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Abstract

Human cognition exhibits remarkable abilities in reasoning about the plans of others.
Even infants can swiftly generate effective predictions from minimal observations. This
capability largely stems from our ability to employ specific assumptions about others’
decision-making, while considering potential alternative interpretations that align
with reality. Such versatility is particularly crucial in navigation tasks, where multiple
strategies exist for avoiding obstacles and reaching a target location. A sophisticated
autonomous system should, therefore, be capable of: (1) acknowledging the inherent
uncertainty in various obstacle avoidance strategies ; and (2) predicting motion plans
in a way that recognizes the different possibilities in a given goal-driven navigation sce-
nario. To address these needs, we introduce a framework that captures the stochastic
nature of motion planning and prediction through Monte Carlo sampling techniques.
We ensure (1) by shifting the focus from pure trajectory optimization to generating
a variety of near-optimal paths, and achieve (2) by developing a prediction method
capable of capturing the inherent multimodality in the distribution over goal-driven
trajectories. For the former, we utilize Markov Chain Monte Carlo (MCMC) methods
to obtain trajectory samples that approximate the Boltzmann distribution, a common
model for approximate rationality, which incorporates a cost function derived from
trajectory optimization literature. For the latter, we develop a Bayesian model of the
observed agent, and utilize Bayesian inference to reason about the underlying end
goals of their movement. We propose a sequential Monte Carlo method that adapts
the MCMC trajectory sampling to construct plausible hypotheses about the agent’s
motion plan and then updates these hypotheses in real-time with new observations.
In experiments conducted within continuous, obstacle-laden environments, we demon-
strate our framework’s effectiveness for both diversity-aware motion planning and
robust inference of latent goals from partial, noisy observations.
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Chapter 1

Introduction

We must see that music theory is not only about music, but about

how people process it. To understand any art, we must look below its

surface into the psychological details of its creation and absorption.

— Marvin Minsky

In 1960, American economist Thomas Schelling demonstrated that even in a vast

and complex environment like New York City, individuals could successfully coordinate

and find each other without direct communication (Schelling, 1958). He posited that

this is achieved by reasoning about the other’s thought process and choosing a target

location that is most salient based on such reasoning (Schelling defines these salient

solutions as focal points). Such coordination challenges are just one of many examples

that illustrate human capacity for understanding and predicting the behavior of

others. In developmental psychology, a multitude of research demonstrates that even

preverbal infants can assign intentions to observed actions (Gergely et al., 1995), infer

the goals of others (Woodward, 1998), and assist others to achieve them (Warneken

and Tomasello, 2007).

This capacity for inverse planning – inferring other’s hidden goal-oriented plans

from observed actions – is largely facilitated by imposing assumptions about how

people act. In Schelling’s coordination games, for instance, participants are presumed

to engage in team reasoning, acting as members of a team with the goal to maximize
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the group’s interest (Bacharach, 1999). More broadly, the understanding of how

intentional agents choose actions has been extensively discussed across neuroscience

and philosophy (Dennett, 1971; D’Andrade, 1987; Jones and Davis, 1965; Baron-

Cohen et al., 2013). Frameworks like the Folk theory and the Theory of Mind

(Churchland, 1988; Carruthers and Smith, 1996) were among the first ones to formalize

understanding other people as the process of ascribing mental states to them. A

common assumption accompanying such frameworks is rationality, commonly modeled

as the aim to maximize the expected outcome value, as formalized by the expected

utility theory (Briggs, 2014).

Choosing appropriate models for decision-making is also crucial in human-AI

coordination. While intelligent agents, both human and artificial, are generally

assumed to act efficiently towards their goals, assuming strictly optimal behavior can

limit inference capabilities. For instance, informing a passive observer is sometimes

better achieved through overemphasized (and, thus, inefficient) motions (Dragan et al.,

2013). More broadly, cooperative settings often incentivize actions that might not

be considered optimal under standard task objectives (Hadfield-Menell et al., 2016b;

Fisac et al., 2020). In addition, reaching certain target states can involve multiple

equivalently valid approaches, indicating that the assumption of optimality may not

be insufficient for resolving ambiguity. This is particularly evident in path planning

problems, where navigating around obstacles can be done with multiple equally valid

strategies (Osa, 2020). Effective reasoning about others’ latent states, therefore,

requires both the development of a comprehensive simulation model and the ability

to maintain uncertainty, taking into account various possible outcomes when making

predictions.

In this work, we focus on planning and inverse planning in the domain of loco-

motion. We posit that a sophisticated autonomous system should be capable of: (1)

acknowledging the inherent uncertainty in various obstacle avoidance strategies; and

(2) predicting motion plans in a way that recognizes the different possibilities in a

given goal-driven navigation scenario. To this end, we propose the utilization of Monte

Carlo sampling methods, particularly the variants that leverage gradient information
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from the target distribution.

This thesis makes the following contributions:

1. Diversity-Aware Near-Optimal Motion Planning: We employ Markov

Chain Monte Carlo (MCMC) methods to generate trajectory samples that

approximate the Boltzmann distribution, commonly used to model approxi-

mate rationality. By incorporating a cost function inspired by the trajectory

optimization literature, our approach shifts the focus from solely optimizing

trajectories to creating a range of near-optimal paths. These paths can serve

as immediate solutions for navigation problems or be used to simulate others’

planning processes.

2. Multimodal Trajectory Prediction and Real-Time Goal Inference: We

introduce a Bayesian model of the observed agent and apply Bayesian inference

to deduce the underlying end goals of their movement. To effectively capture

the multimodal nature of goal-driven trajectory distributions, we propose a

sequential Monte Carlo method that adapts the MCMC trajectory sampling for

the construction and real-time updating of plausible motion plan hypotheses.

In the next chapter of the thesis, we will provide an overview of the foundational

literature on trajectory generation and goal inference and highlight the works that are

most related to the work presented here. In Chapter 3, we explore various formulations

of the motion planning objective, then investigate MCMC sampling as a method

to obtain a variety of near-optimal navigation solutions. In Chapter 4, we extend

methods from Chapter 3 for the purposes of trajectory prediction and present a

Bayesian framework for online inverse planning. Finally, Chapter 5 provides a brief

summary of our insights and outlines future avenues for research.
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Chapter 2

Background and Related Work

This chapter outlines the key approaches to motion planning and goal inference that

serve as the foundation of our work, and highlights their main advantages and trade-offs.

In Section 2.1, we focus on the works related to our trajectory generation framework

covered in Chapter 3 and Section 4.2. In Section 2.2, we situate the literature within

our inverse planning framework covered in Chapter 4.

2.1 Trajectory Planning

2.1.1 Sampling-based Motion Planning

Sampling-based algorithms have proven highly effective in quickly identifying feasible

solutions within complex environments. Their success is attributed to the scalability

and versatility achieved through random sampling of spaces and the incremental

construction of feasible path representations (Elbanhawi and Simic, 2014; Orthey

et al., 2024). These algorithms traditionally operate by generating samples from

the state space. A pioneering contribution to this end was made by (Barraquand

and Latombe, 1991), which leveraged Monte Carlo sampling to estimate the connec-

tivity of obstacle-free configuration spaces. This approach laid the groundwork for

subsequent techniques, such as the Probabilistic Roadmap Planner (PRM) (Sánchez

and Latombe, 2003), which searches for navigation solutions in the space of graphs
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constructed from randomly sampled configurations. Alternatively, methods like the

Expansive-Space Trees (EST) (Hsu et al., 1997) and the Rapidly-exploring Random

Tree (RRT) (LaValle, 1998; Kuffner and LaValle, 2000) use the random samples to

incrementally grow a space-filling tree until it reaches an end goal. These methods can

be optimized, for instance, by strategically biasing the probability of sampling from

specific regions, as demonstrated by goal-oriented sampling methods (Kang et al.,

2016). Recognized for their probabilistic completeness, these approaches also have

their provably asymptotically optimal variants, such as PRM* and RRT* (Karaman

and Frazzoli, 2011).

Our framework draws inspiration from research that shifts focus from state space

sampling to trajectory space sampling (Kobilarov, 2012; Lee et al., 2018; Piché et al.,

2019; Ratliff et al., 2009). In addition, the objective of our sampling framework extends

beyond merely feasible solutions and aims to generate near-optimal trajectories. A

notable work in this area takes inspiration from Monte Carlo optimization, and applies

the cross-entropy method to importance sampling to guide the trajectory search

towards optimal solution regions (Kobilarov, 2012). (Janson et al., 2015) present

another innovative application of importance sampling, which integrates asymptotically

optimal sampling-based motion planners with Monte Carlo methods with a focus on

estimating collision probabilities under uncertainty.

A closer parallel to our methodology is formulated by (Lee et al., 2018), in that

Monte Carlo sampling is used to generate a variety of optimized solutions to a

navigation problem. Specifically, they extend the Metropolis Hastings algorithm to

sample uniformly from the space of pareto-optimal trajectories, by defining a target

distribution in terms of the Boltzmann distribution constrained to a Pareto frontier.

In addition, our approach shares similarities with the framework introduced by (Piché

et al., 2019), where planning is formulated as probabilistic inference over future near-

optimal trajectories, and Sequential Monte Carlo is used to obtain multimodal policies.

On the contrary, however, their method relies on a graphical model representation,

which involves factorizing the posterior over trajectories using the forward-backward

algorithm in a hidden Markov model.
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2.1.2 (Stochastic) Trajectory Optimization

Our work also draws parallels to the optimization approaches to motion-planning

problems. Given a measure of optimality (i.e., an objective or a cost function), these

motion planning approaches perform numerical optimization in a high-dimensional

parameterized trajectory space. Stochastic trajectory optimization techniques do this

by injecting randomness into the process, as a way to trade accuracy for efficiency

and escape local minima (Kochenderfer and Wheeler, 2019).

A foundational work in this space is CHOMP (Ratliff et al., 2009), which com-

bines functional gradient techniques with Monte Carlo sampling as a way to avoid

convergence to high-cost local minima and ensure probabilistic completeness. In par-

ticular, CHOMP optimizes trajectories based on an objective function that balances

trajectory smoothness with obstacle avoidance. The locally optimal trajectories are

then perturbed using Hamiltonian Monte Carlo, a sampling technique that leverages

first-order gradients of the target distribution over trajectories.

Related subsequent works include STOMP (Kalakrishnan et al., 2011) which uses

a gradient-free stochastic optimization method, and ITOMP (Park et al., 2012) which

combines optimization with real-time re-planning to account for dynamic obstacles.

Furthermore, Trajopt (Schulman et al., 2013) incorporates second-order derivative

information into the trajectory optimization by leveraging sequential quadratic pro-

gramming. Increasingly, optimization-based methods are interleaved with sampling-

based approaches, for the purposes of generating good initial solutions and balancing

global exploration with local optimization (Li et al., 2016; Kuntz et al., 2016).

Our method can be regarded as stochastic trajectory optimization, as the target

distribution guiding our trajectory samples includes a cost function. Drawing inspira-

tion from (Ratliff et al., 2009), we explore cost function formulations that effectively

balance trajectory smoothness with obstacle avoidance. Similarly to (Schulman et al.,

2013), we use second-order derivative information to steer our proposal generation.

However, our method importantly diverges from the aforementioned ones by seeking

multiple near-optimal navigation solutions, rather than a single optimal trajectory.
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2.2 Trajectory Prediction and Goal Inference

For autonomous agents to collaborate fluidly with humans and other intelligents

agents in physical spaces, they need to rapidly reason about others from low-level

observations of their motion (Liu et al., 2018; Dragan, 2015; Wang et al., 2019). The

tasks of motion prediction and goal inference have been tackled through a variety

of approaches (Sukthankar et al., 2014), including deep learning (Min et al., 2014;

Rabinowitz et al., 2018; Alahi et al., 2016; Ivanovic et al., 2020), inverse reinforcement

learning (Ramachandran and Amir, 2007; Ziebart et al., 2008; Hadfield-Menell et al.,

2016b), plan recognition (Ramırez and Geffner, 2009; Ramírez and Geffner, 2010;

Kaminka et al., 2018), and Bayesian inverse planning (Baker et al., 2009; Albrecht

et al., 2021; Zhi-Xuan et al., 2020; Alanqary et al., 2021; Albrecht et al., 2021; Zhi-Xuan

et al., 2022).

Many of these approaches build upon the insight that intelligent agents act effi-

ciently to achieve their goals, as formalized by the principles of rationality (Gergely

and Csibra, 2003) and least effort (Zipf, 2016). Such satisficing behavior is commonly

modeled by Boltzmann rationality, although other models such as bounded rationality

have also been considered (Zhi-Xuan et al., 2020; Alanqary et al., 2021; Zhi-Xuan

et al., 2022). According to the Boltzmann-rational model, the probability of an agent

acting out a trajectory is inversely proportional to the costs associated with those

trajectories. Under this assumption, a goal is more likely if the observed behavior

matches an efficient plan that achieves that goal, as indicated by Bayesian inference

(Baker and Tenenbaum, 2014). More broadly, inferring latent plans and goals from

observations is closely related to reasoning about other’s mental states as formalized by

the theory of mind frameworks (Baker et al., 2017; Baker and Saxe, 2011; Scassellati,

2002)

In our framework, the observed agent is modeled as a Boltzmann-rational motion

planner. Building upon work in legible motion planning (Dragan, 2015) and proba-

bilistic programming (Cusumano-Towner et al., 2017; Seaman et al., 2018), we develop

a Bayesian model of the agent, with which we can condition on observed trajectory
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segments to infer the agent’s underlying goal-driven motion plan. Unlike most goal

inference approaches which are typically restricted to discretized (Ziebart et al., 2009)

or symbolic domains (Ramírez and Geffner, 2010; Massardi et al., 2021), our model

allows us to handle continuous environments and observations. In addition, in contrast

to the previous approaches (Kaminka et al., 2018; Cusumano-Towner et al., 2017;

Seaman et al., 2018), we allow for directly capturing the relationship that lower-cost

paths are more probable, while also employing stochastic trajectory optimization to

generate more plausible predictions about the underlying motion plans.
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Chapter 3

Markov Chain Monte Carlo Sampling

for Boltzmann-Rational Motion

Planning

In this chapter, we explore Markov Chain Monte Carlo (MCMC) sampling algorithms as

a method for obtaining a variety of near-optimal paths in obstacle-ridden environments.

We begin by formalizing the problem of motion planning through the lens of trajectory

optimization: in Section 3.1, we define a cost function that guides the path planning

process and provide a parameterization of trajectories that allows for numerical

optimization. In Section 3.2, we approach trajectory optimization from a probabilistic

inference standpoint: we model path planning as a stochastic process and outline

several MCMC algorithms as a way to guide trajectory samples towards optimal

regions. The chapter concludes with extensive experiments in Section 3.3, where we

examine the impact of various cost function formulations and then demonstrate the

effectiveness of MCMC methods in motion planning.
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3.1 Motion Planning Formalization and Trajectory

Parameterization

We consider a trajectory 𝛾 to be a smooth function mapping time to agent configura-

tions 𝛾 : [0, 1]→ C ⊂ R𝑑. Analogous to the approach in (Ratliff et al., 2009), we aim

for the trajectories to conform to two distinct yet related aspects of motion planning:

obstacle avoidance and smoothness of motion. Accordingly, we can optimize the

trajectory function with respect to an objective that combines the obstacle avoidance

and the smoothness criteria. In particular, we formulate a cost function 𝐶(𝛾) that

maps a trajectory 𝛾 in a space of trajectories Γ to a real number, which is a sum of

the obstacle avoidance and the smoothness terms:

𝐶(𝛾) = 𝑓𝑜𝑏𝑠(𝛾) + 𝛼𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝛾), (3.1)

weighted by a safety-smoothness trade-off hyperparameter, 𝛼. We define an obstacle

avoidance term, 𝑓𝑜𝑏𝑠, as the cumulative obstacle cost, 𝑐 : R𝑑 → R, acquired throughout

the trajectory:

𝑓𝑜𝑏𝑠(𝛾) =

∫︁ 1

0

𝑐(𝛾(𝑡))𝑑𝑡, (3.2)

in order to encourage trajectories that maintain a safe distance away from obstacles.

Furthermore, we define a smoothness term, 𝑓𝑠𝑚𝑜𝑜𝑡ℎ, in terms of dynamical properties of

the trajectory. In particular, we consider 𝑓𝑠𝑚𝑜𝑜𝑡ℎ as a measure of the overall variation

in speed over the course of the trajectory:

𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝛾) =

∫︁ 1

0

‖𝑑𝛾(𝑡)
𝑑𝑡
‖22𝑑𝑡. (3.3)

This smoothness measure is notably invariant to the global speed of 𝛾(𝑡), since

the trajectory time is normalized between 0 and 1. To allow for numerically per-

forming functional gradient descent on eq. (3.1), we opt for a uniform discretization

that samples the trajectory function at consistent time intervals. In particular, we

parameterize 𝛾 with a series of waypoints {𝑥𝑖}𝑇𝑖=0, such that a continuous trajectory
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is linearly interpolated between the waypoints, i.e.:

𝛾(𝑡) = 𝑥𝑖−1 +
𝑡− 𝑡𝑖−1

∆𝑡
(𝑥𝑖 − 𝑥𝑖−1), (3.4)

where 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], and ∆𝑡 := 𝑡𝑖 − 𝑡𝑖−1. Furthermore, we abstract the agent body to a

point representation, so 𝑥𝑖 ∈ C ⊂ R2. This parameterization allows us to approximate

the obstacle avoidance term in eq. (3.2) by the following discretization:

𝑓𝑜𝑏𝑠(𝛾) =

∫︁ 1

0

𝑐(𝛾(𝑡))𝑑𝑡, (3.5)

≈ 1

𝑇

𝑇∑︁
𝑖=0

𝑐

(︂
𝛾

(︂
𝑖

𝑇

)︂)︂
,

=
1

𝑇

𝑇∑︁
𝑖=0

𝑐(𝑥𝑖)

In addition, it allows us to express the smoothness criterion in eq. (3.3) in terms of

the Euclidean distances between consecutive waypoints, i.e., the displacement for each

segment of the trajectory:

𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝛾) =

∫︁ 1

0

‖𝛾′(𝑡)‖22𝑑𝑡, (3.6)

=
𝑇∑︁
𝑖=0

∫︁ 𝑖+1
𝑇

𝑖
𝑇

⃦⃦⃦⃦
𝑑𝛾(𝑡)
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3.2 Near-Optimal Trajectories As Markov Chain Monte

Carlo Samples

In Section 3.1, we defined a cost function akin to that in (Ratliff et al., 2009), which

serves as the basis for optimizing trajectories. Drawing upon the insight that planning

can formulated as inference (Botvinick and Toussaint, 2012; Levine, 2018; Piché

et al., 2019), we now approach trajectory optimization from a probabilistic inference

perspective, treating trajectories as outcomes of a stochastic process. This allows us

to explore a multitude of possible trajectories instead of generating single optimal

solution, thus accounting for multiple valid strategies to a planning problem (such as,

for example, navigating around either side of an obstacle). We represent continuous-

time trajectories as samples obtained from a distribution that favors trajectories

with low cost. In particular, we use the Boltzmann distribution (also referred to

as the maximum entropy distribution (Ziebart et al., 2008)), a common model for

approximately rational decision making (Ziebart et al., 2009; Dragan, 2015), to obtain

near-optimal, low-cost trajectories. Given a start and an end point, the probability of

a trajectory is modelled as:

𝜋(𝑥0:𝑇 |𝑥0, 𝑥𝑇 ) =
1

𝑍(𝑥0, 𝑥𝑇 )
exp[−𝛽𝐶(𝑥0:𝑇 )], (3.7)

where 𝑍(·, ·) is an endpoint-dependent normalizing constant, and the cost function is

as defined in eq. (3.1). Furthermore, 𝛽 represents the rationality parameter used to

influence the degree of stochasticity in trajectories: when 𝛽 = 0 the sampled waypoints

represent a random walk, and 𝛽 =∞ corresponds to pure deterministic optimization.

Importantly, evaluating the probability of a trajectory 𝑥0:𝑇 under the Boltzmann dis-

tribution 𝜋 requires computing the normalizing constant 𝑍(𝑥0, 𝑥𝑇 ), which is intractable

in continuous domains. We instead assume that motion plans 𝑥0:𝑇 are sampled accord-

ing to a Monte Carlo approximation 𝜋̂ of the true Boltzmann distribution 𝜋. In partic-

ular, we implement four Markov Chain Monte Carlo (MCMC) sampling algorithms to

generate trajectory samples that approximate 𝜋: the generic Metropolis-Hastings (MH)
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algorithm, Unadjusted Langevin Algorithm (ULA), Metropolis-Adjusted Langevin

Algorithm (MALA), and Hamiltonian Monte-Carlo (HMC). We present the Metropolis-

Hastings algorithm in Algorithm 1, and use it as a foundation for developing the rest

of the MCMC algorithms.

Algorithm 1 Metropolis-Hastings Algorithm
procedure metropolis-hastings(𝑥, 𝜋(𝑥), 𝑔(𝑥′|𝑥), 𝑁)

for 𝑖 ∈ [1, 𝑁 ] do

𝑥′ ∼ 𝑔(𝑥′|𝑥) ◁ Sample new state 𝑥′ from proposal distribution

𝑢 ∼ Unif([0, 1]) ◁ Sample 𝑢 from uniform distribution

𝐴← min
(︁
1, 𝜋(𝑥′)𝑔(𝑥|𝑥′)

𝜋(𝑥)𝑔(𝑥′|𝑥)

)︁
◁ Acceptance probability

if 𝑢 ≤ 𝐴 then

𝑥← 𝑥′ ◁ Accept new state

end if

end for

return 𝑥 ◁ Return final state

end procedure

The Metropolis-Hastings algorithm produces a Markov chain that asymptotically

reaches the desired distribution – in our case, the Boltzmann distribution from eq.

(3.7) – as its stationary (i.e., equilibrium) distribution. The Markov chain is uniquely

defined by its state transition probabilities 𝑝(𝑥′|𝑥), which are the product of the

proposal distribution 𝑔(𝑥′|𝑥) and the acceptance distribution 𝐴(𝑥′, 𝑥). During the

algorithm’s execution, a subsequent sample 𝑥′ is drawn from 𝑔(𝑥′|𝑥) based on the

current sample 𝑥, and 𝐴(𝑥′, 𝑥) determines whether the proposed move to 𝑥′ is accepted

or the algorithm remains at 𝑥.

The choice of the proposal distribution influences the algorithm’s ability to properly

sample the entire state space. A narrowly focused 𝑔 may lead to high acceptance, but

the chain will fail to visit all regions of the state space with the proper frequency –

resulting in a sample that is biased with respect to the target distribution. Conversely,

a too broad 𝑔 may suffer from low acceptance rates and inefficient exploration. To

ensure that every state will be visited sufficiently often given a large number of steps,

𝑔 must allow for the Markov chain to be ergodic, meaning that any state can be

29



reached from any other state in a finite number of steps, i.e., that there exists 𝑛 > 0

such that the 𝑛-step transition probability from any initial state 𝑥 to any state 𝑥′

satisfies 𝑝𝑛(𝑥′|𝑥) > 0. A typical choice for 𝑔 is the Gaussian distribution centered at

𝑥, i.e., 𝑔(𝑥′|𝑥) = 𝑁(𝑥, 𝜖𝐼), which effectively transforms the sampling process into a

random walk where 𝜖 controls the step size.

In addition to the ergodicity property, the Markov Chain produced by the

Metropolis-Hastings algorithm also satisfies the detailed balance condition, which

ensures that each state transition is reversible. This condition is a property of equi-

librium in Markov chains, where for any two states 𝑥 and 𝑥′, the rate of transition

𝑥 → 𝑥′ is equal to the rate of transition 𝑥′ → 𝑥 when the system is at equilib-

rium. More formally, for the target distribution 𝜋, the state transition probabilities

𝑝, and the proposal distribution 𝑔, we can express the detailed balance condition as

𝜋(𝑥)𝑝(𝑥′|𝑥) = 𝜋(𝑥′)𝑝(𝑥|′𝑥). The acceptance probability 𝐴(𝑥′, 𝑥) := min
(︁
1, 𝜋(𝑥

′)𝑔(𝑥|𝑥′)
𝜋(𝑥)𝑔(𝑥′|𝑥)

)︁
is derived from the detailed balance condition.

The detailed balance condition together with the ergodicity property facilitate

convergence to the target distribution by respectively ensuring that there exists a

stationary distribution and that it is unique. However, convergence to the target

distribution can be slow in practice, especially in high dimensional settings where

random proposals are less likely to maintain the target density 𝜋. To make more

informed proposals for the next state of the Markov Chain (i.e., the next trajectory

waypoint), we can follow the steepest ascent in the target density function by leveraging

its gradient information. The remainder of the sampling algorithms we consider are

all first-order MCMC algorithms.

The Unadjusted Langevin Algorithm (ULA) is based on the principles of Langevin

dynamics (Langevin, 1908; Wright and Ma, 2022; Wu and Brooks, 2003; Hyvärinen

and Dayan, 2005), a stochastic process used to describe the motion of particles

subject to both deterministic forces and random fluctuations. A discretized version

of the continuous Langevin equation is used as an ULA iteration step, 𝑥𝑡+1 ←

𝑥𝑡 + 𝜖∇𝜋(𝑥𝑡) +
√
2𝜖𝑧, where 𝑥𝑡 represents the current state of the system (the position

of the particle), ∇𝜋(𝑥𝑡) is the gradient of the target distribution at 𝑥𝑡 (analogous
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to the deterministic force), 𝜖 is a step size parameter, and 𝑧 ∼ 𝑁(0, 𝐼) represents

the random fluctuation due to noise. ULA can be interpreted as sampling from the

proposal 𝑔(𝑥′|𝑥) = 𝑁(𝑥 + 𝜖∇𝜋(𝑥), 𝜖𝐼). Importantly, while an appropriate choice of

𝜖 can lead to a convergence to the target distribution, ULA does not correct for

the errors introduced during the discretization of the Langevin dynamics, which can

introduce bias to the trajectory samples.

To ensure that the samples asymptotically follow the target distribution despite

the discretization errors, Metropolis-Adjusted Langevin Algorithm (MALA) adds the

Metropolis acceptance step back to ULA, i.e., it follows the form of Algorithm 1 with

the proposal distribution 𝑔 of ULA (Rossky et al., 1978). While the acceptance step

makes MALA slower per iteration compared to ULA, it may be more efficient overall

if ULA requires many more iterations to achieve a comparable level of accuracy in

approximating the target distribution.

Finally, we implement the Hamiltonian Monte Carlo (HMC) algorithm, which is

also used for motion planning in (Ratliff et al., 2009). HMC is considered to be among

the state-of-the-art MCMC algorithms due to the way it adapts physics-inspired

methods to streamline exploration of the state space. In each iteration, the algorithm

augments the state space with a momentum vector 𝑝 ∼ 𝑁(0, 𝐼) in order to simulate

a trajectory (𝑥𝑡, 𝑝𝑡) through the phase space, the coordinate system of Hamiltonian

mechanics. A discretized version of this trajectory is simulated using the Leapfrog

integrator (Birdsall and Langdon, 2018; Yoshida, 1990), which updates 𝑥𝑡 and 𝑝𝑡 while

approximately conserving the Hamiltonian, 𝐻(𝑥, 𝑝), representing the total energy of

the system including the potential energy (a function of the target distribution) and

the kinetic energy (a function of the momentum): 𝐻(𝑥, 𝑝) := −𝑙𝑜𝑔𝜋(𝑥)− 1
2
||𝑝||2. After

𝐿 steps of the simulated trajectory, an acceptance step is performed to correct for

any discretization errors introduced by the Leapfrog integrator. In essence, HMC

can be viewed as an extension of Algorithm 1 where the random walk proposals are

replaced with proposals generated via a simulation of Hamiltonian mechanics, where

the auxiliary momentum variable allows for larger moves in the state space that are

still likely to be accepted. In addition, HMC replaces the Metropolis acceptance
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probability with an acceptance probability that is a function of the Hamiltonian,

𝐴(𝑥′, 𝑥) := 𝑚𝑖𝑛 (1,−𝐻(𝑥′, 𝑝′) +𝐻(𝑥, 𝑝)).

3.3 Experiments

We employ sampling-based trajectory optimization with the primary goal of obtaining

a collection of cost-efficient paths that represent a variety of valid motion plans. The

obtained trajectories are a result of a complex interplay of numerous factors, including

the inherent characteristics of the motion planning objective discussed in Section

3.1, and the statistical properties of the sampling techniques described in Section 3.2.

To methodically examine the impact of these various design choices, we conduct an

ablation study focusing on the following items:

1. We investigate the effects of the cost function 𝐶(𝛾) presented in eq. (3.1) on

trajectory optimization. We begin by examining the sensitivity of the generated

trajectories to the safety-smoothness trade-off hyperparameter, 𝛼, in 𝐶(𝛾).

Subsequently, we explore how the formalization of obstacle avoidance influences

the runtimes and convergence rates of the optimization framework.

2. Upon establishing a cost function and an obstacle avoidance method that allow

for efficient and stable convergence, we evaluate the effectiveness of the sampling

algorithms from Section 3.2 in generating desirable motion plans. In Section

3.3.2, we perform a visual analysis of the generated trajectories and investigate

the computational complexity associated with the different sampling algorithms.

In addition, we propose a criterion for quantitatively assessing the diversity

of the generated motion plans and accordingly evaluate a selected trajectory

sampling algorithm.

We perform the ablation study within a continuous two-dimensional motion plan-

ning domain, aiming to generate feasible trajectories that circumvent any obstructing

obstacles. For our experimental setup, we employ Pymunk — a Python library dedi-

cated to simulating 2D rigid body physics (Pymunk contributors, 2023). We model
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the planning agent as a circle, characterized by a center 𝑥𝑟 ∈ R2 and a radius 𝑟 > 0.

The agent navigates through a defined domain 𝐷 = {(𝑥1, 𝑥2) ∈ R2 | 𝑥1 ≥ 0, 𝑥2 ≥ 0},

which is situated within the first quadrant of the Cartesian plane. Within this domain,

we introduce obstacles in the form of squares, each defined by a center 𝑜𝑖 ∈ R2 and a

side length 𝑠 > 0. The agent’s movement is directed through velocity commands: for a

generated trajectory 𝛾, we construct a control input 𝑢(𝑡) = 𝑑
𝑑𝑡
𝛾(𝑡), enabling the agent

to follow the planned path 𝛾 provided there are no impediments posed by obstacles. As

described in Section 3.1, trajectories are parameterized as sets of waypoints, {𝑥𝑖}𝑇𝑖=0.

Given a fixed set of a start and a goal position, 𝑥0, 𝑥𝑇 ∈ R2, a continuous trajectory

𝛾(𝑡) : [0, 1]→ R2 is a linear interpolation between all the waypoints.

3.3.1 A Comparative Analysis of Obstacle Avoidance Methods

In Section 3.1, we defined the trajectory optimization problem with respect to a cost

function that encourages trajectory smoothness and obstacle avoidance, as formulated

by 𝑓𝑠𝑚𝑜𝑜𝑡ℎ and 𝑓𝑜𝑏𝑠 terms, respectively. Taking 𝑓𝑠𝑚𝑜𝑜𝑡ℎ as defined in eq. (3.6), we now

investigate different formulations of the obstacle cost function in 𝑓𝑜𝑏𝑠, as defined in eq.

(3.5), and their effects on trajectory optimization. In the remainder of this section, we

use deterministic optimization techniques as opposed to the stochastic, i.e., sampling-

based methods described in Section 3.2, in order to be able to adequately capture the

nuanced interplay between the cost components and the resulting trajectory.

Taking inspiration from the literature on control barrier functions (Nagumo, 1942;

Ames et al., 2019, 2016), which are often defined in terms of the distance to the

boundary of an unsafe region, we first consider an obstacle cost function in terms of

the 𝐿2 distance from the planning agent’s position to the center of an obstacle:

𝑐(𝑥𝑖) =
∑︁
𝑗

−‖𝑥𝑖 − 𝑜𝑗‖22, (3.8)

where 𝑜𝑗 represents the center position of an instance of an obstacle in the environment.

Accordingly, 𝑓𝑜𝑏𝑠 is then formulated as 𝑓𝑜𝑏𝑠(𝛾) = 1
𝑇

∑︀𝑇
𝑖=0

∑︀
𝑗 ‖𝑥𝑖−𝑜𝑗‖22, as given by the

eq. (3.5). We then generate trajectories by linearly interpolating between a sequence
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of waypoints computed using vanilla gradient descent.

Among the generated trajectories, we observe a strong dependency on 𝛼, the

safety-smoothness trade-off hyperparameter indicating the relative contributions of

𝑓𝑠𝑚𝑜𝑜𝑡ℎ compared to that of 𝑓𝑜𝑏𝑠 to the overall trajectory cost. In particular, for an

obstacle cost function as defined in eq. (3.8), we observe that a low value of 𝛼 leads

trajectory waypoints far away from the obstacles and, ultimately, in the entirely

opposite direction off the course. In addition, in spite of overfitting to 𝑓𝑜𝑏𝑠, the final

trajectory still intersects with obstacles as a result of the linear interpolation between

the goal state and the waypoints generated on the opposite end of obstacles. On

the other hand, for a high value of 𝛼, we observe an overfitting to the smoothness

criterion. The generated waypoints reflect the shortest path between the start and the

goal position, and the resulting trajectories turn out to be ignorant to the obstacle

placement. We illustrate the findings in Figure 3-1, where the start position of the

planning agent is depicted as the blue square, the goal state is depicted as the green

square, the obstacles are depicted as red squares, and the red lines represent the

linearly interpolated trajectories.

Importantly, we observe that very subtle variations in 𝛼 lead to significant changes

in the generated trajectories, suggesting that there is a complex interplay between

path efficiency and obstacle avoidance – at least for the given choice of obstacle cost

function. In response to this challenge, we explore two alternative formulations of

the obstacle cost function: a modified 𝐿2 distance from obstacles with a cutoff, and a

Gaussian kernel approach.

For the 𝐿2 norm with a cutoff, we take inspiration from (Ratliff et al., 2009) and

formulate the obstacle cost function as follows:

𝑐(𝑥𝑖) =
∑︁
𝑗

max{0, 𝑟2𝑗 − ‖𝑥𝑖 − 𝑜𝑗‖22}, (3.9)

where 𝑟𝑗 represents the radius of influence around an obstacle 𝑗 the center of which is

positioned at 𝑜𝑗. This radius defines a circular region around the obstacle outside of

which the obstacle will have no effect on the cost. This formulation of the obstacle
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Figure 3-1: The impact of the safety-smoothness trade-off hyperparameter, 𝛼, on the
generated trajectories. Plotted is the squared norm distance between the trajectory
generated for 𝛼 = 0.1 and the trajectories generated at other values of 𝛼. The
trajectories are generated with an obstacle avoidance method in the form of a cost
function, 𝑓𝑜𝑏𝑠, based on the 𝐿2 distance from object centers. Start position, end goal,
and obstacles are depicted in blue, green, and red, respectively.
We find that a low 𝛼 value results in the motion planning objective, i.e., 𝐶(𝛾), getting
excessively influenced by obstacle avoidance, i.e., the 𝑓𝑜𝑏𝑠 term. This manifests with
the waypoints getting generated excessively far away from obstacles, which, in the
extreme, as depicted on the left, leads to a path that goes in a direction away from the
obstacle-secluded goal (note that the trajectories are linearly interpolated between the
waypoints which include the fixed end point, so this results in a linear interpolation
through the obstacles).
Conversely, a high 𝛼 value results in the motion planning objective getting dominated
by the smoothness objective, i.e., 𝑓𝑠𝑚𝑜𝑜𝑡ℎ. In the extreme, as depicted on the right,
this results in a trajectory that disregards obstacles and opts for the shortest, direct
path towards the goal.
The sharp phase transition between the two extremes of overfitting, as indicated by
the central plot, illustrates the practical challenges of tuning the safety-smoothness
trade-off hyperparameter – especially with the 𝐿2 distance-based obstacle avoidance.
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cost function follows a rectified formulation, which can help simplify computations

and enhance the predictability of the resulting trajectories in scenarios requiring clear

demarcation between safe and unsafe areas.

In addition, we consider an obstacle cost function in the form of a Gaussian kernel,

noted for its effectiveness in hyperparameter tuning for SVM classifiers (Keerthi

and Lin, 2003) and its previous applications to control barrier functions (Khan and

Chatterjee, 2020). Given a bandwidth parameter, 𝜂, controlling the width of the

Gaussian bell curve, we define the obstacle cost function as:

𝑐(𝑥𝑖) =
∑︁
𝑗

𝑒−𝜂‖𝑥𝑖−𝑜𝑗‖22 . (3.10)

This formulation allows for a smooth, exponentially decaying cost gradient that can

lead to smoother trajectories and more stable convergence. In addition, with 𝜂 we can

control for how localized the effect of an obstacle is on the cost function.

Lastly, in addition to the above defined obstacle cost functions, we also consider a

projection-based method for motion planning. This method can potentially simplify

the motion planning process, as the obstacle avoidance term 𝑓𝑜𝑏𝑠 and its corresponding

obstacle cost function are reduced to zero, and trajectory generation relies solely on

the smoothness term, 𝑓𝑠𝑚𝑜𝑜𝑡ℎ, in the cost function from eq. (3.1). In order to enforce

separation from obstacles while prioritizing for trajectory smoothness, we project

individual waypoints 𝑥𝑖 onto a safe zone located outside a predetermined safety margin

— a fixed radius 𝑟 — from the centers of the obstacles.

Overall, we consider four approaches to obstacle avoidance: the three obstacle

cost function formulations for 𝑓𝑜𝑏𝑠 – the 𝐿2 distance from obstacles, the 𝐿2 distance

with a cutoff, as inspired by (Ratliff et al., 2009), and the Gaussian kernel approach –

in addition to the projection method that sets 𝑓𝑜𝑏𝑠 to zero. We evaluate these four

approaches for their convergence rates within a motion planning framework based

on vanilla gradient descent. As illustrated by Figure 3-2, we observe that the step

sizes for each method tend to converge similarly over the iterations, with the notable

exception of the 𝐿2 distance-based obstacle cost, which diverges from this pattern as
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(a) (b)

Figure 3-2: A comparative analysis of the obstacle avoidance methods focusing on the
convergence of the trajectory optimization via vanilla gradient descent. Note that the
plots depict the step size on a logarithmic scale.
The obstacle avoidance method in the form of a cost function based on the 𝐿2 distance
from the obstacle results in the maximization of a non-upper-bounded function.
Consequently, we find that this obstacle avoidance method leads to an exponential
increase in step size, as depicted in (a).
In (b), we focus the comparison on the three obstacle avoidance methods that exhibit
convergence. These include a cost function in the form of a rectified alternative of
the 𝐿2 distance derived from (Ratliff et al., 2009), a cost function in the form of a
Gaussian kernel, and a method that disregards the obstacle cost function and instead
projects the generated waypoints into a safe region. We observe a notable stability
improvement with the Gaussian kernel method and the projection-based method.

a result of being an unbounded function.

In addition to the convergence rates, we also contrast the four methods for obstacle

avoidance based on their respective compute times. We conduct experiments using

JAX on an Nvidia GeForce 1060 GPU, and present results in Figure 3-3. Despite its

convergence rates being on par with those of the 𝐿2 cutoff and Gaussian kernel methods,

we find that the projection-based method stands out in terms of computational

efficiency, requiring significantly less time to achieve convergence.

Using the projection-based method to ensure obstacle avoidance in the generated

trajectories not only maximizes computational efficiency, but also uniquely circumvents

sensitivity to the safety-smoothness trade-off hyperparameter, 𝛼, by eliminating the

obstacle avoidance cost term (i.e., 𝑓𝑜𝑏𝑠 = 0). Owing to its engineering robustness, the
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Figure 3-3: A comparative analysis of the obstacle avoidance methods focusing on the
computation time required for trajectory optimization using vanilla gradient descent.
The performance metric is quantified in terms of the time taken, reported in seconds,
to complete 1000 iterations of gradient descent. Note that the plot illustrates the
respective means and standard deviations of the four methods.
Since the projection-based method for obstacle avoidance circumvents the need for
differentiation through an obstacle cost function, we observe a notable increase in
computation speed as expected.

subsequent experiments all use the projection-based method for obstacle avoidance.

3.3.2 Performance Analysis of Markov Chain Monte Carlo

Methods in Motion Planning

In Section 3.3.1, we generate trajectories using pure deterministic optimization in

order to find the optimal cost function formulation, i.e., the optimal obstacle avoidance

method. In this section, we use the projection-based method for obstacle avoidance,

and generate trajectories using the sampling algorithms described in Section 3.2. We

use Boltzmann distribution as the target distribution, and define the cost purely in

terms of trajectory smoothness (i.e., the minimal squared path norm, as defined in eq.

(3.6)).

First, we evaluate the time complexity for each of the three MCMC sampling

algorithms from Section 3.2: the zero-th order method – the Metropolis-Hastings

(MH) algorithm – which relies on random proposals, and the two first-order methods
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Figure 3-4: Runtime comparison among three Markov Chain Monte Carlo (MCMC)
algorithms used for sampling trajectories: Metropolis-Hastings (MH), Unadjusted
Langevin Algorithm (ULA), and Hamiltonian Monte Carlo (HMC).
As expected, the methods that leverage the gradient information of the target dis-
tribution, ULA and HMC, require more time to draw a specified number of samples
compared to the zero-th order method, MH. HMC particularly shows a more pro-
nounced increase in runtime due to the computational demands of the Leapfrog
integrator. In the conducted experiments, the Leapfrog integrator within the HMC
algorithm is configured to perform 𝐿 = 5 steps per iteration. This implies that for
every single iteration performed by ULA, the HMC algorithm executes five internal
Leapfrog integration steps.

– the Unadjusted Langevin Algorithm (ULA), and the Hamiltonian Monte Carlo

(HMC) algorithm – which leverage the first-order gradient information of the target

distribution. In Figure 3-4, we show how the runtime of each of the three algorithms

scales as a function of the sample sizes. As expected, the MH algorithm exhibits the

lowest runtime, which increases linearly as more samples are drawn. The ULA shows

a higher runtime compared to MH, with a steeper increase. Interestingly, we observe

that ULA (which leverages the target distribution gradients) maintains a runtime that

is about 3x that of MH (which doesn’t use gradient information), which is consistent

with automatic differentiation guarantees that gradients can be computed in at most

3 times the FLOPs needed to compute the function value itself (Bartholomew-Biggs

et al., 2000). Finally, the HMC exhibits the highest runtime of all of the three methods.
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It starts off close to ULA but then its runtime grows more rapidly as a result of the

Leapfrog integration; for each step that ULA is taking HMC is internally integrating

for 𝐿 Leapfrog steps (in our experiments, 𝐿 = 5).

Next, we qualitatively compare the trajectories generated using zeroth-order MCMC

sampling with those generated by first-order MCMC sampling that incorporates

gradient information. In Figure 3.3.2, we contrast set of trajectories generated using

MH, in (a), with trajectories generated using ULA, in (b).

(a) Metropolis-Hastings (0th order) (b) Unadjusted Langevin Algorithm
(1st order)

Figure 3-5: A visual analysis of MCMC trajectory sampling methods. Start position,
end goal, and obstacles are depicted in blue, green, and red, respectively.
In (a) we visualize the trajectories sampled via the Metropolis-Hastings algorithm,
which explores the solution space via random proposals. While we observe a variety
of valid paths, many of them exhibit indirect routes including several intersections
with obstacles (note that the generated waypoints don’t intersect the obstacles due to
the projection-based obstacle avoidance, but the resulting linear interpolations do).
In (b) we visualize trajectories obtained using the Unadjusted Langevin Algorithm,
which incorporates the first-order gradients of the target distribution to guide sampling.
This results in a more focused exploration, with trajectories coherently distributed
around the obstacles, demonstrating the algorithm’s effectiveness in adhering closely
to the optimal paths suggested by the Boltzmann distribution.
Consequently, in the subsequent investigation, we focus on the gradient-based MCMC
methods, indicative of an enhanced optimization process in trajectory planning.

We find that even the simplest algorithm, the MH, is sufficient to obtain a variety of

valid, collision-free trajectories. Moreover, the trajectories sampled with MH exhibit
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greater diversity in the way they traverse the environment compared to ULA. However,

there are also a number of MH trajectories indicative of greater path norms (and,

therefore, greater costs) as a result of less smooth paths characterized by zigzagging

in open spaces, as well as distant waypoints. In some cases, the distant waypoints

compromise collision avoidance as indicated by the paths that intersect with the first

and the last obstacle. In contrast, the ULA leverages the gradient information of the

target distribution to optimize the cost function, which results in trajectories that are

better optimized for minimizing the path norm and ensuring smoothness. Importantly,

while the ULA generates more optimal trajectories, it still allows for a diversity of

motion plans, as evidenced by the samples that cover every viable route through the

obstacle field.

For subsequent experiments, we concentrate on the Langevin-based MCMC algo-

rithms for motion planning, given the quality of the produced trajectories and their

favorable computational cost, particularly compared to other first-order algorithms.

Lastly, we introduce a formal metric for characterizing the diversity of trajectories,

and we use it to evaluate the trajectories sampled with ULA.

Trajectory diversity is a topic studied in a variety of domains, including navigation

in uncertain environments (Branicky et al., 2008), multi-agent coordination (Lupu

et al., 2021), and traffic forecasting (Lupu et al., 2021). Various formulations of

measures for trajectory diversity have been considered. (Branicky et al., 2008) defines

path diversity as the probability that there exists at least one path in a set of paths

over all possible environments that is not blocked by obstacles, (Ma et al., 2020)

characterizes diversity based on a distance between alternative trajectories, namely the

spatial separation between trajectory endpoints, and (Lupu et al., 2021) considers the

similarity between the underlying probability distributions characterized using Jensen-

Shannon (JS) divergence, a symmetric and smoothed version of the Kullback-Leibler

(KL) divergence.

For our setting, we also introduce a probabilistic measure, leveraging our use of

stochastic optimization, i.e., the MCMC sampling algorithms for motion planning. In

particular, we formulate trajectory diversity as the variance of the distribution used
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Figure 3-6: The correlation between trajectory variance, derived from the target
Boltzmann distribution, and the number of obstacles in the environment. Trajectories
are sampled with ULA, a gradient-based MCMC algorithm, with varying Boltzmann
rationality parameter values, 𝛽, set to {10−5, 10−1, 104} at each obstacle count
𝑁 = {1, 2, 3}. The trajectory variance increases in a linear fashion with the number of
obstacles, indicating that this quantity may serve as an effective metric for assessing
the complexity of a motion planning problem. Moreover, given that the number
of obstacles likely affects the variety of possible avoidance strategies, the trajectory
variance can also be interpreted as a reflection of the motion plan diversity.

to sample trajectory waypoints:

V(𝑃 ) = E
𝛾∼𝑃

[𝑑2(𝛾, 𝛾)], (3.11)

where 𝑃 ∼ 𝑒−𝛽𝐶(𝛾) is the Boltzmann distribution as defined in eq. (3.7) with a

trajectory cost formulated in terms of smoothness, i.e., the path norm in eq. (3.6),

projected outside of a radius from the obstacles. Furthermore, the term 𝛾 represents the

expected value of the trajectory under the distribution 𝑃 , 𝛾 = E𝑃 [𝛾], and the squared

path metric 𝑑2(·, ·) is derived from the 𝐿2 norm: 𝑑2(𝛾1, 𝛾2) =
∫︀ 1

0
‖𝛾1(𝑡)− 𝛾2(𝑡)‖22𝑑𝑡.

In Figure 3.3.2, we show how the our trajectory diversity metric scales with the

complexity of the environment, determined by the number of included obstacles. We

observe that the variance measure increases as we increase the number of obstacles.

This trend suggests that our variance-based metric for trajectory diversity, though

derived from heuristic considerations, empirically aligns with our expectations for
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such a measure. In addition, we can conclude that sampling with ULA, using the

Boltzmann distribution as the target distribution, and trajectory smoothness as the

cost, we can generate valid, obstacle-free trajectories for various degrees of difficulty

of the 2D motion planning problem.
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Chapter 4

Sequential Monte Carlo Sampling for

Multimodal Trajectory Prediction and

Online Goal Inference

By framing the motion planning problem within probabilistic inference, we can both

generate diverse sets of motion plans for the planning agent and infer the latent states

that the agent might possibly pursue in the future. In other words, by leveraging

the Monte Carlo methods, we can engage in both forward planning, i.e., generating

a complete trajectory given a goal state, and inverse planning, i.e., estimating the

underlying motion plans and goal states from observed trajectory segments. In Chapter

3, we focused on Monte Carlo methods for forward planning and presented a framework

for generating a diverse set of near-optimal trajectories using MCMC sampling. In

this chapter1, our focus shifts to Monte Carlo methods for inverse planning. In Section

4.1, we develop a Bayesian model of a goal-directed planning agent. In Section 4.2, we

extend the MCMC methods for motion planning from Chapter 3 to plausibly simulate

the agent’s latent motion plans. Finally, in Section 4.3, we present a Sequential

Monte Carlo (SMC) framework for dynamically predicting agent trajectories and their

underlying goal points using Bayesian inference.

1The work presented in this chapter is a product of a collaborative effort, with substantial
contributions and leadership from Tan Zhi-Xuan, and in collaboration with Stewy Slocum.
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4.1 A Bayesian Model of Agents as Goal-Directed

Motion Planners

To capture the sequential nature of decision-making and remain flexible in dynamic

environments, we adopt a Bayesian approach to model the observed agent. This allows

us to progressively refine predictions of the agent’s future states and end goals as

new observations arrive. We begin by defining a uniform prior over a set of possible

goal regions 𝐺, reflecting an initial belief that, in the absence of further information,

all goal regions are equally likely to be the actual target of the agent. Similarly, for

each goal region 𝑔 ∈ 𝐺, we assign a uniform prior over potential trajectory endpoints

𝑥𝑇 within that goal region, assuming that all points within a given goal region are

equally probable destinations for the agent. In accordance with Chapter 3, we then

assume that the agent’s motion plan represented as waypoints 𝑥0:𝑇 is drawn from a

distribution 𝑃 (𝑥0:𝑇 |𝑥0, 𝑥𝑇 ) over low-cost, obstacle-avoiding trajectories with (known)

start and (sampled) end points, (𝑥0, 𝑥𝑇 ). Finally, for each timestep 𝑡 ∈ [0, 𝑇 ], we

model the observation of the agent’s location, 𝑜𝑡, as being normally distributed around

the true location at that timestep, 𝑥𝑡, with standard deviation 𝜎 representing potential

noise due to any environmental factors.

Goal Prior: 𝑔 ∼ Uniform(𝐺) (4.1)

Endpoint Prior: 𝑥𝑇 ∼ Uniform(𝑔) (4.2)

Motion Planning: 𝑥1:𝑇 ∼ 𝑃 (𝑥0:𝑇 |𝑥0, 𝑥𝑇 ) (4.3)

Noisy Observations: 𝑜𝑡 ∼ Normal(𝑥𝑡, 𝜎) (4.4)

Our aim is to infer the agent’s goal, 𝑔, as well as the complete underlying motion

plan, 𝑥0:𝑇 , given observations of its trajectory so far, 𝑜0:𝜏 , for some 𝜏 < 𝑇 , and a

known initial location, 𝑥0:

𝑃 (𝑔, 𝑥0:𝑇 |𝑥0, 𝑜0:𝜏 ). (4.5)

We can represent this desired posterior distribution in terms of the previously defined
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joint distributions and the likelihood of the observed agent states:

𝑃 (𝑔, 𝑥0:𝑇 |𝑥0, 𝑜0:𝜏 ) ∝ 𝑃 (𝑔|𝑥𝑇 )𝑃 (𝑥0:𝑇 |𝑥0, 𝑥𝑇 )
∏︀𝜏

𝑡=0𝑃 (𝑜𝑡|𝑥𝑡). (4.6)

To derive this equation, we first factor the full joint distribution of the goal, motion

plan, and the observed trajectory segment, utilizing the chain rule and independence

of individual observations:

𝑃 (𝑔, 𝑥1:𝑇 , 𝑜0:𝑇 |𝑥0) = 𝑃 (𝑔|𝑥0)𝑃 (𝑥1:𝑇 |𝑔, 𝑥0)𝑃 (𝑜0:𝜏 |𝑥1:𝑇 , 𝑔, 𝑥0), (4.7)

= 𝑃 (𝑔)𝑃 (𝑥1:𝑇 |𝑔, 𝑥0)𝑃 (𝑜0:𝜏 |𝑥0:𝑇 ), (4.8)

= 𝑃 (𝑔)𝑃 (𝑥1:𝑇−1|𝑥𝑇 , 𝑔, 𝑥0)𝑃 (𝑥𝑇 |𝑔, 𝑥0)𝑃 (𝑜0:𝜏 |𝑥0:𝜏 ), (4.9)

= 𝑃 (𝑔)𝑃 (𝑥1:𝑇 |𝑥𝑇 , 𝑥0)𝑃 (𝑥𝑇 |𝑔)
𝜏∏︁

𝑡=0

𝑃 (𝑜𝑡|𝑥𝑡). (4.10)

We can then re-apply the chain rule to obtain the following:

𝑃 (𝑔, 𝑥0:𝑇 |𝑥0, 𝑜0:𝜏 ) =
𝑃 (𝑔, 𝑥1:𝑇 , 𝑜0:𝜏 |𝑥0)

𝑃 (𝑜0:𝜏 |𝑥0)
, (4.11)

=
𝑃 (𝑔)𝑃 (𝑥𝑇 |𝑔)𝑃 (𝑥1:𝑇 |𝑥𝑇 , 𝑥0)

∏︀𝑇
𝑡=0 𝑃 (𝑜𝑡|𝑥𝑡)

𝑃 (𝑜0:𝜏 |𝑥0)
, (4.12)

∝ 𝑃 (𝑔|𝑥𝑇 )𝑃 (𝑥0:𝑇 |𝑥0, 𝑥𝑇 )
∏︀𝜏

𝑡=0𝑃 (𝑜𝑡|𝑥𝑡), (4.13)

where the proportionality is taken with respect to the goal 𝑔 and the true motion plan

𝑥0:𝑇 , and the marginal likelihood of the observations given the start point, 𝑃 (𝑜0:𝜏 |𝑥0),

is constant with respect to 𝑔 and 𝑥0:𝑇 .

In the subsequent section, we adapt the methods presented in Chapter 3 to

simulate potential motion plans of the observed agent. Following this, in Section

4.3, we introduce a framework for sequentially approximating the desired posterior

distribution, as defined in eq. (4.6).
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4.2 Sequential Monte Carlo Sampling for Trajectory

Simulation

In the previous section, we modeled the observed agent as a goal-directed motion

planner. In this section, we introduce a model to simulate plausible motion plans that

the agent might pursue.

In Chapter 3, we explored the techniques to sample trajectories according to a

Monte Carlo approximation of the Boltzmann distribution. This provided us with a

framework to generate diverse motion plans in accordance with the principle of rational

action. However, unlike in Chapter 3, where our aim was to generate trajectories

for a planning agent, here we take the observer-centric approach, for the purposes of

generating hypotheses about the agent’s underlying motion plans. As a result, we not

only need to generate samples from the motion planning distribution, 𝑃 (𝑥0:𝑇 |𝑥0, 𝑥𝑇 ),

but we also need to evaluate it – which the MCMC algorithms in Chapter 3 can’t do

alone.

To generate a set of motion plan hypotheses, we propose the following approach.

For each hypothesis, instead of sampling a trajectory using just one MCMC chain, we

sample a set of weighted MCMC chains. Then, we return the result of one of those

MCMC chains as the hypothesis. The main benefit of the weighted MCMC chains

is that it gives us a way to estimate 𝑃 (𝑥0:𝑇 |𝑥0, 𝑥𝑇 ) by estimating the normalizing

constant.

We formulate this method as a variant of the Sequential Monte Carlo (SMC)

algorithm, characterized by the reweighting and resampling steps. Below, we outline

the method, termed Sequential Monte Carlo for Boltzmann Trajectory Optimization

(SMC-BoltzmannTrajOpt), and provide the pseudocode in Algorithm 2.

To enhance the plausibility of the sampled hypotheses, we generate a set of 𝑀

candidate trajectories for each hypothesis within the total set of 𝑁 hypotheses. Each

of the 𝑀 candidate trajectories is iteratively adapted to the target distribution via a
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series of gradent-based MCMC kernels2 (denoted as 𝐾(·)). As discussed in Chapter

3, these kernels are stochastic analogues to the trajectory optimization steps (Ratliff

et al., 2009; Schulman et al., 2013), so our approximation method can be viewed as an

algorithm for stochastic trajectory optimization. We identify the most representative

trajectory candidate by assigning importance weights to each. Initially, these weights

correspond to the relative probability of a candidate trajectory under the unnormalized

target distribution, 𝑃 , compared to the proposal distribution 𝑄. Over iterations, we

adjust the weights in accordance with the likelihoods of the consecutive trajectory

proposals, while maintaining the detailed balance condition of the Markov Chain, as

detailed in Section 3.2. To counteract the bias introduced by sampling from the forward

MCMC kernel, we multiply the weights by the reverse MCMC kernel (represented as

𝐾(·|·) and 𝐿(·|·), respectively, in Algorithm 2). The most likely trajectory candidate

is then selected as one of the hypotheses through a resampling process. Specifically,

we draw one out of 𝑀 candidate trajectories based on a multinomial distribution,

where the probability of selecting each trajectory is proportional to its normalized

importance weight.

Algorithm 2 SMC for Boltzmann Trajectory Optimization (SMC-BoltzmannTrajOpt)
procedure SMC-BoltzmannTrajOpt(𝑥0, 𝑥𝑇 , 𝑁 , 𝑀)

for 𝑖 ∈ [1, 𝑁 ] do
𝑥𝑖,0
0:𝑇 ∼ 𝑄(𝑥0:𝑇 |𝑥0, 𝑥𝑇 ) ◁ Initialize from proposal distribution

𝑤𝑖,0 ← 𝑃 (𝑥𝑖,0
0:𝑇 |𝑥0,𝑥𝑇 )

𝑄(𝑥𝑖,0
0:𝑇 |𝑥0,𝑥𝑇 )

◁ Compute importance weight

𝑍𝑖^ ← 0 ◁ Initialize normalizing constant estimate for particle 𝑖
for 𝑗 ∈ [1,𝑀 ] do

𝑥𝑖,𝑗
0:𝑇 ∼ 𝐾(𝑥0:𝑇 |𝑥𝑖,𝑗−1

0:𝑇 ) ◁ Apply a series of MCMC kernels

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗−1 𝑃 (𝑥𝑖,𝑗
0:𝑇 |𝑥0,𝑥𝑇 )

𝑃 (𝑥𝑖,𝑗−1
0:𝑇 |𝑥0,𝑥𝑇 )

𝐿(𝑥𝑖,𝑗−1
0:𝑇 |𝑥𝑖,𝑗

0:𝑇 )

𝐾(𝑥𝑖,𝑗
0:𝑇 |𝑥𝑖,𝑗−1

0:𝑇 )
◁ Update importance weight

𝑍𝑖^ ← 𝑍𝑖^ + 𝑤𝑖,𝑗 ◁ Update normalizing constant estimate
end for
𝑗 ∼ Multinomial(1, 𝑤𝑖,·

𝑍 𝑖̂
) ◁ Resample one out of 𝑀 trajectory indices

𝑥𝑖
0:𝑇 ← 𝑥𝑖,𝑗

0:𝑇 ◁ Select the resampled trajectory
end for
return {𝑥𝑖

0:𝑇 , 𝑍̂
𝑖
}𝑁𝑖=1 ◁ Return resampled trajectories and normalizing constants

end procedure

2In addition to the MCMC methods from Chapter 3, we also consider MCMC kernels that
incorporate second-order gradient information to enhance the trajectory proposals.
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In addition to generating hypotheses about the motion plan, 𝑥0:𝑇 , of the observed

agent, we utilize SMC-BoltzmannTrajOpt to estimate the normalizing constant 𝑍 of

the target distribution, 𝑃 (𝑥0:𝑇 |𝑥0, 𝑥𝑇 ). We derive unbiased estimates 𝑍̂, such that

E[𝑍̂] = 𝑍(𝑥0, 𝑥𝑇 ), from the importance weight computation step of Algorithm 2. By

taking the expected value of the sum of the importance weights, where 𝑃 is the

unnormalized target distribution and 𝑄 is the proposal that generates independent

samples, we obtain the following relationship:

E[𝑍̂] = E

[︃
𝑁∑︁
𝑖=0

𝑤𝑖,0

]︃
, (4.14)

= E𝑥1:𝑁
0:𝑇 ∼𝑄(·)

[︃
𝑁∑︁
𝑖=1

𝑃 (𝑥𝑖
0:𝑇 )

𝑄(𝑥𝑖
0:𝑇 )

]︃
, (4.15)

=
𝑁∑︁
𝑖=1

E𝑥𝑖
0:𝑇∼𝑄(·)

[︂
𝑃 (𝑥𝑖

0:𝑇 )

𝑄(𝑥𝑖
0:𝑇 )

]︂
, (4.16)

=
𝑁∑︁
𝑖=1

∫︁
𝑃 (𝑥𝑖

0:𝑇 )

𝑄(𝑥𝑖
0:𝑇 )

𝑄(𝑥𝑖
0:𝑇 )𝑑𝑥, (4.17)

=
𝑁∑︁
𝑖=1

∫︁
𝑃 (𝑥𝑖

0:𝑇 )𝑑𝑥, (4.18)

=
𝑁∑︁
𝑖=1

𝑍𝑖 = 𝑍. (4.19)

Therefore, by using SMC-BoltzmannTrajOpt, we can acquire unbiased estimates

of the normalized probability of a motion plan, 𝑃̂ (𝑥0:𝑇 |𝑥0, 𝑥𝑇 ), which is sufficient for

sound Bayesian inference (Cusumano-Towner et al., 2017; Lew et al., 2022).
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4.3 Inverse Planning with Sequential Monte Carlo

Samples

In Section 4.1, we introduced a Bayesian model for the observed agent. This model

forms the basis for utilizing Bayesian inference for inverse planning, which involves

estimating the agent’s underlying motion plan and end goal, by reasoning about their

likelihoods under the observed trajectory segments. Inverse planning, in this context,

becomes a problem of recursive approximation of a desired posterior distribution (as

defined in eq. (4.6)) under incoming noisy observations.

This task aligns exactly with the broader objective of Sequential Monte Carlo

(SMC) methods: by employing a set of particles to represent hypotheses about the

state of a system, SMC methods iteratively update and refine these hypotheses based

on new observations, effectively tracking the posterior distribution over time (Doucet

et al., 2001). In this section, we develop a SMC algorithm called Sequential Monte

Carlo for Inverse Motion Planning (SMC-IMP) for sequentially approximating the

posterior distribution over the agent’s goals given observations of partially completed

trajectories. We outline the pseudocode for SMC-IMP in Algorithm 3.

Algorithm 3 SMC for Inverse Motion Planning (SMC-IMP)
procedure smc-imp(𝑥0, 𝑜0:𝜏 , 𝑁)

(𝑔, 𝑥0:𝑇 )
𝑖 ∼ 𝑃 (𝑔, 𝑥0:𝑇 |𝑥0) for 𝑖 ∈ [1, 𝑁 ] ◁ Sample 𝑁 hypotheses

𝑤𝑖 ← 𝑃 (𝑜0|𝑥0) for 𝑖 ∈ [1, 𝑁 ] ◁ Initialize weights

for 𝑡 ∈ [1, 𝜏 ], 𝑖 ∈ [1, 𝑁 ] do

𝑥̃𝑖
𝑡 ∼ 𝐾(𝑥𝑡; 𝑜𝑡) ◁ Propose new 𝑥̃𝑡 close to 𝑜𝑡

𝑥̃𝑖
0:𝑇 ← (𝑥𝑖

0:𝑡−1, 𝑥̃𝑡, 𝑥
𝑖
𝑡+1:𝑇 ) ◁ Replace 𝑥𝑡 with new 𝑥̃𝑡

𝑤𝑖 ← 𝑤𝑖 𝐿(𝑥̃𝑖
𝑡;𝑜𝑡)

𝐾(𝑥𝑖
𝑡;𝑥̃

𝑖
0:𝑇 )

𝑃 (𝑔𝑖,𝑥̃𝑖
0:𝑇 |𝑥0)

𝑃 (𝑔𝑖,𝑥𝑖
0:𝑇 |𝑥0)

𝑃 (𝑜𝑡|𝑥̃𝑖
𝑡) ◁ Reweight hypotheses

𝑥𝑖
0:𝑇 ∼ MALA(·,NMC(·; 𝑥̃𝑖

0:𝑇 )) ◁ Rejuvenate via MCMC

end for

return {(𝑔, 𝑥0:𝑇 )
𝑖, 𝑤𝑖}𝑁𝑖=1 ◁ Return weighted hypotheses

end procedure

In line with the standard particle filtering algorithms, SMC-IMP begins with a
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set of 𝑁 hypotheses about the agent’s goal-driven motion plan, {(𝑔, 𝑥0:𝑇 )
𝑖}𝑁𝑖=1. In

particular, SMC-IMP obtains the initial set of motion plan hypotheses from the SMC-

BoltzmannTrajOpt algorithm, as outlined in Section 4.2. Initially, these hypotheses

are all weighted by the observation prior, in accordance with eq. (4.4). At each

timestep 𝑡, as the new observation 𝑜𝑡 of the agent’s state arrives, the hypotheses are

adjusted to better align with 𝑜𝑡. Similarly as before, this is achieved using the MCMC

kernels (denoted as 𝐾).

In addition to the hypotheses themselves, the weights of the hypotheses are also

updated. Similarly to the approach in Algorithm 2, we mitigate the bias introduced by

sampling from the forward MCMC kernel by adjusting the weights using the reverse

MCMC kernel. These kernels, taking the form of 2D Gaussians, are again represented

as 𝐾(·|·) and 𝐿(·|·), respectively. In addition, the weights are adjusted by the ratio of

conditional probabilities, 𝑃 (𝑔, 𝑥̃0:𝑇 |𝑥0) and 𝑃 (𝑔, 𝑥0:𝑇 |𝑥0), which reflects whether the

newly proposed motion plan aligns more closely with the goal than the previous one.

These conditional probabilities factor into 𝑃 (𝑔, 𝑥̃0:𝑇 |𝑥0) = 𝑃 (𝑔)𝑃 (𝑥𝑇 |𝑔)𝑃 (𝑥̃0:𝑇 |𝑥0) and

𝑃 (𝑔, 𝑥0:𝑇 |𝑥0) = 𝑃 (𝑔)𝑃 (𝑥𝑇 |𝑔)𝑃 (𝑥0:𝑇 |𝑥0), respectively, where 𝑃 (𝑔) and 𝑃 (𝑥𝑇 |𝑔) are the

goal and the endpoint priors from eqs. (4.1) and (4.2).

The terms 𝑃 (𝑥̃0:𝑇 |𝑥0) and 𝑃 (𝑥0:𝑇 |𝑥0) are not directly known due to the unknown

normalizing constant. However, as discussed in Section 4.2, SMC-BoltzmannTrajOpt

allows us to estimate 𝑃 (𝑥0:𝑇 |𝑥0) as 𝑃̂ (𝑥0:𝑇 |𝑥0) = 𝑤

𝑍̂
, where 𝑤 is the weight of the

returned motion plan and 𝑍̂ is the estimate of the normalizing constant. Similarly,

𝑃 (𝑥̃0:𝑇 |𝑥0) can be approximated as 𝑃 (𝑥̃0:𝑇 |𝑥0) ≈ 𝑤̃/𝑍̂̃, where 𝑍̂̃ := 𝑍̂ −𝑤 + 𝑤̃. Conse-

quently, the hypothesis reweighing step becomes 𝑤𝑖 ← 𝑤𝑖 𝐾(𝑥̃𝑖
𝑡;𝑜𝑡)

𝐿(𝑥𝑖
𝑡;𝑥̃

𝑖
0:𝑇 )

𝑤̃/(𝑍̂−𝑤+𝑤̃)

𝑤/𝑍̂
𝑃 (𝑜𝑡|𝑥̃𝑖

𝑡).

Lastly, to prevent the degeneracy of weights and introduce more diversity into

the set of hypotheses, we further adjust the hypotheses with rejuvenation moves

(Chopin, 2002). We rejuvenate the hypotheses using gradient-based MCMC kernels,

including a first-order method, MALA, as described in Section 3.2, and a second-order

method, Newtonian Monte Carlo (NMC), which uses the Hessian in addition to the

gradient of the log-posterior to propose new states (Arora et al., 2019). This combined

approach allows us to facilitate both the global exploration of the state space as well
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as fine-tuning within the high probability regions. The resulting weighted collection

of hypotheses {(𝑔, 𝑥0:𝑇 )
𝑖, 𝑤𝑖}𝑁𝑖=1 at timestep 𝑡 represents a discrete approximation to

the posterior over the agent’s goal and motion plan, 𝑃 (𝑔, 𝑥0:𝑇 |𝑥0, 𝑜0:𝑡).

4.4 Experiments

We evaluate the inverse planning capabilities of our framework on 45 agent trajectories

across 5 different scenes in a 2D environment. Each of the 5 scenes contains 3 possible

goal regions with varying obstacle layouts, including smaller scattered, irregularly-

shaped obstacles, a maze, and a tunnel. Analogously to Chapter 3, we design these

various scenes in order to test our framework’s ability to generate diverse motion

plan hypotheses. In addition, the various scenes test our inference algorithm’s ability

to handle multimodal posterior distributions over goal-driven motion plans, i.e., the

ability to consider a variety of likely outcomes. In each scene, we generate a set of

three trajectories (of length 𝑇 = 20) per goal, corresponding to different strategies for

navigating around the obstacles.

Our implementation uses Gen (Cusumano-Towner et al., 2019), an open-source

probabilistic programming system embedded in Julia (Bezanson et al., 2017). We

configure the SMC-BoltzmannTrajOpt algorithm to sample 𝑁 = 600 particles and

use a rationality parameter of 𝛽 = 20 for the target distribution defined in eq. (3.7).

We compare the SMC-IMP goal inference framework against two baselines: a greedy

distance-based heuristic and a Laplace approximation to the posterior over goals akin

to the approach in (Dragan, 2015).

We define the greedy heuristic baseline to operate under a simplified assumption

of agent behavior, in which the closer a goal region, 𝑔, is to the last observed agent

location, 𝑜𝑡, the higher the likelihood that it represents the agent’s intended destination.

We express this mathematically as:

𝑃 (𝑔|𝑜0:𝑡) ∝ 𝑒(min-dist(𝑜𝑡,𝑔)), (4.20)
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where min-dist(𝑜𝑡, 𝑔) is the minimum Euclidan distance from the observed agent

location 𝑜𝑡 to each of the goal regions 𝑔 ∈ 𝐺.

Next, we implement the Laplace approximation baseline in the following way.

Consider a generic Boltzmann distribution-based model of trajectories, 𝑃 (𝑥0:𝑇 ) =

𝑒−𝑐(𝑥0:𝑇 ). Further, consider a second-order Taylor expansion of 𝑐 about a local minimum,

𝑥*
0:𝑇 , where ∇𝑥0:𝑇

𝑐(𝑥0:𝑇 ) = 0:

𝑐(𝑥0:𝑇 ) ≈ 𝑐̂(𝑥0:𝑇 ) := 𝑐(𝑥*
0:𝑇 ) +

1

2
(𝑥0:𝑇 − 𝑥*

0:𝑇 )
⊤ (︀
∇2𝑐(𝑥*

0:𝑇 )
)︀
(𝑥0:𝑇 − 𝑥*

0:𝑇 ), (4.21)

and ∇2𝑐(𝑥*
0:𝑇 ) is the Hessian of 𝑐 at 𝑥*

0:𝑇 . Note that approximating 𝑃 (𝑥0:𝑇 ) ≈

𝑒−𝑐̂(𝑥0:𝑇 ) ∝ 𝑒−
1
2
(𝑥0:𝑇−𝑥*

0:𝑇 )⊤𝐻(𝑥0:𝑇−𝑥*
0:𝑇 ), where 𝐻 := (∇2𝑐(𝑥*

0:𝑇 )), is a Gaussian. This

allows us to compute the desired distribution, 𝑃 (𝑔|𝑜0:𝑡). For example, in the noiseless

case, we get the following expression for 𝑃 (𝑔|𝑥0:𝜏 ) proportional to 𝑔:

𝑃 (𝑔|𝑥0:𝜏 ) = 𝑃 (𝑥0:𝜏 |𝑔)
𝑃 (𝑔)

𝑃 (𝑥0:𝜏 )
, (4.22)

∝ 𝑃 (𝑥0:𝜏 |𝑔)𝑃 (𝑔), (4.23)

=
𝑒−𝑐̂(𝑥0:𝜏 )

∫︀
𝑥𝜏+1:𝑇

𝑒−𝑐̂(𝑥𝜏+1:𝑇 )𝑑𝑥𝜏+1:𝑇∫︀
𝑥0:𝑇

𝑒−𝑐̂(𝑥𝜏+1:𝑇 )𝑑𝑥𝜏+1:𝑇

𝑃 (𝑔), (4.24)

where all integrals are Gaussian integrals and are thus explicitly computable.

In Table 4.1, we compare the performance of SMC-IMP to the two baselines.

We report the posterior probability each method assigns to the true goal at 1
5
, 1

4
, 1

3
,

and 1
2

the length of the trajectory (rounded to the nearest timestep). The reported

probabilities are averaged across all trajectories in the dataset. In addition, we provide

the Brier score at the same timesteps, which reflects how well-calibrated the predictions

are (lower values indicate higher accuracy) (Brier et al., 1950).

As expected, SMC-IMP outperforms the greedy distance-based baseline. Compared

to the Laplace approximation, SMC-IMP tends to assign lower probability to the true

goal, but with a better Brier score at earlier timesteps. This reflects that SMC-IMP is

better at maintaining uncertainty when the data is ambiguous, whereas the Laplace

approximation is over-confident at earlier timesteps, assigning high probabilities to
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the wrong goals. Crucially, SMC-IMP is the only method of the three that accounts

for the inherent multimodality of the distribution over trajectories stemming from a

multitude of strategies for navigating around obstacles.

P(𝑔true|𝑜1:𝑡) Brier Score

Method 𝑡 = 𝑇/5 𝑇/4 𝑇/3 𝑇/2 𝑡 = 𝑇/5 𝑇/4 𝑇/3 𝑇/2

Greedy 0.42 0.45 0.51 0.62 0.67 0.65 0.59 0.45

Laplace 0.60 0.61 0.73 0.85 0.68 0.66 0.45 0.25

SMC-IMP 0.53 0.61 0.70 0.79 0.48 0.43 0.40 0.33

Table 4.1: A comparative evaluation of the goal inference methods based on the
probability assigned to the true goal and the predictive accuracy as indicated by the
Brier score (lower is better).
These metrics are computed at various timesteps 𝑡 expressed as fractions of the full
trajectory length 𝑇 , and then averaged across multiple trials.
We contrast our method, SMC-IMP, with a greedy distance-based heuristic and a goal
inference method via Laplace approximation inspired by (Dragan, 2015).
Our findings show that SMC-IMP surpasses the greedy heuristic, as anticipated. In
comparison with the Laplace approximation, SMC-IMP tends to be more conservative
in its predictions, often ascribing a lower probability to the true goal. Nonetheless,
SMC-IMP demonstrates superior accuracy when the number of observations is very
limited.

In Figure 4-1, we illustrate our framework’s performance in dynamic trajectory

prediction and goal inference. The inference is based on noisy observations of partially

completed trajectories (represented as black points) within an environment character-

ized by irregularly shaped obstacles (in grey) and three distinct goal regions (blue,

red, and green). The top of the figure shows how the motion plan hypotheses, initially

sampled by SMC-BoltzmannTrajOpt, get updated based on the incoming observations.

The bottom part illustrates how SMC-IMP progressively refines its predictions about

the agent’s intended goal over time.
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Figure 4-1: A visual analysis of the motion plan predictions (above), alongside the
goal inference (below). The evaluation is performed within a continuous environment
featuring three irregularly shaped obstacles (shown in grey) and three potential goal
regions (colored in blue, red, and green). Black markers denote the noisy observations,
while the hypothesised motion plans are illustrated in red.
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Chapter 5

Discussion

We began this work with the vision of partaking in the enhancement of human-

AI interaction by contributing to the development of fitter forward and inverse

planning methods. Our approach is multidisciplinary, drawing upon insights from

mobile robotics, decision theory, and computational cognitive science. We provide

a unified trajectory planning and inference framework that jointly leverages Monte

Carlo methods, highlighting their versatility and effectiveness in both efficiently

approximating desired behavior as well as making informed predictions in real-time

within a Bayesian framework. In the following sections of this chapter, we outline our

primary technical contributions and suggest future directions of exploration.

5.1 Summary of Contributions

First, our investigation focuses on the development of tailored Markov Chain Monte

Carlo (MCMC) algorithms for motion planning. By using MCMC samples to ap-

proximate the Boltzmann distribution, we show that we can generate a variety of

near-optimal trajectories instead of just a single, strictly optimal solution to the naviga-

tion problem. Ensuring such diversity-aware planning is essential for decision-making

under uncertainty (Lupu et al., 2021; Zhao and Wildes, 2021; Huang et al., 2020),

and we propose a variance-based metric to characterize the diversity of the generated

motion plans. We adapt both the conventional Metropolis-Hastings algorithm as well
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as the first-order methods that incorporate gradient information about the target

distribution. We set up a continuous, two-dimensional navigation environment to

assess the algorithms’ performance based on computational complexity, motion plan

feasibility, and trajectory diversity. Extensive analysis reveals that even the simplest

gradient-based sampling methods reliably produce smooth, collision-free trajectories

while efficiently exploring high-probability regions of the state space. We also show

that the variance of the generated trajectories correlates well with the amount of the

obstacle avoidance strategies. Furthermore, we find that a simple projection technique,

which translates infeasible samples back into free space, provides more robust and

computationally efficient obstacle avoidance compared to the penalty-based methods

akin to those used in (Ratliff et al., 2009).

In the latter half of our study, we shift focus from an actor-centric to an observer-

centric approach. Rather than generating a variety of near-optimal navigation solutions

for a planning agent, we apply our diversity-aware motion planning framework to

enable robust inferences about observed motion. We develop a model for the ob-

served agent in which we adopt a Bayesian approach to reason about the agent’s

motion plan and end goal in real-time: by modeling agents as approximately ra-

tional planners, we estimate latent states by simulating probable behaviors. Our

proposed method, Sequential Monte Carlo for Boltzmann Trajectory Optimization

(SMC-BoltzmannTrajOpt), enables approximate Bayesian inference while constructing

a set of optimized simulations of the agent’s motion plan. We incorporate this method

into a novel inverse planning framework, Sequential Monte Carlo for Inverse Motion

Planning (SMC-IMP), which predicts the agent’s goal and motion plan in real-time by

dynamically optimizing the simulated trajectories with MCMC kernels. We assess our

framework across diverse 2D navigation scenarios and find that it surpasses distance-

based goal inference. In addition, our framework’s distinctive ability to capture the

inherent multimodality of posterior distributions over the motion plans results in

an improved prediction accuracy in ambiguous situations, compared to a Laplace

approximation to the posterior over goals akin to the approach in (Dragan, 2015).
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5.2 Limitations and Future Work

While our framework shows promise for advancing trajectory simulation and goal

inference, many challenges remain. Extensions of our approach may require improving

the runtime and accuracy of the algorithm through better Monte Carlo approxima-

tions of the Boltzmann distribution. This may involve the use of smarter proposal

distributions or specialized solvers to generate candidate motion plans that integrate

any existing knowledge about the topology of the environment.

Additionally, it would be interesting to explore the possibility of integrating our

framework with existing algorithms for inverse task-level planning (Zhi-Xuan et al.,

2020), with the eventual hope of performing goal inference and trajectory prediction

over task-and-motion plans (Garrett et al., 2021). This would provide a significant

contribution to the current state-of-the-art in the field of human-robot collaboration,

particularly in relation to tasks involving navigation around movable obstacles and

manipulation.

Adapting our method to human-robot collaboration problems would also involve

scaling to higher-dimensional domains. For a rigorous and more comprehensive

assessment of the practicality of MCMC motion planners in more complex settings, it

would be necessary to conduct further experiments, for example, involving contact

and narrow spaces, as in (Shkolnik and Tedrake, 2011). However, we are optimistic

about the potential of our method to scale to 3D motion planning problems since

our trajectory sampling algorithm in Section 4.3 can be viewed as a probabilistic

modification to the well-established Sequential Quadratic Programming (SQP)-based

motion planners (Hadfield-Menell et al., 2016a).

Furthermore, our method is also applicable to human motion prediction for col-

lision avoidance, which remains a major challenge in the development of safe and

highly-autonomous collaborative systems (Ajoudani et al., 2018). Currently, behavior

forecasting is dominated by deep learning approaches (Schydlo et al., 2018; Alahi

et al., 2016; Martinez et al., 2017) that typically lack interpretability and require

large amounts of data. In contrast, a method like ours offers a white-box approach
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grounded in cognitive theories of goal-directed behavior, and does not necessitate

hours of data collection and retraining for each new problem. By leveraging pose

estimation techniques, we could represent observed human motion in a way that is

compatible with our trajectory parameterization and motion planning formulations.

The trajectories predicted by our framework could then be used as inputs to the robot’s

cost function and problem definition, which can in turn be solved using standard

robotic planning methods, especially probabilistic algorithms like belief-space planning

(Kaelbling and Lozano-Pérez, 2013; Hadfield-Menell et al., 2015).

Nonetheless, it is crucial to take into account safety concerns when doing behavior

prediction in domains where humans and machines would interact closely. Fundamen-

tally, there is a discrepancy between the real world and simulated environments that

rely on simplistic noise representations and limited models of rational decision-making.

Consequently, inaccurate estimations of internal states could result in inappropriate re-

sponses and coordination failures. This can be especially detrimental in safety-critical

tasks, such as in manufacturing, medicine, and disaster response.

Another crucial aspect of safety involves adhering to physical constraints and

ensuring effective obstacle avoidance. Our motion planning method relies on projecting

samples onto the feasible set for navigating constrained environments. While these

projections are typically small in practice, it would be valuable to develop a more

principled approach that avoids the possibility of failure in tightly constrained spaces

and maintains the property of reversibility (Brubaker et al., 2012). Deployment

in complex physical spaces, thus, may require considering more rigorous obstacle

avoidance assurances and verification (Mitsch et al., 2017).
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