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ABSTRACT

The influence of turbulence, external forces, and a

heat source on the propagation and stability of an acoustic

wave has been studied. The general theory of sound

propagation in a turbulent medium has been used to study

the statistics of a sound field above a plane boundary.

The analysis has been compared with experimental data
obtained in the laboratory and i: the field.

In order to study the propagation of finite amplitude

waves in a stratified medium, it is necessary to modify

the classical theory of large amplitude propagation. This
modification has been made, and the results are applied to

a specific problem, the propagation of an N-wave in a gas

stratified bv the gravitational force.

| The acoustic instability known as the Rijke phenomenon

has been treated as a scattering problem, and a characteristic

equation has been derived that defines the stability limits
of the oscillation. Some experimental results have also
been obtained. and are compared with the analvsis.

Thesis Supervisor: Uno Ingard

Title: Associate Professor of Phvsics
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Chapter 1. Introduction

statement of the Problem

In the continuum description, the motion of fluids is

governed by a set of non-linear partial differential

equations, and therefore it has always been necessary to

attempt to find approximate solutions to the equations.

These attempts make up a body of literature to which workers

in acoustics have contributed a great deal. A comparatively

recent viewpoint is that not only external source terms are

thought of as producing a disturbance that can propagate, but

also that the non-linear terms may, under certain circum-

stances, be considered to be source terms, and by using this

notion, problems such as the generation and scattering of

sound by sound have been explored. Although the general form

of all of the source terms has been recognized, there are

manv svecific problems that remain to be worked out before

our understanding is complete.

[t has been found that the fluctuation in the amplitude

of a sound wave measured in the field is frequently much

larger than one would predict using the theory of sound

propagation in an unbounded turbulent medium. In an effort

to understand this difference we have considered the influence

of a plane boundary on the statistics of the sound field.

Measurements have been made both in the field and in the



laboratory, and have been compared with an analysis that

includes amplitude and phase fluctuations in the sound field.

Reasonably good agreement between the two has been obtained,

as is shown in Chapter 2.

Another problem that has not yet been completely worked

out is the motion of a steep-fronted wave in a stratified

medium. The classical theory of propagation of finite

amplitude waves has been modified and applied to the propa-

gation of a wave in a medium stratified by the gravitational

force. Although some of the results can be obtained by

accounting for the wave energy lost by dissipation in the

shock front, the analysis presented here is more general and

can be used to study many features of the motion that cannot

be studied by using an energy approach.

A third problem that has not yet been completely under-

stood is an acoustic instability caused by a heat source.

An oscillation, first observed by Rijke, is produced by the

presence of a heated grid in the lower half of a vertical

tube. and has been studied by a number of workers. In this

thesis, the problem is treated in terms of the scattering of

sound by a heat source. It is found that many of the features

of the oscillation can be rather easily understood when

examined from this point of view. The analysis is compared

with experimental results obtained by the author and by

other workers.

Before proceeding with a detailed treatment of each

&gt;roblem. it will be convenient to present a verv brief



summary of the equations of motion, and to point out the

specific source terms to be included in the analysis.

2. The Equations of Motion

The equations that provide a continuum description of

the motion of fluids, the equations of conservation of fluid

mass, momentum, and energy, may be most conveniently written

in terms of an Eulerian description of the motion. That is,

the field variables are taken to be functions of two inde=-

pendent variables, the position x and time t. If we allow

for the fact that an external source may inject mass into the

fluid, that external forces may act on the fluid, on that

external energy sources are present, then the conservation

laws may be written in the following ls 2) form:

? Pl

3 + 5a (evi) = 1

t. .3 ii _ La

oh, 7%;
Stow

(1-1)

(1-2)

(1-3)

A repeated index indicates a summation from 1 to 3. In these

equations is the fluid density, A is the ith component of

the velocity, and ij represents the stress in the fluid.

tig = Pi = Djy *+ vyvy. Dy; is the viscous stress tensor

and p is the pressure in the fluid. In the energy ecuation

(1-3) h is the energy density of the fluid, v2/2 + pe and

I. is the jth component of the energy flow vector. All of
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the terms on the right hand side of the above equations

represent source terms. Q is the rate at which mass is

introduced per unit volume into the fluid, and the term Qv,

represents a change in momentum per unit volume due to

convection. Fy represents the external force acting per

unit volume, and W represents energy sources. These equations

plus the equation of state are sufficient to describe the

notion of the fluid.

We next derive a wave equation by taking 2/2t of Eq. (1-1;

and J/3x; of Eq. (1-2) and subtracting the two resulting

equations. We obtain

Ze Pp... fi 2 &gt;
RC— C= 4 - —_— a. 2 nn

32 ” at X3 Ix (Quy) tox ox : (pv;vy) ©

2
dij

CASTES
(1-4)

Ne mav now add (l/c? £p/ ot” to both sides and obtain a wave

aquation for p in the following form:

52 2
7p Ll 2p. 7i_20, 32 i37 CZ gl ax Ta” =Ct tog) ma Zui IXIX; evivi) * 5x5x

22 2

pd p- p/c) (1-5)

c is a constant which will turn out to be the adiabadic speed

of sound, (3p/3¢) . Note that we have not up to now made

any approximations to the conservation laws, and therefore

this equation may be taken as the starting point for a

solution to all problems that involve a continuum description

of the motion of fluids. ‘The analysis and experiments in the

following chapters were performed in order to learn more



about some of these source terms, and include both linear

and non-linear problems. In the following sections of this

introduction we will discuss the source terms that are of

importance in the problems that we wish to study in the

following chapters.

3. Influence ofTurbulence on the Sound Field Over a Plane

Boundary

The influence of turbulence on the sound propagated in

an unbounded medium has been presented in the recent books

by chernov(3?and Tatarski$*?and in the recent article by

Morse and Ingard $l) The important source term to be con-

sidered is the term Pax, (gvyvy) in Eq. (1-5). If we

assume that the acoustic velocity field is represented by a

plane harmonic wave of wave number Ko» then we may separate

the above term into Fax x, (p(V4Vy + Viuj * Viuy te ujuy))

where Vy represents the turbulent velocity field. If we

neglect the term responsible for the generation of sound by

turbulence?» 6) (V5Vy) and the term responsible for the

scattering of sound by sound (ujus), then the part of the

remaining cross-terms linear in the acoustic variable are

F Io%;5%, (0 o(Vyuy + Viuidd, and are the important source

terms. If the quantity added to both sides of Eq. (1-4) is

taken to be (1/¢ ?) Splat? where SR is the speed of the

gcoustic wave in the absence of turbulence, then the acoustic

variables in the last term of Eg. (1=5) cancel out for

isentropic flow, and the wave equation for the sound pressure

(p) mav eventually be written:
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Pa . 2Vx 2
: ’ 0 (1-6)

where the term on the right is obtained from the source term

by using the linear form of the equation of continuity and

the relation p = 8 , where8is the density perturbation

in the fluid. Using this approximation, the variance of the

amplitude and phase fluctuations of the acoustic wave may be

found. In Chapter 2 we have included a boundary in the

medium, and have studied both the changes in the RMS level

and the fluctuations that occur because of the interference

between the direct wave from the source and the wave reflected

from the boundarv.

4 Propagation of Wave~ nf Finjte Amnlitude in Tnhomogeneous

Media

[t i~ necessary to retain more terms in Chapter 3 where

the propagation of finite amplitude waves is studied. The

medium is assumed to be stratified by the presence of a bodv

force that also produces an entropy gradient. Thus, both the

first and last terms will have to be retained, the latter

because the difference between plc? and p is not onlv caused

by heat conduction, but also because there is a convection

of entropy by the particle velocity in the wave. In the

dissipationless approximation, the change in entropy of 3

fluid element is zero only when a Lagrangian description of

“he motion is used. In the Eulerian description that we have

adopted, the entropy at a point in space can vary (even in

the linear approximation) and so these convection terms as

well as the loge terms will have to be retained, We will



also have to keep a portion of the fourth term to account

for progressive distortion in the wave. These facts lead to

a modification of the classical theory of Riemann’?and

stokes(8 that can be applied to the propagation of finite

amplitude waves in inhomogeneous media. Since any pertur-

bation, no matter how small, eventually leads to a double=-

valued field variable in the lossless approximation, we will

have to include dissipative effects in order to obtain valid

results. In the approximation used in Chapter 3, the loss

terms are included in a somewhat different manner. Since we

do not consider the growth of an initial small disturbance

into a steep-fronted (shock) wave, but rather the propagation

of an already formed shock in an inhomogeneous medium, the

approximation is made that all of the dissipation occurs in

the steep front because the field variables have larce

eradients in this region. Application of the conservation

laws across the shock front leads to the Rankine?) -tuoonior (10

shock relations, and when these relations are used with the

loss-free equations, a relation mav be found that describes

the decay of pressure at the shock front with distance. Such

an analysis has been performed by Dumond, Cohen, Panofsky and

peeds (1 gor an N-wave in a homogeneous medium, and our

results will reduce to results obtained by those workers in

the limit F,—0. For this particular problem, it is best to

identify the source terms that are important using Eq. (1-5),

but in order to perform the analysis it is more convenient to

use the equations of motion directly as will be shown in

Chapter 3
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Even if the non-linear effects are neglected, calculation

of the propagation constant for a plane harmonic wave in a

medium stratified by the gravitational force leads to an

attenuation or amplification of the sound pressure (p)

consistent with conservation of energy, p2/20ce = constant.

[n addition to the change in amplitude, the imaginary part

of the propagation constant decreases with decreasing

frequency until the density fluctuations are balanced out

by the entropy fluctuations, and then no pressure wave is

propagated. The former effect is shown to occur for finite

amplitude waves as well, but is modified by dissipation in

the steep front. The additional factors that have to be

included to obtain the latter effect are also pointed out.

5, The Scattering of Sound by a Heat Source

The last term in Eq. (1-4) is important when the

generation or scattering of sound by heat is being considered.

The portion of the last term linear in the acoustic variables

for a homozeneous medium is F/at? ($- n/c?) which, using

the equation of state p = p(p,s) may be written (1/¢271)

(3p/3s), (2a/2t) where q is the rate at which heat is added

per unit mass to the fluid. For an ideal gas, the source

term is (1-1) (1/c?)(3q/2t). When the heat added is influ

enced by a velocity perturbation in the fluid, the acoustic

variables may, under certain conditions, grow with time.

The particular problem worked out in Chapter 4 is the Riijke

phenomenon, the oscillation caused by the presence of a heated

2rid in the lower half of a tube open at both ends. Up to



now, the problem has been attacked by using the source-free

wave equation and requiring that the acoustic variables

satisfy the appropriate boundary conditions on either side

of the heater as well as the conservation laws across the

heater. Such an approach leads to a rather complicated

characteristic equation that must be solved either by machine

computation or by a perturbation expansion around approximate

values of the eigenvalues. These complications are avoided

when one views the phenomenon as a one-dimensional scattering

problem. If the source term is treated as a spacial &amp;-

function whose magnitude depends on the value of the particle

velocity at some point, then the pressure perturbation can

be expanded into an infinite series of orthonormal functions

that satisfy the appropriate boundary conditions. When the

actual eigenvalue for the tube is sufficiently close to an

eigenvalue of one of the modes, then only one term in the sum

will be important. A charactoristic equation is obtained

after the acoustic variable is eliminated by means of a self-

consistent requirement on the particle velocity, and the

stability limits of the system can be found immediately.

After the relation between the acoustic particle velocity and

the fluctuating component of the heat added is discussed. the

results are compared with some experimental data. and good

agreement between the two is found for some features of

Fhe oscillation.

Javing presented a very brief outline of some of the

terms in the wave ecuation to be considered, we now proceed
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directly to a discussion of each of the three problems.

Additional introductory material is presented at the

beginning of each chapter.
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Chapter 2. The Influence of a Boundary on the Propagation

of Sound through Atmospheric Turbulence

Introduction

The general aspects of sound propagation in a turbulent

medium have been discussed in several basic papers by

dohukov, (1) Krasilnikov,(2)chernov,(3) Lightni11,(*)
Batchelor, (2) Fratchnan, 8) Mintzer (+8) and others as

well as in the recent books by Chernov'?) and Tatarski(10

in which extensive lists of references are glven. One

aspect of the problem that has not yet received a great

deal of attention is the influence of the turbulence on

the propagation of sound in the presence of a boundary.

Even 1f the turbulence is so weak that it has practically

no influence on the sound field in free space, the influ-

ence on the sound field can be large when a boundary is

present because the field above the boundary is critically

dependent upon the phase relationship between the direct

and reflected waves. Clearly in the regions where the

Interference between these two waves is normglly destruc-

tive, small fluctuatlons in the phase difference can

cause large fluctuations in the amplitude of the sound

field. In addition the rms sound pressure level must be

ocreater in the minima of the sound field. At large
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distances from the source, the well-known mirror effect

which normally makes the sound pressure decrease as the

inverse square of the distance from the source will be

eliminated because the direct and reflected waves become

uncorrelated 1n phase. In the sections to follow we will

present a detailed analysis of the sound field above a

plane boundary. In section 3 some experimental results

obtained in the laboratory will be presented. In sec-

tions 4 and 5 calculations of the statistics of the sound

field have been made, and these calculations are compared

nith some experimental data in section 7.

2 Calculation of the rms Sound Field

In this section we shall consider the field from a

harmonic monopole point source located a distance h above

3. plane boundary. The geometry is illustrated in

figure 2-1. The boundary is specified acoustically by a

known normal admittance B/pc (the ratio of the normal

particle velocity to the sound pressure) which we assume

20 be real. Since the source will generally be several

nave lengths above the boundary, we may neglect the fact

that the wave front 1s spherical and use the plane wave

reflection coefficient R = (cos © - B)/(cos 6 + B) to

ybtain the image source strength. For the moment we

shall call the amplitude of the image A_ and write the

sound pressure at the point P
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where As 1s the amplitude of the wave from the source, x

is the distance from the source, r is the distance from

the image, w 1s the frequency of the emitted sound, and

ky and k, are the wave numbers of the direct and reflected

Naves respectively. Ags A,» Kis and kK, are not constants

but fluctuate about some mean value because of the turbu-

lence. We shall define Aj = 1 +. and A, =R(1 + a,

where Cay» =&lt;a,7=¢( [the ¢ indicates an average over

a long period of time which we shall later assume to be

identical to a statistical? average). The fluctuating

phase difference, 5, may be included by taking k 4X =

KX +t and kr = kr + where «i .7 =&lt;5,7 = 0. k,

is the wave number in the absence of turbulence, w/e,

In order to find the fluctuating parts of the amplitude

and phase. we assume that the fluctuating part of the

LW

velocity of the medium may be replaced bv a randomly

rarying index of refraction n = 1 + 11 vhere yg &lt;&amp; 1.

An approximate solution to the wave equation

£p =-2k"up may be obtained by using the method of

lateral diffusion. A concise account of the method may

oe found in a recent article by Morse and Ingard. (11) or

in reference (9). If it is assumed that the spacial

correlation of the turbulence is of the form {HBT =

2° exp (- 3/1) where L 1s a measure of the scale of the



turbulence, then 1t can be shown that for deep penetration

into the medium (x &gt;&gt; NIA) the variance of the amplitude

and phase fluctuations 1s given py (11)

1 2 2
&lt;B&gt; = ANT KS (xL)nd

:. 2 2 2

 dn(lo+ aq)) &gt; = Hk (xL)u’

(2-2a)

(2-20)

In the analysis to follow, we shall assume that &lt;55&gt; = 5°

and &lt;ad&gt; = &lt;a&gt; because the path difference between the

direct and reflected waves is small for most problems of

interest. It can also be shown (9) that for x &gt;» EE the

phase and amplitude fluctuations are uncorrelated, and

this result will make possible considerable simplification

of the analysis. One last fact must be pointed out before

proceeding with the analysis. It has been found experi-

mentally that the fluctuations of the sound pressure

amplitude have a time scale which 1s much longer than the

period of the acoustic wave. Under these conditions 1t is

meaningful to speak of a time-dependent mean square pres-

sure which willl be denoted by 0. The averaging time for

obtaining this pressure is long compared to the period of

the acoustic wave but short compared to a characteristic

period of the random amplitude and phase fluctuations of

the wave. We may therefore calculate 02 from Eg. (2-1).

The result is



ne

BD l1,.2 2 x= X
Pp” = 5(Ag + AL(S5) + 284A Tcos(k (r-x) + &amp;)) (2-3)

xX hg

where 0 1s the relative phase shift between the direct

and reflected waves, By - 6_. What 1s needed first is p°

averaged over a time long compared to the period of the

fluctuations. We shall denote this average by LDS. If

we use the fact that the amplitude and phase fluctuations

are uncorrelated, (p&gt; may be written

&gt; 1 2 2 x° 2 x |

{p&gt; = —=(1 +&lt;Lay&gt; + R ==(1 +&lt;a_&gt;+ 2R ~&lt;cos(B, + 5),
vv 1%)

(2-4)

nhere Bo = k, (r - x). If we now take &lt;a5&gt; =&lt;a®

Eq. (2-4) may be put in the following form:

py a

)

=

p&gt; = 2R 2% ro. 2 X Tr X 2 )

(2-5

In this form, the effect of the turbulence can easily be

seen. For R = 1 (rigid boundary) and nc turbulence

(c“- 6 =0), the term (1 - Rx/r) is small and so when

Bg = 7 (destructive interference) the mean-square pressure

is verv small. If, however, the turbulence is included,

these minima are raised considerably by the first and last

terms in Eg. (2-5). At large distances from the source,

{1 + cos (B, + 8)&gt;—= 2 for &amp; = 0 since Bo 0. In the

presence of turbulence, large fluctuations in © at large

distances make {cos 5&gt; = 0 and so &lt;1 + cos(B_ +6)&gt;—



~ ~

The mean level 1s therefore lowered by the turbulence and

it will be seen later that the inclusion of Lat in the

analysis will not change these conclusions very much.

In order to see more clearly the effect of the turbu-

lence, Eq. (2-5) has been plotted in Figure 2-2, using the

following parameters: p, = 0.005 h = 6 ft, L = 3 ft.

8 = 0. Note that 6° =. = 2¢B5&gt; If we take

(85&gt; =~ 3%. In these sampl

the approximation &lt;cos *

culations we have used

» for 52&gt; less than °

and {cos &amp;5~= C for &lt;=. gre

actually valid only when

tions are sufficient to illustrat ft

on the pressure field. For f

definition of R that R—— -

absence of turbulence&lt;l+cor

(k2/2\ (. ‘nd so.

(and r).

Cl + cos (B, -

tor than mw. The former is

a 1 but these approxima-

Zh - effect of turbulence

“a2 clear from the

nazomes large. In the

&gt;, 2
2(r-x)boy ro,

wl

. Lo

+ large values of

 eogence of turbulenc however,

rge x and » a

Thus the "mirror effect" i. eliminated by the turbulence.

These results are illustrated in Flgure 2-3, which has

peen calculated. using the same avproximations as were used

rbove except that B has now been assumed to be 0.05. The

large interference minima are of course almost completely

21liminated even in the absence of turbulence because of

the difference in amplitude between the direct and reflected

Naves.
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Preliminary Analysis of Fluctuations

The variance of the amplitude fluctuations for a wave

propagating in an unbounded medium is known (see Eq. (2-21))

to increase monotonically with distance from the source.

Data obtained from field measurements, however, have shown

that the fluctuations are frequently much larger than

those to be expected assuming that the variance can be

calculated from Eq. (2-2), and they do not always increase

with distance. Some field data obtained by Ingard (12) are

illustrated in Figure 2-4. The source and receiver were

located approximatelv 6 ft above ground which consisted of

sand with sparse grass about 12-15 in. high. The fluctua-

tions are the peak-to-peak values of the fluctuating enve-

lope of the pure tone as measured on a Bruel and Kjaer

graphic level recorder. Since the exact shape of the

boundary 1s unknown we shall not attempt to obtain these

results by calculation, but will assume that the boundary

can be specified by a known normal admittance, and compare

the calculations with experimental results obtained using

2 plane boundary. In this preliminary analysis we shall

neglect the amplitude fluctuations in the wave and assume

that only the phase fluctuations need to be considered.

Since the experimental data previously available refer

only to the fluctuation amplitude read by eye from a

logarithmic sound level recorder, it 1s of interest to try

and obtain some systematic method of comparing theory and



20

| 8

n 16
Za
mad

214
]
&gt;

“

319
Z
&gt;
met,

wt

10

-

PEAK-TO-PEAK FLUCTUATION

PURE TONE TRANSMISSION

IN THE WIND DIRECTION

Wind Velocity: = 3 m/sec.

Ipswich Beach, Aug. 1, 1953 ,

IN—
LO. -

8-

x}
N 4

2

3

&amp;

L

 =~_—7
be

J

meee O 5000 cps

x 2900 cps

A 1700 cps

® 1200 cps

+ 500 cps

V 200 cps
 nN

50 RN A

No

48) 160 200 u™ J J pa ) 320

DISTANCE IN FEET

FIGURE 1-4
o



31

experiment. Although the method to be developed in this

section should be regarded as only a rough approximation,

it has been possible to use it to obtain reasonable agree-

ment with some experimental data taken in the anechoic

chamber at M.I.T.

We regard 0° niven in Eq. (2-3) as a slowly varying

random function of time because of the random variations in

b. We shall neglect the amplitude fluctuations and so take

A, = 1 and A, = R. Then Eq. (2-3) may be written

— 2

2 _ 2Rg r _ X

0° = Sdsm(l - RT) +
~

3 + cos(B, + 0)3 (2-6)

We note that 0° 1s limited to the region between p2 and

02, determined by the values +1 and -1 of cos (B, + 5).

If, however, the fluctuations in © are small the probability

that these maximum and minimum values will occur will be

very small, and it seems reasonable to assume that the

experimental data on fluctuations do not represent

10 log (p2, ,/pCy.)- Instead, we shall assume that

10 log (p/p?) is more representative, whee .2 and pSare
defined ky allowing p2to be larger than =» 10 percent

of the time and less than pe for 10 percent wf the time.

Although this definition 1s arbitrary, it at least gives a

consistent procedure for calculating the fluctuations and

can therefore be used to illustrate the shape of the curves

of fluctuation level vs distance. In performing the compu-

cations, it has been assumed that &amp; can be represented by a



normal distribution P(8) = (1/4270)exp(- 8° /25°) where

In general 1t 1s necessary to constructadistribution

function for 0 the entire expression given in

Eg. (2-6), but for R near 1 and x » h, the first term may

be neglected provided that B, # m. Under these conditions,

the fluctuation in sound pressure (in dB) may be written

LJ

02/2
- 10 log(p5/p5)

lo log (1 + cos(B, + 8)),

(1 + cos (B, + 0),
(2-7

This level may now be calculated as a function of 5°

(which in turn is a function of x since &lt;5 = 245°) by

using the criterion outlined above. The results of such

calculations are shown in Figure 2-5. For Bo = T, the

minimum level is determined by the first term in Eq. (2-6)

and must therefore be included in the calculations at the

Interference points. This procedure has been followed in

the calculations of a curve for comparison with some

axperimental data obtained in the M.I.T. anechoic chamber.

As pointed out earlier, the normal impedance of the surface

nas a considerable influence on the magnitude of the fluc-

tuations observed, and for most outdoor experiments this

impedance 1s not known. In the model experiments described

below, the boundary impedance was well defined and so we

shall consider only these experiments in this section.
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The sound pressure level was measured as a function of

jistance from a 5000 cps source located above a floor made

up of 1 in. thick plywood sheets above which a turbulent

air stream was produced by a number of propeller fans.

The reflection coefficient of the boundary was estimated

From the measured values of the sound pressure level in

the minima of the pressure pattern above the boundary.

In Figures 2-6 and 2-7 the long time average sound pres-

sure level 1s plotted as a function of distance from the

source together with the corresponding calculated curves

(with a rigid plane assumed). The main effect of the

turbulence is to raise the rms level in the minima of the

pressure pattern. It 1s important to note that the micro-

phone position was not changed when the difference in level

petween propagation in turbulent air and quiescent air was

being measured. Thus the increase measured is a conse-

quence of the turbulent state of the air, and not a small

difference in the microphone position. More satisfying

data will be presented in section 6. The average fluctua-

tion of the sound pressure level was also measured and the

results are shown in Figure 2-8. The theoretical curve

calculated from Egs. (2-6) and (2-7) can be obtained once

we assume a value of WiLL. We select a value of B°L to

produce the best fit with the experimental data, and with

3 value of u°L = 6.5 % 107° in. we obtain the calculated

rurves shown in Figure 2-8. It can be seen that fair
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agreement 1s obtained, but in a more detailed analysis one

should compare the statistics of the fluctuations with the

calculated statistics. In addition, amplitude fluctuations

1s well as phase fluctuations must be included in the analy-

sis. We shall present such an analysls in the next section.

Statistical Analysis of the Mean Square Pressure Field

We obtained in section 2 an expression for the long time

average of 02 (see Eq. (2-5)) and some of the differences

hetween the results obtained in a quiescent and turbulent

atmosphere were pointed out. The results were, however,

obtained by assuming that cos 6 = 1 - 5° /2 for small &amp; and

therefore that the mean value of cos 5,£cos56&gt;couldbe

sxpressed in terms of the variance of &amp; («cos 5% = cos 6% )

Clearly, for large values of ® 1t is necessary to have all

of the higher moments of ® in order to obtain cos &amp; and

this would require one to assume a form for the higher

spacial correlations in the turbulent velocity field. For

the purpose of this study, we shall assume that &amp; is a

normally distributed random function with standard devia-

tion gd. oo is to be obtained from Eg. (2-2b).

c
&lt; 20685 = (5. - 5.0% = rl x) (k Lp (2-8)

The amplitude fluctuations are also assumed to be normally

distributed with standard deviation\&lt; a&gt;. With these

assumptions, the only detalls to be worked out to obtain



the mean square pressure are to calculatell+ cos (B, + 5)

In Eq. (2-5) using P(8) = (1/4270)exp (-6°/20°) and to cal-

culate &lt;a&gt; when &lt;(1In(1 + a))%&gt; is given by Eg. (2-2b).

The former is calculated simply by taking

1 * -5° '2¢°
+ + cos(B +8)&gt;= +(a + cos(p, +8)le = 777 db (2-9)

\2mro Zo
yy

The result can be easily shown &gt; he

2

cos (B, + B)&gt; =" + cos Be C /2 (2-10)

Plots of the left-hand side of thls equation vs 5 for

several values of Bo are presented in Figures 2-9 and 2-10.

These plots will facilitate the calculation of theoretical

curves for comparison with some experimental data to be

presented in the next section. In order to obtain &lt;a&gt;

from&lt;(In(1+a))&gt;.onesimplyexpands the logarithm in

powers of a, and then uses the fact that a is normally

distributed to replace all of the higher moments by powers

of the second moment. Thus &lt;=" = 3¢a®&gt;°, ¢a®&gt; = 5¢a°&gt;3,

etc. This has been done keeping terms up to &lt; als. and the

resulting curve is shown in Figure 2-11. The convergence

is fairly good up to &lt;at&gt; = 0.5 which 1s adequate for our

purposes since it corresponds to {(1In(i + =,

This curve will also be useful for the calculation of

theoretical mean pressure levels.

ey = 2.19,

Before continuing with an analysis of the fluctuations,

let us summarize the results of this section. It has been
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shown that £p°&gt; may be calculated using the following

2rquation

_— 2 - 2
5 PR a&gt; Tr x r X -0/2

(0% = SVE (RtR I) 45—(1-R 7) +(1+cos Be 2)

(2-11)

vhere ca’&gt; is obtained from

(1n(1 + 2))%&gt; = Tkx)(kL)ud (2-12)

and the plot of &lt;a’ vs &lt; (1In(1 + 2}e&gt; presented in

Figure 2-11. oo 1s glven by

Yu

2
5 -¢6° &gt; = (kx) (k L)n°

Statistical Analysis of the Fluctuations

(2-13)

Having obtained the rms pressure as a function of

distance from the source, it 1s relatively easy to obtain

an approximate expression for the variance of the fluctua-

tions by doing integrals similar to that in Eq. (2-9).

One can of course calculate either the statistics of the

"instantaneous rms" pressure defined in section 2 or cal-

culate the statistics of the "instantaneous mean square

pressure" 02. We shall choose the latter because it is

much easier to calculate and therefore define the variance

7 4

 Fr &lt;

&gt; 2

0 pes) (2-14)

We start with Eq. (2-3) and take Ay =1+ay, A, =1+7

Since A, and A _ appear as squared terms in Fa. (2-3°



terms such as ays a, etc. will appear when Eq. (2-3) is

put into Eq. (2-14). The higher order products must be

written in terms of second order moments when &lt; (p2)2%1s

calculated. Equation (2-11) is used for p3&gt; and ¢pos

Ne shall work out an expression for Yv/m assuming that

the boundary is rigid (R = 1) and assuming that the cross-

correlations between amplitude and phase can be neglected

2s well as the cross-correlation between the amplitude and

phase along the direct and reflected path. The substitu-

tion is simple but algebraically tedious, and the 1lntegrals

are of the same type evaluated in Eq. (2-9). The result is:

J -

2 2 2

(=) (1 + 2¢a&gt; )f(1 -e?)(1 - «7% cos 28)

2

2¢a% (1 + cos Be‘ /2\3 (2-15)

Ne shall compare the ratio NV/&lt; p&gt; with experimental data,

and so the factor 2R/xr in Eg. (2-11) and the factor

(2 /rx)° in Eq. (2-15) may be dropped. For convenience in

calculation, the term inside the square brackets in

Ea. (2-15) has been calculated as a function of o for

several values of Boe The results are shown in Figure 2-12.

These results will be used in the next section where the

calculation is compared with some experimental results.

—

yo Experimental Results

After the experiments described in section 3 were

completed, it was realized that more detailed experimental
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data would be desirable from which it would be possible

to obtain more information about the statistics of the

fluctuations and the rms value. The data to be described

in this section were obtained in the parking lot of the

M.I.T. Lincoln Laboratory. The rigid plane surface and

large size made this area ideal for studying fluctuations

outdoors relatively far away from reflecting objects. The

necessary equipment was obtained and set up on three suc-

cessive Sundays during March and April, 1962. A small

loudspeaker driver, oscillator and amplifier were used as

a source, and the received signal was recorded on an Ampex

tape recorder for analysis in the laboratory. The source

height chosen was four feet so that measurements could be

made both inside and outside of the interference zone for

the three frequencies used. The data obtained were later

played back through a Bruel and Kjaer level recorder with

a writing speed high enough to follow the envelope of the

received signal. The data were analyzed by reading the

level from the recorder tape at regular intervals along

the record. Two to four points per second were taken off

the tape depending on the time scale of the fluctuations.

from these data, the mean square sound pressure and vari-

ance of the mean square pressure were calculated. Approxi-

mately 16,000 data points were used in computing the

results to be presented. We shall chooseavalue of hor

50 2ive the best fit with the measured rms value of the



pressure at the last interference point at 500 cps. This

value was then used to calculate the mean pressure curves

Por the other two frequencies and the curves of Yv/m for

211 three frequencies. The value of LoL equal to

2.62 x 107° ft. corresponds to (5° = 0.0625 radians at

500 cps and 28.5 ft. At this polnt &lt;c®&gt; 1s 0.0312 and it

can br seen by using Eq. (2-11) that for R = 1 and x/r

(1 ~\ the middle term in the parentheses can be~~
—

neglected and the flrst and last terms contribute equally

to the mean-square pressure. For larger distances, the

term involving o changes much more rapidly than the term

tnvolving &lt;a&gt; and so the amplitude fluctuations become of

relatively less importance. A comparison of all the

experimental and calculated data on mean values is pre-

sented in Figures 2-13, 2-14, and 2-15. It is felt that

the agreement here is reasonably good considering that the

data were obtained on three different days. The mean wind

speed during all of these measurements was relatively con-

stant at approximately 750 fpm.

The data on fluctuations are presented in Figure 2-16.

Two sets of calculated curves are shown because the frac-

tional variance was first calculated assuming that the

Fluctuations in amplitude of the direct and reflected waves

could be neglected, and the sharply peaked curves were

obtained. The assumption of no amplitude fluctuations in

the direct and reflected waves leads to larger fluctuations
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in the sum at the interference points because the

probability of having a high degree of cancellation (and

thus a large fluctuation) between the waves must be

related to the joint probability of finding the amplitudes

nearly equal and the phases different by nearly 180°.

When the amplitudes are assumed to be equal, cancellation

is more probable, and hence the fluctuations are larger.

These observations are borne out by the calculated curves.

Although the agreement between theory and experiment is

good at the lower frequencies, the calculated values are

generally too high at the higher frequencies. The shape

of the curves 1s generally correct, that is, the fluctua-

tions are larger in the minima of the mean pressure pattern

and smaller in the maxima, but the fluctuations tend to be

too small at all distances, especially near the source at

2000 cps. It can easily be shown, however, that at least

in the interference minima the fractional standard devia-

tion 1s sensitive to the relation between the square of

the second moment and the fourth moment. Thus one might

oe able to get better agreement with the experimental data

oy assuming a different probability distribution.

Finally, it should be noted that in this statistical

analysis it is still possible to estimate the average

fluctuations to be expected when one calculates a frac-

tional standard deviation. The data on fluctuations taken

from the Bruel and Kjaer tapes have been used in the
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following manner. The upper and lower 10 percent of the

amplitude distribution curve has been neglected in obtain-

ing a fluctuation level L which can be plotted against the

calculated fractional standard deviation of the same curve.

The results, presented in Figure 2-17, show that the

Fluctuation level can be reasonably well estimated from

the fractional standard deviation.
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“chapter 3. The Propagation of Waves of Finite Amplitude
in a Stratified Medium

Introduction

Because the equations that govern fluid motion are

nonlinear, the progress that has been made towards find-

ing solutions of the exact equations of motion (including

terms arising from loss mechanisms in the fluid) has

necessarily been made slowly. Much of the work of

Lighthill,(1)Fay,(3)Fubini(3) and others has been

thoroughly reviewed in a report by Blackstock. (*) The

above workers have all found approximate solutions to

the equations that describe large-amplitude wave propaga-

rion in a viscous heat-conducting fluid.

On the other hand, it is appropriate in many cases

-0 examine the motion of a wave that consists of an already

Formed shock front followed by a decay in pressure that is

coverned by the loss-free nonlinear equations of motion.

The classical Rankine (2) -Hugontiot (6) shock relations may

be used to describe the change in pressure, density and

velocity across the shock front, whereas the motion behind

the shock 1s governed by the exact loss-free equations of

motion. In homogeneous media, the classical formulation

of Riemann (7) and Stokes (8) mav be used. but for



inhomogeneous media that formulation must be modified as

shown in the next section. We shall work out the general

theory only for a very special case, namely that of weak

'"N-waves" (see Figure 3-3) in an inhomogeneous medium.

The results of this analysis may be compared to an approxi-

mate method developed by Whitham (9) for propagation of

shock waves in an inhomogeneous medium, and it will be

shown that the present method ylelds a somewhat better

approximation, at least for weak shock waves. For sim-

plicity we shall limit ourselves to a one-dimensional

Ffreatment.

J The Exact Non-Dlssipative Equations of Motion

In this section we shall formulate the exact equations

of motion in an inhomogeneous medium in a form similar to

the classical equations for a homogeneous medium. The

essential difference, in addition to the body force, is

that in our treatment the entropy of the fluid will be

considered to be a point function of space in the absence

of any fluid motion. Thus, although the equations are

loss-free in the sense that in the presence of motion the

entropy of a fluid particle 1s constant, the motion cannot

oe consldered to be isentropic if an Eulerian description

of the motion is used. When one looks at a fixed point in

the fluid, entropy changes of the order of % (9s_/ax) are

to be expected where § 1s the particle displacement in a

Lagrangian description and ds_/2x is the mean entropy
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gradient in the fluid. We shall include an external

force per unit volume (F) in the analysis, but neglect

any external sources of mass.

The exact one-dimensional equations cof continuity

and conservation of momentum are:

2p 2p 2p _
2 t +h IX t Pax T O

au 2u_ 1p _F
x FU ox tox To

(3-1)

(3-2

The condition that the entropy of a fluid particle is

~onstant is exnressed simply by:

PE] Js _

5p tu5x=0 (3-3

The classical method of treating these equations for

nomogeneous media 1s to take u = u(p) and p = p(p)

(equation of state) since s is supposed to be a constant

[n the analysis to follow, s 1s included as a variable

and p rather than p is chosen as the second independent

variable. The reason for this choice willl become appar-

ent as we proceed. We therefore take u = u(p,s) and use

the equation of state in the form p = p(p,s). We may then

write

©_ (2D p J 2S
ot (56) 5+ (55) 5¢

JP _ (2 2 ? 2S

se = 58) BE 2

(3-4)

(3-5)
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If Eq. (3-5) is multiplied by u and added to Eq. (3-4)

we obtain, with (3p/Jp). the adlabatic speed of sound (c2),

20 2 _ .2(2p 2p
5c TU 3x = ¢ (5p + ug) (3-6)

This well-known (9) form of the adiabatic condition will

31so prove to be useful in the analysis.

Je next use u = u(p,s) and u = u(p,s) to ontain

wu Ju _ uy(dp . ., 9P
&gt;t TU 3x © 5p) (ot + 3%) (3-Ta)

1d

pu 2u_(uy(3p 2
ot TU 3x T (30) Gt +u $2) (3-T7Th)

using relations similar to Egs. (3-4) and (3-5). The

equation of continuity (Eq. (3-1)) may now be written in

serms of dp/dt = Jp/at + u(ap/ox) by using Eq. (3-6).

Thus, Ea. (3-1) becomes

l.9p
(5 + u

apy _ _ JU
ey) = P 5% (3-8)

vhich can be written as

Ju 24 _ | .2(2uy 2u
Jt TUoax TPC 55) 5% (3-9)

oy using Eg. (3-7a).

It is now obvious that if Egs. (3-9) and (3-2) are

oth satisfied we must have
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JD_ 2.2(2uy du _
2X pc (3p) ax F (3-10)

When 3u/3dx is written in terms of 2Jp/2x and 2s/3x,

2g. (3-10) may be written

2 :

2 2 ZPD 2 2
(1 - pe (59) )5% - pec (50,58) £ =F (3-11)

This result will be important in our analysis. It can be

easily seen that 1t is analogous to the Riemann Condition

for fluld motion in a homogeneous medium, for if s = con-

stant, the above relation reduces to

dU 1
ou EN
 Mo sro

and since u and p are now functions of density alone, we

may write

(2) = (P(E) = + ¢ (3-12)

which 1s the Riemann Condition. Equation (3-11) may be

further simplified by using the chain relation well known

in thermodvnamics. If s and u are considered to be inde-

pendent variables, we have

(Uy _ _ (Uy (3d

 oo 3 @@ (3-13)

and consequently Eg. (3-11) may be written
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Z c
2. 2,3u, Jp 2.2 ,du Jp 3S _ _

2s
F - (22) a

2,2 (3uy° _ Byx
P= '9p’s Tp (ap) 28

2X 3s yu °X

(3-14Db)

Ne shall use all of these results in the analysis to

follow. Next, let us obtain three equations of motion

in the form

28 (u+cP)28 _ x5

Nhere C) is either p, Dy, Or Ud. Ror H=u we simply

(3-15)

rearrange Eg.

Ju au u

3t + (u + cee (5p) D5
—

—

W (3-16)

The equation for p is obtained by using Eq. (3-7) to

&gt;1iminate Ju/at + u(Pu/2x) from Eq. (3-2). The result is

Dp _1 yp _ _F
2 CR] Tu NE = To

pe (55) P35)
(3-17)

A great deal of manipulation is required to obtain a

similar equation for (= p. The method to be followed

1s first to eliminate Ju/3t + u(du/dx) from the momentum

equation by using Egs. (3-6) and (3-7). Next 2p/3x is

sritten in terms of 2p/2x by using Ea. (3-14) and



w/3x = (Ip/7p)g(3p/9%) + (Ip/3s),(35/3x). Finally,

Eq. (3-14) is used to eliminate 2s/2x with the result

that

J .

£ + (u +cd)2L = s-F (3-18)

Nhere

 AN
? pe (55) _

X i manips Be,)
pc” (2) h- 2 = 2p

ap P (2) (55)o 2S

and

 zc
2.2 |

(28) (1 - p“e™(5D)
4 = Pp S

ACE w2ruy Py

tquations (3-16) (3-17) and (3-18) all reduce co

for F and Js/ax

1
(du/ap) = + =o

vel known (10)

20, (w+ c)20  0) (3-19)

because, from Eq. (3-14), we have

(A) represents either p, p, or u. The

solution

H=0 (x - (u + clu) (3-20)

describes the propagation of pressure, density or particle

relocity in a homogeneous medium. The quantity &amp;@ 1s
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constant along lines of slope dx/dt = u + c in the x-t

plane, and these lines are the well-known ct and C  char-

acteristics respectively. The Riemann Condition may be

nritten in the form

pda _

+ (55) =~ on

edu =0 on C(15)

(3-21a}

(3-21b)

or, after integraticn.

» fe dp = constant = 2r on

|= dp = constant = 2s on F

(3-22a)

(3-22D}

r and s are the well-known Riemann Invariants, and are

constant along the ct and C characteristics respectively.

The condition that waves travel only in the positive

x-direction is that s be a constant everywhere (sg) for

then u = u(r) and u = constant along r = constant. Thus

p and p are also constant on ct. For waves travelling in

the negative x-direction, it is obvious that r must be a

constant everywhere. Thus, if either the + or - sign in

Eg. (3-19) is chosen ® may be taken to be a constant

2long CT or C” respectively, but the general solution to

the problem is that r and s are constants along CT and GC

respectively. It does not appear to be possible to find

such simple relations for inhomogeneous media because two



Independent variables are involved. We shall, however,

obtain approximate relations that can be used to describe

propagation in inhomogeneous media.

Before proceeding with a discussion of the Rankine-

Hugoniot shock relations, let us write the equations of

motion in characteristic form. (11) Equations (3-1), (3-2)

and (3-6) may be written in the following form:

22 + (u +c) 4 pe(dL + (u + c)ZD) - CF

J 2 2,2
ZF + ugk - “(58 + u 28) = 0

0 (3-23)

(3-24

The equations have been put into the above form because

ve may now write total differential relations along the

+ and C characteristics. We obviously have

_ CF 44 = + dx
ip - pcdu TI +o dx = Oon C , It

A  J)
ck - dx

- pcdu - =z dx =0on C, FF

iD 240 = ax_- ¢ do = 0 on P, IF = u

= 11 +

i

g

 tl

~»
-

(3-25a)

(3-25b)

(3-25¢)

This form of the equations of motion will be useful when

Ne compare our results with those obtained by other

investigators.

3 The Rankine-Hugoniot Shock Relations

In order to derive the classical Rankine-Hugoniot

shock relations we assume that there is a verv thin
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region in the fluid within which the pressure, density

and particle velocity change very rapidly. Such a region

(shock) 1s illustrated in Figure 3-1. We shall assume that

the shock is moving with veloclty U relative to the fluid

(at rest) in region A. The equations of conservation of

mass, momentum and energy may be put into the following

form: (12)

p,1 * p, (U = uy J

- b,. = PUY

p u = 1 2

where U is the velocity of the shock wave, and the sub-

scripts e and 1 refer to quantities ahead of and behind

the shock wave respectively. If it is assumed that the

Fluid is an ideal gas (p = (v - 1)pE) the above relations

may, after considerable manipulation, be put into the form

&gt;f the Rankine-Hugoniot shock relations:

 2,2 2 - 1 _P17Pe 2

P1= Pele (FT M ~ SlyFTy) OF SE po=yar - 1)

(3-26a)

mp, lyr)
1 © (v = 1)M° + 2

on 8 PL TP Mo
Ye. Tp. TAO

(3-26b)

2 1
14 =Cs TM - 3) (3-26¢)
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For weak shock waves, M may be taken to be 1 +&amp; where

A &lt;&lt; 1 and so the above relations reduce to

A_ 2

ox

8 dn
Pe Y '

For strong shock waves (M .2 1) Egs. (3-26a, b, 2)

(3-27a)

(3-27b)

(3-27¢)

obviously reduce to

= 2Y
Py vy + 1 PeU (3-28a)

(3-28b)

Jd 4

3

— (3-28¢)

Ne shall need both of these limits in the analysis to

°~c&gt;1l1low.

whitham's Rule

Before continuing we shall present a simple rule due

to Whitham (11) that can be used to predict (approximately)

the motion of a shock wave in an inhomogeneous medium.

The rule 1s to apply the differential relation (Eq. (3-25a))

that holds along the ct characteristic to Ps Pq» and uy

directly behind the shock wave. Thus, by using

qs. (3-28a, b, c¢) in Eq. (3-25a) 1t can easily be shown (11)

that u~pP where B = (2 + N2v/ (vy + 1)) = 0.215 for v=1.4.
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For an isothermal atmosphere Pe~ Pg and for a strong

shock py ~ p U°. Thus, the pressure ratio across the

shock is:

ee )(3-2943-0.

PpPq “pLp ¢ - 2
—- " }

Pq r

The rule does not seem to have been applied to weak shock

saves, but the necessary relations can be easily manipu-

lated. Let us conslder an isothermal atmosphere under the

influence of a gravitational force F = - pg. For weak

shock waves, the speed of sound behind the shock is

\R=e_(1 +2 tla) (3-30;

and the use of the weak shock relations in Eq. (3-25a)

leads to

dp1 “Fe 2 d

R. dx tAaxl te
-

4 (3-31,

after the equilibrium condition Jp_/3x =

Thus, for small A , A~p 02 and since S~A , we have

simply that

“

-C.5
(3-32)

We recall from our discussion of the small-signal case

that the sound pressure p was proportional to p22 and

rence $ = p/p. ~ (p.) 02. This result can be obtained

immediately if it is assumed that the acoustic wave does

not lose any energy as it propagates.
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Equation Governing the Decay of Pressure at the

shock Front

In this section we shall formulate the law that

governs the pressure rise across a shock front as a func-

tion of distance. The pressure decay behind the shock

front is assumed to obey the loss-free equations of motion.

The method used to obtain the equation 1s extremely simple.

Ne first separate the pressure, density, and entropy into

Sime -independent and time-dependent parts:

p(x,t) = p(x) + py(x,t)

p(x,t) w= Pe (x) + 5(x,t)

s(x,t) = s_(x) + o(x,t)

(3-33a)

(3-33b)

(3-33¢)

The flow field u is assumed to have no time-independent

part. We draw in the x-t plane a line that represents

the motion of the shock front (dx/dt) and a line along

shich py = constant, (ax/at)y - const.® We shall find

the slope of this line for homogeneous and inhomogeneous

media in the sections to follow. The geometry is 1illus-

trated in Figure 3-2. The pressure, py, at O (Py) and

A (py) 1s found from the pressure at t = ©.

shock front has moved a distance dx. the pressure (p;) at

B is the same as the pressure at 1 by construction. Thus,

with p, = p, + (Ipy/2x)dx', we have
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iby Py = Py
ix ~~dx

2P3 gx!

dX dx

vhere 2p4/dx = (3p4/9%) This eXpresslon may be written

ax

(3%)
dp Jp py, = const.

Sl. TagTaTF]ix 3X (9%)
dt yy

(3-34)

Nhat is wanted, of course, is not dpy/dx at the shock front,

out d $/dx where © = (p - r.)/Pp, = Py/Pg Making this

substitution, we have

(§%)
dt 3

, = const. p

as Ll Fag PaO 4) .3 Fe (3-35)
dx Py 9X (9X) P.

dat’.

This is the final equation for 8 . In order to evaluate

this we will need (dpy/9x) and bx/as)y - const. Which both

depend on the initial pressure wave. We shall work out two

axamples in the next two sections.

5. Application to Weak '"N-waves" in a Homogeneous Medium

Before working out the equation derived in the last

chapter for an inhomogeneous medium, let us first obtain

the decay of 8 with distance in a homogeneous medium. We

shall adopt as the initial pressure signature the "N-wave"

model illustrated in Figure 3-3. The pressure ratio 3 1s

assumed to be much less than 1. We assume that P, and Cc,
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are constant, and since there are no external forces,

(Ax/at)p - const. = cg(1 + 2A) from Eq. (3-19) and the

weak shock relations. Also, (dx/dt) = c.(1 + A

Then Eq. (3-33) becomes

38 _ 1 Par+248 4.8 Pa
ix Pp, 2x ‘1 + A Tp, IX

(3-36)

284A

since for this model Jp;/9x = 28p_/L. The length of the

wave cannot, however, be assumed to be constant because

the center of the wave moves with the small-signal speed

of sound (c_), whereas the shock front moves with velocity

J=c_(1 +0 ). Therefore, the change in length with

iistance 1s simply

dL _

== = 2A (3-37)

rquations (3-36) and (3-37) were first obtained by Dumond

ot a1, (13) Equation (3-36) was, however, obtained by a

somewhat different method. These two equations do not

seem to have been solved by these workers in the form

riven below. By using Eq. (3-27b), Eags. (3-36) and (3-37)

may be written

dS _ _y +13
dx 2vL

dL _ v + 1
dx =~ Pw 3

(3-38a)

(3-38b)



After elimination of §, the equation for L is

3°L + 141° = QO
dx° L‘dx

(3-39)

for L = L, and S = S at ¥ = 0 the solution is

1

1/2 1/2 L 1,2

ELH (8) EFT + ’ (3-40)

ng

*

1/2 1/2 L -1,2
{sree torge) (L.%) (2 XY __ 4 x)

r+ 1 ovo GY to
(3-41)

as can be verifled by direct differentiation. Thus, for

XK »7 L./$ 0? 3 x 0-2, The method therefore predicts a

slow decrease of pressure ratio with distance. As an

2xample, L and 3 have been calculated assuming that

 = 30 meters and Ye = 0.1 at x = 0. The results are

shown in Figures 3-4 and 3-5. If Ea. (3-41) is used to

sxpand 1/% about x = 0, it can easily be seen that

1_ 1 _y+1x
8 85 2v Ly

(3-42)

This result 1s in agreement with the approximate analyses

of pay (14) and Rudnick (12) for the attenuation of repeated

shock waves (of wavelength L,) with distance. At large

distances. however, our result predicts that $ ~ x 0:5

whereas the above analvses predict $ ~ xt. The reason for

~he difference 1s. of course, that for an N-wave I, must be
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taken as a function of x because of the difference between

the shock speed and the small-signal speed of sound. If

ve were to assume that L = Ly = const., integration of

ig. (3-38a) immediately yields

L_ 1 xy+1
$ So 2vL,

(3-43)

which shows that 1t is the neglect of the changing wave

length that produces a difference at large distances.

Application to N-Waves in an Inhomogeneous Medium

Having seen in section 6 how the equation derived in

section 5 is to be applied, we next turn to the problem of

the determination of the motion of an N-wave in an inhomo-

ceneous medium. It should be recalled that the main

distinguishing feature of the motion 1s that 1s is not

isentropic in the Eulerian description that we have chosen,

even when the loss-free equations of motion are used. We

shall adopt the N-wave model used in the last section and

again assume that the wave 1s weak. We will need

(axa) - const. "hich in turn will require a knowledge

of oc (Ju/2p) We first separate Eq. (3-17) for p into a

time-dependent and time-independent part by using

sas. (3-33a, b, c):

op

c(1 +€)5== = (1 +€ )F, (3-U4)

JD oP oP
ol + (u + c(1 +4 302 =c(l +€)F -u a (3-45)
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where € is defined by 1/(1 +&amp;) = pe (du/ap)- We shall

rind € later. Equation (3-44) is, of course, the equilib-

rium condition. We shall assume that the fluid 1s an

Isothermal ideal gas under the influence of a gravitational

force F = + pg, and therefore it can be seen that

o Fs + Fy = p8 + bg

i Pe 1 Pe yp
Pe IX Pg 9X 2

e

35, _ p(t -ve
} xX a

(3-46a)

(3-46Db)

(3-U6c)

The constant entropy gradient assumed here may be compared

with the entropy gradient for the actual earth's atmosphere

as calculated from pressure, density and temperature

measurements glven in the U.S. Air Force Handbook of

Geophysics (1959). The comparison 1s illustrated in

Figure 3-6.

Now, since (ax/at)y - const.

ne have, from Eq. (3-45).

&amp;®) = const.atl,
=u~~ctl+¢&amp;

%

305/98) / (ap, /3%)

Cc (1 +&amp;)8g - u °Pe

2D 2%

g-da — (3-47)

Ne will show later that £ = 0(ygL/cS) which is assumed to

be small and therefore will adopt the following approxima-

tions throughout the analysis to follow. Neglect terms of
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0 ( eA”) and terms of o( EA ). Thus, we will keep only

terms of O(€A) or Of A°). When Eq. (3-47) 1s evaluated

directly behind the shock, we find that Eq. (3-35) may be

written

x ” 40 + (1 v 1gg _ es yart (+2 57a) +e) - 5is sv 1 PASI re) -Lo - 1)-1&amp;8
¥

(3-48)

vhere

3 y -1 4b yg 4b
 + 207BIL+€)Tpe8ce¥+1

e

shen QL is simplified, it can be seen that it 1s of

0 (vygL INV and can therefore be neglected. Thus, after

Further simplification we may write 48 /dx as

dy _ _ (235A, (2€ , vg

ax Gom+ (T+ 28 (3-49)

to the order of approximation outlined above. It can be

seen that is needed only to 0(vgL/c?). To find &amp; we

ise Ea. (3-14b) repeated below:

o's 28 - (35) 22
2X PS’ 9%

(3-14b)

Ne will want to separate the right-hand side into equilib-

rium and motion-dependent parts. To do this, we write
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(Ip/3s), = (39/25) 0) + (p/2s) and note that (from

the part of the relation

2p = (Ry 24, (Ry 2
7X Su) ox 7 (55) 5x (3-50)

that holds for the equilibrium gquant_ties) we must have

2

(28 )
3s \

3p,
ax_ _ __ Ce
2S, c, (1 - 7)

7X

(3-51;

Ne shall next assume that (2p/3s), =p, (c, (1 - v)) and

~herefore that during the motion

(1) Pet
2) = ey (3-52)

mquation (3-14b) then becomes

Pe Se +60 - Pe 4 Peg 8¢
2 2 ,9u,2 Pe® TTTI-v] 3x 8 a y+ Te (Iv) Jax

oe (5p)= 2¢p, Po (I +8) as,
T. ~~ 1 - ~ 3x

(3-53)

shere we have used Js/9x = 2s /2x + 20/ax = (@s_/9x)(1 + u/c,

Since veL/c ¢&lt; 1, the second term in the denominator may be

1eglected and we have
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 252 (3upe” (5p)

Pet PS cc, (l-v)e pg cc (1-v)g

TUTTZ ETgE
—— meee Corer

280g

(3-54)

Lygdl = .
&gt; 35 =

Ca

+.

L yg
2 2

C,

where the weak shock relations (Egs. (3-27a, b, ¢)) and the

entropy gradient in Eq. (3-46c) have been used. Since ¢&lt;

Nas defined by

L

Ju

= pc (3p) (3-55)

sq. (3-54) becomes

. L vg
— vig 8 DE mm we 5

1 +e)? 2

2€ _ _ v8 _
Tr 2

2c,

This supplies the missing factor needed in the

for d8/dx. Equation (3-49) mav now be written

d + 1,2 YE p)
3 ~~ (its tas

(3-56)

equation

(3-57)

nhich together with the stretching equation
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aL _ yy+1
= = 24 = 2v $ (3-58)

determines the motion of the shock front. We see that for

large values of § the nonlinear term in Eq. (3-57) predomi-

nates whereas for § small the linear term predominates.

Thus,-for

g¥&gt; 12
Co

—Y
y+ Lb (3-59)

he solution 1s identical to that obtained in the previous

section whereas for

3c Yo XY
c= TTC

(3-60)

the solution is simply ¥ = const: exp(- vex/2c’)

const+ p02. This result is identical to that obtained

using Whitham's method (11) for weak shock waves as outlined

in section 4 of this chapter. Note that Eq. (3-59) can be

satisfied for weak waves because the right-hand side 1s

isually very small. For g = 9.8 m/sec”, Cc, = 344 m/sec,

v = 1.4 and L = 30 meters, for example, the right-hand

side of Eg. (3-59) is equal to 2 X 1073.

In order to see more clearly the relative importance

of the linear and nonlinear terms in Eags. (3-57) and (3-58)

it is convenlent to normalize the equations by defining

tn = 5/84» Ly = L/L, and 3 = 3 (v + 1)x/(vL,). ¥, and

L, are the pressure ratio and length respectively at x = 0.
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In terms of these variables Eqs. (3-57) and (3-58) may be

written

4% L524 py
ag'ZL °n

Tn 1
 ad ~ 2¢Yn

- (3-61)

(3-62)

where E = (L,/3,) (ve/2¢2). For B = 0, the solutions are

simply Sa = (1 +3 y~1/2 and L, = (1 +3 1/2, These func-

tions have been plotted in Figures 3-7 and 3-8. For B # 0,

2 solution to the set may be obtained by means of the proper

transformation. We first eliminate % from Eq. (3-61) and

btalin the following equation for L alone:

2 &gt; 4

aL, a Al Ly_
o52 "hlag) *Pag co (3-63)

If we now define a new variable by L = expl|(1/y)ax), the

equation for y is simply dy/dx - By = 1. The solution,

(const.)exp(px) - 1/B can be used to find L, with the

constant obtained by using the reaqulrement that L— 1

2s B— 0. When this is done, we obtain the following

solutions for § and L,:

Ly (1 + %(1 - «BI 11/2

eh = : oP3

(3-64)

(3-65)
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zquation (3-65) was obtained by using Eq. (3-62). These

results can also be obtained by another method. The rate

of energy lost at the shock front is set equal to the

negative of the rate of energy decay in the wave which is

proportional to P, &lt;$°L. Using the equation derived from

this requirement and the stretching geen one can obtain
17

similar results as shown by Reed (16)'1, a note on shock wave

propagation. The method proposed here can, however, be used

to derive many results that cannot be obtained by energy

ronsiderations. For example, if the wave has a very long

seriod, a cutoff wavelength similar to that obtained for

an acoustic wave in Chapter 1 can be obtained by this

method. In order to see this, it 1s necessary to keep

0th terms in the denominator of Eq. (3-53). When the

second term is nearly equal to the first (L large),

pc (3u/ap) is large and therefore according to Eq. (3-17)

a point of constant pressure 1s propagated with a velocity

less than c.

Note that when the wave propagates in the same direc-

tion as the gravitational force (B &gt;»0) that the length

reaches a terminal length equal to 1/4B for B 4£&lt; 1 and that

the pressure ratio decreases as exp(- |B|§). For propagation

In the opposite direction (BL 0) the length and pressure

ratio vary as exp(|B| §/2). The anisotropic nature of the

wave propagation ls thus clearly shown. It must be noted,

however, that for typical values of the constants (L,. = 30 m,
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 oc = C0» ~- C.8 m/s c, = 344 m/s, and ~

8 = 10" and therefore the exponential growth is not

attained until x is extremely large. This can be seen

from the examples plotted in Figures 3-9 and 3-10. The

exponential growth would not be observed, for example, in

the earth's atmosphere 1f the wave were to have the initial

pressure ratio and length given above.

Finally, we note that Whitham's method predicts the

correct asymptotic limit for B »&gt;0, that § ~ pd*2. For

BL 0 it can easily be shown that § 1s proportional to

07C25.
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"hapter 4. AnalysisofanAcoustic Instability Produced
by a Heat Source

Introduction

One of the simplest examples of an instability that

can arise because of the scattering of sound by a heat

source 1s the well-known Ri jke phenomenon first discov-

ered by Ri jke (1) in 1859. If a heated gauze or wire

heater 1s placed in the lower half of a vertical tube,

the tube 1s, under certain conditions, observed to pro-

duce a tone whose wavelength is approximately equal to

twice the length of the tube. R1ijke was not able to give

any satisfactory explanation for this phenomenon but

Raleigh (2): (3) was able to give a qualitative explanation

of the effect by applying what has now come to be called

the Raleigh Criterion, that heat added to a fluid in

phase with the pressure perturbation tends to reinforce

the oscillations whereas heat added out of phase tends to

damp the oscillations. The first attempt to formulate

this criterion mathematically for application to the

Rijke tube was made by Lehman. (4) who assumed that the

mean flow through the tube (either forced convection or

free convection caused by the heat source) was small

compared to the particle velocity in the acoustic wave.
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While such an analysis is important in determination of

the mechanism limiting the eventual amplitude of the

oscillation, one should be able to use a small-signal

theory to predict the onset of oscillations, and at least

approximately the dependence of the driving or damping on

heater position. A number of investigators (2): (6), (7)

have made analyses of the problem, and have presented

surveys of some of the unsatisfactory attempts to solve

the problem. Although some of the main features of the

oscillation are understood, it has not been possible to

calculate all of the results found experimentally. For

2xample, Kerwin (2) was only able to determine the magni-

tude of the real part cf the complex eigenvalue for the

tube within a factor of approximately 10, whereas the

results obtained by Merk (7) using a heat transfer func-

tion derived by carrier (©) predict that the tube should

oscillate over a much wider range of mean flow speeds than

is observed experimentally. All of these authors analyzed

the problem essentially by requiring that the acoustic

variables satisfy the appropriate boundary condition at

ooth ends of the tube, and that fluid mass, momentum and

energy be conserved at the heater. The energy conserva-

tion must of course include the heat added by the heater.

Such an approach, although undoubtedly correct, leads to

rather involved expressions that make it very difficult

to see the basic nature of the phenomenon. We shall adopt



2 somewhat different approach that contains many of the

Important features of the above methods. In the next

section a general criterion 1s formulated for the deter-

mination of the onset of the oscillations, and then this

result is first applied to a tube that 1s assumed to be

loss-free. Even this approximation leads to the experi-

mentally observed dependence of the oscillation strength

»n heater position.

J - A Stabllity Criterion

The well-known (8) wave equation for a medium that

rontains a heat source is:

2p 19% _ _v-1 29
3x7 2 It c’ ot

(4-1,

here q 1s the rate at which heat 1s added per unit mass

to the medium, and the other symbols have their customary

meaning. This equation 1s to be solved for a tube con-

taining a heater as illustrated in Figure 4-1. We will

be interested in the case when the mean flow through the

tube 1s very small compared with the speed of sound, and

vill neglect the influence of the flow except when the

rate of heat release to the fluld is being calculated.

It will be found that the rate of heat release per unit

mass is very much dependent on the flow speed. Since we

assume that the total heat releasedtothemedium per

nit mass is a function of flow speed, the fluctuating
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part may be obtained by expansion in a Taylor series.

“hen we compare our results with experiment, specific

forms for the function will be considered, but in this

section we set q = F' (Vu where u 1s the acoustic parti-

cle velocity. We shall allow for the fact that the heat

added can be out of phase with the particle velocity, and

will therefore take F'(V,) = FL(V,) + 1F}(V_). Since the

rate at which heat is added is proportional to an acoustic

variable, the possibility arises that the acoustic vari-

ables may grow with time, and in order to investigate the

conditions under which such growth occurs we set p(x,t) =

p(x)exp(Ket) and u(x,t) = u(x)exp(kct), where ¥ = g - ik.

Thus, the oscillations grow for ¢ » 0 and decay for o &amp; C

We shall further assume that the heat transferred to the

cas depends on the particle velocity of the (cool) gas

directly before the heater, i.e., for x = Xp -€&amp;€, and

that the spacial extent of the heater is small enough so

that it can be represented as a B-function at x = Xy,

Nith these alterations, Eq. (4-1) may be written:

2
ip 2 y
oC Kp = - L224 oF" (V_ )u(nulx, -€)dlx - x.) (4-2)

The problem 1s therefore to find a Green's function when

the back-reaction of the sound field on the source is

represented by requiring that the source strength be pro-

oortional to the value of an acoustic variable at the

source. The simplest wav to find p appears to be to



expand 1t into an infinite series of orthonormal functions

that satisfy

2
d #n 2

2 = Yn? -

dx

_

EV. (4-3)

and the. appropriate boundary conditions at the end of the

tube. The expansion can be performed using well-known (9)

rechniques, and the result is

Y=1op (vo)ulx, -€)f*(x.)d,(x)
EE (4-4)

It 1s now necessary to apply a self-consistent requirement

to p, namely that

£323 : peku(x, -€
x

X=X. -€

(4-5)

Ne therefore obtain a relation that does not include any

of the acoustic variables. Thus in principle the stability

poundaries (defined by o = 0) can be found as a function of

the other known variables. Since the tube tends to oscil-

late at a single frequency corresponding to one mode, we

may choose a particular gn and v,, #1 and vy, such that

K= vq, ‘then only one term in the sum in Eq. (4-4) will be

Important, and the self-consistent requirement can be

applied to the single term. We therefore let n = 1 in

Eq. (4-4) and set Ip/Ix = pcku(x, -€) as required by

ra. (4-5). The result is:
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4
Sx )Lost (4-6=|(Vp) 83(x,)3xxox,

oP BF! m22 _ -- Yq

This is a stability criterion for the system since x can

be found once the appropriate eigenfunctions are used, and

the appropriate form is assumed for the heat transfer func-

tion. The above method 1s obviously not limited to the

stability analysis of the Rijke tube, but with minor modi-

fications can be applied to any system that contains a

source whose strength depends on the field variable at some

point, and that tends to oscillate at a single frequency.

This latter requirement is clearly fulfilled for many

mstable systems.

Analysis for No Radiation Loss

As an example we shall apply Eq. (4-6) to the simplest

possible problem, namely the case when radiation losses at

the end of the tube can be neglected. As a first approxi-

mation we shall also neglect the fact that the sound speed

is increased in the upper half of the tube because of the

heat added to the gas at the heater. Under these conditions

the appropriate eigenfunction for excitation of the half-

navelength mode of the tube is simply #4, = 2/L sin 7x/L,

and the eigenvalue 1s vy = - ir/L. Substitution into

2g. (U-6) yields:

2 TX TX
Ty _ 1,2 _ _Y-1 2 h h

F) -k 2ikg = —= F! (Vy) (53)sn —— cos —— (4-7)
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where we have assumed that o &lt;&lt; k. Separation of Eq. (4-7)

into real and imaginary parts yields

- k Vv 4-8
( ) 12 2 r*m

113

¥
mY =1 (Vv. )si TXFIV _)sin ———

SKI oc? i'm L
(4-9

Ne have written F' (Vi) = FL(V,) + iF; (V)- The stability

of the system 1s determined by Eq. (4-9) whereas the wave

number 1s determined by Eq. (4-8). We shall see in a later

section that both o and the change in wave number are small.

The importance of phase lag at the heater is also directly

shown by the fact that no oscillations can grow unless

there is a lag of q behind u. Since p and u are 90° out

&gt;f phase, the requirement that the tube oscillate 1s that

the heat release must have a component in phase with the

pressure. This condition is in agreement with the Raleigh

Criterion. As will be shown in a later section, q does

tend to lag behind u and so the tube tends to oscillate

shen the heater is in the lower half of the tube and the

oscillations are damped when the heater is in the upper

half of the tube. This dependenceisinagreement with

experimental observations. (10) If the grid is cooled

Instead of being heated, g changes sign and the dependence

of the driving or damplng on grid position is reversed.
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These results are also in agreement with experimental

Sbservations. (11)

Finally, it should be noted that the tube has been

observed to oscillate in higher modes as well as the half-

navelength mode assumed here. In practice, it is more

1ifficult to excite these modes because the losses to be

overcome are greater at the higher frequencies, but the

dependence of o¢ on driving position can easily be found

by taking g, = \N2/L sin 27x/L. o will then be found to

be proportional to sin hrx, /L when Eq. (4-9) is used, and

therefore the tube will tend to oscillate when 0 ¢ x, &amp; L/L

and L/2 &lt; xy, £ 3L/4. These results are also in agreement

Nith experimental observations. (1)

Analysis Including Radiation Losses

Since the Rijke tube 1s open at both ends, it is to

oe expected that the radiation of sound from both ends of

the tube 1s an important energy loss that must be overcome

by the heat source if oscillations are to occur. In this

section we work out the expressions for o and k when radia-

tion losses are included in the analysis. We shall, how-

ever, still assume that the increase in sound speed in the

apper half of the tube can be neglected, and when we compare

our results with experiment, a mean sound speed will be

used. Under these conditions, the appropriate elgenfunction

is 4, = A sinh(y,x +38) where vy, = - 28/L - inv/L. 3 is the

real part of the radiation impedance. and is small compared
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with unity. The value of A is determined by the require-

ment that 5 be normalized, and it can easily be shown by

Integration that A =42/L(23/sinh 25). Since we wish to

include only terms linear in § ( 3&lt;&lt; 1) we may take

A = \2/L. Separation of the stability equation into real

ond imaginary parts 1s straightforward but tedious. We

shall present only the results here:

2X 2TX 2X
-1. h 2 h h

’ 25, - 5 +3 Py (Vy) sin—= = FLY) (Fein +25(1 - |
(4-10)

2 2TX 2TX 2X
mT _.2_ _|y-1 “"h 25..." "h 2](3) k= = 1 2 F.(V,)sin T +F; (V,) (5sin T— +23(1 I ]

(4-11)

The competition between the generation of sound at the heat

source and the losses due to radiation is now directly

shown in Eq. (4-10). In the absence of a heat source

(F' (Vv) = 0) the tube will have a value of o¢ equal to

MYKLS = - 23/L and is therefore damped. .The term in

square brackets represents the contribution of the heat

source to o and therefore the tube wlll start to osclllate

when this term 1s greater than §$. It can also be seen that

In this analysis even in the presence of radiation losses

there must be a phase lag between q and u, that is,

2 (Vy) &gt;» 0. For $§ = 0 Egs. (4-10) and (4-11) clearly

reduce to those presented in the previous section.
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This ends the theoretical treatment of the Rijke

phenomenon. In the next section we shall present some

data on the magnitude of the heat released to the medium

28 a function of flow velocity and frequency, and in the

following section we will compare the calculated results

vith some experimental data obtalned by the author.

3 Heat Released to the Gas

In this section we shall find an explicit form for

the function F'(V,) by using a boundary layer theory due

to carrier (13) to find the fluctuating component of the

heat transferred to the medium by conduction. Not all of

the heat supplied to the heater is given up to the gas by

conduction; we shall present some measurements in the next

section that indicate that an important source of energy

loss is thermal radiation from the heater, and therefore

the mean heat per second given up to the fluid by convec-

“fon is

AI -W(l - c, 1) (4-12)

W 1s the power supplied to the heater, Ch is a constant

to be determined, and Ty, is the surface temperature of the

heater. If o' is the fluctuating component of the heat

added per second. then Carrier has shown (13) that for a

heated ribbon oriented parallel to a mean flow (V..) the

ratio q'/Q, may be expressed as:
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{ _ } 1 Vm 1/2
o L otras) ext (ad)

-a~d
_ 2

(e -1) 3H7 = TX
m Vin

(4-13)

where w is the frequency of the velocity fluctuations, 4

is the length of the ribbon in the direction of the flow,

and u is the perturbation in the stream velocity. an is

civen by:

 TP pe Vo
= 1 \2 + ikaw - 1 —E2

Ao 2 y po V2 $
(4-14)

where k is the thermal conductivity of the gas, and the

ther symbols have thelr usual meaning. We shall denote

the function in square brackets in Eq. (4-13) by T =E+1F.

The argument of the error function is in general complex,

3

but for hk/pe V7 &lt;&lt; 1, a, 1s almost imaginary, and Merk (7)

has pointed out that Eq. (4-13) can be expressed in terms

of Fresnel integrals. (1H) For the values of 4d, w, and so

on that were used in the experiments to be described in

the next section, as is either very nearly imaginary, or

complex and large. In the latter case, an asymptotic

series representation may be used for the error function (14)

and the real and imaginary parts of T found as a function

of V.. If we take w = 2m(200) radians per second,

d = .632 x 107° meters, k = .0239 Joules/second-meter-°K,

Cp = 10° Joules/kilogram-"K and p = 1.18 kilogram/meter-,

~he above approximations may be used to obtain the curves
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Illustrated in Figure 4-2. If Egs. (4-13) and (4-14)

are expanded for small values of w, it will be found that

Do *.5 as ww —= 0. This implies that the mean heat

transferred to the gas per second 1s proportional to

(vy? as can be seen by putting the heat transfer

relation into a form due to Merk: (7)

Fp (Ty, - T,)Asa(Re, Pr) (4-15)

(Ty, - Tg) is the temperature difference between the gas

and the heater, Ag is the surface area of the heater and

+ 1s a function of the Reynolds number (Re = Vv d/u) and

the Prandtl number (Pr = c_pu/k). Then, as ow —&gt; 0 this

relation can be expanded for a perturbation (u) in Vs

and the ratio of the fluctuating part of the heat trans-

ferred may be expressed in terms of u/V_:

4 - Jun a) u_
Qn 2(1ln Re Vv

(4-16

Since (ln a)/2(1ln Re) = T = .5 at w = 0, we must have

Qn vi/2, This result will be useful when we compare

she results of our analysis with the experiments described

in the next section. Since the function F'(V_) was defined

J

] = BP! (Vv )u

Wwe may use Egs. (4-12), (4-13) and

(4-17)

(4-17) to express F'(V,)

in the following convenient form:
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WT
FY (VV) = 5 —5—

m Vo Po VpPt

4
W(l - C,T")

notre
Po Vit

(4-18)

(4-19)

All of the symbols except the cross-sectionalareaofthe

tube (Ay) have been defined previously. The factor Po Vit

in the denominator of Eq. (4-16) occurs because the source

term in the wave equation 1s the rate at which heat is

added r= mao: + to the fluid. At very low flow speeds,

chis result should be corrected to account for the finite

size of the heater. but we shall be dealing with flow

speeds high enough so that that correction may be neglected.

Equation (4-19) and Figure 4-2 therefore give us suffi-

cient information about the fluctuating heat released to the

fluid to be able to determine whether or not the tube will

oscillate. Since such a determination requires a knowledge

of the surface temperature at the heater as well as a con-

stant (Cs) that can best be determined by experiment, it is

desirable to present some experimental results before

presenting the comparison between theory and experiment.

5. Experimental Apparatus and Results

The experimental configuration used to obtain the data

presented in this section was very simple. A brass tube

32 in. long and 3.5 in. in diameter was mounted over a hole

near the edge of a plywood board that was arranged to be
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5 ft above the laboratory floor. A 125 £42 box was

constructed from thin plastic film and placed underneath

the plywood board, shown in Figure 4-3. The rate of air

flow through the tube could be controlled by means of a

small centrifugal blower placed in a lower corner of the

plenum chamber. The plastic film was used for the plenum

chamber so that the radiation impedance on each end of the

tube would be approximately the same. The heater used in

hese experiments was constructed by cutting a ring

(3 1/4 in. o.d., 2 3/4 in. 1.4.) from 1/2 in. thick

asbestos board. Machine screws mounted around the ring

then served as supports for a nicrome ribbon 1/4 in. in

width and 0.0063 in. thick. The spacing between the

ribbons which were run back and forth across the asbestos

ring was approximately 0.2 in. For all of the experiments

to be described in this section, the heater was placed a

distance L/4 from the bottom end of the tube.

Sound pressure level measurements were made with a

condenser microphone system and Ballantine voltmeter.

Other quantities measured were: (1) the alr temperature

at the top of the tube by means of a high-temperature

mercury thermometer, (2) the air flow through the tube

using a Hastings Corp. air flow meter, and (3) the surface

temperature of the heater ribbon. The latter quantity was

obtained bv removing the heater from the tube and recording

the surface temperature (measured using Tempil-sticks,
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commercially available pencils containing a material with

2 known melting point) as a function of the observed color

of the heating element. When the heating element was

replaced in the tube, the color could be observed by means

of a mirror mounted below the tube and thus the surface

temperature estimated. The Q of the tube at a wavelength

equal to twice the length of the tube was measured by

2xclting the tube from the outside with a loudspeaker and

measuring frequency of the half-power points with a con-

denser microphone placed at the center of the tube. If

is the bandwidth between the half-power points, then the Q

is, of course, defined by w/Aw. The Q of the tube was

varied by varying the position of a fine-mesh screen in

the tube-

Since the theory presented in the earlier sections

NaS small-signal theory, one cannot predict the final

intensitv of the oscillation, and so. we shall limit our-

selves in this section to a determination of the onset of

the oscillations. The first observation that can be made

ls the dependence of the temperature in the upper half of

the tube (Tg) on the mean flow velocity in the lower half

&gt;f the tube. The measured data are presented in Figure 4-1

for three different values of power supplied to the heater

together with some calculated curves. The calculated

curves were obtained by assuming that the gas takes up all

ff the energy supplied to the heater, and it can be seen
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that although the two are in good agreement for high flow

speeds, there is a great deal of energy unaccounted for at

low flow speeds. In Figure 4-5 we have plotted (1 - We/W)

as a function of measured absolute temperature of the heater.

We is the power delivered to the gas. The unaccounted-for

energy 1s seen to be proportional to 7} and therefore radia-

tion from the heater appears to be an important source of

energy loss at low flow speeds. From the slope of line in

Figure 4-5, it can be determined that the power per second

delivered to the gas by convection is Q, = W(l - cm)

where C, = .346 x 10712 o%,

The gas temperature Ty and the heater temperature Th

have been measured as a function of Vin for three different

values of heater power. We may compare these results with

ralues calculated by taking

| hy _ 1,2

W(1 - CT) = Cq(Ty, - To) Vo (4-19)

ing

Wl - Com)

—== 7 -T,PCH Vmhs B
(4-20)

vhere C, 1s a constant that is determined to give the best

fit with the experimental data, C, = 1.45 Joule/secl/?

netert/2 °K. Using the two constants, C, and C,, the

neater temperature and Tg may be calculated as functions

of V.. using Eas. (4-19) and (4-20). The results of these
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calculations and the experimental points are shown in

Figures 4-6 and 4-7.

The Q of the tube as a function of the position of

2 fine-mesh screen in the upper half of the tube was also

measured for the first mode of the tube, and the results

are presented in Figure 4-8.

The dependence of the onset of oscillation on screen

position was measured for three mean flow speeds and three

values of the heater power. The data are presented in

Table I below.

Heater

Power

Watts)

920

L100

1230

330

1100

Mable TIT.

Screen Position

(in. from upper
end of the tube)

o
from

Figure 4-8

Mean Flow

Speed
m/sec

11 3 /l 43 64

41.5

41.5

51

S57

11.5
w

&lt;

r

1.0.8 C

Values of heater power, Q, and mean flow at

vhich the onset of oscillation occurs.

At the lowest flow speed, the heater was too hot to use

an input power of 1290 watts.

The dependence of the onset of oscillation on flow

speed was measured when the screen was removed. The

highest flow speeds at which the tube will oscillate are

84. .87, and .91 meters per second for heater powers of
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930, 1100 and 1290 watts respectively. The lowest flow

speeds are more difficult to determine because the heater

becomes very hot, and care must be taken to prevent it

from burning up. The best observation that can be made

is that the tube stops oscillating when the speed is in

range 0.2-0.25 m/sec for heater powers between 930 and

1290 watts. As w~ shall see in the next section, the

theoretical calculations are in good agreement with

experiment at high flow velocities, but it does not seem

to be possible to get agreement with theory at the low

velocity cutoff. and therefore these data will be suffi-

ciently accurate for our purposes.

J

/ Comparison between Theory and Experiment

Before presenting a detailed comparison between the

analysis presented in sections 1-5 and our experiments,

we present some experimental data obtained by Letumn id

who measured the high and low velocity cutoffs as a func-

tion of heater power using a somewhat different experi-

mental arrangement. It is not possible to use the data

at the low velocity cutoff because thermal radiation from

the heater was presumably an important source of energy

loss in those experiments and no detailed measurements of

neater temperatures were reported. At the high-velocity

cutoff, thermal radiation can be neglected, and from

Ras. (4-10) and (4-18) we see that under these conditions

the quantity W/E should be constant at the onset of
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osclllations provided that the radiation impedance is

unchanged. The quantity T can be taken to be approxi-

mately constant over the small range of flow speeds used.

The experimental data are shown in Figure 4-9, and it is

seen that W/V is indeed reasonably constant. For com-

parison, w/v has also been plotted, and it can be seen

that 1t changes drastically. These measurements are

therefore in good agreement with theorv

The author has also tried to compare some of the

experimental results obtained by Kerwin (5) with the

analysis presented here. Data on heater surface tempera-

ture. gas temperature, mean flow speeds and power input

vere used to calculate the amount of energy given up to

the gas by convection. It was found that 599 - 86% of

the input power was unaccounted for. depending on the

neater power and flow speed, and in addition that the

unaccounted-for energy did not depend on surface tempera-

ture as 1, but rather as some much weaker function of T.

In that study the complex elgenvalue for the tube was

measured by introducing known losses until the tube just

stopped oscillating, and so one can see if the measured

eigenvalue is proportional to W/E as required by

Eq. (4-18). Unfortunately these attempts were unsuccess-

ful even when the energy loss described above was accounted

for, but one can see from the data that o increases as W is

increased, and also lncreases as Vv is decreased. The
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results are therefore in qualitative agreement with this

theory. No explanation of the failure to get quantitative

agreement with the theory presented has been found, and so

we proceed to a comparison of the analysis with the experi-

ments described in the previous section.

The first comparison to be made is between the Q of

the tube measured with a cold heater in place and the Q

calculated using Eq. (4-10) and the relation Q = k/20.

Using these we have

_k _ k°1® T

= 35 = Irs - Ig

for F'(V,) = 0 and kL = 7. If we use a value of § for

an opening at the end of a long tube, (12) gy = (ka )°/A

nhere a 1s the radius of the tube, we find that for the

jimensions of the tube used in this experiment Q = 106.

The measured Q was 49 and since the theoretical calcula-

tion does not include losses introduced by the heater, or

losses due to viscosity and heat conduction at the tube

nalls, we shall use the experimentally determined value.

Since § is small, the term that contains F!(V_) in

Eq. (4-10) can be neglected, and therefore we use as a

rondition for the onset of oscillations

—T_ Y=Lgpi(v)&gt; (L-27.

For x, = L/4. If we use an average speed of sound equal

ro 400 meters per second which corresponds to room
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cemperature in the lower quarter of the tube and a

semperature ratio of 1.5 in the upper three-quarters of

he tube, take v = 1.4, kL = 7, and Q = 49, then the

stability relation 1s simply

FV) * 2.5.
-

NS (4-22)

Using Eq. (4-19) and the plot of T vs V,, presented in

Figure 4-2, we may plot Fi (Vy) for the three different

values of heater power used in these experiments. The

points A, B, and C in Figure 4-10 are the cutoff points

according to Eq. (4-22). The calculated atues of the

cutoff velocity, .71, .8l. and .90 meters per second are

in verv good agreement with the measured values, .84, .87,

and .91 meters per second. The analysis therefore compares

very well with experiment at the high velocity cutoff.

At low flow velocities, the situation is consid-

erably more complicated. According to the calculations

presented in Figure 4-10. the source strength, F'(V,)&gt;

continues to rise as V_ approaches zero, and no cutoff

ls obtained for small values of Vo It can be seen

qualitatively from the data presented in Table I that as

the flow speed is decreased, the onset of oscillations

occurs for a lower value of Q, and so the measurements

are at least in qualitative agreement with the calcula-

sions. Kerwin (OD) also found that the strength of the

source term increased with decreasing flow velocity, and
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obtained an oscillation at zero flow velocity for which

no quantitative explanation could be given. The source

strength rises first, because we have taken Q ~ Vi/2 and

therefore a perturbation in Qn resulting from a perturba-

tion u in Vin becomes large as Vin approaches zero, and

second, because the source strength 1s proportional to the

heat added per unit mass of the fluid, and this introduces

a factor of 1/V, in the denominator of Eq. (4-18). Both of

these effects are modified, however, in the limit of zero

flow velocity. The first, because for v, = 0 the heat

added to the gas 1s independent of the sign of u and

therefore the period of the heat addition is T/2 if u has

1» period T. Thus, the source strength1szeroat the

fundamental frequencv. w = 27/T. The second effect 1s

nodified because cf the finite size of the heater. At

zero mean flow velocity, the heat 1s given up to the mass

of gas in contact with the heater. Thermal radiation from

the heater 1s also an important factor in the decrease of

the source strength, but this factor has already been

included in the calculated curves presented in Figure 4-10.

According to Figure 4-5, all of the energy put into the

heater should be radiated at a surface temperature of

approximately 1300°K as can be seen if the straight line

is extrapolated. This limit is reached, however, only

shen the flow velocity approaches zero as can be seen from

the calculated curves presented in Figure 4-5. It has
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been found by Kerwin that an instability in the mean flow

through the heater occurs for very low values of the

Reynolds number, and although the cutoff point in these

experiments occurred at a higher Reynolds number, it

appears that one would have to study such instabilities

in more detail in order to obtain a quantitative theory

to explain the low-velocity cutoff. In these experiments,

the plenum chamber was not completely air-tight, and there-

fore it was necessary to reverse the direction of the

centrifugal blower to obtain mean flow speeds very much

below the mean flow speed corresponding to free convec-

tion. As the suction was increased to decrease the mean

Flow speed, the oscillation stopped very suddenly, and

vas accompanied by a sudden decrease in the flow speed

and a sudden rise in the heater temperature, almost to

Ehe point of burnout.

Finally, we note that the quantity F'(v

~onstant, or W(l - CT) av = constant for intermediate

values of the flow speed. We may use the values of W, Vis

-

and Q presented in Table I, the values of Ty for each mean

flow presented in Figure 4-6, and the previously determined

value of Cy, C, = .3U46 x 10712 9% to test the above rela-

tion. If this is done, it will be found that the "constant"

varies bv a factor of approximately 2 and so in this respect

the experimental data are not found to be in particularly

rood agreement with the analysis. Although the source
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strength has been found to increase with decreasing flow

velocity, it would be desirable to find a method of intro-

ducing losses into the tube in a symmetric fashion before

making a detailed comparison between the analysis and

experiments. It would also be desirable to control the

mean flow velocity by a different method, and in this way

the low-velocity cutoff could be studied in more detail.
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