
Learning Emergent Gaits with Decentralized Phase Oscillators:
on the role of Observations, Rewards, and Feedback

by

Jenny L. Zhang

S.B. Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Jenny L. Zhang. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to
exercise any and all rights under copyright, including to reproduce, preserve, distribute and

publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Jenny L. Zhang
Department of Electrical Engineering and Computer Science
January 19, 2024

Certified by: Sangbae Kim
Professor of Mechanical Engineering, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee
Department of Electrical Engineering and Computer Science

https://creativecommons.org/licenses/by-nc-nd/4.0/


2



Learning Emergent Gaits with Decentralized Phase Oscillators: on the role
of Observations, Rewards, and Feedback

by

Jenny L. Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

We present a minimal phase oscillator model for learning quadrupedal locomotion. Each of
the four oscillators is coupled only to itself and its corresponding leg through local feedback of
the ground reaction force, which we interpret as an observer feedback gain. The oscillator itself
is interpreted as a latent contact state-estimator. Through a systematic ablation study, we show
that the combination of phase observations, simple phase-based rewards, and the local feedback
dynamics induces policies that exhibit emergent gait preferences, while using a reduced set of
simple rewards, and without prescribing a specific gait.
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Chapter 1

Introduction

1.1 Motivation

Quadrupedal animals exhibit a variety of gaits, or pattern of footfalls, and the choice of gaits has

been linked to energetics, speed of travel, morphology, etc. [1]–[3]. Quadrupedal robot controllers,

on the other hand, are typically designed around a fixed contact sequence, for a number of reasons.

First, the energetic difference between gaits for robots has been shown to be inconsequential [4],

[5]. Perhaps more importantly, a single gait greatly simplifies the controller design; for conven-

tional model-predictive control, pre-specifying the contact sequence [6], [7] allows a significantly

simpler problem to be solved. Model-free reinforcement learning (RL) side-steps the computa-

tional burden of reasoning over different contact sequences. Nonetheless, RL typically requires

extensive reward shaping and regularization, which is often encoded in a time-indexed reference

trajectory based on a fixed gait, either as a nominal trajectory [8]–[10] or a reward [11]. A periodic

clock observation is then necessary to maintain the Markov property of the reference. We postulate

that fixing gaits is not required to yield consistent locomotion policies, and that optimal gaits can

emerge from a policy rather than being pre-defined during training.

15



1.2 Related Work

It is generally difficult to design shaping rewards that capture a general high-level notion, in our

context “locomote with a regular gait”, without over-specifying the solution. Siekmann, Godse,

Fern, et al. [12] proposed a simple phase-based reward to encourage stance or swing at any phase

difference for their bipedal robot Cassie, and demonstrated this policy can then track any desired

gait by simply adjusting the phase difference between the legs accordingly. Similar work has

applied this type of reward to quadrupeds as well [13], [14]. In these cases, the actual gait choice

is removed from the policy, which is essentially treated as a low-level policy. Instead, the phase

difference needs to be specified by the user or a high-level policy [15].

A popular approach to achieving specific phase differences is to augment the state space with a

network of coupled phase oscillators called central pattern generators (CPGs) [16]. In its simplest

form, the dynamics of the oscillators are designed to exhibit stable limit cycles, and the resulting

phases are mapped to values relevant to the robot controller, typically desired kinematics. In

essence, this is a generalization of time-indexed trajectories. Thus, this yields locomotion behavior

that converge to a known limit cycle that was designed for. Despite the often simpler and lower-

dimensional design space of the phase oscillators (compared to the space of reference trajectories

in joint space), it can still be difficult to design the oscillator dynamics and mapping [17]. Recent

works have instead opted to learn the coupling, while fixing the mapping from the phase to robot

states [15], [18]. This approach complements the phase-based low-level policies, and CPGs are

often interpreted as feed-forward reference generators [19]. An alternative view, recently proposed

by Ryu and Kuo [20], interprets the CPG as an observer, with reflex-like sensory feedback playing

the role of the observer gain.

16



1.3 Contribution

We present an implementation of decentralized phase oscillators based on the work of Owaki,

Kano, Nagasawa, et al. [21], and, based on the observer-interpretation of Ryu and Kuo [20], treat

the oscillator phase as a loose estimate of whether each leg should be in swing or stance. Based on

this interpretation, we use a reward similar to Siekmann, Godse, Fern, et al. [12] to encourage the

policy and phase oscillators to entrain.

The three key signals afforded by our architecture, represented in Fig. 1.1 with blue arrows,

are the phase observation which renders feed-forward policies Markov, the phase rewards that

encode the high-level gait properties of duty factor and nominal frequency, and the local feedback

through the ground reaction force coupling the oscillator dynamics and the policy. We will show

the importance of each of these through a systematic ablation.

We combine gait tracking and gait choice in a single policy by mapping the oscillator signals

to swing and stance phases and updating oscillator phase values according to dynamics that are

dependent on forces felt by each foot. Our approach using all three signals yields a deep reinforce-

ment learning policy using minimal reward shaping that naturally transitions between balanced

4-legged gaits, comes to a standstill without special rewards that toggle on for low velocity com-

mands, and successfully recovers from large impulse disturbances.

17
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Chapter 2

Preliminaries

We briefly explain deep reinforcement learning in the context of quadrupedal robot locomotion.

We also introduce gaits and pattern generation based on phase oscillators, as key background

knowledge specific to our work.

2.1 Reinforcement Learning

We use the deep RL Proximal Policy Optimization (PPO) algorithm [22] to optimize two networks

in the Asynchronous Advantage Actor Critic (A3C) architecture [23]. The actor network is the

policy that is being trained, with the input as a set of state and environment observations, and

the output typically as desired joint position setpoints for the legged robotics application. The

policy’s goal is to output the optimal action that leads to receiving the highest total infinite-horizon

reward, with future rewards discounted by some factor. The critic network is used to estimate the

value function of expected reward from being in a given observable state, which can contain more

information than the actor can observe. The networks are updated by using actual rewards received

by many asynchronous agents in parallel environments that take experimental actions informed

by the actor in the IsaacGym physics simulator. By recording the states, actions taken, rewards

received, and subsequent states in an on-policy fashion, the critic can be updated to minimize the

difference between expected value and actual rewards. The actor is then updated, knowing the

19



"advantage", or how much more reward was actually received by taking certain actions compared

to the expected value solely from being in the initial state. For the interested reader, we also

recommend [24], [25].

2.2 Gaits

A gait is defined as a pattern of movement. For the scope of this paper, we restrict ourselves

to quadrupedal gaits, which are defined by the pattern of stance phases [3]. In the rest of this

paper, we will define gaits by the relative phase difference (RPD); using the right front (RF) foot

as the reference, we first define the gait cycle length as the time between consecutive RF foot

touchdowns, normalized to 2π. For example, a trotting gait is defined by a diagonally opposed

pair of feet contacting the ground at the same time, regardless of the kinematic trajectories the legs

take during swing. We then calculate the RPD as a 3D vector, composed of the time difference

between touchdowns of the left front (LF), right hind (RH), and left hind (LH) feet to the RF

reference foot, normalized by the gait cycle length. Each gait is fully defined by these three values

in Euclidean space. We visualize the ideal symmetric gaits Trot (π, π, 0), Pace (π, 0, π), Bound

(0, π, π), Pronk (0, 0, 0) in Fig. 4.8.

We classify gaits by averaging the RPD over two gait cycles every 5 seconds, then taking the

closest ideal gait within the set of symmetric quadruped gaits by Euclidean distance in the 3D

phase difference space. If the distance to the closest ideal gait is above a threshold of 2, we classify

the RPD as being in Transition.

2.3 Phase-based Pattern Generation

We will distinguish between clocks, central pattern generators (CPGs) without feedback, CPGs

with feedback, and decentralized oscillators (which are driven by feedback by definition). Each of

these is a special case of a system of oscillators with state ϕ ∈ [0, 2π)n, where n ∈ N is the number

20



of oscillators, and

ϕ̇i = ω + f(ϕj, xj), j ∈ C(i)

u = g(ϕj, xj)

for i ∈ {1, . . . , n}, and C(i) ⊂ {1, . . . , n}

(2.1)

where ω is a nominal frequency, x is the system state, f() is a function that determines the dynamics

properties, g() is a mapping function to some control-relevant input u, and the set C() indicates

which oscillators are directly coupled. We will generally consider the case where there is one

oscillator per leg, that is n = 4 for a quadruped.

2.3.1 Clocks: f() = 0

This degenerate choice for f() reduces the oscillator to a clock with a constant growth rate ω.

Though sometimes called CPGs [8], we distinguish this setting as it makes no use of the state and

dynamics of the oscillator: most of the burden is placed on designing the map g(). This is the min-

imal form needed to make a cyclic feed-forward pattern Markov. Because of the 1-dimensionality

of the clock, a phase-only mapping g(ϕ) can index a pre-specified reference trajectory. Siekmann,

Godse, Fern, et al. [12] use this setup, and learn the mapping function g(ϕ, xj), using the clock as

both an observation and to design a simple reward function.

2.3.2 CPGs without feedback: f() = f(ϕj)

This form provides a pure feed-forward pattern, and allows the engineer to design the oscillator dy-

namics, such as limit cycles and convergence properties [17], [26], unencumbered by the physical

dynamics of the robot. This can significantly simplify design, especially if a high-level controller

can switch between multiple f() [27]: the engineer can ensure smooth transitions by simply en-

forcing the desired properties in the phase oscillator space, and given a smooth mapping g(ϕ),

retain those properties in the generated reference trajectory. On the other hand, once the phase

21



has converged to the limit cycle, this setup effectively acts as a clock, as the phase oscillator state

cannot be affected by the physical states.

2.3.3 CPGs with feedback: f() = f(ϕj, xj)

Coupling the phase oscillator and physical states fully exploits the dynamics properties of the phase

oscillator, but also makes designing useful dynamics more difficult. Nonetheless, even relatively

simple, local feedback has been shown to greatly improve performance [28], [29]. Several studies

have relied on RL to learn f() [15], [18]. Ryu and Kuo [20] also use this form, but re-interpret it

as a state estimator, with the state feedback acting as the observer gain. We rely heavily on this

interpretation.

2.3.4 Decentralized Oscillators: C(i) = {FR, FL, HR, HL}

This is a special case where f() = f(ϕi, xi): each oscillator is only affected by feedback from itself

and sensory information from its corresponding leg. Set C(i) for each oscillator is a singleton set

indicating direct coupling only to itself. As we are working with a quadruped system, we refer to

the set of legs as Front Right (FR), Front Left (FL), Hind Right (HR), and Hind Left (HL). Despite

lacking direct coupling between oscillators, such systems can still synchronize due to the indirect

coupling through local physical feedback [21], [30]. Our work uses this setup, and in particular a

form based on the so-called Tegotae feedback model proposed by Owaki, Kano, Nagasawa, et al.

[21]:

f() = −σFGRF
i (cos (ϕi)) (2.2)

where σ is a feedback gain, and FGRF
i is the ground reaction force felt at foot i.

This model captures the essence of a gait (frequency, swing/stance phases) without specifying

any details. Indeed, it would be difficult to predict any specific gait when looking at Eq. (2.2). This

type of decentralized oscillators has been shown to not only converge to gaits, but also switch gaits

depending on forward velocity [21], [31].
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We use a variation of this oscillator with the interpretation proposed by Ryu and Kuo [20], that

each phase is a latent observation of whether the corresponding leg should be in stance or swing,

and σ in Eq. (2.2) is an observer gain.
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Chapter 3

Implementation Details

We train policies and collect simulation data in IsaacGym, using a fork of legged_gym by Rudin,

Hoeller, Reist, et al. [24], and proximal policy optimization. Our code can be accessed at ORCAgym1

for implementation details, hyperparameters, and instructions to reproduce our results.

Figure 3.1: IsaacGym training environment with MIT Mini Cheetah models.

1https://github.com/mit-biomimetics/ORCAgym
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3.1 Robot

We use the MIT Mini Cheetah robot [32] in simulation and for hardware transfer. The Mini Chee-

tah has 12 degrees of freedom, with 3 joints (abduction/adduction, hip, and knee) on each of the 4

legs (Front Right, Front Left, Hind Right, Hind Left). For all results presented in the paper, which

rely on large-scale data collection for statistical analysis, we use simulation results. Simulation

transfer to Robot Software, an in-house simulator, is done to check the policies before attempting

hardware transfer. Preliminary tests on hardware can be seen in the supplementary video2.

Figure 3.2: Robot Software simulation environment with MIT Mini Cheetah while testing exported deep reinforcement
policy controller.

2https://youtu.be/RBGQat5JV 8
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3.2 Training

We train each policy on 4096 environments simultaneously for 2000 iterations using the PPO

algorithm. Both actor and critic networks have 3 hidden layers of sizes [256, 256, 128], using the

ELU activation function. Trained policies are exported to the ONNX format to load and evaluate

in real time on hardware.

3.2.1 Observation Space

The policy is given standard state observations composed of the base angular velocity, projected

gravity vector, joint positions and velocities, the previous actions, and the desired base linear and

angular velocity commands. When not ablated, the observations also include the phase oscillator

observations [sin (ϕi) , cos (ϕi)] , i ∈ {FR,FL,HR,HL}. We provide the sine and cosine of each

oscillator value to avoid discontinuous jumps from wrapping the phase around from 2π to 0 at

each cycle. The critic is additionally given the base height and linear velocity as well as the current

oscillator velocity as privileged information.

The commanded velocity for each individual environment is resampled every 3 seconds. A

forward velocity is uniformly randomly chosen from an array of values [-3, -1, 0, 1, 3], then a

value sampled from a normal distribution centered at 0 with standard deviation 1 is added to the

nominal velocity.

3.2.2 Action Space

The policy outputs desired joint positions at 100 Hz (δtcontrol = 0.01s), which are fed into a low-

gain PD-controller with Kp = 20 and Kd = 0.5 running at 500 Hz.
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Table 3.1: Actor and Critic Observations

Observation Dimension Symbol

Actor Observations

joint positions 12 x

joint velocities 12 ẋ

body orientation 3 g⃗

body angular velocity 3 ωr, ωp, ωyaw

body linear velocity commands 2 vdesx , vdesy

body angular velocity command 1 ωdes
yaw

phase oscillators 8 sin(ϕi), cos(ϕi)

previous desired joint positions 12 xdes(t = −1)

Additional Critic Observations

body height 1 h

body linear velocity 3 vx, vy, vz

phase oscillator velocities 4 ϕ̇i

3.2.3 Rewards

Following standard conventions, we use positive rewards for the command tracking error, orienta-

tion error, and a minimum base-height error, all passed through a squared exponential function. In

addition, we regularize with negative rewards on the square of the torques, first and second-order

action smoothness, and the hip abduction/adduction joints deviating from the resting position. Fi-

nally, body collisions with the ground terminate the episode and incur a flat penalty.

When not ablated, we also add the phase-based reward

rgait(x) = −FGRF
i sin (ϕi) (3.1)

which penalizes foot contact when ϕi ∈ [0, π) and encourages contact during ϕi ∈ [π, 2π). Due
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Table 3.2: Reward Weights and Functions

Reward Weight Function

phase matched swing + stance 5 −FGRF
i sin (ϕi)

linear velocity tracking 4 e
−
((

vx−vdesx
1+|vdesx |

)2

+

(
vy−vdesy

1+|vdesy |

)2
)
/0.25

angular velocity tracking 2 e
−
(

ωyaw−ωdes
yaw

5

)2

/0.25

body orientation 1 e−g⃗2x/0.25 + e−g⃗2y/0.25

minimum base height 1.5 e
−
(

h−hdes
0.3

)2
/0.25

hip ab-ad joint regularization 0.0625 −
∑

j∈ab-ad joints

( xj

0.8

)2
torques minimization 5e-7 -

∑12
j=1 τ

2
j

first order smoothness 0.01 −
∑12

j=1

(xdes
j (t=−1)−xdes

j (t=−2))
2

(δtcontrol)2

second order smoothness 0.001 −
∑12

j=1

(xdes
j (t=−1)−2∗xdes

j (t=−2)+xdes
j (t=−3))

2

(δtcontrol)2

to the dynamics of the phase oscillator, this simple reward encourages two effects: first, to learn a

policy with roughly the oscillator nominal frequency ω, and second, to have consistent periods of

contact with all feet. We will see that the policy also learns to actively use the FGRF to ‘guide’ the

oscillators into stable gaits if the coupling is included during training.

Ground Reaction Force Estimation: Each FGRF
i value is normalized by robot mass and clamped

between [0, 1], such that σ values can be kept consistent for robots of different sizes. We also found

this mitigated issues caused by the highly inaccurate contact force estimates in IsaacGym. This

especially helped us when transferring the policy to hardware, as it caps the largest possible mag-

nitude of the the rate of change of the oscillators, limiting the effect of erroneous ground reaction

force estimates while running online.
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3.3 Decentralized phase oscillators

We add an offset term ξ to the original Tegotae feedback model from Eq. (2.2), so our oscillator

dynamics become

ϕ̇i = 2π
(
ω − σFGRF

i (cos (ϕi) + ξ)
)

(3.2)

Based on biological observations [33] and trial and error, the parameters ω, σ, and ξ are set to

[ω, σ, ξ](vx) =


[1, 4, 1] if |vx| ≤ 0.5

[min{1.5 + |vx|, 4}, 1, 0] otherwise
(3.3)

where vx is the commanded forward velocity. An ω value of 1 should yield an average gait fre-

quency of 1 Hz, where each foot strikes the ground about once a second. Increasing velocity

corresponds to increasing gait frequency until it gets capped at 4 Hz. Each phase ϕi is uniformly

randomized at the start of each episode.

During swing phase when the foot is in the air, it feels no ground reaction force and the cor-

responding oscillator advances at the nominal rate. If the oscillator is at the end of swing phase

or beginning of stance phase and feels a force on the corresponding foot, that means it is needed

to support the robot’s weight and the positive coupling term pushes the phase toward the middle

of stance phase faster. If the oscillator is at the end of stance phase or beginning of swing phase

and still feels a force on the corresponding foot, it is still important in supporting the robot and the

negative coupling term slows down the phase rate of change to keep it in stance for longer.

Standing still is a special case for which we want all oscillators to settle to a stable point in

stance. Rather than activating special rewards to minimize joint velocities when the commanded

velocity is low, we change the oscillator parameters to smoothly introduce a stable fixed point.

This allows the fixed point to be closer to the middle of the stance range [π, 2π) without using an

excessively large σ value, which can destabilize the oscillator by chattering between stance and

swing phases. This smoothing effect is illustrated in Fig. 3.4, with the blue line showing the actual
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phase velocity vs. phase function used during training for zero velocity commands.

Fig. 3.3 shows an agent transitioning from a trot to a standstill, with all four legs on the ground

consistently supporting the weight of the robot.

Figure 3.3: Frames showing transition from a trot moving forward to a standstill when commands and ω, σ, ξ values
switch, and the policy outputs actions to get the agent to come to a quick stop.
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Figure 3.4: For a well-balanced stand, each leg should be supporting about 0.25 of the robot mass, so we set FGRF =
0.25 when graphing the oscillator dynamics in stance phase when φ ∈ [π, 2π). The stable fixed point locations are
at the intersections of the colored lines with the x-axis. For the curve with σ = 4 and ξ = 0, the point at φ = 2π is
only marginally stable so it would not settle in stance. The limit of the fixed point as σ approaches +∞ when ξ = 0 is
3π/2, but drastically increasing σ alone introduces huge discrete jumps in φ that are destabilizing. Setting ξ = 1 with
σ = 4 caps φ̇ at the nominal 2πω, and places the fixed point directly in the middle of the stance phase. We achieve
stable standing performance with this formulation.
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Chapter 4

Observation, Reward, Coupling Ablation

We perform an ablation of the phase-based observations, rewards, and coupling by cutting their

respective signals during training. We will refer to each permutation as ORC(xxx), where each

entry is a boolean indicating whether the corresponding signal is present or not during training.

For example, ORC(110) indicates a policy that was trained with the phase observations and phase-

based rewards, but with the coupling term σ = 0. Note that ORC(110) is essentially the setting

used by Siekmann, Godse, Fern, et al. [12].

We skip the permutation ORC(001) as it is equivalent to ORC(000). For all other permutations,

we train and statistically analyze 10 policies each to answer three questions:

4.1) Which signals are needed to consistently learn gaits that distribute the load equally across all

legs?

4.2) How do the signals influence gait emergence?

4.3) How does each signal affect overall stability?

4.1 Balanced Leg Use

Ideally, a policy uses all four legs in a consistent and balanced way to propel itself without falling.

ORC(x0x) policies either don’t have oscillator observations or are not encouraged to use them

in any particular way. ORC(01x) policies are non-Markov as it appears to receive inconsistent
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rewards for performing the same action given its observable state. ORC(11x) policies trained with

both oscillator observations and rewards to encourage swing and stance during different ranges of

the oscillators have enough information to match phases with ground contact. We expect to see

more consistent leg use with the policies trained using ORC(11x), and more variability in the other

policies.

For each policy, 50 robots are initialized with random oscillator phases and rolled out in sim-

ulation with 1 m/s forward velocity command. We calculate the average FGRF
i over the entire 10

second episode for each leg separately. Randomly initialized oscillator phases result in different

behavior in the 50 agents for ORC(1xx) policies. Results from all 500 runs belonging to each

ORC configuration are aggregated into the same dataset. Each violin plot in Fig. 4.1 shows the

distribution of average FGRF
i experienced by each leg. Since FGRF

i is normalized by body weight,

perfectly balanced leg use yields average FGRF
i = 0.25 for all legs.

We can see that for all ORC configurations without observations and rewards working together,

the distributions of FGRF
i are very wide and have significant clusters around 0 for at least one

leg out of four. This corresponds to visual confirmation that the policies trained with those ORC

configurations often result in 2 or 3 legged gaits, where some feet are dragging or always kept in the

air, and therefore experiencing little to no FGRF
i over the roll-out. The pattern of two clusters around

the extremities of the distributions for each leg arises from inconsistent policies after repeated

training with the same setting. In some policies, the RF foot might always be in the air, while in

others the LF foot might always be in the air.

The phase observations and rewards strongly encourage ORC(11x) policies to use all four legs

cyclically without specifying the exact desired gait. Both configurations yield distributions that are

roughly centered around average FGRF
i = 0.25, showing that the leg use is well balanced over all

trials and policies.

ORC(110) experiments have slightly larger range compared to ORC(111), which may be at-

tributed to some randomly initialized asymmetric gaits requiring higher FGRF
i on some legs com-

pared to the others to track, since it cannot converge to a more symmetric gait without coupling.
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Figure 4.1: Each ORC configuration has 500 agents (50 per re-trained policy), and FGRF is averaged for each leg
across the entire episode. ORC(11x) policies show much more consistent and balanced leg use compared to all other
configurations, which tend to exhibit 2 or 3 legged gaits.

Figure 4.2: Frames from rolling out a ORC(000) policy, showing a 3 legged gait with the hind right leg lifted in the
air.

Figure 4.3: Frames from rolling out a ORC(010) policy, showing a 3 legged gait with the front right leg lifted in the
air.
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Figure 4.4: Frames from rolling out a ORC(100) policy, showing a 2 legged gait with front right and left hind legs
lifted in the air.

Figure 4.5: Frames from rolling out a ORC(110) policy, showing a regular trotting gait.

4.2 Emergence of Gaits

To evaluate gait emergence, we focus only on ORC(110) and ORC(111) policies, since we see from

Section 4.1 that other permutations rarely yield well-defined gaits. Each experiment evaluates a

single policy chosen at random, and includes 500 runs with randomized initial oscillator values,

rolled out over 40 seconds with a 1 m/s forward velocity command. We calculate the RPD as

described in Section 2.2, and assess gait preference by evaluating the RPD distribution at the end of

the roll-out. We verify that ORC(111) policies don’t ignore the phase observation by deactivating

the coupling at execution time. We further probe the role of the feedback coupling by activating it

for an ORC(110) policy, which was trained with no coupling.

Both ORC(111), visualized in Fig. 4.8a), and ORC(110) policies match their RPD to the oscil-

lator phases when the coupling is set to σ = 0, as expected. Phase differences are constrained to

remain constant during evaluation, so gaits cannot converge. We also test a few commonly known

symmetric gaits to verify the policy’s ability to track these.

When evaluating ORC(111) with coupling σ = 1 (same as during training), the gaits converge

within 10 seconds to their final preferred state, and we observe mostly trotting and pronking gaits
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Figure 4.6: Frames from rolling out a ORC(111) policy initialized to pacing with σ = 0.

Figure 4.7: Frames from rolling out a ORC(111) policy initialized to bounding with σ = 0.
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Figure 4.8: Initial and final RPD points are shown for 500 randomly initialized runs in each experiment. ORC(111)
evaluated with σ = 0 tracks the initial phases and cannot converge to any specific gait. ORC(111) evaluated with
σ = 1 exhibits strong convergence to trot and pronk, while ORC(110) evaluated with σ = 1 exhibits some convergence
around trot, but is more spread out compared to the final ORC(111) RPD.
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Figure 4.9: Relative Phase Differences at initialization, 5 seconds, 10 seconds, and 30 seconds for ORC(111) and
ORC(110) evaluated with σ = 1, showing more detailed RPD transitions over time.
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in tight clusters on Fig. 4.8b). Since the behavior of the policy influences the oscillators through

ground contacts, it can learn to manipulate the randomly initialized oscillators and phase lock into

desirable gaits faster.
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Figure 4.10: The distribution of gaits for 500 runs of ORC(111) with σ = 1 settles into both trot and bound quickly
within 10 seconds.

When evaluating ORC(110) with σ = 1, the policy continues to track the oscillators, which are

now also modulated by the feedback term that was not seen during training. The gaits that emerge

from this experiment have regions of attraction dictated by the oscillator dynamics, which high-

lights the role of the oscillator in determining the preferred gait. However, as shown in Fig. 4.8c),

the final gaits are clustered further away from the ideal phase differences of symmetric gaits com-

pared to the ORC(111) policy shown in Fig. 4.8b). We also see in Fig. 4.11 and Fig. 4.10 that

the ORC(110) (evaluated with coupling) takes nearly the entire 40 seconds to settle into gait its

preferred gait, whereas the ORC(111) policy settles in roughly 10 seconds.

Fig. 4.12 shows a pace to trot transition experienced by one of the runs from Fig. 4.10 by

plotting all FGRF
i from 0-10 seconds with respect to the oscillator phases of the RF reference

leg. The thick blue lines show FGRF
i during the first gait cycle and the thick orange lines show
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Figure 4.11: The distribution of gaits for 500 runs of ORC(110) with σ = 1 settles into trot slowly, with more
environments transitioning at the beginning but others continuing to slowly converge toward trot as runs with RPD
initialized further away become more trot-like over time due to the oscillator dynamics.

FGRF
i during the last gait cycle. As more gait cycles occur, the phase differences between the leg

oscillators change, indicated by the red and green dots showing the RF phase value at the time-step

when the corresponding leg’s oscillator crosses 0 and π respectively. Those dots do not exactly

overlap for the RF leg because of discrete time-step errors. The FGRF
i of each leg follows its own

phases, and over time the gait transitions to diagonal legs being in phase with each other, settling

into a trot.
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Figure 4.12: The ground reaction force FGRF
i is plotted for each foot relative to the RF φ, with initial gait cycles in

blue and progressing through time to orange. The oscillator 0 and π of each leg are shown with red and blue dots,
respectively. The bold cycles are the initial and final cycles, which show this run starting in pace with lateral feet
in phase and ending in trot with diagonal feet in phase. All swing and stance behavior obeys each leg’s respective
oscillator phase well, with non-zero FGRF falling between the green dot π crossings and red dot 2π crossings in every
gait cycle.
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4.3 Disturbance Rejection

To compare the overall effect on stability, we test how well each policy can reject a planar velocity

impulse applied to the body while being commanded to run at 3 m/s, with oscillators being ini-

tialized at random and allowed a 5 second settling period. To ensure that we apply perturbations

at all phases of the gait, we run 1800 trials per policy, and stagger the perturbations: every 0.01

seconds, a ball of impulse perturbations spaced at 10 degree intervals is applied to a different set

of 36 robots, over a period of 0.5 seconds.

Fig. 4.13 shows frames of an example of this experiment scaled down to a smaller number of

environments for rendering clarity.

Figure 4.13: Frames from impulse disturbance experiment on ORC(111) policy.

As all policies exhibit a frequency of roughly 4 Hz at this commanded speed, staggering the

perturbations ensures that we apply perturbations at different phases of the gait, with different

numbers of feet on the ground. We verified this frequency via a fast Fourier transform on the

joint positions for policies without phase observations. We then calculate the mean and standard

deviation of the failure rate across all ten policies learned for each permutation of ORC(xxx).

Failures are counted using terminations where the body of the robot model experiences a collision

force from the ground plane.

This entire process is repeated for 5 different impulse magnitudes. The failure rate means and

standard deviations, reported in Table 4.1, show that policies trained under ORC(111) consistently

have a lower failure rate compared to all other permutations.

Surprisingly, toggling on phase-based rewards seems to have a stronger impact than the phase-

based observations, even for cases such as ORC(010) and ORC(011) where the reward is not
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Table 4.1: Failure rate after velocity impulse disturbance (All values in %)

ORC 000 100 101 010 110 011 111

Im
pu

ls
e

m
ag

ni
tu

de
[m

/s
]

1.5 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
2.0 1.7 ± 2.5 4.1 ± 5.2 0.9 ± 1.2 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.1
2.5 11.0 ± 13.0 10.6 ± 9.1 7.2 ± 6.3 0.7 ± 0.7 0.7 ± 1.0 0.3 ± 0.4 0.4 ± 0.4
3.0 16.3 ± 12.4 17.5 ± 8.9 16.0 ± 10.2 3.2 ± 3.0 4.1 ± 3.6 3.2 ± 3.1 2.2 ± 1.7
3.5 25.0 ± 13.5 29.7 ± 12.7 24.0 ± 17.1 10.6 ± 8.0 13.8 ± 7.8 13.1 ± 9.2 7.4 ± 4.0

Markov. We conjecture that, when the reward is not Markov, it should be viewed as a stochastic

reward that still discourages chattering contacts or dragging feet, despite not signaling any specific

gait schedule.
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Chapter 5

Discussion

We presented an augmentation of the quadruped robot state space using one decentralized phase

oscillator per leg, a simple feedback coupling to the ground reaction force of the corresponding leg,

which can be interpreted as an observer gain. Through a systematic ablation study, we investigated

the importance of each phase-related signal: observations of the oscillator phase, phase-based

rewards to encourage distinct swing and stance phases, and feedback coupling.

Overall, ORC(111) policies trained with all three signals demonstrated the fastest convergence

to well-defined gaits, and were consistently the most robust to large impulse perturbations. We did

not find significant differences in local stability1 between the policies, which matches our experi-

ence in hardware that local stability is not a useful proxy for legged system ‘stability’. Bellegarda

and Ijspeert [18] reported more reliable sim-to-real transfer when learning a CPG with feedback,

although in their case the phase is directly mapped to desired kinematics with a pre-designed map-

ping. In future work, we hope to quantify the benefit of the phase oscillator observations for

sim-to-real.

ORC(110) policies trained with phase observations and rewards but no coupling showed only

slightly worse performance to those with coupling, while tracking the gait defined by whichever

phase-difference the oscillators are initialized in, similar to the results of Siekmann, Godse, Fern,

et al. [12]. However, although activating the coupling during evaluation does cause these policies
1Analysis of Floquet multipliers and rate of entropy decay were evaluated.
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Figure 5.1: Frames from rolling out a ORC(111) policy initialized to trotting with σ = 0 on MIT Mini Cheetah
hardware in grassy environment. The robot was stable in spite of terrain inconsistencies. Further preliminary hardware
tests are shown in the supplementary video.

to converge toward symmetric gaits, the convergence time is nearly four times slower. This ob-

servation suggests that the dual roles of control and estimation are not fully separated between the

oscillators and the policy, as it is in the linearized model presented by Ryu and Kuo [20]: the policy

is affected by the oscillator state, but can also learn to actively drive it towards a more stable gait if

trained with the coupling active. This also matches the observation of Ijspeert and Daley [19] that

CPGs may act as both an observer in addition to a pattern generator.

Surprisingly, we found that the reward signal has a stronger effect on stability than the phase

observations, despite being non-Markov in some ablations. Nonetheless, only when both observa-

tion and reward signals were present during training, did policies consistently train to exhibit gaits

with balanced load distribution among the legs.

5.1 Future Work

Anecdotally, before we introduced the offset term in equation (3.2), policies did not settle into

standing as well, but did appear to favor gaits other than pronking more compared to the results

presented. We conjecture that frequent standing causes the oscillators to all sync to stance, due

to the coupling term, and thus biases training towards pronking gaits. We also observed different

gaits to emerge more frequently at different velocities, or with different morphologies.

For example, Fig. 5.3 shows that the gait convergence distribution for the same ORC(110)

policy evaluated at a higher commanded velocity (3m/s) and ω = 4, σ = 1 has a higher proportion

of bounding than trotting, which previously dominated the lower velocity trials shown in Fig. 4.11].

Preliminary exploration into morphology effects show that increasing the leg shank length in
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Figure 5.2: The distribution of gaits for 500 randomly initialized runs of ORC(110) with = 1 evaluated at a higher
commanded velocity of 3m/s yields more agents that settle into a bounding gait.

the MIT Mini Cheetah URDF from the original 27cm to 29cm and 32cm during policy evaluation

(with all other parameters and initialization kept constant), can yield drastically different gaits

post-convergence. Fig. 5.3 shows the elongated collision bodies for the legs in the first row, and in

the second row a plot of the phase oscillator differences through time, which form neat limit cycles

in blue with some amount of error when the gait settles. The red dots on the 3D plots indicate

when the front right leg oscillator passes the same point in the [0, 2π) cycle. The last row plots the

normalized GRF felt by each leg over time, with the rising edges staggered differently showing

that the robots don’t converge to the same gait.

Although quantifying the exact convergence and transition patterns is out of the scope of this

paper, we recognize the potential for exploring differences in the distribution of preferred stable

gaits when these parameters change along with robot morphology. Studying the effects of physical

parameters such as center of mass location and leg length on gait emergence for a quadruped robot

and verifying convergence patterns on hardware could yield fascinating connections to gait patterns

observed in nature for animals of different sizes [33].
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Figure 5.3: All else kept constant, increasing the leg shank length of the robot can drastically change the final gait
oscillator phase limit cycle convergence and the corresponding footfall pattern.
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Another avenue we find intriguing is the role oscillators may play in a hierarchical RL set-

ting. Higher levels of hierarchy typically reason in both a lower-dimensional space and at a slower

timescale; the phase oscillators could be interpreted as a latent state with cyclic dynamics [34]. A

latent state space with cyclic dynamics could serve for temporal abstraction, multi-joint coordina-

tion and amortized control for cyclic behavior [35], a direction we find very promising.
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