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Abstract

Human teams collaborate by establishing roles, changing functional authorities, maintaining
team cognition, coordinating, and helping one another close control loops. These complex
interactions are inspiring novel system concepts to improve human-machine and multi-machine
collaboration. However, these new systems challenge existing methods to model, analyze, design,
and assure their safety. As such, few have been fielded in safety-critical domains like aerospace.

To address this gap, this work develops a rigorous and systematic approach to analyze safety
and enable safety-guided design of systems that exhibit collaborative control. It introduces a
system-theoretic framework to describe multi-controller interactions. This includes a taxonomy
of seven structural dimensions that influence such interactions and nine dynamics observed in
collaborative control that are defined using System-Theoretic Accident Model and Processes
(STAMP). An analyzed set of controller interactions in aerospace systems demonstrates the
framework and highlights how designers are trying to create more sophisticated systems.

The framework provides the necessary foundation to extend the state-of-the-art in hazard
analysis, System Theoretic Process Analysis (STPA), to systematically address collaboration.
First, a mechanism is developed to incorporate the nine collaborative control dynamics into
STAMP control structure models so that they are explicitly considered in hazard analysis.
Second, a process is derived from STPA to identify unsafe combinations of control actions
between multiple controllers. The procedure systematically considers potential issues involving
gaps, overlaps, transfers, and mismatches in authority that are found in teams. It is executed
using an abstraction-based algorithm that manages combinatorial complexity and provides
automation support. Third, a method is introduced to identify causal factors from these unsafe
control combinations that relate to the collaborative dynamics. The new technique, STPA-
Teaming, is applied to a manned-unmanned aircraft teaming case study, and it finds new causal
factors not previously found in a past hazard analysis of the same system.

Finally, a structure is derived from Intent Specification to (1) integrate design and assurance
processes, (2) support system modeling and analysis at different levels of abstraction, and (3)
trace engineering activities using a means-end hierarchy. The framework integrates STPA-
Teaming into a broader systems engineering approach. It also leverages the analytical structure
of STPA-Teaming to provide novel traceability of its results directly to architectural design
decisions. The safety-guided approach is illustrated using the same case study as above.

Thesis Supervisor: Nancy G. Leveson, Ph.D.
Title: J. C. Hunsaker Professor of Aeronautics and Astronautics
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Chapter 1: Introduction

1.1 Motivation

A system is “a set of components that act together as a whole to achieve some common goal,
objective, or end” [1, p. 40]. Aerospace systems components consist of hardware, software, and
humans. Human-to-human interactions in systems can be complex. The social process of teaming
involves dynamics in establishing roles, changing functional authorities, team cognition,
coordination, and helping one another close control loops [2]. These mutually influential
interactions allow teammates to leverage each other’s contributions to joint activity to improve
performance in a task or to achieve something they cannot do alone.

The recognized benefits of software control in precision, efficiency, cost, and operational
reliability [3], [4] have helped permeate automation in many facets of fielded aerospace systems.
However, despite amazing technological progress and expanding applications, the basic
interactions between humans and software controllers have remained relatively limited in these
safety-critical systems. Most follow the same basic concept. Automated machines control various
processes using feedback loops. Humans generally set goal conditions for the control effort,
supervise the machines, and in some cases, intervene by changing parameters and modes or by
disabling them altogether.

Technological advances, limitations of current systems, and market pressures are all
energizing interest in developing designed systems with new types of component interactions
inspired by human teams (Figure 1-1). The goal is to extend this social process to enable humans
and machines, or multiple machines, to work better together by contributing different strengths
and mitigating each other’s weaknesses.

Human Teaming Inspires New Interactions in Designed Systems

,.g" %‘-’Or -g’ %"’Or ,.t %‘-’Op
,} — 8 — " N — F &
g‘_g — g — = —
human-human human-machine machine-machine

Figure 1-1. Interactions in Human Teams Inspire Designs of New Complex Systems

For example, software controllers, while faster and more precise than humans, are also brittle
and cannot handle situations that exceed their programmed bounds or were unforeseen in design
[4], [5]. Conversely, by nature, humans are creative problem solvers that can help overcome such
situations but are generally poor at serving in passive monitoring roles and cannot effectively
intervene if they have been out of the control loop [4]. The outcome of their actions can be
improved if the two form a collaborative partnership. Similarly, teams of multiple machines offer
opportunities for different systems to leverage potentially disparate capabilities or harness their
combined effects to improve their output synergistically.
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The past decade has witnessed numerous proposed concepts to implement these more
complex interactions in aerospace systems. For example, the potentially $500B market of Urban
Air Mobility (UAM)! [6], [7] is confronted with an anticipated pilot shortage [8], and its demands
are expected to exceed human pilot and air traffic controller workload capacities [9]. As such,
some in the aviation industry envision partnering humans with future automated controllers that
would be certified to safely take on some of the operating responsibilities [10]. The industry is
also exploring how teams of ground-based human operators can share remote control of multiple
UAM aircraft, possibly without any vehicle operator on board [6], [8].

Other aerospace organizations are exploring similar concepts. The airline industry is
studying whether flight crews can be reduced to a single pilot using support from onboard
automated systems [11], [12] or from ground-based human-machine systems [5], [13], [14]. Civil
aviation authorities are researching how distributed decision-making and dynamic switching
between human and automated controllers can help integrate UAM and Unmanned Aircraft
Systems (UAS) traffic into the National Airspace System [8], [9], [15]-[17]. Similarly, the space
industry is seeking to implement distributed control of new multi-satellite constellations [18], and
it is exploring how human-robot partnerships improve deep space and planetary exploration [19].

Defense sector roadmaps show similar ambitions in improving how autonomous systems
partner with humans and other machines [20], [21]. For example, new defense system goals
include collaboratively pairing pilots with automation that acts as an additional crewmember and
dynamically offloads some operating tasks [22], [23]. Numerous early prototypes of distributed
control multi-UAS and multi-munition systems have demonstrated they can achieve collective
group effects [24]-[27]. Several conceptual designs include teaming human-piloted aircraft with
UAS to jointly execute complex missions [28]-[31]. Finally, some argue the military should
increase its use of smaller collaborative heterogeneous unmanned systems to deliver more
overwhelming effects [32].

Despite the high interest in engineering aerospace systems with these more complex
interactions, few (except for the simplest designs) have actually been fielded. Design options are
constrained by a gap in the existing systems engineering processes, which cannot effectively
model, analyze, design, and assure the safety of such systems. The goal of this dissertation is to
solve part of this gap by developing a novel framework that supports the analysis and design of
systems with degrees of freedom in component interactions that go beyond those fielded today
in aerospace.

t Urban Air Mobility (UAM) is part of the larger Advanced Air Mobility (AAM) concept, which envisions
large numbers of increasingly autonomous aircraft operating densely in airspaces to transport people and
goods [6]. The terms UAM and AAM are used interchangeably in this work.
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1.2 Challenges

Safety in aviation systems is non-negotiable and is arguably the most critical constraint to satisfy.
If an aviation system is viewed as unsafe, it will not be accepted by society and will not be
adopted, regardless of how well the system performs in other aspects.

Historical trends in aviation indicate that the introduction of new generations of automated
technologies is typically immediately followed by an initial increase in accident rates [33]. To
improve safety, potential unsafe causal factors must be systematically identified, understood, and
eliminated or mitigated over the life cycle of the system. New systems that involve more complex
human-machine and multi-machine interactions will be no different.

This section first describes some of the challenges observed in relevant contemporary systems
that have led to accidents. These systems include the simpler interactions found in modern
supervisory control of automation, as well more complex interactions in teams of human
operators. Next, it explores the numerous open questions expressed in the literature regarding
how to design more collaborative relationships into systems.

1.2.1 Relevant Challenges in Contemporary Systems

Aviation's history is fraught with unsafe interactions involving human supervisory control of
automated systems. These are important to consider as they form a subset of the expanded types
of relationships being considered in future designed systems.

In 2009, Air France flight 447 (AF 447), with its fully functional Airbus A330 and highly
trained flight crew, lost control in cruise, crashed, and killed all 228 people onboard. A temporary
blockage of the airspeed sensors led the aircraft automation to change flight-control modes and
displays and created confusion in the cockpit on how to interact with the aircraft [34], [35]. In
2013, a Boeing 777 crashed short of its landing runway when the flight crew issued manual flight
control inputs on a diverged mental model of the auto-throttle operating mode [36]. More
recently, several Boeing 737-MAX flight crews had to “fight” unsafe automated flight control
inputs to regain aircraft control. In these cases, design defects and certification oversights that
occurred in market-driven haste to field the new aircraft contributed to two crashes, 346 lives lost,
and a costly worldwide grounding of the new aircraft fleet [37].

Contemporary aviation systems also include human teams, which exhibit the complex
dynamics of interest, but in doing so, have also contributed to accidents. In the same AF 447
example, the confusion that arose in diagnosing the flight control system also led to a catastrophic
breakdown in teamwork within the crew of three. Inadequate coordination and rapid changes
in control authority resulted in two pilots issuing simultaneous opposite control inputs, which
canceled each other out [35]. The system was not designed to prevent getting into such a
hazardous state from this contributing factor.

Military aviation has also suffered from unsafe human teaming. In 1994, two US Air Force F-
15s accidentally shot down two US Army Blackhawk Helicopters, killing all 26 personnel
onboard. Some of the causal factors of this friendly-fire accident relate to unsafe teamwork
between two airborne controllers on the AWACS (Airborne Warning And Control System) that
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managed the Iraqi No-Fly Zone [38]. Overlaps, gaps, and evolutionary changes in control
authority of the air traffic resulted in an unsafe collective output from the AWACS controller
team.

1.2.2 Open Challenges to Address

The community is becoming increasingly aware of some of the difficulties associated with
expanding the nature of component interactions in aerospace systems. Several recent studies
describe key challenges and research gaps [8], [23], [39]-[44], and highlight three recurring topics:
(1) it is challenging to engineer human-team inspired interactions, (2) there is a need for new
associated design methods, and (3) existing safety assurance processes are unable to address these
more complex interactions. The state-of-the-art in modeling, design, and analysis for each of
these topics is further reviewed in Chapter 2.

All eight studies describe the difficulty of engineering the attributes that exist in human teams
into systems that facilitate safe teaming between humans and automation. System components
(humans and machines) may need to handle context-dependent dynamics such as establishing
and transitioning roles, responsibilities, and functional authorities. Collaborators may have to
establish and maintain shared situational awareness of a joint control problem. Controllers, both
human and automated, may help close each other’s control loops and perform mutual
monitoring. These dynamics are further complicated by inherent differences in how controllers
interpret information and time, especially when humans partner with machines.

Other attributes, which current systems already struggle with, may be further challenged by
more complex interactions. The level to which humans trust machines and understand how they
work heavily influences their interactions [45]. The age-old open question of how to effectively
keep humans in the control loop when working with automation also remains. As more functions
become reliably automated, it is less likely human operators working with them will be able to
detect off-nominal events or recover control [4], [44]. More dynamic and interdependent
relationships between humans and automation can further strain these issues.

The next recurring topic highlights how current design techniques fall short in engineering
more complex systems. There is a clear need to improve how interdependence is modeled
between system components. Systematic and rigorous processes are also lacking to guide
architectural decisions, such as functional allocation [39]. The community increasingly
recognizes that the traditional reductionist approaches commonly used are inadequate to design
complex and safety-critical systems. For instance, the typical method of divide and conquer does
not account for interactions between entities [38], [46], and the more recently popular practice of
deriving design decisions based on a Level-of-Automation number is too simplistic to handle real-
world complexities [47]. More sophisticated methods (see Chapter 2) have their own challenges
and limitations and, therefore, have not been operationally applied in aerospace.

The last common theme centers on our inability to assure novel aerospace systems. Assuring
safety requires a holistic systems engineering approach that spans requirements generation,
design, verification and validation (V&V), certification, operations, and evolution. The studies
point to challenges associated with developing requirements and metrics for collaborative
systems that are end-to-end traceable and analyzable. They all describe shortfalls in traditional
V&V methods, which are challenged against complex software-intensive systems, do not address
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the influence of dynamic partnerships with automation on human performance [48], and are
unable to validate if a system will degrade gracefully.

In addition, many of the new technologies proposed are not addressed by prescribed
certification standards. For example, many new systems want to incorporate recent advances in
Machine-Learning, which employ non-deterministic and adaptive algorithms that have never
been successfully certified in safety-critical applications. Furthermore, the aviation regulatory
framework is predicated on a human pilot having final authority and responsibility for the
operation of an aircraft [49]. This premise creates tension with concepts that shift some of these
responsibilities over to autonomous functions. Finally, the significant costs of assurance activities
can be prohibitive to new, and often small, manufacturers of future UAM aircraft or UAS that
have limited resources.

1.3 Research Overview

The goal of this dissertation is to advance the state-of-the-art in system safety engineering to
address some of the challenges listed in Section 1.2.2. The following describes the overall research
objective, gap, contributions, hypotheses, and scope.

1.3.1 Research Objective

The objective of this research is to develop a rigorous and systematic framework that enables
safety analysis and safety-guided design of systems that exhibit collaborative control interactions.

1.3.2 Gap

The aerospace industry is clearly interested in engineering systems that enable “teaming”
between humans and machines and among multiple machines. While the term “teaming”
implies something new, it is vague and used to describe many different types of concepts, much
like other buzzwords. What it truly implies is that the community is pursuing system designs

that push the boundaries in the complexity of component interactions beyond what is currently
fielded.

Despite the interest, there is a distinct gap in the ability of systems engineers to describe the
different types of component interactions. Current modeling techniques are inadequate to
account for some of the dynamics observed in human teams that are inspiring new designs.
Finally, there are no rigorous and systematic processes to define and analyze system architectures
with these more complex interactions, nor to assure their safety in a cost-effective way [39].

Analysis techniques based on System-Theoretic Accident Model and Processes (STAMP) have
successfully guided the design of systems and their emergent properties, such as safety and
security, starting early in the engineering lifecycle. STAMP is an accident causality model
grounded in Systems Theory [38]. It enables systematic analysis of non-linear causal relations
between hardware, software, and human controllers that interact in systems. Its use of
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abstraction manages complexity, and its hierarchical framework helps reason about socio-
technical factors holistically and top-down. System-Theoretic Process Analysis (STPA) is a
hazard analysis method built onto STAMP that has become popular in many industries because
of its ability to identify potential causal factors early in design [50].

STAMP and STPA have attributes well-suited to address some of the challenges associated
with fielding the novel aerospace systems introduced earlier. However, they lack a framework
to systematically consider the collaborative dynamics sought in these systems. This dissertation
aims to address this gap to improve the analytical performance of these sophisticated techniques.

1.3.3 Research Contributions

Contribution 1: The system-theoretic definition of interactions observed in collaborative control.

A widely cited definition for team is: “A team consists of two or more entities who interact
dynamically, interdependently, and adaptively toward a common and valued goal, with unique
roles and functions to perform” [51, p. 3]. It is nearly identical to that of a system (see Section 1.1)
and, therefore, is not very useful by itself in distinguishing teams from other systems.

What makes teams different and so challenging to engineer is that their component
interactions are more complex than those in previously fielded designed systems in safety-critical
applications. Despite the strengths of system-theoretic methods to analyze complex systems,
many of the types of interactions that may be designed into systems have not been defined using
Systems Theory. This dissertation provides a framework to define interactions observed in
collaborative control so that they can be more completely analyzed using STAMP and the analysis
tools built on it.

The system-theoretic framework consists of (1) a taxonomy of the structure of interactions
between multiple controllers and (2) a set of dynamics observed in collaborative control. It creates
the necessary foundation to extend system-theoretic hazard analysis methods needed to
systematically identify causal factors associated with these interactions.

Contribution 2: Extensions to STAMP and STPA that enable systematic analysis of safety in
systems that exhibit collaborative control interactions.

STAMP and its analysis tools need extended guidance to systematically handle the more
complex, team-inspired component relationships sought in novel systems. Current STAMP
models tend to represent systems with rigidly assigned control authorities. The procedure in
STPA lends the focus of analysis to one controller and one process at a time. These methods do
not emphasize complex dynamics in collaboration, such as shared process models, joint control,
and shifting roles and responsibilities.

This dissertation introduces several extensions to STAMP and STPA to systematically identify
causal factors associated with collaborative control. First, a generic collaborative control structure
provides a mechanism to incorporate collaborative interactions in STAMP models. Second, a
process is established to identify unsafe combinations of control actions between multiple
controllers. The procedure systematically considers potential issues involving gaps, overlaps,
transfers, and mismatches in authority that are found in teams. Finally, a method is designed to
identify causal scenarios from these unsafe control combinations that are guided by the system-
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theoretic definition of collaborative interactions (Contribution 1). These extensions are
collectively referred to as STPA-Teaming.

Contribution 3: A framework to integrate safety-guided architecture design with assurance through
enhanced traceability.

Safety assurance processes are typically conducted separately from design and not until later
stages of development. By the time they are applied, it is often impractical to (1) modify the
system if safety issues are found, and (2) perform effective V&V to ensure hazards are properly
eliminated or mitigated. One of the strengths of STPA is its ability to analyze systems throughout
their engineering lifecycles, including in early conceptual design stages. This allows safety
requirements to be identified early when they are most useful and can establish traceability that
supports a more effective assurance by construction program [4].

This dissertation provides a framework derived from Intent Specification [52] to help
integrate design and assurance. The framework enables navigation and traceability between
three axes. First, the results of the hazard analysis are traced to derived safety constraints and
then to the selected V&V strategy. Second, the system is modeled at different levels of abstraction,
which represent a team as a whole at a higher level, but also capture collaborative interactions
within the team at a lower level. And third, the system is described using different views in a
means-end hierarchy, starting from concept of operation, down to low-level component
implementation.

Given the focus of this research, the dissertation emphasizes how Contributions 1 and 2
integrate into the framework, on all three axes, to support conceptual design decisions regarding
collaborative control systems. However, a similar construct may be generalizable to other types
of systems beyond those that exhibit complex team-inspired interactions.

1.3.4 Hypotheses and Evaluation

The research explores the following three hypotheses. Their evaluation supports an argument
toward validation of Contributions 1 and 2 to the state-of-the-art provided by this dissertation.
Contribution 3 includes a demonstration of the vision for how this work fits within a broader
systems engineering context, but no formal evaluation is provided.

Hypothesis 1

The system-theoretic collaborative interactions framework provides a mechanism to categorize and describe
component interactions that are, or planned to be, designed into aerospace systems.

The evaluation of this hypothesis is conducted in Chapter 3 over a set of fielded and unfielded
aerospace systems reviewed in the literature. It provides a demonstration of how to categorize
interactions within these systems using the framework. Analysis of the categorized interactions
supports the conclusion that the component interactions are being sought.
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Hypothesis 2

The system-theoretic collaborative interactions framework describes component interactions that are not
specifically addressed by existing hazard analysis techniques, including STPA.

This hypothesis is evaluated in Chapter 4 by qualitatively showing that one or more of the
component interactions identified in the framework, which are sought out in the design of
aerospace systems, are not systematically addressed in the existing hazard analysis techniques.

Hypothesis 3

The STAMP and STPA extensions identify causal factors associated with collaborative control
interactions, which are not systematically found using the existing STPA guidance.

This hypothesis is evaluated in Chapter 5 using a case study of a real-world system concept
involving Manned-Unmanned Teaming (MUM-T). The system involves a human-piloted
military aircraft that collaborates with multiple UAS to execute mission tasks. The evaluation
includes two parts.

First, the extended hazard analysis technique, STPA-Teaming, is performed on the same
MUM-T concept that was previously and independently analyzed using STPA [53]. The
evaluation demonstrates how new scenarios related to collaborative control are uncovered using
the analytical extensions developed in this work. However, the system in this case study does
not exhibit all of the collaborative interactions defined in this dissertation.

The second part of the evaluation fills this gap. The original case study is expanded by
hypothesizing new collaborative control interactions that could be incorporated into MUM-T.
Hazard analysis of the new concept completes the demonstration that STPA-Teaming finds
causal scenarios associated with all of the collaborative control dynamics defined.

1.3.5 Scope

The research is scoped in three ways to ensure timely completion with the appropriate depth and
level of contribution of a Ph.D. dissertation. First, the analysis of collaborative interactions is
restricted to safety. Here, safety is defined as the absence of unplanned and unacceptable losses [38].
These losses may include loss of life, injury, or damage to property, as often described in accident
reports. However, they can also include broader items, such as loss of mission, loss of reputation,
etc., which may also be unacceptable to stakeholders for some systems.

There can be numerous and often competing objectives in design. As previously described,
safety is arguably the most important constraint to satisfy in aerospace applications. However, it
does not necessarily reflect other figures of merit that influence design optimization. In addition,
while STAMP and STPA can address other emerging system properties, like security, these are
not the focus of this work.

Second, the analytical extensions target a subset of all possible system interactions. They
specifically concentrate on those observed in collaborative control as defined in this work. Many
other types of component interactions are well-studied in the STAMP literature. For example,
feedback control loops for supervisory control or automated decision aid systems are well
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understood in STAMP and do not need to be redefined here. The goal is to enable analysis of
system designs that go beyond these more traditional relationships. However, it is also possible
that other types of interactions beyond those identified in this dissertation may be proposed. As
such, this work aims to address the most important and distinctive aspects needed to extend
STAMP and STPA for collaborative control.

Third, this research focuses on designed systems in the aerospace domain. It is expected that
many of the techniques developed will also apply to other fields. However, the set of
collaborative interactions studied is bounded to those anticipated in aerospace.

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows.

Chapter 2 reviews and evaluates the literature relevant to the research objective. It describes
the state-of-the-art in modeling, designing, and analyzing systems inspired by teams. The
literature reviewed includes theoretical foundations of teaming interactions, methods used to
design their architectures, and assurance processes to get them fielded. The chapter also provides
the necessary background in Systems Theory, STAMP, and STPA to justify their use and the need
for analytical extension to address the research gap.

Chapter 3 introduces the system-theoretic framework to analyze collaborative control
interactions. It defines a taxonomy of the structure of interactions between multiple controllers
and a set of dynamics observed in collaborative control. The chapter applies the framework to a
sample of interactions found in fielded and unfielded aerospace systems to demonstrate its use
and support its relevance.

Chapter 4 leverages the theoretical foundation from Chapter 3 to develop extensions to
STAMP and STPA that enable systematic analysis of causal factors associated with collaborative
control. The new techniques include guidance to model collaborative control structures, a
mechanism to identify when control actions by multiple controllers are unsafe together, and a
method to develop causal scenarios framed by the collaborative dynamics.

Chapter 5 applies the extended hazard analysis technique to a case study of a real-world
aerospace concept. First, the new method is applied to the same system previously analyzed
using STPA to demonstrate how it finds new causal scenarios. Next, the concept in the case study
is expanded to demonstrate how the new technique addresses all of the types of collaborative
control dynamics defined in this work.

Chapter 6 describes a framework derived from Intent Specification that integrates safety-
guided design with assurance processes using the results of the extended hazard analysis
techniques from Chapter 4. A demonstration illustrates how the framework can support safety-
guided design by rigorously deriving and tracing safety considerations to potential design
decisions.

Chapter 7 concludes by summarizing the dissertation, acknowledging its limitations, and
recommending future work to expand this research.
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Chapter 2: Literature Review

This section reviews the state-of-the-art in the literature related to the research objective. The
following concepts are necessary to have engineering control over modeling, analyzing,
designing, and assuring the safety of systems with complex interactions inspired by human
teaming. Four perspectives are explored.

Section 2.1 studies the theoretical foundations available to model and analyze interactions in
teams. Section 2.2 examines the methods employed to design architectures that seek these
interactions. Section 2.3 explores the processes available to assure the safety of such systems.
Finally, Section 2.4 reviews the relevance of system-theoretic approaches to engineer these
systems.

2.1 Theoretical Foundations of Team Interactions

Theoretical research on teaming originated as a human-centered study. In 1955, Marschak
published the first known “Theory of Teams” to describe interactions between teammates [54].
The field has since produced a significant body of research devoted to better understanding how
multi-person teams function.

More recently, a new community has extended the human teaming knowledge base to
explore how humans can collaborate with automated software-controlled systems. In parallel, a
separate research area has focused on distributed and collaborative control of multiple unmanned
systems. Many of their component interactions are relatable to those found in human teams.

It is important to understand the similarities in the interactions between these different types
of entities to develop a unified high-level framework for analysis and design, regardless of the
system composition. Similarly, differences must also be understood to enable refinement once
lower-level details are needed. To this end, this section surveys theoretical principles associated
with human, human-machine, and multi-machine teams. These lay the foundation for models
needed to design architectures and assure safety for systems with such complex component
interactions.

21.1 Human Teams

Sports teams, music bands, professional partnerships, and small military units are a few examples
of the multi-person teams ubiquitous in society. Teams in aviation include flight crews, flight
formations, pilots interacting with air traffic controllers (ATC), and multiple ATC facilities
collaborating to manage traffic.

Several accidents in the 1970s stressed the importance for airline flight crews to function as a
team instead of as a set of individuals with technical expertise in operating aircraft [23]. This
fueled a surge in teaming research [55] and launched the concept of Crew Resource Management
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to train pilots on the effective teamwork necessary for flight operations [56]. The resulting body
of knowledge summarized below focuses on attributes in team models, theories of team
cognition, and integration of teams within larger systems.

The foundational literature on teaming is mostly grounded in Human Factors and
Organizational Psychology. It describes teaming attributes in many different ways. For example,
MIT’s Humans Systems Engineering course associates teams with association, interdependence,
communication, interaction, influence, and structure [57]. In another example, Paris et al. explain
how teammates must handle multiple sources of information, task interdependence, coordination and
communication between members, common valued goals, specialized roles and responsibilities, task-
relevant knowledge, and adaptive strategies [58]. The same authors also acknowledge that the
literature provides a vast variety of different taxonomies and models, which have varied in
emphasis over the decades.

This wide disparity of models is also echoed in a well-cited paper by Salas et al. [59] who
surveyed 138 related studies on teams. To provide focus, they distill the results of their survey
into a set of “five core components” needed for effective teamwork. First, Team Leadership is
needed to direct and coordinate the activities of other team members, assess overall performance,
reassign tasks, and synchronize contributions. Second, Mutual Performance Monitoring helps
develop common understanding and identify mistakes or lapses in teammates. Third, Backup
Behaviors enable responsibilities and workloads to be shifted. Fourth, Adaptability allows the team
to identify a need to change strategy and turn to a backup behavior. And Fifth, Team Orientation
is an attitudinal attribute describing the willingness of a member to work in a team and accept
feedback from teammates [59].

Salas also highlights that the five core components must be supported by three “coordinating
mechanisms”: Shared-Mental Models, Mutual Trust, and Closed-Loop Communications [59]. This
model, visually represented in Figure 2-1, represents the state-of-the-art in defining the elements
of effective human teamwork from an organizational psychology perspective.

The more specific study of team cognition has also generated a lot of interest. There are two
complementary theories to describe how teams establish situational awareness (SA) [57]. The
tirst, developed by Endsley [60], focuses on shared elements of SA. In this model, teammates form
overlaps in SA to coordinate in joint activity. These overlaps define the information that must be
shared, or held in common, between different members. The second model, proposed by Stanton
et al. [61], considers SA as distributed. Here, instead of focusing on common knowledge, the
emphasis shifts to knowledge the system possesses as a whole and whether teammates have SA
of who on the team knows what and when. This process drives coordination requirements.

These two theories are now viewed as complementary, where team cognition includes both
shared-mental models (models of activity and environment held in common) and transactive
memory [57]. The latter term refers to benefits that can be obtained on a team when there are
useful divergences in knowledge between teammates, and when teammates have SA of who
knows what [62].
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Figure 2-1: Model of effective human teamwork (adapted from [59])

Another common theme in the literature, which is relevant to this work, is that “teams are
more than collections of individuals, and teamwork is more than the aggregate of their individual
behaviors” [58, p. 1]. This depicts teaming as an emergent system property, which can therefore
be analyzed from a system-theoretic lens. While this concept is existent in the literature, the
models that claim to use such an approach only do so superficially. They treat the team as an
open system with inputs to the team, team processes, and outputs of the team [58], [61] but do
not address the core theoretical principles of Systems Theory (see Section 2.4). Most importantly,
these models provide little guidance on how to analyze the team when integrated into a larger
system context.

This last topic is touched on in Ilgen’s research summary on the behavior of teams embedded
within larger organizations [55]. In it, he notes that the consideration for the larger system
increases the analytical emphasis on inputs and outputs rather than just focusing on team
processes. More notably, Kozlowski & Salas [63] employ Organizational Systems Theory to
model the transfer of team training between multiple hierarchal levels: organization, team, and
individuals. The authors note that the use of hierarchy and emergence helps uncover training
issues that would otherwise go neglected. However, their model is specific to their training topic,
and no path is provided to generalize the approach to a broader analysis of team dynamics.

In summary, this body of research provides useful considerations to understand how teams
function, but some gaps require further investigation. First, the majority of the models surveyed
by Paris [58] and Salas [59] are aimed at improving various aspects of team performance, but
none of them focus explicitly on ensuring safety. Second, these studies rarely provide tangible
guidance to systematically analyze or design a team as a system. Many of them provide a model
but no instructions on how to use it. Third, the available direction is even sparser on how to
analyze or design a team that interacts within a larger socio-technical context, and no general
framework to guide such activities is available. Finally, the models in this section are limited to
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interactions between humans only. The implications of introducing machines as teammates are
explored in the next two subsections.

2.1.2 Human - Machine Teams (HMT)

The Human-Machine Teaming (HMT)? research community has derived much of its theory from
the study of human teams described above. Its literature is summarized below with the intent to
(1) highlight different types of Human-Automation Interactions (HAI), (2) identify attributes of
HMTs important in modeling, and (3) distinguish the fundamental differences between HMTs
and human-only teams.

The concept of HMT is interpreted in many different ways. To some, it loosely represents any
human interaction with a machine, and therefore a person using a simple gas meter can be
classified as an HMT, as is done by Stanton [61]. However, most have higher expectations and
sometimes label machines that do not rise to the level of teammates as tools [64], [65].

Novel HMT concepts generally seek to shift the paradigm of HAI from the traditional human
supervisory control model over to more collaborative partnerships. These partnerships are still
generally expected to be human-directed [39]. However, concepts are also theoretically possible
where machines may supervise humans [60], [66]. Furthermore, Mixed-Initiative Interaction
systems even consider how this hierarchy may dynamically change during operation given
different types of collective work [67].

Mosier et al. provide a useful orientation to different types of HAIs found in aviation
autonomous technologies [23]. In their work, Information Automation technologies such as
Enhanced Vision Systems (EVS), Traffic Collision Avoidance Systems (TCAS), navigation
systems, and decision support systems are considered tools with limited capability to function as
a teammate. They then classify supervisory control systems as more proactive, human-initiated
and supervised, and as including a sense of shared mental models and collaboration [23].
Automated copilots like the one described by Dropkin et al. [22] are exemplified as such systems.

They then describe novel HMT concepts as forming even tighter interdependence between
humans and automation. Distinguishing features include mutual monitoring, providing
feedback to each other, and adapting together dynamically [23]. Early prototypes of these
systems exist [2], [68], but none have actually been fielded in aerospace [23], [39]. While these
categorizations are helpful to differentiate some HMTs from more basic HAls, the delineation is
still left too ambiguous to determine fundamental architectural differences.

The literature offers many different lists of HMT effectiveness characteristics to include in
modeling, much like what was found in human teaming. Some common characteristics distilled
from the following studies [5], [13], [43], [60], [69] include bi-directional information flow, shared and
team cognition, coordination and collaboration, shared authority, shared goals, directable (human
directable [5], [13]), and automation transparency. These are considered in a variety of modeling

2 Human-Automation Teaming (HAT) is also commonly used and is interchangeable with Human-Machine Teaming
(HMT) in this work.
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techniques, including look-up tables, finite-state machines, network theory, and computational
operator function models [70].

Unsurprisingly, many of the proposed performance attributes are drawn from the human
teaming theoretical foundations described previously. For example, Battiste et al. describe how
they leveraged key principles of Crew Resource Management (CRM), the 40+ year-old
benchmark for effective aircrew teamwork, to design an automated decision aid for a ground
control station operator [5]. Similarly, Mosier et al. derive key HMT characteristics from the “five
core components” and “coordinating mechanisms” previously discussed by Salas [59] (see Figure
2-1), and translate their meaning to the context of machine teammates [23].

However, it is insufficient to rely just on human factors and organizational psychology
research in human teaming to engineer a safe HMT system. Automated software-based entities
are not sentient beings, and concepts like knowledge, awareness, trust, or even intelligence do
not apply to them. As Klein et al. state: “the inherent asymmetry in competencies between people
and machines will always create difficulties for designing Human-Automation teams” [69, p. 93].

In fact, some have suggested that automation should never be labeled as a teammate since it
lacks affective and cognitive processes comparable to those of humans [71]. For example,
machines do not have a sense of responsibility, motivation, loyalty, or values to guide critical
problem-solving [39]. Unlike humans who employ creativity when they face the unknown,
machines are unable to perform beyond their programmed bounds [4]. They do not have good
capabilities to anticipate the needs of the team, particularly those of humans [39], [69]. They
handle information processing and timing differently than humans do [42]. Machines are
challenged by both syntactic and semantic nuances that humans can handle in natural languages
[65]. Finally, machines lack expected team etiquette and unduly interrupt humans [5], [39].

Many of these issues are the subject of dedicated research topics and an integrated approach
will be required to handle diverse technical disciplines. Clearly, HMT models must be able to
account for differences from human-only teams.

Trust-based effects are also different in HMTs. Trust is unidirectional as only humans can
trust automation, and not vice-versa. Itis a key factor in determining how a human interacts with
automation or intervenes. Under-trust in automation leads to disuse when it would actually
benefit team performance. Over-trust can lead to misuse and abuse where team performance can
degrade or a hazard can arise [45]. A human that does not trust the automation must allocate
resources to checking it as opposed to collaborating with it to accomplish team goals [59].

These effects have fueled calls to make automation transparent and explainable. When
automation lacks transparency, aviation operators face difficulty in answering “What is the
automation doing? Why is it doing it? What will it do next?” without being overwhelmed with
large quantities of information [3].

This is particularly challenging when using non-deterministic Machine-Learning (ML)
techniques that have permeated many automation applications. For example, a recent study
showed that humans preferred to collaborate with a more predictable rule-based software
system, rather than with a “state-of-the-art” ML system with higher stand-alone performance
[72]. Similarly, in another study where humans were trained to understand when an ML decision
aid was prone to making good or bad decisions, researchers found mixed results in the ability of
humans to properly calibrate their trust in such systems [73].
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Different models of trust exist in the literature. For example, Muir models trust as an
aggregation of different factors that allows it to progress through stages of predictability,
dependability, and faith [74], [75]. Cofta proposes another model in which trust and control are
two mechanisms for one to gain confidence in another entity: if they do not trust it, they must be
able to control it to have confidence in it [76]. Lee & See handle trust as a compilation of three
information bases regarding what, how, and why an automated system behaves a certain way [77].

NASA connects Lee & See’s model [77] to the human operator mental model in an analysis of
HMT effectiveness [78]. They then propose to assess operator mental models using various
measurements to adapt the system to better calibrate human trust in it, either through design
iterations and experimentations or during live operations. Unfortunately, those ideas are too
conceptual and unvalidated to be of any use at this stage.

Despite all the interest, the literature also recognizes that trust in HMTs still needs a better
definition and more precise analysis mechanisms to be useful in guiding design decisions [70]. It
is noted that the relationship of trust to Control Theory in Cofta [76], and mental models in Lee
& See [78], provides a pathway to integrate trust into a system-theoretic framework, such as the
one introduced in Section 2.4.

Another key challenge to address in HMTs is effectively maintaining the human in the control
loop. Humans are needed in complex system operations because of their creative and adaptable
behavior [4]. However, their ability to serve as effective monitors and backup controllers to
automation is inherently limited. Human monitoring vigilance cannot be maintained long,
especially in the presence of perceived reliability, and it can be difficult to recognize that the
automation is faulting if feedback is only coming from the automation itself [4].

Humans also face difficulties in intervening for several reasons [4]. They need time to rebuild
an accurate mental model of the system state to recover it. Humans are also often tasked with
recovering from difficult situations. Finally, their control skills may be diminished due to lack of
exercise because of the autonomy. This is also known as the “automation conundrum”: as more
functions become reliably automated, the less likely human operators will be able to detect and
recover control [44]. This phenomenon is described as a “fundamental barrier” in human
supervisory control of automation, and it is a motivator to expand the types of interactions to be
more collaborative in nature [4], [39], [44].

The HMT literature has similar gaps to those found in human teaming. There are many
different models with many different modeled attributes, and most are focused on effectiveness
rather than safety. They generally provide very little direction on how to use the models for
analysis or design. The models do not clearly determine if there are fundamental differences
between different types of HAIs, and which interactions specifically go beyond those
traditionally fielded in aerospace systems. Finally, the literature does not rigorously address how
to analyze HMT interactions with the environment, higher-level socio-technical systems, and
lower-level components.

2.1.3 Machine Teams

The study of collaborative behaviors achievable by multiple machines originated in controls [79]
and computer science [80]. Despite having different theoretical origins than research in human
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teams or HMTs, these systems exhibit complex interactions and dynamics that are relatable to
those involved in teamwork. The following is a brief review of multi-machine architectures, how
some of their system attributes relate to the previously surveyed teaming literature, and the
general gap observed in this basis of the literature.

The concept of executing a complex mission using a collection of robots has generated an
entire field of research, as illustrated in one recent survey on multi-Unmanned Aircraft Systems
(multi-UAS) studies [81]. Coordinated control of these systems can either be centralized, where
a single controller determines all the actions for all other systems, distributed, or some hybrid of
the two [82]. In distributed control, each individual system makes its own decisions about its
actions based on its goals, a reward function, and information shared with its peers [80].
Distributed architectures are most beneficial in highly complex and dynamic environments since
they reduce computational latencies and can handle communication losses better than centralized
solutions [83].

Many key attributes that enable distributed control of unmanned systems are relatable to
those previously described in human teams and HMTs. Like other teams, distributed systems
must be directable and share a variable common set of goals [80]. The very concept of distributed
control inherently relates to that of shared authority in teaming because multiple controllers can
influence a common process.

Distributed systems also rely on coordination and collaboration to achieve synergistic effects
[80]. This requires bi-directional information exchange between systems [83]-[86], whether
through active messaging, or passive observation of one another [79]. They employ algorithmic
processes to reach information consistency, or consensus [83], [84], [87], which is strongly related
to the concept of team cognitive alignment. Finally, they must do all this while being subjected
to time delays and asynchronization [87], [88], as observed in other types of teams.

While there is a very technically deep literature base for all the distributed control topics
described above, much of it treats these systems as fully autonomous and does not consider the
human interaction aspect. However, complete automation is a myth, and the safety of these
technologies must account for the human roles and ensure robot actions reflect their intentions
[34]. The challenges of human-in-the-loop control and trust play a greater role in these systems
than is often acknowledged, regardless of whether the human interacts as a “teammate” or as a
“supervisor”.

In addition, most of these studies are focused on performance optimization rather than safety.
The few examples that do emphasize safety [89]-[91] typically address it using a narrow
definition and lack the rigor required for safety-critical systems. Finally, the algorithmic nature
of these works often provides no path to analyze the system when integrated with its higher-level
socio-technical context. These shortfalls are likely part of the reason why these systems have not
yet been operationally fielded despite the high interest in them.

2.2 Architecture Design for Collaborative Systems

A system architecture has a strong influence on how a system as a whole will behave in its
intended functions [92]. For this reason, it is critical that the design of novel aerospace teaming
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system architectures be safety-guided. This section reviews the fundamental principles of system
architectures, techniques used to analyze the collaborative functions they enable, and the current
state-of-the-art methods to guide their design.

2.2.1 Introduction to System Architectures

The following discussion defines what a system architecture is, describes its role within the
development lifecycle, and highlights challenges that arise using common architecture
development techniques. This provides the foundation needed to (1) scope the meaning of
architecture with regard to collaborative control systems and (2) review analysis and design
techniques employed specifically for them.

In basic terms, a system architecture is a model of the system entities and the relationships
between them [92]. In the traditional V-model of systems engineering, architecting is a design
process that occurs on the left side of the “V” (Figure 2-2). Its inputs are high-level system
requirements generated from early conceptual processes such as the stakeholder analysis and
Concept of Operations. Its outputs then feed the more detailed design requirements of the system
and its components.

Concept of Operation &

Operations Sustainment
Verification &

Requirements & Validation gystem-Level V&V,
Architecture Certification

Detailed Component
Verification &

Design
- Integration

Implementation

Time
Figure 2-2: Systems Engineering “V-Model” (adapted from [93])

Ideally, the system architecture facilitates end-to-end traceability between design
requirements, design decisions, and verification and validation (V&V) strategies [94]. This
traceability is critical to safety assurance processes, but it is seldom considered in this context
early in design, as will be described in Section 2.3.

A common architecting approach is to reason about a system in terms of (1) its form (what it
is) and its function (what it does), (2) the entities that make up the system and their forms and
functions, (3) the relationships between those entities, and (4) the emergent properties that result
from those interactions [95]. From this perspective, a system architect “maps forms and
functions”.

Four common techniques help manage the complexity of the architecture [96]. First,
decomposition breaks up entities into smaller entities to reduce the scope of consideration in the
analysis. Second, abstraction hides internal complexity and maintains the form and function
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necessary for a given level of analysis. Third, hierarchy helps organize entities at different levels.
And fourth, concept creates the notion needed to guide the eventual architecture [96].

Several methods are commonly used to model system architectures. Model-Based Systems
Engineering tools, such as the System Modeling Language (SysML) [97], are intended to link the
architecture to other systems engineering artifacts using a common model instead of different
documents. Numerical methods such as Dependency Structure Matrices (DSM) [98] and
Network Theory [99] can help organize and quantify interactions between entities in an
architecture. Finally, architectures modeled using the Department of Defense Architecture
Framework (DoDAF) provide different views of the system to facilitate design from different
engineering, operational, and managerial perspectives [100]. A variety of decision analysis and
optimization methods to help steer architectural decisions are described by Crawley et al. in [98].

Unfortunately, there are two significant limitations to just using these approaches in the
design of modern complex systems. First, to go from high-level requirements defined in natural
language to a physical and logical architecture that informs detailed design activities requires a
significant cognitive leap. Even though hierarchy, abstraction, and concept are supposed to help,
the process of early decomposition often leads engineers to enumerate components before
important functions of the system are identified. In practice, this often results in them falling
back on previously developed architectures and their components to seed the design [101]. By
doing so, they do not consider potentially better architectures to solve a problem.

Second, these modeling techniques overemphasize the objects of the system. However, in
control-oriented systems, such as the novel aerospace systems of interest in this research, the
representation of control becomes diluted among the objects, difficult to trace, and therefore
nearly impossible to properly validate [101].

Leveson argues these limitations can be overcome by initially developing a conceptual
architecture focused on top-down control interactions in a system [101]. Systematic analysis of
this model can help identify and trace system-level requirements early to enforce desired
emergent properties top-down and can then improve the use of conventional architecting
techniques for more detailed design.

The above fundamentals and inspiration from several literature sources [39], [58], [98], [101]
help scope the following definition for a system architecture, which is applied in this work:

At a higher level of abstraction, the architecture consists of the interactions supported by a
control structure to determine the behavior of the collective system in the context of a
broader system and environment. At a lower level, it consists of the components, their
interactions, and their supporting control structure to determine how they contribute to
the collective behavior.

The remainder of this section surveys approaches that have been employed to identify
functions the team must perform and methods to allocate these functions to collaborative entities
within the team architecture.
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2.2.2 Functional Analysis

Functional analysis is a process to identify the set of tasks to be performed by a collective system.
It is often used in architecture design to allocate the function of those tasks to the system
components (see Section 2.2.3). It is also a common input to various assurance analyses (see
Section 2.3). This section explores existing functional analysis methods applicable to collaborative
systems, including those used to analyze flight crew interactions, and how they are being adapted
to explore human-machine teaming in novel aerospace systems like Urban Air Mobility (UAM).

Many functional analyses organize tasks in hierarchical structures to manage complexity. For
example, Hierarchical Task Analysis (HTA) treats tasks as goal-specified behaviors that are
attained through actions and feedback [102]. Tasks are identified through a systematic
decomposition of goals and subgoals and are then used as input for other analysis and design
techniques [2], [103].

Critical Task Analysis (CTA) employs this type of hierarchal task decomposition to analyze
military flight crew responsibilities during mission execution [104], [105]. The process begins with
identifying a limited set of high-level functions performed by pilots, such as Aviate, Navigate,
Communicate, and Manage [106]. These are decomposed into activities that have defined time
horizons, then into tasks needed complete the activities, and finally into subtasks as the primitive
elements of execution. CTA supports behavioral, cognitive, information requirements, safety,
and failure and degraded modes analyses used in military aircraft certification [105].

Civil aviation employs a similar functional analysis method in the advanced qualification
program for air carrier flight crews operating under 14 Code of Federal Regulation (CFR) Part
121 and 14 CFR 135 [107], [108]. The Job Task Analysis (JTA) breaks up a mission into flight
segments, similar to those in the military CTA, and hierarchically decomposes job functions into
tasks, subtasks, and elements associated with each segment. Elements identify the knowledge,
cognitive skills, motor skills, and attitudes required by humans to execute the subtasks. The
output forms a basis for Crew Resource Management training curriculums.

Task decompositions based on existing aviation architectures are often used in the functional
analysis of architectures for new aviation operations, like UAM. For example, NASA recently
modified an existing JTA to identify low-level tasks potentially applicable to future UAM
operators [109]. It then used a bottom-up approach to regroup tasks into higher-level categories
to seed future human-automation functional allocation research. Another NASA report proposed
a different functional decomposition of UAM functions akin to existing CTAs to demonstrate
how to analyze safety using the guidance in Aviation Recommended Practice ARP-4761 [110].

There are other similar examples. The General Aviation Manufacturing Association (GAMA)
developed a list of 13 “skill categories” based on a review of 14 CFR 61, with the intent to shift
the responsibility for some of these skills away from the human and over to the automation [10].
NASA, in partnership with the FAA, also proposed 13 draft high-level functions, called Mission
Task Elements (MTE), considered as fundamental building blocks to identify the relationship
between aircraft performance, flight characteristics, and means of demonstrating compliance
with future certification requirements [111]. Finally, the MITRE Corporation consulted with pilots
to assemble a list of functions as part of its Behavior Competency Model (BCM), which explores
safety assurance approaches for highly automated aviation applications [112].
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There are significant drawbacks to these functional analysis methods. First, the process of
decomposition reduces the analysis to focus on one function at a time and therefore does not
consider emerging effects associated with interactions between functions. For example, the
separate “skill categories” of Landing and Emergency Procedures proposed by GAMA [10] cannot
be fully decoupled as there will be Emergency Landings.

In addition, the decomposition according to existing aviation operations implicitly guides
future design decisions to mimic past architectures, and it does not consider potentially better
solutions to address challenges in these new aviation operations. This may lead to similar
supervisory control architectures, which face inherent limitations given the “automation
conundrum” previously discussed in Section 2.1 [39], [44]. As described in the previous section,
this shortsightedness is common in system architecting [101].

Alternative functional analysis methods have been proposed for new architectures. For
example, NASA employed a top-down approach to systematically identify UAM aircraft control
tasks for human-automation functional allocation research [113]. The process starts by
decomposing high-level functions like Mission Management, Flightpath Management, Tactical
Operations, and Vehicle Control associated with different flight segments. Next, subfunctions are
identified for each by considering each of the four attributes of Resilience Engineering, which
include Monitor, Respond, Learn, and Anticipate obtained from Hollnagel [114]. This novel method
could be reframed to focus on abstraction-refinement and principles of system safety [38].

In Cognitive Work Analysis (CWA), tasks are organized hierarchically using a means-end
abstraction of constraints and information requirements [115]. Each level of abstraction
represents a different view of the overall work and explains what tasks are to be completed. The
level above explains why those tasks need to be completed, or in other words, what higher-level
ends they address. The level below explains how tasks need to be completed by describing
children subtasks. This avoids some of the pitfalls of pure decomposition by acknowledging that
functions at each level interact with multiple higher-level functions.

Pritchett et al. use this technique to model aircraft control in a functional allocation study
described in the next section (see Figure 2-3) [116]. This arrangement, derived from the work of
Rasmussen et al. [117], is well suited for systems theoretic analysis, as well as mapping resulting
requirements in the form of an Intent Specification [52].
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Figure 2-3: Means-Ends Functional Abstraction of Aircraft Control (recreated from [116])

The key takeaways from this survey of functional analysis methods are the following. First,
most methods turn to analytical decomposition to outline functions to be performed by the team.
This reductionist approach does not consider interactions between functions, and therefore it
cannot help properly analyze emergent properties of the system, such as safety. Second,
functional identification is often based on a bottom-up analysis of old architectures, which
hinders the exploration of novel options potentially better suited for a given application. Third,
there are elements of newer analysis methods that may help overcome some of these limitations.
However, they are not currently implemented within a framework to analyze system safety and
require further work to be useful toward the research objectives of this work.

2.2.3 Architecture Design Approaches for Collaborative Systems

Once designers have identified the system functions using methods like those described above,
the next step in architecture design typically consists of allocating those functions to the system
components. When doing so, engineers must also ensure that the system structure, such as its
communication and control channels, can support that allocation.

The importance of functional allocation is emphasized in the literature. It is the earliest
Human Factors design decision that can be made in a human-operated system [118]. It is a key
property of human team architectures [58] and informs early decisions that later affect design,
training, policies, and procedures [45], [46], [118]. Functional allocation, of course, also influences
the safety of the system. When accidents occur with complex aerospace systems, it is nearly
impossible to separate human actions from design flaws. It is therefore imperative to avoid
human-task mismatches in these architectural decisions, as those often get mislabeled as human error
in accident investigations [4].

Despite its importance, the proper way to allocate functions in collaborative systems remains
open, as emphasized by a recent NATO working group [41]. When designing interdependent
systems, there is a need to translate high-level concepts like teamwork and cooperation into the
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implementation of control, interface, and behaviors of the system [2]. Some important
considerations listed in the literature are to determine (1) if a problem benefits from collaboration
between entities, (2) which tasks to delegate to each and when, and (3) to evaluate whether the
design outcome meets system performance expectations [119].

However, the reality is even more complex than this for two key reasons. First, the design of
these systems spans multiple technical disciplines, which in practice often work independently
or in sequence from one another without effective collaboration. This is particularly challenging
in the design of human-automation interactions (HAI), which requires integrated expertise in
human factors and autonomy. Second, the designed systems are not closed. They interact with
other systems and the environment, and it is the higher-level socio-technical system that must be
safe. Little guidance is currently provided to engineers on how to make systematic architectural
decisions with these considerations [39].

The rest of this section presents general approaches that have been employed to guide
functional allocation architectural decisions for interdependent collaborative systems. Some of
the common shortfalls encountered in these methods are discussed. Next, key methods are
described in greater detail to showcase the state-of-the-art in this domain. While many of these
tools were developed to help HAI design decisions, they are generally applicable to systems that
seek the complex interdependent and collaborative interactions described in this work.

General Design Approaches

Very few structured approaches exist to design collaborative interactions in systems. At best,
designers are equipped with general systems engineering practices and separate highly
specialized and siloed domains to integrate. The disparate natures of disciplines, like human
factors and autonomy, make this particularly challenging. To bridge this gap, designers often
turn to high-level design patterns to guide functional allocation architecture decisions.

One of the earliest frameworks for functional allocation between humans and machines,
proposed by Fitts in 1951, is called Men Are Better At - Machines Are Better At (MABA-MABA)
[66]. In this approach, decomposed functions are individually assigned in a binary fashion to
either the human or the autonomy based on a lookup table listing their relative strengths for
different types of tasks. The simplicity of this method has kept it attractive over the years.

However, MABA-MABA has also received wide criticism that the approach does not consider
the emerging effects of the allocation. For example, naively assigning taskwork to the automation
does not necessarily reduce human operator workload, but instead, it transforms its nature [120].
It often creates new higher-level tasks for the operator to direct, monitor, and adjust the
automation in its execution. Another side effect of this reductionist approach is that no
consideration is given to the holistic set of tasks assigned to each entity. In practice, this results
in attempting to automate as much as possible and leaves a non-cohesive patchwork of tasks for
the human to deal with [4]. Finally, this oversimplified framework provides no avenue to
promote collaborative task work.

More recently, Crouser et al. proposed a modern take on the MABA-MABA lookup tables by
reframing them to emphasize collaborative work [119], [121]. They distill an extensive survey of
human-computer collaborative systems into a set of affordances, described as partnership
opportunities for collaborative action. While this framework does shift emphasis away from
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binary allocation and toward collaboration, it is still limited to a set of design patterns to apply to
decomposed tasks that provide little systematic and holistic system design guidance.

Another popular design pattern called Levels of Automation (LOA) was developed by Sheridan
and Verplank in the late 1970s through the study of human supervisory control of automated
systems. The first version of the LOA framework consists of a scale of 1 to 10, where 1 represents
full human manual control with no computer assistance, and 10 is fully autonomous with no
human involvement (see Table 2-1) [122]. The LOA is often used to set the tone on the general
level of authority provided to the automation in the design of a system. Since, multiple variants
of this taxonomy have been proposed [70], [111], [123]. A 1 to 5 scale version of LOA developed
by the Society of Automotive Engineers (SAE) has come to dominate the design of “self-driving”
cars [124].

Table 2-1: Levels of Automation (based on [122])

Level Description
1 Human does it all

2 Computer offers alternatives

3 Computer narrows alternatives down to a few

4 Computer suggests a recommended alternative

5 Computer executes alternative if human approves

6 Computer executes alternative; human can veto

7 Computer executes alternative and informs human

8  Computer executes selected alternative and informs human only if asked

9  Computer executes selected alternative and informs human only if it decides to
10  Computer acts entirely autonomously

The same simplicity that has made the LOA framework so popular is also often criticized in
the literature. LOAs explicitly describe machine capabilities alone and not those of humans or
other machines working with it [39]. LOAs do not facilitate a collaborative behavior [120], they
are too coarse to be useful given a complex set of tasks to be allocated within a team [116], and
they do not address authority-responsibility mismatch where the controller is ultimately
accountable for the successful outcome of the task is different from the one performing it [125].
The National Academy of Sciences concluded: “The application of autonomy concepts and
technology to a system is inherently a complex issue, with several degrees of freedom that must
be addressed. Thus, it is impossible to characterize the implemented degree of autonomy
completely with a single number” [47].

To provide additional flexibility in functional allocation, one popular version of the LOA
taxonomy decomposes each function into four subfunctions: (1) information acquisition, (2)
information analysis, (3) decision and action selection, and (4) action implementation [126]. This
framework acknowledges that each function performed by the system can be implemented at a
different LOA, and its associated subfunctions can vary in LOA too.

This type of approach has invigorated calls to continue updating the Levels of Automation
frameworks with additional details, including the metric of Satisficing in which the human selects
an allocation that is “good enough” [123]. However, even if more detailed LOAs help designers
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cognitively reason with a design concept, they alone still do not provide systematic guidance on
how to assess architectural decisions holistically.

In addition to these high-level frameworks, the literature also offers multiple sets of design
best practices for teaming systems. Endsley presents a table of design guidelines for Human-
Autonomy systems [44], which provides guidance like “automate only if necessary - avoid out-
of-the-loop problems if possible”. Similar lists include the ten “Human-Autonomy design first
principles” by Mosier et al. [23], five “Human-Autonomy key design principles” enumerated by
Ho et al. [14], and “Human-Autonomy Teaming design tenets” described by Battiste and Shively
[5], [13].

While these guidelines can be useful for general reference, they do not provide systematic
guidance to inform design decisions for complex systems. However, more specific collaborative
architecture design strategies are also found in the literature, as described below.

Specific Design Approaches

One approach by Miller & Parasuraman uses a means-end hierarchical decomposition of the team
activity to formulate a set of “plays” that allow operators to efficiently delegate tasks to
autonomous systems [127]. Instead of forcing the system engineer to perform a final functional
allocation during design, this approach lets the operator make flexible allocation decisions during
operation. Tasks can be delegated at high or low LOAs, tailoring how involved the human
supervisor wants to be in planning and execution details, much like what is done in human
supervision [127]. Unfortunately, no guidance is provided to design “plays”, so the detailed
implementation and how it is analyzed for safety or other properties are not addressed.

Another framework developed by Heisey et al. helps systematically identify system
requirements for teams of unmanned systems and traces them from Concept of Operations,
through architectural design, and to V&V [89]. The process employs organized Subject Matter
Expert interview templates to define team-level architectural requirements, which then feed
lower individual system entity requirements for implementation, and then validation. The
process is top-down and has feedback loops between each level. However, it provides no
systematic way of exploring emerging properties of design decisions, other than implementing
them into a simulator to observe the behavior of the system. This method of validation is
inherently limited, as will be described in the next section.

A method by Dearden et al. [46] allocates human and automation functions by first treating
the team as a black box to identify high-level functions it must perform in the context of an
operational scenario. Some functions are initially allocated based on physical constraints (e.g.,
automation must be used for low-level control of an aerodynamically unstable aircraft) or
regulations (e.g., decisions to release weapons must be made by humans). Next, candidate
functions for total and partial automation are evaluated for implementation feasibility.
Coordination tasks between the human and automation that emerge from the selected functional
allocation are identified and fed back as new functions for additional iterations of the design
process. Finally, the design decisions for different scenarios are compared to consider global
tradeoffs, and changes are fed back into the process for more interactions [46].

The key strengths of Dearden’s method are its ability to maintain a system-level view and to
produce systematic design decisions that produce traceability and rationale. However, there are
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several concerns. First, as acknowledged in his paper, the framework is rigidly defined between
a single operator and automation, and it must be expanded to handle more general system
compositions. Second, there is no clear process to move up or down in abstraction to analyze
different levels of details. Finally, this leads to scalability concerns for complex systems that
would require a large number of these workload-intensive algorithmic iterations.

Coactive Design, by Johnson et al., helps design systems with any number of interdependent
humans and/or machines [2]. It emphasizes three key points. First, components have various
capacities (e.g., knowledge, information, skills, and abilities) that define how well they can
perform certain tasks or support teammates. Second, teammates can help close each other’s
control loops. For instance, a robot can sense obstacles, but a human can help interpret how to
interact with them. This requires teammates to be able to Observe, Predict, and Direct (OPD) each
other, as shown in Figure 2-4. Finally, design decisions relating to these interactions are evaluated
in the context of the other decisions made for the system, similar to Dearden’s method above [46].

Situation
Activity
Robot Interface Human
, <«-=}------}--» Observability «--{----- -l ,
'thELr:' <ffeerfees Predictability < d-fo 'thZIr:;'
) <«f-}------}--» Directability «--{----- -l )

Figure 2-4: Coactive System Model (adapted from [2])

The process, shown in Figure 2-5, begins with a functional analysis using HTA decomposition
(see Section 2.2.2). For each task, each teammate is enumerated as having a primary and a
supporting role. Capacities required to support those roles are listed, beneficial interdependent
relationships are identified, and OPD requirements are generated to support those relationships.
After solutions are designed to meet these requirements, those designs are analyzed to see how
they impact the other relationships in the system. Any changes that occur in those relationships
are fed back into the process for iteration until the design converges with no changes.

The literature identifies Coactive Design as the state-of-the-art in designing interdependent
systems [23], [39]. However, a weakness of the approach is that the initial task decomposition
leads to a bottom-up approach to design, which is less effective than top-down approaches in
proactively enforcing emergent properties like safety [38]. Similar to Dearden’s method [46], this
approach does not offer a path to navigate between different levels of abstraction and is difficult
to scale for large complex systems. Finally, it does not explicitly consider interactions between
the interdependent entities and the higher-level socio-technical system it integrates with.
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Figure 2-5: Coactive Design Process (derived from [2])

One final architecture design approach, by Pritchett, Feigh, and Kim explores functional
allocation using computational simulation of collaborative work [116], [118], [125]. Their method
starts with a means-end decomposition of the collective taskwork, which is then allocated to the
teammates in different ways to simulate the joint activity. If an entity is allocated a task for which
another teammate is responsible, then monitoring tasks are created for that teammate as part of
the emergent teamwork in the activity.

The simulations are bounded by formal requirements that must be met by the architecture
design and help observe the performance and resulting total work involved in each functional
allocation trial. The results of these simulations are used to develop parameters for a network
representation of the team architecture to optimize functional allocation [99].

The key strengths of Pritchett’s work are the formal requirements and metrics specified to
support architectural decisions and the ability to assess emergence in teamwork based on those
decisions. However, the use of simulation alone is not sufficient to produce a robust verification
and validation of the design, as discussed in the next section. In addition, a global optimization
scheme like this ultimately boils down to a decomposed set of cost function parameters, which
are difficult to define objectively [46].

2.3 Safety Assurance of Teaming Systems

Safety Assurance refers to the set of activities taken to provide confidence that system hazards
have been eliminated or controlled [4]. This research focuses on the subset of activities most
relevant to initially field an aerospace system: hazard analysis, verification and validation (V&V),
and certification. As identified in Chapter 1.2, the literature recognizes there are significant
challenges associated with these processes, especially for systems with complex interdependent
and collaborative interactions.

Typical assurance processes are both applied too late and are inadequate [4], [38].
Unfortunately, safety assurance is often applied as a separate discipline from system design and
only becomes emphasized in later development stages, on the right side of the Systems
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Engineering “V” (Figure 2-2). This practice hinders the ability to build safety into the system
from the beginning. Instead, it often results in only having less effective and more expensive
design change options to address safety problems that are recognized later in the lifecycle.

In addition, existing processes are unable to handle complex systems holistically and must
therefore conduct separate assurance methods for hardware, software, and humans. The
collaborative and interdependent interactions sought in the novel aerospace systems described
in Chapter 1 exacerbate these issues. This is especially true when human and software control is
highly coupled.

The following is a discussion of typical methods to conduct hazard analysis, V&V, and
certification in aerospace systems. In addition, it addresses some of the recent attempts to tailor
these processes to handle novel aerospace systems with complex, team-inspired, component
interactions.

2.3.1 Hazard Analysis

Hazard analysis is a process to systematically identify causal factors that can lead a system to enter
a hazardous state. Its output is the foundation for other assurance processes, including definition
of system requirements and constraints to enforce safety, implementation of these requirements,
V&V, and documenting results for certification. For this reason, hazard analysis should begin
influencing system design early in its conceptual stages, on the left side of the Systems
Engineering “V”. However, in practice, this does not happen until much later [4].

There are different types of hazard analyses, but they all consist of the following four basic
functions [4]. First, they specify the system losses that are unacceptable to the stakeholders. Next,
they define the scope of the system analyzed, which typically is defined by the system boundary,
over which designers have engineering control. Third, they identify hazards, which are system
states or sets of conditions that, together with a particular set of worst-case environmental
conditions, will lead to a loss [50]. Finally, they help find causal factors that can lead to these
hazards. Results can then be used to establish design recommendations to eliminate or mitigate
the hazards.

There are numerous hazard analysis techniques, and some of the most common ones are
described in detail by Ericson [128]. These techniques are founded on causality models, which
impose patterns on observed events and represent assumptions about how the world operates
[4]. In safety engineering, these models help explain why accidents occur. Leveson has
categorized causality models into four types: Energy, Epidemiological, Linear Chain of Events, and
System-Theoretic [4]. Brief descriptions of techniques associated with these models follow.

Energy Models

Energy models assume accidents are caused by an uncontrolled and undesired flow of energy
from a source to an object at-risk [4]. Sources of energy that may be considered include kinetic,
radiation, chemical, thermal, electrical, acoustic, or biological. Hazard analysis techniques built
on these models typically consider flow control mechanisms, such as barriers and alerts on the
state of the flows help mitigate hazards [128].
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This type of simple analysis can be used to identify hazards to be further explored using other
techniques [129]. However, its limited scope is not adequate by itself to address complex control-
oriented systems like those found in advanced aerospace concepts.

Epidemiological Models

Epidemiological models treat accidents as a public health problem by conceptualizing them in
terms of an agent (physical energy), the environment, and a host (victim). Accidents are explained
as resulting from complex and random interactions between these three factors and cannot be
rationalized by considering only one of them or by a simple sequence of events [4]. The statistical
reasoning used in public health problems is then applied to analyze accidents.

Unfortunately, there is no known hazard analysis technique built onto epidemiological models
[4]. In addition, complex systems are too structured to be analyzed using the same statistical
processes applied to large populations [130]. Furthermore, the quality of the records of designed
system anomalies may be too limited for this type of statistical analysis. These reasons limit the
use of epidemiological models in safety assurance activities.

Linear Chain of Events Models

The majority of hazard analysis techniques used in traditional safety assurance programs are
based on Linear Chain of Events causality models. Linear causality implies that if variable 4 has a
causal influence on B, then B has no influence on 4 While this assumption makes it easier to
identify the “chains of failures” often reported in accident reports, it is an oversimplification that
actually hinders effective safety engineering [38]. The following are the associated techniques
most commonly used in aerospace safety analysis.

Functional Hazard Analysis (FHA) is an inductive and qualitative technique in which system
functions are systematically decomposed, and then individually analyzed for how they could fail.
The analysis documents the failed function, its associated hazard, causal factors, mitigation
recommendations, and assessed risks [128]. Civil aviation practices recommend conducting an
FHA for qualitative analysis early in design to then feed follow-on quantitative analyses later in
the engineering lifecycle [131].

Failure Modes and Effects Analysis (FMEA) follows similar inductive reasoning as FHA. The
analyzed system is decomposed into components. Next, the consequence associated with the
failure of each of these components is evaluated using a bottom-up approach. This analysis is
often expanded quantitatively by including failure rates for the components using service
experience, accelerated testing, or industry standards [132]. Because FMEA considers all
component failures and not just those that lead to hazards, it focuses more on reliability than
safety [128].

Failure Modes and Effects Criticality Analysis (FMECA) is a more detailed version of the
FMEA. It includes an assessment of the criticality of component failures and considers
mechanisms to detect them [128]. FMECA is commonly applied to military aviation systems

[133].

Fault Tree Analysis (FTA) uses deductive reasoning by starting with a hazard, and
systematically searching for potential chains of events that can lead to it. The relationships in
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these sequences of events are described using Boolean logic. FTAs are often used quantitatively,
by similarly adding failure rates of components, and computing the overall probability of any
given event chain [128].

There are major limitations associated with these hazard analysis techniques. They all focus
on component failures and do not consider how the interactions between fully functional
components can lead to hazardous states [38]. The assumption that causality is linear is a
significant weakness recognized by the community since cyclic relations are common in real
systems [134], [135]. All of these methods are hardware-oriented, and none can effectively handle
the contributions of human and software control to accidents [38].

The quantitative aspects of these methods are also problematic. Failure rates cannot be
accurately determined except for standard hardware components and designs with extensive
historical use. These numbers cannot be incorporated until sufficient design detail is available,
which limits the ability to analyze and influence early design concepts [4]. Furthermore, failure
rates are unknown for software, sophisticated human behaviors, and new technologies and
designs.

Quantitative assessments must also often rely on flawed or oversimplified assumptions, such
as probabilistic independence between events [135]. Some techniques do exist to evaluate
common cause failures in FTAs. However, those methods are challenging to execute rigorously
[128], and they also often rely on their own superficial common failure rate assumptions [136].
As a result, probabilistic assessments are usually inaccurate, and they can even be misleading in
characterizing hazards.

Despite their limitations, these hazard analysis techniques are precisely the ones that are
called for in aerospace system safety standards, such as ARP-4761 [131] for civil aviation and
MIL-STD-882E [133] for the military. These standards acknowledge some of the challenges in
applying these techniques to software components, and they only superficially address the role
of human control. Separate systems engineering standards, such as DO-178C [137] and MIL-STD-
46885A [104], provide some safety considerations for software and humans respectively, but they
lack actual hazard analysis techniques. This patchwork creates a disjointed approach to aviation
system safety, which is ill-suited to handle the complexity of modern systems [4], [105].

Hazards and Operability Analysis (HAZOP) is another technique based on a linear chain of
events model. Itis not called out in the aviation standards listed above, but it has been employed
in modern aerospace systems, such as the Airborne Collision Avoidance System [138]. HAZOP
overcomes some of the limitations by using guidewords to systematize a search of causal factors
in a physical design specification. It encourages multi-disciplinary qualitative reasoning and
considers deviations from operating intentions that go beyond failures [4].

However, HAZOP also shares some of the weaknesses found in the other techniques. These
include the assumption of linear causality, the focus on physical objects instead of software
control, and the inability to apply it at the earliest stages of design. In addition, this method,
much like the others, is often criticized for being labor-intensive, time-consuming, and difficult
to review [4].
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System Theoretic Models

System Theoretic models, which are generally newer than chain-of-event techniques, break away
from the assumption that causality is linear [4]. They acknowledge causal loops exist between
components, where variable 4 can influence 5, and B can also influence 4.

System-Theoretic Accident Model and Processes (STAMP) is one such causality model, which
treats safety as a control problem rather than a failure problem [38]. STAMP provides a unified
framework to look at how component interactions between hardware, software, and humans can
lead to unsafe system behaviors.

System-Theoretic Process Analysis (STPA) is a qualitative hazard analysis technique built
upon the STAMP causality model [50]. Its foundation in Systems Theory allows it to overcome
many of the limitations of other methods. For this reason, this technique is becoming increasingly
popular in many industries, including aerospace.

Systems Theory, STAMP, and STPA provide the foundation for how safety will be analyzed
in this work. They are described in greater detail in Section 2.4, along with an argument for their
selection.

Hazard Analysis in Systems with Team-Inspired Interactions

There is an overwhelming recognition that new aerospace systems with interaction inspired by
teams face significant challenges in V&V and certification (see Chapter 1.2). Despite this, the
literature is relatively silent regarding the limitations associated with hazard analysis techniques
for these systems. This is surprising given the critical role of hazard analysis in the other safety
assurance activities.

NASA demonstrated how to employ methods like FHA and STPA in new aviation
applications like UAM and is still exploring different methods to best address these novel
technologies [110], [139]. Belcastro et al. describe a need to evolve hazard analysis techniques to
address distributed multi-UAS operations. However, their analysis is limited to the study of
historical data to identify potential hazards for the analysis of future systems [140]. Baig et al.
survey applications of FTAs and highlight how they fall short in human-machine interactions,
leading them to use Fuzzy Logic or other augmentation mechanisms to account for the non-
deterministic nature of humans [141].

Finally, a growing body of research using STAMP-based techniques and STPA, described in
Section 2.4, demonstrates how to apply these methods to aerospace systems with complex
interactions. However, it also illustrates some of the challenges that must be overcome so that
these interactions can be rigorously analyzed.

Simply put, there is a clear gap in the literature in addressing hazard analysis specifically for
systems that exhibit complex interactions, such as those inspired by human teams.

2.3.2 Verification & Validation (V&V)

Verification and Validation (V&V) is a broad term to describe a set of activities that take place
throughout the development lifecycle, but that are most often emphasized on the right side of the
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Systems Engineering “V”. Verification determines if the system meets its design requirements,
and is commonly referred to answering “Did you build the thing right?”. Validation assesses if
the planned system meets the user’s operational needs, and answers “Did you build the right
thing?”.

In the context of safety assurance, V&V determines if causal factors identified in the hazard
analysis have been eliminated or mitigated. This determination is usually based on the results of
simulations, testing, and formal mathematical reasoning [4]. Each method has strengths and
limitations described below.

Simulation and Testing

Simulation and testing are the most common tools used in V&V. They can be effective at
evaluating design decisions, characterizing system performance, and finding design flaws.
However, there are many examples in the teaming literature where the hazard analysis is
bypassed, and causal factors are identified using only simulation and testing [5], [89], [91], [116],
[142].

The hope with this strategy is to address discrepancies found in simulation by modifying
design requirements, implementing them, confirming their success in additional simulations, and
then gaining confidence in the system behavior through live testing. While this practice can be
helpful in early concept exploration, it is inadequate if those are the only assurance steps
performed to field safety-critical applications. Simulations only reveal what they were intended
to simulate and rely on assumptions and simplifications in the dynamics of the system and its
environment [143].

Testing is typically expensive and cannot be performed exhaustively to cover the large
number of states achievable by complex systems in complex environments, especially for
software-intensive systems [144]. Testing may reveal the presence of a problem but cannot show
the absence of it®. In addition, systems are tested against requirements, but that does not prevent
the requirements from being incomplete with respect to safety. In fact, most accidents can be
traced back to incomplete or otherwise flawed requirements [4].

Formal Methods

The costs and limitations associated with testing have led to a growing interest in using Formal
Methods (FM) to support assurance in novel aviation systems. Formal Verification involves
applying inputs to a system to check if all its executions meet its requirements set R [150]. Either
a counter-example is found that shows R can be violated, or the algorithm provides proof that the
design is correct. The verification is sound if its proof is valid and all behaviors meet R, or if the
counter-example is an actual behavior of the system that violates R. It is complete if it provides a
solution for all inputs to the system [150].

New aviation certification standards developed to address software and automation define
and encourage the use of FM, including DO-333 [151], ASTM-TR1 [111], and ASTM-F3269 [152].

3 The author has observed this lesson many times over years of developing and flight-testing complex
multi-UAS systems under distributed control [145]-[149].
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Several aviation software systems have employed formal verification on portions of their
software using techniques such as Model Checking, Theorem Proving, and Abstract Interpretation
[153], [154].

Formal methods have been employed in applications relevant to teaming. A large body of
Human-Automation Interactions (HAI) studies aim to prove the correctness of HAI interfaces
[155], [156]. The systems are often modeled as finite-state transition systems, and temporal logic
is used to check (1) the reachability of states, (2) the visibility of visual feedback as a result of
actions, (3) task-related properties to support the human, and (4) the consistency of the software
implementation with its requirements. These types of studies do not depend on a model of the
human to ensure the interface behaves as intended [157].

However, other HAI research applications do attempt to create a “formal model” of the
human operator. Studies apply FM to model operator mode confusion [157], operator activity
sequences [158], humans motor capabilities [159], the effects of human control latency on HAI
performance [160], and human-robot interactions when in close proximity to one another [161].
Unfortunately, the concept of a formal mathematical model to describe the complex, adaptive,
and often unpredictable nature of human behavior is inherently limited and presumptive. While
this practice can explore design states to help designers identify areas that need improvement or
to select follow-on candidate test scenarios with real humans, as exemplified by Bolton et al. [158],
formal guarantees derived uniquely using FM in this context may be misleading.

Three different applications illustrate the state-of-the-art in applying FM to aerospace systems
with collaborative component interactions. First, formal models of teamwork have been used to
guide functional allocation design decisions in aviation human teams and human-machine teams.
For example, interactions between pilots and air traffic controllers were modeled as a task tree
with temporal relationships to formally verify the behavior of aircraft heading changes [162]. A
similar formulation, previously discussed in Section 2.2, formally verified that aircraft control
functional allocations between humans and automation met specified requirements [116], [118],
[125].

In a second application, FM are employed to formalize aircraft control activities and decisions
made by human pilots to shift some of those responsibilities to automated systems. For instance,
a body of NASA research formalizes how human pilots see and avoid other aircraft. This has
resulted in the development and formal verification of several detect and avoid algorithms for
UAS or automated copilots [163], [164]. However, this research also illustrates challenges in
creating valid formal models of these complex systems [165]. In addition, it shows that
unexpected behaviors not identified by the formal methods can arise when the system interacts
with a human pilot during flight testing [166].

Finally, formal verification has been applied in Run-Time Assurance (RTA) research. The
hope of RTA is to provide a simpler and fully certified pedigreed controller to monitor a non-
pedigreed complex function and, if necessary, recover to a safe state [152]. Proponents of RTA
argue the protected system is equivalent in terms of safety to a fully verified system [90], [167].
Some also promote it as a mechanism to transfer responsibility from a human pilot over to
automation in new aviation applications [78], [111], [168]. RTA has been studied to monitor
control of a distributed multi-UAS system [90] and real-time monitoring has been actually fielded
on fighter aircraft to protect pilots from colliding with terrain [169]. However, it is also noted that
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the later fielded example was verified through flight testing, and no known RTA system has been
operationalized using FM to date.

Despite the interest, FM face challenges that have kept their adoption rate low for assuring
tielded systems. Some FM techniques, like theorem proving, require a high amount of expertise
to execute and limit the pool of people that can successfully apply them [153], [158]. The low
adoption also means few developers get exposed to how to use it [153]. Furthermore, this
framework does not yet address some of the latest concepts in autonomous control that involve
adaptive and non-deterministic functions like those popular in Machine Learning (ML) [150].

Formal techniques face other inherent limitations. The process of developing formal
specifications from informally stated customer requirements introduces a risk of formally
representing the wrong requirements [170], [171]. Ensuring model validity is challenging as the
mathematical formulation of a problem is only an approximation of the real world and differs
from implementation using programming languages [165], [167]. FM are difficult to scale up
beyond simple problems and are limited in their ability to handle complex real-world systems
[90], [158], [167], [170]-[172]. Finally, the environment the system interacts with is impossible to
formally describe due to its unpredictable nature and unanticipated behaviors [170].

These challenges and limitations do not mean FM cannot play a role in safety assurance. But
FM is not the solution to all problems, and it is just one of several tools available including hazard
analysis, simulation, and testing.

2.3.3 Certification

Certification is a mandatory activity for safety-critical applications like aviation. It consists of
providing the results of earlier assurance efforts, like system behavior specifications and their
V&V, to a governing body to legally recognize that the system complies with requirements,
including safety [153]. Certification requires demonstration, with appropriate and accessible
substantiation, that (1) the system achieves its intended function, and (2) unsafe system behaviors
are known, understood, and mitigated [110].

Certification bodies establish regulations to govern the certification process, such as 14 CFR
Part 21 [49] for aircraft certification by the FAA or AR 70-62 [173] for the US Army. These
regulations point to standards developed with industry, such as ARP-4761 [131], DO-178C [137],
and MIL-STD-882E [133], which define recommended practices to follow to achieve certification.
These standards all point to the hazard analysis and V&V techniques previously surveyed, and
therefore they suffer from the same limitations previously described. However, the literature
describes additional challenges in certifying teaming systems, as reviewed below.

One significant difficulty is that technologies enabling autonomous systems are so novel that
they are not addressed by prescribed regulatory certification requirements [110]. For example,
non-deterministic and adaptive technologies, like those found in ML, are not covered at all by
existing regulations, and therefore, not one has been certified to date [39], [42], [150], [152].

For this reason, the FAA recently shifted from a prescriptive-based to a performance-based
approach to certification. This offers flexibility to consider rapidly evolving novel technologies
but also creates concerns. A performance-based approach does not encode past lessons learned
like prescriptive methods do and does not provide any unified guidance to manufacturers and
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regulators on a specific approach to demonstrate the system is safe [4]. This opens up the risk of
making “Safety Cases” for certification, which tend to be based on informal arguments, are prone
to confirmation bias and omission of information, and may be made under significant pressure
to get a finished product out to market [174], [175].

Another challenge specific to aviation is that the regulatory framework is predicated on a
human pilot in command having direct responsibility and final authority for the operation of an
aircraft [49]. This creates a barrier in certifying novel human-machine collaborative control
paradigms that shift some of these responsibilities onto autonomous systems. While this topic
was previously raised for existing autonomous systems like flight envelop protection, it is still an
open debate [3]. As aresult, industry is advocating for regulatory changes to allow autonomy to
become increasingly, if not fully, responsible for flight operations [176], [177].

Some preliminary certification frameworks have been proposed to reason about the division
of functional responsibilities between multiple human and machine entities [111], [112]. They
document V&V strategies based on functional allocation decisions, risk, and technology maturity.
However, aside from providing basic heuristics, these frameworks lack rigor in their decision
support, they do not address some of the fundamental aspects of team interactions described in
Section 2.1, and their functional decomposition approach does not lend itself to assessing safety
at the system level.

One final certification challenge to note is that current standards are vehicle-centric for
insertion into a rigid aviation infrastructure and framework. Processes currently exist to certify
Unmanned Aircraft System (UAS) operations on a case-by-case basis, which do not fit within the
traditional aviation ecosystem. However, the resulting certifications are highly restrictive and
narrowly scoped [178]. This approach increases the certification burden, and there is concern that
it will create a barrier to entry for non-traditional aviation manufacturers in new aviation markets
[179]. NASA is interested in creating a more holistic certification program, but no such framework
is known to exist today [39], [110], [180].

24 Systems Theory and STAMP

The approach developed in this dissertation to model, analyze, and design the safety of systems
with complex team-inspired interactions is grounded in Systems Theory and the System-
Theoretic Accident Model and Processes (STAMP) causality model. This section provides a brief
overview of this foundation. It highlights the strength of STAMP-based hazard analysis
techniques compared to other methods as an argument to select it for this work. It also describes
past research in STAMP related to teaming to motivate the need for analytical expansion.

24.1 Introduction to Systems Theory, STAMP, and STPA

A system is defined as “a set of components that act together as a whole to achieve some common
goal, objective, or end” [1]. Systems exhibit emergent properties, such as safety, which arise from
the interactions among these components. These properties can only be analyzed for a system as
a whole and cannot be treated as a composition of individual component behaviors. Most

45



designed systems are considered open as they interact with the environment, which is the set of
components and their properties that are not part of the system but can affect its state [1].

Systems Theory

Systems Theory was developed over the last half-century to augment the scientific method in
studying increasingly complex and interactive systems developed by humans [181]. Prior to
Systems Theory, analysts were limited to using analytical decomposition or statistical methods.

Unfortunately, modern systems can no longer be analyzed using only reductionist
approaches. These systematically break a system down into smaller components and synthesize
their individual behaviors to predict that of the system as a whole. Decomposition distorts the
analysis of the collective behavior since components (1) do not operate independently, (2) do not
behave the same when examined singly, (3) are subject to feedback loops, and (4) face more than
simple pairwise interactions [1]. In addition, modern systems also have too much structure to
behave randomly. As a result, they cannot be analyzed using statistical methods used to study
much larger natural systems, like populations [130].

Systems Theory complements these other methods by focusing on the system as a whole
rather than a conglomeration of parts. It emphasizes holism, interconnectedness,
interdependence, context, dynamic complexity, and non-linear causality [181]. In Systems
Theory, the term system is recursive in that systems are made of systems. Any level can represent
a system, a system of subsystems, or a system of systems. These terms all represent the same
thing, so there is no need to treat them differently [182].

Systems Theory is founded on two guiding principles: Emergence and Hierarchy, and
Communication and Control [183]. The first principle means that systems are modeled using
hierarchal levels, where each level is more complex than the level below. The second principle
implies that controls can be applied from any level in the hierarchy onto the level below to
constrain degrees of freedom on its emergent behavior. These two concepts are at the core of
STAMP.

System-Theoretic Accident Model and Processes (STAMP)

STAMP is a relatively new causality model grounded in Systems Theory, which treats safety as a
control problem rather than a failure problem [38]. It assumes that accidents are caused by unsafe
component behaviors as well as unsafe interactions among system components. These
components can be hardware, software, and human in nature. STAMP, as in Systems Theory,
employs abstraction as a means to understand system complexity.

The three main parts of STAMP are Safety Constraints, Hierarchical Control Structures, and
Process Models [38]. Constraints are imposed by any system level on the level below to enforce
emergent properties and behaviors. Functions are modeled with control structures using
feedback control loops between controllers and controlled processes at different hierarchal levels.
Each controller may be controlled by a higher-level controller, each controlled process may be the
controller of a lower-level entity, and feedback loops may exist between multiple different levels
(see Figure 2-6). Feedback control loops are defined by four conditions grounded in Control
Theory: goal condition(s), controllability, process model, and observability [38].
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Figure 2-6: Example STAMP Hierarchical Control Structure

STAMP, and its analysis tools, such as STPA described in the next subsection, have recently
gained popularity in many industries. In the past decade, an entire body of literature has
emerged involving applications of STAMP, extensions, and comparisons of its tools with other
methods [184].

System-Theoretic Process Analysis (STPA)

System-Theoretic Process Analysis (STPA) is a hazard analysis tool built with STAMP as its
theoretical foundation. The analysis is conducted in four steps as described in the STPA
Handbook [50] and shown in Figure 2-7. These are briefly described below with an illustrative
example analyzing the safety of a multi-UAS system under human supervisory control described
by Johnson, Kopeikin, & Leveson [143].
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System-Theoretic Process Analysis (STPA)

Figure 2-7: Four Steps of the System-Theoretic Process Analysis (STPA) [50]

Step 1 first defines the purpose of the analysis and the assumptions about the system and the
environment. In the illustrative example, it is to analyze safety hazards for the multi-UAS system
starting early in conceptual design.
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Next, system losses that are unacceptable to the stakeholders are identified. For the multi-
UAS system, these may include (L-1) loss of mission, (L-2) loss of life or permanent disabling
injury, and (L-3) loss or damage to the UAS or equipment [143].

Finally, system-level hazards are defined and traced to the losses they can lead to, as shown in
Table 2-2. A hazard is “a system state or set of conditions that, together with a particular set of
worst-case environmental conditions, will lead to a loss” [50, p. 17]. System-level constraints can
then be derived to eliminate or mitigate these hazards.

Table 2-2: STPA Example Multi-UAS System Hazards [143]

Hazard ID  Hazard Description Loss Traceability
1 UAS does not complete mission objectives  L-1, L-2
2 Structural integrity of UAS is violated L-3
3 UAS separation standards are violated L-1,L-2,L-3

Step 2 models the system as a hierarchical control structure, in which responsibilities, control
actions, and feedback elements are defined for each controller. It is encouraged to start the
analysis at a high level of abstraction before considering adding additional details in refinement.
Figure 2-8 shows the control structure for the multi-UAS system example [143].

Operator In Command (0OIC)

Responsibilities
R-1.1: Provide mission intent to system
R-1.2: Ensure system executes actions

Model of Fleet Controller,
UAS Fleet, Environment,

consistent with mission objectives and Mission
Mission Intent Proposed Course of Action
Approve / Deny COA Fleet Health & Status

o Multi-UAS Fleet Controller
Responsibilities Model of UAS Fleet,
R-2.1: Monitor OIC inputs, UAS, environment, and mission

R-2.2: Coordinate UAS according to mission objectives
R-2.3: Deliver approved plans to UAS

Environment and
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Mission Tasks 1 T UAS Health & Status

UAS(s)
UAS Flight Controller

Responsibilities
R-3.1: Control / monitor UAS position, attitude, trajectory M?dEI of UAS,
. . |Environment and
R-3.2: Control / monitor UAS mission subsystems . .
. L. Mission
R-3.3: Execute assigned mission tasks

Flight & Propulsion Control b 1th &
Mission Systems Control Subsystem Healt Status

UAS Subsystems

Figure 2-8: STPA Example Multi-UAS System Control Structure (adapted from [143])
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Step 3 identifies unsafe control actions (UCAs), which are control actions that, in a particular
context, and worse-case environment, will lead to a hazardous state [50]. There are four possible
ways to consider how each control action in the control structure can lead to a hazard: (1) not
providing the control action, (2) providing the control action, (3) providing a safe control action
but too early, too late, or in the wrong order, and (4) providing a control action for too long or
stopping it too soon. Table 2-3 shows one example of each type of UCA for the multi-UAS system
example [143]. Many UCAs of each type can be derived.

Table 2-3: STPA Example Multi-UAS Unsafe Control Actions (UCAs) (adapted from [143])

UCA Type UCA Hazard Traceability
Not Providing [UCA-1] Operator does not provide “ Approve COA” H-1
when the COA fulfills mission objectives
Providing [UCA-2] Operator provides “ Approve COA” when H-2

the COA has UAS violate minimum separation

Too Early / Late / [UCA-3] Operator provides “ Approve COA” too late H-1, H-2, H-3
Wrong Order when the COA no longer fulfills mission objectives

Applied too long / Not applicable for this analysis because “Approve N/A
Stopped too short  COA” is a discrete command

Finally, Step 4 identifies causal scenarios (CS) that can lead to unsafe control actions and
hazardous states. This is accomplished by systematically exploring potential breakdowns in the
feedback control loop in the model. The following example scenario is derived from UCA-3 in
Table 2-3. Many scenarios may be found for each UCA, and some scenarios may be linked to
multiple UCAs.

CS-1: The Fleet Controller updates the COA request so frequently that the operator
cannot assess its validity before it is replanned. Thus, the operator is in a cycle of
perpetual COA review. [UCA-3] [143]

The output of the analysis is a set of constraints to eliminate or mitigate UCAs and causal
scenarios. These can form the basis for requirements or recommendations to build safety into the
design throughout its lifecycle. For example, the following design requirement (DR) can be
derived from CS-1.

DR-1: The system must not enter a state where the operator cannot provide input
because of a perpetual COA update. [UCA-3, CS-1] [143]

24.2 Why Use STAMP for this Research Topic

There are several reasons why the system-theoretic foundation of STAMP and STPA are well-
suited to address some of the challenges in fielding novel aerospace systems with more complex
component interactions and dynamics. The following strengths enable the holistic modeling and
analysis necessary to design and assure such systems are safe.

First, the STAMP causality model can handle non-linear or circular relationships between
system components, unlike the chain-of-event models described in Section 2.3.1. This is critical
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to model collaborative relationships between system controllers engaged in joint activity. As
previously described in the Coactive system model (Figure 2-4), teammates reciprocally help
close each other’s control loops [2]. Linear causality models simply cannot represent this
fundamental relationship. While Systems Theory does underlie other analysis approaches, such
as System Dynamics [185] and Cynefin [186], these methods were developed to model social
systems, whereas STAMP is more appropriate for engineered systems.

The second attribute that makes STAMP appropriate for analyzing the safety of collaborative
systems is its ability to explore interactions between hardware, software, and human controllers.
Traditional hazard analysis tools are more hardware-focused and require separate approaches
for software and human factors. However, the separation of analysis for these different types of
components is reductionist and, therefore, incapable of properly predicting the emergent
property of system-level safety. STAMP provides the necessary unified approach to integrate the
different technical domains that influence these collaborative interactions.

The third advantage of STAMP is that it does not assume that accidents are only the result of
random component failures like most other techniques do. It also considers how many accidents
have occurred as a result of unsafe relationships between fully functioning entities [38]. This is
important because software does not fail. It always executes exactly as it was programmed, and
unsafe behaviors that arise from it can almost always be traced to flawed requirements [144]. In
addition, some system failures are not hazardous and do not lead to accidents. From this
perspective, STAMP remains focused on system safety rather than on factors that may only create
a reliability concern [38].

The fourth reason is that STAMP emphasizes system context. All engineered systems are
integrated within a larger socio-technical system which must holistically exhibit safe behavior.
The non-traditional human and machine roles proposed in many novel aerospace systems need
to be analyzed in the context of the broader aviation system they will operate in. It is insufficient
only to analyze the interactions between team members, which is what most of the teaming
models and design processes described in Sections 2.1 and 2.2 focus on.

The fifth strength of STAMP and STPA is the ability to use abstraction to model and analyze
arbitrarily complex systems. This addresses the scalability concerns found in leading
collaborative system design approaches like Dearden [46] and Coactive Design [2]. It is also
conducive to first analyzing what the system or team must accomplish as a whole, as
recommended in several design techniques, and then using refinement to explore functional
allocation within its components.

Finally, abstraction enables STPA to be applied at the very early stages of design, when little
design detail is available, and where safety requirements can be the most effective. This can
facilitate early traceability of architecture requirements and support V&V to integrate safety
assurance into the design process. Such an attribute is necessary to enable an assurance by
construction paradigm that may overcome some of the limitations associated with certifying
complex systems today.
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2.4.3 Previous Relevant STAMP Work

The System-Theoretic foundation of STAMP provides a general framework that supports
modeling and analysis of any type of system and any type of emergent property. However,
extensions of STAMP and STPA have been developed to provide additional guidance when
needed for specific problems. Examples include techniques to focus on system security [187],
adding depth to analyzing human factors [188], [189], and providing a framework to use STPA
actively during operations [190].

In this light, the following explores past STAMP work related to systems that exhibit
collaborative behaviors. The goal is to provide orientation on where additional guidance is
needed to address this topic systematically and rigorously.

STAMP Extension for Coordination

STPA-Coordination was developed by Johnson [191] to enhance the identification of causal factors
when multiple controllers engage in coordinated activity. The framework identifies four
fundamental coordination relationships, shown in Figure 2-9, and nine elements necessary for
coordination, listed in Table 2-4. Occurrences of missing, inadequate, or late establishment of
these elements help identify flawed coordination cases that could lead to system hazards.
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Figure 2-9. Fundamental Coordination Relationships (adapted from [191])

Table 2-4. Nine Coordination Elements Defined by Johnson [191]

Goals
Coordination Components: ~ Strategy (Activities)
Decision Systems
Communications
Enabling Processes: Group Decision Making
Observation of Common Objects
Authority, Responsibility, Accountability
Enabling Conditions: Common Understanding
Predictability
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Johnson’s framework is strongly related to this research topic because coordination is one of
the attributes required for effective team interactions [59]. For this reason, several of the
coordination elements are accounted for in the techniques introduced in this work.

However, the scope is different as not all coordinated systems are necessarily collaborative.
A common type of collaborative relationship sought in novel systems is represented by Case (b)
in Figure 2-9. Given recursion in Systems Theory [182], Cases (c) and (d) can arguably be treated
as abstractions of (b) from the perspective of collaborative relationships. Conversely, Case (a)
represents the centralized or supervisory control interactions that are widely fielded in traditional
systems and therefore, not the focus of this research.

Additional work is needed to rigorously consider fundamental dynamics exhibited when
Case (b) behaves as a collaborative system with interactions akin to those in human teams. For
example, clear guidance must be provided on handling shared control, alignment of team
cognition, and changes of authority. Similarly, Case (b) may involve a hierarchy between the
controllers, which may even be dynamic, as considered in Mixed-Initiative Interactions [67].

Johnson also recognizes that more specific direction is required to consider coordinated
interactions between humans and machines [191]. A clear path to integrate this model into a
broader socio-technical system and guidance to refine the analysis to different levels of interest
systematically is also necessary. Finally, a framework is needed to use the outputs of the analysis
to guide architectural design and assurance processes.

Observations of Relevant STPA Analyses

In addition to Johnson’s work, multiple recent analyses have applied STPA on systems that
exhibit some of the complex interactions of interest in this research. Eight of these were reviewed
to study their types of causal relationships and examine how they were addressed in the analysis.

Robertson [53], Montes [188], and Horney [192] analyzed interactions between human-piloted
aircraft and UAS executing military missions and formations using STPA. Abrecht [193] and
Mackovjak [194] studied the design and accidents of similar concepts in the naval domain.
Kharsansky explored architecture options of multi-satellite constellation systems [18]. Peper
applied STPA to an assembly system with three remotely operated vehicles that collaboratively
transport a large product [195].  Finally, Wong used STAMP to investigate communication
breakdowns that occurred when two airliners collided after receiving conflicting directions from
Air Traffic Control (ATC) and the Traffic Collision Avoidance Systems (TCAS) [196].

Because these studies were all performed for different purposes, comparing them to one
another or to the intent of this research is unfair. Furthermore, not all of these systems were fully
representative of the novel aerospace systems introduced in Chapter 1. However, several
common trends and challenges related to collaborative control were noted.

In most studies, the lowest level of the hierarchal control structure stops at the collaborative
entities, such as the multiple UAS or satellites, and does not show the shared mission or formation
they are collectively responsible for controlling. Many of the studies shy away from analyzing
the distributed control that occurs when each individual controller makes its own decisions about
how it controls the shared process using information received from its peers.
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The definition of Unsafe Control Actions (UCAs) in STPA tends to focus the analysis on one
controller and one controlled process at a time, whereas teaming involves a collection of control
actions from multiple controllers. Finally, mechanisms associated with changing control
responsibilities and shared process models between multiple controllers are not explicitly
considered. Such challenges present an opportunity to extend how STAMP models are
developed and analyzed to more systematically address interactions exhibited in collaborative
control.

2.5 Summary of the Literature

This Section reviewed a wide basis of literature related to engineering systems that exhibit
collaborative interactions inspired by human teams. The key takeaways are the following.

First, there are many ways to characterize and model teaming interactions. Some properties
are common across different team compositions, whereas some are more specific to human,
human-machine, or multi-machine teams. However, most models that describe some of the
intricacies of teaming dynamics lack actional guidance for system designers and do not focus on
safety.

Second, there are very few systematic processes available to guide the architectural design of
interdependent systems. The majority of the frameworks are based on high-level or reductionist
design patterns which offer little rigor in reasoning about the system as a whole. The most
advanced methods provide some mechanisms to reason about systems holistically, but they face
various drawbacks in being able to design safety top-down.

Third, conventional safety assurance processes are generally expensive, are applied too late
in the development life cycle and are inadequate to handle interdependent and collaborative
systems. This means there is currently no effective path to certify many of the novel systems
introduced in Chapter 1.

Finally, Systems Theory and STAMP provide an avenue to integrate system design and safety
assurance activities from the earliest phases of development. Their principles were shown to be
well-suited to handle the collaborative and interdependent relationships of interest in this
research. However, they require additional guidance to rigorously and systematically handle the
complex attributes associated with these interactions. The next two chapters extend their
analytical scope to address this need.
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Chapter 3: Defining Collaborative Control
using Systems Theory

Despite the many strengths STAMP-based techniques possess to analyze the safety of complex
systems, some of the types of complex interactions sought in novel aerospace designs have not
been specifically defined using Systems Theory. The lack of definition in the underlying causality
model means the hazard analysis may omit certain causal factors or not handle others
systematically. This chapter defines the collaborative control interactions observed in teaming so
that they can be more completely analyzed using STAMP and the analysis tools built on it.

A widely cited team definition is: “A team consists of two or more entities who interact
dynamically, interdependently, and adaptively toward a common and valued goal, with unique
roles and functions to perform” [51, p. 3]. It is nearly identical to that of a system (see Chapter 1)
and, therefore, is not very useful by itself in distinguishing teams from other systems. Similarly,
characterizing teamwork as “more than the aggregate of individual behaviors,” [58] defines it as
an emergent property, which is again fundamental to systems. This means teams can be defined
as identical to systems.

So why are the new human-machine teaming or multi-machine teaming concepts proposed
in aerospace so challenging to engineer? What makes them different from other systems that
have been successfully fielded? The reason is that their component interactions are more complex
and/or less well understood than those in previously fielded systems in safety-critical
applications.

Figure 3-1 conceptualizes some of the differences in the types of interactions exhibited by
human teams compared to those in existing human-machine systems in a similar setting. The left
is a traditional Human-Automation Interaction (HAI), with a pilot supervising an autopilot to
control an aircraft. The pilot delegates some control authority to the autopilot using predefined
modes and sets goal conditions accordingly. Beyond that, the control structure is static, and the
autopilot-aircraft feedback control loop is not closed by the pilot.

Human as Supervisor Collaborative Control
« sets control goal + establish roles
* supervises L')’ \-) + change authorities
* intervenes + team cognition
« coordination
Automated Controller Autopllot
. feedback trol of LT + help each other’s
eedback controt o control loops
aircraft only
Interactions in current human- Interactions in human teams
automation systems are simple are more complex

Figure 3-1: Contrasting Interactions in Fielded Human-Machine Systems and Human Teams
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Conversely, the right shows a human flight crew controlling the aircraft. Some interactions
are supervisory in nature, such as the captain delegating flight control roles. However, others are
more collaborative. The pilots are part of each other’s control loops in operating the aircraft as
they coordinate, direct each other, transfer tasks, and mutually monitor their activities. This
collaborative control paradigm observed in human teaming goes beyond what current fielded
human-automation systems are able to exhibit. But these teaming interactions are inspiring novel
system concepts.

To analyze the safety of such novel systems, it is necessary to more precisely identify the
complex human interactions described in the example. A few taxonomies have previously been
proposed to describe system and component interactions for the purpose of hazard analysis. For
example, Perrow [197] classifies system interactions using two dimensions: (1) tight vs loose
coupling and (2) linear vs complex. However, this framework is highly subjective, and the theory
it supports emphasizes that accidents occur due to component failures, which is inconsistent with
modern system safety.

More recently Saurin & Patriarca [198] developed a 9-dimensional taxonomy for socio-
technical system interactions. The axes include: nature of agents, output nature, levelling, waiting
time, distance, degree of coupling, visibility, hazards, and parallel replication. This model is
specifically designed to feed Functional Resonance Analysis Method (FRAM). Unfortunately,
this technique assumes sequential, or acyclic, causality, which is an oversimplification of non-
linear interactions that contribute to accidents [4].

Other research domains have categorized system interactions, but not necessarily for safety
analysis. HAIs are often described along the popular Levels of Automation (LOA) axis [122],
which is helpful to conceptualize how automation is intended to support humans in a design.
However, as reviewed in Chapter 2.2, the LOA construct is too simplistic and does not
characterize collaborative behavior [120]. Distributed control theory is employed by Murphey &
Pardalos [79] to define increasingly coupled interactions between multiple controllers, ranging
from collective to coordinated. Finally, multi-agent control theory is used by Parunak et al. [199]
to classify interactions according to the different types of communication, intent, and congruence
of system-level goals.

Various elements of these frameworks helped inspire the formulation proposed in this
dissertation. However, these sources are still insufficient to describe the teaming interactions
reviewed in Chapter 2.1 using Systems Theory. This requires a new taxonomy to be developed.

The system-theoretic framework introduced in this chapter consists of (1) a taxonomy of the
structure of interactions between multiple controllers and (2) a set of dynamics observed in
collaborative control. It creates the necessary foundation to extend system-theoretic hazard
analysis methods to systematically identify causal factors associated with these interactions.

3.1 Taxonomy of the Structure of Controller Interactions

The dynamics between multiple interacting system entities, including those observed in
collaborative control, are influenced by the structure of the interaction. A taxonomy of seven
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structural dimensions was developed to help reason about causal relationships between
controllers (Figure 3-2). The taxonomy is inspired by the literature covered in Chapter 2, a review
of various aerospace systems, and discussions with researchers that provided various
perspectives and examples on teaming systems?.
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Figure 3-2. Taxonomy of Structure of Interactions between Multiple Controllers

First, the dynamics are shaped by the types of controllers [A] interacting, which may be humans
only, human(s) and machine(s), or machines only. These interactions can also form the basis of
higher-level systems, such as human organizations, teams of teams, or multiple human-machine
systems interacting as a whole. Finally, the types of controllers may not be determined yet if the
system is in design. The nature and differences between interacting controllers have significant
implications for how they coordinate and make control decisions. It is noted that the framework
could also include interactions with other biological controllers, such as pets or viruses, but those
are omitted because they are less relevant to aerospace systems.

Next, the hierarchal structure [B] between controllers can vary from a hierarchal control
relationship to a partnership between peers. Some interactions can exhibit a mix of both traits. For
example, interactions among human pilots involve both hierarchal control and peer partnership
at different levels of work. The captain directs the roles and responsibilities of the first officer
(FO) by designating her/him as Pilot Flying versus Pilot Not Flying. However, the captain and
FO also work together at a lower level to aviate, navigate, and communicate.

Entities can exhibit a range of behavioral intent [C] toward one another. Designed systems
often consist of components that are mutually cooperative to achieve a common objective. On
the opposite end, some systems contend with adversarial interactions, such as those found in
competition and conflict, as described by Parunak [199].

4 Discussions with Emily Cowen, Andrew Heier, Kyle Ingols, Reed Jensen, Dr. Kevin Lahey, Dr. Caroline
Lamb, Dr. Vincent Mancuso, Col (ret) Mike Pietrucha, and Dr. Rohan Paleja helped, in part, shape the
taxonomy. Thank you.
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Between these two ends, there are also interactions without reciprocal intent. For example,
two entities may consist of one behaving cooperatively whereas the other is not, as is the case in
formation rendezvous with a non-cooperative target. Adversarial intent can also be unilateral,
as observed in insider threat scenarios. Furthermore, interactions may also be influenced by
mixed motives, as is experienced between drivers in merging traffic where a lane ends. Drivers
must cooperate to allow each other through and avoid crashing into each other, but they are also
driven by non-cooperative intentions to reach their respective destinations on time.

Multi-controller interactions are also influenced by their level of connectivity [D]. Connectivity
may be global, in which all controllers involved in joint activity can directly exchange information
with one another. It can also be local, where two controllers that are not directly connected may
exchange information indirectly through other entities. Finally, some controllers or groups of
controllers may be disconnected and not be able to exchange information.

Next, there are different types of information exchange [E] that can occur along these
connections, as described by Murphey [79]. Communications can involve active messaging
where content, such as controller states and intentions, is encoded and shared. Communication
can also be passive, in which a controller observes the behavior of another to estimate its state
[79]. Finally, the existence of lines of communication does not mean information exchange
actually takes place. The activity of multiple controllers can be coordinated a priori in an open
loop via preplanned policies and behavioral predictions.

The roles and responsibilities [F] of interacting entities can range from prescribed to ad-hoc. In
simpler systems, the responsibility, authority, and accountability for controllers are prescribed
using modes so that control boundaries are defined to avoid overlaps. For example, a pilot can
turn on “heading hold” mode on an autopilot to entirely delegate that task to the machine.

Other systems may intentionally allow more dynamic control boundaries with overlap
between multiple entities to improve performance. For example, there are many concepts of
teams of multiple robots that share a common set of tasks and must coordinate and deconflict
task allocation during operation. Furthermore, roles and responsibilities may even be ad-hoc and
determined only during execution. This ad hoc teaming occurs in human interactions, for
instance, when a team forms to handle a roadside accident.

Finally, interactions are also influenced by their developmental origins [G], i.e., the time when
they are considered in the engineering lifecycle. Some controllers are co-designed to interact from
the beginning, while for others, new functional interactions are only considered post-fielding. In
between, this axis also includes separate designs of interacting controllers according to a common
specification. It also contains unilateral relationships, where one controller is developed to
interact with another that is already fielded.

Categorizing the interactions between multiple controllers according to these structural
dimensions does mean assigning a value on a numerical scale. The Types of Controllers axis
represents nominal data, and the remaining six axes are ordinal. Some interactions may exhibit
multiple labels on each axis. Furthermore, there is no claim that these axes are independent. The
purpose of this taxonomy is to qualitatively consider structural factors that influence causality
between multiple interacting controllers.
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3.2 Collaborative Control Dynamics

To determine the causal effects of different types of interactions in hazard analysis, those
relationships must be included in the underlying causality model. The system-theoretic
foundation of STAMP provides a mechanism to model causality in any arbitrary control system,
no matter how complex. However, as highlighted in Chapter 2, STAMP-based techniques like
STPA need additional guidance on how to systematically handle some of the more complex team-
inspired interactions.

To address this gap, this section defines nine dynamics that are observed in collaborative
control systems. These interactions are derived from the teaming fundamentals reviewed in
Chapter 2 and the study of novel aerospace systems described in the literature. The definitions
are grounded in the principles of Systems Theory and are formulated using STAMP. The
structural dimensions in the taxonomy above influence if and how these dynamics are exhibited
by a system.

Using Systems Theory, the concept of emergence implies that the collaborative control
dynamics can only be described in terms of the interactions among multiple entities. In this case,
the interacting components are two or more controllers engaged in joint activity. The
collaborative control dynamics are irreducible in that they have no meaning for any individual
controller. The concepts of hierarchy, communication, and control are all explicitly represented
in the models shown in Figure 3-3.
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Figure 3-3. System-Theoretic Collaborative Control Dynamics

The collaborative control dynamics are defined according to the three parts of STAMP. The
causal relationship between the controllers is represented using a hierarchal control structure. Each
controller has a process model which contributes to the system behavior. By adequately analyzing
the system, safety constraints can be identified to enforce the safe collective behavior of the team.
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The following discussion describes what the collaborative control dynamics mean in STAMP
models. Examples of each of these interactions are presented in Section 3.3.

1. Cognitive alignment is the process multiple controllers use to establish and maintain
consistency in their process models and control decisions. The dynamic can involve
synchronizing information held in common as performed in shared situational awareness [60]. It
may also require controllers to leverage distributed situational awareness by coordinating about
who knows what and when within the team [61].

As emphasized in STAMP, accidents often occur because controllers have flawed models of
the process they are controlling [38]. For collaborative control, this concept is extended to account
for how the models of multiple controllers sharing a process may be flawed relative to one
another. Any single controller may not have a full model of the controlled process and may
depend on model variables held by its collaborators. Furthermore, a controller may consider
estimates of the states of the collaborating controllers as part of their decision-making.

Mutual confidence is also part of cognitive alignment. It relates to mutual trust, a key
mechanism for effective teamwork [59]. Confidence is relevant in this research because it is
encodable in machines, unlike trust, which is inherently a human property. As proposed for trust
by Chancey et al. [78], confidence is an element of the process model for each controller regarding
the expected behavior of other interacting controller(s). Levels of confidence can be mutually
assessed for the behaviors of interacting entities. A controller’s confidence in other controllers
may influence its own control decisions.

The ability of controllers to align their cognition is heavily influenced by different dimensions
in the taxonomy introduced in the previous section. The process is more challenging if the
controllers are of different types. The hierarchy, connectivity, and information exchange define
the mechanisms available to maintain the alignment. The rigidity of controller roles and
responsibilities may affect the complexity of the process models that need to be synchronized.
Finally, the developmental origins can impact the compatibility of the cognitive functions in
multiple controllers.

2. Lateral coordination is a causal process between peers that does not imply control [191], [199].
It describes how a component provides information to another component in a way that
influences its behavior, but without imposing constraints. Controllers can achieve this dynamic
using communication exchanges that are deliberately intended to facilitate coordination. For
example, pilots of multiple aircraft at an uncontrolled airport laterally coordinate by radioing
their position and intentions.

Lateral coordination can also involve passive observations. Controllers that monitor each
other’s behaviors can be implicitly influenced by the interpretation of information that was not
deliberately provided for coordination [200]. In the same example as above, pilots at an
uncontrolled airport also observe each other visually and consider implicit factors (e.g., their tone
of voice) to update their models of each other.

Lateral coordination is one of the mechanisms that may be used by a team to maintain
cognitive alignment. It is distinct from vertical coordination, as defined by Johnson [191], which
occurs when a central controller coordinates the decisions of the components over which it has
authority. An example of this is when Air Traffic Control coordinates the trajectories of multiple
aircraft with respect to each other.
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The lateral coordination dynamic is enabled by the hierarchal structure of the interacting
controllers, as described in the taxonomy. It is also supported by the connectivity and the ability
to actively communicate.  Johnson’s extension of STPA proposed a framework of nine
coordination elements to consider as missing or inadequate when analyzing safety in coordinated
systems [191]. The current work employs some of these ideas to consider how coordination can
lead to unsafe collaborative control.

3. Mutually closing control loops is a central concept in interdependence analysis in coactive
design [2]. Controllers observe, predict, and direct each other bi-directionally to execute joint
activity (see Figure 2-4). In a STAMP control structure, this dynamic indicates a controller may
depend on another controller to receive feedback about the process it is controlling. It also means
a controller may depend on feedback from its controlled process to determine how to interact
with a collaborator. The interaction implies that controllers are inherently part of each other’s
feedback control loops, and as such the actions of those controllers cannot be analyzed
individually.

4. Shared authority occurs when multiple controllers have authority over one process or
multiple interdependent subprocesses. This dynamic is common in hierarchal systems, in which
a supervisor (typically human) can delegate certain functions to another controller under its
supervision (often automated systems) but can also intervene and reclaim control. However,
shared authority can also occur when controllers interact as peers. In some cases, a system may
require simultaneous inputs from multiple controllers to control the same process.

In STAMP, shared authority is fundamental to modeling collaborative control as it describes
the joint activity executed by multiple controllers. The key implication of this dynamic is that
hazards may occur because of how multiple control actions are provided collectively to the
shared process. Therefore, these control actions must be analyzed in the context of one another.

5. Transfer of authority is a dynamic that can only occur in the presence of shared authority. It
specifically describes how some systems perform handoffs of a common control action between
multiple controllers over time. Handoffs may be done to dynamically reallocate control
authorities to address shortfalls identified during operation. Not all systems with shared authority
exhibit transfer of authority.

6. Dynamic authority also requires the presence of but is not implied by shared authority.
Dynamic Authority enables multiple controllers with overlapping control boundaries to shift the
division of labor during the execution of joint activity. As previously described, some systems
are intentionally designed with this overlap so that they can adjust the allocation of tasks
dynamically and improve performance.

The ability to adapt, redirect resources, and change collective behavior are important in
effective teamwork [59]. However, dynamic authority can lead to conflicts or gaps in authority,
which are well-known causal factors that lead to hazardous behavior in collaborative control [38],
[201]. The significance of transfer of authority and dynamic authority in STAMP is that the authority
of some of the controllers to provide some of their control actions will vary over time.

7. Dynamic hierarchy occurs in mixed-initiative interactions [67]. Controllers alternate in
leading the team to execute various parts of the joint activity. This dynamic can be beneficial in
improving performance when certain controllers are contextually better suited to control others.
Such interactions are commonly observed in human dialog and are of interest for designing
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collaborative systems [67]. The implication of dynamic hierarchy in STAMP is that some systems
have multiple controllers that have the ability to provide control actions to one another.

8. Dynamic membership means the set of controllers engaged in joint activity can change over
time. Collaborative teams may lose, replace, or gain members during activity. This dynamic may
require controllers to track the set of active collaborators as a process model variable. Similarly,
the controlled process may be composed of dynamic subprocesses that come and go over time.
As a consequence of dynamic membership, STAMP models must account for the variable
participation of some of its controllers.

9. Dynamic connectivity indicates the network topology among controllers changes over time
while the controllers are interacting. Most systems may be subject to failed channels of control,
feedback, and information flow, as currently emphasized in STAMP. However, this dynamic
specifically focuses on systems for which these channels are expected to vary as part of the
operation. It implies that both global connectivity and communication links between any
controller pair are not always guaranteed. Note that dynamic connectivity can also apply to the
controlled subprocesses and will affect dynamic membership.

In addition to these dynamics, the collaborating controllers {Ci,..,C.} have their own
accountabilities, which may be different from one another. This concept is important because the
system is open and interacts across its boundary with a larger system, which also has causal
implications. Figure 3-3 accounts for this notion by including separate feedback control
connections to higher authority controllers for each of the controllers shown.

3.3 Analyzing Systems for Collaborative Control Dynamics

The system-theoretic framework introduced in this chapter was evaluated on a set of 101
component interactions that are part of aerospace systems. These systems, which are described
in the literature and listed in Appendix 1, represent both fielded systems and unfielded systems,
e.g., systems in concept development, systems that have been prototyped but not yet fielded, etc.
Most of the systems were encountered while reviewing the teaming literature, and they include
all of the motivating examples listed in Chapter 1. However, the set is not necessarily
representative of all possible and actual aerospace systems.

The analysis explores interactions between the main entities for each of the sampled systems.
Some systems have multiple interactions to categorize. ~For example, the Aircraft Collision
Avoidance System (ACAS-X) involves interactions between aircraft, aircraft flight crews, and Air
Traffic Controllers (ATC), where components can also interact with one another. Each of these
interactions can be categorized differently (see Example 1 below).

The goal of this analysis is (1) to demonstrate how to categorize controller interactions, (2) to
compare the presence of collaborative control dynamics in different types of systems, and (3) to
describe the relationships observed between dynamics.
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3.3.1 Demonstration of the Framework

Two examples illustrate how to categorize the structure of interactions and the presence of
collaborative control dynamics in multi-controller systems. This section also describes how to
handle some of the nuances encountered in the set of interactions analyzed.

Example 1: ACAS-X Aircraft Interactions

The first example is the interaction between aircraft using the Airborne Collision Avoidance
System (ACAS-X). ACAS-X is a series of developmental upgrades to the fielded Traffic Collision
Avoidance System (TCAS) to handle a wider range of aircraft operations [138], [202]. ACAS-X
units on different aircraft interact as a collaborative machine team to jointly ensure collision
avoidance. The categorization shown in Figure 3-4 and described below focuses on interactions
between ACAS-X controllers on deconflicting aircraft. It does not describe ACAS-X to Flight
Crew or ACAS-X to ATC interactions, which would be categorized differently.
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Figure 3-4. Categorization of Interactions between ACAS-X Aircraft

The structure of interactions is categorized according to dimensions [A-G] as follows. First,
the types of controllers [A] are machines, which consist of transponder-computer units that
autonomously exchange information with one another. These machines communicate their
decisions to human flight crews and ATC using other interactions.

The hierarchal structure [B] between these controllers exhibits both hierarchal control and
peer-level interactions. A hierarchy is established between aircraft based on their transponder
identifiers to allow the higher-ranked aircraft to overrule the lower-ranked aircraft in certain
situations. However, the lower-ranked aircraft may also share its resolution intent first, in such
a way that influences the higher-ranked aircraft’s decision.

The behavioral intent [C] between ACAS-X controllers is cooperative. The connectivity [D] in
networks of ACAS-X aircraft is local as resolution advisories are coordinated between aircraft
pairs only. The information exchanged [E] consists of active coordination with content-based
messages.
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The roles and responsibilities [F] of the controllers are dynamic. In every encounter, the
entities must determine their relative hierarchy, which specifies their respective responsibilities
and authorities. Finally, the developmental origins [G] of individual ACAS-X systems are not all
co-developed, but they are all designed according to a common standard intended to work
collaboratively.

Aircraft interactions using ACAS-X exhibit seven of the nine collaborative control dynamics.
They facilitate cognitive alignment through shared information about the state and intended
behavior of each entity. This alignment also includes mutual confidence because logic is in place
to assess whether a peer is executing the expected deconfliction maneuver. The cognitive
alignment employs lateral coordination in the form of exchanged resolution advisories and
position information. They mutually close each other’s control loop of collision avoidance by
selecting both aircraft control inputs and messages to one another based both on their relative
position and their exchanged intent.

This multi-controller system exhibits shared authority over the controlled process of collision
avoidance. Dynamic authority is also observed as each ACAS-X controller pair must determine
its hierarchal structure, and as a result, define during operation the control boundaries of each
participant. The team also has dynamic membership as the set of aircraft that needs to mutually
deconflict changes throughout execution. Finally, there is dynamic connectivity given that
ACAS-X aircraft cannot assume fully reliable communications.

Some collaborative control dynamics are not observed between interacting ACAS-X aircraft.
First, ACAS-X controllers do not transfer the authority of their controlled process over to other
ACAS-X controllers. When interacting, each ACAS-X controller maintains its control authority
over collision avoidance, which is actuated by its flight crew controlling the aircraft according to
its resolution advisories. Similarly, the system does not exhibit dynamic hierarchy. While two
ACAS-X units interact, there is no provision for one to be the ranking unit for part of the time,
and then dynamically switch this role with the other.

Example 2: Human-Digital Copilot Interactions

The second example categorizes the interaction between a human pilot and an automated digital
copilot featured in a variety of concepts that aim to simplify aircraft piloting operations (Figure
3-5). Specifically, the concept proposed by Dropkin et al. [22] involves a human and an automated
assistant that collaboratively execute checklists. The human can delegate checklist execution to
the assistant, as s/he would with a human copilot. From there, the automation can request the
human to perform certain checklist actions while it takes care of others.

With regards to structural dimensions [A-G], in [A], the interaction is between a human and
a machine. For [B], this system features a mix of hierarchal control and peer interactions. The
human can delegate tasks to the automation in a supervisory relationship. However, within those
tasks, the automation can request assistance, ask the human to execute certain subtasks, seek and
provide clarifications, and monitor human execution as a peer. Next, the interaction is mutually
cooperative in intent [C].

For [D], connectivity is global. While this case only involves two controllers, and therefore
global connectivity is arguably no different than local, the important point is that nominally all
collaborators are mutually connected. Dimension [E] involves both active and passive
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information exchange. Controllers actively exchange content-based messages, for example, using
voice commands, and also passively observe each other’s process control activities.

In [F], the system has dynamic roles and responsibilities. There is an intended overlap
between the human and automation control boundaries to allow task allocation to be specified
during operation. Finally, for [G], it is assumed the system interaction is co-designed. The
automation is designed from the beginning to interact with a human pilot, and that the human
pilot is trained specifically to work with this automation.
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Figure 3-5. Categorization of Human-Digital Copilot Interaction

This interaction exhibits seven of the nine collaborative control dynamics. The controllers
perform cognitive alighment by sharing information and relying on different knowledge they
each possess about the state of the aircraft under control. There are also mechanisms for mutual
assessment of confidence in peer actions. The pilot and digital copilot laterally coordinate using
both deliberate voice communications and mutual monitoring of their behaviors.

As in human-crewed flight operations, they mutually close each other’s control loops by
receiving feedback pertaining to their control actions through their peer. Similarly, their
decisions to interact with each other are influenced by feedback they receive from the aircraft.
Shared authority and dynamic authority are present because controller boundaries over the
operation of the aircraft overlap and must be resolved during execution.

Unlike the previous example, this interaction also exhibits transfer of authority, as one
controller can hand off the responsibility to execute a task to the other. There is also dynamic
hierarchy at different levels of work. The human, as a supervisor, can delegate overall checklist
execution responsibilities to the automated assistant. However, the automated assistant can then
direct the human to execute certain assistive tasks within the scope of the checklist.

Another way this example differs is that it does not exhibit dynamic membership or dynamic
connectivity. The system prescribes a fixed set of collaborating controllers throughout execution,
the human and the digital copilot. Because the controllers are collocated, their network topology
is not expected to vary during nominal execution. Unsafe control paths and feedback paths in
the system are sufficiently covered by STPA, and the implications of these two dynamics would
not need to be further emphasized in hazard analysis.
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Nuances Encountered in Categorization

The categorization of controller interactions in the sample was based on the description of the
system in the literature. In some cases, insufficient information was available to label one or more
of the dimensions, and those items were not evaluated for that interaction.

In other cases, the description made it possible for different versions of the system to be
categorized differently. For example, one multi-UAS system explicitly stated that UAS control
could be distributed or centralized [143], and therefore with or without lateral coordination. In
such instances, dynamics were rated as 0.5 on the 0-1 scale of whether or not the dynamic is
present. Similarly, multiple labels were assigned for the structure of interaction in such cases.

3.3.2  Results of the Categorization in Different Types of Systems

Observations noted in categorizing analyzed interactions are grouped into four categories: (1)
human-machine (HM) or machine-machine (MM) interactions in fielded systems, (2) HM or MM
interactions in conceptual unfielded systems, (3) human-to-human (HH) interactions in fielded
systems, and (4) HH interactions in unfielded systems.

These four groups imply a categorization in the fypes of controllers dimension from the
taxonomy introduced in Figure 3-2. Figure 3-6 shows the relative distribution of how the other
six dimensions were labeled for each of the four groups.

Three dimensions have distributions for which HM and MM interactions in unfielded
systems are closer to those found in HH interactions (fielded and not) than those seen in fielded
HM and MM interactions. In the analyzed set, the unfielded systems have more peer-level
structures, local connectivity, and dynamic roles and responsibilities in their interactions than the
currently fielded systems.

Two dimensions have similar distributions across all the groups. Nearly all of the systems
studied have cooperative intent, and most of the systems use active communications to coordinate
activities. This observation may indicate that differences in these structural elements of multi-
controller interaction are less pronounced between systems with collaborative control and those
with simpler relationships.

Finally, the developmental origin axis actually aligns fielded HM and MM interactions more
closely with HH interactions. In these cases, most fielded HM and MM interaction systems were
developed separately to a common standard. Conversely, the majority of unfielded HM and MM
interactions occurred between co-designed controllers. This outcome is more than likely
influenced by the very nature of whether a system is fielded or still in design. Many novel
systems do not yet have common standards.
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Figure 3-6. Comparison of the Structure of Controller Interactions

Next, the prevalence of the nine collaborative control dynamics is compared between the four
groups. Figure 3-7 shows the mean total number of these dynamics exhibited by each interaction
sampled, and Figure 3-8 captures the percentage of systems that present each dynamic. For the
most part, HH interactions in the studied set exhibit more of each of these dynamics than HM
and MM interactions. However, the results also indicate that HM and MM interactions in
unfielded systems exhibit more of every one of the dynamics than in fielded systems in the
analyzed set.

HM-MM fielded
HM-MM —fielded
HH fielded
HH —fielded

0 1 2 3 4 5 6 T
Mean [# Collaborative Control Dynamics]

Figure 3-7. Mean Number of Collaborative Control Dynamics Found in Each Interaction

These results are not intended to quantitatively suggest that all aerospace systems follow
these trends. The systems analyzed were chosen from the literature related to teaming, and they
are therefore not representative of the overall population of systems.

However, there are two important takeaways from this analysis. First, there is evidence in
the literature that systems are being designed to exhibit each of these complex collaborative
control dynamics. And second, of the systems analyzed, those that have not yet been fielded tend
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to exhibit more of these complex interactions. These points support the argument that causal
factors associated with these dynamics must be considered in safety analysis and design.
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Figure 3-8. Percentage of Interactions that Exhibit Each Collaborative Control Dynamic

3.3.3  Relationships between the Categorized Dynamics

The labeling of the presence of collaborative control dynamics was compared against one another.
These relationships are shown in Figure 3-9.
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Figure 3-9. Relationship between Collaborative Control Dynamics in Sampled Systems
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The left plot shows the percentage of all interactions for which two collaborative control
dynamics were assessed similarly (i.e., both present or both absent). The matrix is symmetric
about its diagonal, and only the bottom half is shown. The important takeaway is that no two
non-identical dynamics are completely correlated in the dataset, as would be indicated by a 1 or
a 0 respectively. The only 1s appear as expected on the diagonal, where each dynamic is
compared to itself.

A complete overlap between two dynamics, as represented by a 1, could suggest that they are
functionally equivalent when modeling the system. If so, these dynamics could be candidates to
be combined. A complete lack of overlap, as indicated by a 0, could suggest that the two
dynamics are mutually exclusive, perhaps due to an inverse definition of one of two equivalent
properties. Neither of these instances occurred in the sample.

The plot on the right shows whether the dynamics on the vertical axis were identified only in
the presence of the dynamics on the horizontal axis. Formally, the value in each cell provides the
propositional logic truth value of the statement dyerticar = Anorizontar for dynamics d over the set
of interactions studied. If for any of the interactions in the set djorizonta: is false when dyerticq; is
true, the cell value equals zero.

The plot shows six correlations in which one of the dynamics was only active when one of the
other dynamics was also present. These are represented by the six 1s off of the diagonal. Some
of these relationships were expected. For example, transfer of authority and dynamic authority
imply, as defined in Section 3.2, that the system also exhibits shared authority.

Some of the other correlations may reflect how the dynamics are described. The plot indicates
that mutually closing control loops only occur in the set when there is shared authority, which makes
sense. A controller may sense feedback from the process due to an action provided by another
controller on that same process. However, while this notion suggests a connection exists between
multiple controllers and the same process, it does not necessarily imply that all the controllers
must have authority over that process. So, beyond the analyzed set, it is conceivable that some
systems would have mutually closing control loops without shared authority.

The plot also suggests that both dynamic hierarchy and dynamic authority only occur in the set
when the interaction also involves cognitive alignment. Both of these dynamics require the team
to resolve which controller is in control of part of the process or which controller is in control of
other controllers over time. As such, it intuitively makes sense that the controllers would need
to align their models and decisions accordingly.

Similarly, mutually closing control loops was found only in the presence of cognitive alignment.
This correlation may reflect the system-theoretic foundation of this work. In mutually closing
control loops, feedback loops to the process are closed through multiple controllers. If those
controllers were abstracted as one controller as a whole, that controller would need a process
model to control the process. As such, in a refined view of the system, the multiple controllers
involved in the feedback loop must have cognitive alignment to safely close those loops.

Despite the proposed explanations for these correlations, examples may exist beyond the
systems studied for which the relationships do not hold true. No definitive conclusions can be
drawn on the six correlations between dynamics based on the results of this study alone.
However, the knowledge of these potential implications can help steer an analyst or a designer
to look out for certain collaborative dynamics if others have been identified.

68



3.4 Summary of Collaborative Control Definition

Current systems engineering processes are challenged by some of the more complex team-
inspired component interactions sought in aerospace system designs. As such, the community is
unable to properly model, analyze, and design for assurance of such systems. This research aims
to overcome some of these limitations by developing a rigorous and systematic technique to
analyze the safety of multi-controller collaborative systems.

As a first step to accomplishing this goal, this chapter defined the diverse types of
collaborative relationships that multi-controller teams may exhibit. It introduced a system-
theoretic framework to describe different types of interactions that are —or are planned to be —
designed into aerospace systems. A taxonomy helps reason about seven different structural
dimensions in controller interactions. In addition, a set of nine dynamics observed in
collaborative control were defined using Systems Theory and are grounded in STAMP.

To determine whether and how this taxonomy relates to fielded and proposed systems, a set
of 101 system interactions studied in this work were categorized using the framework. The
associated analysis demonstrated that each of the collaborative control dynamics is found in
system concepts the aerospace community wants to field. It also showed that these dynamics are
more prevalent in conceptual systems than in those already fielded. The results support
Hypothesis 1 of this dissertation, which underlies the need for the framework.

Hypothesis 1: The system-theoretic collaborative interactions framework provides a
mechanism to categorize and describe component interactions that are, or planned to be,
designed into aerospace systems.

No claim is made that the taxonomy or the set of collaborative control dynamics is complete.
There may be additional dimensions that are determined to be important in some other
applications, and additional collaborative control dynamics of interest may be uncovered.
Furthermore, the framework developed in this chapter can be employed to explore other types
of interactions between controllers, beyond collaboration. This is the subject of future work.

The system-theoretic definition of collaborative control dynamics presented in this chapter
provides the necessary foundation to incorporate these relationships into the underlying
causality model of STAMP-based techniques. The extensions to STAMP and STPA developed to
systematically identify causal factors associated with these interactions are developed in the next
chapter.
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Chapter 4: Extending STAMP and STPA
for Collaborative Control

The system-theoretic foundation of STAMP and STPA is well-suited to address some of the
challenges in modeling and analyzing the novel aerospace systems introduced in Chapter 1.1.
However, these methods need additional guidance to clarify how to handle causality associated
with the more complex team-inspired component interactions sought in new designs. While
STPA may find some causal factors associated with collaborative control, it is vulnerable to
missing others because it lacks a systematic approach to address such relationships.

This problem was evident when analyzing the safety of a future helicopter concept that
executes missions optionally-manned> and in collaboration with multiple UAS [28]. The system
was modeled with a control structure that includes a “teaming controller” to help STPA explore
teaming interactions (Figure 4-1). The function of the teaming controller is to dynamically
coordinate resources in the multi-aircraft team to address mission needs. The teaming controller
could be implemented as a centralized, distributed, or hybrid controller.

The model did help identify several causal scenarios that resulted from the breakdown of
collaborative control among the aircraft. The results include examples of conflicting control,
unsafe control handoffs, human-machine trust issues, inconsistent semantics in the team,
incompatible system configurations, and more [28]. While these results are good and useful,
several challenges were encountered during the analysis.

For instance, the causal relationships for many of the unsafe collaborative control issues listed
above are not expressed in the control structure. The results were only obtained by analyzing the
model creatively, through the lens of teaming, and drawing on past expertise in collaborative
control. Earlier versions of the analysis, without that perspective, did not consider the issues
listed above. For a technique to be repeatable by different analysis teams, the causal influences
that occur in collaboration must be explicitly accounted for by the model and analyzable using a
systematic process.

The teaming controller also led to ambiguity in the hierarchy of components in the model. For
example, by controlling team resources, which include the operator’s aircraft, the teaming
controller may issue control actions to the operator and therefore be hierarchically superior.
However, the reverse also occurs when the operator directs the actions for the team, as
represented in the control structure.

Challenges also occurred in abstracting the model to a higher level. It is ambiguous if the
teaming controller belongs to the operator, the aircraft software controller, the UAS, or all three

5 Optionally-manned means a human pilot may or may not be physically onboard the aircraft. If no pilot is
onboard, the aircraft receives piloting commands remotely.
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if distributed. Similarly, it is unclear how a higher-level model of such a distributed system
would be consistently refined to produce the representation in Figure 4-1.
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Figure 4-1: “Teaming Controller” in Future Helicopter Control Structure (adapted from [28])

Despite the useful results obtained with the teaming controller as represented, the lack of a
systematic approach to handle collaborative control could have resulted in the system being
modeled differently. This variation can lead to different results in the hazard analysis and
increases the risk of missing causal factors. As such, further guidance is needed in STAMP and
STPA to handle these situations more consistently.

This chapter introduces extensions to STAMP and STPA to add guidance and rigor in the
analysis of collaborative control interactions. The new methods are grounded in the collaborative
control framework defined in Chapter 3. They are also derived from the existing guidance in
STAMP and STPA so that they remain consistent with these proven techniques. The following is
an overview of the three extensions, which are illustrated in Figure 4-2 and are collectively
referred to as STPA-Teaming.

First, a generic collaborative control structure is developed to incorporate the types of
interactions exhibited in teaming into STAMP models. It serves as a reconfigurable template to
assist in modeling the relationships between multiple humans and/or machines that collaborate
in the control of a process. The goal is to explicitly express these mutual influences so that causal
factors associated with them can later be systematically identified.
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Figure 4-2. Three Analytical Extensions Involved in STPA-Teaming

Second, the process to identify unsafe control actions (UCAs) in STPA is expanded to explore
how combinations of multiple control actions provided together may lead to hazards. The actions
of multiple controllers are systematically analyzed relative to one another using an approach
derived from the four types of UCAs defined in STPA [50]. A method of abstracting and refining
the control structure helps manage combinatorial complexity in this process. Finally, a prototype
automation tool is introduced to support an analyst with enumerations, refinement, and
prioritization of the unsafe combinations of control actions to analyze. The overall procedure
systematically considers potential issues involving control gaps, overlaps, transfers, and
controller-task mismatches that are found in collaborative control.

Third, an analytical procedure is introduced to develop causal scenarios that explain how
these unsafe combinations of control actions (UCCAs) could occur. It follows a structured search
process inspired by Thomas [203] and is framed by the collaborative control dynamics defined in
Chapter 3. The method emphasizes defining scenarios at a high level and refining them
iteratively, as necessary, and guided by the types of interactions between controllers.

The remainder of the Chapter provides details associated with the development of each of
these extensions. These techniques are then demonstrated in a case study on a real-world
aerospace system concept in Chapter 5.

4.1 Generic Collaborative Control Structure

STAMP hierarchal control structures provide a powerful mechanism to model complex systems
holistically and top-down. The ability to represent causal relationships between components at
multiple levels of the system is one of the reasons why STAMP is so successful at finding factors
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that threaten safety. In recent years, several efforts have aimed to enhance STAMP models so that
they produce more complete analyses.

The synthesis of these efforts helped define the generic control structure shown in Figure 4-3
and found in Appendix G of the STPA Handbook [50]. This reference also explains how each
element of the model can contribute to causal scenarios found using STPA. The model consists
of a human operator that supervises automation, which controls a process. It is representative of
many supervisory control systems currently fielded.
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Figure 4-3. Baseline Generic Control Structure from STPA Handbook Appendix G [50]
Unfortunately, the collaborative control dynamics defined in Chapter 3 are not explicitly
represented in this model, nor in other existing control structures. This increases the risk that

those causal relationships will either be missed or will not be systematically handled in the
ensuing hazard analysis. To address this gap, this dissertation introduces the Generic Collaborative
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Control Structure shown in Figure 4-4 as a reconfigurable template to represent various teaming
systems. The model is grounded in STAMP, but it also extends the available guidance to
incorporate collaborative interactions.
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Figure 4-4. Generic Collaborative Control Structure

The remainder of this section is organized as follows. Section 4.1.1 provides an overview of
the model and relates it to STAMP. Section 4.1.2 describes the cognitive functions of the
controllers in the model, which underpin several of the collaborative control dynamics. Section
4.1.3 explains how the collaborative control dynamics are integrated into the control structure.
Finally, Section 4.1.4 provides additional modeling recommendations.

41.1 Overview of the Model

The generic collaborative control structure builds on the baseline in Figure 4-3 to express
collaborative interactions while remaining consistent with STAMP. Every element described in
the baseline applies to the extension. However, abstraction allows some of the details to be
hidden so that other features more aligned with the research focus on collaboration can be
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highlighted. For example, the actuators in Figure 4-3 are abstracted away from the control paths,
as are the sensors in the feedback paths. These lower-level components are still part of the
collaborative control model, and if needed can be handled using the guidance from the baseline.

Each controller in the extended model includes the same high-level cognitive functions
described in the baseline. The relationship of these functions to collaborative control is further
discussed in Section 4.1.2. The interactions the controllers have with higher authority controllers,
with other controllers (beyond the set of collaborators), and with the environment are also shown
and are handled no differently than they are in STPA.

The generic collaborative control structure shown in Figure 4-4 represents one of any arbitrary
collaborative system configurations. In this case, it includes a human controller (H:) working as
a peer with an automated controller (A:). Together, H; and A; have authority over another
automated controller (Az). All three controllers collaborate in controlling a shared process.

These building blocks can be reorganized into any other configurations. For instance, Figure
4-5 shows the collaborative control structures of different systems in development for Urban Air
Mobility (UAM). These concepts involve different potential architectures for human and/or
automated controller collaborations [8], [10], [204]. The authority bus in the figure indicates shared
authority by the controllers over the subprocesses and is further discussed in Section 4.1.4.

[ - e ————— | =
! RSO,(H) i» - RSO, (H) | pilot (H) Autonomy ATM, | i ATM, |
i Controller = < Controller ! Copilot (A) (A) — =] (A) !
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Remote Supervisory Operations Human Autonomy Team in Distributed & Automated Air
(RSO) of UAM Fleet Simplified Vehicle Operation (SVO) Traffic Management (ATM)

H = Human, A = Automated Controller

Figure 4-5. System Concepts Demonstrating Various Collaborative Control Configurations

The system-theoretic framework allows collaboration to be represented at multiple levels of
abstraction and hierarchy. For example, while Figure 4-4 shows all three controllers collaborating
to control the shared process, it can also be analyzed as H; and A; collaborating in the shared
control of A,. Similarly, the human-machine system modeled could be abstracted as a whole, and
work collaboratively with other human-machine systems on a shared process. The interactions
highlighted in the collaborative control structure can be applied to any set of collaborators sharing
a process. Strategies to navigate between these different views are presented in Chapter 6.

4.1.2 Cognitive Functions

The baseline causal model (Figure 4-3) defines two sets of high-level cognitive functions for each
controller [50]. The first processes information to make control decisions. The second consists of
various models that support the decision-making process. STPA provides guidance to consider
how a controller may have flaws in these functions that contribute to its unsafe control actions.
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The collaborative control structure carries over these concepts, but it emphasizes instead how
these functions can be flawed relative to one another across multiple collaborating controllers.
Figure 4-6 provides an overview of how cognitive functions are integrated into the extended
model. The following discussion explains these functions and how they were derived from the
baseline guidance and other references. These processes are highly relevant to many of the
collaborative control interactions further discussed in Section 4.1.3.
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Figure 4-6. Cognitive Functions in Collaborative Control Structure

Information Processing and Decision Making

As explained in the baseline, automated controllers have a control algorithm that processes inputs
to the controller to (1) generate control actions, and (2) maintain accurate information about the
state of the system by interacting with the controller models. The behavior of the control
algorithm is shaped by the operational modes of the system [50].

The extended model integrates all these components. One subtle difference is that the control
algorithm is emphasized to generate actions, which include control actions as in the baseline, but it
also consists of other communication actions to coordinate with and influence the behavior of other
controllers without using control. For example, the Aircraft Collision Avoidance System (ACAS-
X) system described in Chapter 3.3 allows the control algorithm of a lower-ranked aircraft to
output a deconfliction solution first, which influences the decision of the higher-ranked aircraft.

Another consideration added to the model is the limitations placed on the control algorithm
due to controller capacity. In Johnson’s work, limited capacity is a key factor in determining how
controllers form dependencies on one another to execute joint activities [2]. He broadly defines
capacity as the set of knowledge, skills, abilities, and resources a controller needs to perform an
action. Some of these elements are already explicitly considered in STAMP in the form of control
paths, feedback paths, and models. However, other aspects require attention and are important
in collaborative interactions.

In this work, the capacity of a control algorithm refers to the factors that can limit its ability
to track and update models and select appropriate output actions. Limited internal resources,
including computational, data, or communication, may prevent a controller under a certain
workload to output the behavior that was expected by its collaborators. Such issues can cause a
misalignment in cognition across multiple controllers and contribute to an unsafe team output.
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These concepts also apply to the human controllers in the extended model. The baseline
represents the human with a cognitive function for control action generation & mental processing
[50]. While its purpose is comparable to that of the control algorithm in machines, the STPA
guidance emphasizes that humans are more complex and are subject to different causal factors.

The collaborative control structure similarly broadens the scope of the function to action
generation & mental processing so that it accounts for the coordination outputs in addition to the
control actions. Humans working collaboratively often deliberately provide coordination actions
to influence the behavior of others they cannot control. For example, flight crews often verbalize
hints to each other regarding recommended actions.

Similarly, humans are also subject to capacity limitations in their ability, skill, or workload that
influence how well they maintain situational awareness and make decisions. For instance, an
inexperienced pilot who is still learning to process information efficiently will more easily be
overwhelmed, “fall behind the airplane”, and make bad decisions.

Model of the Process

The cognitive function described above updates, maintains, and relies on multiple models of the
system to select the actions to generate [50]. The purpose of the models is similar between
humans and automated controllers, but the reasons for their flaws can vary greatly. As with other
baseline STPA elements, these models are integrated into the generic collaborative control
structure and related to the process of collaboration.

In STAMP, the model of the process represents the state that the controller believes the
process to be in. The controller relies on this model to select control actions that will constrain
the behavior of the process so that it does not enter a hazardous state [38]. The STPA guidance
provides many reasons why an automated controller may have a flawed process model. These
include inadequate feedback from the process, delays in receiving or processing the feedback,
and flawed assumptions based on control inputs. Human controllers may, in addition, be subject
to mode confusion, lack of situational awareness, confusion due to lack of transparency, or even
complacency [50]. These all apply to the collaborative control structure.

However, collaborative control brings on additional considerations as the control process is
shared between multiple controllers. It is not sufficient to just consider what state one controller
believes the process to be in. The consistency of the process models across multiple controllers is
critical. As reviewed in Chapter 2.1, teams rely on both shared and distributed cognition.

Shared cognition relates to information held in common between multiple controllers [60]. If
information is misaligned, the controllers may have different beliefs regarding the process state
and may issue commands that are inconsistent with one another. This was likely a contributing
factor in the Air France Flight 447 accident (see Chapter 1.2), when the two pilots had misaligned
models about the state of the aircraft, leading one to pitch up and the other to pitch down [35].

Shared cognition may also cause a controller that has a valid model of the process to drift
toward incorrect beliefs provided by a collaborator. This can occur in the psychological
phenomenon of groupthink. In addition, a controller that has a flawed process model may receive
negative reinforcement from the flawed model of a collaborator. This can also occur in groupthink
and in confirmation bias. As such, the model flaws in one controller can propagate to others.
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Distributed cognition focuses on differences in knowledge between collaborators and
emphasizes the need to coordinate around who knows what and when on the team. The key
implication of this concept is that in collaboration, any one controller may not have direct access
to the complete state of the process to decide what actions to take. It may rely on other controllers
to receive the necessary feedback to inform its actions.

Flawed distributed cognition contributed to the 1994 friendly fire shootdown of two U.S.
Army helicopters (see Chapter 1.2). Two combat air traffic controllers had split responsibilities to
respectively maintain mental models of aircraft within and outside a prescribed area. The
responsibility to track low-flying helicopters evolved over time and was eventually left
unassigned for particular situations. In the accident, the controller for inside the area relied on
an incomplete model from the other controller and, as a result, made an unsafe decision [38].

Model of the Collaborating Controllers

The STPA guidance also describes how a controller may have a model of other controllers it
interacts with. For example, a human controller must have a model of the automation to
supervise its control of the process. Similarly, some sophisticated automated controllers have
models of the humans that are supervising them [50]. In this work, the generic collaborative
control structure incorporates this concept as a model of collaborators.

Several information items may form the model of collaborators. Examples found in the
systems sampled in Appendix 1 are illustrated on the right of Figure 4-6. While the content of
these models can vary widely, the intent of the figure is to help reason about the type of
information controllers track about their teammates to shape their individual output decisions.

The model of collaborators may include knowledge of the set of collaborators involved in the
activity. This becomes particularly important in teams that exhibit dynamic membership when
this set changes over time. A controller may exhibit unsafe behavior if it is not aware that it has
a teammate or if it falsely believes that it does.

Some systems require controllers to track the state of their collaborators, such as their location
and trajectory. For example, in implicit coordination algorithms, each controller uses the state
information for all members of the team to compute a plan for the whole team and execute their
portion of the plan. If the state information and the algorithms are consistent across controllers,
they can produce safe, coordinated solutions [83].

In some cases, teammates may be required to track the responsibilities of other collaborators.
Such information can be necessary for collaborative systems that exhibit dynamic authority, in
which controllers determine the allocation of control during execution. In some coordination
schemes, such as market-based algorithms, teammates form consensus over their responsibilities
only and do not have to rely on other state information [83].

Controllers on a team may need to estimate the network topology. Many systems exhibit
dynamic connectivity, in which communication channels between controllers are expected to
vary. The knowledge of which controllers can be reached at any time, either directly or indirectly,
may influence how a control decides to output coordination and control actions.

Beyond connectivity, controllers may track information requirements between controllers. In
distributed cognition, controllers must understand what information they need from others and
what information others need from them [39]. The timing requirements for information sharing
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may also vary based on the context and the types of controllers involved. There are many
examples of automated controllers that unduly interrupt the workflow of humans, or that update
information too quickly for humans to process [23].

Finally, controllers may assess their confidence in the behavior of other controllers. A
controller that has no confidence in the output of a teammate may choose a different action than
if it did. Asymmetric assessments of confidence lead to misaligned decisions in joint control.

Models of Other Controllers and the Environment

As described for STPA, controllers can rely on additional models in selecting their actions. They
may have a model of other controllers involved in the system. In this work, these are controllers
beyond the set of collaborative controllers considered above. These other controllers may interact
with the team, the process, or some other part of the system in a different way. Similarly, the
controllers may also maintain models of the environment, or components beyond the system
boundary that the system interacts with. In this work, these models are as they are in STPA [50].

4.1.3 Collaborative Control Dynamics in the Control Structure

A key goal of the extended control structure is to express the collaborative control dynamics
defined in Chapter 3 that are exhibited by the system. This section explains how this is
accomplished using the items labeled with the green arrows in Figure 4-4.

A key consideration in collaborative control is shared authority. It is expressed in the control
structure with the shared controlled process, which is the joint control activity over which multiple
controllers have authority. It may represent a set of mission tasks, a formation, trajectory
deconfliction, or any other process that is jointly controlled.

Many past STPA studies relevant to teaming, including the one referenced in Figure 4-1, do
not show this process in the control structure, and instead, only list the various controllers that
collaborate. The inclusion of a shared process is necessary to reason about how combinations of
control actions by multiple controllers may be hazardous. This concept is central to the Unsafe
Combination of Control Action (UCCA) identification technique introduced in Section 4.2.

The use of dashed lines in the collaborative control structure symbolizes the dynamic
presence of an item. This convention is repeated in multiple ways. The dashed control and
feedback arrows that lead to and from the shared process indicate dynamic authority or transfer of
authority. The significance in both is that the controller from which the dashed control line
originates may not always be responsible for issuing the control action.

In dynamic authority, the control path is allocated, or possibly reallocated multiple times, to
one of the collaborative controllers during execution. In transfer of authority, the control path is
handed off from one controller to another over time. Control gaps, overlaps, and mismatches
that can arise from these dynamics may lead the system into a hazardous state. These two
concepts are also inherently captured by the UCCA extension described in Section 4.2.

The arrows between the controllers are dashed to symbolize dynamic connectivity. Those
connections may or may not be available at any given time. Similarly, some of the controllers
have dashed frames to indicate dynamic membership. This means that those controllers are not

79



always part of the control structure. The causal implications of dynamic connectivity and
dynamic membership, as well as those for all the remaining collaborative control interactions, are
covered in the scenario identification process in Section 4.3.

In STPA, items listed on downward arrows from one controller to another are typically
treated as control actions and analyzed for UCAs. The arrows pointing up are feedback items
and those connecting controllers laterally consist of other information [50]. This convention is
relaxed in the extended control structure to account for additional interactions in collaboration.
While the control structure is still organized hierarchically, not every item flowing down is
necessarily a control action, and control actions may be included on lateral and upward arrows.

In Figure 4-4, each connection from one controller to another includes two arrows. One arrow,
shown in bold, originates from the action generation cognitive function. The other arrow, not bold,
stems instead from the overall controller frame. Both arrows terminate at the cognitive function
of a receiving controller as inputs to inform its decisions.

The bold arrow flowing out of the cognitive function reflects information deliberately
provided by the controller to influence another controller. It consists of control actions (bold and
blue) and communication actions to enable lateral coordination (bold not blue). To clarify
authority, if the arrow has a control action, then it is shown in blue even if it also includes
communication items. In the ensuing hazard analysis, control actions are analyzed for UCCAs
(see Section 4.2) and communication actions are considered in causal scenario development (see
Section 4.3).

The thinner arrow, which does not originate from the cognitive function, represents the
information obtained by observing a controller, as part of lateral coordination. As described in
Chapter 3.2, even though this information is not deliberately provided to coordinate, it can
implicitly influence the decisions of collaborators. Observation items are also considered in the
scenario development process (see Section 4.3).

In Figure 4-4, both A; and A; can provide control actions to one another. This is indicative of
dynamic hierarchy, in which a controller leads part of the interaction, and another controller leads
in another part. This dynamic is also captured in the scenario development process.

The extended model shows how mutually closing control loops can be identified between
multiple controllers and the shared process. However, this dynamic is further explored in
scenario development using a more focused control structure for the control loops being
analyzed. Similarly, a label for cognitive alignment is also shown in Figure 4-4, but it is more
closely considered by accounting for the cognitive functions of multiple controllers in scenario
development. These topics are detailed in Section 4.3.

41.4 Additional Recommendations for the Model

The following additional recommendations can help analysts model collaborative systems. In
some cases, it may be easier to include an authority bus to represent shared authority over multiple
processes, as shown in Figure 4-5. The bus indicates that all the controllers that feed into it can
have authority over the processes that receive an output from it.

80



In addition, an indexing scheme of {1, ...,n} controllers, also shown in Figure 4-5, helps
account for a variable number of similar types of controllers. In such cases, it is recommended
that at least two controllers be shown so that the interactions between them can be expressed and
considered in causal analysis. Including more than two similar controllers is often not necessary
and adds complexity to the analysis.

4.2 Unsafe Combinations of Control Actions (UCCAs)

STPA employs a systematic method derived from Control Theory to identify unsafe control
actions (UCAs). The method has been shown to be complete in its ability to describe how a
particular command may be provided in an unsafe way [50], [205]. However, this process often
lends itself to considering one controller and one of its feedback control loops at a time.

Collaborative control fundamentally involves multiple controllers working together to
control a shared process. A key implication of shared authority, as defined in Chapter 3, is that the
control actions from collaborating controllers cannot be analyzed individually. There may be
unsafe causal factors that can only be identified when the actions of these multiple controllers are
analyzed together.

For example, a flight crew may involve a pilot that controls aircraft attitude and trajectory
using the flight control yoke and throttle, and a second pilot that controls aircraft configuration
by selecting flaps and landing gear settings. Configuration changes alter the aerodynamic
properties of the aircraft and therefore alter how attitude and trajectory are controlled. Similarly,
variations in attitude and trajectory may cause the aircraft to enter an operating state that
necessitates a configuration change. The control actions of each controller may be unsafe in the
context of the actions provided by the other controller.

Collaborative control may also involve dynamic authority that enables multiple controllers to
adjust task allocation during execution (see Chapter 3). However, that may result in control gaps,
conflict in overlaps, or controller-task mismatches. Similarly, a system may allow transfer of
authority, which can lead to unsafe control handoffs. These types of relationships were exhibited
by the operator teams involved in the infamous Air France 447 and 1994 Friendly Fire accidents
described in Chapter 1.

In STPA, a human analyst specifies the context in which a control action is unsafe [50].
Suggestions are provided in the STPA Handbook for how to do this. Thomas provides formalism
to identify context using process variables derived from the system hazards [205]. However,
these methods do not explicitly define how to explore a control action that may be unsafe relative
to other commands.

Placke’s work provides a useful first step to address this gap. His approach explores how one
controller may interfere with another [206]. Specifically, he defines Conflict UCAs of the form:
<Controller 1 provides Command A> prior to <Controller 2 provides Command B> violates <design
assumptions>. However, the method does not address different types of multi-controller
interactions, such as control gaps, unsafe handoffs, and dynamic tasking. Furthermore, the
analysis is limited to pairwise comparisons of two control actions. Finally, the formulation only
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relates to a subset of the four Types of UCAs defined in STPA. This means that there are other
ways to issue control actions relative to one another that must be considered.

This section introduces an extension to STPA to explore how multiple control actions may be
unsafe together. The process identifies Unsafe Combinations of Control Actions (UCCAs) and
has the following attributes. First, it follows a systematic approach derived from STPA to ensure
all relevant types of control combinations are considered. Second, it leverages multiple levels of
abstraction to manage combinatorial complexity. And finally, the UCCAs enable the analysis of
their causal factors to be framed by the collaborative control dynamics defined in Chapter 3.

The remainder of this section is organized as follows. Section 4.2.1 derives the different types
of UCCAs and provides the foundation necessary to enumerate them algorithmically. Section
4.2.2 introduces an initial framework of abstraction to reduce the combinatorial complexity of the
enumeration. Section 4.2.3 adds further abstraction to linearize the growth of UCCAs for more
complex systems. Finally, Section 4.2.4 integrates these concepts into an algorithm to identity,
refine, and prioritize UCCAs for their follow-on causal analysis. A prototype tool built on the
formalism of this algorithm supports its execution by automating some of the steps.

421 Types of UCCAs

One of the strengths of STPA is its systematic process of considering how a control action, given
a particular context, can lead to a hazardous state. UCAs are identified using the specific
structure shown in Figure 4-7 [50].

1 2 3 4 5
UCA Structure: <Controller> <UCA Type> <Control Action> <Context> [H]
Figure 4-7. Structure of a UCA in STPA

The controller (item 1) and the control action (item 3) are obtained from the control structure.
STPA defines four types of UCAs (item 2), listed below, in which a control action may be unsafe.
The set of four types is provably complete to describe a given control effort [50].

e UCA Type 1: not providing the control action

e UCA Type 2: providing the control action

e UCA Type 3: providing the control action too early or too late

e UCA Type 4: providing the control action for too long or stopping it too soon

The structure in Figure 4-7 allows items 1-3 to be machine enumerated. This reduces the
burden on a human analyst, who can instead focus on determining if there is a context for the
UCA (item 4), and, if so, trace it to the hazard(s) it leads to (item 5). Examples of each type of
UCA are provided in Table 2-3.

The process to identify Unsafe Combinations of Control Actions (UCCAs) builds on the
approach for UCAs. The UCA structure is expanded to incorporate combinations of control
actions. Different types of UCCAs are derived from the types of UCAs to maintain the rigor
provided by STPA. The resulting formulation provides the foundation necessary to enumerate
combinations of control actions algorithmically. As such, the potential UCCAs can be machine-
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generated and, again, focus the human analyst on specifying the context in which the control
combinations are unsafe.

Two UCCA types are defined. The first, UCCA Type 1-2, combines UCA Types 1 and 2, which
describe whether or not a control action is provided at all. Type 1-2 UCCAs help find contexts in
which providing none, some, or all of multiple control actions is unsafe. As a simple example,
consider two controllers ¢; and ¢, that can each provide control action u, and wu;, respectively.
Potential Type 1-2 UCCAs can be enumerated as follows, using an extended UCA structure with
the same color coding as in Figure 4-7:

Type 1-2 UCCA Example:

1. ¢; does not provide 1, and c; does not provide u, [H]
2. ¢; does not provide u, and ¢; provides  u, [H]
3. ¢ provides u, and ¢; does not provide u, [H]
4. ¢ provides u, and ¢; provides  u, [H]

Second, the Type 3-4 UCCA combines UCA Types 3 and 4, which assume that the control
action is provided, and instead focuses on the temporal sequence in which it occurs. Specifically,
a Type 3 UCA considers when the control effort starts, rising from OFF to ON, as shown with a
step function in Figure 4-8. A Type 4 UCA accounts for when the control effort ends, falling from
ON to OFF. For a discrete command not provided over time, only the rising edge is considered,
and Type 4 UCAs do not apply [50].

— time — time time
ON
OFF
Description: Control Effort Starts Control Effort Ends Discrete Command
Considered in: UCA Type 3 UCA Type 4 UCA Type 3

Figure 4-8. Start and End of a Control Effort Considered in UCA Type 3 and 4

As such, Type 3-4 UCCAs explore the temporal sequences of multiple control actions in
relation to each other that are unsafe. Specifically, they analyze how starting or ending certain
control actions before or after starting or ending other control actions may be unsafe. The Type
3-4 UCCAs are enumerated using the extended UCA structure in Figure 4-9 for the same example
as above.

To maintain generality, no assumption is made that a control action, if started first, has not
ended before the second action starts or ends. This subtlety accounts for discrete commands,
which are not applied over time, as shown in Figure 4-9. The same assumption also allows the
first command, if continuous, to be started and ended before the second action starts or ends.
Similarly, the first command can be ended and then started again before the second command
changes.
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To remain consistent with UCA Type 4 in STPA, the end of a discrete command is not
considereds. As such, if u, is discrete, enumerations {3,4,7,8} in Figure 4-9 are not applicable.
Similarly, if uj, is discrete, enumerations {2,4,6,8} are excluded. If both are discrete, only items

— time — time —
ON " — 4= jf continuous
OFF ? e« « 4= if discrete —
ON r— r—
OFF Uy — 1l Lo

1. ¢; starts u, before c; starts u,,... 5. ¢ starts u, before c, starts u,...when...[H]

ON (— —
oFf Ua
ON — —
oFr b — | N
2. c; starts u, before c;ends u,... 6. c; ends u, before c; starts u,...when...[H]
ON — ——
oFf | — e
ON r— r—
orf Yb —— —
3. ¢, ends u, before c; starts u,... 7. c; starts u, before c, ends u,...when...[H]
ON — .
o U o S—
ON —_— —
orf b — | S
4. ¢, ends u, before c; ends u,,... 8. ¢; ends u, before ¢, ends u, ...when...[H]

Figure 4-9. Type 3-4 UCCA Example

The two types of UCCAs provide the foundation for a machine to enumerate all possible
control combinations. However, that does not by itself solve the problem of analyzing how
multiple control actions are unsafe together. The example above consists of a simple pairwise
comparison of two control actions. Additional processes, introduced in the next subsections, are
needed to handle more complex combinations.

4.2.2 Managing Combinatorial Complexity with Abstraction

This section introduces a method to systematically manage the combinatorial complexity that
occurs when enumerating UCCAs. First, a simple example illustrates the need for the process.
Next, a process of abstraction is developed to solve the problem.

6 This defines discrete commands as different than continuous commands. As such, a discrete command
cannot be treated as, or converted to, a continuous command in later steps of the hazard analysis. If a
discrete command must be changed to a continuous command, the Type 4 UCA and Type 3-4 UCCA
identification must be re-addressed with this change.
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Combinatorial Complexity of UCCA Enumeration

Consider the following multi-UAS system concept used in the STPA example in Chapter 2.4 [143].
An operator controls two collaborative UAS by specifying mission tasks for the collective team to
perform. These tasks represent control actions the UAS must provide to the shared mission
process, such as jamming a radar and striking a target. In this example, the system enters a
hazardous state if the team strikes the target without jamming the radar or if multiple UAS jam
the radar simultaneously.

Figure 4-10 shows the control structure for this simple example. The two UAS can provide
both the jam and the strike commands. They coordinate with each other to determine which UAS
will perform each task. The goal in this work is to systematically explore how combinations of
UAS; and UAS; issuing the jam and strike commands may be unsafe.

Figure 4-10 also includes a generalized form of the model, withn = 2 controllers that can each
issue the m = 2 different control actions. This representation is referenced in the algorithmic
enumeration discussion below.

Operator
[ | .
CI.I:] Operator
afidn
Tasks
UAS
. i_...__ UAS, Team of UAS Team of Controllers ¢y
v 9
Fﬁs | uas, [ uas, | | o [ e |
N— -
= ?‘ s Jam Jam u, U,
Strike Strike U, u,
> e
§ Mission Processes Shared Process
Jam Radar Strike Target
Multi-UAS Concept Multi-UAS Control Structure Generalized Control Structure

Figure 4-10. Illustrative Multi-UAS Team Example (left) and its Generalized Form (right)

The Types of UCCAs defined in the previous section help enumerate all the combinations of
control actions provided by the two controllers in this example. Using the extended UCA
structure, Type 1-2 UCCAs are formulated as:

1. ¢, does not provide {u, or u,}; c, does not provide {u, or u,} [H]

2. ¢, does not provide {u, or u,}; c, does not provide u,and provides u, [H]
3. c¢; does not provide {u, or u,}; c, provides u;and does not provide u, [H]
4,

It is simpler to enumerate combinations using a format inspired by truth tables, as shown in
Table 4-1. The top row designates the controllers that issue the control actions in each
subsequent row. Here, ~u means “does not provide u”. Rows 1-3 in the table match one-to-one
the three UCCAs specified in English above.
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In this relatively simple problem, there are already 16 potential Type 1-2 UCCAs for the
analyst to evaluate. There are even more potential Type 3-4 UCCAs. As shown in Figure 4-9,
there are 8 ways to order the start and end of two different control actions. This example features
6 possible pairs of control actions, so there are 6 X 8 = 48 potential Type 3-4 UCCAs involving
two actions. But the problem is actually more complicated because there can be sequences of
three or even all four control actions to consider. Evaluating every potential combination
becomes quickly intractable.

Table 4-1. Full Enumeration of Type 1-2 UCCAs for the Multi-UAS Example

# (o) Cy # UAS; UAS, Context
1 | ~uy | "u, | "uy | uy 1 —jam | —strike | —jam | —strike | when...
2 | Tu | Tuy | Ty U, 2 —jam | —strike | —jam | strike | when...
3 | uy | Uy U | u, 3 —jam | —strike jam | —strike | when...
4 Uy | Uy Uq U, 4 —jam | —strike jam | strike | when...
5 Uy Uy | "uy | Uy 5 —jam | strike | —jam | —strike | when...
6 Uy U, Uy U, 6 —jam | strike —~jam | strike | when...
7 Uy U, U | Uy 7 —jam | strike jam | —strike | when...
8 -y U, Uy U, 8 —~jam | strike jam | strike | when...
9 U | Uy | Uy | Uy 9 jam | —strike | —jam | —strike | when...
10 | Tup | Tuy Uy 10 jam | —strike | —jam | strike | when...
11 U | Uy U | Uy 11 jam | —strike jam | strike | when...
12 U | Uy Uy Uy 12 jam | —strike jam | strike | when...
13 Uy Uy | U | Uy 13 jam | strike | —jam | —strike | when...
14 Up Uy | "y Uy 14 jam | strike | —jam | strike | when...
15 Uy Uy U | Uy 15 jam | strike jam | —strike | when...
16 Uy U, Uy Uy 16 jam | strike jam | strike | when...

Figure 4-11 illustrates the general problem with a team of n controllers that can issue m types
of control actions to a shared process. The controllers may overlap in their ability to provide the
same type of command for any number of these control actions. For generality, the figure shows
the system having full overlap for all control actions.

= [
y N [ N y N
Uy u, Uy
u, u, u;
umw Um" Um v

Shared Process

Figure 4-11. General Team of Multiple Controllers Issuing Multiple Control Actions

This team can provide up to p total control actions to the shared process, where p is defined
by Equation (1). Here, U, (c;) = 1 if controller c; can provide control action u,, and N and M are
the domains of all control actions and controllers respectively.
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p= ZUi(ca); Vi eEN,VvaeM 1)

In the general problem, there are d"'? = 2P possible Type 1-2 UCCA combinations of n
controllers providing or not providing each of the m control actions. This number grows
exponentially with n and m. The number of Type 3-4 UCCA permutations, or ordered sequences,
in which up to any of these p control actions can be started and ended relative to one another grows
even faster, as found in Equation (2).

g 2kp!
dT34 = o (2)
=P '

Table 4-2 illustrates the total number of UCCAs for different hypothetical teams. For
simplification, here every controller on the team can provide every control action, sop = n X m.

Table 4-2. Number of UCCAs Enumerable for Different Hypothetical Teams

Types of Total Control ~ Type 1-2 Type 3-4 Total

Controllers  Control Actions Actions UCCAs UCCAs UCCAs

n m D dT12 dT34 dT12 + dT34

2 1 2 4 8 12

2 2 4 16 624 640

2 3 6 64 75,960 76,024

2 4 8 256 17,017,952 17,018,208

3 1 3 8 72 80

3 2 6 64 75,960 76,024

3 3 9 512 3.06x108 3.06x108

3 4 12 4096 3.23x1012 3.23x1012

As shown, teams of even modest sizes produce too many potential UCCAs to enumerate fully.
It is not practical for a human analyst to identify the context(s) in which all these UCCAs are
unsafe, and then develop causal scenarios to explain how they could occur. Such an effort would
also be inefficient as it would produce similar information repeated across multiple similar
UCCAs. Finally, the volume of data would be too overwhelming for designers to derive useful
engineering and assurance decisions. Simplification is necessary.

Process of Abstraction to Manage Combinatorial Complexity

The ability to use abstraction to manage complexity is one of the key strengths of system-theoretic
approaches. As shown below, collaborative systems can be systematically abstracted to reduce
the combinatorial complexity associated with enumerating UCCAs. The approach, summarized
in Figure 4-12, helps identify the context in which multiple control actions are unsafe together at
a higher level of abstraction, where fewer combinations exist. Then, only those combinations
found to be unsafe need to be further explored through refinement.

The approach begins with two different model representations, Abstractions 1a and 1b, which
are shown one level up from the problem formulation in Figure 4-12. Each one focuses on a
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different way to combine multiple control actions. The following discussion explains each of
these abstractions and demonstrates how they enumerate UCCAs in the Multi-UAS example
above. This is a necessary step to then abstract the model further to Abstraction 2a and 2b to
handle more complex systems, as addressed later in Section 4.2.3.

Abstraction 2a: One control action Abstraction 2b: One controller
combined with any of the others A combined with any of the others
Cy G Other(s): 3G
ieEN j#IEN

aeM

other(s): Ju,
vb + a €M

u, u,| (FaeM

- v

Shared Process

Shared Process

Scales linearly by m S Scales linearly by m, n
t g t
g
Abstraction 1a: Combinations of control E Abstraction 1b: Same control action
. . . <
actions issued by collective team —  issued by combinations of controllers
<
Team of Controllers: C, Eo C G =21 C,
u, u, uy
u, u, - ou
Shared Process Shared Process
Scales exponentially by m Scales exponentially by n
‘\ / linearly by m

Refined Collaborative System

A==
u u u
1 1 1
u; u; u;
umw um‘ 4 um

Shared Process

Scales exponentially by m,n

Figure 4-12. Managing Combinatorial Complexity Using Abstraction

UCCAs in Abstractions 1a: Combinations of Control Actions by Collective Team

Abstraction 1a combines the multiple controllers that share authority over a process into one
collective controller (see Figure 4-12). This helps to identify the unsafe combinations of different
types of control actions issued by the overall team to the process.

The use of this abstraction is predicated on several conditions. The system must exhibit shared
authority between multiple controllers over a common process, or similarly, over different
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interdependent subprocesses. It is also only useful if there are multiple different types of control
actions to consider, or in other words for a set of control actions ({u, ..., U, } | m > 1). However,
it does not require the controllers to have any overlap in the types of control actions they provide.

For example, if in the multi-UAS system in Figure 4-10, only UAS; can jam, and only UAS;
can strike, Abstraction 1a can be applied to explore combinations of these two commands issued
by the collective team. Conversely, if the two UAS can only jam, and no UAS can strike, then this
abstraction is not useful. Although in this case, Abstraction 1b is, as will be described later.

Table 4-3 shows the Type 1-2 UCCAs generated using Abstraction 1a for the multi-UAS
example as defined in Figure 4-10. The table shows the combinations of control actions provided
or not provided by the collective controller team, cy.

Table 4-3. Abstraction 1a Type 1-2 UCCAs for Multi-UAS Example

# Cy # UAS Team Context
1 | ~u; | "u, 1 —jam | —strike | when...
2 |y | w 2 —jam | strike | when...
3 U | Tup 3 jam | —strike | when...
4 Uy Uy 4 jam | strike | when...

Table 4-4 lists the Abstraction 1a Type 3-4 UCCAs, or sequences in which the collective team
can start and end its control actions. In the table, S(u) means “start control action u”, E (1) means
“end u”, and F is the Linear Temporal Logic operator for Some Future Step [207]. The table has
two columns headed by controllers, and it is read as the first controller starts/ends the control
action in any row before the second controller listed starts/ends its control action in the same
row. In this case, the controller is the collective team, cy, so it is the same in both columns.

Table 4-4. Abstraction 1a Type 3-4 UCCAs for Multi-UAS Example

# Cy Fcy # Team before Team | Context
1 S(uy) | S(uy) 1 starts jam | starts strike | when...
2 S(wy) | E(uy) 2 starts jam ends strike | when...
3 E(u) | S(uy) 3 ends jam | starts strike | when...
4 | E(uy) | E(uy) 4 ends jam ends strike | when...
5 | S(uy) | S(wy) 5 starts strike starts jam | when...
6 | S(up) | E(uy) 6 starts strike ends jam | when...
7 | E(uy) | S(wq) 7 ends strike starts jam | when...
8 | E(up) | E(wy) 8 ends strike ends jam | when...

These tables can be generated using automation. The human analyst then evaluates each item
and determines if there are any context(s) in which that combination can lead to hazard(s). For
instance, based on assumptions in the example, item 2 in Table 4-3 can be written as:

UCCA 1: UAS Team does not provide jam and provides strike
[H1].

Similarly, item 3 in Table 4-4 forms the following UCCA:
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UCCA 2: UAS Team ends providing jam before it starts providing strike
[H1].

In each case, the abstracted team can later be refined, again using automation, to
explore how different combinations of controllers can issue control actions that lead to
that collective UCCA output. The context and hazard traceability generated at the higher
level are carried over to the refined UCCA. For example, UCCA 1 can be refined as:

UCCA 1.1: UAS; does not provide {jam or strike}; UAS; does not provide jam and
provides strike [H1].

UCCA 1.2: UAS; does not provide jam and provides strike; UAS, does not
provide {jam or strike} [H1].

UCCA 1.3: UAS; does not provide jam and provides strike; UAS, does not
provide jam and provides strike [H1].

The same process of refinement can be applied to UCCA 2. The reason for refining
the UCCA is that the causal factors later analyzed by developing loss scenarios may be
different for the different controllers involved. The refinement of UCCAs is further
explained and formalized in Section 4.2.4.

UCCAs in Abstractions 1b: Combinations of Controllers Issuing Shared Control Action

Abstraction 1b helps to determine the unsafe combinations of controllers issuing a common
control action. As reflected in Figure 4-12, it represents the multiple controllers and focuses only
on one common type of control action at a time.

As was the case in Abstraction 1a, the application of 1b is also predicated on the shared
authority of multiple controllers over a common process. There must also be some overlap
between at least two of the controllers in their ability to issue a common type of control action.
This overlap may be enabled by dynamic authority or transfer of authority over that control action,
but that is not always the case. For example, multiple aircraft flying in formation have a standing
shared control authority over aircraft separation, which can be analyzed using this abstraction.

The abstraction does not require all controllers to have common authority over all tasks. In
the Multi-UAS example (Figure 4-10), if only UAS; can strike, but both UAS can jam, then
Abstraction 1b can be applied to analyze the combination of multiple controllers issuing the jam
command. Conversely, if only UAS; can strike and only UAS; can jam, then this abstraction is not
relevant. Although in this case, it should still be analyzed with respect to Abstraction la as
previously described.

Table 4-5 and Table 4-6 enumerate Type 1-2 and Type 3-4 combinations of controllers issuing
the same control action using Abstraction 1b. The tables focus on control action u;, the jam
command in the multi-UAS example, and would be duplicated for u,, strike. Here, U(x) means
“control action u is provided by controller x”, where x is enumerated as c¢; and c,. All other
conventions are consistent with those previously defined.
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Table 4-5. Abstraction 1b Type 1-2 UCCAs for Multi-UAS Example

# U;(x) Common Issues # jam provided by Context
1| ~Ui(cy) =Uy(cy) control gap 1 “UAS; —“UAS, when...
2 | ~U;i(cy) Ui(cy) controller-task 2 “UAS; UAS, when...
3 Uy(cy) =U;(cy) mismatch 3 UAS; —“UAS, when...
4 Ui(cy) Ui(cy) control overlap 4 UAS; UAS, when...
Table 4-6. Abstraction 1b Type 3-4 UCCAs for Multi-UAS Example
# Uy (x) FU;(x) | Common Issues # jam by before jam by | Context
1| S(U;:(cy)) | S(U1(c2) 1 | UAS;starts | UAS; starts when...
2 | S(U1(cy)) | E(Uy(cz)) | handoff overlap 2 | UAS;starts | UAS,ends when...
3| E(Ui(cy) | S(U1(cy)) handoff gap 3 | UAS; ends UAS; starts when...
4 | E(U.(cy)) | E(U1(cp) 4 | UAS; ends UAS; ends when...
51 S(WU;(c3)) | S(U.(cy) 5 | UAS;starts | UAS; starts when...
6 | S(U1(cz)) | E(Uy(cq)) | handoff overlap 6 | UAS;starts | UAS; ends when...
7 | E(Uy(cp)) | S(U1(cy) handoff gap 7 | UAS;ends UAS; starts when...
8 | E(Us(cp)) | E(U1(c)) 8 | UAS;ends UAS; ends when...

The systematic consideration of how different controllers provide, don’t provide, start, and
end a particular command highlights potential gaps, overlaps, mismatches, and handoff issues
that are common in shared control. For example, item 1 in Table 4-5, which involves no controller
providing the command, may be due to a gap in task allocation associated with dynamic authority.
Items 2 and 3 explore how the “wrong” controller provides an action as can occur in a controller-
task mismatch. Item 4 considers multiple controllers providing the action, which may lead to
control conflicts.

Table 4-6 highlights related issues. In items 2 and 6, one controller starts providing the
command before another controller ends it. This may occur in a transfer of authority when the
handoff involves an excessive period of overlap between the two controllers, which can result in
conflicting control. Items 3 and 7 reflect the opposite problem when one controller ends before
the next starts. This can lead to a period of gap in authority when the process is not controlled.
The overlap and gap in control are visible in items 2 and 3, respectively, in Figure 4-9.

As mentioned for Abstraction 1a, the tables can be generated using automation, and an
analyst can then specify if there are any context(s) and hazard(s) that apply to each item. For
example, item 4 in Table 4-5 can generate the following UCCA. In this case, there is no need to
refine the UCCA as it already provides the controllers and control actions involved.

UCCA 3: UAS; provides jam and UAS; provides jam
[H2].
Summary of Abstractions 1a and 1b

By applying Abstractions 1a and 1b to the multi-UAS example, the number of potential UCCAs
is reduced from 640 in the fully enumerated set, as listed in Table 4-2 forn = 2 and m = 2, down
to 36. There are now 12 Type 1-2 UCCAs and 24 Type 3-4 UCCAs for a human to analyze.
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Unfortunately, while the number of UCCAs grows more slowly than in the fully refined
problem, at this level of abstraction, it still scales exponentially. Abstraction 1a is, by definition,
combinatorial in the number of different types of control actions m. Abstraction 1b grows
exponentially with the number of controllers n. And in both cases, the permutations of Type 3-
4 UCCAs scale even faster once they involve more than the simple pairwise comparisons
illustrated so far. Further simplification is necessary.

4.2.3 Linearizing Growth by Abstracting Further

The method of abstraction applied in the previous section provides the first step to mitigate
exponential scaling in the number of UCCAs. This section introduces an additional level of
abstraction, shown at the top of Figure 4-12, which linearizes the growth of potential UCCAs for
collaborative systems of any number of controllers and control actions.

The previous multi-UAS example is slightly modified to illustrate the process. Consider now
a team of three unmanned systems (UxS), consisting of 2 UAS and 1 ground robot (n = 3). Each
controller can execute the same types of control actions: jam, strike, and track a target (m = 3).
Figure 4-13 shows the updated control structure for this concept alongside its generalized form.

Operator
Tasks
Team of Unmanned Systems Team of Controllers ¢y,
uas, [ UAS, [ | Robot ¢ [ c; c3
Jam Jam Jam U Uy Uy
Strike Strike Strike u; U, U,
Track] Track| Track usz| Uz | U

Mission Processes Shared Process

Multi-UxS Control Structure

Generalized Control Structure

Figure 4-13. Updated Multi-UxS Control Structure (left) and its Generalized Form (right)

To reduce the number of potential UCCAs, the system is first represented using Abstractions
la and 1b as described in the previous section. Each model is then further abstracted,
respectively, to Abstractions 2a and 2b, as shown in Figure 4-12.

Figure 4-14 shows this process for the multi-UxS example. The figure only depicts one
iteration of Abstractions 2a and 2b centered on control action u;. It also explains how to reiterate
the cases for u, and u3. Finally, the figure clarifies that a system can be directly represented by
Abstractions 2a and 2b. Abstractions 1a and 1b simply provide the system-theoretic foundation
for the higher-level representation, but no analysis is necessary at that level.
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Abstraction 2a: One control action Abstraction 2b: One controller
combined with any of the others combined with any of the others
Team of Controllers: C,, o {3C4}
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*
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Refined Collaborative System

C, C, G,
u; u; u;
u; u; u;
u3 vy u3 vy us vy

Shared Process

Figure 4-14. Abstraction of a Collaborative System to Models 2a and 2b

UCCAs in Abstraction 2a

Abstraction 2a is based on Abstraction 1a, and it iteratively considers any one of the control
actions in combination with any of the others abstracted together (see Figure 4-14). At this level,
Type 1-2 UCCAs explore how the collective team provides (or does not provide) any one control
action and provides (or does not provide) any of the others. One iteration of this process
comparing u; with {u, V uz} for the modified multi-UxS example is:

1. cy does not provide u; and does not provide {u; or us} when... [H]
2. cy does not provide u; and provides  {u; or us} when... [H]
3. ¢y  provides u; and does not provide {u, or uz} when... [H]
4. cy  provides u, and provides  {u; or us} when... [H]
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In these statements, {u, or us} is true under the following conditions: u, alone is true, uz alone
is true, or u, and uz are both true. Two additional iterations compare u, with {u; v usz} and u;
with {u; V u,}. Their formulations are comparable to those listed above. The full set of potential

Type 1-2 UCCAs for Abstraction 2a of the multi-UxS system is shown in Table 4-7.

Table 4-7. Abstraction 2a Type 1-2 UCCAs for Multi-UxS Example

# CN # UxS Team Context
1 | ~uy | {uy Vus} 1 —jam | —any in{strike, track} | when...
2 | uy {u, Vus} 2 “jam any in{strike, track} | when...
3 uy | {u, Vusl 3 jam | —any in{strike, track} | when...
4 Uy {u, Vus} 4 jam any in{strike, track} | when...
5 | u, | “{uy Vus} 5 | —strike —any infjam, track} | when...
6 | u, {uy Vus} 6 | —strike any in{jam, track} | when...
7 u, | {u; Vus} 7 strike —any in{jam, track} | when...
8 U, {uy Vus} 8 strike any in{jam, track} | when...
9 | "uz; | “{uy Vuy} 9 —track —any infjam, strike} | when...
10 | —ug {ug Vuy} 10 | —track any in{jam, strike} | when...
11 us; | {u; Vu,} 11 track —any in{jam, strike} | when...
12 Usg {ug Vuy} 12 track any in{jam, strike} | when...

Type 3-4 UCCAs follow a similar concept. They represent ways in which the collective team
may start or end any one control action before starting or ending any of the others. One of three
iterations of Type 3-4 UCCAs in Abstraction 2a is listed below and the full set for the multi-UxS
example is provided in Table 4-8.

1. cy starts providing u; before it starts providing {u, or us} [H]
2. cy starts providing u; before it ends providing {u, or us} [H]
3. cy ends providing u; before it starts providing {u, or us} [H]
4. cy ends providing u; beforeit ends providing {u, or us} [H]

In the statements above, if either u, or u; is a discrete command, it must be removed from

consideration in specifying the UCCA contexts that involve “ends providing {u, or uz}”.

This

removal can be automated. For example, if u, is a discrete command and u3 is a continuous
command, then the second line must be interpreted as:

2. cy starts providing u; beforeit ends providing u;

[H]

Similarly, if both u, and uz are discrete commands, the statement is removed altogether.
However, statements 1 and 3, which involve starting these discrete commands, would still be
valid to consider.
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Table 4-8. Abstraction 2a Type 3-4 UCCAs for Multi-UxS Example

# cN Fcy # Team before Team Context
1 S(uy) | SQuy Vus}) 1 starts jam | starts any in{strike, track} | when...
2 | S(uy) | EQuy Vus}d) 2 starts jam ends any in{strike, track} | when...
3 | E(wy) | SQuyvus}) 3 ends jam | starts any in{strike, track} | when...
4 | E(uy) | Euy Vus}) 4 ends jam ends any in{strike, track} | when...
5 | S(uz) | S{uy Vus}) 5 starts strike starts any infjam, track} | when...
6 | S(up) | Euy Vus}) 6 starts strike ends any inf{jam, track} | when...
7 | E(uy) | S{uy Vus}) 7 ends strike starts any infjam, track} | when...
8 | E(up) | Euy Vus}) 8 ends strike ends any infjam, track} | when...
9 | S(uz) | S{uy vuy}) 9 starts track starts any infjam, strike} | when...
10 | S(usz) | EQus Vuyl}) 10 starts track ends any inf{jam, strike} | when...
11 | E(uz) | SH{uy Vuy}) 11 ends track starts any infjam, strike} | when...
12 | E(u3) | EQus Vuyl}) 12 ends track ends any in{jam, strike} | when...
13* | Suy Vus}l) | S(uy) 13* | starts any in{strike, track} starts jam | when...
24* | Euq Vuyl}) | E(ug) 24% ends any infjam, strike} ends track | when...

*[tems 13-24 are the reverse sequences of Items 1-12 respectively

As in Abstractions 1a and 1b, these tables can also be generated by automation, and the same
approach is employed to identify and refine UCCAs (see Section 4.2.2). However, one notable
difference is that in Abstraction 2a the UCCA must also specify what control actions in the
abstracted set are relevant to the context. This determination must be made by the human analyst
because the context is defined by the analyst. For example, item 10 in Table 4-7 may produce:

UCCA 4: UAS Team does not provide track and provides strike
[H3].

This UCCA is uncovered by analyzing the —~track and {jam V strike} combination of commands.
However, in the set {jam V strike}, only the strike command is relevant. Under the context
specified, it does not matter if jam is provided or not. By designating the relevant commands, the
refined UCCA only includes the different controller options that lead to collectively not tracking
and striking (see Table 4-9). The exclusion of jam eliminates additional combinations that are
invariant to the context and subsequent causal analysis of the UCCA.

Table 4-9. Refinement of Example UCCA 4

UCCA Team Team Context
4 —track {ja V strike} when enemy must be tracked as strike occurs [H3]
Refined UAS; UAS; robot Same Context and Hazard
4.1 —track —track strike | when enemy must be tracked as strike occurs [H3]
4.2 —track strike —track | when enemy must be tracked as strike occurs [H3]
4.3 strike —track —track | when enemy must be tracked as strike occurs [H3]
44 —track strike strike when enemy must be tracked as strike occurs [H3]
4.5 strike —track strike when enemy must be tracked as strike occurs [H3]
4.6 strike strike —track | when enemy must be tracked as strike occurs [H3]
4.7 strike strike strike | when enemy must be tracked as strike occurs [H3]
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In other UCCAs, the analyst may choose to include all of the control actions listed in the
combination. For example, a version of the previous UCCA 1 updated for this modified UxS
example may form UCCA 5 below.

UCCA 5: UAS Team does not provide jam and provides track and strike
[HI].

UCCAs in Abstraction 2b

Abstraction 2b follows a similar logic as in 2a and uses Abstraction 1b as a foundation to consider
how any one controller in combination with any of the others abstracted together may issue a
common control action (see Figure 4-14). Here, Type 1-2 UCCAs explore ways the one controller
and the others provide or do not provide the action, as shown in Table 4-10. The process is
reiterated for each control action.

Table 4-10. Abstraction 2b Type 1-2 UCCAs for Multi-UxS Example

# Uy (x) Common Issues # jam provided by Context
~Ui(c;) | ~Ui({cj1 V ¢j2)) gap 1 | many one | —any of others | when...
* | U (cp) Ui({ci1 V ¢jz)) * | many one any of others | when...
2 | Ui(c) | ~Ui({cj1 V cjz)) mismatch 2 | anyone | —any of others | when...
3 Uy(c;) Ui({cj1 V cjz}) overlap 3 any one any of others | when...

*Does not need to be considered, included in items 2 and 3 (see discussion)

A key difference in how UCCAs are defined in Abstraction 2b, in this work, is that the specific
controllers do not need to be listed in the abstracted form. For the systems explored in this
research, it is assumed that the context in which a control action, or a combination of control
actions, is unsafe is controller agnostic. As such, the controllers listed in the abstracted UCCA
(e.g., those in Table 4-10) are generalized, which reduces the number of combinations that need
to be analyzed at this level.

However, it is important to note that the specific controllers must be considered in the
refinement of the UCCA. This is a necessary step to explore how those different controllers can
contribute to that higher-level output. By listing these options, the causal factors that are
controller-specific can later be identified in the last step of the hazard analysis, scenario
development. These factors would otherwise be missed. The process of refining a UCCA can be
fully automated, and the context and hazard identified by the human analyst at the higher level
are carried over to the refined level, as shown below.

An example of a UCCA found in the multi-UxS system using Abstraction 2b follows. The last
combination in Table 4-10, in which multiple controllers provided the jam command, is refined
in Table 4-11.

UCCA 6: any one C; provides jam and any other C; provide(s) jam
[H2].
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Table 4-11. Refinement of Example UCCA 5

UCCA G Any other C; Context
6 jam jam when multiple controllers mutually interfere [H2]
Refined UAS, UAS, robot Same Context and Hazard
6.1 jam jam when multiple controllers mutually interfere [H2]
6.2 jam jam when multiple controllers mutually interfere [H2]
6.3 jam jam when multiple controllers mutually interfere [H2]
6.4 jam jam jam when multiple controllers mutually interfere [H2]

The refinement in Table 4-11 assumes all controllers can issue all control actions. If instead,
only UAS; and UAS; could provide the jam command, and not the robot, then item 6.3 would be
the only option in the refinement.

Another advantage to generalizing the controllers in the UCCA identification is that the
second row labeled (*) in Table 4-10 can be skipped. This line represents one controller c; not
providing the command when any of the others in {c;.;} provide it. If only one controller in {c;;}
provides the command, that is addressed by item 2 of the table. If multiple controllers in {c;;}
provide it, that is considered in item 3.

Despite the benefits, there may be circumstances in which an engineering team chooses not
to make the assumption that context is controller agnostic. In such cases, the same mechanism
used to enumerate multiple different control actions in Abstraction 2a can be applied to
enumerate multiple specific controllers. All four items per iteration in Table 4-10 would need to
be considered, the process would be reiterated to compare each controller to the others, and the
analyst could specify which controllers are relevant to the contexts identified. The reasons for
selecting this approach are beyond the scope of this dissertation.

Type 3-4 UCCAs in this abstraction explore the sequences in which any one controller and
any other start or end a common control action. Table 4-12 shows the process for one control
action (u,), and similar iterations are necessary for each of the other control actions.

By again assuming that the context is controller agnostic, the process only needs to consider
any one of the other controllers in {c;.;} at a time. Similar to above, if an engineering team does
not want to make this assumption, it can enumerate options such as c; starts/ends u; before any
controllers in {cjy, ..., Cj(n—1)} start/end u;. The enumeration would also need to include the
reverse sequences, and the analyst would specify the controllers relevant to the context identified.

Table 4-12. Abstraction 2b Type 3-4 UCCAs for Multi-UxS Example

Ui (%) FU;(x) | Common Issues # jam by before jam by | Context

S(Ui(cy)) | S(Wi(cp)) any onestarts | any otherstarts | when...

S(Ui(¢)) | E(U1(¢j)) | handoff overlap any onestarts | any otherends | when...

E(U;(c;)) | S(Uq1(cy)) handoff gap any oneends | any otherstarts | when...

BN |3

NN FSSA T Y

E(Ui(c)) | EW(c))) any oneends | any otherends | when...
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As discussed for Abstraction 1b, Abstraction 2b also highlights the same common issues with
shared control that may contribute to entering a hazardous state. The ability to systematically
identify potential control gaps, overlaps, mismatches, and unsafe handoffs as listed in Table 4-10
and Table 4-12 is a key strength of the overall UCCA approach.

Assumptions and Limitations

The abstractions employed to enumerate UCCAs presented in this section provide tractability to
an otherwise combinatorial problem. However, the method involves certain assumptions and
has some limitations that are important to understand.

The following are the key assumptions. First, the abstractions are predicated on multiple
controllers sharing authority over a common process or over different interdependent
subprocesses. Second, Abstractions 1a and 2a assume these controllers, collectively, can provide
multiple types of control actions to the shared process. Third, Abstractions 1b and 2b assume
multiple controllers can provide the same type of control action to the process. Fourth, in this
work, the context of the UCCA is assumed to be agnostic to the controllers that provide the
actions. Mechanisms to relax this assumption are addressed in the discussion above. Finally, it is
assumed a human analyst is able to identify the unsafe context of a UCCA given the abstracted
combination of control actions or controllers.

The main objective of the abstractions is to reduce the number of potential UCCAs to consider
in arbitrarily complex systems. However, in the multi-UxS example (Figure 4-13), the process
generates more Type 1-2 UCCAs (provide / not provide) in Abstraction 2a than in Abstraction
la. In Abstraction 2a, the UCCA count grows linearly by 4m, instead of exponentially by 2™ in
1a, where m is the number of different types of control actions (here, m = 3).

The numerical advantage of the additional abstraction is realized when m > 4. This means an
argument can be made to enumerate Type 1-2 UCCAs using Abstraction 1a instead of 2a for
systems with 4 or fewer control actions. Anecdotally, the author found it easier cognitively to
explore combinations of more than 3 control actions using Abstraction 2a. Similarly, because
controllers are defined generally, Abstraction 2b is advantageous over Abstraction 1b when there
are three or more controllers.

Abstractions 2a and 2b provide even greater benefits for Type 3-4 UCCAs (start/end before
others start/end). The abstraction leverages some of the numerical advantages of pairwise
analysis by avoiding permutations of sequences greater than two. However, by maintaining
consideration for all controllers or control actions at a time, the abstraction retains a broader
analytical scope than if the problem was reduced to only evaluate pairs. Such a reduction could
never consider interactions that involve more than two controllers or control actions.

One limitation is that some control combinations may be missed due to the method of
abstraction. Table 4-13 provides representative examples of UCCAs that are omitted from the
abstracted enumeration and an explanation for why they are not covered.

In all cases, simpler combinations that address a subset of the overall interaction are
identified. However, as informed by Systems Theory, the aggregate of these reduced cases may
not necessarily represent the behavior of the full interaction. Still, these cases may help analysts
consider the more complex combinations that are missed by the abstraction.
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Table 4-13. Examples of Control Combinations Not Addressed Using Full Abstraction

Missed UCCA

Reason it is Missed

Cnprovides u; and uz and
does not provide uzand u4

AU A Uz A Uy

Abstraction 2a considers whether 1 control action is provided
(or not), and if any of the others are provided (or not).
However, this UCCA is considered in Abstraction 1a.

Simpler combinations addressed in Abstraction 2a:
(U1 AuaA—13); (U1 Au2A—Uy); (U AmusA—UL); (U2 A-usA—UL)

Ci ends u; before
(G starts u, and Cj ends us)

Similar to above, the abstraction applies Start or End to the
other commands together.

Simpler combinations addressed:
Ci ends u; before C; starts u,; C; ends u; before Cj ends us

Ci ends u; before
(C; starts u; and C; starts uy)

The combination bridges over the initial decision to look at
combinations of different control actions, and combinations of
controllers issuing the same control action.

Simpler combinations addressed:
Ci ends u: before C; starts ui; C; ends u; before C; starts u>

C; ends u; before C;j starts u»
before C; starts us

This is a sequence of three events, which is beyond what is
considered.

Simpler combinations addressed:
C;i ends u; before {C; starts u>and C; starts us};
G starts uz before C; starts us

C: ends u; before
(Cy starts u; and Cs starts u1)

Abstraction 2b Type 3-4 UCCAs only consider any one
controller and any other one by assuming the context is
controller agnostic (by choice only, see discussion)

Simpler combinations addressed:
C; ends uy before C; starts ui; C; ends u; before Csstarts u;

To illustrate one of these missed combinations and its simpler cases considered, the second

line of the table may represent the following ordered sequence for the multi-UxS example in

Figure 4-13.

Missed: Any C; ends jam before any others in C; start strike and ends track

Simpler considered: Any C; ends jam before any other C; starts strike

Simpler considered: Any C; ends jam before any other C; ends track

The last item in Table 4-13 occurs because of the decision to assume the context of a UCCA is

controller agnostic. Here, the missed UCCA does not need to be considered as long as the simpler
combinations listed are addressed. However, as discussed in the previous subsection, the
analysis team can choose not to make this assumption and recover the ability to find the missed

UCCA. Assuch, this case represents a deliberate implementation decision rather than a limitation

of the method.
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Some of the other cases in the table may be found by arbitrarily extending the scope of the
abstraction. For example, Type 1-2 UCCAs could have an additional step to compare any two
controllers with all the others. Similarly, Type 3-4 UCCAs could consider some sequences of
three changes in actions. These strategies may help if an analyst finds a pattern of combinations
to consider that is just beyond the reach of the current approach.

However, if all higher-order combinations must be found, the guaranteed method to find
them is to perform a full enumeration as described at the beginning of this section. Despite the
limitations above, the overall approach to identifying UCCAs is shown in the Chapter 5 case
study to be practical and find causal information that was previously not identified.

4.24 UCCA Identification Algorithm

The concepts developed in the previous subsections are now integrated into an end-to-end
algorithm (Algorithm 1) to identify Unsafe Combinations of Control Actions (UCCAs). The
algorithm introduces new concepts to reduce and prioritize the output set of UCCAs and improve
the efficiency of scenario development.

Algorithm 1: UCCA Identification

Input: A, C™, §
Output: US , U™ sets of UCCAs, abstracted & refined (Tuple)
// A: what controller can provide what control action (Tuple)
// C™: set of interchangeable controllers (Set)
// 8: special interactions to consider in refinement (Tuple)
1. €% « Enumerate-Combinations (A) // [Table 4-14]*
2. forx € s
3. if Context(C2bs) + @
UDs = Ybs y (€S, context,, UL
for x € UPs*
C:ef « Refine-Combinations (U%*S, A, S) // [Equation (17)]*
C;ef " Prune-Equivalent(C;ef , C'™) / / [Equation (21)]*
8. 'ufff « Prioritize(C;ef ',8) // [Heuristic, see discussion]*
9. return (US, U )*
// * Step automated; ** Step performed by human

N o O

The UCCA Identification Algorithm includes portions that are automated (denoted by *) and
others that are performed by a human analyst (**). A description of each component in the
algorithm follows and includes reasoning for allocating that part of the process to the automation
or the human. Some of the components are illustrated using the multi-UxS system example from
Figure 4-13. A prototype tool that executes the automated portions of Algorithm 1 was developed
in MATLAB and is employed in the case study in Chapter 5. The implementation of the tool is
discussed where relevant.
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Inputs

The first input to the algorithm is the authority tuple, A = f(N, M, A), which describes the set of
control actions each controller can provide to the shared process. A is derived from the control
structure, and its components are:

N := vector of controllers that share authority over the process
M:= vector of control actions that can be provided to the process

A = vector {4,(¢;)}, Va € M, Vi € N, for which elements are true if controller ¢; can
provide command u,

The second input is the set of interchangeable controllers, C™. It is used to prune refined
UCCAs that are considered equivalent to others in terms of potential causal factors. This topic is
further addressed in the discussion about Line 7.

The third input is a set of special interactions, §, encoded to add or remove refined UCCAs
when enumerated. Special interactions can also be used to influence prioritization. They are
further discussed in the descriptions of Lines 6 and 8.

Example: for the multi-UxS system in Figure 4-13, these terms are captured in Equations (3)-
(7) below. § is addressed later in the discussion.

N = {UAS;,UAS;, robot} 3)
M = {jam,strike, track} 4)
A = {A;qm (UAS)), Astrike (UASy), .., Arrack (robot)} = {1,1, ..., 1} ()

UAS; jam 1

UAS; strike 1
UAS; track 1
UAS, jam 1
A= | UAS, strike 1 (6)
UAS, track 1
robot jam 1
robot strike 1
robot track 1

Ci"t = (UAS,, UAS,} 7)

Line 1: Automated Enumeration of Control Action Combinations

The first line in Algorithm 1 is a function that enumerates all the combinations of control actions
by implementing the procedures introduced in Sections 4.2.1-4.2.3. It finds the Type 1-2
(provide/not provide) and the Type 3-4 (start/end before start/end) UCCAs using Abstractions
2a (combination of actions issued by the team) and 2b (combinations of controllers issuing a
common action).

Table 4-14 formalizes this process. The first row outputs potential Type 1-2 UCCAs using
Abstraction 2a in a format consistent with Table 4-7 for the multi-UxS example. These
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combinations are provided by the collective team cy of N controllers. The four cases are reiterated
for every u, in M. For example, item (c) in that row describes the team providing u, and not
providing any of the other control actions, denoted by —3u,,.

The second row finds Type 1-2 UCCAs using Abstraction 2b like those shown in Table 4-8.
The output keeps the controllers ¢; and 3¢; general, where 3¢; denotes any the other controllers
that are not ¢;, and iterates for every u, in M. Here, item (c) in that row describes any one
controller ¢; providing u, and any of the other controllers, 3¢;, providing the same action.

Table 4-14. Formalized Method of Enumerating Combinations of Control Actions

Abstraction & Cases to Consider Enumerate
UCCA Type Each Case
a. Uy A3y
Abs 2a b. —u, A Iy, . for
Typel-2 ¢ ugA=3uw, given Ug(en), U (en) Va+beM
d. Ug N Elub
a. ~Uq(¢;) A =3¢ Ug(cj)
Abs2b ey A ~3¢ Us(cj)  giveni /€N for
Type 1-2 VaeM
. Ug(c) N 3¢ Uq(c)
a. Juy[(—ug A —up) U ug A—up) Fougl
b. Juy[(mug A up) U(C ug A up) F—uyl
c. Fup[( ug A—up) U (—ug A—up) Fougl
Abs 2a d. Juu[C ug A up) U(mug A up) F=uy,] given for
Type 3-4 e. Juy[(—ug A—up) U (mug A up) Foug 2(en), Up(cy) Va+beM
f. up[(Aug A up) U (—ug A ~up)F uy]
g up[( ug A=up) U ug A up) F =g
h. u,[( ug A up) U( ug A —uyp) F—ug]
a. (_'Ua(ci) A _'Ua(cj)) U ( Ua(ci) A _'Ua(cj)) F Ua(cj)
b. (_'Ua(ci) A Ua(cj)) U ( Ua(ci) A Ua(cj)) F _'Ua(cj)
Abs 2b for
Type 3.4 c ( Ua(ci) A _'Ua(cj)) U (_'Ua(ci) A _'Ua(cj)) F Ua(cj) Vae M
d. ( Ua(ci) A Ua(cj)) U (_'Ua(ci) A Ua(cj)) F _'Ua(cj)

giveni # jEN

The third row finds Type 3-4 UCCAs using Abstraction 2a and produces an output consistent
with Table 4-10. The notation employs Linear Temporal Logic (LTL) to describe the different
sequences of starting and ending different control actions relative to one another.

Each equation is a sequence of three time periods. Item (a) in the list describes those three
periods as they pertain to starting u, before starting u;,. First, the initial condition treats both u,
and u,, as not provided because they have not yet started. This condition holds Until the second
step, represented by LTL temporal operator U [207], when u, is started and, therefore, is now
provided. Finally, in some Future third step, denoted by LTL operator F, u, is started. As

102



discussed in Section 4.2.1, no assumption is made that u, is still provided by the time this last
step occurs.

The fourth row in Table 4-14 uses Abstraction 2b to output Type 3-4 UCCAs like those shown
in Table 4-12. The cases in that row follow the same three temporal steps defined above in LTL.
As such, item (c) in that row represents any one controller ¢; ending u, before any other controller
¢j starts u,.

Each enumerated control combination is encoded into a tuple, €, = (Cy, U,,T,), as defined

below. By abuse of notation, the abstracted set of multiple controllers or of multiple control

actions can be encoded as any single element in €, and U,. A superscript on C (i.e., C4P$2*T12),

informs which abstraction and type of UCCA is enumerated. For Type 3-4 UCCAs, the order of
the elements in vectors U, and T3* reflects the temporal sequence.

C, = vector of controllers involved in enumeration

U, = vector of control actions paired with C,

T12 = {not provide, provide}; represents if elements C, provide elements in U,
T3* = {start, end, g}; applied by C, to U,

Example: for the multi-UxS system, if u, = jam, the third item of each row in Table 4-14
encodes C, as Equations (8)-(11).

cabs2aT1Z — ({team, team} {[jam], [strike v track]} {0,1}) (8)
eAbs2bT1Z _ ((¢; 3c;) {iam], [jam]} {11} ©)
cAbs2at3t — ({team, team} {[jam], [strike Vtrack]} ({end,start}) (10)
CAPs2bT34 _ ({¢, 3¢} {[jam], [jam]} {end, start}) (11)

c4bsdenotes the set of all €, created in the above enumeration. A MATLAB prototype
developed to demonstrate this concept automatically produces four tables with the control
combinations and placeholders for an analyst to enter potential contexts and other information
described in the next step of the Algorithm. Examples of UCCA tables created using the
automation are shown in Appendix 2.

Lines 2-4: Human-Identified Context of UCCAs

Once the automation has produced all the potential UCCAs, a human analyst determines for each
one (Line 2) if there is a context, or multiple contexts, in which that control combination is
hazardous (Line 3). As part of this, the analyst also traces each context to the hazard(s) the UCCA
leads to. The context may describe the violation of safety constraints previously identified in the
analysis. This part of the algorithm requires human expertise and intuition across multiple
domains.

While some contexts can be formally described so that they are automatically found, it is
challenging to scale that up beyond simple problems. In addition, the context may involve the
environment the system interacts with, which is too unpredictable to fully describe formally [170].
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The same concerns have limited the adoption of formal methods in certification (see Chapter 2.3).
Humans, as creative and critical thinkers, are better suited for this step.

If a hazardous context is found, itis appended to the control combination (Line 4). For UCCAs
defined using Abstractions 2a, the analyst also specifies vector U¢! to designate the control
actions in u, and u, that are relevant to the context. Abstractions 2b UCCAs only include one
control action and therefore do not require U%¢! to be specified.

Lines 5-6: Automated Refinement of UCCAs

After the human specifies the context(s), the hazard traceability, and the relevant control actions,
the automation reads in each unique abstracted UCCA as tuple US=
(C o Uy, Ty, context,, ULE! ) (Line 5). The potential UCCAs that are repeated or not considered
unsafe are removed from further consideration.

Example: for the multi-UxS system, the U%PS encoded for abstracted UCCA 4 specified in
Section 4.2.3 is shown in Equation (12). In this case, only the track and strike commands are
relevant to the context.

Ubs = ({team,team} {[track),[jamV strike]} {0,1} {'when..'} {track,strike}) (12)

Next, Algorithm 1 calls a function to refine each abstracted UCCA (Line 6). Here, the
automation finds every combination of specific controllers that can contribute to the collective
control output in the abstracted UCCA.

For Type 1-2 UCCAs, the tool first considers all the possible control combinations P =
f(N,M, A, T) by listing every combination of every controller N, with every control action M it has
the authority A to provide it, and the options T for providing or not providing that action. Each
combination is represented by tuple P, = (C e Ug, TT12 ) using the same format as €T12.

Example: for the multi-UxS system, one P, is shown in Equation (13). To shorten the equation,
the jam, strike, and track commands are listed a j, s, t respectively. By abuse of notation, each
controller in C, is reiterated for each element in the vectors the controller is matched with with in
both U, and TT'%2 In other words, {UAS;,UAS, robot} should be interpreted here as
{[UAS;,UAS;,UAS,], [UAS,, UAS,, UAS,], [robot, robot, robot]}.

P, = ({(UAS,, UAS,,robot} {[j,s,tl.[j,s t],[j,s.t]} {[0,0,1],0,1,0],[0,1,01}) (13)

The function then looks for equivalence of the union of control actions provided by all
controllers in P, to the relevant control actions specified in the abstracted UCCA U2PS. This step
is simplified using the earlier assumption that the context of the UCCA is agnostic to which
controllers issue the control actions. Equivalence can therefore be determined using subsets P, =
(U,,T,) and U = (U,, T,), which remove the controllers, the contexts, and the irrelevant
control actions from consideration. In simple terms, if a relevant control action is provided in the
abstracted Type 1-2 UCCA, equivalence is achieved if any controller in the refined set provides
that control action.

Example: for the multi-UxS system, Table 4-9 refines a UCCA in which the team provides
—track and strike. In this case, any combination where no controller fracks and one or more
controllers strike meets this criterion. As such, items 4.4-4.7, which include multiple controllers

104



providing the strike command, are considered equivalent to the collective team output. The
associated ‘UPS" and equivalent P, defined for item 4.4 are listed in Equations (14)-(15).

ULhs" = ({jam, strike} {0,1}) (14)
Pe  ={UsLU.sll.sl} {[0,0],[0,1],[0,1]}) (15)

However, special interactions may also be defined to influence how equivalence is determined
given the context of the UCCA. These interactions may reduce or expand the set of combinations
that are considered equivalent. For instance, if multiple controllers provide the jam command,
they may interfere with each other and yield a collective output equivalent to no jam being
provided. In this case, if a high-level UCCA states the team provides —jam and strike, any refined
UCCA that involves both UAS; and UAS; providing jam and any controller providing strike is
treated as equivalent. This example would expand the set of combinations to consider.

The special interaction is defined as a tuple § = (U, T}, £, Ty ), Where X specifies the rules
that are applied to the control actions in U and whether or not they are provided T;,. The rules
indicate how to treat the collective output of those commands using items in vector T,,,. In the
jam example above, X includes the rule that if the number of controllers providing the jam control
action in U exceeds 1, treat jam collectively as T12, = not provide.

Example: for the multi-UxS system, according to this special interaction, the P, defined in
Equation (16) would be considered equivalent to the UPS" previously listed in Equation (14).

Pe={UslUsl sy {[1,0],[1,1,[0,1]}) (16)

The output of this part of the algorithm is a set of refined control combinations C’;ef that are

considered equivalent to the abstracted UCCA UZbs . C:’;ef is evaluated using Equation (17) for
Type 1-2 UCCAs, which is the mathematical representation of the concepts described above.

el = | J2e (u;’:"S’ =\ J7e1svie N); Ve €P 17)
e i

Example: for the multi-UxS system, the Equation (18) shows C’;ef 12 represented by Table 4-9

and repeated in the discussion below in Table 4-15. The same abuse of notation used in Equation
(13) applies.

({UASD UASZ,T'ObOt} {[]' S]' [j' S]' [j' S]} {[0'0]' [0'0]' [0'1]})
({UASD UASZ,T'ObOt} {[]' S]' [j' S]' [j' S]} {[0'0]' [0'1]' [0'0]})
({UASD UASZ,T'ObOt} {[]' S]' [j' S]' [j' S]} {[0'1]' [0'0]' [0'0]})
eI = |((UASy, UAS,, Tobot} {[j,s),[j,s) Ui sIy - {[0,0],[0,1], [0,1]}) (18)
({UAS;, UAS;, robot}  {[j,s],j,s], [, s1}  {[0,1],[0,0], [0,1]})
({UAS;, UAS;, robot}  {[j,s],j,s], [, s1}  {[0,1],[0,1], [0,0]})
({UAS;, UAS;, robot} {[j,s],[j,s, [, s1y  {[0,1],[0,1], [0,1]})

Type 3-4 UCCAs are refined using a similar process. For Abstraction 2a, every possible
combination of any one controller, with the proper authority, issuing each of the relevant control
actions in the UCCA is enumerated. For Abstraction 2b, every possible combination of one
controller issuing the earlier and the later common command signal is found. In both cases, each
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enumerated item is labeled with start or end as designated by T3* in UZPS. The terms are

. ref, T34 . .. . . ref,T12
rearranged into set C ! using similar conventions as in C frz,

Example: for the multi-UxS system, Equations (19) and (20) represent, respectively, U2?S and

C;ef T12 for the unsafe sequence that involves ending jam (j) before starting strike (s) and track (t).

To shorten the representation, UAS;, UAS,, robot, start and end are listed as Uy, U,, 1, S and E
respectively. Furthermore, the backets around the jam [j] and its end [E] or null [¢] are not shown,
but are implied in Equation (20). The same abuse of notation described in Equation (13) applies
in Equation (20).

Ubs = ({team,team} {[j],[sVt]} {end (E),start(S)} {‘when..} {j,s,t}) (19)
(U Upry Al Is, 8] [ Is ¢1) U [s. 8] {(E. 1S, 81, [2, [, 0], [0, [, 61]})
W Uzry {ils el) i Is el [ [s. 1]} {[E. [S, 1], [o, [3, S]], [, [0, 01]})

C;ef,T34- — ({Ul' UZ,T'} {[], [S, t]]: []' [S: t]]: []: [S: t]]} {[E' [S' ﬂ]], [¢' [g' ¢]]' [¢’ [¢’ S]]}) (20)
({Ul' .UZ,T} {[]1 [S, t]], []1 [S, t]], []: [S, t]]} {[E' [ﬂ, S]], [ﬂ, [S, ¢]]; [¢' [¢' ¢]]})
({Ul' UZ,T'} {[]1 [S, t]], []1 [S, t]], []: [S, t]]} {[ﬂ, [ﬂ' ﬂ]], [ﬂ, [ﬂ, ¢]]' [E’ [S’ S]]})

In this work, Type 3-4 UCCAs do not employ special interactions § to specify how different
refined sequences of actions should be considered equivalent to the collective sequencing. Such
interactions were not considered to be relevant to the problems analyzed as part of this research.
However, if a need arises to include such special considerations, a version of Equation (17) that
applies to Type 3-4 UCCAs could be derived. That is beyond the scope of this work.

Lines 7: Automated Pruning of Additional Equivalent Combinations

In the development of loss scenarios, which occurs later in the hazard analysis, causal factors are
analyzed to explain how the control combinations in the UCCA may occur. This process needs
the refined UCCAs to consider what controllers issued what control actions, as different
controllers may have different causal factors. However, some of the controllers may be
considered interchangeable from a scenario perspective. In such cases, the additional refined
UCCAs that lead to the same causal analysis must be eliminated to avoid duplication of effort.

In the multi-UxS example (Figure 4-13), the engineering team may consider UAS; and UAS;
to be interchangeable. Causal scenarios will be no different if it is UAS; that provides part of the
UCCA, or instead, UAS,. As a result, items 4.2 and 4.3 in Table 4-15 are equivalent as they both
involve one UAS providing the strike command. No additional information is gained from 4.3 if
4.2 is analyzed. Assuch, UCCA 4.3 is pruned from the set.

Similarly, items 4.4 and 4.5 both involve one UAS and the robot providing the strike command
and, therefore, 4.5 is pruned because it is duplicative. In contrast, items 4.2 and 4.5 are not
equivalent even though they alternate the one UAS that provides strike. In item 4.2, UAS;
provides the strike alone, while in 4.5, UAS; and the robot provide the strike.
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Table 4-15. Pruning and Prioritizing Combinations in Refined UCCA 4

UCCA Team Team Context
4 —track {jam V strike} when enemy must be tracked as strike occurs [H3]

Refined | UAS UAS, robot Pruned? Priority

41 —track —track strike No High

4.2 ~track strike ~track No High

4.3 strike —track —track Yes (4.3=4.2) N/A - Pruned

44 —track strike strike No Low

4.5 strike —track strike Yes (4.5=4.4) N/A - Pruned

4.6 strike strike —track No Low

4.7 strike strike strike No Low

One of the inputs to Algorithm 1 is set C™ that contains z vectors of interchangeable controllers.
In Line 7, a function uses this input to prune the equivalent duplicated control combinations from

the set C;ef generated in Line 6. The process takes any two combinations C;enfl and C;enf from C;ef ,
checks if the vector of control efforts between any two interchangeable controllers are equivalent,

and also checks that all control efforts by the other controllers are consistent. These conditions
are captured in Equation (21), and if met, then the UCCAs are equivalent and C’;enf is pruned from

crel.
C;,erfl = C;ﬁ{l ([Um(ci)] = [Un(cj)]) A ([Um(cj)] = [Un(ci)]) A ([Um(ck)] = [Un(ck)])' (21)
YmEeCp, YNE Cyi#j€CM, VkegCM vVze M

Example: for the multi-UxS system, UAS; and UAS; are interchangeable as defined by €™ in
Equation (7), and one possible C;ef is represented by Equation (18). The two items C’;enf, and C;_e,{,

respectively shown in Equations (22) and (23), are members of C’;ef . They represent items 4.2 and
4.3 described in the same example above and shown in Table 4-15.

CLIT1? = ((UASy, UAS,,robot}  {[j,s],[j,s,[j,s]}  {[0,0],[0,1],[0,0]}) (22)
et ™2 = ((UAS,, UAS, roboty  {[j,s],[j,s), [j,s]}  {[0,1],[0,0], [0,0]}) (23)
Here, ¢; = UAS; € C™, ¢; = UAS, € C™, ¢, = robot & C™. The components of Equation

(21) for this example are captured in Equations (24)-(27), and the three conditions necessary to

prune C;ﬁ{'nz are met in Equation (28).

[Un(c)], Vm € €y, = [Up (UAS;)], up € [jam, strike] = [0,0]; (24)
[Unm(c))], Ym € Cpp = [Un(UAS,)], um € [jam, strike] = [0,1]; (25)
[Un(ci)], Vm € €y, = [Up, (robot)], u,, € [jam, strike] = [0,0]; (26)
[Upn(c)], Vi € €y = [1,0]; [Un(c;)], Vi1 € €, = [0,0]; [Up(ci)], ¥ € € = [0,0];  (27)
[Un(ed] = [Un(6);  WUm(c)] = [Un(cd];  [Um(a] = [Un(er)] (28)
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Conditions to specify controllers as interchangeable may vary by application. The taxonomy
introduced in Figure 3-2 can help reason about what controllers lead to similar causal scenarios.
It describes the structure of the interactions between controllers, which influences causality and
the system dynamics. Commonality in some of the axes may help determine interchangeability.

As an example, consider the arbitrary collaborative system in Figure 4-15, in which five
controllers share a process. The controllers are differentiable on at least the first two dimensions
of the taxonomy. The interactions involved are human-human, human-machine, and machine-
machine. The hierarchal structure includes supervisory control and peer interactions. Based on
the controller types and hierarchy, the set of interchangeable controllers may be specified as €=
{{humanl, human,}, {machinel,machinez}}. The other five dimensions in the taxonomy could
also be included in this consideration if of interest to the analysis.

Human, R Human,
A y A 4
Human, ‘IMachine,| —"|Machine,
ua ua ua ua ua
A Y y A 4 A 4

Shared Process

Sets of interchangeable controllers: {H1, H2}, {H3}, {M1, M2}
Based on Controller Types and Hierarchy

Figure 4-15. Interchangeable Controllers in Arbitrary Collaborative System

Lines 8-9: Automated Prioritization and Output of UCCAs

The refined UCCAs may optionally be prioritized to focus the remainder of the hazard analysis
(Line 8). The goal is to highlight the UCCAs that will contribute more new information in causal
scenario analysis and devalue those that provide more repetitive information. The prioritization
scheme implemented in this dissertation is a heuristic formed on engineering judgment, but it
could be implemented differently based on other application needs.

The concept is illustrated using again the ~track and strike UCCA from the multi-UxS example
refined in Table 4-15. Scenarios for this UCCA must explain why (1) any controller would provide
strike when (2) no controller provides track, and vice versa. It is arguably less important in the
context of the UCCA to focus on why multiple controllers would provide strike. As such, in the
remaining set of refined UCCAs that were not pruned, those with one controller providing strike
are prioritized over those with multiple controllers issuing that command.

It is also important to note, in this example, that if there is a context in which multiple
controllers providing strike is unsafe, that interaction is specifically addressed in Abstraction 2b,
where combinations of controllers provide the same action (e.g., ¢; strike A 3c; strike). For this
reason, the prioritization scheme does not devalue combinations of two controllers providing the
action in Abstraction 2b. However, using a similar logic as above, it does deprioritize
combinations of three or more controllers providing the same action, as those may be repetitive.
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In this dissertation, the prioritization scheme is also employed to devalue UCCAs in which
all the control actions are provided by one controller. For example, if commands u; and u, are
unsafe together, and if controller c; is the only one to provide those two commands, the UCCA
is deprioritized. Such instances are arguably less related to collaborative control. However, other
applications may choose to treat such occurrences with higher priority.

The special interactions specified in § can also be used to influence prioritization. In the
example previously used to illustrate §, multiple controllers providing the jam command are
treated collectively as not providing jam. Here, § ensures that cases of two controllers providing
jam in a UCCA are not deprioritized. However, by the same reasoning provided for Abstraction
2b UCCAs above, those with any three controllers providing jam are deprioritized.

Because the assumptions underpinning prioritization are softer than those used in the
pruning process, the deprioritized UCCAs are not eliminated. UCCAs are presented to the
analyst by order of priority, and the option remains to analyze those labeled as lower in priority
in scenario development.

The set of UCCAs refined, pruned, and prioritized using automation is returned by Algorithm
1 as set U™ (Line 9). An example of the output produced by the prototyped automation tool is
provided in Appendix 2. The UCCAs, both abstracted and refined, are now ready for the analyst
to proceed to the last step in the hazard analysis: the development of causal scenarios.

4.3 Causal Scenarios in Collaborative Control

The fourth and final step in STPA develops loss scenarios to identify causal factors that can lead
to the unsafe control actions (UCAs) [50]. Safety constraints can then be specified to guide the
design and operation of a system to eliminate or control these factors to prevent losses.

In STPA, scenarios are identified by analyzing each UCA to determine (1) why the controller
would provide the UCA and (2) why a control action would be improperly executed or not
executed leading to the outcome of the UCA. The process explores potential breakdowns in four
different parts of a feedback control loop. The STPA guidance describes common factors to
consider in each part to assist in the analysis (see Figure 4-16).

An approach proposed by Thomas aims to add structure and enhance the ability to build
scenarios top-down [208]. The process starts by formulating four basic scenarios, generically listed
below, which originate from the four parts of the feedback control loop. The basic scenarios are
then further refined as necessary to develop safety constraints to mitigate the associated factors.

1. Basic Scenario 1: Unsafe Controller Behavior: the controller receives adequate feedback,
but still makes unsafe decisions.

2. Basic Scenario 2: Unsafe Feedback or Other Information: the controller receives
inadequate feedback leading to an unsafe decision.

3. Basic Scenario 3: Unsafe Control Path: the controller provides a safe control action, but the
controlled process receives a control action that is unsafe.

4. Basic Scenario 4: Unsafe Process Behavior: the safe control action is received by the
controlled process, but the process behaves in an unsafe way. [208]
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Why a controller would provide UCA

1. unsafe controller

behavior l control input wrong, missing
Controller
Con.trol Control Process Models y
Action Algorithm (inconsistent, 2. unsafe
lawed, incomplete)
3. unsafe (f ) feedback path
control path
Actuator Sensor
action delayed, # feedback delayed,
incorrect incorrect, inaccurate
Controlled Process I—
conflicting contro{, (Component failures, process output
missing input _ changes overtime) >
> 4. unsafe process
Why a control action would be Tﬂ"m”’ bance behavior

improperly executed or not executed

Figure 4-16. Areas of Potential Breakdown in a Feedback Control Loop (derived from [50])

The scenario development process in STPA is able to uncover causal factors not found by
other hazard analysis techniques [209]. However, the approach focuses on one unsafe control
action provided by one controller at a time. As described in Section 4.2, some causal factors may
only be identified by exploring how multiple control actions are unsafe together.

Now that unsafe combinations of control actions (UCCAs) are identified, a process outlined
in Figure 4-17 is introduced to develop causal scenarios from these UCCAs. The process has the
following goals. First, it aligns with STPA by considering both (1) why unsafe control actions
would be provided and (2) why control actions would not be properly executed. Second, it
provides a mechanism to analyze the multiple feedback control loops involved in the UCCAs
collectively. Third, it accounts for the collaborative control dynamics defined in Chapter 3. And
fourth, the approach is systematic in scenario identification and refinement.

1. Create “Top-Level Scenarios”

Abstracts internal control to analyze
unsdafe collective controller behavior

Input: UCCA ~ 2. 1D internal control factors Output: Scenarios

Refine as needed ——
Abstracted UCCA =P f =P to derive traceable
+ Refined Set L. 3. ID collaborative control factors safety constraints

Refine as needed ——

4. ID other causal factors
Refine as needed

Figure 4-17. Process to Develop Causal Scenarios from a UCCA
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The input to the process is a UCCA identified using the technique in Section 4.2. Each UCCA
represents an unsafe collective control output by the team to the shared process. As in STPA, the
scenario identification process explores factors that lead to unsafe behaviors of the team of
controllers, its feedback paths, its control paths, and the controlled process. However, this work
emphasizes how the interactions among the controllers on the team contribute to unsafe collective
team behavior. The analysis of the feedback paths, control paths, and controlled processes
follows the same reasoning as in STPA. This key idea is illustrated in Figure 4-18.

Focus: Unsafe (collective) controller behavior
(e.g., how collaborative interactions lead to unsafe behavior)

Multi-Controller Team

¢
T task l, 1‘ task 1‘
c C,

2 |
F 3 F 3
u,..., U, ug,..., U, ug,..., U,
Unsafe control N N . Unsafe feedback
paths (to process)* o 2t = 2 Rt paths (from process)*

Shared Controlled Process

Unsafe process behavior*
*Relatively unchanged from STPA

Figure 4-18. Four Areas of Potential Breakdown in Multiple Feedback Control Loops

In Step 1, the scenario identification process (Figure 4-17) explores how hierarchal control
within the team contributes to the unsafe collective controller behavior in the UCCA. Toillustrate
this concept, consider the system in Figure 4-18, where C; has control authority over the other
controllers on the team in addition to the shared process. The first step considers how the
different potential control actions from C; to the other controllers relate to the UCCA.

In simple terms, this step investigates how the UCCA could occur if, for example, C;
commands the team to provide an unsafe output, or as another example, if the other controllers
do not properly execute commands from C;. Each example represents a new scenario to consider.
A method defined in Section 4.3.1 helps to systematically account for the different possible
internal control actions that lead to unsafe collective team behavior using top-level scenarios.

Each of these scenarios is then iteratively refined using a template introduced in Section 4.3.2.
In Step 2, the template finds causal factors in the control loops internal to the team. In Step 3, the
template identifies factors related to the collaborative control dynamics of the team.

Finally, Step 4 identifies factors that relate to unsafe feedback paths from the controlled
process, unsafe control paths to the controlled process, and unsafe controlled process behavior.
These items follow the same approach as used in STPA.

The output of the process is a set of causal scenarios from which engineers can derive safety
constraints to eliminate or mitigate the factors that lead to hazards. The remainder of the section
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describes each step of the process in more detail. Examples of its application and of the safety
constraints that are derived from it are provided in the Chapter 5 case study.

4.3.1 Step 1: Top-Level Scenarios to Reason about Internal Control

Step 1 of the scenario identification process examines how the collective output in a UCCA relates
to the different possible control actions internal to the team. To illustrate this concept, assume
that the system shown in Figure 4-18 has a UCCA that involves multiple controllers providing
control action u;. This case occurs in the multi-UxS example in Section 4.2, when multiple
controllers provide the jam command (see Table 4-11), and it is a Type 1-2 UCCA.

Using the process described in Section 4.2.4, the two priority refined UCCAs, in this case, are
(1) ¢; and c;, both provide u;, and (2) ¢, and ¢, both provide u;. Step 1 now explores how the
commands provided by c; to {c,, ..., ¢, } may have contributed to these outcomes. Assuming c;
can task the other controllers to execute u,, Figure 4-19 enumerates the four different possible c,
internal control actions that are relevant to each of the two refined UCCAs.

I | [ || —
—task —task task —task —task task task task
cz T Cn CZ e Cn cz s cn cz s Cn
ul ul‘V _|u1" ul ulw _|u1‘7 ul ul‘V _|u1U u1 ul" _|u1‘7
| Shared Process | | Shared Process | | Shared Process | | Shared Process |
1a (Top-Level Scenario #4) 1b (TL Scenario #5) 1c (TL Scenarios #3,5) 1d (TL Scenarios #2,5)
| ¢ (]| ¢ ||| ¢ (]| ¢ |
—task —task task —task —task task task task
cz wer cn CZ s c" cz e Cn CZ e c"
_|u1 ul‘V u]'" _|u1 ul‘f ul‘f _|u1 ul‘V u]'" _|u1 u]'" ul‘f
| Shared Process | | Shared Process | | Shared Process | | Shared Process |
2a (Top-Level Scenarios #1,4) 2b (TL Scenario #4) 2c (TL Scenario #4) 2d (TL Scenario #2)

Figure 4-19. Possible Internal Control Actions that Can Lead to Type 1-2 UCCA

Each different set of internal control actions represents a new potential scenario to analyze.
For instance, in item 1a, ¢; does not command any other controller to provide u;, and instead,
provides the command itself. Yet, ¢, also issues the command despite not being tasked. This
forms a scenario that can be further refined to explain the unsafe behavior of the team as a whole.

Reasons for this outcome may include c; unintentionally providing the task, c, receiving the
command from another controller, ¢, unintentionally providing the command, and so on. A
systematic process to explore these causal factors is introduced in the next section. The other
items in Figure 4-19 may also be developed into additional scenarios.

While this simple example only involves one type of control action (u,), it still results in eight
potential scenarios to further analyze. This number grows exponentially with the number of
different types of internal control actions involved {uy, ..., u,}. Therefore, a full enumeration with
any more complexity can produce an intractable number of scenarios. This is similar to the
problem encountered in UCCA identification. Simplification is again necessary.
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Abstraction is again applied to manage the combinatorial complexity. The different possible
internal control actions are abstracted into top-level scenarios that cover their general concern
toward the unsafe collective output. Table 4-16 lists the generic fop-level scenarios that help reason
about how internal control relates to Type 1-2 UCCAs. These scenarios are directly traceable to
UCA Types 1 and 2 in STPA and have a similar intent to the basic scenarios by Thomas [208].

Table 4-16. Top-Level Scenarios that Address Internal Control Issues for Type 1-2 UCCAs

# Top-Level Scenario Full Top-Level Description
1 Direction Not A controller does not direct other controllers on the team as
Provided (Unsafe)  necessary for the team to execute safe collective control of the
shared process.
2 Direction Provided A controller directs other controllers on the team in a way that
(Unsafe) leads to unsafe collective control.

Includes: directing wrong controller to provide command,

directing multiple controllers in a way that conflicts with one

another, and directing controller to provide incorrect command
3 Direction Provided A controller directs other controllers on the team adequately, but

(Safe) but Not some of those controllers do not execute directions properly, which
Executed Properly  leads to unsafe collective control.
(Unsafe)

Includes: controllers do not provide some commands,

controllers provide commands improperly, wrong controller

provides command

4 Direction Not A controller adequately does not direct other controllers on the
Provided (Safe) but team to provide certain commands, but some of those controllers
Executed (Unsafe)  provide them anyways, which leads to unsafe collective control.

5 Controller Actions A controller provides control actions to the shared process that are
to Process and unsafe in combination with how it directs other controllers on the
Directions it team.

Provides (Unsafe) Includes: improperly providing a control action that is

necessary in combination with directed actions, providing a
control action that conflicts with directed actions

While the top-level scenarios are designed to provide coverage over the different possible
internal control combinations, they are not mutually exclusive of one another. Figure 4-19
illustrates this point by mapping each control combination into these scenarios. Some of the cases
fit into multiple scenarios. The analytical overlap is intentional to avoid potential gaps.

For example, in item 1c, c; tasks a specific controller to provide u;, but a different controller
provides it instead. This situation fits into top-level scenario #3 in Table 4-16. In addition, despite
tasking another controller to provide u,, ¢; also provides the command itself, which is captured
by top-level scenario #5. The scenarios help systematically consider these issues and are then
further refined in the context of the UCCA, as described in the next subsection.

As defined in Chapter 3, dynamic hierarchy occurs when multiple controllers can mutually
command each other. As such, dynamic hierarchy contributes to the possible control actions
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internal to the team. For this reason, this interaction is addressed in the causal analysis using the
top-level scenarios defined above. Multiple instances of each of the scenarios can be created to
cover changes in the controller, providing directions to others on the team.

For example, the Pilot - Digital Copilot system surveyed in Chapter 3.3 exhibits dynamic
hierarchy in collaborative checklist execution. Top-Level Scenario #1 can explore how the pilot
does not direct the automation to execute certain functions and vice-versa, it can also examine
how the automation does not direct the pilot. Examples of scenario development related to
dynamic hierarchy are provided in the case study in Chapter 5.

Type 3-4 UCCAs, which describe how starting and ending control actions relative to one
another are unsafe, face similar combinatorial challenges. For example, consider an unsafe gap
in the handoff of control action u; between any two controllers in the same system analyzed
above. In other words, ¢; ends u, before ¢; starts u;.

This UCCA refines into the three priority UCCAs shown in Figure 4-20. Each may be related
to different command options provided by c;. In the figure F is the temporal operator for some
Future step and designates the later of the control action(s) started (S) or ended (E) in the sequence.

| ¢, | | ¢, | | ¢
t task (late) } t task (early)} t task (early/late)} t
ch aen cn LCZ nen cn LCZ s cn
E(ul)u Fs(ul)\r _|u1\r F S(ul)u E(ul)w _lulw _|u1|r F S(ul)u | E{ul)w
Shared Process Shared Process Shared Process
1a (Top-Level Scenario #6,8) 2a (TL Scenario #6,8) 3a (TL Scenario #6)
| G | ¢ | ¢
4 tasky t 4 task§ ¢ 1 task} }
c ) cn c_ e cn c_ e cn
E(ul)n F S(ul)" ULy F s(ul)n E(ul)u U “ud | F S(ul)" E{ul)"
Shared Process Shared Process Shared Process
1b (Top-Level Scenarios #7,8) 2b (TL Scenarios #7,8) 3b (TL Scenario #7)

“F S(u,), E(u;)” means End u, before Start u, in some Future step

Figure 4-20. Possible Internal Control Actions that Can Lead to Type 3-4 UCCA

Using the same reasoning applied to Type 1-2 UCCAs, Table 4-17 provides the top-level
scenarios to abstract the different possible internal controls that lead to Type 3-4 UCCAs. A
demonstration of how to tailor top-level scenarios to analyze a system is provided in Chapter 5
for the case study. The next subsection explains how to refine these scenarios in the context of the
UCCA.
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Table 4-17. Top-Level Scenarios that Address Internal Control Issues for Type 3-4 UCCAs

#  Top-Level Scenario Full Top-Level Description

6 Directed Sequence A controller directs other controllers on the team in a way that
Unsafe leads to unsafe temporal sequencing.

7 Directed (Safe) but A controller adequately directs other controllers on the team, but
Executed in Unsafe the way in which those controllers execute the directions leads to
Sequencing unsafe temporal sequencing.

8 Controller Actionsto A controller on the team provides control actions to the shared
Process and Directions process that are unsafe in temporal sequencing with how it
Unsafe in Sequencing  directs other controllers on the team.

In some systems, the set of collaborating controllers that share authority over a process are all
peers and do not have authority to provide control actions to one another. In such cases, top-level
scenarios 1-4 and 6-7 are still applicable to explore the different possible combinations of control
actions provided to these controllers by supervising controller(s). Top-level scenarios 5 and 8 do
not apply if the supervisor(s) do not issue control commands directly to the shared process. The
multi-UxS system in Figure 4-13 illustrates this structure, where the UAS and the robot
collaborate as peers, and the operator is the supervisor.

4.3.2 Step 2: Internal Control Causal Factors

Steps 2 and 3 in the extended scenario identification process identify causal factors that lead to
the unsafe collective controller behavior in each top-level scenario. The template introduced in
Figure 4-21, which is a refinement of the process overview in Figure 4-17, provides a systematic
approach to consider these causal factors at a high level and then iteratively refine them as
necessary. This section and the next introduce the key concepts in this template. Its application
is demonstrated in the Chapter 5 case study.

Step 2 of the scenario identification is illustrated by the top yellow box in Figure 4-21. It
involves finding, for each top-level scenario, the causal factors associated with feedback control
loops internal to the team. The control loops explored are those where a controller provides
control actions to the other controllers on the team. In the example shown in Figure 4-19, these
are the feedback control loops from c; to ¢, and ¢; to c,.

This step explores how the controller providing the direction (c; in the example) may have
unsafe control inputs, an inadequate control algorithm, inadequate models of the controllers it is
directing (c, ..., ¢,), and unsafe control paths to those controllers. These are the same factors
considered in STPA [50]. The only difference is that multiple internal control loops may be
considered at once.

The lower yellow box is a refinement template for one of the high-level causal factors. If more
detail is needed to explain why the controller providing direction has an inadequate process
model of the directed controller, the template points to different reasons for inadequate feedback.
For example, ¢, may not send feedback to c;, or ¢; may not receive the feedback, or c; may
interpret the feedback incorrectly, and so on. Once again, this guidance is from STPA [50].
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Input: Unsafe Combination of Control Action (UCCA)
Abstracted & Refined Set Together

Step 1: Top-Level Scenarios Step 4: Other Causal
(Unsafe collective controller behavior) Factors
‘ l 4.1. Unsafe feedback
paths from shared
Step 2: Internal Control Step 3: Collaborative Control Factors controlled process
Factors —.3.1. Unsafe Mutually Closing Control 4.2 Unsafe control
2.1. Unsafe Control Input Loops paths to shared
12.2. Inadequate Process Model 3.2. Inadequate Cognitive Alignment == controlled process
2.3. Inadequate Control Includes: Lateral Coordination 4.3. Unsafe behavior
Algorithm 3.3. Unsafe Dynamic Membership of shared controlled
2.4. Unsafe Control Path 3.4. Unsafe Dynamic Connectivity process
\ 4
Feedback (FB) Mutually Closed Loop Alignment Across Controllers on Team
2.2.1. FB not sent / 3.1.1. Inadequate feedback 3.2.1. Construction of process models
not received about shared controlled and control algorithms inconsistent

process received from
collaborators

3.1.2. Inadequate feedback
about collaborator control

3.2.2. Initialization of process models
inconsistent / inadequate

2.2.2. FB incorrectly
sent / interpreted

2.2.3. FB delayed in
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2.2.4. FB path does
not exist

3.2.3. Updates to models inconsistent /
inadequate. Due to inconsistent / flawed:
actions received from * Vertical Coordination (Control)
shared controlled process » Lateral Coordination (Comm) 1

» Lateral Coordination (Observations) J'
» Predictions
» Other Information Sources
3.2.4. Decision Making for control and
comm actions inconsistent / inadequate

3.2.5. Capacity of controller inadequate
to support cognitive alignment

[ v
Communications (Comm) & Observations (Obs)

3.2.3.1. Comm not sent, Comm / Obs not received
3.2.3.2. Comm incorrectly sent, Comm / Obs incorrectly interpreted
3.2.3.3. Comm delayed in sending, Comm / Obs delayed processing

3.2.3.4. Comm/Obs channel does not exist

| | | | |
Output: lterative scenario refinement as necessary to develop system safety constraints

\ \ \{ \

Figure 4-21. Iterative Refinement Template for Causal Scenario Development
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4.3.3 Step 3: Collaborative Control Causal Factors

A key goal of this research is to extend the analysis to cover the collaborative control dynamics
defined in Chapter 3. Up to this point in the analysis, four of the nine collaborative interactions
have already been addressed. As explained in Section 4.2, shared authority, dynamic authority, and
transfer of authority are inherently included in the UCCA identification. Similarly, dynamic
hierarchy is captured in the top-level scenarios that describe internal control (see Section 4.3.1).

The five remaining collaborative control dynamics are addressed in Step 3 of the scenario
development process, as illustrated in the top blue box in Figure 4-21. These include mutually
closing control loops, cognitive alignment, lateral coordination, dynamic membership, and dynamic
connectivity. The following describes how each is handled.

Mutually Closing Control Loop Causal Factors

In mutually closing control loops, feedback control loops are closed across multiple controllers. For
scenario development, it is useful to refocus the control structure on this interaction. If in the
example system above in Figure 4-18, u; and u, involve mutually closing loops, Figure 4-22
represents the refocused control structure to explore this dynamic, where “FB” means feedback.

_FBu,

i - j

FBu,

5

u; FB u, u, FB u,

v A 4

Shared Process

Figure 4-22. Refocused Control Structure for Mutually Closing Control Loops

In the refocused control structure, the controllers are generic (¢; and ¢;) to account for different
controllers involved in the refined UCCAs. The hierarchy between controllers does not need to
be shown, as it is not the focus of this dynamic. The key concept to represent is that c; senses
feedback from a control action provided by c;, and passes that feedback to ¢;, which may
otherwise not have access to it. This feedback also influences how c; controls its part of the
process and interactions with c;.

A scenario refinement template is provided in Figure 4-21 (see the Mutually Closed Loop blue
box) to further explore causal factors associated with such control loops. The analyst first
considers the consequences of a controller receiving inadequate feedback from collaborators
regarding its control actions to the shared process. In Figure 4-22, ¢; may provide u, in an unsafe
way if the feedback from c; is inadequate.

Next, the analyst examines how a controller is influenced by inadequate feedback from the
shared process regarding the actions of its collaborators. In the example, ¢; may provide u; in an
unsafe way if inadequate feedback from the process leads it to misinterprets how ¢; is controlling
the process. Reasons for the inadequate feedback can then be further refined using the same
bottom yellow refinement template in Figure 4-21 previously discussed.
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Cognitive Alignment and Lateral Coordination Causal Factors

In the cognitive alignment dynamic, scenario development focuses on why multiple controllers
have process models and make decisions that are inconsistent with one another. A refinement
template was developed using ideas synthesized from Thomas [210], France [189], and Johnson
[191]. This template is shown in Figure 4-21 (see the Alignment Across Controllers blue box). To
explore the causal factors in it explores, it is helpful to consider some of the items tracked in the
process models of each controller as previously described in Figure 4-6.

The template first accounts for potential differences in how the cognitive functions were
constructed. For example, two machines working together ma