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ABSTRACT

The influence of turbulence, external forces, and a
heat source on the propagation and stability of an acoustic
wave has been studied. The general theory of sound
propagation in a turbulent medium has been used to study
the statistics of a sound field above a plane boundary.

The analysis has been compared with experimental data
obtained in the laboratory and in the field.

In order to study the propagation of finite amplitude
waves in a stratified medium, it is necessary to modify
the classical theory of large amplitude propagation. This
modification has been made, and the results are applied to
a specific problem, the propagation of an N-wave in a gas
stratified by the gravitational force.

The acoustic instability known as the Rijke phenomenon
has been treated as a scattering problem, and a characteristic
equation has been derived that defines the stability limits
of the oscillation. Some experimental results have also
been obtained, and are compared with the analysis.

Thesis Supervisor: Uno Ingard

Title: Associate Professor of Physics
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Chapter 1. Introduction

1. Statement of the Problem

In the continuum description, the motion of fluids is
governedlby a set of non-linear partial differential
equations, and therefore it has always been necessary to
attempt to find approximate solutions to the equations.

These attempts make up a body of literature to which workers
in acoustics have contributed a great deal. A comparatively
recent viewpoint is that not only external source terms are
thought of as producing a disturbance that can propagate, but
also that the non-linear terms may, under certain circum-
stances, be considered to be source terms, and by using this
notion, problems such as the generation and scattering of
sound by sound have been explored. Although the general form
of all of the source terms has been recognized, there are
many specific problems that remain to be worked out before
our understanding is complete.

It has been found that the fluctuation in the amplitude
of a sound wave measured in the field is frequently much
larger than one would predict using the theory of sound
propagation in an unbounded turbulent medium. In an effort
to understand this difference we have considered the influence
of a plane boundary on the statistics of the sound field.

Measurements have been made both in the field and in the
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laboratory, and have been compared with an analysis that
includes amplitude and phase fluctuations in the sound field.
Reasonably good agreement between the two has been obtained,
as is shown in Chapter 2.

Another problem that has not yet been completely worked
out is the motion of a steep~-fronted wave in a stratified
medium. The classical theory of propagation of finite
amplitude waves has been modified and applied to the propa-
gation of a wave in a medium stratified by the gravitational
force. Although some of the results can be obtained by
accounting for the wave energy lost by dissipation in the
shock front, the analysis presented here is more general and
can be used to study many features of the motion that cannot
be studied by using an energy approach.

A third problem that has not yet been completely under-
stood is an acoustic instability caused by a heat source.
An oscillation, first observed by Rijke, is produced by the
presence of a heated grid in the lower half of a vertical
tube, and has been studied by a number of workers. 1In this
thesis, the problem is treated in terms of the scattering of
sound by a heat source. It is found that many of the features
of the oscillation can be rather easily understéod when
examined from this point of view. The analysis is compared
with experimental results obtained by the author and by
other workers.

Before proceeding with a detailed treatment of each

problem, it will be convenient to present a very brief
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summary of the equations of motion, and to point out the

specific source terms to be included in the analysis.

2. The Equations of Motion

The equations that provide a continuum description of
the motion of fluids, the equations of conservation of fluid
mass, momentum, and energy, may be most conveniently written
in terms of an Eulerian description of the motion. That is,
the field variables are taken to be functions of two inde=-
pendent variables, the position x and time t. If we allow
for the fact that an external source may inject mass into the
fluid, that external forces may act on the fluid, on that
external energy sources are present, then the conservation

laws may be written in the following(l’ 2)form:

J

£ 4 ,’Tl (ev) =Q (1-1)
> Mtij _

gf(evl) + ij =F; +Qvy (1<2)
9h . iy

A M (1-3)

A repeated index indicates a summation from 1 to 3. In these
equations is the fluid density, vy is the ith component of

the velocity, and t;; represents the stress in the fluid,

J
tij = psij - Dij t vy i Dij is the viscous stress tensor

and p is the pressure in the fluid. In the energy ecuation
(1-3) h is the energy density of the fluid, v2/2 + pe and

I.1 is the ith component of the energy flow vector. All of
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the terms on the right hand side of the above equations
represent source terms. Q is the rate at which mass is
introduced per unit volume into the fluid, and the term Qvy
represents a change in momentum per unit volume due to
convection. Fi represents the external force acting per
unit volume, and W represents energy sources. These equations
plus the equation of state are sufficient to describe the
motion of the fluid.

We next derive a wave equation by taking 2/2t of Eq. (1-1)
andQ/in of Eq. (1-2) and subtracting the two resulting

equations. We obtain

2
;2‘, 32[) B 3Q i e -32 gDi.
31:2 - gxi =t 5F X3 - (Qvl) Ix. 'Jx (ev axi‘axj
(1-4)

We may now add (l/cz) azp/;,)t2 to both sides and obtain a wave

equation for p in the following form:

2
2 2 . )
S S e R U T TR o U o 8
;xi c2 ;tZ in ot X5 i K< ;;x (’ pxiaxj

- —;;gcp- p/c?)  (1-5)

¢ is a constant which will turn out to be the adiabadic speed
of sound, (Jp/af)s. Note that we have not up to now made

any approximations to the conservation laws, and therefore
this equation may be taken as the starting point for a
solution to all problems that involve a continuum description
of the motion of fluids. ‘The analysis and experiments in the

following chapters were performed in order to learn more



13

about some of these source terms, and include both linear
and non-linear problems. 1In the following sections of this
introduction we will discuss the source terms that are of
importance in the problems that we wish to study in the

following chapters.

3. Influence of Turbulence on the Sound Field Over a Plane

Boundary

The influence of turbulence on the sound propagated in
an unbounded medium has been presented in the recent books
by Chernov(3)and Tatarskisa)and in the recent article by
Morse and Ingardsl) The important source term to be con-
sidered is the term )zﬁaxng (Qvlv ) in Eq. (l=-5). If we
assume that the acoustic velocity field is represented by a
plane harmonic wave of wave number k , then we may separate
the above term into GQ/QXfo (e(vy V + Viuj + Vjui + uiuj))
where V, represents the turbulent veloc1ty field. 1If we
neglect the term responsible for the generation of sound by
t:urb1.1lem':csa(5 6) (V V ) and the term responsible for the
scattering of sound by sound (u u; ), then the part of the
remaining cross-terms linear in the acoustic variable are

azlaxiax (QO(V u. + V. ui)), and are the important source

terms. If the quantit; added to both sides of Eq. (1-4) is
taken to be (l/coz) fp/;t2 where ¢ is the speed of the

acoustic wave in the absence of turbulence, then the acoustic
variables in the last term of Eq. (l1-5) cancel out for

isentropic flow, and the wave equation for the sound pressure

(p) may eventually be written:
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2B 42 p= - BEZ (1-6)
g'xi (o]

where the term on the right is obtained from the source term
by using the linear form of the equation of continuity and

the relation p = ci& , where&8 is the density perturbation

in the fluid. Using this approximation, the variance of the
amplitude and phase fluctuations of the acoustic wave may be
found. 1In Chapter 2 we have included a boundary in the
medium, and have studied both the changes in the RMS level

and the fluctuations that occur because of the interference
between the direct wave from the source and the wave reflected

from the boundary.

4. Propagation of Waves of Finite Amplitude in Inhomogeneous

Media

It is necessary to retain more terms in Chapter 3 where
the propagation of finite amplitude waves is studied. The
medium is assumed to be stratified by the presence of a body
force that also produces an entropy gradient. Thus, both the
first and last terms will have to be retained, the latter
because the difference between p/c2 andtfis not only caused
by heat conduction, but also because there is a convection
of enﬁrOpy by the particle velocity in the wave. In the
dissipationless approximation, the change in entropy of a
fluid element is zero only when a Lagrangian description of
the motion is used. In the Eulerian description that we have
adopted, the entropy at a point in space can vary (even in
the linear approximation) and so these convection terms as

well as the loss terms will have to be retained. We will
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also have to keep a portion of the fourth term to account
for progressive distortion in the wave. These facts lead to
a modification of the classical theory of Riemann(7)and
Stokes(g)that can be applied to the propagation of finite
amplitude waves in inhomogeneous media. Since any pertur-
bation, no matter how small, eventually leads to a double-
valued field variable in the lossless approximation, we will
have to include dissipative effects in order to obtain valid
results. In the approximation used in Chapter 3, the loss
terms are included in a somewhat different manner. Since we
do not consider the growth of an initial small disturbance
into a steep-fronted (shock) wave, but rather the propagation
of an already formed shock in an inhomogeneous medium, the
approximation is made that all of the dissipation occurs in
the steep front because the field variables have large
gradients in this region. Application of the conservation
laws across the shock front leads to the Rankine(g)-Hugoniot(lo)
shock relations, and when these relations are used with the
loss-free equations, a relation may be found that describes
the decay of pressure at the shock front with distance. Such
an analysis has been performed by Dumond, Cohen, Panofsky and
Deeds(ll)for an N-wave in a homogeneous medium, and our
results will reduce to results obtained by those workers in
the limit Fi—*O. For this particular problem, it is best to
identify the source terms that are important using Eq. (1-5),
but in order to perform the analysis it is more convenient to

use the equations of motion directly as will be shown in

Chapter 3,
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Even if the non-linear effects are neglected, calculation
of the propagation constant for a plane harmonic wave in a
medium stratified by the gravitational force leads to an
attenuation or amplification of the sound pressure (p)
consistent with conservation of energy, p2/2Q§.= constant.
In addition to the change in amplitude, the imaginary part
of the propagation constant decreases with decreasing
frequency until the density fluctuations are balanced out
by the entropy fluctuations, and then no pressure wave is
propagated. The former effect is shown to occur for finite
amplitude waves as well, but is modified by dissipation in
the steep front. The additional factors that have to be

included to obtain the latter effect are also pointed out,

5. The Scattering of Sound by a Heat Source

The last term in Eq. (l-4) is important when the
generation or scattering of sound by heat is being considered.
The portion of the last term linear in the acoustic variables
for a homogeneous medium is ;F/)tz (é- p/cz) which, using
the equation of state p = p(?,s) may be written (I/CZT)
(Bplask (2q/2t) where q is the rate at which heat is added
per unit mass to the fluid. For aﬁ ideal gas, the source
term is (1-1)(1/¢%)(3q/?t). When the heat added is influ-
enced by a velocity perturbation in the fluid, the acoustic
variables may, under certain conditions, grow with time,

The particular problem worked out in Chapter 4 is the Rijke
phenomenon, the oscillation caused by the presence of a heated

grid in the lower half of a tube open at both ends. Up to
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now, the problem has been attacked by using the source-free

wave equation and requiring that the acoustic variables
satisfy the appropriate boundary conditions on either side
of the heater as well as the conservation laws across the
heater. Such an approach leads to a rather complicated
characteristic equation that must be solved either by machine
computation or by a perturbation expansion around approximate
values of the eigenvalues. These complications are avoided
when one views the phenomenon as a one-dimensional scattering
problem. If the source term is treated as a spacial &-
function whose magnitude depends on the value of the particle
velocity at some point, then the pressure perturbation can
be expanded into an infinite series of orthonormal functions
that satisfy the appropriate boundary conditions. When the
actual eigenvalue for the tube is sufficiently close to an
eigenvalue of one of the modes, then only one term in the sum
will be important. A characteristic equation is obtained
after the acoustic variable is eliminated by means of a self=-
consistent requirement on the particle velocity, and the
stability limits of the system can be found immediately.
After the relation between the acoustic particle velocity and
the fluctuating component of the heat added is discussed, the
results are compared with some experimental data, and good
agreement between the two is found for some features of
the oscillation.

Having presented a very brief outline of some of the

terms in the wave equation to be considered, we now proceed



directly to a discussion of each of the three problems.
Additional introductory material is presented at the

beginning of each chapter,

18
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Chapter 2. The Influence of a Boundary on the Propagation
of Sound through Atmospheric Turbulence

l. Introduction

The general aspects of sound propagation in a turbulent
medium have been discussed in several basic papers by
Obhukov, ‘1) Krasilntkov, ') chernov, ‘3) Tightniag, )
BatcheIOP,(5) Kraichnan,(6) Mintzer(T’s) and others as
well as in the recent books by Chernov(g) and Tatarski(lo)
in which extensive lists of references are given. One
aspect of the problem that has not yet received a great
deal of attention is the influence of the turbulence on
the propagation of sound in the presence of a boundary.
Even 1f the turbulence 1is so weak that it has practically
no influence on the sound field in free space, the influ-
ence on the sound field can be large when a boundary is
present because the field above the boundary 1s critically
dependent upon the phase relationship between the direct
and reflected waves. Clearly in the regions where the
interference between these two waves 1s normally destruc-
tive, small fluctuations in the phase difference can
cause large fluctuations in the amplitude of the sound
field. In addition the rms sound pressure level must be

greater in the minima of the sound field. At large



distances from the source, the well-known mirror effect
which normally makes the sound pressure decrease as the
inverse square of the distance from the source will be
eliminated because the direct and reflected waves become
uncorrelated in phase. In the sections to follow we will
present a detailed analysis of the sound field above a
plane boundary. In section 3 some experimental results
obtained in the laboratory will be presented. In sec-
tions 4 and 5 calculations of the statistics of the sound
field have been made, and these calculations are compared

with some experimental data in section 7.

2. Calculation of the rms Sound Field

In this section we shall consider the field from a
harmonic monopole point source located a distance h above
a plane boundary. The geometry is 1llustrated in
Figure 2-1. The boundary is specified acoustically by a
known normal admittance B/pc (the ratio of the normal
particle velocity to the sound pressure) which we assume
to be real. Since the source will generally be several
wavelengths above the boundary, we may neglect the fact
that the wave front 1s spherical and use the plane wave
reflection coefficient R = (cos 6 - B)/(cos © + B) to
obtain the image source strength. For the moment we
shall call the amplitude of the image Ar and write the

sound pressure at the point P

21
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i(kdXﬂbt) A

- 1(krr~mt)
e ;——e

A

d L
e (2r1)
where A is the amplitude of the wave from the source, x
is the distance from the source, r is the distance from
the image, w 1s the frequency of the emitted sound, and

ks and kr are the wave numbers of the direct and reflected

waves respectively. Ad’ Aoy kd, and kr are not constants

r
but fluctuate about some mean value because of the turbu-
lence. We shall define Ay =1 + a; and A, = R(1 + ar)
where (ad> =«<ar7 = 0 (the¢ » indicates an average over
a long perilod of time which we shall later assume to be
identical to a statistical average). The fluctuating
phase difference, 5, may be included by taking kdx =
kox + Bd and krr = kor + 51,, where<6d> =<6r‘/ = 0. ko
1s the wave number in the absence of turbulence, w/c_.
In order to find the fluctuating parts of the amplitude
and phase, we assume that the fluctuating part of the

veloclty of the medium may be replaced by a randomly

il

varying index of refraction n 1 + pu where pu << 1.

An approximate solution to the wave equation
‘fp =-2k§up may be obtained by using the method of
lateral diffusion. A concise account of the method may

be found in a recent article by Morse and Ingard,(ll)

or
in reference (9). If it is assumed that the spacial
correlation of the turbulence is of the form.(uluév =

ug exp (- 32/L) where L is a measure of the scale of the
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turbulence, then it can be shown that for deep penetration

into the medium (x > qu) the variance of the amplitude

and phase fluctuations 1s given by(ll)
1 2 2
<85> = T kS (xL)nd (2-2a)
2 2 2
£ (In(1 + ag))> = H7 kK (x1)p’ (2-2b)

In the analysis to follow, we shall assume that <85> = <5§>
and <a§> = <a§> because the path difference between the
direct and reflected waves is small for most problems of
interest. It can also be shown(g) that for x > 4 LA the
phase and amplitude fluctuations are uncorrelated, and
this result will make possible considerable simplification
of the analysis. One last fact must be pointed out before
proceeding with the analysis. It has been found experi-
mentally that the fluctuations of the sound pressure
amplitude have a time scale which 1s much longer than the
period of the acoustic wave. Under these conditions it is
meaningful to speak of a time-dependent mean square pres-
sure which will be denoted by ;g_ The averaging time for
obtaining this pressure is long compared to the period of
the acoustic wave but short compared to a characteristic
period of the random amplitude and phase fluctuations of
the wave. We may therefore calculate ;E from Eq. (2-1).

The result is
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- 1,2 2x° x
p- = (Ay + AL(S5) + 2848, T cos(k (r-x) + 8)) (2-3)
X e

where b 1s the relative phase shift between the direct

—_—

and reflected waves, Bd - Br. What 1s needed first is p2

averaged over a time long compared to the period of the

fluctuations. We shall denote this average by <p2>. il

we use the fact that the amplitude and phase fluctuations

are uncorrelated, (pg) may be written

2
<p2> = —1§(l +<a(21>+ R2 X_2(1 +<a§,>+ 2R §'<COS(B0 + 5)>)
X r

(2-4)
2 2 2
where B, = ko(r - x). If we now take Lag>=<a_ >=<a">,
Eq. (2-4) may be put in the following form:

2

—= 2
2. _ 2R| a g e x i Ja X
P> = EF[QR (3{-+R F) + "'_ExR(l R r) +<{1 + cos(f30+6)>]

{2-5)
In this form, the effect of the turbulence can easily be
seen. For R = 1 (rigid boundary) and nc turbulence
(a~ = 5 =0), the term (1 - Rx/r) is small and so when
Bo = 7 (destructive interference) the mean-square pressure
is very small. If, however, the turbulence is included,
these minima are railsed considerably by the first and last
terms in Eq. (2-5). At large distances from the source,
{1 + cos(B0 + 8)»—=2 for & = 0 since Bo— 0. In the
presence of turbulence, large fluctuations in & at large

distances make < cos 5> = 0 and so <1 + cos(B0 +8)>—— 1.
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The mean level is therefore lowered by the turbulence and

it will be seen later that the inclusion of'<a2> in the

analysis will not change these conclusions very much.

In order to see more clearly the effect of the turbu-
lence, Eq. (2-5) has been plotted in Figure 2-2, using the
following parameters: u, = 0.005, h = 6 ft, L = 3 ft,

B = 0. Note that 4627'= <(6d = 5 )2> 2<6§> i1f we take

<6§>‘=4L5§>. In these sample calculations we have used

r*

the approximation <cos 5> = cosq:gg; for <62> less than 1
and <cos 5> = 0 for <62> greater than mw. The former is
actually valid only when (62><< 1 but these approxima-
tions are sufficient to illustrate the effect of turbulence
on the pressure field. For B # O it is clear from the
definition of R that R—— - 1 as x becomes large. In the
)2

absence of turbulence<1l + cos B y—— 2 - k§/2(r - X
2 - (ki/?)(?he/x)2 and 3041555 ﬁfl/kere for large values of
X (and r). In the presence of turbulence, however,

<1 + cos(Bo + 8)>— 1 for large x and.<;§$4-l/k2.

Thus the "mirror effect" is eliminated by the turbulence.
These results are illustrated in Flgure 2-3, which has

been calculated using the same approximations as were used
above except that B has now been assumed to be 0.05. The
large interference minima are of course almost completely
eliminated even in the absence of turbulence because of

the difference in amplitude between the direct and reflected

waves.
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A Preliminary Analysis of Fluctuations

The variance of the amplitude fluctuations for a wave
propagating in an unbounded medium is known (see Eq. (2-21))
to increase monotonically with distance from the source.
Data obtained from field measurements, however, have shown
that the fluctuatlions are frequently much larger than
those to be expected assuming that the variance can be
calculated from Eq. (2-2), and they do not always increase
with distance. Some field data obtained by Ingard(lg) are
illustrated in Figure 2-4. The source and receiver were
located approximately 6 ft above ground which consisted of
sand with sparse grass about 12-15 in. high. The fluctua-
tions are the peak-to-peak values of the fluctuating enve-
lope of the pure tone as measured on a Bruel and Kjaer
graphic level recorder. Since the exact shape of the
boundary is unknown we shall not attempt to obtain these
results by calculation, but will assume that the boundary
can be specified by a known normal admittance, and compare
the calculations with experimental results obtained using
a plane boundary. In this preliminary analysis we shall
neglect the amplitude fluctuations in the wave and assume
that only the phase fluctuations need to be considered.
Since the experimental data previously avallable refer
only to the fluctuation amplitude read by eye from a
logarithmic sound level recorder, it 1s of Interest to try

and obtalin some systematic method of comparing theory and
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experiment. Although the method to be developed in this
section should be regarded as only a rough approximation,
it has been possible to use it to obtain reasonable agree-
ment with some experimental data taken in the anechoic
chamber at M.I.T.

We regard ;ﬁigiven in Eq. (2-3) as a slowly varying
random function of time because of the random variations in

6. We shall neglect the amplitude fluctuations and so take

Ay =1 and A, = R. Then Eq. (2-3) may be written
= 2R .
p- = xr§2xR(l -RE) + 1+ cos(p, + 6)3 (2-6)

-—_

We note that p 1s limited to the region between pmax and

determined by the values +1 and -1 of cos(B, + 6).

2
pmin

If, however, the fluctuations in ® are small the probability
that these maximum and minimum values will occur will be
very small, and it seems reasonable to assume that the
experimental data on fluctuations do not represent

10 log(p Instead, we shall assume that

max/bmin
10 log pl/'p2 is more representative, where pi and pg are
defined by allowing p2 to be larger than pl for 10 percent
of the time and less than ;g for 10 percent of the time.
Although this definition 1s arbitrary, it at least giVes a
consistent procedure for calculating the fluctuations and
can therefore be used to illustrate the shape of the curves

of fluctuation level vs distance. In performing the compu-

tations, it has been assumed that © can be represented by a



Be

normal distribution P(8) = (1/42m0)exp(- & /20 where
o e LB

In general 1t 1s necessary to construct a distribution
function for ;§ using the entire expression given in
Eq. (2-6), but for R near 1 and x » h, the first term may
be neglected provided that B # m. Under these conditions,

the fluctuation in sound pressure (in dB) may be written

=
il

10 log(E?)gg)
(1 + cos(B + 6))1
10 log 1% cos(B 90, fEa

This level may now be calculated as a function of <62>
(which in turn is a function of x since <62> = 2<6§>) by
using the criterion outlined above. The results of such
calculations are shown in Figure 2-5. For BO = m, the
‘minimum level is determined by the first term in Eq. (2-6)
and must therefore be included in the calculations at the
interference points. This procedure has been followed in
the calculations of a curve for comparison with some
experimental data obtained in the M.I.T. anechoic chamber.
As pointed out earlier, the normal impedance of the surface
has a considerable influence on the magnitude of the fluc-
tuations observed, and for most outdoor experiments this
impedance 1s not known. In the model experiments described

below, the boundary impedance was well defined and so we

shall consider only these experiments in this section.
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The sound pressure level was measured as a function of
distance from a 5000 cps source located above a floor made
up of 1 in. thick plywood sheets above which a turbulent
air stream was produced by a number of propeller fans.

The reflection coefficient of the boundary was estimated
from the measured values of the sound pressure level in
the minima of the pressure pattern above the boundary.

In Figures 2-6 and 2-T7 the long time average sound pres-
sure level 1s plotted as a function of distance from the
source together with the corresponding calculated curves
(with a rigid plane assumed). The main effect of the
turbulence 1s to ralse the rms level in the minima of the
pressure pattern. It 1s important to note that the micro-
phone position was not changed when the difference in level
between propagation in turbulent air and qulescent air was
being measured. Thus the increase measured 1s a conse-
quence of the turbulent state of the alr, and not a small
difference in the microphone position. More satisfying
data will be presented in section 6. The average fluctua-
tion of the sound pressure level was also measured and the
results are shown in Figure 2-8. The theoretical curve
calculated from Egs. (2-6) and (2-7) can be obtained once
we assume a value of ugL. We select a value of ugL to
produce the best fit with the experimental data, and with
a value of ugL = 6.5 % 10_6 in. we obtain the calculated

curves shown in Figure 2-8. It can be seen that fair
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agreement 1s obtained, but in a more detaliled analysis one
should compare the statistics of the fluctuations with the
calculated statistics. In addition, amplitude fluctuations
as well as phase fluctuatlons must be included in the analy-

sis. We shall present such an analysis in the next section.

4, Statistical Analysis of the Mean Square Pressure Field
We obtalined in section 2 an expression for the long time
average of ;5 (see Eq. (2-5)) and some of the differences
between the results obtained in a quiescent and turbulent
atmosphere were pointed out. The results were, however,
obtained by assuming that cos 6 = 1 - 62/? for small & and
therefore that the mean value of cos b, < cos 5> could be
expressed in terms of the variance of & (<cos 6>==cos*££§;).
Clearly, for large values of ® it is necessary to have all
of the higher moments of & in order to obtain cos & and
this would require one to assume a form for the higher
spacial correlations in the turbulent velocity field. For
the purpose of this study, we shall assume that & is a
normally distributed random function with standard devia-

tion 0. o 1s to be obtained from Eq. (2-2b).
2 2 2 2
o? =¢6%> = ¢(s, - 54)% =m(kx) (kLIWE  (2-8)

The amplitude fluctuations are also assumed to be normally
distributed with standard deviationd<ﬁa2>. With these

assumptions, the only details to be worked out to obtain
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the mean square pressure are to calculate <Ll + cos(BO+-5y>
in Eq. (2-5) using P(5) = (1/42vc)exp(—62/202) and to cal-
culate'<a2> when < (1In(1 + a))2> is given by Eq. (2-2b).

The former 1s calculated simply by taking

e 2 2
<].+-cos(Bo-+6)>== : g(l - cos(Bo-+6))e_6 /20 dd (2-9)

2ro 2.

The result can be easily shown to be
—02/2
<1 + cos(Bo + B)>=1 + cos B.e (2-10)

Plots of the left-hand side of this equation vs o for
several values of B, are presented in Figures 2-9 and 2-10.
These plots will facllitate the calculation of theoretical
curves for comparison with some experimental data to be
presented in the next section. 1In order to obtain4:a2>
from < (In(1 + a))>, one simply expands the logarithm in
powers of a, and then uses the fact that a is normally
distributed to replace all of the higher moments by powers
of the second moment. Thus <au$ = 3<a2>2,4:a6> = 5<a2>3,
etc. This has been done keeping terms up to‘(a§>, and the
resulting curve 1is shown in Figure 2-11. The convergence
is falirly good up to.<a2> = 0.5 which 1s adequate for our
purposes since it corresponds to £ (1In(l + a))2> = 2,19.
This curve will also be useful for the calculation of
theoretical mean pressure levels.

Before continuing with an analysis of the fluctuations,

let us summarize the results of this section. It has been
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shown that'<p2> may be calculated using the following

equation
LE 2 2 2
2. _ 2RgLa >/r X r iy X -0°/2
Zpts e SR Seke R (1 - TN £ (1 hieon B8 )}
(2-11)
where.<a2> is obtained from
2 T 2
(In(l + a))™> = TT(kox)(koL)uo (2-12)
and the plot of'<a2> vs < (In(1 + a)2>-presented in
Figure 2-11. o 1s given by
o = ¢6°% = VT (k x) (k L)n (2-13)

5. Statistical Analysis of the Fluctuations

Having obtained the rms pressure as a function of
distance from the source, it 1s relatively easy to obtain
an approximate expression for the varliance of the fluctua-
tions by doing integrals similar to that in Eq. (2-9).
One can of course calculate either the statistics of the
"instantaneous rms'" pressure defined in section 2 or cal-
culate the statistics of the "instantaneous mean square
pressure’” ;E. We shall choose the latter because it is

' much easier to calculate and therefore deflne the variance

v by

v S LpE - ap TS (2-14)

We start with Eq. (2-3) and take A, =1 +a,, A_ =1 + a

d a* “r i
Since Ay and A, appear as squared terms in Eq. (2-3),
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terms such as ag, aﬁ, etc.wlll appear when Eq. (2-3)1is

put into Eq. (2-14). The higher order products must be
written in terms of second order moments when.<(;§)2>'is
calculated. Equation (2-11) is used for‘<;§>'and.<;§;2.

We shall work out an expression for Yv/m assuming that

the boundary is rigid (R = 1) and assuming that the cross-
correlations between amplitude and phase can be neglected
as well as the cross-correlation between the amplitude and
phase along the direct and reflected path. The substitu-
tion is simple but algebraically tedlious, and the integrals

are of the same type evaluated in Egq. (2-9). The result is:

By 2 sar P
v = (FE) (1 + 2¢a >)gl - e )(1 - e cos 230)
2
+ 24&2;(1 + cos Boe"c /?)} (2-15)

We shall compare the ratio 437255; with experimental data,
and so the factor 2R/xr in Eq. (2-11) and the factor

(E/rx)e in Eq. (2-15) may be dropped. For convenience in
calculation, the term inside the square brackets in

Eq. (2-15) has been calculated as a function of ¢ for
several values of B . The results are shown in Figure 2-12.
These results will be used in the next section where the

calculation 1s compared with some experimental results.

6. Experimental Results
After the experiments described in section 3 were

completed, 1t was realized that more detailed experimental
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data would be desirable from which it would be possible

to obtain more informatlon about the statistics of the
fluctuations and the rms value. The data to be described
in this section were obtained in the parking lot of the
M.I.T. Lincoln Laboratory. The rigid plane surface and
large size made this area ideal for studying fluctuations
outdoors relatively far away from reflecting objects. The
necessary equipment was obtained and set up on three suc-
cessive Sundays during March and April, 1962. A small
loudspeaker driver, osclllator and amplifier were used as
a source, and the received signal was recorded on an Ampex
tape recorder for analysis in the laboratory. The source
height chosen was four feet so that measurements could be
made both inside and outside of the interference zone for
the three frequencies used. The data obtained were later
played back through a Bruel and Kjaer level recorder with
a writing speed high enough to follow the envelope of the
received signal. The data were analyzed by reading the
level from the recorder tape at regular intervals along
the record. Two to four points per second were taken off
the tape depending on the time scale of the fluctuations.
 From these data, the mean square sound pressure and varl-
ance of the mean square pressure were calculated. Approxi-
mately 16,000 data points were used in computing the
results to be presented. We shall choose a value of uiL

to give the best fit with the measured rms value of the
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pressure at the last interference point at 500 ¢ps. This
value was then used to calculate the mean pressure curves
for the other two frequencies and the curves of Yv/m for
all three frequencies. The value of ugL equal to
2.62 x 1072 ft. corresponds to 5%y = 0.0625 radians® at
500 cps and 28.5 ft. At this point <a°> 1s 0.0312 and it
can be seen by using Eq. (2-11) that for R = 1 and x/r =
(1 - 2h2/kr) the middle term in the parentheses can be
neglected and the first and last terms contribute equally
to the mean-square pressure. For larger distances, the
term involving o changes much more rapidly than the term
involving'cae> and so the amplitude fluctuations become of
relatively less importance. A comparison of all the
experimental and calculated data on mean values is pre-
sented in Figures 2-13, 2-14, and 2-15. It is felt that
the agreement here is reasonably good considering that the
data were obtained on three different days. The mean wind
speed during all of these measurements was relatively con-
stant at approximately 750 fpm.

The data on fluctuations are presented in Figure 2-16.
Two sets of calculated curves are shown because the frac-
tional variance was first calculated assuming that the
fluctuations in amplitude of the direct and reflected waves
could be neglected, and the sharply peaked curves were
obtained. The assumption of no amplitude fluctuations in

the direct and reflected waves leads to larger fluctuations
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in the sum at the interference points because the
probability of having a hlgh degree of cancellation (and
thus a large fluctuation) between the waves must be
related to the Jjoint probability of finding the amplitudes
nearly equal and the phases different by nearly 180°.

When the amplitudes are assumed to be equal, cancellation
is more probable, and hence the fluctuations are larger.
These observations are borne out by the calculated curves.
Although the agreement between theory and experiment is
good at the lower frequencies, the calculated values are
generally too high at the higher frequencies. The shape
of the curves 1s generally correct, that is, the fluctua-
tions are larger in the minima of the mean pressure pattern
and smaller in the maxima, but the fluctuations tend to be
too small at all distances, especlally near the source at
2000 cps. It can easily be shown, however, that at least
in the interference minima the fractional standard devia-
tion 1s sensitive to the relation between the square of
the second moment and the fourth moment. Thus one might
be able to get better agreement with the experimental data
by assuming a different probability distribution.

Finally, 1t should be noted that 1n this statistical
analysis it 1is still pos;ible to estimate the average
fluctuations to be expected when one calculates a frac-
tional standard deviation. The data on fluctuations taken

from the Bruel and Kjaer tapes have been used in the
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following manner. The upper and lower 10 percent of the
amplitude distribution curve has been neglected in obtain-
ing a fluctuation level L which can be plotted against the
calculated fractional standard deviation of the same curve.
The results, presented in Figure 2-1T7, show that the
fluctuation level can be reasonably well estimated from

the fractional standard deviation.
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Chapter 3. The Propagation of Waves of Finite Amplitude
in a Stratified Medium

1. Introduction

Because the equations that govern fluid motion are
nonlinear, the progress that has been made towards find-
ing solutions of the exact equations of motion (including
terms arising from loss mechanisms in the fluid) has
necessarily been made slowly. Much of the work of

2) Fubini(B) and others has been

Lighthill, (1) Fay, (
thoroughly reviewed in a report by Blackstock.(u) The
above workefs have all found approximate solutions to
the equations that describe large-amplitude wave propaga-
tion in a viscous heat-conducting fluid.

On the other hand, it 1s appropriate in many cases
to examine the motion of a wave that consists of an already
formed shock front followed by a decay in pressure that is
governed by the loss-free nonlinear equations of motion.
The classical Rankine(5)-Hugoniot(6) shock relations may
be used to describe the change in pressure, density and
velocity across the shock front, whereas the motion behind
the shock is governed by the exact loss-free equations of
motion. In homogeneous media, the classical formulation

of Riemann(T) and Stokes(s) may be used, but for
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1nhomogeneous media that formulation must be modified as
shown in the next section. We shall work out the general
theory only for a very speclal case, namely that of weak
"N-waves" (see Figure 3-3) in an inhomogeneous medium.

The results of thils analysis may be compared to an approxi-
mate method developed by Whitham(g) for propagation of
shock waves in an inhomogeneous medium, and it will be
shown that the present method yields a somewhat better
approximation, at least for weak shock waves. For sim-
plicity we shall 1limit ourselves to a one-dimensional

treatment.

2. The Exact Non-Dissipative Equations of Motion

In this section we shall formulate the exact equations
of motion in an inhomogeneous medium in a form similar to
the classical equations for a homogeneous medium. The
essential difference, in addition to the body force, is
that in our treatment the entropy of the fluid will be
considered to be a point function of space in the absence
of any fluid motion. Thus, although the equations are
loss-free in the sense that in the presence of motion the
entropy of a fluid particle is constant, the motion cannot
be conslidered to be isentropic if an Eulerian description
of the motion is used. When one looks at a fixed point in
the fluid, entropy changes of the order of 3 (Qse/hx) are
to be expected where § 1s the particle displacement in a

Lagrangian description and Jse/hx is the mean entropy



gradient in the fluid. We shall include an external
force per unit volume (F) in the analysis, but neglect
any external sources of mass.

The exact one-dimensional equations of continuity

and conservation of momentum are:

2p 20 20 _ =
TE T SR e 0 (3-1)
au 2u . 19p F »
?t+u9x+p2x_p (3-2)

The condition that the entropy of a fluid particle is

constant 1s expressed simply by:

LU =0 (3-3)

The classical method of treating these equations for
homogeneous media 1s to take u = u(p) and p = p(p)
(equation of state) since s is supposed to be a constant.
In the analysis to follow, s is included as a variable
and p rather than p is chosen as the second independent
variable. The reason for this choice will become appar-

ent as we proceed. We therefore take u = u(p,s) and use

58

the equation of state in the form p = p(p,s). We may then

write
ap _ /2 2 P 25 -
=GP, % (sls'i)p 5t (3-4)
2P _ (2 ) 28 5
%G, KB R (3-5)
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If Eq. (3-5) is multiplied by u and added to Eq. (3-4)

we obtain, with (?p/gp)S the adiabatic speed of sound (02),
2p 2 _ .2(2@ 20 *
9t+u3x“c(at+uax) (3-6)

This well-known(9) form of the adiabatic condition will
also prove to be useful in the analysis.

We next use u = u(p,s) and u = u(p,s) to obtain

Ju g IO 3 P N

ﬁ+u§—($)s(§%+u5§-) (3-7a)
and

u 2u _ 2u 2 &

R L (ap)s(g-gm 28 (3-7p)

using relations similar to Egs. (3-4) and (3-5). The
equation of continuity (Eq. (3-1)) may now be written in
terms of dp/dt = Jp/at + u(ap/ax) by using Eq. (3-6).
Thus, Eq. (3-1) becomes

1
R Y = g (3-8)

which can be written as

2
Fruf--et G R (3-9)

L

by using Eq. (3-Ta).
It is now obvious that if Egs. (3-9) and (3-2) are

both satisfied we must have
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e
2D p%f(2) Mg (3-10)

When Ju/3ax is wrltten in terms of Jp/2x and 2s/3x,

Eq. (3-10) may be written

2

2. 2,9u P 2 2,9u Uy 28
(3~ pe(52) )52 - ple () (52) Sz = P (3-11)
P op’ X P p’g 98’

This result will be important in our analysis. It can be

easlily seen that it is analogous to the Riemann Condition
for fluid motion in a homogeneous medium, for if s = con-

stant, the above relation reduces to
U i
(32 #

and since u and p are now functions of density alone, we

may write

(F) = (EER =+ £ (3-12)

which is the Riemann Condition. Equation (3-11) may be
further simplified by using the chain relation well known
in thermodynamics. If s and u are considered to be inde-

pendent variables, we have

—
LEIL )
b
—

L]

I
—
QJ'\J
el f=
~—
—
O

) (3-13)

S u

and consequently Eq. (3-11) may be written
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2 2
2. 2,3u, 2 2.2,3u J 25 _ i
(- p7eT(Gp) S+ pe (Gp) (39) Sx=F (3l
or
2s
B (22) ==
2 PE] X
2 2,9u u
1 - c (Eﬁ)s D (3]) S (3-14b)
ax as " oX

We shall use all of these results 1n the analysis to
follow. Next, let us obtain three equations of motion

in the form

-%%+ (u+c@)3—g=xl“ (3-15)

wWhere G@ is either p, p, or u. For é@=:u we simply

rearrange Eq.

g—‘,; + (u + c{pc:(%%) ?5)3—2 =50 (3-16)
S

The equation for p is obtained by using Eq. (3-7) to

eliminate Ju/2t + u(du/3x) from Eq. (3-2). The result is

£ &g ey )22 - E__ (3-17)
3" = (-3‘2)5,,g o

<)

S

A great deal of manipulation 1s required to obtain a
similar equation for (@ = p. The method to be followed
is first to eliminate u/dt + u(du/dx) from the momentum
equation by using Egs.(3-6) and (3-T). Next 3p/ax is
written in terms of 3p/dx by using Eq. (3-14) and
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w/3x = (3p/9p)(3p/9x) + (Ip/3s) (Is/3x). Finally,
Eq. (3-14) is used to eliminate 2s/3x with the result

that
%%-t- (u+c'¥)%}%= XF (3-18)
where
LPz/\_
U
pC(ap)S
X = —(1 (%% )
i Ju N ETEL
Pe(5p), PeT (5 (5D
and
2P 2 2,au &
(35) (1 - p7c(55) )
=1+ 573 .
A pee"(5p)_(59)

Equations (3-16), (3-17) and (3-18) all reduce to

29, u+e)2 -0 (3-19)

for F and Js/@x = O because, from Eq. (3-14), we have
(au/'ap)s = + s%% ® represents either p, p, or u. The
(10)

well-known solution

B=0 (x - (u+c)t) (3-20)

describes the propagation of pressure, density or particle

velocity in a homogeneous medium. The quantity @ 1is
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constant along lines of slope dx/dt = u + ¢ in the x-t
plane, and these lines are the well-known ct and ¢~ char-
acteristics respectively. The Riemann Condition may be

written in the form

1 + g{%%) =0 onct (3-21a)
1 - g(%%) =0 on C (3-21b)
or, after integration,
u + 5% dp = constant = 2r on ct (3-22a)
u - 5% dp = constant = 2s on C_ (3-22p)

r and s are the well-known Riemann Invariants, and are

constant along the C+ and C~ characteristics respectively.
The condition that waves travel only in the positive
x-direction is that s be a constant everywhere (So) for
then u = u(r) and u = constant along r = constant. Thus
p and p are also constant on c¢*. For waves travelling 1n
the negative x-direction, it is obvious that r must be a
constant everywhere. Thus, 1f either the + or - sign in
Eq. (3-19) is chosen (® may be taken to be a constant
along ct or ¢” respectively, but the general solution to
the problem is that r and s are constants along ¢' and ¢~
respectively. It does not appear to be possible to find

such simple relations for inhomogeneous media because two
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independent variables are involved. We shall, however,
obtain approximate relations that can be used to describe
propagation in 1lnhomogeneous media.

Before proceeding with a discussion of the Rankine-
Hugoniot shock relations, let us write the equations of
(11)  gquations (3-1), (3-2)
and (3-6) may be written in the following form:

motion in characteristic form.

B4 (u+e)iR s pe(dd+ (uwte)dP) -cF=0 (3-23)

P uR AR w0 (3-24)

The equations have been put into the above form because
we may now write fotal differential relations along the

¢t and ¢~ characteristics. We obviously have

dp + pedu - ucf < dx = 0 on o %%-= u+c (3-25)
dp - pecdu - Ggg;ﬁ'dx =0onC, %% =Uu - ¢ (3-25b)
dp - czdp = 0.on P, %% = 1 (3-25¢)

This form of the equations of motion will be useful when
we compare our results with those obtained by other

investigators.

s The Rankine-Hugoniot Shock Relations
In order to derive the classical Rankine-Hugoniot

shock relations we assume that there is a very thin
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region in the fluid within which the pressure, density

and particle velocity change very rapidly. Such a region
(shock) is illustrated in Figure 3-1. We shall assume that
the shock is moving with velocity U relative to the fluid
(at rest) in region A. The equations of conservation of

mass, momentum and energy may be put into the following

form:(le)
Pl = py (U - uy)
Py =By = AU
Py¥y = peU(%-ui +E) - Ep)

where U is the velocity of the shock wave, and the sub-
scripts e and 1 refer to quantities ahead of and behind
the shock wave respectively. If it is assumed that the
fluid is an ideal gas (p = (y - 1)pE) the above relations
may, after considerable manipulation, be put into the form

of the Rankine-Hugoniot shock relations:

ML - Py Pe oy Lo

P1 = PeCe y_+1'M2'yfry+1j) or §= P, = Tt - 1)
(3-26a)

Py =p ('Y'*'l%Me I T Mo - 1

TR (-1 ke Pe  Pe YT 41
(3-26b)

u; =c, $_§_T(M - %) (3-26¢)
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For weak shock waves, M may be taken to be 1 +4& where

A << 1 and so the above relations reduce to

=
[P

U T 7 F T C (3-27a)
Rt (3-27b)
5 _  4b

Ee_ = Y AT (3_270)

For strong shock waves (M > 1) Egs. (3-26a, b, c)

obviously reduce to

21 2
P =5+ 1 PeU (3-28a)
py = %—?—% Pe (3-28b)
e »
w = 7 Er U (3-280)

We shall need both of these 1limits in the analysis to

follow.

y. Whitham's Rule

Before continuing we shall present a simple rule due
to Whitham(ll) that can be used to predict (approximately)
the motion of a shock wave in an inhomogeneous medium.
The rule is to apply the differential relation (Eq. (3-25a))
that holds along the c* characteristic to P15 pPp» and Uy
directly behind the shock wave. Thus, by using

Egqs. (3-28a, b, ¢) in Eq. (3-25a) it can easily be shown(ll)

that U~ p_P where p = (2 +N2y/(y + 1)) = 0.215 for y=1.4,
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For an isothermal atmosphere Po™~ Po and for a strong
shock Py ~ p0U2. Thus, the pressure ratio across the

shock is:

=S = El-nlp;QBAJ p;0’43 (3-29)
The rule does not seem to have been applied to weak shock
waves, but the necessary relations can be easily manipu-
lated. ILet us conslder an isothermal atmosphere under the
influence of a gravitational force F = - pg. For weak

shock waves, the speed of sound behind the shock is

w . - 1
c = I‘)R=Ce(l+2?]:——_r-TA) (3-30)

and the use of the weak shock relations in Eq. (3-25a)

leads to
d
1 9Pe 2 a
pea;“+—a—ax—(l+£\)=0 (3-31)
after the equilibrium condition Jpe/bx % is used.

Thus, for small & , A~ p;O'S and since S~ A , we have

simply that
I (3-32)

We recall from our discussion of the small-signal case
that the sound pressure p was proportional to pg‘S and

hence % = p/be:v (p “0-5. is result can be obtained

o)
immediately 1f 1t 1s assumed that the acoustic wave does

not lose any energy as it propagates.
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B Equation Governing the Decay of Pressure at the

Shock Front

In this sectlion we shall formulate the law that
governs the pressure rise across a shock front as a func-
tion of distance. The pressure decay behind the shock
front is assumed to obey the loss-free equations of motion.
The method used to obtain the equation is extremely simple.
We first separate the pressure, density, and entropy into

time-1independent and time-dependent parts:

p(x,t) = pe(x) + pd(X,t) (3-33a)
p(x,8) = po(x) + B(x,t) (3-33b)
s(x,8) = 85(x) + o(x,t) (3-33¢)

The flow fileld u is assumed to have no time-independent
part. We draw in the x-t plane a line that represents
the motion of the shock front (dx/'dt)U and a line along

We shall find

which py = constant, (dx/’dt)p 2 BB
d b Rl

the slope of this line for homogeneous and inhomogeneous
media in the sections to follow. The geometry is 1llus-
trated in Figure 3-2. The pressure, Pgs» at O (po) and

A (pA) is found from the pressure at t = 0. After the
shock front has moved a distance dx, the pressure (pd) at
B is the same as the pressure at A by construction. Thus,

with p, = py + (9py/dx)dx', we have
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where de/nx = (Dpd/bx)t=0. This expression may be written

dpd Py Py = const.
o a - 1§ (3-34)

What is wanted, of course, is not dpd/ﬁx at the shock front,
but d $/dx where ¢ = (p - pe)/pe = pd/be. Making this

substitution, we have

dx
(%)
as 1 3pd g Py = const. 3 dpe
dx ~ " p_. ax E dx i 1I§ T oo dx (3-35)
N (Tt )U

This is the final equation for 8 . 1In order to evaluate

this we will need de/9x and @x/ﬂt) which both

= const.
depend on the initial pressure wave. We shall work out two

examples in the next two sections.

6. Application to Weak "N-waves" in a Homogeneous Medium
Before working dut the equation derived in the last
chapter for an inhomogeneous medium, let us first obtain
the decay of 8 with distance in a homogeneous medium. We
shall adopt as the initial pressure signature the "N-wave'"
model 1llustrated in Figure 3-3. The pressure ratio 8 1is

assumed to be much less than 1. We assume that Pe and Ceo
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are constant, and since ther

(dx/at)pd = ce(l +

= const.

15

e are no external forces,

2A ) from Eq. (3-19) and the

weak shock relations. Also, (dx/at)U =c (1 +4 ).
Then Eq. (3-33) becomes
?
__2SA
L
since for this model ‘de/ax = 23pe/L. The length of the

wave cannot, however, be ass
the center of the wave moves
of sound (ce), whereas the s
B = ce(l + 4 ). Therefore,

distance 1s simply

Q-IQa
> |

Equations (3-36) and (3-37)
et al.(13) Equation (3-36)
somewhat different method.

seem to have been solved by
given below. By using Eq. (

may be written

umed to be constant because
with the small-signal speed
hock front moves with velocity

the change in length with

2h {3-3T)

were first obtained by Dumond
was, however, obtained by a
These two equations do not
these workers in the form

3-27b), Egs. (3-36) and (3-37)

das Yy + 1,2
ax ="~ =1 S (3-38a)
-8 (3-38b)
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After elimination ofS , the equation for L is

2

d L l/dL
e ) L (3-39)
dx2 L'dx
For L = L, and 3==50 at x = 0 the solution is
1/2 1/2 1 ' 1/2
+ 1 0
L = (2_57“4 (B, 3 (g; §—%fj'+ x) (3-40)
and
1/2 1/2 L -1/2
S= ) g 5o ?3 STier 1) (3-41)

as can be verified by direct differentiation. Thus, for
x >? L/8 ;s § ~ x 95, The method therefore predicts a
slow decrease of pressure ratio with distance. As an
example, L and ¥ have been calculated assuming that

L = 30 meters and 30 = 0.1 at x = 0. The results are

shown in Figures 3-4 and 3-5. If Eq. (3-41) 1is used to

expand 1/% about x = 0, it can easily be seen that

il
14

P O B (3-42)
g

This result is in agreement with the approximate analyses

(14)

of Fay and Rudnick(15) for the attenuation of repeated

shock waves (of wavelength LO) with distance. At large

distances, however, our result predicts that 8 ~ x_o'5

whereas the above analyses predict S~ x"l. The reason for

the difference 1s, of course, that for an N-wave L must be
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taken as a function of x because of the difference between
the shock speed and the small-signal speed of sound. If

we were to assume that L = Ly
Eq. (3-38a) immediately yields

= const., integration of

i_1_ . y+1 '

which shows that it i1s the neglect of the changing wave-

length that produces a difference at large distances.

T Application to N-Waves in an Inhomogeneous Medium
Having seen in section 6 how the equation derived in
section 5 is to be applied, we next turn to the problem of
the determination of the motion of an N-wave in an inhomo-
geneous medium. It should be recalled that the main
distinguishing feature of the motion 1s that is 1s not
isentropic in the Eulerian description that we have chosen,
even when the loss-free equations of motion are used. We
shall adopt the N-wave model used in the last section and
agalin assume that the wave 1s weak. We will need
(dx/’dt)pd - const. "hich in turn will require a knowledge
of pc(9u/dp) . We first separate Eq. (3-17) for p into a
time-dependent and time-independent part by using

Eqs. (3-33a, b, c¢):

P
¢l +€)5z= = c(1 +€ )F, (3-44)

P4 2Dy
gt (W +c(l +€))53==c(1l +&€)F - u 33 (3_45)
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where € is defined by 1/(1 +¢&) = pe(du/ap) . We shall
find € later. Equation (3-44) 1s, of course, the equilib-
rium condition. We shall assume that the fluid is an
isothermal ideal gas under the influence of a gravitational

force F = + pg, and therefore it can be seen that

F=F,+F =pg + 0g (3-46a)
Pe 3X Py dx 2 Egeild
e
38 c (1 - v)g
et (3-46c)
ce

The constant entropy gradient assumed here may be compared
with the entropy gradient for the actual earth's atmosphere
as calculated from pressure, density and temperature
measurements given in the U.S. Air Force Handbook of

Geophysics (1959). The comparison is illustrated in

Figure 3-6.
Now, since (dx/at)pd - const. = - (@pg/ot)/(apy/ax)
we have, from Eq. (3-45).
2P,
ax C(l +€-)ﬁg = 3%
(%) =u+c(l +€) - -4
22 pyq = const. EEQ AT

X

We will show later that £ = O(ng/cg) which 1s assumed to
be small and therefore will adopt the following approxima-

tions throughout the analysis to follow. Neglect terms of
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0( GAQ) and terms of O(eQA ). Thus, we will keep only
terms of O(€A ) or Of A?). When Eq. (3-47) is evaluated
directly behind the shock, we find that Eq. (3-35) may be

written
LA v =1 L
Q__§(7+1+(1+27+1A)(1+e)_%?_1)_1&3
dx L 1 +A 2
Ce
(3-48)
where
s i 45 _yg _4A
e 1+ 27 +-1.A)(1 +'e)7 + 1 Peb e ¥+ 1
e

When QL is simplified, it can be seen that it 1is of
O(ng.ag/bg) and can therefore be neglected. Thus, after
further simplification we may write d 8 /dx as

das ¢S4 2€
g0 = Sl B et f%)g ) (3-49)
e

to the order of approximation outlined above. It can be
seen that 1s needed only to O(ng/cg). To find & we

use Eq. (3-14b) repeated below:

s F-= (gs) gi
2 _2,9u u
1 - p (4 (35)5 = 9 B a 28 (3"'1I-I'b)

(55
2K 23 u X

We will want to separate the right-hand side into equilib-

rium and motion-dependent parts. To do this, we write
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(9p/3s), = (Dp/?s)éo) + (?p/?s)él) and note that (from

the part of the relation

U 25
2 - (%’;‘})S i (%ﬁ-)u = (3-50)

that holds for the equilibrium quantities) we must have

(0) 2P )
2P L R € u
(as)u FER cv(l - v) (3-51)
X

We shall next assume that (;’p/';!s)u = p/(cv(l - v)) and

therefore that during the motion

(1) P
@ - Sy (3-52)

Equation (3-14b) then becomes

Pe ?5e Pe 4 Peg e
2 o 5.2 Pe® 3 TI] 3% Tog = (cv(l-ﬂ 'Y+l+cv(l—'y))9x
L e e 2¢P, D (L +8) a5,
E T L= X
(3-53)

where we have used pJs/Jx = 2se/ax + 3J0/3x = (ase/bx)(l 4 u/be).
Since 'yg;L/c§<< 1, the second term in the denominator may be

neglected and we have
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Pe%E P8 e - Pog C,(1-v)e
Y c (1-v) 2 e, (1-y) 2
B D g 2 h p Be v =
l"P c (3’5)5 = Qspe
v (3-54)
_Lygl 1 _
-2 02(7 v 1)
e
= - LYg
58
Ce

where the weak shock relations (Egs. (3-27a, b, ¢)) and the
entropy gradient in Eq. (3-46c¢c) have been used. Since €
was defined by

1 2U
T we § PGl (3-55)
Eq. (3-54) becomes
i L vg
L= 2 2€=-2
(1+e)2 e cg
or
g]_JE: - lg— (3_56)

2 !
ECe

This supplies the missing factor needed in the equation

for d§/dx. Equation (3-49) may now be written

2
s (Iﬁii%;S + gfﬁzy) (3-57)
e

which together with the stretching equation
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dL _ d! + 1 ¥
gf—EA-—I-g—T—S (3-58)

determines the motion of the shock front. We see that for
large values of § the nonlinear term in Eq. (3-57) predomi-

nates whereas for § small the linear term predominates.

Thus, - for
S?"x% ;"{—l‘ L (3-59)
c
e

the solution is identical to that obtained in the previous

section whereas for

2 AN (O =
g << 2 Y+ 1 L (3-60)
e

the solution is simply ¥ = const: exp(- vgx/ecg) &

-0.5.

] This result is identical to that obtained

(11)

const - p
using Whitham's method for weak shock waves as outlined
in section 4 of this chapter. Note that Eq. (3-59) can be
satisfied for weak waves because the right-hand side is
usually very small. For g = 9.8 m/sece, Co = 344 m/sec,
v = 1.4 and L = 30 meters, for example, the right-hand
side of Eq. (3-59) is equal to 2 X 107>.

In order to see more clearly the relative importance
of the linear and nonlinear terms in Eqs. (3-57) and (3-58)
it is convenlent to normalize the equations by defining
tn = $/80» Ly = /L, and 8§ = ¥ (v + 1)x/(yL,). 3, and

L0 are the pressure ratio and length respectively at x = 0.



84

In terms of these variables Egs. (3-57) and (3-58) may be

written
asg
et —e%h 52488 =0 (3-61)
d
a%h“ = %Sn (3-62)

where B = (LO/SO)(vg/ch). For B = 0, the solutions are
simply §, = (1-+5)_1/? and L, = (1-+3)l/?. These func-
tions have been plotted in Figures 3-7 and 3-8. For B # O,
a solution to the set may be obtained by means of the proper
transformation. We first eliminate §  from Eq. (3-61) and
obtain the following equation for L alone:

a° drL, 2 a
EE;% i f%(ag—) + B a%? = 0 (3-63)

If we now define a new variable by L = exp@kl/y)dx), the
equation for y is simply dy/dx - By = 1. The solution,
y = (const.)exp(Bx) - 1/B can be used to find L, with the
constant obtained by using the requirement that Ln——-+ >
as B—» 0. When this is dbne, we obtain the following

solutions for §, and L :

Il

I, = (1 +3(1 - e7P3 )12 (3-64)

=g (3-65)
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Equation (3-65) was obtained by using Eq. (3-62). These
results can also be obtained by another method. The rate
of energy lost at the shock front is set equal to the
negative of the rate of energy decay in the wave which is
proportional to p, 32L. Using the equation derived from
this requirement and the stretching equation one can obtain

(17)
(16)’1n a note on shock wave

similar results as shown by Reed
propagation. The method proposed here can, however, be used
to derive many results that cannot be obtained by energy
considerations. For example, if the wave has a very long
period, a cutoff wavelength similar to that obtained for
an acoustic wave in Chapter 1 can be obtalned by this
method. In order to see this, it is necessary to keep
both terms in the denominator of Eq. (3-53). When the
second term is nearly equal to the first (L large),
pc(3u/ap), is large and therefore according to Eq. (3-17)
a point of constant pressure 1s propagated with a veloclty
less than c. |

Note that when the wave propagates in the same direc-
tion as the gravitational force (B > 0) that the length
reaches a terminal length equal to 1/{B for B <4< 1 and that
the pressure ratlo decreases as exp(- |B|Y§). For propagation
in the opposite direction (B< O) the length and pressure
ratio vary as exp(\a\;S/é). The anisotropic nature of the
wave propagation is thus clearly shown. It must be noted,

however, that for typical values of the constants (LO = 30 m,
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%, = 0.1, g = 9.8 m/éz, Co = 344 m/s, and v = 1.4)
8 5

attained until x 1s extremely large. This can be seen

10 ° and therefore the exponential growth 1s not

i

from the examples plotted in Figures 3-9 and 3-10. The
exponential growth would not be observed, for example, in
the earth's atmosphere 1f the wave were to have the initial
pressure ratio and length given above.

Finally, we note that Whitham's method predicts the
correct asymptotic limit for B»0, that § ~ p2*>. For

B4 0O it can easily be shown that § 1s proportional to

=025
o .
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Chapter 4. Analysis of an Acoustic Instability Produced
by a Heat Source

1. Introduction

One of the simplest examples of an instability that
can arise because of the scattering of sound by a heat
source is the well-known Rijke phenomenon first discov-
ered by Rijke(l) in 1859. 1If a heated gauze or wire
heater is placed in the lower half of a vertical tube,
the tube 1is, under certain conditions, observed to pro-
duce a tone whose wavelength is approximately equal to
twice the length of the tube. R1ijke was not able to give
any satisfactory explanation for this phenomenon but
Raleigh(g)’(3) was able to give a qualitative explanation
of the effect by applying what has now come to be called

the Raleigh Criterion, that heat added to a fluld in

phase with the pressure perturbation tends to reinforce
the osclllations whereas heat added out of phase tends to
damp the oscillations. The first attempt to formulate
this criterion mathematically for application to the
Rijke tube was made by Iehman,(q) who assumed that the
mean flow through the tube (either forced convection or
free convection caused by the heat source) was small

compared to the particle velocity in the acoustic wave.
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While such an analysis is important in determination of
the mechanism limiting the eventual amplitude of the
oscillation, one should be able to use a small-signal
theory to predict the onset of oscillations, and at least
approximately the dependence of the driving or damping on
heater position. A number of inVestigators(B)’(6)’(7)
have made analyses of the problem, and have presented
surveys of some of the unsatisfactory attempts to solve
the problem. Although some of the main features of the
oscillation are understood, it has not been possible to
calculate all of the results found experimentally. For
example, Kerwin(5) was only able to determine the magni-
tude of the real part of the complex eigenvalue for the
tube within a factor of approximately 10, whereas the
results obtained by Merk(T) using a heat transfer func-
tion derived by Carrier(6) predict that the tube should
osclllate over a much wider range of mean flow speeds than
is observed experimentally. All of these authors analyzed
the problem essentially by requiring that the acoustic
variables satlisfy the appropriate boundary condition at
both ends of the tube, and that fluid mass, momentum and
energy be conserved at the heater. The energy conserva-
tion must of course include the heat added by the heater.
Such an approach, although undoubtedly correct, leads to
rather involved expressions that make it very difficult

to see the baslc nature of the phenomenon. We shall adopt
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a somewhat different approach that contains many of the
important features of the above methods. 1In the next
section a general criterion 1s formulated for the deter-
mination of the onset of the oscillations, and then this
result is first applied to a tube that 1s assumed to be
loss-free. Even this approximation leads to the experi-
mentally observed dependence of the oscillation strength

on heater position.

2 A Stability Criterion
The well—known(S) wave equation for a medium that

contains a heat source is:

2 2
i N T T, A ] (4-1)
Qxe 02 th 02 Pot

where q 1s the rate at which heat is added per unit mass
to the medium, and the other symbols have their customary
meaning. This equation is to be solved for a tube con-
taining a heater as illustrated in Figure 4-1. We will
be interested in the case when the mean flow through the
tube is very small compared with the speed of sound, and
will neglect the influence of the flow except when the
rate of heat release to the fluid is being calculated.
It will be found that the rate of heat release per unit
mass is very much dependent on the flow speed. Since we
assume that the total heat released to the medium per

unit mass 1is a function of flow speed, the fluctuating
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part may be obtained by expansion in a Taylor series.
When we compare our results with experiment, specific
forms for the function will be considered, but in this
section we set q = F'(Vh)u where u 1s the acoustic parti-
cle velocity. We shall allow for the fact that the heat
added can ﬁe out of phase with the particle velocity, and
will therefore take F'(Vm) = F];,(Vm) - 1F;L(vm). Since the
rate at which heat 1s added is proportional to an acoustic
variable, the possibility arises that the acoustic vari-
ables may grow with time, and in order to investigate the
conditions under which such growth occurs we set p(x,t) =
p(x)exp(Ket) and u(x,t) = u(x)exp(ket), where ¥ = ¢ - ik.
Thus, the oscillations grow for o » 0 and decay for o £ 0.
We shall further assume that the heat transferred to the
gas depends on the particle velocity of the (cool) gas
directly before the heater, i.e., for x = X, “€, and

that the spacial extent of the heater is small enough so

that it can be represented as a b-function at x = Xy -
With these alterations, Eq. (4-1) may be written:
a® - K? I F'(V Ju(x, -€)6(x - ) (4-2)
dx e ¢ F m h X *h '

The problem is therefore to find a Green's function when
the back-reaction of the sound field on the source is
represented by requiring that the source strength be pro-
portional to the value of an acoustic variable at the

source. The simplest way to find p appears to be to
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expand 1t into an infinite series of orthonormal functions

that satisfy

a°g
2% - Yy = O (4-3)

dx

and the appropriate boundary conditions at the end of the
tube. The expansion can be performed using well-known(g)

techniques, and the result is

Y=L op (v,)u(x, -€)g%(x)g, (x)

- Lt (1-4)
n K ~ 7y

It is now necessary to apply a self-consistent requirement
to p, namely that
- (2B = peku(x, - €) (4-5)

X

We therefore obtain a relation that does not include any

of the acoustic variables. Thus in principle the stability
boundaries (defined by o = 0) can be found as a function of
the other known varlables. Since the tube tends to oscil-
late at a single frequency corresponding to one mode, we
may choose a particular ﬁn and vy, , ﬁl and vy, such that

K& yl,‘then only one term in the sum in Eq. (4-4) will be
important, and the self-consistent requirement can be
applied to the single term. We therefore let n = 1 in

Eq. (4-4) and set 2p/ax = pcku(x, -€ ) as required by

Eq. (4-5). The result is:
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W2 -2 = - Lol (), ok (4-6)
c X=X,

This is a stabllity criterion for the system since x can
be found once the appropriate eigenfunctions are used, and
the appropriate form 1s assumed for the heat transfer func;
tion. The above method 1s obviously not limited to the
stability analysis of the Rijke tube, but with minor modi-
fications can be applied to any system that contains a
source whose strength depends on the field variable at some
point, and that tends to oscillate at a single frequency.
This latter requirement 1s clearly fulfilled for many

unstable systems.

35 Analysis for No Radiation ILoss

As an example we shall apply Eq. (4-6) to the simplest
possible problem, namely the case when radiation losses at
the end of the tube can be neglected. As a first approxi-
mation we shall also neglect the fact that the sound speed
is increased 1in the upper half of the tube because of the
heat added to the gas at the heater. Under these conditions,
the appropriate elgenfunction for excitation of the half-
wavelength mode of the tube is simply g, = 2/L sin mx/L,
and the eigenvalue is vy = - ir/L. Substitution into
Eq. (4-6) ylelds:

2

¥ TX TX
(F) - ¥° - 21ko = - Lgl F' (V) (3f)sin —2 cos —2 (4-7)

2

oy
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where we have assumed that o ¢«< k. Separation of Egq. (4-7)

into real and imaginary parts yields

2 27X
m 2 w oyi= 1 h
() = X" = = -—Le 7 FI',(vm)sin —pe= (4-8)
and
2TX
T v -1 h
= F!(V_)sin (4-9)
2kL2 c2 3y m L
We have written F! (vm) = Fi(V,) + iFi(Vm). The stability

of the system is determined by Eq. (4-9) whereas the wave
number is determined by Eq. (4-8). We shall see in a later
section that both o and the change in wave number are small.
The importance of phase lag at the heater is also directly
shown by the fact that no oscillations can grow unless
there 1s a lag of g behind u. Since p and u are 900 out

of phase, the requirement that the tube oscillate is that
the heat release must have a component in phase with the
pressure. This condition is in agreement with the Raleigh
Criterion. As will be shown in a later section, q does
tend to lag behind u and so the tube tends to oscillate
when the heater 1s in the lower half of the tube and the
oscillations are damped when the heater 1s in the upper
half of the tube. This dependence is in agreement with

experimental observations.(lo)

If the grid is cooled
instead of being heated, q changes sign and the dependence

of the driving or damping on grid position is reversed.
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These results are also in agreement with experimental
observations.(ll)
Finally, it should be noted that the tube has been
observed to oscillate in higher modes as well as the half-

wavelength mode assumed here. In practice, 1t is more
difficult to exclte these modes because the losses to be
overcome are greater at the higher frequencies, but the
dependence of ¢ on driving position can easily be found

by taking g, = N2/L sin 2mx/L. o will then be found to

be proportional to sin wah/L when Eq. (4-9) is used, and
therefore the tube will tend to oscillate when 0 & x, & L/A
and L/2 £ x, £ 3L/4. These results are also in agreement

with experimental observations.(T)

4, Analysis Including Radlation Losses

Since the Rijke tube 1s open at both ends, it is to
be expected that the radiation of sound from both ends of
the tube 1s an important energy loss that must bé overconme
by the heat source if oscillations are to occur. In this
section we work out the expressions for o and k when radia-
tlon losses are included in the analysis. We shall, how-
ever, still assume that the increase in sound speed in the
upper half of the tube can be neglected, and when we compare
our results with experiment, a mean sound speed will be
used. Under these conditilons, the appropriate eigenfunction
is g, = A sinh(y,X +38 ) where ¥y = - 28/L - im/L. $ 418 the

real part of the radiation impedance, and is small compared
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with unity. The value of A is determined by the require-

ment that g, be normalized, and it can easily be shown by

integration that A =4 2/L(23/sinh 25). Since we wish to
include only terms linear in § ( $<4< 1) we may take

2/L. Separation of the stability equatlion into real
and imaginary parts is straightforward but tedious. We

shall present only the results here:

2Tx 2mX ox

- h
i f??[ $ +17 B (y)stn—p - FL(,) (s in—r£+zs(1_T)]
(4-10)

2 2rx 2mX Dx
2y = e -|x=1 B h h __h.
(7] -k = [ o2 o2 F)(V,)sin—=+F} (V, )(——sin - +25(1- — J

(4-11)

The competition between the generation of sound at the heat
source and the losses due to radiation is now directly
shown in Eq. (4-10). 1In the absence of a heat source

0) the tube will have a value of ¢ equal to

Il

(#r(v,)
- omyY/k1® = - 23/L and is therefore damped. The term in
square brackets represents the contribution of the heat
source to o and therefore the tube will start to oscillate
when this term is greater than §. It can also be seen that
in this analysis even in the presence of radiation losses
there must be a phase lag between g and u, that is,

Fi(vh) > 0. For $ =0 Egs. (4-10) and (4-11) clearly

reduce to those presented in the previous section.
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This ends the theoretical treatment of the Rijke
phenomenon. In the next section we shall present some
data on the magnitude of the heat released to the medium
as a function of flow velocity and frequency, and in the
following section we will compare the calculated results

with some experimental data obtained by the author.

5. Heat Released to the Gas

In thls section we shall find an explicit form for
the function F'(Vh) by using a boundary layer theory due
to Cérrier(l3) to find the fluctuating component of the
heat transferred to the medium by conduction. Not all of
the heat supplied to the heater is given up to the gas by
conduction; we shall present some measurements in the next
section that indicate that an important source of energy
loss is thermal radiation from the heater, and therefore
the mean heat per second given up to the fluid by convec-
tion is

Q, = W(l - chﬁ) (4-12)

W is the power supplied to the heater, 02 is a constant
to be determined, and Th is the surface temperature of the
heater. If q' is the fluctuating component of the heat
added per second, then Carrier has shown(13) that for a
heated ribbon oriented parallel to a mean flow (V_) the

m
ratio q'/Qm may be expressed as:
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’ 15 1/2 -a~d
%;-z [— %—;%{waed) /Eerf(aed) / - (e “2 - 1) %iﬂ

i

s
Vm
(4-13)

where w is the frequency of the velocity fluctuations, d
is the length of the ribbon in the direction of the flow,

and u is the perturbation in the stream velocity. a, 1s

given by:
3 Uk PCpVm
a, = 5 J\|1 + i & (4-14)
2 2 i oc ;E } k

where k is the thermal conductivity of the gas, and the
other symbols have their usual meaning. We shall denote
the function in square brackets in Eq. (4-13) by T =E +iF.
The argument of the error function is in general complex,
but for Mhm/pcpvﬁ ¢¢ 1, a, is almost imaginary, and Merk(T)
has pointed out that Eq. (4-13) can be expressed in terms

of Fresnel integrals.(lu)

For the values of d, w, and so
on that were used in the experiments to be described in
the next section, an is either very nearly imaginary, or
complex and large. In the latter case, an asymptotic
series representation may be used for the error function(lq)
and the real and imaginary parts of T found as a function
of V.. If we take w = 2m(200) radians per second,

d = .632 % 1672 meters, k = .0239 Joules/second-meter-°K,
g™ 10° Joules/kilogram-°K and p = 1.18 kilogram/hmters,
the above approximations may be used to obtain the curves
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illustrated in Figure 4-2. If Egs. (4-13) and (4-14)
are‘expanded for small values of w, it will be found that
T —.5 as w« —= 0. This implies that the mean heat
transferred to the gas per second is proportional to
(Vh)l/? as can be seen by putting the heat transfer

relation into a form due to Merk:(T)
Q, = (T, - Tg)Ada(Re,Pr) (4-15)

(Th B Tg) is the temperature dilfference between the gas
and the heater, Ad is the surface area of the heater and
a is a function of the Reynolds number (Re = V d/u) and
the Prandtl number (Pr = ¢ _pp/k). Then, as @ —> O this
relation can be expanded for a perturbation (u) in Voo
and the ratio of the fluctuating part of the heat trans-

ferred may be expressed in terms of u/V :

q _ 2(ln a u_ B
Q, - niln Re] V, (4-16)

Since 2(1n a)/2(1n Re)

Il

T= .5at w = 0, we must have
Q™ V%/é. This result will be useful when we compare

the results of our analysis with the experiments described
in the next section. Since the function F'(Vﬁ) was defined
by

q = F'(V )u (4-17)

we may use Egs. (4-12), (4-13) and (4-17) to express F'(Vh)

in the following convenient form:
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F'(Vh) = T poV Ay (4-18)
w(1l - ch“)
= T (4-19)
povflAt

All of the symbols except the cross-sectional area of the
tube (At) have been defined previously. The factor Po Vit
in the denominator of Eq. (4-16) occurs because the source
term in the wave equation 1s the rate at which heat is

added per unit mass to the fluid. At very low flow speeds,

this result should be corrected to account for the finite
size of the heater, but we shall be dealing with flow
speeds high enough so that that correction may be neglected.
Equation (4-19) and Figure 4-2 therefore give us suffi-
cient information about the fluctuating heat released to the
fluid to be able to determine whether or not the tube will
oscillate. Since such a determination requires a knowledge
of the surface temperature at the heater as well as a con-
stant (02) that can best be determined by experiment, it is
desirable to present some experimental results before

presenting the comparison between theory and experiment.

6. Experimental Apparatus and Results

The experimental configuration used to obtain the data
presented in this section was very simple. A brass tube
32 in. long and 3.5 in. in diameter was mounted over a hole

near the edge of a plywood board that was arranged to be
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5 £t above the laboratory floor. A 125 £t5 box was
constructed from thin plastic film and placed underneath
the plywood board, shown ianigure 4-3, The rate of air
flow through the tube could be controlled by means of a
small centrifugal blower placed in a lower corner of the
plenum chamber. The plastic film was used for the plenum
chamber so that the radiation impedance on each end of the
tube would be approximately the same. The heater used in
these experiments was constructed by cutting a ring

(3 1/4 in. o0.ds, 2 3/4 in. 1.d.) from 1/2 in. thick
asbestos board. Machine screws mounted around the ring
then served as supports for a nicrome ribbon 1/4 in. in
width and 0.0063 in. thick. The spacing between the
ribbons which were run back and forth across the asbestos
ring was approximately 0.2 in. For all of the experiments
fo be described in this section, the heater was placed a
distance L/4 from the bottom end of the tube.

Sound pressure level measurements were made with a
condenser microphone system and Ballantine voltmeter.
Other quantities measured were: (1) the air temperature
at the top of the tube by means of a high-temperature
mercury thermometer, (2) the air flow through the tube
using a Hastings Corp. air flow meter, and (3) the surface
temperature of the heater ribbon. The latter quantity'was
obtained by removing the heater from the tube and recording

the surface temperature (measured using Tempil-sticks,
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commerclially available pencils containing a material with
a known melting point) as a function of the observed color
of the heating element. When the heating element was
replaced in the tube, the color could be observed by means
of a mirror mounted below the tube and thus the surface
temperature estimated. The Q of the tube at a wavelength
equal to twice the length of the tube was measured by
exclting the tube from the outside with a loudspeaker and
measuring frequency of the half-power points with a con-
denser microphone placed at the center of the tube. If
is the bandwidth between the half-power points, then the Q
is, of course, defined bycq/AuL The Q of the tube was
varied by varying the positlon of a fine-mesh screen in
the tube.

Since the theory presented in the earlier sections
was a small-signal theory, one cannot predict the final
intensity of the oscillation, and so.we shall limit our-
selves in this section to a determination of the onset of
the oscillations. The first observation that can be made
is the dependence of the temperature in the upper half of
the tube (TB) on the mean flow velocity in the lower half
of the tube. The measured data are presented in Figure 4-4
for three different values of power supplied to the heater
together with some calculated curves. The calculated
curves were obtained by assuming that the gas takes up all

of the energy supplied to the heater, and it can be seen
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that although the two are in good agreement for high flow
speeds, there 1is a great deal of energy unaccounted for at
low flow speeds. In Figure 4-5 we have plotted (1 - wg/W)
as a function of measured absolute temperature of the heater.
wg is the power delivered to the gas. The unaccounted-for
energy 1ls seen to be proportional to ﬁ and therefore radia-
tion from the heater appears to be an important source of

energy loss at low flow speeds. From the slope of line in

Figure 4-5, it can be determined that the power per second

Ji8

delivered to the gas by convection is Qs w(l - CETh)

where C, = .346 x 10712 0K-u'.

The gas temperature TB and the heater temperature Th
have been measured as a function of Vi for three different
values of heater power. We may compare these results with

values calculated by taking

w1l - ch”') = Cl(Th - TB)V;LI/E (4-19)
and
W(1 - c,T) ;
pchmAt =Tz - T, (4-20)

where C1 is a constant that is determined to give the best
fit with the experimental data, C; = 1.45 JOule/éecl/g-
meterl/2 O Using the two constants, Cl and Cos the
heater temperature and TB may be calculated as functions
of V, using Egs. (4-19) and (4-20). The results of these
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calculations and the experimental points are shown in
Figures 4-6 and 4-T7.

The Q of the tube as a function of the position of
a fine-mesh screen in the upper half of the tube was also
measured for the first mode of the tube, and the results
-are presented in Figure 4-8.

The dependence of the onset of oscillation on screen
position was measured for three mean flow speeds and three
values of the heater power. The data are presented in

Table I below.

Heater Screen Posltion Q Mean Flow
Power (in. from upper from Speed
(Watts) end of the tube) Figure 4-8 m/sec
930 11 3/4 43 64
1100 T 41.5 +61
1290 6 3/4 41.5 25T
930 6 41.5 43
1100 4 40.8 40

Table I. Values of heater power, Q, and mean flow at
which the onset of oscillation occurs.
At the lowest flow épeed, the heater was too hot to use
an input power of 1290 watts.
The dependence of the onset of oscillation on flow
speed was measured when the screen was removed. The
highest flow speeds at which the tube will oscillate are

.84, .87, and .91 meters per second for heater powers of
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930, 1100 and 1290 watts respectively. The lowest flow
spéeds are more difficult to determine because the heater
becomes very hot, and care must be taken to prevent it
from burning up. The best observation that can be made
is that the tube stops oscillating when the speed 1s in
range 0.2-0.25 m/sec for heater powers between 930 and
1290 watts. As we shall see in the next section, the
theoretical calculations are in good agreement with
experiment at high flow velocities, but it does not seem
to be possible to get agreement with theory at the low
veloclity cutoff, and therefore these data will be suffi-

clently accurate for our purposes.

7. Comparison between Theory and Experiment

Before presenting a detalled comparison between the
analysls presented in sections 1-5 and our experiments,
we present some experimental data obtained by Lehmansu)
who measured the high and low velocity cutoffs as a func-
tion of heater power using a somewhat different experi-
mental arrangement. It is not possible to use the data
at the low velocity cutoff because thermal radiation from
the heater was presumably an important source of energy
loss in those experiments and no detailed measurements of
heater temperatures were reported. At the high-velocity
cutoff, thermal radiation can be neglected, and from
Eqs. (4-10) and (4-18) we see that under these conditions
the quantity W/Vi should be constant at the onset of
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oscillations provided that the radlation impedance is
unchanged. The quantlty T can be taken to be approxi-
mately constant over the small range of flow speeds used.
The experimental data are shown in Figure 4-9, and it is
seen that W/Vi i1s Indeed reasonably constant. For com-
parison, W/Vﬁ has also been plotted, and it can be seen
that 1t changes drastically. These measurements are
therefore in good agreement with theory.

The author has also tried to compare some of the
experimental results obtained by Kerwin(S) with the
analysis presented here. Data on heater surface tempera-
ture, gas temperature, mean flow speeds and power input
were used to calculate the amount of energy given up to
the gas by convection. It was found that 599 - 86% of
the input power was unaccounted for, depending on the
heater power and flow speed, and in addition that the
unaccounted-for energy did not depend on surface tempera-
ture as Tﬁ, but rather as some much weaker function of T.
In that study the complex elgenvalue for the tube was
measured by introducing known losses until the tube just
stopped oscillating, and so one can see if the measured
eigenvalue 1s proportional to W/Vﬁ as required by
Eq. (4-18). Unfortunately these attempts were unsuccess-
ful even when the energy loss described above was accounted
for, but one can see from the data that o lncreases as W is

increased, and also increases as Vﬁ is decreased. The
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results are therefore in qualitative agreement with this
theory. No explanation of the failure to get quantitative
agreement with the theory presented has been found, and so
‘we proceed to a comparison of the analysis with the experi-
ments described in the previous sectilon.

The first comparison to be made 1is between the Q of
the tube measured with a cold heater in place and the Q
calculated using Eq. (4-10) and the relation Q = k/20.
Using these we have

s

k
=55 " Iry - TS

for F'(V,) = 0 and KL = m. If we use a value of 3 for
an opening at the end of a long tube,(15) Y = (ka)e/h
where a 1s the radius of the tube, we find that for the
dimensions of the tube used in this experiment Q = 106.
The measured Q was 49 and since the theoretical calcula-
tion does not include losses introduced by the heater, or
losses due to viscosity and heat conduction at the tube
walls, we shall use the experimentally determined value.
Since % is small, the term that contains F;(Vﬁ) in

Eq. (4-10) can be neglected, and therefore we use as a

condition for the onset of oscillations

for x, = L/4. If we use an average speed of sound equal

to 400 meters per second which corresponds to room



i21

temperature in the lower quarter of the tube and a
temperature ratio of 1.5 in the upper three-quarters of
the tube, take vy = 1.4, kKL = m, and Q = 49, then the

stability relation is simply

m

FY(v )} > 2.56 % 10 (4-22)
m

Using Eq. (4-19) and the plot of T vs V., presented in
Figure 4-2, we may plot Fi(vm) for the three different
values of heater power used in these experiments. The
points A, B, and C in Figure 4-10 are the cutoff points
according to Eq. (4-22). The calculated values of the
cutoff velocity, .71, .81, and .90 meters per second are

in very good agreement with the measured values, .84, .87,
and .91 meters per second. The analysis therefore compares
very well with experiment at the high velocity cutoff.

At low flow velocities, the situation is consid-
erably more complicated. According to the calculations
presented in Figure 4-10, the source strength, F'(Vm),
continues to rise as Vm approaches zero, and no cutoff
is obtained for small values of V,+ It can be seen
qualitatively from the data presented in Table I that as
the flow speed is decreased, the onset of oscillations
occurs for a lower value of Q, and so the measurements
are at least in qualitative agreement with the calcula-
tions. Kerwin(S) also found that the strength of the

source term increased with decreasing flow velocity, and
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obtained an oscillation at zero flow velocity for which
no quantitative explanation could be given. The source
strength rises first, because we have taken QU AJV%/E and
therefore a perturbation in Qm resulting from a perturba-
tion u in Vh becomes large as Vh approaches zero, and
second, because the source strength 1is proportional to the
heat added per unit mass of the fluid, and this introduces
a factor of 1/V. in the denominator of Eq. (4-18). Both of
these effects are modifled, however, in the 1limit of zero
flow velocity. The first, because for Vig =10 the heat
added to the gas 1is 1independent of the sign of u and
therefore the period of the heat addition is T/2 if u has
a period T. Thus, the source strength is zero at the
fundamental frequency, w = 27/T. The second effect is
modified because of the finite size of the heater. At
zero mean flow velocity, the heat is given up to the mass
of gas in contact with the heater. Thermal radiation from
the heater is also an important factor in the decrease of
the source strength, but thls factor has already been
included in the calculated curves presented in Figure 4-10.
According to Figure 4-5, all of the energy put into the
heater should be radlated at a surface temperature of
approximately 1300°K as can be seen if the straight line
is extrapolated. This 1imit is reached, however, only
when the flow velocity approaches zero as can be seen from

the calculated curves presented in Figure 4-5. It has
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been found by Kerwin that an instability in the mean flow
through thé heater occurs for very low values of the
Reynolds number, and although the cutoff point in these
experiments occurred at a higher ngnolds number, 1t
appears that one would have to study such instabilities

in more detall in order to obtain a quantitative theory
to explain the low-veloclty cutoff. In these experiments,
the plenum chamber was not completely air-tight, and there-
fore it was necessary to reverse the dlrection of the
centrifugal Slower to obtalin mean flow speeds very much
below the mean flow speed corresponding to free convec-
tion. As the suctlon was Increased to decrease the mean
flow speed, the oscillation stopped very suddenly, and

was accompanied by a sudden decrease in the flow speed

and a sudden rise in the heater temperature, almost to

the point of burnout.

Finally, we note that the quantity F'(V_)/Qv- =
constant, or W(l - CeTﬁ)/Qvi = constant for intermediate
values of the flow speed. We may use the values of W, Vm,
and Q presented in Table I, the vglues of Th for each mean
flow presented in Figure 4-6, and the previously determined
value of C,, C, = .346 x 10732 OK_M to test the above rela-
tion. If this is done, it will be found that the "constant"
varies by a factor of approximately 2 and so in this respect

the experimental data are not found to be in particularly

good agreement with the analysis. Although the source
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strength has been found to increase with decreasing flow

velocity, it would be desirable to find a method of intro-
ducing losses 1nto the tube in a symmetric fashlion before
making a detailled comparison between the analysis and
experiments. It would also be desirable to control the
mean flow velocity by a different method, and in this way
the low-velocity cutoff could be studied in more detail.
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