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Article

Integrated annotation prioritizes metabolites with
bioactivity in inflammatory bowel disease
Amrisha Bhosle 1,2,3, Sena Bae4, Yancong Zhang 1,2,3, Eunyoung Chun 4, Julian Avila-Pacheco 5,

Ludwig Geistlinger6,7, Gleb Pishchany1, Jonathan N Glickman 8,9, Monia Michaud4, Levi Waldron 6,

Clary B Clish 5, Ramnik J Xavier1,10,11, Hera Vlamakis1, Eric A Franzosa 1,2,3,13,

Wendy S Garrett 1,3,4,12,13 & Curtis Huttenhower 1,2,3,4,13✉

Abstract

Microbial biochemistry is central to the pathophysiology of
inflammatory bowel diseases (IBD). Improved knowledge of
microbial metabolites and their immunomodulatory roles is thus
necessary for diagnosis and management. Here, we systematically
analyzed the chemical, ecological, and epidemiological properties
of ~82k metabolic features in 546 Integrative Human Microbiome
Project (iHMP/HMP2) metabolomes, using a newly developed
methodology for bioactive compound prioritization from microbial
communities. This suggested >1000 metabolic features as poten-
tially bioactive in IBD and associated ~43% of prevalent, unan-
notated features with at least one well-characterized metabolite,
thereby providing initial information for further characterization of
a significant portion of the fecal metabolome. Prioritized features
included known IBD-linked chemical families such as bile acids and
short-chain fatty acids, and less-explored bilirubin, polyamine, and
vitamin derivatives, and other microbial products. One of these,
nicotinamide riboside, reduced colitis scores in DSS-treated mice.
The method, MACARRoN, is generalizable with the potential to
improve microbial community characterization and provide ther-
apeutic candidates.
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Introduction

Microbial communities utilize, synthesize, and exchange metabo-
lites for growth, sustenance, and response to environmental
fluctuations. Microbial metabolism also contributes to environ-
mental modification, a phenomenon central to bioremediation and
nutrient-cycling (Jansson and Hofmockel, 2020; Kour et al, 2021),
as well as to the health and disease-associated roles of the
microbiome in a host (McCarville et al, 2020). The resulting
chemical interactions are thought to be especially rich due to co-
evolution (Baquero and Nombela, 2012; Rosenberg and Zilber-
Rosenberg, 2018), and the human microbiome in particular
produces metabolites that participate in processes including
regulatory signaling, host metabolism, and modulation of the
immune system (Krautkramer et al, 2021; McCarville et al, 2020).
Stool metabolomics has thus become an elegant tool to study the
molecular dialog underlying host–microbe and microbe–microbe
interactions (Zierer et al, 2018). Comparative metabolomics of
germ-free (GF) and conventional mice show that a remarkable
~10% of plasma metabolites are influenced by gut microbes (Wikoff
et al, 2009), and it has been estimated that ~70% of the variation in
human gut metabolomic profiles can be explained by differences in
the gut microbiome (Zierer et al, 2018). However, of the tens of
thousands of unique features detected in stool by high-resolution,
untargeted mass spectrometry, only around a thousand are
confidently identified (Lloyd-Price et al, 2019). This leaves the vast
majority of stool metabolites uncharacterized (Wishart et al, 2022),
with even fewer linked with specific microbial interactors or host
phenotypic responses.

The subset of microbially derived gut metabolites that are
characterized include several classes that are critically important in
immunoregulation, energy harvest, and signaling: fatty acids, bile
acids, lipids, amino acid derivatives, terpenoids, and oligosacchar-
ides, among others (Donia and Fischbach, 2015; Han et al, 2021;
Yen et al, 2015). These chemical classes contain at least some
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members that are bioactive. We define metabolite bioactivity as its
causal, responsive, or incidental association with a health, disease,
or exposure-response phenotype—each of these associations have
potential diagnostic, therapeutic, or (microbiome) functional
characterization applications. This definition includes microbial
compounds that have been found to transmit chemical signals
locally (in the gut) or systemically (via circulation) in conditions
such as diabetes, obesity, or the inflammatory bowel diseases (IBD)
(Agus et al, 2021; Franzosa et al, 2019; Lavelle and Sokol, 2020;
Lloyd-Price et al, 2019). IBD in particular is one of the best-studied
complex microbiome-linked conditions, in which structural,
functional, and metabolic consequences of gut dysbiosis have been
identified (Franzosa et al, 2019; Lloyd-Price et al, 2019; Zhang et al,
2022). Prior stool metabolite profiling from IBD patients has
demonstrated that several hundred fatty acid, secondary bile acid,
triterpenoid, cholesterol, and other metabolite classes tend to be
depleted during disease, while far fewer are commonly enriched
(De Preter et al, 2015; Franzosa et al, 2019; Garner et al, 2007;
Lloyd-Price et al, 2019). Specifically, anti-inflammatory roles have
been identified for a very small number of these compounds. Short-
chain fatty acids (SCFAs) are among the best-known, as enhancers
of anti-inflammatory CD4+ regulatory (Treg) cell populations via
host receptor-dependent and independent pathways (Atarashi et al,
2013; Smith et al, 2013); they also influence a panoply of functions
in epithelial, myeloid, and innate lymphoid cells (Chun et al, 2019;
Kelly et al, 2015; Lavoie et al, 2020; Maslowski et al, 2009). Several
bile acid derivatives also regulate IBD-relevant intestinal immune
cells, including macrophages, dendritic cells, Treg, and effector
T cells (Thomas et al, 2022). However, a mechanistic understanding
of bioactivity is currently lacking for most mass spectrometric
features that are perturbed during IBD, mainly due to the lack of
annotation (Franzosa et al, 2019; Viant et al, 2017).

This situation is unique neither to IBD nor to the gut
microbiome overall, since features quantified in a variety of
settings by chromatographic and mass spectrometry methods are
frequently difficult to annotate (Chaleckis et al, 2019; Viant et al,
2017). For a small subset of features (typically a few hundred out of
tens of thousands detected), annotation is possible through
comparison with internal references (standards) or fully unique
mass (mass-to-charge or m/z) matches with small molecules in
databases (Franzosa et al, 2019; Lloyd-Price et al, 2019) such as the
Human Metabolome Database (HMDB) (Wishart et al, 2022) and
METLIN (Guijas et al, 2018). Simple mass-matching is particularly
ineffective for microbial community metabolomes given its
ambiguity and the underrepresentation of microbial metabolites
in public databases. In addition to fully de novo chemistry,
microbes often modify well-characterized standard metabolites
such as amino acids, primary bile acids, and carnitine, among
others into compounds that have roles in human health (Agus
et al, 2021; Koeth et al, 2013; Rowland et al, 2018). Such microbial
derivatives are then structurally similar to their parent standards
but can have variable chemical properties due to side-chain
derivatization or conformational changes. “Guilt-by-association”
approaches (Edmands et al, 2017; Naake and Fernie, 2019; Uppal
et al, 2017; Wang et al, 2016), which rely on the similarity of one or
more physical (chromatographic retention time (RT); m/z) or
chemical (MS2 fragmentation spectra; molecular fingerprints)
properties or co-abundance between features to identify putative
conjugates or derivatives, have been successfully adapted from

similar work in gene and protein function annotation (van Dam
et al, 2018; Zhou et al, 2005). The Global Natural Product Social
Molecular Networking (GNPS) platform is the main repository for
this type of information (Wang et al, 2016), by leveraging
similarity of MS2 fragmentation spectra to cluster features
(including, relatedly, the identification of novel bioactive bile acid
conjugates in IBD (Quinn et al, 2020)). For metabolomics datasets
lacking MS2 information, correlated abundances across samples
have been useful in deciphering potential functional associations
among features (Franzosa et al, 2019; Naake and Fernie, 2019;
Uppal et al, 2017). Covarying features are 15× more likely to
belong to the same chemical class (Franzosa et al, 2019), and
covariation between identified compounds and epidemiologically
relevant unknown features can aid annotation of the latter.
However, phenotypes such as IBD often involve perturbation of
several thousand features (Franzosa et al, 2019; Lloyd-Price et al,
2019), making it challenging to simultaneously annotate and
prioritize them for rigorous experimental characterization and
translational applications.

We thus developed a method to prioritize potentially bioactive
metabolomic features from microbial communities, using it to
explore 546 single-MS (MS1) gut metabolomes from the Integrative
Human Microbiome Project (iHMP or HMP2) spanning 80 IBD
patients and 26 non-IBD (control) individuals that were long-
itudinally profiled (Lloyd-Price et al, 2019). This assigned
prioritizations based on epidemiology, ecology, and molecular
properties to 37,201 metabolic features, about 99% of which were
unannotated. In total, 15,482 of these were newly associated with at
least one standard metabolite based on covarying abundance. From
these, 2672 unannotated features associated with well-characterized
metabolites spanning 33 chemical classes were both highly
prioritized and consistently perturbed with respect to potential
bioactivity in IBD. These included metabolites placed into classes
previously implicated in IBD such as bile acids (Chen et al, 2019)
and short-chain fatty acids (SCFAs) (Li et al, 2021), as well as
classes with lesser-known roles in gut inflammation such as
bilirubins, vitamins, and polyamines. The implementation of this
method (MACARRoN or Metabolome Analysis and Combined
Annotation Ranks to pRioritize Novel bioactives) is available as
open-source and is generalizable to any metabolomics profile or
technology. Its confirmed predictions in IBD, including nicotina-
mide riboside and potentially novel bilirubin compounds, expand
our understanding of chronic disease states and provide novel
candidates for additional mechanistic characterization and drug
development efforts.

Results

Prioritizing potentially actionable bioactive metabolites
from the stool metabolome

Our identification of novel, potentially bioactive gut microbial
compounds in IBD began with 81,867 unique features identified
from 546 HMP2 stool metabolomes (Lloyd-Price et al, 2019), which
contained an average of 50,090 (SD = 2937) features per sample.
Here, a feature is a chemical entity characterized by a unique
combination of RT and m/z (accuracy of +/− 5 ppm). These
metabolomes were profiled from 265 Crohn’s disease (CD), 146
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ulcerative colitis (UC) and 135 non-IBD stool samples from 106
participants, followed longitudinally for up to one year each
(average of 5.2 (SD = 1.2) samples per participant).

Participants with IBD (n = 80) contributed fewer features than
non-IBD controls (n = 26) on average (CD (n = 50): 49957, UC
(n = 30): 49511, and non-IBD: 50,910, Welch’s two-sample t test,
CD vs. non-IBD P value = 0.037 and UC vs. non-IBD P value =
0.016), consistent with reduced metabolite (and microbiome)
diversity in IBD (Franzosa et al, 2019; Ott et al, 2004). We classified
features into three categories (Viant et al, 2017): standards, putative
mass-matches, and unknowns, to profile possibly known and
completely unknown features in the HMP2 stool metabolomes.
Standards comprised 596 (~0.7%) features that were accurately
identified using references from an internal library of 600

compounds (Fig. 1A). Putative mass-matches made up the large
majority of features in each metabolome (mean = 41,305, SD =
2439), which had masses similar at least one compound in the
HMDB, indicating that these features could be assigned tentative
annotations but with substantial variation in expected accuracy (see
“Methods”; Fig. 1A). Lastly, on an average, ~16% features in each
metabolome were unknown (i.e., features that matched neither an
internal reference nor any HMDB metabolite). To summarize, stool
metabolomes in the HMP2 were largely uncharacterized, high-
lighting the importance of chemical dark matter even in well-
studied environments such as the human gut and conditions such
as IBD.

Next, we compared the properties of standards, putative mass-
matches, and unknowns across the population. As expected,
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Figure 1. Evidence of novel inflammation-linked bioactivity in the gut metabolome and methodology for prioritizing candidate compounds.

(A) Overview of the annotation status of features from 546 stool metabolomes (CD: 265, UC: 146, non-IBD: 135) spanning 106 IBD patients and non-IBD controls from the
Integrative Human Microbiome Project (HMP2). Each untargeted metabolome contained several thousand metabolic features which were assigned to three broad
categories—standards, putative mass-match, and unknown—based on available annotations and similarity between observed m/z and molecular weights of metabolites in
the HMDB. Of 596 total available standards, an average of 544.3 (SD 14.8) were detected per sample (i.e., assigned an HMDB ID). A majority of features were observed to
have m/z similar to HMDB metabolites (putative mass-match), while many thousand could not even be assigned a sufficiently confident putative mass-match (unknowns).
(B) Standards were enriched for high population prevalence and abundances. The abundance and prevalence of putative mass-match and unknown features were highly
variable. However, several thousand were comparable to or more widespread than standards. (C) The effect size and q value of differential abundance of prevalent
metabolic features in IBD was estimated from a mixed-effects linear model by considering both disease type (CD or UC) and activity (dysbiosis) (see “Methods”). The
contrasts CD-dysbiosis vs CD-nondysbiosis and UC vs non-IBD showed the greatest number of significantly perturbed features. A greater fraction of putative mass-match
and unknown features were significantly enriched or depleted as compared with standards, suggesting phenotypic relevance. (D) Since many thousand candidate bioactive
compounds are difficult to screen directly, we developed a computational method for prioritizing promising bioactives based on chemical, ecological, and phenotypic
properties from uncharacterized metabolomes (MACARRoN, Metabolome Analysis and Combined Annotation Ranks to pRioritize Novel bioactives). The first step is
based on the principle of “guilt-by-association,” where modules based on covarying abundances are used to transfer putative annotations from annotated metabolites to
co-clustered unannotated features. The next two steps leverage the ecological and epidemiological properties of metabolic features to determine their likelihood of
bioactivity. Briefly, for each feature, abundance in comparison to a co-clustered standard (abundance vs. anchor (AVA)), effect size, and q value of differential abundance
in the phenotype of interest are determined. Next, ranks for each of these properties are integrated into a meta-rank that is ultimately used to prioritize features based on
bioactivity (see “Methods”).
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standards, which included small molecules commonly found in the
gut such as central carbon, nucleotide, and amino acid metabolites
and bile acids were highly prevalent (detected in >90% metabo-
lomes on an average) (Dataset EV1). Since physiologically relevant
concentrations vary across metabolites, we observed a wide range of
abundances spanning more than ten orders of magnitude (Fig. 1B).
In contrast, prevalence was highly non-uniform for putative mass-
match and unknown features, although many among the more
prevalent features had comparable abundances to the standards
(Fig. 1B; Dataset EV1).

For further analyses, we first filtered 14,634 redundant features
likely to be potential adducts or fragments of metabolites (see
“Methods”) and from the remaining 67,233 features, we considered
the subset of prevalent features i.e., features that were observed in
≥70% metabolomes of at least one of the three phenotypes
(diagnoses): CD, UC, and non-IBD. Of these 37,201 non-
redundant, prevalent features which included 544 standards,
12,220 (~33%) were significantly disrupted during IBD (linear
mixed-effects model, q value < 0.05, see “Methods”). The model
includes both diagnosis (CD/UC/non-IBD) and disease
activity (dysbiosis/nondysbiosis) as regressors. Comparisons
between UC and non-IBD and CD-dysbiosis and CD-
nondysbiosis yielded the most differentially abundant features:
8119 and 5400, respectively. In total, 200 of these were standards
(Fig. 1C), including primary bile acids enriched and secondary bile
acids and butyrate depleted in IBD, as expected (Dataset EV2)
(Franzosa et al, 2019; Lloyd-Price et al, 2019). In addition, 10,941
putative matches and 1079 unknown features were significantly
perturbed (either enriched or depleted). Taken together, the
prevalence, abundance, and phenotype-associated perturbation of
the 12,020 unannotated features pointed towards the richness of
microbe-associated potential bioactives in the IBD gut
metabolome.

Since this candidate pool was too large to simply test
comprehensively, as is the case with many microbiome-
associated phenotypes, we developed a new method that integrates
diverse evidence to prioritize potentially bioactive metabolites from
metabolomes. This approach transfers putative biological annota-
tions to unannotated features based on “guilt-by-association”, i.e.,
the likelihood that related compounds will covary in abundance;
quantitatively evaluates ecological and phenotype or environment-
associated properties for each feature; and prioritizes features as
potentially bioactive in a phenotype or condition of interest
(Fig. 1D). The method, MACARRoN (Metabolome Analysis and
Combined Annotation Ranks to pRioritize Novel bioactives), first
clusters features into covarying abundance-based modules, opti-
mizing the sensitivity and specificity with which unannotated
features are associated with at least one standard (see “Methods”).
For this, pairwise biweight midcorrelation (bicor) is used as the
measure of correlation of abundances. Next, for each feature,
abundance versus co-clustered anchor metabolite (AVA) and
association with the phenotype (effect size and q value) are
calculated (see “Methods”). These properties are used to determine
the ecological and phenotypic/environmental relevance of each
feature. MACARRoN combines ranks from each of these proper-
ties to prioritize metabolic features. As a result, features with
abundances comparable or higher than the co-clustered anchor
and significantly differentially abundant in the phenotype of
interest are prioritized as potentially bioactive.

Metabolite features with covarying abundances are
functionally consistent and capture
biochemical-relatedness

Covariance of a pair of metabolites is an indicator of functional
relatedness such as co-occurrence in a biochemical pathway, co-
synthesis by a microbe (or host), a common source such as diet,
modification of a common parent compound, or abiotic fragmen-
tation (Franzosa et al, 2019). To identify such associations as a
means to extend annotations to the unannotated metabolic features
in the HMP2 metabolomes, we used MACARRoN to cluster the
37,201 prevalent metabolic features into 355 modules based on
covarying abundance (Dataset EV3). A very small number of
features (1607; 4.3%) including 15 standards were not assigned to
any module, referred to as singletons. Modules varied in size,
ranging from 33 to 1116 features, and 67% (N = 241) of the
modules had fewer than 100 features (Fig. 2A; Datasets EV3,and
EV4). The 529 standards with module assignments were distributed
across 124 (34.9%) modules (referred to as “annotated-modules”
hereafter). The annotated-modules included 43% (N = 16,010) of all
metabolic features, suggesting that nearly half of the prevalent but
unidentified gut metabolites are partially characterizable based on
covariance with a standard.

MACARRoN uses the co-membership of standards and
unannotated metabolic features in a module to assign initial
annotations (such as the chemical classes of covarying standards) to
unannotated features, as well as determine their ecological
relevance for prioritization. To ensure the legitimacy of assigned
annotations, it is important that a module contains a biologically
consistent set of metabolites. We therefore performed multiple
evaluations to optimize the co-occurrence parameters and establish
the biological validity of these modules. A previous study of stool
metabolomes found that covarying metabolites are 15× more likely
to belong to the same chemical class compared to random
metabolite pairs (Franzosa et al, 2019). To compare our results
with this observation, we estimated the “chemical homogeneity” of
annotated-modules using information about the chemical class of
the standards in the modules. The chemical homogeneity of a
module was calculated as the ratio of the frequency of the most
common chemical class to the number of standards in the module
(see “Methods”). Chemical class information was available for
standards in 110 annotated-modules, of which 57 contained two or
more standards. Modules that are reasonably chemically homo-
geneous are ideal, as they are most likely to be analogs of
biochemical pathways.

Remarkably, 26 (~46%) of annotated-modules containing
2–16 standards were ≥75% homogeneous, and an additional 9
were observed to be ≥ 60% homogeneous (Fig. 2B; Dataset EV4).
Further, across all modules, standards representing the same
HMDB ID were assigned to the same module in 83.33% of cases.
This clustering strategy remained successful when further applied
to an additional stool metabolomics dataset (Franzosa et al, 2019)—
45% modules with ≥2 standards were ≥75% homogeneous and a
further 7 (9.4%) were ≥60% homogeneous (Dataset EV5). Lastly,
we sought to identify features representing 8 pentacyclic triterpene
compounds, namely, 18 beta-glycyrrhetinic acid, alphitolic acid,
asiatic acid, gypsogenin, hederagenin, rotundic acid, sumaresinolic
acid, and tormentic acid (that were included as standards in
another metabolomics study) in the HMP2. Upon matching the m/
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z and RT values of the triterpenes to those of the unannotated
features in the HMP2, we found that they are distributed in only 2
modules—113 and 60. Interestingly, module 113 also contains two
other triterpenes—maslinic acid and oleanolic acid which are
among the standards in the HMP2 (Dataset EV3). This finding
further established the chemical homogeneity of covariance
modules.

Next, we assessed the accuracy with which covarying
abundance-based modules identify biochemically related metabo-
lites. As mentioned earlier, the GNPS molecular networking
method uses the similarity between MS2 fragmentation data
(cosine score) as an analogous guilt-by-association measure
(coupled with other similarities such as parent mass-differences
and retention times, within or across datasets) (Wang et al, 2016).
Since biochemically related metabolites that differ by functional

groups typically yield similar fragments, GNPS can thus identify
potential novel derivatives or conjugates. We evaluated our
covarying abundance measure (bicor) (Langfelder and Horvath,
2008) against GNPS molecular networks of 101 previously
published sputum metabolomes (Quinn et al, 2019). In all, 1030
pairs of co-clustered metabolites had cosine similarities above 0.7
(see “Methods”; Dataset EV6). Among these, 82.2% metabolite
pairs had bicor ≥0.6 within at least one phenotype, thus also
indicating strongly correlated abundances (Fig. 2C).

We continued this analysis by applying the MACARRoN
module identification process to the dataset, then directly
comparing GNPS clusters to MACARRoN modules using the
adjusted Rand Index (ARI) (see “Methods”). We found that
although the overlap between the two was small (ARI: 0.014), it was
significantly higher than those obtained from randomly generated
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Figure 2. Covariation in abundances produces chemically consistent modules.

(A) 37,201 prevalent metabolic features in HMP2 metabolomes were assigned to 355 modules based on covarying abundances. In total, 124 modules that contained at
least one standard compound were labeled “annotated.” Both annotated and unannotated modules spanned biologically relevant sizes from 33 to 1116 features, with 67%
of modules containing <100 members. (B) Chemical homogeneity of 57 annotated-modules containing ≥2 standards was determined using the chemical taxonomy (class)
information of the standards (see “Methods”). Of these, 48 (~84%) were ≥50% homogeneous and 31 (45%) were ≥75% homogeneous. (C) MACARRoN covariation in
abundance (using bicor (Langfelder and Horvath, 2008)) was compared with GNPS MS2 cosine similarity networks for 101 independent sputum metabolomes.
Metabolites that were chemically similar (i.e., in the same GNPS molecular network) tended to have correlated abundances, whereas chemically different metabolites did
not. (D) The distribution of mass-differences (Δm/zs) between co-clustered unannotated and standard metabolites in the 124 annotated-modules was significantly
different than random (Kolmogorov–Smirnov test P value < 0.01; as compared to 1000 shuffles of module labels). The real distribution also contained smaller Δm/zs,
indicating chemically plausible side-chain modifications among co-clustered features. (E) A permutation test revealed 24 positive and 7 negative Δm/zs significantly
enriched (FDR corrected empirical P value < 0.05) in the annotated-modules. Enriched Δm/zs were non-uniformly distributed across modules, as expected if different
modules capture distinct side-chain modifications characteristic of different chemical classes. However, Δm/zs associated with common biochemical transformations
(indicated) were universally more prevalent. (F) Wide ranges of module coverage (percentage of total modules in which a specific Δm/z is observed) and Δm/z coverage
(percentage of total Δm/zs observed in a module) were observed. Although a few modules achieved 100% Δm/z coverage, no Δm/z was observed in all modules, again
consistent with class-specific side-chain enrichments. (G) Δm/z coverage appeared to be proportional to both the size of the module and the number of standards in it.
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clusters and modules (P value < 0.01; one-sample t test; mean ARI
with random GNPS clusters: −2.9 × 10−5; mean ARI with random
MACARRoN modules: 2.7 × 10−5) (Fig. EV1). We expected this to
be the case since MACARRoN associates metabolic features based
on covariance, which can arise from several underlying processes,
while GNPS relies solely on chemical similarity which is inferred
from MS2 fragmentation similarity. MACARRoN modules thus
tend to be complementary to GNPS clusters: functionally unrelated
compounds rarely co-cluster in either method, but compounds
related for different reasons are captured by one versus the other.

Finally, we evaluated mass-differences (Δm/zs) between unan-
notated features and co-clustered standards from the HMP2
metabolomes. We hypothesized that if the modules are indeed
functionally or biochemically consistent, the distribution of Δm/z
values should be significantly non-random. We tested this using the
set of annotated-modules by shuffling module labels and compar-
ing the resulting distributions of Δm/zs to the real distribution.
These were significantly different (mean Kolmogorov–Smirnov
statistic over 1000 iterations: 0.23 ± 0.02 ; P value < 0.001) (Fig. 2D).
Moreover, the higher number of smaller mass-differences in the
actual distribution was noteworthy, indicating that MACARRoN
often associates compounds by covariation that also likely differ in
only a few small functional groups.

To quantify this, we performed a permutation test to identifyΔm/zs
that were significantly enriched in the annotated-modules. For this, we
considered the 601 positive (unannotated m/z > co-clustered standard
m/z) and 682 negative (unannotatedm/z < co-clustered standardm/z)
Δm/zs that were observed at least twice. Briefly, we estimated the
frequency of the 1283 Δm/zs in random modules generated by
shuffling module labels (10,000 iterations) and then calculated the
respective empirical P values (see “Methods”). After FDR correction,
24 positive and 7 negative Δm/zs were found to be significantly
enriched (Fig. 2E). Mass-differences associated with commonly
observed molecular groups such as amino, acetyl, carbonyl, methyl,
and nitro moieties were among the most enriched (adjusted P
value < 0.01), highlighting potential intra-module biochemical rela-
tionships. In agreement with the hypothesis that some chemical classes
are more likely to attract certain functional groups than others, the
enriched Δm/zs were found to be non-uniformly distributed across
annotated-modules, with module coverage ranging from 35.5 to 63.7%
(Fig. 2E,F). Notably, the most common molecular groups were also the
most evenly covered, again in agreement with their ubiquity in
biochemical pathways. Similarly, we observed that the coverage of Δm/
zs, i.e., percentage of total Δm/zs observed in each module, varied
considerably, from 3.2 to 100% (Fig. 2F). Expectedly, Δm/z coverage
was observed to be size-dependent, with larger modules having a
higher Δm/z coverage (Fig. 2G). It was also interesting to note that the
instances where smaller (size <100) modules had higher Δm/z
coverage (e.g., modules 128, 209, 189) were associated with higher
numbers of standards. Taken together, our analyses based on chemical
homogeneity and mass-differences showed that covarying abundance
modules contain metabolites that are functionally related.

Potential bioactives covary with IBD- (or gut-) relevant
standard compounds

Approximately 33% of prevalent features were significantly
perturbed during IBD, including well-studied metabolite families
such as bile acids and SCFAs in addition to many unidentified

features (Fig. 1C). To assess the diversity and importance of these
unidentified IBD-linked features, we studied the chemical diversity
of standards with which they covaried, as well as their abundances
relative to the same standards. In our first step to characterize the
unidentified potential bioactives, we labeled annotated-modules as
“IBD-relevant” if ≥25% metabolic features in them were signifi-
cantly (q value < 0.05) perturbed with respect to at least one of the
four categories i.e., (1) CD-dysbiosis enriched, (2) UC enriched, (3)
CD-dysbiosis depleted, or (4) UC depleted. Overall, 40 annotated-
modules were IBD-relevant by this definition and also contained
standards for which chemical taxonomy was available (Fig. 3A).
Most modules were found to predominantly contain either depleted
or enriched metabolic features (Fig. 3A). All modules contained
features that were significantly perturbed in both CD-dysbiosis and
UC, in agreement with their expected commonalities in pathogen-
esis and manifestation (Fig. 3A). CD-dysbiosis and UC shared
seven depleted and one enriched modules, and we did not detect
any modules that were enriched in one IBD subtype and depleted in
the other.

In total, 43 chemical subclasses were associated with the IBD-
relevant modules, spanning multiple biological processes (Fig. 3A).
In agreement with previous studies of identified compounds
(Franzosa et al, 2019), subclasses such as amino acids, peptides,
and analogs, bile acids, and fatty acids and conjugates occurred in
both enriched and depleted modules. However, a large majority of
subclasses, including nucleosides, vitamins, steroids, medium-chain
hydroxy acids, and carboximidic acids, were unique to one category
of differential abundance. We assessed the ecological properties of
these features, noting that all modules contained unidentified
features that were at least 10% as abundant as the co-clustered
standard (AVA ≥ 0.1) (Fig. 3B). Further, 28 (~70%) modules
contained unidentified metabolic features that were more abundant
(AVA > 1) than the co-clustered standard. This provides the first
piece of evidence that these unidentified features may be as or more
bioactive in IBD than the standard itself, integrated with others by
the remainder of the analysis method.

Highly prioritized metabolites are chemically diverse,
microbiome-linked, and include both known and less-
explored bioactives

Prioritization of potentially bioactive metabolites in the IBD
subtypes CD-dysbiosis and UC was performed using the meta-
rank obtained by integrating percentile values of ranks from AVA,
q value, and effect size in each subtype (see “Methods”). Thus, each
of 37,201 prevalent features had two meta-ranks or “priority
scores”, one for each IBD subtype. In each subtype, features with
priority scores in the 90th percentile (i.e., ≥ 0.731 in CD-dysbiosis
and ≥0.738 in UC) and priority score ≥0.9 were considered to be
highly prioritized and very highly prioritized, respectively, in that
subtype (Dataset EV7). In total, 312 modules contained at least one
highly prioritized (priority score ≥0.75) feature, 222 of which were
common between the subtypes. These modules included 960
features highly prioritized in both subtypes (58 of these were very
highly prioritized), which themselves included both enriched and
depleted metabolites, e.g., bile acids, and biotin linked to anti-
inflammatory pathways (Chen et al, 2019; Skupsky et al, 2020), and
the IBD biomarkers -acylcarnitines and hippurate (Smith et al,
2021; Williams et al, 2010) (Fig. 4A).
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Notably, a curated list of 36 standard metabolites previously
published as CD associated were well-predicted by MACARRoN’s
prioritization (AUC: 0.893, Dataset EV8) (Franzosa et al, 2019;
Gallagher et al, 2021). These CD-linked metabolites were
distributed across a small subset of 15 modules, each also
containing highly prioritized unannotated metabolic features that
often outranked the standards themselves (Fig. 4A). Several of these
unannotated features also differed from co-clustered standards by
small mass-differences (median |Δm/z | = 27.98), indicating poten-
tial derivatives or conjugates. This distribution is thus supportive of
the methodology, since known immunomodulatory metabolites

were included, but also suggested that novel derivatives within
various metabolite classes could be equally or more important in
disease. Significantly, we observed prioritization of recently
identified derivatives of lithocholic acid (Paik et al, 2022) and
cholic acid (Quinn et al, 2020). Isolithocholic acid, a modulator of
TH17 response in CD, was very highly prioritized (priority score:
0.959) and anchored by lithocholic acid in module 274. Similarly,
three amino acid conjugates of cholate, anchored by cholate in
module 24, were moderately- and highly prioritized in CD (priority
scores—leucocholic acid: 0.746, tyrosocholic acid: 0.663, and
phenylalanocholic acid: 0.789) (Fig. 4A; Dataset EV7).
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Figure 3. Potential novel bioactives in IBD span diverse chemical classes and ecological patterns.

(A) Top: 40 modules where ≥25% metabolic features were significantly perturbed in at least one of the four categories i.e., (1) CD-dysbiosis (CD-dys) enriched, (2) UC
enriched, (3) CD-dys depleted, or (4) UC depleted, were labeled IBD-relevant. A majority of metabolic features in each module were enriched or depleted in either CD-dys
or UC. Modules were categorized into four types depending on both the direction of perturbation and the disease arm of their differentially abundant metabolic features
(labeled at top). Almost all modules contained >1 features similarly perturbed (enriched or depleted) in both disease arms (CD-dys + UC). Few features across different
modules showed contrasting behaviors among disease arms. Bottom: Chemical taxonomy of the standards was used to determine the subclasses or classes* associated
with IBD-relevant modules. A majority of subclasses/classes* were associated with a single, highly dominant direction of perturbation. (B) Abundance versus anchor
(AVA) of metabolic features in IBD-relevant modules: Each module contained features that were at least 10% as abundant as the most abundant co-clustered standard
(i.e., anchor metabolite). Unidentified features that appear to be as or more ecologically relevant than the standard (AVA ≥ 1) were observed in 28 modules.
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Relatedly, metabolite classes not previously linked directly to
inflammation in the gut were also highly prioritized. These
included vitamins, their derivatives such as pantothenate and 1-
methylnicotinamide, glycerides, betaine and choline derivatives,
and more interestingly, metabolites linked to gut microbial

metabolism such as hydrocinnamate (Menni et al, 2020),
4-methylcatechol (Kolomytseva et al, 2007), stercobilin (Vitek
et al, 2006), N-acetylputrescine (Murray et al, 1993), and
p-hydroxyphenylacetate (Saito et al, 2018) (Fig. 4B). Consistent
with the loss of microbial diversity in IBD, hydrocinnamate itself,
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which is associated with higher microbial diversity, was signifi-
cantly depleted in both subtypes (Menni et al, 2020). Similarly,
stercobilin, the end product of microbial bilirubin metabolism, was
depleted (Fahmy et al, 1972; Vitek et al, 2006). Many species of
clostridia and Coriobacteriaceae can convert tyrosine to
p-hydroxyphenylacetate and ultimately p-cresol (Elsden et al,
1976; Saito et al, 2018), which can be further hydroxylated to 4-
methylcatechol, although primarily by species not typically
associated with the gut such as R. opacus and P. putida (Hopper
and Taylor, 1975; Kolomytseva et al, 2007). While
p-hydroxyphenylacetate was enriched in both disease subtypes,
4-methylcatechol was depleted. The prioritization of
p-hydroxyphenylacetate in particular is in agreement with the
increased transcription of two clostridia—C. hathewayi and C.
bolteae - in HMP2 metatranscriptomes (Lloyd-Price et al, 2019), as
well as the previously reported expansion of Coriobacteriaceae in
IBD (Alam et al, 2020).

The bilirubin family (bilirubin is represented by feature
HILp_QI19549; m/z = 585.2722 [M+H]+) is among the most
abundant in the gut. Bilirubin was highly prioritized only in CD-
dysbiosis and is well-known for being metabolized in several steps
to stercobilin and urobilin by the intestinal microbiota (Vitek et al,
2006). As in the case of microbial conversion of primary to
secondary bile acids, the depletion of stercobilin concurrent with
the enrichment of bilirubin likely indicates the loss of microbial
enzymes which catalyze the reduction. Despite the centrality of
microbial metabolism to bilirubin homeostasis (Hamoud et al,
2018), only a handful of clostridia, Bacteroides fragilis, and
Citrobacter youngae have been experimentally shown to reduce
bilirubin, and knowledge of microbe-made bilirubin derivatives is
mostly limited to its approximately a dozen reduction products
(Shiels et al, 2019; Vitek et al, 2006) (Fig. 4C). Bilirubin itself
ameliorates colonic injury and inflammation in dextran sodium
sulfate (DSS) induced murine model of inflammatory colitis via its
antioxidant i.e., reactive oxygen species scavenging properties
(Zheng et al, 2019; Zucker et al, 2015). While bilirubin can directly
prevent leukocyte migration into the colon (Vogel and Zucker,
2016), its implication in disease and reliance on gut microbes for
subsequent metabolism and eliminations suggests that its

derivatives may have additional functions (e.g., bile acids
(Funabashi et al, 2020; Quinn et al, 2020)). Thus, we were
particularly interested in the highly prioritized (in both CD-
dysbiosis and UC) unannotated features in which were anchored by
stercobilin in modules 10 and 85; again, these generally differed by
small positive mass-differences typically suggestive of novel back-
bone derivatizations (Fig. 4B).

The 15 highly prioritized unannotated features in the modules 10
and 85 with small positive Δm/zs compared to stercobilin were also
depleted (Fig. 4D,E; Dataset EV9). Upon closer examination of the
differences in neutral masses of these features and stercobilin, we
found five similar to the masses of oxygen (~15.996) and di-oxygen
(~31.99) moieties (Dataset EV9). The other mass-differences that
cannot be easily associated with small molecular groups may be the
combined result of two or more reactions. To provide further data
establishing the chemical similarity of these features to stercobilin, we
examined the masses of compounds that were directly connected to
stercobilin (cosine score ≥0.7 and |Δm/z | w.r.t stercobilin ≤100) in the
GNPS molecular networks (MNs) of 11 MassIVE human stool
metabolomics datasets (Dataset EV9). Since urobilin and stercobilin
are structurally very similar, we also examined the masses of
compounds directly connected to urobilin when it was included in
the same molecular network as stercobilin. Although we did not find
exact matches between the masses of compounds in stercobilin MNs
and the highly prioritized features in our dataset, in seven instances,
they differed only by ~1 (i.e., neutral mass of prioritized feature—
parent mass of GNPS compound ~1) (Dataset EV9; Fig. EV2). This is
within the range of typical inter-dataset differences in the observed m/
zs of stercobilin itself (593.76 (MSV000079777), 594.761
(MSV000082262), 595.349 (MSV000079651), and 595.597
(MSV000082629), resulting in a Δm/z of 1.832 between the largest
and smallest masses. These seven compounds in the MassIVE datasets
that “overlapped” with our highly prioritized features had cosine
scores ≥0.8 with stercobilin or urobilin, and four differed from them by
CH2O2 and CO2 moieties (Dataset EV9), again supporting the
presence of uncharacterized disease-linked bilirubin compounds
in stool.

Since stercobilin is microbially derived, we wanted to confirm if
the depletion—and by extension, prioritization —of the 15 features

Figure 4. MACARRoN prioritizes known and novel bioactives in IBD.

(A) Standards for compounds known to be IBD-linked such as IBD biomarkers and metabolites with confirmed roles in inflammation, such as acylcarnitines (AC), bile
acids, hippurate (Hip.), biotin (Bio.), bilirubin (Bil.), and the short-chain fatty acid butyrate (SF), were highly prioritized (priority score >0.75) by MACARRoN. In each
module containing such a known bioactive standard (total modules= 9), unannotated features were also highly prioritized ranging from 3 in module 28 anchored by
deoxycholate and 49 in module 75 anchored by carnitine. The size of each module along with the number of prioritized standards (Pri-Std) and unknowns (Pri-Unk) and
non-prioritized metabolic features (non-Pri-Std and non-Pri-Unk) in it are shown. Pri-Unk features typically differed from their respective co-clustered Pri-Stds by small
Δm/z values (median= 27.98), indicating potential biochemical relatedness. (B) Modules anchored by diverse chemical standards not typically associated with IBD were
also highly prioritized in both CD-dysbiosis and UC, including vitamins, polyamines, and microbial metabolites such as stercobilin, hydrocinnamate, and
p-hydroxyphenylacetate (only the higher rank among disease subtypes shown). Again, in several modules containing these standards, unannotated metabolic features
differing by Δm/zs corresponding to common adducts were highly prioritized in both disease subtypes. (C) Stercobilin is produced via the gut microbial reduction of
bilirubin in multiple steps involving intermediates such as mesobilirubin, urobilinogen, and stercobilinogen (D) Fifteen unannotated metabolites that covaried with
stercobilin and differed from it by small masses were highly prioritized by MACARRoN. Seven of these were “overlapping” i.e., had masses similar to unidentified
compounds linked to (with cosine score >0.7) stercobilin or urobilin in GNPS molecular networks of 7 other stool metabolomics datasets (Dataset EV9). Pink dashed
edges represent potential structural similarity (cosine score >0.7) with stercobilin (Dataset EV9). (E) These highly prioritized stercobilin-linked were significantly depleted
in CD-dysbiosis and UC ((Wilcoxon test, P value < 0.05*; P value < 0.01**; P value < 0.001***; NS not significant)(four representatives shown, see others in Dataset EV9).
(F) Two of the highly prioritized features and stercobilin were seen to be enriched in SPF (N= 6; biological replicates) mice stool metabolomes compared to GF (N= 6;
biological replicates) indicating at their microbial origin (abundances in Dataset EV10; Wilcoxon test, P value < 0.05*; P value < 0.01**; P value < 0.001***; NS not
significant). For the boxplots in (E, F), the bounds of the box represent the first (Q1) and third quartile (Q3) of the data, and the line inside the box is the median. The
whiskers extend to a maximum of 1.5(IQR) from the Q1 and Q3. Values beyond the whiskers are outliers. The minima and maxima are determined by the minimum and
maximum observed values within 1.5 (IQR) from Q1 and Q3, respectively.
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in modules 10 and 85 was due to perturbed microbial activity in
IBD. Toward this, we profiled the abundances of these features in
the fecal metabolomes of germ-free (GF) as compared with
specified pathogen-free (SPF) mice using the HILIC-positive
LC–MS method (11 of the 15 prioritized features were initially
quantified by the same method; Datasets EV9 and EV10,
“Methods”). Six features derived from human IBD profiles—
including stercobilin—could be mapped to features detected in the
GF and SPF mouse stool metabolomes. As expected, stercobilin was
very significantly enriched in SPF mice relative to GF (Fig. 4F).
More interestingly, two additional features [HILp_QI22686 (m/
z = 639.3403 [M+H]+) and HILp_QI21470 (m/z = 611.3453
[M+H]+) were also significantly enriched in SPF mice (Fig. 4F),
supporting their microbial origin and thus the ability of
MACARRoN to prioritize novel candidate bioactives that are both
phenotypically linked and microbiome-derived.

Nicotinamide riboside validated to ameliorate dextran
sodium sulfate (DSS)-induced colitis

Pantothenate (vitamin B5) in module 239 was significantly depleted
and highly prioritized in both CD-dysbiosis (priority score = 0.7459)
and UC (priority score = 0.7455) (Fig. 4B). The other B vitamin in the
same module, nicotinate (vitamin B3), was also significantly depleted
in both disease subtypes but moderately-prioritized (in the 75th

percentile of priority scores) only in UC (Fig. 5A). In addition to these
two vitamin standards, several metabolic features in module 239 were
also significantly depleted in CD-dysbiosis and UC (Figs. 3A and 5A),
suggesting perturbation of vitamin metabolism during dysbiosis.
Nicotinate is a precursor in the gut microbiome mediated synthesis of
nicotinamide adenine dinucleotide (NAD+) via the salvage pathway
(Shats et al, 2020) (Fig. 5B). Recent studies show that intestinal
nicotinate and NAD+ levels can be boosted with oral nicotinamide
riboside (NR); this process requires gut microbial deamidation (via
nicotinamidase pncA) of nicotinamide (from NR) to nicotinate and
assimilation of the nicotinate moiety into NAD+ (Chellappa et al,
2022). An unannotated feature in the same module—HILp_QI6481
was identified to be NR by matching its m/z, RT, and fragmentation
with the NR standard (Fig. EV3). This observed covariance of NR with
nicotinate confirms the biochemical coupling between them in the gut
and also, once again, underscores MACARRoN’s ability to identify
substrate–product relationships from covariance.

We first inspected the gene abundances (specifically, effect sizes
for dysbiosis versus nondysbiosis) of microbial enzymes catalyzing
de novo (Gazzaniga et al, 2009; Kurnasov et al, 2003) and NR-
salvage (Bieganowski and Brenner, 2004; Shats et al, 2020) based
synthesis of NAD+. Enzymes involved in both synthesis routes were
depleted during dysbiosis (Fig. 5C). Here, the depletion of
nicotinamidase genes (pncA) from several species is particularly
notable since it explains the depletion of their product—nicotinate,
during dysbiosis and thereby, its prioritization by MACARRoN.
Taken together, these observations pointed towards decreased gut
microbiome-dependent synthesis of NAD+ in IBD. The salvage
pathway found in the host recruits the highly conserved NR kinase
(NRK) enzymes that phosphorylate NR to nicotinamide mono-
nucleotide (NMN), which is then converted to NAD+ by NMNAT2
(Bieganowski and Brenner, 2004). NRK transcription remained
unchanged in IBD (Fig. 5D), however, NR salvage via NRK is
insufficient to increase the intestinal NAD+ levels (Chellappa et al,

2022). Instead, host cells also rely on microbially provided
nicotinate to synthesize NAD+ (Chellappa et al, 2022).

In addition to its role as a coenzyme, NAD+ plays an important
role in the regulation of inflammatory and immune processes
(Rajman et al, 2018). Therapeutic benefit from the supplementation
of NAD+ precursors such as NR and NMN has been observed in
inflammation-related and gastrointestinal disorders such as obesity
(Canto et al, 2012), diabetes (Yoshino et al, 2011), liver fibrosis
(Pham et al, 2019), and age-related colonic dysmotility (Zhu et al,
2017). NR supplementation not only replenishes the NAD+

metabolome but also reduces levels of circulating inflammatory
cytokines (Elhassan et al, 2019). Given these previous findings, the
covariance between NR and nicotinate, and MACARRoN’s
prioritization of nicotinate in IBD, we asked whether NR itself
had bioactivity in IBD using two preclinical models of intestinal
injury and inflammation, acute and chronic DSS. In the acute
model (Fig. 5E), we observed a modest and statistically significant
improvement in histological colitis scoring for NR (1000 mg/kg) as
compared with phosphate-buffered saline (PBS) administered
intraperitoneally (two-tailed Mann–Whitney P value = 0.014,
Fig. 5F). In the chronic model (Fig. 5G), which endeavors to
capture the relapsing and remitting nature of IBD via repeat
exposure to DSS, the difference in colitis scores between the PBS
and NR groups was again significant and even more pronounced
(two-tailed Mann–Whitney P value = 0.007, Fig. 5H). Collectively,
these results validate both the prioritization of nicotinate and
bioactivity of NR in IBD and, additionally, demonstrate MACAR-
RoN’s utility to locate potential bioactives (NR) in large datasets by
virtue of their covariance with prioritized, well-characterized
metabolites (nicotinate).

Discussion

Although untargeted metabolomics is routinely used to profile the
chemical repertoires of microbial communities, most chemical
features identified by such methods are difficult or impossible to
identify, requiring substantial effort to prioritize and validate. This
is true even for metabolomes of well-studied environments, such as
the human gut, where the microbiome catabolizes or produces
health-relevant metabolites. Here, we present a framework for
prioritizing the most promising and actionable metabolites from
among thousands of features in untargeted metabolomes associated
with phenotypes of interest. We applied this method (MACAR-
RoN) to ~67k metabolic features derived from IBD and control
populations, finding associations indicating potential biochemical
or functional relationships between ~500 known, gut-relevant
metabolites and 15,481 unannotated metabolic features. Prioritiza-
tion highlighted both well-characterized—e.g., bile acid and SCFA
derivatives—and modestly explored classes of metabolites such as
polyamines, bilirubins, and vitamins. Altogether, this provides
information to initially characterize nearly 23% of the gut
metabolome. Finally, we annotated and validated anti-
inflammatory activity of nicotinamide riboside in IBD, providing
an end-to-end demonstration of MACARRoN’s ability to find
compelling candidates for downstream characterization from
complex untargeted metabolomes.

Data integration for microbial community metabolomics
can thus provide both candidate bioactive leads in phenotypes
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such as inflammation, as well as a foundation for more basic
characterization of the gut (and other environments’)
metabolome. In this study’s data, prioritized (priority score ≥0.6)
metabolites covaried with standards belonging to 43 chemical
subclasses (structure-based chemical taxonomy defined by Che-
mOnt (Djoumbou-Feunang et al, 2016)). This shows, first, the
unappreciated diversity of IBD-linked metabolic pathways,
since previous studies have focused on small subsets of validated
standards such as bile acids (Chen et al, 2019), butyrate
(Chen et al, 2018), bilirubin (Li et al, 2021), and tryptophan

derivatives (Scott et al, 2020). Second, relatedly, the combination of
disease (or other phenotype) epidemiology with co-clustered
standards and chemical properties allows us to locate potentially
bioactive unannotated metabolic features even in the absence of
MS-MS or other additional experimental profiles. This is demon-
strated by the prioritization of the recently identified lithocholate
and cholate derivatives, microbially associated metabolites
that covary with stercobilin, and by the experimentally validated
bioactivity of nicotinamide riboside in IBD (Figs. 4A,F
and 5A,F,H).
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Other prioritized chemical classes corresponded with broad
changes in the gut microbiome concordant with dysbiosis, which
may be reflective of broader consequences of host–microbe
interactions. These included depletion of metabolic indicators of
microbial diversity such as hippurate and hydrocinnamate, along
with the enrichment of p-hydroxyphenylacetate, a product of
tyrosine metabolism by clostridial and Coriobacteriaceae species
that are themselves enriched in IBD (Alam et al, 2020; Lloyd-Price
et al, 2019; Saito et al, 2018). Other examples of prioritized
metabolite classes that also corresponded with overall microbiome
disruption included pathways such as bilirubin, polyamine, and
vitamin metabolism that lie at the interface of host-microbial
interactions (Figs. 4B,C and 5A). Remarkably, stercobilin, poly-
amines, and several unannotated features were ranked even higher
by MACARRoN than well-studied IBD bioactives like bile acids,
bilirubin itself, and butyrate, alluding to the richness of unknown
but potentially critical metabolites during inflammation.

Of these, members of the bilirubin/stercobilin pathway may be
of particular interest. Both bilirubin and urobilinogen are
antioxidants (Vogel and Zucker, 2016) and additionally, bilirubin
has been shown to be anti-inflammatory (Zucker et al, 2015) and
influence bacterial survival in the gut (Nobles et al, 2013). Both of
these properties are of therapeutic interest in IBD management
(Vitek and Tiribelli, 2020), motivating us to examine the 15 highly
prioritized unknown features that covaried with stercobilin. We
found compounds in the GNPS stercobilin molecular networks that
were similar in mass to seven features that were highly prioritized
by MACARRoN, supporting the chemical relatedness of the latter
to bilirubins. The mass-differences associated with these features
suggested small molecular additions to the tetrapyrrole backbone
much like in cases of microbe-made amino acid conjugates of bile
acids (Quinn et al, 2020). Notably, a recent study reported the
intra-duodenal conversion of biliverdin to bilirubin-10-sulfonate by
C. youngae (Shiels et al, 2019), indicating the possibility of other
microbial bilirubin derivatives. Our mouse stool metabolomics data
supported that two prioritized compounds were of microbial origin
like stercobilin itself (Fig. 4F). Despite the small overlap between
the number of prioritized and validated bilirubin-associated
compounds (previous studies (Han et al, 2021; Marcobal et al,
2013; Meier et al, 2023) may be used to infer the broader overlap
between (IBD-associated) human and SPF-specific metabolites
belonging to other chemical classes), the findings are still notable

given many factors that differentiate this system from human IBD:
lower gut microbial diversity in SPF mice, markedly different diets
as compared to humans, absence of inflammation as in dysbiotic
human subjects, and thus, potential absence of host-derived or
inflammation-linked precursor substrates. Our results here thus
provide a new incentive to further characterize bilirubin pathway
members in the gut. Relatedly, validation of the therapeutic benefit
from NR supplementation in a mouse model of colitis is an
encouragement to further study the prioritized bioactives for
therapeutic bioprospecting.

MACARRoN’s strategy for compound prioritization and
identification is fundamentally different from that of existing
guilt-by-association methods such as GNPS (Wang et al, 2016),
xMSAnnotator (Uppal et al, 2017), and MetNet (Naake and Fernie,
2019) that are also designed for chemically annotating features.
Each method uses some combination of properties including m/z,
RT, fragmentation spectra, and covariance to associate and
annotate metabolic features. However, MACARRoN is uniquely
able to leverage microbial community profiles, as well as the
intuition that covariation captures molecular functional relatedness
as previously used for protein function prediction (Zhou et al,
2005). It also combines these and other more basic properties such
as prevalence and abundance with respect to a known metabolite
with phenotypic “importance” in prioritization of potential
bioactivity, i.e., the likelihood of its causal or consequential
involvement in a phenotype or an environment of interest. This
simultaneously indicates which of potentially thousands of
unidentified compounds may be most important to experimentally
validate, and what putative identities they might be validated to
have. Although MACARRoN does not use properties such as the
m/z or RT directly, these can still be used post hoc to make
informed guesses about the identity of an unannotated metabolite
that covaries with a known metabolite.

This combination of methodology provides MACARRoN with
several advantages relative to other approaches. Unlike annotation
methods that associate metabolic features using covariance and
filter associations based on chemical properties (e.g., xMSAnno-
tator (Uppal et al, 2017), MetNet (Naake and Fernie, 2019)),
MACARRoN uses only covariance. This can be either a strength or
a weakness—it loses the specificity provided by spectral similarity
(when available), but it does not require this additional data to
operate and can thus prioritize bioactive compounds that are less

Figure 5. Validation of nicotinate and NR as IBD-linked bioactives.

(A) Abundances of metabolic features in nicotinate/pantothenate-anchored module 239 that were depleted (q value < 0.1 and |effect size | ≥ 1) in CD-dysbiosis or
UC and nicotinamide riboside (NR) represented by HILp_QI6481. Priority is indicated in terms of the best-observed priority score between the two disease subtypes.
(B) NAD is synthesized from Asp and Trp via the de novo pathway or from nicotinamide riboside (NR) via the salvage pathway. Microbial and host enzymes that
catalyze de novo (shown in pink) and salvage reactions are indicated. (C) Microbial enzymes catalyzing both de novo and salvage pathways were depleted in gut
metagenomes during active disease i.e., IBD (particularly CD) dysbiosis (CD.dysbiosis, N= 177; CD.nondysbiosis: 555; UC.dysbiosis: 51; UC.nondysbiosis: 386). (D)
Transcription (log2(RPKM)) of the host enzymes catalyzing de novo (TDO2) and salvage (NRK) pathways was enriched and unchanged, respectively (CD, N= 33; UC:
21; non-IBD: 17). For the boxplots in (C, D), the bounds represent the first (Q1) and third quartile (Q3) of the data, and the line inside the box is the median. The
whiskers extend to a maximum of 1.5 (IQR) from the Q1 and Q3. Values beyond the whiskers are outliers. The minima and maxima are determined by the minimum
and maximum observed values within 1.5 (IQR) from Q1 and Q3, respectively. (E) Acute DSS model used 3% daily exposure in drinking water for 5 days per mouse,
and compared groups that received intraperitoneal (IP) NR vs. PBS (control). (F) Images from hematoxylin and eosin-stained formalin-fixed paraffin embedded
(FFPE) slides from each group (acute DSS model), paired with histologic colitis scores (N= 20 mice per group). (G) Chronic DSS model, using decreasing DSS
percentages across three 5-day windows, again compared NR vs. PBS control. (H) Images from Masson’s trichrome (used to highlight the chronic model’s
characteristic fibrosis) stained FFPE slides from each group, (chronic colitis model) again paired with histologic colitis scores (N= 10 mice per group). Data in (F, H)
represent two independent experiments and each symbol corresponds to data from an individual mouse. (F, H) Mean+ SEM shown, two-tailed Mann–Whitney U
test, P value < 0.05*, P value < 0.01**. Source data are available online for this figure.
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directly related to characterized precursors or derivatives. Apropos,
it is notable in these results that despite the absence of chemical
property-based filtering, most covariance-based modules are
chemically homogeneous (Fig. 2B). Moreover, metabolites from
the same GNPS molecular networks were also found to have
correlated abundances by MACARRoN (Fig. 2C), although the
latter does not rely on spectral information. MACARRoN can thus
analyze low molecular weight metabolites that do not have complex
spectra even when MS2 profiles are generated. This makes the
method particularly suitable for identifying microbially processed
small molecules such as amino acids, polyamines, SCFAs, and other
derivatives of common molecular classes. In this regard, it is
important to note that the prioritization schema itself is agnostic to
the source or origin of metabolite i.e., MACARRoN will prioritize
both microbial and non-microbial metabolites, however, in
microbiome-linked phenotypes such as IBD, the prioritized
metabolic features are expected to be enriched for microbially
derived small molecules. Finally, MACARRoN does not require
curated biochemical pathway information such as KEGG (Kanehisa
and Goto, 2000) or MetaCyc (Caspi et al, 2016), making it
appropriate for less well-studied environments such as microbial
communities. Finally, to the best of our knowledge, MACARRoN is
the only tool that couples characterization with prioritization based
on the likelihood of bioactivity, i.e., chemical involvement in a
phenotype of interest. This step is instrumental for efficiently
selecting the most promising metabolites for further
characterization.

Conversely, MACARRoN of course also has limitations, the
most striking being the nearly 50% of highly prioritized metabolites
not associated with any standard, rendering their characterization
nearly impossible by these methods. Relatedly, chemically identify-
ing metabolites using only chemical properties and mass-
differences with respect to co-clustered standards is nontrivial.
The uncertainty in identifying a metabolite arises from multiple
underlying phenomena such as abiotic fragmentation and adduct
formation in the mass-analyzer, transformations that involve the
simultaneous removal and addition of moieties, and ambiguity
between Δm/zs (e.g., Δm/zs near 44 are associated with both
carboxyl and amido groups). It may thus be potentially useful to
couple the system with tools such as BioTransformer (Djoumbou-
Feunang et al, 2019) and MetWork (Fox Ramos et al, 2019) that
predict metabolic products obtained from the host or microbial
metabolism of a parent compound. MACARRoN can also be used
in tandem with related systems for MS1 metabolomes such as
xMSAnnotator (Uppal et al, 2017) and MetNet (Naake and Fernie,
2019) for the chemical identification of prioritized metabolites.
Additional limitations arise in the optimization of MACARRoN’s
methodological parameters including the requirement of sufficient
samples per phenotype for detecting significant correlations;
accompanied by challenges routinely associated with clustering
such as optimizing cluster size and membership. While we expect
the defaults to work for most real-world metabolomics datasets, to
determine if the modules generated using default parameters are
appropriate for downstream prioritization steps, we provide the
users descriptive statistics pertaining to the number of modules,
singletons, and chemical homogeneity of the modules, as well as the
option to adjust the defaults. We also recognize that different
metabolites are bioactive at different concentrations and therefore,
determine the ecological relevance of a metabolite by comparing its

abundance to that of a co-clustered standard i.e., AVA. However, in
larger modules where abundances of metabolites span several
orders of magnitude, there is a risk of losing metabolites that are
bioactive at low concentrations. Finally, for microbial community-
associated metabolomes, the current implementation cannot
distinguish between host and microbial metabolites which could
be incorporated in the future by leveraging associations with
features in paired metagenomic datasets.

Although untargeted metabolomics is a powerful resource for
the quantification of the metabolic activity in a phenotype or
environment of interest, options for interpreting the many
thousands of resulting, unidentified metabolic features remain
limited. We developed MACARRoN to bridge the gap between
untargeted metabolomics and downstream end goals such as
bioprospecting, biomarker identification, and compound and
enzyme characterization. All of these are particularly relevant in
—although not unique to—the under-explored environment of
microbial communities and the human microbiome. By integrating
functional association, ecological, and phenotype-related informa-
tion of metabolic features into a prioritization scheme, MACAR-
RoN provides initial annotations for phenotype-linked metabolite
features while simultaneously ranking them based on their
potential bioactivity. This reduces the search space for actionable
metabolites by several orders of magnitude. Using this approach,
we identified several new metabolite classes and derivatives
implicated in pro- or anti-inflammatory activity during IBD. We
hope that future applications of the method will be able to
illuminate the chemical dark matter which currently limits our
understanding of complex phenotypes and environments.

Methods

Reagents and tools table.

Reagent/
resource Reference or source Identifier or catalog number

Datasets analyzed

HMP2
metabolomics

HMBR data portal
(https://portal.micro
biome-bioactives.org/)

https://downloads.microbiome-
bioactives.org/wgs/HMP2/
data/wgs/metabolites/HMP2_
metabolites_all_methods.tsv

HMP2 host
transcriptomics

IBDMDB (https://
www.ibdmdb.org/)
(Lloyd-Price et al, 2019)

https://www.ibdmdb.org/
downloads/products/HMP2/
HTX/host_tx_counts.tsv.gz

Cystic fibrosis
sputum
metabolomics

(Quinn et al, 2019)

Experimental models

Germ free
C57BL/6J (M.
musculus)

Bred at the Harvard T.
H. Chan School of Public
Health

SPF C57BL/6J
(M. musculus)

Jackson Laboratory ISMR_JAX:000664

Chemicals, enzymes, and other reagents

Dextran
sodium sulfate
(DSS)

Thermo Fisher Scientific J1448922
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Reagent/
resource Reference or source Identifier or catalog number

Nicotinamide
riboside (NR)

PCI Synthesis,
Newburyport, MA

23111-00-4

PFA Sigma-Aldrich 441244

Databases, software, and libraries for bioinformatic and statistical analyses

GNPS https://gnps.ucsd.edu/
(Wang et al, 2016)

MetaWIBELE
v0.3.8

https://github.com/
biobakery/metawibele
(Zhang et al, 2022)

WGCNA v1.72-
1

https://cran.r-
project.org/web/
packages/WGCNA/
index.html (Langfelder
and Horvath, 2008)

MaAsLin2
v1.12.0

https://www.
bioconductor.org/
packages/Maaslin2/
(Mallick et al, 2021)

limma v3.54.2 https://www.
bioconductor.org/
packages/limma/
(Ritchie et al, 2015)

tidyverse
v2.0.0

https://cran.r-
project.org/web/
packages/tidyverse/
index.html

data.table
v1.14.8

https://cran.r-
project.org/web/
packages/data.table/
index.html

mclust v6.0.0 https://cran.r-
project.org/web/
packages/mclust/
index.html (Scrucca
et al, 2016)

HMDB v5.0 https://hmdb.ca/
(Wishart et al, 2022)

IBDMDB https://www.
ibdmdb.org/ (Lloyd-
Price et al, 2019)

HMBR data
portal

https://portal.
microbiome-
bioactives.org/

Libraries for visualizations

ggplot2 v3.4.1 https://cran.r-
project.org/web/
packages/ggplot2/
index.html

ggrepel v0.9.3 https://cran.r-
project.org/web/
packages/ggrepel/
index.html

ggpubr v0.6.0 https://cran.r-
project.org/web/
packages/ggpubr/
index.html

cowplot v1.1.1 https://cran.r-
project.org/web/
packages/cowplot/
index.html

Reagent/
resource Reference or source Identifier or catalog number

RcolorBrewer
v1.1-3

https://cran.r-
project.org/web/
packages/
RColorBrewer/
index.html

Methods and protocols

The MACARRoN algorithm for putative bioactive prioritization
MACARRoN is a set of methodologies for prioritization and initial
annotation of small molecules with potential bioactivity in
phenotypes of interest from large-scale metabolomes. Untargeted
metabolomics provide abundances for typically several thousand
metabolic features per environment, only very few of which can be
confidently identified (i.e., assigned annotations by chemical
standards). To accommodate typical MS-based untargeted chemical
profiles, MACARRoN requires as inputs; (1) MS1 abundances of
metabolic features, (2) systematic identifiers (HMDB (Wishart et al,
2022) or PubChem (Kim et al, 2021)) for a priori identified
metabolite standards, and (3) per-sample metadata including host
or environment phenotypes of interest. The workflow employs a
three-step strategy to associate, quantitatively annotate, and
prioritize metabolic features. MACARRoN (https://
huttenhower.sph.harvard.edu/macarron/) is available as an R
package from Bioconductor (https://bioconductor.org/packages/
Macarron) and can also be executed via the command line.

Guilt by association. In its first step, MACARRoN clusters
untargeted metabolic features into covarying modules based on
similar abundance profiles. To do this, first, metabolic features that
are prevalent i.e., observed in at least a user-defined fraction of
samples of at least one phenotype are selected (default 70%). Next,
for each pair of prevalent metabolic features, biweight midcorrelation
(bicor) (Langfelder and Horvath, 2008) is calculated in a stratified
manner considering samples from each phenotype at a time. This is
done to avoid false positive correlations arising due to differences in
abundances in two conditions. Correlations between metabolites are
systemic properties. Noise in complex biological systems such as the
gut makes interpretation of underlying biological phenomena from
metabolite correlations challenging (Steuer, 2006). This is especially
true for weak to moderate negative correlations, which may arise due
to complex pathway structure, enzyme abundances, and pleiotropy
as well as system-level perturbations such as diet and antibiotics.
Therefore, MACARRoN considers only positive correlations and
negative bicor values are replaced with 0.
As recommended by previous studies for scale-free topology, the

best-observed correlation is cubed and used for tree construction
with average-linkage hierarchical clustering (Langfelder and Hor-
vath, 2008; Mock et al, 2018). For the detection of modules (i.e.,
clusters of highly correlated metabolites), MACARRoN implements
the dynamic-hybrid algorithm to build clusters in a “bottom-up”
manner (Langfelder et al, 2008). Briefly, modules that contain a
certain minimum number of metabolic features (“minClusterSize”)
are detected and then smaller modules and unassigned metabolic
features (singletons) are progressively merged into larger modules
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that satisfy a predefined criteria for being distinct. MACARRoN uses
the cube root of the total number of prevalent features as the
“minClusterSize”. This choice of minClusterSize yields functionally
homogeneous clusters and fewer singletons and is expected to be
applicable to most real-world metabolomic datasets (“Results”). The
resulting modules are either annotated (contain standards) or
unannotated.

Quantitative annotations. Abundance versus anchor: (AVA) For
all prevalent metabolic features, mean abundance in each phenotype
is calculated. Then, in each module, the metabolic feature (or
standard in an annotated-module) with the maximum mean
abundance in any phenotype is chosen as the “anchor”. The anchor
of an unannotated module is the metabolic feature with the highest
mean abundance in any phenotype. In an annotated-module with
only one standard, the standard is the anchor. If an annotated-
module contains multiple standards, the anchor metabolite for that
module is the standard with the highest mean abundance in any
phenotype. The AVA of each feature f in a module m is then
calculated as:

AVAf ¼ maxðu1; u2; :: unÞ
A

where n is the number of phenotypes, u is the mean abundance in a
phenotype and Ā is the maximum mean abundance of the co-
clustered anchor.
Association with phenotype: q value MACARRoN integrates:

MaAsLin 2 (Mallick et al, 2021) to efficiently capture multivariable
associations between prevalent metabolic features and sample
phenotypes (clinical or environmental metadata). Each metabolite
feature is tested independently using a linear regression model:

feature � X1 þ :::þ Xi þ ð1jR1Þ þ :::þ ð1jRjÞ

where X and R are fixed and random effects in the metadata,
respectively. X1 represents the categorical metadata variable contain-
ing case and control phenotypes of interest that are used for
prioritization. Other effects are regressed-out. Upon specification of
the “control” (reference) phenotype within X1, FDR-adjusted P
values (q values) are determined for each feature for all pairs of case-
control comparisons. Benjamini–Hochberg correction is applied to
nominal P values to control the FDR for independent tests.
Association with phenotype: effect size For each feature f, for each

“case” phenotype, the effect size (ES) is calculated as:

ESf ¼ ucase � ucontrol

where u is the mean of the log2-transformed abundances in a
phenotype.

Integration of ranks and prioritization. All prevalent metabolic
features are ranked according to their AVA, effect size, and q value
yielding three ranks. Then, the priority score for each feature is

calculated as the harmonic mean of the percentiles of the three ranks:

S fð Þ ¼ n
Pn

i¼1
1

PðRÞ

where, S(f) is the priority score of a feature f, n is 3, and P(R) is the
percentile value of the rank (R) of each property including AVA,
effect size, and q value. The MACARRoN package includes a utility
—“showBest” to further refine prioritization results to show the top
“n” features that are prioritized in each annotated-module. It also
provides the user the Δm/zs of these features with respect to the
anchor in that module, should they wish to filter for a biochemical
transformation or mass-difference of interest.

Bioactivity prioritization in inflammatory bowel disease

HMP2 stool metabolomics. In all, 546 stool metabolomes were
used with MACARRoN, drawn from the HMP2 cohort publicly
available at the Inflammatory Bowel Disease Multi’omics Database
and the Human Microbiome Bioactives Resource Portal (https://
portal.microbiome-bioactives.org/) (Lloyd-Price et al, 2019). These
included 265 Crohn’s disease (CD), 146 ulcerative colitis (UC), and
135 non-IBD metabolomes collected from 102 participants followed
for up to a year each. For each sample, relevant clinical information
such as age, gender, disease severity (dysbiosis score), and antibiotic
use were available. Each metabolome was analyzed by four LC–MS
methods; (1) C18-neg: for targeting metabolites of intermediate
polarity such as free fatty acids and bile acids, (2) C8-pos: for polar
and nonpolar lipids, and (3) HILIC-neg, and (4) HILIC-pos: for
polar metabolites (Lloyd-Price et al, 2019). In order to standardize
within and across batches, nearest-neighbor scaling was done using
the flanking pooled stool samples. Next, median normalization was
performed in a per-metabolite, per-method manner using the total
signal median for each sample in each method to account for water
content and heterogeneity across stool samples.

Classification of features. In total, 81,867 total ion features were
initially available from the HMP2 metabolomes. For initial
annotation of confidently identified compounds, we (i) matched
recorded RTs and m/zs to mixtures of reference metabolites analyzed
in each batch and (ii) matched to an internal database of >600
compounds characterized using Broad Institute protocols (Lloyd-
Price et al, 2019). To assign mass-matches to remaining features, we
(iii) matched m/zs to monoisotopic molecular weights of entries in
HMBD 5.0 (Wishart et al, 2022). For (i) and (ii), confident
annotation of 596 features was possible with these strategies and we
refer to these as standards.
For (iii), mass-matching with HMDB entries, the following

ionizations were considered for features detected using C8-pos and
HILIC-pos: [M]+ (+ 0), [M+H]+ (+ 1.007825), [M+Na]+
(+ 22.98977), [M+NH4]+ (+ 18.03437), [M-H2O+H]+
(-17.00274). For features detected using C18-neg and HILIC-neg,
they were: [M]-, [M-H]- (-1.007825), [M+FormicAcid-H]-
(+ 44.9982026), [M+AceticAcid-H]- (+ 59.0127559). Feature m/
zs were compared with an allowed deviation of 10 ppm. Note that we
did not use mass-matching against HMDB results for assigning
identities to any features or for biological interpretation. Such
information was drawn only from standards, as compared with
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possibly known (putative mass-match with entry in the HMDB) and
completely novel (unknown) compounds.

Consolidation of redundant ion features. Features likely to
represent exactly the same ion were consolidated within each
LC–MS method, based on an initial very high correlation in
abundances across all samples. Spearman rank correlation threshold
of 0.85 was used for C8-pos and C18-neg and 0.8 for the HILIC
methods. When more than one feature clustered above these
thresholds, only the feature with the highest mean abundance was
labeled as the primary feature. Features that co-eluted (ΔRT of
0.015 min for C8-pos and C18-neg and of 0.025 min for HILIC) with
the primary feature were considered redundant. 14,634 (17.9%) were
identified as redundant and represented adducts, multimers, or in-
source ion fragments. These were omitted from subsequent analyses.

Detection of modules. Of the 67,233 primary ion features detected
in the metabolomes, those present in at least 70% of the
metabolomes of at least one phenotype (CD; UC; non-IBD) were
selected for further analysis, yielding 37,201 features. Correlations
between pairs of these features were calculated using log2-
transformed abundances in each phenotype, and the highest of the
three bicors was used for tree construction. Modules in the resulting
dendrogram were identified using the default MACARRoN module
detection parameters and minClusterSize of 33 (∛37,201).

Quantitative annotations. AVA: In each module, the metabolic
feature with the highest mean abundance in any phenotype (CD;
UC; non-IBD) was chosen as the anchor. For annotated-modules
(modules with at least one standard), only the standards were
candidates for anchors. AVA for a metabolic feature was the ratio of
its highest mean abundance in any phenotype and that of the anchor,
as described earlier.
Effect size and q value: Mixed-effect linear regression models were

implemented using MaAsLin 2 v0.99.12 (Mallick et al, 2021) to
identify metabolic features that were differentially abundant between
non-IBD and IBD (CD and UC) as well as between dysbiosis states
within each phenotype. First, zero values were additively smoothed
by 1 on a per-feature basis (smallest non-zero value was 5). Then, the
abundances of the 37,201 metabolic features were log2-transformed
and fitted to a similar per-feature linear model as in the previous
HMP2 analysis (Lloyd-Price et al, 2019).

feature � diagnosisþ diagnosis : dysbiosis

þ antibioticsþ ageþ ð1jsubjectÞ

In other words, transformed abundances were modeled as a
function of diagnosis (a categorical variable with non-IBD as the
reference group) and dysbiosis states as a binary nested variable
within each diagnosis category (phenotype) with nondysbiosis as the
reference variable. Effects contributed by antibiotic usage and age of
the subject were regressed-out. Since each subject contributed
multiple samples, subject IDs were used as a random effect. Nominal
P values were FDR-adjusted on a per-metadata, per-category basis
using Benjamini–Hochberg to obtain q values. Highest number of
significantly differentially abundant features were observed for
contrasts (1) CD-dysbiosis and CD-nondysbiosis and (2) UC and
non-IBD. Effect sizes for each feature were calculated as the

difference in means of log2-transformed abundances for these
contrasts.

Prioritization of IBD-associated bioactives. Prioritization of
potential bioactives was performed using CD-dysbiosis and UC as
target disease arms. The 37,201 primary features were considered as
candidates for prioritization. To prioritize potential bioactives
associated with UC, all features were meta-ranked using ranks from
AVAs, q values and effect sizes in UC (versus non-IBD). The same
process was repeated for CD-dysbiosis. The highly prioritized in each
target disease subtype were considered as potentially bioactive. Of
these, we specifically focused on features co-clustered with a standard
(characterizable features) as candidates for further computational
and/or experimental analyses.

Evaluation of modules

Estimation of homogeneity. Chemical taxonomy (class and
subclass) information for standard metabolites was downloaded from
the HMDB using their HMDB accession IDs. For modules containing
≥2 standards, MACARRoN counted each unique class contained in
that module and percent homogeneity (H) was calculated as:

H ¼ maxðc1; c; :::; cnÞ
S

´ 100

where c is the count of a class, n is the number of unique classes and
S is the total number of standards.

Comparison with GNPS clusters. Cystic fibrosis sputum metabo-
lomics: MS1 abundances for 9280 metabolic features in 101 sputum
metabolomes included in a cross-sectional study of cystic fibrosis
severity (Quinn et al, 2019) were kindly provided by Dr. Robert A.
Quinn. Results of the GNPS molecular networks analysis for the
same study were downloaded from gnps.ucsd.edu (MassIVE ID:
MSV000080655). GNPS uses the cosine score, a measure of
similarity between MS2 fragmentation spectra, to associate com-
pounds in molecular networks. In other words, compounds in a
GNPS molecular network are connected if the alignment of their
fragmentation spectra yields a cosine score ≥0.7 (default). The GNPS
molecular networks of the sputum metabolomes included 1938
metabolites; cosine scores and GNPS molecular network IDs were
available for 2356 pairs of metabolites. All cosine scores were ≥0.7.
Of the 1938 metabolites, MS1 abundances were available for 1311
(9280 MS1 ∩ 1938 MS2).
Comparison between bicors and cosines Sample metadata included

4 distinct “disease states” of the sputum donor: A (clinical decision to
treat with intravenous antibiotics; n = 15), B (on treatment; n = 2), C
(post treatment n = 11), and D (no treatment or clinical decision to
treat; n = 65) (Quinn et al, 2019). Metabolomes of disease state B and
without disease state information were removed from analysis. As
per MACARRoN methodology, for all pairs of metabolites, bicors in
each of the disease states were determined and the best was
considered. Both bicor and cosine values were available for 1030
pairs of metabolites.
ARI between GNPS clusters and MACARRoN modules Best-

observed bicor was considered for dendrogram construction.
Modules were detected using default MACARRoN arguments and
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minClusterSize of 21 (∛9280). The 9280 features were distributed
among 210 modules and 132 singletons. For the 1311 metabolites
common in both MS1 and MS2 datasets, similarity between the
GNPS and MACARRoN cluster assignments (instances whether a
pair of features had the same GNPS cluster ID and MACARRoN
module ID) was calculated using adjusted Rand Index (ARI) with the
mclust (Scrucca et al, 2016) R package. To test whether the overlap
between GNPS and MACARRoN was non-random, MACARRoN
module assignments were shuffled (×1000) and compared to GNPS
(and vice versa ×1000) and ARI was determined for each
comparison. Actual ARI and ARI from randomized-assignments
were compared using a one-sample t test.
Analyzing mass-differences in annotated-modules The m/z values

of all features were rounded off to the first decimal. The mass-
differences (Δm/zs) between all pairs of unannotated metabolic
features and co-clustered standards in each annotated module (M)
were calculated as:

Δm=z ¼ m=zMunannotated �m=zMstandard

Distribution of Δm/zs in real versus random annotated-modules:
The module labels were shuffled, and Δm/zs were calculated for each
new module (M’) that contained a random set of standards and
unannotated metabolic features.

Δm=z0 ¼ m=zM
0

unannotated �m=zM
0

standard

This was repeated 1000 times, and then each of the 1000 Δm/z
distributions was compared to the distribution obtained from actual
modules using the Kolmogorov–Smirnov test.
Enrichment of Δm/zs in real versus random modules: Another

evaluation criterion we applied to the resulting modules was the
distribution of Δm/zs, which we would expect to be enriched for
small positive (and occasionally negative) deltas when they represent
the addition (or removal) of functional groups from a parent
backbone. In order to inspect these distributions, we grouped Δm/zs
by one-unit bins for ease of analysis. Each bin’s frequency was
calculated, and all Δm/z bins observed more than once were
considered. In total, this yielded 694 positive and 499 negative Δm/z
bins. As described before, random modules were generated by
shuffling labels, and the frequency of each of the 1193 Δm/z bins was
noted. This was repeated 10,000 times. An empirical P value of
enrichment for each Δm/z bin was calculated as (North et al, 2002):

p ¼ r þ 1
nþ 1

where n is the total number of iterations i.e., 10,000, and r is the
number of iterations in which the frequency of the Δm/z bin was
greater than or equal to that calculated from the real modules.

Confirmation of prioritized bilirubin/stercobilin pathway members
from modules 10 and 85 in MassIVE molecular networks

Classical molecular networking workflow. In support of
MACARRoN’s predicted bilirubin pathway derivatives, we identified
11 MassIVE datasets corresponding to MS2 analysis of human stool

metabolomes (Dataset EV9). For each dataset, a molecular network
was created using the default online workflow (https://ccms-
ucsd.github.io/GNPSDocumentation/) on the GNPS website
(http://gnps.ucsd.edu). The data was filtered by removing all MS2
fragment ions within +/− 17 Da of the precursor m/z. MS2 spectra
were window-filtered by choosing only the top six fragment ions in
the +/− 50 Da window throughout the spectrum. The precursor ion
mass tolerance was set to 2.0 Da and a MS/MS fragment ion
tolerance of 0.5 Da. A network was then created where edges were
filtered to have a cosine score above 0.7 and more than 6 matched
peaks. Further, edges between two nodes were kept in the network if
and only if each of the nodes appeared in each other’s respective top
10 most similar nodes. Finally, the maximum size of a molecular
family was set to 100, and the lowest-scoring edges were removed
from molecular families until the molecular family size was below
this threshold. The spectra in the network were then searched against
GNPS’ spectral libraries. The library spectra were filtered in the same
manner as the input data. All matches kept between network spectra
and library spectra were required to have a cosine score above 0.7
and at least 6 matched peaks.

Identifying matches between features in modules 10 and 85 and
stercobilin molecular networks. Of the molecular networks
identified for each of the 11 MassIVE datasets, those containing
features annotated as stercobilin were selected. Then, features that
were directly connected to stercobilin and within Δm/z of 100 w.r.t
to it were considered. If the stercobilin molecular networks contained
a feature(s) annotated as urobilin, its neighbors satisfying the
aforementioned criteria were also considered. The m/zs of these
features were then compared to the m/zs of highly prioritized
features in modules 10 and 85 that were within Δm/z of 100 of
stercobilin.

Host vs. microbial NAD enzyme activity in NR metabolism

Differential abundance of microbial NAD biosynthesis enzymes
in IBD. Perturbation statuses of nadA and nadB (de novo) and
nadR, pncA, and pncB (salvage) protein families (UniRef90) were
obtained from a previous study (Zhang et al, 2022). Briefly,
abundances of each protein family were estimated from 1595
metagenomes from 130 participants in HMP2 (CD, n = 65; UC,
n = 38; non-IBD, n = 27) using MetaWIBELE v0.3.8. The abundance
values were normalized to copies per million (CPM) units and log-
transformed. Zero values were additively smoothed by half of the
smallest non-zero measurement on a per-feature basis. The same
random effects model formulation applied to HMP2 metabolomics
was applied here within MaAsLin 2 (Mallick et al, 2021), which
estimated the differential abundance of each protein family in
dysbiotic (active) versus non-dysbiotic CD and UC.

Transcription of host NAD biosynthesis enzymes. The host
transcriptomes (HTX) from the HMP2 dataset were downloaded
from http://ibdmdb.org in July 2020. To match HTX samples with
MBX samples, we considered the first pair of MBX:HTX samples
from each subject that were separated by no more than 2 weeks
(yielding 71 HTX samples from 71 individuals: 33 with CD, 21 with
UC, and 17 non-IBD controls). We performed normalization on raw
sample-by-gene count data of the selected HTX samples using the
voom method implemented in R’s limma package (Law et al, 2014;
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Ritchie et al, 2015). The normalized counts were used as a measure of
gene expression.

Testing NR’s effects on colonic injury and inflammation in mouse
models using DSS

Mice. C57BL/6J (B6) mice were purchased from Jackson
Laboratory and were housed in the Harvard T.H. Chan School
of Public Health. All mice were housed in microisolator cages in
the barrier facility with a constant 12-h light cycle. Female mice
were used at 6–8 weeks of age and fed standard chow (PicoLab
Mouse Diet 5058). Mice were randomized to experimental groups
one week prior to the start of an experimental intervention to
minimize cage-based or housing bias. All animal studies and
experiments described in this manuscript were approved and
carried out in accordance with the Harvard Medical School’s
Standing Committee on Animals and the National Institutes of
Health guidelines for animal use and care.

Acute DSS-induced colonic injury and inflammation model.
C57BL/6J WT were treated with 3% (w/v) DSS ad libitum in the
drinking water for 5 days and followed by regular drinking water for
2 days. Body weight was measured every day and mice were
sacrificed on day 7. On sacrifice, colon length was measured and then
fixed with 4% paraformaldehyde for histology. NR (1000 mg/kg) or
PBS intraperitoneal injections started 2 days before DSS was added
to the drinking water and continued until the day of sacrifice at the
same time daily.

Chronic DSS-induced colonic injury and inflammation model.
C57BL/6J WT were treated with three cycles of DSS as follows: cycle
1 (3% (w/v) DSS ad libitum in the drinking water for 5 days and
followed by regular drinking water for 9 days), cycle 2 (2% (w/v) DSS
ad libitum in drinking water for 5 days and followed by regular
drinking water for 9 days), and cycle 3 (1% (w/v) DSS ad libitum in
drinking water for 5 days and followed by regular drinking water for
2 days). On sacrifice, colon length was measured, and colons were
opened longitudinally prior to fixation with 4% paraformaldehyde
(PFA). NR (1000 mg/kg) (Brown et al, 2014; Igarashi et al, 2019) or
PBS intraperitoneal injections started 2 days before initiation of the
first cycle of DSS and continued until the day of sacrifice at the same
time daily. Body weight was measured every day until the mice were
sacrificed.

Histology. Colons were cleaned with PBS prior to fixation in 4%
PFA and then processed by routine paraffin embedding, sectioning,
and hematoxylin and eosin (H&E) staining for the acute colitis
model or both H&E and Masson’s trichrome staining for the
chronic DSS model. Colitis scores were determined by a
pathologist (JNG), who was blinded to the experimental para-
meters. Each of the four histologic parameters was scored as absent
(0), mild (1), moderate (2), or severe (3): mononuclear cell
infiltration, polymorphonuclear cell infiltration, epithelial hyper-
plasia, and epithelial injury. The scores for the parameters were
summed to generate the histologic colitis score and were further
quantified to include the percentage involvement by the disease
process: (1) <10%; (2) 10–25%; (3) 30–50%; (4) >50% and
presented as histologic colitis scores as follows: cumulative score
* % involvement (Chun et al, 2019).

Quantifying highly prioritized stercobilin-linked compounds in mouse
metabolomes

Mice. Germ-free (GF) WT C57BL/6J mice were bred and
maintained in isocages under a strict 12-h light cycle in the Harvard
T. H. Chan Gnotobiotic Center for Mechanistic Microbiome studies.
WT C57BL/6J (SPF) mice were purchased from Jackson Laboratory
(Bar Harbor, Maine) and were maintained under the same
conditions as GF mice for 3 weeks. Mice used for the experiment
were between 8 and 9 weeks of age and fed sterilizable soy protein-
free extruded rodent diet (Envigo CAT #: 2020SX).

Metabolomics. Fecal contents (30–100 mg) were collected from
both GF and SPF mice and snap-frozen. Stool samples were
processed and untargeted metabolomics data were collected using
the HILIC-positive LC–MS method as previously described (Lloyd-
Price et al, 2019).

Analyzed data

The HMP2 stool metabolomics and human transcriptomics
datasets analyzed in this manuscript have been retrieved from
https://portal.microbiome-bioactives.org/ and http://ibdmdb.org,
respectively, and are referenced in “Reagents and Tools table and
Methods and Protocols”.

Data availability

The MACARRoN tool developed in this work is available as a
Bioconductor package (https://bioconductor.org/packages/
Macarron). Metabolic features prioritized as potentially bioactive
in CD-dysbiosis, and UC are provided in Dataset EV7. Code for
application of MACARRoN on the HMP2 metabolomics dataset,
downstream analyses, and figures in the manuscript is available at
https://github.com/biobakery/macarron_manuscript.git.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00027-8.
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A peer review file is available at https://doi.org/10.1038/s44320-024-00027-8
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Expanded View Figures
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Figure EV1. Adjusted Rand Index (ARI) values for the overlap between actual and randomized MACARRoN modules and GNPS clusters (molecular networks).

Overlap between GNPS cluster and MACARRoN module assignments of 1311 features in the sputum metabolomes was determined using ARI. GNPS cluster and
MACARRoN module assignments were then shuffled and overlap with actual MACARRoN modules and GNPS clusters respectively was calculated. This was performed
1000 times each for both GNPS and MACARRoN. The ARI obtained by comparing actual assignments was significantly higher than ARIs where one assignment was
randomized. Bounds of boxplots show 1st quartile and 3rd quartile and the line inside the box is the median.
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Figure EV2. Masses of highly prioritized features in modules 10 and 85, and compounds in stercobilin molecular networks across 11 MassIVE datasets.

(bottom) Shown are the highly prioritized features in modules 10 and 85 with |Δm/z | <100 w.r.t stercobilin. (top) Compounds that were directly connected to stercobilin
or urobilin in molecular networks within the aforementioned mass-difference shown. The tight cluster of masses represents masses associated with stercobilin in these
molecular networks. Count represents the number of times a particular mass was observed.
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Figure EV3. Identification of feature representing nicotinamide riboside in the HMP2.

Retention time and fragmentation pattern on HILIC-positive are shown for HMP2 feature and nicotinamide riboside standard.
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