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Abstract

Cross-view geolocalization, a supplement or replacement for GPS, provides an esti-
mate of an agent’s global position by matching a local ground image to an overhead
satellite image. It is challenging to reliably match these two sets of images in part be-
cause they have significantly different viewpoints. Existing works have demonstrated
geolocalization in constrained scenarios over small areas using panoramic cameras,
yielding methods that have limited generalization to unseen environments or condi-
tions and that do not quantify uncertainty. This thesis details Wide-Area Geolo-
calization (WAG) and Restricted FOV Wide-Area Geolocalization (ReWAG) that
combine a neural network with a particle filter to achieve global position estimates
for a moving agent in a GPS-denied environment while scaling efficiently to city-sized
regions in unseen environments and working with either panoramic or non-panoramic
cameras. One contribution is a trinomial loss function that enables accurate and
computation-efficient localization across city-scale search areas of nearly 300 km2 in
size by improving image retrieval on the off-center image pairs that result from a
coarsely discretized satellite image database. Another contribution is a computation-
ally efficient method to incorporate pose information with input image pairs, which
improves localization accuracy with non-panoramic cameras and off-center ground
images. An additional contribution is the GKL uncertainty measure for localization
outputs, which enables detection of particle filter false convergence through charac-
terization of the particle distribution. The final contribution is a demonstration of
ReWAG’s ability to generalize across different times of day, seasons, weather, and
cameras on data collected from a moving car in Cambridge, Massachusetts, as well as
the public release of a challenging imagery dataset collected on this vehicle platform.
WAG and ReWAG localize from over 1 km to less than 100 m of localization error
while performing particle filter updates with less than 1% of the computation required
for previous approaches.
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Chapter 1

Introduction

Cross-view geolocalization is the process of matching ground images to aerial im-

ages to determine the location where the ground image was taken from. Cross-view

geolocalization is useful for many applications requiring location information, like

autonomous vehicles, augmented reality, and ground robots. Figure 1-1 shows the

challenge of this task with an example from Boston, Massachusetts. For a person fa-

miliar with Boston, it may be a trivial task to localize this ground image. For someone

who has never visited Boston, matching this ground image to the aerial image may

(a) Ground view image of Downtown Crossing (b) Aerial image of Downtown Crossing with pose
of ground view camera overlaid

Figure 1-1: The visual difference in appearance between a ground view and aerial
image of Downtown Crossing in Boston, Massachusetts. Imagery from Google Street
View and Google Maps.
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be very challenging. There is very little overlap in scene content that is visible from

both perspectives; the road is visible in both images, but different parts of objects are

visible in each image. In the ground view image, the facades of buildings are visible.

In the aerial image, the roofs of buildings are visible. Cross-view geolocalization often

does not have the advantage of having seen images of a location before, since ground

view images of every location may not be available. The ultimate goal of cross-view

geolocalization is to accurately match between ground and aerial imagery without

previous exposure to that location and across a variety of conditions.

Matching between ground and aerial images is challenging on its own, but what

happens if there are differences in season between the ground and aerial images?

What if there are differences in the weather? What if there are differences in the time

of day? All of these factors take the already difficult problem of matching between

ground and aerial images and make it even harder. The cross-view geolocalization

system must be able to focus on the invariant features across all of those changes to

match between such disparate images.

Incorporating a temporal aspect to cross-view geolocalization of a ground agent

as it moves improves localization by combining odometry with images over time

[40, 47, 109, 117]. Satellite imagery is widely available even in areas without ex-

isting ground-view imagery, and it is the only outside data needed for cross-view

geolocalization. However, the huge differences in appearance between ground and

satellite images makes this problem difficult, and has caused previous systems to

impose many constraints in order to make the problem tractable. In particular,

preceding works had small search areas [40, 47], have relied on panoramic ground

imagery [27, 40, 47, 109, 117], and have largely not provided analysis of performance

under changes in time of day, weather, or distance between testing and training loca-

tions [100]. These constraints have resulted in cross-view geolocalization systems that

are less accurate in many of the most interesting applications. This thesis presents a

new approach to remove these constraints and create a scalable cross-view geolocal-

ization system that can reliably provide localization information across a broad set

of applications.
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Figure 1-2: How can a lost person use a map to figure out where they are and
subsequently reach a goal? They start by matching between the features in their
map and the features they see.

1.1 Background

A basic function of human autonomy is knowing and understanding where one is, or

localizing. Without being able to localize, a human cannot plan a path to reach a

destination, cannot avoid getting stuck, cannot determine when one has reached the

destination. Imagine a person falls asleep as a passenger in a car, and upon waking

is dropped off in an unfamiliar location with only a map. They are then given a task,

something like “go to 27 Main Street”. To complete the task, they must first figure

out where they are in the map. As illustrated in Fig. 1-2, the person must match

between what they see around them and the features that they see in the map. This

situation is an analogy for a common occurrence in an autonomous robotic system;

it is powered on in a new location, unable to use its sensors until it is turned on, and

given a task and a map of the environment. Localization is essential for accomplishing

the task.

Although localization is essential for basic autonomy, it remains a challenge. Even
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some humans find localization challenging, evinced by the smartphone-based GPS

applications that have become ubiquitous in the past decade. GPS, or Global Posi-

tioning System, refers to the United States government’s satellite-based navigation

system, which is made up of 24 to 32 satellites in Earth orbit [31, 35]. However,

GPS is just one of many constellations of satellites in the Global Navigation Satellite

System (GNSS), which includes Europe’s Galileo, the United States’ GPS, Russia’s

Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) and China’s BeiDou

Navigation Satellite System (BeiDou). Although GPS is an innovation that changed

the world and has provided a novel method for localization, it is not infallible; GPS

is an external system that is susceptible to failure. The governments of China, India,

Russia and the United States have developed anti-satellite (ASAT) technology capa-

ble of destroying GPS satellites in orbit [21]. Equipment malfunctions have led to

multi-day outages [5] or hours-long degradation issues [6] of GPS systems. In addition

to interference caused by human action, GPS is also vulnerable to disruption through

external forces like solar storms [3].

Beyond systemic issues that could impact GPS, individuals may also be affected

by problems on the receiver end like jamming [39], spoofing [95], or signal dropout

due to dense foliage or urban canyons [20]. Jamming is the process of blocking GPS

signals from reaching a receiver. GPS jammers can fit in the palm of a hand and

can be illegally purchased for under $30. Spoofing is the process of generating false

GPS signals on the same channel as legitimate GPS signals, pushing messages to the

receiver that contain false information. Signal dropout is an inherent result of a system

that relies on the triangulation of signals from multiple satellites. With obstructions

overhead like a tree canopy or tall buildings close together, an insufficient number of

satellites may be able to reach the receiver, yielding lower localization accuracy. The

problem posed by dense foliage is illustrated by Fig. 1-3, where bamboo grows in such

volume that the sky is barely visible. Urban canyon effects, like that seen in Fig. 1-

4, can be caused by densely clustered buildings of as little as three stories [68]. In

addition to intentional GPS interference from bad actors targeting a system or user,

many instances of GPS interference are accidental or collateral to another intended
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Figure 1-3: Dense foliage such as this thicket of bamboo in Arashiyama, located in
Kyoto, Japan, poses a problem for GPS localization.

target. For example, in the past two decades there has been an increase in GPS-based

monitoring of different types of vehicles, like freight, food delivery, and passenger

transport vehicles. Many drivers resent this monitoring, and attempt to disrupt it

with portable GPS jammers. These jammers disrupt the GPS localization of the

user’s vehicle, but it also may interfere with other satellite-based localization systems

within the vicinity [78]. As a result, full reliance upon GPS for localization increases

risk and creates a weakness that is not acceptable for safety-critical applications like

military operations or driverless cars.

GPS-denied localization requires the processing and fusing of multiple sources of

information [58]: in a suburban or urban environment this might include the geometry

of street intersections [104], street names [75], the appearance of nearby buildings [85],

23



Figure 1-4: In urban canyons, multi-story buildings block GPS satellites from reaching
receivers (shown with red line) or cause the signal to reflect off buildings before
reaching the receiver (shown with yellow line), both of which degrade GPS accuracy.

and the existence and quantity of foliage and green spaces [62]. Vision-based local-

ization is especially attractive due to the small size, weight, and power requirements

of cameras. In addition, cameras are ubiquitous and autonomous platforms are com-

monly already equipped with a camera.

Satellite imagery is widely available for most of the planet through datasets like

Landsat, Sentinel, MODIS, ASTER, GEOS, NOAA, Maxar and Airbus, even in

forested or urban areas where it can be more challenging to use GPS. Additionally,

new satellite imagery of Earth is taken every day, so imagery is frequently updated

and higher resolution imagery is often made available over time. Beyond availability,

satellite imagery presents lesser storage challenges than ground imagery. A satellite

image of a city can be taken at a variety of resolutions, from 30 centimeters per pixel

with Airbus Pléiades Neo to 30 meters per pixel with Landsat. Aerial imagery can

be taken at an even higher resolution, like 15 centimeters per pixel for MassGIS im-

agery of Massachusetts. However, ground imagery cannot be scaled linearly in this

way. Resolution of each ground image scales less favorably because there still needs
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to be a ground image taken for each location where localization may be attempted.

For example, the popular visual localization benchmark Oxford RobotCar Dataset

has approximately one image each meter [60]. The city of Boston has approximately

934 miles of roads [4], which would equate to over one million images if it were pho-

tographed as densely as the Oxford RobotCar. In contrast, the same area could be

covered in 15 cm/pixel resolution with approximately 60,000 satellite images. Hence,

localization with ground imagery imposes higher storage requirements. Satellite im-

agery can also be more quickly updated if changes take place on the ground. Satellites

can quickly be tasked to take new imagery if a natural disaster occurs or new con-

struction is done, but refreshing ground imagery for a region would require significant

time and resources. Furthermore, the use of satellite imagery as the reference imagery

in practice provides a map, so simultaneous localization and mapping (SLAM) [93]

does not need to be performed and the ground images just need to be localized within

the given satellite map.

Cross-view geolocalization is a localization method that only requires images from

a ground-view camera and preexisting overhead imagery, with no requirement for

GPS measurements. Cross-view geolocalization measures the similarity between a

ground image and all of the satellite images in a search area to determine the location

that the ground image was taken from (see Fig. 1-5). There are many applications

where cross-view geolocalization can be useful, including: robotic platforms for self-

driving cars, last mile delivery, and military tactical awareness. Self-driving cars,

also referred to as autonomous vehicles, may often need to drive in dense urban

areas where canyon effects reduce GPS localization accuracy and may cause repeated

bouncing of the estimated locations. Last mile delivery robots are small ground robots

that automate the most expensive part of the shipping process, the last mile of the

trip to bring a package to a customer’s door, by autonomously moving packages.

Similar delivery robots are also used for food delivery, a growing international market

with a global market size of several billion dollars each year. The problem with

these delivery robots relying solely on GPS localization is spoofing; a package or

food thief could trick the robots into delivering items to a different location than the
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Figure 1-5: A cross-view geolocalization system takes in ground-view camera images
and satellite imagery of a search area to localize an agent.

sender intended by spoofing the GPS signal. Military units often use the popular

Android Tactical Assault Kit (ATAK) platform, an Android smartphone application,

for geospatial and situational awareness. Military agents cannot risk the vulnerability

of being GPS-dependent in an adversarial environment, and as such a cross-view

geolocalization system could reduce risk and improve safety. In a military scenario,

cross-view geolocalization could be used for both autonomous systems and human

operators with smartphones. All three of these applications could be expected to have

large search areas that are defined a priori, enabling download of relevant satellite

imagery, inertial measurement units (IMUs) to obtain odometry measurements, and

ground-view cameras.

Deep learning can be applied to cross-view geolocalization through the use of

Siamese networks [11]. A Siamese network consists of a pair of neural networks with

matching architectures that simultaneously learn embedding schemes for ground and
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overhead images. The Siamese network is trained so that images taken in similar

locations are close together in embedding space, and images taken at different loca-

tions are embedded far apart. The accuracy of the Siamese networks can be further

improved by combining multiple measurements over time with odometry.

1.2 Motivation

Matching between query and database images is a task which increases in difficult

as database size grows. A smaller database means that there is a higher likelihood

to select the correct match to an input query image based on random chance alone.

A larger database is also more likely to contain similar images that could introduce

ambiguity in matching. Although large databases are challenging, large search areas

are common in many applications of cross-view geolocalization, and large search ar-

eas typically require large satellite image databases. However, the exact size of the

satellite database is determined by the way in which the search area is discretized:

coarse or dense discretization. The difference between coarse and dense image dis-

cretization is illustrated in Fig. 1-6. Most existing cross-view geolocalization work

has focused on small search areas with dense satellite image discretization. Dense

discretization results in each part of the search area being represented in more than

one database image. Dense database generation is equivalent to generating a matrix

of center points and sampling a satellite image centered on each point, such that the

edges of those satellite images overlap. Coarse discretization ensures that each part

of the search area is represented in only one database image. Coarse database gen-

eration is equivalent to dividing the search area into a grid of satellite tiles. Existing

works have used dense discretization because it simplifies the Siamese network train-

ing procedure, but coarse discretization generates small databases with even large

search areas and hence reduces the difficulty of image retrieval.

Cross-view geolocalization with ground and overhead images is challenging due to

the wide difference in viewpoints. Using a panoramic ground camera decreases the

problem dimensionality by reducing the impact of heading. Although the alignment
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(a) Coarse satellite tile (b) Coarse satellite tile

(c) Overlapping satellite tile (d) Overlapping satellite tile (e) Overlapping satellite tile

(f) Full search area

Figure 1-6: Coarse satellite image sampling results in no overlap between satellite tile.
Dense satellite image sampling generates overlapping satellite images and results in
a larger database.
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of panoramic ground images is affected by heading, the heading does not affect the

content, whereas the heading of a limited field of view (FOV) camera affects the

visible content of the image. The use of panoramic ground cameras also simplifies

the problem by maintaining as much semantic similarity as possible between the two

viewpoints – overhead images show 360° of the surroundings of a ground agent, as

do panoramic ground cameras. However, in practice panoramic cameras are rarely

used due to their high monetary cost, resulting in lesser availability, and their diffi-

culty to mount without occlusion. Consequently, few real-world systems can benefit

from panoramic-based localization. Widespread adoption of cross-view geolocaliza-

tion technology requires its applicability to platforms without panoramic imaging

capabilities.

Generalization of cross-view geolocalization systems is difficult because images of

the same places can appear vastly different under difference conditions, and images

of one location can contain features that are not easily learned from images of an-

other location. Many existing works focus on improving geographic generalization,

or generalizing on training images from location to testing images from another loca-

tion. Although this is an important aspect of generalization, many other challenging

aspects of generalization can affect cross-view geolocalization performance, like light-

ing conditions, seasons, time of day, and weather. Google Street View is a popular

and accessible source of ground imagery for testing cross-view geolocalization since

it has imagery for many locations that can be queried from a user-friendly API.

Google Street View enables testing of geographic generalization but limits testing of

other visual generalization tasks, since Street View images are not explicitly taken

to represent a variety of visual conditions. In cross-view geolocalization applications,

images have much greater visual variation than Street View images and localization

performance needs to be robust to this variation.

Localization uncertainty quantification for autonomous systems is important be-

cause localization outputs are used to make navigation and planning decisions that

may be safety-critical. Placing too much trust in localization outputs can result in

dangerous movements, like a self-driving car crossing lanes of traffic or a delivery
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robot driving across highly angled terrain instead of on flat sidewalks. Few previ-

ous cross-view geolocalization systems have attempted to quantify localization un-

certainty, instead focusing on improving localization accuracy. However, as long as

image matching accuracy is below 100%, uncertainty needs to be quantified to ensure

safety.

1.3 Problem Statement

Overall, this thesis presents a solution to the following important problems related to

cross-view geolocalization:

1. Wide-area geolocalization. Mobile autonomy platforms like autonomous

cars, delivery robots, or military robots, can operate on longer time scales with-

out human interaction if they are not limited to small operational areas. For

cross-view geolocalization, the factor that limits the size of the operational area

is its search area to localize within. The search area restricts where the ground

agent can travel, because it cannot be localized if it travels outside of the search

area. Hence, if a cross-view geolocalization system can only support search areas

on the scale on neighborhoods, then an autonomous platform that relies upon

cross-view geolocalization is limited to only operate within one neighborhood.

With such a small operational area, the potential uses of these autonomous

platforms is severely limited. To enable widespread use of cross-view geolocal-

ization for many different autonomous systems, the localization system must be

capable of scaling across a wide range of search area sizes.

2. Narrow field of view ground image retrieval. Panoramic cameras deliver

rich, feature-filled images of scenes and hence could appear an attractive option

for cross-view geolocalization. However, panoramic cameras present a number

of challenges for autonomous platforms. For one, they are orders of magnitude

more expensive than standard cameras [53], and as a result, they are less likely

to be an existing component of an autonomous system. If cross-view geolocal-
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ization requires the purchase and installation of an expensive sensor then the

types of systems that can implement it are greatly reduced. In addition, it may

not be feasible for a panoramic camera to be mounted on smaller platforms–

for example, a panoramic camera might have to be mounted on top of a pedes-

trian’s head to avoid significantly obstructing the field of view. Non-panoramic

cameras are cheap, ubiquitous, and can be mounted in many ways. For these

reasons, it is desirable to be able to perform accurate cross-view geolocalization

with non-panoramic cameras.

3. Generalization. For useful deployment to realistic robotic applications, cross-

view geolocalization systems need to be able to generalize to different conditions

that are not seen in the training dataset. Google Street View provides a source

of ground images for many locations across the world. However, Google Street

View prioritizes publishing high-quality images on sunny days, and often re-

turns to the same areas multiple times to collect the clearest imagery. During

deployment of a localization system, there will be much higher variance in the

conditions and quality of the ground images, since these factors are not being

explicitly controlled for. For example, there may be cloudy or dark weather con-

ditions and cameras will often be lower quality (lower resolution and narrower

field of view) than those of Google. As a result, it is important for a cross-view

geolocalization system to be capable of generalization to a variety of conditions

that are not widely represented in training data.

4. Localization uncertainty quantification. A vehicle’s primary navigation

system fuses multiple sources of information with varying noise levels. Under-

standing and quantifying those noise or uncertainty levels is key to obtaining the

most accurate state estimate from the navigation system. Hence, for integration

into a primary navigation system, cross-view geolocalization measurements need

some kind of quantification of the measurement noise or uncertainty. This uncer-

tainty also informs the scenarios in which the proposed system can be expected

to perform optimally or sufficiently, especially in the context of expanding gen-
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eralization. When improving the generalizability of cross-view geolocalization

systems, there are likely to be more difficult situations where localization may

be uncertain. For example, if the system is being deployed during the win-

ter with visible snow on the ground, it is important to understand whether

and how much performance degrades when matching against non-winter satel-

lite imagery. Accordingly, a cross-view geolocalization system for autonomous

platforms should provide some level of uncertainty quantification.

1.4 Contributions

This thesis investigates the following main contributions to address the problems

stated in Section 1.3.

1. Coarse satellite image database and trinomial loss. To perform local-

ization across large, city-scale search areas, this thesis presents Wide-Area Ge-

olocalization (WAG). WAG receives training with a novel loss function, called

trinomial loss, which improves image matching performance on off-center im-

age pairs. Improved matching performance on off-center image pairs enables

localization with a coarse satellite image database since each satellite image

can effectively match to a wider area of ground images. In Chapter 3, WAG

is demonstrated in simulation and consistently results in more accurate posi-

tion estimates, faster particle filter convergence, and lower computational and

storage burdens than a baseline. This contribution addresses the problem of

wide-area geolocalization and corresponds to the IROS 2022 paper [27].

2. Pose-aware embeddings for narrow field of view and off-center im-

age pairs. A limitation of existing cross-view geolocalization systems is their

reliance on panoramic cameras for their ground imagery. Chapter 4 presents

Restricted FOV Wide-Area Geolocalization (ReWAG), a framework for gen-

erating and incorporating pose-aware embeddings to create more informative

embeddings and enable accurate localization with narrow field of view cameras.
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The pose provides the neural network with additional information that tells it

where within the satellite image to look for matching features, which improves

localization accuracy with non-panoramic cameras and with off-center ground

images. This contribution addresses the problem of narrow field of view ground

image retrieval and corresponds to the ICRA 2023 paper [28].

3. Experimental demonstration of generalization with commercial off-

the-shelf sensors. Chapter 5 demonstrates ReWAG*, a generalizable version

of ReWAG, with realistic, challenging data collected using commercial off-the-

shelf (COTS) products. This data was collected on a moving car equipped with a

camera and IMU driving in the greater Boston area. These results demonstrate

the ability of this system to be practically useful without the need for specialized

hardware or computation abilities, and to generalize across weather, time of

day, camera, location, and season. This contribution addresses the problem of

generalization and corresponds to the extension of the ICRA 2023 paper [29].

4. Uncertainty quantification of geolocalization system. Chapter 6 pro-

poses GKL uncertainty, a method to generate uncertainty values for the output

location estimate of ReWAG*. This uncertainty makes ReWAG* suitable for

integration with a navigation system and enables more reliable performance in

variable conditions, like changes in weather, time of day, or testing location. The

uncertainty is measured through the estimation of the Kullback-Leibler (KL)

divergence between the distribution of particles at each time step and a Gaus-

sian distribution. GKL uncertainty can identify and quantify how multimodal

a distribution is, approximating aleatoric uncertainty. GKL uncertainty better

detects convergence than standard deviation, an alternate method for particle

filter uncertainty quantification. This contribution addresses the problem of

localization uncertainty quantification.
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1.5 Summary

This chapter has provided an introduction to cross-view geolocalization, its impor-

tance, its challenges, and the contributions of this thesis. The next chapter will begin

a deeper exploration into background on cross-view geolocalization and related works,

which will further contextualize the contributions of this thesis.
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Chapter 2

Background and Related Works

The contributions of this thesis lie at the intersection of computer vision and robotics,

specifically within the application of ground-to-aerial cross-view geolocalization to

mobile autonomous systems. Cross-view geolocalization is a field that has grown

in popularity in recent years, in part fueled by the explosion in capabilities of ma-

chine learning for computer vision. The success of convolutional neural networks,

which enable the understanding of high-level concepts from images, combined with

expanding computational resources and a growing quantity of potential training im-

ages online have combined to create the perfect conditions for rapid developments

in learning-based image understanding capabilities. Cross-view geolocalization lends

itself perfectly to learning-based computer vision. The two main challenges to cross-

view geolocalization are high-level understanding of images to compare possible image

pairs for matches and the computation to search through many possible image pairs

to find the matching pair. Computers are much better than humans at scaling com-

putation, and machine learning is steadily improving computers’ abilities to develop

high-level understanding of images. Concurrently, concern about GPS-dependence

has grown over recent years as more safety-critical systems begin to rely upon GPS.

Cross-view geolocalization is an appealing technology to reduce that reliance by sup-

plementing or replacing GPS with imagery-based localization.

The field of cross-view geolocalization includes research on matching single query

images to database images, called image retrieval, and matching sequences of query
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images to database images, often using probabilistic methods to do so. Cross-view

geolocalization also includes research on matching images from any two perspectives,

which can include drone-to-satellite or ground-to-aerial. This thesis focuses on the

latter. Many works have addressed part of the problems that this thesis identifies

in applying cross-view geolocalization to robotics, but none holistically address all

aspects of the technical gap. This overview of related works aims to provide relevant

background and to detail the strengths of existing cross-view geolocalization works

while highlighting the challenges of their application to robotics.

2.1 Localization

Mobile robot localization is the process of determining a robot’s position and orien-

tation (pose) within a map of its environment. Localization is a key component to

a navigation system, because a robot cannot arrive at its goal before first knowing

where it is [93]. Cameras are a common sensor to apply to the localization problem

due to their low cost and ubiquity; their growing use has contributed to the growth

of visual place recognition.

2.1.1 Visual Place Recognition

There are many methods for using camera imagery to localize; one method that can

be used for localization is visual place recognition (VPR) [59]. VPR aims to match

between images of the same place that were taken at different times, like in Fig. 2-1.

For example, an autonomous platform could travel around a neighborhood once to

record imagery and then return a few months later, when it would use the previously-

recorded imagery to match against for localization. Alternatively, VPR could be

used during simultaneous localization and mapping (SLAM). SLAM is aptly named,

combining localization and mapping at the same time. In SLAM, the autonomous

platform does not record images of an area in advance; instead, the map is built

while the agent is deployed and at the same time the agent localizes within that

map that is being built. In a VPR context, SLAM would mean that the agent could
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(a) A view on Memorial Drive in Cambridge, MA
on a cloudy day

(b) The same view along Memorial Drive in Cam-
bridge, MA on a sunny day

Figure 2-1: Visual place recognition matches scenes from images taken at different
times.

be deployed to collect images and build a map and if it returned to a location that

it had already mapped then it could use VPR to recognize its location within that

map. Successfully recognizing that an agent is returning to a location that it has

been to before is called a “loop closure”. Loop closures which helps to correct and

improve both the map and the localization in SLAM. VPR is a valuable field that

has demonstrated success in many different environments. However, VPR requires

matching between images taken from the same perspective, ground-view, and not all

places on Earth have existing datasets of ground-view imagery.

Visual place recognition (VPR) is a field that has some overlap with cross-view

geolocalization and which has existing literature discussing generalization across con-

ditions relevant for robotics. There generally exists a tradeoff between invariance

and discriminative power in VPR [96], meaning that better generalization to new en-

vironments yields lower accuracy. Nonetheless, there have been some developments

in VPR that have been shown to improve generalization without harming accuracy

too greatly. One technique for improved generalization is to incorporate temporal

information: for example, sequences of images [23,66,67,91,96]. VPR, like cross-view

geolocalization, is typically is performed as an image retrieval problem, where a sin-

gle query image is compared to a database of reference images to find a match. An

additional structure is necessary to localize with a sequence of images.
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2.1.2 Navigation Filters

Navigation filters are one way to incorporate temporal information across a sequence

of images for localization. Stochastic filtering determines the state of of a system

from noisy sensor observations through recursive updating. In mobile robot naviga-

tion, filtering algorithms enable determination of the robot pose. Kalman filters [46],

extended Kalman filters [79], unscented Kalman filters [103] and particle filters [22]

are some common types of navigation filters. Kalman filters are applicable to linear

systems, whereas extended Kalman, unscented Kalman, and particle filters are appli-

cable to nonlinear systems and hence are more flexible. Particle filters are beneficial

for cross-view geolocalization because they are not constrained to only modeling cer-

tain kinds of state distributions; particle filters can approximate any distribution. It

is especially relevant for cross-view geolocalization that particle filters can approxi-

mate multimodal distributions. Perceptual aliasing can cause ground images to yield

high similarity for multiple locations, which particle filters are capably of representing

in the state distribution.

Particle filters use a set of samples, or particles, to represent the probability dis-

tribution of a process given noisy observations. In cross-view geolocalization, particle

filters estimate the agent location given odometry information and similarity measure-

ments from the Siamese network. Algorithm 1 shows how particle filters use random

discrete particles, 𝑃𝑡 to estimate a probabilistic distribution of a state hypothesis at

time 𝑡, 𝑥𝑡, given control inputs, 𝑢𝑡, and sensor measurements, 𝑧𝑡.

The particle filter algorithm is made up of three main steps; propagate, weight, and

resample. The propagate step uses the process model, 𝑝
(︀
x𝑡 | 𝑢𝑡,x𝑗

𝑡−1

)︀
, to propagate

the particles. The process model consists of the control output applied to the agent

or the measured odometry of the agent with added Gaussian noise. Noise is added to

account for the uncertainty in how the control output affects the agent or inaccuracies

in the measurement of the agent odometry.

The weight step weights the particles according to how well they match the sensor

measurements using the measurement model, 𝑝
(︀
𝑧𝑡 | x𝑗

𝑡

)︀
, and normalizes the weights
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Algorithm 1 Particle Filter Step for t > 0
Require: 𝑁 particles at 𝑡− 1 : 𝑃𝑡−1 =

[︀
x𝑗
𝑡−1, 𝑤

𝑗
𝑡−1

]︀
𝑗=1...𝑁

for 𝑗 = 1 to 𝑁 do
sample x𝑗

𝑡 ∼ 𝑝
(︀
x𝑡 | 𝑢𝑡,x𝑗

𝑡−1

)︀
{Propagate}

compute 𝑤𝑗
𝑡 = 𝑝

(︀
𝑧𝑡 | x𝑗

𝑡

)︀
{Weight}

end for
normalize weights 𝑤
{Resample}
for 𝑗 = 1 to 𝑁 do

draw i with probability distribution 𝑤
add [x𝑖

𝑡, 𝑤
𝑖
𝑡] to 𝑃𝑡

end for
return 𝑃𝑡

to get a probability for each particle. For many problems, the correct measurement

model is an open question. The most accurate measurement models require the

ability to simulate what measurement 𝑧𝑡 would be received at a specific state x𝑗
𝑡 . For

more simple sensors that have well modeled characteristics, like a range sensor, it is

possible to build a fairly accurate measurement model. For cameras, it is not trivial

to simulate the image that would be received at a specific state. Image simulation is

an active field of development that often requires dedicated physics modeling of the

refraction of light and the material properties of the surfaces that light is bouncing off

of. Recent work has shown impressive and promising results on this task with neural

radiance fields [65], but it is still challenging to generate these simulated images with

limited computation [61].

The resample step replicates high probability particles and discards low probability

particles. The probability of replicating a particle is proportional to its probability.

Resampling helps to prevent all of the probability from concentrating in only a few

particles, a problem called particle degeneracy. There are many different algorithms

for resampling, including multinomial, systematic, stratified and residual resampling

[38].
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2.1.3 Particle Filter Uncertainty

To use cross-view geolocalization systems in real-life applications, it is necessary to

know measurement covariance and how sensitive the system is to conditions that

are different than the training conditions. Without knowing this it is dangerous to

trust the system outputs, which could be inaccurate [45]. There are many metrics

by which to measure this sensitivity. Although the similarity of the Siamese network

embeddings is often used as a pseudo-measurement of match confidence, previous

works have demonstrated that direct outputs like these are not accurate measures

of confidence [99]. One important area of study that can be applied to cross-view

geolocalization uncertainty is particle filter uncertainty and convergence detection.

Uncertainty can be classified as either aleatoric or epistemic [41]. Aleatoric un-

certainty is associated with the data that is input to the system. It is inherent to

the data distribution being input, hence it is irreducible. In the context of cross-view

geolocalization, aleatoric uncertainty is the uncertainty that stems from noise in our

testing images. There is an intrinsic stochasticity to all measurements, even mea-

surements that are within the distribution of our training domain. An example of

an input image that might increase aleatoric uncertainty is a ground image that does

not contain any unique scenery– maybe it depicts only a generic house that could be

found in many locations across the search area or a type of tree that is uniformly com-

mon in the search area. Another source of aleatoric uncertainty is camera resolution–

since overhead satellite image resolution does not allow the observation of the same

level of detail as the ground image, knowledge is lost when converting from the real

world to the sensor and hence the data does not hold enough information to allow

uniquely identification of the ground-satellite image match.

Epistemic uncertainty is the uncertainty that stems from errors in the model. It

occurs due to inadequate knowledge, such as a training dataset with a distribution

that is not representative of the testing dataset. Epistemic uncertainty theoretically

could be reduced with a better training procedure, a better model structure, or a

better training dataset. An example of a source of epistemic uncertainty is training
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a Siamese network on only ground and satellite images from spring, and then testing

the network on images from winter. The domain shift introduced by testing on a

different season than was trained on may cause higher uncertainty. Understanding

and quantifying the uncertainty introduced by a domain shift like this is essential for

safe use.

Aleatoric uncertainty can be approximated by characterization of the distribution

of the particles that are output by the particle filter at each time step. The mean of

the particle distribution can be calculated to estimate the location of a moving agent

within a search area. Two options for the location estimate’s use are to be reported

directly to a human user or to be integrated into a larger overall navigation system.

For either of these uses, it would be important to know both the estimated agent

location and the uncertainty associated with that estimate. For the case of the human

user, the uncertainty helps the user to understand when they can trust the location

estimate. For the case of integration into a larger navigation system, the uncertainty

helps to control how much influence the cross-view geolocalization estimate has on

the overall localization estimate. The Kalman filter directly estimates uncertainty

with a covariance matrix at each time step. However, the particle filter represents

a probability distribution with its particle cloud; it does not represent uncertainty

with a single number. Although particle filters do not output a numeric uncertainty

estimate, the real goal of estimating its uncertainty is to determine whether the

particle filter has accurately converged to the true location.

In particle filter literature, convergence typically refers to the mean squared error

of the particles converging to zero– that is, the average squared difference between the

particle locations and the actual agent location [19]. This definition of convergence

requires knowledge of the true agent location and is mostly used in theoretical work,

not practical implementations. We do not have access to the true agent location

in the cross-view geolocalization application, so this definition of convergence is not

particularly useful. Confusingly, the term convergence is sometimes also used to refer

to the state where particles are clustered around one location, regardless of whether

that is the actual agent location. When the cluster location is anything other than the
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true agent location, this is often called false convergence or divergence. For clarity, this

thesis uses the term “convergence” to generally refer to the particles being clustered

around one location. In cases where the agent location is known, if this cluster location

is the agent location then it will be referred to as true convergence, and if the cluster

location is not the agent location then it will be referred to as false convergence.

Particle filters can be effective tools for approximating probability distributions

by integrating sensor measurements and agent motion odometry. In some theoretical

work, true convergence of a particle filter is guaranteed under a number of conditions

[19]. However, in practical implementation, there must be a finite number of particles,

and hence accurate filter convergence is not guaranteed. Each particle represents a

potential agent state, and a finite number of particles can only represent a finite

number of states. Sometimes, inaccurate motion information, bad initialization, or

highly noisy measurements cause all particles to be far away from the true state.

The standard particle filter then has no way to recover from this; without a restart,

particles may never reach the true state [72]. Nonetheless, the resampling step of

particle filtering reduces the number of unique states that are represented and hence

particles tend to converge, regardless of whether they represent the true state.

Differentiating between true and false convergence is essential for reliably and

accurately delivering particle filter estimates online in real-world problems, but the

literature on the topic is sparse [30]. One existing metric for false convergence de-

tection is the Kullback-Leibler (KL) divergence between the probability distributions

of the current observation and of the particle cloud [97]. KL divergence, defined in

Eq. 2.1, is a common measure of the difference between a probability distribution 𝑃

and a reference probability distribution 𝑄. The idea behind the KL divergence metric

for false convergence detection is that in cases like the “kidnapped robot” problem

and the “wakeup robot” problem, the observations will differ from the particle dis-

tribution. The “kidnapped robot” problem refers to the scenario where a robot is

moved to a new location by an outside force. The kidnapped robot problem com-

monly causes localization system failures, as robotic systems frequently assume that

the robot moves only through its own power. The “wakeup robot” problem is a spe-
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cial case of the kidnapped robot problem where the robot is told that it has been

moved. In these scenarios, there is a sudden change in the robot’s motion and these

non-smooth trajectories may not be handled well by particle filter movement models,

resulting in the observations and particles having different distributions. However,

this method does not account for false convergences caused by measurement noise

or bad initialization, which are common sources of error in real-world particle filter

deployment.

𝐷𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑥∈𝒳

𝑃 (𝑥) log
𝑃 (𝑥)

𝑄(𝑥)
(2.1)

2.2 Machine Learning

Renewed focus on machine learning in the past decade has resulted in groundbreaking

results on many difficult tasks. Machine learning is a technique for teaching computers

tasks through examples. The computers find patterns in the example data and learn

to use those patterns to inform decision making, all without explicit instruction from

a human.

Computer vision is a field that focuses on making computers understand the con-

tent of visual images. Humans have adapted over thousands of years to have visual

processing systems that are both sensitive to fine grain detail and capable of un-

derstanding imagery at a higher level of abstraction. Traditional, non-learning ap-

proaches to computer vision have achieved modest success, but machine learning has

been responsible for the greatest recent advancements in computer vision. Artificial

neural networks, commonly referred to as neural networks, are a type of model used in

machine learning that aim to mimic the neurons and synapses in a human brain [43].

Neural networks typically layer multiple computational nodes or “neurons” connected

by edges. The architecture of nodes and edges gives neural networks the structure

that allows them to learn complicated concepts by adjusting the weights of the nodes.

There are several different approaches towards training neural networks; the train-

ing approach typically depends on the training data that is available. Supervised
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learning uses training data that is labeled with ground truth information that the

network is learning to predict [49]. However, labeled data often requires human effort

to provide labels and can be expensive or difficult to obtain. Unsupervised learning

uses unlabeled training data that the network learns to group based on similarities,

but as a result its applications are mostly limited to clustering problems [34]. Semi-

supervised learning combines some labeled data and some unlabeled data to reduce

labeling burden while still being applicable to different kinds of problems [118]. Su-

pervised learning is typically used for the task of cross-view geolocalization because

of the wide availability of images labeled with the locations that they were taken at.

Neural networks are trained by minimizing loss functions. The neural network

takes an input from the training data and forward propagates it through the network

to produce an output. In supervised learning, the loss function is used to compare

the output to the ground-truth label for that input data. Backpropagation is then

performed, which repeatedly adjusts the network connections to decrease the loss [83].

2.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural networks that are espe-

cially well suited for computer vision. AlexNet [50] initiated the rise in popularity of

CNNs for computer vision tasks with its impressive performance at classifying images

into 1000 classes based on their content. CNNs use a convolution, a type of mathe-

matical operation, in at least one of their layers. Convolutions produce a function that

describes how one input function influences another input function; in essence, they

help the neural network to learn complicated relationships between visual features.

CNNs for computer vision are frequently used for either image classification or

localized detection, which are illustrated in Fig. 2-2. Image classification is the task

of assigning a label to an entire image based on its contents. Classification is typically

used when an image contains only one relevant label. Localized detection is the task

of detecting something in an image and both determining what it is and where it

is within the image. Localized detection includes both semantic segmentation and

object detection. Semantic segmentation is the task of labeling pixels in an image with

44



(a) Image classification (b) Semantic segmentation (c) Object detection

Figure 2-2: Classification and localized detection. Classification labels the entire
image as containing cat. Semantic segmentation labels pixels associated with cat.
Object detection detects cat and produces a bounding box of where cat is in the
image.

a class. Object detection is the task of detecting a class and producing a bounding

box for that class within the image.

The output layer of a classification CNN uses an activation function to directly

predicts the image label. Common classification activation functions include linear,

sigmoid, and softmax. The linear activation function generates an output that is

directly proportional to the input. The sigmoid activation function is shown in Eq. 2.2

and is typically used for binary classification. The softmax activation function is

shown in Eq. 2.3 and is typically used when there are multiple classes in an image.

Sigmoid and softmax bound the output of the network between 0 and 1, so they are

often treated as a probability. For example, a softmax activation function will output

a vector with a value between 0 and 1 for each label class. The value for each label

can be interpreted as the probability that the image contains that label.

𝜎(𝑥) =
1

1 + 𝑒−𝑥
(2.2)

𝑆(𝑥)𝑖 =
𝑒𝑥𝑖∑︀𝑛
𝑗=1 𝑒

𝑥𝑖
, (2.3)
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2.2.2 Vision Transformers

Human visual processing systems select salient features to receive a higher level of

focus in cluttered environments in a cognitive process called visual attention [98].

In machine learning, attention refers to a mechanism that helps the neural network

determine what features are important, and use that relative importance of different

features to improve performance. For computer vision tasks, attention typically has

a spatial component. Visual attention helps the network learn the spatial layout

of important features, which in turn improves the network’s detection of the most

discriminative features [110]. Visual attention is often incorporated as a component

in CNN architectures.

Transformers take the concept of attention and build an entire network architec-

ture around it [76]. Transformers utilize self-attention, which is a method of compar-

ing and relating different input sequence members. Self-attention helps the network

model different dependencies for each feature, building up complex relationship struc-

tures and spatial reasoning. Vision transformers (ViT) have demonstrated impressive

results on computer vision tasks [24], and recent papers have studied their applica-

tion to the cross-view geolocalization problem with success [115]. However, concerns

remain about the level of training and computational resources required to achieve

success with ViTs. This thesis focuses on cross-view geolocalization with CNN archi-

tectures, but some work that is referenced and compared against uses ViTs.

2.2.3 Siamese Networks

Deep learning-based approaches have vastly improved cross-view image matching per-

formance [106]. Similarity learning is an area of study in machine learning that

learns measures of similarity between pairs of objects, like images. Similarity learn-

ing can be applied to many different tasks, like facial recognition [32], person re-

identification [17], one-shot classification [48], and image or video retrieval [108].

There are different approaches towards training similarity learning systems including

classification, regression, and ranking similarity learning. In a classification approach
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to similarity learning, pairs of objects are labeled as either matching or non-matching

and neural network is trained to predict a binary label for an object pair. In a re-

gression approach to similarity learning, pairs of objects are labeled with a measure

of their similarity and the neural network is trained to predict a value for object

pair similarity. In a ranking approach to similarity learning, the relative similarity

between a set of objects is provided and the neural network is trained to predict the

relative similarity between multiple objects. Relative similarity learning is well-suited

towards large datasets because it requires minimal data labeling while enabling lots

of data to be used in training.

The most popular approach to ranking similarity learning in cross-view geolo-

calization, Siamese networks, were originally designed to automatically analyze and

verify written signatures [11]. Siamese networks were designed with the principle of

few-shot learning, meaning that they are meant to generalize across data with only a

few training examples, which is a key challenge of cross-view geolocalization. Siamese

networks build off of classification networks like VGGnet [89], GoogLeNet [92], and

Resnet [36] by essentially learning a new class for each ground-satellite image pair.

Siamese networks consist of two identical neural networks that are trained jointly;

for cross-view geolocalization, one network embeds ground images and one network

embeds satellite images. A generic example of a Siamese network architecture is

shown in Fig. 2-3. The jointly trained networks produce an embedding scheme that

brings matching image pairs close together and non-matching image pairs far apart in

embedding space. The subnetworks of Siamese networks have identical architectures

and identical weights. Siamese-like networks, which have identical architectures but

different weights, have been demonstrated to have slightly favorable performance over

Siamese networks for cross-view geolocalization [102].

Relative similarity learning networks, including Siamese networks for cross-view

geolocalization, are often trained with variations of the triplet loss. Hinge loss [15,73]

is one variation of triplet loss and is expressed as

ℒtriplet = 𝑚𝑎𝑥(0, 𝑚+ 𝑑𝑝𝑜𝑠 − 𝑑𝑛𝑒𝑔) (2.4)
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Figure 2-3: A generic Siamese network for cross-view geolocalization.

where 𝑚 is a margin that determines how far apart the image pairs should be, 𝑑𝑝𝑜𝑠

is the distance between positive, matching image embedding pairs, and 𝑑𝑛𝑒𝑔 is the

distance between negative, non-matching image embedding pairs. Distanced-based

logistic (DBL) loss, also called soft-margin triplet loss [102] is a type of triplet loss

that is more similar to softmax loss:

ℒDBL = log
(︀
1 + 𝑒(𝑑𝑝𝑜𝑠−𝑑𝑛𝑒𝑔)

)︀
. (2.5)

The log-loss structure allows the loss to be continuous, while still reducing the loss

magnitude as the distance between the positive and negative embedding pairs in-

creases. Weighted soft-margin triplet loss,

ℒweighted = log
(︀
1 + 𝑒𝛼(𝑑𝑝𝑜𝑠−𝑑𝑛𝑒𝑔)

)︀
, (2.6)

was proposed in [40] and shown to be beneficial by providing additional control over

the strength of the loss with the 𝛼 term. Binomial deviance [112] is expressed as

ℒbd = log(1 + 𝑒−𝛼(𝑆p−𝑚)) + log(1 + 𝑒𝛼(𝑆n−𝑚)), (2.7)

where 𝑆𝑝 is the cosine similarity between a positive image embedding pair and 𝑆𝑛 is

the cosine similarity between a negative image embedding pair. Binomial deviance

enables improved training performance when there are many more negative pairs than
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positive pairs, as is the case in cross-view geolocalization training. Further, [116]

proposed binomial loss,

ℒbd =
log(1 + 𝑒−𝛼𝑝(𝑆p−𝑚𝑝))

𝛼𝑝

+
log(1 + 𝑒𝛼𝑛(𝑆n−𝑚𝑛))

𝛼𝑛

. (2.8)

Binomial loss allows 𝛼 and 𝑚 to be independently adjusted for positive and negative

pairs, hence allowing the loss function to prioritize pulling positive samples together

with more strength than negative pairs are pushed apart.

2.2.4 Generalization

Neural network generalization typically refers to a neural network achieving satis-

factory performance on data that was not part of its training data. However, there

are many axes across which testing data may differ from training data, and neural

networks may generalize well across some axes, but not across others. In [74], the

authors show that neural networks generalize better on data that is more similar to

the training data than on data that is less similar; i.e. generalization is not consistent

across all axes. For example, in cross-view geolocalization, one axis that testing and

training data might differ across could be location. A neural network may generalize

from training images taken in Chicago to testing data taken in Boston. Even so, if the

Chicago images and the Boston images were both acquired from Google Street View

images, then they may differ in location but stay the same in other relevant axes, like

weather, lighting, camera quality, season, and time of day. Compared to training im-

ages of Google Street View from Chicago, Google Street View images from Boston may

be fairly similar. Many cross-view geolocalization works demonstrate generalization

from one dataset to another [94, 111, 114, 119], but these are often between datasets

that were made up of Google Street View images, like CVUSA [106], CVACT [56],

and VIGOR [117]. Less frequently discussed is generalization across conditions that

would more frequently occur between training and deployment datasets in robotics

applications: weather, season, time of day, and camera.

One technique for improving generalization of image-based neural networks is
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training data augmentation. Training data augmentation is a method to artificially

increase the size of a training dataset for a neural network by applying transfor-

mations to the existing data. Data augmentation makes modified versions of the

training data that change the appearance of an image without changing the content.

Augmentations often improve neural network robustness to changes that should not

affect the neural network output. Common augmentations include geometric trans-

formations like shifting, rotating, and mirroring, color space transformations like color

intensification and brightness modification, cutouts, kernel filtering like sharpening or

blurring, and image mixing. Existing object [69] and place [16,107] recognition works

implement forms of data augmentation to improve generalization, but cross-view ge-

olocalization works rarely incorporate data augmentation. Cross-view geolocalization

work [105] did incorporate a variety of data augmentations and showed promising

results on generalization across weather conditions, but were limited to testing on

images with simulated weather changes.

2.3 Cross-view Geolocalization

Ground-to-aerial cross-view geolocalization pushes the limits of previous image match-

ing techniques because it involves very different viewpoints. Initial works attempted to

address this challenge using traditional computer vision techniques like SIFT, SURF,

FREAK, and PHOW descriptors [101], which have relatively low image retrieval,

semantic segmentation which with lidar in addition to images [100], image princi-

pal components and correlation, which has high computational cost [42], and finding

correspondence between building facades [10], which requires operation in an urban

area. Some work has combined learned or hand-tuned perception systems with robust

data association algorithms [7, 8, 71], which use the relative locations of features like

parking spaces to determine alignment with compelling results on small search areas.

Typical cross-view geolocalization approaches are based on the goal of one-to-one

image retrieval: given a ground image and a database of satellite images, determine

which satellite image is the best match. Performance is measured as the recall at top-
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k, which is the fraction of ground images that successfully rank the correct matching

satellite image in the top-k of the entire satellite image database. Recall at top-1 of

existing approaches is rising, but is not yet 100%. One effective way to determine

an accurate location estimate is to match image sequences [113], but this work still

focuses on image retrieval and does not localize across long paths over time. Unlike

image retrieval focused systems, this thesis focuses on maximizing the localization

information gained from combining image matches over time.

Previous work [101] showed that as search area size increases, cross-view geolo-

calization performance degrades. Larger search areas require larger databases with a

higher number of satellite images that each query ground image must be compared

against. A larger database means that a cross-view geolocalization system needs to

be more discriminative between matching and non-matching image pairs. This thesis

uses the term “wide-area” or “city-wide” geolocalization to refer to localizing a ground

image within a search area that is the size of a city or larger. Some previous works

use the term “wide-area” geolocalization to mean localizing a ground image to the city

that it was taken in, out of many possible cities [106], which this thesis refers to as

“cross-city” for clarity. Wide-area and cross-city geolocalization have vastly different

challenges; city-wide geolocalization yields many reference satellite images with very

similar appearance, cross-city geolocalization yields reference satellite images with

greater appearance diversity. If 100 cities are included in a cross-city geolocalization

task, and all images for the correct city are ranked highly, then recall at top-1% would

be high. However, this would not mean that the exact location of the ground image

could be determined, just that the city could be determined. With only one city in a

geolocalization task, then the Siamese network needs to learn much more discrimina-

tive and specific features to be able to tell apart one location in a city from another

location in that same city.

2.3.1 Particle Filter Implementations

Several previous works have used a particle filter as temporal localization to improve

cross-view geolocalization performance [40, 47, 100, 101, 109]. Using a particle filter
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(a) Ground view image (b) Matching satellite
image

Figure 2-4: A centered ground-satellite image pair. Location where ground image
was taken from is marked on satellite image with circle.

improves the localization performance over using image retrieval alone, but previous

works that have used this approach require dense sampling of the localization area into

satellite images, which generates a large database – (e.g., a satellite image for every

5 m [40] or one for each particle [47]). Those approaches must sample satellite images

densely because their neural networks are designed assuming that all ground images

will be centered within their matching satellite image, like the image pair example in

Fig. 2-4. The large number of satellite images generated from dense sampling makes

city-wide localization infeasible due to the computational and storage burden, since

an embedding must be stored and a similarity must be calculated for each database

image.

Most previous image retrieval-focused works [14, 54–56, 81, 87, 102] could not be

combined with a particle filter that uses a coarsely sampled satellite image database,

because particle filters with coarsely sampled satellite databases require matching

with both centered and non-centered image pairs. Ref. [117] trained their cross-view

geolocalization system to be able to recognize “semi-positive” image pairs, or ground-

satellite pairs where the ground image was taken in an off-center position within the

satellite image. However, their system was image retrieval focused and assumed that

there may be multiple reference satellite images for each ground image. As such, they

prioritized retrieving the satellite image that was closest to a centered pair with the

ground image, causing less accurate image retrieval with semi-positive image pairs.

A coarse satellite image-based particle filter system would only have one satellite
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image for each ground image, and the Siamese network should be able to recognize a

semi-positive pair just as well as a positive pair.

Although previous cross-view geolocalization works have used particle filters, little

has been written about the best measurement model to be used with that particle

filter. The measurement model shown in Algorithm 1, 𝑝
(︀
𝑧𝑡 | x𝑗

𝑡

)︀
, determines what

weight, 𝑤𝑡, each particle is assigned for a given measurement, 𝑧𝑡. For cross-view

geolocalization the measurement 𝑧𝑡 is the Siamese network output, but there is not

yet a standard measurement model that has been shown to work best for cross-

view geolocalization. Existing cross-view geolocalization systems that utilize particle

filters [40, 47, 100, 101, 109] either directly use image pair similarity as measurement

probability as seen in Equation 2.9 or use an exponential measurement model as seen

in Equation 2.10, where 𝑑𝑗𝑡 is the Euclidean distance in embedding space between

image pair 𝑗 at time 𝑡, and 𝐵 is a tuning parameter. However, Siamese network-based

cross-view geolocalization systems are typically trained with loss functions that pull or

push distances between positive and negative image embedding pairs like contrastive

loss [47] or triplet loss [40, 56, 87]. These loss functions change embedding distance

of positive pairs relative to negative pairs, they do not directly change the absolute

distance between positive or negative pairs in isolation.

Image pair distance or similarity is not designed to stand independently as a

measurement of match probability. The Siamese network training process focuses on

relative distance or relative similarity between sets of image pairs. Even the metrics

that are typically used to report on cross-view geolocalization accuracy reflect this;

recall at top-k is a measure of how similar the correct satellite image is to the ground

image relative to all of the other satellite images. Similarity or distance of an image

pair gives very little information without the context of the other image pairs that

are being compared against, yet existing measurement models are absolute, using 𝑑𝑗𝑡

of an image pair in isolation to come up with a measurement likelihood.

𝑃 (𝑧𝑡|𝑥𝑡) = 𝛽𝑑𝑗𝑡 , (2.9)

𝑃 (𝑧𝑡|𝑥𝑡) = 𝛽𝑒−𝛽𝑑𝑗𝑡 (2.10)
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2.3.2 Narrow Field of View Ground Image Retrieval

Many previous works on cross-view geolocalization have focused on matching panoramic

ground images to overhead satellite images [14, 56, 81, 87, 101, 109, 117]. Panoramic

ground images are less challenging to match with because they contain more scenery

and therefore more information. Overhead images contain a 360° view of the scenery

around a centered ground image. Hence matching between a panoramic ground im-

age and an overhead image is more straightforward because there is greater overlap

between the scene content in both views. Additionally, panoramic cameras result in

one fewer degree of freedom in matching images because orientation does not affect

scene content.

Non-panoramic ground cameras make cross-view geolocalization more difficult due

to the reduced number of visible features in the image and due to the matching satel-

lite features being concentrated within one area of the satellite image instead of spread

throughout it. The unknown orientation of the ground camera is a key factor in this

problem. Some previous works have developed methods to incorporate an under-

standing of orientation into the cross-view geolocalization system, like by training

the Siamese network with an auxiliary task to learn the concept of orientation and

estimate it [13, 67, 102], appending orientation maps to images to be input to the

Siamese network [56], by using Dynamic Similarity Matching (DSM) to calculate the

correlation between ground and satellite images [88], or by jointly embedding the

full satellite image as well as the satellite image portion that is visible in the limited

FOV ground image [82]. Instead of jointly determining the most highly matching

satellite image and the orientation, [86] assumes that the satellite image has already

been determined, and they then use pose optimization to estimate the pose within

that satellite image. One previous method [116] uses Grad-CAM [84] to generate

activation maps of the ground and satellite images. Grad-CAM is a method to gener-

ate activation maps that indicate regions of the images that contribute most to their

similarity. Since areas of high activation in the ground image are likely to correspond

to areas of high activation in the satellite image, the pair of activation maps are
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compared and aligned to estimate the predicted angle offset between the ground and

satellite image. However, the Grad-CAM activation maps require gradient computa-

tions, which increase computational overhead. These works, not designed for mobile

robotics constraints, require many search iterations, polar transformations and data

augmentations at runtime and hence may be too computationally demanding for

real-time robotics.

In [56], the authors assume that the orientation of the panoramic ground image

relative to the satellite image will be known, and this information is encoded in

the input to the Siamese network for both testing and training. They note that

if previous geolocalization Siamese networks directly addressed orientation at all,

they did so with only one number to represent orientation. They highlight that the

geolocalization problem actually involves two spherical angles– azimuth and altitude.

Altitude is essentially the pitch of a ground camera and azimuth is the yaw. To address

this, they develop the idea of per-pixel orientation maps that define the azimuth and

altitude for each pixel of both the ground and satellite image. These orientation maps

have one channel for azimuth and one for altitude, and they are visualized as hue

and saturation values respectively. The orientation maps are appended to the RGB

ground and satellite images during training to provide additional supervision to the

Siamese network, which improves image retrieval performance by approximately 25%.

However, [56]’s work does not address non-panoramic ground images and generating

these UV maps requires high levels of computation if the ground image is not centered

within the satellite image.

More recent works tend to treat orientation as an aspect of the problem that can be

solved at the last step [116], or do not directly encode or estimate it at all [87,115]. In

[116] orientation-invariant embedding schemes are learned through a combination of

global mining, binomial loss, and training data augmentation with random rotations.

Spatial Aware Feature Aggregation (SAFA) [87] is an attention mechanism that helps

the network to learn image descriptors regardless of the large viewpoint difference

between ground and satellite views. TransGeo [115] uses a vision transformer instead

of the typical convolutional neural network (CNN) approach. This attention-focused
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approach embeds patches of the images into tokens with learnable position tokens,

which gives it a more flexible method for learning about orientation and position while

embedding images. Although orientation-blind embedding schemes improve image

retrieval when orientation is unknown, these methods do not have a mechanism by

which the ground camera pose can be input when modeling with a particle filter.

The assumption that the ground and overhead images must be matched without

any knowledge of the ground camera orientation makes sense if a cross-view geolo-

calization system is designed to be a standalone image retrieval device [13, 54, 55,

102, 106, 116]– i.e. a system where a single ground image will be input and the cor-

rect matching satellite image must be selected out of a database of possible satellite

matches. An independent ground image with no context will have no associated ori-

entation knowledge. However, the goal of this thesis is temporal localization of a

moving ground agent, not standalone image retrieval. When using a particle filter for

temporal localization, each particle has an associated pose.

Many of these existing works with standard ground cameras pay attention to the

challenge presented by unknown orientation of the non-panoramic ground images,

but their solutions do not directly address the associated challenge of position. Ori-

entation is just one part of the difficulty of matching non-panoramic ground images.

The other part of the challenge is the position of the ground agent within the satellite

image. If the ground agent is centered within the satellite image then orientation

gives a lot of information about where in the satellite image the ground agent will

be seeing features. However, if the ground agent is not in the center of the satellite

image then position also greatly impacts ground image content, as shown in Fig. 2-5.

The existing works in the field of cross-view geolocalization have achieved impres-

sive results, and new papers with even better results are published each month. This

thesis builds off of the great work that has come before it, combining key concepts

from different works, to effectively apply cross-view geolocalization to autonomous

mobile systems.
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(a) Centered ground agent. (b) Off-centered ground agent. (c) Off-centered ground agent.

Figure 2-5: Centered and off-centered ground agents. Agent is represented by bulls-
eye, orientation of camera is represented by arrow, non-visible content of satellite
image is grayed out. Position greatly affects the visible content, even though all three
figures have the same orientation.

2.4 Summary

This chapter has provided background on cross-view geolocalization between ground

and aerial images and the associated challenges in deploying it for mobile robotics.

Cross-view geolocalization is the process of matching between images of vastly dif-

ferent viewpoints. It is often used to perform one-off localization of a single ground

image, localizing it generally to one city out of many, or localizing it precisely within a

very small search area. Previous works have not localized across wide-area, city-scale

search areas, which are necessary for longer term autonomy. Most prior works focus on

cross-view geolocalization with panoramic ground images, whereas autonomous plat-

forms are more likely to use limited FOV cameras. Generalization across variables

other than location in prior works has also rarely been demonstrated or discussed.

Additionally, previous particle filter-focused works have output a state estimate but

have not provided a confidence or uncertainty measurement in that state estimate,

which makes integration with a navigation system difficult.

The algorithmic solutions detailed in this thesis have been explicitly designed for

localization of mobile autonomous systems. Chapter 3 introduces WAG, which trains

its Siamese network with trinomial loss to improve performance on off-centered satel-

lite images and hence enable localization with city-scale search areas. Chapter 4
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introduces ReWAG, which generates pose-aware embeddings to improve localization

performance on limited FOV ground images. Chapter 5 introduces ReWAG*, an ex-

tension of ReWAG that is trained with data augmentation to boost generalization

performance across changes in weather, time of day, and season. Finally, Chapter 6

introduces GKL divergence tracks the particle filter distribution to measure conver-

gence uncertainty.
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Chapter 3

Wide-area Geolocalization

3.1 Introduction

Wide-area Geolocalization (WAG) is a temporal cross-view geolocalization system

with advanced ability to localize across a wide, city-scale search area, enabling ac-

curate localization in GPS-denied or GPS-degraded environments. The large search

area that WAG is capable of localizing within expands the potential applications of

cross-view geolocalization. WAG consists of a Siamese network and a particle filter to

combine odometry with images over time to achieve accurate localization on a scale

not previously demonstrated. Before deployment, WAG takes in satellite imagery

of the search area and as the ground agent moves, it takes in ground imagery and

odometry. Over the course of 10 to 20 km, WAG localizes down to around a few

dozen meters of estimation error.

3.2 Methods

3.2.1 Overview of Approach

Wide-Area Geolocalization (WAG) [27] consists of a strategy for creating a satellite

image database, a Siamese network, and a particle filter (see Fig. 3-1). This system

decreases computation and storage requirements and decreases estimation error and
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Satellite Embedding Generation (Before Runtime)

Similarity Matrix Generation (During Runtime)
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Figure 3-1: Diagram of WAG. Satellite embeddings are generated before runtime
with the satellite image database and the Siamese network. During runtime, the
ground embedding is generated at each time step and combined with the satellite
embeddings to create a similarity matrix. Odometry and measurements from the
similarity matrix are input to the particle filter with a Gaussian measurement model
to generate a location estimate.

convergence time as compared to previous work [40, 47, 101]. In this chapter and in

chapters 4 and 5, convergence will refer to the particle filter reaching a standard devia-

tion and an estimation error below 60 meters. WAG requires a loosely informed guess

(within approximately 2 km) of the starting state of the ground agent, a bounded

search area of approximately 20 km by 20 km or less with associated satellite imagery

of that area, ground-view panoramic images at each time step, and odometry between

each time step.

WAG matches ground images to satellite images and uses these matches to inform

its state estimate. Like many cross-view geolocalization systems, WAG employs image

retrieval to perform this ground to satellite matching. This means that WAG matches

image pairs, it does not match a ground image to a specific location within a satellite

image. Hence, the search area needs to be discretized into a database of individual

satellite images for WAG to localize. The strategy for discretizing the search area

affects the size of the satellite database and the difficulty of matching between the

ground and satellite images. WAG coarsely discretizes the search area to construct

the database of satellite images, meaning that the satellite images it generates are not
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overlapping. Section 3.2.2 describes WAG’s method for satellite database generation.

WAG uses a Siamese network, described in Section 2.2.3, to match between ground

and satellite images. The Siamese network is a type of neural network that generates

embeddings of ground and satellite images that are similar if the images are match-

ing. These embeddings are essentially low-dimensional vector representations of input

images. Generating embeddings from the Siamese network is not instantaneous and

as a result, it is desirable to generate satellite embeddings before runtime. WAG

uses its Siamese network to preprocess all satellite images in the database to accel-

erate measurement updates. During runtime, the ground image is embedded by the

Siamese network and the similarity between the ground embedding and each satellite

embedding is calculated. These similarities produce a similarity matrix, which is a

spatial representation of the relative similarities of the ground image with all satel-

lite images in the search area. Section 3.2.4 describes the loss function that WAG’s

Siamese network is trained with to improve performance with a coarsely discretized

search area.

WAG combines a Siamese network with a particle filter, a probabilistic method for

recursively estimating a state as more measurements are collected. The particle filter

receives measurements from the similarity matrix and odometry as input to produce

a location estimate at each time step. Section 3.2.5 describes WAG’s particle filter

design and models.

3.2.2 Satellite Image Database Generation

Cross-view geolocalization is performed by matching from ground to satellite images.

Ground images are obtained from the agent at each time step as it moves. Satellite

images are obtained by delimiting a search area and discretizing that search area

into individual satellite images. The search area must be discretized because WAG

matches between pairs of ground and satellite images, it does not match a ground

image to a location within a satellite image. The images generated from this dis-

cretization form the satellite image database, but the method of discretization affects

the number of satellite images and how easily they can be matched against.
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Semi-positive

Positive

Figure 3-2: Positive pairs vs. semi-positive pairs. For the satellite image outlined in
solid black, a ground image taken in the green shaded center region (ground image
shown outlined in green) makes a positive pair and a ground image taken in the blue
shaded region (ground image shown outlined in blue) makes a semi-positive pair.
Previous works only match between positive pairs.

Previous works require dense discretization of the localization area for satellite

images [40,47] because of how their neural networks were trained. In particular, [40,

47] require specific constraints on where the ground images are taken, such as requiring

ground images to be centered within their matching satellite images. Figure 3-2

shows the difference between positive (centered) image pairs and semi-positive (non-

centered) pairs. In previous works, each ground image could only be matched to the

positive part of a satellite image– the middle 50% of the satellite image, as shown

in Fig. 3-2. Hence, the satellite database must cover the search area in overlapping
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satellite images, significantly increasing the number of satellite images needed for

localization within an area. However, a higher number of satellite images increases

the amount of computation that must be done to match each ground image to a

satellite image because at each time step the ground embedding has to be compared

to the satellite images, and more satellite images requires more computation. Hence,

dense search area discretization results in a system that cannot function close to

real-time on large localization areas.

Instead, WAG takes an alternative approach that coarsely discretizes the localiza-

tion area and enables WAG to also use the blue portion of Fig. 3-2 for localization.

WAG’s Siamese network is trained to match both centered (positive) image pairs and

non-centered (semi-positive) image pairs, so that more of the area within a satellite

image can be matched against. Thus WAG can more fully utilize each satellite image

and does not need to cover the search area in overlapping satellite images. As a

result of this process WAG can generate a satellite database with 10% of the images

required for previous works [40].

3.2.3 Training Data

WAG is trained with the VIGOR [117] training dataset due to its inclusion of semi-

positive image pairs. The VIGOR dataset consists of images obtained from the Google

Maps Static API: 90,618 aerial images of size 640 × 640 taken at zoom level 20,

and 105,214 panoramic ground images of size 2048 × 1024 taken at zoom level 2 of

Chicago, San Francisco, Seattle, and New York City. The VIGOR dataset includes

aerial images paired with positive and semi-positive ground images; positive images

are taken from the center 50% of the paired satellite image and semi-positive images

are taken from the outer 50% of the paired satellite image.

3.2.4 Trinomial Loss

WAG uses a Siamese network, which are described in Section 2.2.3, for matching

between ground and satellite images. WAG’s Siamese network consists of a neural
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network for satellite images and a neural network for ground images with matching

architectures. WAG’s Siamese network architecture is based on that from [117], which

developed the VIGOR cross-view geolocalization system. VIGOR’s Siamese network

uses a backbone that consists of a classic architecture for image processing, VGG-16.

VGG-16 is the sixteen layer version of the convolutional neural network developed

in [89] for the task of image recognition. VIGOR also incorporates the Spatial-aware

Position Embedding submodule (SPE) from the spatial aware feature aggregation

(SAFA) module developed in [87] to improve spatial awareness. SAFA is a module

that takes feature maps from a backbone convolutional neural network, like VGG,

and outputs a spatially aware feature map. A spatially aware feature map encodes

spatial layout information into feature maps, which represent the output activations

for different filter layers of the neural network. The feature maps are generated by

combining max pooling, which selects the most prominent features, with a spatially-

aware importance generator, which encodes spatial combinations of those prominent

features. The spatially-aware importance generator employs self-attention, which

helps it to learn which features are more prominent for the cross-view geolocalization

task and their relative spatial locations within the images. Multiple spatially aware

feature maps with different weights can be generated to encourage maps to focus on

different features, and they can then be aggregated as one output feature descriptor.

WAG uses 8 spatially aware feature maps, as VIGOR did. In [87], the authors

use a polar transform on aerial images before inputting them into their Siamese

network, however [117] and this thesis does not perform polar transform due to the

focus on non-centered image pairs. Additionally, the polar transform adds significant

computational requirements and thus is less appealing for real-time use.

WAG’s neural network is trained with triplet loss (Eq. 2.5) and has additional

training with a new loss function to improve its performance on non-centered semi-

positive pairs and therefore enable coarser discretization of satellite images. This

additional network training is performed with trinomial loss, a new loss function that

builds off of binomial loss (see Section 2.2.3 for background on cross-view geolocaliza-

tion loss functions) to improve matching performance with semi-positive, non-centered
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image pairs. The loss function is the part of Siamese network training that measures

how well the training data is being modeled by the network; lower loss means that

the training data is being modeled better. The training process aims to minimize

loss by adjusting the neural network parameter values. In similarity learning, the

loss function determines how much to pull together positive image embedding pairs

and how much to push apart negative image embedding pairs. Binomial loss [116] in

Eq. 3.1 was an advancement of the binomial deviance loss from [112] that separated

the tuning parameters for positive and negative pairs to increase the strength with

which positive pairs are pulled together. WAG’s trinomial loss takes binomial loss

one step further by separating out the parameters for semi-positive pairs in Eq. 3.2’s,

creating:

ℒb =
log(1 + 𝑒−𝛼p(𝑆p−𝑚p))

𝑁p𝛼p
+

log(1 + 𝑒𝛼n(𝑆n−𝑚n))

𝑁n𝛼n
(3.1)

ℒsemi =
log(1 + 𝑒−𝛼semi(𝑆semi−𝑚semi))

𝑁semi𝛼semi
(3.2)

ℒtrinomial = ℒb + ℒsemi. (3.3)

Here the (·)𝑝, (·)𝑛, and (·)semi subscripts refer, respectively, to the positive, negative,

and semi-positive image pair types. Additionally, 𝛼 is the weight that adjusts the

how strongly each pair type is pulled together, 𝑆 is the cosine similarity of a pair of

embeddings, 𝑚 is the margin to be used for that pair type (where margin is the goal

cosine similarity for a pair type) , and 𝑁 is the number of pairs of that type. ℒb is

the sum of a positive and negative loss term, introduced in [116]. Works previous

to [117] treated semi-positive pairs as the same as negative pairs, since they assumed

that each ground image would always have a perfectly centered satellite image that

should be treated as its only match. This was inherent in the performance metrics

used – recall at top-k measures how similar the embedding of the one true centered

satellite image is to the query ground image. VIGOR [117] incorporated a new loss

function to improve performance on semi-positive pairs, but our testing determined its

performance drops from 41.1% recall on top-1 for positive image pairs to 3.7% recall
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on top-1 for semi-positive image pairs. VIGOR incorporated semi-positive pairs in

training, but it assumed that semi-positive pairs would be available in addition to

positive pairs for each location, while WAG assumes that often only semi-positive

pairs will be available and has more consistent performance between positive and

semi-positive pairs. Our additional trinomial loss training improves performance on

semi-positive pairs and enables coarse satellite image discetizing in which a ground

image will not typically correspond to the center of an image in the satellite image

database.

3.2.5 Particle Filter

WAG combines a Siamese network with a bootstrap particle filter to perform tem-

poral localization. The general particle filter algorithm can be found in Chapter 2,

Algorithm 1. Particle filters track many different potential states, represented by par-

ticles, and estimate the probability that each particle is the true state based on how

well the particles agree with the measurements obtained at each time step. Particle

filters are well suited for use with cross-view geolocalization systems because they are

able to model many different distributions, even the multimodal distributions that can

arise in cross-view geolocalization due to perceptual aliasing. The main components

of a particle filter are propagation, the weighting, and the resampling. The details

of a particle filter can vary from one implementation to another due to differences in

the propagation, weighting, and resampling methods selected. This subsection will

describe the models used for each of these methods.

The propagation model, also called the prediction model, motion model, or dy-

namics model, propagates the particles through space based off the measured motion

and a motion noise model. WAG’s propagation model is a basic model that incorpo-

rates noise into the baseline motion. The overall distance traveled in meters between

time steps, ∆𝑡, is measured. ∆𝑡 is used in conjunction with a noise percent param-

eter, 𝑝, and a standard Gaussian distribution 𝑅 ∼ 𝒩 (0, 1), to calculate the amount
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of noise to be added to the motion of each particle at each time step:

𝑛𝑖
𝑡 = ∆𝑡 * 𝑝 * 𝑟𝑖, (3.4)

where 𝑛𝑖
𝑡 is the noise value for particle 𝑖 at time step 𝑡 and 𝑟𝑖 is a value taken by the

random variable 𝑅 for particle 𝑖. This noise value is generated independently for the

latitude and longitude directions of each particle at each time step. Each particle 𝑖

at each time step 𝑡 is then propagated according to:

x𝑖
𝑡 = x𝑖

𝑡−1 +∆𝑡 * 𝑛𝑖
𝑡, (3.5)

independently in both the latitude and longitude directions.

WAG modifies the particle filter measurement model compared to prior cross-

view geolocalization work to better model the noise in Siamese network outputs. The

measurement model, 𝑃 (𝑧𝑡|𝑥𝑡) reflects how likely it would be to receive the current

measurement, 𝑧𝑡 from the state of a specific particle, 𝑥𝑡. Cross-view geolocalization

Siamese networks are typically trained with triplet losses, which are calculated on a

relative scale by comparing positive embedding pairs to negative embedding pairs.

Previous works [40, 47] use an exponential measurement model, which are absolute.

The exponential measurement model is represented as:

𝑃 (𝑧𝑡|𝑥𝑡) = 𝛽𝑒−𝛽𝑑𝑘𝑡 , (3.6)

where 𝑧𝑡 is the sensor measurement for timestep 𝑡, 𝑥𝑡 is the agent pose at 𝑡, 𝑑𝑘𝑡 is the

Euclidean distance between the embedding pair for satellite image 𝑘 and the ground

image from 𝑡, and 𝛽 is a tuning parameter that is adjusted to roughly match the distri-

bution of training data. The exponential measurement model assumes that as image

pair Euclidean distance decreases, the probability of a match increases exponentially.

However, a key observation of this thesis is that an exponential measurement model

does not generally match the empirical data distribution for Euclidean distance be-

tween positive and semi-positive pairs. The training that is performed on Siamese
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Figure 3-3: Baseline particle filter measurement model compared to empirical distri-
bution of positive/semi-positive pair Euclidean distance measurements in the valida-
tion set from [117]’s dataset. An exponential measurement model does not fit the
data.

networks with triplet loss functions is relative, not absolute, but the exponential

measurement model is based on absolute Euclidean distance between an image em-

bedding pair. As a result, the exponential measurement model does not represent the

empirical data distribution well.

Fig. 3-3 shows a comparison of the actual distribution of image pair Euclidean

distance in red and the exponential measurement model that is meant to represent

that distribution in black. The actual distribution of the Euclidean distance between

positive and semi-positive image embedding pairs for a validation set is visualized as

a histogram. This section describes the method by which the empirical data was gen-

erated. The Siamese network is trained on a training set of image pairs; a validation

set of image pairs is set aside so that the network does not see them during training.
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After training, this validation set of image pairs is input to the network for inference

and the network outputs image embeddings. The Euclidean distance between image

embedding pairs is calculated. The validation set contains negative i.e. non-matching

image pairs, positive i.e. matching image pairs, and semi-positive i.e. non-centered

matching image pairs. Positive and semi-positive image embedding pairs should have

low Euclidean distance between them, but there is a range of Euclidean distances

even for matching image pairs due to noise in the Siamese network output. Previous

works have modeled this noise with an exponential measurement model; this assumes

that as Euclidean distance between an image pair decreases, the pair is exponentially

more likely to be matching. However, the histogram of empirical data for positive

and semi-positive pair Euclidean distance does not follow this exponential trend; it

is normally distributed. This mismatch causes wrong estimates of the likelihood of

measurements, which negatively affects particle filter convergence.

WAG treats the measurement for each ground-satellite pair as the difference be-

tween the maximum database similarity and the query pair similarity at that time

step, (𝑧𝑡 = max(𝑠𝑡)− 𝑠𝑗𝑡), and uses that with a Gaussian measurement model:

𝑃 (𝑧𝑡|𝑥𝑡) =
1

𝜎
√
2𝜋

exp

⎛⎝−1

2

(︃
max(𝑠𝑡)− 𝑠𝑗𝑡

𝜎

)︃2
⎞⎠ , (3.7)

which better captures the output distribution of the neural network. The covariance 𝜎

was set to 0.1 to approximately fit the output distribution observed in the validation

data for positive and semi-positive pairs shown in Fig. 3-4. The use of 𝑧𝑡 as the

measurement causes the distribution to be zero mean, which removes the need to find

the distribution mean, another tuning parameter that would typically be required

for a Gaussian noise model. Additionally, the use of a relative measurement, 𝑧𝑡 =

max(𝑠𝑡)− 𝑠𝑗𝑡 , instead of an absolute measurement, 𝑧𝑡 = 𝑠𝑗𝑡 , better aligns with the loss

used in the Siamese network training.

WAG uses the basic multinomial resampling method to determine which particles

to replicate and which particles to remove after particles are weighted according to

their similarity. Resampling algorithms use a normalized cumulative sum of weights,
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Figure 3-4: WAG’s particle filter measurement model of Eq. 3.7 compared to empirical
distribution in the validation set from [117]’s dataset. WAG’s measurement model
better fits the data. Empirical data spike at 0 is due to some pairs being the database
pair with maximum similarity.

𝑤𝑘, to determine which particles to keep or remove:

𝑤𝑘 =

∑︀𝑘
𝑖=1 �̂�𝑖∑︀𝑁
𝑗=1 �̂�𝑗

(3.8)

where �̂�𝑖 is the unnormalized weight of particle 𝑖 and 𝑁 is the number of particles in

the particle filter. Multinomial resampling uses 𝑁 uniformly distributed independent

random numbers to select weights from 𝑤𝑘 and replicate their corresponding particles.

3.3 Results
3.3.1 Experimental Setup

This thesis demonstrates localization experiments in two settings: a large scale local-

ization with very noisy location initialization across the entire city of Chicago, and

70



Table 3.1: Trinomial Loss Parameters for Eq. 3.3

Parameter Symbol Value
Positive pair weight 𝛼𝑝 5
Semi-positive pair weight 𝛼𝑠 6
Negative pair weight 𝛼𝑛 20
Positive pair margin 𝑚𝑝 0
Semi-positive pair margin 𝑚𝑠 0.3
Negative pair margin 𝑚𝑛 0.7

a small-scale localization with perfect location initialization across a neighborhood

in Singapore. These were experiments with simulated data: panoramic ground im-

ages and overhead satellite images from the Google Maps Static API and odometry

measurements from the ground-truth displacement between images with added noise

proportional to displacement. In Chicago, the satellite imagery was discretized ap-

proximately every 60 meters into a 256 × 256 grid of non-overlapping satellite image

tiles at zoom level 20. In Singapore, the satellite imagery was discretized approxi-

mately every 90 meters into a 16 × 16 grid at zoom level 20. These grid sizes were

chosen to maintain the same image size and resolution that the network was trained

on; satellite images of size 640 × 640 pixels with a resolution of approximately 0.1

m/pixel.

In both experiments WAG has the architecture of the neural network in [117]. It

is trained with [117]’s binomial loss for 30 epochs as [117] did to teach the difference

between positive and negative image pairs, then trained with trinomial loss for an ad-

ditional 15 epochs with the values in Table 3.1 to help it recognize semi-positive pairs.

The filter in both settings has 100,000 particles and uses the Gaussian measurement

model in Eq. 3.7. In the Chicago experiment, the particle filter was initialized with

a Gaussian distribution centered approximately 1.3 km from the true location (stan-

dard deviation of 2.97 km) to demonstrate WAG’s ability to localize with a loose

initialization guess over a city-scale search area. The Chicago experiment added

2% noise to the ground-truth odometry since this experiment focuses on localizing a

moving agent with poor initialization but typical odometry: 1% noise is often reliably

achievable, as demonstrated in [90]. In the Singapore experiment, the particle filter
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was initialized at the ground-truth location exactly to demonstrate WAG’s ability to

accurately track a moving agent in a small search area. The Singapore experiment

added 5% odometry noise since this experiment focuses on localizing a moving agent

with good initialization but higher odometry error that may cause localization drift

in other systems. The noise level was higher for the Singapore experiment to make it

more challenging since it was tracking an agent with a known starting location, not

localizing with a very noisy initialization like in the Chicago experiment.

The following sections will detail the different experiments and results. Section

3.3.2 will demonstrate WAG’s computational and storage benefits. Section 3.3.3 will

demonstrate the simulated experiments comparing WAG and a baseline’s localization

performance on images of Chicago. Section 3.3.4 will demonstrate the simulated

experiments of WAG’s tracking performance on images of Singapore.

3.3.2 Computation and Storage

WAG’s ability to do coarse satellite image discretization provides greater flexibility

for computation and storage and enables a wider variety of applications for robotics.

Since previous systems required all ground images to be centered within their satellite

image pairs, for a given test area they required many satellite images. This meant

many satellite image embeddings had to be computed and stored before runtime (see

Fig. 3-5). The baseline for comparison used here is CVM-Net [40], which requires

satellite images to be discretized densely every 5 m. CVM-Net is used as a baseline

due to its impressive cross-view geolocalization performance and its demonstrated

application to temporal localization with a particle filter.

The number of satellite images also affects computation because at each time step

the similarity must be calculated between ground-satellite image pairs, and more

satellite images means more pairs to calculate similarity between. Figure 3-6 demon-

strates the timing required for a particle filter measurement update of all particles

with 0.019552 ms as the estimated time for each similarity calculation (the average

for our system). WAG has a similarity matrix calculation time of ≈1.28 seconds for

the Chicago test area of nearly 300 km2, while CVM-Net would take ≈3.8 minutes.
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Figure 3-5: Storage requirements of WAG compared to those of CVM-Net [40].
WAG’s storage requirements grow very slowly in comparison. For WAG we use a
satellite image discretization density of 1 image per 66 m as used in the Chicago test,
and for CVM-Net we use 1 image per 5 m as specified in [40].

WAG’s timing in the Chicago test area would enable real-time localization as that

test path does a measurement update approximately every 250 m, which would likely

take at least 10 seconds for any ground agent to travel in a city environment. Real-

time capability makes WAG useful for mobile autonomous agents to localize as they

are performing other operations.

3.3.3 Large-scale Test: Chicago

Experiment details. To demonstrate WAG’s ability to localize within a very large

area, this thesis presents a localization experiment on the scale of the entire city of

Chicago. The true simulated path is shown in Fig. 3-7, overlaid with WAG’s estimated
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Figure 3-6: Computation requirements of WAG compared to that of CVM-Net [40]
for calculation of the similarity matrix at each time step of the particle filter, with
same discretization assumptions as in Fig. 3-5. WAG’s computation requirements are
feasible for real-time usage, CVM-Net is largely infeasible for real-time usage once a
test area is larger than 10 km2.

location at each time step. This path was generated by selecting sequential points

along roads in overhead images and querying the closest Google Street View image to

each point. This section will first detail the results with one path and then summarize

the results with other paths that were generated in the same manner. This experiment

was run with WAG and a VIGOR [117] baseline that has the same Siamese network

architecture as WAG, but which is not trained with trinomial loss and which uses the

measurement function in Eq. 3.6 in its particle filter (consistent with the approach

in [40,47]) instead of WAG’s Gaussian measurement model in Eq. 3.7.

Estimation error. Even with an initialization 1.3 km from the agent as shown

in Fig. 3-8(a), WAG has a final estimation error of 21 m, shown in Fig. 3-8(b), that
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1 km

Ground Truth Path

WAG Path Estimate

Figure 3-7: The ground-truth path in Chicago and WAG’s particle filter path esti-
mate, which accurately converges upon the ground-truth over time.
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(a) Initial distribution supplied to particle filter.
True location is over 1 km from initial particle
filter estimate.

10 m

True Location

WAG Solution

(b) Final particle filter solution and true location.
True location is approximately 21 m from final
particle filter estimate.

Figure 3-8: After it has converged, WAG is able to accurately localize an agent to
within an average of 21 meters of its true location across nearly 200 km2 of Chicago
after being initialized to a Gaussian distribution centered 1.3 km from the true loca-
tion.

is so small that it is comparable to the scale of the 65 m satellite tiles used for

localization. Thus the estimation accuracy of WAG has essentially reached the noise

floor of the system. Fig. 3-9 compares the estimation error of WAG’s particle filter

and the baseline as the simulated agent moves. The error is the Euclidean distance

between the actual location and the localization solution of the particle filter, which

is the weighted average of the locations of the particles. Over the time period shown,

WAG has an average estimation error of 314 m, versus 1.5 km for the baseline. The

baseline has a final estimation error of 1236 m. To the best of the author’s knowledge,

WAG is the only cross-view geolocalization system in the literature that localizes this

accurately over such a large area.

Convergence. Figure 3-10 compares the standard deviation of the particle lo-

cations at each time step, which can be viewed as a measure of convergence [19]. In

this chapter, the term convergence will generally refer to particle standard deviation.

However, it is important to note that standard deviation can decrease even if esti-

mation error does not. Chapter 6 will further discuss the nuances of convergence
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Figure 3-9: Particle filter estimation error from WAG compared to baseline system.
Baseline is without trinomial loss training and with exponential measurement model.
WAG has lower final and average error.
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Figure 3-10: Particle filter estimation convergence from WAG compared to baseline.
Baseline is without trinomial loss training and with exponential measurement model.
WAG converges to an accurate estimate but the baseline does not.

77



Figure 3-11: Final particle filter dispersion with the baseline system and with WAG
on the Chicago test path (C-1). The baseline does not successfully converge to a
location estimate, while WAG converges to within 60 meters.
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Figure 3-12: The estimation error on the same test path using [117]’s network without
additional trinomial loss training.

and propose a convergence metric that is better correlated with estimation error than

standard deviation. WAG converges to a standard deviation of less than 60 m (the

satellite image size) after 74 filter updates, while the baseline does not reach that

level of convergence in the time period tested. WAG converges to the particle filter

distribution shown by the red dots in the inset of Fig. 3-11 while the baseline termi-

nates with the particle distribution shown in blue dots in Fig. 3-11, which still shows

significant estimation error.

Trinomial loss ablation. Fig. 3-12 compares the estimation error for two identi-

cal WAG systems except that one did not receive trinomial loss training. Both use the

particle filter measurement model from Eq. 3.7. WAG with trinomial loss converges

more quickly (74 filter updates compared to 146) and has lower average estimation

error (314 m vs. 776 m). The additional training with the trinomial loss improves

image retrieval performance with semi-positive image pairs and contributes towards
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Table 3.2: Comparison of Results on Chicago Test Paths–
Baseline: Without trinomial loss and with exponential measurement model

Metric System Type C-1 C-2 C-3
Baseline 1529 1186 2290Average Error (m) WAG 314 948 2130
Baseline 1236 1175 1880Final Error (m) WAG 21 11 53
Baseline - - -Convergence Time (time steps) WAG 74 98 101

improved particle filter performance.

Multiple path result summary. Table 3.2 summarizes results comparing WAG

to the baseline on three test paths in Chicago. The first, C-1, is the path discussed

previously and shown in Fig. 3-7 and is a 43 km long path of 160 time steps in northern

Chicago. C-2 is a 36 km long path of 104 time steps in southern Chicago and C-3 is

a 41 km long path of 143 time steps in eastern Chicago. The C-2 path crossed the

Chicago River once and the C-3 path crossed the Chicago River three times. Chapter 5

later reveals a particle degeneracy issue near rivers due to multinomial resampling,

which likely accounts for C-3’s higher estimation error. Our results demonstrate

that WAG consistently outperforms the baseline in final estimation error, average

estimation error, and convergence time. The baseline did not converge on any of the

paths tested.

3.3.4 Small-scale Test: Singapore

To demonstrate WAG’s ability to perform well on smaller scale localization tasks like

those demonstrated in [40,47,117], this thesis simulates the experiment performed by

[40], which was done in a region of Singapore called “One North”. The simulated path

is produced with Google Street View ground images to imitate the path from [40]; the

locations of these images are shown in Fig. 3-13 with WAG’s estimate overlaid. The

satellite images are obtained from the Google Static API. The path is approximately

5 km long and the overhead satellite imagery that bounds it covers approximately
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Table 3.3: Comparison of Results on Singapore Test Paths
Metric System Type Singapore

Baseline (CVM-Net [40]) 16.39Average Error (m) WAG 5.92

1.5 km×1.5 km. The initial location of the agent is provided exactly as in [40],

so this scenario can be viewed as an odometry drift reduction test. The neural

network, CVM-Net, and the particle filter implementation used in [40], were not

publicly accessible so WAG’s results are compared to their reported results. Ref. [40]

uses visual odometry, but this simulation instead adds 5% noise to the simulated

odometry, which is more than the average noise reported in [57], the source of the

visual odometry algorithm used in [40]. The results in Table 3.3 show that WAG

decreases the final estimation error by 64%. This simulation also demonstrates that

WAG is capable of generalizing from training data of exclusively cities in the United

States (Seattle, San Francisco, New York City, Chicago) to testing in Singapore, a

city in a different country and continent. WAG does not need to be explicitly trained

on images of the location where it will be deployed for it to accurately localize.

3.4 Summary

This chapter described how WAG performs cross-view geolocalization across city-scale

search areas. WAG combines a Siamese network trained with trinomial loss and a

particle filter that uses a Gaussian measurement model to localize across city-scale

search areas. WAG’s training with trinomial loss improves its performance matching

non-centered ground images to satellite images, and its use of a Gaussian measure-

ment model in its particle filter better matches the measurement noise, enabling fast

and accurate particle filter convergence. WAG’s computational and storage benefits

were detailed and its performance was demonstrated on both a city-scale localization

task in Chicago and a neighborhood-scale tracking task in Singapore. The biggest

limitation of WAG is its reliance on panoramic imagery, which necessitates specialized

hardware and limits the types of platforms that WAG can be utilized with.
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Figure 3-13: The ground-truth path in the One North area of Singapore and WAG’s
particle filter path estimate, which tracks the ground-truth closely.
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Chapter 4 details ReWAG, which builds off of WAG to enable city-scale localiza-

tion with limited FOV ground images. ReWAG generates pose-aware ground embed-

dings and strengthens the connection between the Siamese network and the particle

filter to result in accurate localization on the same city-scale test paths as WAG.
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Chapter 4

Narrow Field of View Geolocalization

4.1 Introduction

Wide-Area Geolocalization (WAG) was a big step towards increasing cross-view ge-

olocalization scalability and improving long-term autonomy capabilities as a result,

but WAG requires panoramic ground images. Panoramic ground images require either

panoramic cameras, which are expensive and challenging to mount without obstruct-

ing field of view, or the stitching of multiple images, which is time consuming and

computationally challenging. To improve the ease with which cross-view geolocaliza-

tion technology can be adapted, it is advantageous for them to be able to operate

with limited field of view (FOV) ground images.

4.2 Methods

4.2.1 Overview of Approach

Restricted FOV Wide-Area Geolocalization (ReWAG) [28] builds upon WAG [27], to

enable localization across a wide search area with restricted FOV ground images, i.e.

ground images with a FOV of less than 360 degrees. ReWAG uses WAG’s strategies of

creating a coarse satellite image database, generating embeddings with Siamese net-

works based on VGG-16 [89] and SAFA [87], and localizing over time with a particle
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filter (see Fig. 3-1). However, ReWAG differs from WAG in two major ways. First,

ReWAG generates pose-aware image embeddings in a computationally efficient man-

ner. Second, ReWAG generates more informative similarity measures and hence more

accurately models the agent location probability distribution by incorporating pose

information from each particle into the Siamese network input. For non-panoramic

ground imagery it is necessary to incorporate this additional information due to the

increased difficulty of the problem.

ReWAG first coarsely samples the search area to construct a database of satel-

lite images that are preprocessed with a Siamese network before runtime to generate

satellite embeddings. During runtime, a generic ground embedding is generated by

the VGG-16 portion of the Siamese network for each ground image, and for each

particle a pose-aware embedding is produced from the base embedding and the parti-

cle’s pose. The similarity between each particle’s pose-aware ground embedding and

its corresponding satellite embedding is calculated to produce the pseudo-similarity

matrix, which is a probabilistic representation of the ground image’s similarity across

the search area. The particle filter receives odometry and measurements from the

pseudo-similarity matrix to produce a location estimate at each time step.

Section 4.2.2 describes ReWAG’s method for generating pose-aware embeddings

from its Siamese network. Section 4.2.3 describes how the pose-aware embeddings

are integrated with a particle filter to improve the particle filter’s probabilistic rep-

resentation of the state estimate. Section 4.3 demonstrate ReWAG’s performance on

limited FOV images in Chicago and Karlsruhe, Germany.

4.2.2 Pose-Aware Embeddings

ReWAG includes a method to train the ground Siamese network to generate pose-

aware embeddings in a computationally efficient manner while modifying the network

architecture slightly. Pose consists of position in x and y dimensions and orientation

in heading. Like WAG, our Siamese network architecture is derived from that of [117],

which consists of a VGG-16 backbone and a SAFA module to increase the network’s

spatial understanding. In WAG, the VGG-16 backbone outputs a three-dimensional
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(a) WAG (b) ReWAG

Figure 4-1: ReWAG requires pose to be incorporated in only the SAFA portion of
the ground Siamese network, which reduces computation and allows faster inference
at run time.

intermediate embedding with a height, width, and depth. This intermediate output is

then reshaped into a one-dimensional vector and later input to SAFA. In ReWAG, the

ground Siamese network is modified to enable the generation of pose-aware embed-

dings. ReWAG has the same structure with VGG-16 outputting a three-dimensional

intermediate embedding that is reshaped to a one-dimensional embedding. However,

before inputting that intermediate embedding vector to SAFA, ReWAG appends the

particle pose, as shown in Fig. 4-1. This intermediate embedding appended with

the particle pose is then input to SAFA, which learns a spatial-aware representation

of the ground image. The particle pose consists of three numbers: the particle’s

displacement from the center of the satellite image in the x coordinate frame, the dis-

placement from the center in the y coordinate frame, and the heading of the particle.

The key difference between ReWAG’s architecture and previous work is that ReWAG

incorporates explicit pose information into SAFA. SAFA already uses self-attention

to learn spatial-aware embeddings, but ReWAG makes that spatial information more

explicit by inputting pose to SAFA to create pose-aware embeddings.

ReWAG’s computationally efficient benefit comes from the ability to generate one

base embedding for each ground image, and then append any pose to the base em-

bedding to efficiently generate a pose-aware embedding for each particle with the

much lighter-weight SAFA. In terms of total computation, the VGG-16 backbone

comprises 93% and SAFA comprises 7% of the time to produce one pose-aware em-
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bedding. When combined with a particle filter, this design enables the VGG-16

inference to be done once per time step instead of once for each particle for each time

step. In contrast, [82] generates pose-aware embeddings through a joint global and

local pipeline, hence the full embedding generation must be done for each particle at

each timestep.

4.2.3 Siamese Network and Particle Filter Integration

A central finding of this contribution is that cross-view geolocalization can be im-

proved by more thorough integration between the Siamese network and the particle

filter. Previous works have built systems with mostly one-way connections between

the Siamese network and the particle filter—for each time step, the location of each

particle determines which satellite image will be compared with that time step’s

ground image, and that similarity is used to adjust the weight of that particle. How-

ever, additional information can be integrated into the Siamese network-particle filter

connection. In addition to a corresponding satellite image, each particle also has a lo-

cation within that satellite image, as shown in Fig. 4-2. the particle filter is modeling

a probability distribution that includes the location within the satellite image, but

traditional architectures do not factor that information into the similarity measure

and hence it is not reflected in the particle weights.

Particle pose information is incorporated into the similarity measure through the

pose-aware embeddings. The pose of a particle 𝑖 at time 𝑡 consists of x and y dis-

placements ∆𝑥𝑡𝑖 and ∆𝑦𝑡𝑖 , which are determined from the particle’s location within

its satellite tile, and the heading 𝜓𝑡, which is determined from sensor measurements

at time step 𝑡. ReWAG assumes that the heading measurement will be accurate to

the true ground agent heading within a few degrees based on the typical error of a

compass [44]. At each time step, the ground image is used to generate one generic

intermediate embedding, and for each particle at that time step a pose-aware embed-

ding is generated from the generic embedding and each particle pose. This method

increases the computation required for each particle filter update, but the computa-

tionally efficient method by which we generate pose-aware embeddings, described in
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Figure 4-2: Particles are dispersed through search area, which is segmented into
satellite tiles whose embeddings are precomputed before runtime. At each time step,
the true heading of the ground agent, 𝜓𝑡, is approximately known and the location
of each particle 𝑖 within its satellite tile is given by its displacement from the center
of the tile, ∆𝑥𝑡𝑖 and ∆𝑦𝑡𝑖 .

Section 4.2.2, helps to offset this increase. The incorporation of the particle pose aids

the Siamese network in identifying where within the satellite image there should be

corresponding features if the image pair is a positive match. Without pose-aware em-

beddings, a negative image pair would search for features to match anywhere within

the satellite image, and may be more likely to match incorrectly. With pose-aware

embeddings, a negative image pair will be encouraged to only look for matching fea-

tures within a specified portion of the satellite image, decreasing the opportunity to

find false matches.

4.3 Results

4.3.1 Experimental Setup

To demonstrate ReWAG’s performance relative to WAG [27], this section performs

limited FOV ground image localization experiments with the same test paths from
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[27], but instead of using panoramic ground images, the ground images are cropped to

90° FOV. These test paths are a large scale localization experiment with very noisy

location initialization across the entire city of Chicago using simulated data. The

simulated data consists of ground images and overhead satellite images from Google

Maps Static API and odometry measurements from the ground-truth displacement

between images with added 2% noise proportional to displacement. The simulated

data was generated in the same manner as in Chapter 3.

A stage-1 TransGeo [115] with a particle filter is used as the comparison baseline in

the experiments. TransGeo uses a vision transformer [24] instead of a convolutional

neural network architecture, which ReWAG and WAG use. TransGeo has demon-

strated impressive performance on the VIGOR dataset (detailed in Section 3.2.3)

with panoramic and non-panoramic images. TransGeo was trained in two stages, one

that trains with soft-margin triplet loss (Eq. 2.5) and the second uses attention-guided

non-uniform cropping to increase the resolution of important regions. The compari-

son only uses the first stage because the TransGeo paper demonstrated only marginal

performance improvement with both stage-1 and stage-2 training, and incorporating

stage-2 training would give TransGeo far more training epochs than ReWAG, which

may create an unfair comparison.

ReWAG uses the neural network architecture from WAG with the VGG-16 back-

bone and the SAFA module, but it is modified to generate pose-aware embeddings, as

described in 4.2.2. The satellite network architecture is unchanged from Chapter 3.

Both ReWAG’s Siamese network and the comparison baseline, a stage-1 TransGeo,

are trained on the VIGOR dataset [117] with the ground images cropped to 90°. The

TransGeo baseline is trained for 50 epochs with the training parameters described

in [115]. ReWAG is first trained for 30 epochs with triplet loss as [117] did with 𝛼

loss parameter set to 10, then trained for 15 additional epochs with trinomial loss with

the parameter values described in Table 3.1. The filter has 30,000 particles and uses

the Gaussian measurement model from Chapter 3. ReWAG decreases the number of

particles compared to WAG’s 100,000 particles because pose-aware embeddings allow

the particle filter to converge with fewer particles. The particle filter is initialized
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with Gaussian distributions, centered 1.3 km from the true initial location (standard

deviation of 900 m) for C-1 and C-2, and centered 600 m from the true initial location

(standard deviation of 300 m) for C-3. C-3 has lower initialization error because it is

a more challenging path due to crossing a river several times. 2% noise is added to

the ground-truth odometry and 1% noise to the ground-truth heading at each time

step.

The following sections will detail the different experiments. Section 4.3.2 describes

the simulated experiments comparing ReWAG and a TransGeo baseline’s wide-area

localization performance on limited FOV images of Chicago. Section 4.3.3 describes

the simulated experiments of ReWAG’s small-area localization performance on limited

FOV images of Karlsruhe, Germany from the KITTI dataset [33].

4.3.2 Large-scale Test: Chicago

Experiment details. The true path the simulated agent travels in Chicago is shown

in Fig. 4-3 with ReWAG’s estimated location at each time step. This experiment was

run with ReWAG and a baseline that uses stage-1 TransGeo [115] combined with the

same particle filter as ReWAG.

Estimation error. Even with an initialization as far from the agent as Fig. 4-

4(a), ReWAG has a final estimation error of 26 m (visible in Fig. 4-4(b)). This

estimation error is only 5 meters greater than that which was achieved with 360°

FOV ground images in WAG, demonstrated in Chapter 3. Fig. 4-5 compares the

estimation error of ReWAG’s particle filter and the TransGeo baseline as the simulated

agent moves. The error is the Euclidean distance between the actual location and

the weighted average of the particle locations. Over the duration of the experiment,

ReWAG has an average estimation error of 925 m, versus 2.2 km for the baseline.

ReWAG achieves a final estimation error of 26 m compared to the baseline of 2.2 km.

Convergence. Figure 4-6 compares the system convergence measured as the

standard deviation of the particle locations at each time step. ReWAG converges to a

standard deviation of less than 60 m (the satellite image size) after 133 filter updates,

while the baseline does not reach that level of convergence in the time period tested.
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ReWAG Uncertainty
ReWAG Path Estimate
Ground Truth Path

Figure 4-3: The ground-truth path in Chicago and ReWAG’s path estimate, which
accurately converges upon the ground-truth. Uncertainty bubble sizes are scaled
down by raising to 0.75 to improve interpretability. Increasing brightness of path
indicates passing of time. Start marked with stars.

Fig. 4-7 shows the particle filter distribution that ReWAG converges to as red dots

in the inset of the figure while the baseline terminates with the particle distribution

shown in blue dots, which still shows significant estimation error.

Ablation. This section details a small ablation study to determine the benefit

of including information on both heading and the position of the particle within the

satellite image in the pose-aware embeddings. Including heading and position is com-
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ReWAG Solution
ReWAG Particles

(a) Initial distribution supplied to particle filter.
True location is over 1 km from initial particle
filter estimate.

10 m

ReWAG Solution
True Location

(b) Final particle filter solution and true location.
True location is approximately 26 m from final
particle filter estimate.

Figure 4-4: ReWAG is able to accurately localize an agent to within 26 meters of its
true location across nearly 200 km2 of Chicago after being initialized to a Gaussian
distribution centered 1.3 km from the true location.

pared to only including heading, or including neither as in WAG. It includes a Siamese

network with the same architecture, training regime and parameters as ReWAG, with

the exception that the base embeddings input to SAFA only had heading appended

to them. It also includes WAG retrained on limited FOV images (without heading or

position appended). The systems were tested on the C-1 test path with limited FOV

images and the results are summarized in Table 4.1. The ablation shows that ReWAG

improves upon WAG when used with limited FOV images. However, ReWAG with

only heading, without position, performs worse than WAG. ReWAG without posi-

tion’s performance is attributed to the fact that heading alone does not dictate what

content is visible in a ground image and hence may be misleading on its own. For

example, if a ground camera is pointing north and is at the northern edge of the

satellite image, as shown in Fig. 4-8(a), it is not going to contain any content that

corresponds with the satellite image. If a ground camera is pointing north and is at

the southern edge of the satellite image, as shown in Fig. 4-8(b), it is going to contain

content that is not visible in the northern edge photo.

93



0 10 20 30 40
Distance Traveled (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
uc

lid
ea

n 
D

is
ta

nc
e 

E
rr

or
 (k

m
)

Error from Baseline
Error from ReWAG

Figure 4-5: Particle filter estimation error from ReWAG compared to a TransGeo
baseline. ReWAG has lower final and average error.
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Figure 4-6: Particle filter estimation convergence from ReWAG compared to a Trans-
Geo baseline. ReWAG accurately converges, the baseline does not.
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Figure 4-7: Final particle filter dispersion with the baseline system and with ReWAG
on the Chicago test path (C-1). Baseline does not successfully converge to a location
estimate, while ReWAG converges to within 60 m of estimation error.
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Table 4.1: Ablation

Metric System Type C-1
ReWAG 26

ReWAG without Position 375Final Error (m)
WAG 192

ReWAG 133
ReWAG without Position -Convergence Time (time steps)

WAG -

(a) Visualization of FOV of a ground camera
pointing north, located on the northern side of
the satellite image

(b) Visualization of FOV of a ground camera
pointing north, located on the southern side of
the satellite image

Figure 4-8: The scene content that a ground camera captures is a function of both
the heading and the position.

Multiple path result summary. Table 4.2 shows a summary of ReWAG’s

localization performance compared to the baseline on three test paths in Chicago.

These paths are the same test paths that were used in Chapter 3. The first, C-1,

is the path detailed previously in Fig. 4-3. The particle filter for C-1 and C-2 was

initialized 1.2 km away from the ground truth, and for C-3 was initialized 600 m

away from the ground truth due to the challenging path that crosses a river several

times (see Chapter 5 for details on what makes a river challenging). On all paths,

ReWAG outperforms the baseline in final estimation error, final standard deviation

and convergence time.
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Table 4.2: Comparison of Results on Chicago Test Paths–Baseline: With TransGeo

Metric System Type C-1 C-2 C-3
Baseline 2218 2259 300Average Error (m) WAG 26 16 17
Baseline 500 1321 169Final Error (m) WAG 18 10 10
Baseline - - -Convergence Time (time steps) WAG 133 61 41

4.3.3 Small-scale Test: KITTI

We also demonstrate ReWAG’s localization performance on a KITTI test path in

Fig. 4-9 [33]. ReWAG’s performance is demonstrated on KITTI data because it is

already widely-used and accessible for comparison and additionally it was collected

in Karlsruhe, Germany, so it can demonstrate ReWAG’s generalization on a city it

was not trained on. This experiment demonstrates ReWAG’s ability to localize with

more accurate initialization information across a smaller search area and its robustness

towards localizing on images in a different city than those that it was trained on. We

sample images and pose data from the KITTI residential “2011_0_30_drive_0028”

path and reduce the FOV to 90° by cropping the images. The KITTI dataset does

not contain matching satellite images, so for the ReWAG simulation the satellite

images of the search area are obtained from the Google Static API; the search area

is divided into a grid of 32 × 32 satellite images with Google Static API zoom level

20. The particle filter is initialized with a Gaussian distribution approximately 80 m

away from the true location to simulate localizing with low initialization error across

a smaller search area. ReWAG’s final estimation error is 12 m after 34 ground image

updates.

This simulation demonstrates ReWAG’s geographic generalization ability. Similar

to WAG, ReWAG was trained on VIGOR’s [117] training dataset consisting of images

from Seattle, San Francisco, New York City, and Chicago. ReWAG is able to success-

fully localize on images of Karlsruhe, Germany, with training on images exclusively

of the United States. This simulation also demonstrates ReWAG’s generalization to
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Figure 4-9: Ground-truth and ReWAG’s estimated path in the KITTI test area.
Increasing brightness of path indicates passing of time. Start marked with stars.
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images taken with a different camera: the training images from VIGOR are cropped

panoramas from Google Street View, while the testing images were taken with a Point

Grey Flea 2 camera.

4.4 Summary

This chapter described how ReWAG performed wide-area cross-view geolocalization

on limited FOV ground images. ReWAG incorporates pose into its Siamese net-

work to generate pose-aware embeddings, and uses those pose-aware embeddings in

conjunction with a particle filter to improve localization performance on 90° FOV

ground images. ReWAG’s pose-aware embeddings also only incorporate pose into the

last few layers of the Siamese network, which requires less computation than incor-

porating pose throughout the entire Siamese network. ReWAG demonstrated faster

and more accurate localization than a baseline on limited FOV images on a city-scale

localization task in Chicago and a neighborhood-scale localization task in Karlsruhe.

ReWAG expands the platforms that wide-area cross-view geolocalization can be

applied to by enabling the use of non-panoramic ground cameras, but it leaves

room for improvement in generalization to realistic environments. Chapter 5 de-

tails ReWAG*, an extension to ReWAG that improves its generalization performance

to different weather, seasons, and time of day than training data. ReWAG* includes

additional training data augmentation and modifications to particle filter strategy

beyond ReWAG. ReWAG*’s performance is demonstrated on a realistic, challenging

testing dataset collected in the Boston area across different seasons than the training

data or the satellite imagery.
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Chapter 5

Experimental Hardware

Demonstration

5.1 Introduction

WAG and ReWAG both contributed impressive advances towards cross-view geolo-

calization: WAG with its ability to perform geolocalization across a city-scale search

area and ReWAG with the additional ability to localize with a limited field of view

camera. However, both WAG and ReWAG struggled with some aspects of realistic

simulations. The Chicago simulations were fairly similar to the data that WAG and

ReWAG were trained with, hence did not push WAG or ReWAG on generalization.

This chapter will further explore some of the weaknesses of ReWAG and propose

ReWAG*, an improved iteration of ReWAG, to resolve those issues.

5.2 Methods

5.2.1 Overview of Approach

ReWAG* [29] extends ReWAG, improving its localization performance on realistic

data to enable localization generalization across different conditions. ReWAG* im-

proves image matching performance in situations of variable lighting by introducing
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(a) Photo of car with sensors. (b) System diagram.

Figure 5-1: Experimental setup of platform used for data collection.

data augmentation in the Siamese network training. ReWAG* also reduces the effects

of particle degeneracy that arise when testing paths alongside bodies of water by im-

plementing systematic particle filter resampling instead of the multinomial resampling

that ReWAG uses in Chapter 4.

Section 5.2.3 describes the training data augmentation that is performed with

Fancy PCA to produce images with different brightness. Section 5.2.4 describes

improvements to particle resampling to improve robustness.

5.2.2 Dataset Collection

This thesis includes a dataset of approximately 6 hours of driving data in Boston, and

Cambridge, Massachusetts to further test ReWAG; the data collected is available on-

line at https://doi.org/10.5281/zenodo.7818704. This Boston data initiated changes

that resulted in the evolved ReWAG, ReWAG*. It was collected driving a Lincoln

MKZ (see Fig. 5-1) equipped with a Point Grey Flea3 camera with Navitar 4.5 mm

effective focal length lens, an ADIS 16448 IMU, and a uBlox GPS receiver. The cam-

era was mounted within a weatherproof enclosure on a plate on top of the car, angled

approximately 30∘ to the passenger side. The IMU was mounted on the underside of

the plate within an EMI shielded enclosure, centered on the car. The GPS receiver

was mounted on the roof of the car behind the camera plate. Our dataset consists of
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(a) Google Street View image of Amherst Alley,
Cambridge, MA.

(b) Collected image of Amherst Alley, Cam-
bridge, MA on a cloudy day.

Figure 5-2: Example of difference in appearance between Google Street View im-
age and self-collected image. Google Street View images are carefully selected and
processed, while in practice weather conditions may vary, and camera exposure and
aperture may not be perfectly adjusted.

rectified RGB camera imagery taken approximately every 5 seconds along the driving

paths and the corresponding GPS tags for those images. We obtained the GPS tags

using SAMWISE [90], which fuses the GPS data from our uBlox receiver with visual-

inertial odometry to obtain smoothed estimates of the precise location where each

image was taken, even in urban canyons and tunnels with poor GPS estimates. We

chose to angle our camera 30° to the right side of the vehicle because it shows more

of the surrounding scenery instead of the center of the road, which is less distinctive

and may often be partially blocked with other cars. Satellite images were collected

from Google Maps in the same manner as in the Chicago simulation in Chapter 3;

the satellite imagery was discretized approximately every 60 meters into a 256 × 256

grid of non-overlapping satellite image tiles at zoom level 20. The Boston satellite

images were captured in July 2022.

The first tests on the Boston data revealed two key weaknesses of our initial

version of ReWAG. First, ReWAG was sensitive to the brightness of the ground

images it was tested on. The B-1a and B-1b test paths, which were collected on an

overcast, cloudy day, highlighted this sensitivity. Originally, the Siamese network was

trained on satellite images from Google Maps and ground images from Google Street

View without any data augmentation. However, Google Street View images are not
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(a) Time t. (b) Time t + 1. (c) Time t + 2.

Figure 5-3: Example of particle degeneration in Charles River. Red dots represent
particles, green circle represents true location.

randomly dispersed in different weather conditions, they are overwhelmingly taken

on bright and sunny, or partially sunny days, (see Fig. 5-2). Previously published

Siamese networks for cross-view geolocalization, including WAG (Chapter 3) and

ReWAG (Chapter 4), had not done data augmentation during training. This lack

of training on darker or lower exposure images made cloudy ground images out of

the training distribution for ReWAG’s Siamese network, and because ReWAG was

not familiar with these kinds of images, it could not discriminate between matching

ground-satellite pairs and non-matching pairs. This prompted the incorporation of

data augmentation into ReWAG*’s training.

Secondly, ReWAG suffered from particle degeneracy that became particularly ap-

parent in the B-1b and B-3b test paths, which spent significant time traveling on

roads directly adjacent to the Charles River. Particles that were propagated into the

river quickly degenerated and were never recovered, as illustrated in Fig. 5-3. This

made it unlikely for a path along the river to be accurately estimated, since noisy

odometry makes it likely for particles on the roads adjacent to rivers to eventually

be propagated into the river at some point in their trajectories, causing them to then

degenerate. The testing on these challenging paths prompted improvements in the

particle filter resampling strategies for ReWAG*.
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5.2.3 Training Data Augmentation

ReWAG* is trained with data augmentation to improve its robustness to image bright-

ness changes relative to ReWAG [28]. Cross-view geolocalization is sensitive to spatial

alignment; for example, a satellite image that’s been cropped to only include its north-

west region may lose the part of the image where its ground image pair was taken,

breaking the match. Due to this spatial alignment sensitivity, most previous works

have not incorporated data augmentation into the Siamese network training pipeline.

Although spatial transform augmentations are not particularly helpful for cross-view

geolocalization, brightness augmentations are. A Siamese network should be able to

identify the matching satellite image for a given ground image no matter how dark

or bright that ground image is, as long as the scene is still discernible.

One method for brightness augmentation that results in brightness variation that

has natural appearance is Fancy Principal Component Analysis (Fancy PCA). Fancy

PCA is a method for altering the intensities of pixel values in an image, done by

adding random multiples of the image principal components to each image channel.

The use of image principal components to control brightness is what allows Fancy

PCA to generate more images with more natural brightness variations. Each RGB

image pixel is represented by 𝐼𝑥𝑦 = [𝐼𝑅𝑥𝑦, 𝐼
𝐺
𝑥𝑦, 𝐼

𝐵
𝑥𝑦]

𝑇 , where 𝐼𝑅𝑥𝑦 is the image pixel value

at location 𝑥,𝑦 for the red channel, 𝐼𝐺𝑥𝑦 is the value for the green channel, and 𝐼𝐵𝑥𝑦 is

the value for the blue channel. Fancy PCA is performed to generate augmented pixel

values, 𝐼 ′𝑥𝑦, as such

𝐼 ′𝑥𝑦 = [𝐼𝑅𝑥𝑦, 𝐼
𝐺
𝑥𝑦, 𝐼

𝐵
𝑥𝑦]

𝑇 + [p1,p2,p3] [𝛼1𝜆1, 𝛼2𝜆2, 𝛼3𝜆3]
𝑇 (5.1)

where 𝑝𝑖 and 𝜆𝑖 are the ith eigenvector and eigenvalue of the 3 × 3 covariance matrix

of pixel values and 𝛼𝑖 is a random variable that controls magnitude. The variable 𝛼𝑖 is

drawn from a Gaussian distribution for each image. The PCA components are added

to every pixel of each image. Fancy PCA produces brightness changes with natural

appearances, as some examples in Fig. 5-4 show. ReWAG* is trained with Fancy

PCA for the 15 epochs that it is trained with trinomial loss to allow the Siamese
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(a) Original image. (b) Image modified to off-nominally increase
brightness with Fancy PCA.

(c) Image modified to nominally increase bright-
ness with Fancy PCA.

(d) Image modified to off-nominally decrease
brightness with Fancy PCA.

Figure 5-4: Examples of original image and images modified with Fancy PCA bright-
ness augmentations at both nominal and off-nominal levels.

network to learn image matching on easy, consistent brightness pairs before learning

to match harder pairs with inconsistent brightness.

5.2.4 Particle Filter Resampling

ReWAG* also benefits from improvements to its particle filter resampling strategy

relative to Chapter 4. Particle filter resampling is done after the reweighting step

of the particle filter in Chapter 2, Algorithm 1. Reweighting converts the weighted

distribution of particles to an unweighted distribution by retaining and replicating

particles with high weights, removing particles with low weights, and equalizing the

particle weights.

Different strategies for resampling determine the method by which particles are

selected for replication or removal. The most straightforward way to resample is

multinomial resampling, as was done in [27, 28]. This approach is relatively simple

to implement, but it does a poor job of selecting particles uniformly relative to their

106



weights. This property has been shown to result in poor particle filter estimates [38].

ReWAG* instead uses systematic resampling that improves resampling quality and

hence improves particle filter estimates over multinomial resampling [38].

ReWAG* also incorporates effective sample size (ESS) [80], a metric to control

when resampling is performed. Resampling should only be done when new mea-

surements are incorporated into the particle filter, because resampling without new

measurements wastes computation and leads to sample impoverishment [52]. Sample

impoverishment occurs when the particle filter ends up with a large portion of weight

is allocated to a relatively small number of particles, leaving the majority of particles

with a very small weight. In the bootstrap particle filter, which was previously used

in ReWAG [28] and WAG [27], resampling was done at each time step regardless

of whether new measurements were received. Extended testing on data in Boston

revealed particle degeneracy issues with resampling done in [28]. Particle degeneracy

is a similar and related issue to sample impoverishment; it occurs when low weight

particles are never resampled and are lost, leading to less diversity in particles across

the search space. ReWAG* checks ESS after each weighting step and only performs

resampling when ESS drops below a threshold.

5.3 Results: Large-scale Hardware Experiment in

Boston

5.3.1 Overview

The following sections detail the results of implementing ReWAG* with systematic

resampling and training data augmentation and their relative effects compared to

ReWAG without these improvements. Section 5.3.2 describes the experiments on

data collected in fall 2022. Section 5.3.3 describes the experiments conducted in

winter 2023.
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500 m B-1a Path
B-1b Path
B-2a Path
B-2b Path
B-3a Path
B-3b Path

(a) Close-up view of Boston paths.

1 km

B-1a Path
B-1b Path
B-2a Path
B-2b Path
B-3a Path
B-3b Path

(b) Boston paths shown within full search area.

Figure 5-5: Ground-truth paths in the Boston test area. Increasing brightness of path
indicates passing of time. Start marked with stars.
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(a) Image from November 11th. (b) Image from November 15th.

(c) Image from November 21st. (d) Image from November 21st.

Figure 5-6: Examples of images taken in November 2022.

5.3.2 Fall

The data in this section was collected between November 11th, 2022 and November

21st, 2022 and is characterized in Table 5.1 with paths shown in Fig. 5-5. Images

from fall are challenging in part because of the different lighting conditions that

occur. November in the Boston area is often cloudy or overcast, much more so than

the summer months. This causes darker images as shown in Fig. 5-6(a) and Fig. 5-

6(b). The tilt of the Earth on its axis in the fall also causes the sun to be lower on the

horizon, casting longer rays with a more golden appearance as shown in Fig. 5-6(c)

and 5-6(d).

The particle filter for this data was initialized with Gaussian distributions, cen-

tered 1.3 km from the true initial location (standard deviation of 500 m) for B-1b,

B-2a, B-2b, B-3a and B-3b, which is the same initialization error as the Chicago
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Table 5.1: Test Path Characteristics

Name Date Time of Day Weather Location Length
B-1a 11/11/22 Afternoon Cloudy Cambridge & Boston 15 km
B-1b 11/11/22 Afternoon Cloudy Boston 13 km
B-2a 11/15/22 Morning Sunny Cambridge 10 km
B-2b 11/15/22 Morning Partly Cloudy Cambridge 17 km
B-3a 11/23/22 Afternoon Sunny Boston 14 km
B-3b 11/23/22 Afternoon Sunny Boston 8 km
wB-1a 3/6/23 Morning Sunny Cambridge 15 km
wB-1b 3/6/23 Morning Sunny Boston 17 km

experiments in Chapter 3 and Chapter 4 but with lower standard deviation due to

the challenging generalization conditions of the Boston data. The particle filter was

initialized with a Gaussian distribution centered 800 m from the true initial location

(standard deviation of 150 m) for B-1a; this path requires lower initialization error

because of the combination of dark conditions and long stretches near a river.

Localization on the images from this Boston dataset is a significant challenge

for several reasons: ReWAG* was not trained on any images of Boston, the Boston

images have a 72∘ FOV while ReWAG* was trained on 90∘ FOV images, the lighting

conditions vary significantly from training images, and the Boston images were taken

in the fall, at a different time of year than most training images, which were taken

in the summer. Despite these challenges, ReWAG* was able to localize to roughly

the same level of accuracy in Boston as ReWAG did in the simulated Chicago data.

ReWAG*’s results with both of these improvements can be seen in Table 5.2, where

ReWAG* outperforms TransGeo, the vision transformer baseline [115], on every path.

TransGeo is used as a baseline because of vision transformers’ impressive performance

on cross-view geolocalization tasks and generalization on image tasks.

Resampling ablation. Fig. 5-7 shows how, with the original multinomial re-

sampling strategy from [28], ReWAG* fails to accurately converge on the challenging

path along the Charles River. Multinomial resampling at every timestep, with no use

of ESS to control resampling, yields a final error of over 218 m. Systematic resam-
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Figure 5-7: Comparison of ReWAG* with multinomial resampling and with system-
atic resampling on simulation of B-1b test path. Multinomial resampling does not
converge, while systematic resampling converges after 10 km.

pling with an 0.98 ESS was able to achieve a final error of 75 m and convergence after

220 timesteps, demonstrating ReWAG*’s improved performance. Table 5.3 summa-

rizes the performance with multinomial resampling at every timestep compared to

ReWAG* with systematic resampling only when ESS drops below 0.98. While multi-

nomial resampling decreases final estimation error and time to convergence in some

paths, in others it fails to converge at all. ReWAG* with systematic sampling con-

verges on every test path and hence yields more reliable performance.

Data augmentation ablation. There were variable lighting conditions while

collecting data in Boston, including a dark, overcast day with diffuse, low lighting (in

paths B-1a and B-1b) and a partly cloudy period with lower lighting (B-2b). These

conditions were not seen frequently in the training dataset. To remedy this, ReWAG*
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Table 5.2: Boston Experiment Results
Metric and System Type B-1a B-1b B-2a B-2b B-3a B-3b

Final Error (m) Baseline 864 1329 1891 1884 1447 1690
ReWAG* 40 75 151 105 222 62

Conv. Time (t-steps) Baseline - - - - - -
ReWAG* 329 220 347 247 166 128

Table 5.3: ReWAG* Ablation

Metric and System Type B-1a B-1b B-2a B-2b B-3a B-3b
No Augmentation 79 853 131 2206 125 61

Final Error (m) Multinomial 72 218 75 167 60 223
ReWAG* 40 75 151 105 222 62
No Augmentation 302 - 382 - 168 87

Conv. Time (t-steps) Multinomial 254 - 347 - 136 -
ReWAG* 329 220 347 247 166 128

incorporates Fancy PCA [51] data augmentation into ReWAG*’s training to improve

the Siamese network’s robustness to brightness changes. The PCA variable 𝛼 was

drawn from a Gaussian with mean 0 and standard deviation of 1000 to produce more

drastic lighting differences. The results of training with Fancy PCA can be seen in

Fig. 5-8, where ReWAG without Fancy PCA does not converge on the B-1b cloudy day

and ReWAG with Fancy PCA does converge to 75 m of error. Table 5.3 summarizes

the performance with and without Fancy PCA training data augmentation. Data

augmentation reduces final estimation error in all but the B-3b path, and especially

reduces estimation error on low light paths. Data augmentation may not reduce

estimation error on the B-3b path because this path was well-lit and hence may not

have been affected by lighting challenges.

5.3.3 Winter

To further demonstrate ReWAG*’s generalization ability, a dataset of images was

collected along a route driven on a sunny winter day, March 6th, 2023. There was

no visible snow on the ground but trees were empty of leaves. This route closely

follows the paths driven for B-1a (driven mostly in Cambridge) and B-1b (driven in
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Figure 5-8: Comparison of ReWAG* performance on B-1b cloudy day with Fancy
PCA training augmentation and without training augmentation.

Cambridge and Boston). It was collected with the same test apparatus as the fall

paths. For the winter path, the particle filter was initialized with 800 m of error

and a standard deviation of 150 m. The winter path B-1b requires more accurate

initialization for convergence due to the appearance differences from the summer

satellite imagery. The estimation error of path B-1a is shown in Fig. 5-9 and the

estimation error of path B-1b is shown in Fig. 5-10. Both figures show that the

estimation error is similar across both fall and winter paths, demonstrating ReWAG*’s

seasonal invariance.

113



(a) Estimation error on fall B-1a (b) Estimation error on winter B-1a

Figure 5-9: Example of consistent localization on fall and winter paths B-1a. The fall
path begins approximately 5 km after the winter path starts.

(a) Estimation error on fall B-1b (b) Estimation error on winter B-1b

Figure 5-10: Example of consistent localization on fall and winter paths B-1b. The
winter path continues for approximately 2 km in Cambridge after the fall path.

5.4 Summary

This chapter described how ReWAG* performs wide-area cross-view geolocalization

on challenging, realistic data collected with a moving vehicle in the Boston area.

ReWAG* is trained with Fancy PCA image augmentation to introduce a greater

variety of brightness variations in training data and hence improve localization per-

formance on overly bright or overly dark images. ReWAG* also uses a particle filter

with systematic resampling, which has favorable performance in instances that are
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prone to particle degeneration. ReWAG*’s performance is demonstrated on ground

images collected in Boston and Cambridge, Massachusetts in November 2022 and

March 2023.

Although ReWAG* addresses some of the shortfalls of WAG and ReWAG, a gap

remains in determining when the system has converged to an accurate position es-

timate, which is still difficult to discern without knowing the ground truth position.

Chapter 6 details a method to check for convergence of particle filters used for local-

ization. This method will be demonstrated to correspond with estimation error of

ReWAG* as it localizes on the Boston data that has been described in this chapter.

115



116



Chapter 6

GKL Uncertainty Estimation

6.1 Introduction

A combination of particle standard deviation and estimation error has been used

to determine convergence in previous chapters of this thesis; low standard deviation

indicates that there is only one state that has high probability of being the true state

and low estimation error indicates that the particle filter has found the correct location

of the ground agent. However, both of these metrics are imperfect. Low standard

deviation can occur even when the particles are clustered around a state that is far

away from the true state, and estimation error can only be calculated with access to

the ground truth state at each time step. This chapter will introduce a convergence

metric that more reliably correlates with estimation error without requiring knowledge

of the ground truth state.

6.2 Methods

6.2.1 Overview of Approach

The cross-view geolocalization systems described in this thesis could be used to pro-

vide global localization information to an autonomous system. An autonomous sys-

tem may combine sensor information from multiple sources to produce the best lo-
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calization, but to combine those sources of information most effectively it needs to

know about the quality, uncertainty, or noise in each source. Cross-view geolocaliza-

tion information is less helpful if its uncertainty cannot be determined. Since WAG,

ReWAG and ReWAG* utilize particle filters to localize over time, they do not im-

mediately provide accurate localization information after initialization. It takes a

number of filter updates before the systems can converge and localize reliably with

low estimation error. However, it is not possible to calculate the estimation error

directly during deployment since ground truth location is not known. This leaves the

problem of how to determine the convergence point, or when to trust the location

outputs of the cross-view geolocalization systems. Uncertainty quantification is one

way to determine when and how much to trust the system outputs.

This thesis envisions its cross-view geolocalization systems as self-contained mod-

ules that would be incorporated into larger navigation systems. Hence it focuses on

estimating uncertainty of the particle filter localization output because that is the

uncertainty that would be incorporated into a navigation system. There remains the

possibility to estimate the uncertainty of each Siamese network output, using this

uncertainty to improve the internal weighting of the particle filter. This thesis leaves

Siamese network uncertainty estimation to future work.

This thesis proposes Gaussian Kullback-Leibler (GKL) divergence to quantify un-

certainty of a cross-view geolocalization particle filter estimate by measuring the dis-

tance between the particle distribution and a Gaussian distribution. The KL diver-

gence is estimated with a k-Nearest-Neighbor (kNN) probability density estimation,

which reduces the computational requirements. GKL uncertainty corresponds to es-

timation error and hence can serve as a measure of particle filter convergence or

uncertainty.

In the next sections the theory behind GKL uncertainty will be explained. Section

6.2.2 gives some background on Central Limit Theorems (CLTs). Section 6.2.3 details

how GKL uncertainty is calculated.
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6.2.2 Central Limit Theorems

Particle filter literature uses the term “convergence” to refer to the mean squared

error, or the average squared difference between the particle states and the actual

state, approaching zero [19]. In deployment of real systems, it is not possible to

calculate the mean squared error to determine convergence because the true state is

not known. Hence, this thesis uses the term convergence to refer to states where the

particle locations have low standard deviation, regardless of whether that is close to

the true state. If the particle states have low standard deviation and are close to the

true state, then this thesis refers to that as true convergence. If the particle states

have low standard deviation and are not close to the true state, then this thesis refers

to that as false convergence.

Previous work has analyzed particle filter convergence error with Central Limit

Theorems (CLTs), which provide measures of asymptotic variance [18, 25, 70]. The

asymptotic variance provided by CLTs is helpful for comparing the efficiency of dif-

ferent types of particle filters, but CLTs also assert that a particle filter that reaches

true convergence will have a Gaussian particle distribution.

Recent work [63, 64] proved a CLT for systematic auxiliary resampling, which is

the particle filter structure used in ReWAG*. Hence, ReWAG* should converge to a

Gaussian distribution as as it reaches true convergence and the mean squared error

converges to zero. Particle filters often receive ambiguous measurements in the visual

localization task due to perceptual aliasing. Perceptual aliasing occurs when different

places generate similar visual outputs, and in the localization context perceptual

aliasing can yields multiple potential states. If the particle distribution is multimodal

and hence non-Gaussian, it follows from CLTs that the filter has not reached true

convergence [63, 64]. Importantly, these CLTs do not claim that a Gaussian particle

distribution indicates that a particle filter must have reached true convergence, only

that a converged particle filter but have a Gaussian distribution. Hence, a non-

Gaussian distribution indicates that a particle filter is not converged, but a Gaussian

distribution does not guarantee that a particle filter is converged.
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6.2.3 GKL Uncertainty

Since CLTs show that a particle filter with low mean squared error will have a Gaus-

sian distribution, the difference between a Gaussian distribution and the particle dis-

tribution can measure the particle filter’s convergence level. KL divergence (Eqn. 2.1)

is a statistical measure of how one probability distribution differs from a reference

probability distribution. Hence KL divergence between the particle distribution and

a Gaussian distribution can be used to measure the particle filter’s convergence. KL

divergence as a test for normality has been demonstrated to have high power against

non-normal alternatives [9]. This thesis refers to the proposed metric as Gaussian KL

(GKL) uncertainty to avoid confusion with the KL divergence approach [97]. The

algorithm is described in Alg. 2, with the values used for the parameters shown in

Table 6.1. The value of 2 for 𝑑 was determined by the dimension of the search space

for this cross-view geolocalization problem (searching across latitude and longitude).

The value of 30,000 for 𝑁 was determined to be the minimum number of particles

that reliably allowed the particle filter to converge. The value of 30,000 for 𝑀 was

selected to match 𝑁 , but determined to have minimal effect on accuracy (demon-

strated in Section 6.3). The Gaussian distribution that is used for comparison in

GKL uncertainty has a mean and standard deviation that is the same as the particle

distribution’s. Figures 6-1 and 6-2 show examples of the mean and standard deviation

obtained from two different particle distributions. GKL uncertainty is a measure of

aleatoric uncertainty, or noise inherent to the ground images through phenomena like

perceptual aliasing.

GKL uncertainty uses a k-nearest-neighbor (kNN) probability density estimation

approach [77] to estimate KL divergence between the particle distribution and sam-

ples from a Gaussian distribution with the same mean and standard deviation as the

particle distribution. kNN probability density estimation estimates the probability

density at a point by calculating the distance from that point to its nearest neigh-

bors. Ref. [77] estimates KL divergence between two continuous distributions without

directly estimating the densities, hence improving computational efficiency. KL diver-
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Algorithm 2 GKL
Require: 𝑀 > 0, 𝑁 particles x ∈ R𝑑 : 𝑋 = [x𝑗]𝑗=1...𝑁

compute x̄ = 1
𝑁

∑︀𝑁
𝑗=1 x

𝑗

compute 𝜎2 = 1
𝑁−1

∑︀𝑁
𝑗=1(x

𝑗 − x̄)2

for 𝑗 = 1 to 𝑀 do
sample g𝑗 ∼ 𝒩 (x̄, 𝜎2)
add [g𝑗] to 𝐺

end for
build KD trees of 𝐺 and 𝑋, 𝑇𝐺 and 𝑇𝑋
initialize 𝑆 = 0
for 𝑗 = 1 to 𝑀 do

query 𝑇𝐺 for 𝑑1𝐺(x𝑗), distance from nearest neighbor of 𝐺 to x𝑗

query 𝑇𝑋 for 𝑑2𝑋(x𝑗), distance from second nearest neighbor of 𝑋 to x𝑗

compute 𝑠𝑗 = log
𝑑1𝐺(x𝑗)

𝑑2𝑋(x𝑗)

add 𝑆 = 𝑆 + 𝑠𝑗
end for
compute uncertainty, 𝑈𝐺𝐾𝐿 = −𝑆𝑑

𝑀
+ log 𝑁

𝑀−1

return 𝑈𝐺𝐾𝐿

Table 6.1: GKL Uncertainty Parameter Values

Parameter Value
𝑑 2
𝑁 30,000
𝑀 30,000

gence estimated by kNN probability density estimation for a continuous distribution

𝑃 from a reference continuous distributed 𝑄 is calculated as follows:

̂︀𝐷𝑘(𝑃‖𝑄) = −𝑑
𝑛

𝑛∑︁
𝑖=1

log
𝑟𝑘1 (x𝑖)

𝑠𝑘2 (x𝑖)
+ log

𝑚

𝑛− 1
(6.1)

where x𝑖 is the vector of samples drawn from 𝑃 , x′
𝑖 is the vector of samples drawn

from 𝑄, 𝑑 is the dimension of the distributions 𝑃 and 𝑄, 𝑛 is the number of samples

drawn from 𝑃 , 𝑚 is the number of samples drawn from 𝑄, 𝑟𝑘1 (x𝑖) is the Euclidean

distance of the 𝑘𝑡ℎ1 nearest neighbor of x𝑖 in x𝑖, and 𝑠𝑘2 (x𝑖) is the Euclidean distance

of the 𝑘𝑡ℎ2 nearest neighbor of x𝑖 in x′
𝑖.

GKL uncertainty is, in essence, a quantification of how Gaussian a particle dis-
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Figure 6-1: Mean and standard deviation are calculated from particle cloud at each
time step. This figure shows an example of a particle filter that is not converged.

Figure 6-2: Mean and standard deviation are calculated from particle cloud at each
time step. This figure shows an example of a particle filter that is converged.

122



tribution is. As follows from CLTs, a non-Gaussian particle distribution cannot have

reached true convergence. Hence, high GKL uncertainty indicates a highly non-

Gaussian particle distribution which has not reached true convergence. In contrast,

since a Gaussian particle distribution does not guarantee true convergence per CLTs,

low GKL uncertainty does not guarantee true convergence. A low GKL uncertainty

could be obtained for a false convergence. Hence, GKL uncertainty is more useful to

identify false convergences than to guarantee true convergences.

The following section will show GKL uncertainty compared to estimation error

on different paths from the Boston dataset. This thesis demonstrates a relationship

between GKL uncertainty and true convergence on the full length Boston paths.

In cases of true convergence, GKL uncertainty tends to decrease with a slight lag

behind estimation error. GKL uncertainty is more prone to false positives than to

false negatives; a high GKL uncertainty strongly indicates that the particle filter

has not yet converged or is falsely converged while a low GKL uncertainty weakly

indicates that the particle filter has reached true convergence. Essentially, GKL

uncertainty has high recall but lower precision. As such, GKL uncertainty makes

progress towards quantifying the uncertainty in ReWAG*’s output, but there remains

space for additional work on uncertainty quantification.

6.3 Results

Figures 6-3 and 6-4 show the decrease in GKL uncertainty over distance traveled and

its correlation with the decrease in estimation error for paths B-1 and B-2. Figure

6-4(a) shows a sharp spike in GKL uncertainty starting at around 20 km, and that

directly corresponds with an increase in the estimation error due to an ambiguity that

temporarily splits the particle cloud. GKL uncertainty can more accurately represent

uncertainty caused by perceptual aliasing since it increases when the particles are

multimodal and decreases when the particles are consistently clustering around one

location.

GKL uncertainty is more suitable for measuring uncertainty than standard de-
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(a) GKL uncertainty from path B-1 (b) Estimation error from path B-1

(c) GKL uncertainty from path B-2 (d) Estimation error from path B-2

Figure 6-3: GKL uncertainty decreases as estimation error decreases in these examples
of true convergence.

viation or effective sample size, which are often used as proxies for particle filter

estimate uncertainty [26]. An example is shown in Fig. 6-5 comparing estimation

error of a false convergence path in Fig. 6-5(a) with GKL uncertainty, standard de-

viation, and normalized effective sample size (effective sample size scaled by total

number of particles). GKL uncertainty is the only metric that shows the uncertainty

mostly increasing as the estimation error increases. Standard deviation decreases over

time even as estimation error increases, and ESS stays relatively constant. Standard

deviation and effective sample size do not yield vastly different uncertainties for a false

convergence compared to a true convergence as shown in Fig. 6-6. GKL uncertainty

enables identification of false convergence estimates.
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(a) GKL uncertainty from path B-3 (b) Estimation error from path B-3

(c) GKL uncertainty from path wB-1 (d) Estimation error from path wB-1

Figure 6-4: GKL uncertainty decreases as estimation error decreases in these examples
of true convergence.

GKL uncertainty requires a relatively low computational effort and that effort can

be scaled down with minimal effect on calculation accuracy due to its use of [77]’s k-

nearest-neighbor (kNN) probability density estimation approach. For example, GKL

uncertainty calculation takes 0.06 seconds with 30,000 samples of the Gaussian, and

decreases to 0.007 seconds with 100 samples while resulting in similar GKL uncer-

tainty values. Calculations were done on an NVIDIA GeForce RTX 3090. Calculation

time can be decreased with less samples with a modest trade off of increased noise in

the GKL uncertainty, as shown in Fig. 6-7.
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(a) Estimation error of false convergence (b) GKL uncertainty increases as estimation er-
ror increases

(c) Standard deviation decreases even as estima-
tion error increases

(d) Normalized effective sample size remains con-
stant even as estimation error increases

Figure 6-5: GKL uncertainty mostly outputs high uncertainty levels for a false con-
vergence. Standard deviation decreases, suggesting decreased uncertainty, and nor-
malized effective sample size remains constant, suggesting unchanging uncertainty.
See Fig. 6-6 for true convergence.

6.4 Summary

This chapter described how GKL uncertainty provides a metric for particle filter con-

vergence and uncertainty. GKL uncertainty uses kNN probability density estimation

to measure the distance between the particle distribution and a Gaussian distribu-

tion. GKL uncertainty is shown to closely track the estimation error obtained from

various paths across different seasons of realistic Boston data. A navigation system

can use GKL uncertainty to determine the point when ReWAG*’s localization esti-
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(a) Estimation error of true convergence (b) GKL uncertainty decreases as estimation er-
ror decreases

(c) Standard deviation decreases as estimation
error decreases

(d) Normalized effective sample size remains con-
stant even as estimation error decreases

Figure 6-6: GKL uncertainty accurately reflects low uncertainty levels for a true
convergence. Standard deviation decreases, suggesting decreased uncertainty, and
normalized effective sample size remains constant, suggesting unchanging uncertainty.

mate should begin to be incorporated to gain maximum information and calculate

the most accurate state estimate.
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(a) GKL uncertainty with 30,000 Gaussian sam-
ples

(b) GKL uncertainty with 100 Gaussian samples

Figure 6-7: GKL uncertainty result is similar with 30,000 samples and 100 samples
but results in an order of magnitude reduction in computation.
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Chapter 7

Conclusion

The core motivation for this work was that autonomous systems need GPS-denied

localization to ensure robustness against GPS disruptions and adversarial attacks.

Self-driving cars, delivery robots, military tactical awareness robots, and search and

rescue robots all require reliable localization to enable safe operation. GPS-based

localization is brittle and can be easily disrupted by systematic failures or targeted

attacks. GPS-denied localization is a growing field, given a greater sense of urgency

by government directives like the 2018 National Defense Authorization Act [1] and

the 2020 executive order on Strengthening National Resilience Through Responsible

Use of Positioning, Navigation and Timing Services [2], which mandate alternatives

to GPS systems for critical infrastructure.

Cross-view geolocalization uses readily-available satellite imagery to localize with

ground-view images and provides a backup or enhancement for GPS-based localiza-

tion. Cross-view geolocalization can also be used to provide a check on GPS localiza-

tion to detect spoofing. However, previous cross-view geolocalization systems have

approached the problem from a computer vision perspective. Computer vision ap-

proaches often overlap with robotics approaches to many perception problems, but

they typically make a different set of assumptions. Computer vision approaches often

assume that the problem is being solved in post-processing, with access to signifi-

cant computational resources and without strict time constraints. In robotics, there

are often significant constraints on computational resources and localization algo-
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rithms usually need to run in real-time. Although a few previous works have made

some progress towards adapting cross-view geolocalization for robotics by integrating

Siamese networks with particle filters [40, 47, 109, 117], there remained several key

gaps.

The most significant literature gaps in existing cross-view geolocalization for robotics

platforms have been performing localization across a large, city-scale search area, lo-

calizing with generic, non-specialized hardware, generalizing localization performance

across diverse, challenging conditions, and quantifying the localization uncertainty of

the system. This thesis has provided important insights and techniques for resolving

these issues with existing cross-view geolocalization systems, resulting in a combined

system suitable for GPS-denied automotive navigation.

First, the development of trinomial loss strengthens Siamese network performance

on semi-positive image pairs, which enables superior computational time and storage

scaling on larger search areas. Next, the creation of computationally efficient pose-

aware embeddings improves cross-view geolocalization performance on cameras with

smaller fields of view, thereby lifting the burdensome requirements of a panoramic

camera. Additionally, the application of training data augmentation and the use of

well-suited particle filter techniques aids in better generalization between training

data and realistic, challenging deployment data. Finally, the proposed GKL diver-

gence provides a first step towards quantifying the uncertainty of the particle filter

output in a cross-view geolocalization system and a method to quantitatively assess

the quality of the navigation solution.

Overall, this thesis demonstrates that cross-view geolocalization can be a valuable

tool for autonomous navigation, and that changes in assumptions result in a cross-

view geolocalization system that can localize faster, with fewer hardware constraints,

across realistic imagery, and with estimates of uncertainty. Computer vision research

on cross-view geolocalization has advanced quickly and succeeds at many challeng-

ing tasks, but the application of computer vision research towards robotics is more

beneficial when the assumptions and constraints are truly representative of those of

autonomous systems.
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7.1 Future Work

This thesis has taken steps towards cross-view geolocalization for mobile autonomous

systems, laying the groundwork that had to be completed before considering more

complicated problems. However, there remain many potential avenues for further de-

velopment. The environments trained and tested with in this thesis consisted primar-

ily of urban and suburban scenery, which are more structured than rural or forested

environments. As such, there may be different and novel techniques required to obtain

similar performance in rural environments. This thesis has also focused on localiza-

tion with no or very little GPS information, but further work could be done on the use

of cross-view geolocalization to improve GPS estimates or to serve as an independent

localization source when GPS fails. Furthermore, this thesis focused on localizing

across a wide search area but did not achieve sub-GPS level accuracy. Additional

work could be done to build a system that is capable of localizing from coarse to fine

scales, or which is capable of converging faster so that it could be used to localize a

pedestrian. Cross-view geolocalization could also be utilized in an active localization

setting, as opposed to the passive localization studied in this thesis. Passive localiza-

tion assumes that the localization system receives measurements without any ability

to control the movement of the agent. Active localization allows the localization sys-

tem to influence where the agent travels, directing the agent to move in ways that

improve localization accuracy [12]. Additionally, the particle filter technique used

in the cross-view geolocalization approaches presented in this thesis are fairly sim-

ple; additional performance boosts could be obtained with more advanced filtering

techniques.

Developments in Siamese network architecture, training and loss functions could

improve image matching performance, enabling faster localization convergence. Two

architectures that seems particularly promising are the Vision Transformer [24] and

diffusion networks [37]. Furthermore, improved image matching performance could

allow uniform initialization across the search area, as opposed to this thesis’ informed

Gaussian localization. Within the particle filter, the probability distribution could be
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represented more accurately with a better measurement model for learned similarity

from a Siamese network. There exists promising work in the field of obtaining un-

certainty estimates from neural networks; these works could be applied to generating

a better measurement model with careful consideration of computational constraints

or to reduce processing power by incorporating measurement from only the most

confident ground images.

7.2 Ethical Impact

Work on cross-view geolocalization has some ethical implications in regards to privacy

and surveillance that should be mentioned. In the age of social media when many

people choose to share camera footage of their lives online to the public, cross-view

geolocalization puts the privacy of people’s locations at risk. Individual images and

video footage can increasingly be localized with less existing context and fewer mea-

surements required. Many social media personalities have begun to censor aspects

of their lives such as the view out of their bedroom window or the scenes visible

from their car as they drive to the store, which will become more and more necessary

for those looking to preserve their privacy as this technology develops. Cross-view

geolocalization could also be used for surveillance; it should be used carefully in this

context. One could imagine cell phone footage being used as evidence of a person’s

location during a critical time frame. However, the current state of the art introduced

by this thesis requires approximately 15 km of motion and as such these potential

surveillance applications are in the far future. Nonetheless, it is important to consider

the potential vulnerabilities of this technology in those cases; cross-view geolocaliza-

tion data should be not taken as infallible as the technology is still developing.
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