Multiple inheritance
in Contemporary Programming Languages

by

Daniel Joseph Carnese, Jr.
A.B., University of California (1 974)

Submitted in partial fulfillment
of the requirements for the
degree of

Master of Science

at the

Massachusetts Institute of Technology

August, 1984

© Daniel J. Carnese, Jr., and the Massachusetts Institute of Technology, 1984

Signature of Author

Certified by

Accepted by .

ARCHIVES wisss cingasiis it imuic

UF TECHROLOGY S~

0CT 04 1984

Multiple Inheritance
in Contemporary Programming Languages

by

Daniel Joseph Carnese, Jr.

' Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 1984 in partial fulfillment of the requirements for the Degree
of Master of Science in Computer Science.

Abstract

In one paradigm of abstract type definition, a separate procedure definition is given for each
abstract operation. This paradigm can be extended by allowing the operation set of a type te i)e
computed from the operation set of an existing type; this is commonly referred to as “definition
by inheritance.” When the operation set of a type can be computed from the operation sets of
more than one éxisting type, it is called “definition by multiple inheritance."” The key advantage
of type definition by multiple inheritance is that it reduces the amount of work required by

programmers to design new types and make changes to existing systems of types.

This report examines four designs for type definition by multiple inheritance: Zetalisp “flavors,"
the “traits” extension to Mesa, and the “classes” of the Borning/Ingalls extension to
Smalltalk-80 and the Loops extension to Interlisp. i he constructs involved in the designs are
described n1 a common framework. For each construct involved, examples are provided and a

brief overview of relevant design issues is given.

Acknowledgments

Itis a pleasure to thank the people who helped me in producing this report.
Dave Gifford was my advisor; he was invaluable.

Gary Leavens read the whole document as it was being written. Considering the volume of
paper and the uneven quality of the first dratft, this was action truly above and beyond the cali of

academic duty.

Mark Shirley, Kent Pitman, and Greg Faust participated over the course of writing this report in
a significant number of technical discussions. They were a great help in getting me to focus on

what was truly important.

| also benefitted from discussions with many other people, including: Liz Allen, Robert Ayers,
Pavel Curtis, Géw Drescher, Ken Haase, Hal Haig, Walter Hamscher, Richard lison, Henry
Lieberman, John Mallery, David MacQueen, John Mitchel!, Fanya Montalvo, Reid Simmons, Brian

Williams, Dan Weld, and Richard Zippel.

In the Al Lab, Randy Davis, Patrick Winston, and Karen Prendergast provided the environment

needed to complete this project.

My friends from the (ex-)OA and PT groups, Stan Zdonik, Dennis McLeod, Tim Anderson, Dave
Lebli'ng. Chris Reeve, and Sunil Sarin, did a wonderful job in helping me keep the appropriate

perspective on life at M.I.T.

Finally, my family was truly a constant source of support and encouragement. This work is-

dedicated to them.

Table of Contqpts

1. Overview

1.1 The goal of this report
1.2 The four subject languages
1.3 Properties of types defined by inheritance
1.3.1 The generic operation set of a type
1.3.2 The instance variables of a type
1.4 The historical context
1.5 What's the point?
1.5.1 The use of inheritance for generic operation set definition can reduce the
work required to define new types.
1.5.2 The use of inheritance for generic operation set definition can make it easier
to madify shared abstractions.
1.5.3 The rationale for defining instance variable by inheritance
1.6 What's not the point _
1.6.1 Modularity is increased by using generic invocations to implement abstract
operations
1.6.2 Redundancy is reduced by sharing methods among types
1.6.3 Redundancy is reduced by having methods of types invoke methods of
ancestor types
1.7 Inheritance in programming languages v. inheritance in knowladge representation
. languages
1.8 Organization of the report

2. The illustrative example

2.1 Functional description
2.2 Representation description
2.3 Implementation level
2.3.1 The implementation of display
2.3.2 The implementation of create
2.3.3 The implementation of move
2.3.4 The implementation of setmin and setmax
2.3.5 The implementations of the remaining operations
2.4 Four implementations of the example program

3. Generic invocation

3.1 The semantics of generic invocation
3.1.1 The Star Mesa and Loops semantics
3.1.2 The Smalltalk semantics
3.1.3 The Zetalisp semantics
3.1.3.1 The defmethod abstraction
3.1.3.2 The reality
3.1.4 Generic invocation vs. ""message-passing"
3.2 The utility of generic invocation
3.3 The realization of generic invocation
3.3.1 Generic invocation for Zetalisp flavors
3.3.2 Generic invocation for Loops classes
3.3.3 Generic invocation for Smalltalk classes
3.3.3.1 Syntactic forms for generic invocation

11
11
12
13
13
14
15
17
17

19

20
20
20

21
21

22

23
24

24
78
27
27
29
30
31
31
31
53

54
54
55
57
58

60
61
65
65
66
67
67

3.3.3.2 Primitive procedures for generic invocation
3.3.4 Generic invocation for Star Mesa traits
3.3.5 Other forms for generic invocation
3.4 Non-generic invocation of generic methods
3.4.1 Smalltalk-82
3.4.1.1 Type-specific invocation
3.4.1.2 Type-relative invocation
3.4.1.3 Sequential parent invocation
3.4.1.4 Distinguished method invocation
3.4.2 Loops
3.4.3 Zetalisp
3.4.4 Star Mesa
3.5 Invocation errors
3.5.1 “Nonexistent operation' errors
3.5.2 “Inappropriate generic type' errors

4. Basic operations on types

4.1 The methodology for description
4.2 The common abstraction
4.2.1 Type introduction
4.2.2 Types as value-space partitions
4.2.3 The parent/child relation
4.3 The Smalitalk realization
4.3.1 Type introduction operations
4.3.1.1 The realization of type
4.3.1.2 The classes relevant to type
4.3.1.3 The realization of new-type
4.3.1.4 The other procedures
4.3.2 Partitioning operaticns
4.3.3 Parent/child operations
4.3.3.1 The parents of a class
4.3.3.2 The information-extracting procedures
4.4 The Loops realization
4.4.1 Type introduction operations
4.4.1.1 The realization of type
4.4.1.2 The classes relevant to type
4.4.1.3 The realization of the procedures
4.4.2 Partitioning operations
4.4.3 Parent/child operations
4.5 The Zetalisp realization
4.5.1 Type introduction operations
4.5.2 Partitioning operations
4.5.3 Parent/child operations
4.5.4 "Partially defined"” flavors
4.6 The Star Mesa realization
4.6.1 The mechanics of the extension
4.6.2 The realization per se
5. Object creation and the instance variable operations

5.1 The commcn abstraction
* 5.2 The Smalltalk-80 and Smalitalk-82 realization

69
70
73
75
76
77
77
78
78
79
80
2

84

86
87

87
89
89
91

94

94

95

97

98

99
100
101
101
102
103
103
103
105
105
107
107
109
109
11
1
113
115
115
117

119

119
123

5.2.1 Instance variable names - Q.
5.2.2 Storage and retrieval via syntactic forms
5.2.3 Storage and retrleval via procedure invocation
5.2.4 Instantiation '
5.2.5 Conventions for object initialization -
5.2.5.1 The general phenomenon of redundant invocation
5.3 The Zetalisp realization v
5.3.1 Instance variable names
5.3.2 Storage and retrieval via syntactic forms
5.3.3 Storage and retrieval via procedure invocation
5.3.4 Instantiation
5.3.4.1 Abstract flavors
5.3.4.2 Mixture flavors
5.3.4.3 Verification of “required” components of flavors
5.3.5 Conventions for initialization
5.3.5.1 Instantiate-flavor make-instance, and the :init method
5.3.5.2 Verification of the initialization property list
5.3.6 Other techniques for instance variable operatlons
5.4 The Star Mesa realization
5.4.1 The relevant programming conventions
5.4.2 Instance variable names
5.4.3 Storage and retrieval via procedure invocation
5.4.4 Storage and retrieval via syntactic forms
5.4.5 instantiation
5.4.6 Conventions for object initialization
5.5 The Loops realization
5.5.1 The primitive instance-variable operations '
5.5.2 The common abstraction can still be reallzed
5.5.3 The *‘active values' abstraction
5.5.3.1 Storage and retrieval using the active value abstraction
5.5.3.2 Nested active values
5.5.3.3 Syntactic forms for active value operations
5.5.3.4 An exampie of using active values
5.5.3.5 Instantiation using the active values abstraction '
5.5.4 An assessment of active values -
5.5.4.1 Active values and the common abstraction
5.5.4.2 Two shortcomings of active values and how to surmount them
5.6 Two concepts related to instance variables
5.6.1 Class variables
5.6.2 Properties of variables
6. Algorithms for generic method computation

6.1 The assumption of a local operation set
6.2 The Smalitalk-80 and Smalltalk-82 algorithms

6.2.1 The local operation set of the example

6.2.2 The algorithm for generic method computation
6.3 The Loops algorithm)

6.3.1 The local operation sets of the example

6.3.2 The algorithm for generic method computation

+ 6.4 The Star Mesa algorithm
6.4.1 The local operation set of the example

123
125
126
128
129
130
131

132
133
134
135
136
136
137
138
138
139
139
141

141
142
142
144
145
146

147

147
148
151
152
153
154
154
155
156
156
157
158
158
159
161

161
162
162
164
165
165
165
171
71

6.4.2 Programming conventions for trait initialization procedures 171

6.4.3 The algorithm for generic method computation . 172

6.5 The Zetalisp algorithms L 174
6.5.1 Terminological preliminaries URTRIE 176
6.5.2 The local operation set of the example e ol 177
6.5.3 The default algorithm for generic method computation 179
6.5.3.1 The relevant local operations are all untyped 179

6.5.3.2 The introduction of :before and :after local operations 180

6.5.3.3 The introduction of :whopper local operations - 180°

6.5.3.4 Additional details concerning :daemon invocation 186

6.5.4 Evaluation of the default method construction algorithm 187

6.5.4.1 The Zetalisp algorithm reduces the amount of programming required 187,
6.5.4.2 The Zetalisp algorithm does a poor job of ordering component flavors 188

6.5.5 The other algorithms for generic method computation 189

6.5.5.1 Determining the method combination type and order 190

6.5.5.2 N-ary invocation algorithms 192

6.5.5.3 Other forms of daemon combination 194

6.5.5.4 Parameter-manipulating combinations 200

6.5.5.5 The default-method transformation on the loca! operation set 202

7. Defining the local operation set 206

7.1 The common abstraction 206

7.2 The realization in Smalltalk-80 and Smalltalk-82 209

7.2.1 Aside: operation classification in Smalltalk 211

7.3 The realization in Loops . 212

7.3.1 The procedures used in the example 216

7.4 The realization in Star Mesa 218

7.4.1 Traits and trait components 218

7.4.2 Programming conventions for defining trait components 220

7.4.3 Programming conventions for modifying trait components 221

7.4.4 Programming conventions for generic operation procedures 222

7.4.5 The definition of the local operation set 222

7.5 The realization in Zetalisp 225

8. Type declaration and type checking 229

8.1 Type declarations 229

8.1.1 The conventional approach 229

8.1.2 The multiple-inheritance languages] 230

8.2 Type checking 232

8.2.1 Our subject languages are not strongly typed 232

8.2.2 Multiple inheritance is compatible with strong typing 234

8.2.3 Inheritance-based type definition suggests a new kind of type checking 235
algorithm.

9. Summary, Conclusions, and Future Work 237

9.1 How definition by inheritance is realized - 237

9.1.1 Algorithms for generic operation set computation 237

9.1.1.1 The common properties 237

9.1.1.2 The differences 238

9.1.2 Generic method invocation 239

, 9.1.2.1 The common properties 239

9.1.2.2 The differences 240

9.1.3 Specification and invocation of the local operation set 241

9.1.3.1 The common properties . 241

9.1.3.2 The differences 242

9.1.4 The instance variable operations - 242

9.1.4.1 The common properties 242

9.1.4.2 The differences 244

9.2 The pragmatic impact on type construction 246

9.2.1 The pragmatic impact in the absence of conflicting inheritance 246

9.2.2 The pragmatic impect when inherited methods must be augmented 248

9.2.3 The pragmatic impact when parent conflict is resolved via choice 250

9.2.4 The pragmatic impact when parent conflict is resolved via generic method 252
synthesis

9.2.5 The pragmatic impact when parent conflict is resolved via local method 252
synthesis

9.3 Future work 254

9.3.1 Immediate projects 254

9.3.2 Long-term goals 254

List of Figures

Figure 2-1: The Zetalisp point flavor 33
Figure 2-2: The Zetalisp history-point flavor 33
Figure 2-3: The Zetalisp bounded-point flavor 34
Figure 2-4: The Zetalisp bh-point flavor 34
Figure 2-5: Utilities for the Loops implementation 35
Figure 2-6: The Loops PointClass and Point classes 35
Figure 2-7: The Loops HistoryPoint class 36
Figure 2-8: The Loops BoundedPointClass class 36
Figure 2-9: The Loops BoundedPoint class 37
Figure 2-10: The Loops BHPoint class 33
Figure 2-11: Utilities for the Smalltalk implementation 39
Figure 2-12: The Smalltaltk Point class 39
Figure 2-13: The Smalltalk HistoryPoint class 40
Figure 2-14: The Smalltalk BoundedPoint class, part 1 41
Figure 2-15: The Smalltalk BoundedPoint class, part 2 42
Figure 2-16: The Smalitalk-82 BHPoint class, part 1 43
Figure 2-17: The Smalltalk-82 BHPoint class, part 2 44
Figure 2-18: Contents of a "Utilities” module for the Star Mesa implementation, part 45
1
Figure 2-19: Contents of a “Utilities"” module for the Star Mesa implementation, part 46
2
Figure 2-20: The Star Mesa Point trait, part 1 46
Figure 2-21: The Star Mesa Point trait, part 2 a7
Figure 2-22: The Star Mesa HistoryPoint trait, part 1 a7
Figure 2-23: The Star Mesa HistoryPoint trait, part 2 48
Figure 2-24: The Star Mesa BoundedPoint trait, part 1 49
Figure 2-25: The Star Mesa BoundedPoint trait, part 2 50
Figure 2-26: The Star Mesa BHPoint trait, part 1 51
Figure 2-27: The Star Mesa BHPoint trait, part 2 52
Figure 3-1: Generic operation procedures in the Star Mesa example 71
Figure 4-1: Type introduction in Smalltalk-80 and Smalltalk-82 95
Figure 4-2: Partitioning operations in Smalltalk-80 and Smalltalk-82 95
Figure 4-3: Parent/child operations in Smalitalk-80 and Smalitalk-82 95
Figure 4-4: Type introduction in Loops 104
Figure 4-5: Partitioning operations in Loops 104
Figure 4-6: Parent/child operations in Loops 104
Figure 4-7: Ancestor ordering in the Loops example 109
Figure 4-8: Type introduction in Zetalisp 110
Figure 4-9: Partitioning operations in Zetalisp 110
Figure 4-10: Parent/child operations in Zetalisp 110
Figure 4-11: Type introduction in Star Mesa 1156
Figure 4-12: Partitioning operations in Star Mesa 115
Figure 4-13: Parent/child operations in Star Mesa 115
Figure 5-1: Instance variable operations in Smalltalk-80 and Smalitalk-82 121
Figure 5-2: Auxiliary operations of class Ob ject used in figure 5-1 121
Figure 5-3: Instance-variable operations in Loops 121
* Figure 5-4: Instance variable operations in Zetalisp 122

Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 7-1:

Instance-variable operations in Star Mesa

Basic instance variable operations in Loops
Class-instance property list operations in Loops
Local operation names in the Smalltalk example

The generic operation set of the Smalltalk example
The local operation set of the Loops example

The generic operation set of the Loops example

The local operation sets of the Star Mesa example
The generic operation sets of the Star Mesa example
Local operation names in the Zetalisp example

Two examples of Zetalisp daemon invocation
Example whopper definitions in Zetalisp

The local trait initialization procedures of the Star Mesa example

10

122
148
149
163
166
167
170
171
174
178
181
181
224

1. Overview

1.1 The goal of this report

This report is concerned with type definition in programming languages. It focuses on type
construction where properties of new types are synthesized from properties of some number of
existing types. A well-known name for this technique is definition by inheritance. If more

than one existing type is involved, it is known as definition by multip!e inheritance.

The literature on type definition by multiple inheritance largely consists of descriptions of the
languages in which such definition is possible. Motivation for specific constructs and cross-
system analysis is either cursory or simply omitted. Furthermore, language descriptions have
been generally ' given in the terminology of “object-oriented programming” (e.g., [Hewitt
77, XeroxLRG 81, Rentsch 82]). This has made it difficult to relate inheritance-based type

definilion i ihe iainsiream of work in lyped programming ianguages. '

As a result, there has been no satisfying account to date of:

e the similarities and differences between inheritance-based and non-inheritance-
based type definition;

o the similarities and differences among the proposals for type definition by
inheritance; or

e {he pragmatic significance of either of the above.

This report ameliorates this situation by examining how type definition via multiple inheritance

is realized in four contemporary programming languages.

! (Suzuki 81] and [Borningingalls 82a] are two attempts; there have been few others to date.

1

1.2 The four subject languages

The four languages which are discussed in this report are as follows.

e Zetalisp. Zetalisp (e.g., [Bawden et ... 1:-Z7, WeinrebMoon 81, Symbolics
84, MoonStallmanWeinreb 84]) is the primary implementation and application
language of the family of high-performance personal “Lisp Machines' based on the
original design of the MIT Artificial Intelligence Laboratory. It has been subsequently
developed by two commercial spinoffs, Symbolics, Inc. and Lisp Machines, Inc. The
systems described in [Symbolics 84] and [MoonStallmanWeinreb 84] are slightly
different realizations of the same fundamental approach.

Although flavors were developed after the initial design of the machine, they rapidly
became a key aspect of the system architecture, e.g., for multiprocessing, building
graphical user interfaces, network i/0, and condition and error handling. The Lisp
Machine software is the most complex system built to date in which multiple
inheritance has been extensively used.

e ‘‘'Star Mesa’’. The initial release of the Xerox Star office workstation [Seybold 81]
used an extension to Mesa [Mitchell et al. 79] which supports synthetic type
definitions in the form of “traits” [Curry et al. 82, Lipkie et al. 82, CurryAyers 83].
Like the Lisp Machine software, the Star software is a substantial application of the
multiple-inheritance methodology. However, more recent versions of the software
have eliminated the use of type definition by multiple inheritance and rely solely on
inheritance from a single type.

e ““Smalltalk-82"". [Borningingalls 82b] describes an extension to Smalltalk-80 in
which classes can have more than one superclass. This extension has been used
internally at Xerox PARC, but does not now have an active user community. In this
paper we will sometimes use the name “Smalltalk-82" to distinguish it from
unextended Smalitalk-80.

e Loops. Loops [BobrowStefik 83, Stefik et al. 83a] is an extension of Interlisp-D which
runs on the Xerox 1100 computer family. Although its original intention was to
implement *object-oriented programming” (e.g., [Rentsch 82] in Interlisp, it evolved
into a system which supported the “‘rule-oriented” and "action-oriented" paradigms

- as well.? Itis in active use as a tool for research and development in “knowledge
engineering."

These four languages represent much of the state of the art in type definition by multiple
inheritance. However, they do not cbnstitute all current proposals and/or implementations of

this idea. Other relevant work includes the following.

2The former relers to the paradigm of building computer systems through the use of predicate/action rules (e.g.. see
[watermanHayes-Rath 78}). The latter term reters to the “constraint system" approach to programming developed at
MIT (e.g., [SussmanSteele 80, Stcele 80]) and elsewhere (e.g., [Borning 81))

12

e [Wood 82] and [Allen et al 82] describe how types similar to Zetalisp's flavors were
incorporated in Franz Lisp.

e [Novak 82, Novak 83a, Novak 83b] describes an extension to Lisp which
incorporates type-like “object descriptions” whose operation sets are synthesized
from those of other object descriptions.

¢ The “capsules” system described in [Zippel 83] constructs new types from one or
more existing types, based on descriptions of known properties of the existing types
and of the desired properties of the new type.

¢ The “QLogo” and “QLisp’ languages of [Drescher 84] are extensions of Logo and
Lisp which embody a type system which allows any object to be a type, and allows
properties of such objects to be defined as syntheses of those of any number of
existing objects.

1.3 Properties of types defined by inheritance

Using inheritance to defining some property P of an object O involves a set of other objects
from which the value of P is computed. We will refer to this set of objects as the “parents’ of
O. and will use the terms “child,” "ancestor,” and “descendant" in the ohvious way. We will see
some realizatioﬁs of inheritance in which an ordering relation is imposed on the parents, and

some in which order is irrelevant.

There are two aspects of programming-language types for which definition by inheritance has
been used. The following is a brief description; chapters 6 and 5 provide a more thorough

discussion.

1.3.1 The generic operation set of a type

Each of our subject languages supports one or more forms for procedure invocation where the
identity of the invoked procedure depends on (a) a symbo! derived from the form, and (b) the type
of a distinguished parameter of the form. Such expressions are commonly referred to as
“‘generic” procedure invocations. We will refer to the symbol as the “operation name" of the

invocation and to the distinguished parameter as the “generic parameter' of the invocaticn.

'Thus. for each type T, we can identify a set of associations between operation names and

13

procedures which the generic invocation form will invoke when the generic parameter has type
T. We will refer to this association between operation names and procedures as the “generic
operation set” of the type T. The procedure associated with a particular operation name will be

called the “method" for that operation name for type T.

In many programming languages, the generic operation set of a type is enumerated by the type
definer. For the types which are the focus of this report, generic operation sets are computed
rather than enumerated. The computation depends on a directly specified property of a type and
its ancestors. This property, referred to as the “local operation set,” is also a set of associations

between symbols and procedures.

The algorithm used to construct the generic operation set of a type from the local operation
sets of the type and its ancestors is one of the key distinguishing characteristics of different
approaches to type definition by inheritance. However, all share the following property, which

we will refer to as the “consistent method inheritance’ property.

If (a) all parents which define a given generic operation use the identical rethod
and (b) the new type has no local method, then the method of the new type is identical
to the method shared by the parents.

The “inheritance"” metaphor is relevant because we can view the method as being “passed

down' from the parents of the type.

As we will see, the consistent method inheritance property can greatly reduce the work

required to define new types.

1.3.2 The instance variables of a type

A common abstraction embodied by instances of all of our subject types is that of a function, in
the mathematical sense, from symbols to values. Variants of this abstraction are well-known,
e.g., the RECORD types of Algol 68 and Pascal, the “‘property lists’’ and *‘association lists" often

used in Lisp programs, and the general concepts of *'symbol table'* and “dictionary."

!

14

Each of our four languages provides procedures for manipulating instances of our subject
types in terms of some variant of this abstraction. Specifically, prccedures exist for ‘storage"
and “retrieval;” i.e., for associating a value with a given symbol and obtaining the value
associated with a given symbol. Since the term “instance variable" is often used to refer to these
symbols, we will refer to the storage and retrieval procedures as instance-variable

operations.

The details of the behavior of the procedures for instance variable storage and retrieval differ in
our four languages. For example, associating a value with a symbol for which no value is
currently associated is possible in Loops, but not in Zetalisp, Smalltalk, or Star Mesa. However,
the behavior of the procedures of the instance-variable operation set always depends on a set of
symbols associated with the type. We will refer to these symbols as the instance variable names

of the type.

The algorithm for computing the instance variable names of a type involves a second property
associated with types, which we will refer to as its “local instance variable names.” In each of
ou.r four languages, the instance variable names of a type are computed as the union of the local
instance variable names of the type and the local instance variables of ali ancestors of the type.

Thus, the set of instance variables of a type is defined by inheritance.

1.4 The historical context

A thumbnail histoiy of the significant predecessors of type definition by multiple inheritance is

as follows.

e The Sketchpad graphics system of [Sutherland 63] embodied primitive mechanisms
for generic invocation, the definition of a generic operation set of a type, and the
definition of other properties of objects (e.g., the “'parts’ of an object) using multiple
inheritance. But adding new types, generic operations, or other inherited properties
required intimate knowledge of the implementation of the system. The Thinglab
system described in [Borning 81] was based on many of the same ideas, but allowed
new kind of objects and properties tc be defined with far less knowledge of
implementation detail.

e The CLASS construct of Simula 67 [Dahl 68, Birtwhistle et al. 73] embodied the key

15

concepts of generic invocation, associating a generic operation set with a type,
associating a set of instance variables with types, and defining poth the generic
operation set and the set of instance variables by inheritance.

¢ The programming methodology of “abstract type definition" (e.g. [Hoare 72, Morris
73, LiskovZilles 74, Reynolds 74, Demers et al. 78, Guttag 80]) is based on the utility
of associating two operation sets for each type: an “abstraction” operation set to
embody the desired behavior of instances of the type, and a “representation"
operation set to implement that functionality. This methodology was a key
motivating force in the design of the multiple-inheritance languages. It is natural to
treat the generic operations as abstract operations and to have the instance variable
operations fill the role of representation operations.

Despite the common motivation, there are three significant differences between the
mainstream of the ‘abstract type' languages (e.g.,[Wulf et al. 76, Tennent
77, GeschkeMorrisSatterthwaite 77, Lampson et al. 77, Liskov et al. 79, Gordon et al.
79, BoehmDemersDonahue 80, Wirth 80] and the “muitiple inheritance" languages
we are studying here.

o With few exceptions, type definitions in the abstract-type languages construct
neither the aostract operation set nor the representation operation set of a
type by inheritance. For example, of the languages referred to above, only
Russell's with constructor [BoehmDemersDonahue 80] synthesizes the
operation set of a type from the operation set of an existina tvpe and a local
operation set.3 The with constructor cannot have more than one parent and
cannot create types with a different set of underlying primitive operations than
its parent. To illustrate the latter, no matter what replaces the . . . in the
following:

Integer with
all computations on instances of the resulting type can be expressed in terms
of Integer operations.

o The abstract-type languages incorporate syntactic constraints which prevent
the representation operations of a type from being used outside a specified
lexical context. The multiple inheritance languages allow the use cf the
instance-variable operation set anywhere in programs.

o The abstract-type languages incorporate constraints which exclude programs
for which a type-checking algorithm fails. The multiple inheritance languages
impose no such constraints, but can guarantee that an error will be signalled
on any aitempt to invoke a non-existent generic operation or to obtain the
value of a non-existent instance variable.

¢ The Smalltalk family of languages (Smalltalk-72 [Shoch 79), Smalltalk-76 [Ingalls 78],
and Smalitalk-80 [XeroxLRG 81, GoldbergRobson 83]) extended both the Simula and
the abstract-type designs by:

3In Russell, types constructed via the “operation modification" constructor:

. TypePrimary with withlist
have operation sets defined by inheritance. TypePrimary represents the single parent type and withlist enumerates the
local operation set.

1A

o defining the generic operation sets and the instance variables of all types via
inheritance from an existing type;

o having the primitive procedure-invocation form cause generic invocation;

orealizing types as data structures which can be created and modified during
program execution (cf. [Wegbreit 70, Wegbreit 74]));

o allowing instances of programmer-defined types to be themselves used as
types.

1.5 What'’s the point?

Why define the generic operation set and the instance variables of a type by inheritance rather
than by enumeration? Based on the literature which attempts to motivate type definition by
inheritance (e.g., [Ingalls 78, WeinrebMoon 81, XeroxLRG 81, Curry et al. 82, Lipkie et al.
82, Rentsch 82,' GoldbergRobson 83, BobrowStefik 83, CurryAyers 83, Novak 83b]) we can

identify the following advantages.

1.5.1 The use o.f inheritance for generic operation set definition can reduce the work
required to define new types.

If generic operation sets are defined by enumeration, defining a type with N operations requires
the definition ot the N procedures to be used as methods. But if generic operation sets are
defined by single inheritance, the number of procedure definitions needed to construct a type is
proportional to the number of methods for which the algorithm for computing the generic

operation set does not produce the desired procedure. In these situations, less work is required

to define new types.

For example, suppose we are given a type window with a redisplay operation, and wish to
add a new type which exhibits the same behavior but keeps statistics on red1isplay invocations. -
Definition of the generic operation set by enumeration requires defining a procedure for each of
the generic operations of window. But if definition by inheritance is available, only the
redisplay dperation need be reimplemented. The number of procedure definitions which can

potentially be eliminated increases with the number of generic operations of the type and with

the degree of similarity between the operation set of the new type and that of existing types.

17

The availability of multiple inheritance offers the potential for an even greater reduction in the
work required to define new types. This will occur in situations where the generic operation set
of the new type is similar to the operation sets of more than one existing type. To illustrate this
point, [Borninglngalls 82b] uses the example of defining the type ReadWriteStream given an
existing ReadStream and WriteStream. The generic operation set of ReadWriteStream

should have all the operations of both ReadStream and WriteStream.

If only single inheritance is available, then either ReadStream or WriteStream must be
chosen as the parent. If we choose the former, then a method must be defined for all generic
operations of WriteStream which are not operations of ReadStream. If we choose the latter,
the situation is reversed. But if ReadWriteStream can be defined by multiple inheritance, then
methods for both ReadStream and WriteStream operations can be defined by the method

computation algorithm rather than by enumeration.

It should be clear that definition by inheritance has no utility if the collection of computed
methods does not exhibit the desired abstraction. A common observation is that inheritance is
more likely to be useful when the behavior embodies by inherited abstractions is “independent"”

(e.g., [WeinrebMoon 80, Cannon 82]), but no definition of “independent” has been proposed.

An informal argument for a sufficient condition for the success of an inheritance algorithm is as
follows. If the generic operation names of each of the parent types are disjoint, and the instance
varia.bles used in the realization of each type are also disjoint, then there cannot possibly be any
interaction between the methods. Thus, the generic operation set produced by an inheritance
algorithm which embodies thé consistent method inheritance property of section 1.3.1 will satisfy

the abstractions embodied by each of the parent types.

18

1.5.2 The use of inheritance for generic operation set definition can make it easier to
modify shared abstractions.
Suppose we have a collection of types which are all intended to support the same abstract
operation set through their generic operations. Suppose further that it has been deemed
desirable to add additional operations to the abstraction, and methods can be defined for these

operations which will exhibit the desired behavior for all of these types.

If the generic operation set is defined by enumeration, a definition of the new operation must be
made for each type. But if the generic operation set is defined by inheritance and there is a
common ancestor which corresponds to the abstraction, modifying the local operation set of that
ancestor will add the new operation to the operation set of all descendants. This behavior

follows from the consistent method inheritance property.

As a concrete example, consider adding an *incremental redisplay” operation to a “window"
abstraction reali‘zed by the three types notification-window, documentation-window, and
editing-window. If the generic operation sets of each of these types were defined by
enumeration, a separate definition of incremantal-redisplay would have to be added for
each type. But if these three types were defined by inheritance with.a basic-window type as an
ancestor, defining an incremental-redisplay operation for basic-window would

automatically result in its definition for notification, documentation, and editing windows.

This consequence of generic operation set definition by inheritance has two principal
advantages. First, analogous to the new-type-definition case, the number of procedure
definitions needed to carry out the modification is reduced. Second, and even more important,
the augmenter of the abstraction does not have to know the identity of the augmented types.
This latter aspect greatly facilitates the design of of large, multi-layered systems, because it
reduces the need for communication between the designers of the various layers. The software

oI“ the MIT Lisp Machine is an exceilent example of such a system.

19

1.5.3 The rationale for defining instance variable by inheritance

Given that it is desirable to define the generic operation set by inheritance, the desirabiilty of
defining instance variables by inheritance follows directly. For example, it would be pointless for
a type to inherit methods which implement an “list" abstraction in terms of operations on
instance variables named “first” and ‘‘rest” if no such instance variables were defined for

instances of the type.

Thus, if inherited methods are to wor‘k at all, all instance variables of all parent types must be
instance variables of the new type. Defining instance variables by inheritance is more
advantageous than defining them by enumeration because less work is required to define the
new type, less work is required to modify an existing type, and a source of programming error

(i.e., omitting an instance variable of a parent in the enumeration) is eliminated.

1.6 What’s not the point

There are a number of advantages of using our four subject languages which do not derive
from definition by inheritance. However, the literature concerning these languages does not
clearly distinguish between the benefits gained by definition by inheritance and the advantages
which flow from other aspects of the language. Thus, we will briefly discuss two other benefits’

associated with using our four subject languages but which do not derive from inheritance-based

type definition.

1.6.1 Modularity is increased by using generic invocations to implement abstract

operations
If a given abstract computation is carried out by a generic invocation, alternative algorithms
can be defined for specific types without affecting the procedure bodies which implement the -

operations for other types. This modularity results in two principal benefits.

o Itis easier to modify the algorithm for a specific type, since the procedure body to be
modified is only applicable for a single type, and can thus be smaller.

* elt is less dangerous to experiment with such madifications, since the moditied

20

procedure body will never be used to carry out the computation for instances of
unrelated types.

Both of these advantages would stili obtain even if th_e"the’ generic operation set of a type were
defined by enumeration (e.g., as in Clu [Liskov et al. 79] or Russell [BoehmDemersDonahue 80])

rather than by inheritance.

1.6.2 Redundancy is reduced by sharing methods among types

If several types can use the same algorithm to implement a given generic operation, definition
by inheritance allows the procedure embodying the algorithm to be defined once rather than
many times. The advantages of such sharing are well known: less work in initial creation and

subsequent modification, increased program clarity, and no opportunity for copying errors.

The consistent method inheritance property often results in sharing methods among types,
2.a., the sharing of the method for the 1ncremental—.r9display operation described above.
But the same sharing could occur even if generic operation sets had to be defined by
enumeration of operation names and procedures. Definition by inheritance reduces the work

required to obtain sharing, but is not necessary for such sharing to occur.

1.6.3 Redundancy is reduced by having methods of types invoke methods of ancestor
types

In many cases, the methods of a type cannot be shared by some descendant, but can be

invo;(ed as a subroutine by methods of descendants. As an often-used example, it is easy to

imagine that the display operation for a bordered-window type calls the display for window

either before or after drawing the korder.

Again, the use of definition by inheritance can reduce the work required to employ this
programming methodology, but is not essential for its use. Notice that in this situation, the
consistent method inheritance property is not applicable, since the new type must have a local

miethod which realizes the additional computation required (e.g., drawing the box). Thus, the

21

critical properties are (a) the procedure prcduced by the method definition algorithm in the
presence of c_onl‘licting inheritance, and (b) how methods of types can invoke methods of

ancestor types. In these properties, our four languages differ considerabiy.

1.7 Inheritance in programming languages v. inheritance in
knowledge representation languages
Definition by inheritance is used in domains other than the definition of programming language
types. The “knowledge representation” languages of artificial intelligence (e.g., [Minsky 74],
[BobrowWinograd 77a], [BobrowWinograd 77b}, [GoldsteinRoberts 77], [Brachman 78], [Stefik
78], [GreinerLenat 80], [BrachmanFikesLevesque 83], [Touretzky 84], [BrachmanSchmolze 84]),
use inheritance io define the computational objects used to represent the real-worid cSiocte with

which the program is concerned and to represent assertions about those objects.

The key difference between inheritance in programming languages and inheritance in
knowledge representation lies in the abstractions which are associated with the objects thus
defined. In programming Ilanguages, there are two operation sets which are relevant for an
object: instance-variable operations and generic operations. But the highest level of abstraction
embodied in the current generation of kn‘owledge representation languages are procedures with
the semantics of “assert that property P of object O has value V" and “what is the value of
property P of object O?" These are direct analogues of the instance-variable operations of

programming language types.

Some knowledge representation systems (e.g..} [GreinerLenat 80, IntelliGenetics 83, Haase 84])
do allow type-specific methods to be specified for the instance-variable operations. In other
words, specialized procedures can be defined for computing a given property of the instances of
a given type. However, these procedures are still concerned with instance variables rather than

type-specific abstractions.

'Thus. the current situation can be summarized by the following aphorism:

22

In knowledge representation, instance variables are part of the abstraction. In
programming languages, they are not.

1.8 Organization of the report

An outline of the remainder of this document is as follows.

e Chapter 2 presents a programming problem to which reference is made throughout
the sequel. It shows how to accomplish this task using multiple inheritance in our
four subject languages.

e Chapter 3 describes the generic invocation mechanisms applicable to our subject
types.

e Chapter 4 describes the most basic aspects of our subject types. It identifies the
minimal type-defining forms, the procedures which provide information about the
type of an object and the parent/child relation on types.

e Chapter 5 describes how the instance-variable operation set is realized for each of
our subject types, and how the collection of instance variables of a type are defined.

e Chapter 6 describes how the generic operation set of our subject types are
computed from the local operation sets of the type and its ancestors.

e Chapter 7 describes how local operation sets are associated with our subject types.
e Chapter 8 covers mechanisms for type declarations and type checking.

e Chapter 9 concludes by summarizing the similarities and differences which we will
have seen, and the impact of these differences on programmer productivity.

The descriptive material in this report is, in essence, a synthesis of four reference manuals in a
common conceptual framework. It contains examples of each construct presented, and provides
at least some explanation of the rationale behind the design and the advantages and
disadvantages of the chosen alternative.vAs a result of its comprehensiveness and level of detail,
it can be quite difficult to read. The reader who would like to get right to the bottom line can

begin with chapter 9 and explore the details in the body of the report as desired.

23

2. The illustrative example

The explanation of concepts is always easier in the context of an example. We now present a
programming task for which type definition by multiple inheritance can be brought to bear, and
the way in which this task can be carried out using each of our four multiple-inheritance type

constructors.

This example is concerned with defining four types and associated operations. The description
will be given at three levels of abstraction. The functional level describes the observable effecis
of operation invocations. The representational level describes the data structures representing
the four types. The implementation level describes how the methods for each generic operation
are defined in terms of other methods and procedures which have specified effects on the data

structures of the representation.

2.1 Functional description
The simplest of our four types, a point, is a formalization of a movable point in one-dimensicnal
space. It is a one-dimensional, mutable variant of the Point described in chapter 18 of

[GoldbergRobson 83).4

There are four relevant abstraction operations for points: create, location, move, and

display.

e The create operation takes an optional numeric parameter, location, whose value if
unspecified is 0. It returns a point object distinct from all other objects.

o The location operation maps a point into a number. The initial location of a newly
created point is the value is the location parameter of the create operation.

o The move operation takes a boint and a number and modifies the point so that
subsequent location operations will return that number.

o The display operation takes a point and a "stream’ (a realization of an output
device) and prints the string "Point at location" on the stream, where location is its
current location.

'4Since 'the Point class is central to the design of Smalltalk's graphical user interface, no sane programmer would
ever redefine it. We do so here solely for pedagogica! reasons .

24

The second type, history-point, is a point which is associated with a list containing a record
of its initial position and all subsequent moves. Its description is identical to that of point with

the following addition:

¢ The history operation returns an ordered list representing the sequence of
locations the point has had since its creation.

The third abstract type is bounded-point. Intuitively, bounded points are associated with a

min and a max which define a lower and upper bound for location. l.e., for any bounded point

p:
min (p) < = location (p) <= max (p)

The description for bounded-point can be derived from the description of point via four
additional operations and three additions to the description of the point operations.® The new

operations are as foilows.

° _The min operation takes a point and returns the current upper bound for the point.
e The max operation takes a point and returns the current lower bound for the point.

e The setmin operation takes a point and a number. [f the number is less than or
equal to the current location, the number is made the new lower bound for the point.
Otherwise, ar: error is signalled.

e The setmax operation takes a point and a number. If the number is greater than or
equal to the current location, the number is made the new upper bound for the point.
Otherwise, an error is signalled.

Here are the modifications:

e The create operation takes to additional optional parameters, min and max. It
returns a new bounded-point, using its parameters as the initial values of
location, min, and max. If the bounded-point invariant does not hold between
these three numbers, it signals an error rather than creating a new object. The
default values of min and max are 0 and 100, respectively.

e The move operation will not move a point to a location smaller than min or iarger
than max.

sAs an aside, the syntactic approach of the Larch specification system [GuttagHorning 83] facilitates the process of
cbnstructing formal specifications where “text” of new specilications can be described as a manipulalion of old ones.
This style of specification is well-suited for formal specitication for inheritance-based type definition.

25

e The display operation also prints the min and max.

The final type, bh-point, can be viewed as a synthesis of bounded-point and history-point.
It can be described as consisting of adding the description for the history operation given above
and the description of bounds-history operation given below to the description of

bounded-point.

e The bounds-history operation returns a list whose elements have the form

(min number history-length)
or

(max number history-length)
The semantics of each entry is that a change to min was made to number at when
the history of the related point was history-length long. The bounds-history of a
newly created point has one "'min" entry and one “max" entry, corresponding to the
initial minimum and maximum of the point. Each subsequent setmax and setmin
causes an additional entry to be added to the end of the list.

The motivation for the bounds-history operation is that it, together with history, allows

reconstruction of the sequence of state changes undergone by bh-points.

2.2 Representation description

The data structures used to represent instances of our four types are as follows:

e Instances of point are represented as a memory cell containing a number. Create
creates a new cell and stores the specified number. Move stores a new number in
the cell.

e Instances of history-point have three cells: one for the 1Tocation, one for the
beginning of a list of conses® containing the history, and one to the last cons cell of
the history list. Create creates a list which contains the initial value as the only
member, and stores it in history list and the tail pointer. Move replaces the cdr of the
cons stored in the tail pointer cell with a new cons containing the new location. It
then changes the tail pointer to contain the new cons. History returns a copy of
the list rooted at the cons contained in the history list cell.

e Instances of bounded-point are represented using three memory cells. These
cells contain numbers representing the current 1ocation, max, and min. Croeate
checks whether the specified number is within the specified bounds, then creates a

BConsgs are objects with car, cdr, rplaca, and rplacd, with lhe usual Lisp semantics. A Smalltalk
OtderedCol1ection would provide a more elegant implementation, but would make comparison among the languages
more difficult.

26

cell and stores the three values. Move, setmin, and setmax makes that the
requested state change after checking that it would not violate the irvariant.

e Instances of BH-point have seven cells. Five of these, for 1ocation, min, max, the
history list, and the tail pointer of the history list, serve the same function as
described above. The two new cells hold a pointer to the bounds-history list and a
tail pointer to this list. Besides updating the min or max cell, setmin and setmax add
a new cons cell to the bounds-history list by replacing the cdr of the tail pointer to
that list.

2.3 Implementation level
An important criterion in the design of the modularization is the reduction of redundancy in
procedure definition and redundancy in execution. The former refers to duplicated program iext;

the latter means the unnecessary multiple execution of procedures.

There are two ways in which this motivation is brought to bear on the design. First, methods of
types will invoke methods of ancestor types where possible. Second, methods of types will be

modularized such that methods of descendant types can call a subset of these procedures.

We will use the implementation of the display procedure will as a simple illustration of the

rationale and use of this approach to method implementation.

2.3.1 The implementation of display

The implementation of the display operations is as follows.

e Point. The method is a procedure which prints (the name of) the type of the point,
. followed by the location of the point.

e History-point. The method invokes two procedures:

1. The point method.
2. A procedure which prints the location-history list.

e Bounded-point. The method invokes two procedures:

1. The method for point.
2. A procedure which prints the current upper and lower bounds.

' e BH-point. The method invokes four procedures:

27

1. The point method.
2. Procedure (2) called by the history-point method.
3. Procedure (2) called by the bounded-point method.

4. A procedure which prints the bounds-history list.

This modularization introduces two auxiliary procedures, the of bounded-point and the

location-history printer of history-point.

Why did history-point and bounded-point introduce extra procedures? Otherwise, the method

for bh-point would have had either redundancy in execution or definition.

To see why this is so, suppose that the method for bounded-point invoked the method for

point, then printed the upper bound, then printed lower bound.
(1ambda (p)
(point-display p)
... code for printing upper and lower bounds ...)

Suppose further that the method for history-point invoked the method for point, then printed

the location history:
(1ambda (p)
(point-display p)
... code for printing location history ...)

How are we now to define the method for BH-point? Suppose we defined it to ca!l the method

of bounded-point, then call the method of history-point, then print the bounds history:
(1ambda (p)
(bounded-point-display p)
(history-point-display p)
... code for printing location history ...)

Such a method would not exhibit the desired behavior because the method for point would be
called twice: once by the method for bounded-point, and once by that of history-point. Thus,

the result of displaying an instance of bh-point would produce something like:

bh-point at location: 5
with bounds: 0, 100
bh-point at location: 5
with location history: 6§ 17 32
‘with bounds history: <min, 0, 0> <max, 20, 0> <max, 50, 2>

rather than:

28

bh-point at locaticn: §
with bounds: 0, 100
with location history: 5§ 17 32
with bounds history: <min, 0, 0> <max, 20, 0> <max, 50, 2>

The above is an example of execution redundancy: the undesired multiple execution of a

procedure. In this case, the redundancy produces observable erroneous behavior.

A second approach would involve copying parts of the history-point and bounded-point

methods:
(1ambda (p)
(point-display p)
... code for printing upper and lower bounds ...
... code for printing location history ...
... code for printing bounds history ...)
Such a procedure would exhibit the desired behavior, but at the cost of redundancy of procedure

definition.

Given that both of the above are undesirable, the rationale for the original implementation
should be clear. There is no structural redundancy: the implementation of each of the four
printing modules (location, upper/lower bounds, location history, and bounds history) each
occur only in a single procedure. And there is no functional redundancy, since none of these

procedures is invoked more than once.

2.3.2 The implementation of create

The create operation is implemented as follows.
e Point. The method calls two procedures.

1. A prccedure to allocate the storage for the new object.

2. A procedure to store the value specified for location into the corresponding
representation component of the new object.

¢ Bounded-point. The method calls four procedi'res:

1. A procedure to verify that the specified location, min, and max are consistent.
2. Procedure (1) called by the point method.

3. Procedure (2) called by the point method.

[27a)

4. A procedure to store the values for the specified min and max in the
corresponding representation components.

¢ History-point. The method calls three procedures.

1. Procedure (1) called by the point method.
2. Procedure (2) called by the point method.

3. A procedure to create the first cons cell for the history list, and store it in the
hlist and htail components of the new object.

e BH-point. The method calls five procedures:

1. Procedure (1) called by the bounded-point method.
2. Procedure (1) called by the point method.
3. Procedure (2) called by the point method.
4. Procedure (3) called by the bounded-point method.

5. Prccedure (3) called by the history-point method.

A slight difference in the Zetalisp implementation will realize steps (1) and (4) of the

bounded-point procedure as a single procedure.

2.3.3 The implementation of move

The implementation of the move operation in the four types is as follows:

e Point. The method is a procedure which changes the value of the location
component of the representation.

e Bounded-point. The method invokes two procedures:

1. A procedure to check the validity of the new location.
2. The method for point.

e History-point. The method invokes two procedures:

1. The method for point.
2. A procedure to creale the initial values of the hlist and htail components.

e BH-point. The method invokes three procedures:

‘ " 1. Procedure (1) called by the bounded-point method.

2. The method for point.

3. Procedure (2) called by the history-point method.

2.3.4 The implementation of setmin and setmax

The implementations of setmin and setmax both satisfy the tollowing description:

e Bounded-point. The method is a procedure which first checks the bounds then
stores into the relevant representation component.

e BH-point. The method invokes two procedures:

1. The method for bounded-point.
2. A procedure to add a new cons cell to the cell stored in the bhtail

representation component, then stores the new cell in that component.

2.3.5 The implementations of the remaining operations
The implementations of location, min, max, history, and bounds-history are completely

straightforward. They are all realize by the same procedure in all types for which the operaiion is

meaningful.

e The method for location, min, and max returns the current value of the
corresponding components of the representation.

@ The method for history returns a copy of the list rooted in the hlist component.

e The method for boundshistory returns a copy of the list rooted in the bhlist
component.

2.4 Four implementations of the example program

The following figures describe an implementation of the above-described program in each of
our for languages. The Zetalisp implementation is in figures 2-1 through 2-4. The Loops
implementation is in figures 2-5 through 2-10. The Smalltalk-82 implementation is in figures

2-11 through 2-1 7.7 The Star Mesa implementation is in figures 2-18 through 2-27.

-

7Knowlgdgeable Smalltalk programmers will be surprised to see the familiar compile:classified: replaced with
cémpileAndStore:. This simpler version was used in order to cmphasize the similarily between operation set
definition in Smalltulk and the other subject languages.

9

It should be clear that many different solutions could be constructed ir. our four languages.
Without going into detail now, the solutions were chosen to illustrate the impact of different
facilities for operation set definition and invocation. A more complete rationale will be provided

later. described in more detail later.

In these programs, the types and operations have been given different names to make our
example program consistent with the naming conventions used in the languages. For example,
the operation name display is realized as display in Zetalisp, Disp1ay in Smalitalk and Star

Mesa, and display: in Smalitalk.

Additionally, the internal procedures used in the different implementations are given different
names. This reflects the different modularization paradigms used in the different approaches.
For example, the (:before :move) method of the bounded-point flavor in Zetalisp, the
InternalBeforeMove operation of the class BoundedPoint in Loops, the internalMave
operation of the Smaitalk BoundedPo1int class, and the InternalMove local procedure of the

BoundedPo1int trait in Star Mesa.

an

(defflavor point
((1ocation 0))
()
:gettable-instance-variables
:initable-instance-variables)

(defmethod (point :move) (newloc)
(setq location newloc)
self)

(defmethod (point :display) (stream)
(format stream
"~%~s at location: ~d"
(typep self)
(send self :location)))

Figure 2-1: The Zetalisp point flavor

(defflavor history-point
(h1ist htail)
(point))

(defmethod (history-point :after :init) (ignore)
(setq h1list (1ist (send self :location)))
(setq htail hlist))

(defmethod (history-point :after :move) (newloc)
(rplacd htail (1ist newloc))
(setq htail (cdr htail)))

(defmethod (history-point :history) ()
(copylist hlist))

(defmethod (history-point :after :display) (stream)
(format stream
"~% with history:~{ ~d~}"
(send self :history)))

Figure 2-2: The Zetalisp history-pcint flavor

no

(defflavor bounded-point
({(min 0)
(max 100))
(point)
:settable-instance-variables
;initable-instance-vaiiables)

(defmethod (bounded-point :before :init) (unused)
(if (not (and (<= min (send self :location)) (<= (send self :locaticn) max)))
(ferror "Location ~d for new point ~s is inconsistent with min ~d and max ~d."
(send self :location)
(send salf :min)
(send self :mix))))

(defmethod (bounded-point :before :move) (newloc)
(if (not (and (<= min newloc) (<= newloc max}))
(ferror "New location ~d for point ~s is not between ~d and ~d."
newloc self min max)))

(defmethod (bounded-point :before :set-min) (newmin)
(if (not (<= newmin (send self :locatien)))
(ferror "New minimum ~d for point ~s is greater than present location ~d."
newmin self (send self :location))))

(defmethod (bounded-point :before :set-max) (newmax)
(if (not (<= (send self :location) newmax))
(ferror "New maximum ~d for point ~s 1s less than present location ~d.”
newmax self (send self :lccation))))

(defmethod (bounded-point :after :display) (stream)
(format stream :
"~% with bounds: ~d, ~d"
(send self :min)
(send self :max)))

Figure 2-3: The Zetalisp bounded-point flavor

(defflavor bh-point
(bh1ist bhtail)
(bounded-point history-point))

(defmethod (bh-point :after :init) (ignore)
(setq bhlist (1ist *(min ,min 0) °(max .max 0)))
(setq bhtail (cdr bhlist)))

(defmethod (bh-point :after :set-min) (newmin)
(rplacd bhtail *((min ,newmin ,(length hlist))))
(setq bhtail (cdr bhtail)))

(defmethod (bh-point :after :set-max) (nawmax)
(rplacd bhtail '((max ,newmax ,(length hlist}))})
(setq bhtail (cdr bhtail}))

(defmethod (bh-paint :bounds-history) ()
(copylist bhlist))

(defmethod (bh-point :after :display) (stream)
(format stream
".% with bounds history:~{ ~{<~s, ~d, ~d>~}~}"
(send self :bounds-history)))

Figure 2-4: The Zetalisp bh-point flavor

(DEFINEQ (AllLocalMethods! (NLAMBDA .arglist.
"Call the first parameter '‘self'' and the second ®'‘opname."’’
AllLocalMethods! invokes all local methods for oprame of the class of self
and all ancestors of that class.”
(PROG ((.args. (MAPCAR .arglist. 'EVAL))
(self (CAR .args.))
(opname (CADR .args.))
(class (Send self Class))
(ancestors (DREVERSE (Send class List! ‘'Supers))))
(MAPC ancestors
(LAMBDA (c)
(PROG ((handler (GetMethodHere c opname)))
(IF (NEQ handler NotSetValue)
(APPLY handler (CDDR .args.))))))))))

(PUTPROP 'AllLocalMethods
'MACRO
‘(form ‘(AllLocalMethods! ,(CAR form) ',(CADR form) . ,(CDDR form))))

Figure 2-5: Utilities for the Loops implementation

(DefClass PointClass
(MetaClass MetaClass)
(Supers Class)
(Methods (Create PointClass.Create)
(New PointClass.New)))

(DEFINEQ (PointClass.Create (self plist)
(PROG ((newobj))
(SETQ newobj (SendSuper self New)) ;Invokes the New method of $Class.
(Send newobj Initiaiize plist)
newobj)))

(DEFINEQ (PointClass.New (self)
(Send self Create Nil)))

(DefClass Point
(MetaClass Class)
(Supers Object)
(InstanceVariables (loc 0))
(Methods (Initialize Point.Initialize)
(Location Point.Location)
. (Move Point.Move)
(Display Point.Display)))

(DEFINEQ (Point.Initialize (self plist)
(Al1LocalMethods self Partiallnitialize plist)))

(DEFINEQ (Point.Partiallnitialize (self plist)
(Putvalue self 'loc (PlistGet plist "location 0))))

(DEFINEQ (Point.Location (self)
(Getvalue self 'loc)))

(DEFINEQ (Point.Move (self loc)
(Putvalue self 'loc loc)
self))

(DEFINEQ (Point.Display (self stream)
(PRIN1 (Send self ClassName) stream)
- (PRIN1- " at location: " stream) ’ -
(PRIN1 (Send self Location) stream)))

Figure 2-6: The Loops PointClass and Point classes

(DefClass HistoryPoint
(MetaClass PointClass)
(Supers Point)
(InstanceVariables
(hlist nil)
(htail nil))
(Methods
(Initialize HistoryPoint. Initialize)
(PartialInitialize HistoryPoint.Partiallnitialize)
(Move HistoryPoint.Move)
(rartialMove HistoryPoint.PartialMovae)
(History HistoryPoint.History)
(Display HistoryPoint.Display)
(PartialDisplay HistoryPoint.PartialDisplay)))

(DEFINEQ (HistoryPoint.Partiallnitialize (self plist)
(Putvalue self ‘'hlist (list (@ :1oc)))
(Putvalue self ‘*htail (@ :hlist))))

(DEFINEQ (HistoryPoint.Move (self loc)
(SendSuper self Move loc) , Invokes Point.Move
(AllLocalMethods self PartialMove loc)))

(DEFINEQ (HistoryPoint.PartialMove (self loc)
(RPLACD (@ :htail) (list (@ :1oc)))
(Putvalue self ‘'htail- (COR (@ :htail)))))

(DEFINEQ (HistoryPoint.History (self)
(COPY (8 :h1ist))))

(DEFINEQ (HistoryPoint.Display (self stream)
’ (SendSuper self Display stream) : Invokes Point.Display
(AllLocalMethods self PartialDisplay stream)))

(DEFINEQ (HistoryPoint.PartialDisplay (self stream)
(PRINT " with location history: " stream)
(PRIN1 (Send self History) stream)))

Figure 2-7: The Loops HistoryPoint class

(DefClass BoundedPointClass
(MetaClass MetaClass)
(Supers PointClass)
(Methods (Create BoundedPointClass.Create)
(PartialCreate BoundedPointClass.PartialCreate)))

(DEFINEQ (BoundedPointClass.Create (self plist)
(PROG ((newabj))
(Send self PartialCreate plist)
(SETQ newobj (DoMethod sel1f 'New $Class plist))
: Invokes the New method of $Class
(Send newobj Initialize plist)
newobj)))

(DEFINEQ (BoundedPointClass.PartialCreate (plist)
(PROG ((1oc (PlistGet plist ‘loc 0))
(min (P1istGet plist ‘'min 0))
{max (PlistGet plist 'max 100)))
(COND ((NOT (AND (<= min Yoc) (<= loc max)))
(ERROR "Location of new point is inconsistent with min and max."
(LIST loc min max))))))

Figure 2-8: The Loops BoundedPointClass class

(DefClass BoundedPoint

(MetaClass BoundedPointClass)

(Supers Point)

(InstanceVariablas
(min 0)
(max 100))

(Methods
(Initialize BoundedPoint.Initialize)
(PartialInitialize BoundedPoint.Partiallnitialize)
(Move BoundedPoint.Move)
(PartialMove BoundedPoint.PartialMove)
(Min BoundedPoint.Min)
(Max BoundedPoint.Max)
(Setmin BoundedPoint.Setmin)
(Setmax BoundedPoint.Setmax)
(Display BoundedPoint.Display)
(PartialDisplay BoundedPoint.PartialDisplay)))

(DEFINEQ (BoundedPoint.Partiallnitialize (self plist)
(PROG ()
(0¢ :min (PlistGet plist 'min 0))
(8~ :max (P1istGet plist 'max 100)))))

(DEFINEQ (BoundedPoint.Move (self loc)
(Send self PartialMove loc)
(SendSuper s<1f Move loc))) ; Invokes Point.Move

(DEFINEQ (BoundedPoint.PartialMove (self loc)
(IF (NOT (AND (<= (@ :min) loc) (<= loc (8 :max))))
(ERROR "New location for point is not between min and max.”
(LIST loc self (@ :min) (@ :max))))))

(DEFINEQ (éoundodPoint.Mnx (self)
(@ :max)))

(DEFINEQ (BoundedPoint.Min (self)
(@ :min)))

(DEFINEQ (BoundedPoint.Setmin (self newmin)
(IF (<= newmin (Send self Location))
(@+ :min newmin)
(ERROR "New minimum for point is greater than present location.”
(LIST newmir self (Send seif Location))))))

(DEFINEQ (BoundedPoint.Setmax (self newmax)
(IF (<= (Send self Location) newmax)
(@« :max newmax)
(ERROR "New maximum for point is less than present location.”
(LIST newmax self (Send self Location))))))

wEFINEQ (BbundedPoint.Display (self stream)
(SendSuper self Display stream) : Invokes Point.Display
(Al1LocalMethods self PartialDisplay stream)))

(DEFINEQ (BoundedPoint.PartiaiDisplay (self stream)
(PRINT " with bounds: " stream)
(PRIN1 (Send self Min) stream)
(PRIN1 ", " stream)
(PRIN1 (Send self Max) stream)))

Figure 2-9: The Loops BoundedPoint class

37

(DefClass BHPoint

(MetaClass BoundedPointClass)

(Supers BoundedPoint HistoryPoint)

(InstanceVariables
(bh1ist nil)
(bhtail nil))

(Methods
(Partiallnitialize BHPoint.Partiallnitialize)
(Move BHPoint.Movae)
(SetMin BHPoint.Setmin)
(PartialSetMin BHPoint.PartialSetmin)
(SetMax BHPoint.Setmax)
(PartialSetMax BHPoint.PartialSetmax)
(BoundsHistory BHPoint.BoundsHistory)
(PartialDisplay BHPoint.PartialDisplay)))

(DEFINEQ (BHPoint.Partiallnitialize (self plist)
(8¢ :bhiist (LIST (LIST 'min (@ :min) 0)
(LIST ‘min (@ :max) 0)))
(8« :bhtail (CDR (@ :bhlist)))))

(DEFINEQ (BHPoint.Move (self loc)
(DoMethod self ‘PartialMove $BoundedPoint loc)
(DoMethod self ‘'Move $Point loc)
(DoMethod self ‘'PartialMove $HistoryPoint loc)))

(DEFINEQ (BHPoint.Setmin (self newmin)
(SendSuper self Setmin newmin) : Invokes BoundedPoint.Move
(Send self PartialSetmin newmin)))

(DEFINEQ (BHPoint.PartialSetmin (salf newmin)
(@« :bhtail (LIST °'min (Send self Min) (LENGTH (8 :hlist))))
(@~ :bhtail (COR (@ :bhtail)))))

(DEFINEQ (BHPoint.Setmax (self newmax)
(SendSuper self Setmax newmax) : Invokes BoundedPoint.Move
(Send self PartialSetmax newmax)))

(DEFINEQ (BHPoint.PartialSetmax (self newmax)
(8« :bhtail (LIST 'max (Send self Max) (LENGTH (8 :hlist))))
(8« :bhtail (CDR (@ :bhtail)))))

(DEFINEQ (BHPoint.BoundsHistory (self)
(COPY (@ :bhlist))))

(DEFINEQ (BHPoint.PartialDisplay (self stream)
(PRINT " with bounds history: " stream)
(PRIN1 (Send self BoundsHistory) stream)))

Figure 2-10: The Loops BHPoint class

Behavior
addSelector: #HcompileAndStore
withMethod:
Class compile:
‘compileAndStore: sourceCode
salf addSelector: sourceCode extractOperationName
withMethod: self compile: sourceCode'.

String
addSelector: #extractOperationiame
withMethod:
String compile:
'extractOperationName
"If self is an acceptable method description, extracts the name
of the operation from the text. If not, invokes the error:
operation on self.”
... definition omitted ..." .

... delinition of the ConsCell class and operations (e.g., car, cdr, cons, rplaca, rplacd, copylist) are omitted ...
Figure 2-11: Utilities for the Smalltalk implementation

Object subclass: #Point
instancevariableNames: ‘loc’
classvariableNames: '°
poolDictionaries: '°
category: #CanonicalExample.

(Point class) compileAndStore:
‘create: plist
{newobj|
newobj ¢ self super.new. "Invokes method for '‘new' of Behavior®.
newobj initialize: plist.
~ newobj.’'.

(Point class) compileAndStore:
‘new
~ self create: Nil.'.

Point compileAndStorae:
*ypitialize: plist
loc « plist at: #location ifAbsent: [0]°.

Point compileAndStore:
*location
~ loc’.

Point compileAndStore:
‘move: newloc
loc « newloc'.

Point compileAndStore:
*display: stream
(self class) name printOn: stream.
** at location '® printOn: stream.
(self location) printOn: stream’.

Figure 2-12: The Smallitalk Point class

Point subclass: #HistoryPoint
instancevariableNames: 'hlist htail’
classVariableNames: "'
poolDictionaries: '’
category: #CanonicalExample.

HistoryPoint compileAndStore:
‘initialize: plist
self super.initialize: plist.
self partiallnitialize: plist’.

HistoryPoint compileAndStere:
‘partiallnitialize: unused
hlist « (ConsCell car: (self location) cdr: Nil).
htail « hlist’.

HistoryPoint compileAndStore:
‘move: newloc
self super.move newloc.
self partialMove newloc’.

HistoryPoint compileAndStore:
‘partialMove: newloc
htail rplacd: (ConsCell car: (self location) cdr: Nil).
htail « htail cdr’.
HistoryPoint compileAndStore:
'history
~ hlist copylist’'.

HistoryPoint compileAndStore:
‘display: stream
salf super.display: stream.
self partialDisplay: stream.’

HistoryPoint compileAndStore:
‘partialDisplay: stream
stream cr.
** with location history: '*' printOn: stream.
(self history) printOn: stream’.

Figure 2-13: The Smalltalk HistoryPoint class

40

Point subclass: #BoundedPoint
insténcevariableNames: 'min max’
classVariableNames: '°
pooiDictionaries: "'
category: #CanonicalExample.

{BoundedPoint class) compileAndStore:
‘create: plist
|newobj|
self partialCreate: plist.
newobj « self basicNew. "Invokes method for ‘new' of Behavior".
newobj initialize: plist.
“ newobj.'.

(BoundedPoint class) compileAndStore:

‘partialCreate: plist
linitmin initmax|
initmin « plist at: #location ifAbsent: [0].
initmin « plist at: #min ifAbsent: [0].
initmax « plist at: #max ifAbsent: [100].
(initmin <= 1location) & (location <= initmax)

ifFalse:

[self error:
’Location of new point is inconsistent with max and min."'].

BoundedPoint compileAndStore:
‘initialize: plist

self partiallnitialize: plist.
self super.initialize: plist.’ "Invokes method for ‘initialize*® of Point."

BoundedPoint compileAndStore:
‘partiallnitialize plist: plist
min « plist at: #min ifAbsent: [0].
max « plist at: #max ifAbsent: [100]°.

Figure 2-14: The Smalltalk BoundedPoint class, part 1

141

BoundedPoint compileAndStore:
‘move: newloc

self partiaiMove: newloc.

self super.move: newloc.’

BoundedPoint compileAndStore:
‘partialMove: newloc
(min <= newloc) & (newloc <= max) iffFalse:
[self error: ''New location for point would be out of bounds.'']'.

BoundedPoint compileAndStore:
‘min
~ min’.

BoundedPoint compileAndStore:
‘max
~ max’'.

BoundedPoint compiieAndStore:
‘setmin: newmin
(newmin <= (self location))
ifTrue: min « newmin
ifFalse:
[self error:
*'New minimum for point is greater than present value.'']’.

BoundedPoint compileAndStore:
‘setmax: newmax
((self location) <= newmax)
ifTrue: max « newmax
ifFalse:
[self error:
**New maximum for point is less than present value.'']’.

BoundedPoint compileAndStore:
‘display: stream
self super.display: stream.
self partialDisplay: stream.’

BoundedPoint compileAndStore:
‘partialDisplay: stream
stream cr.
** with bounds: '* printOn: stream.

min printOn: stream.
**, "' printOn: stream.
max printOn: stream’.

Figure 2-15: The Smalitalk BoundedPoint class, part 2

42

BoundedPoint
subclass: #BHPoint
otherSuperclasses: (Array with: HistoryPoint)
instanceVariableNames: ‘'bhlist bhtail’
classVariableNames: '’
poolDictionaries: *°
category: #CanonicalExample.

(BHPoint class) compileAndStore:
‘create: plist
~ self BoundedPuint.class.create: plist’.

BHPoint compileAndStore:
‘initialize: plist

"Note that partiallnitiaiize.all would result in redundant execution
of Point.partiallnitialize. The same is true for the method for display:”
self Point.partiallnitialize: plist.
self HistoryPoint.partiallnitialize: plist.
self BoundedPoint.partiallnitialize: plist.
self partiallnitialize: plist.’

BHPoint compileAndStore:
'partiallnitialize: unused
bhlist «
(ConsCell car: (Array with: #min with: (self min) with: 0)
cdr: Nil).
bh1ist rplacd:
(ConsCell car: (Array with: #max with: (self max) with: 0)
cdr: Nil).
bhtail « bhlist cdr’.

Figure 2-16: The Smalitalk-82 BHPoint class, part 1

BHPoint compileAndStore:
‘move: newloc
self BoundedPoint.partialMove: newloc.
self Point.move: newloc.
se1f HistoryPoint.partialMove: newloc'.

BHPoint compileAndStore:
‘setmin: newmin
self super.setmin: newmin.
salf partialSetmin: newmin'.

BHPoint compileAndStore:
‘partialSetmin: newmin
bhtail rplacd:
(ConsCell car: (Array with: #min with: newmin with: (h1ist length))
cdr: Nil).
bhtail + bhtail cdr’.

BHPoint compileAndStore:
‘setmax: newmax
sel1f super.setmax: newmax.
self partialSetmax: newmax'.

BHPoint ccmpileAndStore:
‘partialSetmax: newmax
bhtail rplacd:
(ConsCell car: (Array with: #max with: newmax with: (hlist length))
cdr: Nil).
bhtail « bhtail cdr’.

BHPoint compileAndStore:
‘boundsHistory
~ bhlist copylist’.

BHPoint compileAndStore:
'display: plist
self Point.display: plist.
sel1f all.partialDisplay: plist.
self partialDisplay: plist.’

BHPoint compileAndStore:
‘partialDisplay: stream
stream cr.
** with bounds history: '' printOn: stream.
(self boundsHistory) printOn: stream’.

Figure 2-17: The Smalitalk-82 BHPoint class, part 2

-- Documentation convention: in all trait definitions,
-~ (a) the trait component type is TCType, and {b) the instance component
typeis ICType.

-- A storage allocator

ConsAllocate: PROC [carSize: NATURAL] RETURNS [POINTER TO UNSPECIFIED] =
... Returns a pointer to a newly allocated storage region of size carSize + SIZE [POINTER TO UNSPECIFIED] ...

~- RealConsCell and related operations
Reé]ConsCe]l: TYPE = PRIVATE POINTER TO RECORD [car: REAL, cdr: POINTER]
RealNil: RealConsCell « LOOPHOLE [NIL, RealConsCell];

RealCons: PROC [initcar: REAL, initcdr: RealConsCel1] RETURNS [RealConsCell] =
{newcons: RealConsCell «
LOOPHOLE [ConsAllocate [SIZE [REAL]],
RealConsCel1];
newcons.car ¢ initcar;
newcons.cdr « initedr;
RETURN [newcons]}:

RealCar: PROC [c: RealConsCell] RETURNS [Real] =
{IF ¢ = RealNil
THEN ERNOR;
ELSE RETURN [c.car]}

RealCdr: [c: RealConsCel1] RETURNS [RealConsCell] =
{IF c = RealNil
THEN ERROR;
ELSE RETURN [c.cdr]}

RealRplaca: PROC [c: RealConsCell, newcar: REAL] =
{IF ¢ = RealNil
THEN ERROR;
ELSE c.car « nawcar};

RealRplacd: PROC [c: RealConsCell] =
{IF ¢ = RealNil
THEN ERROR;
ELSE c.cdr « newcdr};

Reallength: PROC [c: RealConsCell] RETURNS [Natural] =
{If c = RealNil
THEN RETURN [0]
ELSE RETURN [RealLength [RealCdr [c]] + 1]}:

RealCopylist: PROC [c: RealConsCel1] RETURNS [RealConsCel1] =
{IF ¢ = RealNil
THEN RETURN [RealNil]
ELSE RETURN [RealCons [RealCar [c]., RealCdr [c]]])}

RealPrintlist: PROC [c: RealConsCell, s: Stream] =
... delinition omitted ...;

Figure 2-18: Contents of a “Utilities™ module for the Star Mesa implementation, part 1

-- Entry, EntryConsCell, and related operations --

Entry: TYPE = RECORD [minormax: STRING, location: REAL, histlength: NATURAL];

EntryConsCell: TYPE =
PRIVATE POINTER 7O RECORD [car: Entry, cdr: POINTER TO EntryConsCell];

... The definition of EntryCar, EntryNil, EntryCopylist, etc. are omitted ...

-~ Procedures for string output
Stream: TYPE = .. definition omitted ...}

Print: PROC [string: String, stream: Stream] =
... definition omitted ... ;

NewLine: PROC [stream: Stream] =
... definition omitted ... ;

Figure 2-19: Contents of a *'Utilities” module for the Star Mesa implementation, part 2
Point: TRAIT IMPORTS TM, Utilities = {
-- Introduced generic operation names: Point.Location, Point.Move, Point.Display.

ICHandle: TYPE = POINTER TO ICType;
ICType: TYPE = RECORD [loc: REAL];

TCType: TYPE =
RECORD [Location: PROC [p: TM.Object] RETURNS [REAL],
~ Move: PROC [p: "H.Object] RETURNS [REAL],
Display: PROC [p: TM.Object, s: Stream]];

Register: PROC [] RETURNS TM.RegistrationRecord = (
RETURN [name: "Point",
parents: [],
ICSize: SIZE [ICType],
TCSize: SIZE [TCType].
classTrait: TRUE]}:

Location: PROC [p: TM.Object] RETURNS [REAL] =
{7C: POINTER TO TCType ¢«
TM.TCFromObject [p, Point];
RETURN [TC.Location [p]]}:

Move: PROC [p: TM.Object, loc: REAL] RETURNS [REAL] =
{TC: POINTER TO TCType «
TM.TCFromObject [p, Point];
RETURN [TC.Move [p., loc]]}:

Display: PROC [p: TM.Object, s: Stream] =
{TC: POINTER TO TCType «
TM.TCFromObject [p, Point];
RETURN [TC.Display [p. s]11}:

Create: PROC [initloc: Real « 0] RETURNS [TM.Object] =
{newp: TM.Object « TM.Alloc [Point];
Partiallnitialize [newp, initloc]:
RETURN [newpl}:

PartialInitialize: PROC [newp: TM.Object, initloc: Real] =
h: ICHandle « TM.InstComp [newp, Point];
h.loc « initloc);

Figure 2-20: The Star Mesa Point trait, part 1

LocallnitializeTrait: PROC [] =
{LocallnitializeTrait [Point]}:

LocallnitializeTrait: PROC [trt: TM.Trait] =
{PointTC: POINTER TO TCType «
TM.TCFromTrait [trt, Point];
PointTC.Location « LocationImpl;
PointTC.Move « MoveImpl;
PointTC.Display « DisplayImpl};

LocationImpl: PROC [p: TM.Object] RETURNS [REAL] =
{h: ICHandle « TM.InstComp [p, Point];
RETURN [h.loc]};

MoveImpl: PROC [p: TM.Object, loc: REAL] RETURNS [REAL] =
{h: ICHandle « TM.InstComp [p, Point];
h.loc « loc;
RETURN [loc]}:

LisplayImpl: PROC [p: TM.Object, s: Stream] =
{NewLine [s]:
Print [TM.TraitName [TM.Type [p]]. s]:
Print [" at location: ", s];
Print [Point.Location [p]1]}:

Figure 2-21: The Star Mesa Point trait, part 2
HistoryPoint: TRAIT IMPORTS TM, Utilities, Point = (
-~ Iatroduced generic operaticn name: listoryPoint.llistory

ICHandle: TYPE = POINTER TO ICType;
ICType: TYPE = RECORD [hlist: RealConsCell, htail: RealConsCell];

TCType: TYPE =
RECORD [
History: PROC [p: TM.Object] RETURNS [RealConsCell]];

Register: PROC [] RETURNS TM.RegistrationRecord = {
RETURN [name: "HistoryPoint",
parents: ["Point"],
ICSize: SIZE [ICType],
TCSize: SIZE [TCType],
classTrait: TRUE]}:

History: PROC [p: TM.Object] RETURNS [REAL] =
: {TC: POINTER TO TCType «
TM.TCFromObject [p, ’oint]:
RETURN [TC.History [p]]].

Create: PROC [initloc: REAL « 0] RETURNS [TM.Object] =
{newp: TM.Object « TM.Alloc [HistoryPoint];
Point.Partiallnitialize [newp, 1nitloc];
Partiallnitialize [newp]: *)
RETURN [newp]}:

PartialInitialize: PROC [newp: TM.Object, initloc: REAL] =
{h: ICHandle « TM.InstComp [newp, HistoryPoint];
h.hlist « RealCons [initloc, RealNil];
h.htail « h.hlist);

Figure 2-22: The Star Mesa HistoryPoint trait, part 1

47

-z

InitializeTrait: PROC [] =
{Point.LocalInitializeTrait [HistoryPoint]
HistoryPoint.LocallnitializeTrait [HistoryPoint]};

LocallnitializeTrait: PROC [trt: TM.Trait] =
{PointTC: POINTER TO Point.TCType «
TM.TCFromTrait [trt, Point];
HistoryPointTC: PQINTER TO TCType «
TM.TCFromTrait [trt, HistoryPoint];
PointTC.Move ¢« Movelmpl;
HistoryPointTC.History « HistoryImpl;
PointTC.Display « DisplayImpl};

MoveImpl: PROC [p: TM.Object, loc: REAL] RETURNS [REAL] =
{Point.MoveImpl [p, loc]:
PartialMove [p, loc];:
RETURN [loc]};

PartialMove: PROC [p: TM.Object, loc: REAL] RETURNS [TM.Object] =
{h: ICHandle « TM.InstComp [p, HistoryPoint];
Rplacd [h.htail, RealCons [loc, RealNil]]:
h.htail « RealCdr [h.htail]};

HistoryImpl: PROC [p: TM.Object] RETURNS [REAL] =
{h: ICHandle « TM.InstComp [p, HistoryPoint];
RETURN [RealCopylist -[h.hVist]]};

DisplayImpl: PROC [p: TM.Cbject, s: Stream] =
{Point.Display [p. s]: :
PartialDisplay [p, s]};

PartialDisplay: PROC [p: TM.Object, s: Stream] =

{NewLine [s]:
Print [" with location history:", s];
RealPrintlist [HistoryPoint.History [pl, s]}:

Figure 2-23: The Star Mesa HistoryPoint trait, part 2

BoungadPoint: TRAIT IMPORTS TM, Utilities, Point = {

-- Introduced generic operation names: .
~-- BoundedPoint.Min, BoundedPoint.Max, BoundedPoint.SetMin, BoundedPoint.SetMax

ICHandle: TYPE = POINTER TO ICType;
ICType: TYPE = RECORD [min: REAL, max: REAL];

TCTyoe: TYPE =
RECORD [
Min: PROC [p: TM.Object] RETURNS [REAL],
Max: PROC [p: TM.Object] RETURNS [REAL],
SetMin: PROC [p: TM.Object, min: [REAL] RETURNS [REAL],
SetMax: PROC [p: TM.Object, max: [REAL] RETURNS [REAL]];

Register: PROC [] RETURNS TM.RegistrationRecord = {
RETURN [name: "BoundedPoint",
parents: ["Point"],
ICSize: SIZE [ICType],
TCSize: SIZE [TCType].
classTrait: TRUE]};

Min: PROC [p: TM.Object] RETURNS [REAL] =
{TC: POINTER TO TCType ¢
TM.TCFromObject [p. BoundedPoint];
RETURN [TC.Min [p]]}:

Max: PROC [p: TM.Object] RETURNS [REAL] =
(TC: POINTER TO TCType «
TM.TCFromObject [p., BoundedPoint];
RETURN [TC.Max [p11}:

SetMin: PROC [p: TM.Object, newmin: REAL] RETURNS [REAL] =
{TC: POINTER TO TCType ¢
TM.TCFromObject [p. BoundedPaint];
RETURN [TC.SetMin [p, newmin]}]}:

SetMax: PROC [p: TM.Object., newmax: REAL] RETURNS [REAL] =
{TC: POINTER TO TCType ¢«
TM.TCFromObject [p., BoundedPoint];
RETURN [TC.SetMax [p, newmax]]}:

Create: PROC [initloc: REAL « 0, initmin: REAL « 0, initmax: REAL « 100]
RETURNS [TM.Object] =
{newp: TM.Object;
PartialCreate [initloc, initmin, initmax];
newp « TM.Alloc [BoundedPoint];
Point.Partiallnitialize [newp, initloc]:
Partiallnitialize [newp, initmin, initmax];
RETURN [newp]l}:

PartialCreate: PROC [initloc, initmin, initmax: REAL] =
(IF NOT (initmin <= initloc & initloc <= initmax)
THEN ERROR;}

PartialInitialize: PROC [newp: TM.Object, initmin, initmax: REAL] =
{h: ICHandle « TM.InstComp [newp, BoundedPoint];
h.min « initmin; .
h.max « initmax};

Figure 2-24: The Star Mesa BoundedPoint trait, part 1

49

InitializeTrait: PROC [] =
{Point.LocallnitializeTrait [BoundedPoint];
BoundedPoint.LocalInitializeTrait [BoundedPoint]}:

LocallnitializeTrait: PROC [trt: TM.Trait] =
{PointTC: POINTER TO Point.TCType ¢
TM.TCFromTrait [trt, BoundedPoint];
BoundedPointTC: POINTER TO TCType + -
TM.TCFromTrait [trt, Pointl:
PointTC.Move ¢ Movelmpl;
BoundedPointTC.Min « MinImpl;
BoundedPointTC.Max ¢ MaxImpl:
BoundedPointTC.SetMin « SetMinImpl;
BoundedPointTC.SetMax + SetMaxImpl;
PointTC.Display « Displayimpl};

MinImp1: PROC [p: TM.Object] RETURNS [REAL] =
{h: ICHandle « TM.InstComp [p, BoundedPoint];
RETURN [h.min]};

MaxImpl: PROC [p: TM.Object] RETURNS [REAL] =
{h: ICHandle « TM.InstComp [p, BoundedPoint]:
RETURN (h.max]};

MoveImpl: PROC [p: TM.Object, loc: REAL] RETURNS [TM.Object] =
{PartialMove [p, loc];
RETURN [Point.Move [p, loc]l}:

PartialMove: PROC [p: TM.Object, loc: REAL] RETURNS [TM.Object] =
{h: ICHandle « TM.InstComp [p, BoundedFoint];
IF NOT (h.min <= loc & loc <= h.max)
THEN ERROR};

SetMinImpl: PROC [p: TM.Object, min: REAL] RETURNS [REAL] =
{h: ICHandle « TM.InstComp [p, BoundedPoint];
IF min <= Point.Location [p]
THEN h.min « min
ELSE ERROR;
RETURN [minl};

SetMaxImpl: PROC [p: TM.Object, max: REAL] RETURNS [REAL] =
{h: ICHandle « TM.InstComp [p, BoundedPoint];
IF Point.Location [p] <= max
THEN h.max ¢ max
ELSE ERROR;
RETURN [max]}:

DisplayImpi: PROC [p: TM.Object, s: Stream] =
{Point.Display [p. sl;
PartialDisplay [p, s]};

PartialDisplay: PROC [p: TM.Object, s: Stream] = .
{NewLine [s]: :
Print [" with bounds: ", s];
Print [BoundedPoint.Min [p]. s];
Print (" , ", s]:
Print [BoundedPoint.Max [p], s]}:

Figure 2-25: The Star Mesa BoundedPoint trait, part 2

50

BHPoint: TRAIT
IMPORTS TM, Utitlities, Point, BoundedPoint, HistoryPoint = {

-- Introduced generic operation name: BHPoint.BoundsHistory

ICHandle: TYPE = POINTER TO ICType;
ICType: RECORD [bhlist: EntryConsCell, bhtail: EntryConsCell];

TCType: TYPE =
RECORD [.
BoundsHistory: PROC [p: TM.Object] RETURNS [EntryConsCel1]];

Register: PROC [] RETURNS TM.RegistrationRecord = {
RETURN [name: "BHPoint",
parents: ["BoundedPoint", "HistoryPoint"],
ICSize: SIZE [ICType].
TCSize: SIZE [TCType],
classTrait: TRUE]}:

BoundsHistory: PROC [p: TM.Object] RETURNS [EntryConsCell] =
{TC: POINTER TO TCType «
TM.TCFromObject [p. BHPoint]:
RETURN [TC.BoundsHistory [p]]}:

Create: PROC [initloc: REAL « 0, initmin: REAL ¢ 0, initmax: REAL « 100]
RETURNS [TM.Object] =
{newp: TM.Object;
BoundedPoint.PartialCreate [initloc, initmin, initmax];
newp « TM.Alloc [BoundedPoint];
Point.Partiallnitialize [newp, initloc];
BoundedPoint.PartialInitialize [newp, initmin, initmax]:
HistoryPoint.Partiallnitialize [newp, initloc];
Partiallnitialize [newp, initmin, initmax]:
RETURN (newpl}:

PartialInitialize: PROC [newp: TM.Object, initmin, initmax: REAL] =
{h: ICHandle « TM.InstComp [newp, BHPoint];
entryl: Entry ["min", min, 0];
entry2: Entry ["max", max, 0];
h.bhlist « EntryCons [entryl, EntryCons [entry2, EntryNil]];
h.bhtail « EntryCde [h.bhlist]};

Figure 2-26: The Star Mesa BHPoint trait, part 1

51

InitializeTrait: PROC [] =
{Point.LocalInitializeTrait [BHPoint];
BoundedPoint.LocallnitializeTrait [BHPoint];
HistoryPoint.LocalInitializeTrait [BHPoint];
BHPoint.LocallnitializeTrait [BHPoint]};

LocallnitializeTrait: PROC [trt: TM.Trait] =
{PointTC: POINTER TO Point.TCType «
TM.TCFromTrait [trt, Point];
BoundedPointTC: POINTER TO Point.TCType «
TM.TCFromTrait [trt, BoundedPoint];
BHPointTC: POINTER TO TCType ¢
TM.TCFromTrait [trt, BHPoint];
PointTC.Move « Movelmpl;
BoundedPointTC.SetMin « SetMinImpl;
BoundedPointTC.SetMax « SetMaxImpl;
BHPointTC.BoundsHistory « BoundsHistoryImpl;
PointTC.Display « DisplayImpl};

MoveImpl: PROC [p: TM.Object, loc: REAL] RETURNS [REAL] =
{BoundedPaint.PartialMove [p, loc]:
Point.Move [p, loc]
HistoryPoint.PartialMove [p, loc];
RETURN [locl}:

SetMinImpl: PROC [p: TM.Object, min: REAL] RETURNS [REAL] =
{BoundedPoint.SetMinImpl [p, min];
PartialSetMin [p, min];
RETURN [min]};

PartialSetMin: PROC [p: TM.Object, min: REAL] RETURNS [REAL] =
{h: ICHandle « TM.InstComp [p, BHPoint];
historyh: HistoryPoint.handle « TM.InstComp [p, HistoryPoint];
newentry: Entry ¢
Entry ["min", Point.Location [p], ReallLength [historyh.bhlist]];
EntryRplacd [h.bhtail, EntryCons [newentry, EntryN11]]
h.bhtail « EntryCdr [h.bhtaill}:

SetMaxImpl: PROC [p: TM.Object, max: REAL] RETURNS [REAL] =
{BoundedPoint.SetMaxImpl [p, max];
PartialSetMax [p, max]
RETURN [max]}:

PartialSetMax: PROC [p: TM.Object, max: REAL] RETURNS [REAL] -
{h: ICHandle « TM.InstComp [p, BHPoint]);
historyh: HistoryPoint.ICHandle « TM.InstComp [p, HistoryPoint]
newentry: Entry ¢
Entry ["max", Point.location [p], ReallLength [historyh. h11st]]
EntryRplacd [h.bhtail, EntryCons [newentry, EntryNil]l:
h.bhtail « EntryCdr [h.bhtail]};

BoundsHistoryImpl: PROC [p: TM.Object] RETURNS [EntryConsCell] =
{h: ICHandle « TM.InstComp [p. BHPoint];
RETURN [EntryCopylist [h.bhlist]]}:

Displaylmpl: PROC [p: TM.Object, s: Stream] =
{Point.Display [p. s]:
BoundedPoint.PartialDisplay [p, s):
HistoryPoint.PartialDisplay [p., s]:
PartialDisplay [p., s]}: .

PartialDisplay: PROC [p: TM.Object, s: Stream] =
{NewLine [s]:
Print [" with bounds history:", s];
EntryPrintlist [BHPoint.BoundsHistory [p]. s]}:

Figure 2-27: The Star Mesa BHPoint trait, part 2

52

3. Generic invocation

Each of our subject languages supports one or more forms for procedure invocation where the
identity of the invoked procedure depends on (a) a name derived from the form, and (b) the type
of a distinguished parameter of the form. Such expressions are commonly referred to as
generic procedure invocations. We will refer to the name as the operation name of the

invocation and to the distinguished parameter as the generic parameter of the invocation.

Unlike the early approaches of PL/1 [IBM 64] and Algol 68 [Branquart et al 71], the procedure
invoked by a generic invocation expression depends on a type derived from a single parameter of
the invocation. Thus, for each type T, we can identify a set of associations between operation
names and procedures which the generic invocation form will invoke when the generic
parameter has type T. We will refer to this association between operation names and procedures
as the generic operation se.t of the type. The procedure associated with a particular operation

name will be called the method for that operation name.

There is a clear analogy between the generic operation set of a type and the "abstract
operations” of ‘‘abstract types,” since both identify types with a set of name/procedure

associations. However, there are two fundamental differences.

e First, for all but a fixed number of procedures, the set of abstract operations provide
the only way in which instances of abstract types can be manipulated. The same
assertion cannot be made for the methods of the generic operation set of Zetalisp

. flavors, Smalitalk or Loops classes, or Star Mesa traits.

e Second, not all abstract-type designs involve generic invocation. For example,
generic invocation is not possible for the operations of types defined via the
abstype constructor of ML [Gordon et al. 79), or for procedures used as abstract
operations for “private” types defined in Mesa or Euclid modules. In these
approaches, the names of the operations of different types must be disjoint.

A second related concept is the popular notion of “‘object-oriented programming.” Aithough no
single definition is universally acéepte_d for this term (see [Rentsch 82] for a discussion of one

person’s view), it is often the case that a procedure invocation mechanism which uses an

operation set associated with a distinguished parameter is present. However, it is not always the
case that such a mechanism exists (e.g., it does not in the “actor" paradigm described in section
3.1.4). Even if such a mechanism is present, it may be the case that objects do not have types of

which their operation set is a function (e.g., the “objects" of the T dialect of Lisp [Rees et al. 84)).

t

The generic operation sets of our subject types are defined by inheritance. This chapter
describes why generic invocation is useful and how it is realized in our four languages. Chapters

6 and 7 contain a detailed discussion of the algorithms used in our four subject languages.

3.1 The semantics of generic invocation
In each of our four languages, generic invocation results in the invocation of a procedure on
some parameters, possibly after binding some variables. The following describes how that -

general concept is realized in each of our four languages.

3.1.1 The Star Mesa and Loops semantics
The most straightforward semantics for generic invocation are those which apply to Star Mesa

and Loops.

In Star Mesa, any instance of a Mesa PROCEDURE type whose first parameter has type

TM.Ob ject can be used as a generic method. The generic invocation:
operation-proc [exp,, exp,, ... expy]

where results in invoking the procedure used as the generic method with parameters:
expy, exp,, ... exp,

In Loops, any object which the Interlisp interpreter recognizes as a function can be used as a
generic method. Twelve different kinds of procedures are recognized, as described by the

following excerpt from section 4 of [Teitelman 78]:
In Interlisp, each function may independently:

a. have its arguments evaluated [“lambda™ functions] or not evaluated

[*“nlambda" functions)];
€

. b. have a fixed number of arguments [‘“‘spread” functions] or an indefinite
number of arguments [*'nospread” functions};

54

c. be defined by an Interlisp expression [“exprs"”], by built-in machine code
[“subrs™], or by compiled machine code [*cexprs”].

Hence there are twelve function types (2 x 2 x 3).

Recall that generic invocation in L.oops is accomplished by an invocation of the Send! or Send

procedures. The method used to carry out the generic invocation:
(Send! exp, operation exp, ... expN)
(Send exp, operation-id exp, ... expy)

will be invoked with the parameters:
exp, exp, ... exp,

Since each of the exp, will be evaluated when the Send! procedure is invoked, using an nlambda

procedure as a method will not prevent evaluation of the method parameters.

3.1.2 The Smailtalk semantics

In Smalltalk, the procedures invoked by generic invocation are usually instances of the
Smalitalk class Compi ledMethod.® These objects are most commonly obtained py invoking
the Smalltalk compiler on a text string which is a method in the syntax of the Smalitalk language
([GoldbergRobson 83], p. 715 ff.). The examples of chapter 2 contain examples of such

definitions. E.g., in the following expression from figure 2-12:
Point compiieAndStore:

'lTocation
~ loc’
the string
'location
~ loc’
defines a Smalltalk method which will be transformed into an instance of class
CompiledMethod and used to carry out generic invocations of the 1ocation operation on

instances of class Point.

When a method is invoked, the distinguished variable se1f is bound to the generic parameter

'aThe Smalltalk compiler always produces instances of CompiledMethod. However, since the Smalltalk interpreter
does no type-checking of methods, an instance of any class could, in principle, be used as a generic method.

55

and the formal parameters of the compiled method are bound to the non-generic parameters.
Thus, a method which is to carry out generic invocations with some number of non-generic

parameters should have the same number of formal parameters.

Given Smalltalk’'s unorthodox syntax, we will briefly summarize the syntax relevant to
identifying the parameters of a method. If the first token of the method definition string is an
identifier (e.g., *1ocation’), the operation name is the symbol corresponding to the identifier
and there are no formal parameters. If the first token is a binary selector (e.g., '+ ..."'), the
corresponding symbol is the operation name and the next token, which must be a simple
identifier, is the single formal parameter. Otherwise, the head of the definition must contain one
or more occurrences of a keyword (i.e., an identifier with a colon suffix) followed by an identifier.
Given that there are N pairs of keywords and identifiers, the operation name is the concatenation
of those N keywords, and the N formal parameters are the N identifiers. Thus, in the method

definition string:
"sumArgl: x arg2: y ~ (+ x (+ y seif))’

the operation name is sumArg1:Arg2: and the two formal parameters are x and y."

As further illustration, consider the following examples.

¢ The compiled method produced from the string:
"Tocation ~ loc’
has no formal parameters, and can thus be used for invocations with no non-generic
parameters, e.g.,
. P location
or
P perform: #location
The variable se1f would be bound to the value of P during the invocation.

¢ The compiled method corresponding to:

‘ewo x &~ (x s x)°

has one formal parameter, x. If used to carry out the invocations:
10 »» 20

or '
10 perform: #+s with: 20

se1f would be bound to 10, x to 20, and the returned value would be 200. (The form

! ~ "exp causes the value of exp to be returned as the value of the method invocation.)

56

e The procedure produced from:

'move: newloc
loc ¢« newloc’

has one formal parameter, newloc, so could be used to carry out:
P move: 10

or
P perform #move: with: 10

The variable se1f would be bound to the value of P and newloc would be bound to

10. :

¢ The procedure produced from:
'sumArgl: x arg2: y ~ (+ x (+ y self))’
has two formal parameters, x and y. If used as the method for:
10 sumArgl: 20 Arg2: 30
or:
10 perform: #sumArgl:Arg2: with: 20 with: 30
x would be bound to 20, y would be bound to 30, and the result would be 60.

3.1.3 The Zetalisp semantics

Generic invocation in Zetalisp results in an invo sation of an ordinary Lisp function. Any object
recogﬁiz'd by tha Lisp interpreter as a function can be invoked as a generic method; see
[Symboiics 84] or [MoonrStallmanWeinreb 84] for a complete enumeration. The most common of
these are lists whose first element is the symbol Tambda or named-1ambda, and the objects
produced by the Zetalisp compiler, known as "Function Entry Frames'. The lambda form is

well-known; an example of a named lambda is:
(named-Tambda h (x) (f (g x)))

The symbol h is an internal name for the function; this name usually corresponds to the global
name to which the function is bound. The use of the standard defun form produces named-

lambdas, as do the defmethod forms used in chapter 2.

Surprisingly enough, the parameters passed to the generic method are an implementation-
dependent aspect of Zetalisp. However, all implementations of Zetalisp supports the pleasant
fiction that no such dependence on implementation details exists. We first describe the fiction,

the reality.

57

3.1.3.1 The defmethod abstraction

Functions to be used as Zetalisp methods can be created via defmethod forms. Such forms

must have the structure:
(defmethod (id, ... idN) parameter-list
exp

exp)
where i, is the name of a flavor and parameter-list is as in a conventional 1ambda form. A

simple example of such a form is:

(defmethod (point :move) (newloc)
(setq location newloc)
self)

Subsequent chapters will describe the semantics of defmethod forms in detail. For now, we

note that such forms will produce a function which, if used as the method for our canonical

generic invocation:
(send exp, operation exp, ... expy)

will result in the following bindings.
e The value of exp, will be bound to the variable se1f.

o The value of operation will be bound to the variable operation.

e The values of exp, ... exp,, will be bound to the first through N'™ formal parameters
specified by lambda-list.

To illustrate, suppose the function produced by the defmethod form given above were used as

the method for the generic invocation:
(send p :move 10)

The variable se1f would be bound to the value of p, operation would be bound to the symbol

:move, and newloc would be bound to 10.

3.1.3.2 The reality

Let F be the function which is to be called via the generic invocation mechanism.

¢ In the system described in [WeinrebMoon 81], the form

(send exXPg XP,ieration €XPy - - expy,)
' binds the variable se1f to the value of expy, then calls F with parameters:

exp operation ex'p 1 o EXDy
This implementation is no longer in use.

58

N

¢ In the system described in [Symbolics 84], the form

(send exp, exp exp, ... exp,)
calls F with parameters:

exp, mapping-table exp, peration exp, ... expy
The identity of the mapping-table object is determined by the flavor of which the
generic parameter is an instance and the flavor named by the id, of the defmethod
which created the procedure being invoked.® The sugmflcance of the mapping
table is described in section 5.3.

operation

e in the system described in [MoonStallmanWeinreb 84], the form
(send eXDy €XPoioration €XPy -+ - expN)
binds se1f to the value of exp, binds self-mapping-table to an appropriate
mapping table, then calls F with parameters:

GXpoporarion exp 1 °°° expN
The significance of the mapping table is the same as above.
The important point to notice is that in the latter two implementations, the ordinary function
invocation mechanism cannot always be used to invoke functions used as generic methods.
Without an appropriate binding for self-mapping-table, the functions can behave

incorrectly.

Many Zetalisp programmers are completely unaware of the above. This is due to the following
important property:
If a procedure defined via defmethod is invoked through the gencric invocation
mechanism, se1f-mapping-table will always be correct.
The payoff is that if a program contains no explicit invocations of such procedures (i.e., no

funcalls of the procedure), the existence of sel1f-mapping-table can be considered an

implementation detail.

Given that defmethod and the generic invocation mechanism can hide the existence of
self-mapping-table, why can't its existence be ignored entirely? As we will see shortly ,
knowledge of its existence is necessary to invoke a generic method of one type on an instance of

a descendant type.

! 9This is not completely accurate. In reality, the identity of lhe second flavor is (letermined by a declaration inserted in
the body of procedures created by defmethod forms. This declaration is compuled from the id, of the dofmethod form.

59

3.1.4 Generic invocation vs. ‘““message-passing’’

Since the concept of “message-passing" is so often informally used, it is worth comparing to
the approaches to generic invocation used in our four languages. As embodied in Smalltalk-72
[GoldbergKay 76, Shoch 79] and the “actor" family of languages (e.g., [HewittBishopSteiger
73, Hewitt 77, Lieberman 80, Theriault 83]) message passing is analogous to conventional

generic invocation where:

¢ objects are conceptualized as conventional procedures (i.e., “scripts”) with private
data,

e the operation name and the non-generic parameters of an invocation are packaged
in a *message’ object,

e a generic invocation is analogous to a conventional invocation of procedure
associated with the generic parameter given the message as its parameter, and

e the possible continuations for each generic invocation are explicitly passed as
additional parameters.

This approach was clarified in the work on the Scheme language at M.L.T. [SussmanStecle
78a, SussmanSteéle 78b], which showed that é message-passing programming methodology
could be realized in languages with conventional procedure invocation and either lexical or
dynamic procedure closures. Zetalisp's entity datatype, designed before the introduction of

flavors, is another realization of the latter idea.

Aside from the impact of continuation passing on the control structure, the most significant
difference between generic invocation and message-passing is that the operation set of a type is
realized as a monolithic procedure used for every operation rather than a collection of
independent procedures for separate invocations. The key advantage of the latter approach is
that the structure imposed on the methods of the operation set is that it makes it easier to define
algorithms which synthesize operation sets of new types from those of existing ones. For
example, it is impossible to determine whether two “actors” will follow the same “script” in
processing a given kind of “message.” Thus, it is no accident that none of our four languages

uses message-passing semantics for generic invocation.

3.2 The utility of generic invocation
Although support for generic procedure invocation is one of the key design aspects of our four
subject languagss, the benefits of using this technique are sometimes poorly understood. This

section presents a careful description of the advantages gained by this approach.

A generic invocation form causes the invocation of a procedure based on the type of a
pa(ameter. In our four subject languages, as well as in many others, the effect of a generic
invocation of an operation O can be obtained by a conditional expression with one arm for each
type whose generic operation set includes a method for O. We will refer to such expressions as

“type-conditional’ expressions.

For example, consider a Loops program in which the types $Point, $BoundedPoint,,
$HistoryPoint, and $BHPoint were the only types whose generic operation set containad a
method for the Location operation. Suppose the procedures Point.location,
BoundedPoint.Location, HistoryPoint.Location, and BHPoint.Location were the
Location methods for these four types. Given that the class of x is C,'0 the application of the
Location method of the generic operation set of C to the single parameter x could be achieved
by the type-conditional expression:

(COND ((EQ C $Point) (Point.Location x))
((EQ C $BoundedPoint) (BoundedPoint.Location x))
((EQ C $HistoryPoint)(HistoryPoint.Location x))
((EQ C $BHPoint) (BHPoint.Location x))
(T (ERROR "No ‘Location’' operation")))

Similar expressions coulc! be written in each of our four languages.

Generic invocation expressions have two fundamental advantages over type-conditional

expressions.

e Generic invocation makes programs more concise. The size of a type-dispatch
expression increases with the number of types that include the operation in their
generic operation sets. The size of a generic invocation expression is constant. The

! 10The class of an arbitrary object x in Loops can be obtained by the expression “(Sand x Class)”. As we will ses,
equivalent procedures are available in our olher lhree languages.

61

result is less work for programmers, less opportunity to make errors (e.g., misspelling
a type name), and increased program clarity.

e Generic invocation makes type addition easier. Existing generic invocations need no
modification to invoke methods of new types. But if an existing type-enumeration
invocations is to invoke a method of a new type, the invocation must be modified to
add a clause for the new type. Note that this work cannot be done by the type
designer; it must be done by all designers of procedures which use-the type.

The fa;:t that an existing invocation is applicable to a new type is of little use if the invocation
does not have the appropriate effect when applied to a generic parameter of the new type. But it
should be clear that not all propefties of all existing invocations will hold when applied to
instances of new types. As a result, programs which include such invocations might not have the
desired effect after new descendant types are introduced. For example, a program which uses
the move operation on instances of point might well cause an “out of bounds" error when

applied to instances of bounded-point.

Sincé the incremental augmentation of programs by t_he introduction of new types is a principal
motivation for the use of type definition by inheritance, knowing the conditions under which the
new program will maintain the functionality of the original is of considerable importance.
Fortunately, it is possible to define a set of conditions which is sufficient tc guarantee that the
desired functionality of existing programs will be preserved when descendant types are
introduced. The following conditions are sufficient to guarantee that a property P which holds

for a procedure Proc will be preserved when a new type is introduced.

1. Valid specifications are provided for the generic operation sets of each type. The
methods of the generic operation sets of each type should be associated with valid
assertions with the effect of their invocation. These are nothing more than
conventional “type specifications’ (e.g., [LiskovBerzins 79, Guttag 80]) treating the
generic operations as “abstract operations'. We will refer to these assertions as
“generic specifications" of the type.

2. The generic specifications for a type imply the generic specifications for ail parent
types. In other words, everything which can be concluded from the generic
specifications of a type about some sequence of generic invocations can also be
concluded from the generic specilications of each of its children. As a result,
generic specifications for a type are specializations the generic specifications of ali
ancestor types. In our example scenario, the specifications of bh-point would imply
the specifications, of bounded-point, history-point, and point.

62

“assumed generic type” of the invocation. Such a demonstration could be
accomplished in Several ways, €.g., static or dynamic type checking, dataflow
analysis, or arbitrary reasoning about the program,

4. For each type T, the only procedures which invoke the underlying Operations of T are
the methods of T, The generic Specifications of each type define an abstraction.
Unless Proc s a method of some type, its definition should be in terms of
invocations of such Operations, rather than the more basic operations used to realize
the abstraction. For example, Procedures which are not methods of
history-poi nt should not directly Manipulate the h1 ist and htai components
of its representation.

types are added,

To illustrate, suppose that an earlier stage of the example scenario of chapter 2 contained only
one type, point, and that the specification for the move operation of point was that the location

of the point would become the specified coordinate. Upon the introduction of the

L}

bounded-point type, it would be observed that the desired functionality of move for
bounded-point (i.e, that some invocations would cause an error rather than a change of
location) would not satisfy the specification of move for point. This would require a choice

between three alternatives. ¢

e First, the specification of the move operation for point could be changed so that it
would be satisfied by the move of bounded-point. An example of such a
specification would be *either the coordinate is changed or an error is signalled."

The problem with this approach is that the changes are “incompatible,” that is, the
new specifications do not entail the old. As a result, programs which relied on the
old specification might no longer satisfy the set of design principles outlined above,
or, worse, no longer exhibit a desired property. An example of the latter would be
one which was intended to move each point in a list through the use of the move
operation.

e Second, bounded-point could be added as a type which was neither an ancestor
nor descendant of point, e.g., as a type whose parent was the root of the type -
hierarchy. The problem with this is that no existing procedures which contained
invocations for which the assumed generic type is point would be applicable to
instances of bounded-point. Since a number of these procedures might depend
only on properties which were in fact shared by point and bounded-point, the
resuit would be precisely the kind of redundant procedure definition which the use of
generic invocation is intended to avoid.

e Third, we could invent an additional type, say vanilla-point, whose specification
captured the commonalities between point and bounded-point. Then (a)
bounded-point would be defined to have vanilla-point as a parent, (b) the
definition of point would be changed to have vanilla-point as a parent. and (c) all
procedures which depended only on the specifications associated with
vanilla-point would be changed to accept objects whose types were descendants
of vanilla-point. Again, changes to existing client programs are required.

The bottom line 'is that the advantages of using a specification-based programming
methodology may well not be worth the overhead of specification and program modification.
From a pragmatic viewpoint, allowing some procedures to be inapplicable to new types may be

less onerous than making the modificaiions necessary to prevent it.

‘

3.3 The realization of generic invocation

To describe how generic operation invocation is accomplished in our four languages, we will
examine how to accomplish a generic invocation of the operation named by the expression
operation on generic parameter exp, and additional parameters exp, ... expy. We will also
examine how generic invocation can be carried out when the contents of a data siructure are

used to supply the parameters. The latter is useful in the design of procedures which construct

invocations basdd on their input -- menu-driven user interfaces, for example.

3.3.1 Generic invocation for Zetalisp flavors

A number of different techniques are available for invoking generic operations on instances of
Zetalisp flavors. The most intuitive of these is to invoke the send procedure designed for that
purpose. The ﬁrst parameter to- send is used as the generic parameter of the desired generic
invocation, the second is used as the operation name, and the remaining parameters (of which
there can be any number) are the non-generic parameters. Thus, a general form for generic

invocation is:
(send exp, operation exp, ... expy)

For example, the following will invoke the :move operation on a generic parameter denoted by p

and non-generic parameter 1:"!

(send p :mcve 1)

" If the parameters are to be taken from a list, the 1expr-send procedure can be used.
Lexpr-send takes a flavor instance, an operation name, and arbitrary number of parameters, of
which the last must be a list. The members of this list are taken as the trailing parameters of the
invocation. For example, the expressions:

(lexpr-send p :move (1ist 1))

(lexpr-send p :move 1 nil)

will also result in the generic invocation of :move on p and 1.

"A recent change to Zetalisp, motivated by compatibility with Common Lisp [Steele et al. 83], is that symbols whose
ndmes start with colons (i.e., symbols defined in the keyword package) evaluate 1o thenselves. For example, the value
of the variable :mova is identical to the result of evalualing * :move.

65

The technique of invoking generic operations of any type through a fixed set of procedures
which take the generic parameter and operation name as distinguished parameters is a standard
programming technique. However, it is not often embodied in programming languages. One
exception is the sfa-call procedure used to invoke generic operations on Maclisp's “software

file arrays" [Pitman 83].

A second way to invoke generic operations for instances of Zetalisp flavors is by invoking the
generic parameter as a procedure with the generic operation as the first parameter. There are a
number of Zetalisp primitives for procedure invocaticn; see [WeinrebMoon 81] for details. As

one illustration, our example invocation of move could be rendered as:
(funcall p :move 1) ‘

Notice that the instance of the flavor is used as the “function" being invoked, not the name of the

operation.

The technique of treating generic parameters as procedures has its roots in the “message-

passing" paradigm described in section 3.1.4.

3.3.2 Generic invocation for Loops classes

Generic invocation in Loops is accomplished through the use of procedures which, like
Zetalisp's send and lexpr-send, has generic invocation as their only function. The basic
procedure for generic invocation is Sendl, which takes an arbitrary number of parameters.
Send! (alias +1) is analogous to Zetalisp’s send; it uses the first parameter as the generic

parameter, the second as the operation name, and the remaining parameters are used as the

non-generic parameters. Thus, the canonical form for generic invocation is:
(Send! exp, operation exp, ... exp,)

and our example Move invocation could be expressed as:
(Send! p 'Move 1)

Send (alias ¢) is like Send!, has the same functionality as Send but does not evaluate its second

parameter; e.Q.,
' (Send p Move 1)

66

To allow the members of a list to be used as parameters of a generic invocation, Send can be
invoked via the Interlisp APPLY procedure. APPLY takes two arguments: a procedure-denoting
object (i.e., a list which satisfies the'syntactic requirements for a procedure definition or a symbol
whose “function definition cell” contains such a list), and a list. It invokes the specified
procedure using the members of the list as actual parameters. For example, our example

invocation could be rendered as:
(APPLY 'Send (LIST p 'Move 1))

3.3.3 Generic invocation for Smalltalk classes

Generic invocation of Smalltalk methods is accomplished through either (a) the use of one of
three syntactic forms which name operation name is syntactically' apparent, or (b) the invocation
of one of five primitive procedures, i.e., procedures which could not be defined in the language if
not already provided. The latter must be used if the name of the operation or the parameter list

must be computed.

3.3.3.1 Syntactic forms for generic invocation
If a syntactic form is to be used for generic invocation of a given operation, the choice of form

dgepends on the name of the generic operation. The three possibilities are as follows.

1. The operation name is a simple identifier. If so, the method can take no non-generic
parameters. The appropriate form for invoking such operations is:
exp operation-id
For example:
p location
invokes the 1ocation operation for generic parameter p. As in the Send form of
Loops, operation-id is unevaluated.

2. The operation name is a sequence of identifiers followed by colons, i.e.:

id,:id,: .. .id,:
If so, the invocation will take as many non-generic parameters as there are
identifier/colon pairs. To invoke the operation named id :idy:...id,: on generic
parameter exp, and non-generic parameters exp, ... exp,, the following form is
used:

exp, keyword, exp, ... keyword,, exp,,
Again, none of the keyword;are evaluated.

For example,
x computeArgl: a Arg2: b Arg3d: c

67

is an invocation of the computeArg1:arg2:arg3 operation on generic parameter x
and non-generic parameters a, b, and ¢, and

p move: 1
is an invocation of the :move operatlon on generic parameter p and non-generic
parameter 1.

There are three differences between this technique aid the use of parameter-
identifying “‘keywords" in invocation forms (e.g., as available in Mesa ([Mitchell et al.
79], chapter 5), Ada[ichbiah, J.D., et al. 79], and, through the use of &key
parameters, in Zetalisp). In the Smalltalk forms, the keywords are (a) required to be
present, (b) required to be in a certain order, and (c) derived from the name of the
operation.

3. The operation name is a member of a special syntactic class, referred to in Smalltalk
as “binary selectors”. This class consists of strings of one or two members of a
non-alphanumeric subset of the Smalltalk character set. For example, the tokens +,
@, and ~= are ali members of this class.

Invocations of operations named by binary selectors must take exactly one non-
generic parameter. To invoke such an operation on generic parameter exp,, and
non-generic parameter exp,, the operation name is used as a binary infix operator:
exp, operation-id exp,
For example,
addend + augend
is an invocation of the + operation with generic parameter addend and non-generic
parameter augend.

The point of introducing the binary-selector syntactic class is tc allow the use of
familiar operator names. For example, if the class of binary selectors were taken as
ordinary identifiers, “+" would not be a valid operation-id; ““+:'" would have to be
used instead. A more scphisticated approach would allow the set of identifiers that
can be used as binary infix operators to be determined by program declaration. This
technique has been used in EL/1[Wegbreit 74] and the "“Clisp"” extension of
Interlisp ([Teitelman 78], section 23).

The use of syntactic forms to indicate generic invocation and the absence of forms for non-
generic invocation are two of Smalltalk's distinctive characteristics. The association of generic
invocations with a language-defined subset of tokens has a long history -- Fortran arithmetic
operators are an early example. Algol 68 [Branquart et al 71] and earlier and later “extensible"
languages (e.g., [Standish 67, WellsCornwall 76]) allowed the methods invoked by these forms to

be programmer-definable.

3.3.3.2 Primitive procedures for generic invocation
In order to have generic invocations with computed names and parameter lists, a family of
perform operations is provided. Each such operation expects its first non-generic parameter to

be a symbol. This symbol is used to identify the operation to be invoked.

Four of these variants, perform:, perform:with:, perform:with:with:, and
perform:with:with:with: are suitable for invoking an operation which takes zero, one, two,
or three non-generic parameters, respectively. For example, the following pairs of invocations

are equivalent:'2

[]
p perform: #location
and
p location
®
p perform: #move: with: 1
and
p move: 1
[]
a perform: #+ with: b
and
a+hb
[]
x perform: #computeArgl:arg2:arg3: with: a with: b with: ¢
and

x computeArgl: a arg2: b arg3: ¢
The reason why more than one perform operation is required is that each Smalltalk method

takes a fixed number of parameters.

To invoke an operation with a computed parameter list (or to invoke an operation with a .

computed name but more than three non-generic parameters), the perform:withArguments:

operation can be used. An invocation of perform:withArguments: takes two non-generic

12In Smalitalk, the form #id denotes the symbol whose name is /d.

69

=

parameters: the name 6f the operation to be invoked and an array containing the non-generic
parameters to be used for that invdcation. For example, the effect of the four invocations

described in the previous paragraph could be obtaine:ﬁhy.the following:

e |[f at is an empty array:
p perform: #location withArguments: al

¢ If a2 is an array containing one element, the value of 1:
p perform: #move: withArguments: a2

o If a3 is an array containing one element, the value of b:
a perform: #+ withArguments: a3

o [f a4 is an array containing three elements, the values of a, b, and c¢:
x perform: #computeArgl:arg2:arg3: withArguments: a4

3.3.4 Generic invocation for Star Mesa traits

In Star Mesa, the invocation of generic operation C is accomplished through the invocation of a
procedure associated with O The first parameter of such an invocation is taken as the generic
parameter of the invocation, and the subsequent parameters are taken as the non-generic

parameters. Thus, the canonical form for generic invocation is:
operation-proc [exp,, exp,, ... exp,]

where operation-proc is an expression whose value is a procedure which performs generic

invocations of operation. An example of this form would be:
Point.Move [p, 1]

wherc Point .Move is an expression whose value is a generic-invocation procedure.

In ‘this approach, specifying a generic invocation of a given operation requires knowing which
procedure implements a generic operation of a given name. In contrast to our other three
languages, the names of the generi_c operations defined for a trait are neither syn.tactically
apparent or available through examination of a data structure. Instead, they are determined by

the first of many Star Mesa programming conventions we will encounter.

Star Mesa Convention 1: Each trait definition designates a set of procedures as
generic operation procedures.

70

To illustrate, consider the trait definitions of figures 2-20 through 2-27. The generic operation
procedures are identified by comments contained in the text of each trait definition. Thus, the

generic operation procedures of the four traits are as defined in figure 3-1.

Trait Generic Operation Procedures
Point. . Point.Location
Point.Move

Point.Display

BoundedPoint BoundedPoint.Min
BoundedPoint.Max
BoundedPoint.Setmin
BoundedPoirt.Setmax

HistoryPoint HistoryPoint.History

BHPoint BHPoint.BoundsHistory
Figure 3-1: Generic operation procedures in the Star Mesa example

Having generic invocations which use coﬁ'lputed parameter lists is not as straightforward as in
our three other. languages. Unlike our other three languages, Mesa provides no procedure
analogous to mxpr-send. apply, or perform:withArgumants: for invcking the procedure
passed as its first parameter on the members of the data structure passed as the second

parzimeter.

The problem is that each procedure-denoting expression must be typed, and procedure types
must specify the types of the formal parameters and the returned values. For example, PROC
[INTEGER, REAL, STRING] RETURNS [REAL] is the type of all procedures which take three
parameters, an INTEGER, a REAL, and a STRING, and return a REAL. But no such type would be
appropriate for a generalized appiy, since it should be able to accept a precedure of any type.
Thus, even though it would be possible to tell if any particular invocation of a generalized apply
were type-correct, its parameters could not be declared in such a way for Mesa's type-checker to

do so.

The principal reason why this is the case is that Mesa's type-checking algorithm could not

guarantee the validity of such invocations. The procedure-typing approach of ML [Milner 78]

L]

offers an elegant solution to this problem by allowing the controlled use of variables in type

expressions.

71

In order to have a type-checking app1y, Mesa programmers must define a specialized version
for each procedure type. This procedure will take a procedure parameter and a record
parameter, and invoke the procedure parameter on the components of the record parameter.
For example, the following defines a procedure which applies a procedure of the above type to

the contents of a record containing an INTEGER, REAL, and STRING.
T1: TYPE = RECCRD [a: INTEGER, b: REAL, c: STRING];

SpecializedApply:
PROC [p: PROC [a: INTEGER, b: REAL, c: STRING] RETURNS [REAL],
args: T1]
RETURNS [REAL] =
BEGIN
RETURN [p [args.a, args.b, args.c]]
END;

T1is necessary because textually identical RECORD expression denote different Mesa types.

This procedure could be used as follows:
ArgsExample: T1 = [1, 1.0, "foo"]:
ProcExample: PROC [x: INTEGER, y: REAL, z: STRING] RETURNS [REAL] =
BEGIN
RETURN [y]
END;
SpecializedApply [ProcExample, ArgsExample];

The latter invocation would return 1. 0.

Star Mesa's approach of associating operation names with procedures for generic invocation is

well known. Other examples of its use include:

o the invocation of GENERIC procedures in PL/1

o the invocation of EL/1 procedures with GEMERIC expressions as bodies [Wegbreit
74, Holloway et al. 74]

o the invocation of Ada procedures defined in the scope of a GENERIC program unit
[Ichbiah, J. D., et al. 79]

o the invocation of operationsin T [Rees et al. 84]'3

13ln the T dialect of Lisp. opyration objects rather then symbols are used to name abstract operations. These
aobjects are data structures which contain a procedure which is o carry oul the invocation no implementation of the
operalion is applicable to the generic parameter. In other words, “operations contain their own delaults.”

72

3.3.5 Other forms for generic invocation

It is interesting to note that none of our four subject languages use the generic invocation form
of the pioneering inheritance-based programming !angiage, Simula 67 [Birtwhistle et al. 73]. In
this approach, instances of types created with the CLASS constructor are conceptualized as
records which have components that are with procedures which implement generic operations.
The key idea is that these proc;dures are specialized for (i.e., closed over) the containing object,
and take as arguments only the non-generic parameters of the invocation. This approach has
been widely copied, e.g., to invoke the operations defined by modules of Mesa

[LauerSatterthwaite 79] and Euclid [Lampson et al. 77].

Thus, the canonical generic invocation form is:
expo.operarion-id (exp,. .. .expN)

Our point-moving example would be:
p.move (1)

The procedure p.move takes one parameter, the location, and will move the specific point pto

that location.

A long-recognized disadvantage is the unnaturalness of the notation, especially for binary
operations, e.qg.,

x.plus [x] ’

As realized in the above Iangu'ages, a more subtle problem is the difficulty of invocations with

com_puted operation names. This is because operation-id must be an identifier and is not

evaluated. A third problem can arise in defining methods for operations which take two or more

instances of the same type; this will be discussed in chapter 6.

Note also that the Star Mesa approach to generic invocation is not the same as the syntactically

similar forms used in Clu [Liskov et al. 79] and Russell [BoehmDemersDonahue 80):
id,ﬂsid2 (exp,, exp,, expy,)

The difference is that the latter results in the invocation of different procedures only if id, is a

'

73

formal parameter of type type.14 if id, is a type constant, the method used to carry out the
invocation will always be the method associated with that type. For example, if Point wige a Clu

or Russell type, the invocation:
Point$Move (p, 1)

could only invoke the Move method of type Point. But in Star Mesa, the same generic
invocation would apply the Point .Move method of the type of p. By convention, this type could

be Point or any descendant.

On the other hand, if id, is a type parameter, the procedure invoked will be a member of the
operation set of the type denoted by id,. Thus, according to the definition of generic invocation
given at the start of the chapter, the Clu invocation expression given above does not qualify as a

generic invocation expression.

This is not simply splitting hairs, because there are significant problems associated with this
approéch. The problem with the “operation set specified by type parameter’ approach is that
programs must be modified when a non-generic procedure is transformed into a generic one,
e.g., when new types are added for which the operations of an existing type are meaningful. In
Clu or Russell, procedures which took parameters of the existing type can be applied to
instances of the new type only if they are modified to take additional type parameters. For

example, the Clu procedure:
f = proc (X: point)

print (point$location (X))
end

would have to be transformed into

14Clu procedures can have two kinds of formal parameters, one of which can be bound only to conslant exprassions
or other parameters of the same kind. In order to obtain increased perdormance, type parameters in Clu are required to
be of this kind. A principal dilference between Clu and Russell is that the latter has only one category ol parameter, and
this category can be used to pass type objects.

74

f = proc [T: type] (X: T)
where T has location: proctype (T) returns (real)

print (T$location (X)):

end

Some of the unfortunate aspects of this technique are familiar: a considerable amount of work
is required to add new types, and the work cannot be done by the designer of the type. Even
worse, all callers of the old procedures must then be modified in order to pass the newly-

introduced type parameters. In our example, each invocation of f:
f (exp)

would have to be transformed into
f [point] (exp)

Needless to say, this is highly undesirable.

‘We may note that the disadvantages of caller maodification are nct an inevitable consequence
of strong type checking. For example, the version of Alphard described in [Wulf et al. 76] allowed
formal parameter declarations which are satisfied by any actual parameter whose type has a
specified set of operations with specified parameter and return types. Operation invocations
involving such parameters are generic invocations, and such invocations can be statically type-

checked.

3.4 Non-generic invocation of generic methods

It is often useful for generic methods for types to invoke generic methods of other types as
subroutines. For example, in the scenario of chapter 2, display of bounded-point can call
display of point to perform part of its work. Another use of this technique is to implement the
technique of “delegation” (e.g., [HewittAttardiLieberman 79]), where a iask assigned to one
“actor" is to be carried out by another). We will refer to such invocations as ‘‘ancestor-generic"

invocations.

‘The key benefit of ancestor-generic invocations is the avoidance of the redundant realization of

75

an algorithm in programs which use that algorithm to carry out part of their tasks. Notice that this
same form of redundancy avoidance would be useful even if generic invocation were not

available and the operations of each class had to be enumerated.

distorically, the first use of this technique was realized in Simula-67 through the qua
expression. To illustrate, suppose an identifier opname was defined in two classes A and B, with
B as a subclass of A. If b was an instance of B, then b.opname would refer to the method for

opname defined in class B, while b qua A.opname would refer to the method defined in A.

Non-generic invocation of generic methods is realized in our subject languages as follows.

3.4.1 Smalitalk-82

Smalitalk-82 provides three variants of non-generic invocation of generic methods. In order to
understand these invocation forms, the concept of the “class” of a method must be introduced.
Recall that methods are instances of class Compi1eadMethod, and are produced by the Smalitali
compiler from strings containing methcd definitions. In fact, the compiler takes an additional
parameter, a class. The class used by the compiler in order to produce a CompiledMethod will

be the class of that CompiledMethod.

In each of the examples of chapter 2, the generic parameter of the compileAndStore:
invocation is used as the class in which the associated method string is compiled. For example,

in the expression:

HistoryPoint compileAndStore:
'display: stream
self super.display: stream.
self partialDisplay: stream.’

the class of the Comp i TedMe thod would be HistoryPoint.

76

3.4.1.1 Type-specific invocation

Just as in Simula-67, it is possible to invoke the generic method for a specific operation of a

specific type. This will occur if the operation name of the invocation has a prefix of the form
id.

where id is the name of an ancestor of the class of the method. For example, in the method
produced by:
BHPoint compileAndStore:
‘exampleOp: x

self HistoryPoint.op2.

se1f BoundedPoint.op2’ 4
the two invocations will be of the methods for op2 of HistoryPoint and BoundedPoint, not
BHPoint. If the specified operation name is not in the generic operation set of the specified

type, an runtime error is signalled.

3.4.1.2 Type-relative invocation

In Smalltalk-76 [Ingalls 78] and unextended Smalltalk-80, classes have a unique parent. It is
possiﬁle to cause the generic method of the parent of the class of the method to be invoked.
This is accomplished through the replacement of self with super in any of the invocation
forms. Forv exampfc—:, if Point was the single superclass of BoundadPoint in a Smalitalk-80

program, the invocation:
super move: newloc

in a local method of BoundedPo1int would invoke the move : operation of Point.

The Smalltalk-82 analog to this technique is applicable if a/l parents of a class which have some
method for an operation have the same method for that operation. The invocation of this unique
method is accomplished by adding a prefix of super. to the operation name of an invocation

form. If different parents have different methods, or if no parent has a method, a runtime error is

signalled.

For example, if HistoryPoint had an method for op2 but not op3: and BoundedPoint had

one for op3: but not op2, then

77

BHPoint compileAndStore:
‘exampleOp: x
self super.op2.
self super.op3: x.
would result in an invocation of the op2 of HistoryPoint followed by the op3: of

BoundedPoint.

Due to the fact that the Smalltalk-82 implementation did not modify the Smalitalk interpreter
and associated data structures (i.e., the "virtual machine" of part _four of [GoldbergRobson 83)),
the use of Smalltalk-80 super invocation will not result in the appropriate behavior. The latter will
only examine a single parent for each class. Thus, the unintentional use of Smalltalk-80 super

invocation in a Smalltalk-82 program can lead to undetected errors.

3.4.1.3 Sequential parent invocation
The invocation of the methods for an operation defined for a/l parents can be accomplished by

adding a prefix of a11. to the operation name of an invocation form. For example,
BHPoint compileAndStore:
‘display: plist
self Point.display: plist.
self all.partialDisplay: plist.
self partialDisplay: plist.’
deiines a method which will invoke the display: method of Point, then the

partialDisplay: of HistoryPoint, BoundedPoint, and BHPoint.

3.4.1.4 Distinguished method invocation t
A final means for non-generic invocation of generic methods allows the generic methods for

specific operations of specific classss to be invoked. In particular:

e An invocation of the basicNew and basicMew: operations on an instance of any
class is carried out by the new and new: methods of the class Behavior.

e An invocation of the basicAt:, basicAt:put:, and basicSize operations on an

instance of any class is carried out by the at:, at:put:, and size methods of the
class Object.

The reason why the operation names at:, at:put:, and size of Object were singled out for

special treatment is that they were given different semantics for the built-in Smalltalk classes

78

which represent collections of objects ([GoldbergRobson 83], chapters 9 and 10). The names
new and new: are given such treatment because they are commonly reimplemented by class
definers; see chapter 5 for a discussion. In both cases, the overridden methods from Behavior

and 0Ob ject embody system facilities which should be invocable on instances of any class.

These operations are defined in Smalltalk-80 and usable in Smalltalk-82. However, the
availability of type-specific invocation means that they are semantically unnecessary. For

example, the Smalltalk-80 invocation:
X basicSize

could be realized in Smalltalk-82 as:
X Object.size

This is especially advantageous because the capability described in this section depends on
adherence to a programming convention of not defining methods for the basic... operations

in any class.

3.4.2 Loops
Type-specific invocation, type-relative invocation, and sequential-parent invocation are all

available in Loops.

e Type-specific invocation is implemented by the DoMethod and ApplyMethod

procedures. For example,

(DoMethod bhp 'Op3 $HistoryPoint x)
or :

(ApplyMethod bhp 'Op3 (LIST x)) ~
would invoke the method for Op2 in the generic op’eration set of the class named
HistoryPoint on the value of x5 Type-relative invocation is implemented by the
SendSupser (alias «Super) syntactic form. For example,

(SendSuper bhp 0p3 x)
invokes the unique method for Examp 1e0p defined by all parents of the class of the
method in which it is found. An error is signalled if a no method or more than one
method is defined by the parents.

e Sequential parent invocation is implemented by the SendSuperfFringe (alias
«SuperFringe) syntactic form. For example:
(SendSuperfFringe -bhp Op3 x)

15Chapter 4 describes the $ construct.

79

In addition, the DoFringaMethods procedure described in [BobrowStefik 83] sometimes
results in non-generic invocation of generic methods. Its description is deferred until chapter 7,

as it involves concepts defined there.

Finally, we note that the name of the Interlisp function which implements a given operation of a
given type is computable by an invocation of the List operation of class Class with the symbol

Method as a parameter. For example,
(Send $BHPoint List 'Method '0p3)

computes the name of the Interlisp function which is the method for Op3 in the generic operation
set of BHPoint. This function can be invoked using the Interlisp APPLY primitive described

above.

3.4.3 Zetalisp

There are no facilities in Zetalisp for type-relative or sequential-parent invocation. In order to
achieve the same functionality, Zetalisp programmers must choose a algorithm for generic
method computation (via a “‘method combination type' and ‘“method combination order'') which
will produce a method with the desired functionality. The facilities for doing so are described in

detail in chapter 6.

Type-specific invocation is possible, albeit not through the procedures documented in
[Symbolics 84] or [MoonStallmanWeinreb 84]. The method for operation 0 in the generic
operation set of flavor F can be computed by invoking the fdefinition function with a list of

the form:
(:handler flavor-name operation-name)) ,

For example, if the variable x is bound to the symbol :display, the expression:
(fdefinition (1list :handler ‘'bh-point x))18

will return the function which is the method for disp1ay in the generic operation set of the flavor

named bh~-point. If all elements of the list are constant, the above can be simplified to:
#'(:handler bh-point :display)

oY

16Knowledgeable Lisp programmers will see that this cries out for a backquote.

However, once the method is obtained, an appropriate mapping table (recall the discussion in
the previous section) must be computed and passed as the second parameter of the invocation
(in the [Symbolics 84] system) or bound to the variable se1f-mapping-table (in the system
described in [MoonStallmanWeinreb 84]). The failure to use an appropriate mapping table can
cause the syntactic forms for instance variable manipulation described in section 5.3 to operate

on the wrong instance variables with no indication of error.

How can the appropriate mapping table can be computed? Although there are no documented
procedures in [Symbolics 84] or [MoonStallmanWeinreb 84)] for doing so, it is sufficient to know
(a) the flavor of which the generic parameter is an instance and (b) the flavor named in the
defmethod which created the procedure.!” Notice that flavor (b) need not be the one specified

in the :handler list, since the method could have been inherited from some ancestor.

How can flavor (b) be determined? If the flavor name F and operation name O of the :iandler
list are both constants, knowing the method definitions of O for F and its ancestors and the
method construction algorithm used (see chapter 6 for a discussion of these concepts) allows
flavor (b) to be determined by inspection. Thus, it can be used as a constant in the program. The
problem with this approach is that if this set of method definitions changes (i.e., by adding or
removing defmethods for F 'and its ancestoré). this constant will become incorrect, with no

indication of error.

The only general technique for type-specific invocation of a generic method is to extract flavor
(b) from the method itself, through the use of undocumented properties of the implementation.
For example, if the method is a Tambda or named-1ambda its body can be examined for an

»18

appropriate declaration. If the method is a compiled function, its “debugging info can be -

examined for a specified property. The main problem here is that the data structure which

17As we will see in chapter 6, some generic methods are constructed by the type system rather than being specified in
any defmethod. For such methods, flavor (b) should be the flavor for which the method was initially constructed.
‘

'Bln Zelaiisp, each compiled procedure is associated with a property list referred to as its "'debugging-info."

81

represent the procedure to be invoked must be searched on every invocation. A reasonable

solution requires some small amount of creativity in data structure and interpreter design.

How could could such a fundamental capability have been omitted? The availability of an
extensive repertoire of method-definition algorithms often obviates the need for users to define
procedures which contain ancestor-generic invocations. The lack of the ability to perform
ancestor-generic invocations has an impact only when none of the system-defined algorithms is
appropriate. When this occurs, the usual response of Zetalisp programmers is to redesign their
programs so that one of the predefined algorithms is appropriate. This can be considerably

frustrating, especially for naive users.

Since this information is already computed by the method combination algorithms, it would be
straightforward to provide an interface by which it would be accessible to users. Even better, a
procedure for invoking an arbitrary generic method of an arbitrary flavor on a generic parameter
of an arbitrary type should be provided. The advantage of the latter is that it eliminates the

possibility of using an inappropriate mapping table for a given invocation.

3.4.4 Star M‘esa

Type-specific invocation is the only form of non-gereric invocation available in Star Mesa.
Such invocations require knowledge of the format of the “trait component storage” of the trait
whose generic methpd is to be invoked; see chgpter 7 for details. What is important here is that
the format of this storage is an aspect of the fmplementation of the trait which is subject to
change. Thus, type-specific invocations in Star Mesa require undesirable dependence on the

implementation of ancestor types..

g2

3.5 Invocation errors

There are two possibie ways in which the generic invocation methods described above can fail.
The first kind of failure, which is possible in any of our four subject languages, occurs when the
generic operation set of the specified type contains no method for the specified operation. The
second, which is possible in Zetalisp, Loops, and Star Mesa, occurs when the type of the generic
parameter is not one of those for which the generic inw.;cation mechanism is defined. We

consider each in turn.

3.5.1 “Nonexistent operation’’ errors

What happens when the operation set of the type of the generic parameter of a generic
invocation does not contain an association for the specified operation name? We will refer to this
situation as a nonexistent oper‘ation error. Here is the technique used in our four languages in '
response to a generic invocation where the generic parameter X has type T, the operation name

is 0, and the generic operation set for T contains no method for 0.

e Star Mesa. In Star Mesa, operation names are expressions which have procedure
values. Thus, the result of a nonexistent-operation error depends on the value of the
expression used as the operation name.

o Undefined: the Mesa compiler or binder will signal an error.

o Evaluates to a non-type-compatible procedure: the Mesa compiler will signal
an error.

o Evaluates to a type-compatible procedure: the procedure will be applied to the
parameters with no indication of error.

The latter, of course, is highly undesirable.

e Smalltalk. A second generic invocation occurs, where the generic parameter is X,
the operation name is doesNotUnderstand: and the non-generic parameter is an
instance of class Message from which 0 and an array containing the original
parameters can be extracted. Since such a method is defined for the Smalltalk class
named Object, and Object is an ancestor of all other classes, the algorithm for
method definition (the subject of chapter 5) guarantees that the generic operation
set of every class contains a doesNotUnderstand: method. The method defined
for Object halts program execution.

In this approach, different procedures for handling nonexistent operation errors can
be invoked when the generic parameter is cof dilferent types. This contrasts with Star

Mesa, in which the same procedure is invoked in response to all nonexistent
operation errors. :
¥
e Loops. A second generic invocation occurs, where the generic parameter is X, the
operation name is MethodNotUnderstood, and 0 is the single non-generic
parameter, i.e.,
(Send x MethodNotUnderstood 0)
If this invocation returns a non-nil sym: ol S, the original invocation will be retried
using S as the operation name rather than 0. If not, execution is halted. The
MethodNotUnderstood method for Ob ject uses the spelling correction algorithm
of Interlisp’s “DWIM" facility ([Teitelman 78], section 17) to try to find an operation
name of T which is lexicographically similar to 0.

The difference between this approach and Smalltalk’s is that the laiter makes it
easier for the error handler to (a) examine the non-generic parameters of the oriqinal
invocation and (b) continue the computation with an arbitrary invocation, rather then
an invocation of a different operation on the same parameters. Although the stack-
manipulation facilities of Interlisp makes either of these possible, the Smalitalk
design makes doing so simpler and less prone to programming errors.

e Zetalisp. There are three possible responses to an erroneous-operation error in
Zetalisp. The response taken depends on the type T of the generic parameter X.

1.1f the generic operation set of T contains a method for the
:unclaimed-message operation, then as in Smalltalk and Loops, another
generic invocation occurs. The generic parameter is X, the operation is
:unclaimed-message, and the parameters are 0 and the parameters of the
original invocation. The result is returned as the result of the original
invocation.

2. A ‘default operation handler" procedure can be defined for a flavor. If such
a procedure is defined for T, it is applied to X, 0, and the arguments to the
erroneous generic invocation. The result is returned as tne resuit of the
original invocation.

A default operation handler can be associated with a given flavor via the
:default-operation-handlar clause in a defflavor form for that flavor.
For example, given the definition:
(defflavor example () ()
(:default-operation-handler some-proc))
the global definition of the symbol some-proc will be used as the default
operation handler for example.

3. Otherwise, a sys:unclaimed-message condition will be signalled.
Condition signalling in Zetalisp results in a search of a list of “condition-
handling" procedures for a specific procedure declared to be a handler for the
type of condition being signalled. A procedure invocation can add new
handlers to the front of this list; when the invocation is completed, the
associated handlers are removed.

The first such handler found is invoked with the condition object as one
parameter; X, 0, and a list containing the original parameters can be extracted
from the condition. The handler can either (a) cause the original invocation to
be retried using a different operation name, (b) perform a non-local return from
some frame on the runtime invocation stack, or (c¢) inform the condition-
handling mechanism that another condition handler should be found.

Thus, the response to a nonexistent operation error for a given type can be made to depend
either on a fixed procedure associated with the type or on the state of the invocation stack. If an
sys:unclaimed-massage operation is provided for the type or any ancestor or a default
operation handler is provided for the type, fixed-procedure behavior will occur; if not, condition-
handling behavior will be.dynamically determined. The availability of both kinds of error handling

is the principal difference between the Zetalisp and Smalltalk approaches.

As an aside, it is interesting to note that the design of Zetalisp's condition-handling sysiem
itself embodies a a novel use of the ancestor/descendant relation between types. Conditions are
represented as typed objects, condition handlers are associated with sets of types, and a given
handler is defined to be applicable to a given condition iff the type of the condition is a

descendant of one or more of the types associated with the handler.

For example, if some condition is an instance of the (hypothetical) type
unexpected-closing-of-file-server-connection, and this type is a descendant of the
types file-system-error and network-error, handlers associated with the latter two types
will be applicable to the condition. A similar approach is used for objects returned by condition
handlers which indicate ho. the invocation which signalled the condition should proceed. The
details of the design of the condition-handling mechanism is beyond the scope of this repoit;

[Symbolics 84] and [MoonStalimanWéinreb 84] contain a complete descripticn.

The advantage of this approach is quite similar \n the advantage of definition by inheritance:
less work is required to define new condition tyres for which the handlers associated with

existing types are applicable. For example, if the condition type

unexpected-closing-of-archive-file-server-connection is declared to be a child of
unexpected-closing-of-file-server-connection, all the procedures defined as
handlers for the latter become applicable to the former. In the alternative approach, the

applicability of each condition of the latter must be individually declared.

3.5.2 “Inappropriate generic type’’ errors

One of the distinctive features of the Smalltalk family of Iaﬁguages is that generic invocation is
applicable to all Smalltalk objects. Butin Zetalisp, Star Mesa, and Loops, the generic invocation
techniques described above apply only to instances of flavor types, trait types, and class
types, respectively. We will refer to the situation where the type of the generic parameter is not

appropriate for the invocation mechanism as an inappropriate generic type error.

The following is the result of an inappropriate generic type error where the type of the generic

parameter X is inappropriate.

eln Zetalisb, a sys:invalid-function condition is signalled. X can be extracted
from the condition object. The default response is to signal a condition from which
the result of the failing invocation can be returned.

e in Star Mesa, “inappropriate generic type" errors correspond to invocations of
generic operation procedures where the type of the first parameter is not
TM.Object. Such an invocation would be flagged by the Mesa compiler as a type
error.

¢ In Loops, the method for NoOb jectForMsg of the class which is the value of the
variable DefaultObjiect is invoked with parameters X and 0. If a value is returned,
it is used as the result of failing invocation. Note that, in a departure from
programming convention, the NoObjectForMsg operation of the class bound to
DefaultObject will never take an instance of that class as a parameter,

4. Basic operations on types

As a first step in describing inheritance-based type definition in our four subject languages, we

examine those aspects of types relevant to the parent/child relation involved in inheritance.

The organization of the description is as follows. First, we present technique used to describe
the common characteristics of our four languages. Next, the properties which our four languages
have in common are described. Following that, the way in which the abstract types and
procedures of the specification are realized is described for each language separately. For those
readers whose initial goal is to obtain perspective rather than explore details, these latter

sections may be skimmed or skipped.

4.1 The methodology for description

In many programming languages, types are meta-linguistic objects associated with syntax and
'semantics different from that which applies to “ordinary" data structures. In each of our four
languages, types defined by inhe'ritance are not treated in this way. Type “declarations” are
simply procedure invocations which happen to create objects which can serve as types.

Wegbreit's work on the EL/1 language [Wegbreit 70, Wegbreit 74] was an early and influential

embodiment of this approach.

Since types are truly data structures in our four languages, an informal variant of an “‘abstract
type specification’ (e.g., [Guttag 80]) will be used in the description. The specification will define
some propertigs of the abstract types type and object in terms of abstract procedures such as
type-of and ancestors. These specifications will hold for our subject types and their instances

in each of our four languages.

Types in our subject languages and instances of those types will be characterized as being
modelled by one or more named “attributes’-- i.e., as a tuple with named components. Each

such component will be described in terms of a mathematical concept, such as a set or on

o7/

association between two objects. The behavior of the abstract procedures will be described in
terms of the set of components which model types and instances, as well as in terms of

invocations of other abstract procedures.

In order to facilitate the reader's comprehension of a considerable amount of detail, the set of
components used to model types will not be presented all at once. The components which are

relevant to a particular aspect of types will be presented at the time that aspect is discussed.

It is important to note that not programs can be written in each of our four languages in which
the descriptions given below are not accurate. Such programs can be characterized as using

one of two kinds of capabilities:

e “bit-level” operations on data: e.g., Zetalisp *“subprimitives” (chapter 14,
[WeinrebMoon 81])

¢ “representation-level”” operations on types themselves: e.g., directly modifying the
instance variables of the data structuras which renresent Smalita'k classes.

These descriptions will assume “identity” as a primitive modelling concept, and identical as a
two-place predicate which succeeds iff the two parameters are "the same object”. Although the
formalization of this intuitively simple idea is not a simple task, (see, e.g., [GuttagHorning 80],
[Rich 81], [Smith 83]) the fact that it is realized as the EQ of Interlisp and Zetalisp, the =

procedure in Mesa, and the == 6peration in Smalitalk should make the meaning clear.

The descriptions will also use the abstract type symbol. This type is realized by instances of
the Symbo1 class in Smalltalk (e.g., #ASymbo1), the ATOM type of Interlisp (*ASymbo1), the
:symbol type in Zetalisp (*a-symbo1), and the STRING type of Mesa ("ASymbo1"). When

symbols are referred to by name, the duoting characters will be omitted.

Finally, it will be clear that the following ‘‘specifications” are by no means a precise
characterization of behavior. The purpose of introducing such quasi-formalism is purely

pedagogical. It does not seem unreasonable that the direction suggested in the following could

be used as the basis of a satisfactory formalization, but it is beyond the scope of the present work

to do so.
Given the above, we now begin the actual description.

4.2 The common abstraction

4.2.1 Type introduction
Since our subject types are full-fledged computational objects, we begin the description with

how such objects are created. In order to do so, we introduce the abstract type type and the
three relevant abstract procedures for type introduction are new-type, type-name, and
type-named:

¢ new-type: {<internal-ﬁame: symbol, ...>} =>type

e type-name: {type} =>symbol

e type-named: {symbol} => type
The above notation describes the ‘signature” (e.g., [Demers et al. 78]) ¢! the procedures; for
example, type-named is a procedure which takes a type as a parameter and returns a symbol.

A parameter list of the form:)
<id: id, ...> v

uses a “"keyword" style to provide a partial specification of its parameters. For example, the use

of:
Cinternal-name: symbol, ...>

in the signature of new-type indicates that one of its parameters is internal-name, and that the

value of this parameter must be a symbol.

The relevant properties of new-type, type-name, and type-name are as follows.

e Each invocation of new-type creates a type with a new identity:
not (identical (new-type (<...>), new-type ...>))))

e The name of a newly created type is specified as a parameter to new-type:
identical (type-name (new-type (Kinternal-name: N, ...>)), N)

89

e The type-named procedure can be used to refer to a newly-created type given its
internal name:
type-named (new-type (Kinternal-name: N, ...>)) = N

We can summarize the above by saying that types have identity and are associated with
symbols which can be used to name them. There are two reasons why types are treated as

objects with identity. One will be described here; the other in the following section.

A principal reason why types have identity is that aspects of our subject types can be modified
during program execution. The fact that this is possible may or may not be relevant to program
semantics.19 but it is an essential aspect of a usable programming environment. If types were
purely “applicative” data structures, common tasks in program development would be much
more painful. For example, it would be impossible to replace a generic method of an existing

type; a new type would have to be created instead.?®

The purpose of the name-related procedures is slightly more subtle. The key benefit of this
approach is as follows. If the printed representation of a type includes its name, then a reference
to the type can be obtained from its printed representation. For example, suppose that the result
of printing a type was the string "Type: " followed by the printed representation of the name of

the iype. Then if we knew that the printed representiation of some type T was:
Type: Point :

we could obtain a reference to T by the expression:
type-named ('Point)

Without the existence of the type-named function, there would be no way to compute T from

the above.

This technique is commonly used when data structures are used to model real-world objects -

19AS we will see in chapter 6, it is critical in describing generic operation set computation in Star Mesa.

20To be sure, it is possible to design a system where all tyne-madifying operalions are invocable only through a "user

iterface” and not by programs in the language themselves. However, this technique guarantees that the programs
which implement the “interface’ cannot themselves must be written in a separale language.

90

with identity, e.g., as in databases or in knowledge representation systems. In particular, Loops
allows such names to be associated with any instance of any class. Thus, type-named is

actually a special case of a more general object-named procedure.

The soundness of this technique depends on the assumption that no two types have the same
name. However, that is not the case in any of our four languages. New types can be introduced
with the same name as existing ones, or, in Smalitalk and Loops, the name of one type can be
changed to be identical to that of another. If such activities are performed, then the naming

operations must be used with caution.

For completeness, we will introduce the abstract set-name procedure to denote the operation

of changing the name of a type.

e set-name: {type, symbol}
The abstract representation of a type must then be modified to include a symbol component.
This component will be initially set by new-type, returned by type-name, and modified by

set-name. As alluded 0 above, a set-name procedure is available in Loops and Smailltalk, but

noi in Zetalisp or Star Mesa.

4.2.2 Types as value-space partitions

In each of our languages, there is a distinguished procedure which maps objects to types. The
key aspect of this function is that the mapping is functional, i.e., the same type will always be
associated with the same object. Thus, the collection of types can be viewed as partitioning a
space of objects. Furthermore, each of our languages includes a primitive operation which can

create a new object of a given type, distinguishable from all existing ones.

In order to describe this behavior, we will introduce the abstract type object and the abstract

procedures type-of and instantiate:

o type-of (cbject) => lype'

* einstantiate (type) => object

91

These procedures are related by the following properties:

e Each invocation of instantiate creates an object distinct from all other objects:
not (identical (instantiate (T1), instantiate (T2)))

e The type of a newly-created object is a parameter of the instantiation procedure:
identical (type-of (instantiate (T)), T)

We will henceforth say that an object O is an “instance” of a type T iff
identical (type-of (0), T)

Notice the contrast between this approach and that used in the mainstream of work in
programming language semantics. In describing type-related behavior in our four languages, we
are associating types with computational objects, i.e., the data structures which resuit from
evaluating expressions. But in the standard approach to semantics, types are ascribed to the
expressions of the language, not to their referents. These two uses of the concept of “type’ can

be a point of considerable confusion.

leen the above, we can describe a second reason why it is useful for dilferent invocations of
new-type to produce non-identical types. The distinguishability of types allows the type of an
object to be used to represent information about the object not recoverable through its operation

set.

As a simple example, consider the types faculty and student which both have the same two
abstract operations, name and phone. Determining whether an object represented a faculty
member or a student would be impossible though invocations of the name and phone operations.
But if the faculty and student types were distinguishable, then the faculty/student
information could be recovered by examining its type. This information could either be used to
direct further computation (as in common in “databases” which contain typed chjects
[SmithSmith 77, McLeod 79, BrodieZilles 81]) or for type checking (e.g.,

[GeschkeMorrisSatterthwaite 77, Demers et al. 78]).

‘Finally, we note that a significant difference among our four languages is whether instances of

92

the abstract type type are also instances of the abstract type object. This is the case in
Smalitalk and Loops; each class is itself an instance of a class. But Zetalisp flavors are not

instances of flavors, and Star Mesa traits are not instances of traits.

4.2.3 The parent/child relation
The final basic aspect of types involves the parent/child relation described in chapter 1. The
use of this relation to compute other properties of types is the distinguishing characteristic of

type construction algorithms which embody inheritance.

+
In order to describe this aspect of types, an abstract set-of type constructor is used.

Completely in line with intuition, instances of the abstract type:
set-of (T)

are sets which contain only instances of abstract type T. These are realized as arrays in Smalitalk
and Star Mesa, and lists in Zetalisp and Loops. The basis of the extension is the introduction of a
'pa rents procedure. and the addition of a parents parameter to new-type.

e parents: {type} =) set-of (type)

e new-type: {{parents: set-of (type), ...>} => type

We will henceforth say that "' A is a parent of B" iff
A ¢ parents(B)

Given the existence of the parents function on types, the following procedures are relevant:

e ancestors: {type} => set-of (type)
e components: {type} =) set-of (type)
e is-a: {object, type} => boolean
The semantics of these procedures can be defined in via parents and type-of.

e Let Parent (T1, T2) stand for the relation
T1 ¢ parents (T2)
and let Ances tor be the transitive closure of Parent. Then the ancestors of a class
T2 are those objects T1 which satisfy
Ancestor(T1,T2)
Informally, the ancestors of a type are its parents, its parents’ parents, etc.

93

e The components of a type is the union of the type and its ancestors:
components (T) = ancestors (T) U {T}

o The predicate is-a(0, T) is satisfied if the type of O is a component of T:
is-a (0, T) = type-of (O) e components (T)

There are two relevant aspects on which our subject types differ.

e In Smalltalk, Zetalisp, and Loops, there is a distinguished type which is an ancestor
of all other types. In Star Mesa, no such type exists. In the languages where such a
type exists, we will use root-type to refer to it. From chapter 6, we will see that the
operations associated with this type will be applicable to all instances of each of our
subject types, although the methods used can be different. Exampies of such
operations include those for printing, instance variable manipulation (see chapter 5),
and type testing.

e In each of our four languages, the parents of a newly created type are specified as a
parameter to new-type;i.e.,
parents (new-type (Kparents: P, ...>)) = P
In Smallitalk, Zetalisp, and Star Mesa, the parents of a type are fixed at the time the
type is created. But in Loops, the parents can be modified at any time. The
introduction of such a procedure requires a similar change to the abstract
representation as that described for set-name in section 4.2.1.

4.3 The Smalltalk realization

Figures 4-1 through 4-3 identify the types and procedures of Smalltalk-80 and Smalitalk-82
which realize the above-described abstraction. Specific examples are included as well. For
example, the enh"y for ancesto rs in figure 4-1 states that it is realized by the al1Superclasses

operation of class Behavi or, and that
BHPoint allSuperclasses

is an example of its use. Starred procedures, such as the cTassNamed operation of Class

defined in figure 4-1, are'not predefined in the language; their definitions are presented as well.

4.3.1 Type introduction operations

Abstract op Realized as Example

type Any instance of an instance of Metaclass
new-type The ...subclass:... operations of Class

In Smalltalk-82: The .. .subclass:otherSubclasses:... operations of Class
type-named (*) The c1assName operation of Symbo1l #BHPoint classNamed
type-name The name operation of C1assDescription BHPoint name
set-name The rename: operation of ClassDescription BHPoint rename: #NewName

in the operation set of Symbo1:
classNamed
~ Smalltalk at: self

Figure 4-1: Type introduction in Smalltalk-80 and Smalltalk-82

object Any Smalitalk object
type-of The class operation of Object bhp class
instantiate The new operation of Behavior . BHPoint new
The new: operation of Behavior SomeOtherClass new: 3

Figure 4-2: Partitioning operations in Smalltalk-80 and Smalltalk-82

parent In Smalltalk-80: the superclass operation of Behavior
BHPoint superclass
parents In Smalitalk-82: the immediateSuperclasses operation of Behavior
BHPoint immediateSuperclasses
ancestors The al1Superclasses operation of Behavior BHPoint allSuperclasses
is-a The isKindOf : operation of Ob ject p isKindOf: Point
root-type Object

Figure 4-3: Parent/child operations in Smalltalk-80 and Smalltalk-82

4.3.1.1 The realization of type

EL/1 was the one of the first languages in which types were themselves instances of types. In
the approach taken in EL/1, the abstract type type is realized as the collecticn of all objects for
which the realization of type-of returns a distinguished type: TYPE. In other words, an object O

is a type iff:
type-of (O) = TYPE

The abstract type and type-of are realized in EL/1 as the concrete MODE and MD [Holloway et

al. 74)].

In Smalitalk-80 and Smalltalk-82, the concept of *class” is used to refer to types. As in EL/1,
the realization of the abstract type type is also defined in terms of the object computed by the
realization of type-of. The realization of type-of is the method for class in the generic

operation set of the class Object.

95

In contrast to the EL/1 model, there is no single Smalitalk class of which ail classes are
instances. Instead, there is a distinguished class Metaclass of which the class of all classes are
.

instances. Thus, O is a Smalltalk type iff:
type-of (type-of (0)) = Metaclass

In English, an object is a class just in case the type of its type is the distinguished type

Metaclass.

This definition of type in Smalltalk is a consequence of the following properties of classes
described in [GoldbergRobson 83, chapter 16, p. 269]:
e The class of a class is called its metaclass.

e Every class is an instance of a metaclass.

* e Every metaclass is an instance of Metaclass.
The illustrations accompanying the text make it clear that “instance of" is meant to refer to
tvpe-of, not is-a. As we will see, the realization of type-af will be the method far the operation

class of the distinguished type Ob ject.

Why aren't all Smalltalk classes instances of the same class? The extra complexity is due to the

desire:
1. to have the primitive creation operation be the new of Class. This should create an
uninitialized instance of the generic parameter.

2. to have the new operation of the class of each class create an instance of its generic
parameter (i.e., of the class), then perform initialization specific for that class. E.g.,

"~ the new of (Point class) should create an uninitialized instance of Point, then
initialize it. And (Class class) new should create a new instance of Class and
initialize it. Chapter 5 describes why this is desirable.

If this is the case, then new of the class of C1ass should perform initialization specific for Class.
If the class of Class is Class, then 'the new of Class should perform initialization specific to

Class. But this contradicts the principle that new of Ctass creates an uninitialized instance.

4.3.1.2 The classes relevant to type

In S'malltalk, the abstract procedures of section 4.2 are realized as methods for generic
operations. This is possible because each object which represents an instance of the abstract
type type also represents an instance of the abstract type object. Thus, each such object can

itself be used as the generic parameter of generic invocations.

Since the abstract procedures are to be realized as methods for generic operations, each must
be defined in the operation set of some class. The following is a summary of the six classes in

whose operation sets the realizations of these abstract procedures can be found.

e Object contains definitions for the operations which all Smalitalk objects are
expected to implement.

e Behavior, a child of Object, contains definitions for operations assumed by the
Smalltalk interpreter to be implemented for any object used as a type. Examples of
these operaticns include those which create an instance of the class and modify the
set of generic methads of the type.

o ClassDescription, a child of Behavior, contains more definitions for operations
assumed to be implemented for any object used as a class. These operations are
depenided upon by Smalitalk’s “system methods,” (e.g., the top-level user interface)
rather than the interpreter per se. Examples of these operations are those which
categorize classes and generic operations of classes, and those which take a class
and create a sequence of Smalltalk expressions whose evaluation will produce a
copy of the class. The latter is used to *'store" class definitions on 170 devices.

e Class, a child of ClassDescription, contains definitions of operations assumed
to be implemented for all classes whose instances are not themselves classes. It
defines operations to create instances of these classes and to manipulate the
collection of “class variables' and “pocﬁ variables" of a class (see section 5.6.1).

e Metaclass, another child of ClassDescription, contains the definition of the
single operation assumed to be implemented for all classes whose instances are
classes. This is the operation which creates new classes. All classes whose
instances are classes are themselves instances of Metaclass.

eMotaclass class, [that is, the type of the object Mataclass], also contains the
definition of exactly one operation: the procedure which creates new classes whose
instances are classes. In other words, this is the procedure which creates instances
of Metaclass.

97

4.3.1.3 The realization of new-type
Given the above, we can turn to the question of the realization of the abstract procedutes. The

first of these, new-type, has different realizations in Smalltalk-80 and Smalltalk-82.

In Smalltalk-80, the new-type procedure is realized as four generic operations of the system-

defined class Class. The most basic of these has the unwieldy name of:
subclass:
instanceVariableNames:
classVariableNames:
poolDictionaries:
category:
For the purposes of the abstraction of section 4.2.1, the only relevant parameter is subclass:.

This parameter is used as the name of the newly created class. As an example, the invocation:

Object subcliass: #Point
- instanceVariableNames: 'loc’
classVariableNames: '’
poolDictionaries: '’
category: #CanonicalExample

creates a new class whose name is the symbol Point.

Smalitalk-80 also defines three variants of the subcTass: operation,
variableSubclass:..., variableWordSubclass:...:, and
variableByteSubclass:.... These all take the same parameters as the subclass:...
operation, and all create new classes whose name is the first non-generic parameter. Looking
ahead a bit, we will see that instances of classes defined using these latter three operations can
contain a different number of references to other objects. This explains the Smalitalk term for
these classes: ‘‘variable-length classes,” in contrast to ‘‘fixed-length classes." Variable-iength

classes will be further described in the following section and section 5.2.

The significance of the instanceVariableMames:, classVariableNames:, and
poolDictionaries: parameters in all four of the class-creating oparations will aiso be
described subsequently. The category: parameter is solely for the benelit of the user interface
(see, e.g., [Goldberg 83] or chapter 17 of [GoldbergRobson 83]); it has no effect on the

semantics of the class.

In Smalltalk-82, the new-type operation is realized through variants of the four
...subclass:... operations described above. Tha’difference is that the Smalltalk-82
operations take an additional parameter, referred to :'1:=3r‘e-.as otherSuperclasses:. We will
shortly see that this additional parameter allows a c-lass to be associated with more than one

parent. As an example, the following invocation from figure 2-16 creates a class whose name is

the symbol BHPoint.

BoundedPoint
subclass: #BHPoint
otherSuperclasses: (Array with: HistoryPoint)
instanceVariableNames: 'bhlist bhtail’
classVariableNames: "'
poolDictionaries: '’
category: #CanonicalExample’

Since classes in Smalltalk are instances of other classes, a description of these eight class-
creation operations ought to include an indication of the class of the created objects. In each
case, the newly created class is an instance of a second newly created class. This class of this

latter class is the distinguished type Metaclass.

The point of creating two different classes is that the operations associated with a given data
abstraction be distributed between the class and its metaclass. The class will have abstract
operations which can be invoked with instances of the class as the generic parameter. The
metaclass will have abstract operations which do not take an instance of the abstraction as a

parameter. For example, the “‘create’ operations of many data abstractions fall in the latter

cateyury.

4.3.1.4 The other procedures

The name of any class can be obtained through the invocation of the name operalion of class

ClassDescription,eg.,
C name

All eight reaiizations of the new-type procedure bind the newly created class to a variable
corresponding to its name. Thus, if a class were created whose name was the symbol Point, the

!

newly created class would be hound to the global variable Point. Since naming environments

99

are implemented as instances of class Dictionary, and the distinguished name Smalltalk
refers to the global diciionary, the dictionary-lookup operation at : can be applied to Smalltalk
to obtain a newly-created class given its name. This is the technique used to implement the

classNamed operation defined in figure 4-1.

As an aside, we note that the c1assNamed operation illustrates the awkwardness of having all
procedure invocations be generic invocations. The abstract type-named procedure should be
associated with the type abstraction, not that of symbol. But doing so would require the

addition of an extraneous generic parameter, e.g.,
Class classNamed: N

The sole utility of this extra parameter is to cause the generic invocation mechanism to look in

the right operation set to find the method.

The abstract set-name procedure is realized as the rename: operation of class

C1 ass-Descri ption. If the name of a class C is N, then the invocation:
C rename: NewN

results in the removal of the binding of N in the global environment and the binding of NewN to C.

Given the above, it is easy to see how the invocation:
classNamed C

can fail to produce a class whose name is C. First, more than one class named C might exist,
either through different invocations of the class-creation operations or through renaming one
class to have the same name as another. Second, the global variable which has the same name

as the class may have been rebound to some other value.

4.3.2 Partitioning operations
As described above, the abstract type-of procedure is realized as the class operation of

Object. The expression
X class

computes the class of X.

100

The abstract instantiate procedure is realized by the new and new: operations of class

Behavior. The former, used for fixed-size classes, takes no non-generic parameters:
Point new

The latter, used for variable-size classes. takes a single integer parameter:
SomeOtherClass new: 10

We will see in section 5.2 that the non-generic parameter of new: is used to determines the

number of “indexed instance variables’ associated with the created object.

4.3.3 Parent/child operations

4.3.3.1 The parents of aclass

In Smalltalk, the parent/child relation between classes is often referred to as a
“superclass/subclass’ relationship. Unfortunately, these terms are also commonly used to refer
to the ancestor/descendant relation. In this report, the terms "'superclass' and *‘subclass” will

always refer to the parents and children of a class.

Invocations of the ...subclass:... operations produce class which have a single parent.
The parent of the class created by an invocation of asubclass:... operation is the
generic parameter of the invocation. For example, in the definition of Point given above, the

parent of Point is the generic parameter, Ob ject.

In Smalltalk-82, the ...subclass:otherSubclasses:... operation allows classes with
more than one parent to be created. The additional parents are specified through the
otherSuperclasses: parameter, which must be an array of classes. The newly created class
will have as its parents the generic parameter of the invocation together with each member of the
othorSupsrclasses: array. For example, the above invocation of
...subclass:otherSubclasses: ... creates a class whose parents are BoundedPoint and

HistoryPoint.

Recall that the class-creation operations also create instances of Metaclass. For all eight of
1

101

the class-creation operations, the parents of the class of the newly-created class are the classes
of the parents of the newly-created class. For example, since the parent of Point isObject, the
parent of the class of Point is the class of Object. And since the parents of BHPoint are
HistoryPoint and BoundedPoint, the parents of the class of BHPoint are the class of

HistoryPoint and the class of BoundedPoint.

Since Object is an ancestor of all system-defined classes (except itself, as it has no parent),
and since the class-creation operations create classes which are children of one or more existing
classes, Object is the root-type in both Smalltalk-80 and Smalltalk-82. Furthermore, the class
hierarchy dominated by Ob ject will be isomorphic to that dominated by the class of Ob ject. In

other words:
If (1) A'is a parent of B and (2) A and B are non-metaclasses, then the class of Ais a
parent of the class of B. 2!

Thus, the two parallel class and metaclass hierarchies can be viewed as a single "abstraction’

hierarchy.

4.3.3.2 The information-extracting procedures
In Smalltalk-80, the single parent of a class can be computed by the superclass operation of

class Behavior. For example,
Point superclass

returns the unique parent of Point, namely Cb ject.

In Smalltalk-82, the abstract parents procedure is realized as the immediateSuperclasses
operation of Behavior. This operation computes an array containing the parents of its

parameter. For example,
BHPoint immediateSuperclasses

returns an array containing two members BoundedPnint and HistoryPoint. The
superclass operation is also available in Smalltalk-82, but will return only one of the parents of

the class.

‘ 21ThiS'reI.:nionship wili hold for any program which uses only the standard operation for class introduction described
above. |f the subclassOf: operation ol the class of Metaclass (which creates a new metaclass), or the
name:environment:... operation of Metaclass (which aclually creates the class) are used, this property will no
longer necessarily hold. See [GoldbergRobson 83], p. 287,

102

In both Smalltalk-80 and Smalltalk-82, the ancestors procedure is realized as
allSuperclasses operation of Behavior. The realization of the set-of (type) returned by
this operation is an instance ol the Smalltalk class Array whose members are the parents. [For

example, the invocation
Point allSuperclasses

returns a single-element array containing Ob ject, and
BHPoint allSuperclasses

returns a four-element array containing Ob ject, Point, BoundedPoint, and HistoryPoint.

The abstract is-a procedure is also realized identically in both versions of Smalltalk. The

relevant operation is isKindOf : of class Object. For example,
p isKindOf: Point

computes whether the class of p is BHPoint or some descendant. It is not to be confused with
the isMemberQf : operation of Object, which tests whether the second parameter is the type of

thefirst. Eg.,
p isMemberOf: Point

will only succeed if
(p ciass) == Point

Recall that the utility of a prograni-invocable realization of is-a was described in section 4.2.2.

4.4 The Loops realization

4.4.1 Type introduction operations

4.4.1.1 The realizalion of type

The type system defined by Loops classes is embedded in the Interlisp type system. As a
result, all instances of Loops classes have both a "“Loops type’ and an “Interlisp type". In all
cases, the "Interlisp type" is a *‘user-defined datatype," i.e., one whose storage format can be
specified by programmers.22 The unary predicate Object? can be used to determine if an

arbitrary Interlisp object is also an instance of a Loops class.

1

22For details, see seclions 3 and 23.11 of [Teitelman 78]).

103

Abstract op Realized as Example

type Any instance of an instance ol $Metaclass
new-type The DefineClass procedure

The DefClass syntactic form

The New operation of $Metaclass

type-named The $1 procedure ($! 'BHPoint)
The $ syntactic form $BHPoint or ($ BHPoint)
type-name (*) The Name operation of $Class (Send c Name)
set-name The SetName operation of $Class (Send $BHPoint SetMName ‘NewName)

(DM *Class 'Name '(self)
(@ :name))

Figure 4-4: Type introduction in Loops

object Any Interlisp object for which 0b ject? holds
type-of The Class operation of $0bject (Send bhp Class)
instantiate (*) The Instantiate operation of $Class

(Send 3BHPoint Instantiate)

(DM 'Class 'Instantiate '(self)
(Send self NewWithValues))

Figure 4-5: Partitioning operations in Loops

parents (*) The Parents operation of $Class (Send $BHPoint Parents)
ancestors (*) The Ancestors operation of $Class (Send $BHPoint Ancestors)
is-a The InstOf | operation of $Class (Send bhp InstOf! SPoint)
root-type $0bject

(DM *Class 'Parents '(self)
(Send self List 'Super))

(DM *Class 'Ancestors '(self)
(Send self Listl 'Super))

Figure 4-6: Parent/child operations in Loops

The realization of type in Loops is closely related to that in Smalitalk. In particular:

e All Loops classes are themselves instances of classes.

e The type of any instance of a class can be computed by the Class operation of the
distinguished class Ob ject.

e An object is a class iff the type of its type is the distinguished classMetaclass.

104

4.4.1.2 The classes relevant to type
The realization of our common abstraction in Loops involves generic methods of three classes:

Object,Class, and Metaclass.

o Ob ject serves the same function in Loops as it does in Smalitalk. It ““provides a set
of default behaviors and generally available subroutines™ ([BobrowStefik 83],
p. 118).

o Class defines operations which are relevant to all objects which are classes,
regardless of whether or not their instances are classes. Thus, it corresponds to
Behavior and ClassDescription in Smalitalk. A distinction between the Ilatter
two would be irrelevant for Loops, since there is no “Loops interpreter” apart from
the Interlisp interpreter.

oMetaclass serves the same purpose as Motaclass in Smalltalk. It has one
operation: that used to create classes whose instances are classes.

4.4.1.3 The realization of the procedures

The abstract new-type procedure is realized in Loops through the Interlisp DefineClass
function. DefineClass takes thre‘e parameters, two symbols and a list of symbols. The first
symbol is taken as the internal-name parameter of new-type. The second symbol names the
class of which the newly-created class is an instance. The list is taken as the parents parameter
of‘new-type; it names the classes which are the parents of the newly-created class. For

example, the invocation
(DefineClass 'BHPoint 'BoundedPointClass '(BoundedPoint

HistoryPoint))
creates a class whose name is the symbol BHPoint, whose parents are the classes

BoundedPoint and HistoryPoint, and which is itself an instance of the class

BoundedPointClass.

The DefC1ass syntactic form and the New operation of the distinguished class Metaclass are

interfaces o this procedure. Thus, the above invocation of DefinoClass is equivalent to:

(Send $BoundedPointClass New
'BoundedPoint
"(BoundedPoint HistoryPoint))

or:

105

(DefClass BHPoint 4
(MetaClass BoundedPointClass)
(Supers BoundedPoint HistoryPoint))

Since the name of a class is the value associated with its name instance variable, defining a
procedure which realizes the abstract type-name is straightforward. The definition given in
figure 4-4 uses operations described in chapter 5 and 6 to define a Name operation for the class

$C1ass which returns the value of that instance variable.

The abstract type-named procedure is realized using a general facility for associating "'Loops
names'" with objects.23 The class creation operation associates the newly created class with a
“Loops name" corresponding to the name of the class. The object associated with a Loops

name N in the current environment can be computed by the procedure $1.

For example, a type whose name was the symbol Point could be referred to via the

expreésion:
($! 'Point)

Since the syntactic forms $id and ($ id) compute the object whose Loops name is the symbol

corresponding to id, either
($ Point)

or
$Point

would refer to the same class.

The set-name operation is realized by the SetName (alias Rename) operation of $Cl1ass. This
procedure changes the value of the name instance variable of the class, creates a Loops name

which corresponds to the new name, and removes the Loops name which corresponds to the old

2"“’"Loops names" are used to identily objects which have existence outside the context of a particular programming
session. This aspect of L.oops evolved from the earlier work on the PIE system described in, e.q., [GoldsteinBobrow 80].
Chapter 9 of [Stetik et al. 83b) provides a detailed description of of the naming lacilities and how they are used in the
design of community-wide knowledge bases.

106

one.®* From the above, we can see that the Loops realization of set-name can fail in the same
ways as could Smalltalk's. More than one class with the same name can exist, and the global
Loops name could have been rebound. A third situation which will lead to failure is if the name
instance variable of a class is modified without removing the old Loops name and creating a new

one.

4.4.2 Partitioning operations
As described above, the abstract type object is realized as any Interlisp object for which the
Object? procedure succeeds. The abstract type-of procedure is the Class operation of

$0bject, just as in Smalitalk.

The abstract instantiate procedure can be realized by an invocation of the New\ithValues
operation of $Class where the generic parameter is the class to be instantiated and no other
parameters are given. This is reflected in the definition of the Instantiate aperation of

$CTass givenin figure 4-5. For example, a new instance of $Point could be created by:
(Send $Point Instantiate)

A full account of the semantics of MewWithValues and a description of the New operation of

$Class is given in chapter 5.

4.4.3 Parent/child operations
The abstract parents operation can be realized by an invocation of the List operation of
$Class where the symbol Supers is given as the second parameter. Figure 4-6 defines a

Parents operation of $Class interms of List. For example,
(Send $BHPoint Parents)

will return a list containing the classes BoundedPoint and HistoryPoint.

The realization of ancestors is analogous. The ancestors of a class can be computed by

invoking the List! operation with the symbol Supers as the second parameter, and this

'

24 P - .
It also renames the methods 7 iiie class; see chapter 6 for a description of what this means.

107

technique is embodied in the Ancestors operation of figure 4-6. Given the definitions of

chapter 2, the invocation
(Send $BHPoint Ancestors)

returns a list containing the four classes $BoundedPoint, HistoryPoint, Point, and Object.

The List and List! operations represent a general information-extracting utility in Loops.

As we will see, the order of the parents and ancestors lists in which the ancestor types
appear in the list is is relevant to the behavior of a number of Loops primitives. Here is how the

order is determined.

The parents list of a newly created class is ordered according the list parameter of the
invocation of DefineClass which created the class. For example, the parents list of BHPoint

as defined above would initially be:
($BoundedPoint $HistoryPoint)

The ancestors list for a class C is computed as follows.

1. Let G be a graph whose nodes represent all defined classes and which ccntains an
edge from N1 to N2 iff N2 is a parent of N1.

2. Let C’ be a list of the nodes visited in a depth-first enumeration of the subgraph of
the G dominated by C. The order of examination of the parents of each class is the
order given in the parents list of the class.

3. The ordering of the ancestors of C is the result of removing all but the last
occurrence of each class from C .

For example, consider the computation of the ordering for BHPoint. C’ is the sequence:
[BoundedPoint, Point, Object, HistoryPoint, Point, Object]

Removing all but the last occurrence of Point yields an ordering of:
[BoundedPoint, HistoryPaint, Point, Object]

Figure 4-7 describes the ancestors list of each of the classes defined in the example of
chapter 2. Notice that the ancestor ordering algorithm guarantees that no class will appear
before a descendant class in the list. In more formal terms, the enumeration algorithm produces

a “topological sort” ([Knuth 69], p. 69). where the partial order is that defined by the *“child-of"

relation between types.

108

Class Ancestor ordering

PointClass Class, Object

Point Object

BoundedPointClass PointClass, Class, Object

BoundedPoint Point, Object

HistoryPoint Point, Object

BHPoint BoundedPoint, HistoryPoint, Point, Object

Figure 4-7: Ancestor ordering in the Loops example

Finally, the is-a operation is realized as the InstOf! operation of class Object. For example,
(Send X InstOf! $Point)

succeeds iff the type of X is Point or a descendant. As with Smalltalk, there is a separate

operation, InstOf, which succeeds when one parameter is the type of the other. For example,
(Send X InstOf $Point)

is equivalent to
(EQ (Send X Class) $Point)

4.5 The Zetalisp realization

4.5.1 Type introduction operations
The new-type procedure is realized in Zetalisp as the def flavor syntactic form. The syntax

associated with this form is as follows:

(defflavor id,
(varspec ... varspec))

(ldparent ot ldparent)
clause

clause)
varspec is either an identifier or the form;
(id exp)
and clause is either an identifier or a list whose first element is an identifier. All clauses are

optional; the syntax of particular kinds of clauses will be described as they become relevant.

The id_, . of the defflavor form realizes the abstract internal-name parameter of

new-type. Thus, the following form from figure 2-4:

109

Abstract op
type
new-type
type-named

type-name
set-name

object

type-of
instantiate

parents
ancestors
is-a

root-type

Realized as Example

In the non-flavor type system: instances of si:flavor or their names

The defflavor syntactic form
(*) f1avor-named
si:flavor-name

Not applicable

(flavor-named 'bh-point)
(si:flavor-name f)

(defun flavor-named (n)
(check-arg-type n :symbol)
(1et ((f1 (get n 'si:flavor)))
(if (typep f1 ‘'si:flavor)
f1
(ferror "~s is not the name of a flavor." n))))

Figure 4-8: Type introduction in Zetalisp

In the non-ilavor type system: instances of :instance.
typep (typep bhp)
(*) instantiate

(defun instantiate (f)
(check-arg-type f si:flavor)
(instantiate-flavor (flavar-name f) '(nil)))

Figure 4-9: Partitioning operations in Zetalisp

(*) flavor-parents
() flavor-ancestors
typep (typep bhp ‘point)

si:vanilla-flavor

(defun flavor-parents (f)
(check-arg-type f si:flavor)
(union (si:flavor-depends-on f)

(si:flavor-includes f)))

(defun flavor-ancestors (f)

(check-arg-type f si:flavor)
(cdr (si:flavor-depends-on-all f)))

Figure 4-10: Parent/child operations in Zetalisp

(defflavor bh-point

{(bhlist bhtail)
0

(:included-flavors bounded-point history-point))

introduces a flavor whose name is bh-point.

The abstract type-name procedure is realized as s1i:f1avor-name. Thus, if F is a flavor:

(si:flavor-name F)

Al

will produce its name.

110

(instantiate (flavor-named 'bh-point))

(flavor-purents (flavor-named ‘'bh-point))
(flavor-ancestors (flavor-named 'bh-point))

Introducing a flavor has the side effect of associating the flavor with the property si:fJavor
on the property list of the flavor name. For example, after the flavor definition given above, the
property list of the symbol bh-point contains an association between the symbol si:flavor
and the object representing the bh-point flavor. Thus, the abstract type-named procedure

can be realized as the f1avor-named procedure defined in figure 4-8.

Zetalisp contains no realization of set-name. However, since a new flavor can be created with

the same name as an existing one, the type-named procedure can still fail.

4.5.2 Partitioning operations
The abstract type-of procedure is realized using the typep procedure. When the latter is
applied to any object whose Zetalisp type is :instance, it returns the name of the flavor of

which the object is an instance. For example, if
(typep bhp)

is the the symbol bh-point, then the type of bhp is
(flavor-named 'bh-point)

This technique is used to define the type-~of procedure of figure 4-9.

The abstract instantiate is realized through Zetalisp's instantiate-flavor procedure.
The two required parameters of this procedure are the name of a flavor and an object
representing a property list. The most fundamental version of object instantiation occurs when
the property list is empty, and no other parameters are given. More complex initialization actions

which can be defined in terms of the above are described in chapter 5.

4.5.3 Parent/child operations

The abstract parents parameter is realized through two components of the form: the (idparem

. idpa,em) component and the optional :included-flavors clause. varspec is either an

identifier or an expression of the form: The latter has the syntax:
(:included-flavors id ... id)

!

The parents of the flavor are the flavors named by the remaining ids, together with the system-

11

defined flavor named si:vanilla-flavor.? For example,
(defflavor bh-point
(bhlist bhtail)
(bounded-point history-point))
introduces a flavor nramed bh-point whose parents are the flavors named by the symbols

bounded-point, history-point,and si:vanilla-flavor.

The abstract ancestors procedure is realized through the si:flavor-depends-on-all
function. When this function is applied to a flavor, it produces a list whose car is the name of the
flavor and whose cdr is a list containing its ancestors. For example, given the example in figures

2-1 through 2-4, the invocation:
(si:flavor-depends-on-all (flavor-named 'bh-point))

returns the list: _
(bh-point bounded-point history-point point vanilla-flavor)

As with Lonps, the order of the list produced by the ancestors operation is semantically
relevant. In the absence of any :included-flavors clauses, the algorithm for producing the

ancestor ordering is almost identical to that used in Loops.

1.Let G be a graph whose nodes represent all defined classes but
si:vanilla-flavor and which contains an edge from N1 to N2 iff N2 is a parent
of Ni1.

2. Let C” be a list of the nodes visited in a depth-first enumeration of the subgraph of
the G dominated by C. The order of examination of the parents of each class is the
order given in the parents list of the class.

3. The ordering of the ancestors of C is the result of removing all but the first
occurrence of each class from C , and adding si:vanilla-flavor at the end.

Recall that the Loops algorithm removed all but the /ast occurrence in step 3.

The computation of the ordering for the bh-point flavor in Zetalisp illustrates the effect of the
difference between the Zetalisp and Loops ancestor ordering algorithms. In the Zetalisp

computation, the c’ sequence is identical (up to renaming) to that of Loops:

) 25The inclusion of si:vanilla-flavor can be suppressed via the :no-vanilla-flavor clausein the defflavor

form.

112

bounded-point, point, history-point, point
Removing all but the first occurrence of point and adding si:vanilla-flavor yields an

ordering of:
bounded-point, point, history-point, si:vanilla-flavor

Notice that the Zetalisp algorithm does not share the property of the Loops algorithm that ihe
result will be a topological sort of the ancestor types. In the above example, point appears
before history-point in the constructed enumeration. This difference will prove to have

considerable significance for the algorithm for constructing generic operation sets.

To account for :included-flavors clauses, the algorithm is modified as follows. First, the
graph constructed in step 1 contains an edge from N1 to N2 only if N2 appears is named in the

idparem list of N1. Second, the following step is added after step 3:

If any flavor is named in an :included-flavor clause of some member of C” but
does not itself appear in C , it is added after the last member of C for which it is an
included flavor.

The point of the :included-flavors clause is that it can sometimes be used to construct an
ancestor ordering where each type does appear before its parents. For example, if the four
flavor definitions of our example were:

(defflavor point () ())

(defflavor history-point () () (:included-flavor point))
(defflavor bounded-point () () (:included-flavor point))
(defflavor bh-point () (bounded-point history-point))

then the ancestor ordering for bh-point would be:
bounded-point, history-point, point, si:vanilla-flavor

and which is a valid topological sort of the four ancestors of bh-point.

4.5.4 “‘Partially defined’’ flavors

An aspect of type introduction in Zetalisp which is not shared by our other three languages is
that parent types need not exist at the time a type is introduced. All that is required is that at the
time an instance of the flavor is created, all ancestors exist. The key benefit of this capability is

that type-introducing forms needed for a program can be evaluated in any order, thus relieving

113

the programmer from a small amount of logistical responsibility.?®

For example, it would be valid to introduce the four types of our example by the sequence:
(defflavor bh-point ...)

(detfflavor bounded-point ...)

(deffiavor history-point ...)

(defflavor point ...)
Such a sequence would be unacceptable in Smalltalk or Loops. This sequence would be
possible in the text of a Star Mesa program, but all trait definitions must be provided before an

environment containing them is created.

This capability is realized by allowing the objects which represent flavors to be in a “partially
defined” state. In this state, the names of the intended parent flavors are known, but the flavors
corresponding to these names may not yet have introduced or may themseives be partially

defined. For example, after the followihg sequence:
(defflavor bh-point () (bounded-point history-point))

(detflavor bounded-point () (point))
(defflavor point () ())
it is known that the names of the parents of bh-point will be named bounded-point and

history-point. The former isin a partially defined state, and the latter does not yet exist.

In order to fully define a flavor, the compose-flavor-combination procedure must be used.
This procedure will fully define a flavor and all of its ancestors, so long as all anceslors are either
fully or partially defined. Thus, it would succeed in the first of the above two examples, but fail in
the second. Since compose-flavor-combination is automatically invoked whenever an

attempt is made to instantiate a partially defined flavor, explicit invocation of the former is often

unnecessary.

As a historical note, the concept of a type being in an “unfinished’ type can be traced back at
least as far as Wegbreit's thes:s [Wegbreit 70]. It was needed there so that recursive types could

be introduced, e.g. a LIST type whose representation was either NIL or a record containing an

T

26In fact, Zelalisp allows flavors to be mutual ancestors. The utility of this capability is far from clear.

114

instance of LIST. This motivation is not present in Zetalisp, since instance variables are not

associated with types.

4.6 The Star Mesa realization

Abstract op Realized as Example

type In the Mesa type system: TM.Trait

new-type The TRAIT syntactic lorm

type-named TM.TraitNamed TM.TraitNamed ["BHPoint"]
type-name TM.TraitName TM.TraitName [T]
set-name Not applicable

Figure 4-11: Type introduction in Star Mesa

object In the Mesa type system: TM.0Object
type-of TM.TypeOf TM.TypeOf [bhp]
instantiate TM.Allocate TM.Allocate [TM.TraitNamed ["BHPoint"]]

The TM.A11o0c syntactic form TM.Alloc [BliPoint]

Figure 4-12: Partitioning operations in Star Mesa

type-root Not applicable.

parents TM.Parents TM.Parents [TM.TraitNamed [“BHPoint"]]
components TM.CarriedTraits TM.Carriedlraits [TM.TraitNamed ["BHPoint"]]
is-a TM.Carries TM.Carries [bhp, TM.TraitMamed "Point"]

Figure 4-13: Parent/child operations in Star Mesa

4.6.1 The mechanics of the extension
In the Star extension of Mesa, traits are introduced using the TRAIT syntactic form. The syntax
for such definitions is closely related to that of conventional Mesa PROGRAM modules (e.g.,
[LauerSatterthwaite 79], chapter 7 of [Mitcheil et al. 79]), except that the keyword TRAIT
replaces PROGRAM. Such definitions have a number of parts, including:
e a name,
o a list of the names of the other modules used,

¢ a directory which relates module names to file names,

e a Mesa block, i.e., a sequence of identifier declarations followed by executable
statements.

For example, figures 2-20 through 2-27 contain four trait definition modules.

A

In order to be processed by the underlying Mesa system, trait definitions are transformed into
Mesa DEFINITIONS and PROGRAM module with related names. In this report, we will assume
that if the name of the trait definition module is id, then the name of the associated definitions

module will be id.%”

Aside from the transducer which creates module definitions from trait definitions, the Star Mesa
extension consists of a single “trait manager' module. This module contains the procedure
definitions which appear in trait definitions and which obtain and manipulate trait objects. The

identifier TM will be used to refer to the trait manager module.

Trait definition forms must contain bindings for two distinguished identifiers.

e The identifier Register must be bound to a procedure which takes no parameters
and return an object of a distinguished record type, TM.Registration.?® The
definition of the latter is:

RECORD [name: STRING,
parents: ARRAY OF STRING,
TCSize: NATURAL,
ICSize: NATURAL,
classTrait: BOOLEAN]
We will refer to the Register procedure of a trait definition module as the
“registration procedure' of the defined trait. For example, figure 2-26 defines the
following as the registration procedure of trait BHPoint:
Register: PROC [] RETURNS [TM.Registration] =
{RETURN [name: "BHPoint",
parents: ["BoundedPoint", "HistoryPoint"],
TCSize: SIZE [TCType],
ICSize: SIZE [ICType],
classTrait: TRUE]}

o The identifier InitializeTrait musi be bound to a procedure which takes no
parameters and returns nothing. We will refer to this procedure as the "initialization
procedure” of the defined trait. For example, figure 2-26 defines the initialization
procedure of BHPoint to be:

27 . - .
The published descriptions of Star Mesa do not include the names used of all relevant data structures and
procedures. The names used here do not necessarily correspond 1o the names used in the actual implementation.

28All identifiers are explicitly or implicitly qualified by the module in which they appear. The form Id, .id? refers to the

identifier i, declared in module id,. Module delinitions constitute the outermost scope for the resolulion of unqualified
identifiers.

116

InitializeTrait: PROC [] =

{Point.LocallnitializeTrait [TM.TraitNamed["BHPoint"]];:

BoundedPcint.LocallnitializeTrait
[TM.TraitNamed["BHPoint"]];

HistoryPoint.LocallnitializeTrait
[TM.TraitNamed["BHPoint"]];

BHPoint.LocalInitializeTrait [TM.TraitNamed["BHPoint"]]}

The significance of the components of the registration record and of the trait initialization

procedure will be described as they become relevant.

After the module definitions resulting from the trait definition forms are individually compiled, a
C/Mesa program is created. This program is used to direct the Mesa binder in creating a “"binary
configuration description' from the collection of modules which constitute the program. The
latter can be processed by .the Mesa loader to create an executable program. The initial actions
taken by this program are to invoke the registration procedure of each trait definition, then

invoke each initialization procedure of each definition.

Given the above description of logistics, we can now show how the Star Mesa constructs

realize the common abstraction.

4.6.2 The realization per se
The abstract type type is realized as a Mesa type, referred to here as TM.Trait, which is a
PRIVATE type of the trait manager module, The abstract type object is realized as the private

type TM.0bject. Instances of TM.Trait are not also instances of TM.0b ject.

The abstract new-type procedure is realized as the TRAIT syntactic form. The
internal-name parameter of the trait definition form is the value of the name component of the
record returned by the initial invocation of the registration procedure. An error will be signalled if

two traits are defined to have the same name.

The parents parameter of the trait definition form is the set of traits named by the parents
returned by the initial invocaticn of the registration procedure. The named parents must all exist

after all registration procedures of all trait definition modules have been invoked.

117

As an illustration, consider the registration procedure given above. The name component of
the record it returns will always contain the string "BHPoint". The parents component will

always contain the array:
["BoundedPoint", "HistoryPoint"]

Thus, the name of the trait defined by the containing module will be BHPoint, and the parents

will be the traits whose names are BoundedPoint and HistoryPoint.

The remainder of the procedures of the common abstraction are as listed in figures
4-11 through 4-13. Since there need not be a trait which is an ancestor of every trait but itself,

there is no realization of root-type.

118

5. Object creation and the instance variable
operations |

In each of our languages, it is possible to manipulate instances of our subject types as if they
were sets of associations between names and objects. Since the term “instance variable" is
often used to refer to these names, we will refer to this collecticn of procedures as the instance
variable operations. Barring the use of bit-level manipulations of object representations, any
computation on instances of any of our subject types can be described in terms of instance-

variable operations.

The first section identifies the procedures which constitute the instance-variable operations
and describes some properties of their behavior. The second describes how these procedures
are realized in our four languages. The final section describes the related concepts of "‘class

variable” and *‘properties’ of variables used in one or more of our languages.

5.1 The common abstraction

Chapter 4 described a set of abstract procedures which characterized the relationship between
types and instances and between ancestor and descendant types. In describing the behavior of
those procedures, instances of our subject types were viewed as objects whose only relevant
aspects were their identity and their type. But to describe the instance variable operations, a

richer model is necessary. The approach taken here is as follows.

A new component used to model objects is a function, in the mathematical sense, from names
to values. That is, objects behave as if they are collections of associations from names to values,

such that no two associations in a given collection contain the same name. The abstract

procedure:
IV-names (object) => set-of (iIV-name)

denotes the set of names in the domain of the function modelling an object. If the collection

modelling the object O associates a symbol S with a value V:
get-1V-value (O, S)

yields V, and

119

set-1V-value (0, S, V?)

removes the association between S and V and replaces it with one between S and V',

A new component used to model types is a set of names, computable by the abstract

procedure:

local-instance-1V-names (type) => set-of (IV-name)

The procedure:

instance-1V-names (type) => set-of (IV-name)

is defined to be the union of the local-1V-names of T and each member of ancestors (T). For

example, if:

then:

local-instance-1V-names (Point) = {location}
local-instance-1V-names (BoundedPoint) = {min, max}
local-instance-1V-names (HistoryPoint) = {hlist, htail}
local-instance-1V-names (BHPoint) = {bhlist, bhtail}

instance-1V-names (Point) = {location}
instance-1V-names (BoundedPoint) = {min, max, location}

instance-1V-names (HistoryPoint} = {hlist, htail, location}

instance-1V-names (BHPoint) = {bhlist, bhtail, min, max, hlist, htail, location}

Then the key assertions we can make about our four languages is the following:

© The set of associations modelling a newly created object contains an association for
each instance-lV-name of the type of the object:
IV-names (instantiate (T)) = instance-1V-names (T)
The values associated with these names are intentionally left unspecified, since they
differ in our four languages.

e The behavior of get-1V-value and set-1V-value when the collection does not
contain an association for the specified symbol is also left unspecified, since it is
also language-specific.

o In Smallitalk, Zetalisp, and Star Mesa, an error is signalled.
oln Loops, set-IV-value creates a new association, and get-IV-value
returns the value of a distinguished variable.

Thus, the most we can say in general about the IV-names of objects is the following:

instance-1V-names (type-of (0)) C IV-names (0)

The remainder of this chapter describes the details of how the above abstraction is realized.

120

IV-name Symbo1lor Integer #minor3
local-instance-1V-names

instvarNames of Behavior BHPoint instVarNames
instance-1V-names
allInstVarNames of Behavior BHPoint alllInstVarNames
IV-names (*) IVNames of Object bhp IVNames
get-1V-value In certain contexts, an identilier. min
(") getIVValue: of Object bhp getIVValue: #min
someOtherObject getIVvaiue: 3
set-1V-value In certain contexts, an identilier assignment. min « 17
(*) setIvVvalue:to: of Object bhp setIVvalue: #min to: 17
someOtherObject setIVValue: 3
to: "abcdefg"

Figure 5-1: Instance variabie operations in Smalltalk-80 and Smalltalk-82

IVNames
|classInstVars]
classInstVars « (self class) alllnstVarNames.
(self Object.size) = 0
ifTrue: ~ classInstVars
ifFalse: ~ classInstVars union: (Interval from: 1 to: (self Object.size))

getIVValue: name
(name class) isMemberOf: Symbol
ifTrue: [~ self instVarAt: (self instVarOffset: name)]
ifFalse: (name class) isKindOf: Integer
ifTrue: [~ self Object.at: name]
iffFalse: [~ self error 'inappropriate IV name']

setIVvalue: name to: value
(name class) isMemberOf: Symbol
ifTrue: [~ self instvarAt: (self instvarOffset: name) put: value]
iffalse: (name class) isKindOf: Integer
ifTrue: [~ self Object.at: name put: value]
ifFalse: [~ self error 'inappropriate IV name']

instVarOffset: name
| ivArray|
ivArray « (self class) instVars.
~ ivArray indexOf: name

Figure 5-2: Auxiliary operations of class Object used in figure 5-1

IV-name ATOM loc
local-instance-IV-names
Invocation of List of Class with ' IVs as the second parameter
(Send $BHPoint List "IVs)
instance-IV-names
Invocation of Listl of Class with ' IVs as the second parameter
(Send $BHPoint List! 'IVs)

IV-names Invocationof Listl of Ob ject with ' IVs as the second parameter

(Send bhp List! °IVs)
get-1V-value GetValueOnly . (GetValueOnly bhp 'min)
set-1V-value PutvalueOnly (PutValueOnly bhp ‘'min)

Figure 5-3: Instance-variable operations in Loops

121

IV-name :symbol hlist
local-instance-lV-names
si:flavor-local-instance-variables
(si:flavor-local-instance-variables
(flavor-named 'bh-point))
instance-1V-names
si:flavor-all-instance-variables
(si:flavor-all-instance-variables
(flavor-named 'bh-point))

IV-names (*) IV-names (IV-names bhp)
get-1V-value In certain contexts, an identifier. min

symeval-in-instance (symeval-in-instance bhp 'min)
set-1V-value In certain contexts, an identilier assignment. (setq min 17)

set-in-instance (set-in-instance bhp 'min 17)

(defun IV-names (obj)
(check-arg-type obj :instance)
(si:flavor-all-instance-variables

(flavor-named (typep obj))))

Figure 5-4: Instance variable operations in Zetalisp

IV-name STRING "BHPoint"
local-instance-IV-names
The local-instance-IV-names of a trait T is always (T}.
[TM.TraitNamed ["BHPoint"]]

instance-1V-names

TM.CarriedTraits TM.CarriedTraits [
TM.TraitNamed ["BHPoint"]]
IV-names (*) CarriedTraitsOfTypeOf CarriedTraitsOfTypeOf [
TM.TraitNamed ["BHPoint"]]
get-IV-value TM.InstanceComponent TM.InstanceComponent [
bhp, TM.TraitNamed ["Point"]]
TM.InstComp expressions TM.InstComp [bhp, Point]
set-1V-value modilying the referent of TM. InstanceComponent invocations

(TH.InstanceComponent [
bhp, TM.TraitNamed ["Point"]]) ~ «
Point.TCType [loc: 17]
modilying the referent of TM. InstComp expressions
(TM.InstComp [bhp, Point]) ~ =
Point.TCType [loc: 17]

CarriedTraitsOfTypeOf: PROC [i: Instance] =
{TM.CarriedTraits [TM.TypeOf [bhp]]}

Figure 5-5: Instance-variable operations in Star Mesa

122

5.2 The Smalltalk-80 and Smalltalk-82 realization

5.2.1 Instance variable names

The local-instance-IV-names and instance-1V-names of a class are represented by
Arrays of Symbo1s fixed at the time the class is created. These arrays are computed from the
value of.the instanceVariableNames: parameter of the class-creation operations of class

Metaclass and Class.

For all Smalltalk classes, the array representing the local-instance-IV-names of the class is
formed by creating an array of symbols from the string given in the creation operation, leaving
out any symbols which are IV-names of any ancestor. For example, the

local-instance-IV-array of the four example classes of chapter 2 are:

Point: (#loc)

HistoryPoint: (#hlist #htail)
BoundedPoint: (#min #max)
BHPoint: (#bhlist #hhtail)

These arrays can be computed for a class through the instVarNames: operation of Class, as

in figure 5-1.

Recall from chapter 4 that there were four variants of both the single-parent and multiple-
parent class creation operations: subclassOf:..., variableSubclass:...,
variableWordSubclass:..., and variableByteSubclass:.... |Instances of classes
created via the latter two operations are subject to the restriction that their set of
local-instance-IV-names must be empty. We will see that such objects represent arrays of
small integers; the purpose of this restriction is to achieve higher performance through faster

indexing.

The instance-IV-names of a class is modelled by an array representing the union of the

local-instance-lV-names of the class and its ancestors:
Point: (#loc)
HistoryPoint: (#loc #hlist #htail)

' BoundedPoint: (#loc #min #max)
BHPoint: (#loc #min #max #bhlist #bhtail #hlist #htail)

123

These arrays are accessible through the instVarNames: operation of Class, also illustrated in

figure 5-1.

In chapter 4, we saw that Smalltalk distinguishes between "fixed size” and "variable size”

classes. The lV-names of an object depends on the kind of class of which it is an instance.

e The IV-names of an instance of a fixed-size class is simply the instance-1V-names
of its class.

e The IV-names of an instance of a variable-size class consists of the
instance-1V-names of the class, together with the integers from 1 to the value of
the new: parameter of the creation operation which produced the object. For
example, if SomeOtherClass were variable-size class whose parent was Ob ject,
the IV-names of an abject produced by the invocation:

SomeOtherClass new: 3
would consist of the instance-1V-names of SomeOtherClass together with the
integers 1, 2, and 3. We note that the value of the new: parameter used to create an
instance of a variable-size class can be recovered by the method for size of class
Object. Thus, the value of:

(SomeQOtherClass new: 3) size

would be 3.

In light of the above, we can define the IVNames operation of figure 5-2 to compute a collection
containing the 1IV-names of any object. Its definition uses the size operation of class Ob ject
and the indexOf : operation of class SequenceableCollection. The latter returns the index
of the first occurrence of the non-generic parameter in the generic parameter ([GoldbergRobson
83], p. 153). The definition also assumes the existence of a union: operation with the obvious

“set union’ semantics; such an operation is not predefined in Smalltalk-80 and no definition is

given here.

In Smalltalk’s terminology, instance variables identified by instances of Symbo1 are referred to
as “named” instance variables and those identified by numbers are known as 'indexed” .

instance variables, This terminology will also be used below.

124

5.2.2 Storage and retrieval via syntactic forms
To store and retrieve the instance variables of an object, two approaches can be used. One
involves a distinguished syntactic form, and the other uses conventional procedure invacation.

Each is described in turn.

The first technique can be used to retrieve or store some of the instance variables of the
current value of se1f.?® The basic idea, adapted from Simula-67, is that evaluation of and
assignment to certain variables have the semantics of get-1V-value and set-1V-value applied to

se1f. For example, the expression
min

would be given the semantics of
get-1V-value (self, #min)

and
min « 17

would mean
set-1V-value (self, #min, 17)

The set of variable expressions for which this non-standard treatment is given depends on the
method in which the expression is found. In Smalltalk, each method is associated with a class,
and the instance-1V-names cof this class define the variables for which the non-standard
semantics are used. For example, since the instance-1V-names of HistoryPoint are loc,

h1list,and htail, amethod associated with HistoryPoint would treat the expression
. loc « 50

as an operation to store 50 in the 1oc instance variable of se1f and
hlist = htail

as a identity test on the current values of the h1ist and htail instance variables of se1f.

What is the class associated with a given method? The answer to that question is fully

described in chapter 6. For now, we simply observe that for each expression of the form:
C compileAndStore: S

29Recall from chapter 3 that se1f is bound to the generic parameter of the operation invocation.

125

in figures 2-12 through 2-17 the method described by the string S is associated with C. For

example, the method defined by:
Point compileAndStore:

'location
~ loc’
is associated with Point. Thus, the reference to the variable 1oc is interpreted as a reference to

the instance variable named 1oc¢ of self.

Note that if the syntactic forms are used, the consequence of specifying an incorrect instance
variable name (i.e., one which is not an instance-1V-name of the class associated with the
method) will depend on whether a variable of the same name is a local variable of the method. If
so, the erroneous reference will be treated as a reference to the local variable. If not, a
“reference to undefined variable"” error will be signalled by the compiler. Thus, a limited form of

compile-time error checking is provided by these mechanisms.

5.2.3 Storage and retrieval via procedure invocation

The second way in which instance variable operation can be carried out is through invoking
operations provided for that purpose. The operations at:, at:put:, jnstVvarAt:, and
instvarAt:put: of classObject allow the storage and retrieval of any instance variable of any
Smalltalk object. In the following descriptions of these operations, N must be an instance of a

descendant of class Integer.

e0 instvarAt: N
retrieves the value of the instance variable of O whose name is the N element of the
array representing the instance-1V-names of the class of O. For example, since the
instance-1V-names array of BoundedPoint is:
(#oc #min #max)

the invocation

bp instvarAt: 2
would retrieve the value of the instance variable named min, provided bp was an
instance of BoundedPoint. It Nisnota positive integer less than or equal to the the
size of the instance-1V-names of the class of O, an runtime error is signalled.

o0 instVarAt: N put: X
is analogous to instVarAt:, except that X becomes the new value of the instance
variable referred to by N. The same conditions for runtime error-signalling apply.

o0 Object.at: N
retrieves the value of the N indexed instance variable of O. Recall that invoking the
Object.at: operation on an instance of any class is carried out by the at : method
of Object. N must be greater than 1 and less than or equal to O QObject.size
otherwise, an error is signalled.

o0 Object.at: N put: X
stores X as the N indexed instance variable of O. Aqain, N must be greater than 1
and less than the number of indexed instance variabies.

The operations defined in figure 5-2 provide an interface to the above four procedures which is

consistent with our get-1V-value / put-IV-value abstraction.

Unlike the syntactic forms described above, an invocation of these four operations can be used
to manipulate any instance variable of any object. If a method is to access the indexed instance
variables of an object, or to perform instance variable operations on more than one object, the
use of these operations is mandatory. A common programming task where the latter is
appropriate is in the implementation of binary (or more generally, N-ary) operations on instances
of the same type.. For example, a linear-time algorithm can be used to compute the union of two

sets represented as ordered lists, if access to both lists is allowed.

The use of these procedures does have its drawbacks, however.

e First, they can be used to violate the principle described in chapter 3 that only the
generic operations of a type be used to manipulate the representation of its
instances. Their presence in the language makes it the responsibility of the
programmer to decide when their use is appropriate.

e Second, the Smalltalk implementation will never perform static error checking on
invocations involving self and a symbol constant. For example, if the
instance-1V-name of the class of a method dces not include the symbol
wrongName, the expression

self setIVValue: #wrongName to: x
will never trigger a compiler error. But the equivalent

wrongName ¢ x
will be detected as an error, provided the method does not include a local variable of
that name.

Notice that the latter disadvantage could easily be overcome by adding getIVvValue: and

s'etIVVal ue: to: to the language and modifying the compiler to process them appropriately.

Finally, we note the restriction on the instance variable storage operation for instances of
classes created with the variableWordsSubclass:... and variableBytesSubclass:...
operatiqns. Instances of these classes represent arrays of integers, and attempting to store
values which are not integers causes a runtime error. Furthermore, they can only hold positive
integers less than some upper bound. In the implementation described in [GoldbergRobson 83],
the former is 2%-1 and the latter is 2'6-1. It should be clear that the existence of these classes is

solely for greater efficiency in processing and storing such values.

5.2.4 Instantiation

Recall from chapter 4 that new instances of a class C are created by invoking the new and
new: opczrations of class B;ahavior with C as the generic parameter. For instances of fixed-size
classes and variable-size classes created with the variableSubclass: operation each of the
IV-names is associated with Ni1. For instances of variableWordsSubclass:... and

variableBytesSubclass:... classes, all IV-names are associated witn 0.

Of course, for many data abstractions, these default values are inappropriate. The appropriate
reéponse is to create instances of classes through operations which perform the appropriate
initialization. To illustrate, consider the example of figure 2-12. The create operation of
(Point class) invokes the basic object creation operation and then invokes the
initialize: method for Point on the newly-created object. The latter performs some

computation which associates a value with the Tocation instance variable.

However, notice that there is no guarantee that the initialization procedures associated with a
class will actually be invoked for all instances of a type. The Object.new and Object.new:
operations described above allow any procedure to create an uninitialized instance of any class.

For example,
Point Object.new

would create an instance of Point whose 1oc instance variable was Ni1.

1

1170

5.2.5 Conventions for object initialization
A common Smalitalk-80 programming technique is for the designer of a class to reimplement
new and/or new: for the instance of Metaclass which is the class of C. This allows type-

specific initialization procedures to be invoked immediately after instances of a class are created.

In Smalltalk-80, a common pattern for class-specific new methods is as follows:
‘|newinstance|

newinstance ¢ super new.

newinstance initialize.

~ newinstance
If all ancestors of a metaclass define new methods in the same way, then the initialize
method of each ancestor will get invoked whenever an instance of the class is created. The
nested invocations bottom out at new of Behavior (the relevant branch of the initial class
hierarchy is Object class, Class, ClassDescription, Behavior) and the initialization
actions are performed in ancestor-first order. A separate initialize: operation is used

because operations of a metaclass cannot use the syntactic forms described above to operate

on instances of the class.

In Smalltalk-82, this approach is no longer adequate. The problem is that if a class has more
than one parent, invoking the new operations for each parent will result in a new instance for
each path in the class hierarchy from the class to Behavior. For example, if a new method for
the class of BHPoint invoked the new method of BoundedPoint and HistoryPoint, the result
would be two instances of BHPoint: one initialized by Point class and BoundedPoint

class, and the other by Point class and HistoryPoint class.

In order to avoid the problem of duplicated invocation of the object creation procedure, a new
paradigm is needed which will not break down in the presence of multiple parents. The following

describes the technique used in all four examples of chapter 2.

e The creation operations for each class invoke new of Bahavior directly, then invoke
an initialize: operation on the newly created object. This ensures that exactly
one object is created per invocation, and that all initialization actions are performed
on this object.

1

17Q

e if the initialization method for a class is to invoke the initialization method of an
ancestor class, it defines a partiallnitialize: operation whose method carries
out the class-specific initialization actions but invokes no other initialize: or
partiallnitialize: operations. The method for initialize: invokes all
partiallnitialize: operations of all ancestor classes.

To illustrate, here is how this convention was applied in our example. The initialize:
methods of HistoryPoint and BoundedPoint invokes the initialize: operation of Point
(to initialize the loc instance variable), then their own partiallnitialize: operation (to
initialize their local instance variables). The initialize: of BHPoint invokes the
partiallnitialize: of all ancestors which define it (i.e., BoundedPoint and
HistoryPoint), in addition to the the initialize: operation of Peint. Thus, all initialization

actions were performed once, and on the same instance of BHPoint.

In our simple scenario, the consequences of redundant invocation of the initialization
procedure of point are negligible; all that is lost is a small increment of perfermance. But for
more complex data abstractions (e.g., creating a new display window with associated 1/0

stream) the result may be erroneous behavior or intolerable computational overhead.

5.2.5.1 The general phenomenon of redundant invocation

The possihility of redundant invocation of the methods of ancestor types is not limited to
initialization operations. It can arise whenever a generic method for a given operation for a type
invokes the generic method for the same operation of more than one parent of the type. If those

methods are defined to call the method of a common ancestor, redundant invocation will occur.

Understanding this phenomenon is crucial in designing methods of types which have more
than one parent. An immediate consequence is that the Smalltalk-80 approach of having a
method for an operation O of a class C invoke the method for O of the superclass of C (i.e., via
the super syntactic form) does not generalize when multiple superclasses are involved. For
example, if the display: methods of BoundedPoint, HistoryPoint, and BHPoint all
invoked the di splay: methods of their parents, displaying a type would result in the erroneous

behavior such as:

Point at location:
with bounds:
Point at location:
with history:
with bounds history:
Thus, the same technique which was used for initialize: is clso used for move: and

display: of each of our four classes, and for setmin: and setmax: oi BHPoint.

A significant consequence of the above analysis is that a11.op invocation of Smalltalk-82 and
SendSuperfFringe of Loops is often useless in the presence of multiple parents. As we will see
in chapter 6, both of these forms result in invocations of all inethods for a given operation delined

for all parents. Notice that tiiis is 'parents,’ not “ancestors"

To iillustrate the inapplicability of these forms, imagine a modification of our example where
Point was defined in terms of a more basic class, and ailso had a partialInitialize:
.nethod. Now consider the problem of writing the initialize: method for BHPoint so that the
partiallnitialize: methods of Point, BoundedPoint, and HistoryPoint would all be
invoked. An invocation of all1.initialize: would not be appropriate, since it would cause
redundant invocation of the initialize: method of Point. And an invocation of
all.partiallnitialize: would not be adequate, since it would not invoke the

partiallnitialize: method of Point.

Again, this demonstration of inapplicability is not limited to initialization, but generalizes to
other operations, e.g., display, We will see in chapter 7 that it is straightforward to define a new

Loops procedure with semantics appropriate for the invocation of ancestor methods.

5.3 The Zetalisp realization

1131

5.3.1 Instance variable names
The local-instance-1V-names of a flavor is derived from one of the components of the form
are derived in a straightforward way from the most recent def f1avor invocation which involving

the flavor. Recall that the syntax for defflavor is:
(defflavor id,

(varspece ... varspec))
clause (’dparenr "t 'dparent)
clause)

where varspec is either an identifier or the form:
(id exp)

The local-instance-IV-names are simply the ids of the varspecs. For example, in the definition

of bh-point:

(defflavor bh-point
(bhlist bhtail)
(bounded-point history-point))

the local-instance-IV-names are bh1ist and bhtai1l. In the definition of bounded-point:

(defflavor bounded-point
((min 0)
(max 100))
(point)
:settabie-instance-variables
:initable-instance-variables)

they are min and max.

The instance-lV-names of a flavor are simply the union of the local-instance-1V-names of

the flavor and all ancestors. And the IV-names of any object are the instance-1V-names of its

type. Thus, Zetalisp has no analog to the ordered instance variables of Smalltalk.2°

'aoHowever. Zctalisp's realizalions of arrays with “array leaders" [WeinrebMoon 81) provides an operation sel similar
to that of Smalitalk's variable-size classes. They are not further considered here because there is no associated (acility
for generic operation invocation.

a mr

5.3.2 Storage and retrieval via syntactic forms
As in Smalltalk, there are two principal means for modifying the instance variables of an object,
syntactic and procedural. Also as in Smalitalk, syntactic forms for variable evaiuation and

assignment are interpreted as instance variable operations on the value of se1f. In particular:
(setq id exp) ‘

sometimes has the semantics of:
set-1V-value (self, S, exp)

and
id

can mean:
get-1V-value (self, S)

where S is the symbol corresponding to the identifier id. For example,
min
would return the value of thz min instance variable of the current value of se1f and

(setq min 17)

would replace that value with 17.

For an expression to be interpreted in this way, it must occur in the body of a function defined

by a defmethod or defun-method syntactic forms.3!

(defmethod (id ...) lambda-list
body)

{lavor-name

(defun-method id, lambda-list

body)

unction-name 'dllavor-name

In each of these forms, the instance variable names of the flavor named id,, . . are

accessible via the variable assignment and evaluation forms.

However, in order to guarantee that the correct instance variable operation is accessed or
modified, an additional condition is necessary. The value of the variable se1f-mapping-table

must be as described in section 3.4.3, i.e., appropriate for (a) the flavor of which the generic

31This is not striclly accurate. Interpretation of the evaluation and assignment of a variable V as invocations of
iqstance variable operations will occur in any function which contains a sys: instance-variables declaration which
includes the name V. Funclions defined by dofmethod and defun-method have such declarations invisibly inserted, as
do methods created by the method definition algorithms described in chapter 6.

133

parameter is an instance and (b) a flavor associated with the procedure. For functions defined
by defmethod, a sufficient condition is that they are invoked through the generic invocation
mechanism; i.e., via send or funcall with an instance of a flavor as the first parameter. For
functions defined by defun-method, sel1f must be an instance of the flavor named by

d.32

id or a descendant; if not, an error is signalle

flavor-name

The consequences of “invalid IV name” errors is somewhat different than in Smalltalk. The
Zetalisp interpreter will search the runtime stack for a binding of a variable with the erroneous
name, which may or may not cause an “undefined variable' error. The Zetalisp compiler will
issue a warning for any use of variable which is neither (a)declared as an instance variable, (b)
declared as a ''special’ variable (i.e., one declared to have been introduced by a dynamically
enclosing context), or (c) introduced locally. It will actually be compiled as a reference to a

‘'special'’ variable.

5.3.3 Storage and retrieval via procedure invocation
The abstract get-1V-value and set-IV-value procedures are directly realized as

symeval-in-instance and set-in-instance. For example,
(symeval-in-instance p 'location)

computes the value associated with *1ocation in the set of associations modelling p, and
(set-in-instance p ’location 17)

associates a new value with p's Tocation variable. If the specified symbol is not an 1V-nama of

the abject, a runtime error is signalled.

‘“)Whal's the point of using defun-method procedures rather than ordinary procedures which invoke the procedural
versions of the instance variable operations described below? In the current implementation, (a) the former is more
elficient than the latter, and (b) the foriner causes static error checking to be performed, but the latter does not. One
reason why elficiency is gained is that, in the current implementation, the appropriate mapping table is computed once
per invocation of the defun-method rather than once per invocalion of symaval-in-instance and
set-1n-1instance procedures described below. Another is that an optimization can somelimes be performed so that
the mapping table can be obtained in constant time rather than in time propoitional to the number of ancestors of the

type of self.

'Nutice that both error checking and optimization could be performed on invocations of the procedural versions of
instance variable operations if the type of sa1f and the identlity of the instance variable name were manifest. The current
implementation of the Zelalisp compiler performs no such optimizations.

4%A

5.3.4 Instantiation
The abstract instantiate procedure is realized in Zetalisp by the instantiate-flavor

procedure. Specifically, if f is a flavor and p1ist is an object representing a property list,
(instantiate-flavor f plist)

can create a new instance of flavor, The set of associations which model the newly created
object is determined by a non-trivial algorithm, which we next describe. The elaborateness of
this algorithm is one of the distinctive characteristics of the Zetalisp realization of the instance-

variable operation set.

1. A subset of the instance-IV-names of a flavor can be specified as “initializable"’ by
an :initable-instance-variable clause of the defflavor form. The
definitions of point and bounded-point contain such definitions. If an IV-name V
of is present as a property on plist, its associated value is used as the initial value
of V for the newly created object.

2.1f an IV-name V has a “default initial value expression” specified for F or any
ancestor, the first such expression found in a search of F's component list is used to
provide a value for V. Such defaults can be specified in one of two ways:

e through a varspec in the defflavor which defines F.If a varspec has the
form (id exp), exp is the default for the variable id. For example, in the
following definition of point:

(defflavor point
((location 0))

()

:gettable-instance-variables
:initable-instance-variables)

the variable Tocation is given a default initial value expression of 0.
e through a :default-init-plist clause of defflavor, e.g.,

(:default-init-plist
:location 10 :min (compute-min) :max (compute-max))

In either case, the associated expression is eval'* ted and the result is used as the
initial value for V. 33

Any IV-names not given initial values by the above algorithm are associated with a value

denoting an "'unbound variable"'.

There are two special kinds of flavors which are treated specially by instantiate-flavor.

These are described next.

33" both are specitied for a given flavor, the varspec definition is used.

135

5.3.4.1 Abstract flavors

If the flavor F is declared to be an "abstract flavor," an error is signalled. Non-instantiatable
flavors are useful because they can be a representation-free realization of some abstraction. For
examgie, an “‘abstract-queue” flavor could have an operation set which contained operations on

queues which depended only on generic invocation of abstract queue operations.

Declaring a flavor which embodies such an abstraction as an abstract flavor has two
advantages. First, it allows the error of mistakenly creating instances of such flavors to be
detected at the time of their creation. Second, since no instances of the type will ever exist, the
representation of its generic operation set need not be constructed. The latter reduces the

overhead needed for system creation, but of course is immaterial to the program semantics.

5.3.4.2 Mixture flavors

if the flavor F is declared to be a “mixture,” a computation is performed on P1ist to compute a
‘second flavor F2 which will then be instantiated. The algorithm for performing this computation
is specified declaratively in a form not described here.:34 but is constrained to compute either F
or some descendant. Thus, mixtures allow the P1ist of an initiaiization to determine which

specialization of a flavor to create.

Notice that such a mechanism would be conceptually superfluous in Smalitalk. This is because
the creation operations of metaclasses can perform arbitrary computation to determine the class
to be instantiated. For example, if the metaclass of a class F had the following method for
creoate:

create: plist

~ exp create: plist

then the expression:
F create: Nil

would create an instance of whatever class was computed by exp.

34$ee p. 39 of the "Flavors" section of Symbo11cs84.

136

There are two other advantages of using mixture flavors in Zetalisp.

e First, all possible flavors which can be instantiated via a mixture flavor F are
automatically constructed when F is constructed. This reduces the number of flavor-
introduction forms and guarantees that no flavor construction need occur during
program execution.

e Second, the descendant flavors do not have to be referred to by name in order to
instantiate them. This reduces the number of names which must be known by the
programmer.

The Smalitalk approach would share the advantage of eliminating flavor-construction forms and
reducing the number of class names which must be known. But classes would have to be

created during program execution.

5.3.4.3 Verification of “‘required’’ components of flavors
Before creating a new instance of a flavor, instantiate-flavor verifies that the flavor has a
number of properties. Through additional defflavor clauses, flavors can be associated with

“required flavors,” "‘required methods," and “required instance variables.” For example:

(deiflavor abstract-monitored-list () ()
(:required-flavors monitored-object)
(:required-methods :car :cdr :rplaca :rplacd)
(:required-instance-variables first last))

Before a flavor F is fully defined, it is verified that the following properties hold.

e Each flavor named in a :required-flavors clause of F or any ancestor is an
ancestor of F.

e Each operation named in a :required-methods clause of F or any ancestor is a
generic operation of F.

e Each instance variable named in a :required-methods clause of F or any
ancestor is an instance variable of F.

The latter two conditions are fully explained in the following chapters.

Required methods are useful because it provides a simple form of pre-execution error
checking. The collection of required methods allows detection of missing realizations of abstract
operations at ‘‘compile-time,” i.e., before any attempt is made to invoke them. Thus, serves a

sjmilar function as a Clu “cluster heading" ([Liskov et al. 79], p. 7).

137

Required instance variables are useful in the same way as required methods, but at a lower
level of abstraction. For example, methods associated with the abstract-monitored-1ist
flavor described above can safely assume that the list will be represented using a first and
Tast instance variable. Of course, such an assumption is useless unless one also knows how
the variables are being used, e.g., through an “abstraction function” associated with the type
([Hoare 72, London et al. 78]). Notice that exactly the same limitation applies to any use of

type-checking for detecting errors in programs.

The utility of required flavors involves an entirely separate issue. The point of declaring that
flavor A is a required flavor of flavor B is to guarantee that all descendants of B have some
ancestor which explicitly declared that A should be a parent. This property does not hold if A
were declared as a parent of B or as an included-flavor of B. The result is that designers of

descendants of B are forced to be more aware of the consequences of including B.

5.3.5 Conventions for initialization

5.3.5.1 Instantiate-flavor make-instance, and the :init method

As described above, initialization based on a property list parameter is useful. We have already
seen one way in which Zetalisp supports this paradigm. The realization of instantiate takes a
property list and, if any properties match names of initializable instance variables, the associated

values are used as initial values for the instance variables.

In order to perform more complex initialization actions, the :init operation is conventionally
used. The usual pattern cf object initialization is for the :init operation to be invoked after the
newly-created object has undergone the initialization process described above. This style is
made more convenient in two ways. First, an optional parameter to instantiate-flavor will
cause the :init operation to be invoked after the object is created. Second, the “easy to call"

interface to instantiate-flavor, make-instance, always invokes the :init operation if

‘

138

one is defined. ¥ A significant contrast between this approach and that used in Smallitalk is that
there is no way for type-specific creation procedures to be invoked before the object ls created.
For example, it would be impossible to prevent a bounded-point object from being created if
an inconsistent min and max values were specified, as was done in figure 2-14 of the Smalltalk
example. Thus, the Smalltalk approach of having type-specific procedures encapsulate object

creation seems more desirable.

5.3.5.2 Verification of the initialization property list

In the discussion of Smalltalk initialization, we mentioned one of the potential disadvantages of
initialization via property lists: less powerful error checking. Zetalisp addresses this problem by
allowing the designers of types to specify which keywords are required to be on the initialization
property list and which are allowed to be there. These are specified by two more optional
clauses of the defflavor form: :allowable-init-keywords and

:required-init-keywords.

Before instantiate-flavor either returns the newly-created instance or calls the :init
methods, it verifies that (a) all required keywords of the flavor and its ancestors are present on
the property list, and (b) all properties were specified as valid keywords by the flavor or some
ancestor. Missing or extra keyword errors can be detected by the Zetalisp compiler, so long as

the flavor name and property names are constants.

5.3.6 Other techniques for instance variable operations
Although much less rarely used those described above, there are three other ways in which

instance variable operations can be carried out.

Some subset of the instance-IV-names of a flavor can be declared as ‘'special instance '

35mako-instanco is easy to call because it allows the initialization property list to be specified as a &rest
parameter. E.g.,
(make-instance 'f :a x :b y :c (g 2))
isidentical to
(instantiate-flavor 'f ‘(nil :a ,x :b ,y :c ,(g z)) t)

139

variables' This is commonly done through the :special-instance-variables clause in the
defflavor form. For each such name N associated with a flavor F, generic invocatior on an
instance of F or any descendant will set up the binding stack in a particular way. Specifically:

e the name N will be visible in the current dynamically naming context, and

o references to N will be treated as references to the instance variable named N of the
value of self.

This approach allows the set and eval primitives to be used to carry out instance variable
operations on se1f. It also allows procedures invoked by methods to manipulate the instance
variables of se1f via setq, set, or eval. The only rationale for using special instance variables
rather than set-in-instance and symeval-in-instance is to obtain efficiency. This is
because the work ne:essaﬁ to resolve an instance variable to a memory location is done once

per generic invocation, rather than once per instance variable reference.

A final technique for performing instance variable operations is through the
:outside-accessible-instance-variables clause of defflavor. Given alone, it defines
procedures which store and retrieve the instance variable with a given name of an instance of

any class. For example: the clause:
(:outside-accessible-instance-variables a)

defines procedures with the semantics of:

(1ambda (x) (symeval-in-instance s 'a))

(lambda (x) (set-in-instance s 'a))
However, in conjunction with the :ordered-instance-variables options an additional
declération, the compiler will assume that (a) the procedures are being applied only to instances
of the rlavor in which the declaration appears, and (b) the relative offsets of the storage
containing the given variables which_ holds at the time of compilation will hold at invocation.
Thus, accessing a given instance variable can be done in constant time, at the cost of having to
recompile code if the representation of instances of flavors changes. Since the Zetalisp system

provides no support for determining when this has occurred, the use of this option is commonly

reserved for only the most performance-critical applications.

140

Finally, the implementation described in [MoonStalimanWeinreb 84] can also cause all instance

variables of the current value of se1f to be bound as special variables via the special form:
(with-self-variables-bound body)

This allows the benefits of special-variable access to instance variables which are always

accessed in that way.

5.4 The Star Mesa realization

Instances of traits are allocated regions of storage, and the procedures for accessing this
storage use POINTER values to refer to this storage. We first describe some programming
conventions needed for this storage to be treated as objects, in the sense of Smalltalk, Zetalisp,

and Interlisp.

5.4.1 The relevant programming conventions

Star Mesa Convention 2: Each trait definition designates a record type as its
instance component type. If R is the instance component type of trait T, all
expressions which compute an instance component defined by T should be used only
in contexts which require the type R.

In the example of chapter 2, a comment of figure 2-18 states that the value of the identifier
ICType in each trait definition module is the instance component type of the trait. For example,
the instance component type of trait BoundedPoint is the value of the identifier ICType defined

in module BoundedPoint:
ICType: TYPE = RECORD [min: REAL, max: REAL];

Star Mesa Convention 3: The amount of storage for instances 6f the instance
component type is the ICS1ize field of the record returned by the initial invocation of
the registration procedure of the trait.

For example, records returned by invocations of the registration procedure of module

BoundedPoint contain the value of the expression:
SIZE [ICTypel],

in their ICSize field. The Mesa pseudo-procedure SIZE takes a Mesa type and returns the

amount of storage used to represent instances of that type.

141

5.4.2 Instance variable names

A summary of the realization in Star Mesa is as follows:

e In Star Mesa, the local-instance-lIV-names of each trait T consists of the set
whose sole member is the name of T.

e The instance-lV-names of a trait are, as usual, the union of the
local-instance-1V-names of the trait and its ancestors.

e The IV-names of an object are the instance-1V-names of its type.

e There are no operations which change any of the above.

Thus, the principal difference from the Smalltalk and Zetalisp approach is that there is always

exactly one local instance variable per type, whose name is the same as the name of the type.

How can more than one named entity be used to represent that aspect of an object modelied by
a trait? The approach commaonly taken is to use an instance of a Mesa RECORD type to represent
the value associated with the variable. For example, to allow the tiait DoundedPoint to

contribute entities named min and max to the representation, it can use a value of the type:
RECORD [min, max: REAL]

as the value of its single instance variable.

5.4.3 Storage and retrieval via procedure invocation
As with Smalltalk and Zetalisp, procedures are used far less ofien than syntactic forms to
perform instance variable operations. However, an explanation of the instance variable

operations is clearer if the procedural versions are presented first.

The abstract get-lV-value is realized as a procedure which we will refer to as
TM.InstanceComponent. This procedure takes a instance of a trait and a trait (i.e., objects of
Mesa type TM.0b ject and TM.Trait). It returns an untyped pointer to the Mesa object which is
the value of the instance variable. By convention 2, this pointer should be used in a context

which is typed as the appropriate instance component type.

L]

142

For example, the following expression ccmputes the Mesa object which is the value of the

BoundedPoint instance component of p
TM.InstanceComponent [bhp, TM.TraitNamed["BoundedPoint"]]

If p is not an instance of BoundedPoint or an ancestor, an error would be signalled. To obtain
the min component of that object, the following could be used:
bpPtr: BoundedPoint.ICType
« TM.InstanceComponent [bhp, TM.TraitNamed["BoundedPoint"]]
bpPtr~.min
The abstract put-1V-value is represented as an assignment to the object pointed to by the

result of a TM.InstanceComponent invocation. For example, to replace the BoundedPoint

instance variable of an object bhp, the foliowing would be used:

(TM.InstanceComponent [bhp, TM.TraitNamed["BoundedPoint"]])"
« BoundedPoint.IC [min: 20, max: 30]

To change only the min component:
bpPtr: BoundedPoint.ICType
« TM.InstanceComponent [bhp, TM.TraitNamed["BoundedPoint"]]
bpPtr~.min
Notice that Mesa requires that the result of TM. InstanceComponent be assigned to a variable

with a record type for the record accessor to be valid. Thus, the expression
(TM.InstanceComponent [bhp, TM.TraitNamed["BoundedPoint"]])~.min

would not be legal Mesa. Unfortunately, since TM. InstanceComponent is declared to return an

untyped pointer, it can be assigned to a variable of any Mesa type. Thus, the anomalous

expression:
bpPtr: RECORD [wrongl: STRING, wrong2: BOOLEAN, wrong3: ARRAY [17]
OF REAL]
« TM.InstanceComponent [bhp, TM.TraitNamed["BoundedPoint"]]
bpPtr~.min

would be perfectly legal and would go undetected.

143

5.4.4 Storage and retrieval via syntactic forms

6

Star Mesa includes a syntactic form3® which is semantically equivalent to invocations of

TM.InstanceComponent. The form:
TM.InstComp [exp, id]

is equivalent to:
TM.InstanceComponent [exp, TM.TraitNamed ["id"]]

For example,
TM.InstComp [bhp, BoundedPoint]

is equivalent to:
TM.InstanceComponent [bhp, TM.TraitNamed ["BoundedPoint"]]

Itis easy to see how this form can be applied to the examples of the previous section. E.g.,

bpPtr: BoundedPoint.ICType
« TM.InstComp [bhp, BoundedPoint]
bpPtr~.min

All the examples of chapter 2 use this latter technique.

There are two principal benefits of the use of the syntactic forms. The first advantage is
obvious: significantly shorter expressions. The second derives from the fact that the identity of
the trait used to name the instance variable is syntactically apparent. This can be used to

advantage in compiling such forms.

The key idea is that a subset of the traits present in a program are designated as “fixed-offset"
traits. If a trait T is a fixed-offset trait, all instances of T and its descendants will contain the
storage for the instance variable named by T at the same offset in the storage allocated for the

object as a whole. Thus, the invocation of
TM.InstanceComponent [bhp, BoundedPoint]

could be replaced by the expression:
bhp + offset

36In Star Mesa, syntaclic forms (i.e., invocation forms whose meaning is a function of the data structure which
represents the form rather than the result of evaluating the components of the form) are represented as the INLINE
procedures. The capability of INLINE procedures to make arbilrary transformations of their parameters was added alter
the publication of [Mitchell et al. 79).

144

for some constant offset. In Star Mesa, this will in fact be done when “production mode"

compilation is indicated through specification of a compiler option.

The reason why this optimization is relevant to the semantics of Star Mesa is that it is not
always correct. Recall that instances of all traits are represented as Mesa objects of type
TM.Object. The problem with the transformation is that it is only valid for those instances of
TM.Ob ject which represent instances of the trait named by id. However, all that is known about
exp is that it has the Mesa type TM.Object, and is thus an instance of some trait. Since the
optimized expression does not check that the trait of exp is id or some descendant, there is
nothing to prevent its application to instances of a trait which does not carry the trait named by

id. The consequences of such an occurrence are entirely unpredictable.

For example, let us reexamine the code fragment:
bpPtr: BoundedPoint.ICType

« TM.InstComp [bhp, BoundedPoint]
bpPtr~.min
under the assumption that bhp is bound to an instance of HistoryPoint. Suppose further that

the object at the offset computed by
TM.InstanceComponent [bhp, BoundedPoint]

was the pointer to the h1ist cons cell used in the representation of HistoryPocint objects.
Storing a numeric value in that component would cause havoc. But again, such an errors would

go undetected by either the Mesa type-checker or the procedures of the Traits extension.

5.4.5 Instantiation

As listed in figure 4-12, the abstract instantiate operation is realized by a Mesa procedure
which we are referring to as TM.A11ocate. It takes a trait as its sole parameter and returns an
object of type TM.Object. This object points to a newly allocated region of storage of the
appropriate size for instances of the trait. The size of this storage is the sum of the ICSize
components returned by the registration procedures of the trait and all ancestors. Thus, there is

a sufficient amount of space for the instance components defined by the trait and all ancestors.

145

The TM.A110c syntactic form also can be used to allocate an instance of a trait. It shares the
same two advantages over the TM.Allocate procedure as those of TM.InstComp over
TM.InstanceComponent. Unlike the latter, the use of TM.A110c¢ can never lead to undetected

errors. The appropriate representation for the specified trait will always be created.

5.4.6 Conventions for object initialization

The usual convention for creating an object with appropriate initial values for its instance
variables is as follows. First, the TM.A110c form is used to create the new object. Subsequently,
the PartiallInitialize procedures associated with the trait and all ancestors are invoked.
The order of this invocation is such that the Partiallnitialize of each trait is invoked after

the Partiallnitialize of all ancestors.

To illustrate, here is the Create procedure for TM.TraitNamed ["HistoryPoint"] defined
in figure 2-22
Create: PROC [initloc: REAL « 0] RETURNS [Object] =
{newp: Object « TM.Alloc [HistoryPoint];
Point.Partiallnitialize [newp, initloc];
Partiallnitialize [newp];
RETURN [newp]};
The Create procedures defined in figures 2-24 and 2-26 use a simple extension of this
technique to invoke procedures before the object is created, thus allowing errors to be detected

before allocation.

Under this initialization convention, each Create and Partiallnitialize takes its own set
of parameters. As a result, the definer of a trait must know the initialization interface for each
ancestor trait. The use of a property list for initialization, as built into Zetalisp and as

programmable in Smalltalk and Loops, enables this inter-type dependency to be avoided.

146

5.5 The Loops realization

One of the distinctive aspects of Loops its elaborate treatment of instance variables of objects.
As one illustration of the sophistication of the mechanism, the table on page 24 of [BobrowStefik
83] lists twenty-six different operations for storing and retrieving the values of variables

associated with objects.

In large part, this is due to the previous work of its designers in knowledge representation
systems {e.g., [BobrowWinograd 77a, Stefik 78]). As discussed in chapter 1, instance variables
rather than type-specific operations has historically been the dominant abstraction implicit in

“frame-based" representation systems.

5.5.1 The primitive instance-variable operations

The conceptué!ization of object must also be made more sophisticated. In Smalltalk, Zetalisp,
and Star Mesa, objects were modelled as a functicn from the instance-IV-names of their type
to a set of value‘s. The get-1V-value and set-1V-value operations were defined in terms of this
association alone. All manipulations on objects in the language could be defined in terms of

these basic operations.

In Loops, the situation is fundamentally different. In order to describe the behavior of the
procedures described in [BobrowStefik 83], objects in Loops must ke modelled as an arbitrary
set of associations between names and values. We will refer to this set of associations as the
“object property list" of an object. The five primitive operations on objects and their Loops

realizations are listed in figure 5-6.

Thus, the primitive instance variable operations on objects have nothing whatsoever to do with

their type.

147

Create a new object of a specilied type with an emply object property list
(Send class NewWithValues)]
(Send $BHPoint NewWithValues)]

Extract the value associated with a name (GetValueHare obfect name)
(GetValueHere bhp 'bhlist)

Add a new association or replace a value ol an existing association
(PutValueOnly object name newvalue}
(PutvValueOnly bhp 'bhlist '(InitList)

Remove an existing association (Send object DeletelV npame)
(Send bhp DeletelIV 'bhlist)

Obtain the current list of names (Send object List ‘'IVs)
(Send bhp List 'IVs)

AddIV,DeletelV, and List are operations of class Ob ject.

NewWithValues is an operation of class C1ass.

Figure 5-6: Basic instance variable operations in Loops

'5.5.2 The common abstraction can still be realized

Despite the above, Loops provides a second set of operations through which it can be made to
appear that the IV-names of objects are a superset of the instance-1V-names of their type.
Thus, our common abstraction can still be used to describe instance variable operations in

Loops.

This second set of operations involves a new aspect of classes, which we will refer to as their
“class-instance property list."” Like that of objects, it is an arbitrary set of associalions between
names and values. The primitive operation for manipulating the class-instance property lists of

classes are listed in figure 5-7.

When an class is initially created, its class-instance property list is empty. The -
InstanceVariables clause of the DefClass form can be used to associate a desired class-
instance property list with a newly-created class. For example, given the following example from

2-16:

148

Extract the value associated with a name

Replace the value associated with a name

Add a new association

Remove an association

Obtain the current list of names

Add, Delete, and L1st are operations of class Class.

(GetClassIV class name)
(GetClassIV $BHPoint 'bhlist)

(PutClassIV class name newvalue)
(PutClassIV $BHPoint 'bhlist *(InitEntry)

(Send class Add 'IV name value)
(Send $BHPoint
Add "IV 'bhlist (list 'ALabel)

(Send class Delete 'IV pame)
(Send $BHPoint Delete 'IV °bhlist)

(Send class List 'IVs)
(Send $BHPoint List °'IVs)

Figure 5-7: Class-instance property list operations in Loops

(DefClass BHPoint

(InstanceVariables
(bhlist nil)
(bhtail nil))

-)

the class-instance property list associated with BHPo1int will be:

((bhlist nil) (bhtail nil))

Uéing a "defining form™ to initialize the class-instance property list makes sense in terms of our

common abstraction, since none of the operations which realize the abstraction involve

modifying class-instance property lists.

Here is how the class-instance property list can be used to realize our common abstraction.

The key idea is to have the realization of get-iV-value for an object search the class property

lists of the type of the object and all ancestors. Thus, the names and values of the class-instance

property lists can appear to be associated with the objects themselves.

Figure 5-3 lists the Loops operations which use this approach. The local-instance-IV-names

of a type are realized as the names which appear on its class-instance property list.

e The realization of instantiate is an invocation of the NewWithValues operation of
Class. The second parameter of the invocation defines the object property list of

149

the newly created object.y’ The realization of local-instance-IV-names is an
invocation of the List operation of class Class with the symbol IVs as a
parameter. It computes a list containing the names found on its class-instance
property list.

e The realization of instance-1V-names is an invocation of the List! operation of
class Class with the symbol IVs as a parameter. It computes a list containing the
names found on its class-instance property list of the class and all ancestors.

e The IV-names of an object is realized as the List!. operation of class Class. It
computes a list which represents the union of (a) the instance-1V-names of its type
and (b) the names found on its object property list.

e The realization of get-1V-value is the Loops procedure GetValueOnly. If the
specified name is not found on the object property list, it uses the ancestor ordering
specified in chapter 4 to search the class property lists. If the name is found on one
of these lists, the associated value is returned. If not, the current value of the
variable NotSetValue is returned.

e The realization of set-1V-value is the Loops procedure PutValueOnly. It modifies
the object property list of the specified object, by either adding a new association or
replacing the value of an old one.

For example, suppose the ancestor ordering of a class D was:
(C B A)

and the class-instance property lists of each these types were:

A: ((x 1) (y 1))
B: ((x 2) (z 2))
C: ((x 3) (w 3))

D: ((y 4) (v 4))

Suppose further that the object property list of an object O of type D was:
((v 5))

Then the assaciations between names and values computed by the realization of get-lV-value

would be:
((v 8) (w3) (x3) (y 4) (z 2))

After set-1V-value (0, 'X, 6) and set-1V-value (O, 'V, 6), the property list of O would be:
((v 6) (x 6)

and the associations computed by get-IV-value would be:
((v 6) (w3) (x 6) (y 4) (z 2))

a-"Ther,e is actually a more primitive version of NewW{thValues which does not assign a unique identilier to the
created object within the current Loops naming environment. The point of using this more primitive version is only to
avoid overhead for short-lived objects.

150

The above realization of the abstraction will be accurate if both the parents list and the class-
instance property lists of all ancestors do not change. If they are modified, the values associated

with instances can appear to change “‘behind one's back."

5.5.3 The ‘“*active values’ abstraction
We have now seen two levels of abstraction at which instances of Loops classes can be
described. We now describe a third level, the one which is most commonly used in Loops

programs.

The key new capability offered by active values is the ability to execute programmer-specified
procedures as part of the realization of get-IV-value and put-IV-value. A simple example of
the utility of this capability is the ability to maintain a graphical display of the current values of
selected instance variables. More sophisticated uses of this capability have proven to be of
considerable value in building Al systems;[Stefik et al. 83b] contains a highly readable

discussion of this point.

The new concept introduced to obtain this third level is that of an “active value." An active
value is a data structure which contains three components, referred to in Loops terminology as
its “'get function,” ‘‘put function,” and "local state.”"” The operations involved in this level are
augmentations of the GetValueOnly and PutValueOn1ly which take special action if an active

value is present in object or class-instance property lists.

The syntactic form:

exp exp

#(exp local-state get-fn put-In)

denotes an active value whose local state, get function, and put function are the values of the
corresponding expressions. Active values are instances of Interlisp datatypes, and are not

themselves instances of Loops classes.

151

5.5.3.1 Storage and retrieval using the active value abstraction
The analog of get-IV-value is GetValue. It behaves identically to GetValueOnly up to the
point where an object is returned. If this object is an active value, then the object returned
depends on its get function. If the get function is nil, then the local state is returned. If not, then
the value returned is the result of an invocation of the get function. The parameters of this
invocation are:
o the parameters of the invocation of GetValue,

e the local state of the active value, and

e the active value itself.38

The analog of put-IV-value is PutValue. The behavior of (PutValue Obj Var Val)is

as follows:

o If the object property list of Ob j contains an association for Var that is not an active
value, an association between Var and val is added. This is identical to the
behavior of PutValueOn1ly.

e If an association is found which is an active value whose put function is NIL, the
local state of the active value is modified to contain Val.

e If an association is found which is an active value with a non-NIL put function,
PutValue terminates with an invocation of the put function of the active value. The
parameters are used for this invocation:

o the parameters of the invocation of PutValue
o the local state of the active value, and
o the active value itself.

e Otherwise, the class-instance property lists of the class of Obj and all ancestors are
searched in canonical order for an association for Var. If such an association is
found and its value is an active value AV, then two actions are taken.

1. An association between Var and a copy of AV is added to the object property
list of Obj. This copy is a different active-value object with identical local

'aaActuélly. one additional parameler is passed. This parameter tells whether the active value is associated with a
class variable, method, or class propetly list. These other concepts are described subsequently.

152

state, get function, and put function.®®

2. The put function of the newly created active value is called with the same
parameters as above.

An example which illustrates the above-described mechanism will be given shortly.

5.5.3.2 Nested aclive values

Active values allow procedures to be invoked when storing into or retrieving from instance
variables. It may sometimes be desirable to invoke more than one prbcedure when an instance
variable is accessed. As a paradigm example, it may be desired to invoke a display-updating
procedure whenever the value of a variable changes, and a breakpoint-causing procedure

whenever values which satisfy a certain predicate are stored in the variable.

The standard Loops programming technique for achieving this behavior is to store active
values as the local state of other active values; i.e., to have “nested"” active values. Then the
accessing funcfions of the active value can test if the local state is a second active value. If it is,
then the access functions of the first active value terminate with an invocation of the access
functions of the second. This process can be repeated to invoke the access functions of active

values at arhitrary depth.

Two new procedures are used to support this behavior, GetLocalState and
PutLocalState. Invocations of GetLocalState and PutLocalState take the same
parameters as the get and put functions of active values. If the local state contains an active
value AV, the get or put function of AV is called with the standard parameters. [f not,

GetLocalState simply returns the local state and PutLocalState replaces the old local state

with the new value.

By convention, get functions and put functions should always use these procedures to access

! 39An exception: if the local stale of the aclive value is the atom Shared, then the copying is suppressed. In that case,
AV itsell is placed in the object property list.

153

local state. If this convention is foilowed, then storing active values in local state will always

result in the associated accessor procedures being invoked on storage and retrieval.

5.5.3.3 Syntactic forms for active value operations

For completeness, we note that the GetValue and PutValue functions can be invoked with a
number of syntactic forms.
e (@ exp :id) means (GetValue exp ‘id)
¢ (@« exp :id exp,) means (PutValue exp 'id exp,)
e (@ :id) means (GetValue self ’id)

¢ (@« :id exp,) means (PutValue self’id exp,)

Thus, using Loops forms such as (@ :min) and (8¢ :max 100) to invoke instance variable
operations is the analogue to using variable assignment and evaluation to invoke such
operations in Smalltalk and Zetalisp. The principal difference in the two approaches is that the
Loops form is sol'ely for instance variable access and is never used for manipulating variables of

proceaures.

5.5.3.4 An exampie of using active values

Here is a simple example to illustrate how active values are used. Suppose we wish to maintain
a count of all accesses and modifications of the location of a particular point. Furthermore,
before the location is changed, we want a separate procedure to be invoked with the obiect, the
instance variable name, the old value, and the new value. Then the active value associaied with

the Toc instance vanable of the point would have the following structure:

#(#(value
NIL
NoticeUpdate)
CountAccess
CountUpdate)

where value is the number which represents the location.

The function for monitoring updates could be:
‘ (DEFINEQ

154

(NoticeUpdate (self varName newValue unused activeValue)
(PROG (
(PutLocalState activeValue newValue self varName))

)

The two functions for maintaining the access and update counts could be defined as follows:
(DEFINEQ
(CountAccess (self varName localState unused activeValue)
(@¢ :accessCount (ADD1 (@ :accessCount)))
(GetLocalState activeValue self varName))
(CountUpdate (self varName newValue unused activeValue)

(@« :updateCount (ADD1 (@ :updateCount)))
(PutLocalState activeValue newValue self varName))

)
For the above code to be meaningful the initial value of the accessCount and updateCount
variables would have to be set to a numeric value (presumably zero) at the time the active value is

installed.

To illustrate the effect of active values on the class property list, let us modify the above
scenario by assuming that the structure:
B #(0
NIL
NoticeUpdate)
CountAccess
CountUpdate)

is associated with 1oc on the class-instance property list of Point. As a result, the first time the

invocation:
(PutValue p 'loc value)

is executed for a given point p, the above active value structure would be copied into the object
property list of p.
5.5.3.5 Instantiation using the active values abstraction

A non-primitive procedure for creating new objects is available which supports the use of
active values. This procedure, invocable as the New operation of Class, has one required

parameter, a class. After creating the new object, it searches the class-instance property lists of

155

all ancestors of the class for some name N which is associated with an active values. If the get

function of any of these is the atom AtCreation, non-standard action is taken.

o If the local state is an atom, it is interpreted as a function to call with the newly
created object and the name N as parameters. The result of this invocation is
associated with N in the object property list of the newly created class.

o If the local state is a list, it is evaluated in an environment in which the variables
self, varName are bound to the newly created object and N. The result of the
evaluation is associated with N in the object property list of the newly created class.

Here is an example taken from [BobrowStefik 83]. Suppose the active value:
(# (Date) AtCreation NIL)

was associated with the name date in the class-instance property list of Point. Then the

invocation
(Send $Point New)

would cause an association between date and the current date to be placed in the object

property list of the newly created instance of $Point.

A related facility is provided by the GetValue procedure. If it finds an active value whose get

functionis AtCreation or FirstFetch the same actions are taken as described above.

Finally, we note that Loops predefines a Temp1ate metaclass which facilitates the definition of
instances of types whose creation involves the creation of a collection of mutually referential
objects. The paradigm domain is ‘“device” which contain *components” which are other

“devices.” See chapter 8 of [BaobrowStefik 83] for details.

5.5.4 An assessment of active values

5.5.4.1 Active values and the common abstraction
How does the use of active values relate to the abstraction used to describe our other three

languages? [BobrowStefik 83] states that:

[The] idea of functional composition for nested active values is most appropriate
when the order of composition does not matter.... [A]ctive values work most simply
when they interface between independent processes using simple functional

! compasition. Any more sophisticated control is seen as overloading the active value

156

mechanism.*?

If the principle of order-independence holds, then it must be the case that get functions always
return the value obtained from their local state and put functions will always store the new value
passed to it. [f this design principle is followed, then the use of active values still satisfies the

abstraction specified above.

5.5.4.2 Two shortcemings of active values and how to surmount them

One obvious problem with the use of active values is that the programmer must be aware of the
representation used to implement the abstraction represented by the class of the abject.
Furthermore, changing the representation can cause the intended functionality of active values
to not be realized. For example, consider an active value which monitors changes to the htail
and bhtail instance variables of instances of BoundedPoint. If the implementation of the
history-keeping operations was changed to sometimes access the last cell through the h1ist
and bhlist variables, the apprcpriate monitoring behavior would not be realized. This
representation-dependence is clearly undesirable at the 'interface between independent

processes.”

A second problem is that it is awkward to use active values to track changes to objects
associated with method invocations rather than instance variable cperations. For example,
suppose our scenario included two-dimensional points, represented using x and y instance
variables, and a Move operation which specified new x and y coordinates. Suppose further that
the list returned by the History operation should contain one entry for each invocation of Move.
If we used active values to monitor x and y, it would be awkward to arrange that a single entry be
made on the history list for the separate modifications to x and y entailed by the Move. For more
‘complex operations on more complex kinds of objects (e.g., updating the “'state of the world"
resulting from a simulated action of a problem solver), the low level of granularity can well be

intolerable.

1

40 [BobrowStefik 83), p. 26

157

It is easy to visualize an enhancement to Loops which would solve both of these problems. The
key idea is to associate each object with an “object operation set” in addition to its “object
property list.” Then the generic invocation mechanism can be modified to search the object
operation set before examining the operation set of the object's type. For example, to cause the
location of a particular point p to be monitored, a definition for Move would be given in the object

operation set of p.

This enhancement allows objects to override the methods defined by their types. What is still
needed is a means for these object-specific methods to be nested, so more than one process can

monitor invocations of the same operation.

The idea here is to associate each object-specific method with a “local continuation,” in the
same way that each active value has a "local state.”"” Then, by convention, each object-specific
method should either invoke the method found in its local continuation, or, if the local

continuation is empty, invoke the method associated with the object's type.

Of course, it is not the case that object-specific methods can replace active values. A single
active values allows all changes to an instance variable to be monitored, regardless of the
number of methods which can potentially cause such changes. Active values and object-specific

methods are complementary facilities for monitoring program execution.

5.6 Two concepts related to instance variables

5.6.1 Class variabies
The concept of a “'class variable" is used in two of our four languages. All classes in Smalitalk
and Loops can be viewed as being associated with a *‘class property list", which associates

“class variables” with values.*' Both languages have procedures which allow associations to be

""Furlhermore. Smalltalk-80 and Smalltalk-82 allows any number of “dictionaries” to be assacialed wiih a type. The
poolDictionaries: parameter of the ...subclass:... operalions defines the initial colleclion of these other
“property lists".

158

added and removed, for values to be replaced, and for values to be extracted. Syntactic forms

similar to those used for instance variable operations can be used as well.

Both Smalltalk and Loops have different augmentations of the above-described approach.
Smalitalk also allows a number of other “property list” objects (realized as instances of class
Dictionary ([GoldbergRobson 83], p. 148)) to be associated with a class. Loops provides
procedures which treat active values in class variables in the same way as active values in

instance variables.

The principal use to which class variables have been put is to hold information which is shared
by the procedures which implement the abstraction represented by a class. A simple example
would be a count of the number of instances created for a class used to create unique identifiers.
As such, they perform the same function as the “private’ or “own” variables of module-based
languages (e.q., [Lampson et al. 77, LauerSatterthwaite 79, Liskov et al. 791). Thus, they would

be realized as private variables of Star Mesa trait modules.

In Zetalisp, the functions served by class variables are often realized through the property list
associated with the flavor name. This is less desirable from the perspective of encapsulation,
since naming conventions must be introduced to prevent conflicting uses of the same property

names.

5.6.2 Properties of variables

In Loops, a property list is associated with each instance variable of each object, each class,
each name on the class-instance property list of the class, each class variable of a class, and
each local method of a class (see chapter 7). All the variants of GetValue and PutValue

described above can be applied to the values associated with names in these properly list. For

example,
(GetValue bhp ’'bhlist ‘'timestamp)

either returns the timestamp property associated with the bh1ist instance variable of bhp or, if

159

it is an active value, invokes its get function. Notice that this object can be different from that

computed by:
(GetValue bhp2 'bhlist 'timestamp)

so long as bhp1 and bhp?2 are not coreferential.

There have been two principal uses of these properties. First, they provide a convenient means
for self-documentation of classes and distinguished system objects. Second, for applications in
which the instance variables are the subject of inference (recall the discussion of representation
systems in chapter 1), the properties can be used to hold information relevant to the inference

mechanism.

160

6. Algorithms for generic method computation

6.1 The assumption of a local operation set
Chapter 3 described the mechanism for generic procedure invocation. We now address the

question of how the generic operation set is constructed for our subject types.

In describing the algorithm for generic operation set computation, we will use the concept of
the local operation set of a type. The local operation set, like the generic operation set, is a set
of associations between names and procedures. In each of our four languages, the generic

operation set of a type is derived from the local operation sets of the type and its ancestors.

In this chapter, we will see that the algorithms for generic operation set computation différ
considerably in our four languages. In chapter 7, we will see that details of how a local operation
set is_associated with a type are also quite different. The point of introducing the ‘“local
operation set" abstraction is that these two sets of dilferences are independent. In other words,
any of the techniques used to associate a type with a local operation set could be used with any
of the algorithms for generic operation set computation. This is an important conclusion, since

the differences in the latter can easily obscure comparisons of the former.

The key conclusion we will make in this chapter is that there is a significant difference in power
between Zetalisp's approach to generic method computation and that used in the other three

languages. The two basic differences are as follows:

e [n Smalltalk, Loops, and Star Mesa, the methods for generic operatiors are always
selected from the collection of local methods of the type and its ancestors. But in
Zetalisp, there is a second possibility: generic methods can be synthesized from the
local methods of the type and its ancestors. We will see that this simple kind of
“‘automatic programming’ can significantly reduce the work required to define new
types.

e In Smalitalk, Loops, Star Mesa, the same algorithm is used for computing every the
generic method for every operation of every type. But in Zetalisp, a number of
algorithms are available, and different algorithms can be used for different

' operations.

161

The organization of this chapter is as follows. Each section will describe generic operation set
computation in one of our four languages. The examples of chapter 2 are used illustrate the
discussion. The local operation sets will be identified in the discussion; chapter 7 describes the

general rules for associating local operation sets with types.

6.2 The Smalltalk-80 and Smalltalk-82 algorithms

6.2.1 The local operation set of the example

The example scenario of figures 2-11 through 2-17 uses the compileAndStore: operation of
class Class. This operation, not defined in the Smalltalk system, allows a single expression to
create a compiled method and store it into the method dictionary of a class. Its invocation on a

class C and a string S does three things:

1. It obtains an instance of class CompiledMethod corresponding to S.

2. It extracts the operation name from S.

3. It stores an association between the operation name and the compiled method in the
method dictionary of C.

For example,
Point compileAndStore: 'location ~ loc’.

creates an instance of class CompiledMethod from the string *1ocation ~ loc' and installs
this procedure as the definition of Tocation in the local operation set of Point. Thus, this

procedure will subsequently be the result of:
Point compiledMethodAt: #location

and used as the method for generic invocations on instances of Point such as:
p location

or
p perform: #location

An implementation of the compileAndStore operation is given in figure 2-11. The local .
operation names of the classes of the scenario of figures 2-12 to 2-17 are listed in figure 6-1. We
note here that Smalltalk provides a compile:classified: method applicable to all classes;

that is described in chapter 7.

1

162

Class Local Operation Name

The class of Point create:
new

Point initialize:
location
move:
display:

The class of HistoryPoint The local oepration set is empty.

HistoryPoint initialize:
partiallnitialize:
nove:
partialMove:
history
display:
partialDisplay:

The class of BoundedPoint create:
partialCreate:

BoundedPoint initialize:
partiallnitialize:
move:
partialMove:
min
max
setmin:
setmax:
display:
partialDisplay:

The class of BliPoint create:

BHPoint initialize:
partiallnitialize:
move:
setmin:
partialSetmin:
setmax:
partialSetmax:
boundsHistory
display:
partiaiDisplay:

Figure 6-1: Local operation names in the Smalltalk example

Notice that the local operation set of the class of HistoryPoint is empty. This existence of
this class is due to Smalltalk's principle, discussed in chapter 4, of having a one-one relationship
between the class Object and its descendants and the descendants of class Class. Our

example illustrates that this generality can result in metaclasses with no associated functionality.

163

6.2.2 The algerithm for generic method computation
Given the above, we can now describe the algorithm for computing the generic operation set of
any class in Smalltalk-80 or Smalltalk-82. This algorithm is, in the strictest sense, a function of

the local operation sets of the class and its ancestors.

¢ The names of the generic operations of a class C are the union of the local operation
names of C and its ancestors.

e The method for a particular operation name O is computed by the following
procedure:

1. 1s O a local operation name of C? If so, then the local method for O is used as
the method for O in the generic operation set of C.

2.Let C be the parents42 of C whose generic operation sets contain a method
for O.

3. Does the generic operation set of each member of C~ define the same method
for O? If so, than this method is taken as the method for O in the generic
operation set of C.

4, Otherwise, the method for O in the generic operation set of C is a procedure
which invokes the error : operation on the generic parameter.

The result of this algorithm for method definition may be summarized as follows.

e The application of the algorithm to classes with a single parent parent results in
either direct method specification or method inheritance. If a method for the
operation name is defined in the local operation set of a class, that method is used.
Otherwise, the generic method of the parent class is used.

e The application of the algorithm classes with more than one parent results in either
direct method specification, method inheritance, or an error-signalling method. If a
method for the operation name is defined in the local operation set of a class, that
method is used. Otherwise, if the generic operation sets of all parent classes define
the same method for the operation, that method is used. If neither of these
conditions hold, an error-signalling method is used.

Notice that all Smalltalk-80 classes fall into the first category.

To illustrate, figure 6-2 outlines the generic operation set of the eight classes used in the

scenario of chapter 2, omitting the generic operations inherited from Object and Class. For

142 | . " " . . “ .
Recall that we are using the term “parent” to refer to “direct ancestors"”, and “ancestor" to refer to the transitive
closure of the “parent” relation.

164

each class, the names of the generic operations are given. If the method is inherited from some
other class, that class is listed. If an error-signalling method is constructed, that is indicated as

well.

6.3 The Loops algorithm

6.3.1 The local operation sets of the example

Figures 2-6 through 2-10 uses Methods clauses of DefClass and the DEFINEQ define the
desired local operation sets. Figure 6-3 lists the local method names which are defined for each
class in the scenario. In the interest of clarity, the local method symbols for each local operation
name of each class (i.e., the symbols which appear in the Method clause of the DefClass
invocations) were synthesized from the name of the class and the name of the operation. For
example, the local method symbo! for operation name Locallnitialize of class $Point is

Point.Locallnitialize.

In comparison with the Smalltalk local operation set, notice that there is no BHPointClass and
that the the local operation set of BHPo1int contains no method for Display. The reason why

these operation are not needed to obtain the desired functionality is described shortly.

6.3.2 The algorithm for generic method computation
A description of generic operation set computation for Loops classes uses the component-type

ordering defined in chapter 4.

The generic operation set of a Loops class is computed as follows:

e As in Smalltalk, the names of the generic operations of a class C are the union of the
local operation names of C and its ancestors.

e The method computation algorithm for operation name O of class C is as follows:

i.Let C' be the first member of the component ordering of C whose local
operation set contains a method for O. Note that such a class must exist, since
the operation identification algorithm guarantees that O is a member of the

‘ : union of the local operation names of thie component types.

165

Class
The class of Point

Point

The class of HistoryPoint

HistoryPoint

The class of BoundedPoint

BoundedPoint

The class of BHPoint

BHPoint

Operation

create:
new

initialize:
location
move:
display:

create:
new

initialize:
partiallnitialize:
location

move:

partialMove:
history

display:
partialDisplay:

create:
partialCreate:
new

initialize:
partiallnitialize:
location

move:
partialMove:
min

max

setmin:

setmax:
display:
partialDisplay:

create:
partialCreata:
new

initialize:
partiallnitialize:
location

move:
partialMoves:
display:
partialDisplay:
min

max

setmin:
partialSetmin:
setmax:
partialSetmax:
history
boundsHistory

Inherited from:

The class of Point
The class ol Point

Point

The class of Point

Point

The class of BoundedPoint
The class of Point

Point

BoundedPoint
BoundedPoint
BoundedPoint

HistoryPoint

. Enorﬂgnﬂbrconsnucwd.duetoconmctbmweenHistoryPointandBoundedPoint.
Figure 6-2: The generic operation set of the Smalltalk examp\le

166

Class Local Operation Name

PointClass Create
New

Point Initialize
Location
Move
Display

HistoryPoint Initialize
Partiallnitialize
Move
PartialMove
History
Display
PartialDisplay

BoundedPointClass Create
PartialCreate

BoundedPoint Initialize
Partiallnitialize
Move
PartialMove
Min
Max
Setmin
Setmax
Display
PartialDisplay

BHPoint Tnitialize
Fartiallnitialize
Move
Setmin
PartialSetmin
Setmax
PartialSetmax
BoundsHistory
PartialDisplay

Figure 6-3: The local operation set of the Loops example
2. The method for O in the generic operation set of C is the method for O in the
local operation set of C'.

To illustrate, consider the Display operation of BHPoint. Recall from chapter 4 that the

component ordering for $BHPoint is:
$BHPoint, $BoundedPoint, $HistoryPoint, $Point, $0bject

The first class in this list whose local operation set contains contains a method for Display is
BoundedPoint. Thus, the generic method for Display of BHPoint s

BoundedPoint.Display.

This algorithm for method computation gives results identical tc Smalltalk's under two
condlitions:

167

¢ the local operation set contains a method for the operation, or

e the local operation set contains no relevant method but all parents for which the
operation is defined have the same generic method.

Otherwise, the Loops algorithm will result in method inheritance from some ancestor type,
while the Smalitalk algorithm will “*fail," i.e., use an error-signalling procedure as the method. In
the example of chapter 2, the only operation of BHPoint which fails in this category is the

Display operation whose derivation is described above.

Furthermore, when inheritance does occur, the construction of the component ordering list of
chapter 4 guarantees that a “maximally specific'’ method is always chosen. More precisely, if a
unique ancestor exists which both (a) defines a method for the operation, and (b} is a
descendant of all other ancestors which define a method for the operation, then the method of

that unique ancestor will be chosen for the type.

Why is it useful for a method computation algorithm to have this property? Suppose we assume
that the program is designed using the principle that the speifications of each operation of a
type is a specialization of the specification of the corresponding operation of all ancestors of the
type. If so, then if an ancestor which satisfies (a) and (b) exists, its associated method is

guaranteed to satisfy the specifications of all other ancestors for which the operation is defined.

As a corollaiy, if a method computation algorithm selects a method defined by an ancestor
which is not a descendant of all other ancestors which define a method, ".uyere is no reason to
believe that the selected method will satisfy the behavioral specilicatic 1s associated with all
other ancestors. For example, since (a) both bounded-point and historj-point defined a
method for move, and (b) neither is a descendant of the other, there is no reason to believe that
the move methods of either of those would be appropriate for bh-point. It seems difficult to
argue with the proposition that such choices should, at the very least, be brought to the
programmer's attention. However, none of the algorithms in our four languages singles out this

particular kind of conflicting inheritance.

168

Figure 6-4 summarizes the generic operation sets of the classes defined in figures 2-5 through
2-10. Aside from Smalltalk's extra metaclasses, the principal difference between this collection
of operation sets and those of the Smalitalk implementation is in the Display operation of class

BHPoint.

In the Smalltalk example, the display: operation of BHPoint couldn't be inherited for
BHPoint, because the method for HistoryPoint was a different CompiledMethod than that
of BoundedPoint. Thus, leaving it out of the local operation set would have resulted in an
error-signalling method for display: of BHPoint. On the other hand, unresolved conlflict in
Loops always results in one of the alternatives being chosen. Since BoundedPoint is a
subclass of Point, the local method of the former is chosen over that of the latter to implement

the Display operation of BHPoint.

Which of the alternatives is 'right?”” On one hand, an algorithm which resolves conflicting
inheritance cannot make any fewer correct choices than an algorithm which does not. But it
cannot make any fewer incorrect choices, either. A reasonable compromise would be far the
aléorithm to make the choice, but notify the programmer of the action taken. A refinement of this
approach wouid separate the conflicis where a *‘maximally specific'' method was chosen from

those in which the choice of a method was based on the local ordering of the parents of a type.

169

Class
PointClass

Point

HistoryPoint

BoundedPointClass

BoundedPoint

BHPoint

Operation

Create
New

Initialize
Location
Move
Display

Initialize

Partiallnitialize

Location

Move
PartialMove
History
Display
PartialDisplay

Create
PartialCreate
New

Initialize

Partiallnitialize

Location

Move
PartialMove
Min

Max

Setmin

Setmax

Display
PartialDisplay

Initialize

Partiallnitialize

Location

Move
PartialMove
Min

Max

Setmin
PartialSetmin
Setmax
PartialSetmax
History
BoundsHistory
Display
PartialDisplay

Inherited from

Point

PointClass

Point

Point
BoundedPoint

BoundedPoint
BoundedPoint

HistoryPoint

BoundzdPoint
BoundedPoint

Figure 6-4: The generic operation set of the Loops example

170

6.4 The Star Mesa algorithm

6.4.1 The local operation set of the example

Trait Local Operation Name Local Method

Point Point.Location Point.LocationImpl
Point.Move Point.Movelmpl
Point.Display Point.DisplaylImpl

HistoryPoint Point.Move HistoryPoint.MoveImpl
HistoryPoint.History HistoryPoint HistoryImpl
Point.Display HistoryPoint.DisplaylImpl

BoundedPoint Point.Move BoundedPoint.MoveImpl
BoundedPoint.Min BoundedPoint.MinImp]
BoundedPoint.Max BoundedPoint.MaxImpl
BoundedPoint.Setmin BoundedPoint.SetminImp]
BoundedPoint.Setmax EoundedPoint.SetmaxIimpl
Point.Display BoundedPoint.DisplayImpl

BHPoint Point.Move BHPoint.Movelmpl
BoundedPoint.Setmin BHPoint.SetminImp?
BoundedPoint.Setmax BHPoint.SetmaxImpl
BHPoint.BoundsHistory BHPoint.BoundsHistoryImpl
Point.Display BHPoint.DisplayImpl

Figure 6-5: The local operation sets of the Star Mesa example

The local operation sets of our four example traits are as described in figure 6-5. In contrast
with the Smalltalk and Loops local operation sets, no partial... operations are defined. In the
Star Mesa implementation, the “partial” procedures are defined as non-generic procedures of
trait definition modules. The rationale for using this approach is that these procedures are not
actually invoked generically. In the Smalltalk implementation, local operation sets were the sole
means of procedure encapsulation, and these procedures had “nowhere else to go.” In the
Loops example, it is sometimes possible to take advantage of their presence in the local
operation set by using the Al1LocalMethods procedure defined in chapter 7 to eliminate

enumeration of ancestor types.

6.4.2 Programming conventions for trait initialization procedures
Recall from chapter 4 that each trait was associated with a trait initialization procedure. The
following conventions involving this procedure is relevant to the computation of the generic

operation set of a trait.

Star Mesa Convention 4: Each trait definition designates a procedure as its

171

“local initialization procedure'. This procedure should take a single parameter, a
trait.

In the scenario of chapter 2, the comment in figure 2-18 states that the procedure bound to the
identifier LocaiInitializeTrait in each trait definition module is designated as the local

initialization procedure of the defined trait.

Star Mesa Convention 5: The trait initialization procedure of a trait T should
consist solely of a sequence of invocations of the local trait initialization procedures
of the trait and all ancestor traits. The order of this invocation should be such that if
T, is an ancestor of T2, the local initialization procedure of the former will be called
before that of the latter.

For example, consider the initialization procedure for BHPoint given in figure 2-26:
InitializeTrait: PROC [] = PRIVATE

{Point.LocalInitializeTrait [TM.TraitNamed ["BHPoint"]];
BoundedPoint.LocalInitializeTrait [TM.TraitNamed ["BHPoint"]];
HistoryPoint.LocalInitializeTrait [TM.TraitNamed ["BHPoint"]];
BHPoint.LocallnitializeTrait [TM.TraitNamed ["BHPoint"]]};
This calls the local trait initialization procedures of Point, BoundedPoint, HistoryPoint, and
BHPoint, in that order. Note that the ordering constraint would still be satisfied if the invocation
of HistoryPoint.LocallnitializeTrait preceded that of
BoundedPoint.LocalInitializeTrait, buttha! no other ordering is valid. Note also that as

a consequence of this and the previous convention, the local initialization of a trait T will be

invoked by the initialization proéedures of T and all descendants.

6.4.3 The algorithm for generic method computation

The generic operation set of a S*ar Mesa trait T can now be defined as follows:

e The names of the generic operations of a T are the union of the generic operation
procedures designated by the module defining T and the modules defining all
ancestors of T. '

o The method associated wilth generic operation O is the procedure invoked by O
when the first parameter is of type T. If all the conventions defined above have been
followed, method computation for operation O of trait T produces results identical to
the following algorithm:

' * 1.Let T be an ordering of T and all ancestors such that T, precedes T, iff the
invocation of the local trait initialization procedure of T, precedes the

172

invocation of the local trait initialization procedure of T2 in the trait initialization
procedure of T.

2. Let T' be the /ast member of T~ whose local operation set contains a method
for O.

3. The method for O in the generic operation set of T is the method for O in the
local operation set of T'.

For example, consider the application of the algorithm to the Point.Display operation of
BHPoint. The trait initialization procedure of BHPoint invokes local trait initialization

procedures in the following order:
Point, BoundedPoint, HistoryPoint, BHPoint

From figure 6-5, we can sez that each of these traits has a local method for Point.Display.

Since the last such trait is BHPo1int itself, the local method of BHPo1int is chosen.

The result of this algorithm is similar to that of Loops. The principal difference is the way in
which the ordered list defined by step (2) is constructed. In Loops, the order is fixed by the
parent/child relation between classes and the order of the lists defining the parents of each
class. In Star Mesa, the order depends on the definition of the local trait initialization procedure.
By convention 5; any order which satisfies the parent/child relation between traits is acceptable.
Thus, the property of choosing the “*‘maximally specific method" holds for inheritance in the traits

paradigm.

The generic operation sets of each of the four types are summarized in figure 6-6. In
comparison with the Smalltalk algorithm, method computation in Star Mesa resolves conflicting
inheritance rather than producing error-signalling methods. In the view of the Star Mesa
designers, it is a ‘‘design error” for a trait to have no local methods for an operation if different
parents have different generic methods (e.g., [Curry et al. 82], p. 6). However, no indication was

given to the programmer if this principle of programming methodology was violated.®

43In personal communication, Curry reports that an experimental version of Star Mesa did incorporate a check for
unresolved conflicting inheritance. The lechnique used was to pass a copy of the trait storage to each local trait
initialization procedure. The procedure’s eflects, and hence the local operation set of the trait, could be determined by
comparing the dala structure passed to the procedure with the data structure from which the copy was made.

173

Class Operation Inherited from:

Point Point.Location
Point.Move
Point.Display

HistoryPoint Point.Location Point
Point.Move
HistoryPoint.History
Point.Display

BoundedPoint Point.Location Point
Point.Move
BoundedPoint.Min
BoundedPoint.Max
BoundedPoint.Setmin
BoundedPoint.Setmax
Point.Display

BHPoint Point.Location Point
Point.Move
BoundedPoint.Min BoundedPoint
BoundedPoint.Max BoundedPoint

BoundedPoint.Setmin

BoundedPoint.Setmax

HistoryPoint.History HistoryPoint
BHPoint.BoundsHistory BoundedPoint
Point.Display

Figure 6-6: The generic operation sets of the Star Mesa example

Finally, all of the above is predicated on a large number of conventions being satisfied. In the
absence of mechanical assistance for detecting their violation, a considerable burden is placed
on Star Mesa programmers. As alluded to in [CurryAyers 83], this burden may well be heavy

enough to negate the advantages offered by the method definition algorithm itself.

6.5 The Zetalisp algorithms

Method computation in Zetalisp is significantly different from that of our three other languages.
Like the other languages, the generic operation names of a type are the union of the local
operation names of the type and its ancestors. But the method for a given generic operation is
computed by a user-specified procedure, rather than an algorithm built into the type system. As
a result, there is very little which can be said about method computation in general. In particular,
it is not necessary that an algorithm have the consistent inheritance property or that it involve the

local operation sets of the flavor and its ancestors.

174

Let us emphasize the contrast between Zetalisp and the other three languages. In Smalitalk,
Loops, and Star Mesa, the algorithms for generic method computation have the following

property:
The generic method for operation O of type T is always the local method of O for T
or an ancestor.

For example, the generic method for an arbitrary operation op of BHPoint must be the local

method for op for Point, BoundedPoint, HistoryPoint, or BHPoint.

In Zetalisp, the generic methad for operation O of type T is the procedure produced by the
invocation of a user-specified method computation procedure to two parameters: the flavor and
the name of the operation.“.4 The method returned by this invocation need not be a local method
of T or any ancestor. In fact, it is common for these algorithms to construct entirely new

procedures to be used as methods.

However, in the experience witih Zetalisp to date, method combinaiion is almost always
accomplished via system-defined method combination algorithms rather than those created by
users. A principal reason for this is that the definition of new method combination procedures
requires information not contained in [Symbolics 84] or [MoonStallmanWeinreb 84]; users are
advised to “see the code.” It is much easier for users to structure their programs to fit the

existing algorithms than to learn the necessary details to create their own algorithms.

The organization of this discussion is as follows. After identifying the local operation sets of
our example, we describe Zetalisp's default method computation algorithm:"‘daemon" method
combination. The following sections describe the other twelve method combination types

documented in [Symbolics 84].

'“In the actual implementation, the second parameler is the set of local egcraiivn names which are relevant to the

name ol the operation.

175

6.5.1 Terminological preliminaries

In describing the Zetalisp method computation algorithms, we will often refer to the
“'‘components list” of a flavor. The components list of a flavor F is a list whose car is F and
whose cdr lis a list of the ancestors of F ordered as described in chapter 4. For example, the

components list of bh-point would be:
bh-point, bounded-point, point, history-point, si:vanilla-flavor

Unlike Smallitalk, Loops, or Star Mesa, local operation names in Zetalisp are lists of symbols
rather than symbols. For examples, (:move) and (:move :after) are valid local operation

names in Zetalisp, but :move is not.

Each local operation name wi[l be associated with a ‘‘relevant generic operation name”. For
single-element local names, the relevant generic operation name is the sole element of the name.
For multiple-element names, the relevant generic operation name is the second element. For
examble, the relevant generic operation name for both (:move) and (:after :move) is

tmove.

Each local operation name wili also be associated with a ""method type.” The method type is
result ot removing the relevant generic operation name from the local operation name. For
example, the method type of (:after :move)is (:after) and the method type of (:move) is

nil.

Local operation names whose method type is ni1 are commonly referred to as “untyped”
methods; that terminology will be used below. Furthermore, for operations whose type is a single
element list, we will usually drop the parentheses when referring to the method type. Thus, the

method type of (:after :move) may be referred to as :move.

176

6.5.2 The local operation set of the example
In the examples of chapter 2, each defmethod form defines a local method of some type.

Definitions of the form:
(defmethod (id, id ... id) lambda-list
ype
body)

associates a method for the operation
(id ... id)

in the local operation set' of the flavor named id,ype. The procedures defined by such a form can

be computed by the syntactic form:

#'(:method idrypa id ... id)

or the equivalent expression:
(fdefinition (1ist :method eXPy g EXP - - - exp))

For example, the following definition from figure 2-1:

(defmethod (point :move) (newloc)
(setq location newloc)
self)

defines a method for (:move) in the local operation set of point. As another example,

(defmethod (bounded-point :before :move) (newloc)
(if (not (and (<= min newloc) (<= newloc max)))
(ferror "New location ~d for point ~s is not between ~d and
~d."
newloc self min max)))))

defines a method for (:before :move) in the local operation set of bounded-point. The
procedures defined by these forms can be referred to by the two expressions:
#'(:method point :move)
#'(:method point :before :move)
A further means for defining local operation sets in our example is through the :settable-
instance-variables and :gettable-instance-variables clauses which can optionally appear in
defflavor forms. In the example of figure 2-1,the :gettable~-instance-variables clause

has the same effect as the following method definition:

(defmethod (point :location) ()
location)

In the example of figure 2-3, the effect of the :settable-instance-variables clauseis:

‘

177

(defmethod (bounded-point :set-min) (.newvalue.)
(setq min .newvalue.))

(defmethod (bounded-point :set-max) (.newvalue.)
(setq max .newvalue.))

A summary of the local operation names of our four example types is presented in figure 6-7.
e The point flavor:
O (:location)
o (:move)

o (:display)

e The bounded-point flavor:
0 (:min)
o (:max)
O (:before :init)
o (:before :move)
o (:set-min)
(:bafore :sat-min)
(:set-max)
o (:before :set-max)
(:

0 (:display)

e The history-point flavor:
o (:after :init)
o (:after :move)

o (:history)

e The bh-point flavor:
o (:after :1init)

o (:after :set-min)
o (:after :set-max)
o (:bounds-history)

Figure 6-7: Local operation names in the Zetalisp example

The above has described the names of local operations; what about the methods themselves?

The defmethod form creates Lisp functions based on the lambda-list and body specified in the

178

form. Three additional parameters are added to the beginning: self, self-mapping-table,
and operation.*® For example, the definition of the (:before set-min) method of

bounded-point given above:

(defflavor (bounded-point :before :set-min)
(newloc)
-)

results in the definition of the following function:*6

named-lambda (:method bounded-point :before :set-min
p
(self self-mapping-table operation newloc)
.)

Note that if programmers only use the generic invocation mechanism to invoke such methods,
they can be unaware of the existence of the three added parameters. For example, the generic

invocation:
(send p :set-min 7)

can be viewed as an invocation of a function of the form:
(1ambda (newloc) ...)

on the parameter 7, in an environment with se1f bound to p.

6.5.3 The default algorithm for generic method computation
In the absence of any declarations to the contrary, the algorithm used for generic method
computation is the following. In Zetalisp terminology, it is referred to as “daemon” method

combination. The result of this algorithm can be most simply described in terms of three cases.

6.5.3.1 The relevant local operations are all untyped
If all relevant operations have method type ni1, then the method computation algorithm selects
one of the relevant untyped methods as the generic method. The aigorithm for choosing this

untyped method is similar to that used in Loops and Star Mesa.

If an untyped method is defined for the flavor whose method is being constructed,
that method is used. If not, then the ancestors of the flavor are examined in the
canonical order described in chapter 4. Let F' be the first such flavor whose local
operation set defines an untyped method for O. The untyped method for O in the local
operation set of F' is used as the generic method for O of F.

45Reca_ll that the first two are not present in the implementation described in [MoonStallmanWeinreb 84]).

46The named-1ambda construct was described n section 3.1.3.

179

In the exampie of chapter 2, the relevant local operations for : 1ocation, :min, and :max of
bh-point are all untyped. In each case, there is only one such local operation (i.e.,
(:location) of point and (:min) and (:max) of bounded-point), so the methods for
these local operations are chosen as the generic method for bh-point. The latter are simply the

functions constructed by the relevant defflavor invocation.

6.5.3.2 The introduction of :before and :after local operations

The procedure constructed by this algorithm will perform the following actions when invoked.

1. Each relevant :before method of the local operation set of the type and its
ancestors is invoked. The order of invocation is that in which the flavors appear in
the componrent flavor list.

2. A single relevant untyped method is invoked, and the returned values are cached.
The untyped method invoked is chosen as in section 6.5.3.1 above.*’

3. Each relevant : after method of the local operation set of the type and its ancestors
is invoked. The order of invocation is the inverse of the order in which the flavors
appear in the component flavor list.

The parameters péssed to of each invocation are the parameters passed to the method itself.

The result of the above algorithm is realized as a named-1ambda whose internal name is
(:method flavor-name :combined operation-name). For example, the method for :move

and :display of bh-point are given in figure 6-8.48

6.5.3.3 The introduction of :whopper local operations
In the system described in [Symbolics 84], local :whopper methods are usually defined
through the defwhopper special form.4® Analogously to defmethod, the purpose of

defwhoppar is to hide additional parameters needed for the implementation of the underlying

47" neither F nor any ancestor defines an untyped local operation relevant to O, the invocation is omitted and the
constructed method always returns n11.

48Mu'| tiplo-value-progl is a form which evaluates ils parameters in order, then returns the values returned by the
first evaluation.

, 49ln [MoonStallmanWeinreb 84), whoppers are realized as :around methods. Since this implementation does not
need to hide sel1f or se1f-mapping-table parameters, the same defmethod forms as for other local operations can
be used.

180

(named-lambda (:method bh-point :combined :move)
(&rest args)
(multiple-value-prcgl
(apply #'(:method bounded-point :before :move)

args)

(apply #'(:method point :move)
args)

(apply #'(:method history-point :after :move)
args)))

(named-lambda (:method bh-point :combined :display)
(&rest args)
(multiple-value-progl

(apply #'(:method point :display)
args)

(apply #'(:method history-point :after :display)
args)

(apply #'(:method bounded-point :after :display)
args)

(apply #'(:method bh-point :after :display)
args))})

Figure 6-8: Two examples of Zetalisp daemon invocation
mechanism. The defwhopper form is needed because :whopper methods take more
implementation-relevant parameters than methods for other local operations. In the case of
defwhopper the hidden parameters include the same three as defmethod: self,
self-mapping-table, and operation. Figure 6-9 contains four defwhopper invocations

which add :whopper operations to the local operation set of our four example types.

(defwhopper (point :display) (p s)
(print 'point-before)
(progl
(continue-whopper (p s))
(print 'point-after)))

(defwhopper (history-point :display) (p s)
(print 'history-point-before)
(progl
{continue-whopper (p s))
(print ‘history-point-after)))

(defwhopper (bounded-point :display) (p s)
(print 'bounded-point-before)
(progl
(continue-whopper (p s})
(print ‘bounded-point-after)))

(defwhopper (bh-point :display) (p s)
(print 'bh-point-before) '
(prog1
(continue-whopper (p s))
(print 'bh-point-after)))

Figure 6-9: Example whopper definitions in Zetalisp

181

6.5.3.3.1 Some relevant terminology
In order to understand the us2 of :whopper operations, three concepts will prove useful. Let

us assume that operation 0 of flavor F has at least one relevant local method of type :whopper.

The "encapsulation list" is a list of the :whopper methods of F and its ancestors which are
relevant to 0. This list is ordered in the same way as the components list of F. For example, if we
added the definitions of figure 6-9 to the example of figures 2-1 through 2-4, the encapsulation
list would be:

(#'(:whopper bh-point :display)
#'(:whopper bounded-point :display)
#'(:whopper point :display)
#'(:whopper history-point :display))

The “kernel method" is the procedure computed by applying the algorithm of section 6.5.3.1 (if
there are no relévant :before or :aftar methods), or the algorithm of section 6.5.3.2 (if there
are any such methods). To simplifv the exposition, we will refer to kernel methods by the

notation:>°

#'(:method flavor-name :kernel operation-name)
For example, the kernel method for :display of bh-point is identical to the second procedure

defined in 6-8°1 and will be referred to by the expression
#'(:method bh-point :kernel display)

Finally, the “methods list” is the result of adding the kernel method to the end of the

encapsulations list. In our example, the methods list would be:

(#'(:method :whcpper bh-point :display)

© #'(:method :whopper bounded-point :display)
#'(:method :whopper point :display)
#'(:method :whopper history-point :display)
#'(:method :kernel bh-point :display))

5oLocaI operaticns of type :karnal are not part of the Zetalis p implementation.
1

51 In the actual implementation, the named-1ambda would have a dillerent internal name.

182

6.5.3.3.2 The algorithm itself

We now have enough information to define the method for operation 0 of flavor F. Let M be the

first method on the encapsulation list for 0 of F. The method for 0 of F is:
(named-lambda (:method F :combined O0)
(self self-mapping-table successor-methods &rest args)

(1expr-funcall M
self self-mapping-table successor-methods args))

What is the role of the successor-methods parameter? As a slight simplification of the actual
situation, it can be viewed as a list containing the cdr of the methods list. In our point example,

successor-methods would be the list:

(#'(:method :whopper bounded-point :display)
:method :whopper point :display)
:method :whopper history-point :display)

#l
#l
#'(:method :kernel bh-point :display))

The utility of this list is most clearly understood in the context of the “partial method" style of

methed definiticn described previously. Let us assume the following:

o Each :whopper method and each component of the : daemon method are “partial”
methods which should be invoked as part of :display of bh-point.

e Each :whopper method M performs some computation, invokes the method M’
which is the first member of its successor-methods list, then performs more
computation and returns. If M' is itself a :whopper, the successor-methods of the
invocation of M’ is the cdr of the successor-methods passed to M.

Under these assumptions, all partial methods will be executed once, without enumerating

ancestor types.

This situation is reflected in the example of figure 6-9. The special form:
(continue-whopper arglist)

has the effect of calling the first member of the successor-methods list with self,
self-mapping-table, the cdr of the successor-methods list, the operation of the -
invocation, and the remaining parameters specified in arglist. Thus, the nesting of the

invocations would be as follows:

183

ENTER #’'(:method :whopper bh-point :display)
ENTER #'(:method :whopper bounded-point :display)
ENTER#'(:method :whopper point :display)
ENTER #’(:method :whopper history-point :display)
ENTER #'(:method :kernel bh-point :display)
EXIT #'(:method :kernel bh-point :display)
EXIT #'(:method :whopper history-point :display)
EXIT #'(:method :whopper point :display)
EXIT #'(:method :whopper bounded-point :display)
EXIT #'(:method :whopper bh-point :display)

The execution of the :display method for bh-point would produce results such as the

following:

BH-POINT-BEFORE
BOUNDED-POINT-BEFORE
POINT-BEFORE
HISTORY-POINT-BEFORE
BH-POINT at location:

with bounds:

with history:

with bounds history:
HISTORY-POINT-AFTER
POINT-AFTER
BOUNDED-POINT-AFTER
BH-POINT-AFTER

6.5.3.3.3 Whoppers vs. before/after daemons
The example of figure 6-9 illustrates that :whopper methods can be used to guarantee that
computation is performed either before or after the execution of the untyped method. Several

advantages derive from the use of whoppers rather than :before and :after methods.

e First, the computation associated with a given type can be defined in a single
procedure. For example, suppose a :before method computes some result which

- an :after method is to use. To communicate the result between the two
procedures requires such undesirable tecirniques as the use of global variables, the
use of the instance variables of the generic parameter (note the havoc that recursion
would induce), or the use of special “communication' parameters of the operation.
In contrast, the use of ;whopper methods allows the *'before' computation to be
done before calling the next method on the successor-methods list, and the “after"
computation to be done after the successor returns.

e Second, the use of :whopper methods enables a dynamic binding environment to
be set up within which all partial methods will be executed. For example, if an
unun'nd-protect52 is defined in a :whopper method for operation O a flavor F,

s 52The unwind-protect special form allows computation to be performed if an abnormal return occurs. A simple
example is when the user aborts back to the lop level program when an error has left him in a recursive read-eval-print
loop.

184

then every relevant local method of F and its ancestors will be executed within its
scope.

e Third, the use of whoppers allows methods can be exited without all components
being invoked. For example, if the #' (:method point :whopper :display)
operation returns without executing the continue-whopper invocation, none of
the :before or :after methods will ever get invoked. In contrast, the only way for
for :bafore or :after methods to prevent any other :before or :after methods
from being invoked is to cause a non-local return by “unwinding the stack" to a
specified point. This is because the constructed generic method unconditionally
invokes all relevant local methods.

However, the above analysis does not imply that :before and :after methods could be
eliminated from Zetalisp with no loss in programming convenience. This is because the
availability of both before/after and whopper methods provides four separate ordering

‘regions'":

1. before the invocation of any :before methods (via computation in a :whopper
methad before the successor method is invoked)

2. aiter the invocation of ali :whopper methods, but before the invocation of the
untyped methods (via computation in a :before method)

3. after the invocation of the untyped method but within the dynamic scope of all
:whopper methods (via computation in an :after method)

4. after the invocation of all :af ter methods (via computation in a :whopper method
after the successor method is invoked)

It is interesting to note that the benefits of this inter-method ordering paradigm would obtain even

in a single-inheritance type system.

The following simple augmentation to Zetalisp would allow :before and :after methods to
be eliminated while obtaining evén more sophisticated ordering capabilities than those described
above. The idea is to allow (:whopper N) methods, where N is a non-negative integer
constant. The algorithm for constructing the encapsulations list can then guarantee that for all i
> j,all (:whopper i) methods will occur before (:whopper j) methods on the successors

list.

Al

To obtain the four ordering regions described above, the current :whopper methods can be

185

treated as (:whopper 1) methods and the :before and :after methods can ber ransformed

4

into (:whopper 0) methods. lL.e.,
(defmethod (f :before :op) (parameters) body)

would be transformed into:

(defwhopper (f :op 0) (parameters)
body
(continue-whopper parameters))

and
(defmethod (f :after :op) (pdrameters) body)

would become:
(defwhopper (f :op 0) (parameters)
(multiple-value-progl
(continue-whopper parameters)
body))

Furthermore, an arbitrary number of additional levels of ordering can be obtained by using larger

values for N.

We wiil see that the addition of (:whopper N) methods aliows a number oi vther melhod

combination types to be eliminated, with no loss in programming power.

6.5.3.4 Additional details concerning :daemoninvocation

There are four aspects of the above account which have been simplified in order to facilitate

the presentation.

o First, the successor-methods parameter referred to in the above is actually
implemented as a function referred to as the continuation. The continue-whopper
procedure actually invokes the continuation, which in turn invokes the next method
on the successor-method list. The continuation of for that next method is an internal
method of the continuation of the previous one. The kernel method is an internal
function of the last continuation. Thus, rather than a simple list of methods, a nested
list of functions is used. The continuation functions also arrange that the
appropriate sel1f-mapping-table is provided for successor methods; this involves
the use of another hidden parameter.

Thus, a pragmatic disadvantage of using :whopper methods is that some measure

of performance is lost. This is because the invocation of the methods on the

encapsulzation list is done indirectly, through the continuation functions. A

secondary disadvantage is that the continuation functions must be constructed in

the first place, which makes programs slightly larger (the real impact is likely to be on

the working set rather than memory consumption per se) and increases the real-time
) delay perceived by the programmer when new continuations must be constructed.

186

e Second, we have ignored the presence of local operations whose method type is
:wrapper. Wrappers are a macro analog to whoppers; rather than invoking
continue-~whopper, a macro argument is used to indicate when the invocation of
the successor method should be done. Thus, the use of wrappers leads to no
increase in functlionality over whoppers, but results in a slightly more efficient
program. For more details, see [WeinrebMoon 81].

e Third, we have not discussed the :inverso-around methods which are available in
the system described in [MoonStallmanWeinreb 84]. The :inverse-around
methods have their own encapsulation list, sorted in the reverse order from the
encapsulation list of around methods. The methaod list is defined to be the
concatenation of the :inverse-around encapsulation list, the :around
encapsulation list, and the kernel method. The result is that if a flavor F has no
ancestors which define :inverse-around methods for an operation O, then an
tinversa-around for F is guaranteed to be the method for O for F or any
descendant. The example given in [MoonStallmanWeinreb 84] uses this facility to
define an :1init method for a window which calls the continuation, then invokes the
initial operations to start the associated process and expose the window.

Of course, the use of :inverse-around methods is a two-edged sword. The
problem is that it is impossible for descendant types to define local methods which
will be executed "“around” the :inverse-around method. Notice that the use of
(:whopper 2) methods (as proposed in the previous section) provides the same
* encapsulation of all normai whoppers™ property as :inverse-around methods.
The advantage is that descendant types can still define methods which encapsulate
the (:whopper 2) methods, e.g.,via (:whopper 3) methods.
e Finally, we have ignored the possibility of local methods whose method type is
:default. Such methods are discussed in section 6.5.5.5.
6.5.4 Evaluation of the default method construction algorithm
There are .wo important differences between the default Zetalisp algorithm and the ones we
have seen above. One of these represents the key advantage of the Zetalisp approach to that of
the other three languages. The other represents a small but significant shortcoming in the

current Zetalisp algcrithm.

6.5.4.1 The Zetalisp algorithm reduces the amount of pregramming required

As described in section 5.2.5, avoiding redundant invocation often requires the definition of two
procedures per operation. In Smalltalk, Loops, and Star Mesa, both of these procedures had to
be defined by programmers. But in Zetalisp, one of these procedures can be constructed by the

type system itself. For example, the method which is constructed for :move of bh-point in the

187

scenario of chapter 2 corresponds directly to the methods for move explicitly programmed in

Smalitalk, Loops, and Star Mesa.

6.5.4.2 The Zetalisp algorithm does a poor job of ordering component flavors

Recall that the Loops algorithm for method selection guaranteed that a most specific method
WOuld be chosen if one existed. The Zetalisp algorithm for selecting untyped methods does not
have this property. This is because Zetalisp's algorithm for constructing the ancestors list of a

flavor does not have the property types appear before all ancestors.

To illustrate, suppose we added the following three local method definitions to the example of
chapter 2.
(defmethod (point :some-np) ...)
(defmethod (history-point :some-op) ...)

Since the ancestor ordering for bh-point is:
(bounded-point point history-point si:vanilla-flavor)

the meinod for : some-op of bh-point will be the one defined for : point, not the more specific

one defined for history-point.

There is no simple answer to this problem available to the Zetalisp programmer. For example,
reordering the parents list in flavor definitions can help in some situations, but is not a general

solution. In the above example, using the following definition of bh-point:

(defflavor bh-point
(bhlist bhtail)
(history-point bounded-point))

would cause the ancestors list to be:
(history-point point bounded-point si:vanilla-flavor)

so that the method for history-point would indeed be chosen. But the result would be that

methods for point would then occlude those for bounded-point.

Furthermore, the fact that the order of the components list is not consistent with the ordering
imposed by the “parent-of’ relation between types causes problems whenever the order of

ancestor flavors has a programmer-observable impact. For example, the order in which

188

:before, :after, the order of the successor-methods list for whopper invocations, and the
computations used for default instance variable initialization (described in chapter 5) also
depend on this ordering. If it is desired that the computation associated with a type take place
either before or after the computations associated with descendants, it may well be impossible to
obtain the desired result. This can be a source of considerable frustration to Zetalisp

programmers.

Fortunately, modifying the Zetalisp type system to use the Loops algorithm for constructing the
ancestor list would be quite straightforward. However, the impact on existing programs would be
substantial, since their correctness might well depend on the existing ordering algorithm. This
suggests that the appropriate response would be to provide some means for the old and new
methods to coexist. For example, a syntactically different form could be used to specify parent
types when the new algorithm is to be used to construct the components list. Then a definition of

bh-point which uses the new algorithm might look something like:
(define-flavor bh-point

(:instvars bhlist bhtail)

(:parents bounded-point history-point))
6.5.5 The other algorithms for generic method computation

The system-defined algorithms for generic method construction in Zetalisp differ from that

used in daemaon combination only in their definition of the “kernel” method. Thus, the heart of
this discussion will be the description of the different kinds of kernel methods which are
constructed. These will fall into three categories: chaining methods, order-associated methods,
and parameter-manipulation methods. We will see that the rationale for many of these algorithms

is eliminated if the (:whopper N) methods as described in section 6.5.3.3.3 were added to

Zetalisp.

189

6.5.5.1 Determining the method combination type and order
Before entering the main part of the discussion, we describe two additional relevant aspects of

flavors: the method combination type and method combination order of its generic operations.

In Zetalisp, each generic operation name of each type is associated with a symbols known as
the "mgthod combination type" and ‘“method combination order.” The combination type
associated with a given operation name determines the method construction algorithm used for
the that operation. The combination order is passed as a parameter to the procedure embodying

this algorithm.

As with the methods themselves, the combination type associated with a given generic
operation of a given flavor is a function of *‘local’ combination types associated with the flavor
and all ancestors. It is intended that these local method combination types be specified by

:method-combination clauses in defflavor forms. Such clauses have the syntax:

(:method-combination
(combination-type, combination-order,
operation-name, . Operation-name,)

(combination-type, combination-order n
operation-name,, , . operation-name, .))

where the type, order, and the operation-name, jare all identifiers. Such clauses result in the

assaciation of local method combination type combination-type; with each of the

operation-namei, §°

For example, consider the flavor definition form:
(defflavor f

(...)
(...)

(:method-combination
(:progn :base-flavor-first :op-1 :0p-2)
(:1ist :base-flavor-last :0p-3 :0p-4))
-)

This form gives the generic operation names :op~-1 and :op, a local method combination type

of :progn and a local method combination order of :base-flavor-first. It also associates

190

the operation names :op-3 and :op-4 with the local method combination type :1ist and the

method combination order :base-flavor-last.

For any generic operation names which do not appear in this list, the local combination type
and local combination order are both defined to be ni1. Thus, the local combination type and
order of all the operation names of all the flavors of figures 2-1 through 2-4 are nil. If

combination-type is not a method combination type known to the system, an error is signalled.

Given the above, the method combination type and combination order of operation O of flavor

F is determined as follows:

o If any member of the component-flavor list of F has a non-nil local combination type
for O, the combination type and combination order of O for F is the local
combination type and order of the /ast such member.%3

o Otherwise, the method combination type and order are both defined to be ni1.

A warning is issued if different members have different non-nil local combination tvpes or orders.

For example, if the flavor f is defined as above, and the flavor g is defined by:
(defflavor g

(.-.)

(f

(:method-combination
(:daemon nil :o0p-2)
(:progn :base-flavor-last :op-23)
(:progn :base-flavor-first :op-4))

-)
the combination types and orders of :op-1, :0p-2, :0p-3, and :op-4 of g will be as fcllows:
Operation Combipation type Combination order
:op-1 :progn :base-flavor-first
:op-2 :daemon nil
:op-3 :list :base-flavor-last
:op-4 :list :base-flavor-last

A warning will be issued for :op-2 and :0p-4.

The rationale for choosing the last member rather than the first is not clear.

191

6.5.5.2 N-ary invocation algorithms

Suppose we are computing the method for generic operation : op of flavor F. The first category
of method combination algorithms produces kernel r::zthads whose bodies consist of a single
invocation form with the following properties: ;

o The function name of this invocation is determined by the combination type.

e There is one parameter expression for each member of the component-type list of F
which defines an untyped method for : op.

We will refer to these algorithms as N-ary invocation algorithms, since they produce methods

which consist of invocations of N-ary operations.

For N-ary invocation algorithms, the ordering of the parameter expressions is a function of the

method combination order, as follows:

e If the method combination order is :base-flavor-first, then the invocation of a
local method of flavor F, will precede one of F, iff F ; precedes F2 on the components
list of F.

e If the method combination order is :base-flavor-1ast, then an invocation of an
F 1 method will precede ane of F2 iff F2 precedes F1 on the components list of F.

o If the method combination order is anything else, an error is signalled.

To illustrate this method combination algorithm, we can use :progn combination as an

example. Recall that the components list of bh-point is:
(bh-point bounded-point point history-point vanilla-flavor)

Suppose that we added the following method definitions to the scenario of 2-1 through 2-4:

(defmethod (point :op) (x y) (fn-1 x y))
(defmethod (bounded-point :op) (a b) (fn-2 b))
(defmethod (history-point :op) (nl &optional (n2 0)) (fn-3 n2 nl))

If the method for :op of bh-point were constructed by the :progn algorithm with order

.base-flavor-first, it would have the form:>*

' 54|n this and following sections, the se1f and se1f-mapping-table parameters are ignored. In realily, a dilferent
sel1f-mapping-table must be passed to the different methods.

192

(Tambda (&rest args)

(progn
(apply #'(:method history-point :op) args)
(apply #'(:method point :op) args)
(apply #'(:method bounded-point :op) args)))

If the order were :base-flavor-1last, the constructed method would be:
(lambda (&rest args)

(progn
(apply #'(:method bounded-point :op) .args)

(apply #'(:method point :op) args)

(apply #'(:method history-point :op) args)))
Notice that specifying a combination order of :base-flavor-first or
:base-flavor-last does not have the connoted meaning. !n this example, the base flavor is

point, but the local method for point is neither first nor last in either of the above. This is

another manifestation of Zetalisp's unfortunate choice of an ancestor enumeration algorithm.

The method combination algorithm is slightly more complex than that described above. In fact,
the combined method will include invocations of typed methods where the type of the method

identical to the method combination type. E.g., if the method definitions above were replaced by:

(defmethod (point :progn :op) (x y) (fn-1 x y))
(defmethod (bounded-point :progn :op) (a b) (fn-2 b))
(defmethod (history-point :progn :op) (nl &cptional (n2 Q0)) (fn-3 n2

nl))

If the method combination type and order were :progn and :base-flavor-first the result

would be:>®
(lambda (&rest args)

(progn
(apply #'(:method history-point :progn :op) args)

(apply #'(:method point :progn :op) args)
(apply #'(:method bounded-point :progn :op) args)))
In the versions of Zetalisp described in [Symbolics 84] and [MoonStallmanWeinreb 84], the

:progn, :list, :and, :or, :append, and :nconc method combination types cause the N-ary

invocation algorithm to be used. For example, if the method combination type for :op of

, 55!! both typed and untyped methods are defined for an operation, all the invocalion of typed methods precede all the
invocations of untyped methods. The method combination order determines the order of invocation within bolh

categories.

193

bh-point were :or, and the order were .base-flavor-first, the constructed method would

be:
(1ambda (&rest args)
(and
(apply #'(:method history-point :op) args)
(apply #'(:method point :op) args)
(apply #'(:method bounded-point :op) args)))

Some simple uses of these method computation algorithms are as follows.

e The :progn algorithm allows the most straightforward kind of local method
composition; the relevant local methods of all ancestors is invoked. Note that the
constructed method could not be expressed using the all .Op invocation form of
Smalltalk-82 or the SendSuperFringe procedure of Loops. Methods constructed
by the latter will only invoke local methods of some of the ancestors.

e The :and and :or algorithms allow methods to be constructed which consist of a
sequence of**heuristics.” Local methods signal “success'’ by returning a non-nil
value (for the :or algorithm) or nil (for :and). Local methods will be executed until
one of them succeeds.

e The :1ist, :append, and :nconc algorithms are useful when the specifications for
the operations of a type are defined in terms of the ancestors of the type. For
example, suppose types can be associated with local methods which embody
wevaluation functions" which can be applied to instances. The use of these
algorithms allows each evaluation function of each ancestor to be computed,
without enumeration of the relevant ancestors.

Finally, notice that for any N-ary procedure which can be expressed in terms of a binary
procedure, :whopper methods and the default : dasmon combination type can be used to obtain

an equivalent result. For example, any :1ist method:
(defmethod (f :list :op) (parameters) body)

could be transformed into a method involving cons:

(defwhopper (f :op) (parameters)
(cons body (continue-whopper parameters)))

6.5.5.3 Other forms of daemon combination

The system described in [Symbolics 84] ircludes four variants of the daemon combination
algorithm described above. These are specified by a method combination type of
.daemon-with-or, :daemon-with-and, -daemon-with-override, and :case. We will see
that all but the latter would be rendered superfluous if the (:whopper N) methods as described

in section 6.5.3.3.3 were available.

194

6.5.5.3.1 The :daemon-with-and and :daemon-with-or algorithms

The difference between these two and simple daemon combination is that the invocation of a
single untyped method is replaced by an invocation of all untyped methods of the components cf
F within an and or or special form. As with the N-ary invocation algorithms, the order in which
these appear is either the order of the components list or its inverse, depending on whether the
method combination order is :base-flavor-first or :base-flavor-1last. In the following

we will describe the use of :daemon-with-or; :dasmon-with-and is entirely analogous.

To illustrate, suppose the following were added to the example of chapter 2:
(defmethod (point :op) ...)

(defmethod
(defmethod
(defmethod
(defmethod
(defmethod

(point :before
(history-point
(bounded-point
(bounded-point
(bh-point :op)

1op)
:op)
:op)
:after

.)

.)
vel)
L)

iop) ...)

If daemon-with-or, base-fiavor-first construction were used, the kernel method would

be:
(1lambda (&rest args)
(apply #'(:method point :before :op) args)
(multiple-value-progl
(or (apply #'(:method bh-point :op) args)
(apply #'(:method bounded-point :op) args)
(apply #'(:method point :op) args)
(apply #'(:method history-point :op) args))
(apply #'(:method bounded-point :after :op) args)))

As a further elaboration, local methods of type :or can also be defined. If any are present,
they are invoked within the or before any untyped methods. The order of invocation of the :or

methods is determined by the method combination order as usual.

For example, suppose we add the fo'llowing to the example of chapter 2:

(defmethod (point :op) ...)

(defmethod (point :before :op) ...)
(defmethod (history-point :op) ...)
(defmethod (history-point :or :op) ...)
(defmethod 'bounded-point :op) ...)

(defmethod
(defmethod
' (defmethod

(bounded-point
(bh-point :op)
(bh-point :or

:after :op) ...)

-)

:66) A |

195

and declare that :daemon-with-or, :base-flavor-last combination should be used. The

constructed kernel method will then be:

(1ambda (&rest args)
(apply #'(:method point :before :op) args)
(multiple-value-progl

(or (apply #'(:method bh-point :or :op) args)

(appiy #'(:method history-point :or :op) args)
(apply #'(:method bh-point :op) args)

(apply #'(:method bounded-point :op) args)
(apply #'(:method point :op) args)

(apply #'(:method history-point :op) argsj))

(apply #'(:method bounded-point :after :op) args)))
Thus, the :and and :or method combination types described above are simply a degenerate
case of :daemon-with-and and :daemon-with-or, where no :before or :after methods

are allowed.

Notice that the introduction of (:whopper N) methods as described in section 6.5.3.3.3 would
make :daemon-with-and and :daemon-with-or superfiuous. The untyped methods would
be (:whopper. 0) methods, the :and/:or methods would be (:whopper 1)s, and the

:befora/:afterswould become (:whopper 2) methods.

6.5.5.3.2 The :daemon-with-override algorithm
When :daemon, :daemon-with-and, or :daemon-with-or invocation is used, the before
and after methods are aiways invoked. The :daemon-with-override method combination

tvpe ailows the invocation of these methods to be suppressed.

The kernel method consists of a single or form. There is one parameter expression for each
member of the component-type list of F which defines an :or method for :op. These
invocations are ordered :base-flavor-first or :base-flavor-last, depending on the
method combination order for :op of F.The last invocation of this form is the
multiple-value-progl which would have been constructed if :daemon combination had
been used. If any of the invocations of :or methods returns a non-nil value, that value is

returned. Otherwise, the result is that produced by the before/main/aklter ensemble.

196

To illustrate, suppose the foliowing local method definitions were added to the example of

chapter 2 and :daemon-with-override, :base-flavor-last combination was used.

(defmethod (point :op) ...)

(defmethod (point :before :op) ...)
(defmethod (history-point :op) ...)
(defmethod (history-point :or :op) ...)
(defmethod (bounded-point :o0p) ...)
(defmethod (bounded-point :after :op) ...)
(defmethod (bh-point :op) ...)

(defmethod (bh-point :or :op) ...)

{These definitions are identical to those in the previous section, with the :or methods replaced

by :or methods.) The resulting kernel method would be:

(lambda (&rest args)
(or (apply #'(:method bh-point :or :op) args)
(apply #'(:method history-point :or :op) args)
(progn
(apply #'(:method point :before :op) args)
(multiple-value-progl
(apply #'(:method bh-point :o0p) args))
(apply #'(:method bounded-point :after :op) args))))
Thus, if either of the :or invocations returns a non-nil value, none of the :before, :after, or

untyped methods will be invoked.

If the (:whopper N) methods of section 6.5.33.3 were added to Zetalisp,
:daemon-with-override would not be useful. The same elfect could be achieved by
transforming the :or methods into (:whopper 2) methods. Rather than returning t to signify
that no further local methods are to be executed, the (:whopper 2) methods would simply

refrain from invoking the next procedure on the successor method list.

6.5.5.3.3 The :case algorithm

In this variant of daemon method construction, the invocation of the single untyped method is
replaced by an invocation of a procedure which consists of a single conditional expression. The
conditions associated with each arm are that the first parameter of the canstructed method is °

identical to some constant.

When :case combination is tised to construct the method for : op of flavor F, there is one arm

for each method type T for which a local operation name of the form (:case :op T) is defined.

197

The condition associated with that arm is that the first parameter is identical to T. The expression
associated with the arm is an invocation of a method for (:case :op T) in the local operation
set of flavor F', where F' is the first member of the component-types list of F whose locai
operation set contains a method for (:case :op T). The parameter list for each such

invocation will be the cdr of the parameter list of the invocation of the constructed method.

What happens if none of the specified conditions is satisfied? If the local operation set of F or
any ancestor contains a mettiod for the local opcration (:case :op :otherwise), then the
“all conditions failed” arm of the conditional will invoke the local operation of (:case :0p
:otherwise) for the first flavor on the component-type list of F which defines such a method. If
not, then the “all conditions failed™ arm of the conditional will invoke a standard error-signalling
procedure. The parameters of the constructed method are used as the parameters of this

invocation.

For example, suppose the following definitions are added to the example of figures 2-1 through

2-4:
* (defmethod (point :case :op :subl) ...)
(defmethod (point :case :op :sub2) ...)
(defmethod (point :otherwise) ...)
(defmethod (bounded-point :case :0p :subl) ...)
(defmethod (history-point :case :0p :sub2) ...)
(defmethod (history-point :case :op :sub4d) ...)
(defmethod (bh-point :case :op :sub3d) ...)

The use of case combination to produce the method for :op of bh-point would result in the

construction of a method which behaved like the following:

(1ambda (&rest args)
(selectq (first args)
{:subl (apply #'(:method bounded-point :case :op :subl) (cdr
args)))
(:sub2 (apply #'(:method point :case :o0p :sub2) (cdr args)))
(:sub3 (apply #'(:method bh-point :case :o0p :sub3) (cdr args)))
(:sub4 (apply #'(:method history-point :case :op :sub4) (cdr

args)))
(otherwise (apply #'(:method point :otherwise :op) args))))

The selectq form is Zetalisp’s equivalent of a case statement where the value of the first

shbexp}ession (here (first args)) is tested for equality with the implicitly quoted symbol

198

which is the first element of the all but the last subexpression. If successful, then the subsequent
forms cf the matching arm are evaluated. The subsequent forms of the (otherwise ...)

clause are evaluated if none of the previous clauses match.%

Thus, if p is an instance of bh-point, the generic invocation:
(send p :op :subl 100)

would result in the invocation of the method for (:case :op :subi) inthe local operation set

of bounded-point. The single parameter of this invocation would be 100. The invocation:
(send p :op :sub59 100)

would invoke the method for (:otherwise :op) in the local operation set of point. The

parameters of this invocation would be : sub69 and 100.

The advantage of :case combination over the use of an untyped method whose body is the
equivalent condi'tional is that the type system constructs the conditional, The benefits are that (a)
work is saved in the initial definiticii (since only the different alternatives rieed to be specified),
(b) work is saved when alternatives for ancestor types are added and removed (since the type
system will automatically construct new methods), and (c) the possibility of errors in both of the
above is eliminated (since the type system will always copy alternatives correctly and will never

overlook a relevant alternative).

What is the point of using the :case algorithm rather than defining each of the cases ((:o0p
:subl), (:op :sub2),etc.) as a separate abstract operation? The key benefit is that a single

definition of encapsulation methods (i.e., :before, :after, and :whopper methods) and an

:otherwise clause can be applicable to the entire collection of operations.

Notice that the : case algorithm also offers an advantage over defining the method for a given

type is a conditional containing arms only for the local alternatives specified for the type, and

56In the system described in [MoonStallmanWeinreb 84], untyped methods will be used if no :otherwise methods
are present. Furthermore, all the meihods of local operations (:or :or T) of F or any ancestors are invoked, base flavor
last, before the conditional cumputation. If any of these returns a non-nil value, that value is returned as the value of the
combined method.

199

whose :otherwise clause invokes a similarly-defined method of an ancestor type. The problem
here is that a separate “complaint department” (e.g., [HewittBishopSteiger 73]) parameter must
be passed to indicate the action to be taken when none of the ancestors defines a relevant

alternative. With : case combination, there is no need for such a parameter.

6.5.5.4 Parameter-manipulating combinations
The last two predefined method combination types are :pass-on and :inverse-1ist. Both
of these differ from the previous combination types in that the local methods are invoked with

parameters other than the parameters of the generic invocation.

6.5.5.4.1 The :inverse-list algorithm
In methods constructed by the :inverse-1ist algorithm, the relevant local methods are the

untyped methods. The parameter must be a list with exactly as many members as there are
relevant local methods. Each method is called with one member of the list. The ordering of
invocations i3 determined by the method combination order, which must be either
:base-flavor-firstor :base-flavor-last. Theith method is called with the N - i + i list
element. For example, in the situation:

(defflavor a () ()

(:method-combination (:inverse-list :base-flavor-last :foo0)))

(defmethod (a :foo) (x) (format t "~%x is ~d" x))

(defflavor b () ())

(defmethod (b :foo) (y) (format t "~%y is ~d" y))

(defflavor ¢ () (a b))

(defmethod (c :foo) (z) (format t "~%z is ~d" z))

(send x :foo '(1 2 3))

if x is an instance of ¢, the invocation:
(send x :foo '(1 2 3))

will print:
z is 1
x is 2
y is 3

200

This algorithm is useful to process lists returned by methods constructed using the :11st
algorithm. To illustrate, suppose that operation :op-1 of a flavor F was constructed using
:1ist, :base-flavor-last combination, and operation :0p-2 of F used :inverse-1list,
:base-flavor-last. Suppose further that the set bf ancestors which defined a :1ist local
method for operation : op-1 was identical to those which define an :inverse-11ist method for
:op-2. Finally, suppose we pass a list constructed by an invocation of :o0p-1 on an instance of
F as a parameter to an invocation of :op-2 on an instance of F. The result will be that each value
produced by the :op-1 local method of each ancestor will be given as a parameter to the :0p-2

local method of the same ancestor.

6.5.5.4.2 The :pass-on algorithm

In :pass-on invocation, the relevant local methods are also the untyped methods, and they
are all invoked sequentially in either :base-flavor-first or :base-flavor-last order.
The method combination’ order is a list whose car is :base-flavor-first or

:base-flavor-1last, and whose cdr is the parameter list of the generic method.

The parameters of the invocation of the first local method are the parameters of the generic
invocation. The parameters of the remaining invocations are the values returned by the previous

invocation. For example, given:

(defflavor f1 () ().
(:method-combination
(:pass-on (:base-flavor-last arg) :bar)))

~ (defmethod (f1 :bar) (x)

(format t "~%Parameter of local method of fl: ~s" x)
'fil-value)

(defflavor f2 () (f1))

(defmethod (f2 :bar) (x))
(format t "~%Parameter of local method of f2: ~s" x)
'f2-value)

(defflavor f3 () (f2))

(defmethod (f3 :bar) (x)-

. (format t "~ZParameter of local method for f3: ~s" x)
! *f3-value)

the invocations:

201

(send fl-instance :bar 1)
(send f2-instance :bar 1)
(send f3-instance :bar 1)

produce:
Parameter of local method of f1: 1.
F1-VALUE

Parameter of 1ocal method of f2: 1.
Parameter of local method of f1: F2-VALUE
F1-VALUE

Parameter of local method for f3: 1.
Parameter of local method of f2: F3-VALUE

Parameter of local method of f1: F2-VALUE
F1-VALUE

6.5.5.5 The default-method transformation on the local operation set
All of the standard method combination algorithms were defined in terms of the “untyped
methods" of the local operation set of the type and its ancestors. These were defined as the

local operation names which were singleton lists.

However, that account was a simplification of the actual situation. The account is not accurate
in the case where, in computing the method for operation O of flavor F, no component flavors
define a local operation (0). In that case, all methods for local operation names of the form (0

:default) are treated as if they were methods for local operation (0).

For example, suppose that flavor point is an ancestor of flavor bounded-point, and that
neither point, bounded-point, or any ancestor defines any local operations named
(:inspect). Then in the computation of the method for :inspect in the operation set of

bounded-point, the methods defined by:
(defmethod (point :default :inspect) () ...)

and
(defmethod (bounded-point :default :inspect) () ...)

would be treated as if they were methods for (:inspect) in the local operation sets of point

and bounded-point, respectively.

‘

202

There are two kinds of programming situations in which :default methods have been used.
First, for the method combination types which specify that all untyped methods will be invoked
(i.e., the N-ary invocation combination types), the use of :default methods allow methods to be
defined which will which will not be invoked if any descendant fiavor defines an untyped method.
For example, suppose that h is a descendant of g, g is a descendant of f and :progn,
:base-flavor-first method combination is used to compute the method for :0p of h. Given

the definitions:

(defmethod (f :o0p) () (fn-2)
(defmethod (g :o0p) () (fn-2))

the constructed method will consist of an invocation of fn-1 followed by one of fn-2. But given

the definitions:
(defmethod (f :default :op) () (fn-1)
(defmethod (g :op) () (fn-2))

the constructed method will simply invoke fn-2.

Second, consider the method combination types which use a single untyped method from the
local operation set of the first flavor on the ancestor list which defines such a method. If a
:default method is used for a flavor f, then it can be guaranteed that if any descendant of f

defines an untyped method, it can be guaranteed that the method for f will not be selected.

To illustrate, consider the same scenario as above, but using :daemon rather than :progn
definition. Suppose we have a flavor h which is a descendant of g, and suppose that the only
ancestors of h which define methods for :op are f and g. Given the first pair of method

definitions:

(defmethod (f :op) () (fn-1)
(defmethod (g :o0p) () (fn-2))

the choice of the method for :op of h depends on the components list of h, which in turn)

depends on the parents list of h and each of its ancestors. For example, given:
(defflavor f (...) ())
(defflavor g (...) (f))
(defflavor g2 (...) (f))
(defflavor h (...) (g g2)) -

]

the components list for h would be

203

(h g f g2 si:vanilla-flavor)

and the method for : op of h would be fn-2. But if the parents list of h were reversed:
(defflavor h (...) (g2 g))

the components list for h would be
(h g2 f g si:vanilla-flavor)

so the method for : op of h would be fn-1. Note that it may be important that g2 precede g in the

components list, e.g., if there is an untyped method of g2 which should override one of g.

The indeterminacy of this example can be eliminated if we change the example to use a

:default method for f. Given the method definitions:

(defmethod (f :default :op) () (fn-1)
(defmethod (g :op) () (fn-2))

either of the above definitions of the flavor h would result in :op of h being an invocation of

fn-1.

Tiws, :default methods given the programmer a means to allow more specific methods to
override less specific ones; i.e., to allow methods of types T2 to override those of T1 if T2 is a
descendant of T1. Recall that this was a key property of the Loops method definition algorithm
which was attained by using an algorithm to construct the component-type list which guaranteed

that the list was sorted according to the “parent-of' relation.

There are several reasons why Zetalisp approach is not as desirable as that of Loops.

o First, the type definer must notice that the “choose the most specific method"”

* property has not been obtained. For flavors which have many generic operations
and/or are deeply nested, the discovery that something has gone wrong may not be
trivial.

e Second, there are situations where the use of :default methods cannot be used to
have the “most specific’" method selected for an operation. For example, suppose h
is a descendant of g and, unlike the above examples, h defines a lacal method for
:op. Then neither:

(defmethod (f :default :op) () (fn-1)
(defmethod (g :default :op) () (fn-2))
nor . .
_ (defmethod (f :dcfault :op) () (fn-1)
! (defmethod (g :o0p) () (fn-2))

204

guarantees that both (1) all descendants of g which do not define a method for :op
will obtain the one defined by g, and (2) all descendants of h which do not define a
method for : op will obtain the one defined by h. The first pair of definitions does not
satisfy (1), and the second pair does not satisfy (2).

e Third, :default methods do not address the problem of a typed method of a less
specific type being used in ptace of one of a more specific type. An example of this
behavior is the choice of the :sub2 alternative in the illustration of :case method
construction given above. In that example, both point and history-point
defined a method for local operation (:case :op :sub2), and the method of
point was used in the constructed methods.

205

7. Defining the local operation set

7.1 The common abstraction
Syntactic analysis is commonly used to associate operation sets with abstract types. For

example, in [Liskov et al. 79], the generic operation names of types defined by the syntactic

construct:
idn = cluster [parms] is idn, ... [where] ;
cluster_body
end idn;

are defined to be the identifiers of
idn

clause of the construct.

This approach cannot be used in our four subject languages. This is because the generic
operation set associated with a given type is dependent on computation rather than syntactic

structure. As one example, if C is a Smalltalk class, the expression:
C addSelector: 0 withMethod: M

will result in M being used for subsequent generic invocations of 0 for instances of C. Note
however that the inapplicability of the syntactic approach is not due to the fact that inheritance is
used for type definition. For example, syntactic analysis is perfectly appropriate for Russell's
with.5” The paradigm which is appropriate can be intuitively expressed by the siatement that
“types are objécts with state.” One of the earliest embodiments of this approach was Wegbreit's
pioneering work on EL/1 [Wegbreit 70, Wegbreit 74]. The principal effect of this approach is that:
it is possible to write type-manipulating programs, thus allowing easier production of software
such as “programming environments,”" debuggers, and integrated editors. There are two

principal disadvantages:

1. Either more expensive runtime support (i.e., operation invocation indirecting through
a dispatch table associated with the type) or more elaborate compilation facilities
(e.g., to allow tighter binding at the cost of operation-redefinition overhead) is
needed.

v

57This constructor was discussed in section 1.4.

206

2. A workable approach to defining the semantics of such types is far less clear.

Despite the fact that all four of our languages allow state-changing operations on types to
affect their operation sets, the use of operation-set definition via state-changes on types is
independent of the algorithms used for operation set definition. We will see that any of the
algorithms for constructing the generic operation set of a type from the local operation sets of its
ancestors could just as well be realized in a purely applicative language where local operation

sets were fixed at the time the type is defined.

Thus, it is appropriate to treat the generic operation set of a type as a data abstraction. In order
to make the description of that abstraction easier to understand, an auxiliary abstraction, the
“local operation set” will be used. Intuitively, the local operation set is directly associated with a
type, while the generic operation set is derived from the local operation set of the type and its

ancestors.

Like the instance variables of objects, the local operation set of a type can be modelled és a
functional set of associations between names and values. We will refer to the names of the
associations modelling the local operation set of a type as the “local operation names” of the
type, and the set of values as its “local methods.” If the association <N, M> is in the local

operation set of T, we will say that M is the local method of N for T.

We will use two different approaches to characterize the local operation set of a type.

e In Smalitalk, Zetalisp, and Loops, the local operation set will be described in terms of
a conventional “data abstraction”, with procedures in the language corresponding
to abstract operations.

o In Star Mesa, there are no procedures which realize abstract operations on the local
operation set. However, if a program which uses the programming conventions
described in [Curry et al. 82] and [CurryAyers 83] a local operation set can be
defined for its traits through analysis of the procedures used for trait definition. We
will use this approach to describe a technique for associating local operation seis
with Star Mesa traits. :

207

The abstract prdcedures we will use to characterize local operation sets in Smalltalk, Loops,
and Zetalisp are as follows. Two additional types are added to those of chapter 4,

local-opname and local-method. The relevant procedures are:

e get-local-method: {type, local-opname} => local-method
¢ local-opnames: {type} => set-of (local-opname)
¢ put-local-method: {type, local-opname, Iocal-rﬁethod}

e remove-local-method: {type, local-opname} =) type U error

The behavior of these procedures is as follows:

¢ The set of associations modelling a newly created type is empty:
local-opnames(new-type(...)) = {}

e The invocation .
put-local-method(T, N, M)
adds a association between N and M, after removing any prior association for N.

The invocation
get-local-method (T, N)
returns the value associated with N.li no such association exists, an error is
signalled.

e The abstract invocaticn
local-opnames (T)
computes a set containing the names of the associations modelling the local
operation set of T.

e The invocation
remove-local-method(T, N)
removes the association containing N, if one exists. If not, an error is signalled.

Each section of the remainder of this chapter describes how generic operation sets can be
associated with types in each of our four languages. The first section of each description shows
how the “local operation set" abstraction is realized. The second section describes how the
generic operation set for each of our four languages is defined in terms of the local operation
sets of the type and its ancestors. This is accomplished by first describing how the generic
aperation names are determined, then describing how the method associated with a particular

generic operation name is computed.

208

7.2 The realization in Smalltalk-80 and Smalitalk-82

In both Smalitalk-80 and Smalitalk-82, the abstract local-operation-name and Iocél-method
types are realized instances of class Symbo1 and CompiledMethod. As the previous discussion
indicated, there are no facilities for a given Comp i ledMethod object to be invoked with specified

parameters.

The four abstract operations on the local operation set of a class are realized as follows:

e The abstract get-local-method operation is realized by the compiledMethodAt:
generic operation of class Class. Invocations of this operation take a class and a
symbol as parameters, and returns an object. Thus, the abstract invocation:

get-local-method (C, O)
is realized as:
C compiledMethodAt: O
For example,
Point compiledMethodAt: #location
returns the object most recently defined as the method for the symbol location in
the local operation set of the class Point.

e The abstract local-opnames operation is realized by the selectors generic
operation of class Class. Invocations of this operation take a class as the only
parameter, and return an instance of the Smalitalk class Set whose members are
instances of class Symbo1. The abstract invocation:

local-opname (C)
is realized as:
C selectors
E'g')
Point selectors
returns a Set containing the Symbo1s representing the local operation names of the
class Point.

eThe abstract put-local-method operation is realized as the

addSelector:withMethod: generic operation of class C1ass. Invocations of this
operation take a class, a symbol, and the object to be used as the method, and return
the class. An abstract invocation:

put-local-method (C, O, P)
is realized as

C addSelector: O withMethod: P
For example,

Point addSelector: #location withMethod: M
defines M as the method for the symbol #location in the local operation set of
Point.

alals)

e The abstract remove-local-method operation is realized by the
removeSelector: generic operation of class Class. Invocations of this operation
take a class and a symbol and return the class. An abstract invocation:

remove-local-method (C, O)
is realized as:
C removeSelector: 0O

For example, after
Point removeSelector: #location

the symbol 1ocation would no longer be a local operation name for Point. If the
specified symbol is not already a local operation name of the class, an error is
signalled.

Since any object can be used as an operation name in the above, the abstract
local-operation-name type does n'ot correspond to any specific Smalltalk class. However,
since the operation names-of all generic invocations which do not use one of the perform:. ..

pseudo-operations are instances of class Symbo1, operation names which are instances of

other classes have limited utility.

Before going on to the computation of the generic operation set, there are two additional pqints
of interest concerning local operation sets in Smalltalk. First, chapter 16 of [GoldbergRobson
83] describes a number of other operations on classes which, among other things, affect the
local operation set of a class. All but one can be defined in terms of the operations we have
already seen (i.e., the four "local operation set" operations, the superclass/subclass operations
of chapter 4, and the compﬂ'e: operation of chapter 3), in conjunction with the following

operations of class C1as s:58

e operations which allow a class to be associated with a set containing its subclasses
(i.e., addSubclass:, removeSubclass:, subclasses);

e operations which allow a method definition string to be associated with a given
operation name, and for the string associated with an operation name to be retrieved

58Specilically. each of the following operations of class £1ass can be defined in terms of the lisicd operations:
compilo:notifying:, recompile:, compileA11,. compileAllSubclasses, removeCategory:,
copy:from:, copy:from:classified:, copyAll:from:, copyAll:from:classifiad:,
copyAliCategoriasFrom, copyCategory:from:, copyCategory:from:classifiod:,
compile:classified:, and compile:classifioed:notifying:.

210

(sourceCodeAt:);>® and

e operations which allow the association of a symbolic “category” with operation
names (category:) and the retrieval of a category associated with a given name
(whichCategoryIncludesSelector:).

The methodDictionary: operation of class Class is the only operation described in chapter
16 of [GoldbergRobson 83] whose invocation cannot be described in terms of the operations
listed above. It allows the wholesale replacement of the data structure which represents the local
operation set. In Smalitalk terminology, this data structure is referred to as the "“method

dictionary.”

Second, it is interesting to note that Smalitalk programmers can be unaware of the details of
the operations which affect the iocal operation set of a class. This is because Smalltalk's user
interface allows the invocations of such operations to be accomplished through menu-based
interaction. For example, programmers do not need to know the names and parameter
requirements for the operations which create compiled methods and install them in local
operation sets, Instead, the programmer can select the Accept option of a menu associated with
a text-editing “browser” program. See chapter 17 of [GoldbergRobson 83] for a simple scenario

which demonstrates this capability.

7.2.1 Aside: operation classification in Smalltalk

The simplest operation described in [GoldbergRobson 83] which both compiles a method and
stored it in a method dictionary is compi 'Ie:: classified:. This opération takes three
parameters: a class, a string containing a method definition, and a second string whose contents
are arbitrary. The second string is used to “categorize” the operation but has no significance for

generic invocation.

A brief description of operation categorization is as follows. Smalltalk classes can be thought

'59The name of the operalion which associates local operation names with strings returned by the sourceCodeAt:
operation is not identified in [GoldbergRobson 83).

211

of as being associated with a “‘classification' dictionary as well as a method dictionary. The
classification dictionary associates a programmer-specified subset of the keys of the method

dictionary with strings. For example,
Point compile: 'location ~ loc' classified: 'Accessing’.

associates the symbol #1ocation with the string *Accessing’ in the classification dictionary

of Point.

The classification dictionary is used by a number of operations which allow modification of a
class' method dictionary. As a representative example, the copyCategory:from: operation
takes a destination class, a string, and a source class. It modifies tr;e method dictionary of the
destination class to include all pairs of keys and values of the source class whose key§ are

classified under the specified string. For example,
HistoryPoint copyCategory: 'Accessing’ from: BoundedPoint

would create entries in the method dictionary of HistoryPoint for the Accessing operations

of BoundedPoint, i.e., min and max.

If classes can have only a single ancestor, as in unextended Smalltalk-80, this kind of method
dictionary manipulation is necessary whenever (a) the generic operation set of a class is to
include methods defined in the local operation set of more than one class, or (b) when
operations were to be moved from the method dictionaries of one class to another. We will a
principal benefit of type definition via multigle inheritance is the reduction in the number of
situations in which copying is needed to support sharing of methods between generic operation

sets.

7.3 The realization in Loops
In Loops, as in Smalltalk, the abstract local-operation-name and local-method types are -

realized Interlisp ATOMs and Interlisp procedure objects.

The abstract operations on the local operation set of a Loops class are realized as follows.
L]

e The abstract get-local-method operation is realized as invocations of the
GotMethod and GETD procedures. The abstract invocation:

2192

get-locai-method (C, 0)
is realized as:
(GETD (GetMethod C 0))
For example,
(GETD (GetMethod $Point 'Location))
returns the object most recently defined as the method for the symbol Location in
the local operation set of the class Point.

e The abstract local-opnames operation is realized by the List generic operation of
class $C1ass. The abstract invocation:
local-opname (C)
is realized as:
Send C List 'Selectors
Such invocations return a list containing the atoms which are the local operation
names of the class. For example,
(Send $Point List 'Selectors)
obtains the local operation names of the class $Point.

e The abstract put-local-method operation is realized by a composition of the
PutMethod and PUTD procedures. Specifically, if C is a class, 0 is an operation
name, and P is a procedure, the abstract

put-local-method (C, O, P)

is realized as
(PutMethod C 0 0')
(PUTD O’ P)

where 0’ is a symbol which satisfies a property described shortly. For example,

(PutMethod $Point ’'Location 'Point.Location)
(PUTD 'Point.Location '(LAMBDA (self) (Getvalue self ’'loc)))

defines (LAMBDA (salf) (GetValua self ‘loc))) as the method for the
symbol Location in the local operation set of $Point.

e The abstract remove-iocal-method operation is realized by an invocation of the
PutMethod procedure. If Cis a class and 0 is an operation name, the abstract
remove-local-method (C, O, P)

" is realized as
(PutMethod C O Nil)

For example, after
(PutMethod $Point 'Location Nil)

Location would no longer be a local operation name of $Point. If 0 were not a
local operation name of T, the local operation set would not be modified and no error
would be signalled.

In the above, the abstract operation-name type is realized as the Interlisp datatype ATOM.
Atoms are Interlisp's realization of what is commonly referred to as a “symbol," i.e., an structure
whose members have character-string names and one or more memory cells which can refer to

values.
213

The principal difference between this realization and that used in Smalltalk is that two different
kinds of associations are used to define the local operation set of a class. Orie kind, realized
through the GetMethod and PutMethod procédures, associates a class and an operation name
with a symbol. The other, realized via the GETD and PUTD procedures, associates symbols with
procedures. In contrast, Smalltalk classes have a single association between local operation

names and procedures,

An explanation of this approach requires a slightly more detailed description of the Interlisp
datatype ATOM. Each Interlisp atom is associated with a “function definition cell:" a storage
location separate from the conventional “value cell.” While the contents the latter are used by
lambda-binding and variable evaluation, the contents of the former are stored and retrieved only
by PUTD (“PUT. Description™) aﬁd GETD (“GET Description’") procedures.so PUTD takes a
symbol and an object, and makes the function definition cell of the symbol contain the object,
and GETD takes a symbol and returns the object currently in its function definition cell. For
example,

(PUTD 'Point.Location
'(LAMBDA (self)(GetValue self 'loc)))

makes the function definition cell of the symbol Location contain the (LAMBDA ...) list, and
(GETD 'Point.Location)

returns the contents of the function definition cell of the symbol Location.

Thus, the computation of the local method of an operation of a class (i.e., the abstract

60A brief explanation of the rationale for the funclicn definition cells is as follows. The value stored in the function
definition cell of a symbol is used as the procedure when the symbol appears in the first position of a procedure-
invocation form. For example, to evaluate the form:
(+ 2 2)
the value of the function definition cell of + is used to obtain the procedure invoked. The name "functlion definition cell"
is motivated by this usage. Most of the progeny of Lisp 1.5 support a similar distinclion between the "local" and “global"
values of a symbol, and use the latier to evaluate function-invocation forms.

Why is it helpful to have variable values used for procedure invocation not affected by lambda binding? One benelit ia
that useful names can have different references in diffcrent contexls, e.g., point can be both a function for creating
points and the name of a local variable bound to points. A second advantage is that the introduction of local variabies in
lexically enclosing procedures or dynamically enclosing invocalions will not affect the procedure used for such
invocations. The result is the eliminalion of one pathway of interaction between proceduse detinitions.

214

get-local-method operation) has two stages: using GetMethod to computing an atom from the
class and the local operation name, then using PUTD to extracting the method from the function
definition cell of that atom. We will refer to this intermediate atom as the “local method symbol”
for the given operation name and class. The rationale for introducing the local method symbol

will be described shortly.

The indirection through the local method symbol means that there are two ways to affect the
local operation set of a class. The first approach is to change the local method symbol
associated with a class and operation name via the PutMathod operation. The second is to
store a new object in the function definition cell of an existing local method symbol, via PUTD.

The combination of the two can be used to realize the abstract put-local-method operation.

A second implication of the use of programmer-designated local method symboals is that it
introduces the possibility of a new kind of programming error: the unintentional 1ise of the same
local method symbol for two different operations. For example, if the atom Location were used
as the local operation symbol for the Location operation of both the $Point and
$BoundedPoint classes, it would not be possible to modify $Point's local method for

Location without modifying $BoundedPoint's as well.

This problem is addressed, but not solved, by the introduction of an informal naming
convention for local method symbols. In all the examples of [Stefik et al. 83b], the local method
symbol for operation 0 of class whose name is Cis C.0, e.g., Point. Location®' As long as no
two classes have the same name, this convention will guarantee that the local method symbols of
all classes will be disjoint. And if atoms with embedded periods are used only for local method
symbols, naming conflicts will not arise at all. However, the use of this convention is not a -
completely satisfactory solution, because incorporating programs which do not follow the
convention (e.g., procedures written by other programmers for other purposes) requires prior

modification of the programs to be included.

6 Periods have no special signiflicance in Interlisp symbo! names.

215

7.3.1 The procedures used in the example

[Stefik et al. 83b] describe a number of procedures which affect the associations between
operations and local method symbols.62 All of these can be expressed as invocations of the
PutMethod procedure.®® invoke active A particularly useful procedure which modifies the local
operation set of a class as a side effect is the DefC1lass procedure used to create new classes.
If an invocation of DefClass contains a Methods clause of an appropriate form, invocations of
DefMethod are generated whose parameters are extracted from the text of that clause. The

required form for the clause is:
(Methods (key, value,)

(key, value,))
where each of the key, and value, are identifiers. If there are n such pairs in a definition of class

C, then there will be n invocations of PutMethod of the obvious form:
(PutMethod C ’key, ’value;)

For example, the class definition:
(DefClass Point

(Methods (Locallnitialize Point.Locallnitialize)
(Location Point.Location)
(Move Point.Move)
(Display Point.Display))
-)

would generate:
(PutMethod $Point 'Locallnitialize 'Point.Locallnitialize)
(PutMethod $Point 'Location 'Point.Location)
(PutMethod $Point 'Move 'Point.Move)
(PutMethod $Point 'Display 'Point.Display)

The DEFINEQ procedure is useful for defining a fimction and storing it in the function definition

62Somo:a of the other procedures which alfect the local operation set involve: interfacing with the Interlisp cditor (via
the DefMethod and Ed1tMethod. alias DM and EM, procedures), or the DefMethod or Edit operation on classes),
invoking the "store function™ of an active value of the current method delfinition symbol (the PutMethod procedure),
changing the local operation names of a class (the Rename operation on classes), copying and moving local operalion
definitions from one class to another (the CopyMethod and MoveMethod operations on classes), and as a side-elfect of
changing the name of the class, changing all the local method symbols to be homologous symbols derived from the new
class name (the Rename and Se tNamae operations on classes).

%3or the record, PutMethod and GetMothod treat active values in the same way as the GetValue and PutValua

instance variable procedures described in chapter 5. Thus, the abstraction of this chapter will only be satisticd it the get
and put functions behave appropriately.

216

cell of a symbol. DEFINEQ takes an unevaluated list of items as its single parameter, extracts a
symbol and a function definition from each member of the list, and stores the extracted function

in the function definition cell of the extracted symbol. To illustrate its operation, the expression:
(DEFINEQ
(F (LAMBDA (self plist)
(PutValue self 'loc (or (PlistGet plist 'location) 0))))
(G (self plist)
(PutValue self 'loc (or (PlistGet.plist 'location) 0)))
"(H (LAMBDA arglist (GetValue (ARG arglist 1)))))
stores copies of the same LAMBDA expression in the function definition cells of F and G and a list

denoting a lambda/nospread/expr procedure in the function definition celi of H.

The principal advantage of using local method symbols rather than the direct association of
local operation names and procedures is that local method symbols can be the subject of
DEFINEQ statements. Thisis bec.:ause a number of Interlisp facilities are easier to use if DEFINEQ ‘
is used to associate symbols with procedure definitions. Such facilities include the editor, the
compiler, and the "files” package for managing incremental changes made during the course of
a programming section. Thus, the use of local method symbols to hold local methods allows the

full power of the interlisp programming environment to be brought to bear on Loops programs.

Finally, figure 2-5 defines AHLocaMethods! and a macro cognate, Al11LocalMethods.
All1LocalMethods takes an instance | of a class C, an unevaluated atom A, and an arbitrary
number of other parameters. It collects all the methods for A in the local operation set of C and
all ancestors, and applies those procedures to | and the remaining parameters. The order of
application is the reverse of the canonical ordering defined in chapter 4. For example, if bhp is

an instance of BHPoint, the invocation:
(Al1LocalMethods bhp PartiallInitialize plist

would invoke the local 'Partiallnitialize methods of each of the HistoryPoint,

BoundedPoint, and BHPoint types, in that order.

A11Loca1Methods supports the method definition technique described in section 5.2.5 by
allowing all relevant “partial” procedures to be invoked without having to enumerate the classes
of which they are local methods. The benefits are that:

217

e less work is required to initially define methods which invoke partial procedures of
more than one ancestor,

e adding or removing partial procedures does not require changes to methods of
descendant types, and

e generic methods of a class C which call partial procedures can be inherited in class
C' even if C' has additional ancestors which define partial procedures.

To illustrate the latter point, observe that the Initialize of Point can be inherited by the other
three types. In the Smalltalk and Star Mesa implementations, separate Initialize methods are

required, since a different set of partial procedures must be invoked.

7.4 The realization in Star Mesa

Star Mesa provides no operations which realize the abstract procedures we have been using to
characterize the local operation set of a type. Nevertheless, if Star Mesa programs satisfy the
conventions specified in in [Curry et al. 82] and [CurryAyers 83], a local operation set can be

associated with each trait definition.

This description is organized as follows. We will first describe a new aspect of traits in terms of
which the relevant programming conventions are expressed, then describe the conventions, and

finally show how the local operation set is derived.

7.4.1 Traiis and trait components

In chapter 5, we saw that instances of a trait are associated with a collection of objects which
represented its instance variables. For an instance of trait T, there is one such object for T and
all ancestors. For example, instances of BHPoint have fourinstance variables: one for Point,

BoundedPoint, HistoryPoint, and BHPoint.

In fact, Star Mesa traits themselves are associated with a collection of objects. Each trait T has
one trait component for T itself and one for each of its ancestors. Thus, the object of type
TM.Trait representing BHPoint trait has four components: one for Point, BoundedPoint,
Hi storyPoint. and BHPoint. We will refer to to these objects as the "trait components' of the

trait.

218

The primitive means for obtaining references to trait components is through the

TraitComponent procedure of the trait manager module. The Mesa type of this procedure is:
PROC [TM.Trait, TM.Trait] RETURNS [POINTER TO UNSPECIFIED]

it returns the memory location of the component of the first trait which is defined by the second

trait. For example,

TM.TCFromTrait [TM.TraitNamed ["BoundedPoint"],
TM.TraitNamed ["Point"]]

returns the trait compbnent of the trait named BoundedPoint which is defined by the trait
named Point. Since the Mesa type of any invocation of this procedure is an untyped pointer,
the returned value can be used in any context where any pointer type is required. For example,

the statement:

X: POINTER TO T «
TM.TCFromTrait [TM.TraitNamed ["BoundedPoint"],
TM.TraitNamed ["Point"]]

is legal for any type T.

The examples of chapter 2 use two special syntactic forms, TM.TCFromTrait and

TM.TCFromOb ject, which generate invocations of TM. TraitComponent.

- @ The form:
TM.TCFromTrait [id,, id,]
is equivalent to:

TM.TraitComponent [TM.TraitNamed ["id "],
TM.TraitNamed ["id,"]]

For example,
TM.TCFromTrait [Point, Point]

generates
TM.TraitComponent [TM.TraitNamed ["Point"],
TM.TraitNamed ["Point"]]

The latter returns the trait component of Point which is defined by Point.

e The form:
TM.TCFromObject [exp, id]
is equivalent to:
TM.TraitComponent [TM.Type [exp], TW.TraitNamed ["id"]
For example, if the expression X evaluates to an instance of trait Point, the form:
TM.TCFromObject [X, Point]
also computes the component of trait Poiint defined by trait Point.

719

7.4.2 Programming conventions for defining trait componentis
Trait components are allocated regions of storage, but the procedures for accessing this

storage return addresses. The following two conventions relate the addresses with the regions.

Star Mesa Convention 6: Each trait definition designates a record type as its
trait component type. If R is the trait component type of trait T, all ex;»essions
which compute a trait component defined by T should be used only in contexts which
require the type R.

In the example of chapter 2, a comment of figure 2-18 states that the value of the identifier
TCType in each trait definition module is the trait component type of the trait. For example, the
trait component type of trait Point is the value of the identifier TCType defined in module

Point:

RECORD [Location: PROC [p: Object] RETURNS [REAL],
Move: PROC [p: Object, r: REAL] RETURNS [REAL],
‘Display: PROC [p: Object, s: Stream]]

Thus, all references to the trait components obtained by the expressions:

TM.TCFromTrait [Point, Point]
TM.TCFromTrait [HistoryPoint, Point]
TM.TCFromTrait [BoundedPoint, Puint]
TM.TCFromTrait [BHPoint, Point]

should appear only in contexts where Point.TCType is required, e.g.,
PointTC: POINTER TO Point.TCType
« TM.TCFromTrait [BoundedPoint, Point]
Note that since TM.TraitComponent is declared to return untyped pointers, the Mesa compiler

cannot detect the violation of this convention. As with the inappropriate use of

TM.InstanceComponent, the consequences of this occurrence are unpredictable.

Star Mesa Convention 7: The amount of storage for instances of the trait
component type is the TCSize field of the record returned by the initial invocation of
the registration procedure of the trait.

For example, records returned by invocations of the registration procedure of module BHPoint
contain the value of the expression:

SIZE [RECORD [BoundsHistory: PROC [P: Object] RETURNS
‘ ‘[EntryConsCel11]]]

220

in their TCSize field. The Mesa pseudo-procedure SIZE takes a Mesa type and returns the

amount of storage used to represent instances of that type.

7.4.3 Programming conventions for modifying trait components
In order to arrange that a trait T has a given generic operation set, the trait components of T

must be modified. The following are the conventions for performing such state changes.

Star Mesa Convention 8: The local initialization procedure of each trait should
take a single parameter, a trait. The actions of the procedure should consist solely of
assignments to fields of trait components of its parameter.

For example, consider the local initialization procedure of the trait HistoryPoint:

LocallnitiatizeTrait: PROC [trt: TM.Trait] =

{PointTC: POINTER TO Point.TCType «
- TM.TCFromTrait [trt, Point];
HistoryPointTC: POINTER TO TCType «
TM.TCFromTrait [trt, HistoryPoint];
PointTC.Move ¢« MovelImpl;
N HistoryPointTC.History « HistoryImpl;

PointTC.Display « DisplayImpl};

This procedure madifies trait components defined by Point, via:
PointTC.Move ¢« MoveImpl

and
PointTC.Display ¢« DisplayImpl

as well as trait components defined by HistoryPoint:
HistoryPointTC.History ¢ HistoryImpl

Notice that the local initialization procedure of a trait modifies trait components defined by other

traits.

Star Mesa Convention 9: The only procedures which store into frait components
defined by a trait T are the local trait initialization procedures of T and its parameters.
The only procedures which invoke local trait initialization procedures are tne trait
initialization procedures. The trait initialization procedures are never explicitly
invoked.

This convention guarantees that the trait components of all traits will be constant during the
execution of ihe program. Although it is not stated explicitly in [Curry et al. 82] or [CurryAyers

83], itis necessary for the generic operation sets of traits to be defined as they describe.

221

7.4.4 Programming conventions for generic operation procedures
Recall that generic operation names in Star Mesa are procedure objects, not the symbols used
in Smalltalk, Zetalisp, and Loops. By convention, these are stylized procedures which access the

trait components of the trait of the generic parameter in a particular way.

Star Mesa Convention 10: Each generic operation procedure invokes some
other procedure on its original parameters. If P is a generic operation procedure
defined in the module defining trait T, the procedure it invokes is chosen as follows.
Let T2 be the Mesa type of the first parameter of P.

1. Obtain the component of trait T, defined by trait T. Call this value C.

2. For some field identifier I of the trait component type, use the value of the 1
field of of C (i.e., C. I) as the invoked procedure.

We will refer to the field I used by a given generic operation procedure as the
“method field" of the generic operation.

For example, consider the definition of the generic operation brocedure Point.Location:

Location: PROC [p: Object] RETURNS [REAL] =
{TC: POINTER TO TCType «
TM.TCFromObject [p, Point];
RETURN [TC.Location [p]]}

It obtains the component of the type of p which is defined by Point:

TC: POINTER TO TCType «
TM.TCFromObject [p, Point]

then extracts the Location field of this component:
TC.Location

then applies the reéulting proceduré to the original parameters:
TC.Location [p]

Thus, the method field associated with the generic operation Point.Location is the Location

field of type Point.TCType.

7.4.5 The definition of the local operation set

Given the above, we can (finally!) define the local operation set of a trait as follows.

e The operation names of the local operation set of a trait T are the set of procedures
whose method fields are modified by the local trait initialization procedure of T.

¢ The local method of an operation O is the value stored into the field by the local trait
initialization procedure of T.

222

Thus, the local operation sets of our four example traits are as described in figure 6-5. To
emphasize the relationship between local operation sets and local trait initialization procedures,
figure 7-1 reproduces the four local trait initialization procedures of the example. Note the

correspondence between these procedures and the local operation sets of figure 7.2.

From the Point module:
LocallnitializeTrait: PROC [trt: TM.Trait] =
{PointTC: POINTER TO TCType «
TM.TCFromTrait [trt, Point];
PointTC.Location « LocationImpl;
PointTC.Move « Mgvelmpl;
PointTC.Display « DisplayImpl};

From the HistoryPoint module:
LocallnitializeTrait: PROC [trt: TM.Trait]) =
{PointTC: POINTER TO Point.TCType «
TM.TCFromTrait [trt, Point];
HistoryPointTC: POINTER TO TCType ¢
TM.TCFromTrait [trt, HistoryPoint];
PointTC.Move « Movelmpl;
HistoryPointTC.History « HistoryImpl;
PointTC.Display « DisplayImpl};

From the BoundedPoint module:
LocallnitializeTrait: PROC [trt: TM.Trait] =
{PointTC: POINTER TO Point.TCType ¢
TM.TCFromTrait [trt, BoundedPoint];:
BoundedPointTC: POINTER TO TCType «
TM.TCFromTrait [trt, Point];
PointTC.Move « MovelImpl;
BoundedPointTC.Min « MinImpl;
BoundedPointTC.Max « MaxImpl;
BoundedPointTC.SetMin « SetMinImpl;
BoundedPointTC.SetMax « SetMaxImpl;
PointTC.Display « DisplayImpl};

Fro.n the BHPoint module:
LocallnitializeTrait: PROC [trt: TM.Trait] =
{PointTC: POINTER TO Point.TCType «
TM.TCFromTrait [trt, Point];
BoundedPointTC: POINTER TO Point.TCType ¢
TM.TCFromTrait [trt, BoundedPoint];
BHPointTC: POINTER TO TCType «
TM.TCFromTrait [trt, BHPoint];
PointTC.Move « Movelmpl;
BoundedPointTC.SetMin « SetMinImpi;
BoundedPointTC.SetMax ¢ SetMaxImpl;
BHPointTC.RoundsHistory « BoundsHistorylImpl;
PointTC.Display + Displaylmpl};

Figure 7-1: The local trait initialization procedures of the Star Mesa example

7.5 The realization in Zetalisp

In Zetalisp, operations on the local operation set are integrated into the general “function
definition” facility ([WeinrebMoon 81], p. 149). As a result, the standard Zetalisp procedures for
defining a name as a function, testing if a function name is defined, and obtaining the current
definition of a function name can be applied to local operation names and methods. The

relationship between function names and the local operation set is as follows.

Function names which are lists of three or more elements and whose first element is the symbol

:method denote elements of the local operation sets of flavors. Specifically, a list of the form
(:method id, id, ... id,)

refers to the method for
(idy ... idy)

in the local operation set of id,. For example, the definition of the function name:
(:method bounded-point :set-min)

is the method for (:set-min) in the local operation set of bounded-point. As another

example, the function definition'- of the function name:
(:method bounded-point :after :move)

is the method for (:after :move) in the local operation set of bounded-point.

The use of a general function-defining facility for operating on the local operation set of a type
is one difference between Zetalisp and our other subject languages. A second difference is that
the actual functions being used as methods are rarely seen by users. As described in chapter 5,
the use of the defmethod and defwhopper macros conceal the presence of required
parameters and declarations. Thus, the realization of put-local-method is usually invoked only
through the detail-hiding defmethod and defwhopper macros. Furthermore, the realization of
get-local-method is of limited utility, given the difficulty (discussed in section 3.4.3) of

determining the appropriate mapping table for a given invocation.

Nevertheless, all manipulations on the local operation set of a flavor can be expressed in terms

of the fdllowing.

e The abstract get-local-method operation is realized by the fdefinition
procedure previously described. The abstract invocation:
get-local-method (C, O)
is realized as:
(fdefinition (:method C . 0))
or, if C and each member of O is constant, the equivalent:
#'(:method C . 0)
The latter is the form commonly seen when interacting with the Zetalisp system. For
example,
(fdefinition '(:method point :location))
and ,
#'(:method point :location)
return the object most recently defined as the method for the symbal :1ocation in
the local operation set of the class named point.

e The abstract local-opnames operation cannot be expressed in terms of the
procedures described in chapter 20 of [WeinrebMoon 81] or [MoonStallmanWeinreb
84]. However, there are several user-interface procedures (e.g., the
describe-flavor procedure, the List Combined Methods editor command,
the “Flavor Inspector’” program) which can provide this information to the
programmer.64 The abstract put-local-method operation is realized through the
fdefine procedure. The abstract invocation

put-local-method (C, O, P)

is realized as:
(fdefine '(:method ,C ,@0) P)
For example,
put-local-method (point,
(:move),
#'(lambda (...) ... (setg location newloc)
self)

would be realized as:

(fdefine '(:method point :move)
(lambda (...) ... (setq location newloc) self))

e The abstract remove-local-method operation is realized by the undefmethod

syntactic form. The abstract invocation:

remove-local-method (C, O)
is realized as:

(undefun (C. 0)
For example, after

(undefun '(point :move))
the list (:move) wouid no longer be a local operation name for the flavor named
point. If the specified list is not already a local operation name of the class, an
error is signalled.

‘ 64 Since flavors can be operaled on in the same way as any dala structure, defining such a procedure can be done
straightforwardly. In languages where lypes are not simply objects, such an addition would require modilying the
language-implementing software (e.g., compiler).

The use of four optional clauses of the defflavor form offers another interface to the abstract
put-local-method operation. The local methods added through this technique allow the local
instance variables of the flavor being defined to be accessed or modified. Here are the four kinds

of clauses, together with a description of their effect in a definition of a flavor named F:

e :gettable-instance-variables For each local instance variable v of F, a
local method definition corresponding to the following is made:
(defmethod (F :v) ()
v)
For example, the defflavor of figure 2-1 results in the following:

(defflavor point
((location 0))

:gettable-instance-variables
ced)
results in the equivalent of:

(defmethod (point :location) ()
location)

o (:gettable-instance-variables v, ... v,) For each of the v, which is a
local instance variable of F, a local method definition of the form:
(defmethod (F :v) ()
v)
is generated. This allows instance-variable-accessing methods to be constructed for
a subset of the local instance variables of a flavor.

e :settable-instance-variables For each local instance variable v of F, a
local method definition corresponding to the following is made:
(defmethod (F :set-v) (.newvalue.)
(setq v .newvalue.)
For example, the deff1avor of figure 2-3:

(defflavor bounded-point
((min 0) (max 100))

:settable-instance-variables
-)
results in the equivalent of:
(defmethod (bounded-point :set-min) (.newvalue.)
(setq min .newvalue.))
(defmethod (bounded-point :set-max) (.newvalue.)
(setq max .newvalue.))

o (:settable-instance-variables v, ... v_) For each of the v; which is a
local instance variable of F, a local method definition of the form:
(defmethod (F :set-v) ()
(setq v .newvalue.))
' is generated. This allows methods which store into a particular instance variable to
be constructed for a subset of the local instance variables of a flavor.

Furthermore, any variable for which a :set-v method is created through a
:settable-instance-variable clause will also have a :v method generated as a result of

the defflavor invocation. For example, the equivalent of:
(defmethod (F :min) ()
min)
(defmethod (F :max) ()
max)

are defined as a result of the deff1avor of figure 2-3. K

8. Type declaration and type checking

The principal characteristic which distinguishes our four subject type constructors from
conventional approaches to abstract type definition is that they embody definition by muitiple
inheritance. However, the languages in which they are embedded have considerably different

approaches to type declaration and type checking.

This chapter shows that these differences are, in fact, inessential. We will see that the same
kinds of type declarations can be used in both conventional and multiple-inheritance languages,
and that inheritance-based type definition can be used with our without the “strong type
checking” algorithm used in conventional languages which support abstract type definition.
Furthermore, we will see that the inter-type relationships used for definition by inheritance can be
the basis of a new kind of type checking algorithm -- one which requires fewer assumptions than

the conventional approach, but still guarantees the detection of all type errors.

8.1 Type declarations

8.1.1 The conventional approach

In conventional abstract type systems, three forms of type declarations are found:

e Type identity. In a type-identity declaration, the type of the object must be identical
to a specified type. This is the most straightforward approach to type declaration,
and has appeared in languages dating from Algol 60 [Naur 63].

® Operation support. An operation support declaration is defined by specified set of
abstract operations, possibly with type restrictions on parameters and returned
values. Such declarations are satisfied by any object whose type has the specified
operations. An example of such a declaration would be one that is be satisfied by
any object whose type includes abstract operation for equal and 1ess~-than.

The version of Alphard described in [Wulf et al. 76], [Shaw et al. 76], and [London et
al. 76] contains such declarations. Clu and Russell[Demers et al.
78, BoehmDemersDonahue 80] allow operation-support declarations for parameters

of type type; such types can then be used to construct the desired declarations.®

e Parametric variation. Parametric variation declarations are satisfied by objects
whose types have been produced by a particular abstract type constructor. For
example, given a 1ist constructor which takes a type parameter, it is possible to
have a declaration which is satisfied by any object whose type was produced by that
constructor, e.g., “1ist of i ntegar,” “1ist of symbo1.”

This kind of declaration is common among languages which allow the definition of
new abstract type constructors, For example, Alphard and ML [Milner 78, Gordon et
al. 79] allow any variable to have such a declaration. As with operation-support

declarations, Clu and Russell require the introduction of auxiliary type parameters
for parametric-variation declarations.

in each case, if a variable is associated with a declaration, the rules of the language which
define legal programs guarantee that the declaration holds for the lifetime of the variable. This is
accomplished by disallowing any program in which a variable of one type is assigned an

expression of some other.58

8.1.2 The multiple-inheritance languages
In our four subject languages, procedures analogous to these declaration forms are either

directly available or can be programmed.

¢ Type identity. These are available in each of our four type systems. To check that
an object Obj is an instance of a type T:

o Zetalisp: (eq (typep Obj) Tname), wheré Tname is the symbol which
names the type. -

oloops: (<- Obj InstOf T)
o Smalltalk-82: Obj isMemberOf T

o Star Mesa: TM.TypeOf [Obj] =T

bound to type constants or olher type paramelers. As a result, a strongly typed procedure with no type parameters can
be derived from each invocation of a procedure which does take such parameters. The topic ol strong typing is
discussed in the next section. : -

66This' is a simplification. It is common for languages to include a number of rules for coercing expressions from ane

type to another. This set of rules is usually fixed by the language. EL/1 is a notable exception, as it allows a different
coercion function to be associated with each type.

nan

e Parametric variation. Our four subject type constructors always produce types ,
never parameterizable constructors. The effect of parametric variation constructors
can be programmed by having the parameters of type constructors reconceptualized
as attributes of objects. E.g., rather than having a type "‘array of integer”’, one would
define the abstract type ‘‘restricted-array” with a domain-type operation that
associated a type with each instance. Then any operation which resulted in adding
new members to the structure would perform runtime testing to v~=r|fy that each new
member is an instances of the domain-type.

e Operation support. In Zetalisp, Loops, and Smalltalk-82, operation support
declarations can be realized by predicates which succeed iff the type of a given
object has an abstract operation of a given name. Testing if an object Obj has
operation Op could be done as follows:

o Zetalisp: (send Obj :operation-handled-p Op)
olLoops: (<- Obj Understands Op)

o Smalltalk-82: Obj respondsTo: Op

Such declarations are not possible in Star Mesa, because the generic operation
names of a given trait are determined by convention rather than syntax or data
structure.

Each of our four type systems also supports a new kind of declaration, which we will refer to as
a ancestor declaration. Ancestor declarations are specified by one parameter, a type. An

object O of type T satisfies a ancestor declaration of type T' iff the type of O is T or an ancestor.

Here is how ancestor declarations are realized in our four languages:
e Zetalisp: (typep Obj Tname)
e Loops: (<- Obj InstOfl T)
o Smalltalk-82: Obj isKindOf T

e Star Mesa: TM.Carries [Obj, Tid]

Ancestor declarations make sense only if types are identified with sets of properties of
instances (i.e., ‘type specifications” (e.g.,[LiskovBerzins 79, GuttagHorowitzMusser
78, GuttagHorning 78, Guttag 80, GuttagHorning 80}]) such that if a type T1 is a parent of type T2
then the. specification of T1 also holds for T2. If this is the case, then programs which assume a

L
given variable satisfies the specification associated with a given type can associate that variable

21

with an ancestor declaration of that type. Of course, since this technique assumes that (a) the
specification of the ancestor is actually satisfied by the subtype and (b) the program which uses
the ancestor declaration only depends on the properties of the ancestor's specification, the

absence of declaration-violation errors in no way guarantees program correctness.

A final difference between type declarations as described above and those in our four subject
languages is that they are dynamic rather than static. In other words, it is not valid to assume
that if an object denoted by a given variable satisfies a given declaration, then the same
declaration will hold for the lifetime of the variable. This is because there are no legality rules

which prohibit programs for which this assumption does not hold.

In order to verify that a variable will always satisfy a particular declarations, declaration testing
must be performed after each statement which might have modified the variable. Unfortunately,
in languages which allow access to environments as data structures, the variables which might

be changed by a given statement is quite large. For example, the Lisp statement
(set (f x) (g x))

might affect any variable in the present environment.5” If constructs such as sot and eval are

avoided, a reasonable degree of protection is obtainable, albeit at the cost of runtime

computational overhead.

8.2 Type checking

8.2.1 Our subject languages are not strongly typed

The most fundamental difference between type checking in conventional abstract-type systems
and type checking in our subject languages is that expressions are not strongly typed. In other
words, assuming that the free variables of an expression are bound to objects of particular types

does not make it possible to associate a type with the expression such that all evaluations will

6701 course, it is Iukely that only a subset these vanables were intended to be affected by a given statement. However,
il"the program does not behave as inlended, this fact may be of lille use. Unfortunately, the diagnosis of misbehaving
programs is one of the principal reasons for perfarming type checking.

219

produce instances of the type. As a simple example, knowing that the type of X is “cons cell"

allows nothing to be inferred about the type of the objects produced by (car X).

Strong typing is desirable for two basic reasons:5 9

1. Strong typing makes it possible to guarantee through program analysis that no
procedure invocation will result in the type of an actual parameter being
incompatible with a declaration for the associated formal. The result is faster and
more reliable detection of type errors, with no associated computational overhead.

2. Strong typing allows the optimization of tight binding of abstract operations to
procedures. The result is the elimination of the computational overhead of type
testing for operation invocation.

The price of strong typing is that it is impossible to create “heterogeneous” data structures:
data structures for which different invocations of the same accessor with identically-typed
parameters can produce objects of different types. For example, if an array A could contain
instances of symbo1 and number, different invocations of the of the accessor nth could return
instances of different types. As a result, expressions of the form (nth A 1) could not be

associated with a unique type.

To be sure, the strong typing discipiine does allow structures which contain instances of a
single “discriminated union"” type (e.g., Clu's any and oneof, Russell's union, ML's disjoint
sum, the variant records of Euclid and Mesa) from which objects of different types can then be

extracted. The pragmatic difficulty with using this technique of “simulated heterogenity” is that

68In systems which do not maintain the type of an object as part of the representation, static type checking is the only
way in which type errors can be detected. Since such errors can compromise the integrity of the language
implementation itself, (e.g., the “taking the cdr of an atom" scenario of {Milner 78]), strong type checking is especially
important.

However, given an implementation where types are part of the representation, safely can be guaranteed by runtime
type-checking, implemented in some combination of hardware and software. The type ssytems of EL/1[Wegbreit
70, Wegbreit 74] and MDL [GalleyPfister 79] were early realizations of this latter approach; Bishop's concept of
"self-evident data" [Bishop 77] is also relevant. For all of our subject types, representations of objects include their type.

GQA further advantage of strong typing occurs in langauges such as Mesa where a pointer can be constructed to the
memory location holding the result of an’ arbitrary expression. Strong typing of pointer expressions guarantees that
manipulation of pointers is limited to the procedures declared to take paramelers of the appropriate pointer types. If the
Sgt of these procedures is limited to thosa defined by the type definer, allowing users to have or creale pointers to data
structures cannot result in their being able to perform representation-level manipulation. Thus, no “protection"
hardware or software is needed Yo ensure isolation between the definer and users of an abstraction.

293

allowing instances of a new type to be added to the structure requires the modification of all
procedures wh‘ich discriminate on the underlying type. This is undesirable in small systems and

untenable in large ones.

8.2.2 Multiple inheritance is compatible with strong typing

Is strong type checking incompatible with those of type definition by inheritance? Although the
details are not presented here, it is possible to define type constructors which use inheritance
but whose operations are strongly typed. The simplest technique for doing so is to use the Star
Mesa approach of a single record component per ancestor type. For each abstract operation
defined by inheritance a new method is constructed. This method will invoke the appropriate
abstract operations of a given ancestor on the representation component which contains an

instance of the ancestor type.

To iI.Iustrate the idea, consider the definition of the bh-point of our example scenario. The
representation .for bh-point would have four instance variables: one for point, one for
bounded-point, one for history-point, and one for a record containing bhlist and bhtail. The
synthesized creation operations would ensure that the instance of point used in the
representation of a bh-point BP was identical to the one used in the instances of

bounded-point and history-point used in the representation of BP.

To see how a method would be synthesized, consider the definition of the move method for
bh-point as sequential invocation of the move of bounded-point and history-point. The
constructed method would first invoke the move of bounded-point on the history-point
component, then invoke the move of history-point on the history-point component. Since
new methods are constructed for each abstract operation of the new type, and since these
methods only invoke operations of ancestor types on instances of the same type, the

requirements for strong typing are satisfiable.

'The conclusion is that the benefits of multiple inheritance for type design (i.e., the advantages

214

.described in section 2.2) can still be obtained in a strongly typed language. However, the

disadvantage of not allowing heterogeneous structures still remains.

8.2.3 Inheritance-based type definition suggests a ne v kind of type checking
algorithm.

In the design described above, the fact that a type was defined by inheritance is invisible to the
type checking algorithm. An even more interesting idea is to liberalize this algorithm so that
instances of a type satisfy declarations of any ancestor type. For example, instances of
bounded-point, history-point and bh-point would all satisfy a declaration of point. The

effect is that all type declarations are analogous to the ancestor declarations described above.”®

As a result of this extension, the association of . type with an expression by the typing
algorithm allows the conclusion that all evaluations of the expression will produce instances of a
descendant type. Since all descendant types have at least the abstract operations of the parent,
the invocation of'any of these cannot cause a declaration-failure error For exaniple, create,

location, and move are all applicable to any descendant of point.

Thus, as in the strong typing approach, static type checking can guarantee that no declaration
errors can occur during program execution. The real impact of our extension is that
heterogeneous structures can now be used, so long as (a) the type of each element of the
structure is a descendant of a given type, and (b) only operaticns of this type are applied to

elements obtained through the structure's accessors.

For example, one could have an object of type “array of point,” which could contain
instances of point, bounded-point, history-point and bh-point. The only valid
operations on objects obtained from such a~ array would be the operations associated with

point. These operations would be guaranteed to be type-correct.

Y .
70This is certainly not an original idea. For example, personal communication with G. Curry indicates that a design for
- amodification of Mesa's type-checking algorithm to use ancestor declarations was created but never implemented.

235

Thus, it is possible to design a statically type-checkable language which includes inheritance-
based type definition and either conventional strong typing or the liberalized version described
above. The tradeoff faced by the language designer is between the increased performance of
the former (because operation invocations can be tightly bound to procedures), and the

increased flexibility of the latter (due to the ability to program with heterogeneous structures).

However, a significant weakness of this approach is that there is no obvious relation between
types such as “array of object” and “array of point.” Although it may seem that arrays of
points are simply specializations of arrays of objects, it is not always appropriate to use instances
of the former in contexts declared to take instances of the latter. In one example (due to
P. Curtis), it would be inappropriate to pass an array of points as the first parameter of the

procedure:
procedure (p: array-of [object], o: object)
p[1] := o
Typing algorithms which avoid such pitfalls are an active area of research. A key idea is for

“declarations" to be given in terms of the types of operations required to be defined for the type,

rather than in terms of a type itself.

236

9. Summary, Conclusions, and Future Work

We have now covered a considerable amount of technical ground. But what does it all mean?

The following is an attempt to sum up the important points of what we have seen.

Section 9.1 outlines the major similarities and differences in the realizations of inheritance-
based type definition among our four languages. Section 9.2 describes the “bottom line” impact
of the differences on the amount of work required to create new types. Finally, section

9.3 describes how the work described here can be extended.

9.1 How definition by inheritance is realized

9.1.1 Algerithms for generic operation set computation

9.1.1.1 The co.mmon properties

The generic operation sets of Zetalisp flavors, Loops and Smalltalk-82 classes, and Star Mesa
traits are commonly characterized as being defined using “inheritance”. We described three
properties of operation set construction which are shared by each of these four kinds of types.
These properties can serve as a reasonable characterization of the concept of “defining types by

inheritance” in programming languages.

1. Definition through parents and local operation sets. The generic operation set of a

. type is defined by an algorithm which involves two fundamental properties of the

.| type: its parents (a set of types) and a local operation set (an association between
names and procedures).

2. Operation set synthesis. The names of the generic operations of a type are a
superset of the names of the generic operations of all ancestors of the type. Some
method will be computed for each of these "inherited" operations.

3. Consistent method inheritance. If (a) all parents which define a given generic
operation use the icentical method and (b) the new type has no local method, then
the new type inherits the parents' method.

A key observation is that inheritance is a property of an algorithm, not an algorithm itsell.

237

9.1.1.2 The differences

The most fundamental difference among our four languages is whether the algorithm for
computing generic operation sets from local operation sets is fixed by the language or
programmer-specifiable. In Smalitalk, Loops, and Star Mesa, a single algorithm is used to
compute the method for all operations of all types. In Zetalisp, programmers can specify an
arbitrary procedure to be used to compute the method for each operation of each type. A
number of such procedures are predefined in the language; the subsequent discussion will be

limited to the algorithms embodied in those procedures.

A second important difference among our four languages is whether the algorithms used can
construct new methods as well as select methods from local operation sets. The Smalitalk,
Loops, and Star 'Mesa algorithms always produce a local method of the type or an ancestor. But
the Zetalisp algorithms can create new methods which invoke selected local operations of the
'type and its ancestors. If the method-computation algorithm produces an acceptable method,
the result is the reduction of programming effort. ' This was demonstrated in the example of
chapter 2, where the generic methods for :move and :init of history-point,
bounded-point, and bh-point were constructed, as were the :set-min and :set-max

methods for bh-point.

A third difference is the relationship of the local operation names to the generic operation
names. In Smalltalk, Loops, and Star Mesa, each local operation of a type is also a generic
operation. The problem with this approach is that defining multiple local operations which are
relevant to a single generic operation requires the use of extraneous generic operations, e.g., the
“partial” procedures used in chapter 2 and discussed in section 5.2.5. In Zetalisp, the names of
the local operations and the generic operations are disjoint, and defining a newv locai operations
need not result in the availability of a new generic operation. Thus, all generic operations in the

Zetalisp realization of the point scenario correspond to the abstraction-relevant operations.

1

238

A final difference is whether programming conventions must be followed in order tc have the
specified algorithm carried out. This is the case in Star Mesa; failure of the designer of a type to
follow the specified conventions can result cause the generic operation set of the specified type

and its descendants to be computed in an unpredictable way.

9.1.2 Generic method invocation

9.1.2.1 The common properties

In contrast with more conventional “abstract type'" approaches, neither the type of an object
nor a partial specification of its generic operation set is required for generic invocation to occur.
The advantage is that !es; work is required te create and madify programs, since no type
declarations need be initially given or subsequently changed. This disadvantage is that there is
no guarantee that the type of the generic parameter will always include an method for the
specified operation; the fact that this will never occur must be determined by the same means as
other arbitrary properties of programs. A promising line of research invoives extending the ML
technique of *“type inference” to languages with less stringent requirements for free variable
typing (recall the discussion of “heterogeneous” data structures in chapter 8) and generic

invocation.”!

A second common property is that the generic method for a given operation of a given type can
be invoked on insténces cf descendant types. Again, this contrasts with conventional abstract-
type paradigm, since procedures declared to accept instances of a specific type cannot be
passed instances of any other type. The advantage is that avoiding redundancy in method
definition is straightforward; in the conventional approach, it is possible only through

considerable circumlocutiqn. if atall. -

‘

-"In persanal communication, Pavel Curtis of Xerox PARC reports substantial progress on this front.

239

9.1.2.2 The differences

An important difference between generic invocation in Star Mesa and our other three
languages is the treatment of nonexistent-operation errors. In Zetalisp, Smalitalk, and Loops, a
missing operation will be detected by the generic invocation mechanism; language-specific
“error handling” action ensues. But in Star Mesa, nonexistent-operation errors will not be
detected when “production mode” compilation is indicated. Instead, an unpredictable
component of the storage used to represent the trait will be treated as a procedure and
executed. Needless to say, debugging becomes considerably more difficult under these

circumstances.

The second important difference involves the way “ancestor-generic invocation", i.e., an
invocation of a generic method of a type when the generic parameter is an instance of a

“descendant type. Here is how ancestor-generic invocation is realized in our four languages.

e In Zetalisp, ancestor-generic invocations require (a) computing the method to be
invoked, (b) computing the flavor of which that method was a iocal operation, and (c)
computing a mapping table object appropriate for the type of the generic parameter
and the flavor computed by step (b). Step (a) is trivial, via the :handler function
specs described in chapter 3. Step (c) is straightforward, but requires the use of
presently undocumented procedures. Step (b) is the most problematic, since it can
require a search through the representation of the procedure object. A significant
improvement to Zetalisp would be the provision of a documented, efficient
procedure for ancestor-generic invocation.

e In Star Mesa, ancestor-generic invocation involves obtaining a procedure from the
trait storage of the ancestor type, then applying the procedure to the desired
parameters. It is subject to the same kinds of undetected errors as in standard
generic invocation,

e In Smalltalk-82, the two problems of Zetalisp and Star Mesa are eliminated.
Ancestor-generic invocation is possible through the use of class.op operation
names. Furthermore, if the specified operation is not defined for the type, an error is
signalled. For example, a generic invocation using Point.display as the
operation name will execute the disp1ay operation of the class Point. The ability
to support such invocations is a key capability of Smalltalk-82 not embodied in
Smalitalk-80.

Two additional means for ancestor-generic invocation are also available. One of
these, available via operation names of the form super.op, invokes the unique
generic method of all parent types, if any such method exists. The second, available
through a11,op operation names, invokes all generic methods for a given operation

240

defined in any parent. The point of using these additional invocation forms is to
enable operations to be redistributed among ancestors of a type without requiring
the modification of existing invocations. The latter form has the additional
advantage of making the enumeration of the relevant types unnecessary, thus (a)
reducing the work required to initially define the method, (b) eliminating the need to
track the addition and removal of relevant methods from ancestor types, and (c)
allowing the method to be appropriate for descendant types that have additional
ancestors which define methods for the operation. :

¢ All of the capabilities in Smalltalk-82 are also available in Loops. Ancestor-generic
invocation is embodied in the DoMethod procedure. The two alternate forms for
ancestor invocation are available through the SendSuper and SendSuperFringe
procedures.

9.1.3 Specification and invocation of the local operation set

9.1.3.1 The common properties

With respect to specifying the local operation set, the only characteristic our four languages
have in common is that they are determined by the side effects of program execution rather than
_through the syntax of the language. This characteristic, which represents a difference from
conventional “abstract type” designs, means that type checking algorithms based on syntactic

analysis cannot be done.

Notice that there is nothing in the paradigm of type definition by inheritance that prevents the
use of syntactic rules to specify the local operation set. Furthermore, the ability to determine the
current local operation set of a type computationally means that mechanical analysis is still
possible. Type checking in the context of dynamic modification requires that (a) “program state"’
rather than program text be examined, and (b) modifications to the definitions of types,
procedures, and global variables be followed by incremental analysis of the modifications. See

[Cheatham 81] for a discussion of an operational system which performs such analysis.

24

9.1.3.2 The diiferences

The most important difference in local operation set specification is between Star Mesa and our
other three languages. In Star Mesa, it is impossible to add a new local cperation to a frait.
Instead, a new Mesa “binary configuration description” which represents the entire application

program must be created. The adverse impact on program development time is clear.

A second difference between Star Mesa and our other three languages is that the local
operation set of a type cannot be computed once the type has been defined. A significant
disadvantage is that it is impossible to have programming tools which allow local operation sets
to be examined and/or manipulated. For example, it is impossible to write a program which can

answer the question “which types define local methods for oneration O?"

A third difference is in whether the local operation set of a type can be determined by the
examination of a single piece of program text associated with the type. This property holds in
Star Mesa: if the specified conventions are followed, the local operation set of a trait can be
determined by examining its local trait initialization procedure. It is not the case in our other
thl;ee languages, where local operations can be added and removed by invocations which can
appear anywhere in the program. As described above in regard to type checking. the availability
of computational support ameliorates the increased complexity of local operation set

determination.

9.1.4 The instance variable operations

9.1.4.1 The common properties

As described in chapter 5, the primitive operations on instances of each of our subject types
are the familiar “property list” operations: associating a value with an instance variable name
and retrieving the value associated with an instance variable name. These operations are
relevant to the type system because (a_) types are associated with instance variable names, and
- (b) it can be made to appear that all instahces of a type have values associated with all instance

variable names of the type.

242

The key aspect relevant to type definition via inheritance is that the instance variables names
which are meaningful for a type are defined to be the union of a set of local instance variable
names associated with the type. As a result, if a method M in the local operation set of a type is
invoked on an object O which is an instance of a descendant type, all instance variable

operations used in M will be meaningful when applied to O.

In addition to the preceding semantic properties, there are also some commonalities regarding
how the instance variable operations are invoked. Any procedure can apply the instance
variable operations to an instance of any type. This contrasts with the mainstream of the
"abstract type" languages, where no access to the representation of a type is allowed outside a

given syntactic scope.

Any assessment of this capability is bound to be controversial. All would agree that it is clearly
desirable to limit as much as possible the use of instance variable operations on instances of a
type outside the local methods of the type. The obvious benefit is that the the representation of

the type can be changed with far less impact on its users.

Furthermore, it is even desirable for the methods of a type to eschew the use of instance-
variable operations, if possible. The benefit here is the increased generality of methods thus
defined. For example, the realization of the display operation for each of the four kinds of points

would be usable regardless of the way in which the generic operations were implemented.

However, the significance of the lack of an mechanism for enforcing adherence to any principle
of programming methodology is not clear. This is especially true because in each of our four
languages, the avoidance of a specific set of syntactic forms and/or procedures will guarantee
that this principle will not be violated.”2 Thus, the principal effect of such a procedure would be

to prevent programmers from doing something they explicitly want to do.

7"!ln Star Mesa, one must use instance variable operations only on the generic parameter of local method definitions.,

243

9.1.4.2 The differences

Of the four realizations of instance variable operations which we have seen, Star Mesa is
clearly the simplest. Its most significant shortcdming is that, in “production" compilation mode,
the use of an instance variable name not associated with the object will not be detected as an
error. Instead, an unpredictable component of the storage used to represent the object will be
returned. Furthermore, even if a correct instance variable name is given, references to instance
variable values are represented as untyped Mesa pointers, and can thus be coerced into any
other type. Given Mesa's reliance on compiler-based type checking, coercion into an

inappropriate type can result in unpredictable modifications to unpredictable memory locations.

A fess significant disadvantage derives from the fact that precisely one instance variable is
associated with'each type. This requires two levels of indexing if more than one object is
required for the abstract representation associated with a type (e.g., the min and max
'components of the BoundedPo1int definition in figure 2-24). The negative result is the increased

verbosity of programs.

The realization in Smalltalk-82 is an improvement over Star Mesa, since any number of instance
variables can be associated with a type. However, it does have the disadvantage of not allowing
instance variable names of parents to intersect. Smalitalk is also unique among our four
languages in that it allows instances of classcs to have numeric instance variable names
specified when the instance is created. This is one way to introduce the concept of an arrayin a

language where any object can have instance variables with symbolic names.

The key distinguishing aspect of Zetalisp's realization of the instance-variable operations is its
considerable support for the property-list style of object initialization described in chapter 5. The -
fact that initialization property lists are automatically checked for missing or extraneous
keywords allows significant error detection to be achieved with little work by programmers. In

contrast, checking for extraneous keywords in Smalltalk and Loops requires a separate

244

procedure for each type. In Star Mesa, the use of keyword parameters allows extraneous
keywords to be statically detected, so long as a different interface to the initialization procedure
for each type is defined. This in turn requires that creation procedures for each type invoke the
initialization procedures of each ancestor type explicitly, and with. a different set of parameters.

The result is increased verbosity and increased inter-type dependence.

Instance variable operations in Loops have two distinguishing attributes. First, objects can
have more instance variable names than those defined for their type. The primary significance of
this approach is that the instance variable mechanism can be used for attributes not meaningful
for all instances of a type. Thus, it allows the instance variable operations to be used to
associate a conventional “free-form" proparty list with each object (e.g., the accessCount and
updateCount variables used in the active-value example of section 5.5). Itis also sometimes
helpiul for program development, in the case where an object should have been an instance of a
type with additional instance variables. However, since the same procedure is used to and to

replace a value for an existing property,

However, the instance-variable procedures documented in [BobrowStefik 83] which aliow
objects to appear to have a superset of the instance variable names of their types (i.e., GetValue
and PutValue) will never detegt “inapprooriate instance variable name” errors. Instead, they
add new object-spécific property/value associations or return a default value. It is trivial to
define procedures which signal an error if the instance variable were not already defined; this
would allow instance variable operations in Loops to perform the same kind of error checking as

in Smalltalk and Zetalisp.

A second maijor difference between Loops and our other three languages is that instance
variable operations can invoke programmer-specified procedures. The principal significance of
this capability is that independently-defined procedures can monitor changes to the values of

specific.instance variables of specific obiects. This is useful for ad hoc tracking of selected

245

~ aspects of program state (e.g., for debugging or performance monitoring) as well as being used
as a fundamental principie of program architecture (i.e., the “access-oriented programming'' of
[Stefik et al. 83a]). In chapter 5, we saw how to extend Loops so that more flexible object-

specific computation can be accomplished.

9.2 The pragmatic impact on type construction

The principal motivation for the use of inheritance-based type definition is the reduction of the
work required to add new types or modify systems of existing types. How do the algorithms
provided in our four languages compare with respect to the enhancement of programmer

productivity?

This is a difficult question, and one which is not ansyvered definitively by this report. However,
it is possible to éxamine some common cases of method definition and identify the impact of the
different approaches to operation set computation which we have seen. We first describe the
situation when all parents for which an operatio-n is relevant have the same method for it. We
then examine the situation when different parents define different methods for an operation, but

" one or more 6f these methods can be used to define the method of the child type. Finally, we
consider the situation in which a composftion of the local methods of the type and its ancestors is

appropriate.

9.2.1 The pragmatic impact in the abserice of parent conflict

8.2.1.1 ... when the parents’ method can be inherited

The multiple-inheritance type constructors in each of our subject languages satisfy the
consistent method inheritance property. Thus, in the situation where (a) all parents of a type T
which define a method forban operation O use the same method, and (b) this method is adequate
for T, the definer of T need provide no method-definition information for O. This is the most
fundamental benefit of type definition by inheritance, and is obtained in each of our subject

languages.

246

As a corollary of the above, if the generic operation names of a the parents of a type are
disjoint, all methods of all parents can be inherited by the new type. As a result, if the methods of
the parents are appropriate for the new type.l its definition can be accomplished by simply
enumerating the parent types. Thus, the definition of types which combine “independent

aspects of behavior” of ancestor types is facilitated in all four languages.

As a further advantage of the consistent method inheritance property, adding a new operation
to the generic operation set of a type will be automatically reflected in the operation sets of
descendant types. Thus, when consistent extensions to the operation set of a type are made, the
work required to incorporate the extension in descendant types is reduced, as is the need for
inter-programmer commﬁnication. This latter aspect is increasingly significant as the size of

programs and the number of programmers increases.

- However, it is important to realize that consistent extensions to a type are not necessarily
consistent extensions to all descendants. For example, adding a new operation O to a type will
not result in a consistent extension of a descendant if that descendant already has an operation
O. Furthermore, extending the functicnality of a given operation may not be consistent with
functionality extensions made by descendants. As a simple example, consider a descendant of a
conventional array type whose indexing operations perform “modulo the length of the array”
arithmetic.”® I array type were subsequently modified so that out-of-bounds indexing returned
a “default” value (cf. the use of NotSetValue in the instance-variable operations of Loops), the

modification would be a consistent extension for array, but not for the descendant.

Yet another kind of problem arises from making consistent extensions to the representation
invariant of a type (e.g.,[Hoare 72, London et al. 78]) can result in inconsistencies in the °
representation invariant of descendant types. For example, supposa the type collection is

represented as a list in which order does not matter, and the type spccific-coliection is a

73E.g., for a three-element, zero-origin array A containing 0, 1, and 2, A[4] = A[1] = 1.

247

descendant in which the member-addition operation guarantees that the members of the list are
maintained in order. If the designer of collection decides to refine his implementation by

maintaining the list in a different order, the extension is inconsistent for specific-collection.

Why is it appropriate for the local methods of a type to depend on representation-relevant
properties of ancestors? The answer is simple: sharing implementation-dependent code reduces
redundancy in programs. As the complexity of types and their implementations increases (the
Lisp Machine window system unavoidably comes to mind), the benefits of sharing
implementation-dependent procedures of other types may well outweigh the cost of increased

inter-module dependence and inter-programmer communication.

9.2.i.2 ... when the parents’ method can be invoked

In many cases, the computations performed by methods of a type are a subset of the
computations which must be performed by methods of descendant types. For example, the
desired behavior of the display, move, set-min, and set-max operations of bounded-point is
an augmentation of the behavior of the corresponding operations of point. Thus, it is poséible
for methods of types to invoke the corresponding methads of ancestor types, thereby avoiding

program redundancy.

However, as illustrated in section 5.2.5, the possibility that types can have more than one

parent leads to the following key observation:
. If the methods of two ancestor types contain invocations of the method of a
common ancestor, the invocation of both methods will cause redundant invocation of
the common ancestor's method.

Fdr example, since the methods for display of bounded-point and history-point both invoke
the display method of point, they cannot be both be invoked by the display method for
bh-point. The problem is that redundant invocation of ancestor methods (in our example,
display of point) can occur. Thus, the preceding observation leads to the following design
principle: -

.. Code which may be useful for methods of descendant types should not be defined
! in procedures which invoke methods of ancestor types.

248

The consequence of this design principle is as follows. When it is desired for a method of a
type to invoke the corresponding method of an ancestor type, the appropriate technique is to
define auxiliary ‘‘augmentation” procedures which perform the additional computation not
performed by the ancestor. The method itself can then invoke the ancestor’'s method in
conjunction with the augmentation procedures. The payoff is that the augmentations can be

invoked by any descendant, with no possibility of redundant fnvocation of the ancestoi’'s method.

The methods for display of history-point and bounded-point illustrate the use of this
principle. The former invokes a separate procedure to perform the “augmentation of printing
the history list. The latter does the same for printing the minimum and maximum. As aresult, the
display method for bh-point can invoke both of the augmentation procedures without causing

the redundant invocation of the display method of point.

How well do our four languages support this programming technique? In Star Mesa,
Smalitalk-82, ar;d Loops, both the augmentation procedure and the method itself must be
defined by programmers as separate procedures. The method of the new type will invoke the
augmentation procedure before or after it invokes the parents' method. Smalltalk-82 and Loops
offer an advantage over Star Mesa in thé definition of the latter invocation, since the identity of
the parent type need not appear in the invocation form. This is accomplished through super.op
invocation in Smalltalk-82 and .the SendSuper procedure of Loops. The advantage is that
changing the name of the parent (or the parent itself) need not result in the need to modify these
invocation forms. This is especially useful because the error of neglec;ting to update an

invocation would otherwise go undetected. Unfortunately, such errors do go undetected in Star

Mesa.

In Zetalisp, methods which invoke methods of parents and local augmentation procedures can
be automatically constructed by the flavor system, e.g., by defining the augmentation procedures

as :whopper methods. The result is that less work is required to define the new type in such a

249

way that descendant types can invoke the augmentation procedure. This is the principal
advantage of Zetalisp's realization of definition by inheritance over that of our other subject

languages.

9.2.2 The pragmatic impact when parent conflict is resolved via choice

9.2.2.1 ... when a parent’s method can be invoked

Suppose that different parents have different methods for an operation, but a method of one of
them can be used for the new type. The ideal behavior of an inheritance mechanism would be to
choose the method desired by the programmer. Given the infeasibility of mind-reading, we can

examine how well the mechanisms satisfy two more specific criteria.

o If a unique ancestor exists which is a descendant of all other ancestors for which a
method is defined, the method of that ancestor is chosen. As discussed in section
6.3.2, this “‘most specific method" property increases the likelihood that the method
chosen will be appropriate.

» If the algorithm selects a method which is not the one desired by the programmer, it
is possible to override the choice knowing only the identity of a parent which uses
that method. This “overridability” property is important because it provides
programmers with a straightforward response whenever the “mind-reading” of the
method computation algorithm fails. :

The most-specific-method property is satisfied by the Loops algorithm and, if the appropriate
conventions are followed, for Star Mesa trait definitions. It is never satisfied for Smalitalk-82,
since algorithm for operation set computation always creates an error-signalling method when
parent methods conflict. In Zetalisp, the property may or may not be satisfied, depending on the
order in which parents are listed in the flavor introduction form and the use of :default

methods.

The overridability property is satisfied by Star Mesa and Loops. Overriding method choices in -
Star Mesa is accomplished by having the local trait initialization procedure of the type extract a
procedure from the trait storage of the chosen parent, then assign it to the appropriate

component of its own trait storage; see section 7.4 for details. Method chioices can be

A\l

250

overridden in Loops by (a) using the GetMethod procedure on the parent type to obiain a
procedure name, and (b) using the PutMethod procedure on the new type to define this name as
a local method symbol. See section 7.3 for a description of these procedures and the concept of

a "local method symbol™.

However, the overridability property does not hold for Smalltalk-82 or Zetalisp. Itis not possible
in either language to state that the method for a given operation of a given type should be
identical to the method for any operation of any other type (or, for that matter, of the same type).
Instead, it is necessary to define a new procedure which invokes the method of the desired
parent; the issues involved in doing so are discussed immediately below. The principal
disadvantage of this approach is the overhead in space and time of defining and invoking an
extra procedure. The amount of work required is not significantly different than that required for

overriding in Star Mesa and Loops.

9 2,2.2.., when a parent’s method can be invoked

If the method of the new type should consist of an invacation of the methods of some number

of parents, the following property is relevant:

e It is possible to invoke the method for an operation of a parent knowing only the
operation name and the identity of the parent.

This property is satisfied by Smalltalk-82 (via class.op invocation), Loops (via the DoMethod
procedure), and Star Mesa (by invoking a procedure extracted from the trait storage of the
chosen parent). As described in section 3.4.3 and summarized in section 9.1.2.2, this property
" can be achieved in Zetalisp in an inefficient way through the use of undocumented features of

the implémentation. As we have already noted, the obvious solution is the addition of a

supported, efficient procedure for such invocations.

However, notice that each of these approaches shares the unfortunate characteristic of
embedding the names of types in methods of child types. As described in the previous section,

this characteristic increases the amount of work required to modify the parents of a type, as well

251

as making the result of such modification more likely to cause an error not detected by the

language implementation.

9.2.2.3 ... when all parents’ methods can be invoked

It is sometimes useful for the method for an operation of a type to invoke the methods fpr that
operation of all parents of the type. This kind of scenario captures another seﬁse of
“independent” type definitions. The same abstract operations are relevant for the parent types,

but their methods can be composed without destructive interadtion.

When this technique is relevant, the important property is the following:

e The invocation of the methods of all the parents of a type can be accomplished '
without enumerating the parents.

The utility of this property was described in section 9.1.2.2.

Again, Smalltalk-82 and Loops have this property, (via al11.op invocation of the former and the
Send§uperF ringe procedure of the latter), while Star Mesa and Zetalisp do not (as in the
previous situation, enumeration of the parent types is required). And again, it would be
straightforward to add a procedure to Zetalisp which would carry out such invocations. But

before moving on to the final case, two additional points are with noticing.

First, as discussed in section 5.2.5 and 9.2.1.2, procedures which contain such invocations will
often not themselves be invocable by methods of descendant types. We will shortly examine the

utility of “all parents’ invocation tc a programming methodology which facilitates such sharing.

Second, although the methods constructed by the standard Zetalisp algorithms never invoke
methods of ancestor types, they often have the effect of “interleaving' execution of ancestor °
metl{c;lds. For example, suppose two types have methods defined via : daemon combination on
:whopper and untyped local methods. If a child of both types uses :pro'gn combination to
construct the method, all four local methods will be invoked. Thus, if the methods of the two
parents are “independent” in even a stronger sense than the two described above, the resulting

method will behave as if the methods were sequentially invoked.

252

9.2.3 The pragmatic impact when all local methods of parents can be invoked

Sections 5.2.5 and 9.2.1.2 described the most useful way to define a method which invokes
procedures used in the invocation of methéds of ancestor types. T@e key idea was to
encapsulate the computation not performed by the ances;éz)r} in an augmentation procedure
which does not call the methods of any ancestor. The actual method calls the augmentation
procedures of the type and all ancestors, in addition to the method of the first type which defined
a method for the operation. In the example of chapter 2, this technique was used to define the

methods for initialization, move, set-min, set-max, and display.

The following is an assessment of how our subject languages support this style of method

design.

¢ In Star Mesa, augmentation procedures are realized as procedures defined in a
TRAIT module but not used as a method for any operation. Invoking the
augmentation procedures of a type and all ancestors requires the enumeration of all
ancestor types for which such procedures are defined. The disadvantages
described above still apply.

e In Smalitalk-82, the augmentation procedures are realized as methods for some
operation not germane to the abstraction, e.g., partialSetmin:. As in Star Mesa,
invoking the augmentation procedures of a type and all ancestors requires
enumerating each of the relevant types. It should be clear that al1.0p cannot be
used to invoke all the augmentation methods, since it invokes the methods of all
parents, not all ancestors. For example, if local methods for some aperation 0 were
defined for Point, BoundedPoint, and HistoryPoint, an invocation of a11.0 in
a local method of BHPoint would not invoke the local method for 0 of Point.

The above analysis indicates that an alllocals.Op invocation form with the
obvious semantics would be a useful addition to Smalltalk-82. Adding this new form
requires knowledge of how the multiple-superclass extension was implemented.
[Borninglngalls 82b] contains a brief overview of the technique used; the key idea is
to use the handler for “‘nonexistent operation’ errors to construct a method with the
appropriate semantics, then compile and install it in the appropriate class. The
reason why adding a new invocation form is not trivial is that the addition and
removal of methods of a class must t igger the recompilation of appropriate methods
of descendant classes. A considerable amount of bookkeeping is required to do so.

¢ In Loops, the augmentation procedures are also realized as methods for abstraction-
irrelevant operations. The key difference from Smalltalk-82 is that it is
straightforward to define a procedure which invokes all local methods of the
ancestors of a type; such a procedure is defined in figure 2-5. Thus, ancestor

' enumeration is no longer required. However, the need to define abstraction-

253

irrelevant methods is still present,”* and without a more sophisticated design than
given here, the search through the type hierarchy to compute the relevant local
methods will be expensive.

¢ In Zetalisp, the augmentation procedures can be defined in a number of different
ways. As we saw in section 6.5, the most general approach is to define them as
:whopper methods. But this is simply one alternative; for example, the scenario of
chapter 2 uses :before and :after methods as well. Whatever the approach, the
key point is that the method definition algorithms can construct the methods which
invoke all augmentation procedures of ancestors.

This approach does not involve the definition of pseudo-private generic operations.
It also does not require an additional definition for the first method which requires
sharing. The problem is that the algorithm does not necessarily allow top-down
invocation, due to the algorithm used to compute the components list. Section
6.5.4.2 described a straightforward modification o Zetalisp which solves this
problem.

9.3 Future work

The work reported here can be extended in a number of ways.

9.3.1 Immediate projects

o The most obvious first step would be to implement the suggested changes in the
subject languages and attempt to evaluate the results. Especially interesting
additions are adding object-specific methods to Loops (see section 5.5.4) and
(:whopper N) methods (described in section 6.5.3.3.3 to Zetalisp.

e Second, make the operation set and instance variable abstractions complete and
precise.

o Third, the analysis in this paper has focused solely on the impact of the four
languages on the programming process. But it is unrealistic to ignore the
computational resources needed for execution of the programs thus constructed.
Description and analysis of how the type systems described here are implemented
would be worthwhile.

e Fourth, it would be useful to extend the example of chapter 2 to include aiternative
realizations of the same abstraction and “mixin" flavors which can be applied to any
of them. For example, we could have two-dimensional points implemented by either
x/y or rho/theta coordinates, and have “history,” “bounded,"” and “bounds-history"
mixins which operate on all of them.

! 74Noliée that if the augmentation procedures were simply defined as ordinary pracedures, then it would be necessary
to enumerate the procedure names in order to invoke all of them.

254

9.3.2 Long-term goals

¢ The most important contribution which could be made to the use of inheritance-
based type delfinition is the ability to have static type checking without the need for
declarations (see section 9.1.2) for a discussion.

e Another important goal would be to attempt to measure the improvements in
programmer productivity supposedly deriving from the use of inheritance-based type
definition. The methodological barriers which must be overcome are considerable,
since the skill of the programmers, their familiarity with the language and the
prbgramming style, their acceptance of the language and style, and the inherent
complexity of the programming problem must all be controlled.

e Finally, a satisfying theoretical account of inheritance-based type definition would be
invaluable, since the considerable arsenal of mathematical analysis would then be
applicable. In all likelihood, this will require a number of years in which
unrealistically simple languages are studied and results are gradually pieced
together. In the long run, however, the insights eventually obtained through this
approach will almost certainly be well worth the wait.

255

References

[Allenetal 82] Allen, E. M., Trigg, R. M., and Wood, R. J.
The Maryland Artificial Intelligence Group Franz Lisp Environment.
Technical Report TR-1226, Computer Science Dept., Univ. of Maryland,
October, 1982.

[Bawden et al. 77]Bawden, A., Greenblatt, R., Holloway, J., Knight, T., Moon, D., Weinreb, D.
Lisp Machine progress repori.
Technical Report AIM-444, M.I.T. Artificial Intelligence Laboratory, August,
1977.

[Birtwhistle et al. 73]
Birtwhistle, G. M., Dahl, O.-J., Myhraug, B., and Nygaard, K.
Simula Begin.
Auerbach Press, 1973.

[Bishop 77] Bishop, P.
Computer systems with a very large address space and garbage ccllection.
Technical Report TR-178, MIT Laboratory for Computer Science, May, 1977.

[BobrowStefik 83] Bobrow, D., and Stefik, M.
The Loops manual.
Technical Report, Xerox PARC, December, 1983.

{BoorowWinograd 77a]
: Bobrow, D. and Winograd, T.
An overview of KRL, a knowledge representation language.
Cognitive Science 1(1):3-46, 1977.

[BobrowWinograd 77b]
Bobrow, D. and Winograd, T.
Experience with KRL-0: one cycle of a knowledge representation language.
In 5/JCAI, pages 213-222. International Joint Conferences on Artificial
Intelligence, 1977.

[BoehmDemersDonahue 80}
Boehm, H., Demers, A., and Donahue, J.
An informal description of Russell.
Technical Report 80-430, Department of Computer Science, Cornell
University, October, 1980.

[Borning 81] Borning, A.
The programming language aspects of Thinglab, a constraint-oriented
simulation laboratory.
ACM Transactions on Programming Languages and Systems :353-387,
October, 1981.

256

[Borninglngalls 82a]
Borning, A. and Ingalls, D.
A Type Declaration and Inference System for Smalltalk.
In Conference Record of the Ninth Annual ACM Symposium on Principies of
Programming Languages, Albuquerque, New Mexico, pages 133-141.
ACM, January, 1982.

[Borninglngalls 82b]
Borning, A. H., and Ingalls, D. H. H.
Multiple inheritance in Smalitalk-80. .
In AAAI-82, pages 234-237. American Association for Artificial intelligence,
1982.

¢

[Brachman 78] Brachman, R.
A structural paradigm for representing knowledge.
Technical Report 3605, BBN, May, 1978.

[BrachmanFikesLevesque 83]
Brachman, R., Fikes, R., and Levesque, H.
Krypton: a functional approach to knowledge representation.
Technical Report Technical Report 16, Fairchild Laboratory for Artificial
Intelligence Research, May, 1983.
An abridged version appears in IEEE Computer, September, 1983.

[BrachmanSchmolze 84]
' Brachman, R., and Schmolze, J.
An overview of the KL-ONE knowledge representation system.
Cognitive Science , Fall, 1984.

[Branquart et al 71]
. Branquart, P., Lewi, J., Sintzoff, M., and Wodon, P.L.
The composition of semantics in Algol 68.
Communications of the ACM 14(11):657-708, November, 1971.

[BrodieZilles 81] Brodie, Michael L., and Zilles, Stephen N. (editor).
Proceedings of the workshop on data abstraction, databases, and conceptual
modelling.
ACM, 1981.
Published as the January 1981 SIGART Newsletter and SIGPLAN Notices, and
the February 1981 SIGMOD Record.

[Cannon 82] Cannon, H.
Flavors: a non-hierarchical approach to object-oriented programming.
Technical Report, Symbolics, Inc. internal memo, 1982.

[Cheatham 81] Cheatham, T.E.
An overvew of the Harvard program development system.
In Hunke, H. (editor), Software Engineering Environments, . North-Holland,
1981.

257

[Curry et ai.82] Curry, G., Baer, L., Lipkie, D., and Lee, B.
Traits: an approach to multiple-inheritance subclassing. .
In SIGOA Conference on Office Information Systems, pages 1-9. SIGOA,
1982. :

[CurryAyers 83] Curry, G.A., and Ayers, R.M.
Experience with traits in the Xerox Star workstation.
In Workshop on reusability in programming, Newport, R.I., pages 83-96.
Advance papers, September, 1983.

[Dahl 68] Dahl, O.-J.
Simula 67 common base language.
Publication S-22, Norwegian Computing Center, Oslo, 1968.

[Demers et al. 78] Demers, A., Donahue, J., and Skinner, G.
Data types as values: polymorphism, type-checking, and encapsulation.
In Fifth ACM symposium on the principles of programming languages, pages
23-30. Association of Computing Machinery, 1978.

[Drescher 84] Drescher, G.
. ObjectLisp.
Technical Report in preparation, MIT Artificial Intelligence Laboratory, 1984.

[GalleyPfister 79] Galley, S. W., and Pfister, G.
The MDL programming language
. 1979.
[GeschkeMorrisSatterthwaite 77]
Geschke, C. M., Morris, J. H., Jr, and Satterthwaite, E.

Early experience with Mesa.
Communications of the ACM 20(8):540-553, August, 1977.

[Goldberg 83] Goldberg, A.
The Smalitalk-80 interactive programming environment.
Addison Wesley, 1983.

[GoldbergKay 76] Goldberg, A., and Kay, A. (eds.).
Smalltalk-72 instruction manual.
Technical Report SSL 76-6, Xerox PARC, March, 1976.

[GoldbergRobson 83]
Goldberg, A., and Robson, D.
Smalltalk-80: the language and its implementation.
Addison Wesley, 1983.

{(GoldsteinBobrow 80]
Goldstein, I., and Bobrow, D.
A layered approach of software design.
Technical Report CSL-80-5, Xerox PARC, December, 1980.

258

[GoldsteinRoberts 77]
Goldstein, I., and Roberts, R.
Nudge: a knowledge-based scheduling program.
In 5/JCAI, pages 257-263. International Joint Conferences on Artificial
Intelligence, 1977.

[Gordon et al. 79] Gordon, M., Milner, A., and Wadsworth, C.
Edinburgh LCS -- a mechanised logic of computation.
In (editor), Lecture notes in compter science 78, . Springer-Verlag, 1979.

[GreinerLenat 80] Greiner, R., and Lenat, D.
A representation language language.
In AAAI-1, pages 165-169. American Association for Artificial Intelligence,
1980.

[Guttag 80] Guttag, J.
Notes on type abstraction (version 2).
IEEE Transactions on Software Engineering SE-6(1):13-23, January, 1980.

[GuttagHorning 78]
Guttag, J., and Horning, J. J.
The algebraic specification of abstract data types.
Acta Informatica 10(1):27-52, 1978.

[GuttagHorning 80]
Guttag, J., and Horning, J.J.
Formal specification as a design tool.
In Seventh ACM symposium on the principles of programming languages,
pages 251-261. Association of Computing Machinery, 1980.

[GuttagHorning 83]
Guttag, J., and Horning, J. J.
Preliminary report on the Larch shared language.
Technical Report, Massachusetts Institute of Technology Laboratory for
Computer Science, August, 1983.

[GuttagHorowitzMusser 78]
Guttag, J., Horowitz, E., and Musser, D. R.
Abstract data types and software validation.
Communications of the ACM 21{12), December, 1978.

[Haase 84] Haase, K.
ARLO: the implementation of a language for describing representation

languages.
M.L.T. S.B. thesis, June, 1984.

[Hewitt 77] Hewitt, C.
Viewing control structures as patterns of passing messages.
Al Journal 8(3):323-364, 1977.

259

[HewittAttardiLieberman 79]
Hewitt, C., Attardi, G., and Lieberman, H.
Security and Modularity in Message Passing.
In First International Conference on Distributed Computing, Huntsville, Ala..
1979.

[HewittBishopSteiger 73]
Hewitt, C., Bishop, P., and Steiger, R. .
A universal modular actor formalism for artificial intelligence.
In 1973 International Joint Conference on Artificial Intelligence, pages
235-245. , 1973.

[Hoare 72] Hoare, C. A.R.
Proof of Correctness of Data Representations.
Acta Informatica 1:271-281, 1972.

[Holloway et al. 74]
Holloway, G., Townley, J., Spitzen, J., and Wegbreit, B.
ECL programmer's manual.
Technical Report 23-74, Center for Research in Computing Technology,
Harvard University, December, 1974.

[IBM 64] " International Business Machines, Inc.
PL/1language reference manual
1964.

[Ichbiah, J. D., et al. 79]
Ichbiah, J. D., et al.
Preliminary Ada reference manual.
SIGPLAN Notices 14(6A), June, 1979.

[Ingalls 78] " Ingalls, D. H. .
The Smalltalk-76 programming system: design and implementation.
In Fifth Annual ACM Symposium on Principles of Programming Languages,
pages 9-16. ACM, 1978.

[IntelliGenetics 83]
IntelliGenetics, Inc.
KEE User's Manual [Preliminary Edition]
1983.

[Knuth 69] Knuth, D.
The Art of computer programming: fundamental algorithms.

AddisonWesley, 1969.

[Lampson et al. 77]
Lampsor, B. W., Horning, J. J., London, R. L., Mitchell, J. G., and Popzk, G. L.

Report on the programming language Euclid.
SIGPLAN Notices 12(2), February, 1977.

260

[LauerSaiterthwaite 79]
Lauer, H. C., and Satterthwaite, E. H.
The impact of Mesa on system design.
In Fourth International Conference on Software Engineering, pages 174-181.
IEEE, 1979.

[Lieberman 80] Lieberman, H.
A preview of Act 1.
Technical Report AIM-728, M.L.T. Artificial lntelhgence Laboratory, April, 1980.

 [Lipkie et al. 82] Lipkie, D. E., Evans, S. R., Newlin, J. K., and Weissman, R. |.
Star graphics: an object-oriented implementation.
Computer Graphics 16(3):115-124, July, 1982,

[Liskov et al. 79] Liskov, B. H., Moss, J. E. B., Schaffert, J. C., Schiefler, R. W., and Snyder, A
Clu reference manual
1979.

[LiskovBerzins 79]
Liskov, B. H. and Berzins, V.
_ An appraisal of software specifications.
In Wegner, P. (editor), Research directions in software technology, . MIT
Press, 1979.

[LiskovZilles 74] Liskov, B. H., and Zilles, S. N.
' . Programming with abstract data types.
In SIGPLAN symposium on very high level languages, pages 50-59. SIGPLAN
Notices, 1974.
Published in SIGPLAN Notices, April 1974,

[London et al. 76] London, R. L., Shaw, M., and Wulf, W. A.
Abstraction and verification in Alphard: a symbol table example.
Technical Report, Information Sciences Institute, USC, December, 1976.

[London et al. 78] London, R.L., Guttag, J.V., Horning, J.J., Lampson, B.W., Mitchell, J.G., and
Popek, G.J.
Proof rules for the programming language Euclid.
Acta Informatica 10(1):1-26, 1978.

[McLeod 79] McLeod, D.
A semantic data model and its associated structured user mterface

Technical Report TR-214, MIT Laboratory for Computer Science, March, 1979.

[Milner 78] Milner, R.
A theory of type polymorphism in programming.
Journal of Computer and System Sciences 17:348-375, 1978.

[Minsky 74] Minsky, M.
A framework for representing knowledge.
Technical Report TR-306, M.L.T. Artificial Intelligence Laboratory, June, 1974.

[Mltchell et al. 79] Mitchell, J. G., Maybury, W., Sweet, R.
Mesa language manual
1979.

L4

261

[MoonStailmanWeinreb 84]

[Morris 73]

[Naur 63]

[Novak 82]

[Novak 83a]
[Novak 83b]
[Pitman 83]
[R;aes et al. 84]
[Rentsch 82]

[Reynolds 74]

[Rich 81]

[Seybold 81]

Moon, D., Stallman, R., and Weinreb, D.
Lisp machine manual
1984.

Morris, J. H., Jr.

Types are not sets.

In First ACM symposium on the principles of programming languages, pages
120-124. ACM, 1973.

Naur, P. (ed.).
Revised report on the algorithmic language A!gol 60.
Communications of the ACM 6(1):1-17, January, 1963.

Novak, G. ,

Glisp: a high-level language for Al Programming.

In AAAI 82, pages 238-241. American Association for Artifical Intelligence,
1982.

Novak, G.
Glisp user's manual
1983.

Novak, G.
Glisp.
Al Miagazine 4(3):37 ff., Fall, 1983.

Pitman', K.
Revised Maclisp reference manual.
Technical Report TR-295, MIT Laboratory for Computer Science, May, 1983.

Rees, J., Adams, N., and Meehan, J.
The T reterence manual (fourth edition)
1984,

Rentsch, Tim.
Object-oriented programming.
SIGPLAN Notices 17(9):51-57, Sept, 1982.

w

Reynolds, J. C.

Towards a theory of type structure.

In Lecture Notes in Computer Sciences 19, pages 408-425. Springer-Verlag,
1974.

Rich, C.
Inspection methods in programming.
Technical Report TR-604, MIT Artificial Intelligence Laboratory, June, 1981.

Seybold, J.
The Xerox Star: a "professional’ workstation.
Seybold Report-4(5), May, 1981.

262

[Shaw et al. 76]

[Shoch 79]

[Smith 83]

[SmithSmith 77]

[Standish 67]

[Steele 80]

[Steelé et al. 83]

[Stefik 78]

[Stefik et al. 83a]

[Stetik et al. 83b]

Shaw, M., Wulf, W. A, and London, R.L.:
Abstraction and verification in Alphard: iteration and generators.
Technical Report, Information Sciences Institute, USC, August, 1976.

Shoch, J.
An overview of the programming language Smalltalk-72.
SIGPLAN Notices 14(9):64-73, September, 1979.

Smith, B. C.
Reflection and semantics in a programming language.
Technical Report TR-272, MIT Laboratory for Computer Science, 1983.

Smith, J. M., and Smith, D. C. P.
Database abstractions: aggregation.
Communications of the ACM 20(6), June, 1977.

Standish, T. A.
A data definition facility for programming languages.
PhD thesis, Carnegie Institute of Technology, May, 1967.

Steele, G. L., Jr.

The definition and implementation of a computer programming language
based on constraints .

Technical Report TR-595, Massachusetts Institute of Technology Artificial
Intelligence Laboratory, August, 1980.

Steele, G., et al.

Common Lisp reference manual.

Technical Report (unnumbered), Spice Project, Department of Computer
Science, Carnegie-Mellon University, November, 1983.

- Stefik, M.

An examination of a frame-structured representation system.
Technical Report HPP-78-13, Stanford Heuristic Programming Project, Sept,
1978.

Stefik, M., Bobrow, D., Mittal, S., Conway, L.
Knowledge programming in Loops.
Al Magazine 4(3):3-13, Fall, 1983.

Stefik. M., Babrow, D., Mittal, S., and Conway, L.
Knowledge progrmming in Loops.
Al Magazine 4(3):3-13, Fall, 1983.

[SussmanSteele 78a]

Sussman, G., and Steele, G.
The revised report on Scheme, a dialect of Lisp.
Technical Report 452, M.L.T. Artificial Intelligence Laboratory, January, 1978.

[SussmanSteele 78b]

Sussman, G., and Steele, G.

The art of the interpreter, or, The modularity complex (parts zero, one and
two).

Technical Report 453, M.L.T. Artificial Intelligence Laboratory, May, 1978.

263

[SussmanSteele 80]

[Sutherland 63]

[Suzuki 81]

[Symbolics 84]

[Teitelman 78]

[Tennent 77}

[Theriault 83]

[Touretzky 84]

Sussman, G., and Steele, G. '
Constraints: a language for expressing almost-hierarchical descriptions.
Artificial Intelligence 14:1-39, 1980.

Sutherland, I.
Sketchpad: a man-machine graphical communication system.
PhD thesis, Masachusetts Institute of Technology, 1963.

Suzuki, N.

Inferring Types in Smalitalk.

In Conference Record of the Eighth ACM Symposium on Principles of
Programming Languages, pages 187-199. ACM, January, 1981.

Symbolics, Inc.

Lisp Machine Manual
Cambridge, Mass., 1984.
Eight volumes.

Teitelman, W.
Interlisp reference manual
1978.

Tennent, R. D.
Or. a new approach to representation independent data classes.

. Acta Informatica 8:3i5-324, 1977.

Theriault, D.
Issues in the design and implementation of Act 2.
1echnical Report TR-728, M.I.T. Artificial Intelligence Laboratory, June, 1983.

Touretzky, D,
The mathematics of inheritance systems.
PhD thesis, Carnegie-Mellon University, 1984,

[WatermanHayes-Roth 78]

Waterman, D., and Hayes-Roth, F. (eds.).
Pattern-directed inference systems.
Academic Press, 1978.

[Wegbreit 70] Wegbreit, B.

Studies in extensible programming languages.

PhD thesis, Harvard University, 1970.
[Wegbreit 74] Wegbreit, B.

The treatment of data types in EL1.

Communications of the ACM 17(5):251-264, May, 1974.
[WeinrebMoon 80]

Weinreb, D. and Moon, D.

Flavors: message passing in the Lisp Machine.

Technical Report AIM-602, M.I.T. Artificial Intelligence Laboratory, November,
1980. '

264

[WeinrebMoon 81]

Weinreb, D., and Moon, D.
Lisp machine manual, fourth edition
1981.

[WellsCornwall 76]

[Wirth 80}

[Wood 82]

[Wult et ai. 76]

[XeroxLRG 81]

[Zippe! 83]

Wells, M. B., and Cornwall, F. L.

A data type encapsulation scheme utilizing base language operators.

In Proceedings of: Conference on data: abstraction, definition, and structure,
pages 170-178. ACM SIGPLAN/SIGMOD, 1976.

Published as a special 1976 issue of SIGPLAN Notices.

Wirth, N.
Modula-2. ,
Technical Report, Institut fur Informatik, ETH Zurich, March, 1980.

Wood, R. J.

Franz flavors: an implementation of abstract data types in an applicative
language. .

Technical Report TR-1174, Department of Computer Science, University of
Maryland, June, 1982.

Wulf, W. A., London, R. L., Shaw, M.

Abstraction and verification in Alphard: introduction to language and
methodology.

Technical Report, Information Sciences Institute, USC, June, 1976.

Learning Research Group, Xerox PARC.
The Smalitalk-80 system.
Byte 6(8), August, 1981.

Zippel, R.
Capsules.
In SIGPLAN 83. SIGPLAN, 1983.

265

