execute the

higher-priority task. (Similar to S-43.7.3)

▪ Prediction: No scenario conceived.

240

o Decision-Making: The process UAS use to decide what control and

communications actions they provide is inadequate or inconsistent across the

team. Refinement:

▪ The control algorithm does not converge on a solution and “times out”

without reaching consensus on which UAS is most suitable to execute the

task. (See “Cognitive Alignment” in S-43.7.3). The UAS team is

programmed with an arbitration heuristic that forces the assignment to

UAS1 (e.g., assigns lowest ID number). UAS1 takes on the search without

considering other tasks it is assigned, including the higher-priority tasks.

o Capacity: The capacity of one of the controllers is inadequate to enable effective

alignment of team cognition. (Same as S-43.7.3 and “Decision-Making” above)

• (Step 3: Collaborative Dynamic) Dynamic Membership: Changes in the set of UAS that

participate in the team contribute to this UCCA. Refinement:

o The team of UAS adequately allocates the search to a UAS (e.g., UAS2) that does

not have higher-priority tasks, unlike UAS1. However, UAS2 is then taken out of

the team by a different controller (e.g., the Ground Station or a different team lead),

or it has an internal systems failure that prevents it from searching. (Same as S-

43.7.3)

o The automation is programmed to retask UAS2’s responsibilities to UAS1 if UAS2

drops out. UAS1 is now tasked to search, and drops its higher-priority task.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: TL had previously tasked the

UAS team to search. A higher-priority task then arises. The TL intends to retask the UAS

executing the search with these higher-priority tasks. However, the UAS off conducting

the search is now disconnected and cannot be retasked. (Similar to S-43.7.3)

S-44.8.4 (Step 1: Top-Level Scenarios #4): TL adequately does not direct the UAS to provide
certain commands, but some of the UAS provide them anyways, which leads to unsafe collective
control. Here, TL intends to search but instead, an untasked UAS better suited for a higher-
priority task executes the search.53 [DA]

• (Step 2: Internal Control) Unsafe Control Input: Same as S-44.8.3

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path: No scenario conceived.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Does not apply.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: The process models and/or control algorithms are not adequately

or consistently built across the team. Refinement:

▪ TL has created the search task but has not yet assigned it to the UAS. TL

assumes, based on working knowledge of the autonomation, that the UAS

53 (B) UCA 31: Autonomous Controller implements a task when there is no command from an authorized

command provider (H3)

241

will not take on this task. However, one or more of the UAS is programmed

to execute search tasks in the queue by default, if not tasked with anything

else. This unexpected UAS search behavior confuses the TL. S/he believes

the UAS may have been actively tasked by another controller (e.g., Ground

Station or different team lead), does not retask the UAS to the higher-

priority task, and does not execute the search her/himself.

• (Step 3: Collaborative Dynamic) Dynamic Membership: No scenario conceived

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: TL had previously tasked the

UAS team to search. A higher-priority task then arises. The TL intends to relieve the UAS

from executing the search and do the search her/himself. However, the UAS off

conducting the search is now disconnected and cannot be untasked.54

S-44.8.5 (Step 1: Top-Level Scenarios #5): TL control actions to the controlled process are unsafe
in combination with how it directs the UAS. Here, TL searches, even though s/he is needed for a
higher-priority task, instead of tasking the UAS team to search. [DA]

• (Step 2: Internal Control) Unsafe Control Input: (Same as S-38.2.2)

• (Step 2: Internal Control) Inadequate Process Model: (Same as S-38.2.2, S-41.5.1).

Additional related factors:

o TL does not have sufficient working knowledge of the multi-UAS control

algorithm to anticipate which one will be selected to search if the team is tasked.

This may be due to lack of transparency or feedback in the distributed task

allocation algorithm. TL intends to task a specific UAS for a later task and decides

not to risk tasking the team to search so that the one UAS is available (related to

Inadequate Control Algorithm).

o TL does not have confidence the automation can assign tasks effectively. Instead,

TL decides to not rely on it and performs all tasks her/himself.55

• (Step 2: Internal Control) Inadequate Control Algorithm:

o TL mis-prioritizes the search as the most important command and then elects to

do it her/himself, instead of focusing on a more important task.

o TL believes s/he can execute the search task while enroute to the higher-priority

task (e.g., multi-task). However, s/he ends up more consumed by the search task

than anticipated and is unable to execute the other command.

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task the UAS team to

search, but cannot for the following reasons. As a result, the TL searches her/himself.

o TL gets lost in the user interface and is not capable of tasking the search.

o The control communication channel is inadequate (e.g., jamming, link failures).

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops:

o Feedback about Controlled Process from Collaborators: A UAS is assigned to search,

and shares its feedback with the team. The TL receives degraded information

54 (B) Scenario: There is a delay in another command from the Team Lead to delete the command. There is
a transmission error, delay, communication link failure, so the AuC does not receive the command.
55 (B) Scenario: Team Lead identifies other targets based on only his visual because the AuC provided
false targets earlier in the mission.

242

regarding the search (e.g., degraded communications) and decides to intervene by

taking over the search, even though it was not necessary.

o Feedback about Collaborator Control Actions from Controlled Process: N/A

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The UAS on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: Same as S-41.5.5

o Initialization: Same as S-41.5.5, in addition:

▪ The controllers have different beliefs about the set of controllers on the

team. The UAS team allocates the search task to a UAS that the TL does

not believe is a part of the team, or believes is incapable of searching. The

TL intervenes and carries out the search. (Similar to S-43.7.3)

o Model Updates: Elements of the UAS’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): TL continuously adjusts inputs to try to get

the UAS team to select a specific UAS to execute the search, or to get the

UAS to execute the search in a certain way. However, the automation never

outputs the expected/desired solution. So, the TL cancels the tasking and

executes the search her/himself.

▪ Lateral Coordination (Communication): UAS have inconsistent state or

planning information that leads to a lack of consensus or a suboptimal

solution on how to perform the search task. Either are unsatisfactory to the

TL, who cancels the task and does it her/himself.

▪ Lateral Coordination (Observation): Same as S-41.5.5

▪ Prediction: Same as S-41.5.5

o Decision-Making: See all the model update scenarios above.

o Capacity: Same as S-40.4.5

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-41.5.5

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

S-44.8.9 (Step 4: Other Factors): The “wrong” controller provides the search due to factors beyond
those explored in interactions between the controllers on the team. [DA]

• No new scenarios conceived.

Abstraction 2b – Type 3-4: Controllers start / end providing control actions too early /
too late relative to one another

The following are the causal scenarios associated with all Abstraction 2b – Type 3-4 UCCA. As
in the analysis above, each high-level UCCA is analyzed together with its refined UCCAs.
Scenario identification for each UCCA starts with the following three top-level scenarios for all
Type 3-4 UCCAs. These are intended to provide focus and coverage over different possible
control actions internal to the team that could lead to unsafe collective output. The fourth top-
level scenario covers other factors in the same way as for Type 1-2 UCCAs.

6. Directed Sequence Unsafe: TL directs the UAS in a way that leads to unsafe temporal

sequencing.

243

7. Directed (Safe) but Executed in Unsafe Sequencing: TL adequately directs the UAS, but

the way in which the UAS execute the tasks leads to unsafe temporal sequencing.

8. Controller Actions to Process and Directions Unsafe in Sequencing: TL control actions to

the shared process are unsafe in temporal sequencing with how it directs the UAS.

9. Other: factors beyond those explored in interactions between the controllers on the team.

UCCA 47.1 (abstracted UCCA): Controller Cj starts providing fix command before Ci ends
providing fix command when that creates mutual interference [H1, H3] [TA]

UCCA 47.1.1 (refined): UAS2 starts providing fix before UAS1 ends providing fix.

The figure below shows the internal control actions relevant to the UCCA and traces them to the
top-level scenarios. S(fix) and F E(fix) is read as “starts fix before ends fix”, where F is the Linear
Temporal Logic (LTL) operator for some Future step.

Figure A3-13. Internal control actions that result in mutual interference in fix task handoff

S-47.1.6 (Step 1: Top-Level Scenarios #6): TL directs the UAS in a way that leads to unsafe
temporal sequencing. Here, TL tasks a UAS to start fix too soon and another to end fix too late
relative to each other. [TA]

• (Step 2: Internal Control) Unsafe Control Input: TL misinterprets direction from higher

authorities to be concerned about <gaps, overlaps> between controllers that are handing

off a <fix, search>.56

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: (1) the time windows tasked do not constitute excessive <gap,

overlap>, (2) UAS(s) will not actually provide the fix over their entire time window, (3)

multiple UAS will not cause hazardous effects if they fix simultaneously.57 Refinement:

o Missing Feedback. TL interface does not provide a way to effectively compare UAS

tasking timelines.

56 (B) Scenario: [higher authorities] dis-authorization comes across as an authorization due to inaccuracies
in the radio.
57 (B) Scenario: TL has accurate feedback related to timing, but has an inaccurate mental model of how long

it takes the Automated Controller to implement a command upon receiving it, so TL issues command late.

244

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the target and the timing associated with controllers on the team, but still chooses

to task a UAS to <fix, search> in a way that creates a control <gap, overlap>. Refinement:

o TL is busy and prioritizes other operating tasks. S/he provides an initial tasking

to get the team moving, but plans to update the tasking of the 2nd UAS fixing before

the unsafe handoff. However, s/he later forgets due to heavy workload.58

o TL misunderstands how the UAS operate. S/he believes that the UAS will

coordinate with one another to avoid the unsafe handoff.

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task the UAS <deconflicted,

adjoining> time windows, but is unable to do so. Refinement:

o The communication channel to one or more of the UAS is inadequate (e.g., RF

jamming, communications fading, misconfigured encryption settings, …).

▪ This prevents TL from updating UAS1’s tasking after it has specified

UAS2’s time window.

▪ This prevents a UAS from receiving the full task information (e.g., UAS

receives the task and start time, but not the end time) and turns to

preprogrammed default parameters to fill in the information gap.59

o The interface has a complicated or confusing workflow to specify a task. This is

aggravated in high workload environments. For example, tasks are programmed

with default durations based on specified start times. Those durations are not

automatically adjusted based on the timelines associated with other controllers.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-level

scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o The set of UAS participating fluctuates so much that the TL has difficulty

effectively managing their contributions. For example, TL had previously tasked

UAS to perform a proper handoff. However, some of the UAS are taken offline by

a different controller (e.g., Ground Station or different team lead). The TL rushes

to recreate the tasking and makes a mistake that leads to the <gap, overlap>.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenarios conceived

S-47.1.7 (Step 1: Top-Level Scenarios #7): TL adequately directs the UAS, but the way in which
the UAS execute the tasks leads to unsafe temporal sequencing. Here, UAS2 starts to provide the
fix before UAS1 ends it. [TA]

• (Step 2: Internal Control) Unsafe Control Input: Another controller (e.g., Ground Station,

another team lead, cyber attacker) directly overrides one of the UAS (e.g., directs it to

58 (B) Scenario: Team Lead is pre-occupied with another task, so provides an identification command late.
59 (B) Scenario: AuC uses an old algorithm that defaults to a specific payload, so does not provide a
command that powers on the appropriate payload.

245

start/end providing the fix command) in a way that conflicts with the team coordinated

task handoff process. (Similar to S-37.1.3)

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path: UAS1 intends to hand off the fix command

to UAS2 at the coordinated time. However, its targeting equipment malfunctions and it

is unable to turn it off in time. Similarly, UAS2 intends to start at the coordinated time,

but its equipment malfunctions and it unintentionally starts providing the fix early.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: A conceivable

mechanism multiple controllers can use to coordinate a control handoff is to use feedback

from the shared process to mutually estimate each other’s actions. In this case, Cj can

detect a change in fix feedback from the process, correlate it with Ci ending its fix

command, and use that information to determine when to start its fix command. Ci and

Cj also receive feedback on their actions from other controllers on the team. For example,

Ck (tasked to fire) provides feedback on the fix, as described in S-37.1.3. In such cases,

controllers mutually close each other’s control loops (Figure A3-14). Refinement:

Figure A3-14. Control structure for controllers collaborating on handing off a fix

o Feedback about Controlled Process from Collaborators:

▪ The feedback UAS1 receives from another UAS leads it to believe UAS2

has not started the fix and that UAS1 should continue to provide it.

Refinement:

• UAS1 ends its fix in anticipation of UAS2 starting it. A teammate

then provides feedback that the fix is not (or is no longer) adequate

to support a fire command for an excessive period of time. This

may be due to other factors beyond UAS2 not providing a fix.

However, UAS1 interprets this as UAS2 not taking over control,

and resumes its own fix, which now interferes with UAS2.

• UAS1 ends its fix as planned. UAS2 provides feedback (correctly)

to UAS1 that it no longer sees its fix. However, UAS1 misinterprets

this as a request to continue providing a fix. As such, it resumes its

own fix, which now interferes with UAS2.

▪ The feedback UAS2 receives from another UAS leads it to believe UAS1

has ended the fix and that UAS2 should start providing it. Refinement:

246

• UAS1 has not yet ended its fix (perhaps as planned). However, a

teammate provides feedback that the fix is not (or is no longer)

adequate to support a fire command. This may be due to other

factors beyond UAS1 not providing a fix. However, UAS2

interprets this as UAS1 relinquishing control, and begins its own

fix, which now interferes with UAS1.

o Feedback about Collaborator Control Actions from Controlled Process:

▪ The feedback UAS1 receives from the process leads it to believe it UAS2

has not started the fix and that UAS1 should continue providing it.

Refinement:

• UAS1 ends its fix in anticipation of UAS2 starting. But it then does

not receive fix feedback from the process consistent with UAS2 now

providing a fix. This may be due to other factors beyond UAS2 not

providing a fix (e.g., sensor malfunction, misconfiguration, …).

However, UAS1 interprets this as UAS2 not taking over control,

and resumes its own fix, which now interferes with UAS2.

▪ The feedback UAS2 receives from the process leads it to believe UAS1 has

already ended the fix and that UAS2 should start providing it. Refinement:

• UAS1 has not yet ended its fix (perhaps as planned). However,

UAS2 does not receive fix feedback from the process consistent

with UAS1 still providing a fix. This may be due to factors beyond

UAS1 not providing a fix (e.g., misconfiguration, sensor failure).

However, UAS2 interprets this as UAS1 relinquishing control, and

begins its own fix, which now interferes with UAS1.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: The process models and/or control algorithms are not adequately

or consistently built across the team to support collaborative control. Refined:

▪ (Human-Machine) The control algorithms on the UAS are not compatible

with how the TL specifies the <fix, search> task. This prevents the

controller from accepting the task or coordinating specific time windows

for its handoff. This could occur due to a misconfiguration of the UAS or

TL interface software, variation in how the TL was trained to work with

the UAS, and conflicting past experience the TL has in working with

human wingmen instead. (Similar to S-37.1.3)

▪ The control algorithms on the different UAS are not compatible with one

another. As a result, the UAS lack the ability to coordinate a fix command

handoff. This could be due to a configuration management issue. (Similar

to S-37.1.3)

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ The different UAS receive different versions of the fix task specification by

the TL. This occurs because the TL periodically updates how the task is

247

specified given slight changes in her/his model of the mission. The UAS

receive the task specification across different replan cycles. As a result, the

controllers do not have sufficient common knowledge of the task to

coordinate its handoffs. (Similar to S-37.1.3)

▪ The different UAS have different beliefs about how many and which UAS

are participating on the team. This occurs dues to dynamic membership,

with UAS cycling on and offline, and dynamic connectivity that prevents

timely distribution of this information. This could result in the UAS1 not

believing that UAS2 is currently participating in the team. As such, UAS1

does not believe UAS2 is capable of accepting a handoff and continues to

provide its fix beyond its time window. (Similar to S-37.1.3)

▪ UAS have different beliefs about the current roles and responsibilities of

other controllers on the team. For example, UAS1 is not informed about

which teammate is responsible for taking over <fix, search> task after its

time window. As such, it does not know who to coordinate the handoff

with. (Similar to S-37.1.3)

o Model Updates: Some elements of some of the process models are not adequately

or consistently updated across the team. Refinement:

▪ Vertical Coordination (Control):

• TL controls coordination of the handoff between UAS1 and UAS2

(i.e., TL commands UAS1 to end and UAS2 to start the command).

This can be unsafe for reasons listed in S-47.1.6.

• TL overrides one of the UAS with a command inconsistent with the

laterally coordinated task handoff. For example, UAS1 and UAS2

have laterally coordinated how to do the handoff and are on track

to complete it. However, TL accelerates the UAS2 timeline to make

it available for other tasks, but s/he is not aware that this now

conflicts with the coordinated plan.

▪ Lateral Coordination (Communication):

• Communications channels between the two controllers assigned

the <fix, search> command are not adequate to coordinate on the

task handoff. Too many coordination messages needed to reach

consensus on when or how to provide the handoff are dropped.

Communication channels may be degraded due to jamming,

fading, and equipment damage. (Similar to S-37.1.3)

• The information controllers use to coordinate the handoff is

inconsistent. For example, UAS1 receives a state estimate from

UAS2, which becomes slightly outdated due to small

communications and processing delays. It uses this slightly

outdated UAS2 state estimate and incorrectly concludes that UAS2

is not yet in position to handoff the fix command, and UAS1

continues to provide a fix. Conversely, UAS2 uses its up-to-date

248

state estimate to determine it is in position for the handoff, and

starts its command. (Similar to S-37.1.3)

• A UAS is temporarily disconnected from the team and its model of

the task handoff from that of the team. The UAS reconnects and

now contributes its divergent variables. That disturbs team

consensus regarding how to execute the handoff. (Same as S-37.1.3)

▪ Lateral Coordination (Observation): UAS1 observes another UAS2

maneuvering in a way that is inconsistent with accepting a handoff of the

fix command. It therefore incorrectly decides to keep providing its fix

command too late. Similarly, UAS2 observes UAS1 maneuvering in a way

that is consistent with handing off the fix command and incorrectly starts

providing its own fix too early.

▪ Prediction: UAS1 has a model of the fix command handoff process that

expects to receive certain coordination messages and observations by

certain milestones. If UAS2 is delayed or takes an unexpected trajectory to

fire, UAS1 may lose confidence in its ability to hand off the task and could

decide not to <end, start> its fix command. (Similar to S-37.1.3)

o Decision-Making: The process controllers use to decide what control and

communications actions they provide are inadequate or inconsistent across the

team. Refinement:

▪ The dynamics of the handoff process and the associated distributed

decision-making lead to churn. For example, UAS1 ends its fix task to hand

it off to UAS2. After a delay, UAS2 starts its fix task to complete the

handoff. However, that delay was enough for UAS1 to assume no handoff

took place, and it therefore it resumes its fix command. This leads to UAS2

detecting a conflict and stopping its task before UAS1 has a chance to do

so. This handoff cycle repeats, and alternates between the UAS interfering

with each other or leaving a gap in the fix.

▪ Automated controllers employ a non-deterministic decision-making

algorithm (e.g., Machine Learning based) that leads to unpredictable or

inconsistent control and information outputs. This interferes with reaching

consensus over the task handoff process. (Same as S-37.1.3)

▪ UAS1 has low confidence in the ability of UAS2 to execute the handoff. As

a result, UAS1 precautionarily chooses not to end its fix. (Same as S-37.1.3)

o Capacity: The capacity of one of the controllers is inadequate to enable effective

alignment of team cognition. Refinement: (Same as S-37.1.3)

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o The loss of a teammate makes UAS1 continue to provide the fix instead of handing

it off. For example, UAS1 was previously paired with another UAS for the handoff

of the fix. That UAS is taken offline (by another controller, lost in mission, …) and

the handoff is reassigned to UAS2. However, the retasking is not known to UAS1,

and therefore, it does not know to coordinate a handoff with UAS2.

249

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

Changes in network topology can contribute to the unsafe coordination factors listed above.

S-47.1.8 (Step 1: Top-Level Scenarios #8): TL control actions to the shared process are unsafe in
temporal sequencing with how it directs the UAS. The context of this UCCA does not apply to this
top-level scenario.

Note: The TL does not provide the fix control action.

S-47.1.9 (Step 4: Other Factors): UAS2 starts to provide the fix before UAS1 ends it due to factors
beyond those explored in interactions between the controllers on the team. [TA]

• Unsafe Process Behavior: UAS1 intends to hand off the fix command to UAS2 at the

coordinated time, but the target deploys countermeasures or performs defensive

maneuvers that overcome the fix effects and make UAS2 choose to <start, end> early.60

UCCA 48.2 (abstracted UCCA): Controller Cj ends providing fix command before Ci starts
providing fix command when that creates a large gap in a fix handoff [H3] [TA]

UCCA 48.2.1 (refined): UAS2 ends providing fix before UAS1 starts providing fix.

The figure below shows the internal control actions relevant to the UCCA and traces them to the
top-level scenarios. F is the LTL operator for some Future step.

Figure A3-15. Internal control combinations that result in an excessive gap in fix task handoff

S-48.2.6 (Step 1: Top-Level Scenario 6): TL directs the UAS in a way that leads to unsafe temporal
sequencing. Here, TL tasks a UAS to end fix to soon and another to start fix too late relative to
each other. [TA]

• All factors: Same as S-47.1.6

S-48.2.7 (Step 1: Top-Level Scenario 7): TL adequately directs the UAS, but the way in which the
UAS execute the tasks leads to unsafe temporal sequencing. Here, UAS2 ends the fix command
before UAS1 starts. [TA]

• (Step 2: Internal Control) Unsafe Control Input: Same as S-47.1.7

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

60 (B) Scenario: An attacker provides a false fix on target command to the FMS

250

• (Step 2: Internal Control) Unsafe Control Path to Process:

o UAS1 intends to take on the fix command from UAS2 at the coordinated time.

However, its targeting equipment malfunctions and it is unable to turn it on in

time. Similarly, UAS2 intends to end at the coordinated, but its equipment

malfunctions, and it unintentionally ends the fix early. (Similar to S-47.1.7)

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same illustration as in

S-47.1.7 in Figure A3-14. Refinement:

o Feedback about Controlled Process from Collaborators:

▪ The feedback UAS1 receives from another UAS leads it to believe UAS2

has not ended the fix and that UAS1 should not start to provide it.

Refinement:

• UAS2 ends its fix in anticipation of UAS1 starting it. A teammate

then provides feedback that the fix is adequate to support a fire

command. This may be due to other factors beyond UAS2

providing a fix. However, UAS1 interprets this as UAS2 not ending

its control and does not start its own fix, which leads to a gap in

execution. (Similar to S-47.1.7)

▪ The feedback UAS2 receives from another UAS leads it to believe UAS1

has started the fix and that UAS2 should stop providing it. Refinement:

• UAS1 has not yet started its fix (perhaps as planned). However, a

teammate provides feedback to UAS2 that its fix is not (or is no

longer) adequate to support a fire command. While this may be due

to other factors beyond UAS1 providing a fix, UAS2 interprets this

as UAS1 providing a fix in addition to UAS2 and creating

interference. As a result, UAS2 prematurely stops providing the fix

and creates an excessive gap in handoff. (Similar to S-47.1.7)

o Feedback about Collaborator Control Actions from Controlled Process:

▪ The feedback UAS1 receives from the process leads it to believe it UAS2

has not ended the fix and that UAS1 should not start its fix. Refinement:

• UAS2 ends its fix in anticipation of UAS1 starting. But UAS1 then

continues to receive fix feedback from the process consistent with

UAS2 still providing a fix. This may be due to other factors beyond

UAS2 providing a fix (e.g., stale feedback, another UAS providing

an erroneous and spurious fix, …). However, UAS1 interprets this

as UAS2 not relinquishing control, and waits to start providing the

fix. This creates an excessive gap in execution. (Similar to S-47.1.7)

▪ The feedback UAS2 receives from the process leads it to believe UAS1 has

started the fix and that UAS2 should stop providing it. Refinement:

• UAS1 has not yet started its fix (perhaps as planned). However,

UAS2 still receives fix feedback from the process consistent with

UAS1 providing an interfering fix. This may be due to other factors

including a sensor malfunction or a spurious fix from another

251

controller. UAS2 interprets this as UAS1 taking over control and

its own fix, which creates an excessive gap. (Similar to S-47.1.7)

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: (Same as S-47.1.7)

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ The different UAS receive different versions of the fix task specification by

the TL. (Same as S-47.1.7)

▪ The different UAS have different beliefs about the current roles and

responsibilities of other controllers on the team. (Same as S-47.1.7)

o Model Updates: Some elements of some of the process models are not adequately

or consistently updated across the team. Refinement:

▪ Vertical Coordination (Control): (Same as S-47.1.7)

▪ Lateral Coordination (Communication)

• Communications between the two UAS assigned to fix are not

adequate to coordinate the task handoff. (Same as S-47.1.7)

• The information controllers use to coordinate the handoff is

inconsistent. For example, UAS1 receives a state estimate from

UAS2, which becomes slightly outdated due to small

communications and processing delays. It uses this slightly

outdated UAS2 state estimate and incorrectly concludes that UAS2

is still in position to provide the fix command and has not yet

handed it off. So, UAS1 does not start to provide a fix. Conversely,

UAS2 uses its up-to-date state estimate to determine it is ready to

handoff and ends its command. (Similar to S-47.1.7)

• A UAS, temporarily disconnected, reconnects and contributes its

divergent model variables to the team. (Same as S-47.1.7)

▪ Lateral Coordination (Observation): UAS1 observes UAS2 maneuvering in a

way that is inconsistent with handing-off the <fix, search> command.

Thus, it incorrectly decides to not start providing its command until too

late. Similarly, UAS2 observes UAS1 maneuvering in a way that is

consistent with taking over the <fix, search> command, and incorrectly

ends its own command too early. (Similar to S-47.1.7)

▪ Prediction: (Same as S-47.1.7)

o Decision-Making: Same as S-47.1.7, but with this additional refined factor:

▪ The distributed decision-making process is too slow to keep up with the

dynamic state of the shared-controlled process. It is unable to converge on

a solution for the handoff in time. (Similar to S-37.1.3).

▪ The distributed decision-making process does not account for disturbances

that affect the ability of UAS to fulfill their time windows commitments.

For example, UAS1 is delayed due to a process disturbance (e.g.,

unplanned headwind), and is unable to make the time window for the

252

handoff. Similarly, UAS2 must drop out of the task early due to a process

disturbance (e.g., unplanned excessive fuel burn), and is unable to make

the time window for the handoff.61

o Capacity: (Same as S-47.1.7)

• (Step 3: Collaborative Dynamic) Dynamic Membership: (Same as S-47.1.7)

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: (Same as S-47.1.7)

S-48.2.8 (Step 1: Top-Level Scenario 8): TL control actions to the shared process are unsafe in
temporal sequencing with how it directs the UAS. The context of this UCCA does not apply to this
top-level scenario. (Same as S-47.1.8)

S-48.2.9 (Step 4: Other Factors): A UAS ends its fix command before another UAS starts due to
factors beyond those explored in interactions between the controllers on the team. [TA]

• Same as S-47.1.9

UCCA 56.3 (abstracted UCCA): Controller Cj ends providing search before Ci starts providing
search when that creates an excessive gap in a search handoff [H3] [TA]

UCCA 56.3.1 (refined): TL ends providing search before UAS1 starts providing search.

UCCA 56.3.2 (refined): UAS1 ends providing search before TL starts providing search.

UCCA 56.3.3 (refined): UAS2 ends providing search before UAS1 starts providing search.

The figure below shows the internal control actions relevant to the UCCA and traces them to the
top-level scenarios. F is the LTL operator for some Future step. Items 1a-1b represent UCCA 56.3.1,
items 2a-2b represent UCCA 56.3.2, and items 3a-3b represent UCCA 56.3.3.

61 (B) Scenario: AuC algorithm miscalculates which UAV is optimal, algorithm does not account for
environmental factors impacting the UAV’s sensors.

253

Figure A3-16. Internal control combinations that result in an excessive gap in fix task handoff

Note: the following scenarios assume the handoff of the search command is time-based (i.e., Ci searches
over a time window then Cj searches over a later time window). The same reasoning can be applied to
spatially based handoff is (i.e., Ci searches over one area then Cj searches over the remaining area).

S-56.3.6 (Step 1: Top-Level Scenario 6): TL directs the UAS in a way that leads to unsafe temporal
sequencing. Here, TL tasks the UAS to start or end the search in a way that creates a gap with the
TL’s planned start or end to the search. [TA]

Note: By system definition, the TL specifies a general search task for the UAS team, and the automation
is responsible to assign UAS(s) to fulfill the task. This implies that the autonomy is responsible to
manage the specification of handoffs between two UAS. This is analyzed in S-56.3.7.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-47.1.6

• (Step 2: Internal Control) Inadequate Process Model: Same as 56.3.8

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the search requirements and the timing associated with controllers on the team. But

s/he still chooses to perform the search and task the UAS team in a way that leads to an

excessive search gap in handoff. Refinement:

o TL is busy and prioritizes other operating tasks. S/he provides the initial tasking

as a placeholder for the team but intends to adjust the tasking or her/his execution

before the interference. However, s/he later forgets to do this.62

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task the UAS team time

windows appropriate for a handoff to/from the TL, but is unable to do so. Refinement:

o TL makes an error in specifying the time (e.g., wrong format, invalid time,…) and

the automation performs an auto-correct that is incompatible with the TL intent.

62 (B) Scenario: Team Lead is pre-occupied with another task so provides command late

254

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not Applicable. The

control loop to task the UAS is only closed through the TL.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not Applicable. This UCCA focuses

on how the TL makes the decision to task the UAS.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL creates the search tasking knowing that a specific UAS is available in the time

window for the handoff to/from the TL. However, that UAS is removed from the

team (e.g., removed by another controller, shot down, …), and the UAS team is

now unable to full fill the handoff timeline but does not inform the TL.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o TL creates the tasking by specifying how the UAS team should adapt the handoff

in case of lost communications. Communications are then lost and the TL

becomes unaware that its execution does not meet the parameters it specified for

lost communications. The UAS drop the task and it creates a gap in the handoff

(e.g., drop task too early, or drop plans to get handed off the task).

S-56.3.7 (Step 1: Top-Level Scenario 7): TL adequately directs the UAS, but the way in which the
UAS execute the tasks leads to unsafe temporal sequencing. Here, UAS1 stops providing the
search before UAS2 starts providing the search. [TA]

• (Step 2: Internal Control) Unsafe Control Input: Same as S-47.1.7

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path: UAS1 intends to hand off the search to

UAS2 at the coordinated time. However, its search sensor equipment malfunctions and

shuts down early. Similarly, UAS2 intends to start at the coordinated time, but its

equipment malfunctions and it is late to turn on. (Similar to S-47.1.7)

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-56.3.8, but

between UAS1 and UAS2.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The UAS on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: The process models and/or control algorithms are not adequately

or consistently built across the team to support collaborative control. Refinement:

▪ The control algorithms on the different UAS are not compatible with one

another. As a result, the UAS are not able to coordinate a safe handoff of

the search command. (Similar to S-43.7.3)

o Initialization: Elements of the process models are not adequately or consistently

initialized across the team. Refinement:

▪ The different UAS receive different versions of the task specification by

the TL. This occurs because the TL periodically updates how the task is

specified given slight changes in her/his model of the mission. The UAS

receive the task specification across different replan cycles. While it can

prevent the automation from selecting a UAS for the task, it can also select

255

a UAS that has a different model of the task and its handoff than what the

other controller in the handoff <TL, UAS> expects. (Similar to S-43.7.3)

▪ UAS have different beliefs about the current roles and responsibilities of

other controllers on the team. (Same as S-47.1.7 applied to a search)

o Model Updates: Elements of the UAS’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): TL tasks a UAS involved in the search of

another command that conflicts with the coordinated search handoff time.

▪ Lateral Coordination (Communication):

• Communications between the two controllers are inadequate to

coordinate the handoff. (Same as S-47.1.7)

• Information provided by another UAS leads to a lack of consensus

on the search handoff time. For example, a UAS shares stale

information that one of the UAS involved in the search has another

task that conflicts with the ability to meet the handoff time.

▪ Lateral Coordination (Observation): Same as S-48.2.7

▪ Prediction: The UAS do not explicitly coordinate a handoff time. They use

implicit coordination based on shared state information and common

algorithms to anticipate when the task handoff will take place. However,

there is an unanticipated disturbance in the state information shared or

progress in execution, and the UAS do not update their predictions. The

predictions are now invalid and lead to the excessive gap in handoff.

o Decision-Making: Same as S-47.1.7, but leads to a gap in the search handoff.

o Capacity: Same as S-37.1.3

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o A new UAS, which is able to take over the search early, joins the team. Given the

change in team composition, UAS1 (tasked to execute the first part of the search)

re-evaluates how the handoff is expected to occur. It assumes the new UAS will

take over the search early, and as such, it stops searching before the coordinated

handoff time. However, none of the other UAS, including the new one and the

one originally slated to take over the search adjust to this new plan (e.g., due to

inadequate coordination, and differences in decision-making), leading to the gap.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o The changing network topology leads to conflicting information between the two

UAS coordinating the search handoff. For example, UAS1 initially sends a

message that it will end the search at Time1. Because it is not directly connected

to UAS2, that message is relayed through multiple hops to UAS2. Delays are

introduced at every hop. Meanwhile, UAS2 becomes directly connected to UAS1

and they reach consensus that the handoff will occur at Time2. However, the

original message regarding Time1 arrives at UAS2 after this direct exchange and

is interpreted by UAS2 (only) as a change in the handoff time.

256

S-56.3.8 (Step 1: Top-Level Scenario 8): TL control actions to the shared process are unsafe in
temporal sequencing with how it directs the UAS. Here, TL executes the search and tasks the
UAS team to search in a way that leads to (1) the TL ending its search before a UAS starts to
search, or (2) a UAS ending its search before the TL starts its search. [TA]

• (Step 2: Internal Control) Unsafe Control Input: (Same as S-47.1.6)

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: (1) the time window the TL plans to execute the task, (2) the gap

between the time window planned by the TL and that tasked to the UAS, (3) the ability of

the UAS team to meet the tasked timeline, (4) the amount of time that is considered an

excessive gap. Refinement:

o Missing Feedback. The interface does not provide a way to effectively compare the

timelines associated with UAS taskings with the TL’s own plans.

o Missing Feedback. The interface does not show how close UAS are to not making

the planned timeline (i.e., how sensitive the UAS are to unplanned disturbances).63

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information about

the search requirements and the timing associated with controllers on the team, but still

chooses to perform the search and task the UAS team in a way that leads to an excessive

search gap. Refinement:

o TL misunderstands how the UAS operate. S/he believes that the assigned UAS

will observe the behavior of the TL and adjust its search window accordingly. For

instance, the UAS will continue the search until the TL is ready to take over, or the

UAS will start it early if the TL ends the first part of the search early.

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task the UAS team time

windows appropriate for a handoff to/from the TL, but is unable to do so. Refinement

same as S-47.1.6.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: As described in S-

43.7.3 (Figure A3-11), if the controllers share information gathered during the search to

dynamically update their model of the remaining task, then this dynamic applies.

o Feedback about Controlled Process from Collaborators: The two controllers

responsible to conduct the search via handoff are identified (TL and UAS1) and

pre-coordinate a handoff time. The first controller <TL, UAS1> executes its part

of the search, and during execution, gathers data that significantly changes the

scope of the remaining task. However, this search feedback is not adequately

received by the second controller <UAS1, TL>, or is received but cannot be acted

on (e.g., insufficient fuel remaining, too far away). As a result, the handoff of the

search occurs with an excessive gap.

o Feedback about Collaborator Control Actions from Controlled Process: N/A

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The UAS on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: Same as S-56.3.7. In addition:

63 (B) Scenario: Team Lead has an inaccurate mental model of how long it takes the AuC to implement a
command upon receiving it.

257

▪ (Human-Machine) The control algorithms on the UAS are not compatible

with how the TL specifies the <fix, search> task. (Same as S-47.1.7)

o Initialization: Same as S-56.3.7. In addition:

▪ TL has a different belief about the current roles and responsibilities of the

UAS. Feedback provided by the UAS team may be inadequate (e.g.,

missing, incorrect, delayed, ambiguous) for the TL to track which UAS

was selected to hand over the search task to/from. As a result, the TL

coordinates with or monitors the progress of the wrong UAS (i.e., not the

UAS selected by the automation) and adjusts her/his actions regarding

the search task incorrectly, in a way that leads to the gap.

o Model Updates: Elements of the UAS’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): TL tries to fine-tune the task handoff time

to/from a UAS by adjusting the search task provided to the UAS team

while the first controller <TL or UAS> is executing its part of the search.

However, the automation does not assign a UAS to the slightly updated

search task due to factors listed in S-43.7.3. This requires further action

from the TL and the automation to resolve, which creates a delay and

contributes to an excessive gap in the search.64

▪ Lateral Coordination (Communication):

• Communications between the two controllers are not adequate to

coordinate the handoff. (Same as S-47.1.7)

• (Human-Machine) Lateral coordination between the TL and UAS

is hindered by human-machine asymmetry in information

semantics and timing. (Same as S-37.1.3)

▪ Lateral Coordination (Observation): (Same as S-48.2.7)

▪ Prediction: (Human-Machine) Human and Machine experiences in training

for this task handoff have evolved separately. The TL, which previously

trained with humans, can anticipate when a human teammate is ready for

a handoff based on implicit observations. Similarly, the machines may

have been trained using simulation data, which does not precisely recreate

human behavior. As a result, both controllers lack context or misinterpret

certain cues that affect when and how to provide their respective

commands in the handoff. (Similar to S-40.4.5)

o Decision-Making: Same as S-48.2.7

o Capacity: Same as S-40.4.5

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL tasks the team based on an assumed set of UAS participants and an expectation

that the automation will assign the task to a specific UAS well suited for the

handoff. That UAS is then removed from the team, and the remaining participants

64 (B) Scenario: The AuC is double checking the targets for accuracy, weapon type, etc. and takes too long
before fixing on them, so AuC does not implement the command while targets are within range.

258

are unable to fulfill the tasking as intended by the TL. However, the TL does not

adapt the tasking to overcome this change due to some of the factors listed above.

o The UAS selected to hand off the task to/from the TL exits the team (e.g., retasked

by Ground Station or a different team lead). This requires further action from the

TL and automation to find a substitute, which contributes to an excessive gap in

the task handoff.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

Changes in network topology contribute to the unsafe coordination factors listed above.

S-56.3.9 (Step 4: Other Factors): Members of the team hand off a search task in an unsafe way
and create an excessive gap in the search due to factors beyond those explored in interactions
between the controllers on the team. [TA]

• Inadequate Process Feedback: the first controller performing the search receives feedback

that it temporarily misinterprets as no longer needing to search (e.g., it believes it has

found the target of interest). It suspends its search, until it later changes its determination,

and decides that more search is required. The time it takes to resume the search or

coordinate the handoff with another UAS leads to an excessive execution gap.

• Unsafe Process Behavior: The target outmaneuvers the search in such a way that leads to

the first controller performing the search to be unable to sustain it until the coordinated

handoff time (e.g., forces high energy search maneuvers).

Abstraction 2a – Combinations of Control Actions Provided by the Team

Abstraction 2a – Type 1-2: Team provide / don’t provide control actions

The following UCCAs explore how control actions provided or not provided by the team are
unsafe in combination with one another. Causal scenarios consider how control actions and
collaborative interactions internal to the team contribute to the UCCA. However, the number of
possible internal control action combinations grows exponentially. In this case, the TL can
individually task each of two UAS to fix and fire and task the team in general to search. So, there
are 25 = 32 possible combinations of control actions. By assuming the UAS are interchangeable,
there are 20 unique combinations of internal control actions. Instead of considering every
combination set of internal control actions, each UCCA is analyzed using the same top-level
scenarios as listed in Abstract 2b – Type 1-2 UCCAs.

UCCA 1.1 (abstracted UCCA): The Team does not provide the fix, fire, nor search commands
when there are mission tasks to execute [H3]

 UCCA 1.1.1 (refined): TL, UAS1, and UAS2 do not provide fix, fire, and search commands

259

Figure A3-17. Control structure showing team not providing fix, fire, nor search

S-1.1.1 (Step 1: Top-Level Scenario 1): TL does not direct the UAS as necessary for the team to
execute safe collective control. Here, the TL does not task anything when there are multiple tasks
to be completed.

• (Step 2: Internal Control) Unsafe Control Input: TL misinterprets direction from higher

authorities that the UAS team should not be tasked to execute any mission tasks. Same as

S-37.1.1. In addition:

o Direction from higher authorities does not fit the description of the possible

commands to task. For example, the TL is directed to only “prosecute” a target,

which is ambiguous with regards to the fix, fire, search set of commands.

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: (1) TL does not believe there are mission tasks to execute, (2) TL

does not understand which mission tasks need to be executed, (3) TL does not believe

there are teammates available to task, (4) TL believes that UAS(s) have already been

tasked. Similar to S-37.1.1. In addition:

o Incorrectly Interpreted Feedback. TL is overwhelmed by how many mission tasks

and their completion status are presented to her/him, as well as how much

information is provided regarding the UAS team. S/he is not able to make sense

of it and does not provide the team any tasking.

o Feedback not available. TL is so fixated on addressing one specific kind of task, such

as defining a search area, that s/he loses sight of other tasks to perform, such as a

coupled fix-fire task. This could occur if the feedback on the interface focuses only

on one task at hand, and obfuscates others that need to be done.

o Misinterpreted Feedback: The TL suspects there is a misconfiguration in the software

version in one or more of the UAS (e.g., version number feedback, behavioral

observations, …). As a result, the TL precautionarily chooses not to provide any

taskings for lack of confidence they will be carried out as intended.

o Misinterpreted Feedback: TL observes one or more UAS maneuvering in a way

consistent with executing task(s), even though they are not. As a result, they do

not provide necessary taskings.65

65 Team Lead notices a set of UAV(s) begin following the target so he believes they are already tracking
the target, so TL does not provide track target [or any other] command

260

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the mission and the team capabilities, but still chooses not to task UAS(s).

Refinement same as S-37.1.1 and S-43.7.5. In addition:

o TL is too overwhelmed to adequately specify multiple mission tasks, allocate

them to UAS, and ensure everyone is on the same page. As a result, the TL

precautionarily chooses not to provide any taskings.66

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task UAS(s), but is unable

to do so. Same as S-37.1.1. In addition:

o TL tries to send multiple tasked commands at the same time. However, one of the

commands is misspecified or exceeds the channel capacity. As a result, none of

the commands are provided in the batch.

o TL tries to send tasks one at a time (e.g., first tasks UAS1 to fix, next tasks the UAS

team to search). However, every time a new tasking is provided, the system treats

it as the most up-to-date set of taskings, and cancels/overrides previously issued

ones (here, search cancels the fix).

o One or more UAS have pre-programmed parameters (e.g., target <engage,

search> location) that cannot be updated. Thus, the TL precautionarily chooses

not to provide any taskings for lack of trust they will be carried out adequately.67

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-

level scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.1. In addition.

o TL does not provide multiple taskings at the same time out of concern that it

would create a longer execution horizon that is more vulnerable to teammates

dropping out of the team. For example, the TL tasked UAS1 and UAS2 to provide

fix and fire tasks respectively, which will take some time to complete. The TL

elects to not append a search task for the team that would take place after the fix-

fire coupled task to avoid dealing with the UAS assigned to it no longer being

available. However, UAS1 and UAS2 are unable to execute the fix-fire task, and

instead of moving onto the search, remain untasked.

o The overall set of mission tasks for the team to execute is highly dynamic. The

set of mission tasks that need to be addressed change faster than the TL is able to

specify and issue taskings to the UAS.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.1

S-1.1.2 (Step 1: Top-Level Scenario 2): TL tasks the UAS in a way that leads to unsafe collective
control. Here, (1) the TL tasks multiple UAS to provide the same fix task (see S-37.1.2) or the same

66 (B) Scenario: Team Lead confused the targets. He lost track of the correct target while trying to
maneuver and tracked onto a different nearby target.
67 (B) Scenario: The Team Lead implements the default values for identification.

261

fire task (see S-40.4.2), especially if there are multiple mission commands to perform. Also, (2)
TL controller selection for each task is incorrect when considering all the controllers together.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.2. In addition:

o Direction from higher authorities to task multiple UAS was intended to apply to

search tasks only, and not fix and fire tasks. However, for various reasons (e.g.,

omission, miscommunication) TL interprets the direction as applying to all tasks.

o Direction from higher authorities to task multiple UAS was intended to address

multiple different targets, each with their own fix-fire tasks, but the TL interprets

the direction as tasking multiple UAS per fix-fire tasks.

• (Step 2: Internal Control) Inadequate Process Model: TL has one or more of the following

inadequate process model variables: (1) UASi has not been tasked to <fix, fire> when it

actually has, (2) multiple UAS will not cause hazardous effects if they <fix, fire>

simultaneously, (3) the set of tasked UAS are capable of providing the set of tasked

commands collaboratively, and (4) what the set of taskable controllers is at any given

time. Refinement same as S-37.1.2. Refinement:

o Incorrectly Interpreted Feedback. TL simultaneously tasks UAS1 to provide a fix and

the team to perform a search. UAS1 confirms it will execute a task, but does not

specify which one. Given team observations (e.g., initial UAS1 maneuvering, lack

of UAS2 announcing it has a task), the TL incorrectly assumes that UAS1 has taken

on the search task. Therefore, s/he tasks UAS2 to provide the fix.

o Inadequate feedback: Feedback to TL does not highlight gaps in the ability of two

controllers to work together. For example, two UAS tasked to provide the

coupled fix-fire commands are not able to do so together. This could be due to

mutually imposed time or capability constraints.

• (Step 2: Internal Control) Inadequate Control Algorithm: Same as S-37.1.2. In addition:

o Because TL is providing multiple taskings (fix, fire, and search), s/he tries to save

time by sending out the same set of fix and search tasks to both UAS, with the

intent to then change one of the UAS taskings from fix to fire. However, s/he gets

distracted or disconnected from that UAS before the change can occur.

o There are numerous tasks to provide to the UAS (e.g., multiple targets to engage).

TL tasks UAS1 to fix and fire on Target 1. Then TL unintentionally tasks UAS2 to

fix and fire on Target 1, thinking it was tasking it onto Target 2.68

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.2. In addition:

o The tasking interface allows TL to specify tasks in formats that are incompatible

with the UAS. For example, TL can task the team as a whole to provide to fix and

fire, when TL should only specify UAS individually for those tasks.

o Because the TL specifies a fix task to send out at the same time as a search task,

the fix task gets sent out to all members of the team along with the search task.

However, UAS team cannot allocate the fix to a UAS, so all UAS take it on.

68 (B) Scenario: Team Lead provides the “fix on target” command for the right target, but there is a delay
from an earlier fix on target command that the FMS acts on instead, so command is for a different target.

262

o (Related to Dynamic Membership) As new mission tasks come and go, the TL’s

tasking system associates information with a mission process that has just

disappeared to one that has just appeared. Thus, an outdated tasking provided

by the TL for a mission process that is no longer relevant is reapplied to a new

mission task, against the TL’s intent.69

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-

level scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.2. In addition:

o TL tasks two UAS on the team to fix and search. UAS1 is assigned to fix and both

UAS receive the search tasking, which is rated as higher-priority than the fix.

UAS2 is assigned by the automation to search, but later drops out of the team (e.g.,

taken offline by Ground Station or attached to a different team). The autonomy

reassigns UAS1 to the higher-priority search task, which now opens the fix task.

Then UAS2 rejoins, and the TL proactively assigns it to provide the fix. The

autonomy falsely assumes UAS2 will resume the search, and releases UAS1 back

to its original task of providing a fix. Because two UAS are now assigned to fix,

they both drop the task and no controller fixes nor searches.

o The set of mission tasks is highly dynamic. By the time the TL tasks a UAS to fix

or fire, that task is no longer relevant. However, the autonomy applies the

previous tasking to the next target that appears, against TL intent (related to

Unsafe Control Path). In parallel, TL tasks another UAS to fix or fire on the new

target, which creates a conflict.70

• Dynamic Connectivity: Same as S-37.1.2.

S-1.1.3 (Step 1: Top-Level Scenario 3): TL directs the UAS adequately, but some of the UAS do
not execute the directions properly, which leads to unsafe collective control. Here, one UAS does
not execute both a fix and fire task, two UAS both do not execute their respective fix and fire tasks
in a coupled execution and/or no UAS performs the search task provided to the team. Emphasis
is placed on instances when the UAS are tasked with both fix-fire and search tasks.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.3.

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment

• Inadequate Control Algorithm: See cognitive alignment

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.3.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: The way in which

control loops are coupled for collaborative execution is shown in Figure A3-2 for the Fix-

Fire tasks and in Figure A3-11 for the Search task. Same as S-37.1.3 and S-43.7.3.

69 (B) Scenario: Team Lead is identifying old targets, so TL identifies the wrong targets.
70 (B) Scenario: TL initially authorizes a fix on target command. There is a delay in another command from

the TL to delete the command. AuC receives a fix on target command without authorization.

263

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another.

o Construction: The process models and/or control algorithms are not adequately

or consistently built across the team to support collaborative control. Refinement:

▪ (Human-Machine) The control algorithms on the UAS are not compatible

with how the TL specifies sets of multiple tasks. This prevents the

controllers from accepting and prioritizing the execution of multiple tasks.

For example, a TL tasks UAS to fix and fire respectively, and later task the

team to perform a search. The UAS, unable to prioritize, drop the fix-fire

tasks and execute the search. (Similar to S-37.1.3)

▪ The control algorithms on the different UAS are not compatible with one

another. As a result, the UAS lack the ability to coordinate in coupled fix-

fire tasks or anticipate how an additional search task may take away some

of the UAS resources. (Similar to S-37.1.3)

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ The way in which multiple tasks are specified is inconsistent relative to

one another and prevents the UAS from coordinating on coupled task

executions. For example, TL tasks UAS1 to fix, UAS2 to fire, and the UAS

team to search. However, the way in which the fix task is specified (e.g.,

time window, priority) favors UAS1 performing it first, before considering

the search. Conversely, fire task specification favors UAS2 performing it

after the search is completed. As a result, no UAS perform any task.

(Similar to S-37.1.3 & S-43.7.3)

▪ The mission is highly dynamic and the set of mission tasks to execute

changes constantly leading to the team having different beliefs regarding

the overall joint process to control. This leads to teammates having

different indices for available tasks (see Lateral Coordination by

Communication).

▪ UAS have different beliefs about how many and which UAS are

participating on the team. This occurs due to dynamic membership, with

UAS cycling on and offline, and dynamic connectivity that prevents timely

distribution of this information. For example:

• TL tasks UAS1 to fix and fire, and tasks the UAS team in general to

search, expecting that UAS2 will be assigned to search. However,

UAS1 is not aware of UAS2 and decides to take on the search task

(which may have higher priority). As such, the fix and fire tasks

are not executed.

▪ UAS have different beliefs about the current roles and responsibilities of

other controllers on the team. (Same as S-37.1.3 and S-43.7.3)

o Model Updates: Some elements of some of the process models are not adequately

or consistently updated across the team. Refinement:

▪ Vertical Coordination (Control): Same as S-37.1.3 and S-43.7.3. In addition:

264

• TL controls the coordination details between UAS1 (tasked to fix)

and UAS2 (tasked to fire). However, s/he changes her/his mind

and decides to provide the fire command instead of UAS2. This

change of plan makes UAS2 drop its task and confuses UAS1

which does not know who to coordinate its fix task with.

• TL tries to optimize the planning horizon for two UAS tasked to

jointly fix and fire followed by one UAS performing a search. S/he

modifies the search task to start closer to the completion of the fix-

fire coupled task. However, the change in parameters triggers the

autonomy to replan and determine one of the UAS is now better

suited to search first. All plans change, and the TL fights with the

autonomy to resume the previous tasking.

▪ Lateral Coordination (Communication): Same as S-37.1.3 and S-43.7.3. In

addition:

• Controllers share a different set of indices for available tasks.

UAS1 announces to the team that it is taking on task “x”, which

means different tasks to different controllers. Another controller

announces a conflict and both controllers drop their tasks.

• UAS1 and UAS2 are both tasked to fix and fire respectively.

However, UAS2 is also assigned to perform a search afterward.

UAS2 shares coordination information about the wrong task (i.e.,

the search) with UAS1 and they are unable to come to consensus

on how to execute the coupled task. Coordination delays also

make UAS2 miss its search window.

• The information controllers use to plan and coordinate task

executions is inconsistent. For example, a team of two UAS is

assigned to fix and fire respectively, and also generally to search.

They each compare slightly outdated state estimates shared by

their partner to their own current states, which results in

inconsistent plans. For instance, UAS1 (tasked to fix) believes it

must perform the search after the fix-fire task. But UAS2 believes

it must perform the search first, and then execute the fix-fire task.

As a result, no tasks are executed.

▪ Lateral Coordination (Observation): Similar to S-37.1.3, but more holistically:

The controller tasked to fix (e.g., UAS1) observes the controller tasked for

the coupled fire command (e.g., TL/UAS2) maneuvering in a way that is

more consistent with executing the search. As a result, UAS1 incorrectly

believes <TL, UAS2> will not fire, and it drops its plan to fix. Thus, <TL,

UAS2> also drops its plan to fire.

▪ Prediction: Same as S-37.1.3 and S-43.7.3

o Decision-Making: Same as S-37.1.3 and S-43.7.3. In addition:

▪ (Similar to lateral coordination). Perturbations in inputs to the distributed

decision-making process leads to the two UAS tasked to fix and fire

265

respectively and also to search as a team, to not reach consensus on the

order of the tasks (i.e., search vs fix-fire first). Thus, no task is performed.

▪ The time it takes to coordinate two controllers in a fix-fire task or to select

a UAS to search is too slow compared to the dynamics of the mission, with

mission tasks coming and going. The TL proactively triggers a replan to

prevent the planning process from stalling or planning on outdated

information. However, that restarts the process without getting closer to

controllers executing their tasks.

▪ The decision-making process does not have a mechanism to ensure

convergence toward a feasible solution. It does not track previous bad

decisions in planning to ensure they are not repeated.

• For example, the control algorithm overemphasizes task

prioritization and does not consider lower priority tasks that are

feasible when higher-priority tasks are not. For instance, TL tasks

two UAS to provide coupled fix-fire commands with high priority,

and a search with low priority. The UAS are unable to reach

consensus on a solution to execute the coupled fix-fire task, but

their control algorithms fixate on trying to solve that problem

rather than execute the search task which can be performed.

• As another example, UAS1 is tasked to fix-fire by the TL, and the

team is also tasked to search, which is assigned to UAS2. UAS1

determines it is not capable of performing the fix-fire tasks, so it

drops the fix task and picks up the search as it is better positioned

to execute it. This opens up the fix task, which is either retasked by

the TL back to UAS1 or automatically re-picked up by UAS1,

which is assigned to it. UAS1 now drops the search, UAS2 picks it

up again, the cycle repeats itself, and nothing gets done.

o Capacity: Same as S-37.1.3. In addition:

▪ The number of tasks and controllers that must be considered in a

coordinated task allocation solution exceeds the computational limits of

the controllers. The controllers are unable to form timely consensus due

to the size of the state space that must be considered.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.3. In addition:

o TL tasks UAS1 to fix and fire, and the UAS team to search. UAS2 is therefore

assigned the search. However, UAS2 has a problem that leads it to repeatedly

change control modes and its participation status on the team. Every time UAS2

drops out, the algorithm replans and pulls UAS1 off the fix-fire task and assigns

it to the search task. When UAS2 rejoins, the process reverses. As a result, there

is “churn” and no UAS actually performs any task. (Similar to S-43.7.3)

o The overall set of mission tasks for the team to execute is highly dynamic. The

requirements to engage and search for targets change too rapidly for the assigned

controller–control action pairing to execute anything.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.3 and S-43.7.3.

266

S-1.1.4 (Step 1: Top-Level Scenario 4): TL adequately does not direct the UAS to provide certain
commands, but some of the UAS provide them anyways, which leads to unsafe collective control.
In the context of this UCCA, this high-level scenario is not applicable as no controller performs any task.

S-1.1.5 (Step 1: Top-Level Scenario 5): TL control actions to the controlled process are unsafe in
combination with how it directs the UAS. Here, (1) TL does fire nor task a UAS to fire when a
UAS provides a fix as tasked, or (2) TL does not search, nor task the UAS to search when there
are untasked controllers. Emphasis is placed on instances when multiple tasks must be
accomplished.

• (Step 2: Internal Control) Unsafe Control Input: No scenarios conceived.

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: TL incorrectly believes (1) s/he will perform certain tasks, (2)

the UAS will perform certain tasks, (3) certain tasks do not need to be performed.

o Incorrectly Interpreted Feedback. TL intends to perform the search her/himself and

therefore does not task it out. But s/he misinterprets feedback of the process

regarding how much time and fuel it will require for her to do it, and decides not

to do it, but also does not retask it.

o Incorrect feedback. TL previously tasked the UAS team to <fire, search>, but the

tasking never reached the UAS (see Unsafe Control Path). However, the interface

incorrectly displays that the command was sent, and thus, the TL believes the

UAS are tasked and there is no need to do the task her/himself.

• (Step 2: Internal Control) Inadequate Control Algorithm: Same as S-37.1.1, S-40.4.5, S-

43.7.5. In addition:

o TL believes that different types of tasks may interfere with each other and decides

to only execute one at a time. For example, TL intends to fire and UAS1 is tasked

to fix, and there is a search task to perform. TL chooses not to task out the search

to the UAS team, which UAS2 could carry out, in order to not interfere with the

fix-fire coupled task. Similarly, TL may choose not to provide the search

command when UAS are tasked to fix-fire. In either case, if the fix-fire command

is not executed due to various reasons, no tasks are executed.

• (Step 2: Internal Control) Unsafe Control Path: Same as S-1.1.1. In addition:

o TL intends to provide the <fire, search> commands, but her/his <weapon system,

search sensor system> equipment malfunctions and s/he is unable to do so.71

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-40.4.5.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Same as S-40.4.5 and S-43.7.5.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-40.4.5. In addition:

o TL intends to perform the <fire, search> task, but s/he is too busy reassigning

other tasks because of UAS dynamically joining and leaving the team or mission

tasks coming and going.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-40.4.5 & S-43.7.5.

71 (B) Scenario: MFC does not open the weapons bay, there is an electrical inference that causes the bay to
unlock, or a missile is loose in the bay and pushed through the bay doors.

267

S-1.1.9 (Step 4: Other Factors): None of the controllers provide the fix, fire, or search commands
due to factors beyond those explored in interactions between the controllers on the team.

• Unsafe Process Behavior: Same as S-37.1.9 and S-43.7.9. In addition:

o The process is inundated with mission tasks to overwhelm the TL-UAS system. A

malicious denial-of-service attack injects false tasks into the process.72

UCCA 10.5 (abstracted UCCA): The Team provides search but not the fix and fire commands
when engaging a known target is higher-priority than searching and assets to engage are
available. [H3]

UCCA 10.5.1 (refined): TL searches, and TL, UAS1, and UAS2 do not provide fix /fire
commands

UCCA 10.5.2 (refined): UAS1 searches, and TL, UAS1, and UAS2 do not provide fix/fire
commands

Other lower-priority UCCAs listed in Table A2-2 lead to the same. UCCAs 10.5.4-10.5.6
enumerate multiple controllers searching. UCCA 10.5.3 lists multiple UAS performing a fix,
which is treated as not providing a valid fix due to interference, but is not relevant in this context.

Figure A3-18. Control structure of team providing a search instead of the fix-fire commands

S-10.5.1 (Step 1: Top-Level Scenario 1): TL does not direct the UAS as necessary for the team to
execute safe collective control. Here, TL does not task a UAS to fix and/or to fire (when the TL
does not intend to fire), especially when TL tasks the UAS to search instead.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.1. In addition:

o TL misinterprets direction from higher authorities that the search task is higher

priority than engaging a target. (or vice versa)73

• (Step 2: Internal Control) Inadequate Process Model: TL has one or more of the following

inadequate process model variables: TL believes (1) executing the search is higher-priority

72 (B) Scenario: An attacker provides a false fix on target command to the FMS. An attacker provides false
IFF responses. An attacker is spoofing pretend objects onto the FMS. An attacker places fake objects
within the region.
73 (B) Scenario: [Higher-authority] dis-authorization comes across as an authorization due to inaccuracies
in the radio

268

than executing the fix-fire commands, (2) teammates are unavailable to fix or fire, (3) the

fix- fire commands will be provided by the team. Refinement similar to S-37.1.1

o Misleading Feedback. The search task as represented on the TL display is more

visually prominent than the fix-fire tasks (e.g., it is larger in area) and as a result,

draws more attention.

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about mission priorities and the team capabilities, but still chooses not to task UAS(s) to

support the fix-fire task. Refinement same as S-37.1.1 and S-40.4.5. In addition:

o TL believes that part of the search can be performed, either by her/himself or by

a UAS, enroute to performing the fix-fire task. Therefore, s/he tasks the team to

search and intends to modify the tasking to the fix-fire task at the appropriate

time. However, for a variety of reasons, this does not occur and the team only

executes the search.

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.1. In addition:

o TL intends to task a UAS to fix to support the TL’s fire task. However, the TL

interface is inadequate, and instead, s/he unintentionally provides the wrong task

(e.g., search task) to the team.74

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-level

scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL intends to task a UAS, however, the set of UAS participating fluctuates too

much for the TL to have confidence that two UAS assigned to fix-fire will be still

available to carry out the task. Instead, TL tasks the team to search to let the

automation manages the changes in assignment due to dynamic availability.

(Similar to S-37.1.1)

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.1

S-10.5.2 (Step 1: Top-Level Scenario 2): TL directs the UAS in a way that leads to unsafe collective
control. The UAS recognize these conflicts and none of them execute their assigned mission tasks.
Here, TL tasks multiple UAS to fix or to fire, especially when the TL also tasks the UAS to search.
Same as S-1.1.2.

• All factors, same as S-1.1.2.

• (Step 2: Internal Control) Unsafe Control Input: In addition:

o The TL misinterprets direction from higher authorities as a command to task all

UAS on all mission tasks. This could occur if the intent is for the higher authorities

to help the TL by directing Ground Stations to modify the existing taskings and

fine-tune which UAS does what. Similar to S-1.1.2

74 (B) Scenario: AuC interprets the “fix on target” command as a search for target command.

269

S-10.5.3 (Step 1: Top-Level Scenario 3): TL directs the UAS adequately, but some of the UAS do
not execute the directions properly, which leads to unsafe collective control. Here, UAS do not
execute fix and/or fire tasks, especially when one of them executes a search task instead.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-10.5.1.

• (Step 2: Internal Control) Inadequate Process Model: Similar to S-1.1.3. In addition: TL

incorrectly believes the UAS will prioritize certain tasks over others. Refinement:

o Missing Feedback: The UAS do not provide feedback on how tasks are prioritized.

o Incorrect Feedback: The prioritization values displayed by the UAS are the ones

that were provided by the TL as part of the tasking, but are not the values the UAS

control algorithms actually use.

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information on

how UAS prioritize taskings and mission priorities, and still tasks the UAS to fix-fire and

to search. Same as S-10.5.1. In addition:

o TL tasks the UAS with default task priority values to get the UAS planning, but

intends to modify those priority values prior to execution. Given the default

priorities, the algorithm elects to do the search task first. The TL becomes busy

and forgets to update the prioritization.75

o TL unsuccessfully tries to influence the sequence of task execution using other

operational “tricks”. For example, the TL tasks the UAS to perform the fix/fire

tasks first, before tasking the search. S/he incorrectly believes that by

coordinating a solution on when to execute the coupled task will lock the UAS

into this execution. However, as soon as the search task is provided, its specified

priority parameters bring it to the top of the list, and one of the UAS drops its

previous plans to execute the search. (or vice versa: switch search and fix-fire)76

• (Step 2: Internal Control) Unsafe Control Path: TL intends to task the UAS to prioritize

the fix/fire commands, but is unable to do so.

o It is faster and more “user-friendly” for the TL to simply copy over existing task

templates, and modify some of the parameters as needed, rather than create a new

tasking from scratch. S/he uses the same template for the fix-fire and the search

tasks but forgets to update the priority parameters. The tasks are provided with

equal priority, and the <search, fix-fire> task(s) are selected by the automation.77

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: The way in which

controllers mutually close control loops in task execution leads the team to execute the

search and not the fix-fire coupled task.

o Because of reasons explored in S-37.1.3 and S-40.4.5, the two controllers executing

the fix-fire coupled tasks are unable to do so. There is logic for the automation to

eventually stop trying and drop the task. This leads to one of the UAS becoming

available to take on the search task and unavailable for the fix-fire tasks.

75 (B) Scenario: Team Lead is pre-occupied with another task, so provides an identification command late.
76 (B) Scenario: Team Lead is waiting for the UAV(s) to enter a specific position before applying the
command so that certain UAV(s) will track the target.
77 (B) Scenario: The Team Lead implements the default values for identification.

270

o Using the mutually closing search control loops concept described in S-43.7.3 -

Feedback about Controlled Process from Collaborators: UAS1 and UAS2 are tasked to

prioritize fix and fire tasks respectively, but the UAS team is also tasked to search

with lower priority. UAS2 is in the vicinity of the search area and points its search

sensor to gather feedback of opportunity. UAS1 incorrectly uses that feedback to

update its belief that the search task is now higher in priority to execute first and

changes its execution to focus on that task.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another.

o Construction: Same as S-1.1.3 and S-44.8.3.

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ UAS receive different versions of the task specification by the TL, which

causes them to evaluate the task prioritization differently. (Similar as S-

37.1.3 and S-43.7.3)

▪ The mission is dynamic and priorities change midway through the process

of tasking UAS. For example, TL tasks the UAS team to search with

medium priority and UAS1 to fix with low priority. Then the fix-fire task

increases in priority so TL tasks UAS2 to fire with high priority but does

not update UAS1. UAS1 chooses to search, and is not available to support

UAS2 (or the TL) in their fire command.78

▪ UAS have different beliefs about how many and which UAS are

participating. This occurs due to dynamic membership, with UAS cycling

on and offline, and dynamic connectivity that prevents timely distribution

of information. As an example, TL tasks UAS1 to fix and UAS2 to fire.

However, UAS1 is not aware UAS2 is part of the team, and decides the fix

tasking is incomplete, and therefore moves on to the search task.

o Model Updates: Same as S-1.1.3.

o Decision-Making: Same as S-37.1.3 and S-43.7.3. In addition:

▪ The distributed decision-making process is inherently more stable for

certain types of tasks than others. Here, the search command only requires

any one UAS to be available to execute it. Conversely, the fix-fire

command may call for two specific UAS to work together and

simultaneously, which is more difficult to satisfy. This can bias the output

toward conducting searches. For example, UAS1 and UAS2 are

respectively tasked to fix and fire, but the team is also tasked to search.

UAS1 proposes a time for the coupled fix-fire task, which is rejected by

UAS2. Further negotiating iterations may occur, but ultimately, UAS1

drops its fix task and takes on the search. Similarly, UAS2 drops its fire

task.

78 (B) Scenario: The algorithm determines that the task is not a priority, so Autonomous Controller does
not implement a track target command.

271

▪ Automated controllers employ a non-deterministic decision-making

algorithm (e.g., Machine Learning based), which leads to unpredictable or

inconsistent control and information outputs. Small variations in common

information prevent the team from reaching consensus on the task

prioritization and lead to a UAS deciding to search first.79

o Capacity: Same as S-37.1.3.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.3. In addition:

o The behavior is different for different types of tasks if a UAS is assigned a task

and momentarily drops out of the team. For example, the UAS is programmed to

drop tasks it was specifically assigned to (e.g., fix or fire), but can still resume tasks

generally assigned to the team (e.g., search). As a result, a UAS assigned to fix

and/or fire with high priority may temporarily drop from the team, and rejoin by

taking on the search command.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.3 and S-43.7.3.

S-10.5.4 (Step 1: Top-Level Scenario 4): TL adequately does not direct the UAS to provide certain
commands, but some of the UAS provide them anyways, which leads to unsafe collective control.
Here, the UAS team is not tasked to search, but a UAS performs a search anyways instead of
contributing to a fix-fire coupled task.

• (Step 2: Internal Control) Unsafe Control Input:

o The UAS team is tasked to search by another controller (e.g., the Ground Station).

In this context, another controller may also increase the prioritization of a search

task that was defined as low priority by the TL.80

o A malicious actor floods the tasking system with invalid search tasks (e.g., cyber-

attack). This obfuscates the real need to provide fix-fire commands.81

• (Step 2: Internal Control) Inadequate Process Model: see Cognitive Alignment. This

high-level scenario is more focused on team cognition than that of any one controller.

• (Step 2: Internal Control) Inadequate Control Algorithm:

o One of the UAS is in the process of executing a previously directed search task.

TL now tries to task this UAS to execute a different command such as <fix, fire>.

However, the UAS control algorithm does not allow a retask unless a specific

direction is provided to abandon the current task. The TL does not (know to)

direct the cancellation, and the UAS continues to search.

• (Step 2: Internal Control) Unsafe Control Path:

o TL intends to task the UAS to fix and/or fire, but unintentionally tasks the team

to search instead. For example:82

▪ TL has several tasks specified in advance of providing them to the UAS.

TL then unintentionally selects the search task instead of the intended

fix/fire task and hits send.

79 (B) Scenario: AuC miscalculates the target’s priority, so it does not implement task until not needed.
80 (B) Scenario: An outside source provides a command with proper authorization, so implements a task.
81 (B) Scenario: An attacker is spoofing pretend objects onto FMS, or places fake objects within the region.
82 (B) Scenario: AuC interprets the “fix on target” command as a search for target command.

272

▪ TL has several tasks specified in advance of providing them to the UAS.

TL sends the first command in the list to the UAS (intended to be a fix-fire

command). However, a different command on the list gets sent out. This

could occur if (1) the intended command is mis-specified and is

automatically skipped to the next one, or (2) the list of specified commands

is displayed in a different order than that processed by the automation.

o TL unintentionally tasks the search in addition to the intended fix-fire commands

for similar reasons to those above. If the search is specified with higher priority,

it could unintentionally lead UAS to execute the search instead of fix-fire tasks.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: The way in which

controllers mutually close control loops in task execution leads the team to execute the

search and not the fix-fire coupled task.

o Using the mutually closing search control loops concept described in S-43.7.3 -

Feedback about Controlled Process from Collaborators:

▪ As UAS navigate untasked, they point their search sensors to collect

information of opportunity, share the search feedback, and update the

team’s world view on the location of targets. One UAS senses information

that it interprets as being such high-priority that it creates a search task, or

updates search tasks preprogrammed in the UAS. This effectively creates

a search task unintended by the TL, which one of the UAS takes on instead

of carrying out the fix-fire coupled task as intended by the TL.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another.

o Construction: The process models and/or control algorithms are not adequately

or consistently built across the team to support collaborative control. Refinement:

▪ The control algorithm on one or more UAS is not consistent with how the

TL expects to execute the mission. For example, one of the UAS is

configured to conduct a search as its default behavior if left untasked. This

is a behavior that was unexpected to the TL and leads her/him to lose

confidence in the ability of the UAS to contribute to fix-fire tasks. As a

result, TL does not even task the UAS on the high-priority fix-fire task.83

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ One or more of the UAS has a preprogrammed search task that was

created to relieve the burden of excessive task specification for the TL.

However, the TL is not aware of this pre-initialized task. The TL specifies

one new set of fix-fire tasks and provides “all active taskings” to the UAS

team. The UAS(s) pre-initialized with a search task consider the search as

83 (B) Scenario: The algorithm setup includes a default UAV option without the TL/GS knowledge

273

part of its planning, and in some cases, may assess that the pre-

programmed search out-prioritizes the TL’s only intended fix-fire tasks.84

o Model Updates: Elements of the team’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): No scenarios conceived

▪ Lateral Coordination (Communication): A UAS is assigned to search but

becomes disconnected from the team. In the meantime, TL provides new

tasks, including a high-priority fix-fire coupled task. Now, UAS

reconnects and shares the outdated search task with the team, which is

interpreted as a valid task. As a result, one of the UAS takes on the search

task instead of the intended fix-fire task.

▪ Lateral Coordination (Observation): See Prediction.

▪ Prediction: (Human-Machine) The UAS have a model to anticipate the TL’s

next taskings so that the system can be better positioned to execute once

the command is given. Given the observed behavior of the TL (e.g.,

maneuvering, information queries, …), the automation predicts that the

next task to be issued will be a search. It queues this option to the TL for

approval. The TL incorrectly approves this option without much thought,

as s/he predicted the automation would recommend the fix-fire task. As

a result, the UAS execute the search instead of the fix-fire task.85

o Decision-Making: The process controllers use to decide what actions they provide

is inadequate or inconsistent across the team.

▪ The automation attempts to correct discrepancies in how the TL specifies

the tasks, but that results in a solution that does not follow the TL intent.

For example, the TL unintentionally tasks multiple (or all) UAS to provide

the fix-fire commands. The automation recognizes that the only type of

command that can be tasked to multiple UAS is the search. As a result, the

UAS team reaches an incorrect consensus that the TL has tasked a search

and carries it out instead of the intended fix-fire task.86

▪ One UAS has a stale model of the open tasks and believes that the UAS

team has been tasked to search. Its process to decide which UAS takes on

the stale task conflicts with that of other UAS that correctly believe the task

is no longer valid. The team correctly does not reach consensus on a task

allocation for the search. However, the singled-out UAS then defaults to

executing the search task itself, instead of dropping it.87

o Capacity: The capacity of one of the controllers is inadequate to enable effective

alignment of team cognition.

84 (B) Scenario: AuC defaults to another object that looks similar, so it moves sensors to identify the wrong
object [or perform the wrong task].
85 (B) Scenario: Team Lead provides the fire command for the wrong target accidentally. TL was trying to

lock on a target and instead authorized the UAV to fire at the target that it was tracking.
86 (B) Scenario: AuC interprets the “fix on target” command as a search for target command.
87 (B) Scenario: The algorithm stopped running and auto-selected the default UAV.

274

▪ One UAS has a runaway internal process that ties up processing resources.

It cannot update its model of tasks provided by the TL, and still believes a

now stale search task is open. It continues to share this inadequate process

model with the rest of the team. The task is eventually accepted by the

team as real and is executed instead of the fix-fire task as intended.

• Dynamic Membership: No new scenarios conceived.

• Dynamic Connectivity: Related to lateral coordination.

S-10.5.5 (Step 1: Top-Level Scenario 5): TL control actions to the controlled process are unsafe in
combination with how it directs the UAS. Here, TL does not fire and a UAS provides a fix as
tasked while no UAS is tasked to fire. Emphasis is placed on such instances when the TL provides
the search command instead.

• (Step 2: Internal Control) Unsafe Control Input: No scenarios conceived.

• (Step 2: Internal Control) Inadequate Process Model: Similar to S-40.4.5 and S-1.1.5: TL

has the following inadequate process model variables: TL incorrectly believes (1) s/he

will perform the fire tasks, (2) the UAS will not perform the fix task, (3) a UAS will

perform the fire task, (4) the search task is higher-priority, and (5) providing a fix without

firing is not unsafe. Refinement same as S-1.1.5. In addition:

o Feedback missing. TL decides to fire her/himself, but at lacks feedback about

her/his lack of capability as it pertains to the coupled fix-fire task (e.g., weapon

system cannot couple to type of fix, cannot meet fix-fire timeline).88 89

o Incorrect Feedback. The TL’s interface displays navigation parameters for the

wrong task and directs the TL to search task instead of to fire. By the time s/he

realizes this, it is too late to revert back to the original intended fire task.

• (Step 2: Internal Control) Inadequate Control Algorithm: Same as S-40.4.5. In addition:

o TL believes s/he can provide the fire command while executing the search. S/he

starts the search but becomes consumed by it and is unable to fire in coordination

with the UAS providing the fix.

• (Step 2: Internal Control) Unsafe Control Path: No new scenarios conceived.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops:

o Using the mutually closing search control loops concept described in S-43.7.3 -

Feedback about Controlled Process from Collaborators:

▪ TL intends to fire, and tasks a UAS to fix. Untasked UAS point their search

sensors to collect information of opportunity, share the search feedback,

and update the team’s world view on the location of targets. One UAS

senses information that is interpreted as being such high priority it

changes the TL’s task prioritization model. Rather than take the time to

specify a search task, s/he decides to take on the search task immediately

and leaves the fire task unaddressed. (Similar to S-10.5.4)

88 (B) Scenario: Team Lead believes the target is within range because the AuC shows the target location
within range even though the Team Lead receives a notification that it is out of range.
89 (B) Scenario: TL provides firing command for wrong UAV because he has an incorrect understanding
of the weapons on a specific UAV. FMS shows an inaccurate number of remaining missiles for a UAV.

275

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another.

o Construction: The TL and UAS have different logic to assume assignment of

authority. For example, the TL defines three tasks: fix, fire, and search for a team

consisting of the TL and two UAS. The TL tasks the fix to UAS1 and then assigns

her/himself to conduct the search. The TL assumes (based on past experience,

training, …) that assigning 2 of 3 tasks to 2 of 3 available controllers will implicitly

assign the 3rd task to the 3rd controller. However, the logic on the UAS requires

active tasking. No UAS is tasked to fire, and the TL conducts the search.

o Initialization: (Human-Machine) The process to specify a certain type of task

(here search) for the machines is more difficult for the human than the process to

specify other types of tasks (here fire) (e.g., more parameters, more complexity,

more potential for semantic misalignment). Thus, the TL prefers to perform the

search tasks her/himself, and tends to task out fire tasks. However, TL is unable

to adequately task out the fire task (see S-37.1.1), but has already started the search

task and becomes too consumed by it to recognize the need to retask the fire

command.

o Model Updates: Elements of the team’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): No scenarios conceived

▪ Lateral Coordination (Communication):

• UAS share parameters about different targets, without specifying

which target they are describing. (Same as S-37.1.3). A UAS shares

its intent to fire, which the TL misinterprets as an intent to fire on

the designated target. As a result, the TL does not take further

action to address the fire command and searches instead.

▪ Lateral Coordination (Observation): Same as S-37.1.3.

▪ Prediction: The UAS that the TL intends to task to fire is currently

disconnected from the team. Based on lost-communication procedures,

the TL predicts it will reconnect with the team in time to task it. As such,

the TL decides to perform the search. However, the UAS does not

reconnect as predicted and it becomes too late to retask the fire command.

o Decision-Making: No new scenarios conceived

o Capacity: Same as S-40.4.5.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-40.4.5.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Related to lateral coordination.

S-10.5.9 (Step 4: Other Factors): Controllers on the team provide the search command, but not
the fix and fire commands due to factors beyond internal team control and collaborative control.

• Inadequate Process Feedback: the tasked UAS have inadequate sensor feedback of their

tasked mission process to execute the task. (Same as S-1.1.1.6)

• Unsafe Control Path to Process: Same as S-37.1.5

• Unsafe Process Behavior: Same as S-37.1.5.

276

UCCA 3.3 (abstracted UCCA): The Team provides the fire command but not the fix command
when the target fired-on must be fixed. [H3, H5]

UCCA 3.3.1 (refined): TL fires, and UAS1 and UAS2 do not provide the fix command

UCCA 3.3.2 (refined): UAS1 fires, and UAS1 and UAS2 do not provide the fix command

UCCA 3.3.4 (refined): TL fires, and UAS1 and UAS2 both provide interfering fixes

UCCA 3.3.5 (refined): UAS1 fires, and UAS1 and UAS2 both provide interfering fixes

Other lower-priority UCCAs in Table A2-2 lead to the same outcome. UCCAs 3.3.3, 3.3.6-3.3.10
enumerate versions of the UCCA above, but with multiple controllers providing the fire command.
Their factors are linked to the factors listed below and to those listed in S-42.6.

Figure A3-19. Control structures showing team providing fire but no fix commands

S-3.3.1 (Step 1: Top-Level Scenario 1): TL does not direct the UAS as necessary for the team to

execute safe collective control. Here, (1) TL does not task a UAS to fix, but (2) TL fires or tasks a
UAS to fire. Emphasis is placed on how (1) can happen without (2) and vice versa.

• (Step 2: Internal Control) Unsafe Control Input:

o TL misinterprets direction from higher authorities that the <fire, fix> command

can be provided without a <fix, fire> command. (Similar to S-37.1.1)

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: (1) the <fire, fix> command can safely be provided without the

coupled <fix, fire>, (2) no controller will provide the <fire, fix>, and (3) a controller will

provide the <fix, fire>. Refinement similar to S-37.1.1, in addition:

o Delayed Feedback. TL tasks a UAS to <fire, fix>, but the feedback is delayed or takes

time to retrieve in the interface and still incorrectly shows the UAS as untasked.

TL is unaware the UAS will actually perform the task, and thus, does not

task/provide the <fix, fire> command to couple with it.

o Incorrectly Interpreted Feedback: TL believes that her/his weapon is in an unarmed

mode and cannot fire. Similarly, s/he believes the UAS tasked to fire is operating

in a mode that will not accept the <fire, fix> tasking. As a result, s/he does not

believe there is a need to task a UAS to provide the coupled <fix, fire> command.

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about a controller intending to <fire, fix> and no controller tasked to provide the coupled

277

<fix, fire> command, but still chooses not to task the coupled command. Refinement

same as S-37.1.1. In addition:

o TL misunderstands how the UAS operate. S/he incorrectly believes that if a

controller is approved to <fire, fix>, the UAS automatically provides the coupled

<fix, fire> command.90

o TL misunderstands how TL or UAS weapons systems operate. S/he incorrectly

believes that if there is no fix, the weapon system will not fire. (Similarly, if no

system announces intent to fire, the targeting system will not provide a fix)

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.1. In addition:

o TL specifies and sends both a fix and a fire tasking for the UAS. However, due to

either a misspecification of one of the commands or due to inadequate

communication channels, only one of the commands is provided.

o TL does not intentionally task the fire command. S/he creates the task in the

interface to be on standby for the right time. However, due to inadequate

interaction with the interface, the task is sent to a UAS unintentionally.91

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-

level scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL tasks a UAS that is then momentarily removed from the team. When the UAS

rejoins, the TL incorrectly assumes it will resume its previous tasking. (Same as S-

37.1.1)

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o TL tasks a UAS to <fix, fire, search>, but due to the dynamic topology, the tasking

is not adequately routed to the intended UAS(s). (Same as S-37.1.1)

S-3.3.2 (Step 1: Top-Level Scenario 2): TL directs the UAS in a way that leads to unsafe collective
control. Here, (1) TL tasks multiple UAS to provide the same fix task, and (2) s/he also fires or
tasks a UAS to fire. Emphasis is placed on how (1) can occur (see S-37.1.2), and how (2) can occur
with (1).

• (Step 2: Internal Control) Unsafe Control Input: TL interprets a direction from higher

authority as a request to fire even if multiple controllers provide a fix. (Similar to S-37.1.2)

• (Step 2: Internal Control) Inadequate Process Model: Same as S-37.1.2. Refinement: TL

incorrectly believes a controller cannot provide the <fix, fire> command even if tasked.

90 (B) Scenario: TL does not provide fire [or fix] because he believes the UAV(s) can automatically fire upon

identifying targets. TL assumes system works similar to other MUM-T systems where UAV(s) have

automatic firing [or fix] capabilities.
91 (B) Scenario: Team Lead provides the fire command for the wrong target accidentally. TL was trying to

lock on a target and instead authorized the UAV to fire at the target that it was tracking.

278

o Incorrect Feedback: TL receives incorrect feedback from a UAS that its <targeting

system, weapons system> equipment is inoperative.92

• (Step 2: Internal Control) Inadequate Control Algorithm: Same as S-37.1.2. In addition:

o TL first tasks UAS1 to <fix, fire>. Then, s/he tasks UAS2 to provide the coupled

<fire, fix> command and incorrectly believes that UAS2 does not have the

capability to provide the same command as UAS1 (<fix, fire>). To save time, the

TL simply appends the new <fire, fix> task, without deleting the UAS1 tasking,

and sends both to UAS2.

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.2. In addition:

o TL tasks a UAS to provide the <fire, fix> command. Next, TL intends to task

another UAS to provide the coupled <fix, fire> command. However, due to

inadequacies in the interface, s/he unintentionally appends the 2nd task to the 1st

task and submits both to the UAS.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-

level scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.2.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.2.

S-3.3.3 (Step 1: Top-Level Scenario 3): TL directs the UAS adequately, but some of the UAS do
not execute the directions properly, which leads to unsafe collective control. Here, (1) UAS do not
execute the fix command as tasked and (2) the TL or a UAS fires. Emphasis is placed on how (1)
can occur (See S-37.1.3), and how (2) can occur if (1) occurs.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.3. In addition:

o TL interprets a direction from higher authority as authorization to provide the fire

command, even if a fix is not possible.

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.3

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-37.1.3. In

addition:

o Feedback about Controlled Process from Collaborators: The <TL, UAS> tasked

to fire still receives feedback from the UAS tasked to fix, but which is not

providing the fix, that the target needs to be fired on. Refinement:

▪ There is a misinterpretation of the meaning of the feedback. The UAS

tasked to fix may be trying to say “target is not known to be destroyed”

but that is interpreted as “fire on the target”. (Human-Machine) This may

be aggravated by human-machine asymmetry if the TL intends to fire.

92 (B) Scenario: TL provides firing command for wrong UAV because he has an incorrect understanding of

the weapons on a specific UAV. FMS shows an inaccurate number of remaining missiles for a UAV.

279

o Feedback about Collaborator Control Actions from Controlled Process: The

controller tasked to fire receives incorrect feedback from the target that leads it to

believe the UAS is providing a fix. Refinement:

▪ A UAS provides a spurious fix (e.g., targeting system malfunction). The

momentary feedback is misinterpreted as a sufficient fix to fire.93

Note: The UCCA previously analyzed in S-37.1.3 does not explicitly show the fire

command. If the causal factors associated with this dynamic were not considered at that

time, the analyst would consider them here.

• (Step 3: Collaborative Dynamic) Cognitive Alignment:

o Construction: Same as S-37.1.3. In addition:

▪ The control algorithms executed by different controllers are not consistent

with one another and lead to different determinations by the controllers

on whether or not to execute a task. For example:

• Even if controllers are configured similarly, the algorithm may

apply a different decision-making process to execute the different

types of tasks. For instance, a controller tasked to fix may

determine that they are unable to execute the task based on inputs

provided. However, the controller tasked to fire may determine

differently that it is okay to continue.

• Differences may also exist across how controllers are configured,

leading to the same result. (Human-Machine) This can be

exacerbated by asymmetry between the human TL and a machine

UAS. (See S-37.1.3)

o Initialization: Same as S-37.1.3. In addition:

▪ The process model of one of the controllers involved in the fix-fire coupled

task is better initialized than the other. For example, the controller tasked

to fire (which may include the TL) receives clear direction on how to

execute their task. However, the UAS tasked to fix receives unclear

information (e.g., due to inadequate communications, semantic

mismatch). This contributes to only one controller performing the task.

o Model Updates: Same as S-37.1.3. In addition:

▪ Vertical Coordination (Control):

• TL controls the coordination details between UAS1 (tasked to fix)

and UAS2 (tasked to fire). However, s/he provides inconsistent

information between the two and leads UAS1 to determine it

cannot do its task, whereas UAS2 can (or vice versa).

▪ Lateral Coordination (Communication):

• Coordination information sent by the UAS tasked to <fix, fire> to

the controller tasked to the coupled <fire, fix> command is

inadequate (e.g., incorrect, delayed, misinterpreted). It leads the

93 (B) Scenario: AuC receives a target designation that it determines can lead to releasing a missile as long
as parameters are satisfied, so AuC decides to release the weapon without a TL command

280

controller tasked to <fire, fix> to incorrectly believe the UAS can

successfully provide the coupled task, and therefore the controller

proceeds with the <fire, fix> command. (Human-Machine) This is

exacerbated by human-machine asymmetry. (See S-37.1.3)

• Coordination information received by other controllers on the

team lead the controller tasked to <fire, fix> to incorrectly believe

the UAS can successfully provide the coupled <fix, fire>. For

example, another UAS not involved in the fix-fire task

communicates that a UAS is intending to <fix, fire>, but does not

mention that it is engaging a different target.94

▪ Lateral Coordination (Observation): The controller tasked to <fire, fix>

observes the controller tasked to provide the coupled <fix, fire> command

maneuver in a way consistent with that task and incorrectly believes it will

execute it.

▪ Prediction: The controller tasked to <fire, fix> knows that a UAS has been

tasked to provide the coupled <fix, fire> command, and as such predicts

that the coupled task will be provided without checking for any feedback.

• For example, TL tasks a UAS to fix and intends to fire her/himself.

TL has confidence that the UAS will execute the fix as specified

(e.g., based on past experience), and therefore does not bother to

check if the fix feedback is adequate before firing.

• As another example, the UAS tasked to fire becomes disconnected

from the UAS tasked to fix. Given lost communications

procedures and the execution context, the UAS tasked to fire

predicts that the other UAS will provide a fix at a certain time, even

though circumstances make that not possible. This contributes to

the decision to fire even though the fix is not executed.

o Decision-Making: Same as S-37.1.3. In addition:

▪ Asynchronism in the distributed decision-making process leads some

controllers to believe they have consensus when others do not. For

example, the controller tasked to fix informs that its parameters are met to

fix. After a delay, the controller tasked to fire determines its parameters

are also met fires. However, by this time, parameters are no longer met

for the other controller to provide the fix.

o Capacity: Same as S-37.1.3. In addition:

▪ One of the controllers has a runway internal process that makes it unable

to coordinate with the team. Therefore, it does not process information

from teammates that some tasks cannot be completed (e.g., <fix, fire>), and

continues to press on with its own task.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.3. In addition:

94 (B) Scenario: Team Lead provides the command early because he believes the right target is selected
because AuC shows that it implemented the target designation command

281

o The controller tasked to <fix, fire> is removed from the team. However, the

controller tasked to provide the coupled <fire, fix> command is not aware of this

loss. This contributes to proceeding with the coupled task anyway.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.3. In addition:

o A 1st controller tasked to <fire, fix> is less connected to the team than a 2nd

controller tasked to provide the coupled <fix, fire> command. The 2nd controller

receives information faster and more adequately to inform it not to perform the

coupled task than the 1st controller.

S-3.3.4 (Step 1: Top-Level Scenario 4): TL adequately does not direct the UAS to provide certain
commands, but some of the UAS provide them anyways, which leads to unsafe collective control.
Here, (1) a UAS fires untasked, or when (2) a UAS provides a fix untasked and (3) another UAS
provides a fix as tasked. Emphasis is placed on how (1) can occur (See S-41.5.3, S-41.5.4), and how
(2) can occur (Similar to S-38.2.3) if (3) occurs.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-37.1.3

• (Step 2: Internal Control) Inadequate Process Model: see Cognitive Alignment. This

high-level scenario is more focused on team cognition than that of any one controller.

• (Step 2: Internal Control) Inadequate Control Algorithm: same as above.

• (Step 2: Internal Control) Unsafe Control Path: No new scenarios conceived.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-38.2.3, but

leads to an untasked UAS fix in addition to the tasked one.

o Feedback about own control actions received from Collaborators: An untasked

controller <TL, UAS> receives feedback from a teammate that it misinterprets as

a request to fire. (Similar to S-38.2.3)

o Feedback about Collaborator control actions received from Controlled Process:

The controller tasked to fire receives incorrect feedback from the target that leads

it to believe a UAS is providing a fix, and so it should provide the fire command,

even if untasked. (Refined same as S-3.3.3)

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another.

o Construction:

▪ The control algorithm on one of the UAS is programmed to allow it to

provide a fix or a fire command, even if untasked, if certain parameters

are met. This may be due to a software misconfiguration.95

o Initialization: Same as S-38.2.3.

o Model Updates:

▪ Vertical Coordination (Control): No scenarios conceived

▪ Lateral Coordination (Communication): A UAS receives information from a

teammate that it interprets as coordination associated with a <fire, fix>

95 (B) Scenario: Auc algorithm is allowed to provide a root authorization if the original command does not
involve firing a weapon or target designations, so AuC implements a task.

282

task. This leads the UAS to incorrectly believe it is tasked to provide that

command. (Same as S-38.2.3)

▪ Lateral Coordination (Observation): Same as S-38.2.3

▪ Prediction: A controller is temporarily disconnected from the team.

However, a sequence of past communications and observations leads it to

predict that if connected, it would be tasked to <fix, fire>. This influences

it to take on the task, even though it is untasked.96

o Decision-Making:

▪ As part of distributed decision-making, one of the controllers introduces a

new <fix, fire> task that is not part of the topic of coordination. This may

occur due to a cyber-attack, or other refined reasons. Because the new task

does not conflict with the topic of coordination, it is not rejected by the

other controllers, and it becomes part of the team plan.97

o Capacity: No new scenarios conceived

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o A UAS was previously tasked to <fix, fire> by the TL, but was then temporarily

removed from the team. As a result, the TL cancels the overall coupled fix-fire

command. Then the UAS rejoins the team and continues its previous task even

though this no longer follows the intent of the TL.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Related to Prediction.

S-3.3.5 (Step 1: Top-Level Scenario 5): TL control actions to the controlled process are unsafe in
combination with how it directs the UAS. Here, TL fires and does not task a UAS to fix. Factors
associated with unsafe internal control are listed in S-3.3.1. Additional factors related to unsafe
collaborative control are listed below.

Note: This UCCA may also consider when the TL fires and tasks another UAS to fire. By providing
the fire command her/himself, the TL may cause UAS(s) that are properly tasked to both fix and fire to
drop all their tasks together. Factors associated with this scenario are listed in S-42.6.5.

• (Step 2: Internal Control) Unsafe Control Input, Inadequate Process Model, Unsafe

Control Path: Same as S-3.3.1

• (Step 2: Internal Control) Inadequate Control Algorithm:

o TL chooses to fire or task a UAS to fire without a fix, under the incorrect

anticipation that s/he will be able to task a UAS to fix in time before the weapon

hits the target. (Reverse scenario also applies: TL tasks a UAS to fix without tasking

one to fire under the incorrect anticipation that s/he will be able to task a UAS to

fire in time before the fixed target compromises the mission)

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-3.3.4

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Refinement:

96 (B) Scenario: AuC does not receive a command from authorized provider, but it notices a UAV is
following a target, so it decides to implement a search for target, which it was not provided.
97 (B) Scenario: AuC determines an additional task is necessary to complete a command, and the TL
provides the authorization without knowing why the task is necessary.

283

o Construction: No new scenarios conceived

o Initialization:

▪ (Human-Machine) TL is unable to semantically specify the coupled fix-fire

task to a level sufficient for her/him to have any confidence that a UAS

will support her/him with the type of fix necessary. TL chooses to execute

the fire task alone without tasking a UAS to fix.

o Model Updates: No new scenarios conceived (no tasking takes place)

o Decision-Making: No new scenarios conceived (no tasking takes place)

o Capacity: TL workload is too heavy to specify a fix tasking for a UAS. S/he

chooses to fire alone without of tasking a UAS to fix. (Similar to S-40.4.5)

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.1

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.1

S-3.3.9 (Step 4: Other Factors): Controllers on the team fire, but do not provide the fix due to
factors beyond those explored in interactions between the controllers on the team.

• All factors: Same as S-37.1.9.

UCCA 2.2 (abstracted UCCA): The Team provides the fix command but not the fire command
when a target may compromise the mission if fixed but not fired on. [H3]

UCCA 2.2.1 (refined): UAS1 fixes, and TL, UAS1, and UAS2 do not provide fire command

Figure A3-20. Control structure showing team providing fix but no fire command

Note: UCCA 2.2 involves many factors involved in UCCA 3.3 as both involve the team providing either
the fix or fire command and not the other. As such, the following analysis largely points back to S-3.3.

S-2.2.1 (Step 1: Top-Level Scenario 1): TL does not direct the UAS as necessary for the team to
execute safe collective control. Here, (1) the TL does not task a UAS to fire (and does not intend
to fire), but (2) the TL tasks a UAS to fix. Emphasis is placed on how (1) can occur if (2) occurs
and vice versa.98

• All factors: Same as S-3.3.1.

98 (B) UCA 15: Team Lead provides the track target command early and exposes the mission (H3)

284

S-2.2.2 (Step 1: Top-Level Scenario 2): TL directs the UAS in a way that leads to unsafe collective
control. Here, TL (1) tasks multiple UAS to provide the same fire task and (2) also tasks a UAS to
fix. Emphasis is placed on how (1) can occur (see S-40.4.2), and (2) can occur with (1).

• All factors: Same as S-3.3.2.

S-2.2.3 (Step 1: Top-Level Scenario 3): TL directs the UAS adequately, but some of the UAS do
not execute the directions properly, which leads to unsafe collective control. Here, (1) a UAS does
not execute the fire command as tasked and (2) a UAS provides a fix. Emphasis is placed on how
(1) can occur (See S-40.4.3), and (2) can occur if (1) occurs.

• (Step 2: Internal Control) Unsafe Control Input, Inadequate Process Model, Inadequate

Control Algorithm, Unsafe Control Path: Same as S-3.3.3.

• (Step 3: Collaborative Dynamic) Cognitive Alignment, Dynamic Membership, Dynamic

Connectivity: Same as S-3.3.3.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-40.4.3, but

Machine-Machine interactions. In addition:

o Feedback about own control actions received from Collaborators: The UAS

tasked to fix receives feedback from the UAS tasked to fire, but which will not fire,

that it interprets as a request to fix. Refinement similar to S-3.3.3:

▪ There is a misinterpretation of the meaning of the feedback. The UAS

tasked to fire provides the feedback as factual information without

implying an intent to fire or a need to fix. (Similar to S-3.3.3)

o Feedback about Collaborator control actions received from Controlled Process:

No scenarios conceived.

Note: The UCCA previously analyzed in S-40.4.3 does not explicitly show the fix command. If

the causal factors associated with this dynamic were considered at that time, the analyst would

consider them here.

S-2.2.4 (Step 1: Top-Level Scenario 4): TL adequately does not direct the UAS to provide certain
commands, but some of the UAS provide them anyways, which leads to unsafe collective control.
Here, a UAS provides an untasked fix (Similar to S-38.2.3).

• (Step 2: Internal Control) Unsafe Control Input, Inadequate Process Model, Inadequate Control

Algorithm, Unsafe Control Path: Same as S-3.3.4

• (Step 3: Collaborative Dynamic) Cognitive Alignment, Dynamic Membership, Dynamic

Connectivity: Same as S-3.3.4

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops:

o Feedback about own control actions received from Collaborators: An untasked

UAS receives feedback from another controller that the fix is inadequate to fire. It

misinterprets this as a request to provide a fix, even though the feedback may not

be associated with any intent to fire. Similar to S-38.2.3

o Feedback about Collaborator control actions received from Controlled Process:

No scenarios conceived.

S-2.2.5 (Step 1: Top-Level Scenario 5): TL control actions to the controlled process are unsafe in
combination with how it directs the UAS. Here, (1) the TL does not fire (and does not task a UAS

285

to fire), and (2) TL tasks a UAS to fix. Emphasis is placed on how (1) could occur if (2) occurs,
and vice versa.

• (Step 2: Internal Control) Unsafe Control Input, Inadequate Process Model, Inadequate

Control Algorithm, Unsafe Control Path: Same as S-3.3.1

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops, Cognitive Alignment,

Dynamic Membership, Dynamic Connectivity: Same as S-40.4.5

S-2.2.9 (Step 4: Other Factors): Controllers on the team provide the fix, but do not fire due to
factors beyond those explored in interactions between the controllers on the team.

• All factors: Same as S-3.3.9.

UCCA 11.6 (abstracted UCCA): The Team provides the fix and fire commands but not the
search command when searching for another target has higher priority [H3]

UCCA 11.6.1 (refined): TL fires, UAS1 fixes, and TL, UAS1, UAS2 do not search

UCCA 11.6.3 (refined): UAS1 fixes, UAS2 fixes, and TL, UAS1, UAS2 do not search

UCCA 11.6.5 (refined): UAS1 fixes and fires, and TL, UAS1, UAS2 do not search

Other lower-priority UCCAs listed in Table A2-2 lead to the same outcome. UCCAs
11.6.2, 11.6.4, 11.6.6-11.6.8 enumerate multiple controllers performing the fix and or fire
tasks.

Figure A3-21. Control structure of team providing a search instead of the fix-fire commands

S-11.6.1 (Step 1: Top-Level Scenario 1): TL does not direct the UAS as necessary for the team to
execute safe collective control of the search instead of the fix-fire commands. Here, the TL does
not task a UAS to search (if the TL does not intend to search), and the TL tasks the UAS to fix-fire
instead.99

• (Step 2: Internal Control) Unsafe Control Input: Same as S-10.5.1

• (Step 2: Internal Control) Inadequate Process Model: Same as S-10.5.1, but search and fix-

fire reversed.

• (Step 2: Internal Control) Inadequate Control Algorithm: Same as S-10.5.1, but search and

fix-fire reversed.

99 (B) UCA 7: TL provides “fix on target” command before AuC has an identification of the target (H3)

286

• (Step 2: Internal Control) Unsafe Control Path: Same as S-10.5.1, but search and fix-fire

reversed.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o TL intends to task the UAS to search, however, the set of participating UAS

fluctuates too much for the TL to have confidence that the automated tasking

algorithm will not churn. Instead, TL tasks UAS to fix and fire so that s/he can

handpick controllers s/he is confident will not fall out. (Similar to S-10.5.1)

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.1

S-11.6.2 (Step 1: Top-Level Scenario 2): TL directs the UAS in a way that leads to unsafe collective
control. The UAS recognize these conflicts and none of them execute their assigned mission tasks.
Here, TL tasks multiple UAS to fix or to fire, especially when the TL does not task the UAS to
search instead.

• All factors covered by scenarios in S-1.1.2, S-3.3.2, and S-11.6.1

S-11.6.3 (Step 1: Top-Level Scenario 3): TL directs the UAS adequately, but some of the UAS do
not execute the directions properly, which leads to unsafe collective control. Here, no UAS
executes the search task, especially when one or more of them participate in a fix-fire task instead.

• (Step 2: Internal Control) Unsafe Control Input, Inadequate Process Model, Inadequate

Control Algorithm, Unsafe Control Path: Same as S-10.5.3.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops:

o Feedback about Controlled Process from Collaborators: Same as S-10.5.3.

o Feedback about Collaborator Control Actions from Controlled Process: N/A.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another.

o Construction: Same as S-1.1.3 and S-44.8.3. But in reverse order, leading the UAS

to drop the higher-priority search task in favor of executing the lower fix-fire task.

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ UAS receive different versions of the task specification by the TL, which

causes them to evaluate the task prioritization differently. (Similar to S-

37.1.3 and S-43.7.3)

▪ The mission is dynamic and priorities change midway through the process

of tasking UAS. Same as S-10.5.3, but results in UAS dropping the search

task in favor of fix-fire tasks.

▪ UAS have different beliefs about how many and which UAS are

participating. As such, TL tasks UAS team to search with high priority,

and UAS1 to fix with low priority. UAS1 incorrectly believes another UAS

is better positioned to execute the search task, and assumes it will be

assigned to it, so UAS1 takes on the fix command instead. However, there

is no other UAS, so the priority search is not executed. (Similar to S-10.5.3)

o Model Updates:

▪ Vertical Coordination (Control): Same as S-43.7.3

287

▪ Lateral Coordination (Communication): Same as S-43.7.3, in addition:

• Teammates change and share inconsistent task execution

parameters. For example, TL tasks UAS to search with medium

priority, UAS1 to fix with low priority, and UAS2 to fire with low

priority. The search gets assigned to UAS1. UAS2, which is now

not responsible to search, updates its own task priority for fire to

high. However, it then shares this updated information, which

leads UAS1 to believe the coupled fix task should be high priority.

Therefore, it drops the higher-priority search task.

▪ Lateral Coordination (Observation): Same as S-37.1.3

▪ Prediction: No new scenario conceived.

o Decision-Making: Same as S-37.1.3 and S-43.7.3. In addition:

▪ The distributed decision-making process biases coupled tasks over

individual tasks. For example, the UAS are tasked to search with medium

priority and fix and fire each with low priority. However, the decision-

making process aggregates the values of the fix and fire tasks and

determines that together they are higher-priority than the search task.

o Capacity:

▪ Some tasks require higher capacity to process and are thus less likely to be

executed by controllers that can only process simpler tasks. For example,

the automation tasks a UAS to search. However, executing the search

involves computing an optimal route subject to constraints, which takes

longer to compute for a UAS than fix-fire tasks. As a result, the UAS can

reach a feasible solution for the fix-fire tasks and may become committed

to them before it knows whether or not it can take on the search. This

biases the UAS to fix-fire over searching, even if the search is of higher

priority.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-10.5.3.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

S-11.6.4 (Step 1: Top-Level Scenario 4): TL adequately does not direct the UAS to provide certain
commands, but some of the UAS provide them anyways, which leads to unsafe collective control.
Here, UAS(s) are not tasked to fix-fire but do so anyways instead of performing the tasked search.

• All factors: Same as S-10.5.4, but leads to fix-fire tasks instead of the search task.

S-11.6.5 (Step 1: Top-Level Scenario 5): TL control actions to the controlled process are unsafe in
combination with how it directs the UAS. Here, TL does not search while no UAS is tasked to
search. Emphasis is placed on when TL fires and tasks a UAS to fix instead.

• (Step 2: Internal Control) Unsafe Control Input: TL misinterprets direction from higher

authorities that s/he should always prioritize fix-fire tasks over searches, or that s/he

should always prioritize providing coupled tasks to support UAS.

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: TL incorrectly believes (1) s/he will perform the search task, (2)

288

the UAS will not perform the fix task, (3) a UAS will perform the search task, (4) the fix-

fire tasks are higher-priority. Refinement same as S-1.1.5.

• (Step 2: Internal Control) Inadequate Control Algorithm: Same as S-10.5.5, but results in

the fire command and not search.

• (Step 2: Internal Control) Unsafe Control Path: TL intended to task a UAS to fire and

perform the higher-priority search her/himself. However, due to factors listed in S-

37.1.1, her/his command does not reach the UAS, and s/he is forced to fire instead of

searching because a UAS is already tasked to fix.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Due to factors

described in S-40.4.5, the UAS that was tasked to fire is unable to do so. As a result, the

TL is forced to fire instead of searching because a UAS is already tasked to fix.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Same as S-10.5.5, but leads to TL

believing a UAS will execute a search. In addition:

o Model Updates:

▪ Prediction: TL tasked UAS1 to fix and UAS2 to fire, both with high priority.

TL also tasked the UAS team to search with low priority and intends to

search her/himself. UAS2 becomes disconnected from TL. TL predicts

based on lost-communications procedure, that UAS2 will default to taking

on the non-coupled search task and drop the fire task. As such, TL changes

plans and decides to fire her/himself in collaboration with UAS1

providing the fix. However, UAS2 is still connected to UAS1 and still

intends to provide the fire command. Now no controller provides the

search command. Similar to S-10.5.5.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-40.4.5.

o TL anticipates that the UAS tasked with providing the fire may exit the team (e.g.,

retasked by Ground Station). As such, TL holds off on searching so that s/he can

be available to execute the fire if needed. Similar to S-40.4.5.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Related to Prediction.

S-11.6.9 (Step 4: Other Factors): Controllers provide the fix-fire commands, but not the search
due to factors beyond those explored in interactions between the controllers on the team.

• All factors: Same as S-10.5.9

UCCA 4.4 (abstracted UCCA): The Team provides the fix and fire commands when the target
fixed on is different from the target fired on [H3, H5]

UCCA 4.4.1 (refined): TL fires and UAS1 fixes

UCCA 4.4.5 (refined): UAS1 fixes and UAS2 fires

Other lower-priority UCCAs listed in Table A2-2 lead to the same outcome. UCCAs 4.4.4
and 4.4.7 involve multiple controllers performing the fix task. UCCAs 4.4.3, 4.4.6, 4.4.8-
4.4.12 enumerate multiple controllers performing the fire task. UCCA 4.4.2 consists of one
UAS fixing and firing on a different target, which is not a collaborative control problem.

289

Figure A3-22. Control structure showing team the fix & fire commands on different targets

S-4.4.1 (Step 1: Top-Level Scenario 1): TL does not direct the UAS as necessary for the team to
execute safe collective control. Here, (1) TL does not task a UAS to fix (or fire) and (2) TL does
task the coupled fire (or fix) task (while not intending to fire her/himself). It also emphasizes
how despite the missing taskings, the UAS provides the missing task, but not in a way that is
aligned with the coupled task.

Note: this scenario is deprioritized because of the contrived combinations of the team interactions it
necessitates (many different things need to go wrong together).

S-4.4.2 (Step 1: Top-Level Scenario 2): TL directs the UAS in a way that leads to unsafe collective
control. Here, (1) TL tasks a UAS to fix on a target and another to fire on a different target, and
(2) the UAS carry out the unsafe tasking.100

• (Step 2: Internal Control) Unsafe Control Input: No new scenarios conceived

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: TL believes (1) the target for the UAS1 task is the same as for

UAS2, (2) other tasks fix-fire tasks will be executed for each of the two different targets.

o Misinterpreted Feedback. The interface shows that targets have been assigned tasks

for the team to perform. But it does not show what type of tasks they are nor if

the combined set assigned per target is adequate.

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information that

the fix and fire tasks are specified for different targets, but still chooses to issue them.

o TL incorrectly believes that providing the tasks that way will lead to UAS1 and

UAS2 fix-fire on both targets. S/he believes the tasking authorizes the UAS to do

the type of task, authorizes the targets to be engaged, and that the UAS will

coordinate how all that is accomplished.

o TL incorrectly believes that each UAS will automatically provide both the fix and

fire commands for each target. (Same as S-37.1.1)

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.1. In addition:

100 (B) UCA 3: Team Lead provides “fix on target” command for the wrong target (but still an enemy target)

(H5); UCA 18: Team Lead provides firing command for the wrong target (H5)

290

o TL intends to task the UAS to fix and fire on the same target. However, the TL

interface is inadequate and leads her/him to unintentionally specify different

targets for the two tasks.101

▪ This could be the result of the interface providing predictive target

specification for the task (e.g., given the location of the UAS), which the

TL approves without awareness that the target is incorrect.

o TL does not intend to provide any tasks yet but specifies them ahead of time as

placeholders. However, the interface treats the inputs as taskable, and provides

them to the UAS.102

o TL intends to task both UAS onto both targets. However, due to Unsafe Control

Path factors in S-37.1.1, some of the fix and fire tasks are not provided.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-level

scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on control decisions from TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Similar to S-37.1.1.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as S-37.1.1.

S-4.4.3 (Step 1: Top-Level Scenario 3): TL directs the UAS adequately, but some of the UAS do
not execute the directions properly, which leads to unsafe collective control. Here, (1) TL tasks
the UAS to fix and fire on the same target, but the UAS provide those commands on different
targets, or (2) TL tasks UAS to both commands (fix and fire) on two different targets, but the UAS
only provide one of each on different targets.103

• (Step 2: Internal Control) Unsafe Control Input: The UAS assignments are overridden by

other controllers. For example, the Ground Station changes the target specified for one of

the two UAS. Or, the Ground Station deletes the additional fix and fire tasks that would

have enabled both targets to be engaged. (Similar to S-37.1.3)

• (Step 2: Internal Control) Inadequate Process Model: See Cognitive Alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See Cognitive Alignment.

• (Step 2: Internal Control) Unsafe Control Path: The UAS intend to fix-fire on the same

target, but one of the UAS has a <targeting system, weapon system> malfunction, and the

effects of the command are provided to the wrong target. (Same reason applies to the TL

firing on the wrong target)

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops:

o Feedback about Controlled Process from Collaborators: The feedback either of

the two UAS tasked to fix or fire gets from the other leads it to <fix, fire> on a

different target.

▪ UAS1 declares it is ready to start the <fix, fire> command on a target, but

does not specify which target it is acting on to its collaborator (UAS2, TL),

101 (B) Scenario: the command only contains an approximate location of the target, but there are several
potential targets within range and the FMS selects wrong one, and command is fixed on a different target.
102 (B) Scenario: FMS interprets an identification command as a fix on target command.
103 (B) UCA 36: Autonomous Controller releases a missile for the wrong target (H5)

291

which assumes it is for the same target they intend to act on. Alternatively,

UAS1 specifies a target that is different from the target it intends to act on.

▪ UAS1, tasked to fix, provides feedback to UAS2, tasked to fire, regarding

the status of multiple different targets, including Target 2 which is not yet

destroyed. UAS2 misinterprets that feedback as a request to fire on Target

2, even though UAS1 ultimately settles on fixing Target 1 as tasked.

o Feedback about Collaborator Control Actions from Controlled Process:

▪ Another UAS provides a fix for a different target (Target 2) as part of a

separate tasking. However, that fix is interpreted by the controller tasked

to fire as the fix it was seeking for Target 1.

• (Step 3: Collaborative Dynamic) Cognitive Alignment:

o Construction: No new scenarios conceived.

o Initialization: Some elements of the process models are not adequately or

consistently initialized across the team. Refinement:

▪ UAS receive different versions of the task specification by the TL, which

causes them to evaluate the designated target differently. For example, TL

initially specifies the coupled task for Target1, but then replans and

specifies it for Target2, but only a subset of the UAS receive the update.

(Similar to S-37.1.3)

o Model Updates:

▪ Vertical Coordination (Control):

• TL specifies separately the target for each of the UAS. However,

there is an unintentional mismatch between the two targets

specified, due to various factors (e.g., inadequate interface,

operator error, dynamic targets).

▪ Lateral Coordination (Communication):

• Communications between the UAS assigned to fix and the

controller assigned to fire are not adequate to coordinate on the

target that is intended in the tasking. Bits are swapped in

messages, leading one of the controllers to misinterpret the target.

• A UAS is temporarily disconnected and its model of adynamic

targets diverges from that of the team. It eventually associates one

of the targets with the wrong identifier (e.g., swaps two targets that

were maneuvering in proximity to each other). When the UAS

reconnects, it contributes its divergent model to the team, which

contributes to some of its teammates also swapping targets. This

leads to UAS1 (tasked to fix) and UAS2 (tasked to fire) having a

different model of the target they are jointly engaging.

▪ Lateral Coordination (Observation):

• UAS1 (or TL) tasked to <fix, fire> observes UAS2 (or TL), which is

tasked to the coupled <fire, fix> task, maneuvering in a way

consistent with acting on a different target. This influences UAS1

292

(or TL) to change the target over which it acts, even though that is

not what UAS2 (or TL) is intending to do.

▪ Prediction:

• UAS1 is tasked to fix on Target1, and is aware that UAS2 is tasked

to fire (although UAS2’s target is not explicitly specified). UAS1

incorrectly predicts from its own tasking that UAS2 will fire on

Target1 and proceeds with executing its task.

o Decision-Making: Same as S-37.1.3 and S-43.7.3. In addition:

▪ The distributed decision-making process does not consider all the

information shared in coordination. For example, UAS1 and UAS2 openly

communicate that they are ready to execute their tasks on Targets 1 and 2

respectively. However, their algorithm does not actually consider the

target specified by the other controller and instead plans for the target it

assumes the other controller is controlling.

▪ The distributed decision-making process correlates other parameters

beyond the target index to reach consensus. For example, UAS1 and UAS2

have multiple fix-fire tasks to support each other. The decision-making

process looks for the closest match between any two tasks to determine a

coupling solution. Because of other factors (e.g., inconsistent model

initialization and updates) UAS1 fixing Target1 is assessed as a better

match with UAS2 firing on Target2 than with UAS2 firing on Target1.

▪ There are too many tasks to fix and fire on defined for the UAS to

determine the optimal task execution order. The controllers use

approximations and heuristics (such as greedy task allocation) to

determine their next course of action. While this type of decision-making

is efficient, in some cases it leads to UAS coupling tasks that should not be

coupled.104

o Capacity: No new scenario conceived.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-10.5.3, but leads to

differences in which target to act on.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

S-4.4.4 (Step 1: Top-Level Scenario 4): TL adequately does not direct the UAS to provide certain
commands, but some of the UAS provide them anyways, which leads to unsafe collective control.
Here, one UAS is tasked to fix (to support the TL that intends to fire), and another UAS that is not
tasked to fire does fire on a different target. Emphasis here is placed on why that untasked UAS
would fire on a different target.105

• Factors associated with an untasked UAS firing are explored in S-41.5.4 and S-3.3.4. No

additional scenarios conceived.

104 (B) UCA 32: Autonomous Controller implements a task before completing an algorithm to determine

the optimal task completion
105 (B) UCA 36: Autonomous Controller releases a missile for the wrong target (H5)

293

S-4.4.5 (Step 1: Top-Level Scenario 5): TL control actions to the controlled process are unsafe in
combination with how it directs the UAS. Here, TL fires on a target that is different than the one
s/he tasked a UAS to fix.106

• (Step 2: Internal Control) Unsafe Control Input: Same as S-3.3.1.

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: TL believes that the UAS will provide the fix command on the

same target the TL intends to fire on. Refinement:

o Incorrect Feedback: TL tasks UAS1 to fix Target1, UAS1 provides incorrect feedback

that it will fix Target2 (e.g., stale information from previous tasking) even though

it plans to fix Target1. TL now changes plans and fires on Target2. 107

o Missing Feedback: TL tasks UAS1 to fix Target1, UAS1 misinterprets the command

and fixes Target2, but only replies that it is providing the fix, and not which target

it is fixing. TL now fires on Target1 without knowing UAS1 is fixing Target2. 108

• (Step 2: Internal Control) Inadequate Control Algorithm: Same as S-3.3.1.

• (Step 2: Internal Control) Unsafe Control Path: Same as S-4.4.3

• Mutually Closing Control Loops:

o Feedback about Controlled Process from Collaborators: Same as S-4.4.3.

o Feedback about Collaborator Control Actions from Controlled Process:

▪ One of the UAS provides a spurious fix of another target due to a targeting

system malfunction. The momentary feedback is misinterpreted by the

controller tasked to fire (TL, UAS2) as the fix to fire on. Similar to S-3.3.3

• (Step 3: Collaborative Dynamic) Cognitive Alignment:

o Construction:

▪ The control algorithms executed by different controllers are not consistent

with one another, and leads to different target determinations.

• For example, the target selected may be specified as “the largest”

target from a set. However, “largest” may be interpreted

differently (e.g., largest in physical size, largest in signature, …).

o Initialization:

▪ (Human-Machine) TL and the UAS have a different initial representation

of the target due to semantic mismatches between how the TL describes it

in the tasking, and how the UAS interprets it (related to construction).

o Model Updates: Same as S-37.1.3. In addition:

▪ Vertical Coordination (Control): TL provides coordination specifics for how

the UAS should provide the fix that is more aligned with the UAS’s

106 (B) UCA 18: Team Lead provides firing command for the wrong target (H5)
107 (B) Scenario: The targeting system highlighted the correct target. However, the system switched targets
while the Team Lead was maneuvering, and the Team Lead did not notice the switch.
108 Same as above

294

representation of a different target. As a result, the UAS fixes a different

target than the TL intends to fire on.109

▪ Lateral Coordination (Communication): Same as S-37.1.3, leading to the

controllers acting on different tasks.

▪ Lateral Coordination (Observation): Same as S-4.4.3.

▪ Prediction: Based on past experience, both controllers have high confidence

in the ability of their collaborator to provide an adequate <fix, fire>

command. As a result, they devalue the necessity to scrutinize their

coordinated information to ensure the targets are consistent. This may be

to the point in which they notice the wrong target designation, but reject

the information as incorrect given their high confidence.

o Decision-Making:

▪ There is no logic to rectify the lack of consensus on a specific target. As

long as a set of other parameters are met (e.g., time window), the

distributed decision-making does not check, attempt to enforce or rectify

a lack of consensus on a specific target.

o Capacity:

▪ One or more of the controllers are operating at a workload too high to

verify the consistency of the target solution between the fix and fire task.

• Dynamic Membership:

o The set of targets is dynamic. As a result, TL providing fire and the UAS

providing the fix confuse targets and focus on different ones. This may be due to

how the software indexes the dynamic set of targets if a new target is labeled with

the index of an old target that is no longer part of the mission.110

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenarios conceived.

S-4.4.9 (Step 4: Other Factors): Controllers on the team fix and fire onto different targets due to
factors beyond those explored in interactions between the controllers on the team.

• No new scenarios.

Abstraction 2a – Type 3-4: Commands start/end too early/late relative to one another

The following UCCAs explore how control actions provided by the team are started or ended too
early or too late relative to one another. Causal scenarios associated with the temporal sequencing
of control actions consider how control actions and collaborative interactions internal to the team
contribute to the UCCA. The same top-level scenarios employed in Abstraction 2b guide the
analysis below.

109 (B) Scenario: the command only contains an approximate location of the target, but there are several

potential targets within range and the FMS selects wrong one, and command is fixed on a different target.
110 (B) Scenarios: There is a delay from an earlier fix on target command that the FMS acts on instead, so
command is fixed on a different target.

295

UCCA 15.1 (abstracted UCCA): The Team ends the fix command before it starts the fire
command when the target fired on must be fixed [H3, H5].

UCCA 15.1.1 (refined): UAS1 ends the fix command before TL starts the fire command.

UCCA 15.1.3 (refined): UAS1 ends the fix command before UAS2 starts the fire command.

In Table A2-4, UCCA 15.1.2 has the same outcome but involves the same UAS ending the
fix before it starts to fire, which is not a collaborative control problem.

Figure A3-23. Control structures showing team ending the fix before it starts to fire

S-15.1.6 (Step 1: Top-Level Scenario 6): TL directs the UAS in a way that leads to unsafe temporal
sequencing. Here, TL tasks a UAS to end fix too soon and another to start fire too late relative to
each other.

• (Step 2: Internal Control) Unsafe Control Input:

o TL interprets direction from higher authorities that any fix must be ended by a

certain time and/or that no fire may be provided before a certain time.

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: TL believes (1) the fix command will end later than it does, (2)

the fire command will start earlier than it does. Refinement:

o Missing Feedback. TL does not receive any feedback from UAS associated with

uncertainty in meeting task timelines as specified by the TL. This leads TL to

believe s/he can specify limited overlaps in the fix-fire tasks, which are not

realistically achievable.111

o Missing Feedback. TL interface does not display how the fix and fire commands

align temporally as tasked relative to one another.

• (Step 2: Internal Control) Inadequate Control Algorithm: TL has accurate information

about the tasks as specified having an inadequate temporal sequence, but still chooses to

provide those commands as such. Refinement:

o TL misunderstands how the UAS operate. S/he incorrectly believes that the UAS

will adjust the timelines specified in the tasking so that the sequencing is

adequate. As such, s/he does not actively correct the tasking sequence.

o TL misunderstands how TL or UAS weapons systems operate. S/he incorrectly

believes that if there is no fix provided, the weapon system will not fire (or vice

111 (B) Scenario: Team Lead has an inaccurate mental model of how long it takes the AuC to implement a

command upon receiving it.

296

versa) (Same as S-3.3.1). This reduces her/his perceived consequence in

misspecifying the taskings.

o TL misunderstands how the system operates, and s/he believes that a UAS has to

be providing a fix before they can task a UAS to fire. As a result, TL delays tasking

the fire until it is late to execute with respect to the fix.

• (Step 2: Internal Control) Unsafe Control Path:

o The interface pre-populates timelines associated with each task to reduce the

operator workload. However, those timelines are inadequate in sequence.112

o The tasking interface sends a time that is different from the one specified by the

TL. This could be due to some default times preprogrammed that are substituted

in under certain circumstances.113

o The interface and messages as designed are prone to common timing errors (e.g.,

12 vs 24hr, Local vs Zulu, international date line, changing time zones).114

o One of the two taskings is delayed due to inadequate communication channels

(see S-37.1.1). Thus, the <fire, fix> task is not received by the designated controller

until after the controller that provided the coupled <fix, fire> task has acted.

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable. Top-

level scenario focuses on a TL internal control loop that is not closed through any other controller.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Not applicable. Top-level scenario

focuses on a control decision from the TL only.

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o One of the UAS tasked in the fix-fire coupled command is removed from the team.

TL retasks another UAS in response but does not change the original tasking to

compensate for any effects this change of controller has on the timeline.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

S-15.1.7 (Step 1: Top-Level Scenario 7): TL adequately directs the UAS, but the way in which the
UAS execute the tasks leads to unsafe temporal sequencing. Here, despite the tasking, one UAS
ends the fix early and the other UAS starts the fire command late relative to one another.115

• (Step 2: Internal Control) Unsafe Control Input: Another controller (e.g., Ground Station)

directly overrides one of the UAS and changes its task timeline in a way that is inconsistent

with the temporal sequencing of other controllers on the team. (Similar to S-47.1.7)

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path:

112 (B) Scenario: The Team Lead implements the default values for identification.
113 (B) Scenario: The transmission becomes corrupted
114 (B) Scenario: The AuC miscalculates the time by assuming the command is supposed to last for 15
minutes instead of lasting until 15:00 PM.
115 (B) UCA 33: Autonomous Controller implements a task after the target is no longer necessary or is out

of range (H3)

297

o The UAS tasked to fix does not intend to end its command so early, but its

targeting system malfunctions and it must stop the task. 116

o The <TL, UAS> tasked to fire does not intend to fire so late, but its weapon system

malfunctions and delays the weapons release.117

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: See Figure A3-2.

o Feedback about Controlled Process received from Collaborators:

▪ The <TL, UAS> tasked to fire does not receive feedback from the UAS

providing the fix that the fire command should not be provided. For

example, the controller tasked to fire has already fired one successful shot.

The UAS providing the fix observes the target getting destroyed, stops

providing the fix, and attempts to provide fire feedback to the controller

firing. However, that feedback is not adequately received or interpreted

by that controller (for reasons that can be further refined).

▪ The UAS tasked to fix does not receive feedback from the controller tasked

to fire regarding the adequacy of the fix command. As a result, that UAS

now believes there is no controller that intends to fire, and it stops

providing its fix. However, the feedback channel between the controllers

was just inadequate (can be refined). The other controller does proceed

with its plans to fire, near the same time the fix is ended.

o Feedback about Collaborator control actions received from Controlled Process:

The controller tasked to fire receives incorrect feedback from the target that leads

it to believe the UAS is providing a fix. Refinement:

▪ The UAS tasked to fix observes the target getting hit by a weapon and

assumes that the controller tasked to fire has completed its task. As such

the UAS ends its fix. However, the weapon that struck was either one of

multiple weapons to be fired or was fired by a different controller. In

either case, the controller tasked to fire now launches its weapon but after

the fix has ended.

▪ UAS1 (tasked to fix) announces it must end its fix earlier than coordinated

and before <TL, UAS2> (tasked to fire) can fire. However, <TL, UAS2>

receives feedback from a fix beyond the time UAS1 announced it would

stop. This occurs due to delays in the UAS1 control path or because

another UAS provides a spurious fix. As a result, <TL, UAS2> incorrectly

believes UAS1 can now accommodate the coupled fix-fire task, and

proceeds to fire as the fix ends.

• (Step 3: Collaborative Dynamic) Cognitive Alignment:

o Construction:

▪ The algorithms executed by different controllers are inconsistent with one

another regarding how they handle specified timelines. Examples:

116 (B) Scenario: MFC does not open the weapons bay, there is an electrical inference that causes the bay to

unlock, or a missile is loose in the bay and pushed through the bay doors.
117 (B) Scenario: same as above.

298

• One controller believes the specified start time is the time at which

the command must start to be provided. Another controller

believes the start time indicates the time at which the vehicle must

start traveling to provide the command once at its destination.

• The controllers are configured to handle time according to

different formats (Local, Zulu, GPS time, …).118

o Initialization:

▪ The controller models are inconsistently initialized regarding when the

task needs to occur. For example, the task is specified as “start in XX

seconds (from time of receipt)”. However, the time of receipt of the task

may vary between controllers given how the message travels from node

to node from the TL to the intended recipient along the network topology.

o Model Updates:

▪ Vertical Coordination (Control): See factors listed for S-15.1.6.

▪ Lateral Coordination (Communication):

• One of the controllers attempts to notify the other controller that it

will not be able to meet the specified timeline. For example, the

controller tasked to fire wants to inform the UAS providing the fire

that it will be late. However, the communications channel between

the controllers is degraded the time update is not shared.

• The controllers use different refences of time to coordinate

timelines. One controller uses time since an event, whereas

another controller uses absolute time. (Human-Machine) this may

be aggravated due to asymmetry between humans and machines

in semantic meaning and timing.119

• Messages exchanged between controllers do not contain explicit

information on the planned timeline. They are instead relative to

past information, which may be misinterpreted, and continue to

reinforce inconsistent models of time. For example, controllers

exchange messages such as “no change in estimated time of

arrival” instead of “current estimated time of arrival is X time”.

▪ Lateral Coordination (Observation): The observed behavior of a teammate

leads a controller to incorrectly assume that task execution will not have

temporal sequencing issues.

• For example, UAS1 (tasked to fix) observes <UAS2, TL> traveling

to the fire command destination at a rate that will make it arrive

before UAS1 stops fixing. However, it does not anticipate that

<UAS2, TL> will slow down as it approaches the destination.

118 (B) Scenario: The AuC miscalculates the time by assuming the command is supposed to last for 15

minutes instead of lasting until 15:00 PM.
119 (B) Scenario: The AuC miscalculates the time by assuming the command is supposed to last for 15

minutes instead of lasting until 15:00 PM.

299

• Similarly, <UAS2, TL> (tasked to fire) observes UAS1 loitering in

a way that is consistent with the intent to remain on station to

provide a fix for an extended period of time. It incorrectly assumes

it will not be problematic if <UAS2, TL> at the end of the time

window. It does not know that UAS1 is loitering to conserve fuel

and is struggling to meet the original timeline.

• One of the controllers assumes that it does not need to actively

coordinate a delay with a peer because the peer will be able to

observe the controller and anticipate the problem. For example,

<UAS2, TL> tasked to fire is no longer able to make the time

window coordinated for the other controller (UAS1) to provide the

fix. <UAS2, TL> incorrectly believes that UAS1 will observe its

progress, anticipate when it will actually arrive, and automatically

adjust the fix window accordingly.

▪ Prediction: The controllers make assumptions about each other’s timelines

based on the type of task provided, but without explicitly knowing how

they were tasked.

• For example, UAS2 tasked to fire assumes that UAS1 (tasked to fix)

will provide the fix for X minutes, as that is the default period of

time of a fix. However, UAS2 is not aware or does not consider

that the tasking actually specified Y minutes of fix (where X>Y).

o Decision-Making:

▪ The distributed decision-making process is too slow for the dynamics of

the joint-control problem. The controllers are unable to reach consensus

on a new timeline before a previous and outdated timeline is executed.

• For example, UAS1 (tasked to fix) reduces its estimate for how long

it can provide the fix, and starts a process with UAS2 (tasked to

fire) to update the coordinated timeline. The distributed algorithm

does not reach consensus until after UAS1 has ended the fix and

UAS2 has fired late.

▪ By trying to over-optimize the usage of time by minimizing unnecessary

time overlaps, the decision-making process is unable to produce a feasible

solution.

• For example, UAS1 (tasked to fix) assesses that the planned

overlap for the fix and fire commands is excessive. Thus, it plans

to end the fix earlier so that it is available to execute other tasks.

However, this pushes UAS2 (tasked to fire) to move up its start

time for the fire command to maintain the same margin of overlap.

This process repeats until UAS1 plans to end the fix earlier than

UAS2 can start its fire command.

▪ The timeline coordinated between the UAS does not account for

uncertainty in their ability to meet timing constraints. For example, the

UAS tasked to fix communicates that it can provide a fix until Time1,

300

which it determines from its fuel quantity. However, its fuel consumption

is then higher than planned and it now must end the task early.120

o Capacity:

▪ One of the controllers does not have the capability to assess timelines. For

example, a UAS tasked to fire is not capable of computing an estimated

time of arrival at the task given environmental influences on the controller

(e.g., wind, obstacles, traffic disturbances). As a result, the controller takes

on tasks with unrealistic time constraints that it is not able to meet.121

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-37.1.3. In addition:

o The controller tasked to fix is removed from the team and its task is reassigned.

However, the controller tasked to provide the coupled fire command is not aware

of the retasking and therefore does not coordinate timeline updates as necessary.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

o Variations in the network topology introduce variations in the time of receipt of

messages. If that time of receipt is used as a reference, that introduces variations

in the perceived timelines for the different controllers, which can then lead to

unsafe temporal sequencing. (Related to Initialization above)

S-15.1.8 (Step 1: Top-Level Scenario 8): TL control actions to the shared process are unsafe in
temporal sequencing with how it directs the UAS. Here, despite how s/he tasked the UAS to fix,
the TL starts to fire after the UAS ends the fix.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-15.1.6.

• (Step 2: Internal Control) Inadequate Process Model: Same as S-15.1.6. Refinement:

o Incorrect Feedback: TL receives inadequate feedback from the system leading

her/him to believe s/he will reach the firing location <earlier, later> than s/he

actually will. The estimate does not account for environmental disturbances

which influence travel time. 122

o Missing Feedback: The updated time estimate information is not readily accessible

to influence the task execution behavior of the TL. (Similar to above)

o Missing Feedback. TL interface does not display how the fix performed by the UAS

and the ability for the TL to navigate to the fire location align temporally. As such,

the TL is unaware that s/he will not make the time window. (Similar to S-15.1.6)

• (Step 2: Internal Control) Inadequate Control Algorithm: Same as S-15.1.6. In addition:

o TL is currently busy and prioritizes other operating tasks, but intends to update

the timeline for the UAS to provide the fix to ensure adequate temporal

sequencing. However, s/he later forgets to do this. (Similar to S-37.1.1)

• (Step 2: Internal Control) Unsafe Control Path: Same as S-15.1.7.

120 (B) Scenario: The AuC algorithm miscalculates which UAV is optimal for performing a maneuver
because, the algorithm does not account for environmental factors impacting the UAV’s sensors.
121 (B) Scenario: The AuC algorithm miscalculates which UAV is optimal for performing a maneuver
because, the algorithm does not account for environmental factors impacting the UAV’s sensors.
122 (B) Scenario: The AuC algorithm miscalculates which UAV is optimal for performing a maneuver
because, the algorithm does not account for environmental factors impacting the UAV’s sensors.

301

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-15.1.7.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Same as S-15.1.7.

• (Step 3: Collaborative Dynamic) Dynamic Membership: No new scenario conceived.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

S-15.1.9 (Step 4: Other Factors): Controllers on the team end the fix before starting to fire due to
factors beyond those explored in interactions between the controllers on the team. Refinement:

• Unsafe Process Behavior:

o The target employs counter-measures that make the controller tasked to fire

believe that the fix command is being provided, even though it is not.

o The target employs counter-measures that make the controller tasked to fix believe

that the target has been fired on and destroyed.

UCCA 17.2 (abstracted UCCA): The Team starts the fire command before it starts the fix
command when the target fired on must be fixed [H3, H5].

UCCA 17.2.1 (refined): TL starts the fire command before UAS1 starts the fix command.

UCCA 17.2.3 (refined): UAS1 starts the fire command before UAS2 starts the fix.

Another lower priority UCCA listed in Table A2-4 leads to the same UAS ending the fix
before starting to fire, which is not a collaborative control problem.

Figure A3-24. Control structures showing team starting the fire before it starts to fix

S-17.2.6 (Step 1: Top-Level Scenario 6): TL directs the UAS in a way that leads to unsafe temporal
sequencing. Here, TL tasks a UAS to start fire to soon and another to start fix too late relative to
each other.123

• (Step 2: Internal Control) Unsafe Control Input: Same as S-15.1.6, but in reverse: fire

cannot be provided after a certain time, fix cannot start before a certain time.

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: TL believes (1) the fix will start earlier than it does, (2) the fire

will start later than it does. Refinement: Same as S-15.1.6

• (Step 2: Internal Control) Inadequate Control Algorithm, Unsafe Control Path: Same as

S-15.1.6.

123 (B) UCA 22: Team Lead provides fire command before the right target has been targeted (H5)

302

• (Step 3: Collaborative Dynamic) Dynamic Membership, Dynamic Connectivity: Same as

S-15.1.6.

S-17.2.7 (Step 1: Top-Level Scenario 7): TL adequately directs the UAS, but the way in which the
UAS execute the tasks leads to unsafe temporal sequencing. Here, despite the tasking, (1) one
UAS starts the fix late relative to (2) the other UAS starts the fire command early.124

• (Step 2: Internal Control) Unsafe Control Input: Same as S-15.1.7.

• (Step 2: Internal Control) Inadequate Process Model: See cognitive alignment.

• (Step 2: Internal Control) Inadequate Control Algorithm: See cognitive alignment.

• (Step 2: Internal Control) Unsafe Control Path:

o The UAS tasked to fix does not intend to start its command so late, but its targeting

system malfunctions, and it cannot start on time. (Similar to S-15.1.7)

o The UAS tasked to fire does not intend to fire so early, but its weapon system

malfunctions and releases the weapon ahead of schedule. (Similar to S-15.1.7)

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: See Figure A3-2.

o Feedback about Controlled Process received from Collaborators: <TL, UAS2>

(tasked to fire) does not receive feedback from UAS1 providing the fix that the fire

command should not be provided. (Same as S-15.1.7)

o Feedback about Collaborator control actions received from Controlled Process:

UAS1 (tasked to fix) announces it must start to fix later than coordinated and after

<TL, UAS2> (tasked to fire) plans to fire. However, the <TL, UAS2> receives

feedback from a fix ahead of the time UAS1 announced it would start. This occurs

due to another UAS providing a spurious fix, or malfunction in the feedback path.

<TL, UAS2> interprets this as a valid fix, even though it is not. (Similar to S-15.1.7)

• (Step 3: Collaborative Dynamic) Cognitive Alignment, Dynamic Membership, Dynamic

Connectivity: Same as S-15.1.7

S-17.2.8 (Step 1: Top-Level Scenario 8): TL control actions to the shared process are unsafe in
temporal sequencing with how it directs the UAS. Here, despite how s/he tasked the UAS to fix,
TL starts to fire before the UAS starts the fix.125

• All factors: Same as S-15.1.7.

S-17.2.9 (Step 4: Other Factors): Controllers on the team end the fix before starting to fire due to
factors beyond those explored in interactions between the controllers on the team.

• All factors: Same as S-15.1.9.

124 (B) UCA 37: Autonomous Controller releases a missile before receiving a command from the TL (H5)
125 (B) UCA 22: Team Lead provides fire command before the right target has been targeted (H5)

303

Appendix 4: MUM-T Case Study –

Dynamic Hierarchy Causal Scenarios
This short example illustrates how to identify causal scenarios for a system that exhibits dynamic
hierarchy. Dynamic hierarchy is the one collaborative control dynamic defined in Chapter 3 that
is not present in the Manned-Unmanned Teaming (MUM-T) baseline case study analyzed in
Appendix 3. For this reason, the interactions exhibited by the MUM-T system are expanded here
to include this type of interaction and demonstrate how it is handled in the causal scenario
development process. This example is representative of the type of analysis that could be
performed to explore the system safety considerations of a MUM-T concept alternative that
includes dynamic hierarchy.

As described in Chapter 5.6, the following assumption is modified in the MUM-T system. The
TL still tasks the UAS team as a whole to execute the search task, and delegates to the UAS team
the authority to allocate that task to one of the controllers. However, now the UAS team considers
the TL as one of the controllers to which it can assign the task. This creates dynamic hierarchy,
in which the TL at a high level of work oversees the UAS team, but at a lower level the UAS team
can provide a control action to the TL to go search.

The process to identify and refine UCCAs is unchanged with this dynamic, and as such the
list of UCCAs is no different than the one developed in the main case study analysis. The
modification to the system only impacts the UCCAs that involve the search command, which are
consolidated into Table 5-18.

In the fourth step of the analysis, the causal scenarios are developed using the same process
defined in Chapter 4.3. They are initialized using top-level scenarios, which describe the different
possible control actions internal to the team that are relevant to the unsafe collective output.
Dynamic hierarchy reflects internal control, so this is where it is addressed in STPA-Teaming.
The addition of a new internal control action from the UAS to the TL generates new top-level
scenarios. The scenarios are then refined using the same process as in the Appendix 3 analysis.

Two examples follow to show the development of scenarios related to dynamic hierarchy.
They include scenarios for one of the Type 1-2 UCCAs and those for one of the Type 3-4 UCCAs.
The other UCCAs listed in

Table 5-18 are not analyzed as part of the scope of this work, but their scenarios could be
developed using the same method. The causal scenarios related to dynamic hierarchy are
indexed as SDH to differentiate them from those developed in the main case study in the previous
appendix.

Type 1-2 UCCA Dynamic Hierarchy Example Scenarios

The scenario identification process for dynamic hierarchy uses the same general top-level
scenarios as in the previous analysis. However, in each case, the top-level scenario must also
consider how the UAS can issue control actions to the TL. The following describes how the top-
level scenarios include this consideration and highlights the new cases.

304

1. Tasks Not Provided (Unsafe): A controller on the team does not provide tasks to other

controllers on the team that are necessary for the team to execute safe collective control of

the shared process. This includes:

a. TL does not task all the UAS as necessary

b. UAS team does not task TL to search as necessary [NEW]

2. Tasks Provided (Unsafe): A controller on the team provides tasks to other controllers on

the team in a way that leads to unsafe collective control. This includes:

a. TL provides tasks to multiple UAS that conflict with one another

b. TL provides incorrect task(s) to the UAS

c. TL provides task(s) to incorrect UAS

d. UAS team provides incorrect search task(s) to TL [NEW]

e. UAS team incorrectly tasks TL instead of allocating the task to a UAS [NEW]

3. Tasks Provided (Safe) but Not Executed as Tasked (Unsafe): A controller on the team

provides task(s) to other controllers on the team adequately, but some of those controllers

do not execute them properly, which leads to unsafe collective control. This includes:

a. UAS do not execute some of the tasks provided by TL

b. UAS execute incorrectly some of the tasks provided by TL

c. Incorrect UAS execute some of the tasks provided by TL

d. TL does not execute the search task provided by UAS team [NEW]

e. TL executes incorrectly the search task provided by UAS team [NEW]

4. Tasks Not Provided (Safe) but Executed (Unsafe): Controllers on the team adequately do

not provide certain task(s) to other controllers on the team, but some of those controllers

execute them anyways, which leads to unsafe collective control.

a. UAS execute tasks that were not tasked by TL

b. TL executes a search task that was not tasked by UAS team [NEW]

5. Tasks and Tasker Control Actions Unsafe: A controller on the team provides control

actions to the shared process that are unsafe in combination with otherwise adequate tasks

provided by that controller to other controllers on the team. This includes:

a. TL does not provide a control action that is necessary in combination with some

of the tasks s/he provided to the UAS

b. TL provides a control action incorrectly or in a way that conflicts with some of the

tasks s/he provided to the UAS

c. UAS team does not provide a control action that is necessary in combination with

the search task it provides to TL [NEW]

UCCA 43.7 (abstracted UCCA): Controller Ci does not search and no other Cj searches when no
targets have been found [H3]

UCCA 43.7.1 (refined): TL, UAS1, and UAS2 do not provide search command

The figure below shows how the Team Lead (TL) and the UAS can task each other to search given
the dynamic hierarchy. Each case is traced to its relevant top-level scenario(s). The third case is
not logical in the context of the UCCA.

305

Figure A4-1. Internal Control Combinations that Result in No Controller Providing the Search

SDH-43.7.1 (Step 1: Top-Level Scenarios #1): A controller on the team does not provide tasks to
other controllers on the team that are necessary for the team to execute safe collective control of
the shared process. In the UCCA context:
(3) TL does not task UAS team to search (and does not search her/himself) (see old S-43.7.1)

(4) UAS team does not retask TL to search (and does not allocate a UAS to search) [NEW]

The following focuses on item 2 and new scenarios

• (Step 2: Internal Control) Unsafe Control Input: UAS team interprets direction from

another controller (e.g., Ground Station, another TL, a cyber attacker) that it should never

retask the search to the TL, even if the TL is the only capable controller. [NEW]

• (Step 2: Internal Control) Inadequate Process Model: UAS Team has inadequate process

model variables: it believes (1) it does not have authority to task TL, (2) that TL is intending

to search, or (3) TL cannot search. [NEW]

o Misinterpreted Information: UAS Team receives information from the TL that it

interprets as not being capable of doing the search (e.g., search sensor inoperative).

[NEW]

o Delayed Information: TL recently changed status from unavailable to available to

task. However, that information is slow to be processed by the UAS Team and the

option to retask the search to the TL is not considered in time. [NEW]

• (Step 2: Internal Control) Inadequate Control Algorithm:

o TL does not want to be directed by machines, as s/he must make decisions for the

team at a higher level than the UAS. Therefore, TL purposefully blocks her/his

schedule so that the UAS never consider retasking the search back to the TL, even

when the search is the highest priority and can only be fulfilled by the TL. [NEW]

o UAS are programmed to assume that the TL will search if a UAS is not allocated

(instead of actively retasking TL to search). [NEW]

• (Step 2: Internal Control) Unsafe Control Path: UAS Team intends to retask TL, but is

unable to do so. (Similar to old S-37.1.1) Refinement:

o The TL interface does not emphasize when and how the UAS have retasked the

search to the TL. This is aggravated by high TL workload. (Similar to old S-37.1.1)

o TL does not want to be bothered by commands from the UAS Team and blocks

the communication path to receive that command. The UAS Team continue to

send the retask command without being aware the TL is ignoring them. [NEW]

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Does not apply.

306

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: The process models and/or control algorithms of the UAS are not

adequately or consistently built across the team to support collaborative control.

Refinement:

▪ The control algorithms on the UAS are not compatible with how the TL

specifies the search task. This prevents the UAS from initializing or

evaluating the option that the TL should be retasked to search. (Similar to

old S-43.7.3)

▪ The control algorithms of some of the UAS are configured with a software

version that does not allow the UAS to retask anything to the TL.

Similarly, the TL may have been told that the UAS cannot provide retasks,

and therefore will ignore all such commands. [NEW]

o Initialization: Some of the controllers’ process models are not adequately or

consistently initialized across the team. Refinement:

▪ The UAS receive different information regarding the availability of the TL.

This could occur as TL periodically updates her/his plans given slight

changes in her/his model of the mission. The UAS are updated across

different exchanges. As a result, they do not reach consensus that the TL

can be retasked to search. [NEW]

▪ The UAS have different beliefs about the current roles and responsibilities

of other controllers on the team. For example, one UAS incorrectly believes

that the TL has taken on the search task based on stale information. It

disseminates this to the rest of the team and leads to the control algorithm

to not retask the search to the TL. (Same as old S-43.7.3)

▪ The way in which the retask is communicated to the TL leads her/him to

believe another controller has been tasked. For example, the autonomy

retasks the search to controller identifier (ID) #1, which the TL does not

recognize as her/his own but is the autonomy’s ID for the TL. [NEW]

o Model Updates: Some of the UAS’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): The UAS Team attempts to retask the TL

to perform the search, but the retasks are inconsistent with one another

(e.g., some call for a retask whereas some do not, they call for different time

windows, …) and the TL receives different versions of the coordinated

output over time. Because of these inconsistencies, the TL (or her/his

interface) rejects the retask as invalid. [NEW]

▪ Lateral Coordination (Communication):

• The information the UAS use to coordinate a solution regarding

which controller to task to search is inconsistent. For example, the

UAS receive state estimates from each other and the TL, which

become slightly outdated due to small communications and

processing delays. For planning, they then compare these

307

asynchronously outdated state estimates with their current own

and derive different solutions for which controller should search.

Due to lack of consensus, they do not retask it to the TL even though

s/he is the best suited for it. (Similar to old S-37.1.3)

• UAS2 is temporarily disconnected and its model of the search task

diverges from that of the team. UAS2 reconnects, contributes its

divergent variables, disturbs team consensus, and leads the team to

not retask the search to the TL. (Similar to old S-37.1.3)

• The information shared by the TL to the UAS Team is inadequate

for the team to formulate a model of whether the TL is available for

tasking (e.g., inadequate channels, semantic mismatch, etc…).

Lacking this information, the team defaults to treating the TL as

unavailable for the search task. [NEW]

▪ Lateral Coordination (Observation): The UAS observe TL maneuvering

in a way consistent with executing other tasks and therefore assess that the

TL is not available to execute the search. (Similar to old S-37.1.3)

▪ Prediction:

• A UAS shares that it has been tasked by the TL to provide a fix, but

no additional information is available regarding which controller

will execute the coupled fire task. As such, the UAS predict that the

TL will be the controller that takes on that task and is, therefore,

unavailable to be tasked to search. [NEW]

• The last several times the UAS team retasked the TL to search, the

TL did not execute it. As a result, some of the UAS update their

models regarding their ability to retask the TL and veto future plans

that involve this option. [NEW]

o Decision Making: The process UAS use to decide what actions they provide is

inadequate or inconsistent across the team. Refinement:

▪ Parameters in the distributed decision-making algorithm bias the decision-

making against retasking the search to the TL. It is nearly impossible to

reach consensus on this type of solution. [NEW]

▪ It takes too long for the UAS to reach consensus on whether or not to retask

the TL onto the search. Before the decision can be made, TL loses patience

and re-issues the search command, which reinitiates the planning process.

This cycle repeats itself until the task is no longer relevant. [NEW]

o Capacity: No new scenario conceived

• (Step 3: Collaborative Dynamic) Dynamic Membership: Changes in the set of UAS that

participate in the team contribute to this UCCA. Refinement:

o The team must reach a majority or unanimity among the UAS to retask the search

to the TL. However, the set of controllers fluctuates too much to achieve this

threshold, so the team is unable to retask. [NEW]

• (Step 3: Collaborative Dynamic) Dynamic Connectivity:

308

o The UAS Team has reached consensus on retasking the search. As the solution is

broadcast to the TL, another UAS that was disconnected from the team connects

and shares its default plan that does not task anything to the TL. This causes this

assignment to be dropped (either revoked by UAS Team or rejected by TL). [NEW]

SDH-43.7.2 (Step 1: Top-Level Scenarios #2): A controller on the team provides tasks to other
controllers on the team in a way that leads to unsafe collective control. Here, the UAS team
incorrectly retasks the TL, who cannot search, instead of allocating the task to a UAS. [DH]

• (Step 2: Internal Control) Unsafe Control Input: The UAS team receives direction from

another controller (e.g., Ground Station, another TL, a cyber attacker) that it should favor

retasking the search command to the TL. (Similar to SDH-43.7.1)

• (Step 2: Internal Control) Inadequate Process Model: The UAS Team has the following

inadequate process model variables: (1) TL is capable and available to search, (2) TL is the

controller best suited to search. Refinement:

o Missing Information: UAS Team does not receive information from TL regarding

its inability to search (e.g., search sensor is inoperative). (Same as SDH-43.7.1)

• (Step 2: Internal Control) Inadequate Control Algorithm: see Cognitive Alignment

Decision-Making.

• (Step 2: Internal Control) Unsafe Control Path:

o UAS Team intends to assign a UAS to the search, but unintentionally provides

what the TL interprets as a retask to her/him. For example, the UAS Team

broadcasts that UAS ID #XX is selected for the search task, which is similar to that

of the TL. TL sees the assignment, incorrectly assumes it is meant for her/him,

and cancels the task altogether believing that no UAS will take it on. [NEW]

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not applicable.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The controllers on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: The controllers on the team are not all consistently configured to

evaluate the availability of the TL to take on a retask. TL provides the search task

in a way that s/he believes indicates her/his inability to do it. Some of the UAS

treat this information differently and push to reach consensus that the TL is the

controller best suited for the task. This could arise due to problems in

configuration or training of both the human and the machines. [NEW]

o Initialization: UAS receive different versions of information regarding the TL

availability. TL periodically updates her/his availability given slight changes in

her/his model of the mission, and the UAS receive this information across

different sharing cycles. Thus, slightly outdated information is considered in

incorrectly reaching consensus that the TL can be retasked. (Similar to SDH-43.7.1)

o Model Updates: Some of the UAS’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): No new scenario conceived.

▪ Lateral Coordination (Communication):

309

• UAS2 is temporarily disconnected and its model of the search task,

or ability and availability of controllers on the team, diverges from

the team. UAS2 reconnects and now contributes its divergent

model variables. This disturbs team consensus into reaching the

incorrect solution to retask the TL. (Similar to old S-37.1.3)

• The information shared by the TL is misinterpreted by the UAS as

being available for a retask, even though the TL was indicating s/he

is not (e.g., semantic or syntax mismatch in message composition).

(Similar to SDH-43.7.1)

▪ Lateral Coordination (Observation): The UAS observes the TL

maneuvering in a way that is inconsistent with executing other tasks and

therefore assess that the TL is available to execute the search. This

contributes to the UAS team retasking the search to the TL. (Similar to old

S-37.1.3)

▪ Prediction:

• The way in which the TL has tasked the UAS team to execute fix

and fire tasks leads the UAS to predict that the TL intends to take

on the search task. As such, the UAS team retasks the search to the

TL even though s/he is unable to do so. (Similar to SDH-43.7.1)

• The last several times the UAS team allocated the search to the TL,

the TL overrode the decision and took on the search her/himself.

As a result, some of the UAS update their models regarding their

ability to retask and push for retasking the search to the TL in future

plans. (Similar to SDH-43.7.1)

o Decision Making: Same as S-43.7.3, in addition:

▪ Parameters in the distributed decision-making algorithm bias retasking the

search to the TL over other solutions. (Similar to SDH-43.7.1)

▪ UAS Team cannot reach consensus over the intent of the search task.

Rather than allocate an ill-defined task to one of the automated controllers,

it retasks it to the TL as a method of rejecting the task so that the TL can

reformulate it. However, the TL interprets the retask literally and either

attempts to do it unsuccessfully or drops it altogether. [NEW]

o Capacity: TL does not have the workload capacity to provide all the planning

information required by the UAS to determine the TL availability for tasking. The

mission is too dynamic and each change takes too much effort to input. In

addition, human-machine asymmetry also requires additional effort to convey

intent to the machines. As a result, the machines do not know the TL is unavailable

and incorrectly task the TL to search. [NEW]

• (Step 3: Collaborative Dynamic) Dynamic Membership:

o The set of tasks to control in the mission changes dynamically. It is not practical

for the TL to continually update the UAS team on her/his intentions and

availability. (Related to capacity above)

310

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: The UAS team becomes

disconnected into two (or more) subnetworks after the TL has provided the tasking. Each

group performs its own decision-making on which controllers should be allocated for the

search task. Two groups provide different plans back to the TL (e.g., one group retasks

TL and the other allocates a UAS, or both groups retask but with differing parameters).

As a result, the retask is rejected as invalid by the TL. [NEW]

SDH-43.7.3 (Step 1: Top-Level Scenarios #3): A controller on the team provides adequate task(s)
to other controllers on the team, but some of those controllers do not execute them as provided,
which leads to unsafe collective control. In the UCCA context:
(1) TL tasks the UAS team to search and no UAS searches. (See old S-43.7.3)
(2) the UAS team retasks the search but the TL does not do it. [NEW]
The following focuses on item 2 and new scenarios.

• (Step 2: Internal Control) Unsafe Control Input: TL (mis)interprets direction from higher

authorities that retasks from the UAS are compromised and should not be obeyed. [NEW]

• (Step 2: Internal Control) Inadequate Process Model: TL has the following inadequate

process model variables: (1) UAS do not have the authority to retask the search to the TL,

(2) the retask command from the UAS is not valid, and (3) no retask has been issued.

[NEW] Refinement:

o Missing Information: Some UAS do not provide the required authentication to the

TL (or her/his interface systems) to accept the retask command. [NEW]

o Delayed Information: TL retrieves the retask command with so much delay (e.g.,

delays in info exchange, processing, interface display) that s/he questions if it is

still valid. [NEW]

o Missing Information: TL’s own mental model of the search allocation expected the

UAS would allocate the search to a UAS instead of retask it to the TL. The

automation lacks transparency into how it arrived at that solution. TL does not

trust it and therefore does not execute it. [NEW]

• (Step 2: Internal Control) Inadequate Control Algorithm: TL is aware of the retask

command by the UAS and is confident in its validity, however, s/he chooses not to

execute it. Refinement:

o (Human-Machine) TL refutes the concept that a machine has authority over

her/him and exhibits a subconscious bias against following any retask commands.

[NEW]

o Based on experience, TL anticipates mission tasks will arise that s/he will need to

deal with. As a result, s/he elects not to execute the retasked search command to

avoid getting bogged down. [NEW]

• (Step 2: Internal Control) Unsafe Control Path: Same as S-37.1.3

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Does not apply.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: The UAS on the team have

inadequate cognitive alignment relative to one another. Refinement:

o Construction: The process models and/or control algorithms of the UAS are not

adequately or consistently built across the team to support collaborative control.

Refinement:

311

▪ TL and the UAS are not compatible with how they both specify and

interpret search tasks. A retask should be a reflection of the search task

provided by the TL. However, task misinterpretation occurs when the

UAS receive the initial tasking, and again when the TL receives the retask.

The retask looks inconsistent with what the TL initially defined. This

results in the TL losing confidence in the retask, or in her/him not knowing

how to decode or the intent in the retasked instructions. [NEW]

o Initialization: Some of the UAS’s process models are not adequately or

consistently initialized across the team. Refinement:

▪ UAS receive different versions of the task specification by the TL. These

variances lead to the UAS Team to rescope the search task (e.g., by

averaging some of the different parameters), before retasking it to the TL.

Upon receipt of the retask, the TL does not understand why the search task

has been modified and therefore loses confidence that the UAS team

allocated it correctly. S/he does not perform the search. [NEW]

▪ The UAS Team has only been conveyed a subset of the overall mission

tasks. Their automated planning does not consider some of the tasks the

TL plans to address. As a result, the UAS Team retask is rejected by the TL

even though it is the best possible plan the UAS could have generated

using the information available to them. [NEW]

o Model Updates: Some of the UAS’s process models are not adequately or

consistently updated. Refinement:

▪ Vertical Coordination (Control): Does not apply.

▪ Lateral Coordination (Communication): Same as SDH-43.7.1

▪ Lateral Coordination (Observation): TL observes the traffic flow between

the UAS Team and finds it inconsistent with her/his past experience in

how UAS allocate search commands. The TL lacks confidence that the

retask is valid and does not take it on. [NEW]

▪ Prediction: The solution of the UAS Team to retask the search is different

from what the TL had predicted. Based on the state of the team, the TL had

anticipated with high confidence that a specific UAS would be selected to

search. Thus, TL rejects the validity of the retasked command. [NEW]

o Decision Making: Same as old S-43.7.3

▪ The UAS are unable to reach consensus on a plan. A majority of them elect

to retask the search to the TL, but others generate different solutions. The

solutions are all provided to the TL, who does not know how to handle the

disparate outputs, and thus does not execute the retasked search. [NEW]

▪ Similar to above, the UAS are unable to reach consensus, and each one

“bombards” the TL with their disparate version of the task allocation. The

UAS reiterate these instructions cyclically to ensure the TL has the most

up-to-date command. The TL is confused and does not execute the

retasked search. [NEW]

o Capacity: No new scenario conceived

312

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as SDH-43.7.1

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Same as SDH-43.7.1

SDH-43.7.4 (Step 1: Top-Level Scenarios #4): A controller on the team adequately does not
provide tasks to others on the team, but some of those controllers execute them anyways, which
leads to unsafe collective control. Not applicable in the UCCA context (Same as S-43.7.4)

SDH-43.7.5 (Step 1: Top-Level Scenarios #5): A controller on the team provides control actions to
the shared process that are unsafe in combination with otherwise adequate tasks provided by
that controller to other controllers on the team. In the UCCA context:
(3) TL does not search when s/he does not task the UAS team to search. (See old S-43.7.5)

(4) UAS team does not allocate a UAS when it does not retask the TL to search. (See old S-43.7.3)

SDH-43.7.9 (Step 4: Other Factors): Not specific to dynamic hierarchy (see old S-43.7.9)

Type 3-4 UCCA Dynamic Hierarchy Example Scenarios

The following UCCAs explore how multiple controllers start or end control actions too early or
too late relative to one another. As with the Type 1-2 UCCA above, the Type 3-4 UCCA use the
same general top-level scenarios as in Appendix 3. However, those are expanded as follows to
consider how the UAS may provide control actions to the TL given the dynamic hierarchy.

1. Tasks as Provided Lead to Unsafe Sequencing: A controller on the team provides tasks to

other controllers on the team in a way that leads to unsafe sequencing. This includes:

a. TL tasks UAS in a way that leads to unsafe temporal sequencing.

b. UAS team tasks TL to search in a way that leads to unsafe temporal sequencing.

[NEW]

2. Tasks Provided (Safe) but Executed in Unsafe Sequencing: A controller on the team

provides adequate task(s) to other controllers on the team, but the way in which those

controllers execute the tasks leads to unsafe temporal sequencing. This includes:

a. TL adequately tasks the UAS, but the UAS execute those tasks in a way that leads

to unsafe temporal sequencing.

b. UAS team adequately tasks the TL to search, but TL executes the search in a way

that leads to unsafe temporal sequencing. [NEW]

3. Tasks and Tasker Control Actions are Unsafe in Sequencing: A controller on the team

provides control actions to the shared process that are unsafe in temporal sequencing in

combination with otherwise adequate tasks provided to other controllers on the team.

This includes:

a. TL control actions to the process are unsafe in temporal sequencing with other

adequate tasks s/he provided to the UAS.

b. UAS Team control actions to the process are unsafe in temporal sequencing with

the adequate search tasks it provided to the TL. [NEW]

UCCA 56.3: Controller Cj ends providing search command before Ci starts providing search
command when that creates an excessive gap in a search handoff [H3]

313

UCCA 56.3.1: TL ends providing search before UAS1 starts providing search.

UCCA 56.3.2: UAS1 ends providing search before TL starts providing search.

UCCA 56.3.3: UAS2 ends providing search before UAS1 starts providing search.

Figure A4-2. Control Structures for the Three Refined UCCAs

SDH-56.3.6 (Step 1: Top-Level Scenarios #6): A controller on the team tasks other controllers on
the team in a way that leads to unsafe sequencing. In the UCCA context:
(1) TL tasks the UAS to start or end the search in a way that creates a gap with the TL’s planned

start or end to the search (see old S-56.3.1)

(2) UAS team retasks TL to start/end search in a way that creates a gap with the UAS’s planned

start or end to the search [NEW]

The following focuses on item 2 and new scenarios.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-47.1.2

• (Step 2: Internal Control) Inadequate Process Model: UAS Team has the following

inadequate process model variables: (1) the time windows retasked do not constitute an

excessive gap, (2) TL is capable of fulfilling the retasked time window. This can be due to

inadequate coordination information with the TL. Refinement:

o Missing Feedback. UAS Team does not know when TL can reach a certain location,

nor how long s/he can perform the task. It is missing feedback regarding the TL

aircraft performance (time to travel, remaining fuel endurance, …) as well as

information regarding the other tasks intended to be fulfilled by the TL. [NEW]

• (Step 2: Internal Control) Inadequate Control Algorithm: UAS Team has accurate

information about the search and the timing associated with controllers on the team, but

still chooses to retask the TL to hand off the search with an excessive gap. Refinement:

o [Human-Machine] The automation has been designed to not excessively interrupt

the human. The UAS change the search handoff window to adapt to changes in

the mission. However, they do not retask the TL with the changes to avoid

exceeding the designed human interruption rate. [NEW]

o TL wants to minimize interruption by the machines and intentionally places a limit

on how often the machines can interrupt her/him with changes in retasks.

However, that does not prohibit the UAS from changing the handoff schedule for

a UAS, even if the handoff is between a UAS and the TL. (Related to above)

• (Step 2: Internal Control) Unsafe Control Path: Same as SDH-43.7.1

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Not Applicable.

314

• (Step 3: Collaborative Dynamic) Cognitive Alignment:

o Construction: Same as S-56.3.7

o Initialization: The UAS have inconsistent information regarding the TL’s ability

to reach a location or how long s/he can perform the search task for. This may be

due to dynamic connectivity and certain UAS having stale information. As a

result, the UAS begin their distributed planning of the handoff with different

information.

o Model Updates: Elements of the process models are not adequately or consistently

updated across the team. Refinement:

▪ Vertical Coordination (Control): The UAS Team over-controls the

coordination of the handoff between a UAS and the TL by sending

frequent fine-tuning updates. It has tight control authority over the UAS

and can send frequent updates that are followed immediately. However,

its control authority over the TL is looser, as information exchange is less

frequent, and less precise due to human-machine asymmetry, and the TL

has her/his own agenda which may not align with how the UAS Team is

coordinating the handoff. The difference in control authority over the two

types of controllers leads to the gap in handoff. [NEW]

▪ Lateral Coordination (Communication): It is more efficient for the UAS

to change UAS taskings than it is for TL taskings. Inadequate information

flow between the UAS leads to lack of consensus on how to handle

changes needed in the tasking of the TL for the handoff. [NEW]

• Communication channels may be degraded due to jamming,

fading, and equipment damage. (Similar to S-37.1.3)

▪ Lateral Coordination (Observation): No scenarios conceived.

▪ Prediction: No scenarios conceived.

o Decision-Making: There is asymmetry in the time needed to make decisions to

reallocate a UAS and retask the TL (related to coordination by communication).

It takes too much time for the UAS team to issue a decisive time window for the

TL to take over the search. By the time the TL receives the task, it is not possible

for her/him to proceed to the search area and take it over from a UAS without an

excessive handoff gap. [NEW]

o Capacity: Same as S-37.1.3

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as SDH-43.7.1

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: Due to changes in connectivity

between different UAS and the TL, the TL receives different versions of the retask and its

updates at different times. A UAS which contributed to a previous version of the retask

becomes disconnected before the remainder of the team updates the retask and provides

it to the TL. The disconnected UAS later reconnects with the TL and shares the now stale

version of the retask, which is the one the TL executes. [NEW]

SDH-56.3.7 (Step 1: Top-Level Scenarios #7): A controller on the team adequately tasks other
controllers on the team, but those controllers execute the tasks in a way that leads to unsafe
temporal sequencing. In the UCCA context:

315

(1) A UAS ends its search before another UAS starts in a UAS-UAS handoff (see old S-56.3.1)

(2) The retasked TL starts/ends providing the searching too late/early in a way that leads to a

gap in a TL-UAS handoff [NEW]

The following focuses on item 2 and new scenarios.

• (Step 2: Internal Control) Unsafe Control Input: The TL (mis)interprets direction from

higher authorities that retasks from the UAS should be conducted earlier or later due to a

flaw with UAS time keeping (e.g., GPS time vs UTC time offset). (Similar to SDH-43.7.3)

• (Step 2: Internal Control) Inadequate Process Model: Same as old S-56.3.8

• (Step 2: Internal Control) Inadequate Control Algorithm: TL accepts the retask from the

UAS to get resources moving, but never intends to fulfill that commitment. TL has

ultimate authority over the team and does not feel obligated to fulfill commands provided

by the machines. Her/his intent is to take charge closer to the handoff window to realign

the handoff with her/his agenda. However, s/he becomes consumed in other tasks and

forgets to do so at the required time. [NEW]

• (Step 2: Internal Control) Unsafe Control Path: Same as old S-47.1.2

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-56.3.8.

• (Step 3: Collaborative Dynamic) Cognitive Alignment: Same as SDH-43.7.3

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as old S-56.3.8.

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No new scenario conceived.

SDH-56.3.8 (Step 1: Top-Level Scenarios #8): A controller on the team provides control actions to
the shared process that are unsafe in temporal sequencing with otherwise adequate tasks
provided to other controllers on the team. In the UCCA context:
(3) TL executes her/his search in a time window inconsistent with the one s/he tasked to the

UAS for a TL-UAS handoff. (See old S-56.3.8)

(4) UAS allocate a portion of the search to a UAS in a way that is inconsistent with how they

retasked the other portion to the TL for a TL-UAS handoff. [NEW]

The following focuses on item 2 and new scenarios.

• (Step 2: Internal Control) Unsafe Control Input: Same as S-47.1.2

• (Step 2: Internal Control) Inadequate Process Model: Same as S-56.3.8

• (Step 2: Internal Control) Inadequate Control Algorithm: UAS Team has accurate

information about the search and the timing associated with controllers on the team, but

still chooses to allocate a UAS in a way that leads to an excessive gap. Refinement:

o The UAS assume there is flexibility in the schedule to retask the TL and that the

TL will compensate for some changes from the planned handoff. The assumption

may be pre-programmed or learned over time. The UAS team, therefore,

reoptimizes to the allocation of the UAS in order to service other tasks. [NEW]

• (Step 2: Internal Control) Unsafe Control Path: Same as SDH-56.3.7

• (Step 3: Collaborative Dynamic) Mutually Closing Control Loops: Same as S-56.3.8

• (Step 3: Collaborative Dynamic) Cognitive Alignment:

o Construction: The control algorithms on the UAS are not compatible with one

another to resolve a temporal sequencing issue between two different types of

controllers (human TL and machine UAS). Some UAS bias solving the issue by

316

changing the TL’s retasked time window. Others bias changing the UAS

allocation. This creates conflict in the collective control output of the UAS. [NEW]

o Initialization: Similar to SDH-56.3.6, but the UAS have inconsistent information

regarding the ability of the different UAS to perform the UAS time window of the

search task.

o Model Updates: Same as SDH-56.3.6

o Decision Making: The UAS Team tries to over-optimize the allocation of UAS to

meet the time window for the handoff retasked to the TL. Repeated changes to

the allocation lead to algorithmic churn that delays a UAS from decisively being

assigned the task and start traveling to make the handoff. This is amplified if the

automation amplifies the need to optimize timelines for handoffs with human

controllers. (Similar to S-37.1.3)

o Capacity: No scenarios conceived.

• (Step 3: Collaborative Dynamic) Dynamic Membership: Same as S-56.3.8

• (Step 3: Collaborative Dynamic) Dynamic Connectivity: No scenarios conceived.

SDH-56.3.9: (Step 4: Other Factors): Not specific to dynamic hierarchy (see old S-56.3.9)

317

Appendix 5: MUM-T Case Study – Safety-

Guided Requirements & Constraints
This appendix presents the safety constraints derived from the Manned-Unmanned Teaming
(MUM-T) case study STPA-Teaming analysis. These items are organized according to the safety-
guided design framework introduced in Chapter 6. The scope of the analysis is limited to Levels
1 and 2 of that framework.

The safety constraints at Level 2 are presented in a generalized form. They do not specify the
controller names called out in the case study (e.g., TL, UAS1, UASn) nor the control actions (e.g.,
fix, fire, search). Instead, they more generally refer to the types of controllers involved (e.g.,
human or machine), the hierarchal relationships of the controller (e.g., team leadership), and
interdependencies between control actions (e.g., coupled actions like the fix and fire commands).

The general form keeps the set of safety constraints more concise. One general constraint may
be specified to mitigate or eliminate the unsafe interactions between multiple different controllers
and different control actions. As such, many of these constraints are traced to multiple scenarios.
The general form also makes the results more broadly applicable to other collaborative control
systems with similar control relationships. However, a systems engineering team could
alternatively specify safety constraints using the actual controllers and control actions should
those need to be specified for design purposes.

1. Level 1: MUM-T System-Level Safety Constraints

In Level 1 of the safety-guided design framework, the safety constraints are derived directly from
the system-level hazards identified in Step 1 of STPA. These constraints inform, at a high level,
the behaviors that must be enforced to prevent the system from reaching a hazardous state. They
also specify how to prevent a loss from occurring should the system enter such a state. The safety
constraints labeled with an (*) were obtained from the baseline STPA analysis performed by
Robertson [53].

SC-1.1.1: Aircraft must satisfy minimum separation requirements from other aircraft and objects.
[H1]*

SC-1.1.2: If aircraft violate minimum separation, then the violation must be detected, and
measures must be taken to prevent a collision. [H1]*

SC-1.2.1: Aircraft control must not be lost given any possible input the flight controller may
provide. [H2]*

SC-1.2.2: If aircraft control is lost, the loss of control must be detected, and measures must be
taken to regain aircraft control. [H2]

SC-1.3.1: The system must accomplish planned mission operations. [H3]

SC-1.3.2: If the system does not accomplish planned mission operations, the lack of
accomplishment must be detected, and measures must be taken to regain the ability to accomplish
those operations. [H3]

318

SC-1.3.3: If the system performed unplanned operations that violate rules of engagement, the
execution must be detected, and measures must be taken to stop those operations. [H3]

SC-1.4.1: Aircraft should not depart approved airspace [H4]*

SC-1.4.2: If aircraft violate approved airspace constraints, then the violation must be detected and
measures taken to prevent encounters with the enemy. [H4]*

SC-1.5.1: The system must not fire at friendly assets or forces. [H5]*

SC-1.5.2: If the system fires at a friendly, then this condition must be detected and measures taken
to prevent impact. [H5]

2. Level 2: MUM-T Safety Constraints Derived from STPA-Teaming

In Level 2 of the framework, the safety constraints are derived from the results of the hazard
analysis performed on a conceptual architecture of the system. In this case, the safety constraints
of the MUM-T system are derived from the Unsafe Combination of Control Actions (UCCAs) and
the causal scenarios developed using STPA-Teaming in Appendices 2 and 3.

The analytical structure of STPA-Teaming links the UCCAs and scenarios to the different
types of collaborative control dynamics implemented in the control structure. As such, the
resulting safety constraints are also traceable to the decision to incorporate these types of
interactions. The safety constraints presented in this appendix are organized according to the
collaborative control dynamics they are primarily traceable to using the following labels.

CA: Cognitive Alignment

DA: Dynamic Authority

DC: Dynamic Connectivity

DH: Dynamic Hierarchy

DM: Dynamic Membership

MC: Mutually Closing Loops

LC: Lateral Coordination

SA: Shared Authority

TA: Transfer of Authority

The safety constraints derived from the UCCAs are traced to the three dynamics that relate to
the authority of the controllers over the shared process. In this case study, dynamic authority
applies primarily to Type 1-2 UCCAs found using Abstraction 2b (combination of controllers
issuing a common control action). Transfer of authority is addressed in Abstraction 2b Type 3-4
UCCAs, as those focus on handoffs. Finally, shared authority is exhibited in all UCCAs, but it more
uniquely influences Abstraction 2a UCCAs (combinations of different control actions provided
by the team). The safety constraints for the scenarios developed under the UCCA carry the same
traceability. This applies to the top-level scenarios and the refined scenarios below them.

In addition, the safety constraints derived from the refined scenarios are also traceable to the
collaborative factors used in the refinement template shown in Figure 4-21. These include CA,
LC, MC, DM, and DC from the list above. In the following analysis, those constraints are
organized according to these five collaborative control dynamics. To simplify the presentation,
the labels for DA, TA, and SA are not shown, but they are implied based on the UCCA they are
derived from.

Because this research focuses on collaborative control, the scenarios that were refined from
the traditional feedback control causal factors addressed in baseline STPA were not all analyzed
to produce safety constraints. These are the scenarios associated with unsafe control input,
inadequate process models, inadequate control algorithm, unsafe control path, unsafe feedback
path, and unsafe process behaviors. A subset of these constraints is included at the end of this

319

appendix for demonstration purposes. As with other safety constraints, these items are traceable
to DA, TA, SA based on the UCCA they are derived from.

Safety Constraints Primarily Traced to Dynamic Authority (DA)

The safety constraints below are derived from Abstraction 2b Type 1-2 UCCAs and their top-level
scenarios. Their labels have the following convention. In SC-2.DA.2.1, “SC-2” means a safety
constraint found in Level 2 of the safety guided framework. “DA” designates the collaborative
control dynamic under which the constraint is organized. “.1” means it is derived from top-level
scenario #1.

SC-2.DA.1: One of the controllers on the team must provide a control action if that action is
necessary and the necessary resources to provide it are available. [UCCA 37.1, UCCA 40.4, UCCA
43.7, UCCA 1.1] [DA, SA]

SC-2.DA.1.1: The team leadership must direct its teammate(s) to provide the control action if
it does not plan to provide it itself. [S-37.1.1, S-40.4.1, S-43.7.1, S-1.1.1] [DA, SA]

SC-2.DA.1.2: The team leadership must not direct multiple teammates to provide a control
action if multiple controllers providing that action results in an unsafe conflict. [S-37.1.2, S-
40.4.2, S-42.6.2, S-1.1.2, S-3.3.2] [DA, SA]

SC-2.DA.1.3: If a controller is properly directed by its team leadership to provide a control
action, that controller must provide that action as directed. [S-37.1.3, S-40.4.3, S-1.1.3] [DA,
SA]

SC-2.DA.1.3.1: If a set of controllers as a whole is properly directed by the team leadership
to provide a control action, then that set must allocate a controller to provide the action.
[S-43.7.3, S-1.1.3] [DA, SA]

SC-2.DA.1.4: N/A. Top-Level Scenario 4 does not apply to the UCCAs.

SC-2.DA.1.5: The team leadership must provide a control action itself if it is capable, that
action is necessary, and it does not direct its teammate(s) to provide the action. [S-40.4.5, S-
43.7.5, S-1.1.5] [DA, SA]

SC-2.DA.2: A controller that is not capable or available to provide a control action should not
provide it if another controller is capable and available. [UCCA 38.2, UCCA 41.5] [DA, SA]

SC-2.DA.2.1: N/A. Top-Level Scenario 1 does not apply to the UCCAs.

SC-2.DA.2.2: The team leadership must not direct a controller to provide a control action that
is not capable or available to do instead of directing a controller that is. [S-38.2.2, S-41.5.2, S-
1.1.2] [DA, SA]

SC-2.DA.2.3: If the team leadership directs a capable and available controller to provide a
control action, then no other controller must provide that action. [S-38.2.3, S-41.5.3, S-39.3.3,
S-42.6.3] [DA, SA]

SC-2.DA.2.4: A controller must not provide control action 𝑢𝑖 unless it is directed by the team
leadership. [S-41.5.4, S-42.6.4] [DA, SA]

SC-2.DA.2.5: The team leadership must not provide a control action for which it is not capable
or available if it can direct a capable and available teammate to provide it. [S-41.5.5] [DA, SA]

320

SC-2.DA.3: Multiple controllers must not provide the same control action if that creates an unsafe
conflict. [UCCA 39.3, UCCA 42.6] [DA, SA]

SC-2.DA.3.1: N/A. Top-Level Scenario 1 does not apply to the UCCAs.

SC-2.DA.3.2: See SC-2.DA.1.2

SC-2.DA.3.3: See SC-2.DA.2.3

 SC-2.DA.3.4: See SC-2.DA.2.4

SC-2.DA.3.5: The team leadership must not provide control action 𝑢𝑖 and direct a teammate
to provide 𝑢𝑖 if multiple controllers providing 𝑢𝑖 results in an unsafe conflict. [S-42.6.5] [DA,
SA]

SC-2.DA.4: A controller must not provide a control action 𝑢𝑖 that can be executed by another
controller if it inhibits its ability to provide action 𝑢𝑗 , for which it is critically needed. [UCCA 44.8]

SC-2.DA.4.1: N/A. Top-Level Scenario 1 does not apply to the UCCAs.

SC-2.DA.4.2: The team leadership must not direct a teammate to provide 𝑢𝑖, which can be
executed by another controller, if that prevents the teammate from providing 𝑢𝑗 , for which it

is critically needed. [S-44.8.2] [DA, SA]

SC-2.DA.4.2.1: The team leadership must not direct a team of controllers as a whole to
provide 𝑢𝑖 if (1) it anticipates that the controller they will allocate is critically needed to
provide 𝑢𝑗 and (2) another controller can provide 𝑢𝑖. [S-44.8.2] [DA, SA]

SC-2.DA.4.3: A team of controllers must not allocate a specific controller to provide 𝑢𝑖 if that
controller is instead critically needed to provide 𝑢𝑗 , and if another controller can provide 𝑢𝑖.

[S-44.8.3] [DA, SA]

SC-2.DA.4.4: A controller that is critically needed to provide control action 𝑢𝑗 must not divert

its control effort to provide 𝑢𝑖 without direction from team leadership. [S-44.8.4] [DA, SA]

SC-2.DA.4.4.1: The controller must be informed if it is critically needed to provide 𝑢𝑗 a so

that its efforts are not diverted to provide other control actions.

SC-2.DA.4.5: The team leadership must not provide 𝑢𝑖, if 𝑢𝑖 can be delegated to a teammate,
and if the team leadership is critically needed to provide 𝑢𝑗 . [S-44.8.5] [DA, SA]

Safety Constraints Primarily Traced to Transfer of Authority (TA)

The following safety constraints are derived from Abstraction 2b Type 3-4 UCCAs and their top-
level scenarios. They employ the same notation as the Level 2 constraints above.

SC-2.TA.1: A controller must not start providing a control action before another controller ends
providing the same action if that creates an unsafe conflict. [UCCA 47.1] [TA, SA]

SC-2.TA.1.6: The team leadership must not direct one controller to start a control action before
directing another controller to end the same action when that creates an unsafe conflict. [S-
47.1.6] [TA, SA]

321

SC-2.TA.1.7: If controllers are properly directed by the team leadership to hand off a control
action, then those controllers must not start early or end late their respective actions in a way
that creates an unsafe conflict. [S-47.1.6] [TA, SA]

SC-2.TA.1.8: The team leadership must not direct a teammate to start or end a control action
at a time that creates a conflict with how the team leadership hands off control to/from that
controller.

Note: This requirement is not traced to a scenario in the analyzed system, but it is included in
case a different version of the system architecture makes it applicable. For example, if the TL
could provide a fix, then scenarios would be uncovered for which this requirement is necessary.

SC-2.TA.1.8.1: The team leadership must not start its control action early compared to
when it directs a teammate to end the same action if that leads to an unsafe conflict.

SC-2.TA.1.8.2: The team leadership must not end its control action late compared to when
it directs a teammate to start the same action if that leads to an unsafe conflict.

SC-2.TA.2: A controller must not end providing a control action before another controller starts
providing the same action if that creates an unsafe gap in execution. [UCCA 48.2, UCCA 56.3]
[TA, SA]

SC-2.TA.2.1: The team leadership must not direct one teammate to end a control action before
the time it directs another teammate to start the same action when that creates an unsafe gap
in execution. [S-48.2.6] [TA, SA]

SC-2.TA.2.2: If a set of controllers is directed by the team leadership to hand off control in a
safe way, then those controllers must not end early or start late their respective actions when
that creates an unsafe gap in execution. [S-48.2.7, S-56.3.7] [TA, SA]

SC-2.TA.2.3: The team leadership must not direct a teammate to provide a control action in a
way that creates an unsafe gap in control with how the team leadership hands off control
to/from that controller. [S-56.3.8] [TA, SA]

SC-2.TA.2.3.1: The team leadership must not start its control action late relative to the
time it directs a teammate to end the same action if that leads to an unsafe gap. [S-56.3.8]
[TA, SA]

SC-2.TA.2.3.2: Team leadership must not end its control action early relative to the time
it directs a teammate to start the same action if that leads to an unsafe gap. [S-56.3.8] [TA,
SA]

Safety Constraints Primarily Traced to Shared Authority (SA)

The following safety constraints are derived from Abstraction 2a UCCAs and their top-level
scenarios. They employ the same notation as the Level 2 constraints above.

SC-2.SA.1: Controllers on the team must not provide lower-priority control actions that prevent
them from providing higher-priority actions. [UCCA 10.5, UCCA 11.6] [SA]

SC-2.SA.1.1: The team leadership must direct controllers on the team to provide higher
priority control actions if lower priority actions are also specified. [S-10.5.1, S-11.6.1] [SA]

322

SC-2.SA.1.2: The team leadership must not direct controllers on the team to provide control
actions that prevent the team from providing other higher-priority actions. [S-10.5.2, S-11.6.2]
[SA]

SC-2.SA.1.2.1: The team leadership must not direct a teammate to provide a control action
if (1) that prevents it from providing one of the multiple coupled actions that are together
of higher priority and (2) no other controller is capable or available to provide that action.

SC-2.SA.1.3: If controllers on the team are properly directed by the team leadership to provide
high-priority control actions, the controllers must prioritize providing those actions over
lower-priority ones, regardless of whether or not they were also directed to provide the lower-
priority actions [S-10.5.3, S-10.5.4, S-11.6.3, S-11.6.4] [SA]

SC-2.SA.1.3.1: If a controller is assigned to provide a control action that prevents it from
providing a higher priority action for which it is needed, that controller must inform the
allocation authority so that it can be retasked. [S-10.5.3, S-11.6.3] [SA]

SC-2.SA.1.3.2: If a controller is assigned to provide a control action that prevents it from
providing a lower priority action for which it was also assigned, that controller must
inform the allocation authority so the lower priority action can be reassigned. [S-10.5.3, S-
11.6.3] [SA]

SC-2.SA.1.4: see SC-2.SA.1.3

SC-2.SA.1.5: The team leadership must provide the higher priority control actions if it is
needed for those actions. [S-10.5.5] [SA]

SC-2.SA.1.5.1: The team leadership must not provide lower priority control actions if it
prevents it from providing the higher priority ones. [S-10.5.5] [SA]

SC-2.SA.1.5.2: The team leadership must direct controllers to provide the necessary
control actions coupled with their own. [S-11.6.5] [SA]

SC-2.SA.2: Controllers that are dependent on one another to provide coupled control actions
must provide their respective control actions. [UCCA 3.3, UCCA 2.2] [SA]

SC-2.SA.2.1: The team leadership must direct all controllers involved in coupled and
mutually dependent control actions to provide their respective actions. [S-3.3.1, S-2.2.1] [SA]

SC-2.SA.2.2: Controllers must inform the team leadership if the directions they were
provided for coupled control actions are not properly specified. Specifically:

SC-2.SA.2.2: Controllers must inform the team leadership if a subset of the coupled
control actions is not properly specified or directed. [S-3.3.2, S-2.2.2] [SA]

SC-2.SA.2.3: If multiple controllers on the team are properly directed to provide coupled
control actions, those controllers must provide those actions together. [S-3.3.3, S-2.2.3] [SA]

SC-2.SA.2.3.1: If one of the controllers is unable to provide its control action, that
controller must inform the other controllers involved and the team leadership. [S-3.3.3, S-
2.2.3] [SA]

SC-2.SA.2.3.2: If one of the controllers is unable to provide its control action, the other
controllers that are dependent on it must not provide their control actions. [S-3.3.3, S-2.2.3]
[SA]

323

SC-2.SA.2.4: If multiple controllers on the team are properly directed to provide coupled
control actions, the controllers on the team that are not directed must not provide them. [S-
3.3.4, S-2.2.4] [SA]

SC-2.SA.2.5: If the team leadership is responsible for providing control actions that are
coupled to the actions directed to other controllers, it must provide those control actions
consistently with those directions. [S-3.3.5, S-2.2.5] [SA]

SC-2.SA.2.5.1: If the team leadership is unable to provide those actions, it must modify its
directions to the controllers that depend on it for coupled execution. [S-3.3.5, S-2.2.5] [SA]

SC-2.SA.3: Controllers that are responsible for jointly controlling a subprocess must provide
control actions to the same subprocess. [UCCA 4.4] [SA]

SC-2.SA.3.1: N/A. Top-Level Scenario 1 does not apply to the UCCA.

SC-2.SA.3.2: The team leadership must specify the same subprocess to every controller it
directs to jointly control, including itself. [S-4.4.2] [SA]

SC-2.SA.3.3: If multiple controllers are properly directed to jointly control a subprocess, those
controllers must provide those actions to that process. [S-4.4.3] [SA]

SC-2.SA.3.3.1: If controllers are directed to jointly control an unspecified or inconsistently
specified subprocess, those controllers must notify the team leadership. [S-4.4.3] [SA]

SC-2.SA.3.3.2: If controllers are directed to jointly control an unspecified or inconsistently
specified subprocess, those controllers must not provide their control actions. [S-4.4.3]
[SA]

SC-2.SA.3.4: N/A. Top-Level Scenario 4 does not apply to the UCCA.

SC-2.SA.3.5: If the team leadership is responsible for jointly controlling a subprocess, it must
provide its control actions to the same subprocess that it directed the other controllers to act
on. [S-4.4.5] [SA]

SC-2.SA.4: Controllers that depend on one another to provide coupled control actions must start
and end their actions in an adequate sequence. [UCCA 15.1, UCCA 17.2] [SA]

SC-2.SA.4.6: The team leadership must direct the controllers in a way that does not conflict
with the adequate sequence of starting and ending their actions. [S-15.1.6, S-17.2.6] [SA]

SC-2.SA.4.7: If multiple controllers on the team are properly directed to provide coupled
control actions, those controllers must start and end their control actions in the adequate
relative sequence. [S-15.1.7, S-17.2.7] [SA]

SC-2.SA.4.8: The team leadership must start and end its control actions in an adequate
sequence relative to how it specified the start and end of coupled control actions it directed
other controllers to provide. [S-15.1.8, S-17.2.8] [SA]

Safety Constraints Primarily Traced to Mutually Closing Control Loops (MC)

The following safety constraints are derived from the refined scenarios that relate to the mutually
closing control loops collaborative control dynamic. The labeling follows a similar convention as
the one described for the dynamic authority safety constraints above. The only difference is that

324

the digits do not reference a top-level scenario. The traceability of these safety constraints to DA,
TA, and/or SA is implied and determined by the scenarios to which they are linked. For
example, safety constraints that are traced to scenario S-37.1.1 are, therefore, also traceable to DA
and SA.

SC-2.MC.1: Mutually Closing Control Loops – Feedback about Controlled Process from Collaborators: A
controller that relies on a teammate to receive feedback on its control action(s) to the shared
process must be able to adequately receive and accurately interpret that feedback. Specifically:

SC-2.MC.1.1: The controller must be able to interpret which control action the feedback from
the teammate pertains to. [MC]

SC-2.MC.1.1.1: The controller must be able to interpret which controlled subprocess the
feedback from the teammate pertains to. [S-37.1.3, S-40.4.3, S-40.4.5, S-1.1.3, S-1.1.5, S-4.4.3,
S-4.4.5] [MC]

SC-2.MC.1.1.2: The controller must be able to interpret which controller the feedback from
the teammate pertains to. [S-37.1.3, S-40.4.3, S-40.4.5, S-1.1.3, S-1.1.5, S-17.2.7] [MC]

SC-2.MC.1.2: Feedback exchanged between two different types of controllers (e.g., a human
controller and a machine controller) must adhere to a syntax that enables semantic alignment
between the two. [S-37.1.3, S-38.2.3, S-40.4.3, S-40.4.5, S-1.1.3, S-1.1.5, S-3.3.3] [MC]

SC-2.MC.1.3: The human interface must allow a human controller under heavy workload to
accurately specify the feedback provided to a machine controller. [S-37.1.3, S-38.2.3, S-1.1.3]
[MC]

SC-2.MC.1.4: The human interface must allow a human controller under heavy workload to
accurately and timely receive feedback provided by a machine controller. [S-40.4.5, S-1.1.5]
[MC]

SC-2.MC.1.5: A controller must not misinterpret feedback provided by a teammate as a need
to provide (or not provide) a control action that is not necessary (or is necessary). [S-37.1.3, S-
38.2.3, S-43.7.3, S-1.1.3, S-10.5.3, S-3.3.3, S-3.3.4, S-3.3.5, S-2.2.3, S-2.2.4, S-11.6.3] [MC]

SC-2.MC.1.6: A controller must be able to determine which teammate provided the feedback.
[S-37.1.3, S-38.2.3, S-1.1.3] [MC]

SC-2.MC.1.7: A controller must not act on unsolicited feedback from a teammate by
providing (or not providing) a control action without first determining that action is safe and
follows the intent of team leadership. [S-38.2.3, S-39.3.3, S-41.5.3, S-41.5.4, S-41.5.5, S-42.6.3, S-
42.6.4, S-42.6.5] [MC]

SC-2.MC.1.8: The timing and intensity with which a machine controller provides feedback
must not lead the receiving human controller to misinterpret the meaning of the feedback. [S-
40.4.3, S-40.4.5, S-1.1.5] [MC]

SC-2.MC.1.9: The controller must be configured and capable to receive feedback from the
teammate. [S-40.4.3, S-40.4.5, S-1.1.5, S-15.1.7, S-15.1.8, S-17.2.7] [MC]

SC-2.MC.1.9.1: If the controller is not configured or capable to receive feedback from the
teammate, then it must inform the controller responsible for task allocation. [S-40.4.3, S-
40.4.5, S-1.1.5] [MC]

325

SC-2.MC.1.10: A controller must not change its assessment of task prioritization based only
on feedback provided by a teammate without first determining that the change is aligned
with the intent of team leadership. [S-44.8.3, S-10.5.3, S-11.6.5] [MC]

SC-2.MC.1.11: A controller must be able to determine if a channel of feedback provided by a
teammate is degraded to recognize when data may have been lost in the transfer. [S-44.8.5]
[MC]

SC-2.MC.1.12: A controller must not misinterpret feedback provided by a teammate as a need
to change how or when a control action handoff occurs with another controller. [S-47.1.7, S-
48.2.7] [MC, TA]

SC-2.MC1.13: A controller must not act on feedback from a teammate without first
determining if a change in its planned execution impacts the execution of other controllers
(e.g., in coupled tasks). [S-10.5.3, S-10.5.4, S-10.5.5] [MC, SA]

SC-2.MC.2: Mutually Closing Control Loops – Feedback about Collaborator Control Actions from
Controlled Process: A controller that relies on feedback from the controlled process generated in
response to a teammate’s control action must be able to adequately and accurately interpret that
feedback. Specifically:

SC-2.MC.2.1: The controller must verify that the feedback is in response to the expected
control action provided by a teammate. [MC]

SC-2.MC.2.1.1: The controller must verify that the feedback is in response to the expected
controlled subprocess. [S-40.4.3, S-40.4.5, S-1.1.5, S-4.4.3, S-4.4.5, S-15.1.7, S-15.1.8] [MC]

SC-2.MC.2.1.2: The controller must verify that the feedback is in response to the expected
teammate. [S-37.1.3, 2.2.3, S-1.1.3, S-3.3.3, S-3.3.4, S-3.3.5, S-15.1.7, S-15.1.8] [MC]

SC-2.MC.2.2: The controller and the teammate must be coordinated on when and how the
teammate will provide its control action so that the controller can adequately receive the
feedback. [S-40.4.3, S-40.4.5] [MC]

SC-2.MC.2.3: The controller must be configured and capable to sense the feedback signal
generated in response to a control action provided by the teammate to the process. [S-40.4.3,
S-40.4.5, S-1.1.5] [MC]

SC-2.MC.2.3.1: If the controller is not configured or capable to sense the feedback signal,
then it must inform the controller responsible for task allocation. [S-40.4.3, S-40.4.5, S-1.1.5]
[MC, DA]

SC-2.MC.2.4: A controller must not act on any unexpected feedback from the process that is
generated in response to another controller’s actions without first determining that the action
is safe and is aligned with the intent of team leadership. [S-41.5.3, S-41.5.4, S-41.5.5, S-42.6.3,
S-42.6.4, S-42.6.5] [MC]

SC-2.MC.3: A controller must be able to interpret how feedback provided by a teammate or the
process relates to an expected control handoff with another controller. [S-47.1.7, S-48.2.7] [MC]

SC-2.MC.3.1: A controller must not claim/reclaim control in a way that conflicts with a
planned handoff based only on third-party feedback (e.g., a controller that was not intended
for the handoff or the process). [S-47.1.7] [MC]

326

SC-2.MC.3.2: A controller must not relinquish control (early) in a way that conflicts with a
planned handoff based only on third-party feedback (e.g., a controller that was not intended
for the handoff or the process). [S-48.2.7] [MC]

SC-2.MC.4: Mutually Closing Control Loops – Feedback about Controlled Process from Collaborators: A
controller must not change how it hands off control with a teammate only on the basis that it
provided feedback to the teammate. Closed-loop coordination between the two controllers must
first occur to ensure the feedback is received and that it is safe to make the change. [S-56.3.8] [MC]

SC-2.MC.5: Mutually Closing Control Loops – Feedback about Controlled Process from Collaborators:
The feedback provided by a controller regarding a teammate’s control action to the process must
specify the subprocess from which the feedback was received. [S-4.4.3] [MC]

Safety Constraints Primarily Traced to Cognitive Alignment (CA) and Lateral
Coordination (LC)

The following safety constraints are derived from the refined scenarios that relate to the cognitive
alignment and lateral coordination collaborative control dynamics. The labeling follows the same
convention specified for mutually closing control loops above.

SC-2.CA.1: Construction: A controller on the team must have a control algorithm that is
developed and configured consistently with the other controllers it is working with. Specifically:

SC-2.CA.1.1: Its control algorithm configuration must be consistent with the control
algorithm of the team leadership.

SC-2.CA.1.1.1: The control algorithm must be consistent with how the team leadership
directs the team to provide control actions. [S-37.1.3, S-40.4.3, S-40.4.5, S-43.7.3, S-44.8.4, S-
1.1.5, S-10.5.5, S-3.3.3, S-2.2.3, S-2.2.5] [CA]

SC-2.CA.1.1.2: The control algorithm must be consistent with how the team leadership
expects feedback for its directions. [S-41.5.5, S-42.6.5, S-44.8.5, S-10.5.4, S-10.5.5] [CA]

SC-2.CA.1.1.3: The control algorithm must be consistent with how the team leadership
prioritizes the control actions it directs the team to provide. [S-44.8.3, S-1.1.3, S-10.5.3, S-
10.5.3, S-11.6.3] [CA]

SC-2.CA.1.1.4: The control algorithm must be consistent with how the team leadership
defines execution timelines and handoffs between controllers. [S-47.1.7, S-48.2.7, S-56.3.7,
S-56.3.8, S-15.1.7, S-15.1.8, S-17.2.7, S-17.2.8] [CA]

SC-2.CA.1.2: Its control algorithm configuration must be consistent with the control
algorithm of peer controllers with which it shares the controlled process.

SC-2.CA.1.2.1: The control algorithm must be consistent with those of controllers that
provide coupled control actions. [S-37.1.3, S-40.4.3, S-1.1.3, S-10.5.3, S-3.3.3, S-2.2.3, S-
11.6.3, S-4.4.5] [CA]

SC-2.CA.1.2.2: The control algorithm must be consistent with those of controllers that can
provide the same control action to prevent assignment conflicts or facilitate handoffs. [S-
38.2.3, S-39.3.3, S-41.5.3, S-41.5.4, S-42.6.3, S-42.6.4, S-43.7.3, S-47.1.7, S-48.2.7, S-56.3.7, S-
56.3.8] [DA, CA]

327

SC-2.CA.1.2.3: The control algorithm must be consistent between controllers regarding
the method used to assign the different types of control actions (e.g., fully specified by
team leadership, distributed task allocation, self-authorized). [S-44.8.3, S-10.5.3, S-3.3.4, S-
2.2.4, S-11.6.3] [CA]

SC-2.CA.2: Initialization: Controllers involved in distributed decision-making over the control
of a shared process must be provided with planning information that is consistent with each
other. Specifically:

SC-2.CA.2.1: All Controllers involved in coupled control actions must be provided with
consistent planning information for those actions. Specifically: [CA]

SC-2.CA.2.1.1: Control action requirements must be specified consistently. [S-37.1.3, S-
40.4.3, S-43.7.3, S-47.1.7, S-48.2.7, S-56.3.7, S-56.3.8, S-1.1.3, S-10.5.3, S-3.3.3, S-2.2.3, S-
11.6.3] [CA]

SC-2.CA.2.1.2: The responsibilities and status of the controllers involved in the control
actions must be consistent. [S-37.1.3, S-38.2.3, S-39.3.3, S-40.4.3, S-41.5.3, S-42.6.3, S-43.7.3,
S-44.8.5, S-47.1.7, S-48.2.7, S-56.3.7, S-56.3.8, S-1.1.3, S-10.5.3, S-3.3.4, S-2.2.4, S-11.6.3] [CA,
DM]

SC-2.CA.2.1.3: The subprocesses the control actions are specified for must be consistent.
[S-4.4.3] [CA]

SC-2.CA.2.1.4: The way execution timelines are initialized must be consistent. [S-15.1.7, S-
15.1.8, S-17.2.7, S-17.2.8] [CA]

SC-2.CA.2.2: Controllers involved in coupled control actions must be able to detect and
resolve differences in information regarding those actions. This includes the type of
information listed above (see SC-2.CA.2.1). [S-37.1.3, S-40.4.3, S-3.3.3, S-2.2.3] [CA]

SC-2.CA.2.3: An automated controller must provide transparency to help human controllers
understand how the automation allocates control actions to controllers. [S-40.4.5, S-41.5.5, S-
42.6.5, S-1.1.5, S-2.2.5] [CA]

SC-2.CA.2.3.1: An automated controller must inform the team leadership of pre-
programmed control behaviors relative to the shared process. [S-10.5.4] [CA]

SC-2.CA.2.4: Control actions coupled between human and machine controllers must be
defined and bounded by a protocol understood by the human, and to which the machine is
developed to handle. [S-40.4.5, S-41.5.5, S-42.6.5, S-1.1.5, S-3.3.5, S-2.2.5, S-4.4.5] [CA]

SC-2.CA.2.5: All controllers involved in distributed task allocation must be provided with
planning information that is consistent with one another. This includes the same items as
listed under SC-2.CA.2.1. [S-43.7.3, S-1.1.3] [CA]

SC-2.CA.2.6: All controllers involved in coupled control actions or distributed task allocation
must designate controllers and control actions by common and unique identifiers. [S-1.1.3]
[CA]

SC-2.CA.2.7: All controllers involved in distributed task allocation must be consistently
directed on how to prioritize control actions allocated to a controller directly by the team
leadership versus those delegated by the team leadership to be allocated. [S-1.1.3, S-11.6.3]
[CA]

328

SC-2.CA.3: Model Updates – Vertical Coordination: Updates provided by the team leadership to
controllers on the team must not inhibit the team from properly executing coordinated actions.
Specifically:

SC-2.CA.3.1: Updates provided by team leadership must be consistent between the
controllers involved in coupled control actions. Specifically:

SC-2.CA.3.1.1: The team leadership must inform all controllers involved in the coupled
control if updates are made to the specification of any of those actions. [S-37.1.3, S-40.4.3,
S-1.1.3, S-10.5.3, S-3.3.3, S-2.2.3, S-4.4.5] [CA]

SC-2.CA.3.1.2: The team leadership must inform all controllers involved in the coupled
control if one of the actions is reassigned to a different controller. [S-1.1.3, S-10.5.3] [CA]

SC-2.CA.3.1.3: The team leadership must specify consistently how the controllers need to
coordinate their coupled actions. [S-3.3.3, S-2.2.3] [CA]

SC-2.CA.3.1.4: The team leadership must specify consistently which subprocesses the
assigned control actions apply to. [S-4.4.3, S-4.4.5] [CA]

SC-2.CA.3.2: The team leadership must not provide information that is inconsistent with how
controllers on the team refine their coordinated plan unless it intends to override their refined
plan. The refined coordinated plans include:

SC-2.CA.3.2.1: Coordination of coupled control actions [S-37.1.3, S-40.4.3, S-1.1.3, S-10.5.3,
S-3.3.3, S-2.2.3, S-4.4.5] [CA]

 SC-2.CA.3.2.2: Coordination of task handoffs [S-47.1.7, S-48.2.7] [CA]

SC-2.CA.3.3: The team leadership must not provide unnecessary mission planning updates.

SC-2.CA.3.3.1: The team leadership must not unnecessarily update the roles and
responsibilities of the controllers such that it interferes with them accomplishing
otherwise safe plans. [S-37.1.3, S-40.4.3, S-1.1.3, S-10.5.3, S-3.3.3, S-2.2.3] [CA]

SC-2.CA.3.3.2: Human team leaders must be trained to not excessively manage automated
controllers at the expense of fulfilling their own control responsibilities. [S-40.4.5, S-1.1.5,
S-2.2.5] [CA]

SC-2.CA.3.3.3: The team leadership must not unnecessarily update the specifications of
control actions (e.g., execution timelines, handoff times) such that it interferes with the
otherwise safe execution of controllers. [S-56.3.8, S-1.1.3, S-10.5.3] [CA]

SC-2.CA.3.4: The team leadership must be able to specify low-level execution parameters for
a control action without changing the controller allocated for that action. [S-41.5.5, S-42.6.5]

SC-2.CA.3.5: The team leadership must be informed why a distributed task allocation process
does not assign a controller to a control action as intended. Specifically:

SC-2.CA.3.5.1: The team leadership must be informed if the actions as specified impose
constraints that cannot be satisfied by the team. [S-43.7.3, S-1.1.3, S-10.5.3, S-11.6.3] [CA]

SC-2.CA.3.5.2: The team leadership must be informed if specific controllers have existing
allocation constraints that prohibit them from being assigned to provide a control action.
[S-43.7.5, S-56.3.7, S-1.1.5] [CA]

329

SC-2.CA.3.6: The team leadership must have the ability to assign a specific controller to
specific control action, even if a distributed allocation process is available. Specifically:

SC-2.CA.3.6.1: The team leadership must have the ability to override the distributed
allocation and assign specific controllers to specific actions. [S-44.8.5] [CA]

SC-2.CA.3.6.2: The intent of the team leadership to assign a specific controller to an action
or to delegate the allocation of that action to the distributed process must be explicit. [S-
44.8.3] [CA]

SC-2.CA.4: Model Updates – Lateral Coordination (Communication): Controllers must be able
to actively communicate as necessary to coordinate the execution of their control actions.

SC-2.CA.4.1: Communication channels between controllers must have sufficient capacity to
support coordination messages at the time of execution while overcoming [TBD]
environmental degradations (e.g., fading, jamming). [S-37.1.3, S-40.4.3, S-43.7.3, S-47.1.7, S-
48.2.7, S-56.3.8, S-1.1.3, S-10.5.3, S-3.3.3, S-2.2.3, S-11.6.3, S-15.1.7, S-15.1.8, S-17.2.7, S-17.2.8]
[CA, LC]

SC-2.CA.4.1.1: Communication channels between controllers must ensure that as they
degrade, they do not deliver messages with altered content. [S-4.4.3] [CA]

SC-2.CA.4.2: Semantics must be specified to facilitate human-machine communication over
the coordination of coupled control actions. [S-37.1.3, S-40.4.3, S-40.4.5, S-56.3.8, S-1.1.3, S-
1.1.5, S-10.5.3, S-3.3.3, S-2.2.3, S-2.2.5, S-4.4.5] [CA, LC]

SC-2.CA.4.3: Machine controllers must not interrupt the ability of a human controller to
provide her/his control actions by requesting information with [TBD unreasonable]
frequency. [S-37.1.3, S-40.4.3, S-40.4.5, S-56.3.8, S-1.1.3, S-1.1.5, S-10.5.3, S-2.2.5] [CA, LC]

SC-2.CA.4.4: The time at which information is produced must be appended to coordination
messages between controllers and accounted for in decision-making. The type of information
this applies to includes:

SC-2.CA.4.4.1: State estimates [S-37.1.3, S-40.4.3, S-43.7.3, S-1.1.3, S-10.5.3, S-11.6.3, S-4.4.5]
[CA, LC]

SC-2.CA.4.4.2: Model variables describing the controlled process [S-40.4.5, S-1.1.5, S-
10.5.4, S-2.2.5] [CA, LC]

SC-2.CA.4.4.3: Control action time-windows and handoff times [S-47.1.7, S-48.2.7, S-
56.3.7] [CA, LC]

SC-2.CA.4.5: A controller must identify what subprocess it refers to in coordination messages
provided to other controllers (related to SC-2.MC.1.1.1). [S-37.1.3, S-40.4.3, S-40.4.5, S-44.8.3,
S-1.1.3, S-1.1.5, S-10.5.3, S-10.5.5, S-3.3.3, S-2.2.3, S-2.2.5, S-4.4.5] [CA, LC]

SC-2.CA.4.5.1: The controller must identify subprocesses by their common unique
identifiers. [S-1.1.3] [CA, LC]

SC-2.CA.4.5.2: The controllers must inform other controllers if it has [TBD level]
uncertainty in correlating a subprocess to that specified by other controllers. [S-4.4.3] [CA]

SC-2.CA.4.6: A controller must not change its control assignment for control action 𝑢𝑖 based
on coordination messages alone. The controller must first determine if the change is aligned

330

with the intent of the team leadership [S-38.2.3, S-39.3.3, S-41.5.3, S-41.5.4, S-41.5.5, S-42.6.3, S-
42.6.4, S-42.6.5, S-47.1.7, S-48.2.7, S-3.3.4, S-2.2.4] [CA, LC]

SC-2.CA.4.7: Controllers must be able to identify and report to the team leadership when and
how the information shared between controllers is too inconsistent to coordinate execution.
[S-44.8.5] [CA, LC]

SC-2.CA.4.8: A controller must not share coordination information that conflicts with the
information specified by the team leadership. Specifically:

SC-2.CA.4.8.1: A controller must not communicate any internal manipulations of control
specifications that it makes for its own internal decisions (e.g., local prioritization, local
time-window determination, etc…). [S-11.6.3] [CA]

SC-2.CA.4.9: Controllers must use a common, universal time reference with a standardized
format in coordination. [S-15.1.7, S-15.1.8, S-17.2.7, S-17.2.8] [CA]

SC-2.CA.5: Model Updates – Lateral Coordination (Observation): A controller must not act on a
prediction of another controller’s intent using only observations of that controller’s behavior.

SC-2.CA.5.1: A controller must confirm the intent of a controller using means other than
observation only (e.g., communications, vertical coordination) before taking action
accordingly. Specifically:

SC-2.CA.5.1.1: A controller must not act by changing its planned execution or control
actions. [S-37.1.3, S-38.2.3, S-39.3.3, S-40.4.3, S-41.5.3, S-42.6.3, S-43.7.3, S-44.8.3, S-47.1.7, S-
48.2.7, S-56.3.8, S-1.1.3, S-10.5.3, S-10.5.5, S-3.3.4, S-2.2.4, S-11.6.3, S-4.4.3, S-4.4.5] [CA, LC]

SC-2.CA.5.1.2: Team leadership must not act by changing the assignment of control
actions to the controllers on the team. [S-41.5.4, S-42.6.4] [CA, LC]

SC-2.CA.5.1.3: A controller must not start a control action before confirming the intent or
readiness of another controller to provide the coupled action. [S-3.3.3, S-15.1.7, S-15.1.8, S-
17.2.7, S-17.2.8] [CA, LC]

SC-2.CA.5.2: Any controller 𝑐𝑖 must not expect any collaborator 𝑐𝑗 to update its execution plan

based on the observations 𝑐𝑗 should make of 𝑐𝑖 alone. 𝑐𝑖 must explicitly declare its intent using

other means (e.g., communications, vertical coordination). [S-40.4.5, S-1.1.5, S-2.2.5, S-15.1.7,
S-15.1.8, S-17.2.7, S-17.2.8] [CA, LC].

SC-2.CA.6: Model Updates – Prediction: A controller that makes control decisions based only on
the predicted future states of other controllers must validate its predictions. This includes:

SC-2.CA.6.1: If a controller uses the current allocation of control responsibilities to predict the
future states of its teammates, then those predictions must be revalidated, specifically when:

SC-2.CA.6.1.1: Predictions must be reassessed if changes occur in the allocation of control
or the execution of those control actions. [S-43.7.3, S-56.3.7] [CA]

SC-2.CA.6.1.2: Predictions must be reassessed before a controller provides a control
action coupled to the predicted state of another controller. [S-3.3.3, S-2.2.3, S-4.4.3] [CA]

331

SC-2.CA.6.1.3: A controller 𝑐𝑖 must explicitly confirm the execution timeline of another
controller 𝑐𝑗 , which is responsible for a coupled control action, if timing information was

not specified by the team leadership to 𝑐𝑖. [S-15.1.7, S-15.1.8, S-17.2.7, S-17.2.8] [CA]

SC-2.CA.6.2: The team leadership must not assume that a critical and taskable control action
will be provided without being deliberately directed (e.g., will occur naturally as part of
another control effort). [S-43.7.5, S-1.1.5, S-11.6.5] [CA]

SC-2.CA.6.3: The team leadership must review and understand control plans proposed by
the automated controllers before approving them. [S-10.5.4] [CA]

SC-2.CA.6.4: The team leadership must be able to assign control actions based on the
predicted future states of controllers.

SC-2.CA.6.4.1: The team leadership must be informed as soon as the system detects that
the states of the controllers no longer satisfy the predictions. [S-10.5.5] [CA]

SC-2.CA.6.5: A controller must not provide a control action based only on a prediction that it
would have been directed to act if it had connectivity to the team leadership. [S-3.3.4, S-2.2.4,
S-11.6.5] [CA]

SC-2.CA.6.6: If able, a controller must continue to monitor the behavior of a teammate
involved in a coupled control action, even if it has high confidence in that teammate. [S-4.4.5]
[CA]

SC-2.CA.7: Decision-Making: The decision-making process multiple controllers use collectively
must provide adequate and actionable solutions for the team to execute. This includes:

SC-2.CA.7.1: The decision-making process must produce a feasible solution within a
timeframe that allows the controllers to act. [S-37.1.3, S-40.4.3, S-40.4.5, S-48.2.7, S-56.3.8, S-
1.1.5, S-10.5.3, S-2.2.5, S-11.6.3] [CA]

SC-2.CA.7.1.1: The decision-making process must update execution timelines for a
dynamically controlled process in a timeframe that allows the controllers to act. [S-15.1.7,
S-15.1.8, S-17.2.7, S-17.2.8] [CA]

SC-2.CA.7.1.2: If the decision-making process is unable to provide a solution within a
timeframe that allows the controllers to act, it must inform the team leadership and the
controllers involved in [TBD] time.

SC-2.CA.7.2: The decision-making process must not unnecessarily change its solution when
that prohibits controllers from executing otherwise safe plans. This includes:

SC-2.CA.7.2.1: A solution to execute coupled control actions, including execution
timelines. [S-37.1.3, S-40.4.3, S-10.5.3, S-3.3.3, S-15.1.7, S-15.1.8, S-17.2.7, S-17.2.8] [CA]

 SC-2.CA.7.2.2: A solution to allocate control actions [S-43.7.3, S-10.5.3] [CA]

 SC-2.CA.7.2.3: A solution to execute control handoffs [S-47.1.7, S-56.3.7] [CA]

SC-2.CA.7.3: The decision-making process must be able to detect and take appropriate
measures to handle unexpected and outlier decision outputs by some of the controllers. [S-
37.1.3, S-40.4.3, S-43.7.3, S-47.1.7, S-56.3.7, S-10.5.3] [CA]

332

SC-2.CA.7.4: The decision-making process must be able to identify and handle factors that
cause controllers to deviate from the decided execution solution. Specifically:

SC-2.CA.7.4.1: A controller must inform the system if it lacks confidence in the ability of
other controllers to carry out their responsibilities. [S-37.1.3, S-40.4.3, S-40.4.5, S-1.1.5, S-
10.5.3, S-3.3.3, S-2.2.3, S-2.2.5] [CA]

SC-2.CA.7.4.2: A controller must inform the system if it has contextual factors that prevent
it from carrying out its responsibilities or changing its execution timelines. [S-37.1.3, S-
40.4.3, S-43.7.3, S-10.5.3, S-3.3.3, S-2.2.3, S-15.1.7, S-15.1.8, S-17.2.7, S-17.2.8] [CA]

SC-2.CA.7.5: The decision-making process must incorporate an arbitration mechanism to
resolve conflicts or lack of consensus, produce a safe and actionable plan, or inform the team
leadership no plan is possible. [S-1.1.3] [CA]

SC-2.CA.7.5.1 The arbitration mechanism must assign a controller that is capable of
executing the control action. [S-38.2.3] [CA]

SC-2.CA.7.5.2 The arbitration mechanism must ensure that only one controller is assigned
to a control action. [S-39.3.3, S-42.6.3] [CA]

SC-2.CA.7.5.3 The arbitration mechanism must account for the prioritization of the
control actions. [S-44.8.3] [CA]

SC-2.CA.7.5.4 The arbitration mechanism must specify the ordered sequence of the
control actions. [S-1.1.3] [CA]

SC-2.CA.7.5.5 The arbitration mechanism must ensure that coupled control actions are
allocated for coupled execution. [S-4.4.3] [CA]

SC-2.CA.7.6: If the decision-making process is unable to produce a solution:

SC-2.CA.7.6.1 The decision-making process must explain to the team leadership why it is
unable to produce a solution (e.g., computational complexity, no feasible solution, timed
out). [S-43.7.3, S-10.5.3] [CA]

SC-2.CA.7.6.2 The decision-making process must recommend courses of action (e.g.,
simplify the problem, propose a non-optimal solution, and allow more time to run). [S-
43.7.3, S-10.5.3] [CA]

SC-2.CA.7.7: The decision-making process must account for factors of interest in determining
execution solutions. Specifically:

SC-2.CA.7.7.1: It must account for the priority of control actions when producing control
allocation decisions. [S-44.8.3] [DA, CA]

SC-2.CA.7.7.1.1: It must account for the priority of coupled control actions as a whole.
[S-11.6.3] [DA, CA]

SC-2.CA.7.7.2: It must account for environmental disturbances that may affect execution
timelines involved in control handoffs. [S-48.2.7, S-56.3.8] [CA]

SC-2.CA.7.7.3: It must ensure consensus is reached on designated key parameters (e.g.,
the specific subprocess controlled in coupled tasks), and not allow consensus only on
secondary parameters to be sufficient to reach a solution. [S-4.4.5] [CA]

333

SC-2.CA.7.8: The decision-making process must be able to provide the team leadership with
a reasonable estimate of how long it will take to produce a solution. [S-1.1.3] [CA]

SC-2.CA.7.9: The decision-making process must track previously explored infeasible
solutions to make sure they are not repeated and the algorithm converges. This includes:

SC-2.CA.7.9.1: The process must eliminate control allocations found to be infeasible from
further consideration. [S-1.1.3] [CA]

SC-2.CA.7.9.2: The process must inform the team leadership if control allocations are
found to be infeasible. [S-1.1.3] [CA]

SC-2.CA.7.9.3: No controller may act on a control allocation found to be infeasible unless it is
explicitly directed to do so by the team leadership. [S-10.5.4] [CA]

SC-2.CA.7.10: The decision-making process must not bias allocating certain types of control
actions over others only because the algorithm is more efficient for such actions. [S-10.5.3]
[CA]

SC-2.CA.7.11: The system must not auto-correct errors made by the team leadership without
determining that the correction aligns with the intent of the team leadership. [S-10.5.4] [CA]

SC-2.CA.7.12: The decision-making process must incorporate a deadline by which all
controllers involved in the decision must have reached consensus and acknowledged the
solution, otherwise the solution is voided. [S-3.3.3, S-2.2.3] [CA]

SC-2.CA.7.13: The decision-making process must be applied only to the sub-processes that
were specified by the team leadership. [S-3.3.4, S-2.2.4] [CA]

SC-2.CA.7.14: Each controller, when planning a decision, must employ the parameters
directed by the team leadership or those shared between controllers. They may not substitute
their own parameter values for planning unless those are coordinated with the other
controllers. [S-4.4.3] [CA]

SC-2.CA.8: Capacity: The system must be able to identify and isolate controllers that are unable
to coordinate with the rest of the team and hinder the team’s ability to make decisions or issue
collective control actions. Specifically:

SC-2.CA.8.1: The system must be able to identify controllers that are unable to meet
coordination messaging requirements with other controllers.

SC-2.CA.8.1.1: The system must isolate controllers that disrupt coordination between the
other controllers. [S-37.1.3, S-40.4.3, S-43.7.3, S-44.8.3, S-47.1.7, S-48.2.7, S-56.3.7, S-1.1.3, S-
10.5.3] [CA]

SC-2.CA.8.1.2: Controllers that have not met the coordination requirements for control
actions (e.g., correlation of a subprocess for coupled execution, execution timelines) must
not provide those actions. [S-4.4.5, S-15.1.7, S-15.1.8, S-17.2.7, S-17.2.8] [CA]

SC-2.CA.8.2: The system must be able to identify and isolate controllers that are unable to
receive and process information to use in distributed decision-making. [S-38.2.3, S-39.3.3, S-
42.6.3, S-10.5.4] [CA]

334

SC-2.CA.8.3: Automated controllers on the team must have a neutral backup behavior to
execute if human controller(s) are unable to participate in the coordination process. [S-40.4.5,
S-44.8.5, S-56.3.8, S-1.1.5, S-10.5.5, S-2.2.5] [CA]

SC-2.CA.8.4: The system must prevent human controllers from fixating on the execution of
automated teammates at the expense of their performing their own actions. [S-43.7.5, S-1.1.5]
[CA]

SC-2.CA.8.5: The system must be able to identify and inform the team leadership if the
dimensionality of the planning problem exceeds the computational capacity of the system [S-
1.1.3] [CA].

SC-2.CA.8.6: An automated controller must check the validity of its internal processes (i.e.,
system heartbeat check) before executing assigned control actions. [S-3.3.3, S-2.2.3] [CA]

SC-2.CA.8.7: The system must alert human operators if they attempt to carry out control
actions for which a required coupled action is not allocated to a controller. [S-3.3.5] [CA]

SC-2.CA.8.8: The planning responsibilities delegated to controllers must remain within the
computational bounds of those controllers. [S-11.6.3] [CA]

SC-2.CA.8.8.1: The system must ensure that it does not bias solving easier planning
problems over those that are more complex, but still within the capacity of the controllers.
[S-11.6.3] [CA]

SC-2.CA.9: Initialization: The process to specify control actions must be reasonably consistent
for different types of actions to avoid biasing the team leadership to only assigning tasks that are
easier to specify. [S-10.5.5] [CA]

Safety Constraints Primarily Traced to Dynamic Membership (DM)

The following safety constraints are derived from the refined scenarios that relate to the dynamic
membership collaborative control dynamic. The labeling follows the same convention specified for
mutually closing control loops above.

SC-2.DM.1: The system must notify the team leadership if a controller is added or removed from
active participation status. Specifically:

SC-2.DM.1.1: The team leadership must be informed in advance [TBD time] when a controller
is planned to be added or removed from the team. [S-37.1.1, S-40.4.1, S-43.7.1, S-43.7.5, S-
44.8.2, S-1.1.1, S-3.3.5, S-4.4.2] [DM]

SC-2.DM.1.1.1: The team leadership must be informed if a controller is slated to execute
a control action with a time window that goes beyond its planned time of removal from
the team. [S-56.3.6] [DM]

SC-2.DM.1.2: The team leadership must be informed as soon as possible [TBD time] when a
controller is added or removed from the team for unplanned reasons. [S-37.1.3, S-43.7.3, S-
44.8.2, S-1.1.3, S-3.3.3, S-2.2.3, S-15.1.7, S-17.2.7, S-17.2.8] [DM]

SC-2.DM.1.3: The team leadership must be informed and take into consideration the
capabilities of controllers added or removed from the team. [S-38.2.2, S-41.5.2] [DM]

335

SC-2.DM.1.4: The team leadership must be able to query other controllers about their
intentions to add or remove a controller from the team. [S-40.4.5, S-1.1.5, S-10.5.5, S-2.2.5, S-
11.6.5] [DM]

SC-2.DM.2: The team leadership must not deviate from nominal procedures directing the team
in response to the dynamic membership of the team. Specifically:

SC-2.DM.2.1: The team leadership must not delay directing the team to provide a control
action in anticipation of:

SC-2.DM.2.1.1: a new controller becoming available to provide it. [S-37.1.1, S-40.4.1, S-
43.7.1, S-43.7.5, S-1.1.1, S-3.3.5, S-4.4.2] [DM]

SC-2.DM.2.1.2: the possibility that a controller may be dropping out. [S-1.1.1] [DM]

SC-2.DM.2.2: The team leadership must not direct the team to provide a control action in
anticipation that a controller that is not yet part of the team will take it on. [S-44.8.2] [DM]

SC-2.DM.2.3: see SC-2.DA.1.2. [S-37.1.1, S-40.4.1, S-43.7.1, S-43.7.5, S-1.1.1, S-3.3.5, S-4.4.2]
[DM]

SC-2.DM.2.4: If the team leadership must assign a specific controller to provide a control
action, the team leadership must specify that controller even if it believes it is the only
controller active on the team. [S-38.2.3, S-41.5.3, S-41.5.4, S-42.6.4, S-42.6.5] [DM]

SC-2.DM.3: The system must detect and take appropriate measures when a controller that was
assigned a control action becomes inactive from the team. Specifically:

SC-2.DM.3.1: The system must inform the team leadership of the following:

SC-2.DM.3.1.1: how it is handling the control assignment, pending further direction from
the team leadership (e.g., control assignment dropped, action remains assigned to
disconnected controller). [S-37.1.1, S-40.4.1, S-43.7.1, S-43.7.5, S-1.1.1, S-1.1.2, S-10.5.2, S-
10.5.3, S-3.3.1, S-3.3.5, S-2.2.1, S-11.6.3, S-4.4.2, S-4.4.3] [DM]

SC-2.DM.3.1.2: how the now inactive controller affects other controllers that were
dependent on it for coupled control actions or control handoffs. [S-47.1.6, S-48.2.6, S-
56.3.8] [DM]

SC-2.DM.3.1.3: highlight gaps or conflicts that arise with those dependent controllers
(e.g., change control assignment, change handoff timeline). If possible, recommend
courses of action to resolve those conflicts and gaps. [S-47.1.6, S-48.2.6] [DM]

SC-2.DM.3.2: The team leadership must be able to efficiently and properly update control
assignments to overcome changes in participation from controllers on the team. [S-56.3.8, S-
1.1.1, S-10.5.3, S-11.6.3, S-4.4.3] [DM]

SC-2.DM.3.2.1: The team leadership must update control assignment timelines (e.g., for
coupled control execution, for control handoffs) as necessary to address changes in the
participation of controllers on the team. [S-15.1.6, S-17.2.6] [DM]

SC-2.DM.3.3: The system must inform the other controllers assigned to provide coupled
control actions or control handoffs about how the loss of the controller changes their

336

assignment. [S-37.1.3, S-47.1.7, S-48.2.7, S-1.1.3, S-3.3.3, S-2.2.3, S-15.1.7, S-17.2.7, S-17.2.8]
[DM]

SC-2.DM.3.4: If the controller is reactivated, it must act in accordance with (1) updated
direction from the team leadership regarding the control assignment, or (2) how the system
informed the team leadership it would handle the control assignment if (1) does not occur. [S-
37.1.1, S-40.4.1, S-43.7.1, S-43.7.5, S-1.1.1, S-10.5.3, S-3.3.5, S-11.6.3, S-4.4.2, S-4.4.3] [DM]

SC-2.DM.3.4.1: The controller must be informed of the updated direction from the team
leadership as it rejoins the team before it issues any control actions that are assigned
dynamically. [S-37.1.2, S-38.2.3, S-38.2.5, S-39.3.3, S-40.4.2, S-41.5.3, S-41.5.4, S-42.6.2, S-
42.6.3, S-42.6.4, S-42.6.5, S-1.1.2, S-10.5.2, S-3.3.2, S-3.3.4, S-2.2.2, S-2.2.4] [DM]

SC-2.DM.3.4.2: When the controller rejoins under the authority of the team leadership, it
must not provide any other control actions directed by other controllers without
confirming that those align with the intent of the team leadership. [S-37.1.2, S-38.2.5, S-
39.3.3, S-40.4.2, S-42.6.2, S-42.6.3, S-42.6.4, S-42.6.5, S-3.3.2, S-2.2.2] [DM]

SC-2.DM.3.5: If the controller was assigned using an automated process, the automation must
attempt to reallocate the control action to another controller. [S-44.8.3, S-56.3.6] [DM]

SC-2.DM.3.5.1: The automation must ensure that the reallocation does not conflict (1) with
higher priority assignment(s) of the other controller, or (2) with direct assignments by the
team leadership (if consideration (2) is of importance). [S-44.8.3] [DM]

SC-2.DM.3.5.2: The automation must inform the team leadership if it is unable to reassign
the control action to another controller. [S-56.3.6, S-56.3.8] [DM]

SC-2.DM.4: A controller outside the team must not direct a controller on the team without (1)
receiving authorization from the team leadership, or (2) receiving authorization from higher
authority and notifying the team leadership. Specifically:

SC-2.DM.4.1: It must not claim authority over a controller without (1) or (2). [S-37.1.1, S-40.4.1,
S-43.7.1, S-43.7.5, S-1.1.1, S-3.3.5, S-4.4.2] [DM]

SC-2.DM.4.2: It must not remove a controller from the team that can execute its assigned tasks
without (1) or (2) and informing the team leadership of the conflict the removal creates. [S-
56.3.8, S-1.1.1, S-1.1.5, S-10.5.1] [DM]

SC-2.DM.5: The team leadership must be informed of the set of controllers active on the team.

SC-2.DM.5.1: The system must employ unique identifiers for each controller on the team and
inform the team leadership of these identifiers (related to SC-2.CA.2.6). [S-37.1.3, S-40.4.3, S-
1.1.3, S-3.3.3, S-2.2.3, S-15.1.7, S-17.2.7, S-17.2.8] [DM]

SC-2.DM.5.2: The system must inform the team leadership if a controller is not operating in
a mode that accepts the assignment of control actions. [S-37.1.3, S-40.4.3, S-1.1.3, S-3.3.3, S-
2.2.3, S-15.1.7, S-17.2.7, S-17.2.8] [DM]

SC-2.DM.6: A controller on the team must not change its assigned control responsibilities based
solely on the addition of a new controller. Specifically:

337

SC-2.DM.6.1: The controller must not drop its assigned control actions because a new
controller is perceived to be better suited for the task. [S-37.1.3, S-40.4.3, S-1.1.3, S-3.3.3, S-
2.2.3, S-15.1.7, S-17.2.7, S-17.2.8] [DM]

SC-2.DM.6.2: The controller must not change its planned control handoff because a new
controller is perceived to be able to take over early. [S-56.3.7] [DM]

SC-2.DM.7: The team leadership must have control authority over the addition or removal of
controllers from the team. Specifically:

SC-2.DM.7.1: The team leadership must be able to direct other controllers not to add or
remove specific controller(s) from the team. [S-41.5.3, S-41.5.5, S-44.8.2, S-44.8.5, S-1.1.1, S-
1.1.5, S-10.5.1] [DM]

SC-2.DM.7.2: The team leadership must be able to remove, or direct the system to remove, a
specific controller from the team. [S-43.7.3, S-1.1.3] [DM]

SC-2.DM.8: The system must be able to handle the dynamic existence of subprocesses within the
shared controlled process. Specifically:

SC-2.DM.8.1: The system must employ unique identifiers for each subprocess that are
consistent across the controllers on the team (related to SC-2.CA.2.6). [S-4.4.5] [DM]

SC-2.DM.8.2: The system must not automatically apply a control assignment specified for
one (possibly stale) subprocess to another (possibly new) subprocess. [S-1.1.2] [DM]

SC-2.DM.8.3: The system must be able to account for subprocesses that are too volatile in
presence to control, and instead, focus execution on those that are stable enough for the
system to control. [S-1.1.3] [DM]

SC-2.DM.9: A controller must be added to the team in a state that does not require immediate
direction from the team leadership. [S-1.1.5] [DM]

SC-2.DM.10: The team leadership must be able to specify a subset of the controllers over which
the automated (or distributed) control allocation process assigns control actions. [S-11.6.1] [DM]

Safety Constraints Primarily Traced to Dynamic Connectivity (DC)

The following safety constraints are derived from the refined scenarios that relate to the dynamic
connectivity collaborative control dynamic. The labeling follows the same convention specified for
mutually closing control loops above.

SC-2.DC.1: The system must predict whether or not controllers will be disconnected from the
team given the location the assigned control actions will be provided to their subprocesses.

SC-2.DC.1.1: The system must inform the team leadership if it predicts controller(s) to become
disconnected as a result of the control assignment. [S-37.1.1, S-40.4.1, S-43.7.1, S-43.7.5, S-1.1.1,
S-1.1.5, S-10.5.1, S-3.3.5, S-11.6.1, S-4.4.2] [DC]

SC-2.DC.1.2: The network connectivity prediction must account for the predicted location of
controllers available to relay messages based on their assigned control responsibilities. [S-
40.4.5, S-1.1.5, S-2.2.5] [DC]

338

SC-2.DC.2: The network must be able to relay communication messages (e.g., control and
coordination) over multiple hops from the source to its destination. [S-37.1.1, S-40.4.1, S-43.7.1, S-
1.1.1, S-10.5.1, S-3.3.1, S-3.3.5, S-11.6.1, S-4.4.2] [DC]

SC-2.DC.2.1: If the system is unable successfully relay a message to its destination, it must
inform the source that the message was not transmitted. [S-37.1.1, S-40.4.1, S-43.7.1, S-1.1.1, S-
10.5.1, S-3.3.1, S-3.3.5, S-11.6.1, S-4.4.2] [DC]

SC-2.DC.2.2: The system must allow the team leadership to cancel a control assignment, if
needed, using other controller(s) as relays. [S-37.1.2, S-39.3.2, S-39.3.3, S-40.4.2, S-42.6.2, S-
42.6.3, S-44.8.4, S-1.1.2, S-10.5.2, S-3.3.2] [DM]

SC-2.DC.2.3: The system must specify and authenticate the source, the destination, and the
time of origin of information in all messages (relayed and direct). [S-37.1.3, S-40.4.3, S-43.7.5,
S-56.3.7, S-1.1.5, S-10.5.3] [DM]

SC-2.DC.2.4: The controller specified as the destination of a message must treat a relayed
message that originated from a specified source the same way as if the message was directly
received from the source. [S-37.1.3, S-40.4.3, S-43.7.5, S-1.1.3, S-1.1.5, S-10.5.3] [DM]

SC-2.DC.2.5: A controller that is not specified as the destination of a message must not treat
a message it receives as intended for itself. [S-38.2.3, S-41.5.3] [DM]

SC-2.DC.2.6: A controller specified as the destination that receives multiple different versions
of control or coordination messages must consider the information with the most recent time
of origin. [S-43.7.3, S-56.3.7, S-1.1.3, S-10.5.3] [DM]

SC-2.DC.2.7: The time at which a controller receives a message must not be used by itself as
a timing reference for coordinated execution [S-15.1.7, S-17.2.7, S-17.2.8] [DC]

SC-2.DC.3: The system must have a protocol to handle the loss of communications between
controllers. Specifically:

SC-2.DC.3.1: The loss of communication protocol must specify how long controllers can
continue their nominal operating mode before reverting to an alternate behavior. [S-37.1.3, S-
40.4.3, S-1.1.3, S-10.5.3] [DC]

SC-2.DC.3.2: The loss of communication protocol must specify what the alternative behavior
is if a controller enters loss of link from different types of nominal operating modes. [S-37.1.3,
S-40.4.3, S-1.1.3, S-10.5.3] [DC]

SC-2.DC.3.3: The system must inform the team leadership when controllers have entered a
loss of link operating mode. [S-37.1.3, S-40.4.3, S-1.1.3] [DC]

SC-2.DC.3.4: The protocol must specify a process to transition controllers back from a loss of
link mode to a nominal operating mode. [S-37.1.3, S-40.4.3, S-1.1.3, S-10.5.3] [DC]

SC-2.DC.3.5: A loss of link operating mode must not enable the controller to behave in a way
that conflicts with the execution of the mission. Specifically:

SC-2.DC.3.5.1: The loss of link mode must not allow a controller to violate the intent of
the team leadership (e.g., a controller must not provide a control action it is not authorized
to provide by the team leadership). [S-41.5.4, S-42.6.4, S-3.3.4, S-2.2.4] [DC]

339

SC-2.DC.3.5.2: The loss of link mode must not lead a controller to issue control actions
that exceed its control authority or capability. [S-41.5.4, S-42.6.4] [DC]

SC-2.DC.3.6: The system must assist human controllers execute the loss of link protocol (e.g.,
provide operating recommendations aligned with the alternative behavior). [S-56.3.6] [DC]

SC-2.DC.4: Multiple controllers that collaborate to provide coupled control actions or control
handoffs must maintain a connectivity of [TBD] level with one another and of [TBD] level with
the team leadership to carry out those responsibilities. [S-3.3.3, S-2.2.3] [DC]

SC-2.DC.5: Every controller must be informed which controllers it has connectivity with
(whether direct or indirect connectivity) and those it does not. [S-11.6.5] [DC]

Safety Constraints Derived from Traditional STPA Feedback Control Factors

The following safety constraints are derived from the refined scenarios that relate to the
traditional feedback control loop causal factors addressed in baseline STPA. Only a subset of the
scenarios refined from these factors are included below for demonstration purposes. The labeling
follows the same convention specified for mutually closing control loops above.

SC-2.X.1: Unsafe Control Input: Commands from higher authorities to the team leadership must
be unambiguous and timely. Specifically:

SC-2.X.1.1: They must not be misinterpreted as a command not to direct the team to provide
a control action. [S-37.1.1, S-40.4.1, S-40.4.5, S-43.7.1, S-43.7.5, S-1.1.1, S-10.5.1]

SC-2.X.1.2: They must not be misinterpreted as a command to direct an additional controller
to provide a control action that is already assigned. [S-37.1.2, S-39.3.2, S-40.4.2, S-41.5.5, S-
42.6.2, S-42.6.5, S-1.1.2]

SC-2.X.1.3: They must not be misinterpreted as a command to assign a specific controller to
provide a control action it cannot provide, nor as a command to not direct a specific controller
that can provide a control action. [S-38.2.2, S-41.5.2, S-41.5.5, S-44.8.2, S-44.8.5]

SC-2.X.1.4: They must not be misinterpreted as a command to disregard hazardous gaps or
overlaps in directing controllers to hand off a control action. [S-47.1.6, S-48.2.6, S-56.3.8]

SC-2.X.1.5: They must be directly and unambiguously traceable to the control authority of the
team. Specifically:

SC-2.X.1.5.1: They must not be misinterpreted as direction for the team to provide, or not
provide, certain control actions when the command is intended to apply to other control
actions. [S-1.1.1, S-1.1.2, S-10.5.2]

SC-2.X.1.6: They must not mischaracterize the priority of control actions. [S-10.5.1, S-10.5.3, S-
11.6.1, S-11.6.5]

SC-2.X.1.7: They must not be misinterpreted as directions to execute coupled control actions
separately. [S-3.3.1, S-3.3.3, S-3.3.5, S-2.2.1, S-2.2.3, S-2.2.5, S-11.6.3, S-4.4.5]

SC-2.X.1.8: They must not be misinterpreted as a direction to provide a control actions
coupled to another, even if the other coupled action is not properly executed. [S-3.3.2, S-2.2.2]

340

SC-2.X.1.9: They must not be misinterpreted as setting temporal constraints that conflict with
the safe sequencing of control actions. [S-15.1.6, S-15.1.8, S-17.2.6, S-17.2.8]

SC-2.X.1.9.1: They must not constrain the end time of one action to be before the start time
of another coupled action that requires temporal overlap.

SC-2.X.2: Unsafe Control Input: Controllers outside the team must not issue commands to
controllers on the team that conflict with commands provided by the team leadership unless the
command is necessary to prevent the system from entering a hazardous state. Specifically:

SC-2.X.2.1: Controllers outside the team must not direct controllers on the team to provide
control actions that are different from those directed by the team leadership. Similarly, they
must not override controllers on the team from issuing control actions directed by team
leadership [S-37.1.3, S-40.4.3, S-43.7.3, S-1.1.3, S-3.3.4, S-2.2.3, S-4.4.3]

SC-2.X.2.2: Controllers outside the team must not direct controllers on the team to issue
control actions that have already been assigned to other controllers by the team leadership.
[S-38.2.3, S-39.3.3, S-40.4.3, S-41.5.3, S-41.5.4, S-42.6.4] [DA]

SC-2.X.2.3: Controllers outside the team must not direct controllers on the team to issue
control actions that they are not capable of performing. [S-44.8.3, S-44.8.4]

SC-2.X.2.4: Controllers outside the team must not direct controllers on the team in a way that
conflicts with the safe temporal sequencing of their task executions. Specifically:

SC-2.X.2.4.1: Controllers outside the team must not issue commands that conflict with the
safe sequencing of a control handoff between controllers. [S-47.1.7, S-48.2.7, S-56.3.7]

SC-2.X.2.4.2: Controllers outside the team must not issue commands that conflict with the
safe sequencing of control actions provided by other controllers. [S-15.1.7, S-17.2.7]

SC-2.X.2.5: Controllers outside the team must not direct controllers on the team in a way that
alters the control priorities specified by the team leadership. [S-10.5.4]

SC-2.X.2.6: Controllers outside the team must not introduce tasks into the system (e.g., fake
tasks, duplicative tasks) that obfuscate, distract, or deny the ability of controllers on the team
to execute tasks directed by the team leadership. [S-10.5.4]

