
Nanosatellite Hyperspectral Imaging Performance
Modeling for Ocean Color Detection

by

Cadence Payne

S.M. Aeronautics and Astronautics, Massachusetts Institute of Technology (2020)
B.S. Space Science, Morehead State University (2017)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Cadence Payne. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Cadence Payne
Department of Aeronautics and Astronautics
January 12, 2024

Certified by: Kerri Cahoy
Professor of Aeronautics and Astronautics, Thesis Supervisor

Certified by: Brent Minchew
Associate Professor, Department of Earth, Atmospheric, and Planetary
Sciences, Thesis Supervisor

Certified by: Viviane Menezes
Assistant Scientist, Woods Hole Oceanographic Institute, Thesis Supervisor

Certified by: John Kerekes
Research Professor, Rochester Institute of Technology, Thesis Supervisor

Certified by: Sean McCarthy
Research Scientist, U.S. Naval Research Lab, Thesis Supervisor

Accepted by: Kerri Cahoy
Thesis Advisor
Assistant Professor, Department of Aeronautics and Astronautics



Nanosatellite Hyperspectral Imaging Performance Modeling for
Ocean Color Detection

by

Cadence Payne

Submitted to the Department of Aeronautics and Astronautics
on January 12, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN AERONAUTICS AND ASTRONAUTICS

ABSTRACT

Earth’s oceans are an integral sub-system of our planet, an invaluable resource, and an in-
formative proxy for understanding human-related climate impact. Ocean color observations
are particularly useful for monitoring and modeling phytoplankton, valuable fauna that form
the basis of the marine food web, produce an estimated 50-85% of breathable oxygen, and
provide the largest and most efficient mechanism for oceanic carbon capture. Monitoring
the behavioral response of phytoplankton to the impact of increased anthropogenic input
at a scale observable by spacecraft provides information on ocean health at large. More ef-
fective space-based monitoring requires increased spectral, temporal, and spatial resolution
compared with currently available performance from legacy instruments such as MODIS,
MERIS, and SeaWiFS. Data coverage without temporal gaps is necessary for monitoring
short- and long-term trends, and high spectral resolution is required for taxonomic species
discrimination and identification of in-water optical constituents in turbid, coastal regions.
Nanosatellites hosting ocean-sensing hyperspectral imagers may offer gap-filling solutions by
providing complementary measurements with high spectral, spatial, and temporal resolution
that align spectrally with legacy data.

This work investigates the utility of nanosatellite solutions for targeting the ocean color
observational needs of increased spatial coverage and spectral resolution. Two reference
nanosatellite architectures, AEROS and HYPSO-1, are evaluated to derive sensor perfor-
mance with respect to measurement requirements and sensitivities. Each mission hosts an
ocean sensing hyperspectral imaging payload with unique architectures, and their perfor-
mance represents a benchmark for nanosatellite solutions. In this thesis, the capabilities
of nanosatellite hyperspectral imagers are analyzed by using environment models and de-
veloping detailed instrument simulations. Synthetic atmospheric scenes are produced for
three regions using the Py6S, open-source radiative transfer model. Model outputs provide
top-of-atmosphere spectral radiance across a tradespace of environmental factors and view-
ing geometries. Regions are selected for their global climate relevance and proximity to the
coast, as coastal observations require higher spectral resolution. The three target regions
are geographically distributed to represent a diverse set of potential nanosatellite imaging
scenes to assess performance for both ideal and non-optimal imaging conditions.

A radiometric performance model is developed to determine the nanosatellite hyper-
spectral imagers’ signal-to-noise ratio for all generated scenes, enabling the identification
of imaging and operational constraints. The imagers’ noise equivalent spectral radiance is
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derived to determine the imaging sensitivity to input signals and minimal detection limits.
Performance is contrasted between the two reference missions, and each mission is evaluated
for their compliance with identified measurement needs. These needs are captured by a set
of mission, system, and payload requirements derived from community reports, constituent
retrieval algorithms, and lessons learned from legacy missions. These requirements are scaled
for compatibility with the nanosatellite platform to enable assessments of design limitations
and potential opportunities for improvement. Model derivation and results are discussed
and design limitations of the nanosatellite platforms are identified.

The results of this thesis demonstrate the challenges of satisfying measurement needs de-
signed for state-of-the-art ocean color imagers with the nanosatellite platform. However, it is
found that both the AEROS and HYPSO-1 nanosatellite missions achieve partial compliance
with the SNR requirement of 200 for VIS/NIR bands with the implementation of spectral
binning. Both missions also achieve partial compliance with the noise-equivalent spectral
radiance levels desired for VIS/NIR bands, and the HYPSO-1 mission is fully compliant
with the maximum required value. Recommendations for future improvements, including
imaging system design modifications that support high SNR in high-priority VIS/NIR and
SWIR bands, as well as the necessity of a combined ocean surface-atmospheric radiative
transfer model for environmental modeling are provided.
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Chapter 1

Introduction

Earth’s oceans are an integral sub-system of our planet and an invaluable resource to hu-
manity. The oceans cover roughly 71% of the planet’s surface, so it follows that these large
bodies are intertwined with the planet’s climate and weather systems. Understanding the
behavior of the oceans is an excellent proxy for monitoring the planet’s health [1]. The
consequences of climate change threaten to have significant and irreversible effects on our
oceans, such as ocean acidification, sea level rise, and the disruption of marine food webs. It
is crucial to quickly understand and quantify climate impact due to increased human activity.
Monitoring key characteristics and health indicators of the ocean such as ocean color, sea
surface salinity, and sea surface temperature provides critical insight into how its behavior is
changing within the context of our shifting climate. In-situ, airborne, and spacecraft-based
observations are common ways to monitor and characterize ocean features. These observed
data products are valuable inputs to global climate and weather models. Satellite observa-
tions enable near-continuous, large-scale views of the ocean’s surface, making them a key
tool for improving our ability to rapidly monitor ocean behavior at large.

The non-uniform nature of ocean behavior around the globe, particularly near the coast,
typically requires that ocean surface models and product retrieval algorithms are regionally
specific. Variability is often driven by factors such as a region’s proximity to the coast, river
in-flows, pollution run-off, shelf breaks, etc. This regional dependence imposes specific sets
of measurement constraints on data products, such as measurement wavelengths and spa-
tial/temporal resolutions, for optimizing the observation of features specific to a target area.
Most oceanographers, marine biologists, and other Earth observation scientists do not typi-
cally have the privilege of requesting tailored data products with the features ideally suited
for their research, thus they are often required to adopt available datasets. This approach is
challenging given that datasets are often limited in desired regional ground coverage (sensor
spot coverage of the region), temporal coverage (in-situ sampling rate or satellite revisit rate
over the region of interest), spectral coverage (sensor wavelengths surveying desired features),
and spatial resolution (a sensor’s ability to resolve detailed features at the surface). These
gaps in the datasets impose challenges on model development and validation, ultimately
constraining our ability to build appropriate and accurate ocean models for some regions
[2]–[4].

Nanosatellites, or CubeSats, provide platforms for Earth Observation (EO) that are
relatively low-cost, modular, and rapidly developed compared with traditional satellite de-
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velopment. Nanosatellites offer opportunities for rapid revisiting (e.g., ∼ < 1 day) of key
ocean features with high spectral resolution (100+ spectral channels with < 15 nm band-
width), and reasonable (< 100 m) spatial resolution. Distributed nanosatellite constellations
can provide dedicated solutions capable of offering higher temporal resolution on the order
of hours. Nanosatellites host sensors, both Commercial Off-the-Shelf (COTS) and custom-
built components, that can be tailored for regional observations, helping to fill gaps in ocean
measurement products.

This chapter motivates the need for remotely sensed hyperspectral measurements of ocean
color (OC) and the utility of doing so with nanosatellite platforms. Brief discussions of key
concepts such as the definition of ocean color, methods for performing the OC remote sensing
process, and general principles of hyperspectral imaging are provided to ensure readers have
the provided context to interpret the remainder of the work. A summary of the history
of this observationally rich field is provided with highlights for current measurement needs
and technical gaps. Finally, a walkthrough of the remaining structure of the dissertation
document and the resulting contributions of this work constitute the conclusion of this
chapter.

1.1 Background and Motivation

Our oceans contain millions of plants and animals whose existence sustains ecosystems that
are critical for maintaining oxygen and food supplies. Marine plant species such as phyto-
plankton, kelp, and algal plankton produce approximately 70% of the oxygen in the Earth’s
atmosphere and are the fundamental basis of the aquatic food web. Phytoplankton blooms
are also key in locating high volumes of larger marine life, a metric useful for local fishermen
[3], [5]. Phytoplankton play an especially critical role in regulating our planet’s climate by
capturing atmospheric carbon dioxide and redistributing it to the ocean via photosynthetic
processes [3], [6], [7]. Fluctuating climate-related phenomena such as water temperature,
salinity density distribution, and wind patterns affect the growth rates and structure of
phytoplankton communities, and these effects threaten to alter phytoplankton’s ability to
provide nutrition to larger fauna, produce oxygen, and absorb atmospheric carbon dioxide
[8], [9].

Phytoplankton community structure, e.g., bloom size and taxonomic composition, and
productivity, the product of the biomass and bloom growth rate, are often highly variable
on spatial and temporal scales, particularly in coastal regions [10], [11]. In-situ measure-
ment techniques, such as fluorometry and flow cytometry, are valuable tools for surveying
smaller-scale regional bloom characteristics. However, these methods and others, such as
buoys and gliders, are restricted in spatial and temporal coverage, often require expensive
instrumentation and dedicated cruise time, and require humans in the loop for sampling
collection [12], [13]. Monitoring the size, frequency, location, and structure of phytoplankton
blooms from space via OC observations (see Figure 1.1) provides valuable insight into phy-
toplankton health, and consequently ocean behavior, particularly in euphotic zones (near
the surface), with spatial and temporal resolutions that are often better suited for observa-
tional needs [11]. Phytoplankton observations may also provide insight into other key tracer
characteristics. For example, a widely used method for edge detection of mesoscale eddies
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(10 - 200 km weather-like circulatory features on the ocean’s surface) involves monitoring
chlorophyll signatures from phytoplankton, as they often bloom around the perimeter of
these processes [14], [15]. The upwelling and downwelling from eddy circulatory pumping
enables vertical mixing of nutrients to the ocean’s surface, thus providing sustenance to sus-
tain large blooms. There is strong correlation between ocean circulatory processes, known
to be affected by fluctuations in ocean temperature and phytoplankton growth, and global
distribution [3], [16], [17]. Nutrient transportation caused by vertical circulation from wa-
ter temperature mixing at ocean fronts makes these fronts locations of high phytoplankton
growth, meaning front-detection is at times a byproduct of phytoplankton observations [18],
[19].

Figure 1.1: Algal bloom captured by Copernicus Sentinel-2 over the Baltic Sea showing
visible ocean circulatory patterns (left) and harmful algal bloom (HAB) in western Lake Erie
captured by Landsat-8 (right). Images courtey of the European Space Union and NASA.
[20], [21]

1.1.1 Oceans and Society

Fisheries contribute significantly to the global economy and sustainment of food security,
demonstrating direct economic benefit from the oceans [22]. The US Global Change Research
Program highlights the significant impact of fisheries stating that this sector generates over
$200 billion in global economic activity and supports more than 1.6 million jobs each year
[23]. Additionally, according to the Food and Agriculture Organization (FAO) of the United
Nations, global fish production for 2022 is estimated to reach 184.6 million tons, where
a significant fraction (∼92.2 million tons) is provided by aquaculture or aquafarming [24].
Aquaculture is among the largest and most internationally traded food commodities, where
the distribution of products involves over 225 countries and international territories [24],
[25]. The impact from adverse climate effects such as water temperature rise, deoxygenation,
and ocean acidification directly impact fish stocks and fishery management via ways such
as altering the composition of fish species types and reducing catch frequency in certain
regions [24], [26], [27]. Thus, these effects complicate this reliable process for providing
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large quantities of food to global populations [24], [28], [29]. Given that phytoplankton
production serves as a fundamental pillar in sustaining the aquatic food web, bloom biomass
and location are directly correlated with interannual variability in fishery productivity [27],
[30]. Similarly, the presence of Harmful Algal Blooms (HABs, see Figure 1.2), which are often
stimulated by the injection of anthropogenic factors such as sediment flows and pollution
run-off, threaten fish health [27], [31], [32]. Monitoring phytoplankton blooms, locations,
growth rates, and species types can provide valuable insight into global fishery management.
For a more complete description of global fisheries and aquaculture as a priority area for
economic and sustenance sustainability, the 2022 FAO’s The State of World Fisheries and
Aquaculture report is recommended [33].

Last, according to the United Nations, roughly 40% of the global population lives in
coastal regions, with even larger numbers using our oceans as recreational outlets, meaning
that well-being and housing security in these areas are directly correlated with the behavior
of the neighboring oceans [34]. In addition to ocean coastal behavior serving as a critical indi-
cator of general ocean health, people living on or near coastal areas will experience the most
intense adverse effects of climate change, solidifying these regions as high-priority targets
for high-temporal frequency monitoring from space. These combined contributions to our
planet’s overall well-being make our oceans essential for technological, scientific, economic,
and social development.

1.1.2 Ocean Color Definition

According to the International Ocean Color Coordinating Group (IOCCG), ocean color is
defined as the intensity and wavelength of flux from the submarine light field exiting upwards
(or upwelling) from just below the water’s surface [35]. Simply put, light incident from the
sun (shortwave downwelling radiation) strikes the ocean’s surface. At the interface of the
Earth’s atmosphere and ocean surface, this incident radiation experiences absorption and
reflection processes that affect both the magnitude and spectral shape of the exiting light.
The characteristics of the atmospheric path also affect the apparent color by scattering
and absorbing light (see Section 1.3.1). These effects manifest in ocean color appearing as
stunning gradients of blue, green, brown, yellow, and even red, where every hue is driven
by the types of substances and organisms residing in the observed water column at or near
the ocean’s surface [35]. Other ocean color influencers include water clarity (turbidity),
which can be influenced by tidal events or storms; the observation point’s proximity to
regions susceptible to high runoff volumes (e.g., sediment flows from rivers, erosion events,
pollution runoff from urban and agricultural environments); and eutrophication (an excessive
accumulation of nutrients), often caused by runoff [35]–[37]. These processes alter the water’s
color, and some also create environments conducive to the primary influence of ocean color,
phytoplankton.

As microscopic ocean plants, phytoplankton derive their energy through photosynthesis
and contain significant amounts of chlorophyll-a, arguably the most utilized product from
ocean color measurements [11]. Akin to terrestrial plants, phytoplankton absorb red and
blue light and prominently reflect green. This dynamic interaction with light results in
ocean color gradients that range from shades of blue-green to green. Harmful algal blooms,
such as Karenia brevis typically seen off the coast of Florida in the US (see Figure 1.2),
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Figure 1.2: False-color image of Karenia brevis HAB in the Gulf of Mexico off the coast of
Florida. Image captured Planet SuperDove. Figure courtesy of NASA Earth Observatory
[38].

result in the observation of red spectral signatures. The ratio of reflected blue and green
light is often used as a strong indicator of phytoplankton density, an observable feature in
satellite images [3], [11], [37]. These optical characteristics allow for the remote sensing
and monitoring of phytoplankton populations through ocean color measurements, providing
valuable insight into the health and dynamics of marine ecosystems.

Ocean color observations are also useful proxies for retrieving spatial features of ocean
fronts and eddies, which are circulatory phenomena near the surface [39], [40]. The diameter
and structure of mesoscale eddies (diameters from a few to a few hundred kilometers) are
a function of latitude, where mesoscale eddies appear more frequently when the Coriolis
effect is more pronounced and surface interactions with large-scale Rossby waves among
other things [41], [42]. The circulatory nature of these features facilitates vertical upwelling,
cycling nutrients from deeper depths to the ocean’s surface, thus nurturing phytoplankton
[39], [41]. Surface patterns are retrieved through observations of water-leaving radiance
near the edges of eddies, and detection of both eddies and ocean fronts may be augmented
by combining ocean color measurements with complementary data products such as Sea
Surface Temperature (SST) and Sea Surface Height (SSH). Some methods, such as the one
used by Patel et al., show the ability to autonomously detect patterns of ocean surface eddies
solely from ocean color products through the use of computational neural networks [41]. In
summary, observation of ocean color is a powerful tool for monitoring ocean processes and
serves as a useful proxy for characterizing dynamic ocean behavioral trends.

1.1.3 Hyperspectral Imaging

Multispectral imagers are typically defined as supporting image acquisition across few (less
than 10), non-contiguous (discrete) spectral channels, or measurement bands [43]–[45]. Mul-
tispectral measurement bands also tend to have non-uniform widths (e.g., NASA’s Moderate
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Resolution Imaging Spectroradiometer’s (MODIS) band 1 has a 50 nm bandwidth (BW)
while band 8 has a bandwidth of 15 nm). The non-contiguous spacing of bands on mul-
tispectral imagers sometimes makes it challenging to perform continuous, cross-spectrum
measurements.

Hyperspectral imagers (HSIs) are passive instruments that sense electromagnetic (EM)
radiation with high spectral resolution across a broad range of measurement bands (typi-
cally visible and near-infrared (VIS/NIR) wavelengths, 350 nm - 1000 nm). Although there
is some debate in the literature on what classifies an imager as “hyperspectral,” definitions
converge on spectral image acquisition with an abundance of narrow (5 – 10 nm bandwidth),
contiguous wavelengths [43]–[45]. The high spectral resolution achieved with HSIs enables
differentiation of phenomena with unique spectral signatures to perform detailed reconstruc-
tion of complex features such as discriminating phytoplankton species types, characterizing
absorption from specific atmospheric aerosols, and detecting small-scale changes in ocean
surface features that arise from phenomena such as the onset of HABs.

Material properties are observed via the interactions they have with polychromatic and/or
monochromatic radiation via reflecting, transmitting, absorbing, or scattering processes [43].
Diffuse emission sources, such as water-leaving radiance from the ocean’s surface sensed at
the top-of-the-atmosphere (TOA), also contain critical information regarding absorbing con-
stituents (e.g., atmospheric aerosols) along the path between the sensor and the target. One
application of HSIs is detection of narrowband features such as the chlorophyll fluorescence
peak at 683 nm (full width at half maximum BW of 25 nm) for estimating chlorophyll-a
concentration [46]. Additionally, HSIs can better discriminate from neighboring atmospheric
bands, e.g., differentiating contributions from oxygen absorption features at 687 nm and 760
nm from a prominent water vapor absorption feature at 730 nm [46]. A final benefit of HSI’s
high spectral resolution, assuming the desired SNR is achieved, is detection of small gradi-
ents in increasing chlorophyll concentrations in aquatic bodies, a key indicator for predicting
the onset of enhanced phytoplankton growth [47].

The novelty of hyperspectral imaging combines traditional spectroscopy with standard
imaging techniques [43]. Spectroscopy uses components like prisms and gratings to split
incident light into its individual spectroscopic bands. Measurement synergy enables the
simultaneous extraction of spatial information with spectroscopic components from multi-
ple sources captured in a single scene (e.g., spectral signatures from a pond differentiated
from those of surrounding vegetation) [43], [44]. While many HSI design configurations
are driven by measurement requirements from the target application, HSIs generally consist
of the same types of components: a photosensitive surface for recording a target’s signal
(typically a CMOS or CCD detector), an optical path for routing incident radiation to the
detector while satisfying the spatial and spectral requirements of the observation, and a
dispersive mechanism for partitioning incident radiation into individual bands across the
spectral range (see Figure 1.3) [43]. The dispersive mechanism is the key component of the
HSI system. Typically, a spectral grating is used to distribute incident radiation from the
entrance aperture to the detector [43].

There are three primary methods of HSI image acquisition: area scanning, point scanning
(“whiskbroom”), and line scanning (“pushbroom”), where point and line scanning techniques
are more common for space-based remote sensing platforms (see ElMasry and Sun (2010) for
detailed definitions of each) [43], [44]. Nanosatellite architectures typically use pushbroom
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acquisition as it achieves higher signal-to-noise ratio (SNR) per pixel compared with the
whiskbroom imaging and does not require mechanical moving parts which add risk during
high vibrational loads from launch and spacecraft deployment.

Figure 1.3: Fundamental elements of a hyperspectral imaging spectrograph.

HSIs generate a 3D image cube with wavelength as one dimension [43]–[45]. Data is
distributed spatially in two dimensions (x,y), where the x corresponds to rows of pixels built
from the imager’s slit and y are the spatial columns typically generated by the forward
velocity of a spacecraft for pushbroom imagers. The spectroscopic nature of the imager
then builds the third dimension (λ) in all wavelengths of the sensor’s spectral range to
create an image that is both spatially and spectrally distributed. This means that for every
(x,y) spatial element, the entire spectrum is also captured in λ (see Figure 1.4). Resulting 3D
image cubes I(x,y,λ), referred to as “datacubes” or “hypercubes,” are then composed of vector
pixels (voxels) that contain all captured spatially and spectrally distributed information from
the target scene [43], [45]. As an aside, it’s common to see the I(m,n,K) notation used
interchangeably with I(x,y,λ) as shown in Figure 1.3.

The high spectral resolution of HSIs can improve target discrimination and retrieval of
signatures required for performing atmospheric correction. The contiguous bands across the
entire spectral range enable the study of correlated signatures. The scale of information
captured by HSIs enables flexible selection of wavelength and spatial location to portions of
high interest in an imaged scene. To detect unique spectral absorption features of interest,
the signature of that feature must be present with a minimum concentration
in the sampled area that is above the detection sensitivity. Maximizing the SNR
enables better detection of weak signatures and improves the HSIs radiometric sensitivity to
finer features (e.g., chlorophyll density gradients from 0.01 mg/m3 to 0.03 mg/m3). How-
ever, captured spectral responses may not be “pure” in the sense that their features are
from a single molecular source, as they may have mixed spectra from multiple sources in
the scene [43], [45]. It is common to use spectral unmixing techniques in post-processing
to differentiate spectra from different sources. Common methods include Given the large
quantities of information captured in hyperspectral imagers, it follows that images tend to
contain redundant information.
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Figure 1.4: Structure of hypercube demonstrating spatial and spectral interpretation.

Recent advancements in hyperspectral imaging technology have moved towards the minia-
turization of these systems for compatibility with smaller platforms like nanosatellites. Fig-
ure 1.5 demonstrates one example of a nanosatellite hyperspectral imager for the AEROS
nanosatellite mission, discussed more in Section 4.2.2. This presents unique design challenges,
namely creating systems that still achieve SNRs that support a wide range of retrieval of sub-
stance properties. The largest challenge of hyperspectral imaging, particularly for imagers
on space-based platforms, is the volume of data produced. For example, the AEROS will
host an HSI imager with 150 bands between 480 nm - 900 nm, each with 10 nm bandwidth
[48]–[50]. The detector has 10-bit precision and dimensions of 2048 x 1088 pixels. Each hy-
percube produced (all lines scanned) is then approximately 418 MB. This quantity of data
poses significant computational challenges, particularly for resource-limited nanosatellites
with constrained processing ability, downlink rates, and on-board storage capacity.

1.1.4 The Nanosatellite Solution

Nanosatellites, or CubeSats, were first developed in 1999 from joint efforts of Jordi Puig-Suari
at California Polytechnic State University, San Luis Obispo, and Robert Twiggs at Stanford
University [51], [52]. Combined with increased and reduced-cost access to space enabled by
reusable rocketry from commercial companies like SpaceX and Blue Origin, nanosatellites
have transformed space accessibility through what’s commonly referred to as the “CubeSat
revolution” [51], [52]. These efforts are aligned with the industry’s trend towards missions
that are “smaller, cheaper, faster, and better” [51]–[53]. The nanosatellite definition typically
assumes spacecraft with mass of 1-10 kg that adopt the “U type” standard, where 1U (unit)
is 10 x 10 x 10 cm3 and roughly 1.33 kg [51], [52]. The nanosatellite standard and develop-
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Figure 1.5: AEROS CubeSat’s HSI concept. LineScan Sensor with spectral grating (left)
and Spin.Works lens assembly (right). Figure provided by Spin.Works.

ment process is further defined by Puig-Suari, J., et al. (2001), Chin, A., et al. (2008), and
Poghosyan, A. and Golkar, A. (2016) [54]–[56]. NASA’s CubeSat 101 is an excellent resource
for describing the nanosatellite definition, best development practices, and development re-
quirements, and the Nanosats Database (www.nanosats.edu), developed by Erik Kulu, is to
date the largest catalog of documented existing and planned missions [57].

The nanosatellite platform offers a low-cost (typically < $10 million for construction and
launch) approach for quickly (typically 3-4 year development times) performing novel tech-
nology demonstrations, albeit with limitations in size, weight, and power (SWaP). Figure
1.6 shows the physical comparison of a standard 3U (10 x 10 x 30 cm3), roughly the size of
a breadloaf) nanosatellite with a mass of roughly 4 kg with the European Space Agency’s
(ESA) Environmental Sat (EnviSat) which is roughly 26 x 10 x 5 m3 with a mass of 8,140 kg
[58]. Compared with airborne imagers such as NASA’s Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS), see Section 1.2.2 for instrument specifications, nanosatellites suffer
from reduction in measurement quality and data quantity due to on-board resource limita-
tions such as storage and detector sizing [59]. Nonetheless, nanosatellites offer high-spectral
resolution, high-temporal resolution, and high-coverage solutions for autonomously perform-
ing ocean measurements at large scales. While prioritized for land observation, one example
is Planet’s Doves, a commercial nanosatellite constellation comprised of 175 3U (10 x 10 x 30
cm3, ∼5kg) satellites. The Doves provide optical images of the entire Earth’s surface every
24 hours with relatively high spatial resolution (∼3 meter ground sampling distance (nadir)
at ∼420 km altitude) [60].

The nanosatellite platform is compatible with a diverse suite of sensor types. These
platforms can provide measurement-gap filling solutions by hosting VIS/NIR and potentially
visible to short-wave infrared (VSWIR) imaging payloads. Instruments of these types fill gaps
in spectral observations via coverage that overlaps with legacy ocean-observing instruments
such as the Medium Resolution Imaging Spectrometer (MERIS) and the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS). Nanosatellite imagers may also complement measurements
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Figure 1.6: size Comparison of ESA’s EnviSat (left) with human for scale (image courtesy
of ESA) and a 3U (10 x 10 x 30 cm3) nanosatellite model (right) with coffee mug for scale.
Model courtesy of Paul Fucile from WHOI.

from operational instruments like MODIS and the Visible Infrared Imaging Radiometer Suite
(VIIRS), as well as planned missions like NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE), by capturing identical bands with increased spectral and temporal resolution.

The fast development timelines of nanosatellites offer potential rapid solutions for quickly
monitoring high-impact regions of climate relevance identified by environmental and ocean
science communities. These abilities are augmented by the increased temporal resolution
achieved by nanosatellite constellations. Even small constellations (e.g., 4-8 spacecraft) of
nanosatellites survey large ground swaths, aiding in quickly monitoring high-priority regions
with increased diversity in regional coverage. Higher temporal resolution is useful for mon-
itoring phenomena that develop and change on short time scales, e.g., some phytoplankton
blooms in nutrient-rich regions can double in size in less than 24 hours [61]. This is par-
ticularly essential for monitoring the development of HABs that affect both ecosystems and
human life. Last, constellations could improve ocean-to-space connectivity by interfacing
with networks such as the Advanced Research and Global Observation Satellite (ARGOS),
supporting distributed fixed and mobile (e.g., biologged) transmitters that collect and dis-
tribute environmental data to spacecraft receivers [62]. Despite these known benefits and the
presence of hundreds of nanosatellite missions either currently operational or in development,
only a small fraction of them are dedicated to ocean observations.

Nanosatellites push technical bounds in forcing the miniaturization of traditional sensor
packages while challenging developers to maintain high sensor sensitivity and data integrity.
The nanosatellite solution is suitable for missions that are willing to accept higher risk under
resource-constrained conditions to rapidly access space at lower costs. Deployment of these
space-based, ocean-sensing platforms can provide large-scale, near-continuous measurements
of the oceans, a solution fit for keeping pace with the rapidly changing climate and evolution
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of ocean behavior.

1.1.5 Targeting Variables for Sustainable Development

The Global Climate Observing System (GCOS), World Meteorological Organization (WMO),
United Nations Environment Program, and others collaborated to form a set of 54 Essen-
tial Climate Variables (ECVs) for establishing a more cohesive, global approach for climate
monitoring [63], [64]. ECVs constitute a set of physical, chemical, and biological variables
spanning across atmospheric, land, and ocean processes. These variables are identified as
critical datasets for empirically deriving methods for modeling current climate behavior and
predicting climate evolution [63], [64]. These variables are essential for informing appro-
priate climate mitigation strategies and climate-related policies for improving sustainable
practices globally. GCOS also developed a set of twenty climate monitoring principles that
future-developed measurement systems and methods should consider to provide effective
monitoring of the ECVs. Among these include providing overlapping data sets with existing
observation systems, prioritizing observations of poorly-observed parameters, prioritizing re-
gions sensitive to change, improving on measurements with inadequate temporal resolution,
and prioritization of key climate products [65]. This work intends to target these priorities
by surveying an ECV (ocean color) in highly-varying regions with high spectral and temporal
resolution to supplement measurement gaps in both energy and time.

Similarly to GCOS, the Global Ocean Observing System (GOOS), led by the Intergov-
ernmental Oceanographic Commission (IOC), developed a framework of Essential Ocean
Variables (EOVs) in 2010 to maximize collection and distribution of key ocean measurement
parameters [66]. Ocean color is prioritized as a key parameter in both the EOVs and ECVs,
thus the target measurements of this work align with the objectives of both initiatives. Figure
1.7 provides an overview of the full set of prioritized EOVs.

Combined, coordinated efforts between GOOS and GCOS contribute to the United Na-
tions Sustainable Development Goals (SDG) by providing concrete measurement targets
for understanding and mitigating effects from ocean-derived climate change. These efforts
specifically target SDG 13 and SDG 14, for taking action to combat the climate crisis and
conserving and sustainably using the oceans respectively (see https://sdgs.un.org/ for exten-
sive reports and documentation). This work’s objective to improve monitoring techniques
and the resolution of provided data products is aligned with efforts to achieve these SDGs.

1.2 Literature Review

This section highlights the former, ongoing, and planned efforts in both commercial and
government sectors for traditional ocean monitoring spacecraft with multispectral and hy-
perspectral imaging payloads. A discussion of ocean-sensing nanosatellite hyperspectral
imaging payloads is provided to frame the efforts of this work. Tables 1.1 and 1.3 provide
high-level mission specifications for ocean imaging payloads and Tables 1.2 and 1.4 provide
specifications for sensor design parameters.
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Figure 1.7: Map of GCOS Essential Climate Variable targets with highlighted ocean features
of interest. This work specifically targets ocean biogeochemistry (ocean color).

1.2.1 Multispectral Ocean Color Imagers

The first dedicated ocean monitoring spacecraft, NASA’s Nimbus-7, was launched in 1978.
It hosted the Coastal Zone Color Scanner (CZCS) that captured ocean color data using 6
bands from 443 - 1250 nm, each with a bandwidth of 20 nm [67], [68]. The instrument had a
duty cycle of ∼10% prior to ramped-up use towards the end of Nimbus-7’s lifetime, resulting
in the collection of spatially and temporally patchy data [69]. Nonetheless, Nimbus was a
trailblazer for future ocean-observing missions including Aqua, Terra, and SeaStar. ADEOS
(Midori), the first Japan Aerospace Exploration Agency (JAXA) satellite developed with
international collaboration for environmental research, had similar initiatives as Nimbus-7;
however, an abrupt loss of power cut the mission short 10 months into operations [69], [70].

NASA’s SeaStar, with its imager the Sea-viewing Wide Field-of-view Sensor (SeaW-
iFS), followed Nimbus-7 as a dedicated ocean-observing mission launched in 1997. SeaWiFS
targeted the acquisition of ocean color data products primarily to retrieve bio-optical proper-
ties from the oceans including phytoplankton densities, photosynthesis rates, and exchange
of critical atmospheric gasses that affect phytoplankton production and consequently the
ocean’s carbon capture cycle [71], [72]. SeaWiFS supported 8 measurement bands from 402
nm to 885 nm and had a spatial resolution of 1.1 km. SeaStar was operational through
2010 and produced one of the highest-quality initial datasets for studying the ocean’s bio-
logical response to climate change. These data products provide a healthy benchmark for
deciphering long-term climate-related trends in the ocean. While SeaWiFS is classified as a
“minisatellite” having a mass between 100-500 kg, it is significantly larger and more complex
than the nanosatellite form (1-24 kg) [57], [72]. This additional complexity leads to higher
mission costs and longer development timelines.

NASA’s Terra, launched in 1999 as part of the Earth Science Constellation, is dedicated to
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exploring systemic interrelations between the Earth’s atmosphere, land mass, and oceans for
quantifying the impact of human activity on climate [73]. Aqua, another member of NASA’s
Earth Science constellation, launched in 2002 to target measurements such as Earth’s water
cycle, atmospheric water vapor, clouds, sea ice density, and soil moisture [73]. Neither Aqua
nor Terra host dedicated ocean imagers, though both carry the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument. MODIS is a medium-resolution, multispectral (36
bands from 400-14385 nm), cross-track scanning radiometer used to retrieve measurements
of key ocean constituents with a spatial resolution ranging from 250-1000 m [73]. MODIS
enables measurements of key bio-optical signatures from the ocean such as phytoplankton
chlorophyll and dissolved organic matter [73]. Terra and Aqua are successfully operating at
the time of writing (2023), though NASA has alerted the community that both missions will
soon retire due to the effects of recent orbital changes [74], [75].

The Medium Resolution Imaging Spectrometer (MERIS) flew on-board the European
Space Agency’s (ESA) Envisat mission, operational from 2002-2012 [76]. MERIS was a pro-
grammable imaging spectrometer that provided imagery with medium-spectral resolution,
supporting 15 VIS/NIR bands from 390-1040 nm with bandwidths of 2.5-20 nm. It has
a spatial resolution of 300 m and a 1.15 km swath width [76]. This instrument’s unique
programmable mode of operation allowed uplink ground commands to determine spectral
band centers and bandwidths of channels to prioritize particular measurements of ocean,
atmospheric, and land constituents [76]. While capable of sensing signatures for land, agri-
culture, and forestry monitoring, MERIS’s primary objective involved understanding how
contributions from the oceans affect Earth’s climate via ocean color observations [76].

Following MERIS was the Geostationary Ocean Color Imager (GOCI) on the Commu-
nication, Ocean, and Meteorological Satellite (COMS). COMS was the world’s first geo-
stationary dedicated ocean color imager (VIS-NIR) targeting measurements of the Korean
Sea [77]. This mission is jointly developed by the Korean Ocean Satellite Center (KOSC)
and the Korean Institute of Ocean Science and Technology (KIOST). The GOCI instrument
supports 8 bands from 400-900 nm with bandwidths of 10-40 nm [77]. GOCI derives similar
data products for optical constituents including chlorophyll concentrations, optical diffuse
attenuation coefficients, colored dissolved organic matter (CDOM), and density distribu-
tions of near-surface suspended particles [77]. GOCI was developed with the desired high
spatial resolution (100-500m) in mind for monitoring smaller-scale regional characteristics
and coastal features. However, its spatial coverage and orbital placement limit observations
to local coverage of the Korean peninsula, meaning global observations using GOCI are not
available [77].

The Suomi National Polar-orbiting Partnership (SNPP) is a joint project with NASA and
the US National Oceanic and Atmospheric Administration (NOAA) designed to extend the
acquisition of key measurements from the Aqua/Terra missions and to bridge measurements
acquired by NASA’s Joint Polar Satellite System (JPSS-1) with Aqua/Terra [78]. SNPP
extends measurement continuity for continuous global monitoring of climate-related trends
and served as a precursor to the National Polar-Orbiting Operational Environmental Satel-
lite System (NPOESS), enabling methods for risk reduction prior to NPOESS operations.
Though the NPOESS program was dissolved in 2010, it was replaced by NASA’s Joint Polar
Satellite System (JPSS), where JPPS-1 (renamed NOAA-20) launched in 2017 [79]. JPSS-1
and its follow-on JPSS-2 (NOAA-21) are polar-orbiting, non-geosynchronous spacecraft that
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retrieve the environmental data products required for numerical models that forecast weather
and climate-related phenomena [79]. Two more follow-on satellites JPSS-3 and JPSS-4 will
join between the years of 2026 and 2031 [80].

SNPP, JPSS-1, and all JPSS follow-on missions will fly the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) instrument. VIIRS collects 22 VIS-NIR, Day/Night, mid-infrared,
and long-wave infrared (LWIR) bands from 412-11450 nm (non-contiguous) [79]. The in-
strument supports integrated optics along a single optical path (rotating all-reflective tele-
scope) operating as a whiskbroom radiometer to achieve measurements across all bands with
a spatial resolution of 350-750 m (nadir) [79], [81]. VIIRS enables monitoring of several
climate-related phenomena including phytoplankton chlorophyll from ocean color, sea sur-
face temperature, aerosol properties (e.g., particle size and optical thickness), vegetation and
forest coverage, and sea ice density at the poles [79], [81].

The Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3 A/B satellites
improves on MERIS observations with six additional measurement bands (21 total from 400-
1020 nm), higher SNR, a similar spatial resolution (300 m), and increased ground coverage
(swath width of 1270 km) [82], [83]. OLCI is unique in that, at the time of writing, it is
currently the only operational sensor in orbit capable of detecting cyanobacteria that form
toxic blooms harmful to regional ecosystems [84].

While many of the missions listed in Table 1.1 and Table 1.2 have at least one dedicated
ocean monitoring sensor on board, few of them are dedicated to monitoring essential ocean
variables (denoted by the “ocean dedicated” column). Typical spatial resolutions desired for
monitoring regional characteristics and detecting small-scale fluctuations in coastal regions
are on the order of 100-500 m (nadir) [85]. Rapidly changing features in these regions
require high temporal resolution (< 24 hours). Last, spatial resolutions on the order of 100
m are required to detect mesoscale and submesoscale surface features and improve estimates
of chl-a concentrations [85]. With the exception of SeaWiFS, MODIS, and OCI, many
traditional ocean color sensors can support the desired spatial resolution, albeit not with
the desired revisit rates. The Operational Land Imager (OLI) on LandSat-8 can satisfy the
latter requirement, though this imager is not dedicated to ocean observations. Aside from
regionally dedicated geostationary missions like Korea’s GOCI, many of the state-of-the-art
missions are unable to simultaneously support the required spatial and temporal resolutions
for monitoring these features.

All discussed multispectral missions support large image swath widths, most between
1000-3000 km with the exception of OLI (185 km) enabling higher revisit rates due to
increased projected ground coverage. Similarly, all missions support moderate spatial reso-
lutions from 250-1100 m, again with the exception of OLI’s spatial resolution of 30 m. The
impact of the difference in swath widths between multispectral and hyperspectral imagers
is clear when comparing achieved temporal resolution. The smaller swath widths of hyper-
spectral imagers have lower revisit rates, as shown in Table 1.5 and Table 1.6. Achieving
higher temporal resolutions with hyperspectral imagers requires either dedicated geostation-
ary observers or satellite constellations.
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Table 1.1: High-level mission specifications of existing and planned multispectral ocean color
imagers

Mission Sensor Agency
Spacecraft

Mass
(kg)

Orbit
Alt.
(km)

Orbit
Type Lifetime

Ocean
Dedi-
cated?

Nimbus-7 CZCS NASA 965 955 Polar 1978-1986 Y

ADEOS-
1 OCTS JAXA 3560 804 Polar 1996-1997 Y

SeaStar SeaWiFS NASA 309 705 Polar 1997-2010 Y

Aqua /
Terra MODIS NASA 2934 /

5190 705 Polar
1999 /
2002-

Current
N

OceanSat-
2

(IRS-P4)
OCM ISRO 1050 720 Polar 1999-2010 Y

Envisat MERIS ESA 8140 799 Polar 2002-2012 Y

COMS GOCI KOSC,
KIOST 2500 35786 GEO 2010-

Current Y

Suomi
NPP VIIRS NASA,

NOAA 1400 824 Polar 2011-
Current N

LandSat-
8 OLI NASA,

USGS 2071 705
Near-
polar
SSO

2013-
Current N

Sentinel-
3A/B OLCI ESA, EU-

METSAT 1250 814
Near-
polar
SSO

A: 2016-
Current
B: 2018-
Current

Y

JPPS-1
(NOAA-

20)
VIIRS NASA,

NOAA 2229 830 Polar 2017-
Current N

GCOM-C SGLI JAXA 2000 798
Near-
Polar
SSO

2017-
Current N
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Table 1.2: Sensor specifications for the multispectral ocean color imagers listed in Table 1.1

Sensor
Spectral
Coverage

(nm)

BW∗

(nm)
# of
Bands

Bit
Depth
(bits)

Spatial
Resolution
(m, nadir)

Swath
Width
(Nadir,

km)

Revisit
Rate
(days)

CZCS 443-1250 20 6 8 825 1566 6

OCTS 402-1250 18-
1300 10 12 700 1400 3

SeaWiFS 402-885 20-40 8 10 1100 (LAC) 2801 1

MODIS 400-14500 15-50 36 12 250 / 500 /
1000∗ 2330 2

OCM 400-900 20-40 8 12 360 1440 2

MERIS 390-1040 2.5-20 15 12 300 1150 3

GOCI 400-900 10-40 8 12 500 2500 1 hr

VIIRS 412-12488 15-
1900 22 12 375-750 3000 16

OLI 430-1380 20-180 9 12 30 185 16

OLCI 400-1020 3.75-
40 21 12 300 1440 2

SGLI 380-1200 10-200 13 12 250-1000 1150 2-3

1.2.2 Airborne Hyperspectral Imagers

The airborne imaging spectrometer (AIS), initially built as an engineering testbed in the
early 1980s by NASA JPL, became the first instrument to successfully capture hyperspectral
remote sensing data [86]. AIS was a pushbroom imager that used one of the first commercially
available hybrid 2-D detector arrays to acquire short-wave infrared (SWIR) measurements
from 1.2-2.4µm [86], [87]. Sensor development was motivated by the need for data with higher
spectral resolution (20-40 nm) than what was available at the time (100-200 nm) to resolve
narrowband features observed in the reflectance spectra of terrestrial materials [87]. AIS was
mounted on a DC-3 aircraft that collected over 7,000 flight line miles across three continents
[87]. These measurements demonstrated the first instances of mineral identification from
remote sensing data and even helped identify new minerals by their unique spectra [86], [88].
The successful demonstration of AIS sparked the development of the first algorithms and
software tools for processing hyperspectral remote sensing data [86], [87].
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Following the success of AIS, in 1989 NASA JPL’s Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) became the first fully operational airborne hyperspectral imager,
delivering its first data products in 1987 [86], [89], [90]. AVIRIS is a whiskbroom imager
that collects terrestrial data from 0.4-2.5µm (10 nm bandwidth) using four separate spec-
trometers, making it the first hyperspectral imager to detect the solar reflectance spectrum
[89], [90]. Mounted on an ER-2 aircraft, AVIRIS achieves a swath width of 10.5 km with a
spatial resolution of 20 m at the standard flight altitude of 20 km above sea level [89], [90].
AVIRIS provides a diverse set of data products for fields including geology (Kruse (1996)
[91] and Drake et al. (1999) [92]), volcanology (Oppenheimer, et al. (1993) [93] and Spinetti,
et al. (2008) [94]), atmospheric sciences (Thompson, et al. (2019) [95] and Mishra, et al.
(2019)[96]), agriculture (Kokaly et al. (2003) [97], Cheng et al. (2006) [98], and Salas, et
al. (2019)[99]), and oceanography (Carder, et al. (1993)[100], Lunetta, et al. (2009)[101],
and Lu, et al. (2019)[102]). At the time of writing (2023), AVIRIS is operational and has
since undergone performance-enhancing upgrades (see Table 1.4 for current performance
parameters).

The first commercial airborne hyperspectral imager was the Compact Airborne Spectro-
graphic Imager (CASI) developed by the Canadian company ITRES in 1989 [86]. CASI is a
pushbroom VIS/NIR (400-926 nm) sensor with 288 bands, each with 1.8 nm bandwidth [86],
[103], [104]. It achieves a swath width of 1-5 km and a ground sample distance (GSD) of
2-5m per pixel (both flight altitude dependent) [86]. Tests with the initial CASI prototype
included measurements for fish surveys, algae blooms, oil spills, and vegetation [86]. The
sensor has since been used by customers for environmental applications including monitoring
vegetation stress (Ruiliang, et al. (2008) [105]), monitoring the impact of invasive species on
vegetation (Ru, et al. (2008) [106]), mapping coral reefs (Bertels, et al. (2008) [107]), and
monitoring ocean color constituents (Casal, et al. (2013) [108] and Ma et al. (2021) [109]).
In the early 2000s, CASI was upgraded to CASI-15000, enabling sensing from 365-1050 nm
with 288 bands [86].

Hyperspectral imagers AVIRIS and CASI are operational at the time of writing (2023);
however, they are airborne imagers, meaning they have limited regional coverage, large revisit
rates, and are expensive to operate and maintain. Neither is dedicated to monitoring features
of the ocean, though both have shown potential for monitoring in-water optical constituents.

Table 1.3: High-level mission specifications of airborne hyperspectral imagers

Sensor Agency Typical Flight
Altitude (km) Lifetime Ocean

Dedicated?

AIS
[86]–[88] NASA 6 1983 - 1985 N

AVIRIS
[89], [90] NASA 20 1987 - Current N

CASI
[103], [104] ITRES 2 1989 - Current N
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Table 1.4: Sensor performance specifications for the airborne hyperspectral imagers listed in
Table 1.3

Sensor
Spectral
Coverage

(nm)

BW
(nm)

# of
Bands

Bit
Depth
(bits)

Spatial
Resolution
(m, nadir)

Swath
Width

(flight alt.,
km)

AIS
[86]–[88] 900 - 2400 9.3 128 8 11.4 365

AVIRIS
[89], [90] 380 - 2510 5 224 14 20∗ 12

CASI
[103], [104] 400 - 926 1.8 288 12 2 - 5 (alt.

dependent) 1 - 5

1.2.3 Hyperspectral Ocean Color Imagers

Space-based, VSWIR hyperspectral imagers were first developed in the early 2000s. Airborne
hyperspectral measurements are frequently exploited for environmental science, though few
spaceborne missions are currently operational to provide complementary datasets at larger
scales and higher temporal resolutions. This section discusses the specifications and use
cases of active and legacy hyperspectral missions. Tables 1.5 and 1.6 provide mission and
sensor specifications for each.

The Hyperion instrument onboard NASA’s Earth Observing-1 (EO-1) spacecraft was
the first space based hyperspectral instrument, where only airborne hyperspectral datasets
were available at the time of its launch in 2000 [86]. Characterizing Hyperion’s performance
against existing airborne datasets to determine the validity of space based hyperspectral mea-
surements and evaluate potential issues were primary mission objectives for EO-1 [110], [111].
Hyperion’s telescope assembly routes light to two grating imaging pushbroom spectrometers,
one VIS/NIR (400-1000 nm) and one SWIR (900-2500 nm). Combined, the spectrometers
measure 242 bands each with 10 nm BW for images that have a swath width of 7.5 km and
a GSD of 30 m (at a 705 km altitude) [110], [111]. Hyperion supports appropriate bands for
monitoring key ocean constituents (e.g., coastal characterization work from Griffin, M. K., et
al. (2005) [112] and Lee, Z., et al. (2004) [113]) and performing the atmospheric correction
process. However, Hyperion’s primary data usecases have involved chemical composition re-
trieval from forestry and volcanic processes, as well as surveying constituents appropriate for
mining and containment management [114]–[117]. The Hyperion mission operated through
2017 [86].

The European Space Agency (ESA) launched the Project for On-Board Autonomy (PROBA-
1) satellite in 2001 [118]. On-board PROBA-1 was the Compact High-Resolution Imaging
Spectrometer (CHRIS), a VIS/NIR (400-1050 nm, 5-10 nm BW) prism-based spectrome-
ter [118]. The instrument is configurable to provide up to 62 spectral bands, though the
set is mostly but not entirely contiguous [118]. CHRIS images have a spatial resolution
of 17-40 m (contingent on operational mode, see Barnsely, et al., 2004) and GSD of 17 m

32



[118]. Measurements provide the Bidirectional Reflectance Distribution Function (BRDF)
for channels sensitive to water, land, and chlorophyll reflectance signatures for improving
understanding of the surface reflectance and therefore atmospheric correction methods [118].
CHRIS ceased operations in 2021, leaving gaps in data continuity of hyperspectral ocean
observations. Last, it’s important to note that while PROBA is considered a small satellite
mission, its mass of 94 kg makes it significantly larger than nanosatellite missions [119]. For
example, the CHRIS instrument itself weighs 14 kg, where the mass of typical nanosatellite
(payload included) is 1- 10 kg [57], [119].

The Chinese Huanjing 1-A (HJ-1A) was launched in 2008 as a part of the HJ minisatellite
constellation of Earth observing satellites [86], [120]. HJ-1A carries a Fourier transform based
hyperspectral imager, referred to as HSI for Hyperspectral Imager, an instrument that derives
per pixel spectra by taking the Fourier transform of a collected interferogram [121]. HSI is
a VIS/NIR imager covering 450-950 nm with 115 bands [122]. The instrument has a swath
width of 50 km and a spatial resolution of 100 m [122]. While hosting bands appropriate
for ocean sensing and atmospheric correction, HJ-1A primarily targets disaster monitoring
in China and has limited data availability for international collaboration.

India’s Hyperspectral Imager (HySI) launched onboard the Indian Mini Satellite-1 (IMS-
1) in 2008 [86], [123]. HySI was a VIS/NIR spectrometer with 64 bands from 400-950 nm (8
nm BW) that captured images with a swath width of 130 km and spatial resolution of 500
m [123]. Mission objectives initially target oceanic (coastal, biological oceanography, etc.)
and atmospheric sciences [123], [124]. A second HySI instrument launched onboard India’s
Chandrayaan-1 lunar mission in 2008 where it imaged the lunar surface with 64 bands from
421-964 nm, enabling the development of algorithms for studying moon mineralogy [123],
[124]. Similar to HJ-1A, HySI supports measurements appropriate for ocean sensing and
atmospheric correction, but the mission prioritizes agricultural and surface albedo observa-
tions and has limited data available for international collaboration [122], [123]. Kumar and
Samudraiah (2016) reports the instrument development process, highlights data products
collected from orbit, and discusses key lessons learned from HySI operations through 2013
[123].

The US Naval Research Lab (NRL) developed the Hyperspectral Imager for the Coastal
Ocean (HICO), an instrument operating on the International Space Station (ISS) from 2009
to 2014 [125]. HICO is a VIS/NIR imager that measured the solar reflectance spectrum using
128 bands from 350-1070 nm (5.7 nm BW) [125], [126]. The payload design is a modified
version of the CASI-1500 airborne spectrometer previously discussed in Section 1.2.2 [86].
Coastal regions around the world were imaged with a scene size of 50 x 200 km2 and a GSD
of 100 m [125], [126]. HICO was the first hyperspectral imager designed with the sensitivity
(namely SNR) required for imaging dark coastal regions for the retrieval of apparent and
inherent optical properties of the water’s surface including bathymetry, surface bottom type,
water clarity, CDOM, and chlorophyll concentration [125], [126]. As seen in Table 1.6, the
HICO instrument saw a unique view of coastal regions for different viewing angles and time
of day given that the ISS orbital configuration differs from the majority of other ocean color
sensors in polar orbits [125].

The Italian Space Agency (ASI) launched the PRecursore IperSpettrale della Missione
Applicativa (PRISMA, also referred to as the Hyperspectral PRecursor of the Application
Mission) in March 2019. PRISMA is a pushbroom imager with a VIS/NIR (66 bands) and
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SWIR (171 bands) detector that support a total of 237 bands (10 nm BW) from 400-2505
nm [127], [128]. It has a swath width of 30 km and a GSD of 30 m in its hyperspectral
mode [127], [128]. PRISMA is operational and has since captured ocean color images (see
Braga, et al. (2022) [129] and Giardino, et al. (2020)[130]), though the mission’s primary
objectives were to space-qualify an Italian-developed hyperspectral imager as a technology
demonstration and evaluate surface soil moisture [129]–[131].

ESA recently launched a German imaging spectroscopy mission, the Environmental Map-
ping and Analysis Program (EnMAP), in April 2022 [132]. EnMAP is a pushbroom dual-
spectrometer supporting 218 VIS/NIR bands (420-2450 nm) with approximately 5-12 nm
BW (see Table 1.6). EnMAP images have a 30 km swath width (across-track) and a GSD of
30 m [132]. A primary motivator for mission development was supplementing the extensive
set of airborne hyperspectral measurements with spaceborne spectroscopic measurements
[132]. EnMAP’s goal was to provide quality data for diverse applications and fields includ-
ing terrestrial and aquatic ecosystems, resource management, environmental hazards, and
atmospheric science [132]. See Guanter, et al., 2015 for a detailed description of the EnMAP
mission and an extensive reference list for their intended use cases [132].

Table 1.5: High-level mission specifications of existing hyperspectral ocean color imagers

Mission Sensor Agency
Spacecraft

Mass
(kg)

Orbit
Alt.
(km)

Orbit
Type Lifetime

Ocean
Dedi-
cated?

EO-1 Hyperion NASA 588 705 Polar 2000-2017 N

PROBA-
1 CHRIS ESA 94 615 SSO 2001-2021 N

IMS-1 HySI ISRO 83 635 SSO 2008-2013 N

HJ-1A HIS CAST 470 650 SSO 2008-2022 N

JEM-
EF HICO

NASA,
ONR,
JAXA

41 ∼400 ISS
Mounted 2009-2015 Y

PRISMA PRISMA ASI 830 614 SSO 2019-
Current N

EnMAP EnMAP Germany,
ESA 936 643 SSO 2022-

Current N

1.2.4 Planed Hyperspectral Missions

Two identical satellites, collectively referred to as the Carbon Mapper Mission (CMM) or
Carbon Plume Mapper (CPM) project, are under development by several public-private
partners. These include Planet, a commercial aerospace company specializing in daily Earth
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Table 1.6: Sensor specifications for the hyperspectral ocean color imagers listed in Table 1.5

Sensor
Spectral
Coverage

(nm)

BW
(nm)

# of
Bands

Bit
Depth
(bits)

Spatial
Resolution
(m, nadir)

Swath
Width
(km)

Revisit
Rate
(days)

Hyperion 400-2500 10 220 12 30 7.5 2-16

CHRIS 400-1050 1.25-11 63 12 18 13 7

HySI 400-950 15 64 10 550 129.5 22

HIS 450-950 5 110-
128 12 100 50 4-31

HICO 380-1000 5.7 124 14 100 42 3

PRISMA 400-2500 12 250 12 30 30 29

EnMAP

420-1000
(VIS/NIR)
900-2450
(SWIR)

5.5-7.5
(VIS/NIR)
8.5-11.5
(SWIR)

218 14 30 30 4

observation data, Carbon Mapper, a non-profit centering earth monitoring for climate change
mitigation, the University of Arizona, and NASA JPL [133], [134]. CMM is an initial pre-
cursor to a future earth-sensing constellation, launched and operated by Planet, that will
complement the company’s existing measurement suite by providing observations with higher
spectral resolution [133]. The CMM spacecraft each hosts a VSWIR imaging spectrometer
that acquires images from 400-2500 nm (5 nm BW) with a swath width of 18 km and a
30 m GSD [133], [134]. While primarily targeting detection of methane emissions, CMM is
capable of supporting additional measurement needs including CO2 detection, monitoring
crop stress, classifying crop types, and identifying mineral removal for regulating mining
practices [133]. CMM is anticipated to launch in 2024 with the intention of providing the
first “commercially taskable” hyperspectral satellite platform [133].

NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) will offer dedicated solu-
tions for performing hyperspectral measurements of both open ocean and coastal regions.
PACE hosts the Ocean Color Instrument (OCI), a hyperspectral scanning radiometer that
uses two spectrographs to support measurements from UV to SWIR (342-2260 nm) [135],
[136]. OCI’s “blue” spectrograph operates in UV-VIS (340-600 nm) and its “red” VIS/NIR
spectrograph senses roughly 600-900 nm [135], [136]. Combined, the two spectrographs pro-
vide global hyperspectral measurements of TOA radiance with a 5 nm bandwidth [135],
[136]. OCI also supports seven discrete SWIR bands from 940-2260 nm spectrally similar to
legacy measurements from MODIS and VIIRS, enabling further continuity of historical data
products (see Figure 1.8) [135]. OCI will capture images with a swath width of 2663 km and
a spatial resolution comparable to SeaWiFS at 1 km, providing 2-day global coverage [135].
PACE science objectives support monitoring of essential ocean variables including phyto-
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plankton species discrimination, chlorophyll fluorescence, parameters relevant to modeling
the ocean’s ability to perform carbon uptake, and data critical to understanding the intercon-
nectivity of the oceans and atmospheric processes [135], [136]. PACE is scheduled to launch
in 2024, and its successful operation will prove invaluable to the ocean color community.

ESA’s FLourescence Explorer (FLEX) intends to provide global measurements of ter-
restrial vegetation fluorescence to improve current estimates, inform current knowledge of
photosynthetic processes, and monitor vegetation stress [137], [138]. To achieve these ob-
jectives, FLEX will use the Fluorescence Imaging Spectrometer (FLORIS), a pushbroom
hyperspectral imager that utilizes two imaging spectrometers to collect measurements of
vegetation from 500-780 nm [139]. FLORIS’s high-resolution spectrometer is sensitive to
670-780 nm with a spectral resolution of 0.3 nm, appropriate for acquiring measurements
around the oxygen absorption bands, specifically O2A from 759 to 769 nm and O2B from
686 to 697 nm [138], [139]. FLORIS’s low-resolution spectrometer senses 500-758 nm with a
higher spectral resolution of 0.5 to 2 nm for sensing key products including the red edge and
chlorophyll absorption [137], [139]. Measurements are acquired with a swath width of 150
km and spatial resolution of 300 m [137], [138]. While unable to satisfy the needs of ocean
color observations, FLEX will demonstrate the utility of space-based hyperspectral imagery
for enhanced monitoring of critical environmental parameters necessary to understand planet
health. FLEX is in development in preparation for launch in 2025 [138].

To address additional user needs for high-resolution environmental data, ESA’s develop-
ing the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) as part of
their Copernicus Space Component [140]. CHIME will service a diverse suite of measurement
types, capturing data in support of natural resource management, agricultural monitoring
for soil and vegetation health in support of food security services, and material character-
ization for supporting the operation and regulation of sustainable mining practices [140].
CHIME’s configuration is suitable for measurements of terrestrial vegetation, as well as in-
land and coastal waters [141]. CHIME’s payload is a pushbroom grating imager consisting
of three spectrometers sensitive from 400 to 2500 nm (<10 nm bandwidth) [141]. Images
will have a swath width of roughly 130 km and a spatial resolution of 30 m [141]. CHIME
kicked off in early 2018, and is still in the early stages of development with a target launch
in 2028. See Celesti, M., et al., (2022) and Nieke, J., et al., (2023) for a detailed description
of development efforts [140], [141].

These planned large-scale missions show promise in delivering high-resolution sets of
critical earth observational data necessary for quantifying and monitoring climate behav-
ioral trends. However, with the exception of PACE, the primary focus of these missions
centers terrestrial applications, resulting in a notable gap in comprehensive ocean observa-
tions. While PACE addresses the ocean color community’s needs for data products with
higher spectral resolution, OCI has larger than desired spatial resolution for coastal sensing
and resolving small-scale surface features. Similarly, PACE’s revisit rate is slightly larger
than desired for monitoring rapidly developing phenomena. These gaps could potentially be
addressed by strategically placed nanosatellite HSI payloads, offering complementary data
with higher spatial resolution and rapid revisit rates to fill coverage and temporal gaps.
Table 1.7 and Table 1.8 provide available mission and sensor specifications for the planned
hyperpsectral missions.
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Figure 1.8: Figure from NASA’s PACE mission comparing PACE’s spectral coverage to
legacy missions in the UV to SWIR spectrum. This is a visual demonstration of the spectrally
continuous coverage provided by hyperspectral imagers [135].

1.2.5 Nanosatellite Missions with HSI Payloads

This section highlights the former and ongoing efforts for developing nanosatellites with hy-
perspectral imaging payloads for multiple applications including ocean color measurements.
Table 1.9 provides an overview of nanosatellite mission development, and Table 1.10 pro-
vides specifications for sensor design parameters. Section 2.4.1 and Section 2.4.2 in Chapter
2 highlight the Portuguese developed AEROS and Norwegian Hyper-Spectral Small Satellite
for Ocean Observation (HYPSO-1) nanosatellite missions. These missions receive dedicated
sections given that serve as design reference mission architectures for this work.

Traditional hyperspectral ocean color missions are commonly associated with medium to
large-sized spacecraft, typically ranging from 500 to 1000 kg [142]. These missions typically
have long development timelines on the order of 10 years or more. As an example, NASA’s
Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission, which was initially pro-
posed in the fall of 2011, is expected for launch in 2024 [135]. In contrast, nanosatellite
missions follow more streamlined development processes, typically completing the journey
from concept to mission operations in orbit in less than 5 years [51], [143]. Compared with
nanosatellites, traditional spacecraft missions usually incur considerably higher development
costs. For instance, the anticipated cost of the PACE mission is around $80.4 million, while
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Table 1.7: High-level mission specifications of planned hyperspectral ocean color imagers

Mission Sensor Agency
Spacecraft

Mass
(kg)

Orbit
Alt.
(km)

Orbit
Type Launch

Ocean
Dedi-
cated?

Carbon
Mapper

Carbon
Mapper

CM,
Planet,
NASA

TBD ∼400 SSO 2024 N

PACE OCI NASA 1700 676 Polar 2024 Y

FLEX FLORIS ESA TBD 815 SSO 2025 N

CHIME - ESA 1837 632 SSO 2028 N

SBG VSWIR NASA TBD 632
(TBD) SSO 2028 N

a standard nanosatellite mission typically requires less than $10 million [144], [145].
Ocean color monitoring nanosatellite missions began with SeaHawk in 2014. Although

SeaHawk’s mission objectives align with ocean color monitoring, it hosts a multispectral pay-
load, resulting in limited spectral resolution for supporting some ocean observation needs
[146]. SeaHawk, a 3U nanosatellite, successfully demonstrated the feasibility of collecting
scientifically valuable ocean color data, producing products compatible with global ocean
color datasets. SeaHawk’s HawkEye imager achieved this by capturing near-identical mea-
surements to SeaWiFS (excluding band 7) with a similar spatial resolution (75-150 m) [146],
[147]. For more detailed sensor specifications, refer to Holmes, A., et al., 2018 [148].

SeaHawk is a phenomenal example of the role nanosatellites play in collecting essential
data for monitoring the climate crisis and showcased the utility of these tools in addressing
gaps in measurement continuity [146], [147]. However, the HawkEye imager’s multispectral
nature supports broadband (15-40 nm), non-contiguous measurements, limiting its ability
to provide the high spectral resolution necessary for detecting certain ocean characteristics,
such as species discrimination and improving measurements of chlorophyll-a retrieval from
ocean color. Hyperspectral imagery, the focus of this work, provides contiguous, narrow-band
measurements across a broad spectral range to cover legacy bands from multiple missions
while satisfying ocean color community needs for higher spectral resolution.

Finland launched their first Earth observation nanosatellite, Aalto-1 (3U), in 2017. Aalto-
1’s HSI AaSI utilized configurable Fabry-Perot interferometry to capture data across 20 - 60
bands spanning from 500-900 nm (10-30 nm BW contingent on sensor configuration) [149].
AaSI images have a swath width of 120 km with a spatial resolution of 240 m [149]. While
the Aalto-1 imager (AaSI) could support up to 60 bands, the AaSI imager was demonstrated
using 6 - 20 spectral channels [149], [150]. Although the AaSI imager was primarily included
as a technology demonstration, literature describes potential science targets including vege-
tation mapping and land classification [150]. In the context of ocean sensing, AaSI is limited.
Critical ocean color measurement bands, such as those for detecting phytoplankton pigment
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Table 1.8: Sensor specifications for the planned hyperspectral imagers listed in Table 1.7

Sensor
Spectral
Coverage

(nm)

BW
(nm)

# of
Bands

Bit
Depth
(bits)

Spatial
Resolution
(m, nadir)

Swath
Width
(km)

Revisit
Rate
(days)

Carbon
Mapper 400-2500 5 TBD TBD 30 18 1-7

OCI

UV-NIR:
350-885
SWIR:

940-2260

UV-NIR:
5

230
(VNIR)∗

7
(SWIR)

16
(SWIR) 1000 2663 2

FLORIS 500-780 0.3-2 TBD 16 300 150 27

CHIME 400-2500 <10 200+ TBD 30 130 22

VSWIR 400-2500 10 TBD TBD 30 185 16

and CDOM, typically fall in the range of 400-500 nm, which is not covered by AaSI’s spec-
tral range [150]. AaSI does support the NIR bands necessary for performing atmospheric
correction.

The development of nanosatellites with hyperspectral imaging payloads began with Co-
sine, a commercial company based in The Netherlands. They achieved the first on-orbit
demonstration of a miniaturized HSI payload, HyperScout-1 on ESA’s 6U GomX-4B space-
craft [151], [152]. HyperScout-1, operating in the VIS/NIR range from 450-950 nm, provided
the initial space-based demonstration of capturing and onboard processing hyperspectral im-
agery. However, no imagery was downlinked from the mission.

In 2020, Cosine launched HyperScout-2, a similarly configured pushbroom HSI imager, as
part of the 6U Federated Satellite Systems/Cat-5 (FSSCat-5/B) mission [153]. HyperScout-
2 features 50 VIS/NIR hyperspectral bands (400-950 nm, 12 nm BW) and 8 multispectral
thermal channels (8.0 -14 µm) [152], [154]. All channels support a swath width of 310 km
(at a 540 km altitude) and a GSD of 67 m [152], [154]. Taleb and Lassakeur (2022) reported
the first image captured by HyperScout-2, depicting a scene from the Baltic Sea using 45
VIS/NIR bands[154]. Other reports from ESA indicate successful operations with scenes
captured in 50 spectral bands [154].

In 2020, ESA launched its 3U PICosatellite for Atmospheric and Space Science Observa-
tions (PICASSO) nanosatellite mission [155]. One of PICASSO’s primary mission objectives
is to probe the Earth’s atmospheric limb during solar occultation events, aiming to char-
acterize its physicochemical properties [155], [156]. To achieve this, PICASSO employs a
miniaturized hyperspectral payload called the Visible Spectral Imager for Occultation, and
Nightglow (VISION) [155], [156]. Similar to AaSI, VISION is a VIS/NIR piezo-actuated
Fabry-Perot interferometer [156]. It operates in the spectral range from 430-800 nm with a
10 nm BW, and has a vertical resolution of 2 km, allowing it to extract vertical profiles of
atmospheric constituents, namely ozone [156]. PICASSO’s science targets include detecting
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the molecular composition of ozone in the stratosphere and extracting temperature profiles
in the mesosphere [156].

The University of Georgia (UGA) in the US adopted a similar approach as SeaHawk in
developing their pushbroom hyperspectral imager for the 3U SPectral Ocean Color (SPOC)
nanosatellite [157], [158]. SPOC’s payload, known as SPOCeye, covers bands from Landsat
8, MODIS, and SeaWiFS in the spectral range of 400 to 850 nm with a 4 nm BW [157].
While the SPOCeye imager is hyperspectral in nature, it offers 16 user-configured, spectrally
binned measurement bands to maximize SNR, considering the performance constraints of
the nanosatellite platform [157], [158]. The configured SPOCeye images have a 90 km swath
width and a spatial resolution of 130 m [157]. SPOC’s mission objectives include terres-
trial applications such as monitoring vegetation health, as well as oceanic targets including
primary productivity, suspended sediment, and phytoplankton in both inland and coastal re-
gions [157]. Unfortunately, SPOC operations ceased after only a month due to the suspected
impact of a solar event [158].

Nano-satellite Atmospheric Chemistry Hyperspectral Observation System (NACHOS) is
a 3U hyperspectral mission developed by the Los Alamos National Laboratory’s Agile Space
program [159], [160]. Similar to the designs of NASA’s SeaHawk (overlapping with SeaWiFS
bands) and UGA’s SPOC (overlapping with MODIS, MERIS, and SeaWiFS), NACHOS is
designed with spectroscopic capabilities similar to NASA’s Ozone Monitoring Instrument
(OMI), albeit in a miniaturized form and with higher spatial resolution (0.4 km per pixel
compared with OMI’s [159], [160].

NACHOS features an offner-type (use of a spectral grating element and mirrors) HSI
supporting 370 spectral channels from 290 - 500 nm with a 1.3 nm BW and a swath width of
130 km (across-track) [159], [160]. Although NACHOS is not configured for ocean sensing,
its successful demonstration is another example of how nanosatellite HSI payloads aug-
ment existing spectroscopic measurements by providing increased spatial resolution [160].
NACHOS is specifically designed for the retrieval of trace gas profiles of SO2 for volcanol-
ogy, the profile detection of proxies for greenhouse gasses, molecular traces from wildfires,
and characterization of aerosols [159], [160]. These objectives highlight the versatility of
nanosatellite hyperspectral missions in addressing various atmospheric and environmental
monitoring objectives.

The CubeSat Hyperspectral Application For Farming (CHAFF) mission is a planned con-
cept developed by the University of Surrey and National Physical Laboratory in Middlesex.
The CHAFF HSI prototype is a pushbroom imaging spectrometer created from COTS com-
ponents [161]. The HSI utilizes a transmission grating to achieve 1024 spectral brands from
460 to 820 nm with a 5 nm BW. Assuming placement in an orbit with a 500 km altitude,
it supports a swath width of 20 to 30 km with a spatial resolution of less than 40 m [161],
[162]. The payload size is 3U, necessitating integration into a 6U nanosatellite or larger [162].
As implied by the mission name, the primary objective of CHAFF is to provide precision
measurements for agriculture, specifically detecting small spectral shifts in the Normalized
Difference Vegetation Index (NDVI) used to monitor vegetation health [161], [162].

ESA developed the Compact Smartspectral Imager for Monitoring Bio-agricultural Areas
(CSIMBA) based on their earlier design work for the Compact Hyperspectral Instrument
Engineering Model (CHIEM) [163], [164]. CHIEM is a VIS/NIR pushbroom imager that
captures data in the spectral range of 475 to 900 nm with a 5 nm BW [163]. Images are
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captured with a swath of 80 km and a GSD of 20 m [164]. CSIMBA is designed to enhance
the monitoring of vegetation, biodiversity, and other agricultural targets for supporting needs
of sustainable farming practices [163]. The CSIMBA instrument is designed for compatibility
with a 12U nanosatellite, and its launch is anticipated in 2023 [163], [165].

In summary, missions such as Seahawk, SPOC, and NACHOS exemplify the valuable role
of nanosatellites in addressing measurement gaps and enhancing legacy datasets for larger
missions. The Aalto-1, Hyperscout-2, VISION, NACHOS, CHAFF, and CSIMBA missions
have all successfully operated minituraized HSI payloads. However, the spectral response of
their sensors is limited in supporting the VIS/NIR bands required for ocean color remote
sensing and atmospheric correction (e.g., 412 nm for estimating chlorophyll concentrations
and 865 nm for estimating aerosol radiance). With the expectation of Hyperscout-2 and
NACHOS, all missions support the desired spatial resolution of less than 100 m, enabling
the retrieval of small-scale surface features in coastal regions. While the discussed missions
primarily focus on terrestrial applications, the success of their miniaturized HSI payloads
highlights the potential for future nanosatellite missions to contribute to a broader range of
Earth observation objectives, including ocean color studies and atmospheric correction.

Table 1.9: High-level mission specifications of existing and planned multi- and hyperspectral
nanosatellite imagers

Mission Sensor Agency Size Mass
(kg)

Orbit
Alt.
(km)

Orbit
Type Lifetime

Ocean
Dedi-
cated?

SeaHawk Hawkeye
Uni. NC
Wilming-

ton
3U < 5 540 LEO 2018-

Current Y

Aalto-1 AaSI Aalto
Uni. 3U 4 505 SSO 2017-

2022 N

FSSCAT-
5/B

Hyperscout-
2 UPC 6U < 10 540 SSO 2020-

2021 N∗

SPOC SPOCeye UGA 3U 4 400 LEO 2020 Y

HYPSO-
1 HSI NTNU 6U 6.8 525 Polar 2022 Y

NACHOS - LANL 3U 6.25 500 LEO 2022-
Current N

AEROS HSI Portugal∗∗ 3U < 5 500 SSO 2023 Y

CHAFF - SSC 6U TBD 500 SSO TBD N

CSIMBA CHIEM VITO 12U TBD 500 TBD TBD N
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Table 1.10: Sensor specifications for the hyperspectral ocean color nanosatellite imagers
listed in 1.9

Sensor
Spectral
Coverage

(nm)

BW
(nm)

# of
Bands

Bit
Depth
(bits)

Spatial
Resolution
(m, nadir)

Swath
Width
(km)

Revisit
Rate
(days)

HawkEye 412-865 14.4-
40 8 12 120 250-

400 9

AaSI 500-900 10-30 6-20∗ 16 100 120# -

Hyperscout-
2 450-900 18 50 12 75 300 -

SPOCeye 400-850 4 16∗∗ 10 130 100 -

HYPSO-1:
HSI 387-801 3.33% 215 12 30-100 70 3 hrs - 3

days

NACHOS 290-500 1.3 400 - 400 140 <1

AEROS:
HSI 470-900 10 150 10 55 110 ∼4

CHAFF 460-820 5 1024 8 66 44 1&

CSIMBA 475-900 5 154 12 20 80 TBD

1.3 Ocean Color Remote Sensing

The objective of ocean color remote sensing (OCRS) is to quantify the different types and
concentrations of substances that are dissolved and suspended in the water. This is achieved
by deriving the spectral form and magnitude of an ocean color signal. The color detected is
an apparent optical property that is determined by the relative intensity of light reflected off
the ocean’s surface as a function of the suspended materials and organisms, solar irradiance
spectrum, solar and viewing geometries, and other characteristics of the atmospheric path
between the surface leaving signal and the sensor [166], [167]. This reflected light is often
referred to as upwelling irradiance (Eu) or water-leaving radiance (Lw). Solar radiation inci-
dent on the ocean’s surface (downwelling irradiance, (Ed) interacts with substances present
at and slightly below the surface, causing the perceived color to change. This change is typ-
ically described by the most commonly used parameter in OCRS, remote sensing reflectance
(RRS). RRS (see 1.1) describes the ratio of emergent light from the ocean’s surface to the
amount of incident light. This metric provides context on the extent of the surface interac-
tions, namely absorption and scattering processes, and the quantity of energy exitance.

RRS =
Emergent

Incident
=

Lw

Ed

[sr−1] (1.1)
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Measurements of surface reflectance is considered an apparent optical property (AOP),
where the value is dependent on illumination geometry (sensor and scene), radiance (L(θ,ϕ,λ)),
reflectance (RRS(θ,ϕ,λ)), and the diffuse coefficient for downwelling irradiance (Kd). RRS

is often also written to describe the inherent optical properties (IOPs) that represent the
absorption (a(λ)) and backscattering (bb(λ)) processes at the surface interface:

RRS(λ) ∼
bb(λ)

a(λ) + bb(λ)
[sr−1] (1.2)

By these definitions, ocean color products are measurements of the spectral variation of
the reflectance at the water’s surface as a function of the IOPs. These spectral shifts depend
on the type of materials and organisms suspended in the water column at the surface.
For example, chlorophyll fluorescence from phytoplankton is a scattering mechanisms that
induces a shift in wavelength of the observed light scattered off the ocean’s surface given the
presence of an algal bloom [11].

These in-water substances significantly alter the received signal, as such they’re defined
as “optically active constituents.” As discussed in Section 1.3.2, for Case II waters like coastal
regions, the three primary optically active constituents (in addition to ocean water itself)
are chl-a (pigment), suspended particulate matter (SPM, non-pigmented), and CDOM (also
known as yellow substance, Gelbstoff, or Gilvin) [166], [168]. The components of the observed
absorption signal are defined as:

a(λ) = aw(λ) + aϕ(λ) + aNAP (λ) + aCDOM(λ) (1.3)

Where the absorption contribution from water is denoted as aw(λ), chlorophyll from
phytoplankton is represented by aϕ(λ), non-algal particulates (SPM) is aNAP (λ), and the
effects from CDOM are captured by. Each absorption coefficient covaries with wavelength.
Contributions from backscattering to the total path signal are defined as:

bb(λ) = bbw(λ) + bbϕ(λ) + bbNAP (λ) (1.4)

Subscript labels are identical to a(λ); however, while CDOM has scattering potential,
particulate size is too small for effective scattering. CDOM’s contribution to the total
backscattered signal is negligible and therefore omitted [166]. By substituting the com-
ponents of a(λ) and bb(λ) into Equation 1.2, it is evident that the magnitude of retrieved
remote sensing reflectance is directly correlated with the quantities and types of in-water
active optical constituents. Therefore, deriving RRS from remotely sensed VIS/NIR top-of-
atmosphere (TOA) radiance and reflectance measurements from satellite sensors enables the
direct study of ocean surface properties so long as atmospheric contributions are appropri-
ately accounted for. Figure 1.9 visually depicts the process of using satellite measurements
to derive RRS from IOPS and optically active constituents. Ocean color remote sensing is
the inverse of this process, and ocean color algorithms are inverse models that estimate these
oceanographic characteristics.
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Figure 1.9: An illustrative example of how the ocean color remote sensing process is traced to
the derivation of optically active constituents (left). Example absorption and backscattering
characteristics from Giardino et al. (2019) and example Rrs curves for different chlorophyll
concentrations and sky conditions from Mobley (2020) [169], [170].

1.3.1 Atmospheric Correction

The need for understanding atmospheric contributions to sensed marine signals was first
discovered by Austin (1974) and Clarke and Ewing (1974) [171], [172]. Spectroscopic mea-
surements of backscattered light collected at different altitudes off the coast of Woods Hole
and in the Sargasso Sea showed the significance of atmospheric impact on the marine signal
[171], [172]. Experimental measurements collected by Tyler and Smith (1970) of upwelling
and downwelling spectral irradiance (Eu(λ)) and Ed(λ), respectively) allowed for the first
radiometric computations of irradiance reflectance (R(λ)) [173]. R(λ) is often used in the
context of radiative transfer models for deriving the most commonly used parameter in
ocean color remote sensing, remote sensing reflectance (RRS(λ)) [168], [173]. Work by Gor-
don (1978), Gordon and Clark (1980), Morel (1980), and later Wang (2000) then developed
the bases for using these metrics to quantify and remove the atmospheric contributions and
surface effects from satellite ocean color imagery [36], [174]–[176]. Over 40 years later, these
techniques remain the primary approach for characterizing and removing the atmospheric
path signal from the total radiance.

Atmospheric path radiance dominates the sensor-reaching signal, or top-of-atmosphere
(TOA) radiance (see Figure 1.10). The effects of atmospheric scattering (molecular Rayleigh
scattering assuming no aerosols) and aerosol absorption (assuming no atmospheric molecules)
contribute up to 98% of the TOA signal in the visible and near-infrared spectra [168], [174].
To accurately retrieve the target water-leaving radiance (typically 2-10% of the total sig-
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Figure 1.10: Quantitative representation of signal sensed at top-of-atmosphere compared
with the magnitude and spectral shape of the target water-leaving signal. Figure from the
National Research Council’s Ocean Studies Board [177].

nal), atmospheric contributions and surface effects (e.g., sun glint and white caps) must
be accurately characterized and removed from the path signal with minimum error contri-
butions. Gordon (1978) emphasizes the significance of errors arising from the removal of
atmospheric contributions. According to this study, an error estimate of 10% in radiance for
a surface that absorbs all incident radiation (black ocean case) may result in a 50% error
in the derived subsurface irradiance reflectance [174]. These errors pose challenges in mod-
els accurately representing surface characteristics, jeopardizing the validity of ocean surface
models by both overestimating and underestimating certain features [174].

To systematically evaluate the efficacy of current atmospheric correction algorithms ap-
plied to global ocean color measurements, the IOCCG established the Atmospheric Correc-
tion Work Group (ACWG). This initiative serves a crucial role in facilitating quantitative
assessments of existing algorithms, allowing users to compare ocean color data products
across various platforms such as MODIS, SeaWiFS, and MERIS. The overarching goal is to
enhance the potential for merging products, thereby improving regional and global coverage,
increasing observational temporal resolution, ensuring data continuity and redundancy, and
enabling the essential processes of cross-platform calibration and validation for the derived
data products.

Most atmospheric correction algorithms heavily depend on near-infrared (NIR) bands,
ranging from 780 to 2500 nm. In contrast to the visible (VIS) bands, which span from 380 to
700 nm, the signal from the ocean’s surface in the NIR is either close to or at 0. This implies
that any signal detected in the NIR is exclusively attributed to atmospheric contributions.
These atmospheric correction algorithms identify the spectral characteristics assumed to
represent a purely atmospheric signal in the NIR and subtract those features from the signal
received in the VIS bands. This method aims to isolate and derive contributions solely from
the marine signal in the VIS bands, which contain both atmospheric and marine signals.
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Examples of these algorithms include Gordon and Wang’s (1994) radiance-based approach
for MODIS/SeaWiFS data, Antoine and Morel’s (1999) multiple scattering/reflectance based
approach for MERIS data, and the OCTS/GLI reflectance-based approach described by
Fukushima et al. (1998) [178]–[180]. IOCCG report 10 (2010) describes these processes and
others in great detail [168].

It’s essential to note that the majority of atmospheric correction algorithms are designed
for Case I conditions (refer to Section 1.3.2 for case descriptions). For Case II waters, which
involve the presence of additional in-water active optical constituents beyond phytoplankton
contributing to radiance signals in the NIR, these algorithms are either ineffective or require
substantial modifications to accurately eliminate the atmospheric signal. The breakdown of
the assumption that NIR provides pure atmospheric signals is attributed to the complexities
introduced by the additional constituents in Case II regions.

Research, such as the work presented by Wang and collaborators in IOCCG Report
10 (2010), indicates significant errors in the application of four commonly used algorithms
when deriving ocean color products from Case II coastal regions [168]. Ongoing efforts are
dedicated to developing algorithms specifically tailored for Case II waters, recognizing the
unique optical complexities and turbidity of these regions (see Section 2.1.4). It’s crucial to
acknowledge that no single algorithm for Case II waters can be universally applied worldwide,
as regional characteristics also play a vital role in these diverse areas. Despite their current
limitations, methods developed by Moore, G. F., et al. (2010) for correcting MERIS data, Hu,
C., et al. (2000) for correcting SeaWiFS data, and Guanter, L., et al. (2010) for correcting
ENVISAT/MERIS data over inland turbid waters show promise as tools for atmospheric
correction in Case II regions [181]–[183]. While these approaches are presently more suited for
regional applications and may yield larger-than-desired errors in product retrieval, ongoing
advancements and refinements in these methods offer hope for improving their effectiveness
in addressing the complexities associated with Case II waters.

1.3.2 Water Type Classification

A binary classification scheme is commonly used to qualitatively describe and somewhat
quantitatively interpret oceanic water types based on composition of in-water optically ac-
tive constituents. Case I / Case II water types were first introduced by Morel and Prieur
(1977) where reflectance ratios from experimental, subsurface data were separated by ab-
sorption effects for blue waters (minimum absorption) to more turbid, blue-green waters
(multiple factors impacting absorption) [184]. This classification choice remained a stan-
dard reference for the field and now constitutes the Case I / Case II definitions respectively.
This interpretation of water types has since been revisited and refined by Gordon and Morel
(1983) and Sathyendranath and Morel (1983), and the utility of using this scheme has more
recently been challenged by several including Mobley (2003), as well as Tang and Lee (2022)
[185]–[188].

It is generally agreed upon that Case I waters are those where the spectral features
of the water-leaving signal (namely absorption) are primarily modified by the presence of
phytoplankton. The impact of other in-water constituents in these regions is comparatively
small and covary as a function of phytoplankton concentration [166]. Similarly, it is agreed
that Case II waters are effectively any other water type (not classified as Case I) where
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Figure 1.11: Visual of Case 1 vs Case 2 classification scheme enabling the fractional contribu-
tions of phytoplankton (P), yellow substance/CDOM (Y), and non-algal suspended material
(S) to be mapped to case types. Diagram is adapted from Prieur and Sathyendranath (1981),
Morel and Antoine (1997) and Dowell (1998) [189]–[191].

the presence of additional in-water constituents significantly impact the optical properties of
the water-leaving signal in ways that vary independently of the phytoplankton contribution
[166]. In these regions, the impact of yellow substances (also referred to as detrital matter
or CDOM) and other suspended inorganic/non-algal particles are considered in addition to
phytoplankton. Case I typically describes regions considered as “open ocean” areas, whereas
Case II describes more optically complex water types such as coastal regions and in-land
lakes [166]. While there is disagreement on use of the classification scheme, understanding
ocean water type is a critical component of ocean color remote sensing given that constituent
derivation approaches, requirements for atmospheric correction, sensor design requirements
(e.g., higher dynamic range to avoid detector saturation over land), and other processes
are driven by the detected scene. It’s necessary to note that the case definitions described
here are partial descriptions for the sake of brevity. A more complete description of the
classification scheme and its utility is provided by IOCCG Report 3 (2000) [166]. A pictorial
example of this classification scheme, from Prieur and Sathyendranath (1981), demonstrating
the spectrum of possible identifiers for each type is provided by Figure 1.11 [166], [189].

1.4 Thesis Contributions and Roadmap

This section summarizes the technical gaps and measurement needs, highlights the thesis
contributions, and describes the structure of the thesis document.

1.4.1 Summary of gaps

Anthropogenic-induced climate impact is already prevalent and contributing to detectable
amounts of ecosystem disruption. There is a need to quickly understand and quantify behav-
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ioral changes in the oceans at large scales to quickly inform climate mitigation techniques,
monitor current trends, and model future behavior. Despite the prevalence and magnitude
of these needs, few dedicated, space-based ocean imagers provide the full spectral coverage,
and spectral and temporal resolutions required for modeling the totality of ocean behav-
ior. This is particularly true in coastal regions where measurement needs are more complex
compared with open ocean observations (see Section 1.2.3). While some dedicated ocean-
sensing EO missions are currently operational (e.g., NASA’s AQUA and ESA’s Sentinel-3)
or in development (e.g., NASA’s PACE), continuous deployment of ocean observers enables
the data continuity required to compare the ocean’s current state with historical behavioral
trends. Most existing ocean-observing satellite missions host multispectral payloads that
lack adequate spectral coverage for critical measurement wavelengths, such as those required
to retrieve chlorophyll-a from ocean color data in coastal regions. Similarly, accurate data
product retrieval is heavily driven by the need to effectively model atmospheric contribu-
tions to the ocean signal, a process that is particularly complicated when spectral resolution
and spectral coverage are limited. Dedicated ocean-sensing nanosatellites with hyperspectral
imaging payloads are appropriate and cost-effective solutions for supporting these gaps.

Retrieving phytoplankton functional types from remotely sensed chl-a measurements
poses significant challenges. Phytoplankton species reflect (scatter) and absorb light with
slightly different spectral shapes, thus species detection may be achieved by sensing small-
scale fluctuations in absorption and backscattering properties derived from ocean color data
products [192], [11]. This is useful for understanding the diverse set of phytoplankton species
within a biomass, as well as performing predictions of potentially harmful outbreaks by mon-
itoring bloom size, strength, and location. Forecasting the presence of toxic dinoflagellates,
like Karenia Brevis that poison shellfish and cause respiratory inflammation in humans, can
improve methods of coastal management and warning systems for recreational areas [193].
Multispectral remote sensing measurements of CDOM-rich areas, particularly near the coast,
often give false anomalies due to the presence of other particulate matter and non-algal com-
ponents in the signal [192]–[194]. Hyperspectral measurements, with fine spectral resolution
(e.g., 5 - 10 nm), are capable of detecting small changes in spectral signals and are thus
useful tools for differentiating between types of biological and non-algal constituents [192],
[194]

Upcoming missions like NASA’s PACE seek to address the need of ocean sensing in more
optically complex regions with spectral resolutions appropriate for phytoplankton species
discrimination. However, some phenomena require measurements with higher spatial and
temporal resolutions (e.g., 10 - 100 m GSD with < 24 hour revisit rates) than PACE pro-
vides (1 km with 2 day revisit rate) [135], [194]. PACE is also providing continuity of legacy
measurement bands (e.g., MODIS, SeaWiFS); however, the project is costly and requires
a long-development timeline, during which the need for data continuity is urgent. Plat-
forms that are low-cost and rapidly developed, such as nanosatellites, offer potential viable
solutions.

While nanosatellites can help solve rapid, low-cost ocean monitoring, there are a number
of design challenges that arise when miniaturizing hyperspectral imagers for compatibility
with these resource-constrained platforms. The narrow bandwidths combined with smaller
input apertures and sensor design formats pose challenges for achieving high SNR and radio-
metric resolution compared with multispectral instruments. Cost is often driven down when
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systems become more compact (e.g., payload volume of 1U volume instead of 3U), so there
is interest in understanding where the technical limitations of these miniaturized systems lie
while still providing useful science measurements.

The summarized measurement needs include:

• Dedicated measurement bands are required for optimizing retrieval of surface-level
ocean constituents, marine fauna, and atmospheric aerosols (e.g., 555 nm is needed
for retrieval of chlorophyll signatures from remote sensing reflectance and 746 nm is
typically required for atmospheric correction).

• High-spectral resolution measurements (on the order of 5 - 10 nm) are required
for differentiating spectral absorption features of different biological species types and
atmospheric aerosols in ocean color imagery.

• Relatively high spatial resolutions (< 100 m) are needed for resolving mesoscale
(e.g. mesoscale eddies) and potentially submesoscale surface features.

• Improved temporal resolution (< 1 day) is desired for monitoring quick-evolving
processes such as phytoplankton blooms, particularly HABs.

• Data continuity and dedicated ocean imagers are required for understanding
long and short-term trends in ocean behavior.

There is a need for improved understanding of the utility for using CubeSats to fill
measurement gaps for diverse regional types and for providing continuity of legacy data
products (e.g., from SeaWiFS and MERIS).

1.4.2 Contributions

The goal of this dissertation is to determine to what extent CubeSats are useful tools for
providing complementary ocean color data products to existing ocean-observing missions.
The objectives demonstrate the following: 1) how the measurement performance of simulated
nanosatellite-based hyperspectral imagers compares with larger, more traditional ocean color
instruments, 2) how the performance of the simulated HSI varies with regional targets, 3)
the physical imaging system design limits that still achieve a minimum viable signal for
obtaining a useful measurement. Above all, this work seeks to understand and demonstrate
how CubeSats are technically viable solutions for providing high-fidelity data that is optimal
for servicing the needs of the global ocean color community. A list of the objectives of the
work are in Table 1.11. From these objectives, a list of three contributions (see Table 1.12) are
generated. Table 1.13 maps contributions to the target metrics for demonstrating improved
spectral resolution, spatial resolution, radiometric resolution and regional coverage.

1.4.3 Dissertation Roadmap

Chapter 1 motivated the need for remotely sensed hyperspectral measurements of ocean color
and the utility of doing so with nanosatellite platforms. Chapter 2 describes the modeling
tools used for building synthetic ocean scenes and work to align the analysis approach with
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Table 1.11: Thesis Objectives

ID Objectives

I
What are the technical limitations (hardware sizing, sensor noise,

etc.) for narrowband (5 -10 nm) hyperspectral ocean sensing
nanosatellite instruments?

II

Given the possible retrieval techniques and algorithms that can be
applied to raw ocean color measurements, which methods are
aligned with the expected signal from the Design Reference

Mission (DRM) architectures?

III How does nanosatellite utility vary regionally?

IV What is the impact of atmospheric/aerosol Py6S model selection
on radiometric output?

ocean color measurement requirements. Chapter 3 details the regions of interest and refer-
enced mission architectures used to determine nanosatellite imaging capabilities. Chapter
4 provides the analysis approach for implementing each of the models for all case studies
and the output of that work. Finally, Chapter 5 summarizes the thesis contributions and
recommends work for improving these measurement types in the future.

Table 1.12: PhD Contributions Mapped to Objectives

# Short Name Contributions Target Q

1
Radiometric
Performance

Model

Baseline model for simulating radiometric
performance of a hyperspectral imager:

model framework and results

I, II, III,
IV

2
Radiometric
Sensitivity
Analysis

Sensitivity analysis for optimizing
radiometric performance of ocean-observing

hyperspectral imagers: Design Reference
Mission parameters, analysis framework,

results, development of synthetic
environmental scenes

I, II, III

3 Design
Limitations

Set of nanosatellite hyperspectral imager
design limitations for chlorophyll-a retrieval

and recommendations for technical
improvement

II, III
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Table 1.13: Mapping Dissertation Contributions to Performance Metrics

Target
Metric Proposed Effect Method for Demonstrating

Effect
Contribution

#

Spectral
Resolution

Increasing spectral
resoluution for

ocean color
imagers

Model effectiveness of
nanosatellite-based,

ocean-observing hyperspectral
imagers

2, 3

Regional
Coverage

Diversifying
possible regional

targets & increase
regional coverage
for ocean-sensing

nanosatellites

Model effectiveness of
nanosatellite-based

ocean-observing hyperspectral
imagers for a diverse set of

regions & measurement targets

1, 2, 3

Spatial
Resolution

Increasing spatial
resolution for
ocean color

imagers

Model spatial capabilities of
nanosatellite-based

ocean-observing hyperspectral
imagers and opportunities for
improvement through spatial

binning

1, 2

Radiometric
Resolution

Identify limitations
for detection of key
ocean color optical
constituents (e.g.,

chlorophyll-a)

Derive radiometric resolution of
nanosatellite- based

ocean-observing hyperspectral
imagers against modeled scene

signals (radiance)

1, 2, 3
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Chapter 2

Tools and Performance Metrics

This chapter frames the approach of this work by introducing the tools used to evaluate
the performance of ocean sensing nanosatellite-based hyperspectral imagers. Section 2.1
summarizes the science measurement requirements expressed by the ocean color community
and maps them to technical performance expectations for a nanosatellite HSI mission. Sec-
tion 2.2 discusses the performance metrics used to quantitatively evaluate the utility of a
nanosatellite mission for addressing ocean color measurement needs. Section 2.3 provides
a high-level introduction to the radiative transfer process used to simulate TOA radiances
from synthetic scenes the mission could theoretically see. Section 2.4 introduces radiome-
try and the radiometric performance modeling process used to assess the imager’s efficacy
for measuring the simulated radiances. Last, section 2.5 introduces the two nanosatellite
missions evaluated as design reference mission architectures.

2.1 Ocean Color Remote Sensing Requirements

The objective of this section is to identify a set of remote sensing requirements to provide
constraints for evaluating the performance of the two Design Reference Mission (DRM)
architectures. Given the nature of this work, requirements are limited to define parameters
for technical design and technical performance directly related to the operation and function
of an HSI imaging payload. Specifically, requirements listed are desired for designing
a nanosatellite-based hyperspectral imager capable of providing ocean color data
products. Parameters typically reported for spacecraft missions, such as operational power
and temperature, are excluded, as the intent is to frame a set of recommendations and
constraints limited to the successful design and operation of the HSI relative to satisfying
the science objectives. Requirements are constrained to ocean measurements only, where
smaller and/or inland bodies of water may require parameters with different performance
constraints.

All requirements are derived from a number of sources across the ocean color community.
These include annual reports such as IOCCG 13 [85] and IOCCG 10 [168]; review studies
on existing gaps and recommendations for future sensors such as Lancheros, E., et al., 2018
[195], Muller-Karger, F., et al., 2018 [196], and Kudela, R., et al., (2019) [197]; performance
requirements adopted for other missions such as HYPSO-1 [198] and NASA’s PACE [199];
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product retrieval algorithms (e.g., those deriving chlorophyll-a, fluorescence line height, and
the diffuse attenuation coefficient); and atmospheric correction schemes such as Gordon and
Wang (1994) [178]. A science traceability matrix (STM) in Section 2.1.2 maps instrument
performance expectations to potential science measurement products, and Section 2.1.3 dis-
cusses inputs required for common product retrieval algorithms and atmospheric correction
schemes.

Requirements presented in Tables 2.1, 2.2, and 2.3 of Section 2.1.1 describe needs met by
an ideal ocean color remote sensing system and should be interpreted as a set of design
guidelines rather than a checklist. As with every space-borne mission, not all perfor-
mance requirements can be satisfied. Realistically, there always exist trade-offs between
science objectives and system requirements, and this set of requirements is no exception.
Adjustments to spectral, spatial, and temporal resolution are subject to change based on
mission science objectives and instrument capabilities. Readers in the initial mission plan-
ning phase are encouraged to reference the requirements flow steps for determining sensor
performance requirements detailed in the IOCCG Report 13 on Mission Requirements for
Future Ocean-Colour Sensors [85]. An additional set of recommendations for future HSI
ocean-sensing nanosatellite missions, informed by the results of this work and community
recommendations, is provided in Chapter 5.

2.1.1 Requirements and Constraints

TOA radiance and derived water-leaving radiance values from ocean color remote sensing
data products range from low values sensed from minimally-productive (clear), deep waters
to high values from highly-reflective regions such as coastal regions along the water’s edge,
turbid, and highly productive areas [197]. Generally, coastal regions (Case II) are more
optically complex than Case I open ocean environments, meaning they require more frequent
sampling, higher spatial resolutions, and additional spectral bands for deriving constituents
and performing atmospheric correction [85], [200]. Products provided by legacy missions,
namely imagery with 1 km spatial resolution, daily temporal resolution, and large spectral
resolution (∼20 nm) are inappropriate for resolving water-leaving radiance signatures from
coastal regions [166], [197], [201]. Similarly, assumptions that water-leaving radiance signals
are near zero in the NIR are inappropriate for atmospheric correction algorithms applied to
coastal data. As such, the requirements for hyperspectral ocean color imagers that target
coastal regions vary from typical multispectral imagers that are more suitable for open ocean
measurements. For example, coastal sensing HSIs are typically required to support additional
SWIR bands, where the water-leaving radiance signal is guaranteed to be zero, to aid the
atmospheric correction process.

This section provides requirements that are segmented into three levels: Mission, System,
and Payload. Mission requirements, see Table 2.1, provide high-level, overarching objectives
for the full nanosatellite mission. This set is broad and involves aspects of planning that
extend beyond the spacecraft design. System requirements are specific to the design and
operation of the nanosatellite including all subsystems, not limited to the primary payload.
Payload requirements describe the design and anticipated operational constraints of the pri-
mary payload, an ocean sensing HSI. According to IOCCG report 13, the four primary types
of requirements for ocean color sensing instruments are: spectral coverage, spatial cover-
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age/resolution, radiometric quality, and temporal coverage and resolution [85]. The pro-
vided set attempts to capture a set of recommendations that encompasses the requirements
for satisfying constraints imposed by the nanosatellite form factor, measurement products
and sensitivity for sensing ocean color observations from coastal regions, and the performance
improvements desired by the ocean color community.

Requirements are not listed in order of importance. The rationale column provides jus-
tification for inclusion of each requirement and the source of recommendation. Typically
requirements are reported with parent IDs to show traceability from higher to lower levels.
This is excluded here given that this is a set of recommendations and not a set that meets
reporting standards from an agency like NASA. While this set is specific to an ocean sensing
HSI, requirements may be referenced to inform the design of nanosatellite missions more
generally.

Table 2.1: Recommended Nanosatellite Mission Level 1 Requirements

ID Mission Level Requirements Rationale

MIS_REQ_01 The mission shall measure ocean
color

Fundamental objective of this work.
Ocean color identified as an Essential
Ocean Variable by GOOS

MIS_REQ_02

The mission’s ocean color
observations shall support data
products tailored for
measurement needs defined by
the ocean color community

Imposes mission compliance with
observational needs. Creates more
impact-driven work.

MIS_REQ_03
The mission architecture shall
support hyperspectral imaging
capabilities

High spectral resolution provided by
hyperspectral imagers improves ability
to resolve coastal features in
highly-mixed turbid regions, and the
retrieval of bio-optical constituents
[85]. Identification of phytoplankton
functional groups requires
hyperspectral measurements [85].

"Extensive studies using shipboard
measurements and airborne
hyperspectral imaging have shown
that visible hyperspectral imaging is
the only tool available to resolve the
complexity of the coastal ocean from
space" [202].

Continued on next page
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Table 2.1 – continued from previous page
ID Mission Level Requirements Rationale

MIS_REQ_04
The mission architecture shall
support measurements in the
VIS/NIR bands.

Encompassess full spectral range
required for ocean color observations,
including atmospheric correction
processes

MIS_REQ_05
The mission shall obtain at least
4 images per day in all of the
VIS/NIR bands.

Lower bound of daily imaging
expectation. Sets design constraints
for onboard storage capacity, internal
spacecraft data rates (from imaging
instrument to onboard computer), and
downlink capacity (data rate). For
reference, the HYPSO nanosatellite
mission demonstrates 5-6 observations
per day but is limited by their 450
MB/day downlink capacity [198],
[203]. A 500 km altitude typically
provides a 90 minute orbital period. 4
images/day is a conservative
constraint for spacecraft to capture 1
image/orbit with good lighting
conditions.

MIS_REQ_06
The mission shall be operable
from low-Earth orbit with an
altitude of at least 500 km

Enables longer mission lifetime, must
be constrained by ODAR and FCC
requirement for deorbit within 5 years
of launch (see FCC-22-74)

MIS_REQ_07

The mission’s orbital placement
shall support an equatorial
crossing point between 10:00AM
to 2:00PM (local time of
descending node, LTDN)

Acceptable range for achieving higher
radiance levels from low zenith angles
and provides more opportunity for
daytime imaging [85]. LTDNs closer
to 12:00PM are preferred, and
considerations for a LTDN closer to
10:00 AM ensures optimal lighting
conditions during winter months and
for high latitude regions [85]

MIS_REQ_08
The mission shall maintain
orbital placement to +/- 10
minutes of the chosen LTDN

Maintaining a constant crossing point
is more important than the time of
the LTDN for maintenance of imaging
conditions [85]

Continued on next page
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Table 2.1 – continued from previous page
ID Mission Level Requirements Rationale

MIS_REQ_09

The mission shall have a target
revisit rate for ROIs of less than
24 hours, with an absolute
maximum of 72 hours

Target revisit rates required between
3-72 hours, but less than 24 hour
revisit necessary for improving
temporal resolution [166], [195]. For
nanosatellites with smaller swaths,
this likely requires more than a
singular spacecraft. Algal blooms can
be short-lived (days) or persistent
(months), and it’s good to have the
option to observe them at the higher
temporal scales. This requirement is
ignoring imaging constraints imposed
from clouds/glint.

Further context:
• 24 hour hours defined as the

target for the 2022 GCOS ECVs
Requirements for water-leaving
radiances and chl-a retrieval
[204]

• GOOS supports hourly to
weekly temporal resolution for
monitoring sediment
resuspension on transport, algal
blooms, and water quality [205].

• Supports maximum revisit rate
of 72 hours for chlorophyll,
water-leaving radiance, and
CDOM detection [195]

• Note that SSOs revisit polar
region once per orbit, but
equator can be 2-3 days (e.g., for
SeaWiFS/MODIS/MERIS).

MIS_REQ_10 The mission shall operate for at
least 12 months

Nearly a year’s worth of data, sans 1
month estimate for commissioning.
See AEROS lifetime analysis in Payne
(2021) [48]

Continued on next page
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Table 2.1 – continued from previous page
ID Mission Level Requirements Rationale

MIS_REQ_11
The mission shall comply with
the "5-year rule" for
nanosatellite deorbit

Imposed by the FCC in 2022 as new
policy for mitigating space debris (see
FCC-22-74)

MIS_REQ_12
The mission shall support data
latency of 1 - 24 hours from
acquisition

Latency is the time from when an
observation is performed until the
final data products are distributed to
end users. Latency in this range
better supports in-situ collections
from field campaigns and is necessary
for monitoring rapidly developing
features such as HABs where
regulatory/community
response needs to happen quickly [195].

Phytoplankton blooms can happen
suddenly on local scales when
conditions are right (e.g., coastal
upwelling events). IOCCG 13 states
that 12 hours are required for near
real-time operations [85]. PACE plans
to achieve 3 hour latency for L1B, L2
products [199]

MIS_REQ_13

The mission shall utilize an
appropriate number of ground
stations for achieving the data
latency

Frequency of contacting ground
stations depends on size of spacecraft
footprint, revisit rates, orbital
placement, orbital altitude, etc.
Achieving the desired data latency
may require more than one ground
station

MIS_REQ_14

The mission shall perform
on-orbit calibration for the
imaging payload and the design
architecture must support
calibration operational needs

E.g., if using a lunar calibration
approach, the imager must be slewed
to have the moon in its FOV during
cal

Continued on next page
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Table 2.1 – continued from previous page
ID Mission Level Requirements Rationale

MIS_REQ_15

The mission shall have a
pre-defined plan for acquiring
in-situ data necessary for
vicarious calibration

Knowing the TOA radiance the
satellite should retrieve given the
in-situ measurements is critical for
calibration sensor measurements [85].

Vicarious calibration necessary for
characterizing on-orbit performance of
imaging system, and for in-situ
validation [206]

MIS_REQ_16

This mission shall develop an
instrument model to predict the
optical and electrical
characteristics of the sensor

E.g., determining SNR, radiometric
sensitivity as a function of scan angles,
spectral models, polarization
sensitivity, and stray light to
characterize expected sensor
performance to show compliance with
OC measurement needs [85]

MIS_REQ_17

All levels (e.g., Level 0 - Level 4)
of the mission’s data products
shall be open source and freely
accessible to the public

Easy access to valuable data products
improves global modeling capabilities,
and open access does not impose
constraints on internationally
coordinated efforts

Table 2.2: Recommended Nanosatellite System Level 2 Requirements

ID System Level Requirements Rationale

SYS_REQ_01 The spacecraft total mass shall
not exceed 12 kg

Limiting architecture to 6U. In
actuality, waivers can support slightly
higher mass tolerances.

SYS_REQ_02 The spacecraft volume shall be
less than 10 x 20 x 34.5 cm3 Limiting to 6U volume

Continued on next page
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Table 2.2 – continued from previous page
ID System Level Requirements Rationale

SYS_REQ_03
The spacecraft radio’s data rate
shall support downlink of at
least 4 images per day

Data rate contingent on size of
HSI data cubes and use of compression.

HYPSO can achieve 5-6 captures and
downlink with use of a single ground
station using an S-band radio on the
M6P bus from NanoAvionics w/ data
rate of ∼1Mbps [198]

With AEROS compressed hypercubes
at 500MB, this requires a radio with a
data rate of at least ∼4.2 Mbps

SYS_REQ_04
The spacecraft shall be able
capable of downlink at least once
per orbit

Supports objectives for data latency to
improve access to satellite OCRS data

SYS_REQ_05

The spacecraft radio dedicated
for transferring HSI image
captures to the on-board
computer must support a
transfer rate appropriate for
satisfying image capture and
downlink requirements

Typically the bottleneck that inhibits
data throughput and adds constraints
to data latency

SYS_REQ_06
The spacecraft shall support a
method of lossless compression
HSI images

Supports ability to downlink desired
number of images and reduces strain
on onboard storage capacity

SYS_REQ_07

The spacecraft’s onboard storage
capacity shall be sized to
support at least 1 months worth
of uncompressed HSI datacubes

E.g., each AEROS hypercube is 1.2GB
raw with ∼600 MB of useful data
(uncompressed), after lossless
compression, the hypercubes are ∼500
MB each [50]. Assuming 4 images are
captured a day and the month has 30
days, the required onboard storage of
at least 60 GB.

Continued on next page
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Table 2.2 – continued from previous page
ID System Level Requirements Rationale

SYS_REQ_08
The spacecraft shall support a
horizontal spatial resolution of
no more than 300 m

Entire spacecraft system and
operation must support this
constraint. Important to note that the
system shouldn’t be dimensioned with
nadir resolution corresponding to
Level-1 product resolution because a
major part of FOV will be acquired
with lower resolution. Instrument
should be dimensioned with a mean
resolution that corresponds to Level-1
product resolution [85]

GOOS recommends 250-1000 m
required for HAB occurrence and
impact monitoring [207]. If general
Case-2 observation is desired, a spatial
resolution of ∼300 m is appropriate,
and a resolution of 1 km is
appropriate for all open ocean (case 1)
observations [85]. 30 - 100 m
recommended for improving
observations [196]. GCOS ECV has a
goal of 0.1 km resolution for nearshore
measurements of phytoplankton [204]

SYS_REQ_09
The spacecraft imager’s swath
should cover SZAs of at least 75
degrees and up to 60 degrees

SeaWiFS, MODIS, and MERIS have
demonstrated these angles are
appropriate for successfully retrieving
water-leaving radiance data from
ocean color [85], [199]. In high latitude
regions, this is further constrained.

Continued on next page
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Table 2.2 – continued from previous page
ID System Level Requirements Rationale

SYS_REQ_10
The spacecraft shall support
image acquisition with a GSD of
< 100 m

Required to resolve changes in high
resolution reflectance measurements in
turbid coastal regions [200].

Study determining subpixel variability
for OCRS looking at estuarine and
coastal waters showed that on average
the transition GSD, the point where
the coefficient of variance changes as a
function of GSD, is around 200 m [208]

30 m GSD to resolve ocean bottom
and coastal features [209]

SYS_REQ_11

The spacecraft’s pointing
accuracy and knowledge should
be characterized with accuracy
goals that support the desired
spatial resolution of the sensor

PACE requires a pointing accuracy
equivalent to 2 iFOV for the
spacecraft altitude to minimize
variations in geometric viewing angles
that would increase uncertainty in
atmospheric correction [199]. PACE
pointing knowledge is equivalent to 0.1
iFOV over the full range of viewing
geometries required for geolocation
knowledge (68% of all data have
knowledge errors not exceeding that
value) [199]

SYS_REQ_12

The spacecraft shall be able to
point the imager within 0.1
degree of nadir, or defined
target, for at least 10 minutes
every orbit

Assuming each orbit is greater than 10
minutes, though the requirement may
be relaxed if orbital altitude is lower.
This provides the opportunity for a
push broom sweep every orbit w/
assumption that time to desaturate
reaction wheels regularly is accounted
for (not required for every orbit)

SYS_REQ_13

The spacecraft platform shall
maintain pointing jitter
equivalent to 0.01 iFOV between
adjacent scans or image rows

Based on PACE requirement to avoid
pixel blurring [199]. Freq range
determined by effective integration
time. OCI has 1 km pixels, int time of
∼40 usec = 25kHz [210]

SYS_REQ_14
The spacecraft shall avoid
having reflective surfaces near
the FOV of the imaging payload

Minimizes injected stray light into
imagers FOV that could reduce image
quality

Continued on next page
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Table 2.2 – continued from previous page
ID System Level Requirements Rationale

SYS_REQ_15
The spacecraft architecture must
not obstruct the FOV of the
imaging payload

Clear FOV required for imaging

SYS_REQ_16

The imager’s calibration
mechanism, provided by the
spacecraft, must not obstruct the
imagers FOV

Clear FOV required for imaging

SYS_REQ_17

The imager’s calibration target
shall be deactivated/actuated
out of the primary optical path
during science imaging

Actuation of a calibration target must
also prove compliant with a minimum
number of cycles (e.g., 500 cycles) to
demonstrate that it won’t malfunction
in an actuated state that obstructs the
imager’s FOV

SYS_REQ_18 The spacecraft shall be able to
geolocate captured images

Orbit determination to know where
the images are and geolocate them
using GPS

SYS_REQ_19
The spacecraft shall support the
collection of legacy ocean color
remote sensing satellites

Enables measurement continuity,
complements existing measurements
with higher spatial and spectral
resolution, helps track things like the
calibration issue discovered from
overlaid MODIS and VIIRS data in
2013 [211]

SYS_REQ_20

The spacecraft shall provide
products necessary for deriving
normalized water-leaving
radiance and/or remote sensing
reflectance in VIS/NIR bands

Capture all of ocean surface products
useful for directly measuring and/or
serving as proxies for deriving other
ocean color parameters of interest

SYS_REQ_21

The spacecraft shall provide all
necessary measurement data
products and auxiliary data
(e.g., AOT, SZA, view angles,
atmosphere type, etc.) with
appropriate resolutions for the
desired atmospheric correction
scheme

Necessary to choose the method for
estimating atmospheric contributions
and ensure that all spectral bands
and/or combined spectral information
will satisfy the method

SYS_REQ_22

The spacecraft shall provide data
necessary for determining
phytoplankton physiological
parameters, such as growth rate,
in VIS/NIR bands

Derived parameter of interest from
ocean color imaging

Continued on next page
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ID System Level Requirements Rationale

SYS_REQ_23

The spacecraft shall provide data
necessary for determining
phytoplankton physiological
parameters, such as chlorophyll
pigment, in VIS/NIR bands

Mapping the measurement
requirement to the satellite data
product needed to address this need.

Chl-a is an indicator of phytoplankton
distributions (quantifying
phytoplankton biomass) [11].
Knowledge of the C:Chl-a (carbon)
ratio and backscatter properties are
useful for quantifying "standing
stocks" in terms of carbon
concentrations [27]. Differentiating
HABs from other phytoplankton types
(composition) [11]. Understanding
how changes in marine ecosystems
affect fisheries [27]. Monitoring
composition and productivity changes
with respect to anthropogenic factors
[35]

SYS_REQ_24

The spacecraft shall provide data
necessary for determining
phytoplankton physiological
parameters, such as type
classification, in VIS/NIR bands

Documentation of how phytoplankton
assemblage changes over time and how
assemblages vary over interannual
timescales is sparse for much of the
ocean and an important thing to
quantify with increased warming and
ocean acidification [11], [85]

Table 2.3: Recommended Nanosatellite Payload Level 3 Requirements

ID Payload Level Requirements Rationale

PAY_REQ_01
The imaging payload shall be
compatible with a commercial
spacecraft bus

Nanosatellite missions typically select
commercial bus options and design
payload given the spacecraft bus
interface definitions

Continued on next page
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ID Payload Level Requirements Rationale

PAY_REQ_02 The imaging payload design shall
support pushbroom acquisition

This architecture is generally more
appropriate for nanosatellite platforms
and is less sensitive to motion artifacts
compared with whiskbroom type
imagers. Places looser constraints on
platform jitter

PAY_REQ_03
The entire imaging payload shall
be operated with peak power up
to ∼20 W

Generally compatible with 6U
nanosatellite power availability.
Guided by the NanoAvionics M6P
Max nanosatellite bus, where bus
power generation is 30W with sun
tracking

PAY_REQ_04 The entire imaging payload shall
have a mass less than 4.5 kg

Includes HSI and any additional
supporting architecture to account for
the mass of other required
nanosatellite subsystems, generally
compatible with 6U nanosatellite
architecture. Based on available
payload mass provided by the
NanoAvionics M6P Max nanosatellite
bus

PAY_REQ_05 The imaging payload volume
shall not exceed 1.5U

Based on allowable payload volume
provided by the NanoAvionics M6P
Max nanosatellite bus

PAY_REQ_06
The imaging payload must
survive prelaunch, launch, and
post launch environments

Oftentimes COTS components are
used for nanosatellite payloads, and
not all are space qualified. Testing is
required to ensure component
survivability in expected launch and
environmental conditions. NASA
GEVS provides valuable baseline test
parameters/requirements for reference

PAY_REQ_07

The imaging payload
architecture shall support fully
spectrally contiguous
measurement bands across the
entire VIS/NIR spectral range

Definition of hyperspectral imager

PAY_REQ_08
The imaging payload shall
capture images bands from at
least 400 nm - 900 nm

Spectral range required for ocean color
remote sensing and atmospheric
correction

Continued on next page
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Table 2.3 – continued from previous page
ID Payload Level Requirements Rationale

PAY_REQ_09

The imaging payload shall
include at least two NIR bands
that avoid major atmosphere
absorption features for
atmospheric correction

Necessary for most atmospheric
correction algorithms for open ocean
imaging. Also a PACE requirement
representing expectations for
upcoming state-of-the-art [199]

PAY_REQ_10

The imaging payload
architecture shall support
narrow bandwidths of no more
than 5 nm

Desired spectral resolution for
improving measurement detection. 5
nm required to identify phytoplankton
functional types, resolving features in
optically complex/turbid regions
(coastal), and improving atmospheric
correction [85], [202]

While smaller spectral resolutions are
desired for phytoplankton species
discrimination, some works such as
Davis. C, et al., 2007 have shown that
spectral resolutions as large as 14 nm
have successfully identified HABs
[200].

PAY_REQ_11
The center wavelengths of the
imaging payload shall be known
to within ∼0.1 nm

Knowledge of central wavelength
placement is useful for modeling
imager performance, spectral and
radiometric calibration, data
interpretation, and atmospheric
correction [85]

PAY_REQ_12

The imaging payload’s center
wavelengths shall be as close to
the reference list provided by
IOCCG report 13

Allows for coverage of legacy missions
and data continuity [85]

PAY_REQ_13

The placement of the imaging
payload’s center wavelengths
should avoid prominent
atmospheric absorption features

Enables ample signal in measurement
bands for sensing features outside of
large absorption bands (see Figure 2.2)

PAY_REQ_14
The imaging payload
architecture shall support image
acquisition at least 4 times a day

Includes considerations for power,
thermal, and data storage constraints.
Payload should be designed to this
constraint even if acquisition rate isn’t
achieved on orbit

Continued on next page
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PAY_REQ_15

The imaging payload’s
integration time shall be
maximized to within the
allowable range for image
acquisition without pixel smear

Maximizes SNR while avoiding pixel
smear. Smear determined by
spacecraft orbital velocity

PAY_REQ_16
The imaging payload shall be
calibrated before taking pictures
at least once a week (TBR)

Requirement should be adjusted for
mission specific needs. NIR bands
require calibration once every two
days [85]

PAY_REQ_17

The imaging payload shall
achieve an SNR at TOA no
lower than 200 in the VIS-NIR
wavelengths

Eases parameter retrieval in OC
applications where sensor-reaching
signal is relatively weak. Can be
achieved with on-board processing
techniques such as spectral binning,
though achieving this “raw” SNR is
ideal.

Target for measurement improvement
is 400:1 in VIS, and 600:1 in NIR
bands, though an absolute minimum
SNR of 2 is required for scientifically
relevant data [197], [198], [212].
SNR(VIS) 400:1 leads to 2.5%
uncertainty in derived Rrs [212]. Note
that the uncertainty requirement for
retrieved Rrs is 5%, so there’s some
margin here.

Note that parameter retrieval has
been achieved with poorer noise
characteristics. PRISMA retrieves
with SNR below 150 in all bands [129]

Desired detection limit relative to
signal for phytoplankton diversity
detention defined by GOOS as 10:1
relative to signal [207]

Continued on next page
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PAY_REQ_18

The imaging payload shall
achieve measure atmospherically
corrected water-leaving signals
should be between 40-100

Corrected SNR of 40-100 corresponds
to SNR of 400-1000 (VIS) before atmo
correction assuming the marine signal
is ∼5% of Ltyp [197], [212]. SNR >
600:1 in NIR bands would support
SNR of 400:1 in VIS bands [197]

SNR range supported by Wang (2018)
[213]

PAY_REQ_19
The imaging system’s noise
equivalent radiance shall be no
more than 0.05 W/m2 ∗ sr ∗ um

Below 0.035 W/m2 ∗ sr ∗ um is
recommended for VIS/NIR with
preference for below 0.025
W/m2 ∗ sr ∗ um in the NIR [214]

PAY_REQ_20
The imaging system’s minimum
(Lmin) and maximum (Lmax)
radiances shall be reported

These values define the range of
radiances where the system’s
performance requirements have to be
met. These represent the
smallest/largest level of radiance each
spectral band is capable of sensing

PAY_REQ_21
The imaging system’s dynamic
range shall be set by the defined
Lhigh radiance

Lhigh is the typical maximum TOA
spectral radiance expected for ocean
color sensing. The imager’s dynamic
range is configured with this
constraint to ensure no band saturates
below this value. This avoids
saturation over bright regions while
allowing detection of dim signals.

IOCCG Report 13 recommends that a
14-bit ADC is sufficient even when
cloud radiances are present, though
this is driven by imager design [85]

PAY_REQ_22

The imaging payload shall have
at least some bands that do not
saturate at the maximum
radiance estimate (Lmax)

Having some bands operational for
sensing Lmax allows for estimation of
the radiances of the saturated bands
and stray light assessment [85]

Continued on next page
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PAY_REQ_23

The overlap between each
combination of bands for
spectral band co-registration
should be at least 80% of one
iFOV for any scan angle

High co-registration necessary when
integrating information from pixels
across spectral bands [85], [199]

PAY_REQ_24

The imaging payload shall
support water-leaving radiance
retrieval from ocean color
imagery with a measurement
uncertainty of no more than 5%
for blue/green wavelengths

GCOS ECVs requires ocean color
measurement uncertainty for
blue/green wavelengths of 5% (2-σ)
[204]. Supported by measurement
gaps analysis provided by Lancheros
et al. (2018) [195]

H. Gordon shows that calibration
errors of 0.5% in TOA lead to 5%
error in retrieved surface data (See
Wang 2014 [211])

PAY_REQ_25

The imager shall acquire TOA
radiance with uncertainties of
less than 0.5% after vicarious
calibration

0.5% accuracy of TOA radiance at 443
nm required to achieve a water-leaving
radiance accuracy of 5% and accuracy
of chl-a product of ∼30% [85]

Retrieval of water-leaving radiance
with 5% (2-σ) measurement
uncertainty supported by GSOC ECV
requirements and gap analysis work by
Lancheros et al. (2018) [195], [204]

Target uncertainty supported by
GOOS at 30% for chl-a and
eutrophication monitoring [205]

Continued on next page
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PAY_REQ_26

The imaging payload shall
support retrieval of chlorophyll
concentration from ocean color
remote sensing data with an
accuracy of at least 0.03 mg/m3

Max uncertainty for phytoplankton
phenology is 0.03 mg/m3 (30%), and
30% for eutrophication (use-
ful for monitoring onset of HABs) [207].

Gap analysis study supports
accuracies up to 0.05 mg/m3 for chl-a
for monitoring and assessing fish
stocks [195].

PAY_REQ_27

The imaging payload shall
support retrieval of CDOM from
ocean color remote sensing data
with an accuracy of at least 5%
accuracy

Desired accuracy required for CDOM
retrieval [195]

PAY_REQ_28
The imaging payload’s response
to different integration times
shall be measured prior to launch

Necessary for characterizing imager
performance and determining optimal
imaging settings within measurement
constraints and anticipated scene
radiances

PAY_REQ_29

The imaging payload’s
Modulation Transfer Function
shall be determined prior to
launch

Necessary for characterizing imager’s
ability to reproduce spatial features in
an imager

PAY_REQ_30

The imaging payload’s dark
current shall be characterized at
different integration times prior
to launch

Necessary for characterizing imager’s
inherent noise, noise temperature
dependencies, and requirements for
sensor calibration prior to launch

PAY_REQ_31
The imaging payload shall
provide measurement bands with
centers at 412 nm and 443 nm

Necessary for coastal ecosystem
imaging, detection of variance in
material exchange between land and
ocean, absorption of CDOM (yellow
substance) at 412 nm and dissolved
organic matter (total suspended
matter) absorption at 443 nm [85],
[215]. See Table 2.5

Continued on next page
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PAY_REQ_32
The imaging payload shall
provide a measurement band
with a center at 490 nm

Standard band center for several Rrs

and chl-a algorithms [215]

Diffuse attenuation coefficient (Kd) is
measured at 490 nm [85]. This enables
measurements of water quality and is
necessary for monitoring coastal
ecosystems and understanding the
effects of ocean health from dumping
[85], [166]. See Table 2.5

PAY_REQ_33

The imaging payload shall
provide measurement bands with
centers +/- 1 nm from 665 nm
and 678 nm

Input for fluorescence line height
algorithm with requirement for 665
and 678 nm with band centers within
∼1 nm [11], [85], [199]. Proxy for
phytoplankton biomass, proxy for
phytoplankton abundance indicator of
nutrient availability and lighting
conditions, assessing the extent of
eutrophication (nutrient abundance)
[11]. See Table 2.5

PAY_REQ_34
The imaging payload shall
provide a measurement band
with a center at 620 nm

For observing suspended particulate
matter [85]. Particularly useful for
coastal ecosystems for understanding
the influence of coastal ecosystems on
water quality and biogeochemistry
[85], [166]. See Table 2.5

PAY_REQ_35
The imaging payload shall
support a minimum detection
threshold of 0.01 mg/m3

Chl-a concentrations are < 0.1mg/m3
for ∼24% of ocean conditions and
chl-a ranges from 0.012 to 0.1 mg/m3

is representative of oligotrophic (low
nutrient) waters [215]

Continued on next page
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PAY_REQ_36

The imaging payload shall
support a range of chl-a density
detection from 0.01-100 mg/m3

for chlorophyll products

Range supports HAB monitoring,
phytoplankton phenology, early onset
bloom development and bloom growth
[207].

Eutrophic waters have chl-a > 1.67
mg/m3, and chl-a concentrations are
< ∼0.1mg/m3 for ∼24% of ocean
conditions [215]. Additionally,
different phytoplankton species types
require different densities of chl-a
concentrations for detection (e.g., K.
brevis blooms require chl-a
concentrations of > 1.5 mg/m3 for
detection) [11]

These requirements serve as a guide for designing an ideal ocean color nanosatellite HSI
payload. Again, satisfying the entire list within the constraints of the nanosatellite platform
may not be realistic. A final note is that all instruments, whether they be multispectral or
hyperspectral are fundamentally limited by two constraints: their inability to see through
clouds and restriction to daylight only imaging. These will further impose restrictions on the
mission’s concept of operation and will inevitably reduce imaging capacity for the mission.
This is particularly true for targets in higher latitudes where there is typically less daylight
and more clouds, as well as equatorial regions where cloud coverage is significant year-round.

2.1.2 Science Traceability Matrix

Science traceability matrices (STM), often used by organizations like NASA, are useful tools
in the initial stages of mission development. They map the mission’s high-level science ques-
tions to requirements for science measurements, mission design, and instrument performance.
STMs help define key measurement objectives that address gaps in science, and demonstrate
traceability from desired mission measurements to existing products and algorithms [216].
In addition to informing high-level mission design architecture, STMs help track the impact
of modifications made to the mission design and can inform risk mitigation strategies.

This section offers an STM mapping the set of requirements outlined in Section 2.1.1 to
potential science objectives related to ocean color sensing. While this work does not target
a specific science question (e.g., “how does coastal runoff impact phytoplankton taxonomic
groups?”), the objective involves assessing how well the nanosatellite’s performance aligns
with existing gaps in ocean color measurements. In lieu of a precise science goal or ques-
tion, the STM (see Table 2.4) presents broader science observatoin requirements that the
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nanosatellite platform could potentially improve. Each requirement is listed with rationale
for the requirement and the target measurement (e.g., ocean color measurements (require-
ment) require VIS/NIR bands (measurement)). The HSI’s functional performance is then
mapped to each measurement. Furthermore, possible implementation methods are mapped
to each target provided in the rationale column for each obesrvation requirement. This STM
establishes requirements traceability to ocean color measurements, illustrating a clear con-
nection between potential science objectives and the proposed design requirements for the
mission.

Table 2.4: Science Traceability Matrix

Observation
Requirement Rationale Measurement Precision Implementation

Ocean
Color

Rrs

VIS Band
Imaging:
∼400-700
nm

Algorithm
Development

Ocean color
Imagery & Rrs

algorithms

Chl-a
signatures

Sensor &
algorithm

development
(see Table 2.5)

Ocean color
imagery

(VIS/NIR)

SSS Estimation

Bands: 412,
443, 490, 555,
660, 680 nm

[217] & 412 nm
[218]

Ocean color
proxy, SSS
estimation
algorithms

Spectral
Coverage

Improved
spectral

continuity for
filling

measurement
gaps

Imaging

VIS/NIR
Bands:

400-900 nm

N/A
HSI with
spectrally

contiguous bands

Spatial
Resolution

Mesoscale
eddies

Imaging

VIS/NIR
Bands:
400-900 nm

Threshold
GSD: 100 km
Goal GSD: 10

km
Extended

Goal: 500 m
(submesoscale

features)

Ocean color
imager with
optics that
support GSD

Continued on next page
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Observation
Requirement Rationale Measurement Precision Implementation

SSS Estimation

Threshold
GSD: 200 m

Goal GSD: 30
m

Improving
global chl-a
estimates
(reducing
subpixel

variability)

Threshold
GSD: 200 m

Goal GSD: 100
m

Temporal
Resolution

Monitoring
phytoplankton
bloom growth

Imaging

VIS/NIR
bands: 400-900
nm

Threshold
Revisit Rate: 1
day

Goal Revisit
Rate: 12 hours

LEO,
nanosatellite
constellation

Improved
monitoring
frequency

Increasing
opportunities
for cloud-free

imaging

2.1.3 Product Retrieval Algorithms

An objective of this work is understanding how nanosatellite-based hyperspectral imagers
can provide critical measurements with bands compatible with existing algorithms. This
overlap ensures data continuity, can prevent future gaps in measurements, and measure-
ments with increased spectral resolution may be used to augment and improve the accuracy
of current multispectral measurements. Thus, required inputs for existing ocean color algo-
rithms inform the design requirements for future hyperspectral imagers. This section does
not provide functional descriptions of each algorithm, but rather describes their expected in-
puts to inform considerations for placement of HSI band centers. Descriptions are provided
for the two most common product retrieval algorithms for deriving chlorophyll-a (chlora)
and remote sensing reflectance (Rrs). See Section 2.1.4 for the Rrs algorithm description
and Table 2.5 for inputs required for both algorithms. Table 2.6 in Section 2.1.4 describes
algorithms frequently used for atmospheric correction.
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NASA provides a set of Algorithm Theoretical Basis Documents (ATBD) that describe
the foundational methods and scientific bases for converting satellite data into meaningful
science products. Measurements from legacy instruments including MODIS, MERIS, VIIRS,
SeaWiFS, OCTS, and CZCS are fundamental inputs to many of the algorithms described.
For a complete list of band centers and radiometric characteristics from the mentioned legacy
missions, see Table 2 in IOCCG Report 1 [214].

Methods described in ATBDs are commonly used to extract key bio-optical properties
and EOVs from ocean color data, thus providing a useful benchmark for desired data prod-
ucts from future missions. Outside of NASA’s ATBDs, several other algorithms are useful
for processing ocean color data. These include regionally developed product retrieval al-
gorithms, community developed (non-agency affiliated) constituent derivation algorithms,
and algorithms required for performing atmospheric correction. Planned ocean color instru-
ments like OCI on NASA’s PACE target a broader range of ocean color data products than
what’s currently available, meaning OCI’s spectral bands provide an additional benchmark
for future missions to cover to enable data continuity. PACE’s band centers are described in
NASA PACE’s Technical Report, Volume 11 [219].

NASA’s chlor_a ATBD describes the most popular method for deriving chlorophyll-a
pigment from phytoplankton signatures. chlor_a combines two standard algorithms for es-
timating chlorophyll concentrations: the color index (CI) method by Hu et al. 2012, later
improved in Hu et al. 2019, and the OC3/OC4 (OCx) band ratio algorithm developed by
O’Reilly et al. 1998 [220]–[222]. Combined, the two methods cover a range of retrieval of
different pigment densities. The chlor_a approach applies the OCx algorithm when chloro-
phyll signatures exceed 0.2 mg/m3, the CI algorithm when retrievals are below 0.15 mg/m3,
and combines the two for pigment densities in between the two ranges [221]–[223]. While
the chlor_a algorithm is applicable to all data products from current ocean sensors, im-
plementation is contingent on the availability of three or more bands in the 440-670 nm
range [223]. Hu et al. (2019)’s CI algorithm uses an empirically derived three-band re-
flectance difference algorithm to estimate global distributions of surface chlorophyll-a (chl-a)
concentrations [222]. This technique uses a relatively straightforward approach comparing
differences in Rrs from green bands (555 nm) that vary linearly with blue (443 nm) and
red (670 nm) bands [222]. To derive chlorophyll concentration from densities between the
two aforementioned ranges, the OCx algorithm is applied to results from the CI algorithm
[223]. OCx uses a fourth-order polynomial to derive the relationship between the blue/green
Rrs ratio and chlorophyll-a concentrations [221]. For the CI algorithm, input instrument
band centers should be as close to the red/green/blue bands as possible. The CI and OCx
algorithms and input parameters are further discussed in NASA’s ATBD chlor_a document
[223].

In addition to the CI and chlor_a algorithms, O’Reilly and Werdell (2019) provides
sixty-five empirically derived maximum band ratio algorithms for retrieving chlorophyll-
a from ocean color data products from 25 satellite instruments [215]. These algorithms
are derived from Valente et al. (2015), the largest in-situ and remote sensing reflectance
database that includes coverage of recently launched, legacy, and planned missions [206],
[215]. One major conclusion of this work is the importance of including the 412 nm violet
band for estimation of chlorophyll-specific absorption, particularly when concentrations are
less than ∼0.1 mg/m3 [215]. Its effectiveness in providing chlorophyll concentrations despite
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the overlap in spectrum from CDOM is exploited by the OC5 and OC6 algorithms (see Table
2.5 [215].

Variations of the OCx algorithms mapped to their respective ocean color sensors is pro-
vided in Table 2.5 along with the required bands for both chl-a and Rrs retrieval. For a
complete list of band centers from planned and legacy missions, their applications to ocean
color detection, and additional context for band selection, see Table 3.5 in IOCCG Report
13 [85].

Table 2.5: sensor-specific band centers required for algorithm inputs for deriving chlorophyll-
a (mg/m3) and remote sensing reflectance (sr−1) of legacy missions [215], [223], [224]. ∗

indicates alternative band options for Case II regions

Sensor
Chl-a

Algorithm
Blue Bands

(nm)
Green Bands

(nm)
Rrs Bands

(nm)
Rrs Aerosol
Bands (nm)

VIIRS OC3V 443, 486 550
410, 443,
486, 551,

671

745, 862,
1238∗, 1601∗,

2257∗

SeaWiFS

OC4 443, 490,
510 555 412, 443,

490, 510,
555, 670

765, 865
OC2S 490 555

OC3S 443, 490 555

OLI
(Landsat-8)

OC2 482 561 443, 482,
561, 655

865, 1609∗,
2201OC3 443, 482 561

OLCI

OC4_OLCI 443, 490,
510 560 400, 412,

442, 490,
510, 560,
620, 665,
674, 681,
709

754∗, 761∗,
779, 865, ,
885∗, 900∗,
940∗, 1012∗OC5_OLCI 413, 443,

490, 510 560

OC6_OLCI 413, 443,
490, 510 560, 665

OCTS

OC20 490 565 412, 443,
490, 516,
565, 667

765, 862OC30 443, 490 565

OC40 443, 490,
516 565

Continued on next page
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Sensor
Chl-a

Algorithm
Blue Bands

(nm)
Green Bands

(nm)
Rrs Bands

(nm)
Rrs Aerosol
Bands (nm)

MODIS

OC2M 488 547 412, 443,
469, 488,
531, 547,
555, 645,
667, 678

748, 859∗,
869, 1240∗,
1640∗,
2130∗

OC2M
(500-m) 469 555

OC3M 443, 488 547

MERIS

OC2E 490 560 413, 443,
490, 510,
560, 620,
665, 681,
709

754∗, 762∗,
779, 865,
885∗, 900

OC3E 443, 490 560

OC4E 443, 490,
510 560

CZCS OC3C 443, 520 550 443, 520,
550, 670 670

HICO

OC4_HICO

350 - 1079 (contiguous, 5.7 nm BW)OC5_HICO

OC6_HICO

GOCI

OC4_GOCI 412, 443,
490 555

412, 443,
490, 555,
660, 680 745, 865OC5_GOCI 412, 443,

490, 555 660

OC6_GOCI 412, 443,
490, 555 660, 680

2.1.4 Atmospheric Correction Models

Understanding the impact of the atmosphere on the total path signal is challenging, particu-
larly due to the uncertainties of estimating aerosol scattering and absorption contributions.
The variable nature of aerosols across different regions introduces non-uniformity in the
selection of aerosol models, necessitating the inference of these effects from at-sensor obser-
vations. Beyond the atmospheric path, TOA radiance signals detected by satellites include
solar glint off the ocean’s surface and contributions from whitecaps and foam [224]. Sev-
eral methods have been developed for estimating these contributions, tailored for specific
satellite data products for deriving ocean surface features. Wang (2010) introduces initial
development efforts and discusses the functionality and implementation of prevalent OC at-
mospheric correction algorithms developed for SeaWiFS/MODIS, MERIS, OCTS/GLI, and
POLDER [168].
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Required inputs for atmospheric correction algorithms are generally non-uniform and
vary as a function of band center and sensor performance characteristics. Table 2.6 high-
lights popular atmospheric correction algorithms, their derived products, and the datasets
they were designed to analyze. As mentioned in the requirements section, it is recommended
that sensors be designed with a specific atmospheric correction scheme in mind to ensure
optimal sensor for detecting TOA radiance at the required bands and meeting performance
expectations. This section intends to provide readers with a brief, non-comprehensive intro-
duction to existing atmospheric correction techniques.

NASA’s Rrs ATBD describes the process of retrieving water-leaving radiances (Lw(λ))
for a number of legacy missions [224]. The Rrs derivation process involves removing con-
tributions from solar illumination geometry, atmospheric attenuation, and scattering and is
therefore a tool for atmospheric correction [224]. By estimating and subtracting contributions
unrelated to the marine signal, the Rrs algorithm returns the normalized water-leaving radi-
ance signal. This is commonly known as radiance reflectance, or remote sensing reflectance
[225]. The resulting product is defined as:

Rrs(λ) =
Lw(λ)

F0cos(θs)tdsfs
fb(λ)fλ [sr−1] (2.1)

where Lw(λ) is the water-leaving radiance at the band center in units of mW/cm2/µm/sr,
F0 is extraterrestrial solar irradiance in units of W/m2, θs is satellite viewing angle (degrees),
tds is transmittance of diffuse radiation propagated through the atmosphere and into the
sensor’s viewing path from the sun to the ocean’s surface (dimensionless), fs is a scalar
adjustment factor applied to F0 for changes in Earth-sun distance, fb(λ) is bidirectional
reflectance correction factor, and fλ is a correction factor for out-of-band response [224].

Table 2.6 introduces additional atmospheric correction algorithms, the target derived
ocean color product, compatibility with open ocean (case I) or coastal (case II) regions,
and target spacecraft datasets. While most algorithms target retrieval of Rrs, chl-a, or
Lw(λ), some approaches, particularly those adopted for both case I and II regions, allow
for the derivation of additional products. These include ocean surface products such as
suspended particulate matter (SPM), contributions from spectral reflectance (sunglint), and
absorption and backscattering (bbp) contributions from in-water optically active constituents.
Atmospheric correction algorithms are also used for deriving products directly related to
the atmospheric medium such as the aerosol optical thickness (AOT), column water vapor
(CWV) density, and aerosol optical depth (AOD). Given the non-uniformity in available
bands and bandwidths across spacecraft platforms, many atmospheric correction algorithms
are developed for a single instrument.

Future-looking efforts described by Frouin et al., 2019 discuss potential improvements
to atmospheric correction methods given extended TOA UV observations made possible by
the PACE mission [226]. In addition to atmospheric correction algorithms, several tools
are commonly used for processing, analyzing, and correcting remote-sensing ocean color
data sensed by satellites. These include NASA’s SeaWiFS Data Analysis System (SeaDAS),
ESA’s Sentinel Application Platform (SNAP), and the Atmospheric Correction for OLI ‘lite
(ACOLITE) processor. Additionally, aforementioned atmospheric correction radiative trans-
fer models including MODTRAN, FLAASH, and Py6S, support these efforts.

77



Table 2.6: Common atmospheric correction algorithms mapped to their developers and
intended dataset

Algorithm Name Developer
Ocean Color

Product
Case Type

I/II
Target
Dataset

MOD09
Vermote &
Vemeulen

(1999) [227]
Spectral Reflectances I MODIS

Rrs
Mobley et al.
(2016) [228] Rrs

See Table
2.5

See Table
2.5

Coupled
Hydrological
Atmospheric

Model

Moore (1999)
[181] SPM Retrieval II MERIS

SCAPE-M
Guanter 2008,
Guanter (2010)

[183], [229]

AOT, CWV, Surface
Spectral Reflectance I/II ENVISAT,

MERIS

- Hu (2000) [182] Lw(λ), chl-a I/II SeaWiFS

Multilayer Neural
Network (MLNN)

Fan et al.
(2017) [230]

Rrs,
Rayleigh-corrected

radiance, AOD
II MODIS

OC-SMART Fan et al.
(2021) [231]

Rrs, chl-a, IOPs,
phytoplankton

absorption coeff.,
gelbstoff absorption

coeff., bbp, AOD

I/II Multi-
sensor

-
Gordon and
Wang (1994)

[178]

Lw(λ) , chlorophyll
concentration, aerosol

concentration
estimation

I
CZCS,

SeaWiFS,
MODIS

- Fukushima et
al. (1998) [180] Lw(λ) I OCTS

-
Antoine and
Morel (1999)

[179]
Lw(λ), chl-a I MERIS

Continued on next page
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Table 2.6 – continued from previous page

Algorithm Name Developer
Ocean Color

Product
Case Type

I/II
Target
Dataset

POLYMER Steinmetz et al.
(2011) [232]

Water reflectance,
chl-a, sun glint

correction
I MERIS

SSMM
Shanmugam &

Ahn (2007)
[233]

Lw(λ), chl-a II SeaWiFS

2.2 Performance Metrics

Section 2.2 provides a high-level introduction to the primary metrics used to assess the design
reference missions’ (DRM) HSI’s. The subsequent metrics provide quantitative descriptors
for determining the HSI’s sensitivity to anticipated at-sensor radiances, fundamental limi-
tations for input signals, and the granularity of detectable features at the ocean’s surface.
These metrics are weighed against the performance of existing ocean color remote sensing
instruments, as well as the community defined set of measurement requirements described
in Section 2.1.

2.2.1 Signal-to-noise Ratio (SNR)

Fundamentally, the signal-to-noise ratio (SNR) describes the sensitivity of an imaging sys-
tem to an incident signal by quantifying a sensor’s output (typically in terms of electrons)
in response to a change at its input. For this work, the input signal is sensor-reaching
spectral radiance. Ultimately, the SNR quantifies the quality of the signal produced by a
sensor as a function of the input signal and background noise inherent to the instrument.
Mathematically, SNR is a unitless expression defined as:

SNRdB = 10 ∗ log10
Ns

σn

[dB] (2.2)

Ns is the signal reaching the instrument’s focal plane array, expressed as the average
photoelectron level, and σn represents the system’s noise standard devision measured in
photoelectrons. In addition to sensor noise, SNR is influenced by several factors such as
scene illumination, sensor viewing geometry, sensor sensitivity, and the spectral response
of the detector material. Evaluating this metric before deploying the sensor is useful for
characterizing performance constraints and guiding mission operations during optimal SNR
conditions. Maximizing this ratio facilitates stronger differentiation between the intended
signal and background noise. Strategies for improving SNR include reducing sensor noise,
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increasing the detector area, selecting more sensitive materials, and employing signal pro-
cessing techniques such as binning.

When exploring literature, readers are urged to pay close attention when published SNRs
are presented. While often quoted in units of decibels (dB), they are sometimes listed in linear
terms, a discrepancy that may lead to unrealistic performance expectations. See section 2.4.2
for a detailed derivation of the signal-to-noise ratio for a generic sensor. Sections 4.2.1 and
4.2.2 provide the SNR derivation for the hyperspectral imagers on the AEROS and HYPSO-1
nanosatellite missions respectively.

2.2.2 Noise Equivalent Spectral Radiance

Noise equivalent spectral radiance (NESR) is a radiometric term referenced to quantify
system performance in an absolute measurement case, where NESR represents the amount
of spectral radiance that equates to the noise standard deviation [234]. It is therefore the
smallest detectable signal the system could theoretically sense above its noise floor, thereby
representing the fundamental sensitivity of the imaging system. NESR (see Silny et al. 2017)
is expressed in units of radiance and is defined as:

NESR(λ) =
Lscene(λ)

SNRscene(λ
) [W/m2 ∗ sr ∗ µm] (2.3)

Where Lscene is the minimum input spectral radiance and SNRscene represents the SNR
at unity, i.e., SNR = 1, assuming a constant SNR across the imager’s field-of-view [235]. In
actuality, SNR varies along the spacecraft’s orbital trajectory as the solar irradiance varies
from the equator to higher and lower latitudes [85]. NESR also varies with sensor viewing
angle, though for this work it’s assumed that sensor pointing is held constant at nadir. All
terms used to determine NESR are wavelength dependent, meaning this fundamental limit
varies spectrally, and a smaller NESR is indicative of higher sensor sensitivity for a given
spectral channel. Derivations for NESR for the DRM architectures are provided in Section
4.3.

2.2.3 Noise Equivalent Reflectance Difference

Noise equivalent reflectance difference (NERD or NE∆ρ) is a radiometric term used for
reflective band imaging systems [234]. NE∆ρ denotes the smallest detectable change in the
imaged scene reflectance, that when incident on the sensor, causes a signal change equivalent
to the noise standard deviation. Thus, NE∆ρ represents the minimal detectable difference in
reflectance from two adjacent surfaces or objects within a scene. This metric represents the
imaging system’s sensitivity to subtle spectral variations. Quantifying NE∆ρ is particularly
useful for processes such as phytoplankton species discrimination where reflected signals from
distinct taxonomic groups generate spectral responses characterized by slight magnitude
differences.

NE∆ρ is expressed as a percentage and is defined in Eismann 2012 as:

NE∆ρ =
|∆ρ|
SNR

[%] (2.4)
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Where SNR is unitless and determined by the pupil-plane spectral radiance, and ∆ρ is
the reflectance difference defined as:

∆ρ = ρt(λ)− ρb(λ) [%] (2.5)

ρt(λ) is the target spectral reflectance and ρb(λ) is the uniform background reflectance
[234]. In cases where NE∆ρ > ∆ρ, system noise is relatively high compared to the reflectance
difference, meaning this level of change in the scene is likely undetectable. Readers are
encouraged to reference Chapter 6 of Eismann, M. (2012) for deeper exploration of common
terms used to describe a sensor’s radiometric sensitivity [234].

2.2.4 Additional Considerations

A number of specifications and metrics are referenced to describe a sensor’s performance
against the target measurement objective. The most common referenced for HSI imagers
include:

• Spectral range: the spectral sensitivity of a hyperspectral imaging system determined
by a combination of the detector sensitivity (driven by sensor material), its grating
element, and spectral filters. HSI imagers typically have spectral ranges in VIS/NIR
(380-1000 nm).

• Spectral resolution: the fundamental limit of an imaging system’s ability to resolve
two adjacent spectral features emitted from a single point in the captured image [43].
Spectral resolution depends on the imager’s grating element, where narrower bands
indicate higher spectral resolution.

• Band numbers: the number of bands or spectral channels the imaging system sup-
ports, typically reported as part of the spectral resolution.

• Bandwidth: the full width half max (FWHM) of the detector’s response to a spectral
channel indicating the narrowest possible spectral feature resolved.

• Spatial resolution: the portion of an imaged scene that corresponds to a single pixel
on the imager’s detector. The diameter of the projected pixel represents the smallest
feature the imager can resolve on the surface of the sensed scene [43]. The higher the
spatial resolution (represented as a lower value, e.g. a spatial resolution of 100 meters
is lower than 10 meters), the more detail captured in the image [43].

• Bit depth (quantization level): intensity of a single pixel in reference to digitized
gradation levels where a system with 8 bit precision specifies 0 as the color black and
255 as white.

• Data latency: the delay from the time of spacecraft observation to the time the data
is downliked, processed, and disseminated for use on the ground.

• Revisit rate: the time between spacecraft observations of the same point or region
of interest (ROI) on Earth determined by the spacecraft’s orbital altitude, orbital
placement, location of ROI, and swath of the sensor.
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• Ltyp: typical top-of-atmosphere (TOA) ocean radiance, usually presented in units of
W/m2∗µm∗sr. Ltyp is often defined for clear sky conditions and represents an average
or expected signal at TOA. Sensor SNRs are typically reported with the assumption
that Ltyp was the referenced input signal.

• Lmax: the maximum radiance a sensor could detect, also reported as W/m2 ∗µm∗sr.
Lmax is also referred to as a sensor’s saturation radiance.

While SNR, NESR, and NE∆ρ describe an imaging system’s sensitivity to an incident
signal, the above metrics provide critical context for the overall system performance. Collec-
tively, the full set of metrics contributes to a comprehensive characterization of an imaging
system that helps users understand the feasibility of using the system to capture different
scenes and signals of interest.

2.3 Radiometry and Radiative Transfer

Section 2.3 introduces general radiometric concepts, principles of radiative transfer, and the
approach for representing each process in this work. Sections 2.3.1 and 2.3.2 introduce high-
level descriptions of radiometry and radiative transfer with defined relevant terminology.
Section 2.3.3 introduces the radiative transfer model used for this work and justification
for using this tool, and Section 2.3.4 introduces a generic radiometric sensitivity modeling
approach to familiarize readers with the process of deriving SNR. This model is then modified
in Chapter 3 to evaluate the radiometric performance of the HSIs for each DRM.

2.3.1 Principles of Radiometry

Radiometry is defined as the detection and measurement of electromagnetic (EM) radiation,
or EM radiant energy [236], [237]. Remote sensing instruments, or radiometric measurement
systems, capture a portion of this EM radiation for a particular region of the electromagnetic
spectrum [236]–[238]. Radiometric measurements transform the radiation sensed by these
instruments into quantifiable figures of merit that describe the characteristics of the sensed
signal given the configuration of the instrument used to detect it [236]–[238]. These figures
of merit are expressed using radiometric terms.

Table 2.7 provides a list of the most commonly used radiometric terms, their definition,
and distinction across different nomenclatures. Some terms are frequently used interchange-
ably, potentially leading to misinterpretation of radiometric quantities, and their usage can
vary across fields. In this work, the primary radiometric term is spectral radiance, denoting
normalized energy emitted from a source per unit area and solid angle. Simply put, spectral
radiance represents the amount of detectable energy (J) emitted or reflected from an object
each second (s), incident on a given area (m2) that’s projected into a spherical region of space
(sr). It’s worth noting that when expressing radiometric terms in SI units, they are prefixed
by “radiant,” in photon units by “photon,” and in spectral units, by “spectral radiant.” For
example, one would use radiant energy (SI), photon energy, and spectral radiant energy.

There are three types of radiant energy propagation: reflection, absorption, and trans-
mission. Any object or source within the field of view of a remote sensing instrument will
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Table 2.7: Definitions and specifications of common radiometric terms [234], [239]

Term Variable Definition SI Units Photon Units
(P)

Spectral
Units (λ)

Energy Q|QP |Qλ

Total energy
emitted by an
object

J photons J/m

Power P |PP |Pλ

Energy emitted
by an object per
unit time (flux)

W photons/s W/m

Intensity I|IP |Iλ
Energy emitted
by an object per
unit solid angle

W/sr photons/s ∗ sr W/sr ∗m

Exitance M |MP |Mλ

Energy emitted
by an object per
unit area

W/m2 photons/s ∗m2 W/m2 ∗m

Irradiance E|EP |Eλ

Energy incident
per unit area
(flux density)

W/m2 photons/s ∗m2 W/m2 ∗m

Radiance L|LP |Lλ

Energy emitted
by an object
normalized per
unit area and
solid angle

W/m2∗sr photons/s∗m2∗sr W/m2∗sr∗m

emit or reflect radiant energy back to the instrument’s sensor. For space-based imagers,
radiant energy travels through the Earth’s atmosphere, acting as a transmission medium.
Along this transmission path, energy experiences absorption and reflection (scattering) pro-
cesses that modify the magnitude and shape of the sensed signal. The atmosphere, being
both an emitting and reflecting body, adds additional complexity to the remotely sensed
signal. Meaning, in addition to the target source, such as the ocean’s surface, the sensor also
captures atmospheric properties.

All types of matter interact with radiant energy with unique spectral characteristics
driven by their material properties and molecular makeup. Therefore, scenes with diverse
material types yield radiometric measurements with spectral components corresponding to
each material. Untangling these components forms the basis of spectroscopy [238], [240]. By
analyzing distinct spectral absorption and emission features, spectroscopy provides unique
“fingerprints” for each sensed material, enabling the identification and characterization of
multiple components within a single observed scene [240]. For a deeper explanation of
general radiometry and radiometric concepts, readers are urged to reference introductory
material from McCluney (2014)’s Introduction to Radiometry and Photometry, and Grum
(2012)’s Introduction to Radiometry and Photometry [236], [237].

Figure 2.1 demonstrates how different materials exhibit distinct spectral signatures. For
instance, clear water, representing a region with little productivity, absorbs nearly all NIR
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radiation, contrasting with the strong spectral peaks from vegetation. This characteristic
is exploited by the normalized difference vegetation index (NDVI) to monitor plant health.
Inland lake water, turbid and productive reservoirs, display spectral shapes distinct from
clear water. Sand has higher spectral radiance across the full response compared to other
materials. In coastal regions, where imagers capture signals from sand and water, near-
coastal scenes and those sensing bottom reflectance will have higher spectral radiance when
sand is present. This poses challenges for imaging systems, requiring the necessary sensitivity
and dynamic range to accommodate both highly reflective signals from sand and dimmer
signals from water without saturation.

Figure 2.1: TOA Spectral Radiance, VIS/NIR TOA spectral radiance generated by Py6S
for four types of ground reflectance models: in-land vegetation, clear water, sand, and lake
water. The model used the predefined midlatitude summer atmosphere profile, the navy
maritime aerosol model, and built-in ground reflectance models that represent homogeneous
lambertian surfaces.

2.3.2 Principles of Radiative Transfer

Radiometry is the science and measurement of electromagnetic radiation. Radiative transfer
(RT) is the science that describes radiation’s propagation from a source to an instrument,
detailing all of the material interactions experienced along the propagation path [234]. To
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effectively interpret radiometric measurements, it’s critical that these interactions are well-
characterized to differentiate spectral features inherent to apparent material properties from
those injected by the path medium [234]. Contributions from all properties are captured
at the instrument, typically as spectral radiance, although material properties are typically
characterized by their apparent reflectance as a function of wavelength [234]. Eismann (2012)
makes the point that while a material’s reflectance distribution is a function of solar illu-
mination and viewing geometries, hyperspectral remote sensing typically assumes diffuse
scattering properties, removing these dependencies [234]. With this assumption, the indi-
rect component illuminating the surface, i.e, the radiant energy scattered by atmospheric
constituents, is considered diffuse relative to the incident solar irradiance that strikes the sur-
face from a specific direction [234]. As such, the integrated spectral irradiance, the diffused
downwelling illumination, is defined as:

Ed(λ) =

∫ 2π

0

∫ π/2

0

Ld(λ, θ, ϕ) sinθ cosθ dθ dϕ (2.6)

where Ed(λ) is the diffuse spectral irradiance integrated over the hemisphere above the
surface in units of W/m2∗µm and Ld(λ, θ, ϕ) is the indirect spectral radiance (W/m2∗sr∗µm)
represented as spectrally and angularly dependent on propagating radiation [234]. Ed(λ) is
then only dependent on the spectral distribution [234]. The sensor-reaching pupil-plane
spectral radiance (Lp(λ)) in units of W/m2 ∗ sr ∗ µm is then defined as:

Lp(λ) =
τa(λ)ρ(λ)

π
[Es(λ) + Ed(λ)] + Lt(λ) (2.7)

Where Es(λ) is the direct solar spectral irradiance (W/m2 ∗ µm), Lt(λ) is the path
radiance (W/m2 ∗ sr ∗ µm), τa(λ) is the atmospheric path transmission, and ρ(λ) is the
spectral reflectance from diffuse scattering at the surface [234]. Again, Lp(λ), a radiometric
term expressed as spectral radiance, represents the radiant flux incident at the sensor per
unit area, solid angle, and wavelength [234]. These terms are defined by Eismann (2012),
work that provides an excellent introduction to radiometric processes and key concepts of
hyperspectral remote sensing [234]. To avoid confusion, note that the subscript for total
path radiance was modified from La, reported in Eismann (2012), to Lt for consistency with
the IOCCG 10 definition [168], [234].

The total path radiance contributing to the pupil-plane spectral radiance is linearly
parsed into all contributions from constituents in the coupled ocean-atmosphere system.
Modeling and removing all components in Lt(λ) aside from the marine signal [Lw(λ)]N is the
primary function of radiative transfer and atmospheric correction models. The total path
spectral radiance (Lt(λ)) and its contributions are expressed below [168]. This equation and
definitions of path components are defined by IOCCG 2010 [168].

Lt(λ) = Lr(λ)+La(λ)+Lra(λ)+ t(λ)Lwc(λ)+T (λ)Lg(λ)+ t(λ)t0(λ)cos(θ0[Lw(λ)]N) (2.8)

• Lt(λ) - total path radiance at the top-of-atmosphere (TOA) for the ocean-atmosphere
system (W/m2 ∗ sr ∗ µm)
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• Lr(λ) - radiance contribution from Rayleigh scattering, i.e., only scattering from air
molecules (largest contributor to Lt(λ), W/m2 ∗ sr ∗ µm)

• La(λ) - radiance contribution from aerosol scattering and absorption (W/m2 ∗sr ∗µm)

• Lra(λ) - multiple scattering events from both aerosols and air molecules (W/m2 ∗ sr ∗
µm)

• Lwc(λ) - radiance contribution from white caps on the ocean’s surface (W/m2∗sr∗µm)

• Lg(λ) - radiance contribution from sun glint, i.e., specular reflectance from direct sun-
light off the ocean’s surface (estimated from surface wind speed, W/m2 ∗ sr ∗ µm)

• T(λ) - direct atmospheric transmittance along the path from the surface to the space-
based sensor

• t(λ) - diffuse atmospheric transmittance along the propagation path from the ocean’s
surface to the sensor

• t0(λ) - diffuse atmospheric transmittance along the propagation path from light directly
emitted from the sun to the surface

• θ0 - solar-zenith angle (degrees) applied to the diffuese transmittance terms t(λ) and
t0(λ)

• [Lw(λ)]N - normalized water-leaving radiance (radiance reflectance or remote sensing
reflectance in units of W/m2 ∗ sr ∗ µm) signal representing backscattered light from
just below the ocean’s surface

Atmospheric transmission is a key contributor to the total path, as the transmittance
of the Earth’s atmosphere is spectral dependent. This manifests as atmospheric channels
where transmission of electromagnetic radiation is limited due to the presence of constituents
such as gasses, aerosols and clouds. This leads to transmitted radiant energy experiencing
significant absorption and scattering that affect the quality of the sensed pupil-plane spectral
radiance. Figure 2.2 shows a standard atmospheric transmittance profile for the VIS/NIR
spectrum, where steep reductions in transmission result from absorption by the labeled
molecular constituents.

Several commercially available and open-source radiative transfer modeling tools address
the challenge of estimating the atmospheric contributions to the total path signal. These
include the RT3 (radiative transfer) model developed by Evans and Stephens (1991) [241].
RT3 is a polarized tool designed for aerosol retrieval from MODIS coarse resolution data
[241]. The Moderate Resolution Atmospheric Transmission (MODTRAN) scalar model,
developed by Spectral Science’s, was initially designed to evaluate AVIRIS hyperspectral
data but is now used widely for correction of airborne and spaceborne data [242]. NASA’s
Spherical Harmonic (SHARM) scalar RT tool was designed for multi angle implementation of
atmospheric correction for MODIS [243]. Spectral Science’s Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes (FLAASH) tool is designed to analyze hyperspectral data
from the visible to shortwave infrared using MODTRAN4 [244]. Commercial tools such
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Figure 2.2: Total gaseous transmittance VIS/NIR spectrum for a midlatitude summer atmo-
sphere with the built-in navy maritime model aerosols. Prominent molecular features from
water (H2O), Oxygen (O2) and Ozone ((O3) are labeled to highlight the source of large ab-
sorption features that correspond to reduced transmission. Generated with the Py6S model
using the midlatitude summer atmosphere model and navy maritime aerosol model.

as HydroLight and EcoLight, both developed by Sequoia Scientific, Inc., and the Accurate
Radiative Transfer (AccuRT) model developed by Hamre, et al. (2018), perform radiative
transfer modeling at the surface boundary of the ocean and atmosphere [245], [246]. These
tools model light propagation in marine environments, and their products are often combined
with atmospheric radiative transfer models to determine the behavior along the full coupled
path. The RT model used for this work is the vector version of the Second Simulation of a
Satellite Signal in the Solar Spectrum (6SV) tool and is discussed in Section 2.3.3.

While radiative transfer tools are necessary for modeling atmospheric contributions, in-
situ measurements are required for calibrating and validating model predictions. Valente,
A., et al. (2016) provides the largest compilation of in-situ and remote-sensing reflectance
data for ocean color satellites, representing products compiled from a number of global
bio-optical sites [206]. NASA’s Level-1 and Atmospheric Archive & Distribution System
(LAADS) Distributed Active Archive Center (DAAC) is another useful archive of in-situ
collected data used for validating atmospheric correction schemes and removing atmospheric
contributions [247]. NASA’s AErosol RObotic NETwork for Ocean Color (AERONET-OC)
is a network of ground-based remote sensing aerosol instruments that provide both data
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for aerosol properties and water-leaving radiance. NASA’s bio-Optical Marine Algorithm
Dataset (NOMAD) distributed through SeaWiFS Bio-Optical Archive and Storage System
(SeaBASS) provides publicly available bio-optical datasets for supporting development and
validation of ocean color algorithms. Last, ESA’s Ocean Colour Climate Change Initiative
(OC-CCI) is an open source archive of ocean surface data products, developed to support
the modeling of Essential Climate Variables. For readers getting started, NASA and ESA
provide an abundance of useful documentation, recorded webinars, and how-to series on how
to access and analyze provided data products.

For this work, atmospheric radiative transfer modeling is used to generate “synthetic
scenes” that the design reference mission hyperspectral imagers could theoretically see. These
scenes span across four regions distributed across different latitudes and longitudes, and a
number of environmental, solar, and viewing geometry parameters are simulated to generate
a diverse portfolio of potential imaging scenes. The output of the RT simulations are TOA
radiances for each scene type that then serve as the input to the radiometric performance
models. Section 2.3.3 describes the Py6S RT model in detail, and Section 3.2 defines the
atmospheric modeling tradespace, outlining all Py6S parameters used for developing the
synthetic scenes evaluated in this work.

2.3.3 Second Simulation of the Satellite Signal in the Solar Spec-
trum (6SV)

The Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer
(RT) code simulates the absorption, scattering, and transmission effects that a coupled
atmosphere-surface system has on the solar radiation spectrum [248]. Selected atmosphere,
aerosol, and surface profile types drive the solar reflection seen by a user-defined sensor [248].
The tool’s simulations allow support for either plane or satellite-mounted sensors, space-
based or in-atmosphere target elevations, multiple solar and viewing geometries, anisotropic
or Lambertian surface types, and a full suite of predefined atmosphere and aerosol profiles
[248], [249]. Use of the Successive Orders of Scattering (SOS) method improves the tool’s
computational accuracy of Rayleigh and Aerosol scattering [248]. The SOS method also
enables the radiative transfer equation to be solved for an in-homogeneous atmosphere [248].
While originally developed for creating look-up tables to improve the accuracy of MODIS
atmospheric correction processes, 6S is widely used as a RT tool for aiding atmospheric
correction, land cover classification, and satellite sensor calibration for a number of use cases,
including measurements from Landsat, SeaWiFS, Sentinel-2/3, and VIIRS [249]–[254]. While
it’s primarily used for atmospheric correction for multispectral imagers, the tool’s capability
has been proven to accurately derive surface reflectances for hyperspectral measurements
from missions such as NASA’s Hyperion and CASI [255], [256].

6S, also commonly referenced as its updated vector version 6SV, is one of the most
widely used and rigorously validated RT codes, allowing high confidence in its integration
to this work. A comparison of the atmospheric correction and aerosol retrieval capabili-
ties of the 6SV1.1 RT code, the version used in this work, against the RT3, MODTRAN,
and SHARM RT models is provided by Kotchenova, S., et al., 2008 [257]. This work also
compares 6SV1.1’s performance against a Monte Carlo code developed by Bréon 1992 for
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modeling ocean-atmosphere interactions [257], [258]. Results of this work show that 6SV’s
performance varies from SHARM and MODTRAN, producing errors of up to 7% and 3%
respectively [257]. However, 6SV’s consideration of polarization effects allows it to reduce
errors for Rayleigh atmospheric effects, allowing for good agreement with tools with the same
capabilities, agreeing with the Monte Carlo code within 1% and RT3 on average from 0.5-3%
[257]. All codes were tested against Coulson’s tabulated values, a reference often used to
assess the accuracy of atmospheric RT codes [257], [259]. Further validation for the 6SV1,
RT code for simulating path radiance is provided by Kotchenova, S., et al., 2006, and an
assessment of its handling of homogeneous lambertian and anisotropic surfaces is described
in Kotchenova, S., and Vermote, E., 2007 [260], [261]. Further explanation of the tool’s
content, operational methodology, and performance improvements are provided by Vermote
1997 and Vermote 2006 [248], [249]. A full description of the 6S tool, all methods, parame-
ters, and mathematical procedures considered in the simulation builds are provided by the
6S user guide and user manuals listed at https://salsa.umd.edu/6spage.html [248], [249].

Py6S, originally developed by Robin Wilson in 2013, is a user-friendly Python wrapper
for the 6SV RT model [262]. It is entirely open-source and preserves all of the aforementioned
capabilities of the 6SV tool, meaning that any function or parameter of interest available to
users via 6SV simulations can be accessed through the Py6S wrapper. Py6S allows users
to quickly build and simulate atmospheric profiles via simple Python scripts for multiple
viewing geometries, solar geometries, and atmospheric conditions [262]. Py6S is the primary
method used for interfacing with the 6SV RT model in this work, and further detail on its
use is provided in Section 3.2. Users can access the code and all affiliated documentation on
the Py6S Github: https://github.com/robintw/Py6S.

2.3.4 Radiometric Performance Modeling Approach

This section intends to familiarize readers with general radiometric terms and the funda-
mental workflow of deriving the metric of interest, the signal-to-noise ratio. The radiometric
sensitivity analysis assumes the form of a detailed mathematical model that captures prop-
erties of the observed signal radiance, path geometry, atmospheric effects, and impact from
noise/loss inherent to the detector. The model steps in this section represent a generic imager
designed to sense incident electromagnetic radiation with radiance Ltyp, route the radiation
onto a standard focal plane array, and convert to a detectable signal with consideration of
sensor noise factors. While Ltyp is used here as a placeholder for some reference TOA radi-
ance, the SNR derivations for each of the DRMs use Ltyp provided by the output of the Py6S
radiative transfer model. As Py6S is a tool for modeling atmospheric path radiance, consid-
erations for atmospheric loss and scattering effects along the imager’s path are included in
the output TOA Ltyp values.

To begin, source irradiance (Esource) is a common radiometric term that represents mea-
surement of power received at a surface per unit area. Esource is defined as:

Esource =
ϕdet

Airad

[W/m2] (2.9)

where ϕdet is the radiant flux incident at the detector (W) and Airad is the detector
irradiance area (m2) over which the radiant flux is distributed. The detector irradiance area
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(Airad) receiving the radiant flux is defined as:

Airad =
Adet(Aap − Aobs)

f 2
[m2] (2.10)

where Adet, Aap, and Aobs are the detector, aperture, and obscuration areas respectively
in units of m2, and f is the imager’s focal length in meters [263]. Obscuration areas are con-
sidered for imagers that use cassegrain telescope assemblies where portions of the sensor are
sometimes blocked by the telescope assembly itself, thus reducing the amount of irradiated
area. The radiant flux at the detector (ϕdet), also known as radiant power, is the total power
emitted by the target source, and represents the sensor-reaching signal at TOA:

ϕdet = Ltyp ∗ Airad ∗ Ω [W ] (2.11)

where Ltyp is the top-of-the-atmosphere radiance in units of W/m2sr, Ω is the sensor’s
solid angle determined by the imager’s field of view (FOV, see equation 3.8). Ltyp is often
reported as a radiance value for a particular wavelength, making it units W/m2srµm. The
radiant flux is then parsed to determine the power incident on each detector pixel, resulting
in photon flux per pixel ϕpix:

ϕpix =
ϕdet λ

h cNpixel

[photons/s] (2.12)

where λ is the measurement band center in nanometers, h is Planck’s constant, and c is
the speed of light. Combined, these terms represent incident photon energy at the spectral
channel, i.e., E=hc/λ. Note that if Ltyp was reported with spectral dependency, ϕpix would
then include a term for the spectral channel’s bandwidth in the numerator, often expressed
as ∆λ in nanometers. The total number of pixels in the detector array (Npixel) represents
the dimensionless product of the pixels along the x- and y dimensions of the detector.

The total per pixel radiometric signal (ne) is computed in units of electrons (e−) as:

ne = ϕpix texp ηQE ηoptic ηgrating [e−] (2.13)

where texp is the detector’s exposure time in seconds, ηQE is the sensor’s quantum effi-
ciency, ηoptic is the transmission efficiency of the optical front-end, and ηgrating is the grating
efficiency assuming use of a grating element. All efficiency parameters are expressed as per-
centages. Sensor specification sheets typically provide curves for the quantum and grating
efficiencies across the sensor’s spectral response given that these values are spectrally variant.

Finally, the SNR is determined, but first each of the noise variance terms is considered
individually. Shot noise (nshot) is simply the

√
ne and therefore varies as a function of

wavelength and the input signal (Ltyp). Shot noise is a Poisson process, meaning noise
is generated from statistical fluctuations caused by the incident photons [234], [263]. As
such, the standard deviation of the quantity of events, i.e., photons reaching the detector,
is equivalent to the square root of the mean number of events [234], [263]. In other terms,
the variance (σ2

shot) of this Poisson random process is equivalent to the mean value of the
signal level (ne) in units of electrons. Therefore, the variance introduced by photon shot
noise can be expressed in terms of the standard deviation of the per pixel radiometric signal
(see Eismann 2012 for further explanation) as:
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σ2
shot = ne (2.14)

or as:

σshot =
√
ne [e−] (2.15)

The latter is represented in the denominator of the SNR in equation 2.17, where nshot is
substituted with the value of ne represented in the equation’s numerator.

Dark current noise (ndark) arises from internally generated charge in a detector and
remains present when an imager is inactive. ndark is defined as the product of the dark
current (idark) and sensor integration time (tint) [234]. Similar to shot noise, dark current
noise is modeled as a Poisson process; therefore the variance of dark noise (σ2

dark) reflects
the standard deviation of the number of dark signal electrons generated in each exposure
(denoted here as ndark) [234]. Fixed-pattern noise (σfpn) arises naturally from non-uniformity
in a multi-element detector array and is typically referred to as hot/cold pixels [264]. RMS
read noise (σread) is the root mean square of the readout noise when all pixels are considered
“active” or when the entire image plane is in use [234], [265]. Dark current, fixed-pattern, and
read noise are all typically listed on an imaging sensor’s specification sheet. Quantisation
noise (σq), sometimes listed as ADC noise, arises from uncertainty of an analog-to-digital
converter quantising the signal from electrons to digital counts [263]. This term is calculated
as:

σq =
2−bNmax√

12
[e−] (2.16)

where Nmax represents the total electron capacity for each detector in the array, also
known as a detector’s well capacity, and b is the detector’s bit-depth in terms of digital
counts [234]. The

√
12 in the denominator represents the standard deviation of a uniform

distribution for the sensor’s A/D conversion error [234], [263]. The SNR is now computed
as the ratio of total signal to the square root of the sum of the noise:

SNR =
ne√

ne + ndark + σ2
q + σ2

fpm + σ2
read

(2.17)

SNR is unitless and represents the strength of the received signal above the sensor’s noise
floor. It is often reported in units of dB where, SNRdB = 10 ∗ log10(SNR). Naturally, a
higher SNR is desired to support detection of stronger and clearer signals, meaning the higher
the value, the higher the quality of the resulting image. Shot and dark current noise are
not squared under the root in the denominator given that they are Poisson distributed, and
thus represent the variance of these noise processes. The denominator thus represents the
noise variance where noise sources are linearly summed as they are considered statistically
independent [234]. For a thorough and well-explained derivation of SNR for a hyperspectral
imager, Chapter 6 of Eismann, M., 2012 is an excellent resource [234].

Using the TOA radiance values derived from the Py6S simulated scenes, the radiomet-
ric sensitivity model determines one aspect of the performance of the DRM HSIs for each
simulated scene and variable listed in the atmospheric profile tradespace (See Section 3.2).
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The model’s primary output, signal-to-noise ratio, forms the basis of evaluation for other ra-
diometric performance metrics including NESR, NERD, and identifying maximum radiance
values for when the HSI sensors saturate.

2.4 Design Reference Mission Architectures

This section outlines two design reference mission (DRM) architectures used to evaluate the
effectiveness of nanosatellite hyperspectral imaging payloads for ocean color remote sensing.
As discussed in the literature review, there are few nanosatellite HSI missions addressing this
scientific objective. The AEROS and HYPSO-1 missions are two complementary nanosatel-
lite HSI configurations that target ocean observations. DRMs are used in this work to
evaluate the performance of their HSI systems across a range of simulated scenes, aside from
the ones they are designed to target. This provides performance estimates for diverse envi-
ronmental and viewing conditions in different regional types. Consequently, these missions
are valuable benchmarks for appraising the current state-of-the-art in nanosatellite, ocean-
sensing HSI technology, allowing the identification of areas for design enhancements in future
missions. Table 2.8 provides high-level mission parameters for each DRM, and additional
technical specifications for the discussed HSIs are provided in Sections 3.3 and 3.4.

2.4.1 The AEROS Mission

The AEROS nanosatellite is the first design reference mission of this work. AEROS is a 3U
(10 x 10 x 30 cm3), 5 kg nanosatellite (see Figure 2.3) designed to operate in Low-Earth Orbit
(LEO) at approximately 510 km altitude. AEROS will launch on SpaceX’s Transporter 10
rideshare in Q1 of 2024 where it will deploy into a near-circular, mid-morning (10:30+60
min local time of the descending node) sun-synchronous orbit (SSO). Orbital placement
will allow AEROS to image its target region of interest (ROI), the Portuguese Atlantic
Region, namely Portugal’s Exclusive Economic Zone (EEZ) and the extended continental
shelf. AEROS’ objectives include demonstrating minituraized and efficient high-spectral
imaging for EOVs (namely chlorophyll-a from ocean color) to monitor and forecast ocean
behavior, improving ocean-to space connectivity by interfacing with biologging technology
and ocean-borne vehicles, and improving data dissemination by establishing a data analysis
center for distributing Level 0 through Level 4 ocean color data products [48], [49]. Figure
2.4 provides an overview of planned mission operations from launch through end of life.
This mission is a precursor and technology demonstration for the Blue Ocean Constellation,
a future suite of nanosatellites similar to the AEROS architecture that will improve spatial
and temporal coverage of the ROI [50].

AEROS hosts three payloads: a miniaturized hyperspectral imager (HSI), an RBG im-
ager, and a Software Defined Radio (SDR). AEROS’ custom, miniaturized hyperspectral
imager assembly, developed by Spin.Works, combines a 50 mm, f/2.8 lens with an IMEC
LS150 hyperspectral filter integrated on an AMS CMV2000 line scan image sensor, both
Commercial Off-the-Shelf (COTS) components [49], [50], [266]–[268]. The 50 mm lens has
a FOV of 12.8◦ (horizontal), 6 ◦(vertical) and 14.6◦ diagonal [48], [49], [266]. The VIS/NIR
HSI’s spectral range is approximately 470 - 900 nm, with an average bandwidth of 5.9 nm
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Figure 2.3: CAD renderings of the AEROS CubeSat showing locations of the primary pay-
loads: the SDR, RGB Camera and HIS. Rendering from CEiiA [49], [50].

(FWHM) and an image resolution of 2048 x 1088 pixels [266]–[268]. The IMEC LS150 is a
CMOS detector with spectral filters integrated on top of the sensor to effectively disperse
incident light to generate 140 contiguous, spectrally calibrated measurement bands [266]–
[268]. Each spectral filter occupies 5 complete lines on the sensor, and the filters are dis-
tributed over two active sensor areas [49], [50]. Sixty-four filters are dedicated to visible
bands (470-600 nm), and 128 are dedicated to near infrared bands (600 - 900 nm). The
combined assembly volume is less than 1U (86 x 66 x 55 mm3) and is light-weight (∼275
g) [49], [50]. The AEROS HSI is tunable, allowing users to select the full spectral response,
or a reduced set of user-defined bands for downlink. Additional HSI design parameters are
provided in Table 2.8 in Section 3.3.

A CrystalSpace, 5MP RBG imager will provide contextual imagery of overlapping ground
scenes for the HSI, with a wide field-of-view (FOV) of 44.3◦ by 34◦, and will support geo-
referencing during post processing. In addition to its imaging payloads, AEROS hosts an
Alen Space TOTEM Software Defined Radio (SDR) with a Zynq-7000 SoC [49], [269]. The
SDR will support connectivity with ground stations, autonomous vehicles, buoy-mounted
receivers, and biologgers secured to large marine fauna such as sharks and whales. The
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Figure 2.4: Visual of AEROS’ planned mission lifetime. Figure created by Cadence Payne
[50].

SDR is compatible with both Argos and Long Range (LoRa) linked bio-mounted satellite
tags, enabling correlation of HSI data describing environmental factors with the location of
large marine fauna [49], [50]. SDR modifications, testing, and integration are supported by
DSTelecom.

AEROS development is supported by the MIT Portugal Program, a resource that com-
bines efforts from MIT with private Portuguese companies and universities, and eleven Por-
tuguese companies, research institutes, and university partners. This mission is unique in
that successful launch and operation will both support Portugal’s effort in acquiring new
status in space with their first 3U nanosatellite mission, as well as boost Portuguese techno-
logical ability and competency for performing ocean observations. Last, this mission’s work
is aligned with the United Nations’ Sustainable Development Goals by providing opportu-
nities to collect data for better informing climate action and monitoring the state of ocean
life.

2.4.2 The HYPSO-1 Mission

The second DRM is the HYPerspectral Smallsat for Ocean observation (HYPSO-1). HYPSO-
1, developed by the Norwegian University of Science and Technology, is a 6U (10 x 20 x 30
cm3) ocean-sensing nanosatellite mission. This mission has similar measurement targets as
AEROS (e.g., phytoplankton species discrimination, algal bloom size, etc.), with the objec-
tive of acquiring ocean observations along the Norwegian coast [203]. HYPSO-1 successfully
launched on January 13, 2022 and the team began commissioning the primary HSI payload
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Table 2.8: DRM Mission Parameters [49], [50], [198], [203]

Parameter AEROS HYPSO-1

Spacecraft Volume 10 x 10 x 30 cm3 10 x 20 x 30 cm3

Spacecraft Mass 5 kg 7.1 kg

Orbit Type SSO, 10:30AM (LTDN) SSO, 10:00AM (LTDN)

Orbit Altitude 510 km 540 km

HSI Mass 275 g 1.6 kg

HSI Volume 86.25 x 66 x 55 mm3 200 x 65 x 65 mm3

Spectral Bandpass 470 - 900 nm 430-800 nm

Sensor Type Line Scanner Transmissive Grating

Acquisition Method Pushbroom Pushbroom

Launch Date February 2024 (TBD) January 2022

Expected Mission Lifetime 6 months 5 years

in February 2022 [198]. The mission operates from a 540 km sun-synchronous orbit with a
10:00AM (LTDN) [198], [203].

HYPSO-1 utilizes a custom-built pushbroom HSI that achieves 120 VIS/NIR bands (post
binning) from 430-800 nm with 5 nm bandwidth [198], [203]. The HSI architecture focuses
sensor-reaching light using a 7 mm entrance slit to collimate the signal into a spectral grating
filter integrated in front of a SONY IMX249 image sensor [198]. The HSI achieves an inherent
ground resolvable resolution near-nadir of 142 m (across-track) with a nadir swath width of
40 km [198], [203]. Similar to AEROS, HYPSO-1 hosts an IDS UI-125x RGB camera for
spatially contextualizing the HSI images [147].

After initial observations, HYPSO-1 achieved an SNR > 200 for TOA measurements
from 450-500 nm, where an SNR of 300 was reported for wavelengths specific to detection of
cyanobacteria [198]. Compared with the AEROS concept of operations, HYPSO-1 is unique
in that, similar to legacy missions like SeaWiFS, it employs a single-axis slew maneuver
[203]. This rotates the imager’s FOV backward with respect to the spacecraft’s forward
velocity enabling potential improvements to SNR by allowing more spatial pixels to overlap
in a given scene and improvement measurements by avoiding the effects of sunglint [203].

To reduce data volume and manage onboard storage capacity, the mission employs on-
board processing immediately after datacubes are captured from the HSI [203]. At the time
of writing, the team has utilized the CCSDS-123v1 lossless compression algorithm, with
consideration for use of other methods including on-board georeferencing and extraction of
spatial and spectral information from water-leaving signals [198], [203]. HYPSO-1 uses a
single ground station, and achieves data latency of 4 hours with average downlink rates
of 450 MB/day with its 2.4-GHz IQ Spacecom S-band transceiver (1 Mb/s usable data
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Figure 2.5: RBG renders of the first images captured from the HYPSO-1 HSI over Greenland
on August 16, 2022 (right side) with snapshots of Google Maps indicating geographic region.
Image courtesy of Bakken, S., et al., 2023 [198].

rate) [198], [203]. It’s orbital period supports daily revisit rates for ROIs below 60 degrees
latitude, though it can image targets above 70 degrees latitude at least three times per day
and its onboard storage and downlink capacity can support five to six image captures per
day [198]. Since launch, the HYPSO-1 team has successfully downlinked images from their
HSI (see Figure 2.5) and have used data to characterize the performance of their on-orbit
demonstration, see Bakken, S., et al. 2023 [198]. The anticipated mission lifetime is 5 years
[270].
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Chapter 3

Scenario Descriptions and Case Studies

Four geographically distributed regions are selected to demonstrate the HSI’s ability to
acquire ocean color data. The distributed targets near the coast of each region represent dif-
ferent types of potential imaging scenes and their respective signal at the top-of-atmosphere
(TOA). These signals are the inputs for determining the performance and sensitivity of
the simulated nanosatellite design reference missions. This chapter describes the evaluated
cases, referred to as synthetic scenes, for each region and the modeling approach for sim-
ulating the performance of the nanosatellite HSI. Section 3.1 introduces the four regional
targets, Section 3.2 describes the methods and parameters used for modeling each synthetic
scene, and Section 3.3 provides the technical specifications for each DRM and the approach
for determining the HSI’s performance.

3.1 Regions of Interest

This section describes the climate relevance of each chosen region of interest (ROI). Ocean
surface features and in-water optical constituents are significantly non-uniform across regions,
therefore it is necessary to understand how satellite performance varies for different regional
types. Regional non-uniformities stem from factors such as proximity to areas of high river
runoff, regions with high anthropogenic input, and even latitude as available sunlight drives
phytoplankton production [166], [271]. Figure 3.2 is a prime example of fluctuations in global
distribution of chlorophyll pigment. These factors often require modifications to constituent
retrieval algorithms to meet the regional needs for spatial, spectral, and temporal resolution,
meaning satellite requirements vary accordingly. These dependencies are a driving factor
that limits the creation of a constituent retrieval model capable of deriving products globally,
given the presence of different needs for different regions.

Given the aforementioned challenges of addressing coastal imaging needs, target regions
for these work are selected with close proximity to these regions types. Subsections 3.1.1
through 3.1.4 discuss the rationale and motivation for surveying each of the three regions.
Figure 3.1 shows the location of the three targets along with regional latitude and longitudes.
For data harmonizing and potential for georeferencing, all of the selected regions have pre-
existing coverage by instruments like MODIS on NASA’s Terra/Aqua missions and SeaWiFS.
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Figure 3.1: Map of geographic locations of the three target regions (right) and the regions’
respective latitude and longitude (left).

3.1.1 Lisbon, Portugal

Portugal is increasing its presence as a space-faring nation. As such they are seeking mission
opportunities that enable them to better monitor environmental parameters in their coun-
try, particularly along Portugal’s coast and its EEZ, one of the world’s largest (see Figure
3.3) [272]. They are prioritizing science objectives that are aligned with both the “Atlantic
Interactions” research agenda, as well as the UN’s Sustainable Development Goals. This mo-
tivated the development of the Portuguese nanosatellite mission AEROS discussed in Section
2.4.1. Ocean color data, such as those shown in Figure 3.2, show significant phytoplankton
presence along the Portuguese coast. Additionally, there is a large front near the Azores, an
archipelago in the Portuguese EEZ, that marks the extension of the Azores current, making
this an area of interest for monitoring ocean upwelling and frontal zones [273].

3.1.2 The Barents Sea

Increased anthropogenic impact on the Earth’s climate has spawned one of the most notable
consequences of climate change: Arctic sea-ice melt. In addition to increased melting, obser-
vations have shown a concurrent increase in cloudiness over the region, leading to decreased
sunlight penetration to the water’s surface to stimulate phytoplankton growth [274], [275].
Nonetheless, several studies show that sea-ice reduction over the past few decades has both
extended phytoplankton seasonal growth periods for certain species and increased the extent
of open-water landscape for sustaining productivity in the Arctic Ocean (AO) [275]–[277].
Glacier melt injects fresh, nutrient-rich water to the region’s surface, and therefore allows
for significant increases in phytoplankton blooms, particularly in the Barents sea, as shown
in Figure 3.4.

A Nature study by Ardyna (2020), showed correlation between the most dramatic de-
crease in ice coverage, where there was both an increase in open water extent by 30% from
1998 - 2012, and annual phytoplankton Net Primary Production (NPP) [275]. They observed
the largest increase in the interior Arctic shelves, where the most severe sea-ice loss occurred,
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Figure 3.2: Monthly geographic chlorophyll-a pigment detection from the VIIRS, OLCI, and
SGLI ocean color instruments. Data aggregated for the month of July starting on July 1st,
2023. Maps generated with NOAA STAR’s Ocean Color database.

and saw that NPP increased anywhere from 70 - 112% in these regions. Additional stud-
ies showed that further increases in phytoplankton biomass were sustained despite sea-ice
melt slowing [275], [276]. These conclusions were made through monitoring of surface-level
chlorophyll-a concentrations, demonstrating that additional drivers were contributing to the
increase in phytoplankton blooms [275]. Ardyna et al. observed the highest increase in chl-a
concentration from 1998 - 2018 of 61% in the Barents Sea, a trend that continues today with
this region’s frequently observed, large-scale blooms (see Figure 3.5) [275]. These observa-
tions affirm the assumption of an increased nutrient supply in these areas supporting the
increase in productivity despite steadying rates of ice melt.

In addition to increased open water area for supporting phytoplankton growth, increased
storm frequency, specifically from high-wind events, drives increases in NPP through verti-
cal circulation of fresh nutrients from depth to the region’s euphotic zone (ocean surface)
[278]. Stronger winds also circulate more dust over the ocean, providing additional nutrients
to surface levels such as iron to instigate larger phytoplankton blooms [279]. Therefore,
understanding the impact of wind speed on ocean color observations is of interest.

While beyond the scope of this work, recent work has noted interesting observations
capturing increased frequency of sub-ice phytoplankton blooms. Previously populations of
sub-ice phytoplankton were considered negligible given the assumption that population den-
sity is minimal given insufficient sunlight through ice coverage, rendering sub-ice conditions
incapable of sustaining biomass. However, studies by Arrgio (2012) and Horvat (2017) show
that these blooms are now significantly more common due to increased translucence from
arctic ice thinning [276], [280]. This increased occurrence makes the Arctic region an even
more interesting target of study.
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Figure 3.3: The Portuguese Exclusive Economic Zones (translucent blue) and Portuguese
Extended Continental Shelf (yellow) image produced by emepc (https://www.emepc.pt/).

3.1.3 Gulf of Guinea

The Gulf of Guinea is a region of high significance to bordering countries in Africa, namely
Nigeria, Ghana, and the Ivory Coast, as major sea ports are placed here to support global
trade and maritime affairs [281]. As such, understanding the impact of ocean surface and
climate conditions, such as wave height [282] and littoral drift [283], is of high importance
for these countries. The Gulf of Guinea has also been subject to waste dumping from
external influencers, which not only harms the environment by reducing water quality and
creating conditions for eutrophication and toxic algal blooms, but more importantly it is
a health hazard to those living in the adjacent regions [284], [285]. Improved monitoring
and management of coastal conditions in this region could allow for the adaptation of better
policies and methods for more sustainable practices. The Gulf of Guinea is also positioned
near the equator, meaning it allows more opportunity for ideal imaging conditions given the
availability of more sunlight.

3.2 Synthetic Scenes

Synthetic scenes for each region are generated using the Py6S radiative transfer model. Re-
gional changes and surface features are captured by altering the model’s input parameters.
Table 3.1 provides the tradespace of parameters used to model the sets of synthetic scenes
that represent different possible imaging scenarios for the nanosatellite design reference mis-
sions. Py6S outputs top-of-atmosphere apparent spectral radiance (W/m2 ∗ sr ∗µm), which
provides a reference signal for assessing the HSIs’ sensitivity for multiple scene types. The

100



Figure 3.4: Phytoplankton density over the Arctic circle from OLCI on Sentinel-3A. Data
represents monthly aggregated chl-a for the year, demonstrating growth and decline in sea
ice, as well as limited coverage due to clouds in winter months. Figure created using NOAA’s
STAR Ocean Color.

scenes provide spectral radiance influenced by different atmospheric conditions, seasonal
changes, surface conditions, and solar illumination geometries for each of the four regions.
The HSI performance for the conditions in the tradespace may provide constraints that in-
form mission operations. Section 3.2.2 describes the tradespace parameters, justification for
their selection, and model assumptions. Section 3.2.3 describes the ocean surface model used
to represent the scene target.

3.2.1 Parameter Description and Model Assumptions

Table 3.1 provides an overview of model parameters used to develop the synthetic scenes
for this work. The default case for each region includes the appropriate atmospheric profile
for the time of year atmospheric profile and assumes the atmospheric path is free of rain,
clouds, and fog at lower altitudes. To enable a constant for comparing the impact of varied
model parameters, the default case also assumes the water is free of pigment, the imaging
conditions are optimal (i.e, minimum solar zenith angle for the region), surface wind speed is
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Figure 3.5: Image of the Barents Sea showing phytoplankton blooms from the Aqua/MODIS
satellite instrument. Bloom structure reveals ocean circulation patterns (https://oceancolor.
gsfc.nasa.gov/gallery/714/).

low at 4 m/s, and there are relatively clear conditions at the surface with 32 km of visibility.

Table 3.1: Tradespace of parameters used to develop synthetic scenes using the Py6S radia-
tive transfer model

Region
of

Interest
Season Atmosphere

Model
Aerosol
Model

Chl
Pig-
ment

(mg/m3)

SZA

Surface
Wind
Speed
(m/s)

Surface
Meteoro-
logical
Range
(km)

Barents
Sea

Summer
Atmo.
Model

Midlatitude
Summer
(MLS)

Navy
Mar-
itime

0.0 Min /
region 4 4

Gulf of
Guinea

Winter
Atmo.
Model

Midlatitude
Winter
(MLW)

- 0.01 20◦ 8 8

Continued on next page
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Table 3.1 – continued from previous page

Region
of

Interest
Season Atmosphere

Model
Aerosol
Model

Chl
Pig-
ment

(mg/m3)

SZA

Surface
Wind
Speed
(m/s)

Surface
Meteoro-
logical
Range
(km)

Lisbon,
Portugal -

Subarctic
Summer
(SAS)

- 0.03 30◦ 16 16

- -
Subarctic
Winter
(SAW)

- 0.05 40◦ 32 32

- - Tropical - 0.1 50◦ 64 64

- - - - 0.3 60◦ - -

- - - - 0.5 70◦ - -

- - - - 1 80◦ - -

- - - - 3 - - -

- - - - 5 - - -

- - - - 10 - - -

- - - - 30 - - -

- - - - 50 - - -

Simulated conditions are made for both summer and winter seasons to gauge how the
observed total TOA spectral radiance varies seasonally. Py6S includes the six standard,
predefined atmosphere profile models used by MODTRAN [242], [286]. The tool retrieves
the pressure (mb), temperature (K), water vapor profile and densities (g/m3), and ozone
concentrations (g/m3) from the pre-defined models at 34 levels from 0-100 km altitude [249].
These profiles include the US standard, Midlatitude Summer, Midlatitude Winter, Subarctic
Summer, Subarctic Winter, and tropical models. Py6S considers absorption and scattering
effects from O2, O3, H2O, CO2, CH4, and N2O where effects from water vapor and ozone
are the only that vary by location, time, and altitude [249]. See the 6SV user Manuals from
Vermote et al. (2006) for more detailed descriptions of model considerations [249].

For this work, profile selection is determined both by regional latitude and times of year
(see Table 3.3). As such, distinction between ROIs is determined by the assignment of
the atmosphere model for each season. Summer (July 1st) and winter (January 1st) cases
are modeled to show the impact on imager performance, where typically available surface
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illumination decreases in later months. Table 3.2 provides characteristics of the pre-defined
profiles and Table 3.3 shows the regional assignments. The Navy Maritime aerosol model is
used for all regions as its aerosol component is representative of the boundary layer above the
ocean [287]. This model considers contributions from both sea-spray aerosols and the rural
aerosol continental model to represent coastal-like conditions, as composition of continental
aerosols differ greatly from oceanic aerosols largely composed of sea-salt particles [288]. See
Gerber 1985 for further detail on initial model development, Hughes (1987) for evaluation
of the model using the LOWTRAN radiative transfer model, and Piazzola et al. (2000) for
adaptation of the model for representing coastal regions [287]–[289].

Table 3.2: Characteristics of the 6 atmosphere profiles available through Py6S. Models rep-
resent the six standard atmosphere profiles used by MODTRAN. FLAASH described by
Adler et al. (1998) [290].

Atmopshere
Model

Water Vapor
(atm-cm)

Water Vapor
(g/cm3)

Surface Air
Temperature

Midlatitude
Summer (MLS) 3636 2.92 21◦C /70◦F

Subarctic Summer
(SAS) 2589 2.08 14◦C /57◦F

Midlatitude
Winter (MLW) 1060 0.85 -1◦C /30◦F

Subarctic Winter
(SAW) 518 0.42 -16◦C /3◦F

Tropical (T) 5119 4.11 27◦C /80◦F

Table 3.3: Regional assignments to pre-defined atmospheric model for each season

Region of
Interest

Region
Latitude

(◦N)

Atmospheric
Model (Summer:

July 1)

Atmospheric
Model (Winter:

January 1)

Barents Sea 75 MLW SAW

Gulf of Guinea 3.73 T T

Lisbon,
Portugal 38.7 MLS SAS

For all scenes the spacecraft orientation assumes nadir pointing, meaning the spacecraft’s
view zenith angle is set to 0 degrees. The spacecraft is set to always rise from the north,
mimicking a sun-synchronous orbit, meaning the spacecraft’s view azimuth is also 0 degrees.
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Solar zenith angles (SZAs) are modeled from the minimum value for the given season up
to 80 degrees to assess the imager’s performance in non-ideal illumination geometries. This
allows for direct comparison of the actual resulting spectra assuming that the sun is at the
same position (altitude/elevation) in the sky for each modeled scene. To correctly represent
solar position across regions, solar azimuth angles are also required for each region to specify
the sun’s horizontal position referenced to a specific location (the region’s lat/long) on the
Earth’s surface. Azimuthal angles are dependent on the region’s latitude, longitude, solar
zenith angle, and therefore also time of day. Solar azimuth angle plots were generated for each
region using the Skyfield python package to show azimuthal position, during both rising and
setting periods, for all considered solar zenith angles during both seasonal cases (see Figures
3.6 and Figure 3.7). For simplicity, only the solar azimuthal angles for the rising case (lower
half of the parabola) are considered given the assumption that the solar ray geometry is
identical for both rising and setting cases at an identical SZA.

Figure 3.6: Solar zenith angles for each region for the summer seasonal case. Plots generated
by Thomas Murphy using the SkyField package.

The visibility at the surface is modeled from what Py6S determines as “clear” visibility
at 64 km down to “hazy” conditions at 4 km. This shows sensor saturation in the presence
of increased atmospheric scattering. Surface wind speeds are also varied from 4 m/s to 64
m/s. In cases with higher surface wind speeds, the increase in surface roughness causes
higher volumes of white caps which reduce the quality of the TOA signal. Higher surface
windspeeds also inject larger amounts of sea aerosols into the sensor’s line-of-sight which
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Figure 3.7: Solar zenith angles for each region for the winter seasonal case. Plots generated
by Thomas Murphy using the SkyField package.

increases atmospheric scattering and reduces signal quality. In lower wind speed conditions,
the presence of surface glint is higher, increasing the opportunity for oversaturated pixels.

The primary parameter of interest is the chlorophyll pigment varied at the ocean’s surface
(see Section 3.2.3). This parameter models the impact of bloom density growth on TOA
spectral radiance, and therefore allows for determination of potential growth detection by
the DRMs. Additionally, the smallest step change in the tradespace (0.0 - 0.01 mg/m3) can
be representative of a low-density bloom or the initial onset of a bloom, meaning an imager’s
ability to resolve this change is indicative of these detection types. Additionally, IOCCG
recommends that an ocean color imaging system’s performance meet a minimum detection
threshold of 0.01 mg/m3 for HAB detection, meaning detection at this density is required
for compliance with requested future mission designs [85]. It is also useful to know if an
imaging sensor saturates at high bloom densities and therefore prohibiting those methods of
detection.

3.2.2 Ocean Surface Bidirectional Reflectance Distribution Func-
tion (BRDF)

The Py6S model allows users to select from a number of homogeneous and heterogeneous
Lambertian ground surface models. Users also have the option to select from multiple
homogeneous Bidirectional Reflectance Distribution Function (BRDF) models that account
for the directionality of incident and reflected light off the selected surface. See Kotchenova
and Vermote (2006) for a detailed review of the tool’s available surface options.
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For the purpose of this work, the homogeneous ocean BRDF surface model is selected.
The model accounts for three types of surface interactions with the incident light field:
the impact from surface whitecaps, specular reflection (sunglint), and underlight reflection
from incident radiation scattered by water molecules and in-water particulates [261]. The re-
flectance contribution from sunglint is scaled by the relative area of surface white caps, driven
by the defined surface windspeed, and the underlight reflectance is scaled by the reflectance
contributions from surface whitecaps. Kotchenova and Vermote (2007) and Vermote et al.
(2006) provide detailed mathematical descriptions of the ocean BRDF for interested readers.

To determine the scale of surface interactions, the tool requires four input parameters:
surface wind speed (m/s), wind azimuth angle (degrees), water salinity (ppt), and pigment
concentration (mg/m3) that scales the amount of chlorophyll-a and pheophytin-a (a demet-
allized byproduct of chl-a) pigment present at the ocean’s surface [261]. Surface windspeed
and pigment density are two parameters studied in the Py6S tradespace (see Table 3.1).
Wind azimuth angle is set to 0◦ given that the TOA radiance seen by the nadir pointing
spacecraft is agnostic to wind direction, and salinity is held constant for all regions at 35
ppt. The impact of varying salinity from 35-38 ppt on TOA radiance was studied for both
seasonal cases, and the resulting radiance varied less than 0.15% (see Figure 3.8).

Figure 3.8: Salinity (ppt) varied for full available range of values for Lisbon summer case.
Impact on TOA for both seasons is less than 1%.

The homogeneous ocean BRDF model was chosen over a homogeneous Lambertian sur-
face model to capture the bi-directional nature of the incident light field and to represent
target surface features with higher fidelity. Figure 3.9 shows the difference in TOA radiance
estimation between the ocean surface model and a homogeneous lambertian clear water sur-
face model. For the ocean BRDF, the surface wind speed was set to 4 m/s, the wind azimuth
was 0◦, salinity was 35 ppt, and pigment density was set to 0.0 mg/m3 to represent a clear
water case. The Lambertian surface model underestimates TOA radiance in blue bands,
overestimates radiance in green bands, and significantly underestimates contributions in the
NIR, particularly in the summer seasonal case.

While the homogeneous ocean BRDF is a higher-fidelity representation of an ocean sur-
face, it’s important to note that the Py6S tool’s primary purpose is modeling the propagation
of light through the atmosphere. To achieve a more accurate representation of light interac-
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Figure 3.9: Comparing TOA spectral radiance from the Py6S Ocean BRDF and Homoge-
neous Lambertian surface models for two seasonal cases.

tion with the ocean’s surface, implementation of a tool catered to modeling aquatic surfaces
such as Hydrolight is necessary. Additionally, the selected ocean surface model is limited to
modeling Case I regions, meaning resulting TOA radiances only represent darker, open ocean
scenes rather than capturing more reflective contributions from in-water optical constituents
in coastal regions. The limitations of the ocean BRDF model are further discussed in section
5.1.1.

3.3 Design Reference Mission Architectures

The performance of the two DRMs, AEROS and HYPSO-1, provide points of reference for
current nanosatellite capabilities for ocean color sensing. Radiometric math models for each
DRM are developed to replicate the HSI architectures to evaluate the performance of these
existing missions for sensing a diverse set of synthetic scenes. The performance models must
effectively replicate the system performance to ensure behavior for other input signals (i.e.,
those from the modeled synthetic scenes) is truly representative of expected performance from
the HSIs. The following sections discuss imager characteristics and the process for deriving
and validating DRM system performance. Section 3.3.1 introduces system parameters for
both DRM HSIs, Section 3.3.2 provides the SNR derivation process and initial performance
results for the AEROS mission, and Section 3.3.3 provides the same for HYPSO-1.
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3.3.1 System Parameters

This section provides an overview of key performance parameters for each of the DRM HSIs
and a high-level comparison of the two instrument designs. Additionally, Table 3.4 lists key
specifications for the AEROS and HYPSO-1 HSIs that are necessary inputs for the evaluation
of the radiometric performance models.

Both HSIs provide limited coverage of key ocean color measurement bands. AEROS’ spec-
tral response is limited in the blue region (starting around ∼400), restricting its ability to
perform chlorophyll pigment retrieval from ocean color measurements. Common constituent
retrieval algorithms require measurements at 412 and 443 nm for estimating pigment concen-
trations from prominent phytoplankton absorption features. HYPSO-1’s spectral response
provides the coverage needed in blue bands (∼400-495 nm); however, it lacks coverage in
much of the NIR (700-2500 nm). The HYPSO-1 HSI does not provide common bands used
for OC atmospheric correction, namely 865 nm for estimation of aerosols and water vapor,
making it challenging to perform the atmospheric correction process for measured OC data.

More generally, the HYPSO-1 HSI is ∼ 2.5 times the size of the AEROS imager and ∼
6 times more massive. HYPSO-1 is a 6U nanosatellite compared to the 3U AEROS, mean-
ing it has more available onboard resources to support a larger, more demanding payload.
The two HSIs assume different system architectures, where HYPSO-1 has a slit and grating
element to disperse incident signal into its many spectral channels and AEROS uses an inte-
grated hyperspectral filter on top of a CMOS detector. AEROS’ filter efficiency is relatively
low (see Figure 3.12) and its optical assembly uses 5 lenses (compared with HYPSO-1’s 3)
resulting in lower system efficiency overall. HYPSO-1’s quantum and grating efficiency are
higher than AEROS’ quantum and filter efficiency, which allows HYPSO-1 to achieve higher
SNR. Additionally, the HYPSO-1 design supports spacecraft slewing (similar to SeaWiFS),
allowing the HSI to both avoid sunglint off the ocean’s surface and generate overlapping
spectral bands to improve the SNR.

In-line with its larger instrument size, HYPSO-1 has slightly larger pixel widths that sense
more signal per pixel, and the supported spectral binning schemes allow for larger pixel grids
to improve SNR when necessary. The AEROS HSI supports larger bandwidths and they are
highly variable across the imager’s spectral response. While some spectral channels exceed
the desired bandwidth of 5 nm, the larger widths aid in improving the imager’s SNR in some
channels.

HYPSO-1’s read and quantization noise are larger than AEROS’, but AEROS’ dark
current is significantly larger. Nonetheless, the impact of this is relatively low given that the
dark current is accounted for in units of e−/s and the exposure time is relatively fast (64 ms).
Fixed pattern noise for the HYPSO-1 mission was not reported. HYPSO-1 supports a larger
well-depth, meaning the imager is better suited for imaging bright scenes while avoiding
sensor saturation.
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Table 3.4: HSI specifications for the two DRM nanosatellite missions [203], [267], [291], [292]

Parameter AEROS HYPSO-1

Dimensions (mm) 86.25 x 66 x 55 200 x 65 x 65

Mass (kg) 0.275 1.6

FOV (deg) 12.8 (horizontal) x 6
(vertical) 0.0564 x 7.8826

Focal Length (mm) 50 50

f/# 2.8 2.8

Aperture Diameter (mm) ∼18 17.9

Optical Efficiency 0.8 0.8

Spectral Range (nm) 470 - 900 430 - 800

Bandwidth (nm) 5.9 3.33

Exposure Time (ms) 64 51.6

Frames Per Second 95∗ 47

Pixel Size (pitch, µm) 5.5 5.86

Sensor Resolution (pixels) 2048 x 1088 1936 x 1194

Quantum Efficiency @ 500 nm 0.62 0.77

# of Bands 150 120

Diffraction Angle (deg) - 10.37

Slit Width (µm) - 50

Slit Height (mm) - 7

Groove Spacing (nm) - 3333.33

Dark Current (e−/s) 8 0.95

Fixed Pattern Noise (e−/s) 1 -

Read-out Noise (e−, RMS) 5 6.93

Quantization Noise (e−) 0.95 2.33

Bit Depth (bits) 12 12

Well-Depth (e−/pixel) 13500 33022

110



3.3.2 AEROS SNR Validation

In determining the AEROS SNR, the radiometric performance model description will begin
with the final step, the SNR equation, and work backwards to clearly explain each step. The
SNR is calculated by:

SNR =
N√

Nshot +Ndark + σ2
read + σ2

quant + σ2
fps

(3.1)

Where N is the number of photoelectrons generated per pixel, Nshot is the shot noise
per pixel, Ndark is the dark noise, σread is read noise estimated to be 5 e−/s, σquant is sensor
quantization noise, and σfps represents the fixed pattern noise. All terms are in units of
electrons sans Ndark in electrons/s. Nshot is simply N (see Section 2.3.4), σfps is 1 e−/s and
is therefore equal to 1 ∗ texp, and σdark is 125 e−/s ∗ tint. σread was provided by the sensor
provider, AMS [291]. σquant is determined as:

σquant =
2−b ∗Nmax√

12
(3.2)

Where b is the bit depth, and Nmax represents the sensor’s well-depth. Photoelectrons
per pixel is:

N =
ηQ ˙ϕTOA τ

Nw Nh

(3.3)

Where ηQ is the sensor’s quantum efficiency, ˙ϕTOA is the sensor-reaching photon flux
(photons/s), τ is the exposure time in seconds, Nw is the width of the active sensor area
in pixels, and Nh is the height of the active sensor area. The quantum efficiency is esti-
mated from the specification sheet for the monochrome CMOSIS CMV2000 imager, and the
resulting curve is shown in Figure 3.10 [292].

The AMS CMOSIS CMV2000 imaging system hosts the LS150 linescan sensor that has
two dedicated active areas, one for visible bands at 470-600 nm and the other for NIR at
600-900 nm. The two active areas are separated by an inactive interface zone from 580-670
nm where 32 bands are unavailable [266]. The active areas provide 64 VIS bands and 128
NIR 128 bands for a total of 192 active imaging bands; however, only 150 are available for
use [266]. Each of the available 150 bands covers 5 sensor lines, where each line is one pixel
high. Given the LS150 linescan configuration, Nw is therefore equivalent to the width of
the detector. The detector width is provided in the sensor specification sheet; however, it is
found by:

wd =
wd

∆ρλ

=
detector width

pixel pitch
=

11.27mm

5.5µm
= 2049 pixels (3.4)

Where wd is the detector width in millimeters, and ∆ρλ is the pixel pitch in microns.
Given that Nh is broken into two active areas, determining the number of active pixels along
the height of the detector is found by:

Nh = n ∗ lpix (3.5)
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Figure 3.10: Estimated quantum efficiency of the AEROS imager from the CMV2000
monochrome QE curve [292].

Where n is the number of active bands (150) and lpix is the number of pixels covered per
band (5). The active area in millimeters is the product of Nh and the pixel pitch.

The sensor reaching photon flux is then:

ϕTOA = LTOA η1 η2 η3 η4 η5 ηFE Adet Ωλ
∆λ

hc
(3.6)

Where LTOA is the pupil-plane spectral radiance (W/m2∗sr∗µm) derived from the Py6S
scenes, η1−5 represent estimates for the the transmission efficiencies of the 5 lenses used in
the Navitar 1-26387 optical assembly (see Figure 3.11), ηFE is the transmission efficiency
for the LS150 filter responses, Adet is the active area of the detector (mm2), Ω is effective
solid angle (sr), λ is the wavelength (um), ∆λ is the FWHM bandwidth (um), h is Planck’s
constant (J/s), and c is the speed of light (m/s).

ηFE is estimated from an example filter response from 470-900 nm provided in the LS150
sensor user manual from Xiema [266]. Resulting points represent peaks for the response of
each filter in Figure 3.12

Assuming on-axis imaging for a system that’s circularly symmetric and with optics with
100% transmittance, the system’s effective solid angle (Ω) relates the incident spectral radi-
ance at the pupil plane with on-axis focal plane irradiance [234]. Ω is:

Ω = πsin2θ0 =
π

4(f/#)2 + 1
(3.7)
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Figure 3.11: The AEROS HSI payload assembly developed by Spin.Works [50].

Where θ0 is the marginal ray angle [234]. For small-angle approximation, f/# is f/# =
f/D. f is the system’s focal length and D is the diameter of the optical front-end (see Figure
3.13. Substituting into equation 3.7, Omega becomes:

Ω =
π ∗D2

D2 + 4 ∗ f 2
[sr] (3.8)

AEROS’ bandwidth (FWHM) varies spectrally but averages 5.9 nm. Figure 3.14 shows
the spectral variation of ∆λ for the sensor’s full spectral response.

Grøtte et al. (2022) describes HYPSO-1’s approach for spectral binning and its relation
to scaling SNR by combining signals from adjacent pixels in a grid without compromising the
sensor’s spatial resolution [203]. The maximum amount of binning in the spectral domain
is limited to the number of pixels along the height of the sensor (Nh). This approach is
adopted for AEROS and is applied as:

SNRref =
N
√
Bλ√

Nshot + (Ndark Bλ) + (σ2
read Bλ) + σ2

quant

(3.9)

Where Bλ is the number of binning operations in the spectral domain. Spectral binning
operations for AEROS are available for 2x2, 3x3, and 4x4 pixel grids, corresponding to Bλ of
4, 9, and 16 respectively. Results from the radiometric model for two reference TOA spectral
radiances are shown in Table 3.5
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Figure 3.12: Peaks of filter spectral response grabbed from example plot in Ximea user
manual. Spectral curve populated using linear interpolation from 450-900 nm with 1000
points between provided peaks [266].

Table 3.5: Output of radiometric performance model representing the SNR for the AEROS
HSI for two reference TOA spectral radiances. Includes the corresponding wavelengths and
sensor performance metrics, and results for three spectral binning schemes (Bλ) are presented
for the first reference radiance. Bλ = 1 represents the case with no binning.

Parameter Model Output Unit / Note

LTOA (ref @ 500 nm) 67.9 W/m2 ∗ µm ∗ sr

τ (exposure time) 64 ms

Bandwidth (∆λ) 3.5 nm

Filter Spectral Response
(ηFE)

20 %

Quantum Efficiency (ηQ) 61 %

SNR[1,1] 60 Bλ = 1

Continued on next page
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Table 3.5 – continued from previous page

Parameter Model Output Unit / Note

SNR[4,1] 119 Bλ = 4

SNR[9,1] 176 Bλ = 9

SNR[16,1] 229 Bλ = 16

LTOA (ref @ 700 nm) 21.5 W/m2 ∗ µm ∗ sr

Bandwidth (∆λ) 5.6 nm

Filter Spectral Response
(ηFE) 23.6 %

Quantum Efficiency (ηQ) 46.4 %

SNR[1,1] 53.8 Bλ = 1

3.3.3 HYPSO-1 SNR Validation

This section is similar to AEROS SNR validation where the approach begins with the SNR
equation. Note that while the nomenclature is mostly the same, some of the terms are
represented by different variables, e.g., here photon flux is Cref where for AEROS it was N.
This change is included here to be consistent with the work discussed in Grøtte, et al. (2022)
[203]. Equations are repeated here from Grøtte, et al. (2022) for the sake of consistency
with Section 3.3.2 and to ease potential confusion for the process of validating HYPSO-1’s
SNR. For the HYPSO-1 HSI, the SNR is:

SNRref [1,1] =
Cref√

Cref + Cdark + C2
read + C2

quant

(3.10)

Cref is photoelectrons per pixel and represents the shot noise in the denominator, Cdark is
dark current noise, C2

read is the variance of the sensor readout noise, and C2
quant is the variance

of the quantization noise. Fixed pattern noise for the HSI’s sensor was not reported.
The count of photoelectrons per pixel Cref is:

Cref =
ηQ

˙ϕTOA
ref τ

Nw Nh

(3.11)

Where nQ is the sensor’s quantum efficiency (see Figure 3.17), ˙ϕTOA
ref is the photon flux

reaching the sensor per spectral bandpass (photons/s), τ is the exposure time in seconds,
Nw is the number of illuminated pixels along the projected width of the optical slit onto the
sensor, and Nh is the projected slit height [203]. Note that Nw and Nh represent active pixels
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Figure 3.13: Labeled optical imaging system for on-axis radiometry used to determine
Omega. Figure courtesy of Eismann (2012) [234].

that receive projected light from the HYPSO-1 optical assembly (see Figure 3.16) given that
this architecture includes an optical slit and spectral grating [203]. The “ref ” subscript
represents reference input values for spectral radiance used to determine the sensor’s initial
SNR. nQ is wavelength-dependent (see QE/GE curve) and is assumed to be 77% for the
reference wavelength at 500 nm [203]. The integration time (τ) is set at 51.6 ms [203].

The number of pixels illuminated by sensor reaching photons is a function of the projec-
tion of the slit width onto the image sensor (wd, mm) and the pixel width (∆ρλ , pixel pitch
in um) [203]. The number of illuminated pixels along the sensors width is:

Nw =
wd

∆ρλ

(3.12)

Similarly, the number of pixels illuminated along the projected slit height is a function
of the slit height (hd, mm) and pixel pitch:

Nh =
hd

∆ρλ

(3.13)

The width of the slit projected onto the sensor is:

wd =
wslit F2

cos(β)F1

(3.14)

Where wslit is the width of the slit in mm, F2 is the focal length in mm between the 5th
and 6th optical element (see Figure 3.16), β is the diffraction angle at the center wavelength
in degrees, and F1 is the focal length between the second and third optical elements [203].
Similarly, the projected slit width is:

hd = hslit
F2

F1

(3.15)

Where hslit is the height of the slit in mm (see Table 3.4).
The sensor-reaching photon flux per wavelength is determined as follows:

ϕTOA
ref = LTOA

ref η0 η1 η2 ηGGλ
∆λ

h c
(3.16)
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Figure 3.14: AEROS HSI bandwidth (∆λ, FWHM) from 470 nm to 900 nm. Data grabbed
from figure provided by Spin.Works.

Where LTOA
ref is the reference top of the atmosphere radiance in W/m2 ∗ nm ∗ sr, η0 is

the optical efficiency of the first element (labeled 1 in Figure 3.16), 1is the efficiency of the
second element (labeled 3 in Figure 3.16), 2 represents the third element (labeled 5 in Figure
3.16), ηG is the grating efficiency (see Figure 3.17), G is the geometric etendue (m2 ∗ sr), λ
is the reference wavelength (assumed to be 500 nm for determining SNRref ), and ∆λ is the
theoretical spectral bandpass of the sensor in nm [203].

The theoretical spectral bandpass is:

∆λ ≈ g wslit

k F1

(3.17)

Where g is the grating groove spacing in nm and k is the spectral order (assumed 1)
[203].

Geometric etendue is a radiometric term that describes the optical throughput of an
imaging system by representing the distribution of light in spatial and angular dimensions
[293]. For HYPSO-1, the geometric etendue describes how well light is collected and pro-
jected within the imaging system, and is determined as:

G = π
D2

0

4F 2
0

cos(β)wd hd (3.18)
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Figure 3.15: Image of HYPSO-1’s assembled HSI courtesy of Grøtte, et al. (2021) [203].

Where D0 is the aperture diameter (labeled 1 in Figure 3.16).
Dark noise is Cdark = idark ∆t in electrons, where idark is the dark current (e−/s) and ∆t

is the integration time in seconds determined as 1/FPS (where the HYPSO-1 FPS = 47)
[203]. The quantisation noise is determined similarly to AEROS as:

Cquant =
Cmax

2bit−depth
√
12

(3.19)

Where Cmax is the sensor’s well-depth and the bit depth is 12 bits [203]. Grøtte, et
al. (2021) provides HYPSO-1’s approach to spectral binning, adopted from HYPSO-1 the
AEROS performance model, where binning is accounted in the SNR as:

SNRref =
Cref

√
Bλ√

Cref + (Cdark Bλ) + (C2
read Bλ + C2

quant)
(3.20)

Following the approach from Grøtte et al., (2012), HYPSO-1’s SNR performance was
replicated and validated given the published HSI performance specifications (see Table 3.4)
and reference input spectral radiances (see Table 3.6). Upon recreating this approach, the
SNR was validated to within less than 1% with an input spectral radiance of 0.042 W/m2 ∗
sr ∗ µm and 4% with an input spectral radiance of 0.0725 W/m2 ∗ sr ∗ µm (see Table
3.6). The first LTOA value represents a typical TOA signal for open ocean scenes, and the
second represents roughly the max input radiance that achieves an SNR just above the
HSI’s saturation point (SNR = 181.6) [203], [294]. The results in Table 3.6 instill high
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Figure 3.16: HYPSO-1 HSI schematic with labeled optical and sensor components. Figure
courtesy of Grotte et al. (2022) [203].

confidence that the radiometric performance model is representative of the HYPSO-1 HSI’s
performance.

Table 3.6: Comparison of HSI SNR values, produced by the HYPSO-1 team in Grøtte et al.
(2021), and results produced by the radiometric performance model replicating the HYPSO-
1 HSI architecture. Deltas show the difference between published and modeled results.

Parameter
HYPSO-1
Published

Value

Model
Output ∆ (%) Unit / Note

LTOA (ref @ 500
nm) 0.042 - - W/m2 ∗ nm ∗ sr

τ (exposure
time) 51.6 - - ms

Bandwidth
(∆λ) 3.33 - - nm

Quantum
Efficiency (ηQ) 77 - - %

Grating
Efficiency (ηG) 73 - - %

SNR[1,1] 133 133 0.0 Bλ = 1

SNR[9,1] 392 395 0.8 Bλ = 9

SNR[18,1] 554 552 0.4 Bλ = 18

Continued on next page
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Table 3.6 – continued from previous page

Parameter
HYPSO-1
Published

Value

Model
Output ∆ (%) Unit / Note

LTOA (max
rad.) 0.0725 - - W/m2 ∗ nm ∗ sr

SNR[1,1] 182 175 4 Bλ = 1

120



Figure 3.17: The quantum, grating, and total efficiency curves of the HYPSO-1 HSI [203].
These data are courtesy of the HYPSO-1 team who graciously shared them with me.
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Chapter 4

Analysis and Results

4.1 Regional Synthetic Scenes

This section includes the simulated synthetic scenes generated for each of the three ROIs.
Each scene provides the modeled TOA spectral radiance for one of the case parameters
listed in Table 3.1. For the sake of brevity, only Section 4.1.1 for Lisbon, Portugal includes
scenes generated for every parameter in the tradespace. The remaining two regions (sections
4.1.2 and 4.1.3) are limited to discussions on seasonal differences in TOA radiance and the
seasonal impact of varied pigment density at the ocean surface. For easier interpretation of
the resulting radiances and the impact of the step changes on TOA radiance, the percentage
difference is also provided for each modeled parameter.

Table 4.1 provides the default Py6S parameter settings for each region where only single
parameters (e.g., season or pigment density) are toggled at a time when generating a scene.
The remaining default parameters are held constant. Note that synthetic scenes are gener-
ated to show TOA spectral radiance from 400-900 nm despite the limited spectral response
of the AEROS (470-900 nm) and HYPSO-1 (430-800 nm) nanosatellite HSIs. This is done to
provide readers with an understanding of how trends in TOA radiance appear at wavelengths
in the violet/blue regions of the electromagnetic spectrum where chl-a and other ocean color
constituent retrieval algorithms typically require measurement bands.

Table 4.1: Model Settings for each ROI default case

Model
Parameter Barents Sea Gulf of

Guinea
Lisbon

Portugal

Atmo. Model
(Summer)

Midlatitude
Winter Tropical Midlatitude

Summer

Atmo. Model
(Winter)

Subarctic
Winter Tropical Subarctic

Summer

Continued on next page
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Table 4.1 – continued from previous page

Model
Parameter Barents Sea Gulf of

Guinea
Lisbon

Portugal

Min. SZA/SAA
(Summer) 52◦, 180◦ 19◦, 0◦ 16◦, 179◦

Min. SZA/SAA
(Winter) - 27◦, 149◦ 62◦, 180◦

Aerosol Model Navy Maritime

Visibility 32 km

Wind Speed 4 m/s

Wind Azimuth 0◦

Salinity 35 ppt

Pigment 0.0 mg/m3

View Azimuth 0◦

View Zenith 0◦

4.1.1 Lisbon, Portugal

This section provides the synthetic scenes modeled for each of the parameters listed in
Table 3.1 for the Lisbon, Portugal ROI. TOA spectral radiances from 400-900 nm for the
summer and winter seasonal cases are provided in Figure 4.1. As expected, there is an overall
reduction in radiance from the summer to winter case. This is largely due to increased solar
zenith angles in the winter which lead to less solar illumination reaching the surface. The
use of the subarctic summer atmosphere profile to represent winter conditions, compared
with the midlatitude summer model during the summer season, also leads to a decrease
in TOA radiance because of changes in water vapor content, O3 increases, and O2 that
affect absorption and scattering characteristics of the atmosphere. Overall, the modeled
TOA radiance’s spectral shape is as expected compared with the atmospheric transmission
spectrum (see Figure 2.2).

Overall, the reduction in TOA spectral radiance in the winter season across the full
spectral range exceeds 40% for all bands. The reduction increases significantly (e.g., ∼ 72%
at 900 nm compared to ∼40% at 400 nm) as the spectral range progresses towards the NIR.
The largest difference in signal is present at the Oxygen A-band, a prominent atmospheric
absorption feature around 760 nm, where the TOA spectral radiance is decreased up to 90%
in the winter case.

The large reduction in available signal in valuable violet and blue bands (400 - 485 nm)
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Figure 4.1: TOA spectral radiances for Lisbon, Portugal in summer and winter seasons (left)
and percentage difference between the two seasons (right).

will result in lower signal-to-noise ratio at the sensor, therefore complicating the process of
using retrieval algorithms to effectively derive chl-a concentrations from the surface signal.
In CDOM-dominated regions, signal in these bands would be further reduced. For example,
a study by Wang (2012) showed that the water-leaving reflectance of CDOM-dominated
water at the 412 nm violet band was only 0.2% of the total signal at TOA, where for an
open ocean scene the reflectance contribution at 412 nm was 6.4% [295]. This significant
reduction could potentially result in a total loss of signal in these bands due to poor SNR.

Summer and winter TOA radiances for the visibility case (labeled surface meteorological
range in Table 3.1) are shown in Figure 4.2 and Figure 4.3 respectively. A visibility of 32 km
for a viewer at the surface is considered the “clear case” by the Py6S tool, though a surface
visibility of 64 km is also investigated to determine the impact on TOA radiance for clearer
conditions. Varying the surface visibility represents sensor viewing conditions for regions
that may have a layer of haze at the surface from fog, dust, or other atmospheric suspended
particulates caused by pollution in more urban areas.

From Figure 4.2 it is evident that surface visibility has a significant impact on TOA
radiance, where in the most drastic reduction (1 km visibility), TOA radiance can increase
up to ∼150% compared with the clear case. It’s important to note that while the sensor-
reaching TOA radiance is higher overall, the signal is dominated by scattering caused by
the increased atmospheric molecular content at the surface, meaning there is no guarantee
that the surface signal can be derived at TOA. Overall, it is recommended that sensor
sensitivity to surface haze and clouds, particularly if the ROI is in an area with high urban
aerosols (smog/pollution), is characterized during the mission design phase. Additional
considerations for configuring the sensor’s dynamic range to avoid saturation over the ROI
are also recommended. An interesting addition to this study would include determining the
cutoff point where the sensor is no longer capable of discerning the surface signal due to the
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Figure 4.2: TOA spectral radiance for Lisbon, Portugal during the summer season for varied
surface visibility (left) and percentage difference between the levels of visibility referenced
to the clear case at 32 km (right).

increased atmospheric interference, a point that may aid in designing a mission’s concept of
operations.

Similar trends are seen in the winter visibility case, though as expected, TOA radiance
levels are reduced overall. An interesting note is that, compared with the summer season 1
km visibility case, there is greater impact on TOA radiance in the NIR bands where increases
upwards of 160% are present. In both seasonal cases, there is relatively low impact on TOA
radiance as visibility increases from 32 km to 64 km at the surface; however, TOA radiances
again see higher impact in NIR bands.

SZAs for the summer and winter seasonal cases are shown in Figure 4.4 and Figure 4.5.
The SZAs are varied in 10◦ steps from 30◦ to 80◦, and the associated solar azimuth an-
gles specific to the region are provided for each increment. For mission planning purposes,
consideration of optimal equatorial crossing times (e.g., 10:30AM vs 12:00PM local time
of the descending node) for sun-synchronous orbits is of higher priority for achieving con-
sistent solar geometries for imaging. For the purpose of this work, a comparison of SZAs
across regions was prioritized to better realize the regional impact on TOA radiance while
maintaining consistent solar geometries for each ROI.

The resulting TOA radiances behave intuitively for both summer and winter seasonal
cases, where the sensor-reaching signal is reduced as the SZA increases (indicating that
the sun is lower in the sky) and signal is considerably lower overall in the winter season.
The drop-off in available TOA spectral radiance is significant, where up to a 51% decrease
in radiance from an SZA of 30◦ to 40◦ is observed in the summer case. For the summer
seasonal case, the SZA step from 70◦ to 80◦ led to a decrease in radiance by ∼42% at the
Oxygen A-band, where in the winter case the decrease was ∼ 73%. This indicates that the
winter seasonal case experiences more extreme impact at prominent atmospheric absorption
features as a result of increased SZAs.
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Figure 4.3: TOA spectral radiance for Lisbon, Portugal during the winter season for varied
surface visibility (left) and percentage difference between the levels of visibility referenced
to the clear case at 32 km (right).

It should be noted that the Lisbon, Portugal and the Gulf of Guinea ROIs actually
achieve lower SZAs in summer conditions (see Table 4.1); however, the Py6S tool could not
support modeling SZAs lower than 30◦ for these regions. This issue should be investigated
further to understand the underlying geometric constraints of the tool. The minimum SZA
in the winter season (62◦) is representative of the smallest SZA achieved in Lisbon, Portugal
in the month of January.

The effects of varying surface wind speed for both seasonal cases is shown in Figure
4.6. As expected, an increase in surface wind speed leads to an increase in TOA radiance
due to increased surface roughness and the size and frequency of whitecaps. Realistically,
these trends are also consistent with the effects of increased sea spray aerosols injected into
the sensor’s line-of-sight as wind speeds increase; however, the Py6S ocean BRDF does not
couple this scattering component with wind speed.

A similar issue occurred with the Py6S tool as the SZA case where geometric constraints
prevented the tool from modeling surface wind speeds higher than 6 m/s. It is speculated
that the issue stems from the wind azimuth angle set at 0◦. For off-nadir pointing, the
wind azimuth would influence the scattering seen by the sensor’s line-of-sight; however, the
nadir pointing assumption for these models is agnostic to this effect. While studies show
annual global mean wind speeds are ∼4 m/s, ocean surface wind speeds often exceed 25 m/s,
meaning the effects of higher surface speeds on TOA radiance is a parameter of interest for
mission planning and operational considerations [296].

Last, the impact of chlorophyll pigment on TOA radiance is shown for the summer season
in Figure 4.7 and winter season in Figure 4.8. Colored blocks are overlaid to indicate regions
of violet, blue, green, and red wavelength ranges in that order. A pigment density of 0.0
mg/m3 is considered the case where the ocean surface is “clear” and free of phytoplankton.

126



Figure 4.4: TOA spectral radiance for Lisbon, Portugal during the summer season for varied
solar zenith angles (left) and percentage difference between the SZA values referenced to the
maximum SZA (30◦, right).

Else, phytoplankton pigment density steps from 0.01 mg/m3 to 50 mg/m3 are shown. Given
the small impact on TOA spectral radiance in some bands (e.g., 600-700 nm) the percentage
difference is provided for each seasonal case.

Some interesting features to note include the point around 700 nm where all signals con-
verge due to the combined impact of atmospheric absorption and lack of strong spectral
response of chl-a pigment in these bands. Additionally, in the violet/blue region of the EM
spectrum (∼400-500 nm), blooms with higher pigment densities show clear separation re-
garding the impact on TOA radiance as density increases. This is due to the absorptive
nature of phytoplankton, namely the chl-a pigment, in these bands. This behavior demon-
strates how changes in absorption features derived from TOA radiance are clearly indicative
of bloom density. This means bloom growth is likely detectable by monitoring TOA radiance
features in this spectral range.

Figure 4.9 provides a zoomed view of TOA radiance behavior in violet and blue bands
where the aforementioned behavior is clearly seen. 412 and 443 nm are arguably the most
common bands used by chl-a and remote sensing reflectance retrieval algorithms, and the
prominent behavior of pigment absorption features makes clear why these bands are selected.
Last, 412 nm is the absorption maximum of chlorophyll where phytoplankton absorb light
most effectively, and this trend is clearly observed in the modeled TOA radiances.

For blue bands, absorption is expected to increase with increased pigment density result-
ing in less available TOA radiance. This trend is evident at ∼ 450-460 nm, though interesting
features occur around 475-480 nm where lower pigment densities demonstrate an increase in
radiance compared with the clear case. Realistically, the absorption features of chlorophyll-
b dominate the TOA signal around ∼ 480 nm; however, this behavior is not considered in
the ocean surface model for the Py6S tool. Integration of additional phytoplankton related
absorption and reflection features into the Py6S ocean BRDF pigment parameter may allow
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Figure 4.5: TOA spectral radiance for Lisbon, Portugal during the winter season for varied
solar zenith angles (left) and percentage difference between the SZA values referenced to the
maximum SZA (62◦, right).

for more realistic modeling of the impact on TOA radiance; however, almost all constituent
retrieval algorithms prioritize chl-a pigment over chl-b, so the additional added value may
be minimum.

Figure 4.10 shows a similarly zoomed view of TOA radiance behavior in green and red
bands. Given that phytoplankton contain chlorophyll pigment due to their use of photo-
synthesis, they are highly effective at scattering green light. Therefore, it is expected that
TOA radiance will increase in green bands as pigment density increases due to increased
reflectance from these scattering effects. This behavior is seen clearly in green bands from ∼
540-570 nm. 555 nm is one of the most common green bands used for Rrs and chl-a retrieval
algorithms, and the clear behavioral trends at this spectral feature make it evident why this
band is prioritized.

Phytoplankton tend to have strong absorption features in red bands; however, Figure
4.10 shows the opposite behavior where TOA radiance increases with increased pigment
density. It is believed that this behavior is observed due to the fluorescent properties of
phytoplankton where the re-emission of fluorescence by chlorophyll-a molecules after they
absorb light during photosynthesis are causing increased TOA spectral radiance. Common
fluorescence line height algorithms require bands at 678 nm from 667 and 748 nm, and clear
increases in radiance in the former set of bands is evident in the modeled radiances.

Additionally, there appears to be a saturation effect for bloom densities larger than 10
mg/m3 where the radiance then begins decreasing with increased pigment density. One pos-
sibility of this effect could be due to behavior at high biomass where non-photochemical
quenching processes take effect. Non-photochemical quenching mechanisms, including pro-
cesses like fluorescence quenching or energy dissipation as heat, can reduce the fluorescence
yield even when there is a high concentration of chlorophyll-a present [297]. Additionally,
at high biomass, the photosynthetic mechanisms inherent to phytoplankton may become
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Figure 4.6: TOA spectral radiance for Lisbon, Portugal for varied surface wind speeds in
both seasonal cases (left) and percentage difference between values referenced to the default
case of 4 m/s (right).

light-saturated, meaning that even when more light is available, the rate of photosynthesis
plateaus [297]. It should be noted that the ability of the Py6S ocean BRDF to capture
these detailed effects of phytoplankton pigment behavior is uncertain. However, the Py6S
model does consider the diffuse attenuation coefficients and spectral irradiance features of
phytoplankton pigments defined by Morel’s Case I water types (see Vermote et al. (2006)
for more detail), so it’s possible that these features represent realistic pigment behavioral
trends.

Regarding the winter pigment case, identical trends are observed across the full spectral
range. As expected, there’s significant reduction in radiance overall in the winter seasons
(∼41% reduction at 400 nm for clear case). Nonetheless, distinction between pigment density
cases is still clear in winter months despite the overall reduction in radiance.

4.1.2 Gulf of Guinea

Figure 4.11 provides the difference in TOA spectral radiance for the summer and winter
seasons in the Gulf of Guinea ROI. Compared with the Lisbon, Portugal region, the overall
difference in radiances is significantly less, where changes are less than ∼30% across the full
spectral response. This is expected given that this region uses the same atmosphere profile
(predefined tropical model) for both seasonal cases, as determined by the region’s latitude.
The primary difference affecting available TOA radiance is the low SZA in the region given
its proximity to the equator. There is also a slight decrease in the minimum achieved SZA in
the winter season, enabling an increase in surface-reaching solar illumination. This is evident
by the fact that the TOA radiances in the winter season are higher than the summer case
(see Figure 4.11). Compared to the other two ROIs, the resulting TOA radiance for both
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Figure 4.7: TOA spectral radiance for Lisbon, Portugal during the summer season for varied
chl-a pigment densities with color-coded blocks to indicate violet, blue, green, and red bands
(left) and percentage differences between pigment values with reference to clear case (0.0
mg/m3, right).

seasons is generally higher.
Figures 4.12 and 4.13 provide the summer and winter TOA spectral radiances for the

varied pigment case. Similar behavioral trends are observed in TOA spectral radiances as
a result of increased pigment density as Lisbon, Portugal. The only noteworthy difference
for this region is the overall increase in available TOA radiance due to the region’s location,
and similarly the increased available TOA radiance in the winter case.

4.1.3 Barents Sea

Figure 4.14 provides the resulting TOA spectral radiance for the summer season for the
Barents Sea ROI. As previously discussed, given the region’s high-latitude, there is little to
no solar illumination available during the winter season. The region’s location also results in
higher SZAs, which lead to an overall decrease in available TOA spectral radiance compared
with the other two ROIs. It should be noted that this particular region is also prone to high
cloud coverage, meaning that in addition to reduced signal availability, possible imaging
frequency is also compromised by the presence of clouds. These combined effects create
significant challenges for frequently monitoring surface features in this region. Given these
results, a dedicated satellite mission for the Barents Sea is not necessarily recommended.
Observations in this area are more suitable for a drone given the limited viewing opportunities
and low signal. Effective measurements in this area require instruments that can sit and stare
for long periods and revisit the region often.

Figure 4.15 provides the resulting TOA spectral radiance for the summer pigment case.
There are no prominent noteworthy differences in feature behavior as a result of increased
pigment density aside from the overall reduction due to reduced available light in the region.
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Figure 4.8: TOA spectral radiance for Lisbon, Portugal during the winter season for varied
chl-a pigment densities with color-coded blocks to indicate violet, blue, green, and red bands
(left) and percentage differences between pigment values with reference to clear case (0.0
mg/m3, right).

4.1.4 Comparison with VIIRS Data

To provide a benchmark for comparing the simulated data against real coastal, ocean color
satellite imagery, data from the JPSS’ VIIRS environmental data record was retrieved using
NOAA’s Comprehensive Large Array-data Stewardship System (CLASS). Calibrated TOA
radiances for VIIRS bands M1-5, primarily designated for ocean color sensing, were pulled
for the Lisbon, Portugal ROI during both summer (July 1, 2022) and winter (January 1,
2022) seasons.

Table 4.2: Comparison of seasonal total path radiance from VIIRS satellite imagery to
simulated top-of-atmosphere spectral radiance for the Lisbon, Portugal ROI. All radiance
values in units of W/m2 ∗ sr ∗ µm.

Wavelength
(nm)

VIIRS Lt

(Summer)
LTOA

(Summer)
VIIRS Lt

(Winter)
LTOA

(Winter)

410 9.06 84.82 6.01 54.02

443 8.19 73.76 5.35 47.08

486 6.75 53.59 4.22 34.00

551 4.32 33.03 2.45 19.98

671 2.32 18.17 1.09 9.85

The ROI was defined by a rough rectangular bounding box with the coordinates in Figure
3.1 at its center. There were a total of 223,679 valid pixels in the ROI box for July 1, 2022.
The solar azimuth and solar zenith angles were roughly -112.26◦ and 21.53◦ respectively,
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Figure 4.9: TOA spectral radiance for Lisbon, Portugal during the summer season w/ varied
pigment densities. Figure scaled to show impact on radiances in violet (left) and blue (right)
spectral bands.

Figure 4.10: TOA spectral radiance for Lisbon, Portugal during the summer season w/ varied
pigment densities. Figure scaled to show impact on radiances in green (left) and red (right)
spectral bands.

where negative SAA indicates the sun in an eastward position relative to the observation
point. For January 1, 2022, there were a total of 195,124 valid pixels in the ROI box. The
SAA and SZA were roughly -123.55◦ and 60.20◦ respectively. The number of valid pixels
varies seasonally due to loss of pixels in the bounding box after cloud masking, oversaturation
due to the presence of land/haze, etc.

Table 4.2 compares the seasonal mean total path radiance (Lt) with the simulated TOA
spectral radiance for each of the five VIIRS bands. Figure 4.16 visually represents the total
path radiance and the respective mean normalized water-leaving radiance for each band,
where mean values are determined from all valid pixels in the ROI bounding box. Recall
Equation 2.8 in Section 2.3.2 defining the components of the total path radiance where
the normalized water-leaving radiance ([Lw(λ)]N) represents the marine signal derived from
the atmospheric correction process. [Lw(λ)]N is provided to demonstrate the significant
reduction in signal once atmospheric contributions to the total path signal are removed.

Noticeably, the values resulting from real satellite imagery are significantly lower than the
simulated values. Nonetheless, the total path radiance demonstrates a similar spectral shape
as the simulated radiances where signals peak in violet/blue bands and decay in strength

132



Figure 4.11: TOA spectral radiances for the Gulf of Guinea in summer and winter seasons
(left) and percentage difference between the two seasons (right).

towards the infrared.

4.1.5 Summary

Figure 4.17 and Figure 4.18 provide a comparison between the modeled TOA spectral radi-
ance for all three ROIs and the percentage difference compared to the Lisbon, Portugal case.
Overall, the Gulf of Guinea provides the highest TOA signal for both seasonal cases, though
the summer case is comparable to Lisbon in the summer. The largest regional differences
are observed when comparing the winter cases for Lisbon, Portugal and the Gulf of Guinea
given that available radiance remains high for Guinea in the winter season. As expected, the
Barents Sea varies significantly from both regions.

4.2 SNR Analysis

The radiometric performance model evaluated the SNR for both the AEROS and HYPSO-1
nanosatellite missions using the specifications listed in Table 3.4. SNRs were determined for
each of the synthetic scenes generated for each of the categories listed in the Py6S model
tradespace (see Table 3.1). For the sake of brevity, the seasonal SNRs for each ROI are
provided; however, only the chl-a pigment density cases for Lisbon, Portugal are included.
Readers interested in results for the remaining cases provided in Table 3.1 are welcome to
contact the author for discussion. Sections 4.2.1 and 4.2.2 provide the SNR results and
discussion for each of the ROIs for the AEROS and HYPSO-1 missions respectively.
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Figure 4.12: TOA spectral radiance for the Gulf of Guinea during the summer season for
varied chl-a pigment densities with color-coded blocks to indicate violet, blue, green, and
red bands (left) and percentage differences between pigment values with reference to clear
case (0.0 mg/m3, right).

4.2.1 AEROS SNR

Typically, SNR curves for HSIs assume relatively similar shapes as the input signal with
the assumption that the imager has uniformly spaced bandwidths across the full spectral
response. While AEROS’ average bandwidth is 5.9 nm, the HSI’s bandwidth actually ranges
from ∼2.6-11 nm (see Figure 3.14). As such, the resulting SNR curve is largely determined
by spacing of the spectral channels, where higher SNR is achieved for channels with larger
bandwdiths (e.g., 8-10 nm BW from ∼560-620 nm). The general SNR curve shape is clear
in Figure 4.19 showing AEROS’ HSI performance from 470-900 nm for Lisbon, Portugal in
both summer and winter seasonal cases. The shape of the SNR curves generally follows
the behavior of the modeled TOA radiances (see Figure 4.1), and prominent atmospheric
absorption features, such as the Oxygen A-band from ∼759-770 nm, are present in both
cases.

Figure 4.20 provides the resulting SNR for each seasonal case for all three ROIs. Again,
the results follow the trends seen in the generated TOA radiances (see Figure 4.17) for each
region. As expected SNR is reduced overall in winter seasons given the reduced availability
of TOA radiance typically caused by increased SZAs (i.e. less surface-reaching solar illumi-
nation), increased atmospheric absorption features, and potential increases in cloud coverage
depending on regional trends.

Similar trends are seen in the summer and winter cases for SNR achieved from changes
in chl-a pigment densities (Figure 4.21 and Figure 4.22 respectively) where SNR is reduced
overall from summer to winter seasons. As a reminder, AEROS’ HSI spectral range begins
at 470 nm, meaning some key features for chl-a pigment detection in violet and blue bands
(∼400-450 nm) are not detectable.

Overall, the AEROS SNR is lower than HYPSO-1’s. This is due to the AEROS HSI
architecture having five optical elements (compared to HYPSO-1’s 3) that reduce total sys-
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Figure 4.13: TOA spectral radiance for the Gulf of Guinea during the winter season for
varied chl-a pigment densities with color-coded blocks to indicate violet, blue, green, and
red bands (left) and percentage differences between pigment values with reference to clear
case (0.0 mg/m3, right).

tem throughput, slightly reduced quantum efficiency (e.g., AEROS’ QE at 500 nm is∼61%
while HYPSO-1’s is ∼78%), and relatively poor filter efficiency (see Figure 3.12) compared
with HYPSO-1’s grating efficiency (see Figure 3.17). As discussed in the desired payload
performance requirements (Table 2.3), a minimum SNR of 200 is required for all VIS/NIR
bands to satisfy measurement needs of the ocean color community. Figure 4.23 shows that
without spectral binning, the AEROS HSI is not compliant with this requirement for any of
the VIS/NIR requirements.

The AEROS HSI supports binning schemes of 2x2, 3x3, and 4x4 pixel grids, resulting
in the improved SNR shown in Figure 4.24. With binning applied, AEROS achieves partial
compliance with the SNR requirement in the 3x3 and 4x4 binning schemes, albeit in small
regions of the sensor’s total spectral response. Nonetheless, it is generally understood that
an SNR of 2 is required to achieve a minimal viable signal from a sensor, and the AEROS
HSI is fully compliant in its ability to produce usable signal for all VIS/NIR bands.

4.2.2 HYPSO-1 SNR

The shape of the HYPSO-1 SNR curves are similar to the structure of the TOA radiances
generated for the synthetic scenes due to the HSI’s uniform bandwidth. The SNR curve
shape is clearly seen in Figure 4.25 showing the resulting SNR from 430-800 nm for Lisbon,
Portugal’s seasonal case. Overall, the HYPSO-1 SNR is higher than AEROS’ due to use of
fewer optical elements and more efficient quantum and grating efficiencies.

Figure 4.26 provides the SNR for all regions of interest, Figure 4.27 provides SNRs for
all chl-a pigment densities in the summer season, and Figure 4.28 provides SNR results for
chl-a pigment densities in the winter season. As a reminder, the HYPSO-1 HSI’s spectral
response is limited from 430-800 nm, meaning that some key measurement bands for chl-a
pigment detection (e.g., 412 nm) and bands necessary for common atmospheric correction
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Figure 4.14: TOA spectral radiances for the Barents Sea in the summer season only.

schemes (e.g., 765 and 865 nm) are unavailable.
Similar to AEROS, without spectral binning HYPSO-1 is unable to fully satisfy the

desired SNR requirement of 200 for all VIS/NIR bands (see Figure 4.29). The HYPSO-1
HSI supports spectral binning schemes of 3x3 and 9x9 pixel grids, and partial compliance
is achieved in both summer and winter cases in VIS bands for the 3x3 binning scheme (see
Figure 4.30. The 9x9 spectral binning scheme is closer to achieving full compliance across
the full spectral response; however, it lacks compliance in most NIR bands (750 nm and
above).

4.2.3 Summary

As expected, calculated SNRs are lower when the at-sensor TOA radiances are lower and
SNR increases with more available signal. Notable exceptions occur when the sensor’s system
efficiency, including the QE, GE, and FE, is low. This renders the imaging system less
efficient at converting input radiance into detectable signal, resulting in lower SNR. The
inverse of this behavior is clearly shown in Figure 4.19 for the AEROS SNR curve for Lisbon,
Portugal. Between roughly 550-625 nm the input radiance is declining (see Figure 4.1;
however, the SNR is at a maximum. This is caused by the sensor’s efficiency, i.e., the QE
and FE, and for the AEROS HSI, the wider bandwidths across these channels (∼ 8-10 nm).
Regardless of the reduced TOA signal, combined, the sensor’s high QE, relatively high FE,
and wider bandwidth allow the sensor to achieve a high SNR. This point is belabored to
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Figure 4.15: TOA spectral radiance for the Gulf of Guinea during the summer season for
varied chl-a pigment densities with color-coded blocks to indicate violet, blue, green, and
red bands (left) and percentage differences between pigment values with reference to clear
case (0.0 mg/m3, right).

highlight the impact of performance metric trades when modeling a sensor’s performance.
Increased availability of signal does not guarantee higher signal output from an imager, and
understanding the efficiencies of sensors, filters, and grating elements at particular bands of
interest is necessary for quantifying system performance against a mission’s measurement
objectives.

This section highlights the challenge of achieving the desired SNR of 200 in VIS/NIR
bands with nanosatellite hyperspectral imagers sensing ocean color. Without applying pixel
binning to create wider spectral channels, raw measurements from the two DRM HSIs are
unable to satisfy this requirement. While spectral binning is an option to enhance a sensor’s
SNR, it should be noted that this process of combining pixels in turn compromises the
sensor’s spectral resolution, which may lead to non-compliance with the requirement for
maintaining high spectral resolution.

4.3 Noise Equivalent Spectral Radiance (NESR)

NESR values are derived for both the AEROS and HYPSO-1 HSIs with no spectral binning
operations applied. The resulting NESRs therefore represent the fundamental sensitivity of
the HSIs with no processing for evaluation against the minimum and maximum NESR values
for VIS/NIR bands defined in IOCCG report 1 [214]. Lower NESR values indicate that the
HSI is more sensitive to detecting signal at the respective wavelengths, and NESR values
below the requirement lines are considered in compliance.
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Figure 4.16: Total path radiance from aggregated VIIRS pixels covering the Lisbon, Portugal
ROI (left) and corresponding normalized water-leaving radiance for each band (right).

4.3.1 AEROS NESR

The performance parameters used to derive AEROS’ HSI’s performance in Section 3.3.2 were
used to derive the imager’s noise equivalent spectral radiance as:

LNESR
TOA =

Nw Nh h c
√

σdark + σ2
read + σ2

quant + σ2
fps

ηq τ η1−5 ηFE Adet Ωλ∆λ
[W/m2 ∗ sr ∗ µm] (4.1)

The LNESR
TOA that resulted in an SNR of 1 at 500 nm was 0.079 W/m2∗sr∗µm. The NESR

was evaluated for the full spectral response of the HSI, including the impact of non-uniform
channel bandwidths, filter spectral efficiencies, and quantum efficiency. The AEROS NESR
radiance values with the IOCCG requirements for VIS/NIR bands is shown in Figure 4.31.
The AEROS HSI shows partial compliance with the maximum NESR requirement of 0.05
W/m2 ∗ sr ∗ µm in some spectral channels, but does not achieve compliance across its full
spectral response.

4.3.2 HYPSO-1 NESR

HYPSO-1’s HSI noise equivalent spectral radiance is derived as:

LNESR
TOA =

Nw Nh h c(
√
Cdark + C2

read + C2
quant)

η0 η1 η2 ηQ ηG τ Gλ∆λ
[W/m2 ∗ sr ∗ µm] (4.2)

The LNESR
TOA that resulted in an SNR of 1 for the HYPSO-1 imager at at 501.934 nm,

ηQE = 77.8%, and ηGE = 72.5% was 0.0171 W/m2 ∗ sr ∗ µm. The NESR was evaluated
for the full spectral response of the HSI, grating efficiency, and quantum efficiency. The
derived NESR for the HYPSO-1 HSI with IOCCG requirements overlaid is shown in Figure
4.32. The HYPSO-1 HSI is fully compliant with the maximum NESR requirement of 0.05
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Figure 4.17: TOA spectral radiance for all regions for both seasons.

W/m2 ∗ sr ∗µm across the entire spectral response, and is mostly compliant with the NESR
requirement of 0.035 W/m2 ∗ sr ∗ µm in VIS bands. The HYPSO-1 HSI’s spectral response
does not extend into NIR bands.

Derived NESR values for both the AEROS and HYPSO-1 HSIs are shown in Figure 4.33
with wavelengths commonly used algorithms for deriving in-water optical constituents and
for performing atmospheric correction overlaid.

4.4 Accounting for Coastal Dependencies

Wang (2010)’s work describes the impact on radiance from phytoplankton, sediment, and
yellow-substance dominated scenes compared with a black ocean case with only Rayleigh
scattering [168]. This work shows that for Case II regions that are sediment dominated, e.g,
from coastal erosion or river inflows, contributions to TOA reflectance are as significant as
39% in the VIS band [168]. Note that TOA reflectance and TOA radiance, while different
terms, are linearly correlated. Similarly, for yellow substance dominated Case II regions
impact on TOA reflectance can reach 5.3% at 670 nm; however these water types have very
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Figure 4.18: The percentage difference in TOA spectral radiance for all regions for both
seasons

low reflectance in blue bands (412 and 443 nm) making atmospheric correction for these
bands challenging [168]. For Case I waters, mostly closely related to the synthetic scenes
generated here, contributions from increased phytoplankton density can reach 12.1% at 490
nm [168].

Work from Wang (2010) comparing the impact of phytoplankton densities on water-
leaving radiance clearly shows strong decreases in radiance from roughly 400-500 nm, indica-
tive of stronger absorption from higher density blooms [168]. As pigment density increases
with bloom growth, the ocean becomes more green, and therefore shows increased radi-
ance signals in these spectral bands (∼540-570 nm) [168]. This behavior is observed in the
synthetic scenes produced for pigment densities.

4.4.1 Handheld VIS/NIR Spectroradiometer

The author had the fortunate opportunity of participating in a student-led cruise ran by the
Woods Hole Oceanographic Institute. While onboard the Research Vessel Neil Armstrong,
a Handheld 2 VIS/NIR spectroradiometer was used to collect water-leaving radiance and
atmospheric spectra along the New England shelf-break. The purpose of this task was to
practice the process of performing collection of ship-borne data used in-situ validation of
water-leaving radiance data derived from satellite observations.

The resulting spectra from sky collection (see Figure 4.34) shows a spectral shape that
has similar atomspheric absorption features as the synthetic scenes generated by the Py6S
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Figure 4.19: AEROS SNR: Lisbon Seasonal Case

radiative transfer model. This work instilled further confidence that Py6S model outputs
are useful for representing realistic atmospheric conditions. Table 4.3 lists some of the
environmental parameters during the time of collection.

141



Figure 4.20: AEROS SNR for the seasonal case evaluated for all regions of interest

Table 4.3: Parameters from time of spectral radiance collection

Parameter Value

Latitude 41◦N

Longitude 70◦W

True Wind Speed 14 kts (27.2 m/s)

True Wind
Direction 246◦

Air Pressure 1007.9 hPa

Relative Humidity 50.9%
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Figure 4.21: AEROS SNR for Chl-a pigment in the summer season for Lisbon, Portugal

Figure 4.22: AEROS SNR for Chl-a pigment in the winter season for Lisbon, Portugal
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Figure 4.23: AEROS SNR for Lisbon, Portugal seasonal case against SNR requirement

Figure 4.24: AEROS SNR for Lisbon, Portugal seasonal case with spectral binning applied
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Figure 4.25: HYPSO-1 SNR for Lisbon, Portugal Seasonal Case
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Figure 4.26: HYPSO-1 SNR for the seasonal case evaluated for all regions of interest
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Figure 4.27: HYPSO-1 SNR for chl-a pigment in the summer season for Lisbon, Portugal

Figure 4.28: HYPSO-1 SNR for chl-a pigment in the winter season for Lisbon, Portugal
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Figure 4.29: HYPSO-1 SNR: Lisbon Seasonal Case with SNR requirement

Figure 4.30: HYPSO-1 SNR: Lisbon Seasonal Case with spectral Binning
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Figure 4.31: AEROS NESR with bands IOCCG NESR requirements overlaid for VIS/NIR
and maximum desired values [214].
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Figure 4.32: HYPSO-1 NESR with bands IOCCG NESR requirements overlaid for VIS/NIR
and maximum desired values [214].

Figure 4.33: AEROS and HYPSO-1 NESR with bands commonly used for optical constituent
retrieval and atmospheric correction overlaid (see Table 2.5).
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Figure 4.34: Sky conditions (left) and resulting atmospheric spectral radiance collected with
handheld VIS/NIR spectroradiometer (right).
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Chapter 5

Summary and Future Work

5.1 Summary of Work

Climate change threatens the health of our planet’s oceans in ways that may cause irreversible
harm to valuable marine ecosystems. Ocean color remote sensing from space is a powerful
tool for collecting data needed to model ocean behavior, monitor ocean health, and predict
future behavioral trends. Ocean color data is also useful for monitoring coastal regions,
particularly regarding detection of coastal and river runoff, land erosion, and harmful algal
blooms that often result from regional anthropogenic activity. There is a rich history of
ocean color monitoring spacecraft, though many legacy missions host multispectral imagers.
As such, they are unable to provide the spectral, spatial, and temporal resolutions required
to effectively monitor coastal regions and improve ocean color measurements generally. This
thesis investigated one potential solution for addressing ocean color measurement needs by
evaluating the efficacy of using nanosatellites equipped with hyperspectral imagers to fill
measurement gaps in spectral and spatial resolution. While not addressed by this work,
the developed modeling framework may also be used to design future HSI nanosatellite
constellations capable of providing ocean color measurements with high spectral resolution
at appropriate temporal frequencies (<1 day) for monitoring rapidly developing ocean surface
features.

A radiometric performance model was developed to replicate the AEROS and HYPSO-1
reference mission architectures. These missions represent the state-of-the-art in nanosatel-
lite hyperspectral imaging ocean-color sensing capabilities. The HSI payloads were evaluated
against community-derived ocean color performance requirements to determine compliance
with current measurement needs and identify the technical limitations of the nanosatellite
architecture. Despite resource limitations, such as sensor area and pixel size, both nanosatel-
lite HSIs demonstrate partial compliance with desired NESR performance in some VIS/NIR
bands. When spectral binning is applied, both missions achieve partial compliance with the
desired SNR of 200.

While only HYPSO-1 is compliant with the desired spectral channel width (< 5 nm),
both missions support spectrally continuous VIS/NIR bands that cover key ocean color bands
from legacy instruments such as MODIS, VIIRS, and SeaWiFS. The AEROS HSI covers a
broad range of VIS/NIR bands appropriate for supporting ocean color retrieval algorithms
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and atmospheric correction; however, its spectral response excludes valuable bands used by
ocean color algorithms for chl-a retrieval (e.g., 412 and 443 nm). HYPSO-1’s HSI supports
spectral coverage of bands used by most constituent retrieval algorithms; however, it lacks
key bands for performing atmospheric correction (e.g., 865 and 885 nm), which complicates
retrieval of the ocean surface signal. Both nanosatellite missions have a spatial resolution
of less than 300 m, and both HSIs support the detection threshold and range required for
measuring chl-a pigment densities, albeit with less than desired SNR (see Table 5.1).

Table 5.1: A reduced set of key system and payload requirements to demonstrate require-
ments compliance of the two DRMs.

ID Requirement Description AEROS HYPSO-1

SYS_REQ_08
The spacecraft shall support a

horizontal spatial resolution of no
more than 300 m

Y Y

PAY_REQ_07

The imaging payload architecture shall
support fully spectrally contiguous
measurement bands across the entire

VIS/NIR spectral range

Y Y

PAY_REQ_08
The imaging payload shall capture

images bands from at least 400 nm -
900 nm

N N

PAY_REQ_09

The imaging payload shall include at
least two NIR bands that avoid

major atmosphere absorption features
for atmospheric correction

Y N

PAY_REQ_10
The imaging payload architecture

shall support narrow bandwidths of
no more than 5 nm

Partial Y

PAY_REQ_19
The imaging system’s noise

equivalent radiance shall be no
more than 0.05 W/m2 ∗ sr ∗ µm

N Y

PAY_REQ_17
The imaging payload shall achieve an
SNR at TOA no lower than 200

in the VIS-NIR wavelengths
Partial Partial

Continued on next page
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Table 5.1 – continued from previous page

ID Requirement Description AEROS HYPSO-1

PAY_REQ_35
The imaging payload shall support a
minimum detection threshold of

0.01 mg/m3

Y Y

PAY_REQ_36
The imaging payload shall support a
range of chl-a density detection

from 0.01-100 mg/m3

Y Y

It should be noted that the ocean color community defined these measurement require-
ments for large-scale missions with imagers that are significantly more massive than those
compatible with the nanosatellite platform, e.g., MODIS (228.7 kg) is roughly 140 times the
size of the HYPSO-1 (1.6 kg) HSI. Demonstration of partial compliance with performance
needs defined for future state-of-the-art, large-scale missions shows promising potential of
the nanosatellite capability to support desired ocean color measurement needs.

In summary, this work provides a framework for evaluating the performance of nanosatel-
lite HSI payloads designed for ocean color detection. The contributions of this thesis may
inform future mission design by providing benchmarks for technical nanosatellite payload
specifications, metrics for required payload performance specifications, and recommenda-
tions for mission operations tailored for specific ocean color measurement objectives.

5.1.1 Scene Limitations

For this work, the assumption is that use of the ocean surface BRDF suffices to emulate
a surface model that is as close to the target as possible. This is particularly true when
compared with a less robust, homogeneous lambertian surface model. It should be noted that
ultimately, Py6S is a tool for modeling radiative transfer in the atmosphere and is therefore
limited in its use for modeling the effects of the ocean’s surface. Nonetheless, modifications
to features at the ocean’s surface, e.g., increase in phytoplankton density, show significant
impact on the overall atmospheric path. Ultimately, satellite observations are made at the
top-of-the-atmosphere, meaning that results still adequately represent realistic observation
scenes. Given that Py6S is limited in capturing realistic impact on TOA radiance from the
presence of common in-water optical constituents in coastal regions (CDOM and sediment),
it is assumed that synthetic scenes modeled for this work represent a “worst case” signal for
imagers seeing more Case I, open ocean like radiances. Closer observational proximity to
the coast will generally result in higher TOA spectral radiances overall, meaning that signal
at the pupil-plane will increase and consequently the SNR will improve.

An ideal scenario would involve the combination of a tool capable of simulating water-
leaving radiance in coastal regions and combine that with a tool like Py6S for modeling the
interactions along the full ocean-atmosphere path. This would produce higher fidelity TOA
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estimates from realistic ocean signals. For work targeting a specific region of interest, this
approach is recommended.

5.2 Contributions

The primary contributions of this work are restated below with additional context listed in
subpoints.

• A baseline model for simulating the radiometric performance of nanosatellite-
based hyperspectral imagers

– An open-source radiative transfer model was used to build synthetic scenes for
three regions of interest that simulate realistic potential best and worst-case TOA
spectral radiance signals

– A radiometric performance model framework was developed to represent the
AEROS nanosatellite HSI, and the HYPSO-1 HSI performance was effectively
modeled to within 4% of published performance.

– The framework for a radiometric performance model was developed to assess
the performance of two design reference mission architectures. The framework
includes the derivation and validation of each DRM’s SNR, methodology for ap-
plying spectral binning to improve SNR, and the derivation of the HSIs’ NESR.

• A radiometric sensitivity analysis for optimizing radiometric performance
of ocean-observing hyperspectral imagers

– Each DRM’s SNR was evaluated for the simulated synthetic scenes

– Each DRM’s NESR was derived and evaluated against key ocean color measure-
ment bands

• Evaluation of nanosatellite hyperspectral imager design limitations for chlorophyll-
a retrieval and recommendations for technical improvements

– An aggregated set of mission, system, and payload requirements was developed.
Requirements are informed by community requests for measurement improve-
ments, existing methods for retrieving ocean color data products, and methods
for performing atmospheric correction. Requirements are adjusted and scaled
for compatibility with the nanosatellite platform, and additional considerations
specific to the nanosatellite design are included.

– The calculated SNR and NESR from each nanosatellite DRM HSI was evalu-
ated against the defined set of requirements for compliance and capability for
augmenting measurements from legacy ocean color imagers

– Gaps in the DRM nanosatellites’ HSI performance were identified and a set of
recommendations for improving performance are provided
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5.3 Future Work

Topics for future work are provided in the list below. These include methods for improving
on the approach taken in this work, recommendations for improving nanosatellite compliance
with the ocean color measurement objectives, and tasks that could augment the contributions
resulting from this work.

• Vicarious Calibration: Methods for vicarious calibration with in-situ water-leaving
radiance data were discussed but not specifically addressed by this work. It is necessary
to establish an approach for validating and validating a nanosatellite’s HSI against in-
situ data in or near the target ROI during the mission operations planning phase of
the nanosatellite mission. Using STK models to show coverage of active in-situ sites
in a set of target ROIs with the reduced swath widths provided by nanosatellite HSIs
would make for an excellent master’s thesis.

• Temporal Resolution: Similarly, the need for improved temporal resolution was
stated, but no temporal coverage modeling was completed for the target ROIs. The
feasibility of using nanosatellite constellations for improving temporal and regional
coverage for a set of target ROIs with varying temporal needs should be studied.
Different regions require different revisit rates based on the frequency and rate of
change of local small and large-scale surface features, and knowing the minimum viable
solution for addressing these needs could be helpful.

• Additional Targets: This work only targets derivation of chlorophyll-a pigment from
ocean color remote sensing data. There are a number of other direct ocean feature
measurements that nanosatellites could provide, and there are additional proxies to
derive from ocean color detection. For example, CDOM is likely the most challenging
to derive from ocean color given that poor signal in the violet and blue bands sensed
from CDOM-dominated waters significantly complicates the atmospheric correction
process. A dedicated nanosatellite mission could potentially address this for a specific
region. Suspended particulate matter and other inherent optical properties are also of
interest for the community

• Dedicated Optical Paths: SWIR bands are arguably necessary for any ocean color
coastal imaging to adequately perform atmospheric correction. Combining multiple
sensor types into a nanosatellite-based telescope assembly (e.g., two separate paths:
one for VIS/NIR HSI imaging and one for 3-5 dedicated SWIR bands) could be use-
ful for improving atmospheric correction. With some intentional design choices, this
approach could also allow for concurrent measurements of sea surface temperature
and potentially the derivation of sea surface salinity, two other high-prioriy Essential
Ocean Variables. A design architecture similar to STAR Lab’s Satellite for Estimating
Aquatic Salinity and Temperature (SEASALT) nanosatellite is recommended.

• Combined Radiative Transfer Model: To more accurately predict the propagation
of light through the Earth’s atmosphere and from below the ocean’s surface there is a
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need for an open-source radiative transfer model that adequately models the interac-
tions between the ocean’s surface and atmosphere. Several existing radiative transfer
models are dedicating to modeling either only atmospheric or ocean light propagation,
and models that do combine these interactions are costly and inaccessible to students
and universities.

• Addressing the Bottleneck: Hypercubes will likely always remain a bottleneck for
nanosatellites given their large demand on on-board storage, internal transfer, and
down link capacity. Methods for internal and/or external optical communication sys-
tems with much higher data rates would alleviate this limitation, allowing for increased
data accessibility to end users.

• Smart Selection: Similarly, improved methods for "smart" scene selection where
on-board processing methods enable improvements to feature detection for selecting
scenes of interest is desirable. This feature would allow users to selectively downlink
data containing features of interest rather than downlink all available hypercubes.
Improved methods for cloud detection in captured scenes would be of great benefit
considering that cloud coverage is one of the largest limitations for frequent, space-
based imaging.

• Increased Volume: Extending to larger a "U" class, say 12U, could only help. As-
suming the HSI detector area size and optical elements also scale, this could support
higher SNRs and potentially alleviate some of the issues with SNR and NESR compli-
ance.

• Mission Operations Design: It is recommended that nanosatellite HSI missions
are designed with consideration for worst case LTOA considerations, i.e. the "darkest"
anticipated imaging scenes. This involves some method for modeling or determining
(from legacy satellite data, for instance) anticipated TOA radiance values in the mis-
sion’s regions of interest. Having some understanding of the minimum expected TOA
radiance values is informative for a mission’s concept of operations, imaging detector
component selection, and methods for improving imager sensitivity prior to launch.

• Community Engagement: Increased engagement to bridge connectivity with ocean-
based and space-based communities is necessary. We have a lot to learn from each
other, and effectively monitoring our planet’s health from space requires permanent
collaboration between the folks designing instrumentation and those interpreting the
data.
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[258] F.-M. Bréon, “Reflectance of broken cloud fields: Simulation and parameterization,”
Journal of Atmospheric Sciences, vol. 49, no. 14, pp. 1221–1232, 1992. doi: https:
/ /doi . org / 10 . 1175 / 1520 - 0469(1992 ) 049<1221 :ROBCFS> 2 . 0 .CO ; 2. [Online].
Available: https://journals .ametsoc.org/view/journals/atsc/49/14/1520- 0469_
1992_049_1221_robcfs_2_0_co_2.xml.

[259] K. L. Coulson, Tables related to radiation emerging from a planetary atmosphere with
Rayleigh scattering. University of California Press, 1960. [Online]. Available: https:
//cir.nii.ac.jp/crid/1130282269537726336.

[260] S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and J. Frank J. Klemm, “Validation
of a vector version of the 6s radiative transfer code for atmospheric correction of
satellite data. part i: Path radiance,” Appl. Opt., vol. 45, no. 26, pp. 6762–6774, Sep.
2006. doi: 10.1364/AO.45.006762. [Online]. Available: https://opg.optica.org/ao/
abstract.cfm?URI=ao-45-26-6762.

[261] S. Y. Kotchenova and E. F. Vermote, “Validation of a vector version of the 6s radia-
tive transfer code for atmospheric correction of satellite data. part ii. homogeneous
lambertian and anisotropic surfaces,” Appl. Opt., vol. 46, no. 20, pp. 4455–4464, Jul.
2007. doi: 10.1364/AO.46.004455. [Online]. Available: https://opg.optica.org/ao/
abstract.cfm?URI=ao-46-20-4455.

[262] R. Wilson, “Py6s: A python interface to the 6s radiative transfer model,” Computers
& Geosciences, vol. 51, pp. 166–171, 2013, issn: 0098-3004. doi: https://doi.org/
10.1016/j.cageo.2012.08.002. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0098300412002798.

[263] R. D. Fiete and T. A. Tantalo, “Comparison of SNR image quality metrics for remote
sensing systems,” Optical Engineering, vol. 40, no. 4, pp. 574–585, 2001. doi: 10.1117/
1.1355251. [Online]. Available: https://doi.org/10.1117/1.1355251.

[264] P. Fry, P. Noble, and R. Rycroft, “Fixed-pattern noise in photomatrices,” IEEE Jour-
nal of Solid-State Circuits, vol. 5, no. 5, pp. 250–254, 1970. doi: 10.1109/JSSC.1970.
1050122.

[265] Andor. “Understanding read noise in scmos cameras.” (), [Online]. Available: https:
//andor .oxinst .com/learning/view/article/understanding - read- noise - in- scmos-
cameras.

185

https://doi.org/https://doi.org/10.1016/S0048-9697(00)00686-0
https://doi.org/https://doi.org/10.1016/S0048-9697(00)00686-0
https://www.sciencedirect.com/science/article/pii/S0048969700006860
https://www.sciencedirect.com/science/article/pii/S0048969700006860
https://doi.org/10.1364/AO.47.002215
https://opg.optica.org/ao/abstract.cfm?URI=ao-47-13-2215
https://doi.org/https://doi.org/10.1175/1520-0469(1992)049<1221:ROBCFS>2.0.CO;2
https://doi.org/https://doi.org/10.1175/1520-0469(1992)049<1221:ROBCFS>2.0.CO;2
https://journals.ametsoc.org/view/journals/atsc/49/14/1520-0469_1992_049_1221_robcfs_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/49/14/1520-0469_1992_049_1221_robcfs_2_0_co_2.xml
https://cir.nii.ac.jp/crid/1130282269537726336
https://cir.nii.ac.jp/crid/1130282269537726336
https://doi.org/10.1364/AO.45.006762
https://opg.optica.org/ao/abstract.cfm?URI=ao-45-26-6762
https://opg.optica.org/ao/abstract.cfm?URI=ao-45-26-6762
https://doi.org/10.1364/AO.46.004455
https://opg.optica.org/ao/abstract.cfm?URI=ao-46-20-4455
https://opg.optica.org/ao/abstract.cfm?URI=ao-46-20-4455
https://doi.org/https://doi.org/10.1016/j.cageo.2012.08.002
https://doi.org/https://doi.org/10.1016/j.cageo.2012.08.002
https://www.sciencedirect.com/science/article/pii/S0098300412002798
https://www.sciencedirect.com/science/article/pii/S0098300412002798
https://doi.org/10.1117/1.1355251
https://doi.org/10.1117/1.1355251
https://doi.org/10.1117/1.1355251
https://doi.org/10.1109/JSSC.1970.1050122
https://doi.org/10.1109/JSSC.1970.1050122
https://andor.oxinst.com/learning/view/article/understanding-read-noise-in-scmos-cameras
https://andor.oxinst.com/learning/view/article/understanding-read-noise-in-scmos-cameras
https://andor.oxinst.com/learning/view/article/understanding-read-noise-in-scmos-cameras


[266] Ximea, Xispec2: Hyperspectral imaging camera series, version 2, Manual downloadable
upon creation of account, 2021. [Online]. Available: https://www.ximea.com/en/
products/hyperspectral-cameras-based-on-usb3-xispec/mq022hg-im-ls150-visnir.

[267] ams OSRAM, Cmv2000: Global shutter cmos imager sensor for machine vision, ver-
sion 6, Aug. 2023. [Online]. Available: https://ams.com/documents/20143/4421878/
CMV2000_DS000734_6-00.pdf.

[268] IMEC, Linescan hyperspectral image sensor. [Online]. Available: https://www.imec-
int.com/drupal/sites/default/files/inline-files/LS100%20linescan%20hyperspectral%
20image%20sensor_0.pdf.

[269] A. Space. “Totem.” (), [Online]. Available: https://products.alen.space/products/
totem-sdr.

[270] E. F. Prentice, M. B. Henriksen, T. A. Johansen, F. N. Medina, and A. G. S. Juan,
“Characterizing spectral response in thermal environments, the hypso-1 hyperspectral
imager,” in 2022 IEEE Aerospace Conference (AERO), 2022, pp. 1–10. doi: 10.1109/
AERO53065.2022.9843389.

[271] IOCCG, Observation of Harmful Algal Blooms with Ocean Colour Radiometry (Re-
ports of the International Ocean Colour Coordinating Group), S. Bernard, L. R. Lain,
R. Kudela, and G. Pitcher, Eds. Dartmouth, Canada: IOCCG, 2021, vol. No. 20. doi:
10.25607/OBP-1042. [Online]. Available: https://ioccg.org/wp-content/uploads/
2021/05/ioccg_report_20-habs-2021-web.pdf.

[272] J. M. Van Dyke, “The disappearing right to navigational freedom in the exclusive eco-
nomic zone,” Marine Policy, vol. 29, no. 2, pp. 107–121, 2005, Military and Intelligence
Gathering Activities in the Exclusive E conomic Zone: Consensus and Disagreement
II, issn: 0308-597X. doi: https://doi.org/10.1016/j.marpol.2004.08.004. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0308597X04000788.

[273] M. Alves, F. Gaillard, M. Sparrow, M. Knoll, and S. Giraud, “Circulation patterns
and transport of the azores front-current system,” Deep Sea Research Part II: Topical
Studies in Oceanography, vol. 49, no. 19, pp. 3983–4002, 2002, Canary Islands, Azores,
Gibraltar Observations (Canigo) Volume II : Studies of the Azores and Gibraltar re-
gions, issn: 0967-0645. doi: https://doi.org/10.1016/S0967-0645(02)00138-8. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/S0967064502001388.

[274] S. Bélanger, M. Babin, and J.-É. Tremblay, “Increasing cloudiness in arctic damps
the increase in phytoplankton primary production due to sea ice receding,” Biogeo-
sciences, vol. 10, no. 6, pp. 4087–4101, 2013. doi: 10.5194/bg-10-4087-2013. [Online].
Available: https://bg.copernicus.org/articles/10/4087/2013/.

[275] M. Ardyna and K. R. Arrigo, “Phytoplankton dynamics in a changing arctic ocean,”
Nature Climate Change, vol. 10, no. 10, pp. 892–903, 2020. doi: 10.1038/s41558-020-
0905-y. [Online]. Available: https://doi.org/10.1038/s41558-020-0905-y.

186

https://www.ximea.com/en/products/hyperspectral-cameras-based-on-usb3-xispec/mq022hg-im-ls150-visnir
https://www.ximea.com/en/products/hyperspectral-cameras-based-on-usb3-xispec/mq022hg-im-ls150-visnir
https://ams.com/documents/20143/4421878/CMV2000_DS000734_6-00.pdf
https://ams.com/documents/20143/4421878/CMV2000_DS000734_6-00.pdf
https://www.imec-int.com/drupal/sites/default/files/inline-files/LS100%20linescan%20hyperspectral%20image%20sensor_0.pdf
https://www.imec-int.com/drupal/sites/default/files/inline-files/LS100%20linescan%20hyperspectral%20image%20sensor_0.pdf
https://www.imec-int.com/drupal/sites/default/files/inline-files/LS100%20linescan%20hyperspectral%20image%20sensor_0.pdf
https://products.alen.space/products/totem-sdr
https://products.alen.space/products/totem-sdr
https://doi.org/10.1109/AERO53065.2022.9843389
https://doi.org/10.1109/AERO53065.2022.9843389
https://doi.org/10.25607/OBP-1042
https://ioccg.org/wp-content/uploads/2021/05/ioccg_report_20-habs-2021-web.pdf
https://ioccg.org/wp-content/uploads/2021/05/ioccg_report_20-habs-2021-web.pdf
https://doi.org/https://doi.org/10.1016/j.marpol.2004.08.004
https://www.sciencedirect.com/science/article/pii/S0308597X04000788
https://doi.org/https://doi.org/10.1016/S0967-0645(02)00138-8
https://www.sciencedirect.com/science/article/pii/S0967064502001388
https://doi.org/10.5194/bg-10-4087-2013
https://bg.copernicus.org/articles/10/4087/2013/
https://doi.org/10.1038/s41558-020-0905-y
https://doi.org/10.1038/s41558-020-0905-y
https://doi.org/10.1038/s41558-020-0905-y


[276] K. M. Lewis, G. L. van Dijken, and K. R. Arrigo, “Changes in phytoplankton con-
centration now drive increased arctic ocean primary production,” Science, vol. 369,
no. 6500, pp. 198–202, 2020. doi: 10.1126/science.aay8380. eprint: https://www.
science.org/doi/pdf /10.1126/science.aay8380. [Online]. Available: https://www.
science.org/doi/abs/10.1126/science.aay8380.

[277] K. Frey, “Arctic ocean primary productivity.,” In: Arctic Report Card 2017, NOAA,
http://www. arctic. noaa. gov/Report-Card/Report-Card-2017/ArtMID/7798/ArticleID/701/Arctic-
Ocean-Primary-Productivity, 2017.

[278] A. D. Crawford, K. M. Krumhardt, N. S. Lovenduski, G. L. van Dijken, and K. R.
Arrigo, “Summer high-wind events and phytoplankton productivity in the arctic
ocean,” Journal of Geophysical Research: Oceans, vol. 125, no. 9, e2020JC016565,
2020, e2020JC016565 2020JC016565. doi: https://doi.org/10.1029/2020JC016565.
eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf /10.1029/2020JC016565.
[Online]. Available: https ://agupubs .onlinelibrary .wiley . com/doi/abs/10 .1029/
2020JC016565.

[279] D. A. Hutchins and P. W. Boyd, “Marine phytoplankton and the changing ocean iron
cycle,” Nature Climate Change, vol. 6, no. 12, pp. 1072–1079, 2016. doi: 10.1038/
nclimate3147. [Online]. Available: https://doi.org/10.1038/nclimate3147.

[280] C. Horvat, D. R. Jones, S. Iams, D. Schroeder, D. Flocco, and D. Feltham, “The
frequency and extent of sub-ice phytoplankton blooms in the arctic ocean,” Science
Advances, vol. 3, no. 3, e1601191, 2017. doi: 10.1126/sciadv.1601191. eprint: https:
//www.science.org/doi/pdf /10.1126/sciadv .1601191. [Online]. Available: https :
//www.science.org/doi/abs/10.1126/sciadv.1601191.

[281] E. Chilaka and A. Olukoju, “Seaports of the gulf of guinea, c.1970–2018: Developments
and transformations,” in African Seaports and Maritime Economics in Historical Per-
spective, A. Olukoju and D. Castillo Hidalgo, Eds. Cham: Springer International Pub-
lishing, 2020, pp. 111–144. doi: 10.1007/978-3-030-41399-6_5. [Online]. Available:
https://doi.org/10.1007/978-3-030-41399-6_5.

[282] A. M. Dahunsi, F. Bonou, O. A. Dada, and E. Baloïtcha, “Spatio-temporal trend of
past and future extreme wave climates in the gulf of guinea driven by climate change,”
Journal of Marine Science and Engineering, vol. 10, no. 11, 2022, issn: 2077-1312.
doi: 10 . 3390/ jmse10111581. [Online]. Available: https : //www .mdpi . com/2077 -
1312/10/11/1581.

[283] S. K. Lawson, K. Udo, H. Tanaka, and J. Bamunawala, “Littoral drift impoundment at
a sandbar breakwater: Two case studies along the bight of benin coast (gulf of guinea,
west africa),” Journal of Marine Science and Engineering, vol. 11, no. 9, 2023, issn:
2077-1312. doi: 10.3390/jmse11091651. [Online]. Available: https://www.mdpi.com/
2077-1312/11/9/1651.

[284] I. Okafor-Yarwood and I. J. Adewumi, “Toxic waste dumping in the global south as
a form of environmental racism: Evidence from the gulf of guinea,” African Studies,
vol. 79, no. 3, pp. 285–304, 2020. doi: 10 . 1080 / 00020184 . 2020 . 1827947. eprint:

187

https://doi.org/10.1126/science.aay8380
https://www.science.org/doi/pdf/10.1126/science.aay8380
https://www.science.org/doi/pdf/10.1126/science.aay8380
https://www.science.org/doi/abs/10.1126/science.aay8380
https://www.science.org/doi/abs/10.1126/science.aay8380
https://doi.org/https://doi.org/10.1029/2020JC016565
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020JC016565
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JC016565
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JC016565
https://doi.org/10.1038/nclimate3147
https://doi.org/10.1038/nclimate3147
https://doi.org/10.1038/nclimate3147
https://doi.org/10.1126/sciadv.1601191
https://www.science.org/doi/pdf/10.1126/sciadv.1601191
https://www.science.org/doi/pdf/10.1126/sciadv.1601191
https://www.science.org/doi/abs/10.1126/sciadv.1601191
https://www.science.org/doi/abs/10.1126/sciadv.1601191
https://doi.org/10.1007/978-3-030-41399-6_5
https://doi.org/10.1007/978-3-030-41399-6_5
https://doi.org/10.3390/jmse10111581
https://www.mdpi.com/2077-1312/10/11/1581
https://www.mdpi.com/2077-1312/10/11/1581
https://doi.org/10.3390/jmse11091651
https://www.mdpi.com/2077-1312/11/9/1651
https://www.mdpi.com/2077-1312/11/9/1651
https://doi.org/10.1080/00020184.2020.1827947


https://doi.org/10.1080/00020184.2020.1827947. [Online]. Available: https://doi.
org/10.1080/00020184.2020.1827947.

[285] P. Scheren and A. Ibe, “22 environmental pollution in the gulf of guinea: A regional
approach,” in The Gulf of Guinea Large Marine Ecosystem, ser. Large Marine Ecosys-
tems, J. M. McGlade, P. Cury, K. A. Koranteng, and N. J. Hardman-Mountford,
Eds., vol. 11, Elsevier, 2002, pp. 299–320. doi: https ://doi .org/10.1016/S1570-
0461(02 ) 80044 - 1. [Online]. Available: https : / /www . sciencedirect . com/ science /
article/pii/S1570046102800441.

[286] A. Berk, L. S. Bernstein, D. C. Robertson, et al., Modtran: A moderate resolution
model for lowtran 7, 1989.

[287] H. E. Gerber, Relative-humidity parameterization of the Navy Aerosol Model (NAM).
Naval Research Laboratory, 1985. [Online]. Available: https ://apps .dtic .mil/sti/
citations/ADA163209.

[288] J. Piazzola, A. M. J. van Eijk, and G. de Leeuw, “Extension of the Navy aerosol
model to coastal areas,” Optical Engineering, vol. 39, no. 6, pp. 1620–1631, 2000. doi:
10.1117/1.602538. [Online]. Available: https://doi.org/10.1117/1.602538.

[289] H. G. Hughes, “Evaluation Of The LOWTRAN 6 Navy Maritime Aerosol Model Using
8 To 12 Âµm Sky Radiances,” Optical Engineering, vol. 26, no. 11, p. 261 155, 1987.
doi: 10.1117/12.7974209. [Online]. Available: https://doi.org/10.1117/12.7974209.

[290] S. Adler-Golden, A. Berk, L. Bernstein, S. Richtsmeier, P. Acharya, M. Matthew, G.
Anderson, C. Allred, L. Jeong, and J. Chetwynd, “Flaash, a modtran4 atmospheric
correction package for hyperspectral data retrievals and simulations,” in Proc. 7th
Ann. JPL Airborne Earth Science Workshop, JPL Publication Pasadena, CA, vol. 97,
1998, pp. 9–14.

[291] CMOSIS/AWAIBA, Megapixel machine vision cmos image sensor, 2.14, CMV2000
Datasheet at https://ams.com/en/cmv2000, ams, 2014.

[292] Ximea. “Cmosis cmv2000 nir usb3 industrial camera.” Full manual available upon
request. (Jan. 2024), [Online]. Available: https ://www.ximea.com/en/products/
cameras-filtered-by-sensor-sizes/cmosis-cmv2000-nir-usb3-industrial-camera.

[293] S. A. Lerner and B. Dahlgrenn, “Etendue and optical system design,” in Nonimaging
Optics and Efficient Illumination Systems III, R. Winston and P. Benítez, Eds., In-
ternational Society for Optics and Photonics, vol. 6338, SPIE, 2006, p. 633 801. doi:
10.1117/12.685066. [Online]. Available: https://doi.org/10.1117/12.685066.

[294] B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algo-
rithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt., vol. 39,
no. 6, pp. 887–896, Feb. 2000. doi: 10.1364/AO.39.000887. [Online]. Available: https:
//opg.optica.org/ao/abstract.cfm?URI=ao-39-6-887.

[295] M. Wang. “Atmospheric correction of ocean color rs observations.” Online Lecture.
(Jul. 2012), [Online]. Available: https://ioccg.org/training/SLS-2012/Wang-Sections
1-4.pdf.

188

https://doi.org/10.1080/00020184.2020.1827947
https://doi.org/10.1080/00020184.2020.1827947
https://doi.org/10.1080/00020184.2020.1827947
https://doi.org/https://doi.org/10.1016/S1570-0461(02)80044-1
https://doi.org/https://doi.org/10.1016/S1570-0461(02)80044-1
https://www.sciencedirect.com/science/article/pii/S1570046102800441
https://www.sciencedirect.com/science/article/pii/S1570046102800441
https://apps.dtic.mil/sti/citations/ADA163209
https://apps.dtic.mil/sti/citations/ADA163209
https://doi.org/10.1117/1.602538
https://doi.org/10.1117/1.602538
https://doi.org/10.1117/12.7974209
https://doi.org/10.1117/12.7974209
https://ams.com/en/cmv2000
https://www.ximea.com/en/products/cameras-filtered-by-sensor-sizes/cmosis-cmv2000-nir-usb3-industrial-camera
https://www.ximea.com/en/products/cameras-filtered-by-sensor-sizes/cmosis-cmv2000-nir-usb3-industrial-camera
https://doi.org/10.1117/12.685066
https://doi.org/10.1117/12.685066
https://doi.org/10.1364/AO.39.000887
https://opg.optica.org/ao/abstract.cfm?URI=ao-39-6-887
https://opg.optica.org/ao/abstract.cfm?URI=ao-39-6-887
https://ioccg.org/training/SLS-2012/Wang-Sections1-4.pdf
https://ioccg.org/training/SLS-2012/Wang-Sections1-4.pdf


[296] C. wei Zheng and J. Pan, “Assessment of the global ocean wind energy resource,”
Renewable and Sustainable Energy Reviews, vol. 33, pp. 382–391, 2014, issn: 1364-
0321. doi: https://doi.org/10.1016/j.rser.2014.01.065. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1364032114000860.

[297] P.-W. Zhai, E. Boss, B. Franz, P. J. Werdell, and Y. Hu, “Radiative transfer modeling
of phytoplankton fluorescence quenching processes,” Remote Sensing, vol. 10, no. 8,
2018, issn: 2072-4292. doi: 10.3390/rs10081309. [Online]. Available: https://www.
mdpi.com/2072-4292/10/8/1309.

189

https://doi.org/https://doi.org/10.1016/j.rser.2014.01.065
https://www.sciencedirect.com/science/article/pii/S1364032114000860
https://www.sciencedirect.com/science/article/pii/S1364032114000860
https://doi.org/10.3390/rs10081309
https://www.mdpi.com/2072-4292/10/8/1309
https://www.mdpi.com/2072-4292/10/8/1309

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.1.1 Oceans and Society
	1.1.2 Ocean Color Definition
	1.1.3 Hyperspectral Imaging
	1.1.4 The Nanosatellite Solution
	1.1.5 Targeting Variables for Sustainable Development

	1.2 Literature Review
	1.2.1 Multispectral Ocean Color Imagers
	1.2.2 Airborne Hyperspectral Imagers
	1.2.3 Hyperspectral Ocean Color Imagers
	1.2.4 Planed Hyperspectral Missions
	1.2.5 Nanosatellite Missions with HSI Payloads

	1.3 Ocean Color Remote Sensing
	1.3.1 Atmospheric Correction
	1.3.2 Water Type Classification

	1.4 Thesis Contributions and Roadmap
	1.4.1 Summary of gaps
	1.4.2 Contributions
	1.4.3 Dissertation Roadmap


	2 Tools and Performance Metrics
	2.1 Ocean Color Remote Sensing Requirements
	2.1.1 Requirements and Constraints
	2.1.2 Science Traceability Matrix
	2.1.3 Product Retrieval Algorithms
	2.1.4 Atmospheric Correction Models

	2.2 Performance Metrics
	2.2.1 Signal-to-noise Ratio (SNR)
	2.2.2 Noise Equivalent Spectral Radiance
	2.2.3 Noise Equivalent Reflectance Difference
	2.2.4 Additional Considerations

	2.3 Radiometry and Radiative Transfer
	2.3.1 Principles of Radiometry
	2.3.2 Principles of Radiative Transfer
	2.3.3 Second Simulation of the Satellite Signal in the Solar Spectrum (6SV)
	2.3.4 Radiometric Performance Modeling Approach

	2.4 Design Reference Mission Architectures
	2.4.1 The AEROS Mission
	2.4.2 The HYPSO-1 Mission


	3 Scenario Descriptions and Case Studies
	3.1 Regions of Interest
	3.1.1 Lisbon, Portugal
	3.1.2 The Barents Sea
	3.1.3 Gulf of Guinea

	3.2 Synthetic Scenes
	3.2.1 Parameter Description and Model Assumptions
	3.2.2 Ocean Surface Bidirectional Reflectance Distribution Function (BRDF)

	3.3 Design Reference Mission Architectures
	3.3.1 System Parameters
	3.3.2 AEROS SNR Validation
	3.3.3 HYPSO-1 SNR Validation


	4 Analysis and Results
	4.1 Regional Synthetic Scenes
	4.1.1 Lisbon, Portugal
	4.1.2 Gulf of Guinea
	4.1.3 Barents Sea
	4.1.4 Comparison with VIIRS Data
	4.1.5 Summary

	4.2 SNR Analysis
	4.2.1 AEROS SNR
	4.2.2 HYPSO-1 SNR
	4.2.3 Summary

	4.3 Noise Equivalent Spectral Radiance (NESR)
	4.3.1 AEROS NESR
	4.3.2 HYPSO-1 NESR

	4.4 Accounting for Coastal Dependencies
	4.4.1 Handheld VIS/NIR Spectroradiometer


	5 Summary and Future Work
	5.1 Summary of Work
	5.1.1 Scene Limitations

	5.2 Contributions
	5.3 Future Work

	References

