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This study presents a novel method for estimating the

impulse response of a linear, shift-invariant, image de-

grading system. It 1s unusual because the estimate is

obtained directly from the received image, using only
minimal information about the original, unblurred image.

The technique is based upon the theory of homomorphic

systems, whereby the problem is mapped into a space where

the desired signal component 1s corrupted by additive
noise, The estimation procedure can be divided into two

parts: estimating the log-magnitude function and the phase
function of the degrading system. While the estimation of

the log-magnitude function is fairly straightforward,
estimation of the phase angle 1s made difficult because of

the multiple-valued nature of the phase function.

To overcome this problem, a phase smoothing alorithm

was used to make the phase angle continuous. However, the

algorithm requires a large number of phase samples, a
number that is difficult to obtain for two-dimensional

signals. Also, the smoothing algorithm is likely to make
errors whenever the magnitude approaches zero, and these

errors are propagated undiminished by the smoothing

algorithm.

In order to test the accuracy of the estimation

procedure, blurred images were simulated on a computer

using a number of different degrading functions. The

homomorphlc estimation procedure was then used to estimate

the degrading function. The accuracy of the estimate was
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determined in two ways. A quantitative error measure was

obtained by computing the normalized root-mean-squared
error, while a subjective judgement on the value of the

estimate was made by using it to create an inverse filter

to deblur the received image. The effects of additive

noise in the received image, coarse quantization in the

received image, and windowing were also investigated to

determine to what extent they affected the resulting esti-

mate. The overall result was that good quality estimates

were obtained for the log-magnitude function, but the

estimate of the phase function was rather poor.
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INTRODUCTION

Cne problem that often arises in the field of image

enhancement is that of restoring an image after it has

been degraded by a linear, shift-invariant (LSI) system.

Such degradations may occur through several mechanlsms,

such as diffraction limited imaging, defocused lenses,

relative motion between the object and the recording de-

vice, and long duration exposures through turbulent media

Because of the LSI character of these degrading mechan-

isms, they are "easily" analyzed using linear system

theory. Due to the ease of analysis and the wide appli-

cability of the LSI model, many papers have appeared in

4

recent years offering a number of unique and interesting

solutions to the problem of image restoration, assuming

that the degrading mechanism is LSI. A good review of

these techniques is contained in references (4,16,17,45).

One common tie among the various restoration procedures

is the fact that they all depend upon knowing the degrading

system impulse response or its Fourier transform. The only

exception being Sleplan's work (43), where he treats the

impulse response as a stochastic process and formulates his

solution in terms of the second order moments of the

Fourier transform of the impulse resvonse of the degrading

system.

n



While it is possible in many cases to calculate analyti-

cally the impulse response of a degrading system 1f the

degrading mechanism 1s known exactly, one is often con-

fronted with the case where the exact degrading mechanism

is unknown. For example, camera motion aboard a satellite

may be due to vibration of undetermined origin or perhaps

random meteor strikes. In such cases, 1t is impossible to

calculate the impulse response of the degrading system,

Thus, one is faced with the problem of finding or estima-

ting the impulse response before any actual image restora-

tion can begin.

This paper presents a technique that allows one to

estimate the degrading system impulse response using only

the received image and the second order moments of the

original image process. The estimating procedure uses f-

technique taken from Oppenhelim's theory of homomorphic

systems (29). It basically involves using a nonlinear

operator in the frequency domain to transform the estima-

tion problem to a space where the signal and noise compo-

nents are combined additively. The practical utility of

the homomorvhic estimation scheme is tested by first con-

volving an image wlth a known impulse response and then

trying to estimate the impulse resvonse from the blurred

image. The quality of the estimate is judged in two ways

First, the normalized, root-mean-squared error is calcu-
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lated as a quantitative measure of the error in the esti-

mate. Then the estimated degrading function is used to

restore the degraded image and the resulting restoration

judged qualitatively.

This study is organized in a logical sequence, begin-

ning with a review, in Chapters 2 and 3, of the necessary

background material. Chapter 2 discusses basic image en-

hancement techniques for LSI degrading systems, while

Chapter 3 presents some typical degrading functions that

arise from both diffraction limited systems and motion-

degraded images. In contrast with these cases, where the

degrading function can be computed analytically, are those

situations in which one attempts to derive the degrading

function from observations on the received image. Chapter

I presents one such technique based upon the known (a

priori) presence of certain key objects in the original

image such as lines, edges, or pinpoints of light,

Finally, the last three chapters present a method for

estimating the degrading system impulse using homomorvhic

systems. Chapter 5 discusses the theoretical basis for the

method as well as the practical considerations necessary

for its imnlementation. Chapter 6 is purely exemplary in

nature, presenting several examples in the use of homomor-

ohic estimation. The last chapter (7) presents three pos=-

sible alternatives to estimating the phase angle function

11



of the degrading system, which turns out to be the most

difficult part of the homomorphic estimation procedure.
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2. IMAGE ENHANCEMENT

The goal of any image enhancement technique is to

improve the subjective quality of a degraded image.

Image quality may suffer due to a number of factors, such

as poor contrast, lack of sharpness, geometric distortion,

lack of detail in the shadow and highlight areas, additive

noise components, etc. However, in this paper I shall

concentrate on degradations which can be modelled as a

linear, shift-invariant filter. Thls type of degradation

is usually low-pass in nature and, hence, manifests itself

as a fuzziness or lack of sharpness in the image.

Under this model, the received image, r(n,m), is

obtained by convolving the original image, s(n,m) with the

impulse response, or point spread function (PSF), of the

degrading system, i.e.

00 oQ

rin,m) = z 2

UZ) ]=ewo0
s(k,l) h(n-kx,m=-1)

(2.1)

Soh

—— s{n.m) % h.a,m,

Now, in order to recover s from r, given h, one must,

in general, solve an infinite number of linear, simultane-

ous equations for an infinite number of unknowns, s(n,m).

nlearlv an impossible task. If one requires that both s

and h be nonzero over only a finite portion of the n,m

173



plane, then the problem reduces to one of solving N equa-

tions in N unknowns. However, even for pictures of moder-

ate size, say 64 x 64, the number of equations to be solved

is 4096, a formidable, if not impossible, task on today's

computers. Another time-domain recovery technique was

developed by Silverman at Brown University in his doctoral

thesis (42), This technique develops the answer recur-

sively, and furthermore allows either s or h (but not both)

to be of infinite extent.

Let us now approach the problem in the frequency

domain. By taking the Fourler transform of both sides of

Zan. (2.1), one obtains the familiar result

R(u.v) = S(u,v) * B(u,v) (2.2)

where capltal letters denote the digital Fourier transform

of the signal having the corresponding small letter and is

defined as

I) 00
- J (untvm)

(u,v) = &gt; &gt; h(n,m)e
NN=wdO NM=wod

(2.3)

Thus, in order to recover s(n,m), or equivalently, S(u,v).

one transforms both rr and h and computes the quotient of

the two transforms,

R
S(u,v) = ry (2.4)
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This technique, which I call simple inverse filtering, is

indeterminate at those locations where H(u,v) = 0. The

problem becomes even more acute when one includes the ever-

present additive nolse component in the model for the de-

grading system as follows:

&gt; (1,m) = s(n,n) % h(n,m) + n(n,m (2.5)

Taking Fourier tranaiforms, one obtains

Na

R(u,v) = S(u,v) H(u,v) + N(u,v)

performing simple inverse filt~ring ylelds

~~ _ R(u,v) _ N(u,v)
S(,7) = Fray = Suv) + gts

(2.6)

(2.7)

Now, the estimate S(u,v) suffers in two respects, First

assuming the H(u,v) is basically a low-pass filter, and

that N(u,v) has a fairly flat spectral distribution, it is

clear that Eqn. (2.7) tends to emphasize high frequency

noise, Furthermore, the restoration scheme breaks down at

those points where H(u,v) = 0. Although simple inverse

filtering has serious drawbacks, some useful restorations

have been achieved for certain special cases, such as

Harris (14).

In an effort to overcome the problems inherent in

simple inverse filiering, researchers have turned to ran-

fog



dom process theory. Using this approach, both the images

and the noise are treated as random processes whose first

and second order moments are known. The goal is to design

a filter that will optimize the estimate, s(n,m), according

to some error criterion. To be most effective, this error

criterion should take into account the properties of the

human visual system. Unfortunately, the current state of

the art in image processing has not yet reached the point

of defining a quantitive measure that accurately gauges

subjective image quality for a large class of images.

Indeed, because of the many factors that affect picture

quality (39), it seems doubtful if a widely applicable, yet

mathematically tractable measure will ever be found (9,13,

36,37,40). Thus, it has been conventional to use a minimum

mean squared error (MMSE) criteria, not because it is a

good measure of subjective quality, but because its simpli-

city allows a solution to the filtering problem to be com-

puted.

Using the MMSE criteria, and assuming that the noise

is uncorrelated with the original image, Helstrom (15) has

shown that the Fourier transform of the optimum inverse

filter is

~

ox lu, V)  sm
— SE

8(u,v) © +8 (u,v)/E (u,v)
(2.8)
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where 2. (u,v) and &amp;,,(u,v) are the power spectral densi-

ties of the signal and noise respectively. Examination of

Eqn. (2.8) reveals that the optimum inverse filter is free

of the two drawbacks of the simple inverse filter, i.e.

high frequency noise is attenuated and zeroes in H(u,v) do

not result in G(u,v) blowing up. Another interesting point

is that for the noise-free case (2,,=0), G(u,v) reduces to

the simple inverse filter.

The optimum inverse solution was extended by Slepian

(43) to the case where h 1s considered to be a sample

function of a random process, His solution is

Gla,v) = __Eigtuw)}

oT Ef Jul 2} + By/ 85g
(2.9)

where E{} denotes ex-actation over the ensemble of sample

functions.

Finally, several researchers have attempted to esti-

mate S(u,v) outside the passband of H(u,v) by extrapolating

the frequency response with prolate spheroidal wave fun-

ctions (3,10,17,35).

Thus, with the exception of Slepilan's work, it should

be noted that regardless of the level of sophistication of

the restoration procedure, either the impulse resvonse of

the degrading system, or its Fourier transform, must be

known. A block diagram for the general degrading and

| 7



enhancing system is shown in Fig. 2.1.

| —) J £

ee

 3S

bene

Degrading Enhancing

Figure 2.1
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Jo LSI DEGRADING SYSTEMS

In this chapter I would like to discuss, in somewhat

more detail, some of the systems that generate LSI de=-

gradations in images. I shall also present some typical

impulse responses and their Fourier transforms. In all

cases, I will assume that the imaging was performed with

incoherent, quasi-monochromatic light.

3.1 Diffraction Limited Systems

Let us begin by examining degradations in diffraction

limited optical imaging systems. This type of degradation

is fundamental, being present even in the most carefully

designed systems. Its effect, however, usually goes unno-

ticed because it 1s buried beneath the more visible effect

of 1lnes aberration or geometric distortion. Assuming that

the lenses are perfect, one finds that the image degrada-

tion can be modelled as a result of diffraction effects

caused by the finite size of either the entrance or exit

pupils of the imaging system. The Fourier transform of the

degrading impulse response function, usually called the

optical transfer function (OTF), can be shown (11) to equal

H(u,v) =

20

Ad a PY! Ad

If P(x =~ —u, p- AP w+ —~u,8+ —Lv)axas

Ir |P(a,p)| ? axas
- C0

(3.1)

10



where A is the wavelength of light, dy is the distance

between the exit pupil and the image, and P(x,y) is the

exit pupil function. The integral in the denominator of

Ban. (3.1) is a normalization constant conventionally

employed to remove effects of background illumination.

For aberration-free systems, P(x,y) is either 0 or 1

depending on whether the point (x,y) is outside or inside

the pupil. Under this condition, the denominator in Eagan.

(3.1) is merely the total area of the exit pupil. There

is also a convenient geometrical interpretation for the

numerator. Take the pupil function and shift it first to

Ad; Ady
the co-ordinates (—— U, —=— V) and then to the CO=-0Tdin-

-Ad -Ad
ates ( As u, As v). The integral cf the product of the

shifted pupil functions is then equal to the area of over-

lap between the two shifted pupil functions. So Ean. (3.1)

can be restated in purely geometrical terms as

Area of Overlap
H we V = -( ) Total Area (3.2)

If this formula is applied to 2a circular aperture of radius

R, one finds that H(u,v) is also circularly symmetric, and

aaual to

20



H(&gt;) =
[#126 - BV- (2) ¥ LrC

Sr
£ry

(3.3)

2R

where r=Ad, and r 1s a radial frequency variable equal

to r = i“ os ve, A cross section of this transfer function

1s shown in Fig. 2.1 and is seen to be of a low-pass type

with cutoff frequency r,

H(t) r

vg

Figure 5.1

The impulse response of tils OTF is also circularly

symmetric and equals

21



a(p) = = [Lag] fF
(3.4)

vhere pis a circular spatial variable, f= %2

A more interesting class of transfer functions is

obtained if we generalize the form of P(x,y) to include —

complex exponential factor, i.e.

P(x,v) = A(x,v) exp (jkW(x,y"') (3.5,

In most cases, A 1s assumed to be unity inside the pupil

and zero outside the pupil. Consider, as an example of the

generalized pupil function, a defocused lens. For this

case,

A(x,v) = EG." + v- \

vhere € is the amount af defocusing obtained by the

(3.6)

focusline codition

L +1 _x=
d d iy

0 i

? E&amp; (3.7)

To find H(u,v), the integral in Eqn. (3.1) must be evalu-

ated. For 2a circular averture of radius BR. the resulting OTF

is again circularly symmetric and equals

29



x f VI - 0° cos YB (u +3) du B 4
Hx) = A

o  sz 1

(3.8)
vhere

rr, 2R
f=, To Ady

(3,9)
Pp] nd

omen?
Y = —4— + °

—

This rather cumbersome expression can be expressed in

terms of the incomplete Poisson integral, P,(x,¥), which

nas been tabulated by Steel (47). With

1

L
5 _ / _ 2 _jxt

om) == J 1 -t e dt

H(r) becomes

A(r) =

(Reo [¥F[=F vp. p)] po

Fon
1

(3.10)

Note that Fan. (3.8) reduces to Ean. (3.3) when the system is

perfectly focused; i.e., €=0. When plotting Eqn. (3.8),

the usual »nrocedure is to draw a family of curves with para-

meter 2MTE n=. expressed in fractions of a wavelength. These

2



curves are sketched in Fig. 2.2. Thus, although a defo-

cused system has the same absolute cutoff frequency, r = r
0

the response falls off much more quickly than in the focused

case, and, in addition, may contain areas of contrast re-

versal, i.e. H(r) &lt; 0.

H{) 4

*

_

4 OF

"A

Figure 5.2

For the limiting cases of minor and severe defocusing,

simplified expressions for the OTF can be found. For minor

2 "

defocusing, i.e. 22ITED &lt;&lt; A , the cosine factor in Ean.

(3.5) can be approximated by the first two terms of its

Tavlor series expansion. Thus,

&gt;]11



2

) p&lt;1? [a -bptared duLV K 8 Bl |
A (3.11)

After a rather lengthy integration, this yields

Hr) = 2 [cos™p- pia- 2 [1 - rpE (Lp? + 1)]
(3.12)

2

pif|
Note the form of Eqn. (3.12). The first term consists of

the OTF for the perfectly focused lens, (Eqn. (3.3)),

multiplied by a factor that 1s always less than unity.

second term is an additive correction factor.

For the case of severe defocusing (2mED SN), a good

pre

The

approximation to the OTF is obtained by taking the Fourier

transform of the out-of-focus image, which for a circular

aperture is a disk of radius 2€Rd4 and intensity propor-

tional to 1/(2€R3,). Then the OTF becomes

J- (LTeéRA:T)
I(r) = 1 rr (3.13)

Finally, Steel (48) nas presented an empirically derived

approximation which gives results accurate to within 2% for

211 values of defocusing. The equation is

2 1,
(2) % 2 [cos pP-pB 1-5

231 (F)
BLL (3.14)

PR



where

3e2

E =YpQ1Q-p)

Motion-Degraded Images

(3.15)

As a second area, let us consider motion-degraded

images. Assume that the recording device (e.g. camera)

moves perpendicularly to the line joining it to the object

while the image is being recorded. Cne convenient way of

describing the motion is to decompose it into its x and y

components, each of which 1s expressed in terms of the time

parameter, t.

R(t) = %(t)1 + v(t)3 (3.16)

If s denotes distance along the path R, the velocity along

that path is

2 2 5
as = dR — x! t EY ! t) =
3: = ( (t) + y(t) ( 5 17)

Now, for a point object, the film exposure is, by

definition, the impulse response of the motion degraded

image. The exposure, in turn, 1s proportional to the

incremental time spent at the location (x,y). Thus,

2 (x,y) = I.80t(x,y) (3.18)

where E is the exposure as a function of position, and 1a

138 a provortionalitvy constant related to the intensity of

the light impinging on the film. Now,

2 A



4S
tt XK ——

A ds/dt

 (x ,v)
——

—

[x (t) +3 (t)] 4

vhere K is constant equal to I As.

= h(x,y)

(3.19)

| 3 ,20)

This is the general equation for the lmpulse response

in terms of the equation of relative motion between the

object and recording device. Some examples will be pre-

sented below to illustrate the type of impulse response

that can arice due to image motion.

CL) Linear Motion in One Dimension

Vet
Lev X(t) =

0

=T/2

(3.21)

E11 sewhere

and let yit) be constant. From Eqn. (3.3), we get

K

~ vs
h(x) £729, &lt; x ¢(t/2v, (3.22)

shich is shown in Fig. 3.3. The Fourier transform of h(x)

Sin mTTv
(u,v) = K ——— o*

mv_u
(3.23)

27
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Figure 3.73

Harmonic Motion in Cne Dimension

v(t) = A 8in wt

Plugging the expressions for x(t) and y(t) (y(t) is con-

stant) into Egan. (3.20), one obtains

£ -A
Aya) TE m—

WN 4° = —

- A “wy
gual:

A (3.25)

as shown in Pig. 3.4, Strictly speaking, this result as-

sumes that an integral number of cycles occurred during the

exposure time, T.. However, if ed &amp; T,, then Ean. (3.25)

is a good approximation, even if nl # T,. The Fourier

transform of h(x) is

&gt;A



= El5(2ua)
H(u,v) rad

where J a 18 tne zeroth order Bessel function.

(3.26)

7)

Figure 3.4

J Harmonic Motion in Two Dimensions

Assume the equations of relative motion are:

(cv) = A sinwt, y(t) = B sin (wt +6)

(3.27)

Thus, the camera traces out an ellivntical path during the

exposure period. Plugging into Ean. (3.20), one obtains

NiZaT} FT empires
(02 - x2 + B2 _ ¢2)3

3,28)
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Now, ¥ is not free to take on all values in the domain of 4

because it bears a fixed relationship to the independent

variable x through the parameter t. That is,

Th 1}
hs

ou

— 5

TL“ = —3X) - xX 2o30

hn Z,3(x)) = 7

[a - IT

x\ 2] 2
£3 sno [1 - ()]

&gt; &gt; %

+ 3° 2 gfx)?

(3.29)

(3.30)

: z 3, i

a2-x?+B2cos% - (BZ) cos 20+ 2X sin 26|1- Z
Ia A |

Note that

rn
r

(2K g

for the apecial case of A = B, 6=17

g\4&lt;,) = hx, + (a° - x2)%) = XK
 Ww A

(3.31)

i.e. h(x, g(x)) is an impulse ring of radius A and magni-

tude K/ A. The Fourier transform for this special case is

H(z) = 2M; (2Mar) (3.32)

There is another approach to the characterization of

motion degraded imaging systems. This method vields an ex-

pression for the OTF directly in terms of the eaguations of

motion. We begin by expressing h(x,y) as an integral:
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n(z,y) = fu, (x - x(t), ¥ - y(t) dat
io)

(3.33)

where u, 1s a two-dimensional impulse located at (x(t),

y(t)). The OTF for h(x,y) is obtained by simply utilizing

the sifting property of impulses. Thus,

2

a(u,v) = fe IZM (R(E)HTy(t))y,
~

(3.34)

Sometimes thls approach is easier than using Eqn. (3.20)

and then computing the CTF. A more thorough discusslon of

motion-degraded images can be found in the references (28,

 Lh. 44),

From the preceding examples, it 1s apparent that the

analytic calculation of the impulse response, or its

Fourier transform, rapidly becomes extremely difficult.

However, numerical methods can and have been applied with

some success to this problem. In particular, the use of

the Fast Fourier Transform (FFT) algorithm and high speed

convolution has been of tremendous value in the computation

of OTF's for diffraction limited systems (12,23).
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» DIRECT ESTIMATION OF THE IMPULSE RESPONSE

In the previous chapters, several examples were pre

sented showing how the impulse response of an image de-

crading system, often called the point spread function

(PSF), can be determined either analytically or numeri-

cally, provided one has an accurate, detailed model for

the degrading mechanism. The procedures were based upon

having maximum a priorl information about the degrading

system, but nothing was stated about the nature of the

original picture. In this chapter, I would like to review

three methods which allow the PSF to be estimated directly

from the received image. These methods require very little

2 priori information about the impulse response but do make

certain assumotions about the nature of the original image.

The simplest case 1s one in which the original image

consists of one or more widely spaced pinpoints of light,

such as astronomical vhotographs. If these pinvoints of

light can be modelled as impulses, then the image on the

photogravhic plate is, by definition, the impulse response

of the image degrading systen,

The only restriction on the impulse response is that

ts effective width be narrow enouch so that there is no

overlan between the images of different points. There are

Ewo practical nroblems with this procedure, however. The
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first is that the recelved image usually has an additive

noise component which creates large errors in the measure-

ment of the impulse response from a single pinpoint. This

problem can be alleviated by averaging the measured impulse

response over many pinpoints.

The second problem is, of course, the rather limited

number of scenes that are known to contain widely separated

impulse-~like objects. However, there are two other shapes

that are useful in estimating PSF's from the recelved image

These are straight lines and edges (Fig. 4.la and 4,1b).

In addition, these shapes are frequently found in images,

particularly those of man-made objects.

Clearly, the straight line, or impulse sheet, is

simply the directional derivative of the edee function.

v

Fa

Figure U4.1a
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PARK

‘a

Figure 4.1b

Thus, if u, (x,y) denotes the edge function and uy (x,y)

denotes the impulse sheet, then

1, (x,y) = Tu, (x,y) ° jo (4.1),

where V 1s the gradient operator and Pp is a unit vector

perpendicular to the edge pointing from the black area to

the white area. Because of the linearity of the imaging

system, the response to an impulse sheet 1s simply the dir-

ectional derivative of the response to an edge. These re-

sponse functions are called the line spread function (LSF)

and the edge response, denoted 1(x,y) and e(x,y).

For the case of circularly symmetric degrading systems

fc is possible to calculate the PSF from the L3SF and vice

3



versa. The line spread function, due to an impulse sheet at

angle © , is simply the projection of the PSF onto a line

perpendicular to ®. For example, the LSF for an impulse

sheet along the y axis is

 KX

L(x) = J nix,y) dy (4,2)

which is the projection of h.along the X axis. For systems

having circular symmetry, Eqn. (4.2) becomes

Ean. (-

oD

Lx) = J n(x + yP)ay

) can be inverted to give h(r) in terms of 1(x)

(4.3)

( /

Es a

1 (x 1(x) + 2° 1' (x)

n(r) =— | —==,  -
Tr Vie - 14

JT

ax (4, I)

Thus, for those systems having circular symmetry, the

procedure for estimating the PSF is the following. First,

measure either the LSF or the edge response directly from

the received image. Then use Eans. (4.1 - 4.4) to find

the PSE.

In those cases where the image degrading system 1s not

circularly symmetric, we require that the original image

contains lines and/or edges at many different orientations.
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For example, if in &amp; certaln region, it is assumed that the

original signal was an impulse sheet with slope a,

u (x,y) = u,(y-ax) (4,5)

then in that region,

or )

I SW

r(x,y) = u, (x,y) » hix,y)

equivalently,

R(u,v) = Uq (u,v) « H(u,v)

0, (u,v) = {f uy (x,y)e "32 Tluxtvy) dxdy

(4.6)

(4.7)

(4.8)

v_(u + av)

This result is depicted in Fig. 4.2.

~ 7X

Figure bL,2
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J Na.

R(u,v) = u (u + av) - H(u,v)

1, ‘a + =v) H(u, =u,°

(4.9)

That 1s, the Fourier transform of the response to an

impulse sheet with slope a 1s the Fourler transform of the

impulse response sampled along the line, u + av = 0,

Thus, if the plcture contains impulse sheets at many

orientations, one can very simply obtain samples of the

Fourier transform of the unknown impulse response along

radial lines. Then, in order to obtain an estimate for the

impulse response, the space between the radial samples must

be filled in using some intervolation scheme to yield H(u,v.

and finally this must be inverse Fourier transformed (51).

The interpolation procedure is a non-trivial task. How-

ever, lersereau (27) has shown that for a certain limited

class of functions, it is theoretically possible to obtain

H(u,v) from only one radial sample.

As in the case of pinvoint objects, an implicit assump-

tion has been made about the character of measured L3F's,

namely that the LSF's, due to nearby impulse sheets, do not

overlap. Also, the additive noise vroblem is again dealt

with by averaging the measured LSF's over a number of lines

as in (5).
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Fowever, as the image starts to contaln more detail

the direct estimation method breaks down because of the

inability to find isolated points, lines, or edges. For

highly detailed images, another method must be found.
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5. ESTIMATING THE IMPULSE RESPONSE
USING HOMOMORPHIC SYSTEMS

5.1 Introduction

In the last chapter it was shown hew the impulse re-

sponse can be measured directly from the received image.

The procedure depended upon the original scene contalning

certain key objects that were reasonable approximations to

either an impulse, an impulse sheet, or an 1ldeal edge.

There are, however, many images that don't contain any of

these objects, or the key objects may be so close together

that the PSF's or LSF's overlap and, hence, cannot be

accurately measured. For these highly detailed images, a

novel approach to estimating the PSF 1s presented, based

upon homomorphic systems. Thls new method was first used by

Stockham in an attempt to restore old Caruso recordings

(49). It compliments the direct measurement technique in

that its utility tends to increase as the objects contain

more random structure. Indeed, this method models the ori-

ginal image as a two-dimensional random field. Before dis-

cussing the homomorphlc filtering approach, I shall review

two results which also model the image as a random field to

11lustrate what homomorphic filtering offers over the more

conventional approach.

The first is the well known result in random process

theory relating the power spectral density (PSD) of the

output function to the PSD of the input function,
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5. (0,7) = 5 (u,v) Ha,v) | (5.2)

Solving for |H|, one cbtains

| 5 (u,v) = ECR VENER) : (5.2)

Thus, assuming one knows the PSD of the original image

process, and one can estimate the PSD of the received

image, the magnitude of H(u,v) can be found directly.

Notice, however, that no information about the phase angle

of H(u,v) is obtained through Eqn. (5.2).

A second apvoroach is to use maximum liklihood estima-

tion to obtain a voint-by-point estimate of H(u,v). The

problem is the following: glven N observations of the form

k k k

R,. (u,v) = Hn, Sp — Hy Sy

XK k k

K=7, ,0 6 (5.3)

estimate H,. and Hi assuming the joint statistics of So.

and S; are known. The subscripts "rr" and "i" indicate the

real and imaginary parts of a function, and the superscript

"k!" denotes the kth sample. I shall further assume that 3

and Sp are independent, zero mean, Gaussian random vari-

ables, with equal variance. These assumptions are justi-

fied on the basis that they are in agreement with exveri-

mentally derived statistics. For example, using the new

crowd scene (CIPG # 11) as our standard image (Fig. 5.1)

0
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histograms of S, and Sy and also log] S| and arctan (2)
T/

were computed. These histograms are shown in Figure 5.2(a;

for Sg (top) and S, (bottom) and in Figure 5.2(b) for logis]

f0TcterachalanSsauThe G2) teem.tan (2Teda an) amtto(bo

5. and £3; 1s apparent. Also, the uniform distribution of

the phase angle indicates that S,. and S; are, 1ndeed, un=-

correlated and, thus, independent. Any correlation between

Sp and Sy would manifest itself as one or more peaks in the

phase angle histogram.

Returning to the maximum liklihood estimation problem,

2A few manivulations yleld the result that

N k _

7 (u,v) 2 = = Z| (u,v)

Note that once again no information has been obtained

about the vhase angle of H. It is this deficiency that I

shall attempt to overcome bv means of homomorpvhic filtering.

One might ask at this point if it is really necessary

to know the phase angle of H(u,v) in order to obtain a

reasonably cood restoration. If it turns out that onhase

errors play only 2 minor role in determining subjective
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Figure 5.1
New Crowd Scene (CIPG #11)

J.. a

Fig. 5.2(a), Histograms of Fig. 5.2(b), Histograms of

S, (bottom) and Sy, (top) log ISI (bottom) and PV/S (top)



picture quality, then one can use either Eqn. (5.2) or Eqn.

(5.4) to construct a zero=-phase inverse filter, and the

homomorphic filtering technique described below need never

be apnlied. Obviously any uncorrected phase errors will

result in a less-than-perfect restoration, but it is not

clear to what extent phase errors influence picture quality.

Andersonts study (1) of the effects of additive noise in the

frequency domain indicates that, for small noise levels,

phase errors had a less deleterious effect on image quality

than an equal amount of noise added to the magnitude func-

tion. However, the Fourler transform of a short-duration

impulse resnonse, as was assumed in this study, 1s quite

smooth. Hence, the error introduced into the magnitude and

phase functions 1s better described as being systemmatic

rather than random in nature.

To learn more about the effects of systemmatic phase

errors, 2 two=dimensional, all-pass filter was created. The

Z=transform of a bilinear type all-pass filter is

12, 2) = -az12p t+ 029 + bzpo +1
Ll 9 Wey, S— SCAT. — rm

Z4%Zo + bzq + czy = a
(5.5)

where

| (e363) = 1 Yu,v

Thus, the effect of the all-vass system is to distort only

the phase angle of the signal: the magnitude function is
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unchanged. The following constraints on the coefficients

are necessary to insure stability of the filter when re-

cursing in the +n, +m direction.

a b =- a b + al,

|5l&lt;2 | 53] [-=3&lt; (565)

Figrue 5.3(a) shows the frequency response of a typical all-

pass filter with a = .625, b = 75, ¢ = =.75, The top half

of the figure shows the log-magnitude function. The black

area is less than .4dB down from the white area, indicating

that the magnitude has a maximum variation of about 5%

over the entire u-v plane. The bottom half of Figure

5.3(a) illustrates the phase angle with =-T shown as black

and +I as white. This filter was then implemented recur-

sively and used to distort the phase angle of the image

shown in Figure 5.3(b), with the result shown in Figure

5.3(c). The most obvious result is a reduction of con=-

trast accompanied by a gradient-1like, edge enhancement ef-

fect. Clearly, phase distortion has significantly lowered

the subjective picture auvalitye.

As a more extreme example of systemmatic phase error,

the image of Figure 5.4(a) was distorted in two, admittedly

special ways. The image in Figure 5.4(b) was obtained by

setting the magnitude function eaual to a2 constant, while

leaving the nhase undisturbed. The effect was to hich pass

the picture, accentuating the edees. But despite the dis-
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Figure 5.3(a)
All Pass Frequency Response

(a=,625, b=.75, c==,75)
4 dB variation in Log-mag, (top)

Figure 5.3(b) Pigure 5.3(c)
Invut to All-Pass System Output of All-Pass System

4
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Figure 5.4(a)
Oleh (CIPG #2)

Fig. 5.4(b), Magnitude =

congtant, Phase unchanged
Fig. 5.4(c), Magnitude

unchanged, Phase=0



tortion, the essential character of the image 1s unchanged;

l.esey, it 1s still clearly a face. However, if one now sets

the phase angle to a constant (0) and leaves the magnitude

unchanged, the effect is dramatically different, as shown

in Figure 5.4(c). Now the resulting image is totally un-

related to the original and appears only as four lightened

areas on an otherwise featureless background.

what should be apparent from these examples is that

the phase function plays an important role in determining

image quality and cannot be neglected. As will be shown in

the next section, homomorvhic filtering provides a means for

estimating the phase angle of the degrading filter, and this

in turn can be used to construct a restoration filter which

corrects for both magnitude and nhase distortion.

Ze2 Uomornornhic Filtering

The usual assumvtion made in estimation theory 1s that

the desired signal is corrupted by an additive noise compon-

ent; e.g., v(t) = s(t) + n(t)., However there are situations

in which the desired signal is corrupted by multiplicative

noise or, as in the case of image degrading systems, convol-

utional noise. Tor the purvoses of this study, the desired

signal component is h(x,y) while s(x,y) is considered to be

the corruvontinge convolutiong2l noise whose statistics are

known. Since recovery of the original signal, s(x,y), 1s

the ultimate goal, and since the received signal is

jg 7



symmetric with respect to the convolution operator, it would

appear desirable to estimate s(x,y) directly. However, as

will be shown later, the algorithm used to estimate h(x,y)

requires an input data structure quite different from that

needed to estimate s(x,y). But more on that later.

The basic problem of estimating a signal corrupted by

noise is the same as that found in the classical estimation

problem; the only difference is the manner in which the

signals are combined. For the classical case, the combina-

tion is additive, while for image degrading systems, the

method of combination is convolution. Given the basic sim-

larity between the two problems, 1t would seem desirable

to convert the convolutional noise to additive noise so that

one could make use of the extensive techniques available for

estimating a signal in an additive noise environment. Homo-

morphic filtering (HF) is the technique used to achieve

this conversion.

Before proceeding, I shall adopt the convention that

all signals be denoted as discrete functions, 1n keeping

with the fact that all of the processing was done on a

digital computer. Also. the estimate of a sicnal will be

denoted by 2 sauiggle over the letter. Thus, h(x,y) be-

comes h(n.m) and its estimate is denoted by Thin.m). etc.

Homomornhic filtering, or generalized linear filtering,

was first studied by Oppenheim (29). Extensions of the

ILR



theory and some practical applications were later carried

rut by Schafer (38), and Oppenheim, et al, (30), What

follows is intended only as a brief introduction to the

theory of homomorphic filtering since this study uses HF

as a tool rather than an end in itself. The lnterested

reader is referred to the references for additional ma-

terial.

A homomorphic system is literally a linear mapping

between vector spaces. Figure 5.5 is a block diagram of the

overall generalized linear filter. The boxes labelled T

and pt are homomorvhic systems which serve to map from the

convolution space to the additive svace and inversely. The

subsvstem IL 1s a standard linear filter which performs the

actual estimation in the additive space. T has the property

"hat+

T | s(n,m) 3 h(n,m)] = T [s(n,m)] + T [n(n,m)

(5.7)
A A

- CQ 4WI

while T and 1 satisfy the relation

vt [rey] = [tle] (5.8)

The natnre of the mapping to and from the additive

space suggests that T and 1 can each be broken into twc

separate subesvetems shown in Figure 5.6. where FT and IFT

denote the two-dimensional digital Fourier transform and

LQ
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its inverse

(u,v) = 2 Zh(n,n) oJ (untvm,
27 re

(5.9)

ir

hin,m) =SS[[ naw Sdluntvm) os
(217)2 2

Thus, in coing Eo the avuLriive space, first one come

20



putes the Iourier transform of r

He)

rin,m) = s(n,m) hin.nm

vield

R(u,v) = S{u,v) * H(ua,v!

(5.10)

(5.11)

and then takes the complex logarithm of R,

10s ~
—

1 NN  xX
TL

y

 ) 3LJ od (5.12)

A A A

R=S +H

The next step is to specify the linear filter to extract an

cstimate of H.

N A

If one uses a INMMSE criteria, and models S and H as

random processes, one can derive an expression for the

Fourier transform of the optimum filter in terms of the

A NA

power spectral density functions of S and H. However,

these functions are usually unknown and are quite difficult

to compute, so a second, simpler procedure was used.

This procedure requires no a oriori information about

h(n,m), other than assuming that its effective width is

relatively narrow as in the direct estimation procedure of

Chapter &amp;. Then one merely computes R for a number of

different samnles and averages the result on a point-by-

point basis over the u-v nlane. That is
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2 S 8 = S(6 + 8) = B5(u,v)
N i=1 N i=1

(5.13)

Q rv) + fin, v)

where B(u,v) corresponds to the bias in the estimate and

A

equals the average value of S at all points in the u-v

\

plane. Assuming that the mean value of 3(u,v) is known,

nN
the quantity mA (u,v) can be subtracted from Hp to yield an

unbiased, consistent estimate of a, i.e.

E [fs- ng) = 8
(5.14)

va- {2HB™
= 1

N var (5 )

Finally, in order to obtain h(n,m), one must first exponen-

tiate and then inverse Fourier transtrorm the quantity

A -

(Hg- Ng) by passing it through T 1

De Subdividing the Image

The first problem in implementing the averaging pro-

cedure 1s where to obtain the N sample functions. There

A

would be no problem if the Sy (u,v) corresponded to NV dif-

ferent images that had been degraded by the same system,

Usually, however, there is only one image available, The

technigue used is to sub-=divide the received imace into N

subsections. The manner in which the image is divided

YY,



depends upon the nature of the degrading system. In the

most general case, the image 1s divided into N nonoverlap-

ping squares. So

rin.m) = s(n,m) *  21({n, 1

(5.15)
N

5 fam)  # h(n,m)

where the Ss; are nonoverlapping regions of the original

image,s.Wow, if the effective width of h is much less

than the cize of a subsection, Eqn. (5.15) can be approxima-

ted by

2

r(n,m) = = (510mm) * h(n,m))

r. (n,n) = ss (n,m) “ A(n,m)

(5.16)

(5.17)

The only error in the approximation occurs near the boundary

of each subsection where the interaction between subsections

in the convolution Ean. (5.15) has been neglected. Since

one of the later stews in the procedure involves multiplyine

each subgection by a Hanning window, this tends to further

suppress the boundary errors. The process of subdividing

an image also involves a performance trade-off. Cn the one

hand, one would like the subsection size to be large to re-

duce the relative error at the boundary, or admit degrading
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functions with larger effective widths. But using large

subsections means that N, the total number of sample func-

tions in the averaging procedure, will be smaller, and,

hence, from Eqn. (5.1%), the variance in the estimate will

be higher. The only alternative 1s to allow the sub-

secti to overlap to some extent. This introduces another

problem in that the subsections will be more highly cor-

related, thus requiring that N be made even larger before c
—

cood average is obtained.

J

L » =

If one is willing to assume

h(n,m) = hq tas) - Yio

that h(n,m) is separable

(5.18;

then the v»roblem becomes considerably easier. The reason is

that the problem can now be considered as two, one-dimen-

sional problems. Consider what needs to be done to esti-

mate h,(n). Following Ean. (5.13) we have

-_. R U,V -. mg (u,v)( ? )

The advantace is that the ry (n,m) could be taken to be ore

line of the received image. in which case

r, (n,m) = rin,i) (5,20;

Cr the r, (n,m) could be taken to be nonoverlapping sections

SL



&gt;f lines, etc. For although the same conditions on boundary

error, variance of the estimate, and correlation among the

subsamvlrs annlv also to the separable case, there are so

many mcr wes

constratmt

ho (m) ene

| ~~ —— analy satisfied. Similarly, in estimating

in

choose to subdivide r into columns, etc.

T. c In “eT toh
‘hvious at this voint why this averaging

procedure *

mation cf *-

renerally applicable to the direct estil-

4 -,

2 image. Use of this procedure woulc

require tha? = - same image be degraded by a large number

of uncor—-"
J

© 37 »rading functions. One situation, how-

ever, that 4 -m~5% this criteria 1s short time exposures

of the same 72 taken through turbulent media and, indeed

some work be 1 done in this area (22,25,26).

Havi *scussed the method by which the N sample

functions

Ban. (5.12) +

- obtained for the averaging, I now return tc

y discuss in detail the averaging mechanism and

related issues. Separating Ean. (5.12) into its real and

imacinary varts, one obtains

log | Ri = log |S, + log i.

(5,21

ang (Rs) = ang (Ss) + ang (4)

Clearly. the problem can be viewed as two separate

problems, one of estimating the magnitude of H (|H|) 2nd the

other of estimating the phase angle of H (/H). As it turns
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out, the problems and procedures associated with the twc

quantities, |H| and /H, differ to such an extent that a

separate analysis of each will be presented.

5.4L Estimating | dl

Considering only the real part of Egn. (5.21), and

averacine over N samples, one obtains

+ 2 log|nyl a 5 2 logls,| + 1egld

(5.22)
ro

golll B(a,v) + logiHd

where B(u,v) represents the bias in estimating the magnitude.

The bias, however, is directly related to the power spectral

density of the original image vrocess. In fact, one can show

(19) that under appropriate conditions,

1 N 1
lim 2 - 5 og
. . log 3541 1N &gt; 2 ;

5$_o (u,v) (5.23)

where the limit is in the mean-square sense, Thus, the blas

term can be removed by subtracting % log &amp;_.(u,v), 2

quantity that is assumed to be known a priori. For the

special case of white noise processes of spectral height Nos

the bias term need not be removed, since the constant,

= loz N,, merely appears as a multiplicative constant in the

final result; i.e.

2



h(n,m) = (3 log N,) hin,m) (5.24

Unfortunately, most pictures are distinctly non-white,

They are most often of a low pass nature. For this report,

I modelled #4 to be of the form

5_.(u,v) = XK exp (-a |u| - bv]; (5.25)

in which case the bias term becomes

3 (u,v) = % (log K = alu|l = bv]

The parameters a and b were varied until the best result

(5.25,

Was obtained.

Two practical problems arise in estimating the magni-

tude. First, if any of the S,(u,v) are zero at a point

where H(u,v) 1s non-zero, the value of H(u,v) at that

point can never be found. And the same effect occurs if the

IR| drops below the dynamic range of the computer due to the

finite register length. For the PDP-9 computer, assuming

15 noise=~free bits, the dynamic range is about 90dB . Thus

at any point where [Bj| is more than 90d4B down from its

maximum value, it is impossible to estimate H(u,v) . How=-

ever, these limitations did not prevent good estimates from

being obtained. Indeed, in some cases, using N=U gave sur-

Srisinely ood results. The details are discussed in

Chapter 6,
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5.5 Estimating the Phase Angle of H

Returning now to the imaginary part of Eqn. (5.21),

one 1s faced with a tougher, though more subtle problen.

The problem arises due to the fact that the phase angle of

a signal is multivalued, Furthermore, the arctangent func-

tion used to calculate the phase angle has a range of only

+m , 1.e., only the principle value (PV) of the phase

angle is avallable. And the unfortunate fact is that

PV(/Ry) = PV(/Sy + /H)
(5.27)

# PV(/Ss) + PV(/H)

That is, the PV(/R,) is not generally equal to the sum of

the PV of the angles of S, and H., In other words, the pro-

blem is no longer additive. For example, let /S, = 77/L,

[HE = 3m4. Then /Sy + /H = /R = 21, but PV(/R) = 0.

Another way to view the problem 1s to realize that the

sum VEN + /H) has been passed through the picewise linear.

non-invertible operator shown in Figure 5.7.

The problem can be postponed for a time by noting that

PV(A + B) = PV(PV(A) + PV(B)) ( 5.28)

and, thus

N N

PV 3 PV(/Ry) = PV &gt; FV(/S, + /H)
1=1 1=1
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N

PV 2 (/Sy + [H)
1=1

(5.29)

ouT

ry (PV(/R))

TN

(/R)

Figure 5,7

That is, when summing over N samples, the PV of the sum of

[Ry can be obtained by taking the PV of the sum of PV(/Ry).

However, when attempting to divide by N, one is again faced

with

1 N y 5 -

7 up ([3; + [)] # wold 5 [3 + /H Ce 30)

i.e., the PV operacor

commute.

Ts
ha

Cr in? \ operator do not

Another way in which the PV problem manifests itself is

through the statistics of PV/R. Generally, when trying to

estimate a constant (in thls case /H) buried in additive

noise (/S;), best results are obtained if the noise has a

npeaky" or leptokurtic probability density function (PDF)

But consider the effect of the PV operator on the PDF of

PV/R = ¢. With © denoting the value of the phase angle at
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the input to the PV operator, we have

0,
(¢) = &gt;

ZB? + 2m K; (5.31)

That is, Dy (¢) is obtained by aliasing the PDF of the true

phase angle, ©. Assuming that 6 has a zero-mean Gaussian

distribution with variance equal toc2, Figure 5.8 shows

Pg (p) for various values of &amp;, For small &amp;, Py ($) exhibits

the "peaky" characteristic necessary for good estimates.

However, as o approaches IT and higher values, Pg (¢) becomes

essentially flat, and is thus of no value in the estimation

procedure. For example, consider what happens when a con-

stant, a, is added to¢. For oDIT, there is essentially nc

change in the PDF of ¢, and, hence, a cannot be accurately

estimated. On the other hand, if o &lt;I, then the peak in

the PDF of ¢ will shift to a point equal to PV(a). Unfortu-

nately, experimental evidence such as the histograms of

Figure 5.2 indicate that ¢ is essentially uniformly distri-

buted, and thus, one cannot estimate /H directly from PV/R.

The remainder of this chapter deals with a technique,

called phase unwrapping, that handles the problems associa-

ted with the PV operator. Because the one-dimensional pro-

blem is conceptually more straightforward, I shall begin

with 4+.

The basie problem with the PV overator 1s that the
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measurable quantity, PV/Ry, is not equal to the sum of its

components, If the additive property can be restored to the

phase angle, then the problem is solved. Thus, if the non-

invertible nature of the PV operator as shown in Figure

5.7 can be converted to a straight line, with a slope pre-

ferably equal to one as in Figure 5.9, then the additive

property will hold. In terms of the statistics discussed

earlier, one seeks to obtain p,(8) from pa (®) so that one

will have to contend with noise component having a peaky PDF

rather than noise with a uniform PDF,

rm

Fi cure - J

Now, by examining the pole-zero patterns of functions

having rational Z-transforms, 1t 1s clear that the phase

angle can always be defined in such a way as to make it con-

tinuous by adding multiples of 2IT to it. The only exception

to this statement occurs if there are any voles or zeroes of

odd multivlicity on the unit circle, in which case the phase

angle would have jumps of +1 in it. If the function rn)

&lt;



is assumed not to have any odd order poles or zeroes on the

unit circle, then the /R must be continuous for all frequen-

cies. This fact provides the condition necessary to find

/R from PV(/R). All one must do 1s add the appropriate

multiple of 27 to PV(/R) at each frequency such that the

result is a continuous function of frequency. This is

exactly how Figure 5.9 was obtained. Actually, even odd

order poles or zeroes on the unit circle are allowed if one

only seeks to correct discontinuities with magnitude greater

than 17.

The phase smoothing algorithm can be restated in terms

of adding shifted step functions to PV(/R). Figure 5.10

{illustrates the procedure for a typical angle function.

Part (a) shows PV(/R) versus u; (b) shows the set of

shifted step functions used to make PV(/R) continuous; (e)

shows the resulting continuous /R. The algorithm 1s to add

a constant +27 to PV(/) whenever a jump of -27 is detected

while traveling along the u axis in the positive direction.

If a jump of +27 is found, then a constant -2W is added to

PV(/).

JYhile the phase unwrapping procedure is conceptually

straightforward, a serious practical problem arises due to

the fact that, in practice, only samples of the PV(/) are

available, which, in turn, means that it would be quite

possible to miss one of the + 27 jumps in the PV(/), which
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would lead to a completely erroneous result. For example

consider Figure 5.11, which is a sampled reproduction of

Figure +10,

Notice that the algorithm falled to identify the first

and forth jumps in the PV(/) with the result that the

"smoothed" phase angle is completely in error. Indeed, this

1s an inherent problem of phase unwrapping, namely, that an

error made at any point along the u axils, whether by falling

to identify a jump (miss) or by claiming a jump when, in

fact, none was present (false alarm), tends to propagate.

undiminished, along the u axis. Thus, it is of utmost

Ali



PV(/R) _ 4
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22m &amp;

AIT

J: 2

Figure 5.11

importance to correctly identify the jumps, One means by

which the error rate can be reduced is to increase the

number of samples. Examples run using picture data indicate

that 2048 samples along one line in the transform plane seem

to give accurate results, Another helpful technique is to

identify as+27 jumps, those places where adjacent phase

samples differ by more than a fixed fraction of 2. This

involves a performance trade-off end also influences the

3



required number of samples. On the one hand, setting the

threshold too high will cause the miss rate to increase,

while setting 1t too low will increase the false alarm rate.

For most of the examples presented in this project, a thres-

hold value of 53% of 2IT was used.

In addition to error propagation, there 1s another

effect due to computation noise that hampers the phase un-

wrapping method. Assume that both the real and imaginary

parts of the Fourler transform samples are corrupted by ad-

ditlive computation nolse which is uniformly distributed

between (-a,a) and uncorrelated sample to sample. The ef-

fect of this noise on the phasor describing the transform

sample can be modelled as a "circle of confusion" centered

on the tip of the phasor. Figure 5.12 illustrates several

1 m

(4)

E
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-

Re

Figure 5.12
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frequency samples and their confuslon circles. Note that

the radius of the confusion circles is assumed to be the

same for all samples. Clearly, as the magnitude of the

phasor decreases, the range over which possible phase angle

errors can occur increases, as indicated by the dotted lines

emanating from the origin and tangent to the confusion

circles. To demonstrate this effect analytically, conslder

Figure 5.13 where a phasor of length R has been arbitrarily

placed along the Re axls. An expresslon 1s derived for the

fm

en se

€ max a\

- R

" Re

Figure 5.173

maximum angluar error in terms of the ratio (a/R), which

acts as a noise-to-signal ratio parameter. Simple geometry

yields the result for the maximum angular error, € ox hE

¥

which is

Lr



fF
“ max

» -1 __o/B) la/rI{1tan rrSese

V 1-(a/R)%

, 4 El Rly 1

(5.32)

No

A plot of € ox vs a/R is shown in Figure 5.14, Notice that

the solution contains a discontinulty at the point a = R,

Once the (2/R) ratio reaches 1, the maximum angular error

remains at + . This result implies that for transform

“
fo

Fy oure » LH

samples having small maenitude, the angular error may be

quite large and, furthermore, due to the phase unwrapping

the error may propagate through succeeding phase samples.

AR



This result can be somewhat misleading in that it

doesn't provide any insight into the distribution of angular

error and, indeed, in this light the problem doesn't appear

quite as severe. With reference to Figure 5.15, the question

is what is the distribution of angular error between the

limits of €,,y. Assuming that each point in the confusion

circle is equally likely, then the probability that the

7

C
rr
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=

&amp;
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Rc

Figure ©..5

angular error lies between € and En tHE ic

1 = c = AA

r{€0&lt;€ &lt;€, +o€f =p (Ele 25

Af ter a few maninulations one obtains

oil 2 1 B V1 n— . R&amp; mer smn smsomes. smu 1 - ——

LE) 1+m ( n)“4
am,

(5.33)

(5.34)
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where tane =m and € = tan +_a/R

max

V1-(a/R)?
a

Eqn. (5.34) is valid only for HE l. For

2] &gt;1, p (€) becomes
R c

che case 01

—_

2 2

i 4 ln (8) , 2R/a fra. (2a
2m 2 a 2 a

14m 1+m

nD (€)=
le|&lt; 7

a+ 1m) RV.2B/a[14.2.(BR)?2m 2 a 2 al

14m 1+m

Z&lt;ler&lt; mw
(5.35)

Using the fact that tan € = m, Eqns. (5.34) and (5.35) can

be rewritten more compactly, directly in terms of €.

Eqn. (5.34) becomes

 tank |2&lt;n2 8 : Ze - (R/a) tan’e 5(€) == a cos € Jee

: - a/R

where, again, €£ = tan 1__8/R cu

\/ 1-(a/R)?

Similarly, for 2] &gt;1, Ean. (5.35) becomes
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(2[1reos £) +2R/a cos“efsecle-(R/a tan€)* 7
lel &lt; 2

Z a , SE

Flee) _2R/a cos&lt;&amp;fsec’€-(R/2 tane) 2 |

T&lt;leleT
(5.37)

In Figure 5.46, a family of curves is plotted for

several values of the parameter (R/a). In general, the

curves are highly peaked about €= 0 for (R/a) large, and

sradually become broader as the value of (R/a) is decreased

It 1s clear that for all values of (R/a) # 0, the mavimunm

ancular error is incurred relatively infrequently. However,

significant values of angular error are likely to occur

whenever (R/a) £1. Thus, when performing phase unwrapping,

svecial precautions should be taken for those freauency

samples having a small magnitude (on the order of the compu-

ation hoise).

Now that a means is avallable to calculate the unwrapped

phase angle, its PDF will be investigated to determine

whether or not it conforms to the Gaussian hypothesis used

to cenerate the curves in Figure 5.8. Ton this end, 1024

nnwranned nhace angle samples were selected at random from a

total of over 65,000 samples. The phase unwrapving was based
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spon a 2048 point FFT so that an adequate sampling rate was

attained. Four statistical tests were then run to either

confirm or reject the Gaussian hypothesis; chi-squared test

Kolmogorov=-Smirnov test, skewness test, and kurtosis. The

probability tables used in these tests were taken from

Knuth (21) and Femington and Shork (34).

The first two tests are broad-spectrum tests which are

best sulted to uncovering gross departures from the assumed

PDF. Both tests failed at the 99% confidence level. The

tests for skewness and kurtosis are disigned to detect

specific departures from normal PDF's, Skew is a measure of

the lopsidedness of the observed PDF, while kurtosis is 2

measure of the "peakyness' of the observed distribution.

Both tests assume an underlying Gaussian distribution.

These two tests were run on filve different data samples. Cn

the basis of the skew in the observed data, three of the five

samples failed the skew test at the 99% confidence level.

All five data samples failed the test for kurtosis at the

997% confidence level with the kurtosis parameter indicating

that the observed data samples were leptokurtic: i.e., more

peaked than the assumed normal distribution. Thus, it is

safe to sav that the PDF of the unwranpned phase angle 1s

not Ganccsian.

But if it isn't Gaussian, what is 1t? For example, if

che unwranped phase was Cauchv distributed, then it would be
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nointless to try and estimate the phase since, 1n general

none of the moments of a Cauchy distribution are defined.

Hence, the variance of the phase angle estimate would be

infinite. However, the fact that all five of the data sanm-

ples were levntokurtic raises doubt about the Cauchy assump-

tion since the Cauchy density function is much broader than

the Gaussian and would thus tend to be platykurtic. BHow-

ever, to get a more quantitative measure of whether or not

the Cauchy assumption was justified, the nonparametric

Kolmogsorov-Smirnov test was performed. The Cauchy hypothe

ssis failed the test for all five samples at the 99% level,

Having rejected both the Gaussian and the Cauchy hy-

pothesis, how does this affect the family of curves shown ir

Figure 5.8 which were based upon a Guassian distribution?

The answer is, not in any significant way. The reason is

that althouesh all of the samples had levntokurtic distribu-

tions. the average of the sample standard deviations was

approximately eaual to 2W. This value of the standard

deviation is large enough to make pg (¥) essentially uniform

even though p, (8), based upon the sample histograms, is

somewhat more vneaky than a normal distribution.

Finally, before proceeding to the two-dimensional case

some examples of vhase unwranppnine in one-dimension will be

presented. Figure 5.17(a) shows a plot of typical log-

magnitude (ton), PV(/R) (center). and smoothed phase angle

(bottom) functions. These functions were computed at 20.48
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samples, only half of which are shown due to symmetry. The

origin of the graphs is at the left of the base line. The

most striking feature of PV(/R) and ZR is the strong linear

component in the phase functions. Indeed, both functions

appear to consist chiefly of straight lines.

Strone linear phase components are very common in phase

angle functions. In fact, one can show that the slope of

the linear phase component is equal to the number of zeroes

of the time function r(n) located outside of the unit circle

(38), From the standpoint of estimating the degrading

function, linear phase has no utility since it only contri-

butes a shift in the time domain estimate, which is of no

importance in image restoration. It does, however, pose =

practical problem in two ways. First, because the linear

phase component usually has such a steep slope, a high

sampling rate is necessary to accurately detect jumps.

Secondly, the information-bearing portion of the phase

function, the non-linear component, 1s all but buried be-

neath the large phase values attained by the linear component

which, in turn, tends to increase computation error due to

the limited dynamic range of the computer. For these reasons

it is desirable, although not necessary, to remove the linear

phase component. Clearly, this can be done by shifting the

time function r(n) an appropriate amount. The direction and

amount of shifting needed to eliminate the linear phase com-

ponent can be computed in the following manner. First,
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smooth PV(/R) as well as possible. Then compute n,=

[R(n)/m. If n, is non-zero, shift the function r(n) by

-n, units, and repeat from the first step. When ng equals

zero, then the linear phase has been completely removed.

Figure 5.17(b) shows the PV(/R) (top) and /R (bottom) after

having removed the linear phase components. The resulting

phase structure is much more interesting in that it shows

detalls that were completely obscured in part (a). Notice

that smoothed phase function changes rapldly at those fre-

quencies where the log-magnitude function becomes very small.

As an aside, the fact that the number of zeroes out-

side the unit circle is equal to /R(rm)/ir can be used to

determine the stabllity of discrete linear systems. The

stability of discrete systems is usually determined by one

of two methods. One may use the bilinear transformation to

transform the z-plane to the s-plane where a Routh-Hurwiltz

test may be applied. However, this procedure 1s algebral-

cally tedious, particularly for higher order systems. The

other stability test requires the evaluation of Schur-Cohn

determinants which may be computed directly from the coef-

ficients of the system characteristic equation (20). For

an n-th order system, the Schur-Cohn determinants consist

of 2n determinants of order 1, 2, ... n=-1, n; i.e., two

first-order determinants, two second-order determinants,

and so on up to two n-th order determinants. By noting the

number of sign changes in this sequence of determinants,
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the number of zeroes outside the unit circle can also be

found.

Consider now the amount of computation required to

perform this test. It can be shown (18) that the number of

multiply and divide operations necessary to evaluate an

n-th order determinant, by the Gauss-ellmination technique,

1s equal to Z(n®-1). Thus, to evaluate the sequence of 2n

determinants requires

 1 =25 (135 = (1° - 12)

i
A (n+l) (n-1) (n+2)

(5.38)

manipulations. By comparison, the number of operations

necessary to determine both stability and the number of

zeroes outside the unit circle, using phase unwrapping, is

equal to $(2048+2¢log, (2048) + 8:2048) = 30720, where 2048

is the number of phase samples available, 8 1s the number

of multiplications in the arctangent subroutine, and the

factor of 2 is included because of the odd-symmetry of the

phase function. Comparing this last number with the expres-

sion from M in Eqn. (5.38), one finds that for n &gt; 21, it is

more efficient to use phase unwrapping to determine both

stability and the number of zeroes outside the unit circle.

Of course, the unwrapped phase 1s still subject to

possible errors at those frequencies where the magnitude is
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small, which conceivably could lead to the wrong conclusion

being drawn about system stability. An lnteresting con-

jecture is whether or not the Schur-Cohn matrices become

1l1l-conditioned for such systems. If that 1s the case,

then this method might also yleld erroneous results. How-

ever, such considerations lead too far afleld from the

subject of thls study.

Finally, Figure 5.17(c) shows an attempt at phase un-

wrapping using only 256 samples or one-eighth the number

used in parts (a) and (b). The linear phase component has

been removed. However, the resulting /R looks quite unlike

that of part (b) because of errors made in the unwrapping

procedure due to an insufficient number of samples,

This last example should serve to indicate one of the

ma jor obstacles to phase unwrapping in two-dimensions,

namely the inability to obtain an adequate number of samples.

The dlsk storage unit on the BIP, PDP-9 computer has a one

megaword storage capacity. As a practical matter, though.

the total number of phase samples is limited to about one

quarter million. Thus, one could store a phase array of

512 x 512, 256 x 1024, etc. However, from the experience

gained with one-dimensional phase unwrapping, it is apparent

that regardless of the array size, the sampling rate along

at least one side of the phase array will be inadequate. In

practice, what was one was to smooth the phase as well as
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possible along one direction while accepting the smoothing

errors that occurred along the other direction.

With the limited number of samples avalillable, it is

imperative to remove the linear phase component from the

two-dimensional phase function. However, on this issue of

linear phase, there is a significant departure from the

one-dimensional theory in that the linear phase component

cannot be completely removed merely by shifting r(n,m) by

an appropriate amount. The reason 1s that each row and

column of the phase array has a different linear component.

To see this, expand the phase function 6(u,v) in a two-

dimensional power series, retaining only those terms which

satisfy the odd-symmetry requirement on the phase angle of

real functions. Thus,

ey
_ 2 !

rv) = u(agq + av + 2,,7

- (8g + 85,7

(5.39)

i Te - &lt;

Tis, + t,.u

: +b, 3
i!

1
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Note that the coefficient of u in the first term varies with

7, Similarly. the coefficient of v in the third term varles

with u. Thus

different li

eliminated

terms Th

-1v *=rm that can he

through tn

following way.

“igin. The amount of shift is determined in the

irst irs , calculate thie projections of ri{n,m) along the

gl and m axes; 1.6.

nq (11) = 2 r(n,m

(5.40)

rom) = “ (n,m

and compute the 2043 nouint transform of these functions,

which vields

E, (uv) = R(u,V)
(5.41)

Ro (Vv) = R(O,v

That is. th v transforms of the projections correspond to the

value °° 1
7

, ) 2lone the u and v axes. R- and BR, are now

trea. &lt;,
— narate one-dimensional functions and smoothed

in 2c...mAaNnce Wilt . the procedure described earlier. From the

smoothed phase functions the amount of shift necessary to

R19



eliminate the linear phase along the u and v axes can be

obtained. However, the linear phase components along other

rows and columns in the phase array will, in general, re-

main non-zero. Indeed, there is nothing to say that these

components have not become larger after shifting r(n,m).

Figure 5.18(a) shows a typleal two-dimensional transform.

Again, the top half represents the log-magnitude while the

bottom half illustrates the phase function. The orienta-

tion 1s with the v axis running horizontally and the u axis

running vertically down the center with the origin in the

center of the top line of each function. Part (a) shows the

PV(/R), while part (b) illustrates the smoothed phase func-

tion calculated without first removing the u-v axis linear

phase terms. The phase samples were computed on a 256 x

1024 array. Part (c¢) shows PV(/R) obtained after first

shifting r(n,m) by the appropriate amount. Note that it

appears to be considerably smoother than the result obtained

without prior shifting. This is analogous to the one-

dimensional result shown in Figure 5.17(2) and (b).

Finally, part (4d) illustrates the smoothed phase function

derived from part (c). The fact that it is totally differ-

ent from the result in part (b) indicates how many unwrapping

errors were made in the latter case.

An important point to remember about removing linear

phase components 1s that the proper shift distance is not
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Fig. 5.18(a), Log-mag. (top), Fig. 5.18(b), Log-mag (top),
PV(/R) (bottom), 256x102M4, /R (bottom), with linear phase

with linesr phase

Fig. 5.18(c), Log-m=g. (tov), Fig. 5.18(d), Log-mag. (top),
PV(/R) (bottom), 256x1024, /BR (bottom), with linear phase
with linear phase removed removed along u.v axes
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related to the center of gravity of the signal, but rather

to the number of zeroes located outside the unit circle,

For example, consider the exponential signal, r(n) = al,

where a &lt; 1. This function has no zeroes outside the unit

circle and, indeed, a plot of the phase function shows that

/R = 0 when u =m, which conforms to 0 shift according to

the algorithm given above. However, r(n) has a non-zero

center of gravity located at a/(l-a).

In summary, homomorphic filtering allows one to esti-

mate h(n,m) as though it were corrupted by additive noise.

The estimation procedure can be analyzed in two parts,

estimating the log-magnitude and the phase angle. The log-

magnitude function is a fairly well behaved function which,

given that the bias 1s known, ylelds a consistent estimate

of log|H(u,v)| . The phase angle requires special treatment

to retain the desirable property of additivity. The tech-

nique is to make the phase angle continuous which, though

conceptually straightforward, 1s a procedure beset by

practical problems. The most obvious problem is the errors

generated by having an insufficient number of phase samples.

This 1s particularly true with two-dimensional signals where

the desired number of samples exceeds the bulk storage

capacity of the computer, although first shifting r(n,m) by

an appropriate amount to remove the linear phase makes the

job considerably easier. Errors are most likely to be made
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at those frequencies where the magnitude of R(u,v) becomes

so small that it is comparable to the computation noise.

Also, the phase unwrapping algorithm is rather intolerant

of errors since an error made at any point in frequency

space tends to propagate undiminished. The next chapter

illustrates the results of this procedure when applied to

actual image enhancement problems,
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oe. EXAMPLES OF HOMOMORPHIC ESTIMATION

In thls chapter we shall use the homomorphic estima-

tion procedure developed in Chapter 5 to first estimate the

impulse response of the image degrading system, and then

use this result to construct an inverse filter to obtain an

improved image. In addition, some of the practical aspects

of the problem wlll be discussed with examples presented to

illustrate the material. This chapter is further intended

to provide sufficient detall about the computational tech-

niques to ald future researchers in the field.

Most of the examples in this chapter deal with images

that have been flltered in one direction only. There are

several reasons for this. First, the phase unwrapping tech-

nique 1s not hampered by lack of computer storage space.

Having an adequate number of phase samples allows one to

1solate and examine the effects of phase errors, error pro-

pagation, etc. Of course, computing time is also reduced.

Secondly, using a one-dimensional blurring function allows

one greater freedom in partitioning the received image and

allows greater latltude in the chouce of N, the number of

Image subsections. Finally, one-dimensional signals can be

displayed on standard x-y co-ordinates, whereas two-dimen-

sional signals must either be plotted in a three-dimensional

persvective format or have the dependent variable displayed

as brightness variation on a two-dimensional CRT display.
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Both of these methods have their drawbacks. The prespective

irawing becomes confusing when highly detailed signals must

be displayed. On the other hand, the variable brightness,

CRT display 1s deceptive because the information must

usually be greatly compressed to fit the dynamic range of

the display. This latter effect may be seen in Fig. 5.18(b)

and 5.18(c) where the phase angle appears to be almost linear.

In fact, there is substantial variation in the signal about

a linear mean value. This fact, however, is only apparent

in X-y plots of each line of the phase signal.

The first question to be considered in implementing the

homomorphic estimation procedure is exactly how does one

partition the received image. For one-dimensional proces-

sing, the 512 x 512 New Crowd Scene, shown in Fig. 5.1, was

partitioned as shown in Fig. 6.1.

128 pts. T

128 pts.

128 pts.

128 pts.

[Line tL

1ne Zz

Line J

T 1 ne 4

Figure 6.1

7



This scheme was chosen to reduce the correlation between

subsections. It also allows one to obtain up to 512 sub-

sections from the blurred image.

The partitioning is equivalent to multiplying each line

of the received data by a 128 point data window. Although

the effects of data windows on the frequency response of a

signal have been treated extensively, little 1s known about

how data windows affect the magnitude and phase angle of a

signal. As these two functions are basic to this study, I

shall briefly review windowing theory with particular regard

to its effect on magnitude and phase functions. The question

is, given a signal h(n) multiplied by a window function, win),

how are the magnitude and phase angle eof the transform eof the

product related to the magnitude and phase angle of h(n)?

Thus.

g(x) = h(a) w(n), (6.1)

from wnich

lu) = Hu) # Wu (5.2)

If one assumes that w(n) 1s an even function, then W(u) is

a real function. Thus. the real and imaginary parts of G(u)

can be written simply as
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6p) = 25 JH («) W(u-w) ax
-7

(6.3)

Gy (u) = = IG W(u-o) de

\]ey oT

| mn 2
2 2 2 1

GIT = GG.” + 6° = |(feo W(u-o) ax)
-7

(6.4)

Tr 5

([ H, («) W(u=-x) ax)
- IT

ir
sl

Ea BH +H, (X)H, ( | W(u-x)W(u=-p)dxdJ [=e L(P)+H,(0H,(8) W(u-0)U (u-p)dxdg

1u

~1

/G = tan

[f Hy (x) W(u=-«) ax \
=

ie

WERE W(u-a) dx |

(6.5)

The important point to note about Eqns. (6.4) and (6.5) is

that

1612 # 1:12 x |W)?

/G=JH = Ju

(6.6)

Thus the magnitude and phase angle of G cannot be obtained

by convolving the magnitude and phase angle of H and W.
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Equations (6.4) and (6.5) are not very useful in providing

an intuitive idea of how a given window function will af-

fect the magnitude and phase angle functions of the origil-

nal data. About the only general statement that can be

made is that these functions will in some sense be smoother.

Another point of view on the windowing 1ssue 1s ob-

tained by considering what effect windowing has on the zero

locations of H(z). Multiplying h(n) by w(n) has the effect

of modifying the coefficlents in the polynomial representa-

tion of H(z). Altering the coefficients will, of course,

change the locations of the zeroes of H(z). Now, since the

zero locations are essentially what specify the magnitude

and phase functions, it is clear that if one could predict

how the zero locations shifted after windowing, one would be

able to predict the new magnitude and phase functions.

Although a general solution te this problem has eluded

mathematicians, Marden (24) has presented some interesting

properties of this type of problem. In addition, this ap-

proach to the windowing problem breaks down in two dimen-

sions because the concept of poles and zeroes does not

extend to two-dimensional Z-transforms.

So, lacking any useful analytical approach, a set of

experiments was run to observe the effects of various wine

dows. The general window chosen was a variant of the

Hanning window, with an added parameter.
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y(n) =

(

,
+

—

mr(n-ng)
~ c0S§ ——————

(N-n,)

0 £ In]£nj,

ng &lt;n &lt;N

\ n|

(6.7)

This windew function is plotted in Fig. 6.2 for several

values of ny. Note that when n, = N the w(n) becomes 2

rectangular window of width 2N while for n, = 0, w(n) becomes

the standard Hanning window. Thus the primary purpose of

including ny was to provide an adjustment for the roll-off

rate at the edges of the data window.

Az (Nn!

JW

3

Figure 6.2

dith N fixed at 64, w(n) was applied to three data

sections and ny varied to observe the effect on the magni-

tude and unwraoped phase functions. PFPigure 6.3 illustrates

the log-magnitude, while Figure 6.4 shows the phase functions
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for the three data sections. The value of ny was varied

from ny = N in part (a) (rectangular window) to ny = 0 in

part (b) (Hanning window). Several interesting character-

istics can be observed in Fig. 6.3 and 6.4, As expected,

decreasing the effective window width results in a larger

degree of smoothing in both the log-magnitude and phase

functions. Note that, ln addition to smoothing over zeroes

In the original function, at least one new zero 1s observ-

able in part (d), bottom line. This new zero near the unit

circle, in turn, causes a sharp jump in the otherwise smooth

phase function. For the remainder of this study n, was set

equal to 3N/4. It was felt that any lower values might

distort or obscure important variatiens in the phase func-

tions while higher values of ny provided so little smoothing

that the job of phase unwrapping was made unnecessarily

difficult.

Another practical point to consider is the implementa-

tion of the inverse filter. Due to the presence of compu-

tation nolse, it was declded that Helstrom's optimum MMSE

inverse filter should be used rather than the direct in-

verse. This formulation is reproduced in Fan. (6.8).

2(u)
Hu) = —————

|2(u)| © + N/S
(6.8)

vhere N/3 is the noice-“o=-signal ratio. For this study, the

Ji



N/S ratio was assumed to be of the form

 Nn= 2K(1 -5 (uw) 2Mn
&gt; ho» Re

(6.9)

where K is an integer scaling constant, a 1s a positive

number less than one, and u is the frequency variable. N/S

is plotted in Fig. 6.5 for various values of a. This model

x
T A

Qz0

“5

| —

55 7M

Figure ¢.3

for the noise-to-signal ratio was chosen not only for its

flexibility but because it also reflects the fact that for

low frequencies the signal energy 1s much larger than the

noise energy while just the reverse is true at higher fre-

quencies.

To illustrate the utility of the optimum inverse

filter, some simple one-dimensional restoration experiments

were tried. Pig. 6.6(a) shows the original signal, a pulse,

and the result of convolving the pulse with a triangular im-

pulse response. This 1s a particularly difficult function

to invert since the inverse Fourier transform for the tri-



angle contains many singularities and is, thus, well

suited as an example of what happens to a restoration if

additive noise is ignored. The top line of Fig. 6.6(b)

shows the optimum inverse filter for a = 0, K = =34, The

only visible difference between this and the simple inverse

filter is at the points of singularity where, rather than

going to infinity, the optimum inverse is set to zero. The

center plot of Fig. 6.6(b) shows the result of deblurring

with the optimum inverse filter. The result can hardly be

called an accurate reproduction of the original pulse,

Although it 1s possible to identify the pulse, the high

level of additive noise would make this filter unsuitable

for restoring pictures. The third line of Fig. 6.6(b) shows

the result of setting all of the negative samples to zero.

This last step, passing the restored picture through a half-

wave rectifer, is often overlooked in image enhancement and

wastes a valuable bit of information that we have about the

original image: all of the picture sample values must be

positive. Although half-wave rectification didn't add much

to the quality of the restored pulse, it visibly improves the

quality of two-dimensional displays with variable brightness.

In this case, the half-wave rectification serves to reduce

the dynamic range of the signal to be displayed, thus making

the grev-=scale compression less extreme.

The next example, in Fig. 6.6(c), is with K = =16 and
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a = ,996, Note how the frequency response of the optimum

inverse filter 1s severly attenuated near the singular

points. Also, for low frequencies, where N/S is still quite

small, the response closely resembles that of the simple

inverse filter in the previous example. Examination of the

restored pulse shows that the additive noise has been dras-

tically reduced. Of course, there 1s a penalty to be paid.

For this particular example, the cost of noise reduction is

a broadening of the transitien bands of the pulse as well as

some ringing near the edges of the pulse, Again, the third

line shows the restored pulse after setting the negative

sample points to zero.

The preceding examples clearly show the benefit to be

derived from using the MMSE inverse filter rather than the

simple inverse filter. However, they are somewhat unreal-

istic in that the input to the inverse filter, the blurred

pulse, was available with 16 bits of precision. In a real=-

life situation, the received data is usually quantized

using only six or eight bits. The coarse quantization has

the same effect as adding noise to the received signal and,

hence, can be expected to produce enhanced signals of lower

quality than those obtained from a 16 bit received signal.

Fig, 6.7(2), (b), and (c) illustrate this effect. Parts (a)

and (b) are identical to Fig. 6.6(b) and (¢) in all respects

except that the received signal is quantized to only 8 bits.
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Figure 6.7(a), 8 bits, K=-34, a=0
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The restored pulses are obviously of much poorer quality

than the 16 bit restorations. Indeed, for part (a), it 1s

difficult to even recognize the presence of a pulse, let

alone ascertain the quality of the restoration. In Fig.

6.7(c), ¥ is increased to -12, with a = ,996, to reflect the

increased N/S ratio. As might be expected, this results in

the inverse filter having greater attenuation at all fre-

quencies, varticularly in the high end of the spectrum. The

restored pulse obtained through this filter contains consid-

erably less noise than that in part (b). The price for the

reduced noise level is a somewhat greater broadening of the

transition bands of the pulse. Thus, merely by increasing

the N/S ratio in the optimum inverse filter, low noise re-

storations can be obtained from 8 bit signals. The per-

formance penalty that must be paid is in the less-than-

perfect restoration of the high frequency areas of the ori-

zinal signal.

Having considered and examined the effects of windowing,

inverse filtering, and quantization, let us now return to

the subject of this study: estimating the impulse response

of the image degrading system. To this end, five examples

are presented. The standard format of these examples is as

follows: Part (a), the blurred image; Part (b), the restored

image using known blurring function; Part (c), graphs showing

actual and estimated impulse response functions and N, the
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number of subsections used in the averaging; Part (d), the

restored image using the estimated impulse response func-

tion. Additional parts may be added to certaln figures to

illustrate the effects of varying the N/S ratio or of

coarsely quantizing the received image, etc. These parts

will be explained as they arlse. The reason for inverse

filtering the received plcture with the known degrading

function (part (b)) was to observe the quality of restora-

tion that could be obtained under the best conditions, As

demonstrated when restoring the blurred pulse (Fig. 6.6),

certain blurring functions (in this case a triangular func-

tion) are rather difficult to invert, numerically, even when

they are known exactly.

Although the restored image (part (d)) is, of course,

the ultimate check on the overall quality of the estimation

procedure, the normalized, room-mean-squared (BMS) error

between the actual blurring function and the estimated im-

pulse response was also computed and is shown in part (ec) of

the various figures. There are two reasons for doing this.

irst of all, the RMS error is a single number which is

much more convenient for comparison purposes than the re-

stored plcture, whose quality must be Judged on a purely

subjective basis. Secondly, the RMS error is an indication

of the accuracy of the estimate that is totally independent

of the problems that arise during the actual inverse

filtering operation.
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In order to simulate a degraded image, the New Crowd

Scene was convolved with a series of one-dimensional impulse

response functions. The convolution was actually carried

out in the frequency domain by multiplying the Fourler

transform of the original image with the transform of the

impulse response and then inverse transforming. Due to the

circular nature of the FFT algorithm used to calculate the

Fourier transforms, vertical strips on the edges of the

original image were set to zero so that the convolution

would be linear rather than circular. See Gold and Rader

(33) for a more detailed discussion of this technique.

Three blurring functions were used: Gaussian, triangle,

and exponential. The Gaussian was chosen for its simplicity

and also because many real-life degrading systems can be

modelled as having a Gaussian impulse response, Another

useful property is that it is a zero-phase function; 1i.e.,

the phase angle of a zero-mean Gaussian 1s everywhere zero.

The triangle function was also chosen because 1ts transform

has zero phase everywhere, which greatly simplifies the es-

timation problem. However, it represents an added complex-

ity in that the inverse filter constructed from the estimate

will contain several almost-singular points and is, thus, a

good test for the inverse filtering capabilities. Finally,

the exponential signal was also chosen because of the pro-

pertizss of its Fourier transform. In particular, 1t has a
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smoothly varying phase function which will test the ability

to estimate the phase angle of a degrading function.

The first example, shown in Fig. 6.8, uses a Gaussian

impulse response having a width of 32 points or a standard

deviation of 4 sample units. Thus, although the total

width of the Gaussian 1s equivalent to 1/16 of the picture

width, the effective width (defined as the number of samples

larger than 10% of the peak value) is much smaller, about

1/32 of the picture width. Thus, the error created by as-

suming independence of subsections in the convolution sum

will be quite small, Using an optimum inverse filter with

K = -20 and a = .996, a good quality reconstruction was

obtained and is shown in Fig. 6.8(b). Even though the ideal

inverse filter for the Gaussian is free of singularities,

the limited dynamic range of the computer registers (90 dB)

makes it necessary to use a non-zero value for the noise-to-

signal ratio to suppress noise effects at those frequencies

where the Gaussian function is more than 90 4B down from its

peak value. The result of the homomorphic estimation, over

256 subsections, is shown in Fig. 6.8(c), along with the

original Gaussian blurring function and the RMS error. The

only apparent errors in the estimate are the long talls and

the fact that the main lobe is somewhat wider than the ori-

ginal, As it turns out. this latter error has a signifi-

cant effect upon the restored image. Because the main lobe
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Pig. 6.8(a), 16 pt. PSF.

(Gaussian)
Figure 6.8(b)

Ideal Restoration
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(Using phase estimate)
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1s wider than the original, its frequency response will be

narrower than it should be. This, in turn, willl result in

the inverse filter giving greater boost to the high frequen-

cies so that the subjective effect on the restoration will

be the same as if the original image was high-pass filtered.

Indeed, Fig. 6.8(d) confirms this prediction.

Fig. 6.8(c) and (d) made use of the fact that the de-

sired impulse response was known a priori to be a zero=-

phase function. Fig. 6.8(e) and (f) were obtained without

the benefit of this assumption. That is, the phase angle

was estimated as accurately as possible. The resulting re-

storation shown in part (f) is only marginally poorer than

that of part (d), the most obvious flaw again being the

excess boost given to the high frequencies. Indeed, the

high frequencies appear to have been accentuated to a some-

what greater degree than in the assumed zero-phase case,

The next example, shown in Fig. 6.9, also uses a

Gaussian blurring function. The width, however, has been

doubled to 64 points, or a standard deviation of 8 samples.

This represents an effective width equal to approximately

1/16 of the total picture width and 1/4 of the selected sub-

section size. Notice how, for this case, even the ideal

restoration has significant additive noise. The reason, of

course, is that for wider Gaussian functions the frequency

response is narrower, which, in turn, means that an even
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greater percentage of the spectrum will be more than 90 dE

down from the peak value. Cf course, the nolse could be

removed by boosting the N/S ratio in the inverse filter

formulation, which would then attenuate the high frequencles.

But, as shown in the one-dimensional examples (Fig. 6.6),

the cost of reducing the noise is a less-than-perfect rendi-

tion of the edges of the picture; i.e., some artificial

blurring would be introduced as an artifact of the inverse

filtering.

The only apparent defects in the estimated impulse re-

sponse (Fig. 6.9(c)) are the long tails on the Gaussian.

Unlike the first example, the effective width seems quite

close to that of the original. Thus, it is not surprising

that the restoration obtained from the estimated impulse

response (Fig. 6.9(d)) appears almost as good as the ideal

restoration. It 1s all the more surprising because the

effective width of the Gaussian is about 25% of the sub-

section size, Thus, either the Gaussian function is parti-

cularly well suited to homomorphic estimation, or the as-

sumption that the impulse response duration is much less than

the subsection size (Eqn. (5.16)) 1s overly restrictive.

As an example of the effects of quantization on two-

dimensional restorations, the estimated impulse response was

used to restore the blurred image after it had been quantized

using only 8 bits instead of the normal 16 bits. The result
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Fig. 6.9(a), 32 pt. PSF.
(Gaunsian)
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Figure 6.9(b)
Ideal Restoration

Fig, 6.9(c), N=256, o=, 0712 Pig. 6.9(d), K=-18, a=,996
(Phase = 0)
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Fig. 6.9(e), K=-18, a=.996
(8 bits)

Fig, 6.9(f), K=-14, a=,996
(8 bits)
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1s shown in Fig. 6.9(e). As demonstrated in the earlier

sne-dimensional example (Fig. 6.7), the additive nolse is

much more pronounced in this case. Increasing K by 4 to

take into account the increased noise levels ylelds the re-

storation of Fig. 6.9(f), which is of considerably higher

quality than its predecessor.

The third example, Fig. 6.10, uses a 32 point triangle

function to blur the original image. This function has an

affective width of about 1/16 of the total picture width and

1/4 of the subsection size. The singularities in the inver-

se filter of the triangle functlon make it difficult to

obtain even an ideal restoration, shown in Fog. 6.10(b).

Not only is additive noise present in the restoration, but

there is also an annoying periodic vertical stripe in the

restored image. This is due to the fact that the periodic

singularities in the inverse filter were set to zero rather

than infinity.

The estimated impulse response, shown in Fig. 6.10(c).

has a low RMS error of only .0657 even though the estimate

has rather long tails not present in the actual blurring

function. The effect of these tails on the restoration,

however, 1s pronounced, with the restored image appearing as

though it had been multiply exposed. In an effort to im-

prove the restored image quality, the N/S ratio was in-

creased by a factor of 16 and a changed to .75, with the re-

sult shown in Fig..6.10(e). Although the echoes are still
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Fig. 6.10(a), 32 pt. PSF.
(Triangle)

Figure 6.10(b)
Ideal Restoration

wlbavenvenenesssvoleieunssuvas
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(Phase = 0)
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Fiz, 6.10(e), K==12, a=,75
(Phase = 0)
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visible, they have been reduced considerably. As usual,

there is a performance trade-off in that the restored image

now appears to be less sharp than that of Fig. 6.10(d).

The last two parts of this example illustrate the re-

sult obtained when the zero-phase nature of the triangle

function is ignored and the phase function 1s estimated from

the received image. Although the RMS error has more than

doubled, the subjective quality of the restoration using the

estimated phase appears to be about the same as that in

Fig. 6.10(4).

It might be assumed from the quality of the restoration

shown in the first and third examples that the job of esti-

mating the phase angle was accomplished to a reasonable

decree of accuracy. However, as evidenced by the next two

examples, thls was nothing more than a lucky fluke; lucky

because both phase angles were actually zero. The next two

examples show how much error occurs in the estimation of a

non-zero phase function.

The fourth example uses a one-sided exponential signal

ro blur the original image. Thus

n(1) == il .  J (6.10)

With b = .75, the effective width of the impulse response

was R samples or about 1/64 of the total pvicture width and

1/16 of the subsection size, The ideal restoration in Fig.
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6.11(b) contains no visible defects. The estimated im-

pulse response, on the other hand, has a considerable RMS

error, Which is obvious considering it is double sided while

the original exponential is single sided. The fact that the

estimate is almost symmetric about its center indicates that

the imaginary part of its transform 1s almost zero, unlike

that of the 1deal exponential function. Using the estimated

impulse response, the degraded image was restored as shown

in Fig. 6.11(d). Fig. 6.11(e) shows the resulting restora-

tion if the phase angle of the estimated impulse response 1s

set to zero before inverse filtering. The primary effect of

this total loss of phase information seems to be the loss

of contrast of the restoration. Ctherwise it appears about

the same 2s that in Fog. 6.11(d). Finally, Fig. 6.11(f)

plots the log-magnitude and phase function for both the

ideal (top two) and estimated impulse responses (bottom two).

As expected, the log-magnitude has been estimated quite ac-

curately while the phase angle exhibits gross errors through-

out the spectrum. Although the automatic scaling in the

display programs make 1t appear as though the ideal and esti-

mated phase functions have the same range, in fact, the ideal

phase ranges over [o, 277] while the estimated phase is

~onfined to [-. ou, .02T |,
The fifth and final example also uses an exponential

sienal, but b is increased to .906. This provides an effec-
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Fig. 6.11(a), 8 pt. PSF.
(Exponential, b=.75)

Figure 6.11(b)
Ideal Restoration
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Fig. 6.11(e), K=-10, a=.996
(Phase z= 0)

Fig. 6.11(f), Ideal (top) and
egt'ed (bottom) log-mag and phase functions
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tive width of 25 samples. Again, the estimated impulse re-

sponse is very nearly an even function. A comparison of the

log-magnitude and phase functions (Fig. 6.12(f)) again shows

gross errors in the estimated phase function. The 1deal

phase angle ranges over [o, 36] while the estimated phase

angle lies in the interval [-.157, 0]. Again, a restoratior

was made with the phase angle set to zero (Fig. 6.12(e)).

Unlike the previous example, the subjective quality of the

zero-phase restoration 1s noticeably worse than the restora-

tion obtained by using the (poorly) estimated phase angle.

The last two parts of Fig. 6.12 show restorations obtained

from an 8 bit blurred image. Part (g) uses the same N/S

ratio as part (d) while in part (h), the N/S ratio was in-

sreased by a factor of 16.

Cne aspect of the estimation problem that hasn't been

treated explicitly is how sensitive the estimated impulse

response is to N, the number of subsectlons used in aver-

aging. In Fig. 6.13(a), the 32 point Gaussian was used to

test this dependence. The Zero-phase assumption was used in

all cases. The top line shows the original Gaussian while

the second, third, and fourth lines show the estimates ob-

tained using 4, 16, and 64 subsections respectively. Note

that the quality of the estimate 1s quite good, even for

N = 4, Pig, 6.13(b) shows a similar set of experiments

based upon the exponential signal with a = .75. The display
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Fig. 6.12(a), 25 pt. PSF.
(Exponential, b=,906)

Figure 6.12(b)
Ideal Restoration

Fig, 6.12(c), N=64, e=,854 Pig. 6.12(4), K=-16, a=,996
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Fig, 6.12(e), K=-16, a=,996
(Phase = 0)

Fig. 6.12(f), Ideal (top)
and est'ed (bottom) log-mag

and phase functions

Ideal / €(0, .367)
Est'ed / e(-.15m, 0)

Fig. 6.12(g), K=-16, a=.996 Pig, 6.12(h), K=212, a=.996
(8 bits) (8 bits)



format is identical to part (a). Note, however, that none

of the examples, even N = 64, provide what might be called

an accurate estimate of the actual exponential function.

The reason, of course, 1s the errors incurred during the

estimation of the phase function.

In summary, the homomorphic estimation procedure appears

to be quite effective in estimating zero-phase impulse re-

sponse functions. However, it does a rather poor job when-

ever the unknown impulse response has a non-zero pahse func-

tion. Restated in terms of frequency domain functions,

homomorphic estimation does a good Job of estimating log-

magnitude functions, but 1s unable to obtain a good phase

estimate. In some applications, this need not be a serious

handieap. For example, long exposure atmospheric degrada-

tion is often modelled as being Gaussian-~like. Of course,

in those cases where the blurring function is assumed to be

Gaussian, it would probably be simpler to merely estimate

the variance of the curve rather than its value at every

point.

An interesting result of the two exponential examples

is that a restoration obtalned by assuming Zero-phase still

provides some improvement in image quality over the original

blurred image. Thus, homomorphic estimation does offer a

general means for obtaining some improvement in received

image quality, if only through its ability to accurately
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estimate the log-magnitude function of the degrading im-

pulse response,

The ability to accurately estimate the phase function

1s limited for two reasons: errors in computing PV(/) when

the magnitude is small and error propagation in the phase

unwrapping algorithm. The first error primarily depends

upon the size of the computer register and the type of

arithmetic employed in the computation of the FFT. On the

PDP-9, the FFT was computed using 18 bits and integer

arithmetic. Other computers, for example, an IBM 360, use

floating point arithmetic and 32 bit words in the FFT cal-

culation. ©Since the FIT algorithm generates less noise

when using floating point arithmetic (31), it is quite

likely that this source of error can be effectively elimin-

ated on a different computer. On the other hand, error

propagation during phase unwrapping is not directly affected

by changing computers. The only cure is to make no errors

while wwrapping the phase,

In an effort to overcome these limitations on homomor-

phic estimation, three other approaches to estimating the

phase angle were investigated. These methods are presented

in Chapvter 7.
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ALTERNATE APPROACHES TO PHASE ESTIMATION

4
Tr Introduction

As shown in Chapter 6, homomorphic estimation does a

rather poor Job of estimating the phase angle of the unknown

blurring function. In this chapter, three alternate means

of estimating the phase function are explored. The first of

these is an offshoot of the homomorphic estimation procedure.

The second limits itself to minimum phase functions, while

the third explores a statistical approach to phase estima-

tion. All three suffer from either theoretical or practical

drawbacks and were, therefore, rejected in favor of the phase

unwrapping technique. However, they are included here as an

aid to future researchers.

Phase Derivatives

The method of phase derivatives makes use of the time

(spatial) domain function corresponding to B(u,v) =

log R(u,v). This function is commonly called the complex

cepstrum of r(n,m). The method is based upon the following

result,

A A

r(n.,n) «= R(u,v) = log R(u,v)

d

| 3a ] 3 5 R(u,v) == nr(n,m)
r(N,1) ee J In u,v) = R(u,v) oe (n,m)

id

(7.1)

(7.2)
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where T(n,m) denotes the complex cepstrum of r(n,m). The

division of the Fourier transform, I = R(u,v) by R(u,v)

in Eqn. (7.2) represents the first practical problem with

the method of phase derivatives. Previous experience in

creating inverse filters should serve to indicate the type

of problems that can arise when inverting Fourier trans-

forms. Unfortunately for this case, there is nothing com-

parable to an optimum inverse filter that can be employed tec

attenuate the adverse effects of extraneous noise, However,

if the computation could be performed using high precision,

floating point arithmetic, rather than the 18 bit integer

format of the PDP-9, then perhaps a useful result could be

obtained. It should also be pointed out that the basic

phase derivative result, Eqn. (7.2), can be reformulated in

a complimentary manner as shown in Ean. (7.3).

3 A 3 od R(u,v) «—» mr(n,m)
nr(n,m) ej = R(u,v) = - dy (7.3)

dv R(u,v) a+ r(n,nm)

Assuming for the moment that the division of transforms

can be carried out satisfactorily, let us examine what op-

portunities this offers towards the problem of phase estl-

mation. The most obvious benefit of this approach is the

freedom from having to deal with the PV(/). The phase de-

rivatives are based uovon the smoothed phase angle, not its

principal value. Thus, since the averaging and derivative
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operators commute, the derivative of the phase angle of

H(u,v) can be estimated directly without having to perform

phase unwrapping. Thus

J = 1 3

Fp dR PE ein (7.04)

Ultimately, of course, the /H willl have to be reconstructed

from &amp; /H. This creates another practical problem because

the accurate reconstruction of /H from samples of 2 /H

requires a large number of samples-~perhaps as many as re-

quired in the phase unwrapping algorithm. This is parti-

cularly true in those areas where the phase function changes

rapidly. In addition, the integration of the phase deri-

vative also tends to propagate any errors that occur, Just

as in phase unwrapping. The reason is that each point on

the integrated phase curve is a function of all those

points that preceded it. Thus, an error anywhere along a

line tends to propagate undiminished unless a compensating

BYTOY OCCUTS.

The problems wlth low sampling rate and error propaga-

tion can be exchanged for other difficulties by working with

the complex cepstrum. Since the Fourier transform is a

linear ovneration, the averaging operation can just as well

be carried out in the time (spatial) domain as in the fre=-

quency domain. Thus,

128



- ppoped &gt; ry(n,m)nh( » (7.5)

Now, hin,m) can be found from Eqn. (7.5) at all points

except along the n=0 axis. Of course, Eqn. (7.3) could be

used to find h(n,m) everywhere except along the m=0 line.

This result, combined with that derived from Eqn. (7.2),

could be used to find h(n,m) everywhere except at the origin,

However, this single point can be determined from the basic

definition of Aln,m),

Ia

A 1

h(0,0) = 02 [f log H(u,v) du dv
- Tr

(7.6)

Using the symmetry properties of the Fourier transform of

real functions, Eqn. (7.6) can be expressed in terms of the

log | H(u,v)| only, the phase angle having been eliminated by

virtue of its odd symmetry. Thus,

— Tr

£(0,0) ms = [[r0slau, du dv
Lr 7

(7.7)

Computationally, this procedure requires that for each sub-

section five Fourier transforms be computed plus two divi-

sion-of-transform operations, and finally, Eqn. (7.7) must

be evaluated. If one limits himself to the use of only Eqn.

(7.2), the computation time can be cut in half. The defini-

126



N\

tion of h(n,m) can be used to find h(0,m) as shown in Eqn.

(7.8).

f(0,m) = 2 [free H(u,v) AL du dv
Lr?

-7

(7.8)

which can be simplified to

Ir

A 1
h(0,m) = =, [[[108 [ru 01: cos vm-/H(u,v) sin vm du dv

La
-r

(7.9)

Now, Eqn. (7.9) requires the smoothed phase angle function

which, in turn, means that the phase unwrapping algorithm

must be used to find /H. Thus, the price for reducing the

apparent computation requirements is the need to once again

unwrap the phase angle, which defeats the primary purpose of

introducing the phase derivative procedure.

There is yet an additional consideration when using

the complex cepstrum for averaging. This has to do with the

aliasing error in the complex cepstrum arising through the

computation of the discrete Fourier transform. Hather than

obtaining n?, (n,m), one actually obtains an aliased version:

(n+KH) Fy (nit, mie) where M is the size of the FFT, and k

takes on all integer values. Thus, unless 2, (n,m) falls off

very quickly, particularly in the n direction, or M is made

quite large, 2 substantial aliasing error will occur in

n?, (n,m). This error, in turn, causes errors in the esti-

mate of fn,m).
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Thus, of the three possible uses of phase derivatives,

it appears that estimating / H from 2 / H 1s the easiest

method. The "only" requirements are enough samples of the

rhase derivative and an accurate means of performing the

division-of=-transforms operation.

7,3 Minimum Phase Functions

A well known result of one-dimensional signal processing

is that the phase angle of a signal can be uniquely recovered

from the log-magnitude function provided the signal is a

minimum phase (or maximum phase) signal. Since the homomor-

phic estimation procedure has a demonstrated capability for

accurately estimating the log-magnitude, it appears that the

minimum phase property could be used to find the unknown

phase function, provided the unknown function 1s minimum

(maximum) phase. That last qualification 1s one of the major

limiting factors in using the mimimum phase property to

determine the phase angle of blurring functions; i.e., real-

life blurring functions are distinctly non-minimum phase.

There are three interchangeable definitions of one-

dimensional, minimum phase (MP) functions. The basic define

ition is: A MP function is that function chosen from the set

of all functions having the same autocorrelation function

(i.e., the same magnitude of the Fourier transform) which has

minimum phase for all frequencies. The second definition is

riven in terms of the pole-zero pattern of f(n): f(n) is MP
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if all of its poles and zeroes lie inside the unlit circle.

This definition implies a necessary, though not sufficient,

condition for f(n) to be MP--f(n) must be a causal function.

The third definition 1s stated in terms of the complex cep=-

A
strum of f(n): f(n) is minimum phase if f(n) 1s causal; i.e.

A A

f(n)=0, n £ 0. This can be restated as: f(n) is MP if f(n)

exhibits even part sufficiency; 1l.e., fn) can be determined

from the even part of fn).

Extending these definitions to two dimensions is not

trivial. While the first definition can be carried over

directly, it does not provide a practical means of testing

whether a function is MP or generating such functions. The

second definition breaks down because the concept of dis=-

crete poles and zeroes is no longer valld in two dimensions.

The third definition extends directly, vrovided that "causal!

is interpreted as strictly causal in both n and m, not just

one or the other.

Now, assuming that the log-magnitude of a MP function

is known, how does one compute the corresponding phase

functions? In one dimension. three steps are regulred and

are showm in Fig. 7.1, where

Al) =

Ly

n = J

&gt; 0Yi

Yl

(7.10)

120



log | Fl rT

(M 'n

7S

Ev (f) (0 Twp Uap

T

log Fup

Figure 7.1

Thus, the even part of the complex cepstrum 1s obtained

by inverse Fourier transforming the logl|F|. Then, using

even-part sufficiency, fhp(n) is computed from its even

part. Finally, fn) is Fourier transformed to yield

log F,o(u). Note that even if the original function that

generated log |F| was not minimum phase, the output of Fig.

7.1 1:1 2 minimum phase function because of the utilization

of the even-part sufficiency property.

The adaptation of this computational procedure to two-

dimensional signals noses no difficulty if the complex

cepstrum of the original signal is strictly causal. In that

case. wln.m) is

w(n,m) =

( .

LD
i

n,m = 0

n.m&gt; 0

 oe] sewhere

(7.11)

However, it 1s quite conveivable that the inverse Fourier
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transform of log|F(u,v)| could yield a function that is

non-zero in the second and fourth quadrants. To provide for

such cases, the definition of two-dimensional MP functions

must be broadened to include those functions whose complex

cepstrum is non-zero over no more than half of the n-m

planes, including the flrst quadrant. But this definition

introduces an ambiguity into the even part sufficiency pro-

perty. Consider Fig. 7.2. Given

Ev [£m] = [£(n.m) + £(-n,-m)] (7.12)

one sees that Ev [£(n,n) could have been generated by any

one of the three functions shown in Fig. 7.2. The non-zero

region of each function is shown as a shaded area,

bY)

J&amp;

Figure

(b)

/ b

/ )

The ambiguity 1s reflected in the three definitions for

w(n,m). For part (a)
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|

win,m) =

lo

-

 0, m

m 3

elsewhere

(7.13)

vhile for part (b),

(n,n) =

osi

a

\
\ O

m Qa, rl

_-

vl

elsewhere

 .

(7.14)

The expression for w(n,m) corresponding to Fig. 7.2(¢c) is

rather complicated function of 6.

This basic ambigulty, coupled with the fact that

typical blurring functions are not minimum phase, led to

the rejection of the minimum phase approach to estimating

the phase angle. However, some work was carried out on the

generation of MP pictures starting from ordinary images, an

example of which is shown in Fig. 7.3. Part (a) shows the

original image; part (b) illustrates the log-magnitude (top)

and PV(/) (bottom). Then, using the block diagram of Fig.

7.2 and the w(n,m) in Eqn. (7.13), the corresponding MP

picture was generated and is shown in part (c¢) of Fig. 7.7

along with its log-magnitude function (top) and phase function

(bottom) in part (d). Reference (8) contains further de=-

tails and more examples on the topic of generating MP pic-

ures.
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Figure 7.3(a)
(Original)

Figure 7.3(c)
(Minimum Phase Image)

Fig. 7.3(b), Log-mag.
(top) &amp; PV/ (bottom)

Pig, 7.3(d), Log-mag,
(top) &amp; phase angle for

minimum phase image

L373



7.4 Filtering the Phase Angle

This approach to estimating the phase function was

motivated by the observation that the autocorrelation of /EH

had a much greater effective duration than the autocorrela-

tion function of /S. It was hoped that a useful result

could be obtained by treating the estimation problem as a

problem in filtering two stochastic processes that had been

passed through the non-linear, PV operator. Using $a to

denote the autocorrelation of the true sum of /H and /s,

i.e., the input to the PV operator, and $py/x to denote the

autocorrelation function of the output of the PV operator,

syne can show that under a Gaussian assumption

po wi Zod
pve 07 odd kK $ fn) (7.15)

The constant Cc, equals

f lyS12 n k-
Kk I (-1 'Lo, ) n exp(=-% $50) . 2?) 2x k odd

!
Kk even

(7.16)

Eqns. (7.15) and (7.16) are derived in Appendix A.

Now. in order to explore how linear flltering might be

employed to separate /H from /S, let us examine the first few

terms of Eqn. (7.15). In particular, we are interested in
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the PSD functions associated with each tern, ? rn Using

¢s to denote the PSD for /S and $y to denote the PSD fun-

ction of /H, we have

k

$ euse Sac *k $s * % (7.17)

where the k over the convolution symbol indicates that $,

1s to be convolved with itself (k-1) times.

For example,

4

¢ x % ¢/n = $y

and (7.18)

) 2?

Ep *dm=tm dp ip

Using the fact that /R = /S + /H, and assuming independence

between /S and /H, $r can be written as

$e = 2, +2 (7.19)

Also, the assumptions on the effective autocorrelation

durations for /S and /H imply that the bandwidth of § 5 is

much larger than the bandwidth of /H, as shown in Fig. 7.4.

Thus, at least for the first term of Eqn. (7.17), simple low-

pass filtering should serve to separate /H from /S. However,

the higher order terms in Ean. (7.17) present 2 much more

formidable task due to the interaction of signal components
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fs

Figure 7.

via the convolution operation. For example, Fig. 7.5 shows

the four distinct signal components contained in the second

term of Ean. (7.17).

x?
EIR

»

’
-

od

t
re
cg“

Figure 7.5

Notice that only one term is totally free of noise compon-

ents and that this term has three times the bandwidth of its

counterpart in Fig. 7.4. The situation becomes rapidly worse

for higher order terms with the bandwidth of the signal-only

component expanding to 5, 7, 9, ... times its original width.
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Thus, it appears impossible to design a filter that can do

a reasonable job of separating /H from /S.

But what if one limits himself to only the first term

of Eqn. (7.17)? We saw in Fig. 7.4 that good quality signal

separation was possible for this one term. However, a mo-

ments reflection should serve to uncover the flaw in this

reasoning. Approximating Eqn. (7.17) by only its first term

is equivalent to approximating the PV operator by a straight

line. This approximation completely ignores the fact that

the PV operator does not preserve the desired property of

additivity, whlch was the original motivation for developing

the phase unwrapping procedure.

Thus, all three alternate approaches to estimating the

phase function were rejected in favor of the phase unwrapping

technique. But even the latter technique proved incapable

of making accurate phase estimates. Perhaps this problem

will ultimately be solved by other researchers, on other

machines, using perhaps altogether different methods. But

from the vantage point afforded by almost two years of

research into the problems of phase estimation, I know that

the ultimate solution to this problem requires not only a

cood theoretical understanding of the problems involved,

but also a machine whose capabilities are up to this fornmi-

dable computing task.
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APPENDIX A

In this appendix, the derivation leading to Eqns.

(7.15) and (7.16) are presented. The theoretical background

for this material may be found in Davenport and Root (6)

or Deutsch (7). Given

v = PV(x) = gl). (A.1)

we seek to determine the autocorrelation of y in terms of

the autocorrelation of x. The function g(x) is shown in

Fig. A.1l. Thus,

Py = [[ etxp)elxa)n (xy xp) dx4 dx, (A.2)

where p(x ,%5) denotes the joint probability density function

of x, and Xo and

2(x;) = g [x(u)]

g(x,) = 8g [x (up)]

(A.3)

Now, g(x) and g(xo) can be expressed in terms of their

Fourier transforms as

y -{f p(xy,%;) | forearm df
x

(AL)

| [eiepetamax ar, | ax, dr2
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= If 6(£1)G(£) [forge ZTE 2 ar, ax,

ie, af,

= [/ G(f1)G(fp) M(f,,f,) df, df,

(A.5)

(A.6)

where M,(f9,T5) is the joint, moment-zenerating function for

r and Xp. Now, since g(x) is a periodic function, its

Figure A.1

transform, G(f), will consist of only discrete frequencies.

From Fig. A.l, one can easily show that

G(f) = [2.55nzo 0 Holtm)
ig » J

(A.7)

L

Furthermore, assume that x is the sum of two indevendent.

zero-mean. Gaussian random processes. That is,

'A.8)

IN,



from which

ty

. p+¢,

The Gaussian property allows one to write M, as

4 (f1,2) = exp {-3 [#01428 (ty 2504, (0105 ]) (4.9)

Substituting these results into Eqn. (A.6), and using the

sifting property of the impulse functions in Eqn. (A.7), one

obtains

n+m+l
(=1) i

p(w) ZZ — M_(n,m)

_ sz (-1)0Fmtl
fy = ZZ EUT o { Ton? + a)

#0 #0

(A.10)

(A.11)

2 # (ann) }

Ran. (A.1l1l) offers a convenient check on the validity of the

assumptions made thus far in the derivation. From other con-

siderations one expects that y will be uniformly distributed

between the values of +77 . This information allows the

variance to be computed as 3, =17%/3 and compared against

the value obtained from Ean. (A.11). From Eagan. (A.1l1l)., we

nave
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J F=¢ (0) =E sO [2 (0)(n + ’| (4.12)
v vy "ig nm X

£0

ca

Retaining only those terms for which n = -m, n
-

— -mrl, and

n = -N=1, the double summation reduces to

~¢.(0)
; 1 ey

5 “ n#0 m?

&gt;) 1 -

oe z —=—
m=2m=-1_

(4.13)

Using the fact that

0 7 2

&gt; L-1
m=1 2 6

dad

Eo]

&gt; 1 _2
m=2 me-1 4

(A.14)

Ean. (A.13) becomes

 tl

LF EO
~T5 - ke 2 (A.15)

2
Assume $..(0) = (27), in accordance with the sample standard

2

derivation computed in Chapter V. In that case, S,

2

c’= u, he
Y 3

(A,16)

which is amazingly close to the true value of 2/3. con=-

sidering all of the approximations which led to Eqn. (A.1l6).

14h



The final step in the derivation is to expand the

sxponential in a Taylor serles. This ylelds

od

fw) Tx cnt
k=0 nm nm ©

#0

ekfmm) og (u)
x1

-$.(0) (n°+n?)
Cr— i ae

(A.17)

- k

2 c (u)
Y=0 Px

where

k-1 ,1~  (a.a8)
i (1) |= (o1)nk-1 exp(-3 $.(0)n )kT ky n#0

Note that for k even, the sum goes to zero due to its odd

symmetry, so that c. can be further simplified to

3 = (-1) mt exp(-3¢_(0)n°)
kK! |n#o

)

¥ odd

k even

(A.19)
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