
Synthesis-Aided Development of Distributed Programs

by

Ivan Kuraj

S.B., Software Engineering, University of Belgrade, 2010
S.M., Computer Science, École polytechnique fédérale de Lausanne, 2013

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Ivan Kuraj. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Ivan Kuraj
Department of Electrical Engineering and Computer Science
January 26, 2024

Certified by: Armando Solar-Lezama
Distinguished Professor of Computing
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Synthesis-Aided Development of Distributed Programs

by

Ivan Kuraj

Submitted to the Department of Electrical Engineering and Computer Science
on January 26, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Despite many advances in programming models and frameworks, writing distributed
programs remains hard. Even when the underlying logic is inherently sequential and simple,
addressing distributed aspects results in complex cross-cutting code that undermines such
simplicity. While the sequential computation model of programs represents a simple and
natural form for expressing functionality, corresponding distributed implementations need to
break this model. One of the most challenging aspects that impede achieving separation of
concerns, significantly increases the difficulty of reasoning about distributed programs and,
subsequently, complicates their implementation is the consistency model.

This thesis examines the possibility of using the sequential model for writing distributed
programs, characterizes the requirements for making that possible, and presents a synthesis
approach that allows programmers to automatically generate distributed implementations
from behaviors given as sequential programs and orthogonal specifications of distributed
aspects. The end result is a programming system in which programmers define sequential
behaviors and separately specify data allocation, reactivity, the underlying network with
orthogonal specifications, as well as integrity, as a set of high-level semantic properties. Given
such specifications, the system automatically finds an optimal consistency model needed
to maintain the given integrity and emits low-level message-passing implementations. The
system combines two novel techniques into a two-step process: first, it statically infers optimal
consistency requirements for executions of bounded sets of operations, and then, it uses the
inferred requirements to parameterize a new distributed protocol to relax operation reordering
at run time when it is safe to do so. We demonstrate the system’s expressiveness and examine
run-time performance impact on benchmarks from prior work, as well as new benchmarks.

Thesis supervisor: Armando Solar-Lezama
Title: Distinguished Professor of Computing

3

4

Acknowledgments

I would like to express my sincere gratitude to my advisor, Armando, for the unwavering
support and encouragement throughout the years, fostering my motivation to delve into
this research topic. During hard times, Armando approached challenges with a positive
perspective. His encouragement served as a constant driving force, urging me to keep moving
forward. Engaging in conversations with Armando proved invaluable, leading to either a
productive brainstorming session filled with new ideas, the development of a clear mental
model for explaining existing concepts, or a renewed focus on the path forward. Beyond
academia, many of Armando’s stories resonated deeply with me, giving me a multitude of
useful perspectives. I am truly grateful to Armando for his belief in me, the freedom he gave
me to explore my own ideas, and the guidance that has been instrumental in navigating and
completing this long journey.

The Computer Aided Programming group and the entire Programming Languages and
Software Engineering community in CSAIL have been my welcoming home at MIT. My
interactions with Adam Chlipala and Martin Rinard have profoundly shaped my perspectives
on verified software and the potential of programming languages research. I am grateful for
the camaraderie and friendships with fellow graduate students and lab mates Aleks Milicevic,
Eunsuk Kang, Sasa Misailovic, Nadia Polikarpova, Jeevana Priya Inala, Kuat Yessenov,
Shachar Itzhaky, Harshad Kasture, Anurag Mukkara, Alaa Khaddaj, and many others. They
provided me with a warm atmosphere and a never-ending source of inspiring discussions. It
was a joy and a privilege to share their company. I will always truly miss our “coffee train”
getaways.

I would also like to thank Daniel Jackson for the warm welcome to MIT and the Software
Design Group. A significant portion of my Ph.D. journey unfolded within this group, filled
with pleasant moments and invaluable learning experiences.

I want to thank my parents, family, and my wife Danica for their unwavering love and
support. Danica became the brightly shining light that provided me with the strength needed
to persevere on this journey. I also want to thank Marija for being kind and supportive of me
and my academic work, even during our challenging times. To them, I would like to apologize

5

for using my academic pursuit as an excuse for my absence on numerous occasions. I will be
eternally grateful for their understanding and patience.

I would like to thank the NSF for funding my work (through the grants #1438969,
#1918839, #2217064, #1918889, #1665282), and allowing me to have the freedom to pursue
my ideas, as well as the Technology, Innovation and Partnerships directorate at NSF for
giving me the opportunity to explore entrepreneurship through the I-Corps program (grant
#2028103).

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Overview of the Approach . 16

1.1.1 SyCoord . 17
1.1.2 Peepco . 19
1.1.3 System Integration . 20

1.2 Illustrative Example . 21
1.2.1 Integrity of Distributed Programs . 22
1.2.2 Consistency Optimization . 26
1.2.3 New Point in the Design Space of Consistency Optimization 30
1.2.4 Extensions of the Main Approach . 32
1.2.5 Implementation and Benchmarks . 33

1.3 Overview . 34
1.3.1 Discussion and Limitations . 35
1.3.2 Scientific Journey . 36

2 PeepCo: Batch-Based Consistency Optimization 38
2.1 Motivation . 41
2.2 Batch-Based Consistency . 44

2.2.1 Semantics of Batch-Based Consistency 44

7

2.2.2 Batched Operation Execution . 46
2.2.3 Consistency Constraints and Lattice 47
2.2.4 PeepCommit Protocol . 49
2.2.5 Integrity-Driven Consistency Strengthening 52

2.3 Partial Replication . 55
2.3.1 Motivation . 56
2.3.2 Finer Grained Batch-Based Consistency 56

2.4 Implementation . 59
2.5 Evaluation . 60
2.6 Discussion . 65

3 SyCoord: Optimizing Consistency for Partially Replicated Data-Centric
Distributed Applications 67
3.1 SyCoord’s Data Store Model . 71
3.2 Coordination Synthesis in SyCoord . 74
3.3 Cause-Effect Framework . 77

3.3.1 Executions in Partial Replication . 78
3.3.2 Elements of Inference . 80
3.3.3 Cause-Effect Graph Instrumentation 82
3.3.4 Consistency Constraints Inference . 84

3.4 Conflict-Driven Propagation . 87
3.5 SyCoord Extensions . 92
3.6 Implementation . 94

3.6.1 Components of SyCoord . 95
3.7 Evaluation . 96

3.7.1 Inference Benchmarks . 97
3.7.2 Data Store Run-Time Performance 99
3.7.3 Game Demo Use Case . 102

3.8 Discussion . 105

4 EdgeC: Aspect-Oriented Language for Reactive Distributed Applications
at the Edge 107
4.1 Overview . 109
4.2 EdgeC Compilation . 116
4.3 Language Semantics . 118
4.4 Evaluation . 119
4.5 Extensions . 120

8

4.6 Discussion . 122

5 Related Work 123
5.1 Consistency Optimization . 124
5.2 Distributed Programming Languages . 127

6 Conclusion 131

References 133

9

10

List of Figures

1.1 Bank account class . 21
1.2 Distribution . 21
1.3 Execution . 22
1.4 Message-passing code . 22
1.5 Safe execution . 22
1.6 Peepco specification . 23
1.7 Bank with history . 24
1.8 Distribution . 24
1.9 Two withdrawals . 26
1.10 Replication . 26
1.11 True and false violating trace . 27
1.12 Backends . 27
1.13 Architecture overview of the overall synthesis system 34

2.1 Bank account in Peepco . 41
2.2 Execution snapshot . 41
2.3 Specialized model . 41
2.4 Peepco specification . 43
2.5 Run-time calls . 43
2.6 Causal ordering trace . 43
2.7 Bank account . 56
2.8 Distributed execution . 56
2.9 Specification . 56
2.10 Execution . 57
2.11 Redundant conflict . 57
2.12 No-conflict scalability . 62
2.13 Run-time performance in full replication. For (a)–(c) and (e)–(f), higher is

better. For (d), lower is better. 63

11

2.14 Sensitivity to contention and batch size . 65

3.1 Components in SyCoord. 70
3.2 Bank account class definition. 71
3.3 Partial replication data store. 72
3.4 Bank account data store in SyCoord. 73
3.5 Execution diagrams for the bank account, in full replication (a, b) and partial

replication (c, d, e). Red dots denote invariant violations. Lines between nodes
denote inter-node message passing, where dashed lines denote effect propagation. 75

3.6 A DPG and a cause-effect graph for the bank data store. 79
3.7 Semantics of distributed executions . 80
3.8 Instrumented execution. 84
3.9 Synthesis rules . 85
3.10 Additional methods. 92
3.11 Changed specifications. 92
3.12 Instrumented execution: liveness. 93
3.13 Extensions of core SyCoord. 94
3.14 Abstract syntax of SyCoord’s Scala DSL 95
3.15 SyCoord data store performance. Y-axis: throughput (op/s), left; latency

(ms), right. X-axis: number of nodes. “Relative” shows performance comparison
of two data stores emitted by SyCoord, while “off-the-shelf” shows comparison
of the emitted data store with an off-the-shelf data store. The dashed lines
represent SyCoord (red for throughput, green for latency) and solid lines
represent results employing strong consistency in the compared approach (blue
for throughput, yellow for latency). 100

3.16 Game state . 103
3.17 Naive simulation of the game usecase . 103
3.18 Consistency optimized run of the game . 104

4.1 Application overview, its logical “sliced view”, and the architectures it can
capture . 110

4.2 Distributed reactive game . 111
4.3 Network model specifications . 115
4.4 EdgeC compiler . 116
4.5 Performance evaluation . 120

12

List of Tables

2.1 Inference statistics after 15 minutes. Legend: |O| - number of methods; int.
- number of integrity properties (safe/congruent); |C| - number of found con-
straints; Bo, Bc, Be, Bs - maximal explored bound, default, without consistency,
effect, and symmetry pruning, respectively. 61

3.1 Benchmarks and SyCoord results. For each benchmark, we report: the
number of invariants #I (total/live); sufficient search bound b #B ; cumulative
size of invariant Specification (in AST nodes); the number of discovered pair-
wise conistency relations #C ; the number of minutes SyCoord runs until
exploring bound b + 1 (T-all), without pruning (T-npr), without causality-
driven exploration (T-ncd), and symmetry breaking (T-nsb). Times are given
in minutes, where “-” denotes timeout after 10 minutes. 97

13

14

Chapter 1

Introduction

Distributed reactive programs such as web-facing data-centric applications, online multi-user
services, and data stores constitute an important category of software systems [I. Zhang
et al., 2016; Viennot et al., 2015]. Such a program generally consists of a set of compute
nodes which must communicate with each other to update their state in response to external
stimuli. Some of these applications must also combine incomplete inputs from multiple
sources, promptly respond to asynchronous user interactions, and process protocol messages
needed to maintain application-level integrity [Chlipala, 2015]. With traditional program-
ming methodologies, design decisions about distributed aspects, such as data distribution,
reactivity, and consistency need to be woven together with the application logic. As a result,
implementations become complex even when the underlying logic is conceptually simple, and
exploring different design choices is tedious because small changes to how data is distributed
or how communication is orchestrated require cutting through multiple layers of code.

One of the aspects that significantly increase the difficulty of reasoning about distributed
programs and, subsequently, complicate their implementation, is the consistency model.
Consistency models for distributed programs are widely studied in programming languages,
databases, and systems [Lesani, Bell, and Chlipala, 2016; Sovran et al., 2011; Bailis, Fekete,
et al., 2014; I. Zhang et al., 2016]. Traditionally, programmers have relied on strong con-
sistency guarantees, such as serializability [Papadimitriou, 1979], to preserve integrity of
their distributed applications, which masks the intricacies of distributed execution over
data allocated across a network of nodes, under unpredictable communication delays and
concurrency, at the expense of runtime performance [Brewer, 2012]. Modern data-driven
distributed applications, however, often sacrifice consistency in return for performance [De-
Candia et al., 2007]. This design choice exposes programmers to the possibility of inconsistent
states in their application that might violate the integrity. This trade-off means that the
choice of consistency model can crucially impact the practical properties and feasibility of

15

modern applications [Kleppmann et al., 2019]. Weaker consistency mechanisms offer higher
performance but can cause integrity violations if used naively, while a stronger consistency
than necessary can lead to a significant loss of performance. Programmers are faced with the
challenge of balancing integrity and performance when choosing the right consistency model
given the requirements of their applications [Sivaramakrishnan, Kaki, and Jagannathan, 2015].
Moreover, implementing the resulting application tightly couples the application logic and
distributed aspects, and any change to either of the two has to propagate changes in the
consistency model through a costly development cycle [Viennot et al., 2015; Stonebraker,
Madden, et al., 2007; I. Zhang et al., 2016; Kaki, Priya, et al., 2019]. Automating this choice
and the subsequent implementation remains a challenge.

In this thesis we focus on an automated approach to consistency optimization and synthesis
of the resulting distributed program implementations. The approach provides an end-to-end
bounded-verification strategy for inferring consistency requirements and emitting efficient
implementations, expressive for various input programs and data distribution specifications.
The synthesized implementations can use standard unbounded consistency protocols based
on the inferred requirements that prevent all encountered violating traces during exploration,
as well as generalize to unseen traces. The approach also supports a new run-time protocol
that ensures correctness on unbounded executions while performing consistency optimization
based on the results of bounded static analysis. We first present the consistency optimiza-
tion approach and then describe extensions that allow programmers to specify additional
distributed aspects.

1.1 Overview of the Approach

The main consistency optimization approach consists of two systems for automated consistency
optimization and synthesis of distributed programs that effectively capture two evolution
points of the development of the overall approach.

The first system, SyCoord [Kuraj and Solar-Lezama, 2020; Kuraj, Solar-Lezama, and
Polikarpova, 2022], introduces a static analysis approach that identifies bounded execution
traces that can violate integrity, which are then generalized into consistency protocols used
at run time. The static analysis supports checking integrity of traces on concrete inputs
given by programmers and is expressive for a large class of input programs, as well as data
distribution schemes. SyCoord synthesizes message-passing implementations that leverage
the statically identified protocols and provide speedups at run time, compared to the strong
consistency baseline. Due to boundedness, however, the synthesized implementations do not
provide strong guarantees for cases where an unbounded number of operations might start

16

executing at the same time.
The second system, implemented in the tool Peepco [Kuraj, Feser, et al., 2023], builds on

top of SyCoord and introduces a new strategy for run-time assisted consistency optimization
that guarantees correctness for unbounded executions. It introduces batch-based consistency,
a new approach for consistency optimization that allows programmers to specialize consistency
with application-level integrity properties and implement applications that safely optimize
consistency at run time for any concrete values that might occur at run time, based on results
of a bounded symbolic exploration.

We explain the two systems in more detail below. In addition, we present an extension to
the programming model adopted by SyCoord and PeepCo, and extend it with rich types that
allow programmers to specify properties pertaining to the location of data and computation,
as well as reactivity.

1.1.1 SyCoord

The goal of the first system is to provide an automated approach for bounded consistency
reasoning and optimization inference in a model that supports expressiveness for practical
distributed programs. Expressive models that allow controlling distributed aspects at finer
granularity pose new challenges for reasoning and development of practical distributed
programs, which go beyond existing cloud-based approaches [Alur, E. Berger, et al., 2016; I.
Zhang et al., 2016]. Design choices for distributed programs that developers often face involve
customizing data allocation schemes, adjusting the program to the underlying network model,
and handling the consistency and reactivity requirements of behaviors. The expressiveness of
such requirements goes beyond the prior work [Kaki, Earanky, et al., 2018; Sivaramakrishnan,
Kaki, and Jagannathan, 2015; Houshmand and Lesani, 2019], and the developers have no
choice but to explore design decisions by writing full implementations, significantly different
for every combination of design choices made. Prototyping and searching for adequate
implementations becomes cumbersome, in spite of some aspects, like the core logic and integrity
constraints, being fixed. An approach that achieves such expressiveness through orthogonal
specifications for behaviors, data allocation, reactivity, and data consistency, without forcing
programmers to reason about low-level implementations of distributed programs, could
improve the usability of automated consistency optimization in practice.

SyCoord introduces a new bounded inference strategy that finds requirements on the
ordering of operations by leveraging bounded reasoning, capable of capturing expressive
execution models [Kuraj, Solar-Lezama, and Polikarpova, 2022]. It relies on an analysis
algorithm for consistency inference and provides a framework for transforming the found

17

results into standard consistency protocols to be used at run time. The algorithm discovers the
consistency requirements of bounded execution traces of operations derived from sequential
objects at compile time, and it can leverage both explicit and SMT-based concolic-style
reasoning to check the specified integrity. The algorithm is efficient; it incrementally builds
a set of consistency requirements and uses them to aggressively prune the set of execution
traces to explore, in addition to using traditional symmetry-breaking techniques. This allows
SyCoord to explore traces up to non-trivial bounds, even when the integrity invariants allow
many operation reorderings.

We use the SyCoord approach in an end-to-end bounded-verification programming system
that supports specifications of additional distributed aspects and synthesizes implementa-
tions of the intended distributed programs by incorporating optimal consistency protocols
in message-passing implementations [Kuraj and Solar-Lezama, 2020]. In addition to full
replication (where all nodes replicate the application state), we extend the system to support
partial replication, where users specify how certain parts of the application data are split
among nodes, while other parts are replicated [Belaramani et al., 2006]. Partial replication is
a requirement for modern distributed applications, which rely on sharding and fine-grained
allocation on the backend to achieve security and performance [Stonebraker, Madden, et al.,
2007]. It also enables “local-first” applications on the front-end [Kleppmann et al., 2019]. The
expressiveness of bounded verification allows SyCoord to support distributed programs that
exhibit transactional behaviors and achieve speedups over the strongly consistency baseline.

Limitations

The main limitation of the SyCoord approach is its inability to provide soundness guarantees in
the general case, where the bound on the number of operations cannot be guaranteed. (Some
usecases, such as a multiplayer back-end, where only a limited number of operations are issued
by each player at any given time, indeed fall into the class of programs for which SyCoord
can optimize consistency and keep strong guarantees at run time.) In principle, the extent
of SyCoord’s verification depends on the checker with which it is parametrized. A stronger
checker could be paired with SyCoord’s consistency reasoning to detect consistency violations
fast, but verify classes of unbounded traces for which no violating trace could be found,
achieving soundness at run time. However, verifying expressive application-specific properties
of distributed programs, with a high degree of automation remains an open challenge [Lesani,
Bell, and Chlipala, 2016; Wilcox et al., 2015]. The exploration of expressiveness in SyCoord
lead us to develop a new run-time approach that can guarantee soundness based on bounded
analysis results but also use the dynamic information at run time to recognize additional
consistency optimization opportunities.

18

1.1.2 Peepco

The goal of the second system is to address the shortcomings of SyCoord and obtain a strategy
that can provide strong guarantees at run time. Prior work has introduced the idea of using
static analysis in an end-to-end approach to identify when operations are allowed to safely
execute under weaker notions of consistency to optimize performance [Sivaramakrishnan,
Kaki, and Jagannathan, 2015; Houshmand and Lesani, 2019; Kaki, Earanky, et al., 2018;
Gotsman et al., 2016; Kaki, Priya, et al., 2019; Bailis, Fekete, et al., 2014; C. Li, Leitão, et al.,
2014]. However, these strategies are conservative and miss optimization opportunities based
on the dynamic context of the operation currently being executed. While certain properties,
such as commutativity and I-confluence [Bailis, Fekete, et al., 2014], hold inductively, on any
reordering of unbounded sets of specific operations, to guarantee integrity in the presence of
diverse sets of operations in the worst case, there is no choice but to issue operations under
strong consistency. This, however, forces convergence of states across nodes and limits the
set of interleavings allowed in the system, and thus performance. The inability to reason
about global states a distributed program can exhibit at run time limits the extent to which
developers can optimize their distributed applications while guaranteeing the desired level of
integrity.

Peepco presents an automated approach that uses symbolic reasoning over executions
of bounded numbers of operations to derive efficient run-time checks that can be used
to decide the optimal consistency at run time, for a given set of concurrent operations.
We define optimal consistency as the weakest consistency (which allows the largest set of
different execution traces) needed to maintain a set of semantic properties given by the
programmers. The approach is implemented with a two-step process: we statically infer
optimal consistency requirements for executions of bounded sets of operations, and then,
use the inferred requirements to parameterize a new distributed protocol to relax operation
reordering at run time when it is safe to do so. Our approach provides two key advantages
over the purely static approach. First, we can exploit fine-grained optimization opportunities
that only occur in specific situations at run time. Existing techniques must revert to strong
consistency whenever there exists some interleaving of operations that violates integrity, even
in cases where those operations do not get invoked together at runtime. Second, the verification
burden of our approach is smaller than other approaches that must verify that the chosen
consistency level maintains integrity for all possible inputs and unbounded interleavings.
Instead, our approach checks that integrity is maintained for bounded executions and uses
this information, together with the dynamic information obtained from the run-time checks,
to perform optimization, safely and profitably.

19

We present a new consistency model, implemented with a new blocking run-time protocol
that uses static information about consistency requirements between operations, as well as the
agreement between nodes in the system, to attain information needed for applying consistency
optimizations at run time and recognize more optimization opportunities when compared to
the state of the art. To better facilitate our consistency optimization strategy, we introduce
batch-based consistency, which, given a set of semantic properties, defines a specialized
consistency model. We implement the approach in Peepco. Peepco is a consistency
optimizer that takes the definition of a sequential object, data allocation specification, and
integrity properties defined as predicates on the object state, and synthesizes a message-passing
implementation that respects the allocation specification and executes object methods as
distributed operations. Our evaluation shows our approach can bring significant performance
benefits over the state of the art, especially in cases where operations might conflict only with
relatively smaller portions of other operations, under high-contention workloads, exhibiting
throughput and response time speedups across various benchmarks, when compared to prior
work approaches, as well as when compared to a strongly consistent baseline.

1.1.3 System Integration

This thesis centers on optimizing consistency using Peepco and SyCoord. Additionally,
we showcase the integration of these approaches into a comprehensive system for developing
distributed programs. While these systems form the central part of consistency optimization
in development, they specifically introduce static inference of consistency constraints and the
runtime protocol, which constitute only a segment of the entire system. To illustrate and assess
these approaches, we constructed supplementary components essential for achieving end-to-
end programming in the adopted model. These components can also function independently
to develop distributed programs without managing consistency through integrity. When
necessary, programmers can activate the consistency optimization segment of the system
pipeline by incorporating integrity specifications in their programs. We detail the requisite
components, both at the frontend and the backend, and outline the design and implementation
of the overall end-to-end programming system. This system design supports the integration
of SyCoord and Peepco, along with extensions to handle additional distributed aspects.

From this point onward, we will use Peepco to denote both the entire system and
the two-step consistency optimization approach with runtime protocol support, making
clarifications as necessary.

20

class Account(b: Int) {
var bal: Int = b; // current balance
var max: Int = 50;
var last = None;

def withdraw(x: Int): Boolean = {
if (x > max || x > bal) return false;
bal-= x; last= Some(x); return true; }
def setMax(v: Int) { max= v; last= None }
}

Figure 1.1: Bank account class Figure 1.2: Distribution

1.2 Illustrative Example

In this section, we introduce the key functionalities of the approach and its extensions through
a concrete example. We will describe functionality of both of the proposed systems, and the
programming model extensions, within one general system, Peepco, and defer details of the
particular approaches to specific chapters that expand on the same motivating example. While
SyCoord shares the programming model and most DSL (domain-specific language) constructs
with PeepCo, programmers have the flexibility to use a special keyword to designate the
consistency optimization backend for generating final implementations. Initially, we showcase
the capabilities of consistency optimization in Peepco, followed by a brief discussion of
extensions to the programming model.

We consider implementing a simple but illustrative distributed bank account in Peepco.
A bank object supports operations like deposits and withdrawals while storing the current
balance and a history of performed methods. The case study was used in prior work on
reasoning about consistency [Gotsman et al., 2016; Sivaramakrishnan, Kaki, and Jagannathan,
2015; Kaki, Earanky, et al., 2018]. We adapt and expand the example to demonstrate
consistency optimization based on end-to-end integrity properties when a data allocation
scheme is specified at a finer granularity. While this motivating example is simple, it
shows what challenges arise in consistency optimization given end-to-end integrity properties,
when data is replicated and split across nodes. (Expressive data allocation schemes are
common in modern applications, both at the backend [Stonebraker, Madden, et al., 2007]
and front-end [Kleppmann et al., 2019].)

Let us assume we want to implement the banking application in Figure 1.1 and distribute
it across ATMs (clients) and a bank server (backend; Figure 1.2, nodes nc and ns). In this
application, the bank would like to make sure each account holder is allowed to withdraw
only within some specific amount assigned to the ATM. The application consists of a single
distributed Account object that maintains the state of a user’s account. The Account object

21

nc

ns

w(50)

setMax(25)✔cond
bal-=50

max=25
last=None

last=
Some(50)

Figure 1.3: Execution Figure 1.4: Message-passing code

nc

ns

wi(30)wi(20) wr(30)wr(20)

w1(30)
(b=1)

w1(20)
(b=2)

Figure 1.5: Safe
execution

maintains the withdrawal limit max, the current balance bal, and the amount withdrawn
last. We want to ensure the following integrity properties are maintained: no overdrafts (thus
withdraw modifies bal only if it is big enough) and the last recorded withdraw should not
be greater than max. In the following, we will focus on the latter, revisiting overdraft later.

1.2.1 Integrity of Distributed Programs

Assuming a client-server architecture, if developers want to distribute the bank account, the
first question they are faced with is that of data allocation. We assume the ATM shows the
last transaction to the user, so we allocate last and max on the ATM, and bal on the bank
server.

Distributed execution. During distributed execution of withdraw, due to data
allocation, the if condition checks data allocated on both nodes. When withdraw gets
invoked on the ATM, to preserve semantics of the sequential code, the execution blocks and
communicates with the backend node that contains the rest of the needed state. Without any
ordering constraints, the application might exhibit an execution that violates our integrity
property (Figure 1.3, with the initial state of Account(50)). Here, setMax is invoked
concurrently with withdraw. withdraw read the initial value of max and writes a value
to last that is greater than the current max, due to delayed message delivery (red dots
designate integrity violation). We can prevent this with a straightforward solution, by
enforcing strongly consistent executions for all invocations across the two nodes; however,
this would prevent executing any concurrent invocations, and hurt performance. (Note that,
while some systems support strong consistency with highly concurrency executions, with
techniques such as sequencing, we assume the general case in a distributed setting, where
this entails coordination across the nodes in the system [Bailis, Fekete, et al., 2014; Gray and
Lamport, 2006; Thomson et al., 2012].) In this example, however, e.g., multiple withdrawals
and setMax invocations from ATM nodes can be issued concurrently and be serialized only
on the server (without requiring global coordination), as long as updates from operations are
not delivered in different orders on any nc and ns.

22

withObject { case (a: Account) =>
withNodes { case (c: Node,
s: Node) =>
allocate((a.max, a.last), c)
allocate(a.bal, s)
ensuring(safe(lastOK(a)))

}}

Figure 1.6: Peepco specification

Message-passing implementation. We can prevent the integrity violation and avoid
forcing coordination by ordering an appropriate part of withdraw when implementing it as
a message-passing program. (A message-passing program allows programmers to carefully
control the possible execution interleavings.) Here, one valid execution trace with two
concurrent invocations (concurrency bound b is 2), which preserves integrity, is given in
Figure 1.5. It checks for “ordering conflicts” on the server. In the generated implementation,
withdraw is implemented using three message handlers: wi, w1 and wr; we show the
pseudocode of the implementation in Figure 1.4. The withdraw handler wi runs when
withdraw is invoked on the client, w1 when the request is received on the server, and wr

when the client receives the response. Note that w1 serves two purposes: it modifies the
balance per the withdrawal, and it ensures that no concurrent invocation of setMax has been
issued (and can write “out of order”), which maintains the application invariants.

A full manual message-passing implementation of the example consists of six message
handlers, while the programmers must reason about every way that these message handlers
can interleave to ensure that application invariants are maintained. Moreover, w1 checks
if there is no concurrent setMax invocation across the system—such a check involves dis-
tributed data requires coordination in the general case, which programmers have to recognize
manually [Lamport, 1978a]. (We present how Peepco’s protocol generalizes to any number
of nodes in Chapter 2.) Peepco automatically identifies this potential violation and ensures
that state changes of withdraw and setMax are delivered in the same order on both ns and
nc, avoiding coordination when possible, allowing a higher degree of concurrent executions.
(This goes beyond static pessimistic consistency approaches, in which strong consistency and
coordination would need to be used due to the worst case scenario of concurrent executions
with setMax [Sivaramakrishnan, Kaki, and Jagannathan, 2015].)

Next, we show how programmers can use Peepco to automatically generate distributed
object implementations that are correct-by-construction and take advantage of application
semantics and allocation to allow concurrency, in cases where it cannot violate integrity
properties.

Invariant-based consistency. To use Peepco, programmers specify the application’s

23

class Account(...) { // code as before
var hist: List[(String, Int)] = ...

def deposit(x: Int) = {
bal += x; hist += ("d", x) }
def withdraw(x: Int): Boolean = {
if (x > max || x > bal) return false;
bal-= x; last= Some(x);
hist += ("w", x);
return true;

}}

Figure 1.7: Bank with history Figure 1.8: Distribution

integrity with invariants. Peepco will allow reorderings of operations to optimize consistency
and improve performance as long as these invariants are maintained. The main insight behind
Peepco is that, for many practical properties, as long as the integrity properties are not
violated, the implemented system can allow many different reorderings of operations and
thus avoid using costly protocols for total order. We write the specification in Figure 1.6, and
provide it to Peepco along with the bank object definition (Figure 1.1). Given the application
description and invariant specification as input, Peepco generates an implementation that
takes advantage of the consistency optimizations discused previously, while preserving the
application’s integrity.

The specification in Figure 1.6 describes two key properties of the banking application:
allocation of fields to nodes in the system and the invariant that expresses the integrity
properties discussed above. First, it specifies the objects to be distributed: here, instances of
the class Account. The withNodes construct specifies the nodes in the system. Here, the
two nodes captured in the specification are a server and a client. Object fields are assigned
to nodes using allocate. We place last and max on the client, and bal on the server.
Invariants are specified using ensuring. Our invariant is expressed with safe(p), which is a
function that takes a Boolean argument p, representing the integrity check on the state of
the system that can reference replicated state across multiple nodes. For this application, we
specify a Boolean predicate method lastOK:

def lastOK(a: Account)} =

a.last match {

case Some(amt) => amt < a.max

case None => true

}

We then use the predicate to define safety [Lamport, 1977-03]—it must hold at every point
in the execution trace to maintain integrity:

Data replication and splitting. We now show how Peepco’s DSL can be used to
extend our distributed application and change the way the data is distributed. We make the

24

following application changes: we add a deposit operation, a history of operations hist,
and update withdraw to account for hist (Figure 1.7). Next, we replicate balance onto
multiple nodes (for availability) and store the history (hist) on a separate “audit” node. (If
hist is large and non-critical, replicating it could hurt performance [Stonebraker, Madden,
et al., 2007].) To change the data distribution strategy, in Peepco, programmers only need
to change the specification, without changing the rest of the program.

A withdraw operation in this new configuration is shown in Figure 1.8. Due to replication,
whenever an operation modifies replicated state, it generates an effect that contains that
modification of the replicated state, which is propagated to all other replicas (containing
a copy of the replicated state). Let’s consider how Peepco distributes withdraw in this
replication scheme. An execution trace for the invocation where x is 40 is shown in Figure 1.9.
After the if condition check passes on the replica, updating its balance, the execution
communicates with nh to update hist on nh, and additionally, concurrently, propagates an
effect to the other backend replica (bal-=40). This introduces the possibility of a new kind
of invariant violation: if withdraw is executed concurrently on two replicas n1 and n2, both
checks pass, their update effects get passed on to the other replicas, and the account gets
overdrafted (red dots in Figure 1.9). While both effects pass the balance check locally at
replicas, cummulatively they subtract more from the balance than it is available. To prevent
this, we define a no-overdraft integrity property with a predicate that uses bal and the sum
of entries in hist (where the strings denote the operation type in hist):

def noOverdraft(a: Account) = {

0 <= a.bal && 0 <= a.hist.fold(0)({

case (res, ("d", x)) => res + x

case (res, ("w", x)) => res - x

})

}

We add this predicate as a safety invariant to our new specification. This specification achieves
the previously described allocation scheme: a NodeSet is a group of replicas n and a Node

which only has one instance in the system. We replicate bal onto the group n and assign
hist to the history node nh. Then, we specify our new safety invariant using ensuring.
With (executable) predicates, programmers need not learn a new specification notation,
but can use the full expressive power of the programming language (here, the higher-order
function fold1), to specify complex properties that are used to optimize consistency. (When
using symbolic verification, however, the checked properties need to fall within the decidable
fragment supported by the underlying SMT solver.) This goes beyond prior work that requires

1When programmers use Peepco with symbolic reasoning, without concerete inputs, the expressiveness
is limited by the underlying used SMT solver.

25

nh

n1

n2

c1

c2

✔: w1(30)

bal-=30

w2(30)

wi(40)

wi(30) wr(30)

w2(40)

wr(40)

✔: w1(40)

bal-=40

Figure 1.9: Two withdrawals

withNodes { case (n: NodeRegion,
nh: Node) =>
withStore { case (a: Account) =>
replicate(a.bal, n)
allocate(a.hist, nh)
ensuring(safe(noOverdraft(a)))
}
}

Figure 1.10: Replication

specifying low-level contracts that operations need to follow [Sivaramakrishnan, Kaki, and
Jagannathan, 2015].

Next, we will show how Peepco optimizes consistency and prevents executions that
might violate integrity.

1.2.2 Consistency Optimization

Consistency inference in Peepco and SyCoord consists of two steps: static-analysis and
run-time implementation generation. The first step is consistency inference, a compile-time
step that splits operations based on data distribution and infers consistency constraints for
operations. The second step then emits a message-passing implementation, based on the
results of the first step, that can utilize two types of strategies. These strategies dictate the
distributed protocol usage at run time, which in turn leverage inferred constraints to relax
consistency:

1. in Peepco, a new PeepCommit run-time protocol uses agreement between nodes to
obtain dynamic information and optimize consistency when it is safe to do so

2. in SyCoord, the implementation consists of a set of standard unbounded consistency
protocols that can only guarantee integrity if the number of concurrent operations is
within the explored bound

The overview of the system at run time is shown in Figure 1.12. Operations are triggering
with an external, or an internal, condition-based trigger (condition-based triggers of behaviors
in our model is described in Chapter 4). Emitted message-handlers interact with the run-time
protocols to invoke the application logic, such that they implement the ordering as prescribed
by the inferred consistency constraints. We describe the two choices of protocol run-time
strategies, i.e., backends for the emitted implementations, subsequently.

26

nh

n1

n2

bal+=20

bal+=20

d2(20)w2(70)

✔: bal-=70

(a)

nh

n1

n2
✔: bal-=40

bal-=40

w2(40)

✔: bal-=30

w2(30)

bal-=30

(b)

Figure 1.11: True and false violating trace

Consistency models

Run-time Layer

 PeepCommit

Generated code
peephole tablemessage handlers

 Causal

2-phase commit, vector clocks,
topology-specific...

 Unbounded protocols

 Strong

application logic

 Weak Custom

consistency
table

Figure 1.12: Backends

Consistency Inference. Peepco infers consistency constraints by exploring different
operation invocations up to a bound. The inference procedure then generalizes results
obtained from a bounded set of traces. We will describe the concolic strategy Peepco can
employ, but Peepco also offers both symbolic (described Chapter 2) and concrete exploration
(which we describe as a part of the general inference algorithm in Chapter 3). Peepco

starts with a concrete initial state and concrete arguments to the withdraw calls, but checks
viability of traces for any given values (by means of SMT solving) and infers consistency
requirements that hold for any concrete values (and, also, unseen traces). The initial state
can be provided by the user, or Peepco can automatically generate one from the given
invariants.

Let us consider the case when two clients concurrently invoke withdraw, where the bank
account’s balance is initialized to 50. Peepco splits withdraw into actions (parts of the
overall method) wi, w1, w2, wr (preserving its sequential semantics), as shown in Figure 1.9.
wi, w1, wr actions correspond to the ones we described before: invoking action wi, action
checking bal and modifying it on a replica w1, and response on the client wr. w2 is a new
action that adds an entry to the history log on nhist. We say that an action produces an
effect, such as bal-=40, if the action modifies a replicated variable (as in computation models
adopted in prior work [Sivaramakrishnan, Kaki, and Jagannathan, 2015]). Peepco analyzes
possible interleavings between the actions.

One possible interleaving of concurrent operations is depicted in Figure 1.9. When
withdraw is invoked, after checking the condition and executing the withdrawal, that effect
is propagated to the other replica that contains bal. The overdraft scenario discussed
previously, of delivering effects of two concurrent withdrawals, leads to bal=-20 on replicas,
thus an invariant violation (depicted with red dots in Figure 1.9). Once Peepco finds this
trace, with the noOverdraft invariant violated, it analyzes the trace to determine the cause
of the violation. Here, the effects from the independent concurrent withdraw invocations
are observed in different orders on n1 and n2. The safety invariant noOverdraft is thus

27

violated: while individual withdrawal amounts are lower than bal, bal becomes negative
when both are subtracted (70 in total, as described earlier). Since these methods are not
causally related (the two withdraw invocations originated on two separate replicas), after
analyzing the interaction of operations and identifying the reordering, Peepco infers that
withdraw actions and their effects on n must be strongly consistent (preventing generating
the concurrent effects bal-=40 and bal-=30). It adds this constraint to its set of consistency
constraints, which describe the consistency relationships between actions on particular nodes.
This prevents the found source of inconsistency for the violating trace but also for other
traces that exhibit such reordering, for all possible concrete values.

Peepco continues exploring executions from the same initial state until it discovers
the trace in Figure 1.11(a) (which only shows nodes that are relevant to the violation). In
this trace, the causally dependent (according to the definition of causal order [Lamport,
1978b]) effects of deposit(20) and withdraw(70) are reordered on the receiving replica.
Specifically, withdraw was delivered without the delivery of the causally dependent deposit.
Note that while the integrity constraint gets restored on nh after delivery of d2(20), the
overall trace violates safety. To eliminate this bad reordering, Peepco adds a constraint
that withdraw causally depends on deposit. Peepco supports standard strong, causal,
and weak consistency models as well as extensions for new models (described in more detail
in Chapter 2 and Chapter 3). Peepco’s analysis terminates when it has explored all traces
up to a given bound (or a timeout) and verified they cannot violate the invariant, or they
can be pruned as infeasible due to the inferred consistency constraints. Verification confirms
integrity for any concrete value, by checking if the safety predicate always holds, i.e., at each
step, after executing the trace symbolically, with an SMT solver.

Agreement-Based Run Time Protocol. Peepco using the PeepCommit strategy
executes operations in batches. It uses the statically inferred constraints to parametrize the
run-time checker with a “consistency table”, which is used at runtime by the PeepCommit
protocol to dynamically relax consistency. Intuitively, the table maps sets of operations to
the consistency requirements for those operations. Specifically: 1) if given operations can be
executed concurrently within a batch, and, 2) under which consistency operations need to
execute if added to the batch.

In the synthesized implementation, withdraw, started on node n1, first checks if none of
the operations that might be conflicting, started executing on n1. If the operations cannot
conflict, based on the table, it starts an agreement protocol (akin to two-phase commit) on
the replicas in n, acting as the coordinator. It proposes a new withdraw to be executed. If
all participants agree that withdraw can be added for the execution, the withdrawal gets
executed from the node that originated the call. A withdrawal, however, will not be allowed

28

to be executed concurrently in the given batch, if the batch contains another invocation
of withdrawal. Therefore, for multiple withdraw that are invoked concurrently, Peepco

enforces total order. In particular, given the found constraints between withdraw and
deposit, one withdrawal and multiple concurrent deposit invocations are permitted to
execute in the same batch, as long as all withdraw effects are executed causally relative
to witnessed deposits. Figure 1.12 captures the interaction in this emitted scenario with
the PeepCommit protocol. The protocol gets invoked from the generated message handlers.
Every operation invocation invokes the protocol, which, after checking the consistency table
and performing the agreement, calls the appropriate messages handlers in case the operation
was accepted for the execution.

Bounded Consistency Optimization Run-time. Alternatively, the SyCoord

backend can synthesize distributed implementations that leverage unbounded protocols, based
on the two found constraints. Peepco uses its repository of message-passing consistency
protocols to enforce each of the discovered consistency constraints between operations: two-
phase commit (2PC) ([Gray and Lamport, 2006]) and vector-clock dependencies ([Fidge,
1987]), for strong and causal consistency, respectively. SyCoord handles the two mentioned
consistency levels, in addition to issuing operations without any ordering constraints (weak
consistency). (The support for expressing consistency levels and integrating new protocols
is described in Chapter 3). In our example, the synthesized implementation uses 2PC to
enforce strong consistency between withdrawals on n1 and n2 and additionally makes sure
all actions from causally related deposits are executed before delivering withdrawals (on
both the replicas n1, n2, and the history node nhist). As weak and causal consistency do not
affect other invoked operations in the system, the correctness cannot be be guaranteed if the
number of operations that gets invoked concurrently in the system becomes greater than the
largest explored bound. These consistency constraints are fixed, regardless of the number
and type of operations running concurrently in the system, thus only guaranteeing integrity
if concurrent operation calls can be bounded by some other means.

Performance of the emitted implementations. Given the input program, Peepco

infers the needed consistency requirements and synthesizes an appropriate message-passing
implementation. In the case of SyCoord, the implementation, while not verified for arbitrary
bounds, is correct for any number of concurrently invoked operations in the system, and the
system preserves integrity. For our running example, Peepco’s inference completes within
15 minutes covering all combinations of up to 7 concurrent operations that are sufficient for
significant performance gains at run time. The synthesized code achieves more than 2.5x
speedup (for 960 clients) and more than 4x speedup (on a microbenchmark with 12 clients),
in terms of throughput, when compared to issuing operations with strong consistency, in the

29

case of Peepco and SyCoord respectively. (We give more details about the evaluation of
both systems in their respective chapters.)

1.2.3 New Point in the Design Space of Consistency Optimization

While prior work presented approaches that can leverage static analysis for consistency
optimization, they either force programmers to reason about low-level operation effects
[Sivaramakrishnan, Kaki, and Jagannathan, 2015], identify operation parts requiring specific
consistency levels and annotate them manually [Milano and Andrew C. Myers, 2018], or
rely on a worst-case analysis that might miss fine-grained optimizations at run time, due
to both the dynamic information as well as the granularity of the partially replicated data
[Houshmand and Lesani, 2019]. In our approach, programmers write end-to-end behaviors
in the sequential model, specifying integrity with semantic properties given as predicates
in the same language without requiring programmers to learn new constructs. Peepco

automatically reasons about fine-grained consistency requirements of different combinations
of the object methods that can occur at run time. In addition, our approach supports the
expressiveness of partial replication, where portions of data might be split or replicated across
the selected nodes in the system, and allows incorporating additional specifications into the
supported programming model, such as information about the underlying network model
(described in Chapter 4).

Challenges. To perform consistency optimization in a programming model under partial
replication, Peepco: (1) splits operations based on data distribution, potentially examining
different ways of splitting; (2) infers consistency constraints of individual operation parts; (3)
incorporates the inferred information into the message-passing implementations and the run-
time protocol. In addition to addressing the challenge of achieving consistency optimization
based on results of bounded reasoning with a new protocol, one of the main challenges in
Peepco is to achieve scalable and sound bounded consistency inference that allows effective
and sound consistency optimization inference, expressive for various invocation scenarios that
might occur at run time. Consistency inference in partial replication exhibits combinatorial
blowup in terms of the traces to explore, as well as consistency levels, to consider, which
makes full exploration practically challenging even for small scopes.

To handle the expressiveness of the distributed computation and finer granularity of
consistency requirements, Peepco exhaustively explores bounded traces for the given data
allocation under different invocation scenarios. Such granularity of inference, on the level
of actions and nodes, goes beyond coarse-grained, single-node reasoning in prior work in
the full-replication model [Sivaramakrishnan, Kaki, and Jagannathan, 2015; Kaki, Earanky,

30

et al., 2018]. Moreover, approaches that analyze interactions between pairs of operations
statically are not applicable here as some consistency requirements can only be exhibited after
executing a specific combination of operations [Houshmand and Lesani, 2019]. Due to the
partial replication, Peepco needs to discover that different actions that belong to the same
method might have different consistency requirements. For example, Peepco determines that
the effects of withdraw and deposit require causal consistency on both the replicas n and
the history node nh. However, while any two w1 actions require strong consistency on replicas
n, the corresponding w2 actions (w2(10) and w2(80)) require no coordination (on nh): the
reason is that a w2 action can only be issued after the corresponding w1 action has performed
the overdraft check, due to previous discovery that w1 actions have to be strongly consistent
(as shown in (Figure 1.11(b)). Peepco’s reasoning not only preserves the given invariants in
granularity of the partial replication, but discovers consistency requirement inter-dependencies,
which can achieve additional speedups relative to a coarse-grained operation-based consistency
optimization.

A naive approach of exploring all possible traces, analyzing conflicts that lead to invariants
being violated, and including all resulting constraints would not result in a useful solution.
The returned solution would be too strong. Inferring conflicts from all traces which violate
an invariant might lead to incorrect solutions: some traces might exhibit an anomaly
we call false conflicts. Such traces are not feasible due to inter dependencies with other
discovered consistency requirements and thus cannot lead to the discovery of new consistency
requirements when explored. For example, reordering w2 from different withdrawals on
nh, causes a violation (Figure 1.11(b)), but this is an example of a redundant conflict: a
conflict that is possible when considered in isolation, but not possible when enforcing other
consistency requirements, inferred from the rest of the (possibly yet unexplored) traces.
Namely, the withdraw actions dispatched on n require strong consistency. As a consequence,
the corresponding w2 actions require no coordination on nh, as they can only be issued after
the overdraft checks are performed, under total order. Thus, while a strong consistency
requirement can be discovered on nh if such a trace is explored first, it should not be included
in the final solution. Incorporating consistency constraints from redundant conflicts results in
a solution that is overly strict: in this case, requiring strong consistency on nh. An approach
that relies on exploration of traces inevitably has to use a strategy that avoids discovering
redundant conflicts, in order to guarantee finding the minimal set of consistency requirements.

Design decisions. Our approach is motivated by achieving separation of concerns
in the input language. To the best of our knowledge, Peepco is the first approach that
allows writing sequential operations and invariants in the same, general-purpose language,
and specifying data allocation (at the granularity of partial replication), timing constraints,

31

and the network model, decoupled from one another. Such decoupling allows programmers to
easily change different aspects of the intended program and allows programmers to easily
debug and tune consistency by making changes to different parts of their input program,
separately. For example, moving hist to a separate node or any changes to the invariants only
requires a local change to the configuration, A method can be added without changing existing
invariants, and an invariant and specifications can be added without changing methods or
the rest of the specification. This is despite the fact that any of these changes influences the
set of actions and feasible or valid interleavings, which may significantly affect the required
operation orderings at run time, and lead to completely different consistency mechanisms and
synthesized implementations. Various changes to the same input programs and specifications
from the running example retain the property that even for relatively short inference times,
generated implementations achieve significant performance improvements in both variants of
the run-time consistency optimization protocols. Peepco can also be used to interactively
discover and show traces of violating executions (minimized to graphs that show conflicting
actions; see Chapter 3), helping programmers in debugging consistency choices. Peepco’s
aim is to fit into the traditional development process, where programmers start by considering
the operations, then proceed to reason and test the behaviors of those operations in the
sequential model, and finally start thinking about other intended aspects of their programs,
here, pertaining to distribution.

1.2.4 Extensions of the Main Approach

We now present extensions of the main approach that allow programmers to strengthen the
desired integrity, specify reactivity of their distributed behaviors, and adjust the computation
based on the underlying network the program is deployed on.

Convergence. In the running bank example, we might want to make sure no money
can be created. For example, we might want to state the predicate a.bal == sum(a.hist),
which says that the balance should equal the sum of entries in the history. However, this
predicate might only hold periodically on every trace (akin to “always eventually” [Pnueli,
1981]). It cannot be expressed as a safety invariant, as it cannot hold at every point. (It
inevitably has to be violated during operation execution.) To allow for cases like this,
Peepco supports convergence invariants which state that the system will eventually reach
a state that satisfies this form of integrity, after some bounded set of operations finishes
executing. Convergence invariants directly affect the resulting consistency model in case of
the PeepCommit backend (described in Section 2.2), which makes sure that any execution
restores convergence at the end of any batch of operations.

32

Network model. Peepco allows developers to model the network, specifying the cost
of communication as well as execution on individual nodes. While some approaches allow
mapping node computation to physical machines, these existing facilities become insufficient
in many cases where the program itself and shape of its behavior need to be directly tailored
according to the specific network at hand. (Peepco’s design is influenced by the end-to-
end argument [Saltzer, Reed, and Clark, 1984].) Given such a specification, Peepco then
searches for the optimal shape of computation of each method, potentially allocating more
computation to “stronger” nodes and changing how the computation propagates over the
network. In the current example, since it is left unspecified, Peepco assumes the default
network model, which specifies uniform shape, with costs of execution and communication
being equal. Developers can specify custom network models by defining directed weighted
graphs, which Peepco then uses to compute the cost and rank different shapes of behaviors
(i.e. allocations of different parts of the computation to different nodes). Different network
models can be globally set at run time, dictating the choices of computation shapes when
methods are invoked. This extension is described in Chapter 4.

Sharding and specialized protocols. Peepco allows entity-based sharding [Baker
et al., 2011], as well as consistency protocols that depend on the underlying network and data
allocation. Programmers can specify sharding for certain supported data types, similarly
to how replication is expressed, while Peepco automatically emits functions that choose
the appropriate node of the shard at run time. In our example, programmers can decide
to shard hist, as it might hold large amounts of data. Network-specific protocols allow
emitting specialized protocols that are applicable in specific data allocation schemes and
behavior shapes. A violating write to last in our example can be prevented by a specialized
protocol for preventing “write skew”, which does not need require costly strong consistency.
It guarantees the needed ordering of actions of withdraw and setMax, prescribed by the
inferred consistency constraints, while providing additional performance compared to general
protocols (e.g., by avoiding coordination, as described before). We describe the specialized
protocols in Section 2.3 and Chapter 3, and the support for sharding in Chapter 3.

1.2.5 Implementation and Benchmarks

The final version of our system, Peepco, which includes both consistency strategies, is
implemented in approximately 33k lines of Scala code, where 26k lines comprise the compiler
and 7k lines comprise the run-time that is used by the generated programs. Symbolic and
concolic checking in consistency inference is achieved by discharging formulas that describe
execution traces to the Z3 SMT solver. The inputs to the system are sequential programs

33

Figure 1.13: Architecture overview of the overall synthesis system

written in Scala and specifications written in Peepco’s domain-specific language (DSL)
embedded in Scala. The system outputs final implementations as message-passing programs
in Scala that use networking facilities provided by the Akka framework [Akka – actor toolkit
and runtime, http://akka.io/ 2023], and are deployed together with the Peepco’s run-time,
on a Java Virtual Machine (JVM). Message sending and receiving, in the generated code and
distributed protocols uses TCP-based communication channels.

We evaluated consistency inference in SyCoord and PeepCo on 28 and 18 benchmarks,
respectively, that included conflict-replicated data types (CRDTs), models of relational
databases, and application usecases that leverage different data replication and splitting
schemes. In the case of SyCoord, the benchmark suite includes 1 benchmark that does not
have a straightforward encoding in SMT logic and thus cannot be supported by PeepCo.
We evaluated run time performance, in terms of throughput and operation response times,
of emitted implementations in the case of consistency optimization backends SyCoord and
PeepCo, as well as the EdgeC version of our system in which programmers specify the
intended consistency per operation. For our our run-time performance evaluation, we picked
representative case studies that were considered in prior work. We include includes run
4 case studies in under different settings in the case of Peepco, and a single case study
(representing different variants of the running example) in the case of SyCoord, and two
case studies in the case of EdgeC. Our evaluation includes performance comparison of the
emitted implementations to our manually developed baselines, as well as off-the-shelf data
stores.

1.3 Overview

The system architecture for our end-to-end synthesis-aided programming system is shown in
Figure 1.13. While Peepco and SyCoord represent two systems that capture two different

34

evolution points in the development of the overall system for optimizing consistency of
distributed programs, they make up two pipelines within the system. Peepco builds on
top of the static analysis introduced for SyCoord and instantiates it with a symbolic
checker to enable reasoning about bounded execution traces symbolically. Programmers
can choose different pipelines when interacting with the overall system: for Peepco, the
pipeline will invoke the static analysis using the symbolic SMT-based checker, and in addition
to emitting the implementation code, Peepco emits a “consistency table” that is used to
parameterize the run-time protocol according to the inference results; for SyCoord, the
pipeline will invoke the static analysis using the concrete checker, requiring programmers to
also provide concrete input values, while the code generator emits final implementations that
use unbounded protocols. To support end-to-end programming with both of the mentioned
consistency optimization pipelines, we have designed a programming model and a domain
specific language, and implemented the code generation in the backend. We extend the
system to support specifying reactivity and underlying network models by providing additional
specification elements in the system’s DSL and introduce additional processing elements,
such as the cost analysis for computing best shapes of behaviors according to the underlying
network models, to the system’s pipeline.

This dissertation is organized as follows. We first present Peepco’s full, unbounded,
approach for guaranteeing sound executions at run time, by introducing its computation
models and consistency specialization strategy, the run-time PeepCommit protocol, and
the symbolic consistency requirements inference procedure in Chapter 2. We then present
SyCoord, expand on the consistency inference procedure, characterize its expressiveness,
and describe the inference process using a concrete bounded checker, as well as the backend
for emitting implementations that leverage unbounded protocols to guarantee consistency up
to a specific concurrency bound in Chapter 3. In Chapter 4, we present EdgeC and explain the
overall system design for supporting additional aspects such as reactivity, and implementation
of the end-to-end programming approach that supports integrating consistency optimization
procedures, as well the extensions for specifying the underlying network models. Chapter 5
compares the programming model, inference procedure, and the consistency optimization
approach embedded in Peepco to approaches presented in prior work, as well as alternatives
the programmers can choose for development of distributed programs.

1.3.1 Discussion and Limitations

Our approach can provide significant gains in performance in cases where the given operations
of the object exhibit many conflicts in the worst case and executing subsets of those operations

35

exhibits scenarios where consistency can be optimized. While the dynamic aspect of our new
protocol allows it to apply such performance optimizations, it does this at the cost of paying
for additional communication whenever an operation (that is not read-only) gets invoked.
For applications that have a lot of operations that modify the state, but exhibit no conflicts,
developers could identify the non-conflicting operations a priori and issue them without such
additional costs.

In this thesis we demonstrate that integrity can be effective in eliminating bad executions
by enforcing optimal consistency within the batch-based consistency model. However, to
ensure the integrity properties are sufficient for the given program, for some classes of programs
programmers might need to manually inspect the resulting executions. If, e.g., effects of
the operations simply assign new values to variables, instead of producing non-destructive
effects, state updates in the system might get effectively nullified at run time. (This might
occur as a result of overwriting a value that was updated by an effect produced concurrently.)
Such executions would not be allowed by strong consistency, but might still preserve the
given integrity, and thus be eligible in our model. Expressiveness of the supported integrity
properties might not be sufficient to fully specify such programs, and programmers might
need to resort to other means to ensure that their intended behaviors account for all the
operation effects. Adding a node that contains the whole state and asserting equality between
portions of the state with states on other nodes can alleviate the problem, albeit slowing
down the inference.

Programmers that need to leverage partial replication need to be aware of the data flow
that arises due to operation splitting, and check if that adheres to their security needs.
Moreover, extending the approach with new protocols needs to be done with care (potentially,
as library extensions maintained by domain experts), as any discrepancy between a newly
introduced consistency model and the run-time guarantees of the protocol can lead to violating
the overall correctness of the system and its guarantees.

1.3.2 Scientific Journey

The overall motivation for an end-to-end programming system came from the work on
analyzing different programming models and frameworks, as well as its follow up work
that motivated the programming model that leverages sequential semantics for distributed
behaviors and discussed different features of modern distributed programs that such a
programming system should support [Kuraj and Solar-Lezama, 2017; Kuraj and Jackson,
2016].

EdgeC represents the first iteration of our end-to-end programming system for writing

36

distributed programs, which highlighted the need for consistency optimization, and resulted
in a prototype that introduced multiple foundational components of the overall system. We
presented the system design of an end-to-end programming system that supports specifying
network models and computation costs, as well as consistency of different operations, and
generates final implementations of distributed programs that employ consistency protocols
based on the chosen operation consistency [Kuraj and Solar-Lezama, 2020].

The work on the second system, SyCoord, started in 2018 and concluded in May 2021.
We presented a static bounded inference that supports application-level invariants and uses
concolic and concrete exploration to find consistency requirements based on the safety specified
by those invariants in [Kuraj, Solar-Lezama, and Polikarpova, 2022].

The last version in the system’s evolution, Peepco, was motivated by achieving soundness
for unbounded executions, and the work on it started in 2021 and concluded in November
2023 [Kuraj, Feser, et al., 2023]. Peepco added a new run-time protocol that is capable
of reusing operation ordering requirements found by a SyCoord-based, purely symbolic,
procedure, to perform optimizations at run time, while guaranteeing integrity through the use
of distributed agreement. To that end, the work also introduces a new consistency strategy
that parametrizes consistency models, which force bounded periodic convergence, based on
the given integrity properties.

Some ideas and figures in this thesis have appeared previously in the aforementioned
publications.

37

Chapter 2

PeepCo: Batch-Based Consistency
Optimization

Programmers traditionally relied on strong consistency to preserve data integrity, which
masks the intricacies of distributed execution over data allocated across a network of nodes,
under unpredictable communication delays and concurrency, at the expense of runtime
performance [Brewer, 2012]. Weaker consistency mechanisms offer higher performance but
can cause application-level integrity violations if used naively [Sovran et al., 2011; Bailis,
Fekete, et al., 2014]. Programmers are faced with the challenge of balancing integrity and
performance when choosing the right consistency model given the requirements of their
applications [Sivaramakrishnan, Kaki, and Jagannathan, 2015]. Moreover, implementing the
resulting application tightly couples the application logic and distributed aspects, and any
change to either of the two has to propagate changes in the consistency model through a costly
development cycle [Viennot et al., 2015; Stonebraker, Madden, et al., 2007; I. Zhang et al.,
2016; Kaki, Priya, et al., 2019]. Automating this choice and the subsequent implementation,
while attaining high-level integrity provided by strong consistency, remains a challenge.

As mentioned in Chapter 1, while prior work has presented static analysis approaches
for consistency optimization, avoiding conservative analysis at static time remains a chal-
lenge [Sivaramakrishnan, Kaki, and Jagannathan, 2015; Houshmand and Lesani, 2019; Kaki,
Earanky, et al., 2018; Gotsman et al., 2016; Kaki, Priya, et al., 2019; Bailis, Fekete, et al.,
2014]. The conservative nature of such analyses implies that they might miss certain optimiza-
tion opportunities based on the dynamic context of the operation currently being executed. In
this chapter, we present an automated approach that uses symbolic reasoning over executions
of bounded number of operations to derive efficient run-time checks that can be used to decide
the optimal consistency model at run time, for a given set of concurrent operations. We
define the right consistency as the weakest consistency needed to maintain a set of semantic

38

properties given by the programmers. Our approach provides two key advantages over the
purely static approach. First, we can exploit fine-grained optimization opportunities that only
occur in specific situations at run time. Existing techniques must revert to strong consistency
whenever there exists some interleaving of operations that violates integrity, even in cases
where those operations do not get invoked together at runtime. Second, the verification
burden of our approach is smaller than other approaches that must verify that the chosen
consistency level maintains integrity for all possible inputs and unbounded interleavings.
Instead, our approach checks that integrity is maintained for bounded executions and uses
this information, together with the dynamic information obtained from the run-time checks,
to perform optimization, safely and profitably.

To better facilitate our consistency optimization strategy, we introduce batch-based
consistency, which, given a set of semantic properties, defines a specialized consistency model.
Batch-based consistency is parameterized over two kinds of application-specific integrity
properties, safety and congruence, and generates a specialized consistency model that restricts
the states the system can go through. A safety property must hold in every state. A
congruence property must be restored periodically after a finite number of state changes.
By specifying the two kinds of integrity properties, programmers specify the desired level
of consistency, picking a point between eventual and strong consistency. This allows the
programmers to limit the allowed discrepancy of states between nodes at any point, but it
also weakens the strict notion of state convergence (which prescribes all nodes have to see
the effects of distributed operations in the same order, as if the effects were produced by a
sequential execution), opening up further opportunities for relaxing orderings of operations
at run time. Consistency optimization can then optimize consistency at run time, as long as
the execution maintains the integrity prescribed by the model specified by the programmers.

Batch-based consistency optimization. Our approach, batch-based consistency
optimization, is implemented in the Peepco tool. Peepco is a consistency optimizer that
takes the definition of a sequential object, data allocation specification, and integrity properties
defined as predicates on the object state, synthesizing a message-passing implementation that
respects the allocation specification and executes object methods as distributed operations.
Peepco infers consistency requirements from the specification and synthesizes a distributed
application by allocating data, splitting and allocating computation, and integrating the
results into our new run-time protocol, to implement the batch-based consistency model with
the specified integrity.

Our approach relies on a statically constructed oracle that determines if an operation can
safely execute given dynamic information about the operations running in the distributed
system. Our strategy relies on the insight that if we have such an oracle, we can leverage

39

standard techniques for distributed agreement [Gray and Lamport, 2006] to relax consistency.
Once all nodes agree on the operations that can be executed concurrently, their execution
ordering can be relaxed to allow any of those the oracle deems safe. The oracle is then used
to implement batched execution: given the set of running operations already in a batch, a
new operation is allowed to execute in the same batch only if: 1) the oracle allows it to run
concurrently, and 2) it follows execution order with respect to other operations in the batch,
as specified by the oracle.

The strategy uses a new run-time distributed algorithm—PeepCommit—which operates in
batches and uses the oracle to add as many non-conflicting operations to a batch as possible,
falling back to strong consistency when the batch might contain conflicting operations. Our
protocol is blocking and thus not resilient to process crashes (similar to “two-phase commit,”
which can use a write-ahead log for fault-tolerance [Gray and Lamport, 2006]). All nodes in
the system consult the same oracle locally while maintaining safety and restoring congruence
at the end of each batch. The correctness and performance of the strategy directly depend
on the set of relaxed orderings known to the oracle. To construct the oracle, we introduce
integrity-driven consistency strengthening, a new SMT-based bounded symbolic analysis
algorithm for consistency inference for batch-based consistency. (Integrity-driven consistency
strengthening represents an instantiated strategy for consistency requirements inference, which
we present later, in Chapter 3.) The algorithm discovers the consistency requirements of
bounded execution traces of operations derived from sequential objects at compile time. Our
algorithm is efficient; it incrementally builds a set of consistency requirements and uses them
to aggressively prune the set of execution traces to explore, in addition to using traditional
symmetry-breaking techniques. This allows us to explore traces up to non trivial bounds,
even when the integrity invariants allow many operation reorderings. While the bounded
nature of our analysis means that it can miss optimization opportunities that arise at larger
bounds than the one explored, it will not lead to unsound executions.

In addition to full replication (where all nodes replicate the application state), we ex-
tend our approach to support partial replication, where users specify how certain parts of
the application data are split among nodes, while other parts are replicated [Belaramani
et al., 2006]. Partial replication is a requirement for modern distributed applications, which
rely on sharding and fine-grained allocation on the backend to achieve security and per-
formance [Stonebraker, Madden, et al., 2007]. It also enables “local-first” applications on
the front-end [Kleppmann et al., 2019]. Partial replication introduces new opportunities for
optimization, which Peepco can take advantage of.

Contributions. In summary, this chapter makes the following contributions:

• Batch-based consistency (Section 2.2), a new approach for specializing consistency models.

40

var bal: Int = 0
var hist: List[(String, Int)] = []

def deposit(amt: Nat) {
bal += amt; hist += ("d", amt) }

def withdraw(amt: Nat) {
if (amt ≤ bal) {
bal -= amt; hist += ("w", -amt) }}

Figure 2.1: Bank account in
Peepco

Figure 2.2: Execution snap-
shot

Figure 2.3: Specialized
model

• A strategy for consistency optimization in batch-based consistency, consisting of 1. the
PeepCommit protocol (Subsection 2.2.4), a new round-based distributed algorithm that
relaxes consistency constraints within bounded sets of concurrently invoked operations,
while maintaining integrity, and 2. the integrity-driven consistency strengthening algorithm
(Subsection 2.2.5), an efficient, symbolic, bounded, static analysis that determines the
weakest set of consistency constraints under which operations in the given set are safe to
reorder.

• An extension of the strategy that allows for consistency optimization when data is replicated
only partially (Section 2.3).

• An implementation of Peepco as a Scala DSL that allows programmers to orthogonally
specify behavior, data allocation, and integrity, and an evaluation (Section 2.5) of Peepco

on benchmarks, both new and drawn from prior work, that compares the performance
of the resulting distributed implementations to relevant baselines, as well as identifies
conditions under which Peepco can achieve significant speedups.

2.1 Motivation

We now show how developers use Peepco to synthesize a simple, but illustrative, replicated
application ([Sivaramakrishnan, Kaki, and Jagannathan, 2015]) and achieve performance and
desired integrity in batch-based consistency. We will reuse and expand upon the motivating
example introduced in Chapter 1.

Distributed Model. We consider a bank account object (Figure 2.1), which we have
adopted from [Sivaramakrishnan, Kaki, and Jagannathan, 2015], that has a balance bal and
an ordered history hist that tracks performed operations, reflecting the value in bal when
reduced by the fld fold function. (fld simply folds over the list, applying its operations in
order, starting from 0.) The object has three methods: deposit, withdraw, and interest.
The methods modify bal accordingly and record operations by adding entries to hist. In

41

addition, withdraw performs a check to avoid overdrafting the account. We define interest
subsequently.

We deploy the bank account as a distributed application where the object is replicated onto
the nodes n1 and n2. Let us consider execution when Peepco’s consistency optimization is
not applied. Clients invoke methods, which then get dispatched to arbitrary nodes. Figure 2.2
shows a client that calls withdraw twice: the first is dispatched to n1 and the second to
n2. After a replica receives a call, it produces an effect (a state update function, closed
over the parameters), applies the effect locally, and propagates it to other replicas over the
network.1 Here, starting with the state bal:100 and hist:[(d,100)], withdraw(80) is
dispatched to n1, the overdraft check passes, so n1 produces and applies the effect bal-=80
locally, resulting in bal:20. Figure 2.2 shows this intermediate state where the effect was
sent to n2 (shown with a dashed line). If the effect bal-=80 reaches n2 before the second call
withdraw(50) is issued, n2’s bal is updated to 20, before the overdraft check of the call fails,
producing no effects. However, if withdraw(50) is issued concurrently, its check passes and a
second effect bal-=50 will be applied at n2 and sent to n1. When both effects are applied, on
n2, the account becomes overdrafted (state bal:-30, hist:[(w,-50);(w,-80)]). While
both effects pass the local overdraft check, cumulatively they subtract more from bal than is
available. The overdrafted state is caused by reordering due to concurrent executions, and
we want to avoid it at all times, on all nodes.

Now we consider the interest operation, which sets bal to a percentage x of the
current bal value: bal * x / 100. A concurrent invocation of interest with deposit or
withdraw cannot cause an overdraft but might result in different values of bal on different
replicas, as the methods are not commutative. After all methods finish their execution, we
would like bal, and the value reflected by hist, to be the same across all nodes.

To eliminate such executions, we could use strong consistency [Harding et al., 2017;
Abadi, 2012]. Prior approaches for optimizing consistency in the eventual consistency
model [Sivaramakrishnan, Kaki, and Jagannathan, 2015; Kaki, Earanky, et al., 2018] require
replicas to converge to equal values and thus would force strong consistency to prevent
reordering in hist. Static consistency optimization approaches [Kaki, Earanky, et al., 2018;
Sivaramakrishnan, Kaki, and Jagannathan, 2015; Houshmand and Lesani, 2019] need to
assign strong consistency to all non-read method calls to ensure equal copies of bal, due
to interest not being commutative with any of the other two methods. However, this
eliminates concurrent executions even when concurrency is safe, e.g., multiple deposits or

1We adopt the operation-centric model of replication with effect propagation [Burckhardt et al., 2014;
C. Li, Leitão, et al., 2014; Shapiro et al., 2011a; Sivaramakrishnan, Kaki, and Jagannathan, 2015; Kaki,
Earanky, et al., 2018; Kaki, Priya, et al., 2019].

42

replicate({bal, hist}, N)

safe ∀n ∈ N. def i1 =
bal[n] ≥ 0 && fld(hist[n]) ≥ 0

congr ∀na, nb ∈ N. def i2 =
bal[na] == bal[nb] &&
fld(hist[na]) == fld(hist[nb])

Figure 2.4: Peepco specifica-
tion

Figure 2.5: Run-time
calls

n1

n2

n3

bal+=20

bal+=20

bal-=120

✔: bal-=120

Figure 2.6: Causal ordering
trace

calls to interest in a row. In contrast to prior work, Peepco specializes the consistency
model to allow safe concurrent executions by dynamically optimizing consistency, falling back
to strong consistency only when necessary.

Batch-Based Consistency. We specify integrity properties (Figure 2.4) with Peepco’s
Scala embedded DSL. First, we replicate bal and hist on all nodes in the system (variable
N). Then, we define a safety property: bal and the fold of hist are always non-negative.
The syntax bal[n] refers to the local copy of bal on node n. Finally, we define a congruence
property: copies of bal and folds of hist (starting from 0) are equal in congruent states.
Note that this property requires equality only between all replicated bal, but not hist.

Using these properties, Peepco generates a distributed program that executes methods
in batches, according to the specified integrity. Methods within a batch may be executed
concurrently as long as all safety properties are maintained and congruence is restored at
the end of the batch. Figure 2.3 shows an execution trace; points on the trace where safety
properties hold are highlighted in yellow and points where congruence properties hold are
highlighted in blue. Method calls being dispatched are depicted with a star (they do not
immediately start executing), with brown, red, and green designating interest, withdraw,
and deposit, respectively. Peepco prevents concurrent executions of withdrawals, due
to safety, and concurrent withdraw and interest calls, due to convergence. In the trace,
withdraw and interest are invoked concurrently, but the withdraw is deferred to the
second batch, where it executes concurrently with a deposit. Due to congruence not requiring
equality between replicated hist, the system will allow interleaving executions of multiple
deposit and interest. Any reordering between these operations cannot violate congruence
due to commuting between themselves.

Batch-based consistency is implemented using PeepCommit, a new run-time protocol
for batched execution. Figure 2.5 shows the interaction between the generated code and
PeepCommit in the second batch, where withdraw is invoked after the node had already seen
deposit. Upon invoking withdraw, the node invokes PeepCommit to check with the other
nodes whether withdraw can be added to the current batch, and with the oracle under which

43

order it needs to execute with respect to deposit that is already in the batch. After all nodes
agree to add withdraw into the batch, the oracle mandates withdraw execute under causal
ordering (which means it can be delivered on other nodes, only after all causally-dependent
operations [Lamport, 1978b]). Message handlers generated by Peepco then execute it locally
and propagate its effect to other nodes, using consistency protocols provided by Peepco’s
run-time.

Peepco obtains the oracle by symbolically exploring all bounded execution traces, based
on the given sequential object and the specification. When Peepco detects an integrity
violation, such as in the overdraft scenario in Figure 2.2, it analyses the trace and concludes
the bad trace can be prevented by disallowing concurrent executions and enforcing strong
consistency (total order) of withdraw and their effects. Peepco continues exploring new
traces, pruning all those that concurrently invoke withdraw. It then finds another violation
of safety (Figure 2.6) and concludes withdraw effects need to be delivered in the causal
order with respect to deposit in the same batch [Lamport, 1978b] (as, e.g., withdraw effect
-120 can depend on the particular amount deposited already, 20). The violation can be
prevented by enforcing strong consistency between the two methods, but that would be more
restrictive. Peepco supports weak, causal, and strong consistency orders. Once Peepco

explores all traces for a bounded set of operations, it synthesizes an oracle that is used by
PeepCommit.

2.2 Batch-Based Consistency

In this section, we define batch-based consistency. In batch-based consistency, consistency is
defined relative to an integrity specification, which asserts application-specific invariants. We
show how our consistency optimization procedure produces a distributed object implementa-
tion that leverages a run time protocol, to allow methods to be executed concurrently and
ordered differently on different nodes, whenever such reordering cannot violate the integrity
specification, which increases application performance.

2.2.1 Semantics of Batch-Based Consistency

Batch-based consistency is parameterized by an integrity specification I = (IS, IC), where
IS, IC are two sets of integrity invariants: safety IS and congruence IC . The invariants are
evaluated on a global state σ of the system. Global state captures local states at each node n ∈
Node in the system. A special set of node identifiers Node is the set of all nodes in the system.
A global state σ : State maps nodes to local states LocalState, State = Node 7→ LocalState.

44

A local state s : LocalState maps variables Id to values, LocalState = Id 7→ Val. (We will use
state to refer to the global state and specify locality when needed.) In our running example,
the account balance bal is replicated, so each of σ[n1] and σ[n2] contains a copy of bal and
hist and initially σ = [n1 → [bal→ 0, hist→ Nil], n2 → [bal→ 0, hist→ Nil]].

An integrity invariant is a first-order formula of the form:

∀n ∈ Nodek. c(n) =⇒ p(Ω(n)) where Ω(n) = σ[n1], . . . , σ[nk], σ ∈ State

where n ∈ Nodek specifies a sequence, of length k, of node identifiers n quantified over all
nodes in the system Node. c is a conjunction of equalities and inequalities over node identifiers
n which defines combinations of node identifiers that are used to construct parameters Ω(n)

for the predicate p. p is a quantifier-free predicate. In our running example convergence
invariant i2 has c = true, but we could add the condition c that requires na ̸= nb to avoid
trivial comparisons of the same variables, e.g., σ[na][bal] = σ[na][bal]. We use the notation
σ |= I to mean “I holds in state σ.”

We define a state trace τ to be a sequence of states σ1, . . . , σn, where σi ∈ State. The
trace characterizes an execution in which a node nx in the system goes exactly through the
sequence of states σ1[nx], . . . , σn[nx]. Next, we define a “satisfies” relation between traces τ

and different kinds of invariants I.

Definition 1 (Safety invariant). I is a safety invariant on a trace τ (denoted τ |=s I) if it
holds on every state in τ , i.e., τ |=s I ≡ ∀σ ∈ τ. σ |= I.

Definition 2 (Congruence invariant). I is a congruence invariant on a trace τ = σ1, . . . , σn

(denoted τ |=c I) if for every σi, I holds on σi or some other state that follows σi in the trace,
i.e., τ |=c I ≡ ∀1 ≤ i ≤ n. ∃i ≤ j ≤ n. σj |= I.

We lift safety and congruence to sets of invariants: a trace τ satisfies a set of safety
invariants IS (resp. congruence IC) iff τ |=s I (resp. τ |=c I) for every I ∈ IS (resp. I ∈ IC).
For any point in the trace, congruence must be restored at some point after (it holds “always
eventually” [Pnueli, 1981]). CIC (τ) denotes the set of congruent states of τ ; σ ∈ CIC (τ) iff
σ |= IC .

An integrity specification I = (IS, IC) holds on a trace τ (denoted τ |= I) if τ |=s IS
and τ |=c IC . An integrity specification holds on a system if it holds on every trace that
the system exhibits. A system or trace where an integrity specification holds is “correct.” In
our example, a correct system exhibits only traces where bal are always non-negative and
replicas periodically restore a state with values of bal and folded hist equal across replicas.

Operation Execution. The definitions of integrity given so far in this section do not
account for operation (or method) execution. For example, strong consistency models such

45

as linearizability guarantee that, if an operation is considered to be executed, there exists a
linearizability point where the operation’s effects are accounted for on every node [Herlihy and
Wing, 1990]. However, eventual consistency is less strict. An arbitrary number of operations
might finish executing, while nodes might never reach a congruent state (replicas having the
same state) [Shapiro et al., 2011b]. (This scenario can occur e.g., if operations keep being
invoked in the system indefinitely often.) Models of batch-based consistency account for
places where the invoked operations are considered to be finished and require convergence to
be restored regardless of the number of other operations that might be invoked concurrently.

Given a trace τ and an operation call o, we define two state indexes: its invocation state
startτ (o) and its finish state finishτ (o). A operation call o executed in τ if 1 ≤ startτ (o) ≤
finishτ (o) ≤ n. Operation calls are unique and represent operation types being invoked at
specific points in time. For a set of operation calls O, the finish state is the finish state of the
last call, i.e., finishτ (O) = l, where ∀o ∈ O.finishτ (o) ≤ l. On a particular node nx, a call o is
considered finished if all of the execution effects of o on nx are executed on nx. In Figure 2.6,
at the end of the given execution, the call deposit(20) (of type deposit) has finished, as
all of its effects were propagated and executed on all nodes, while withdraw(120) has not.

We now constrain states in which congruence has to be restored. We say a trace τ is
B(I)-consistent for operations O if and only if τ is safe and congruent, and O finished in a
congruent state σl, i.e., finishτ (O) = l and σl ∈ CIC (τ).

Definition 3 (TC(I)-consistency). A system is B(I)-consistent if for any set of executed
operations O, every trace that executes O is B(I)-consistent.

This definition prevents any B(I)-consistent system from executing operations, i.e., making
progress, if it cannot guarantee that the system will start converging to a congruent state.
This disallows nodes from arbitrarily diverging in their state and demands communication
between all nodes, thus a slow node or network partition can prevent progress. Peepco

guarantees B(I)-consistent executions. In turn, this leads to sacrificing availability under
network partitions in favor of consistency, following the impossibility results from [Fischer,
N. A. Lynch, and Paterson, 1985; Gilbert and N. Lynch, 2002; Gilbert and N. Lynch, 2012].

2.2.2 Batched Operation Execution

We define rules for allowing operations to execute concurrently. To that end, we define the
notion of batched execution. A batch numbering Bτ partitions a trace τ into contiguous
sequences of states and assigns every state an increasing batch number, i.e., Bτ (σi+1) ≥ Bτ (σi)

and Bτ (σi+1) ≤ Bτ (σi)+1. For operations O, we then define operation mapping Bτ
O = O 7→ N ,

such that for an operation call o ∈ O, the batch of o is k, Bτ
O(o) = k.

46

Definition 4. A trace τ = σ0, . . . , σn is a batched execution of operations O iff there exists a
pair (Bτ , Bτ

O) such that the given batch numbers defined by Bτ , Bτ
O assigns every operation

o a batch within τ , i.e., ∀o ∈ O. 1 ≤ Bτ
O(o) ≤ n, and o is fully executed in some batch k,

i.e., startτ (o) = i ∧ finishτ (o) = j, where σi, σj are assigned the batch k by Bτ .

An operation belongs to exactly one batch. The size of the k-th batch is |{o|Bτ
O(o) = k}|.

Strong consistency corresponds to batches of size 1. Eventual consistency, in the worst case,
might exhibit an infinite trace with only one batch.

We now define the notion of valid bounded executions between operations in the same
batch on subtraces and use it as the basis for defining batched B(I)-consistent executions.
Given a trace τ , I, and O, let CanBatchI : 2O 7→ B, where 2O denotes all subsets of O, be a
mapping that prescribes whether for a given subset O′ ⊆ O, τ executes O, and the subtrace
τ ′ = σstartτ (O′), . . . , σfinishτ (O′) is B(I)-consistent.

Theorem 2.2.1. A trace τ exhibits a batched B(I)-consistent execution of a finite set of
operations O iff there exists CanBatchI and a batched execution defined by (Bτ , Bτ

O), such
that all operations executed in the batch i, Oi = {o | Bτ

O(O) = i ∧ o ∈ O}, can belong in a
same batch according to CanBatchI, i.e., ∀i. CanBatchI(Oi).

The theorem holds as it relies on CanBatchI , which allows only safe executions within
any batch and restores congruence at the end of any batch, thus assuring B(I)-consistency of
the entire trace τ .

Progress and Congruent Reads. To capture progress, we put a finite bound on all
batches, i.e., ∀i. 0 < |Bi|. Due to operations being finite, a system can map a finite number
of states to a batch before starting a new one. Therefore, any batch eventually finishes,
executing one or more operations concurrently. To read state, Batch-Based Consistency
models support two special types of read operations. Safe reads return a local state from a
node at any point. Congruent reads return a congruent state snapshot across all nodes.

Given I and a set of operations O, any system generated by Peepco implements batched
B(I)-consistent executions of O. It does this by first inferring CanBatchI for O, and then,
executing concurrent operations from O in batches, as prescribed by CanBatchI . Such a
system supports safe and congruent reads, and satisfies progress. Peepco implements
congruent reads by executing them at the end of the current batch, collecting the state from
all the needed nodes.

2.2.3 Consistency Constraints and Lattice

Peepco implements CanBatchI by identifying bad traces and inferring requirements on the
order of operations that would prevent those traces. We follow prior work [Kaki, Earanky,

47

et al., 2018; Sivaramakrishnan, Kaki, and Jagannathan, 2015] and characterize the space
of consistency models as a finite partially ordered lattice, defined over standard notions of
visibility and program order between executed operations, where the partial order denotes
the relative strength of the considered models [Viotti and Vukolić, 2016; Sivaramakrishnan,
Kaki, and Jagannathan, 2015]. We define a consistency constraint c(t1, t2) as a predicate on
traces that captures rules about the ordering of any operations of types t1, t2. Each element
of the lattice is a set of constraints C. Peepco supports predicates for three consistency
levels: weak, causal, and strong consistency. (We add a new level in Section 2.3.) We
define a “weaker than” relation ⊏ between sets of consistency constraints: for any operation
types t1, t2, {weak(t1, t2)} ⊏ {causal(t1, t2)} ⊏ {strong(t1, t2)}. In our example, the set
{strong(withdrawal, deposit)} prevents the given violation, but it is not the weakest that
does so, as the causal ordering prevents it as well.

Definition 5 (Feasibility). A trace τ is feasible under C, denoted τ |=cons C, iff there exists
τ ′ such that C is true for τ++τ ′.

Effectively, when a trace is infeasible under a constraint c, no matter how the rest of the
pending steps are ordered, c will not be satisfied when all operations finish executing. For
example, in Figure 2.6, the trace becomes infeasible under causal(withdraw, deposit) right
after executing bal-=120 on n1, as w(120) cannot witness a causally dependent d(20).

Sets of constraints C form a bounded lattice (2C ∪ ⊤,⊏) with ⊥ = ∅, and ⊤, which
contains the strongest constraint for any two operations. ⊥ and ⊤ make all, and none, of
the traces feasible, respectively, i.e., ∀τ.τ |=cons ⊥ ∧ τ ̸|=cons ⊤. Given a set of traces Ω and
I, we say C is correct, or C is a solution, if ∀τ ∈ Ω. τ |=cons Cs =⇒ τ |= I. Additionally,
C = C1 ⊓ C2 is correct for Ω = Ω1 ∪ Ω2, if C1, C2 are correct for Ω1, Ω2, respectively. If C is
correct, then any stronger C ′ (i.e., C ⊏ C ′) is also correct. We say that C is optimal if there is
no correct C ′ such that C ′ ⊏ C.

Note that the only correct C might be ⊤, thus no trace, correct under I, is feasible. We
define COS as a set of strong constraints between all operations in O. (Intuitively, if COS is not
correct, integrity cannot be fixed by consistency choices.)

Definition 6 (Well-formedness). We say invariants I are well-formed if there exists C that
is correct, such that C ⊑ COS .

To obtain a correct C for a set of operations, it is sufficient to explore all their traces
and unify their solutions with ⊓. We define a solution map that contains a correct C per
size of the considered set of operations. A solution map, of some order k, is a functionMk,
that maps each integer i ≤ k to a solution C for all traces that execute subsets of O of size

48

i, i.e., Mk(i) = C, where i ≤ k, and C is correct for {τ | O′ ⊆ O, |O′| = i, τ executed O′}.
For an optimal solution, C is optimal for all traces exhibited by all O′ where |O′| ≤ k. In
Figure 2.2, a solution with order k = 2 is used, as it concurrently executes two operation
calls.

Definition 7. A system implements B(I)-consistent k-optimal execution, if it is B(I)-
consistent, batched, and for any batch Ob, it exhibits a trace τ that executes Ob if and only if
τ |=consMk(|Ob|).

We define an additional property that captures most practical systems, which states that
adding new operations cannot make the optimal solution smaller (more permissive).

Definition 8 (Monotonicity). Invariants I are monotonic iff O1 ⊆ O2 ⇒ CO1
opt ⊑ CO2

opt.

For non-monotonic invariants, a violation with fewer operations might not be exhibited
with more operations. This is possible for congruence: e.g., , if i1 was a congruence prop-
erty, interleavings of withdraw(70) and withdraw(20) would become permissible, when
deposit(x) is added, if x ≥ 90. For well-formed I Peepco produces B(I)-consistent, while
for well-formed and monotonic I, Peepco produces B(I)-consistent k-optimal executions.

Given a bound k and a solution Mk, Peepco derives two predicates that are used at
run time: 1) canBatch, which answers if the given operations B form a valid batch; it is
implemented by checking if no two operations in B have a strong consistency constraint,
i.e., ∄o, o′ ∈ B. strong(o, o′) ∈ Mk(|B|), and thus, executing them concurrently is safe; 2)
needCausal, which answers if the given operation o needs to be executed in the causal
ordering with respect to any operation in the given set B, i.e., ∃o′ ∈ B. causal(o, o′) ∈
Mk(|B ∪ {o}|).

2.2.4 PeepCommit Protocol

In this section we present PeepCommit, a distributed blocking protocol for batch-based
consistency that is parameterized with predicates for concurrent batching. The protocol
executes operations concurrently in batches, where each batch includes as many non-conflicting
operations as possible.

Key Idea. For each new operation call, all nodes vote on whether the operation can be
added to the current batch. Nodes store operations they agreed on and can only vote “yes”
for an operation if it does not conflict with any of the operations already agreed upon. If an
operation is not agreed upon by all nodes, it aborts and can be reissued later. This ensures
that no conflicting operations are ever simultaneously accepted (similar in operation to
two-phase commit [Gray and Lamport, 2006]). Once an operation is accepted, it is broadcast

49

Algorithm 1 B(I)-consistent Delivery (PeepCommit protocol)

PeepCommitObject
request: call(C)
response: ret(C, V) | aborted(C)

Params:
canBatch: Set[O] → Bool
needCausal: (O, Set[O]) → Bool
k: Int ▷ bound

Using:
rb: ReliableBroadcast
cb: CausalBroadcast
self: Node

State:
σ: Σ = σ0

r: Int = 0 ▷ round index
B: Set[C] = ∅ ▷ batch calls
E: Set[C] = ∅ ▷ executed calls
votes: C → MSet[Bool] = C 7→ ∅ ▷ vote multisets

C1 request: call(c) ▷ operation call
C2 broadcast pr(c, r)
P1 receive: pr(c, r’)
P2 noConflict ← canBatch({c} ∪ ops(B))
P3 if r = r’ ∧ |B|<k ∧ noConflict then
P4 reply vote(true, c)
P5 B ← B ∪ {c}
P6 else
P7 reply vote(false, c)

Q1 receive: vote(v, c)
Q2 votes(c) ← votes(c) ∪ {v}
Q3 if |votes(c)| = |Node| then
Q4 if false /∈ votes(c) then ▷ all voted yes
Q5 if needCausal(c, ops(B)) then
Q6 causal-order broadcast execute(c)

else broadcast execute(c)
Q7 else
Q8 broadcast cancel(c)
Q9 issue response aborted(c)
R1 receive: execute(c) on rb | cb
R2 σ ← update(σ, c)
R3 v ← retv(σ, c)
R4 if node(c) = self then ▷ c issued here
R5 issue response ret(c, v)
R6 E ← E ∪ {c}
R7 checkDone()
S1 receive: cancel(c)
S2 B ← B \ {c}
S3 checkDone()
F1 fun checkDone()
F2 if B ⊆ E ∧ E ̸= ∅ then
F3 r ← r +1 ▷ node enters next round
F4 B ← ∅
F5 E ← ∅

to be executed to other nodes, taking into account the order that preserves integrity. This
process interleaves execution and proposals of new operations and continues while the batch
is not full, or until some node decides to end the batch, which happens if all operations agreed
upon finish executing on that node.

Protocol. Our protocol description (Algorithm 1) details the events that can occur in the
system and describes how nodes respond to each event [Cachin, Guerraoui, and L. Rodrigues,
2011; Houshmand and Lesani, 2019]. The protocol is parameterized over: 1. canBatch, which
determines which operations (type O) can conflict, 2. needCausal, which determines which
operations need causal delivery, and 3. k, the maximum batch size. Internally, it uses reliable
and causal broadcast primitives (rb and cb) for communication, as described subsequently.
The protocol stores the following state on each node: the initial application state δ0, a batch
number r, the set of agreed operations B, the set of executed operations E, and a mapping
votes from calls to the multisets of received votes from other nodes.

The protocol starts when an operation call is issued. For every new call request call(c)
(line C1), a proposal pr(c, r) for the call c in round r is broadcast. Unless otherwise
specified, messages are communicated reliably, using rb. (Our implementation achieves this
using TCP.) When pr(c, r’) is delivered (line P1), the receiving node votes on whether
to add the call c to the batch. The call can only be added if the batch B is not full and
the operation of the call op(c) does not conflict with any of the previously added calls to B

50

(line P2). This is ensured by canBatch, which is true if a set of operations is safe to execute
concurrently. In addition, only calls belonging to the round the receiving node is in, can be
added (line P3); this ensures that nodes receive all votes reflecting the needed batch even
when they are slow in advancing to the next round. The node votes by sending a reply
vote(c, v), where v is Boolean. On a “yes” vote, it adds c to the batch.

Upon receipt of a vote(c, v) (line Q1), the node adds the vote to the set of all votes
for the call c. Once a vote is received from every node (including self, line Q3), the call is
accepted if every vote is “yes” and aborted otherwise. To execute the call, an execute(c)

message is broadcast. needCausal determines whether that broadcast needs causal ordering2.
Otherwise, regular broadcast is used and the call might be interleaved with other calls that are
accepted in the same batch. While other nodes already have the operation in B, broadcasting
the operation is necessary to ensure the right order of delivery, which determines the order of
execution. When a call does not get a “yes” vote from every node, its issuer sends aborted(c)
to the caller and sends a cancel notification to notify other nodes that the call is not part
of the batch. Upon receipt of an execute(c) message on either rb or cb, the node executes
the operation c, which updates its state and produces a return value v (lines R2–R3). When
the node is the one that originally received call(c), it sends a return message ret(c, v)

to the caller (line R5). The node then adds the call to the set of executed calls E and checks
if it can proceed to the next round by calling checkDone. Upon receipt of cancel(c) (line
S1), the node removes c from its batch set B, regardless of its vote on c. Afterward, it
calls checkDone to check if the condition to proceed to the next round is met. Function
checkDone (lines F1–F5) checks if all calls that the node agreed to execute in the current
batch B have been executed. At least one operation needs to be executed, to prevent empty
batches in cases where all the proposed calls get rejected. If all calls have been executed, the
node advances to the next round. It increments the round index r and resets the batch B

and executed E sets.
Protocol Properties. PeepCommit maintains the following properties:

1. Validity : During any batch, only non-conflicting operations are executed concurrently,
and they are executed in the right order.

2. Agreement : For every round, nodes agree on the same batch of operations.

3. Termination: Every operation call eventually completes or aborts, exactly once.

2Peepco uses the standard causal broadcast abstraction cb to deliver messages in causal order, which
ensures that messages are only delivered after any causally preceding messages. [Cachin, Guerraoui, and
L. Rodrigues, 2011].

51

The protocol maintains an invariant that at any point in time, on every node, B contains
operations that are allowed to execute concurrently, according to canBatch. Validity follows
from this invariant and the fact that to execute an operation concurrently, every node has to
vote “yes” on it, only after adding it to B locally, which is only possible if it’s non-conflicting.
Once any node finishes the batch and proceeds to the next round, no more operations can be
added to the same batch (as the node will keep rejecting their proposal). Agreement thus
follows, as if a node votes “yes” for an operation (and adds it to its B), it will eventually
get notified about its execution or cancellation, and will arrive at the same final B as other
nodes and end the batch as well. Termination follows from the fact that the outcome of the
operation is known after the voting is done, and the operation is executed locally on the
issuing node. We discuss PeepCommit’s starvation in Section 2.4.

Correctness. Given a solutionMk for operations O, PeepCommit implements B(I)-
consistent live batched executions. IfMk is k-optimal, executions are k-optimal.

The correctness follows from Validity and Agreement of PeepCommit when canBatch and
needCausal are derived fromM, as operations maintain safety, and congruence is restored
at the point where all nodes advance to the next round. Note that new operations cannot
be accepted to be executed, until all nodes have advanced, thus reaching a congruent state.
Progress in the batch-based consistency follows from Termination and the fact that only a
finite set of operations (up to k) can be executed before the congruence property is restored.
Optimality then simply follows from the optimality ofMk.

Total order optimization. PeepCommit can be extended to allow multiple operations
that need strong consistency in the same batch. Executed operations E can be discarded
when checking this conflict: canBatch({c} ∪ (ops(B) \ ops(E))) on line C2, as total order
between a c and all in E is ensured.

2.2.5 Integrity-Driven Consistency Strengthening

In this section we present integrity-driven consistency strengthening, which infers consistency
constraints used by PeepCommit. The goal of the algorithm is to symbolically identify
constraints on the ordering of bounded sets of operations (akin to [Kaki, Earanky, et al.,
2018]), support operation splitting under partial replication (see Section 2.3), and prune for
scalability.

The idea of the algorithm is to incrementally build a consistency solution by accumulating
constraints identified for traces that violate integrity. It explores all traces that execute an
increasing number of concurrent operations; when it finds a trace that violates integrity, it
identifies the weakest constraint that makes the trace infeasible. Found constraints on smaller

52

Algorithm 2 Infer (Integrity-Driven Consistency Strengthening)
Require: nodes N , operations O, integrity invariants (IS, IC), bound k
Ensure: consistency solutionM of order k
1: Si ← ∅, for 1 ≤ i ≤ k, C0 ← ⊥, b← 1, Ω1 ← {([], Init , IC ∧ IS) | Init ∈ Comb(O,N, 1)}
2: while b ≤ k do ▷ explore worklists up to size k
3: if Ωb ̸= ∅ then ▷ all traces up to b are done
4: (τe,Next , pc)← Choose(Ωb); Ωb ← Ωb \ {(τe,Next , pc)}
5: if τe ̸|=cons Cb then continue ▷ prune
6: fvalid ←

∧
I∈IS eval(τe) ∧ p |= I ▷ computed by SMT solver

7: if Next ̸= ∅ then ▷ some operations did not finish
8: Ωb ← Ωb∪{(τe++[s],Next ∪getNext(s, pc) \ {s}, pc∧ c) | c ∈ getCond(s), s ∈ Next}
9: else

10: fvalid ← fvalid ∧ (
∧

I∈IC eval(τe) ∧ p |= I) ▷ computed by SMT solver
11: if ¬fvalid then ▷ trace τe can violate invariants
12: Sb ← (C, τe) ∪ Sb, s.t. C is minimal and τe ̸|=cons C
13: Cb ← Merge(Sb) ⊓ Cb
14: if Cb = ⊤ return b′ < b ? {(b′ → Cb−1)} : ⊤ ▷ no solution for bounds b′ > b
15: else
16: b← b+ 1, Cb ← Cb−1, Ωb ← {([], Init , IC ∧ IS) | Init ∈ Comb(O,N, b)}
17: return b′ < k ? {(b′ → Ck)} : ⊤ ▷ solution of order k

traces are also used for pruning larger unexplored traces. Execution traces are checked fully
symbolically with an SMT solver. We follow the standard approach of exploring programs
with conditionals, and we capture distributed semantics with execution steps, or actions,
representing node-local computation [Flanagan and Godefroid, 2005]. Peepco transforms
methods into DAGs of actions, together with conditions that enable their execution in case of
branching, accounting for the propagation of effects. Peepco supports recursion only within
actions locally.

Algorithm. The algorithm (Infer) is given in Algorithm 2. Infer takes nodes N ,
execution step, or action, graphs O, integrity invariants I, and a maximum bound k. A
bound reflects the number of operation calls in the system. It returns a solution of order
k, which contains the weakest set of constraints that prevent all violations for any number
of concurrent operations, up to bound k. Infer maintains a solution Cb for each explored
bound b and starts by initializing each solution with the bottom element ⊥, the empty set
of constraints, which allow any trace. Infer maintains a worklist Ωb for every bound b.
Worklist items are tuples (τe,Next , pc) of a trace of actions τe, pending actions to execute
Next and a path condition pc.

The algorithm initializes a worklist Ω1 for exploring single operations invoked in isolation.
Comb(O,N, b) returns the set of initial steps for all different execution scenarios in bound b,
covering all combinations of methods in O, dispatched to different nodes in the system. In

53

our example, for b = 2, Init will contain starting actions for two deposit calls dispatched to
separate nodes, as well as to the same node. Infer then creates new worklist items for each
combination of starting actions. Each new worklist item has an empty trace, and a path
condition that reflects starting from a safe and congruent state. All worklists are processed in
the order of increasing b, until the max bound k is explored. If the worklist Ωb is nonempty,
Infer chooses an item to process with Choose (line 4). While Choose can make arbitrary
choices, Peepco implements particular optimized strategies; see Section 2.4. If any of the
constraints from the previous bound Cb−1 makes the trace infeasible, Infer prunes it (line
5). Next, Infer symbolically checks that the states reachable by executing τe, under the
current path condition p, are safe, for all safety invariants (line 6). eval produces a symbolic
formula from a trace, encoding the semantics of a sequential execution of its actions. Then,
Infer checks if the trace is completed. If there are pending actions to execute, Next , for
each such action s, Infer produces a new item (lines 8). A new item is created where s is
added as the last action in the trace, updated path condition in case s was a conditional, and
newly enabled actions. getNext (s, pc) returns the actions that are enabled after executing
s, under the path condition pc. If s has conditionals, for every branch of s, Infer adds the
condition c (returned by getCond) that enables that branch to the new path condition. In
our example, getNext(withdraw, true) produces two conditions, amt ≤ bal, amt > bal.
The path of the else branch produces a no-op action. If there are no more actions to execute
(line 10), i.e., the trace τe finished all its actions, Infer symbolically checks if congruence
is restored. This check implies the specific point congruence is checked (at the batch end,
per batch-based consistency; Subsection 2.2.2). If τe violates safety or congruence, Infer

infers the weakest C that prevents τe, by traversing and checking the consistency lattice. C
is then added to Sb along with τe, tracking all violating traces and consistency constraints
that prevent them, as pairs. Infer then unifies constraints in Sb with Merge to produce
the weakest solution for the violating traces in Sb, as described subsequently. Infer then
updates the solution Cb by computing join, ⊓ (line 13). Joining two lattice elements ensures
we get the weakest consistency constraints that prevent traces prevented by both elements
(as defined in Subsection 2.2.3). If Cb = ⊤, Infer returns without a solution, as the given
integrity is unsatisfiable.

If Ωb is empty (line 3) Infer proceeds to the next bound and populates the worklist
Ωb with new items using Comb. It also propagates already discovered constraints Cb−1, to
prevent all violating traces from prior bounds. After all worklists up to bound B have been
explored (line 17), Infer returns Ck as the k-solution.

Merging Constraints. Merge unifies constraints in Sb by simply joining them (⊓). We
describe a modified Merge for partial replication in Section 2.3.

54

Soundness, Completeness & Optimality. Infer is sound—if it returns a solution,
it admits only traces that satisfy integrity. All traces are either checked or pruned, based on
the least upper bound of the weakest elements that prevent all found violating traces. For
well-formed invariants Infer is complete—if a solution exists in the lattice, Infer will return
it. As the algorithm checks all traces, for well-formed invariants at least strong consistency
will be returned. Otherwise, the algorithm reports unsatisfiability. For monotonic invariants,
the solution is optimal—Infer returns the weakest solution. Optimality relies on the fact
that the algorithm correctly identifies the weakest set of constraints that prevent individual
traces (line 12), merges them with ⊓, and prunes traces that would be infeasible under those
constraints. Due to monotonicity, the orderings that caused consistency violations cannot be
made viable by adding new operations, thus the solution for larger bounds cannot be made
weaker.

Relationship with SyCoord’s consistency inference framework. Integrity-driven
consistency strengthening instantiates a general framework for consistency inference, which
we present in Chapter 3. Notably, the algorithm presented here differs from the concrete and
concolic instantiations presented in Chapter 3 in two ways. First, integrity-driven consistency
strengthening uses a symbolic checker to check bounded execution traces and thus guarantees
integrity for arbitrary values without requiring concrete inputs from the programmer. This
comes at the cost of slower inference, in cases where efficient evaluation on concrete values
might lead to discovering important conflicts sooner. (Our evaluation, however, shows the two
strategies lead to comparable scalability.) Second, integrity-driven consistency strengthening
leverages a simplified strategy for consistency constraint merging to efficiently find optimal
consistency requirements in the context of the adopted model, i.e., batch-based consistency.
Specifically, here, given some operations O, for a violating trace τ , if more than one constraint
prevents it, let C1 and C2 be the constraints that prevent τ , while the constraints cannot be
ordered, i.e., C1 ̸⊒ C2 and C2 ̸⊒ C1, an optimal solution Co is allowed to contain (and the result
of the algorithm always produces) Co ⊒ C1 ⊓ C2. However, in the case that C1 and C2 are not
ordered in the consistency lattice, while both C1 and C1 are correct consistency constraints,
only one might comprise the final optimal solution C ′o, i.e., C ′o ⊏ C1 ⊓ C2. Chapter 3 describes
a fine-grained strategy of obtaining optimal solutions Co in such cases, which maintains and
propagates multiple candidate solutions.

2.3 Partial Replication

In this section, we describe the extension of our approach for partial replication to allow data
to be distributed across nodes [Belaramani et al., 2006]. We show how developers can allocate

55

var max = 100; var last = None

def withdraw(amt: Nat) {
if (amt ≤ max && amt ≤ bal) {
bal -= amt; hist += ("w", -amt)
last = Some(amt) }}

def set(x: Int) {
max = bal * x / 100;
last = None }

Figure 2.7: Bank account

Bank storage, {nh}Bank replicas, Nr

last=Some(80)bal → 20

Node n1

bal → 100

Node n2

hist → [(d,100)]

Node nheffect: w’b

bal-=80

hist+=(“w”, 80)
action: wh

Bank clients, Nc

max → 100
last → None

Node nc

max → 100
last → None

Node nc

withdraw (80)

set (50)wb

wl

ws

Figure 2.8: Distributed execution

replicate(bal, Nr)
allocate(hist, nh)
distribute({last, max}, Nc)

safe ∀n ∈ N. def i1. . .
congr ∀na, nb ∈ N. def i2. . .

safe ∀n ∈ Nc. def i3 =
last[n].isEmpty ||
last[n].get ≤ max[n]

Figure 2.9: Specification

data to specific nodes, treat methods as distributed transactions, and leverage additional
consistency optimization opportunities.

2.3.1 Motivation

We extend the banking application (from Section 2.1) to restrict the amount that can be
withdrawn and to optionally track the amount last withdrawn. New code is given in Figure 2.7.
We modify withdraw to additionally check if the amount is within the limit max and add
the method set that updates max as a percentage of bal. The intended data allocation is
shown in Figure 2.8 and is achieved with the specification shown in Figure 2.9. We declare
three node sets, Nr (replicas), Nc (clients), and Nh (storage), and use Peepco to specify the
data distribution. bal is replicated on Nr, and hist is allocated to Nh. allocate restricts
allocation to a single node, so Nh is a singleton set3, and distribute assigns each client node
in Nc its own copy of last and max. We adapt our existing integrity properties for the new
data allocation and add an additional safety property (i3): the last withdraw should not
be greater than max, on all client nodes Nc.

2.3.2 Finer Grained Batch-Based Consistency

Partial replication changes the distributed execution semantics, enables additional protocol
optimizations, and changes the inference process. In this section, we sketch out these changes.

Distributed Execution. The key change to distributed execution is that methods access
fields that are only stored on certain nodes, so Peepco splits them into actions that execute
on the node where the needed data is located. Unlike methods, actions have control-flow
dependencies on other actions (Figure 2.8). For withdraw invoked with the argument of 80,
the starting action ws is dispatched to any client node (Nc) and checks if amt ≤ max. That
check passes (as 80 ≤ 100), and it sends wb to either of the replicas n1 or n2 (Nr). Then, wb

checks amt ≤ bal and then updates bal, propagates the effect w′b (bal-=80) to n2, sends
3Storing big data structures like transaction histories on every replica is seldom useful or practical

[Stonebraker, Madden, et al., 2007].

56

wh to the history node nh, and wl back to the Nc node that started withdraw. wh updates
the history, and wl sets last=Some(80) on the client. set executes two actions. The first
action is dispatched to n2 (not labeled in Figure 2.8) and reads its copy of bal. The second
action is dispatched to nc (the one that executed withdraw), where it updates max to the
computed value and resets last.

Protocol. In contrast to full replication, where any conflicting method can be dispatched
to any node, in partial replication some nodes might never get a conflicting action. Peepco

takes advantage of that fact to minimize consensus invocations. Peepco infers two statically
fixed disjoint sets of nodes for a given program: consensus nodes Ncns and non-consensus
nodes Nnc. Non-consensus nodes Nnc do not participate in consensus and only listen for
decisions from Ncns. The Ncns nodes must include any node on which a conflicting action
executes. In our example, only withdraw has a conflicting action wb, which executes on
Nr = {n1, n2}. As other methods are also dispatched on Nr, we let Ncns = Nr (encompassed
with a dotted line in Figure 2.10).

n1

n2

nh

nc
ws : amt<=max

wb

wl

wh

w′b

{pr} {fin}

{fin}Ncns

Figure 2.10: Execution

nh

n1

n2

✔: bal-=50

wh(50)wh(70)

✔: bal-=70

Figure 2.11: Redundant
conflict

We depict an execution of the ex-
tended protocol in Figure 2.10, where
solid dots represent action execution and
empty dots represent protocol events.
Nodes in Ncns exchange votes as before
(message {pr}). They agree on batches
and notify Nnc, when: 1) a method is
accepted into a batch and propagating
next actions (dashed, unlabeled, lines
in Figure 2.10; line Q5 of Algorithm 1),
and 2) the batch is finalized, with a new message {fin} (dashed lines). Here, wb invokes the
consensus. After accepting wb into the batch, n1 informs nh and nc that their actions can be
executed.

Nnc can make progress if they know which batch they are in and every action carries the
batch number the method belongs to. When an Nnc node receives an action belonging to a
batch the node is currently in, it delivers and executes the action in the order prescribed by
the oracle. If the batch numbers do not match, the delivery of the action is delayed until the
node reaches the needed batch. After executing an action, the Nnc node checks if it executed
all actions of methods in the current batch and can proceed to the next batch (similarly as in
line F2 of Algorithm 1). Here, after executing wh, nh receives the control message {fin} that
confirms withdraw is the only accepted method, after which it proceeds to the next batch.

Peepco executes read-only actions that precede conflicting actions without invoking

57

consensus. Here, ws is read-only: it simply performs the check and spawns wb, which in turn
invokes consensus. ws, however, constrains the order of set calls, as shown subsequently.

In the general case, methods may have: 1) multiple conflicting actions and 2) actions
preceding conflicting ones that modify the state. Actions in either of the groups cannot avoid
consensus. To handle the general case, Peepco infers sets of actions, per method, that
need to go through consensus (akin to transaction chains [Y. Zhang et al., 2013; Breitbart,
Garcia-Molina, and Silberschatz, 2010]) and sets Ncns accordingly.

Inference. Inferring consistency constraints for actions is largely the same as for methods.
In our example, the effects of withdraw and deposit actions on replicas Nr have the same
consistency requirements as before, in the granularity of actions. However, when used for
actions, Infer (Algorithm 2) can produce constraints that are too strong, because of a
phenomenon that we call a redundant conflict. Unlike methods, actions depend on control
flow, and their consistency requirements might depend on the requirements of the actions on
which they depend. For example, reordering wh from two concurrent wb actions on nh causes
a violation (red dot in Figure 2.11). Infer discovers this trace τr when exploring traces.
However, wb requires strong consistency, which means that there will never be two concurrent
wbs, nor the trace τr, so there is no need for additional consistency requirements on wh. The
weakest constraint that prevents τr and the constraint of strong consistency between wbs are
not ordered by the consistency lattice. The former is an unnecessary constraint.

We modify Infer by modifying Merge to remove constraints that are inferred from
infeasible traces. Instead of taking the least upper bound of all inferred constraints immediately
(line 13 of Algorithm 2), Merge(Sb, C) defers this. Only at a point where all different orderings
of preceding actions are explored, it includes new constraints into the solution for the current
bound Cb. It iteratively removes constraints C based on the traces τe they were inferred from.
They are stored as pairs (C, τe) in Sb (line 12 of Algorithm 2). If there exists a constraint
C ′ ∈ Sb, under which τe is infeasible due to control-flow dependencies, C is ignored and not
included when joining the constraints and updating the solution of the current bound Cb. As
pruning takes place only after all non-redundant conflicts within a bound are merged, Infer

maintains soundness and optimality defined in Subsection 2.2.5.
Constraints. Consider our example, where set(50) is invoked concurrently with

withdraw(80) that started on nc. The first action of withdraw, ws, reads the initial value
of max (100) and invokes wb on n1 (Figure 2.8). At that point, concurrently, set collects
bal on n2 and updates max on the same nc. Afterwards, withdraw replies to nc to execute
wl. However, set completed, setting max to bal*x/100 based on a version of bal that
did not witness the effect of withdraw. last: Some(80) thus holds a value greater than
max: 50, violating i3 (akin to a “write skew” anomaly [Berenson et al., 1995]). While strong

58

consistency would prevent this violation, it would require unnecessary coordination between
Nc and Nr. We extend Peepco with a new type of consistency constraint, delay, which
forces a delay on set, locally on nc, until all wls of pending withdraws finish or are aborted.
This avoids conflicts and allows Peepco to batch the two together.

2.4 Implementation

Peepco is implemented in approximately 29k lines of Scala (22k for static analysis and
7k for the runtime). We use Leon [Kneuss et al., 2013] for lexing and parsing and Leon’s
verification conditions for data structures with recursive predicates. We use Z3 [De Moura
and Bjørner, 2008] to discharge SMT queries. Peepco’s networking stack is implemented
using Akka [Akka – actor toolkit and runtime, http://akka.io/ 2023] (on top of TCP-based
channels). The input to Peepco is a Scala source file containing a library of functions and
data constructors, along with the integrity and data distribution specifications.

Inference. We implement Infer (Algorithm 2) as a parallel worklist procedure and
incorporate additional strategies for pruning into Choose:

• Effect-driven pruning examines variable reads and writes to prune traces that cannot
change the invariants [Flanagan and Godefroid, 2005].

• Symmetry breaking avoids reordering identical effects from calls of the same method [Emer-
son and Sistla, 1996].

Protocol. PeepCommit can exhibit starvation when there are repeated aborts. To
remedy this Peepco employs an optimization strategy for breaking ties during voting that
favors calls with many retries, as well as with fewer conflicts according to CanBatchI .

Correctness. The correctness of ensuring the batch-based execution by our end-to-end
approach depends on: 1) the correctness properties of PeepCommit, 2) the correctness of
integrity-driven consistency strengthening, 3) the correctness of ensuring that the delivery
order of operations respects the consistency levels in the consistency lattice. In previous
sections we provided correctness arguments for 1) and 2). Correctness of ensuring the
right consistency orders are implemented relies on the implementation of all the supported
consistency levels, besides strong consistency (ensured by the protocol), and weak consistency
(ensured by reliable delivery property of the underlying links). Specifically, the correctness of
our overall implementation relies on the implementation of: casual order (which we implement
by tracking operation dependencies, as given in [Cachin, Guerraoui, and L. Rodrigues, 2011])
and write skew (which we implement by storing executed operations until their execution
terminates).

59

2.5 Evaluation

In this section, we evaluate our implementation and illustrate the performance benefits of
consistency optimization in batch-based consistency. We also evaluate Peepco’s sensitivity
to different workloads and the impacts of the explored bound at run-time.

Inference Benchmarks. We consider the following CRDTs and replicated applications
introduced in prior work: LWWRegister [Shapiro et al., 2011b]: a last-write-wins register,
where reads return the value of the latest write; NNCounter [Houshmand and Lesani, 2019]: a
non-negative counter with increment and decrement; Bank account [Sivaramakrishnan, Kaki,
and Jagannathan, 2015]: our motivating example; Courseware [Gotsman et al., 2016]: a
database model for course enrollments; Microblog [Kaki, Earanky, et al., 2018]: a Twitter-like
messaging application; Auction [Gotsman et al., 2016]: an auction with bidding and closing;
and Payroll [Bailis, Fekete, et al., 2014]: an employee database.

We also consider a new use case: DivGSet(x), a modification of the grow-only set
from [Shapiro et al., 2011b] that can only be optimized by bounding the number of operations
at run time. It supports insertions and limits the divergence of the set copies across replicas.
A safety property bounds the difference in the set size between replicas by x. Peepco

maintains safety by only allowing up to x concurrent add operations.
Some of our use cases are relational—they model databases with integrity constraints.

We fully replicate relational use cases. We specify the integrity properties that are studied
in prior work, including uniqueness, referential integrity (one-to-many and many-to-many
relations between two tables), and the integrity of table rows [Kaki, Earanky, et al., 2018;
Houshmand and Lesani, 2019]. For example, Courseware is a database modeling a school,
which stores information about students and courses, and tracks students registering and
enrolling in courses. It requires referential integrity between the course and student tables
and allows adding and removing courses. Payroll stores employee and department relations,
where employees and departments can be added and removed and their salaries updated. In
addition to referential integrity between the tables, salaries have a row-integrity constraint.

We include the transactional use case TPC-E, which is an elaborate database benchmark
that emulates a brokerage [Kaki, Priya, et al., 2019; Kaki, Earanky, et al., 2018]. We model
“Trade-Result”, a transaction that emulates completing a stock market trade. We representing
the tables—Trade, Holding, Broker, and Holding_Summary—as fields, and distribute
them across separate nodes. We assert aggregate equality on trades and commissions, as well
as holding quantity across tables [TPC, 2010a].

We include partial replication use cases as variants of the partial bank account from Sec-
tion 2.3. We use the specified data distribution and vary the methods of the object. In this

60

Table 2.1: Inference statistics after 15 minutes. Legend: |O| - number of methods; int. - num-
ber of integrity properties (safe/congruent); |C| - number of found constraints; Bo, Bc, Be, Bs

- maximal explored bound, default, without consistency, effect, and symmetry pruning,
respectively.

data
distribution benchmark |O| int. |C| max. bound

Bo Bc Be Bs

full rep. LWWRegister 2 1/1 1 7 6 6 4
full rep. NNCounter 2 1/1 1 7 3 5 7
full rep. Bank(w) 2 1/1 1 8 8 5 8
full rep. Bank(w,d) 3 2/2 2 7 3 2 3
full rep. Bank(w,d,i) 4 2/2 4 7 4 3 4
full rep. Courseware 6 3/1 3 5 4 3 4
full rep. Microblog 2 1/1 1 5 3 4 3
full rep. Auction 3 1/1 2 6 4 5 5
full rep. Payroll 7 3/1 2 3 3 3 3
full rep. DivGSet(3) 2 1/1 1 8 5 8 5

distributed Bank(w) 3 2/1 0 8 8 7 8
distributed Bank(w,d) 4 2/1 1 7 6 4 5
distributed Bank(w,d,i) 5 2/1 3 5 3 5 5
distributed TPC-E 1 2/1 1 5 4 3 4
partial rep. Bank(w) 3 1/2 1 8 8 4 8
partial rep. Bank(w,d) 4 2/2 3 7 5 2 4
partial rep. Bank(w,d,i) 5 2/2 7 6 4 2 4
partial rep. Bank(w,d,s) 5 3/2 4 8 5 2 4

benchmark, when set is included, Peepco discovers and prevents the write skew anomaly
between methods.

Inference Platform. Our experiments were performed on a machine with an Intel
Xeon E5-2699 v2 with 24 2.2GHz cores and 48GB of RAM. We used OpenJDK 18.0.1 with
one JVM thread per core.

Inference Results. We measured the maximal bounds Peepco explores, stopping after
15 minutes or exploring bound 8, and show the results in Table 2.1. For each benchmark, we
report the data allocation scheme, the number of considered methods, and the number of
safety and congruence invariants. For Bank, we evaluate multiple sets of methods; Bank(O)
includes only the methods O. We use shorthand w,d,i,s to stand for withdraw, deposit,
interest, and set, respectively. Each benchmark includes one safe read method that reads
the state from any node in case of full replication and an additional congruent read in case of
distribution and partial replication. For each benchmark, we report inference results: the
number of constraints comprising the final solution and the maximal bound explored.

We give results for Infer (Bo) and three ablations, in which we turn off an optimization
individually: Bc, which disables pruning based on found consistency constraints; Be, which

61

disables effect-driven pruning; and Bs, which disables symmetry breaking. The results, shown
in the right-most columns of Table 2.1, indicate that while consistency-based pruning is
the most effective in general, symmetry breaking has a significant impact when methods
do not exhibit many violations. Effect-based pruning has visible impacts in the case of
distribution and partial replication, as the number of execution steps that don’t affect the
checked property grows. To investigate limits of bounded exploration, we ran Peepco on
Bank(w,d,i,s), in partial replication, for 12 hours, and found that the maximum explored
bound explored was 10.

Figure 2.12: No-conflict scala-
bility

We evaluate how inference scales with the number of
steps to explore in Infer. We generated variants of the
NNCounter benchmark, to contain multiple identical incre-
ment methods, where exp n designates n identical methods.
We measured time to infer a particular bound, with a timeout
of 480 seconds. We report results in Figure 2.12. We then ex-
tended the variants exp n to partial replication by including
data distributed across different nodes and not including it
in any integrity properties. We added two additional actions
to each of the counter increment methods. The times to
reach the same bounds in partial replication variants were
within 10% of exp n (not shown). The results suggests that while Peepco suffers from
exponential blowup, additional actions and longer method traces, do not pose scalability
issues and run time performance penalties in the partial replication case of Peepco’s protocol.
Moreover, scalability issues are likely caused by inability to prune operations that do not
exhibit violations, and would be otherwise safe to add to batches.

Run-Time Platform. For our run-time performance evaluation, we deploy the dis-
tributed applications produced by Peepco on a commodity OpenStack cluster. Each cluster
node has an Intel Xeon E5-2630 with 8 cores at 2.20GHz, 8GB of RAM, and runs OpenJDK
1.8.0. The inter-node latency is 0.5ms on average and we introduce a uniform delay of 40-60ms
on each link at the network layer. Our client workloads model the YCSB benchmark in
the high contention case for “hot records,” where very few entries are accessed most of the
time [B. F. Cooper et al., 2010]. The benchmark uniformly chooses an object from an array
of size 1000, using a Zipfian distribution with θ = 0.5 [B. F. Cooper et al., 2010]. We spawn
between 8 and 64 client threads on 15 nodes. Each experiment runs for 180 seconds with 10
seconds of warmup.

Run-Time Results. We compared the throughput of Peepco with two baselines:
strong consistency and a fully static consistency optimization approach we modeled (Classify).

62

(a) Bank(w,d,i), uniform (b) Bank(w,d,i), skewed (c) Bank(w,d), uniform

(d) Courseware, uniform (e) Courseware, uniform (f) Bank(w,d,s), uniform, partial

Figure 2.13: Run-time performance in full replication. For (a)–(c) and (e)–(f), higher is
better. For (d), lower is better.

The strongly consistent baseline is implemented using two-phase commit (2PC) to ensure total
order between operations [Gray and Lamport, 2006]. Classify chooses the optimal consistency
level for a method but does not use dynamic information. It uses the same reliable and causal
broadcast abstractions as Peepco to implement weak and causal consistency, and falls back
to using 2PC for operations that require strong consistency. Peepco uses the inference results
after 15 minutes of search (reported in Table 2.1). We measured throughput (Figure 2.13) on
the Bank use case, fully replicated on 8 cluster nodes. Throughput is measured as operations
completed per second. We performed three experiments. In the first experiment, Bank(w,d,i),
uniform (Figure 2.13a), clients choose one of the four methods (three write methods, and a
safe read) uniformly. Peepco achieves significantly more throughput than Classify—over
2.2× for 64 clients on each node. Peepco allows non-conflicting method calls at run time to
proceed concurrently, which are assigned strong consistency by Classify and need to invoke
2PC in the worst case. Going through a round-trip communication to ensure total order in
the worst case is expensive, and fast reads do not alleviate the issue. We also run the same
experiment, on Bank(w,d), uniform (Figure 2.13b). (This is equivalent to the motivating
example examined in [Sivaramakrishnan, Kaki, and Jagannathan, 2015; Houshmand and
Lesani, 2019].) Classify outperforms Peepco and demonstrates better scalability, as deposits

63

are executed without requiring an agreement phase and potential rollback due to conflicts
in other operations in the batch, as well as its size. In our third experiment, Bank(w,d,i),
skewed (Figure 2.13c), we only require congruence, and clients invoke interest only 5% of
the time (and withdraw and deposit 35%). Peepco’s speedup increases to 2.6× because
the only method that requires total order (interest) is present infrequently causing fewer
aborts when other two methods are invoked.

We examined response times on Courseware, deployed in the same way. We measure
the time between issuing the method call and receiving a response of success and report the
average (Figure 2.13d). Peepco’s response time is significantly lower than that of the strong
consistency baseline. The read-only method query has the lowest response time because it
does not require a round-trip. The other methods have significantly higher response times,
with delCourse dominating because it conflicts with addCourse and enrol, each of which
has only one pairwise conflict. We also measure throughput for Courseware (Figure 2.13e)
and find that it is higher than for Bank (∼1.5× speedup improvement, for 960 clients), due
to the lower number of conflicts, relative to the executed operations in the uniform workload.

To demonstrate the benefits of partial replication, we measured throughput (Figure 2.13f)
of the partially replicated Bank(w,d,s) use case, and compared Peepco to SC-analysis, an
approach that models the analysis used in transaction chopping [Shasha, Llirbat, et al., 1995],
as well as fully replicated PeepCommit, peepco(f). SC-analysis runs optimized methods
with weak consistency, but otherwise defaults to strong consistency (similar to Classify).
We spawned 5 nodes as replicas of the balance and 9 nodes as the client nodes (Nr and
Nc, respectively, as specified in Section 2.3). Peepco partially synchronizes actions on Nr

which leads to fewer aborts and achieves better throughput (up to 30%) than full-replication
PeepCommit, particularly as the number of clients grows. Peepco achieves a speed-up of
2.5× over SC-analysis because SC-analysis requires consensus for all methods except for the
safe read.

To measure Peepco’s sensitivity to contention, we varied the θ parameter of the Zipfian
distribution [B. F. Cooper et al., 2010], using 0.01, 0.5, and 0.9 to emulate low, medium, and
high contention, last being the highest severity. Peepco’s batches fill faster when contention
is higher, reducing performance (Figure 2.14a). We examined the effect of the batch size b

on the cumulative throughput on the write-only, LWW register benchmark, which uses only
writes (Figure 2.14b). We report the speedup relative to Peepco with b=7, for multiple
batch sizes and varying numbers of clients. Peepco with b=7 achieves significant speedups
relative to smaller batches. Larger batches provide speedups as the number of clients grows,
up to 1.5x, due to more concurrent methods being able to saturate larger batches. We
compared b=1 (no consistency optimization performed) to the strong consistency baseline,

64

(a) Bank(w,d), uniform (b) LWW reg., write-only

Figure 2.14: Sensitivity to contention and batch size

showing a small overhead (throughput within 5%). We also compare Peepco, b=1, on the
LWW benchmark, to GridGain [GridGain data store benchmark n.d.], transactionally writing
to registers, and found Peepco performs up to 20% better with 64 clients per node (not
shown here).

2.6 Discussion

Our approach embodied in Peepco explores a new point in the consistency optimization
design space, by combining static analysis results with information about operation executions
at run time. In contrast to prior work in static analysis, it allows alleviating forcing strong
consistency for the worst case scenario, even when it rarely occurs at run time. Our approach
supports both replication and distribution and fits the high expressiveness needs of our overall
end-to-end programming system. In addition, Peepco offers a safe, straightforward way to
specialize a consistency model based on application requirements. This allows programmers to
fine-tune their consistency requirements, and change different parts of the input specification
while specializing the consistency model based on the overall application’s needs.

Expressiveness and limitations. We implemented our approach in the tool Peepco,
which provides a pipeline, in our overall system, that achieves consistency optimization with
unbounded guarantees of the specified integrity. The tool uses the front-end DSL to achieve
the shown expressiveness and the code synthesizer of the overall system, and adds to its
JVM-based run-time. Two important limitations of the approach include scalability of the
inference and round-trip communication costs for invoking methods. When using Peepco,
programmers can split their overall programs and rely on the modularity of the specification,
where different modules execute independently and rely on the safe and congruent interface
for accessing their state, thus achieve better degree of scalability and potentially the extent

65

of consistency optimization. Our evaluation shows the approach, when implemented by
employing aggressive symmetry-breaking optimizations, can bring significant performance
benefits over the state of the art, especially in cases where operations might conflict only
with relatively smaller portions of other operations. Unlike traditional replicated systems,
Peepco provides access to congruent snapshots that do not delay other operations. While
the approach only allows optimizations within the bounds that can be explored statically, it
can provide a higher degree of optimization when programmers allow the static analysis to
run longer.

66

Chapter 3

SyCoord: Optimizing Consistency for
Partially Replicated Data-Centric
Distributed Applications

Inferring consistency requirements is a crucial part of the Peepco’s consistency optimization
process. The process, however, can also play an important part in the development and
debugging of data-centric distributed applications. A big class of data-centric applications are
developed on top of existing data stores that automatically handle data storage and provide
programmers with means to choose the consistency model. The goal of this chapter is to
generalize the consistency inference algorithm from Subsection 2.2.5 and present an approach
for generating implementations that allow programmers not to synthesize programs that
guarantee the given integrity when the number of concurrently invoked operations can be
bounded, and also use such programs to examine and test behaviors under existing consistency
choices. In this chapter we present and characterize a consistency inference framework that
can be instantiated with different concrete search procedures, giving programmers the ability
to instantiate a specialized inference procedure that is potentially more scalable for the
particular classes of distributed programs at hand, compared to the general inference from
Chapter 2.

Programming with data stores. Distributed data stores aim to give programmers
an illusion of a single global state against which different nodes can perform computation
[DeCandia et al., 2007]. In practice, however, because the data is distributed among many
nodes, the programmer needs to choose a consistency model that is sufficiently strong to
ensure correct behavior of the application but still allow the application to run efficiently.
While some stores provide ways to control consistency, as described in Chapter 1, determining
an optimal consistency model for a given set of operations that operate on the data store

67

requires reasoning about the possible interactions that the consistency model may allow and
making sure the application satisfies the overall integrity [Stonebraker, Madden, et al., 2007;
Bailis, Fekete, et al., 2014; Shasha and Snir, 1988].

In contrast to existing data stores, replicated data-centric applications often require
higher levels of expressiveness and flexibility for customizing the application based on the
given replication, consistency, and topology requirements. Existing data stores that support
partial replication offer only a limited set of consistency choices. Fine-tuning consistency
under complex data replication schemes becomes challenging [Kallman et al., 2008; Apache
Ignite allocation modes 2020; Cassandra replication factor 2020]. Programmers who require
fine-grained control over data distribution and want to exploit properties specific to the
given application and the intended replication schemes, may have no choice but to reason
about consistency manually and implement a custom integrated replicated application in
terms of low-level message passing and protocols [Thomson et al., 2012; Viennot et al., 2015;
Belaramani et al., 2006; Stonebraker, Madden, et al., 2007]. The discovery and integration of
consistency protocols with such complex data allocation schemes is often the most challenging
part of the development process of distributed data-centric applications [Stonebraker, Madden,
et al., 2007; Kallman et al., 2008; Belaramani et al., 2006; Alvaro, Conway, and Joseph M.
Hellerstein, 2012]. In this chapter, we adopt the partial replication model introduced in
Chapter 2 that allows the needed expressiveness in the presence of replicated data.

Consistency optimization with data stores. Consistency optimization remains
a challenge, as even verification techniques that support expressive data models need to
strike a balance between guarantees and automation. While prior work introduced expressive
specification and verification techniques [Gotsman et al., 2016; Burckhardt et al., 2014; Wilcox
et al., 2015; Lesani, Bell, and Chlipala, 2016], checking application-specific properties of
distributed applications with a high degree of automation remains an open challenge. Prior
work has exploited conditions such as commutativity and confluence under which a set of
operations satisfy the given integrity properties [Bailis, Fekete, et al., 2014] and an automated
approach for its inference. Full verification of distributed applications is challenging in part
because of the need to find and specify suitably strong inductive invariants that justify
integrity in the context of the fine-granular actions performed by the application. Such
invariants capture deep semantic properties and are thus difficult to extract automatically
[Kaki, Earanky, et al., 2018].

While some modern distributed data stores provide ways to relax strong consistency
guarantees, some consistency optimization opportunities leverage low-level interactions and
communication specific to the data and operation [Alur, E. D. Berger, et al., 2016]. Without
more expressive reasoning robust for models such as partial replication, analyzing can lead

68

to overapproximation, and defaulting to strong consistency to ensure correct behavior in
the worst case. The tension between the need for expressive high-level invariants and the
requirement for reasoning about the possible interactions between operations in the system
greatly complicates the connection between high-level correctness arguments and possible
consistency optimizations. In this chapter we characterize a model-driven perspective on the
problem of consistency inference, which leverages seminal ideas from concurrency analysis
[Shasha and Snir, 1988; Shasha, Llirbat, et al., 1995], and combines them with bounded
model-checking techniques to achieve a new degree of expressiveness [Kneuss et al., 2013;
Solar-Lezama, Rabbah, et al., 2005; Emerson and Sistla, 1996].

SyCoord’s inference approach. They key insight behind SyCoord is that certain
principles behind concurrency analysis can be extended and applied for automated consistency
inference in an expressive programming model, given means to efficiently produce and check
finite execution traces. SyCoord presents an automated bounded strategy for consistency
inference in partial replication, based on high-level invariants. It uses concrete execution
to drive exploration of different possible bounded traces in the system. The strategy can
solely rely on the concrete inputs to check whether the refined set of paths satisfies the
invariants, or use symbolic reasoning to verify for all concrete values. The approach considers
traces incrementally in the number of different operation invocations in the system, finding
consistency optimizations on a case-by-case basis. The results are then generalized into
consistency protocols that prevent the explored traces, but also other unexplored traces
at run time. Lastly, the approach synthesizes an implementation that employs optimized
consistency protocols at run time, in case the optimized case can be detected, backtracking to
strong consistency otherwise. If the number of concurrently invoked operations never exceeds
the checked bound, the integrity given by the invariants is guaranteed.

SyCoord’s tool. SyCoord infers the necessary consistency requirements and syn-
thesizes a partially replicated application that implements the found requirements, for the
given set of objects and operations. The interface to SyCoord is similar to that of Peepco.
The programmers express objects and their operations with sequential code, oblivious to data
distribution, replication, and behavior concurrency. Separately, they describe the configura-
tion, i.e. how data is to be distributed and replicated across the system, as well as invariants,
end-to-end properties that must be maintained during distributed execution. Given test
inputs for object states and method parameters, and a scope of exploration, SyCoord infers
the optimal consistency model and synthesizes a distributed implementation that preserves
the invariants on all explored executions within the bound. SyCoord can be parametrized
with new and custom consistency levels and protocols, supporting protocols that depend on
the particular topology at hand.

69

Distributor Oracle

Conflict
analyzer

Code
gen

cause-effect
graphs

consistency
constraints

operations
configuration
invariants

Shim
layer

Datastore
code

Causality
Rules

SyCoord

API

Figure 3.1: Components in SyCoord.

Figure 3.1 gives an overview of SyCoord, its components, and its integration with
the overall system. Given the specification, the distributor component derives all possible
distributed programs from the given sequential operations, by allocating parts of executions
to different nodes in the system. Model checker uses test inputs to explore bounded concrete
executions of the derived distributed programs and discovers execution traces which violate
an invariant. Causality analyzer then analyzes found violating traces to infer consistency
requirements. Finally, code generator translates the solution in terms of found requirements
into an executable code. SyCoord chooses the optimal set of protocols from the rule
repository, which the resulting prototype calls at run time, from the shim layer. SyCoord is
parametrizable in terms of the distributor, rule repository, and code generation, to customize
operation splitting, and supported consistency levels and protocols. We describe components
in more detail in their corresponding sections.

Limitations. The main limitation of SyCoord is its inability to provide soundness
guarantees in the general case, where the the number of concurrently invoked operations
might exceed the explored bound. However, in all of our benchmarks, SyCoord finds the
consistency model that indeed generalizes to the unbounded cases. Moreover, when the
verification of invariants in the inference is driven by the concrete inputs provided by the
programmer, guarantees of found optimizations depend on the quality of the given inputs.
In principle, the extent of SyCoord’s verification depends on the checker with which it is
parametrized. A stronger checker could be paired with SyCoord’s consistency reasoning
to detect consistency violations fast, but verify classes of unbounded traces for which no
violating trace could be found, achieving soundness for any concrete values at run time.

Contributions. Overall, we make the following contributions in this chapter:

• A specification language embedded in Scala that decouples descriptions of functionality,
specifications of partial data replication, and topology.

• The abstract cause-effect framework that defines rules of consistency inference in the
partial replication model.

70

• Conflict-driven propagation, a general bounded inference algorithm that supports exten-
sions for topology-specific protocols and liveness.

• Implementation and experimental evaluation of SyCoord’s expressiveness, as well as
performance speedups of the resulting data store prototypes, on existing and new bench-
marks.

3.1 SyCoord’s Data Store Model

In this section, we illustrate the execution model of the considered partially replicated data
stores by turning a sequential object into a simple data store. While our example follows the
one given in Chapter 2, for completeness, as well as to present SyCoord-specific language
constructs (needed for the inference with concrete test values), we present it fully in the
context of SyCoord here.

We consider implementing a bank account that supports deposits and withdrawals, and
stores the current balance and a history of performed methods (a motivating example
introduced in Section 2.1, adopted from [Sivaramakrishnan, Kaki, and Jagannathan, 2015]).
Firstly, in SyCoord, we define the application logic of the bank account as a conventional
Scala class, shown in Figure 3.2. (We will add specifications later.) We would like to avoid
overdrafting the account, hence withdraw checks and modifies balance only if the balance
is big enough.

1 class Account(b: Int, h: List[(String, Int)]) {
2 var bal: Int = b // current balance
3 var hist: List[(String, Int)] = h // history
4

5 def deposit(x: Int) = {
6 bal += x; hist += ("D", x) }
7 def withdraw(x: Int) = {
8 if (x <= bal) {bal -= x; hist += ("W", x) }}
9 }

Figure 3.2: Bank account class definition.

Fundamentally, to implement the data store, the functionality given in sequential code
(Figure 3.2) is not sufficient. Figure 3.3 shows the intended store configuration for the bank
account (in the middle of executing a withdraw method), where nodes n1, n2 store the bal
field, and node nhist stores the hist field. This store is in partial replication because while
the bal field is replicated, it is not the case that every node stores the same set of fields.
The programmers need to consider many orthogonal aspects of the distributed data store,
such as data allocation and replication. In SyCoord, programmers can provide orthogonal

71

specifications, in addition to the functionality: Figure 3.4 shows what programmers write
(explained subsequently), to achieve a distributed data store with the described configuration.
(We describe the syntax of the language in the following sections.)

In SyCoord, programmers specify data replication by providing a data store configuration
in a Scala DSL, separately from the sequential code of the behaviors. As a distributed data
store, we might deploy the bank account with the bal field replicated onto multiple nodes
(for availability). As before, hist might be large and non-critical, thus replicating it makes
little sense, and we would like to allocate it on a single, dedicated “audit” node.1 This
is achieved with a specification given in Figure 3.4. In general, a data store consists of a
set of nodes. This is expressed in the first part of the store configuration from Figure 3.4.
The withNodes construct (line 1) specifies these nodes: here, a single node nHist and a
dynamically resizable set of nodes n onto which the balance will be replicated. Each node
stores a set of fields. In the next line of the specification (line 2), programmers specify
store objects to be considered: here, corresponding to the class Account. allocate then
describes the replication strategy by connecting fields in the object to the declared nodes in the
configuration (lines 3–4). SyCoord allows specifying partial data replication, i.e., arbitrary
assignment of fields to nodes. The invariants that need to hold during execution are given
with ensuring (line 5) and the test values and scope of exploration with withScope (line
6–8). We explain the implications of specifying invariants and scope in the next section
(Section 3.2), after explaining the data store model, and give the full SyCoord’s specification
DSL in Section 3.6. states and invocations specify initial state values for the objects
and operations to consider in the inference. choose chooses values for parameters to the
operation invocations, from the given tuple vs.

Figure 3.3: Partial replication data store.

1Separate replication schemes for hist and bal demonstrate additional complexity of partial replication
and fine-grained consistency reasoning in the common example.

72

1 withNodes { case (n: NodeRegion, nHist: Singleton) =>
2 withStore { case (a: Account) =>
3 allocate(a.bal, n, replicate)
4 allocate(a.hist, nHist) // don’t replicate
5 ensuring(safe(noOverdraft(a))) // invariant
6 withScope(2) { val vs = (80, 50, 100)
7 states(Account(0,Nil), Account(100,List(("D",100))))
8 invocations(withdraw(choose(vs)), deposit(choose(vs))) }
9 }}

Figure 3.4: Bank account data store in SyCoord.

Implications of Fine-grained Replication. At run time, clients interact with the
store by invoking operations (i.e., methods of a given data store object) that might freely
perform computation and change the object state. (We use the term “operation” to designate
a method, when it’s clear from the context.) In a fully replicated store, method invocations
might be dispatched to an arbitrary replica, where they can be fully executed to produce
an effect (a state update), which are then propagated to other replicas. A single method
might need to access fields distributed over several nodes, as is the case here with withdraw,
which updates both bal and hist, located on different nodes. Figure 3.3 shows a client that
invokes two withdraw operations, of which the first one happens to be dispatched to n1, and
the second one to n2. The figure shows an intermediate execution state, just before invoking
the second method; we assume that the initial state of both n1 and n2 is bal -> 100. The
execution model of SyCoord is more involved than that of fully replicated systems such
as Sivaramakrishnan, Kaki, and Jagannathan [2015]. In the running example, SyCoord

splits the withdraw method into two distinct operation parts, which we call actions: w1

that operates on bal and produces an effect, and w2 that modifies hist. (While oblivious
to particular strategy of splitting methods into actions, SyCoord uses a heuristic-based
strategy that minimizes communication; see Section 3.4.) When the withdraw(80) method
is dispatched to n1, the node executes only the w1(80) action; in this case, the overdraft
check passes, so the action produces an effect bal-=80. This effect is applied locally at
n1, resulting in state bal -> 20, and also propagated to n2 (shown with a dashed line in
Figure 3.3), where it is yet to be applied. In addition, after applying the effect locally, the
node n1 communicates with nhist for further execution of the action w2(80) (a solid line in
Figure 3.3). While programmers simply write sequential code, SyCoord splits methods into
actions, and ensures that actions and their effects get propagated to appropriate nodes. This
involves analyzing the control and data flow of methods: e.g., SyCoord makes sure that
the action w2 is issued only after w1 has completed, because of the control-flow dependency
between the two (as w2 depends on the overdraft check, which gets executed together with

73

w1).
The Need for Coordination. Let’s consider the intermediate state in Figure 3.3,

and how the execution might proceed from here. If the effect bal-=80 reaches n2 before
the second withdrawal, no overdrafting occurs: by the time withdraw(50) is issued, n2’s
bal will have been updated to 20, and the overdraft check will fail, producing no effect. If,
however, these events happen in the opposite order, the execution of withdraw(50) on n2

will start in a state bal -> 100, and the overdraft check of withdraw(50) will succeed, and
the effect bal-=80 will be applied afterwards, overdrafting the account (bal -> -30). This
is a classical example of how executing methods concurrently without coordination between
nodes can cause unexpected behaviours and violate application-level integrity constraints.

To eliminate in this scenario, the programmers need to enforce strong consistency (i.e., exe-
cution in the same order on every node). However, enforcing strong consistency is prohibitively
expensive [Harding et al., 2017; Abadi, 2012], and we would like to avoid enforcing it when-
ever possible: for example, when issuing many deposits in a row. Solutions that are based
on efficient replicated datatypes [I. Zhang et al., 2016; Shapiro et al., 2011b] do not help
here, as expressive invariants might not be easily expressible in terms of methods on the
needed datatypes. As shown before, allowing programmers to state the high-level integrity
invariants and automatically obtain the weakest consistency that guarantees preservation
of the invariants, can alleviate significant effort in development of efficient distributed ap-
plications. With partial replication, consistency inference needs to examine all the possible
graphs of relationships between individual operation parts on different types of nodes in the
system. This poses new challenges and goes beyond prior work in coordination synthesis that
limits expressiveness to full replication (where all the nodes in the system are identical and
operations execute atomically) [Kaki, Earanky, et al., 2018; Sivaramakrishnan, Kaki, and
Jagannathan, 2015; Houshmand and Lesani, 2019]. In the next section we demonstrate how
SyCoord does that.

3.2 Coordination Synthesis in SyCoord

Recall that in our example store, we would like to ensure that the account is never overdrafted,
concretely, that bal is non-negative and the entries in the hist also add up to a non-negative
number. It is straightforward to specify this property using an executable predicate, expressed
as regular Scala code:

def noOverdraft(a: Account) = { 0 <= a.bal && 0 <= sum(a) }

where sum is a function that folds over the history:

74

n1

n2

w(80)

w(50) bal-=80
hist+=(W,80)

bal-=50
hist+=(W,50)

(a)

n1

n2

d(20) w(110)

bal+=20
hist+=...

bal-=110
hist+=...

(b)

nhist

n1

n2

d1(20)

bal+=20

d2(20)

w1(110)

w2(110)

bal-=110

(c)

nhist

n1

n2
w1(10)

bal-=10

w2(10)

w1(80)

w2(80)

bal-=80

(d)

nhist

n1

n2
w1(50)

bal-=50

w2(50)

w1(80)

w2(80)

bal-=80

(e)

Figure 3.5: Execution diagrams for the bank account, in full replication (a, b) and partial
replication (c, d, e). Red dots denote invariant violations. Lines between nodes denote
inter-node message passing, where dashed lines denote effect propagation.

def sum(a: Account) = a.hist.fold(0)({

case (res, ("D", x)) => res + x

case (res, ("W", x)) => res - x })

Specifying Safety in SyCoord. In SyCoord, the predicate can be used directly
to specify a safety invariant [Alford et al., 1985; Alpern and Schneider, 1985], a property
that should hold at any point during the execution of any operation. Programmers add an
ensuring clause to the specification (line 5 in Figure 3.4). (SyCoord also supports liveness
invariants for expressing convergence over time, e.g., a.bal == sum(a); see Section 3.5.
Liveness is the same as congruence introduced in Chapter 2, but does not entail the same
run-time guarantees.) Given test values to drive the exploration, programmers can invoke
SyCoord. Within withScope programmers specify values for the object state with the first
set of parameters. (Multiple withScope and sets of invocations can be specified.)

Tools presented in prior work can handle some aspects of optimizing consistency in this
example. These tools either force users to reason about low-level method effects [Sivaramakr-
ishnan, Kaki, and Jagannathan, 2015], limit replication to the full model [Houshmand and
Lesani, 2019], or identify method parts and annotate them manually [Milano and Andrew C.
Myers, 2018]. SyCoord achieves the needed expressiveness and performs this automatically.
Here, SyCoord explores invocations of withdraw and deposit with a combination of
parameters 80, 50, 100, on an Account with starting balance 0 and 100 (and history Nil

and List(100)), within scope 2. SyCoord then reports found requirements and synthesizes

75

executable code for each type of the declared nodes of the distributed program, which invokes
consistency mechanisms to maintain the noOverdraft invariant.

Inferring Consistency in Full Replication. To illustrate the inner workings of
SyCoord, let us first consider a simplified bank account, where all the nodes replicate all
fields (as if the specification had allocate(a.hist, n, replicate), in line 4 in our
specification Figure 3.4). SyCoord starts exploring the space of possible interleavings of
the given methods (all combinations of stated invocations, within a given search bound; see
Section 3.6), until it finds one where noOverdraft(a) evaluates to false. The overdraft
scenario of reordering effects of concurrent withdraw invocations causes an invariant violation
(depicted in Figure 3.5a). Once SyCoord has detected the violation, it analyses its trace
to determine the root cause of the violation. (SyCoord, similarly to prior work, leverages
strengthening based on a consistency inference lattice, which is exposed through this analysis;
see Section 3.3.) In the running example, the interleaving observes the effects of withdraw
methods in different order on nodes n1 and n2. Since these methods are not causally related
(by the standard definition of causality [Lamport, 1978b]), SyCoord infers that this pair of
methods must be issued with strong consistency. It adds this relation to its current set of
consistency constraints, which encode consistency requirements between particular methods
on particular nodes.

Our analysis is based on graphs of effects, inspired by conflict analysis in concurrency
[Shasha and Snir, 1988; Shasha, Llirbat, et al., 1995], and supports standard consistency
levels, including weak, causal, and strong consistency. Then, SyCoord proceeds to explore
more executions that are still feasible under the new constraints and finds another violating
execution shown in Figure 3.5b. In this case, the root cause is re-ordering effects of deposit
and a following causally related withdraw; to eliminate this interleaving, SyCoord adds a
causal consistency constraint for this pair of methods, as they are causally related. Afterwards,
there are no more feasible executions that violate the invariant, and the exploration terminates.

SyCoord reports the results and uses the repository to synthesize a data store that uses
2PC ([Gray and Lamport, 2006]) and vector clocks ([Fidge, 1987]) to enforce strong consistency
between withdrawals on n1 and n2, and causal delivery of deposits before withdrawals on
nhist. The consistency optimization in the prototype achieves speedups of more than 2x
relative to using strong consistency (in the specified full replication), while maintaining the
invariants (see Subsection 3.7.2).

Consistency under Partial Replication. Let us consider what happens if the user
decides to move hist onto a separate node, as specified in Figure 3.4. In general, such a change
to the store configuration might require a completely different set of consistency protocols, and
hence would be error-prone to check manually. Instead, SyCoord’s configuration language

76

is compositional : moving the history to a separate node requires a small, local change to the
allocation statements. Given this configuration, SyCoord splits each bank account method
into two actions : d1, d2 for deposit and w1, w2 for withdraw. SyCoord then proceeds by
analyzing interleavings between the individual actions (and their effects) rather than full
methods. SyCoord considers all possible method splits, considering all nodes the method
can start (be issued) at, and chooses those that minimize communication. (Note that splitting
strategy is parametrizable in SyCoord.)

Due to the partial replication, SyCoord might discover that different actions that belong
to the same method might have different consistency requirements. Afterwards, SyCoord

determines that any pair of d2 and w2 actions requires causal consistency (corresponding to
causal ordering of their previous actions d1 and w1) on nhist and that any two w1 actions
require strong consistency (on replicas n1 and n2). (The causes of these violations are
analogous to the full-replication case; the first one is depicted in Figure 3.5c.) However, while
any two w1 actions require strong consistency, the corresponding w2 actions (w2(10) and
w2(80)) require no coordination (on nhist): the reason is that a w2 action can only be issued
after the corresponding w1 action has performed the overdraft check, due to the previous
discovery that w1 actions have to be strongly consistent (see Figure 3.5d). SyCoord’s
reasoning not only preserves the given invariants in granularity of the partial replication, but
discovers consistency-requirement inter-dependencies, which can achieve additional speedups:
more than 3x, relative to using strong consistency (see Subsection 3.7.2).

Challenges. As mentioned in Chapter 1, consistency inference in partial replication
exhibits combinatorial blowup in terms of the interleavings to explore, which makes full
exploration infeasible even for small scopes. To achieve a scalable search, inference needs
to prune the space explored, without missing relevant interleavings. Moreover, the strategy
of exploration is crucial. Inferring conflicts from all traces which violate an invariant leads
to incorrect solutions: some traces might exhibit false conflicts, as they are not feasible due
to inter-dependencies with other discovered consistency requirements. In our example, a
false conflict occurs if naively exploring reordering of w(80) and w(50) on nhist, as given in
Figure 3.5e. While this causes a violation of noOverdraft, the trace is not feasible as strong
consistency has to be enforced between actions w1 on n1 and n2.

3.3 Cause-Effect Framework

This section characterizes Peepco’s inference procedure with an abstract non-deterministic
cause-effect framework that defines rules for exploring execution traces and inferring consis-
tency constraints from them, capturing the interaction of the model checker and causality

77

analyzer from Figure 3.1. It relies on cause-effect graphs, a graph data structure that captures
causality effects and allows inference of expressive consistency requirements. The framework
characterizes how to build cause-effect graphs from traces by instrumentation, infer consis-
tency constraints, and merge constraints inferred over different traces, while allowing pruning
for scalability without losing correctness due to false (redundant) conflicts.

The framework is organized around two main processes. Exploration explores traces to
capture relevant information in terms of cause-effect graphs. Inference infers consistency
constraints from the captured information. We formalize both processes with one set of
non-deterministic rules that can get applied in any order, incrementally discovering new traces,
analyzing them and inferring consistency constraints. They can interchange in arbitrary order
in taking steps, thus allowing different strategies for exploring traces and inferring consistency
requirements. A fixed point of applying exploration and inference rules then produces the
final result, for a given bound. The abstract nature of the framework allows instantiating the
search with custom consistency protocols, and strategies of exploration, analysis and pruning;
we demonstrate its extensibility in Section 3.5.

SyCoord instantiates the framework with a concrete strategy and a concrete set of
consistency protocols in the conflict-driven propagation algorithm (Section 3.4).

3.3.1 Executions in Partial Replication

Our synthesis procedure relies on exploring interleavings of distributed executions through
concrete evaluation. We define the dynamic semantics in terms of distributed program graphs
(DPG) (inspired by [Sarkar, 1998]). A DPG represents a distributed execution of a (sequential)
method as a graph. Note that due to replicated data, a method can access data at any replica
and thus have multiple DPGs.

Node-local execution. We parameterize distributed execution with a host language
λH . (Our implementation of SyCoord uses that of Scala.) The semantics is parametric
w.r.t. the exact syntax of expressions e and local semantics of λH . λH defines a relation
(akin to the standard relation in big-step operational semantics) ⟨s, e⟩ → ⟨s′, γ⟩, where s ∈ S

and s′ ∈ S are the initial and final states (mappings from object instance fields to values,
S : σ : Field 7→ Val), e is an expression, and γ : Id 7→ Val is the environment containing results.
(We capture results with a map to explicitly capture values that might need to get propagated
to other nodes.) A distributed store σ maps nodes to states: σ ∈ Σ: Node→ σ; e.g., in our
running example, the balance of the account object a.bal is replicated, thus both σ[n1] and
σ[n2] contain bal.

DPGs. A DPG g is a static representation of a distributed execution of some operation

78

nhist

n1

n2

d1

bal+=20

d2

t

t

c

e

e

w1

w2

bal-=110

t

t

Figure 3.6: A DPG and a cause-effect graph for the bank data store.

(method call) op across the store. It maps method parts to nodes and encodes the structure of
distributed communication. Vertices v in the DPG are pairs (n, e) of a data store node n and
a λH expression e, representing parts of the method. Edges v •→l v

′ reflect program order,
where the label l captures standard control- and data-flow dependencies of v′’s expression,
as well as effect propagation. Labels can be of the form (Ctrl(c), d) or (Eff(S), d), where
d captures data-flow dependencies, Ctrl(c) values of c of the control-flow, and Eff(S) the
effect propagation, computed based on values of replicated fields S. (Note that effects, by
default, effects capture all replicated values, while we present language extensions later that
allow programmers to control this.) As described in the previous section, SyCoord splits
the method withdraw into two parts, plus the effect: its DPG that starts at the node
n1 is shown in Figure 3.6. Because bal is replicated, we have an effect dependency edge
between (w1, n) and its effect on n2. SyCoord uses the standard approach of producing
DPGs and closures for distributed execution, adopted to support replicated sets of data and
effect propagation [Andrew D Birrell and Nelson, 1984a; Epstein, Black, and Peyton-Jones,
2011]; see Section 3.6.

Distributed semantics. A distributed execution executes a set of DPGs G over a
distributed store σ. A distributed configuration c is a pair ⟨σ,A⟩ of a store σ, and a set A

of actions to execute. An action is a DPG vertex, paired with an environment ((n, e), γ),
representing a point in execution of the operation part e, at node n, with values in γ. For a
starting configuration c0 = ⟨σ0, A0⟩, σ0 reflects the starting store state, and A0 contains all
entry point nodes Fst(w) of DPGs in w ∈ G (first nodes in their topological orders), coupled
with the initial environment γ0 containing parameter values, i.e., {Fst(w)|w} × {γ0}. From
the specification, values and the scope, SyCoord builds a set of configurations c0 to explore;
see Section 3.6.

Figure 3.7 defines distributed execution as a small-step evaluation relation between
distributed configurations ⟨σ,A⟩ →e ⟨σ′, A′⟩. E-Step explores one step in the execution:

79

Distributed execution ⟨σ,A⟩ →e ⟨σ′, A′⟩

E-Step

a = (v, γ) v = (n, e) ⟨σ[n] ∪ γ, e⟩ → ⟨σ′, γ′⟩
A′ = {(v′, γ′ ∩ d)|v •→l v

′, l = (ctr, c, d), γ′[c] = true}
⟨σ, {a} ⊎ A⟩ →e ⟨σ[n 7→ σ′], A ∪ A′⟩

E-Effect

a = (v, γ) v = (n, e) ⟨σ[n] ∪ γ, e⟩ → ⟨σ′, γ′⟩
Ae = {(v′, (γ′ ∩ d) ∪ γ′[FS])|v •→l (n

′, e′), l = (eff, S, d), S ⊆ dom(σ[n′])}
⟨σ, {a} ⊎ A⟩ →e ⟨σ[n 7→ σ′], A ∪ Ae⟩

Figure 3.7: Semantics of distributed executions

it non-deterministically picks an action a from A and evaluates its expression on the given
node. It uses the results of the evaluation γ′ to update the node state and include new
enabled actions to explore, together with new environments containing values for all data
dependencies (σ′ ∩ d). It enables actions A′ that depend on the control-flow A′, by consulting
the edge label with Ctrl(c) and adding only actions which control-flow dependencies γ′[c]

evaluate to true. E-Effect performs a similar step but picks an edge to create its effect
propagation for a field. The new actions are those containing effects Aeff, for all replicated
fields, where the dependency Eff(S) checks if fields S at node n (i.e., the domain of σ[n])
have been modified, and if so, includes the values for the replicated fields into the passed
environment. We write γ′[FS] to select values of all fields in S from γ′. Note that only
the state of one field can get updated, to model stores that cannot update multiple rows
atomically. In Figure 3.6, E-Step executes w1 on n1, enabling the effect propagation eff(Fbal),
which E-Effect applies for the state change bal=bal-110 on n2.

Distributed execution. A distributed execution trace a τ is a sequence of configurations
c0, . . . , cn such that ci−1 →e ci for all i ∈ [1, n]. Figure 3.6 presents a τ of length 6, where
two DPGs corresponding to withdraw and deposit calls, are fully executed.

3.3.2 Elements of Inference

SyCoord operates by solving coordination-synthesis problems, collecting consistency con-
straints as candidate solutions (which are then generalized into consistency protocol choices).
For a given program, invariants, test harness, and a bound, SyCoord produces a set of
synthesis problems (it combines DPGs, store values, and call parameters, as explained in
Section 3.6) that needs to be solved up to a certain bound. The best found candidate solution
that solves all problems is then returned as the result of consistency inference. (SyCoord

produces a synthesis problem for every combination of method calls, DPG variants based on
replication, store values, and method-call parameters; as explained in Section 3.6).

80

To define all needed elements for consistency inference in SyCoord, we reintroduce some
fundamental notions from Chapter 2 and redefine them in the context of the general inference
framework of SyCoord.

Invariants. An invariant I is an executable predicate, i.e., a Boolean λH expression.
Invariants are evaluated against sets of states called “global snapshots”. A global snapshot
is a state constructed from a union of states at some nodes, such that all combinations of
replicated values are considered. (This definition expands the notion of global snapshot from
Section 2.2.) The set of all global snapshots global(σ) is defined as an ordered map-join of
states of all nodes:{⋃∗

n←{n1,...,nk} σ(n)|(n1, ..., nk) ∈ perm(1..k)
}

where perm(S) returns permutations as sequences (not sets) of the set S. We write
⋃∗ to

designate ordered union of maps over the results, where a ∪∗ b represents a ∪ b, but whenever
(x, xa) ∈ a ∧ (x, xb) ∈ b, the result contains pair from the second operand, i.e., if xa ̸= xb,
(x, xb) /∈ a ∪∗ b.

This is to model a general client that would execute an invariant with a load-balancer
that, for an accessed field, chooses a random replica that contains it. For a safety invariant I,
a trace τ satisfies I, written τ |= I, if, for its every configuration ci = (σi, Ai), I evaluates
to true in all its global snapshots global(σi) (for all sets of concrete test values); e.g., in
Figure 3.5b, there are two global snapshots (states at both replicas, {σ(n1), σ(n2)}), while
the snapshot σ(n2) violates the invariant noOverdraft.

Consistency constraints. The framework is parameterized by a set of consistency
levels CL, which are identifiers that encode consistency models. A level encodes relationships
of certain actions and nodes in a distributed execution. A consistency constraint encodes
a predicate on execution traces τ , that contains a consistency level. These levels encode a
particular consistency mechanism at run time.

A consistency constraint is a tuple (l, o1, o2, n), where l is a consistency level, which
serves as an identifier for different consistency models. The level l effectively describes the
relationship, namely ordering, of actions of o2 and o1, on node n. There exists a special level:
l = weak, weak consistency, that allows any trace regardless of how o1 and o2 are executed.
Checking if a constraint holds entails checking whether actions of o2 are executed in a certain
order with respect to actions of o1, according to the consistency designated by l, on node
n. We say that a trace τ is feasible under a constraint, τ |= (l, o1, o2, n) if the relationships
between all actions of o1 and o2, on node n, in τ , are in accordance with l. e.g., the trace
in Figure 3.5b is not feasible under the constraint (causal, w, d, n2), as the effect of w(110)
was not executed in the causal order with respect to d(20) on n2. Feasibility is extended
straightforwardly to sets of constraints C.

81

Consistency Lattice and Solutions. A candidate solution is a set of constraints. Cs
is a solution to S iff for all traces τ starting from S.c, if τ |= Cs then τ |= I, as defined next.
We define a “weaker than” relation ⊏ between consistency levels and consistency constraints.
We instantiate SyCoord with three levels: weak, causal, and strong consistency and the
lattice is depicted in Figure 3.13a. Consistency constraints then form a lattice given the
consistency level: e.g., weak ⊏ causal ⊏ strong consistency. We define a “weaker than”
relation between solutions ⊏ and a lattice of candidate solutions (2C,⊏) (where ⊥ and ⊤
represent no consistency constraints, and strongest levels for any two operations and a node,
respectively). Consequently, for two consistency constraints, {(l1, o1, o2, n)} ⊏ {(l2, o1, o2, n)}
if l1 ⊏ l2. Therefore, sets of constraints form a lattice (2C,⊏). If Cs is a solution to S, then
any C ′, such that Cs ⊏ C ′ is also a solution. SyCoord finds a weakest Cs such that all for
explored traces τ , if τ |= Cs then τ |= I. In Figure 3.5b, a set C = {(strong, w, d, n2)} prevents
the given violation, but it is not the weakest that does so, as a weaker {(causal, w, d, n2)} ⊏ C
prevents it as well. We set ⊤ to be a candidate solution that forces all actions to be strongly
consistent with each other.

Well-formedness. A synthesis problem does not have a solution if any trace under
the strongest candidate solution ⊤ violates I. Note that there might not be such a set of
constraints and invariant violations cannot be prevented with consistency choices. Given a
consistency lattice and its top element ⊤, S has no solution if there exists τ ∈ e(S), such that
τ |= ⊤ and τ ̸|= I. We refer to S as well-formed if ⊤ is a solution, and otherwise ill-formed.
In an ill-formed problem, the invariant violation cannot be prevented with consistency choices.

3.3.3 Cause-Effect Graph Instrumentation

Instrumented execution extends the semantics of distributed execution. It collects information
about consistency requirements by building cause-effect graphs.

Cause-effect graphs contain information about the given execution trace, pertaining to
consistency, and allow efficient inference of consistency requirements (inspired by static
concurrency analysis [Shasha and Snir, 1988]). The key property of cause-effect graphs is
that they capture sufficient information to allow writing different graph analyses, in the form
of graph traversals, of cause-effect graphs, to infer a broad class of requirements and inference
locally, potentially for incomplete traces, right after the conflict is found. For a given trace
τ over DPGs G, a cause-effect graph G = ⟨V,E⟩ is a graph whose vertices are actions of
G (V ⊆ A) and edges v

l−→ v′ capture the shape of the execution and embed additional
information through the label l ∈ L. Our framework captures three types of edges:

• v
t←→ v′ if v •→l v

′ exists in some DPG in G (intuitively: a “sends a message” to b, i.e., v

82

and v′ executed in the program order on different nodes); for example, in Figure 3.6,
w1

t←→ w2 because they are sequentially composed in the program, and w1
t←→ bal-=110

because the latter is an effect of the former.

• v
e−→ v′ if v′ executed after v on some node n (intuitively, a is visible to b, on node n);

e.g., in Figure 3.6, d1
e−→ w1 and w2

e−→ d2.

• v
c−→ v′ if v′ is the entry point of a dpg w that is executed after v on some node n,

i.e., v′ = first(w) for some w ∈ G, where first contains the first action of w. (This edge
designates a “happens before” relation between two operations and implies v

e−→ v′.) For
example, in Figure 3.6, d1

c−→ w1. However, there is no c-edge between w2 and d2, since d2

is not the first action of deposit.

The nature of labels allows adding them incrementally to the graph to allow eager inference
of requirements. Figure 3.6 shows a cause-effect graph for an execution of the running example.
We have d1

c−→ w1; however, there is no c-edge between w2 and d2, since d2 is not a starting
action of the deposit call (i.e., its DPG).

Instrumented execution. An instrumented configuration, which extends regular
configurations, is a tuple ω = ⟨σ,A,G, F, P ⟩, where ⟨σ,A⟩ is a distributed configuration; G is
a cause-effect graph constructed up to ω; F ⊆ I is a set of failed invariants at ω; and P ⊆ I
is a set of pending invariants at ω that remain to be checked. The instrumented step relation
→i relates instrumented configurations ω →i ω

′, and formalizes incremental construction of
the cause-effect graphs and the discovery of violating traces. Cause-effect graphs enables
efficient exploration of interleavings without having to store and examine entire executions.
Synthesis rules, explained subsequently, then build on top of this relation.

The relation is defined in Figure 3.8. Note that the rule relies on the uninstrumented
rules E-Step and E-Effect, thus covering both action and effect execution, while capturing
instrumentation information. The rule I-Step performs an “execution step”: it executes
action a (through →e), adds the action and two types of new edges to the cause-effect graph.
lastG is an auxiliary function that returnes the last action executed on the given node, based
on the cause-effect graph G. first is an auxiliary function that returns true if an action is the
first of its DPG. One set of edges captures visibility of a from the last action executed on n

(returned by lastG(n), in the current cause-effect graph G), and has either the e or c label,
depending on whether a is the first action of its DPG (i.e., causally dependent). The other
set represents forward t edges from a to each of its next actions a′. (These forward edges
are “dangling”; target actions will be added to the graph later.) For every new expanded
configuration, all invariants are pending (and F = ∅). I-Safe picks a safety invariant and
checks if it evaluates to true in all current global snapshots. In case any evaluation fails, it

83

Instrumentation ⟨σ,A,G, F, P ⟩ →i ⟨σ′, A′,G′, F ′, P ′⟩

I-Step

⟨σ, {a} ⊎A⟩ →e ⟨σ′, A′ ⊎A⟩ ℓ = first(a) ? c : e

E′ = E ∪ {last⟨V,E⟩(n)
ℓ−→ a} ∪ {a t←→ a′|a′ ∈ A′}

⟨σ, a ⊎A, ⟨V,E⟩, F, P ⟩ →i ⟨σ′, A′ ∪A, ⟨V ∪ {a}, E′⟩, ∅, I⟩

I-Safe

safe(e) ∈ I R = {r | ∀s ∈ global(σ).⟨s, e⟩ → r} good =
∧

r∈R
F ′ = good ? F : F ∪ safe(e)

⟨σ,A,G, F, P ⊎ safe(e)⟩ →i ⟨σ,A,G, F ′, P ⟩

Figure 3.8: Instrumented execution.

adds it to F ′, which represents the set of failed invariants of the configuration. Figure 3.6
shows a cause-effect graph after several applications of the rules, where three of the I-Safe

applications discovered violations (shown in red) of noOverdraft.

3.3.4 Consistency Constraints Inference

Inference uses the derived cause-effect graphs from instrumented executions to infer consistency
constraints. It infers constraints for each step of the execution by checking invariants, analyzing
their cause-effect graphs to determine the right constraint that would prevent invariant
violations. Intuitively, the rules infer constraints for steps that violated any invariants and
propagate back and merge the inferred constraints from explored configuration expansions
back to the starting configuration. The set of constraints at the starting configuration, where
no invariant is failed, represents the solution.

Graph Analysis

Analyze : G → I → 2C is a function used in the inference process. It takes a cause-effect
graph g and an invariant, returning the weakest set of constraints that would prevent the
trace encoded in g (i.e., it makes any trace that exhibits g infeasible). Analysis returns the
weakest set of consistency constraints that prevent a violation in the cause-effect graph. It is
parametrized by the rule repository (in the basic version of SyCoord, rules for checking
weak, causal, and strong consistency); e.g., for a trace in Figure 3.6, after executing w2

Analyze returns {(causal, w, d, nhist)} for the cause-effect graph consisting of d1, w1, and w2,
as it is the weakest that would prevent the violation, due to w2 being delivered out-of-order
on nhist.

Soundness of Analyze. Our framework relies on guarantees of Analyze: it should return
the least set of constraints that disables the violating action in the G. If Analyze(G, I) = C,
any execution τ that produces G according to the instrumented semantics is infeasible under

84

Sufficient Coordination ⟨σ,A,G, F, P ⟩ ▷ C

Unsat
ω.F ̸= ∅
ω ▷⊤ Disc

⟨σ,A,G, {I} ⊎ F, P ⟩ ▷ C
⟨σ,A,G, F, P ⟩ ▷ Analyze(G, I) ⊓ C

End
⟨σ, ∅,G, ∅, P ⟩ ▷⊤

Coll
C = {C ′ | ω →i ω

′, ω′ ▷ C ′}
ω[F := ∪ω→iω′ω′.F, P := ∪ω→iω′ω′.P] ▷ ⊓C∈CC

Wkn
C ∈ 2C S = {C ′ | ω →i ω

′, ω′.G |= C, ω′ ▷ C ′}
ω ▷ (⊓C′∈SC ′) ⊓ C

Figure 3.9: Synthesis rules

C: τ ̸|= C, and for any other C ′, τ ̸|= C ′ → C ′ ⊐ C. In our bank example, returning strong
consistency for the trace that exhibits the causal requirement would lead to a sub-optimal
solution.

Note that the constraints returned by Analyze are not guaranteed to be part of the solution,
i.e., C ⊏ Cs does not necessarily hold. This is because a false consistency constraint cf might
be needed to prevent the violation in the current G but not needed in conjunction with
other inferred constraints. In Figure 3.5d, Analyze of the cause-effect graph formed with
w1(80), w2(80), w1(10), w2(10) infers (strong, w, w, nhist); however, as discussed in Section 3.2,
this is not in the overall solution. The synthesis framework, however, filters out false
constraints in the solution, as explained subsequently.

Inference

The inference infers constraints for each explored trace and merges sets of constrains inferred
for multiple traces. We define it with a judgment ω ▷ C (“C is sufficient coordination for ω”),
which says that all (instrumented) executions whose traces expand ω, and are feasible under C,
might only violate an invariant in ω.F. The search starts with a configuration ⟨σ0, A0, ∅, ∅, I⟩
which represents the initial execution configuration, and every invariant in I needs to be
checked. Using this judgment, we obtain a solution C for all traces to be explored, by deriving
⟨σ0, A0, ∅, ∅, ∅⟩ ▷ C, which is the starting configuration, with no violated invariants where all
invariants were checked. Note that this derivation can occur only after all possible (bounded)
traces are explored and checked for the satisfiability of all the invariants.

Inference rules are given in Figure 3.9. They can be applied for any expanded trace,
i.e., instrumented configuration ω, thus allowing arbitrary strategies for progressing explo-
ration and inference. However, the only way to infer for the starting configuration is to
propagate back constraints inferred for its expansions; this forces either pruning or analyzing
all violating traces.

• The rule Unsat says that any configuration ω that has a violated invariant (ω.F is non

85

empty) requires no consistency constraints (⊤). Due to the fact that we’re inferring
configurations where no violation occurs, we will need to strengthen this set.

• Disc discovers consistency constraints from one of the failed invariants I using Analyze

to obtain a refined set of constraints under which the current trace is feasible with
respect to the invariant. The new constraints are derived by taking the least upper
bound ⊓ to make sure that existing violations of that configuration are also prevented. If
the exploration came to an end and no invariants are violated, no constraints are needed
(End). (Note that invariants might still be pending to be checked by instrumented
execution.)

• Coll accumulates constraints from expansions of a configuration ω and computes a
least upper bound, which guarantees sufficient coordination for all traces expanded
from ω, but accounting for all violated invariants from the expansions. The notation
ω[F := ∪ω→iω′ω′.F] designates a copy of the tuple ω, with the new value for F .

• Wkn allows solutions to be discovered while assuming some set of constraints. This rule
allows eliminating any potential “false constraints”, by incorporating a set of constraints
C into exploration, filtering derived configurations based on C (G |= C), if C is inferred
somewhere else. It says that we can expand sub configurations ω′, assuming C, as long
as we include C in the solution with ((⊓C′∈SC ′) ⊓ C).

In the given example, in a violating trace in Figure 3.5d, Unsat and Disc already inferred
(strong, w, w, n2) from reorderings of w on n2; then, Wkn assumes this to filter out the
false constraint between withdrawals w on nhist (identifying a false conflict, as discussed in
Section 3.2). Note that while stronger solutions are also inferred for the starting configuration,
using Wkn we derive the weakest solution as well and then adopt the weakest solution for
the starting configuration as the final result.

Correctness. Given a well-formed synthesis problem S = ⟨⟨σ0, A0⟩, I⟩, the set of
constraints Cs that is the least upper bound of the set of all found sets of constrains,
i.e., Cs = {C | ⟨σ0, A0, ∅, ∅, ∅⟩ ▷ C}, is the returned result. Given a set of fully explored traces
from ⟨σ0, A0⟩, fixed-point of ▷, this result is a correct and optimal solution to the synthesis
problem.

• Soundness. For a solution Cs, and any execution τ , if τ |= Cs, then τ |= I.

• Completeness The algorithm returns the weakest solution. Given a solution Cs, there
is no C ′ such that C ′ ⊏ Cs, and C ′ is also a solution.

86

The correctness relies on the fact that any inferred constraint is a result of a violated trace
and thus prevents some violation. To “remove” a failed invariant from F , we have to either
discover or assume a constraint that would prevent it, while analyzing all traces. Even for a
problem that is not well-formed, the inference rules infer unsatisfiability, i.e., ⊤, if Analyze
returns it when it detects that the violated trace satisfies strong consistency. The optimality
argument relies on the fact that while a stronger solution can be found, a weaker solution
will always be found by assuming it with Wkn and discovering the stronger solution is not
needed.

3.4 Conflict-Driven Propagation

We instantiate the cause-effect framework in the conflict-driven propagation procedure. The
procedure utilizes an incremental strategy of exploration and inference based on the increasing
scoped search in concurrency bounds. Intuitively, it infers the consistency constraints,
propagates them from smaller to larger scopes, while using them to prune the search space
without losing soundness in the process. It uses a bounded-search oracle to explore traces and
a cause-effect analysis instantiated with the core consistency lattice (as shown in Figure 3.1).
To limit the search space blowup inherent to model-checking and achieve scalable synthesis, the
procedure eagerly prunes exploration of unnecessary interleavings based on previously inferred
consistency protocols. It achieves sound propagation of consistency solution candidates with
careful propagation of solutions when increasing concurrency bound and merging found
candidate solutions that eliminates results inferred from false conflicts.

The algorithm. The algorithm of the procedure is given in Algorithm 3. Given starting
configurations, initialized from synthesis problems, invariants and the maximum bound to
explore, it returns minimal solutions (sets of constraints) for all expanded traces. (Starting
configurations are obtained from a SyCoord program; see Section 3.6.) It maintains a
worklist Ω and explores it in the order of increasing bound b, which reflects the number of
nodes and explored method invocations (i.e., the number and sizes of DPGs). Items in Ω are
tuples (ω, b, C) that consist of instrumented configurations ω, bound b and C, under which
the trace ω is expanded. The algorithm starts with bound 0 and assigns the set {⊥} to Cb

and CCω , which are sets that contain current best candidate solutions: Cb for a bound b and
CCω for a trace ω explored under C. As there might be multiple solutions, we keep track of all
possible candidates.

We first choose an item from the worklist. Line 5 performs pruning: items are pruned if
their traces are not feasible under the constraints they were expanded under C. Lines 6-7, for
any invariant violation, infer new constraints by using Analyze and add them to candidates

87

Algorithm 3 Conflict-driven propagation
Input: invariants I, bound B, starting configurations Pi, 0 < i ≤ B
1: Ω← ∅, b← 0, Ci ← {⊥}, CCw ← {⊥}, for any i, C, w
2: while b < B do ▷ explore bounds up to B
3: if Ω ̸= ∅ then
4: (ω, b, C)← choose(Ω, b); Ω← Ω \ {(ω, b, C)}
5: if C ̸|= ω.G then continue ▷ prune this trace
6: for I ∈ ω.F do ▷ discover constraints
7: CCw ← {analyze(ω.G, I) ⊓ C ′ | C ′ ∈ CCw}
8: for w′ in pred(w) do ▷ propagate to root
9: CCwp ← Merge(wp, {C ′ | C ′ ∈ CCw′ , wp →i w

′})
10: Ω← Ω ∪ ({(ω′, b, C) | ω →i ω

′}) ▷ expand
11: else ▷ all traces within b are explored
12: Cb ← min({C ′ ⊓ Cb | C ′ ∈ CCω , Cb ∈ Cb, ω ∈ Pb})
13: b← b+ 1 ▷ prepare for next batch
14: Ω← {(ω, b, C) | ω ∈ Pb, C ∈ Cb−1}
15: return CB ▷ set of solutions for the last bound

for the given trace, CCω (by taking the least upper bound, embedding the rule Discover).
Lines 8-9 accumulate constraints, for each expanded configuration on the path from the root
configuration. pred returns all predecessors of ω (w.r.t. →i expansion). This embeds the
Coll as it collects and merges constraints for ω infered from derivations of ω. We collect
found candidates from child traces using Merge. Merge merges solutions found for all child
configurations, accounting for potential false conflicts: the fact that some solutions ω′ might
have been inferred from configurations ω′ that have traces that would not be feasible under
other discovered constraints, already discovered for the parent configuration ωp. (We define
merge subsequently.) Afterwards, we expand ω and add items for all expanded traces to the
worklist, under the current C. In case there are no more items to explore within the bound
b, we refine candidates for the current bound Cb, using the candidate solutions for the root
of all starting configurations withing this bound b (embedding Wkn). min minimizes the
set of candidate solutions, by filtering out candidates if they are subsumed by any other in
the set (w.r.t. ⊏). It performs this check by a pairwise comparison between all candidate
solutions that are derived by combining existing candidate solutions for the given bound Cb
and all newly found ones. The pairwise comparison preserves correctness in case there are
multiple sets of constraints that belong to the solution. Then, we increment the bound and
update the worklist for the next batch, taking new configurations from P with the number of
invocations for the new bound b, expanding each under every candidate from Cb; this ensures
we propagate all candidate constraints for exploring in the new batch. After all configurations
up to B have been explored, CB contains the solutions.

88

Merging. Merge merges candidates of child configurations of ωp, accounting for potential
false conflicts. It takes a set of candidate solutions and their traces, and returns a set of
candidates C. Merge discards any candidate {C ∈ C}, inferred from a trace τ , if there exists
another candidate {C ′ ∈ C} under which τ is not feasible. In case some other expansion
found a solution under which the offending trace is not feasible, this solution is not needed in
the final solution, thus preventing the false-conflict anomaly. Merge then returns all unfiltered
candidates.

Correctness. The algorithm maintains sufficient and minimal candidate solutions for a
each bound explored Cb. Cb contains: 1) all necessary solutions, as all of the candidate sets
of constraints returned by Analyze are propagated, only discarding unsatisfiable traces; 2)
the minimal set of solutions, as Cb is set only after all traces are explored and the set of all
collected candidates is minimized.

Soundness holds due to propagating and exploring all inferred candidates and only
pruning (in line 5) based on Cb, from lower bound b, which contain only necessary consistency
constraints (guaranteed to make pruned traces infeasible).

Completeness holds due to two reasons: 1) if a solution exists, the trace that exhibits
the solution will be examined; 2) any solution will not contain any unnecessary constraints.
Property 1) holds, as if the trace is pruned, the solution is already included in the candidate
solutions for the current bound. Property 2) holds if all false constraints cp are filtered out.

By contradiction we will provide correctness argument for property 2), by assuming
it contains a false constraint. Let us assume the solution contains some false constraints,
i.e., some C ∈ Cb is not necessary (redundant). Let cp ∈ C be the unnecessary constraint
returned as a part of the final solution C, and cp is inferred from a trace τ within bound b.
As it’s a false constraint, the real source of inconsistency in τ can be prevented by C ′ ⊏ C,
which is inferred within some bound b′. Note that C ′ has to be inferred at some point, due to
soundness. We consider the three cases for b′:

• If b′ < b, τ cannot be explored, as it is pruned out by the propagated C ′ from the bound
b′ (line 5).

• If b′ = b, there exists a trace τ ′ which exhibits the real source of inconsistency and infers
C ′. Then, at some point when exploring within bound b, Merge merges C ′, therefore
discarding it at that point.

• If b′ > b, C ′ needs a larger bound to be discovered. We assume C ′ forms the solution
Cb′ = C ′b′ ⊎ {C ′} is too strong, where C ⊑ C ′. This can only happen if when exploring
bound b, exploration propagates two different unrelated candidate solutions C and C2.

89

However, as both candidates are propagated if C ′b′ ⊎ {C2} is a weaker solution, this is
exactly the solution that will filter out Cb′ in line 12.

This entails that the algorithm infers the set of true conflicts, through merge, while still
propagating constraints for pruning when moving to a larger bound.

Relationship with the Framework. In the procedure, the exploration and inference
rules are not applied directly, they are embedded into the bounded search strategy. Notably,
it avoids non-determinism of the rule Wkn through merging (Merge), which uses additional
information about the specific points in the exploration to make a decision whether to
filter out or propagate any constraints from potential false conflicts. The oracle explores
interleavings incrementally structured by bounds, but eagerly prunes based on results from
smaller bounds to avoid non-deterministic exploration and additional exploration with
propagation of constraints.

Concolic Version of the Algorithm. Our concolic strategy instantiates the given
general algorithm, similarly to the algorithm in Chapter 2. Notably, in addition to maintaining
a set of concrete values for concrete checking of integrity properties, whenever the strategy
encounters a conditional, it checks if both branches of the conditional are already taken. If
this is not the case, the strategy will use symbolic reasoning to synthesize the values that
would make the program take the branch that was not visited. This allows the algorithm to
explore all branches of the program and guarantee soundness for any concrete value at run
time.

We give a concolic algorithm (Alg. 4) called Concolic Conflict-Driven Propagation, that
builds on the cause-effect framework to perform bounded inference of consistency constraints.
Given a set of starting configurations P , invariants and a maximum bound B, our algorithm
returns a minimal solution (i.e., a set of constraints) for each bound 1 ≤ b < B that covers all
traces up to that bound. It maintains a worklist Ωb for each bound b; worklists are explored
in order of increasing b. This bound reflects the number of nodes and explored method
invocations (i.e., DPGs). Items in Ω are tuples (τ, ω, e) that consist of a trace τ , the last
instrumented configuration in the trace ω, and a concrete example e. (The worklist is slightly
changed in its structure from the previous algorithm.) In this version of the algorithm, we
simplify the propagation of constraint and trace pairs, as well as their merging. (This version,
however, can use a similar strategy to further optimize the inference.) A point on the used
notation: in the algorithm, we use |=cons, |=e, |=∗ to denote satisfiability of trace with respect
to: consistency constraints, concrete evaluation under the environment of e, and symbolic
verification condition (using an SMT solver), respectively.

The algorithm executes as follows. The algorithm starts with bound 0 and assigns the
set {⊥} to Cb, which is the set that contain current best candidate solutions, for a bound b.

90

Algorithm 4 Concolic Conflict-Driven Propagation
Input: configurations Pi for 1 ≤ i < B, examples E (|E| ≥ 1), invariants I, bound B
Output: consistency constraints Cb for bounds 1 ≤ b < B
1: function InferConsistency(P,E, I, B)
2: Ωi ← ∅, Si ← ∅, Ci ← {⊥} for 1 ≤ i < B, b← 0 ▷ initial worklist and constraints
3: while b < B do ▷ explore bounds up to B
4: if Ωb = ∅ then ▷ all traces up to b are done
5: Cb ← Merge(SB) ⊓ Cb−1
6: b← b+ 1, Ωb ← {([ω], ω, e) | ω ∈ Pb, e ∈ E}
7: else
8: (τ, ω, e)← choose(Ωb); Ωb ← Ωb \ {(τ, ω, e)}
9: if τ ̸|=cons Cb−1 then continue ▷ prune this trace

10: for I ∈ I, τ ̸|=e I do
11: CI ← analyze(τ, I) ▷ discover new constraints
12: Sb ← (CI , τ) ∪ {(C, τ ′) ∈ Sb | τ ′ |=cons CI} ▷ filter out redundant conflicts
13: if ω.A ̸= ∅ then ▷ exists some next steps in exploration
14: for l in {l | vf •→l v, (v, γ) ∈ ω.A} do ▷ all possible static paths
15: Ωb ← Ωb ∪ {(τ ++ [ω], ω′, e) | ω →i ω

′, ω′.A = ω.A \ {(v, γ)}}
16: if l = (Ctrl({cv}), d) then ▷ branch
17: f ← τ |=e cv ? ¬cv : cv
18: if ∀e ∈ E. τ ̸|=e f then ▷ concrete example needed
19: r∗ ← checkSAT(τ |=∗ f), Ωb ← Ωb ∪ {(τ, ω, e) | e ∈ getModels(r∗)}
20: else
21: r∗ ← checkVALID(τ |=∗ ∀I ∈ I.I ∧ pathCond(τ) =⇒ I) ▷ verify path
22: if ¬getAnswer(r∗) then
23: E ← E ∪ {getModels(r∗)}
24: return {(b, Cb) | 1 ≤ b < B} ▷ set of solutions for every bound b

Whenever the previous bound is fully explored (which holds true for b = 0), the algorithm
uses Merge to unify all constraint found in the previous bound. Then it increases the bound
and instantiates all items to be explored in that bound. Initially, when b = 0, the algorithm
increases the bound to 1 and instantiates all items that explore executions of invoking a
single operation.

For each bound b, we process the worklist Ωb until it is empty to produce a constraint
set Cb that is sufficient for all traces up to b. To process this worklist, we first choose an
item from the current worklist Ωb. Line 9 performs pruning: Items are pruned if their trace
is not feasible under the constraints known from the previous bound. Lines 10-12, for any
invariant violation, infer new constraints with Analyze and add them to candidates for the
given trace, Sb. Similarly to the previous algorithm, we accumulate constraints and the traces
that lead to their discoveries, which are then unified with Merge to obtain solutions that
account for redundant conflicts. Afterwards, we expand ω and add items for all expanded

91

1 def interest(r) = { bal ∗= r; // inside class
2 hist += ("I", r) }
3 def validHist(a: Account) = a.bal == sum(a)
4 def sum(a: Account) = a.hist.fold(0)({
5 case (res, ("D", x)) => res + x
6 case (res, ("W", x)) => res − x
7 case (res, ("I", r)) => res ∗ r })

Figure 3.10: Additional methods.

1 ensuring(
2 safety(noOverdraft(a)), // old: safety
3 eventual(validHist(a))) // new: liveness
4 withStore(case (a: Account) =>
5 allocate(a.bal, nHist)
6 allocate(a.hist, n, replicate)
7)

Figure 3.11: Changed specifications.

traces to the worklist. Intuitively, if the execution depends on a condition (has a control
label), we want to make sure we have a concrete example exhibiting both branches. To that
end, we check satisfiability of the branch that was not taken, and add a concrete example
if needed (by extracting a model from the solver with getModles). In case there are no
more steps to execute, the trace is fully explored and we use the solver to check validity of
its path condition. If validity is not confirmed, we extract a concrete example that will be
used to exhibit the invariant violation and infer additional consistency constraints. After all
configurations up to B have been explored, Cb contains the solution for a bound b.

Similarly to conflict-driven propagation, this version of the algorithm is sound, but the
soundness is strengthened to hold for any concrete value. The correctness then follows from
the fact that the algorithm explores all branches of the program and leverages symbolic
reasoning to check the invariants hold for any concrete value.

3.5 SyCoord Extensions

We introduce liveness invariants and topology-aware protocols as extensions to the core
approach in SyCoord, in the context of the running example. For the former, we extend the
inference process, while for the latter we add a new consistency level in the consistency lattice
together with a protocol at run time (extending the rule repository, shown in Figure 3.1).

Liveness Invariants. Let us reconsider the bank account example from Section 3.1.
For simplicity, in this section we will consider the fully-replicated version of the bank account.
Imagine that in addition to avoiding overdraft, the user would also like to ensure that after
all the transactions have been fully executed, the hist and the current balance hold the
same value. Additional code is given in Figure 3.10. We can express this property as an
executable predicate validHist. There are two things to note about this invariant. First,
the validHist predicate relates fields bal and hist, which are stored on different nodes;
when checking a predicate like this, SyCoord ensures it holds for every combination (in

92

Instrumentation (extended) ⟨σ,A,G, F, P ⟩ →i ⟨σ′, A′,G′, F ′, P ′⟩

I-Live

live(e) ∈ I R = {r | ∃s ∈ global(σ).⟨s, e⟩ → r} good =
∧

r∈R
F ′ = good ? F : F ∪ live(e)

⟨σ, ∅,G, F, P ⊎ live(e)⟩ →i ⟨σ, ∅,G, F ′, P ⟩

Figure 3.12: Instrumented execution: liveness.

this case, pair) of nodes from the corresponding regions. Second, unlike noOverdraft, this
property is a liveness invariant [Alpern and Schneider, 1985], which is allowed to be violated
during execution but must hold eventually, i.e. after every fully executed prefix of operations.
To specify a liveness invariant in SyCoord, the programmer uses the eventual construct
to extend the ensuring clause in the configuration from Figure 3.4; the new one is given in
Figure 3.11.

Due to the new interest operation, similarly as in Chapter 2, SyCoord detects this
violation and infers that any pair of deposit or withdraw and interest must be issued
with strong consistency.

The support for liveness invariants is formalized by extending the instrumented execution
with a new rule, shown in Figure 3.12. I-Live operation is similar to I-Safe, for a liveness
invariant; the check only applies at the end of the execution (when A = ∅). Notably, this
extension, besides the syntax, directly mounts to just changing the cause-effect analysis,
without modifying any other part. (Liveness invariants are checked for last actions in the
operation, which is accounted for when constructing synthesis problems.)

Topology-Aware Protocols. We extend SyCoord’s syntax with fine-grained store
configuration directives to designate a specific node for executing certain operations, and
extend the core lattice to include a “central” element (consistency level), shown Figure 3.13b,
which allows achieving strong consistency without coordination.

Let’s consider a situation where programmers reverse the allocation of balance and the
history. Developers change the store configuration as given in Figure 3.11. This makes
all operations always dispatch to the same node nhist to modify the balance, after which
the action to modify hist gets invoked (lines 3-4 Figure 3.11). Now, all operations, while
originating on different nodes, start by modifying a.bal on nHist. One violating execution
is shown in Figure 3.13c. The consistency ordering constraints of conflicting operations
remain the same, on the conflicting hist variable. However, they can now be enforced with
the weaker protocol, without any coordination. SyCoord assigns sequential identifiers to
these operations on the “central” node nHist and prevents out-of-order delivery to other
nodes by simply delivering corresponding effects in their assigned order, thus maintaining
total order and strong consistency.

93

Specifically, we introduce central(n) consistency level into the lattice, for all nodes n.
Then, analyze returns (central(n′), o1, o2, n) whenever there is a reordering of o1 and o2 on
some node, and any actions of o1 and o2 executed earlier, in program order, on n′. If all
conflicts share the same node n′ and level central(n′), operations can be assigned a unique
order index on n′ to prevent conflicts on other nodes (akin to the protocol used in Thomson
et al. [2012]). This lightweight consistency-enforcement protocol does not require additional
coordination between nodes and brings improvements in performance. This extension brings
additional performance speedups of up to 4x (see Section 3.7).

Sharding. We extend Peepco to supports entity-based sharding [Baker et al., 2011].
Programmers can define static sharding for certain data types similarly to how replication is
expressed, providing a set of nodes and a function that control how sharding is implemented
at run time. In addition to the sharding data scheme annotation, Peepco takes a function f ,
as a parameter, that identifies the intended shard at run time. The generated implementation
invokes f at run time giving it some value of the system’s state as the parameter (which lives
on the node that performs the sharding, or is communicated to it), the function returns a
node identifier from the given set, which represents the specific shard. During consistency
inference, Peepco translates accesses to sharded data as access to any of the shards, similarly
to handling replication, exploring all possible shard accesses regardless of the given function.

3.6 Implementation

In this section we describe the language of SyCoord, the process of constructing synthesis
problems, as well as the backend connection of the synthesized code with the runtime shim
layer. We implemented SyCoord using the three-level lattice with weak, causal, and strong,
as well as a custom topology-dependent protocol.

(a) Core (b) Extended

nhist

n1

n2
w1(10)

w1(10)

w2(80)

w2(80)

wef
1 wef

2

wef
1wef

2

(c) Central-ordering

Figure 3.13: Extensions of core SyCoord.

94

n : NodeRegion s : StoreObj op ∈ MethodName
obj ::= P (alloc∗, opc∗, inv∗) Synthesis object
alloc ::= (ualloc, n,mode) Data allocation
ualloc ::= fieldName(s) | s Data unit
mode ::= ”replicate“ | ”allocate“ Allocation mode
opc ::= (op, s, ef∗) Invocations
ef ::= (expr, var∗) Effects
inv ::= safe(expr) | live(expr) Invariants

Figure 3.14: Abstract syntax of SyCoord’s Scala DSL

3.6.1 Components of SyCoord

SyCoord language. SyCoord embeds the language in Scala. Figure 3.14 shows the
syntax of the language. Allocation can define a simple assignment of data to nodes (which is
the default if omitted, as in line 5 of Figure 3.4), or replication across node regions, on the level
of object fields or objects. A method call is tied to a particular store object and also take a
set of effects. Effects capture functions used to compute updates (e.g., (x: Int)=> bal-=x

is the effect computed and propagated in Figure 3.5d). It is defined by, for a given expression,
the given set of variables that remain free in the effect. The default effects (if omitted),
fully evaluate an expression. To give users flexibility, SyCoord provides the construct
replLocal({x, y, . . . }), as annotation of an expression e, which specifies the set of free
variables in the effect produced by e. Lastly, SyCoord supports two types of invariants,
safety and “liveness”.

DPG construction. The instantiated distributor (Figure 3.1) constructs DPGs that
minimize the network communication. As expressions using replicated state can be assigned
to any of the replicas, any such assignment belongs to a separate DPG for a method. All
replicated assignments of all “load-balanced accesses” of clients (described in Section 3.3) and
all possible assignments of subexpressions to nodes, are considered.

Starting configurations. SyCoord derives a set of starting problems, from the
surface program. For every test harness, and bound b, which include combinations of 5 scalar
and 3 list values, it picks a b-combination from W and assigns values to the store and call
parameters. A configuration is created for every combination.

Shim layer. The shim layer is implemented with Akka [Akka – actor toolkit and runtime,
http://akka.io/ 2023], and provides API calls which are invoked on any node to perform a
set of actions under weak, causal, and strong consistency. The code generator in SyCoord

encodes every action with its method and a history vector. A history vector encodes delivered
messages at any given moment (at any node) and is propagated through messages to achieve

95

causal consistency. For strong consistency, we use 2PC transactions. They share a single lock
in the voting phase of 2PC.

Worklist strategy and optimizations. SyCoord explores all instantiated problems
within a bound in parallel, synchronizing on constraint accumulation before exploring the next
bound, instantiating a JVM thread per CPU core. It also incorporates familiar optimizations
(from model-checking) in the worklist search:

• effect-driven pruning prunes ω’ which cannot make steps that could change state relevant
for any invariant, by consulting read and write sets of DPG actions

• symmetry breaking avoids mirroring traces [Emerson and Sistla, 1996].

Liveness and Topology-Aware Protocols. We add a DSL construct to specify liveness
invariants and change the cause-effect analysis, to infer from cause-effect graphs only if they
executed all actions. This makes sure that any invariant violations before all operations finish
are not considered.

For the topology-aware protocol benchmarks, we extend SyCoord with the “central”
level lc, where lc ⊏ strong and weak ⊏ lc. To infer the “central” consistency, SyCoord checks
if the reordered operations are issued through the same designated node. To implement
any consistency constraint involving actions o1 and o2 with this level, SyCoord emits
sequencing operations for all messages that lead to invoking o1 and o2, and delivers their
message following the assigned sequence.

3.7 Evaluation

We performed an experimental evaluation of SyCoord with the goal of assessing usability
and scalability of the proposed inference technique, compared to existing alternatives. This
goal materializes into the following questions:

(1) Can specifications in SyCoord capture interesting data stores: 1) from prior work; 2) in
new benchmarks?

(2) Is SyCoord scalable to: 1) tackle all benchmarks; 2) support elaborate specifications?

(3) Do features help in inference performance?

(4) Is the synthesized consistency efficient, confirming speedups from prior work in full-
replication?

(5) Do the resulting performance trends: 1) translate to partial replication, compared to
full-replication, 2) improve with domain-specific protocols?

96

Group Description #I #B Spec #C T-all T-npr T-ncd T-nsb

Bank
exam-
ple

w / r 1/0 2 21 1 2 2 2 2
w,d / r 2/0 2 21 2 2 9 4 9
w,i / r 2/1 2 24 4 2 9 4 3

w,d,i / r 3/1 2 24 5 2 7 4 -
w / d 1/0 2 23 1 1 3 3 3

w,d / d 2/0 2 23 2 2 4 3 3
w,i / d 2/1 2 27 4 2 3 2 3

w,d,i / d 3/1 2 27 5 2 3 3 3
w / m 1/0 2 28 2 2 4 3 2

w,d / m 2/0 2 28 4 3 - - -
w,i/ r 2/1 2 31 8 2 - 3 3

w,d,i/ r 3/1 2 31 10 2 - - -

Effect
list

weak /d 2/1 2 44 0 1 4 7 4
weak / r 2/1 2 48 0 3 4 8 5
weak / m 2/1 2 52 0 2 3 - -
causal / d 2/1 2 70 6 1 9 4 5
causal / r 2/1 2 74 6 1 - 3 6
causal / m 2/1 2 78 18 2 - 3 2
strong / d 2/1 2 66 6 1 2 2 2
strong / r 2/1 2 70 6 2 - 3 4
strong / m 2/1 2 74 18 2 - 3 3

strong / m,3x3 2/1 2 74 18 5 - - -
strong / m,4op 2/1 2 74 36 3 - 7 8

Usecase

auction / r 2/0 2 76 6 2 - - -
tournament / r 5/0 2 92 20 5 - - -
microblog / r 3/0 2 55 26 2 - 8 -

tpc-c / r 3/1 2 84 14 3 - - -
move game / r 2/1 3 137 12 4 - 6 -

Table 3.1: Benchmarks and SyCoord results. For each benchmark, we report: the number
of invariants #I (total/live); sufficient search bound b #B ; cumulative size of invariant
Specification (in AST nodes); the number of discovered pair-wise conistency relations #C ;
the number of minutes SyCoord runs until exploring bound b+ 1 (T-all), without pruning
(T-npr), without causality-driven exploration (T-ncd), and symmetry breaking (T-nsb).
Times are given in minutes, where “-” denotes timeout after 10 minutes.

3.7.1 Inference Benchmarks

Our benchmark suite consists of inference problems from different domains that are represen-
tative of the expressiveness in terms of operations, invariants, and data store configurations.
For comparison with prior work, our suite models benchmarks that had been used in the
evaluation of their tools [I. Zhang et al., 2016; Sivaramakrishnan, Kaki, and Jagannathan,
2015; Milano and Andrew C. Myers, 2018; Houshmand and Lesani, 2019]. From each of
these papers, we picked the most complex challenge (judging by the reported size or inference
time), and expressed them in SyCoord. The goal of our benchmark suite is to capture

97

how inference is affected by different types of invariants (safety and liveness), different data
store configurations (node structure and replication), and operations (their number and code
complexity). We evaluated consistency inference that uses concrete values to check whether
invariants are satisfied. Test harnesses included combinations of 5 scalar and 3 list values.

Benchmarks. We divide benchmarks based on the demonstration goal: scalability,
complexity of store configurations, and realistic domains.

• The first benchmark set represents the running example and examines how differ-
ent invariant forms, paired with combinations of commutative and non-commutative
operations, node assignments, affect inference, as described subsequently.

• The next set explicitly captures effects and their visibility relations in code, through
lists of effects. Whenever an operation effect is received on a node, it adds the effect to
the list but also stores all of its causally dependent effects. The invariants are specified
such that the given consistency level needs to be assigned to the three operations in the
system. The “3x3” designates a benchmark that has 3 node regions with 3 replicas each,
and “4op” designates the same benchmark with 2 operations for each operation type.

• The third set captures benchmarks from previous work, including microblog (modelled
by Twitter), auction, and a tournament game system, described in [Sivaramakrishnan,
Kaki, and Jagannathan, 2015], [Milano and Andrew C. Myers, 2018], [Houshmand
and Lesani, 2019]. We modeled the TPC-C benchmark, which includes operations
prohibitive to automated reasoning, such as statistics computation (we model only
the part related to customers and orders). The move game benchmark represents an
interesting scenario of defining consistency. It models a distributed game, where players
can make certain moves in the game. While there are certain moves players are allow
to make, depending on the sequence of previous moves, coded in a logic that examines
the sequence for every move, the same logic optimizes consistency of move issuing.
This benchmark had 4 operations and moves, where for each move, there is one valid
sequence of one, two, and three moves.

Per evaluation goal (1), our suite includes prior work benchmarks, as well as benchmarks
requiring expressiveness that goes beyond prior work.

Table 3.1 lists the benchmarks together with benchmark metrics. We group benchmarks
according to their usecase. Each benchmark reports the group the benchmark is in, as well
as the description of the operations, data scheme, and invariant types. Benchmarks are
listed in the form of bench/R where bench names or describes the benchmark and R denotes
data scheme (with r, d, m denoting full replication, distribution, and partial replication,

98

respectively). In the first group benchmarks describe operations of the bank example from the
motivation section (with w,d, i, designating withdraw, deposit, and interest, respectively). For
each benchmark, we report: the number of invariants #I (total/live); sufficient search bounds
#B ; cumulative size of invariant Specification (in AST nodes); the number of discovered
pair-wise consistency relations #C ; SyCoord running times to explore a bound b, sufficient
to find all constraints that generalize into the unbounded case (T-all), as well as ablations.
The ablations include running times: without pruning (T-npr), causality-driven exploration
(T-ncd), and symmetry breaking (T-nsb). We report full sizes of all invariants, even though
in our approach those definitions are reusable between all benchmarks in the same problem
domain.

Inference performance. Our setup had a machine with 30 2.2Ghz cores. SyCoord

solves all benchmarks, i.e., finds all the needed constraints between operations, in less than
5 minutes, confirming evaluation goal (2). It scales well with the number operations and
harnesses, while worse with the replication factor, as it increases the number of DPGs and
the search space exponentially.

Pruning, based on consistency, brought significant performance benefits in most bench-
marks, as they exhibit violations. The slowest benchmarks were those with fewer violations,
where main improvements were only due to symmetry breaking and effect-guided optimiza-
tions. This confirms the evaluation goal (3). The biggest bottleneck is the expression evaluator
was called more than 60M times in some benchmarks, suggesting benefits in optimizing the
performance of the evaluator.

3.7.2 Data Store Run-Time Performance

For performance evaluation, we examined relative performance of different consistency
protocols discovered, as well as deployment-ready off-the-shelf data stores. One goal is to
confirm that the code generation and shim layer of SyCoord behave properly and agree on
performance gains already reported in the literature. While prior work established positive
effects of different coordination levels in distributed datastores [Sivaramakrishnan, Kaki,
and Jagannathan, 2015; I. Zhang et al., 2016], we focus on a more precise evaluation of
synthesized consistency levels, in a controlled microbenchmark setting. Additionally, to
confirm the practical value of consistency optimization within partial replication, we compare
SyCoord to an off-the-shelf datastore, Apache Ignite, capable of both distributed and
replicated allocation [Apache Ignite allocation modes 2020]. We also compare SyCoord

to Apache Ignite under partial replication. (We achieve the same data allocation in partial
replication through tweaking Apache Ignite cache affinity values.) We hypothesize that,

99

(a) Full replication, relative (b) Partial replication, relative

(c) Partial, off-the-shelf datastore (d) Optimization, relative

Figure 3.15: SyCoord data store performance. Y-axis: throughput (op/s), left; latency (ms),
right. X-axis: number of nodes. “Relative” shows performance comparison of two data stores
emitted by SyCoord, while “off-the-shelf” shows comparison of the emitted data store with
an off-the-shelf data store. The dashed lines represent SyCoord (red for throughput, green
for latency) and solid lines represent results employing strong consistency in the compared
approach (blue for throughput, yellow for latency).

due to the fact that SyCoord leverages standard coordination protocols, scaling trends
extrapolate to improvements in larger-scale mixed-workload benchmarks confirmed in prior
work. We also examine performance improvements of extending the lattice and leveraging
configuration-specific protocols (on the benchmark described in Section 3.5).

Setup. We deployed SyCoord datastores in a distributed cluster, which is composed
of 12 virtual nodes, within the same datacenter. We instantiate one VM, hosting both the
shim layer and generated code, as well as one Ignite node, on each cluster node. For valid
comparison we turned off fault tolerance in Ignite. Clients are instantiated on different
VMs, but share nodes with the datastore, and invoke provided operations and block through
separate threads. We deployed the cluster on c3.4xlarge OpenStack instances, and measured
throughput and latency with the Yardstick distributed benchmark library [Apache Ignite
allocation modes n.d.]. The average intra-cluster node latency was <10ms. We ran our
experiments with 10s warmup and 60s experiment time. We use a smaller, datacenter-

100

local benchmark environment to get more precise performance trends; albeit a smaller and
controlled environment, the performance benefits should translate to larger settings and
improve with slower links between machines, which occurs across data centers, as confirmed
in prior work.

While prior work examined performance gains with optimized consistency of data stores
in geo-distributed settings [Sivaramakrishnan, Kaki, and Jagannathan, 2015; I. Zhang et al.,
2016], we focus our benchmarks on a controlled microbenchmark setting. We hypothesize,
due to the fact that SyCoord leverages standard coordination protocols used in prior
work, scaling trends extrapolate to improvements in larger-scale mixed-workload benchmarks
confirmed in prior work.

Benchmarks. Our client workload was modeled by the YCSB benchmark (as in
prior work), but limited to key size matching the cluster size for more precise comparison
with Apache Ignite on conflicts (which uses topology-aware affinity mapping to determine
allocation). We evaluate the running bank account example, where clients uniformly choose
accounts and operations (modeled by the uniform setup of the YCSB benchmark [B. F. Cooper
et al., 2010; Sivaramakrishnan, Kaki, and Jagannathan, 2015]). The datastore included only
one bank account per node, thus significantly raising the probability of conflicting operations.
The benchmark uniformly chooses from the set of all keys.

Results

Figure 3.15 shows throughput (y-axis, left) and latency of operations (y-axis, right) as
the number of data store nodes increase (x-axis). In all figures, dashed lines represent
SyCoord (red for throughput, green for latency) and solid lines represent results employing
strong consistency in the compared approach (blue for throughput, yellow for latency). We
implemented the strong consistency baseline using a two-phase commit protocol [Gray and
Lamport, 2006]. For the off-the-shelf data store, we implemented operations as operations
under transactional behavior in Apache Ignite. The results across all benchmarks confirm
trends of scalability: throughput with consistency optimized scales significantly better than
in the strong consistency case, while latencies rise more rapidly, with increasing number of
nodes.

Full and partial replication. The full-replicated benchmark corresponds to the
trend confirmed in prior work on replicated data store consistency Figure 3.15a, confirming
evaluation goal (4). Here, as values are replicated across the whole store, for deposit operations,
conflicts exhibit expensive two-phase commits tries and rollbacks, while optimized consistency
avoids conflicts with no-coordination protocols.

When moving to partial replication (hist on a separate node and balance on the rest), the

101

trends for SyCoord improve. This is because conflicted operations have to contend for the
single hist variable, incurring more conflicts Figure 3.15b. The cummulative speedup raises
to more than 4x for 12 nodes.

Off-the-shelf data store and sequencing. Results in Figure 3.15c confirm the
SyCoord optimization speedup applies compared to achieving same invariant preservation
in the off-the-shelf data store. SyCoord outperforms Ignite on throughput significantly, while
sharing similar latencies as the number of nodes grows. Ignite, when used with optimistic
transaction execution, does not lock all needed values a priori, thus it exhibits lower latency
when no conflicts are present. This is because it avoids double round-trip messaging in
non-conflicting accesses. Locking would perform significantly worse, as even with smaller and
highly saturated data store, map conflict rates remain relatively low (and thus the number of
unnecessary round-trips).

With the “central” consistency extension, SyCoord incurred additional performance
improvement, shown in Figure 3.15d, as it further minimizes coordination (by using sequencing
through accesses on the single node) while achieving strong consistency. The cumulative
speedup is around 5x for 12 nodes. This confirms the evaluation goal (5).

Our evaluation does not account for performance of individual actions, i.e., operation
parts after partitioning. While we measure throughput and latencies for whole operations,
the data update latency might be smaller with SyCoord for individual actions. Namely, in
the partial replication benchmark, we found that hist additions become visible to the store at
less than 10% of time required to perform full withdraw or deposit (as no coordination is
required).

3.7.3 Game Demo Use Case

To explore practical applications of SyCoord we implemented a multiplayer use case based
on the game Slither.io [Slither.io game 2023]. In this game, players connect to a game room
and control one snake, that can move forward, potentially changing the angle in the process.
When a player’s snake collides with the body of any other snake, the player that made the
collision loses its snake and its snake is removed from the game. A game state with three
snakes in shown in Figure 3.16.

To implement the usecase, we:

1. implemented the basic logic for player-controlled snake movement in Javascript, using
Phaser [Phaser - A fast, fun and free open source HTML5 game framework 2023]

2. added a new "super move" operation that speeds up the snake for a limited amount of
time

102

Figure 3.16: Game state

3. used Scala.JS and Akka.JS in our backend to generate JavaScript networking layer on
top of WebSockets [Scala.js 2023]

We ran our implementation as a two-client simulation, with three snakes, and manually
injected delays into the network. The naive implementation renders the state as soon as
inputs from other players (clients) are received. The states on the two clients (captured at
different times), after running the simulation for a limited duration from the given game
state, are shown in Figure 3.17. Due to naively delivering and executing player moves, and
the delay, the execution of the super moves early for different snakes, on different clients, can
lead to diverging outputs on the two clients.

To utilize SyCoord, we defined a liveness invariant that checks if all clients have the same
player-controlled snake objects in the game. Whenever two clients differ in the snakes that are
still alive, a violation occurs. We manually extracted concrete state and operation parameter

Figure 3.17: Naive simulation of the game usecase

103

Figure 3.18: Consistency optimized run of the game

values from several scenarios before and after snake collision and fed them to SyCoord.
Instead of using the standard oracle, we used the external simulator that determined if the
integrity gets violated after a short simulation time. In a few chosen scenarios, both snakes
execute the "super move" when close to each other. The goal of the employed consistency
analysis was to determine which operations can be safely delivered locally without knowing
the information about the invoked operations on the remote client. In order to do this,
our simulation executes a normal move in the current direction of the snake, in case the
information from the other client is missing. When the information about the move is received,
at that point, the simulation invokes the move (potentially a super move).

SyCoord finds that while the normal move can be delivered with delay safely (the snake
that is missing information will proceed moving forward slowly), super moves need to be
delivered with strong consistency with respect to each other (thus ensuring total order on
their delivery). When the execution proceeds with this consistency requirement in place,
the simulation starting from the same state shown before (Figure 3.16) finishes without
violating the given invariant, as shown in Figure 3.18. Specifically, both clients have the same
player-controlled snake rendered as alive. (The position of the snakes differs, however, due to
the introduced delays which affect normal moves and thus snake trajectories.)

Our example, while limited, shows the potential for practical application of consistency
inference in finding moves in multiplayer games that require careful delivery in order to avoid
states that lead to discrepancies and potentially hurting the user experience. Our example
was motivated by the developer experience described in a game development report for the
game “Halo: Reach” [I Shot You First: Networking the Gameplay of HALO: REACH 2023].
Similarly to our super moves, some moves in the Halo game required special consideration

104

on how developers had to deliver and implement game actions. This scenario is akin to
identifying strong consistency requirement in our game use case, thus suggesting SyCoord

can prove useful in such situations to programmers of multiplayer games, for identifying
stronger ordering requirements between game actions and implementing the needed protocols,
based on game-specific properties.

3.8 Discussion

SyCoord explores a point in the design space of consistency inference, by providing au-
tomation and separation of concerns, support for practical partial replication, and arbitrarily
expressive operations and invariants, at the cost of bounded-search and provided test har-
nesses to drive the inference process. It relies on the idea of the “small-scope hypothesis”,
and identifies consistency constraints on traces within a small bound and generalizes them
to arbitrary executions, leveraging the insights that practical consistency violations can be
exhibited with interactions between a small set of operations [Bailis, Fekete, et al., 2014;
Jackson, Schechter, and Shlyahter, 2000]. SyCoord finds every consistency requirement,
if at least one trace exhibits its violation. Our evaluation found that SyCoord infers all
consistency requirements and generalizes to unbounded executions on all our benchmarks,
by exploring small scopes, with a small set of concrete values that exercise different paths
through the operations.

SyCoord’s use in practical development. Due to supporting concrete evaluation,
unlike Peepco, SyCoord has additional potential for seamless integration into the modern
development process, allowing programmers to re-use sample values from unit tests to
prototype and optimize consistency before committing to a distributed solution. The choice
of exploration based on concrete values allows exploring unrestricted forms of invariants,
using black-box code (e.g., through a library), and specifying specific test cases to explore
(which often come with specifications, such as for TPC-C [Bailis, Fekete, et al., 2014; TPC,
2010b]). Moreover, correctness guarantees can be strengthened by leveraging enumerators
for efficient exhaustive generation of complex inputs up to a bound [Kuraj, Kuncak, and
Jackson, 2015; Kuraj and Kuncak, 2014]. Symbolic specifications can be error-prone, and
often cannot capture the needed set of states for practical consistency inference (due to edge
cases and inductiveness [Kaki, Earanky, et al., 2018; Houshmand and Lesani, 2019]).

While Peepco leverages the explicit-state model-checking approach, it solves fundamental
challenges of inference in partial replication and is oblivious to the engine of exploration;
symbolic-value reasoning can be swapped, or integrated in, at the cost of robustness, and
operation and invariant expressiveness. For use cases where full correctness guarantees

105

are required, users can rely on existing verification approaches in order to verify results
obtained from SyCoord (e.g. [Houshmand and Lesani, 2019; Gotsman et al., 2016]). An
external verifier can either be incorporated as a checking oracle (in the model-checker part), or
programmers can create test inputs from counter-examples discovered by the verifier and feed
them to SyCoord. This separation allows extension of our approach and implementations
that fall outside the scope of what can be verified with the current state-of-the-art techniques.

Moreover, in addition to not forcing programmers to learn new language for specifying
consistency, SyCoord’s input conciseness is comparable to other high-level verification
programming systems [Houshmand and Lesani, 2019; Kneuss et al., 2013; Kaki, Earanky,
et al., 2018]. SyCoord generates larger code bases, where the generated code size is often
dominated by the message passing and protocol code.Note that instead of generating message-
passing code, SyCoord could be parametrized to use an off-the-shelf datastore, similar to
Sivaramakrishnan, Kaki, and Jagannathan [2015], in cases where choosing consistency in
finer granularity might not be needed.

Expressiveness and extensibility. Through the consistency inference lattice employed
in the cause-effect analysis, our approach supports arbitrary consistency constraints that are
determined by visibility, same transaction (or session order), and happens-before relations,
standard notions in consistency analysis. As these relations are directly encoded in the
captured cause-effect graphs, in addition to capturing granularity of their occurrence on
different nodes, they can be seamlessly used to define standard consistency levels including
snapshot isolation and repeatable reads [Terry, Demers, et al., 1994; Thomson et al., 2012].
In order to support synthesis with constraints containing those levels, developers would need
to associate proper consistency protocols to be used in the code generator of SyCoord.

By supporting specifying liveness, SyCoord provides the capability that is out of scope
of existing approaches to automatic consistency enforcement [Sivaramakrishnan, Kaki, and
Jagannathan, 2015; Houshmand and Lesani, 2019]. (Note that our definition of liveness
differs the definition used in the literature, and cannot support full range of properties, such
as fairness [Pnueli, 1981].) Moreover, this support is easily provided by extending rules used
in the inference: during the execution exploration phase, it evaluates a liveness invariant
only in the final state of each explored execution. This suggests the possibility of further
extensions to allow programming by example strategies, where programmers specify specific
traces on which the given integrity properties should be checked. We leave such extensions
of the framework for future work. Moreover, SyCoord supports reasoning about the data
store configuration and allows supporting realistic configurations, such as banks where banks
allow special operations on the account through special, e.g. secured nodes.

106

Chapter 4

EdgeC: Aspect-Oriented Language for
Reactive Distributed Applications at the
Edge

Peepco and SyCoord support specifications for data allocation and reactivity aspects
with limited flexibility. In this chapter, we present EdgeC, an approach that addresses this
limitation and allows programmers to control: 1) fine-grained data access in more elaborate
allocation schemes, 2) internal mechanisms for triggering behaviors in the system, and 3)
communication patterns exhibited by the resulting implementations. Combining these aspects
brings new challenges that require reasoning about the location and timing of computation,
as well as the events in the final distributed implementations. These aspects bring forth the
necessity for optimizing consistency, for achieving efficient distributed programs. EdgeC,
however, is limited to producing efficient implementations for only a limited class of programs,
while falling back to either of the two extremes in consistency handling, as described in
Chapter 1. When efficiency is needed, it sacrifices integrity for performance, at run time. By
combining our approach to consistency optimization, presented in Chapter 2 and Chapter 3,
with the support for additional specifications of EdgeC, presented in this chapter, the aim of
our end-to-end programming approach is to extend the overall expressiveness for new classes
of distributed applications.

Challenges of reactive applications. Distributed, reactive, and interactive appli-
cations such as online services, multi-user games or industrial sensor processing systems
constitute an important category of software systems [I. Zhang et al., 2016; Viennot et al.,
2015]. An application generally consists of a set of compute nodes which must communicate
with each other to update their state in response to external stimuli. Some of these appli-
cations must also combine incomplete inputs from multiple sources, promptly respond to

107

asynchronous user interactions, or process incoming protocol messages [Reynders, Devriese,
and Piessens, 2014; Bykov et al., 2011]. In addition to the complexity of the development
of traditional distributed applications, the advent of Internet of Things and “edge comput-
ing”, brings novel challenges that, unlike traditional cloud computing, require non-uniform
architectures with more elaborate distributed requirements, including data and computation
allocation, as well as reactivity [Alur, E. D. Berger, et al., 2016].

Edge computing poses new challenges for reactive distributed applications, which go
beyond black-box cloud-centric systems [Alur, E. Berger, et al., 2016; I. Zhang et al., 2016].
With traditional programming methodologies, design decisions about distributed aspects,
such as data distribution and reactivity, need to be woven together with the application logic.
As a result, implementations become complex even when the underlying logic is conceptually
simple, and the ability to explore different design choices is limited because small changes
to how data is distributed or how communication is orchestrated require cutting through
multiple layers of code. The design choices might involve different network models, data
allocation schemes, consistency and reactivity requirements. In such cases, the program
developers need to write full implementations, significantly different for every combination of
design decisions, making it difficult to search for an optimal overall design, in spite of core
logic being fixed. The programming complexity further exacerbates when the system needs to
operate in heterogeneous environments, which involve nodes of various computing capabilities
and non-uniform networks.

EdgeC approach. This chapter presents EdgeC1, a framework that aims to simplify
prototyping event-driven reactive distributed programs, amenable for the edge, including
non-uniform deployments. EdgeC relies on the insight that distributed systems can remain
sufficiently specified, by separating the application logic and distributed aspects. Developers
write a set of operations, which specify the application logic, together with orthogonal
specifications for distributed requirements, data and computation allocation, reactivity, con-
sistency, and networking concerns. The system generates low-level implementation of a
distributed system which allows invoking the given operations concurrently and reactively,
arbitrarily distributed across the system, respecting the sequential semantics of operations
according to chosen consistency (akin to distributed transactions). Specifications of behaviors,
data/computation allocation, consistency, and network model, can be tweaked and changed
separately, while EdgeC handles low-level code automatically. EdgeC thus allows easier design
space exploration of distributed programs, offloading complex cross-cutting reasoning from
developers.

Limitations. This chapter focuses on highlighting the main ideas behind the language

1EdgeC is an anagram of initial letters from “Event-driven distributed global-view consistent executions”.

108

and compiler design, and the adopted programming model in general. Its goal is to provide
additional specifications and, in combination with other approaches, achieve a higher level
of expressiveness through orthogonal specifications for behaviors and allocation, reactivity,
and integrity or data consistency. In turn, EdgeC assumes distributed nodes operate in
reliable and trusted environments and does not address aspects related to security and
failure-tolerance. We discuss these aspects later as potential avenues for future work. The
goal of this chapter is to propose and examine the potential of the programming model in
terms of expressiveness of behaviors and performance, without engineering a general and
fully optimized full-fledged system.

This chapter makes the following contributions:

• it presents a novel framework design, which synergizes program analysis and synthesis,
with a run-time, for developing optimized implementations that satisfy specifications
across cross-cutting and inter-dependent concerns, applicable in new domains;

• it introduces a new form of specifications for allocation and reactivity aspects of
distributed programs;

• it defines requirements and techniques for compilation, and a reference implementation
that extends a functional fragment of Scala and generates Scala actor code;

• it presents a prototype implementation of EdgeC and evaluation of its performance.

4.1 Overview

We demonstrate the main ideas behind EdgeC through a tutorial implementing the “100
game“ (analyzed as a motivating example in [I. Zhang et al., 2016]). In this simple game,
players alternately add a chosen number to the current sum, and the first one to reach 100
wins. Figure 4.1 shows a high-level view of the architecture of the application. The goal is to
prototype distributed version(s) of the game, with different requirements in mind. EdgeC
allows the developer to start writing operations as sequential code (without distribution
in mind, viewing it as “sequential slice”, as shown in Figure 4.1b), and orthogonally define
distributed aspects that define distributed computation shape, be it standard client-server
or more specialized architecture (e.g. ones shown in Figure 4.1c). Through a series of
requirements on functionality and distributed concerns, we show how developers use EdgeC
to incrementally explore new behaviors and/or distributed specifications, at each point
producing a fully functional reactive application. EdgeC synthesizes Scala code and provides

109

(a) Bird’s eye view of participants (b) Sliced view

(c) Architectures

Figure 4.1: Application overview, its logical “sliced view”, and the architectures it can capture

a JVM-based runtime, which is then deployed on an interconnected set of machines (see
Section 4.2).

Distributed interactive behaviors in EdgeC

The main functionality is making a game move, per player turn, which adds a given number
to the overall score. Figure 4.2 shows EdgeC code to implement this behavior. Syntax of the
language is based on Scala. Scenarios encapsulate a particular set of distributed behaviors
(effectively a sub-system) and are parametrized by node instances that represent physical
machines in the system. With the node declaration (line 1), developers declare two types
of nodes, Console, which encapsulates console id (passed as a parameter when a node is
created), and Server. The Game scenario defines the behavior over a given server and a set
of console nodes (line 3).

In EdgeC, the core functionality is simply given with sequential code, and distributed
aspects are provided on top (through annotations). Developers define data and the play
function, which takes a parameter and checks if it’s the current player’s turn: if yes, the
score is increased and other variables are updated. The code for play is oblivious to any
distributed aspects of the computation; it can be reasoned about and tested as any other
sequential function (e.g. simple unit testing).

Distributing behaviors. Specifications of distributed aspects characterize how sequential
behaviors are mapped onto the distributed system at hand. Firstly, given node instances,
here server and consoles (line 3), each variable is annotated to specify allocation to
a node. The annotation @loc(n) designates the declaration at hand, data or function, is
allocated at instance n. With lines 4-7, developers allocate game variables on the server,
and myId for every console in consoles (each console owns a copy), while notify can

110

node Server; node Console(cId: Int)

scenario Game(server: Server, consoles: Set[Console]) {
@loc(server) { var turn: Int = 0; var score: Int = 0;
var last: Int = -1 }
@forAll(c in consoles) { @loc(c) var myId: Int = c.cId;
@loc(c) def notify(r: String) = println(r) }

@resolve[Console]
def play(num: Int) = {
if (turn == myId) {
score += num; last = myId
turn = (turn+1)%consoles.size
return true
} else return false }

trigger PlayGame[Console](num: Int)

triggering(anyOf(consoles) { (c: Console) =>
when (PlayGame(num)) { bind(c)(play(num)) }
when (onChange(turn)) { notify("Score is: " + score) }
when (onTrue(score>100)) { notify("Win: " + last) }
})
}

Figure 4.2: Distributed reactive game

be executed only on a Console node. With the construct forall, developers allocate one
myId for each client node and initialize it to id of the console (line 6).

In EdgeC, all function invocations (behaviors) need to resolve to specific node instances
which determine the actual distributed execution at run time. EdgeC does this at the place of
invocation, at compile time, as explained later. While game data is unambiguously bound to
the single server (through @loc), developers annotate play with resolve[Console]

which means behavior needs to bind a console instance to be invoked; this is due to accessing
myId. (EdgeC allows means of binding different consoles to different variables, not shown
here.) This in turn means: 1) access to myId resolves to an access on the bound console; 2)
play accesses data spread across different nodes, i.e. server and console. EdgeC automatically
splits behaviors into chunks (based on data allocation), analyzes chunk inter-dependencies,
and performs the necessary communication needed for distributed execution. Thus, every
behavior might be executed chunk-by-chunk, across multiple different nodes; here, console
sends request to the server (sending data num and myId), the server evaluates the whole
body, and a response is returned. (EdgeC splits behaviors according to a given network
model; by default, it minimizes communication rounds in a uniform model.)

Invoking behaviors. Having defined the behaviors and data allocation, the next step is

111

to define when behaviors should execute, i.e. reactivity. With trigger, developers define
external events (e.g. interaction with the system). PlayGame is a trigger that can occur
at Console instances; it represents an event that carries num. EdgeC generates API stubs
for injecting events with parameters (so this can be done e.g. from a UI). The construct
triggering invokes behaviors in response to triggers. The core of this construct is a
when e {b} statement, which indicates that b should be executed whenever trigger e
occurred. In this example, since the event PlayGame and behavior play need to bind to
some console, developers first use anyOf(consoles) to quantify over all nodes c in the
set consoles, and use it to bind the invocation of play. Let’s consider line 20: whenever
PlayGame event is fired, on any quantified console c (bound implicitly), the system starts
the play behavior in the system. The caller, who injected PlayGame, then waits for the
response.

Resulting distributed behaviors. EdgeC compiles this program, accounting the aspect
of allocation, into a message-passing implementation which offers APIs to instantiate nodes
and scenarios, as well as to inject events. By default, EdgeC uses the Akka framework [Akka
– actor toolkit and runtime, http://akka.io/ 2023]. Given Akka actors are obtained, and
developers construct nodes from actors and start the application with:

def init(sa: ActorRef, cas: List[ActorRef]) {

val cs = cas.zipWithIndex.map({

case (a,i) =>

Console(a,i)

}).toSet

Game(Server(sa), cs).start() }

This creates a console node for each actor in the given list, with the given cId argument
that represents the initialized field. Interaction is done by injecting events as actor messages.
On the console node, developers can inject PlayGame with:

val console: ActorRef = ...; console ! PlayGame(5)

The system performs a client-server communication pattern, by communicating num to the
server, executing the body of play on the node specified by sa, retrieves the response,
and passes it to the caller (asynchronously through a message). In EdgeC developers can
implement the behavior in different patterns, by either changing the given behavior code or
orthogonal specifications.

112

Reactivity

Unlike traditional approaches, handling reactivity is done through a separate specification,
without cross-cutting code. When the game is over, i.e. score reaches 100, developers
notify players by simply binding a call to notify to a trigger onTrue; with onTrue(c),
whenever the condition c (on arbitrary allocated data) goes from false to true, the trigger
fires (Figure 4.2, line 22). EdgeC allows implicit resolution – the quantified console c is
implicitly bound to the call. This achieves the expected behavior of invoking notify on all
consoles when the game is over. EdgeC makes sure that, at any point in time, if the trigger
condition becomes true, the corresponding behavior is invoked. It analyzes the code and
checks for all possible places the trigger can fire: in cases it can be statically determined, a
call to the behavior is inserted or omitted, otherwise a run time check is emitted. (EdgeC
fires at most one declared bound trigger per operation invocation; defined in Section 4.3.) In
this case, EdgeC automatically determines a check needs to be inserted after invoking play.

However, imagine developers introduced another operation besides play (and bound it
to nodes), to reset the game:

def reset() { score = 0; turn = 0; last = -1 }

Then, EdgeC does not insert any checks after reset, as analysis confirms score cannot
become 100 after executing reset.

Now, imagine developers want also to notify players of the new score, whenever it changes.
In this case, the developers bind an appropriate notify call to the onChange(e) trigger,
which triggers every time the expression e changes (used in Figure 4.2, line 21). EdgeC
automatically injects appropriate calls, but also optimizes communication: namely, after the
score reaches 100 both triggers are fired but, the server sends only one message to consoles.
(A naive event handling would fire two behaviors through two separate messages from the
server to consoles, i.e. 2n messages for n consoles.) EdgeC statically analyzes control flow to
minimize communication; here, it consolidates messages and emits an additional check (and
receive handler on consoles), to cover this case.

Handling consistency

When developing applications with multiple distributed behaviors occurring at different
places in the system, developers must often coordinate messages to avoid inconsistent results.
Unlike uniform transactional systems, EdgeC handles consistency at different nodes by
employing different low-level coordination protocols. It analyzes program semantics, places of
invocation, as well as network model to try to optimize and avoid unnecessary coordination.

113

Our prototype supports strong and weak consistency modes (given as a flag to our prototype
compiler; not shown).

Under weak consistency, EdgeC simply executes all behaviors when they get invoked as a
sequence of message passing communication across the system (i.e. more specifically a graph,
based on data dependencies across nodes), without coordination. For strong consistency,
EdgeC analyzes any two behaviors in the system for potential conflicts that could violate
serializability. (EdgeC performs cycle graph conflict analysis based on prior work [Shasha,
Llirbat, et al., 1995].) In the running example, since the game data is allocated on the server
node, strong consistency is preserved if all executions (data modifications) on server and
notification behaviors resulting from those executions on the consoles are observed in the same
order on all nodes. Under the Akka implementation, which uses TCP/IP, this is automatically
satisfied (as message ordering between two nodes is preserved). However, EdgeC supports
backends with weaker assumptions (e.g. UDP or MQTT under low QoS) and implements
such ordering automatically.

EdgeC performs pattern matching on the conflicting behaviors and underlying network
and applies optimizations, such as ordering, if possible. In case such optimizations are not
possible, EdgeC emits a two-phase consistency protocol to ensure strong consistency. In
the given example, imagine developers split data between two servers, allocate turn on a
different server node server2, and redefine reset:

scenario Game(server: Server, server2: Server, ...) {

@loc(server2) var turn: Int = -1

def reset() { * same as before * }

EdgeC emits two-phase commit for all invocations of play and resetTurn (regardless of
places of triggering) to preserve the same ordering of observing two operations on server

and server2, due to potential conflicts.
EdgeC guarantees the chosen level of consistency, however, unlike traditional data man-

agement systems, it optimizes distributed behaviors based on network topology and operation
semantics, making it more amenable for the edge. The optimization is sound, but incom-
plete, as EdgeC might fail to recognize a case where optimization is valid and emit a costly
consistency protocol.

Adapting implementations with network models

EdgeC allows developers to model the network, specifying a cost of communication as well
as execution on individual nodes. Developers specify custom models with network. If left
unspecified, EdgeC assumes the default uniform network model with costs of execution and

114

val g = Graph[Node]()
g.node(server, 1.0)
val edges = for (c <- consoles) yield {
g.node(c, 1.0)
g.edge(c, server, 1.0) } * bidirectional *

g.node(cs1, 0.1); g.edge(cs1, server, 0.1)
initNetwork(g)

Figure 4.3: Network model specifications

communication equal to 1 across all nodes and edges. The network model specification takes
a directed weighted graph of the network as an argument, as shown in Figure 4.32.

In the current example, without network model specification, for play, EdgeC generates
behavior following the client-server pattern, as mentioned. If the depicted network model is
specified, however, since cs1 has lower cost of computing and connectivity (0.1, as depicted
on the left), EdgeC will allocate computation on the node, incurring more communication
rounds, but still overall lower cost, according to the given model.

Replication and aliasing

EdgeC supports replication as an experimental feature in the prototype, limited to certain
forms of scenarios (programs outside the supported class will fail to compile). In the running
example, developers might decide to replicate data across multiple server instances (as shown
in Figure 4.1). Replication is supported in the EdgeC prototype by providing a special
annotation:

@replicated(3) node Server

def resolveReplica(c: Console): Int = ...

@resolver(resolveReplica) def play(* as before *)

Here, EdgeC replicates server, implicitly, across 3 instances. It resolves accesses to
replicated variables, e.g. in play, based on an externally defined function resolveReplica.
Modifying server variables under strong consistency now involves 2PC across all server replicas.
Replication is supported on the level of a node type; we plan to extend it to apply to specified
node groups and specific variables.

Peer-to-peer. Let’s assume developers want to fit their application into a p2p model.
In this setting, there are only console nodes, while every console has its designated console

2Our prototype currently does not use reflection, thus graphs have to be static instances, known at
compile time.

115

Figure 4.4: EdgeC compiler

node acting as the server. This can be achieved by declaring another scenario, similarly as
before, but specifying the server to be one of the console nodes.

scenario P2PGame(server: Console, cs: Set[Console]) {

require(cs.contains(server))

... * rest is as before * }

Without any other changes to our running example, EdgeC recognizes the precondition to
conclude that the server is also one of the console nodes. The main difference with
respect to the previous case is that a console node now stores all the game variables (in
addition to myId) and play is instantiated for two cases: 1) the originating console is also
the server, and play incurs no communication (as the behavior executes locally on the single
console); 2) the originating console is not the server, in which case the behaviors are the same
as discussed before.

4.2 EdgeC Compilation

EdgeC contains two parts: the compiler and the runtime. EdgeC employs a novel compiler
design which incorporates multiple program analyses. The compiler compiles EdgeC programs
to Java bytecode, while the runtime implements communication primitives and consistency
protocols (using Akka [Akka – actor toolkit and runtime, http://akka.io/ 2023]). The runtime
exposes APIs which are called by the generated code.

Here, we focus on the main tasks of the compiler. The overview of the compilation is given
in Figure 4.4. The core parts are the behavior graph synthesizer and splicer, which analyze
behaviors and specifications, and incrementally splice appropriate code into the distributed
implementation. The compilation process includes helper components: Peepco preprocessor;
AST extractor, which extracts behaviors and Peepco specifications; implicit resolver, which
binds nodes at the places of behavior invocations; and code generator, which transforms the

116

internal representation of programs into bytecode. Our prototype compiler is implemented as
a Scala compiler plugin.

High-level compilation loop. The compilation process loops over all triggers, iden-
tifying all the places they might trigger, instantiates bound behaviors, and analyzes the
current set of behaviors for consistency levels under which the behaviors need to be executed.
Effectively, this is done until a fixed point is reached, i.e. no new changes are made to the
resulting implementation.

Behavior splitting and allocation. Given an operation invocation and its starting
node, a behavior graph designates the shape of a distributed computation: its nodes represent
executions of operation chunks on particular nodes, while edges represent data or control-flow
dependencies between chunks. For each invoked behavior, the process splits the operation
and assigns individual chunks to be executed on particular nodes, producing a behavior
graph. This is done with minimizing the overall cost of mapping (usually collocating data
with computation). A behavior graph effectively encodes an execution graph: following
the topological sort of such a graph, the system can execute the operation, incrementally
distributed across the system, while propagating data dependencies according to its edges.
(For example, a graph of play in the running example, reflects the simple client-server model;
it has three nodes, with edges encoding data dependencies for the request and response.) A set
of behavior graphs serves as the intermediate representation of the final implementation, and
it captures enough information to allow emitting low-level code (and allow optimizations based
on the given network model and interactions with other behaviors, e.g. the aforementioned
message consolidation).

Trigger splicing. Trigger splicing identifies the places where triggers get activated
(and operations invoked). They can be at the originating nodes, in case of external triggers,
or inside existing behaviors that enable conditional triggers during execution (e.g. for
onChange(score), it’s on the server, where play modifies score). EdgeC analyzes
the current set of behavior graphs to discover possible places where these might get enabled
and emits necessary run time checks.

Consistency analysis. EdgeC, when parametrized with strong consistency, checks for
conflicts by analyzing each pair of behavior graphs. It employs an analysis based on interference
conflict analysis, which allows detecting possible conflicting transactions statically [Shasha,
Llirbat, et al., 1995]. We modify the original algorithm to handle distributed executions,
accounting for the network model (and single-threaded execution per each node, which our
prototype currently employs).

Scalability of analyses. All the analyses run in polynomial time with respect to
the program size, except the splitting phase which run in exponential time. (A faster,

117

Algorithm 5 Execution model as an interpreter
Input: start state s0, condition triggers Tc

1: s← s0, T ← ∅, E ← ∅ ▷ state, triggers, execution graph
2: loop
3: T ← T++ newEvents() ▷ include new external events
4: E ← E++ chooseAndInstantiate(T, s) ▷ start new behaviors
5: el← removeTop(E) ▷ next element in topological order
6: if el = node(e, t) then ▷ node case
7: res(el)← eval(s, env(el)); s← s++res(el) ▷ evaluate chunk
8: if el is last chunk in operation then
9: E ← E++ instantiateAll(Tc, s) ▷ check condition triggers

10: else if el is last chunk in condition trigger t then
11: T ← T++ checkEnabled(t) ▷ new trigger enabled
12: else el = edge(n1, n2) ▷ edge case
13: env(n2)← env(n2)++res(n1) ▷ communicate dependencies

heuristic-based, allocation method is left for future work.)

4.3 Language Semantics

We formalize the semantics of EdgeC programs with an event-driven model of execution,
enriched with specifications of distribution, reactive events, and consistency concerns. It
defines the requirements of the execution model, while allowing different concrete scheduling,
consistency models, and optimizations.

Event-model semantics. We define dynamic semantics by interpretation [Reynolds,
1972]. The interpreter is given in Algorithm Algorithm 5. Inputs to the interpreter include
the starting state and a set of all condition triggers (such as onChange, which need to
be checked during execution). The system maintains the current state (across all nodes),
the set of active triggers T and an execution graph E. The execution graph represents all
active behaviors, waiting to get executed. Whenever an operation is invoked, its behavior
is instantiated and added to the main graph E. These behaviors might be either operation
invocations or condition checking (which need to evaluate an expression over current state,
e.g. onTrue(score>100)).

The interpreter initializes variables and starts looping. It first collects new external
triggers to the set of active triggers T . Then, it chooses a subset of T to instantiate behaviors
(chooseAndInstantiate), adding them to the main execution graph E. The instantiated
set depends on the assumed consistency model: for strong consistency it only instantiates
behaviors which do not conflict with any of the active behaviors; for weak, it instantiates all

118

behaviors of enabled triggers. Next, the algorithm picks a node (to execute) or an edge (to
perform a communication step) from E: it picks either a non-visited node from E which has
all incoming edges visited, or a non-visited edge which has the source node visited. (This is
akin to topological order, but generalized to traverse edges as well.) If it visits a node, it
executes its behavior chunk, with its environment (env(el)), for a result (rel(el)), and updates
the state (s). If the node is the last non-visited node belonging to: 1) an operation invocation,
it instantiates all condition triggers (to be checked, since some of them might trigger as a
result of the current execution); 2) condition behavior, the evaluation result represents a
Boolean which determines if the given trigger should fire, enabling new behaviors. If it visits
an edge (from n1 to n2) it processes the communication step by updating environment for
the chunk n2.

4.4 Evaluation

This section evaluates the EdgeC prototype showing potential in performance gains due to
implementation tweaking allowed by the expressiveness of the language. We evaluated the
JVM implementation of EdgeC on an OpenStack Compute Cluster using 8 machines (3GHz
clock speed and 2GB of RAM).The benchmarks include: 1) the standard Retwis benchmark
([I. Zhang et al., 2016]); 2) “reactive Retwis”, with added reactive behaviors; 3) play from the
running example, over a non-uniform network. The results are shown in Figure 4.5. EdgeC
finds all optimizations of behaviors for the given benchmarks; we thus believe it performs
similarly to manual implementations that rely on the same optimizations.

Redis over uniform network. The first row of graphs shows the Retwis benchmark,
specifically: EdgeC implementations with strong and no consistency (strong and weak);
Redis-based (no consistency) implementation with and without concurrent handler (redis
and redis_1thread). EdgeC’s performance is comparable to that of standard Redis in the
weak consistency model. A performance penalty in EdgeC occurs for strong consistency, as
expected, as around 3/4 of operations require coordination to maintain consistency.

Reactive behaviors. We added a new operation to the Retwis benchmark for noti-
fications of new post or likes. In Redis, clients poll after each operation to check for new
notifications. The results are shown in the second row of Figure 4.5. The experiments confirm
the expected performance penalty due to polling in Redis; EdgeC exhibits better latency and
throughput. The reason is direct splicing of triggers that avoids polling.

Non-uniform networks behaviors. We evaluated benefits of leveraging the network
model in EdgeC, under a non-uniform network. We ran the play operation from the running
example, with the network model from Section 4.1; we simulated this by adding delay of

119

Figure 4.5: Performance evaluation

15ms to both computation and message receives on “slow” nodes. The results are shown in
the third row of Figure 4.5. EdgeC outperforms the uniformly communicating system, in
both the throughput and latency, since the adjustments in computation based on the given
network avoid the unnecessary latency penalties. This becomes more significant with 8 nodes
(with slowdown of around 25%).

Overall, the results demonstrate EdgeC achieves expected performance while providing
standard level of consistency, on uniform networks, while the expressiveness of controlling
distributed aspects can significantly improve performance in specific scenarios.

4.5 Extensions

We demonstrate the extensibility of EdgeC that could aid practical deployment of the
generated distributed programs.

Fault tolerance. We implemented the support for the detection and restarting of

120

nodes in situations of individual node failures in the system. Fault tolerance support in our
prototype implements snapshot recovery thought the Akka persistence layer [Akka persistence
layer 2023]. (Note that unlike other systems, this form of fault tolerance does not perform
replication, and thus it does not offer availability under ongoing failures [Gray and Lamport,
2006; Lamport, 2001].) The bulk of the implementation is in the runtime: EdgeC synthesizes
a global supervisor node, which, whenever a node fails (detected by the provided Akka failure
detector) locks all the actors, resets them to the last snapshot, and replays events (including
external stimuli).

While our implementation demonstrates the viability of EdgeC for further extensions,
for handling additional practical concerns, it is prohibitively inefficient for many real-world
applications during a failure, due to the “lock-the-world” behavior. In our benchmarks, it
incurs up to 15% performance overhead in normal mode (where writes to disk are done
asynchronously).

Eclipse Hono extension of EdgeC. To show flexibility of EdgeC, and extensibility
for different implementation backends, including already existing and mature frameworks, in
addition to the Akka backed, we implemented a backend that uses the Eclipse foundation, open
source Internet-of-Things orchestration framework Hono [Eclipse Hono IoT framework 2023].
Eclipse Hono specifically targets range of devices indirectly, such as sensors and actuators,
and low-energy communication networks directly, by relying on low-performance networking
protocols. (It includes the support for Zigbee, MQTT, MQTT-IoT, and others.) Notably,
since many of the mentioned protocols support much weaker guarantees for the network
delivery (unreliable delivery is in the assumptions of the framework), EdgeC application-level
mechanisms become required and provide an important part in achieving consistent delivery
whenever required.

The support for Eclipse Hono as a backend was a matter of adding different backend, which
besides few utility transformation data structures in the compilation process, required a new
code generation component. We also added support for programmers to mark the incoming
and outgoing traffic of EdgeC nodes as “event” and “telemetry” (specific types of packets in
Hono, where “telemetry” provides weaker guarantees, while allowing less powerful underlying
network protocols), so that the annotated nodes might get deployed as sensors or actuators
through the framework in the system. We tested our benchmarks in the framework-provided
Docker-based simulation environment for the given example applications, where we found
the performance trends were comparable to those presented in Section 4.4.

121

4.6 Discussion

Overall, our results suggest that EdgeC can indeed simplify the development of distributed
reactive applications and provide ways of controlling distributed aspects of reactivity, alloca-
tion and, uniformity of architectures, allowing programmers to pick the desired point in the
trade-off space with: 1) strong guarantees and a comparably small performance overhead, 2)
weak guarantees and favorable performance over uniform architectures, and 3) strong guaran-
tees and favorable performance, in the case of specialized, non-uniform architectures, when
compared to a state-of-the-art industry-level data management system [Redis - in-memory
data structure store n.d.]. We believe the integration of consistency optimization approaches
described in Chapter 2 and Chapter 3 can bring additional benefits and make the trade-off
points more favorable for larger class of programs.

Semantic projection. While EdgeC allows programmers to describe application logic
in sequential semantics simply by declaring abstract state and programs that modify it,
EdgeC dictates the final shape of how the final behaviors in the implementation will look like.
The extent of the control over the resulting distributed programs is limited by specifications
that dictate such shapes: how the state is distributed across nodes, how the computation
gets allocated at run-time, in response to which (external or internal) events in the system
behaviors are invoked. This separation of concerns aims to allow programmers to simplify
the reasoning about the relationship of the core logic of their applications and distributed
aspects. To emit the final implementations, our synthesizer chooses and emits implementation
as the “semantic projection” of the behavior given the allocation and timing specifications,
following the semantic projection rules that hide the particular computation allocations,
messaging patterns, and internal events that occur in the system to invoke behaviors. While
we have shown the specifications can bring the needed flexibility for a class of programs,
programmers that need more control over the projection of their behaviors, how the data
and computation is allocated and invoked, might need to manually inspect and modify the
emitted implementations.

122

Chapter 5

Related Work

Prior work explored different distributed programming frameworks and models that offer
high-level abstractions useful in developing distributed applications. Many of the existing
approaches, however, are too rigid. When developing programs that fall outside the supported
classes of these approaches, programmers need to fall back and manually implement and
reason about the low-level implementation and its distributed aspects, mainly consistency
and the consistency model choice to adopt [G. A. Agha and Kim, 1999; Shapiro et al., 2011a;
I. Zhang et al., 2016; Viennot et al., 2015; Christensen, Møller, and Schwartzbach, 2003;
Andrew D. Birrell and Nelson, 1984b; Haridi et al., 1998]. Our approach aims to extend the
class of supported programs, introducing the ability to handle consistency through high-level
integrity specifications, while keeping high degree of automation.

Approaches that attempt to hide certain aspects related to consistency, such as conflict-
free replicated data types (CRDTs), which offer certain operations with consistent updates
without requiring coordination [Shapiro et al., 2011a], can be used as building blocks for
constructing distributed programs with replicated data, but programmers still need to
manually reason whether the desired high-level integrity is preserved. Studies of CRDTs and
their properties, have identified properties that can be checked in order to satisfy certain
classes of high-level integrity properties [Shapiro et al., 2011b; Burckhardt et al., 2014; Shapiro
et al., 2011a; Zakhour, Weisenburger, and Salvaneschi, 2023; Bailis, Fekete, et al., 2014;
Alvaro, Conway, Joseph M Hellerstein, et al., 2017; Y. Liu et al., 2020]. This led to work
that motivated consistency optimization [Terry, Demers, et al., 1994] and led to creating
automated approaches based on static analysis of program semantics [Sivaramakrishnan,
Kaki, and Jagannathan, 2015; I. Zhang et al., 2016; C. Li, Leitão, et al., 2014; Balegas,
Duarte, Ferreira, R. Rodrigues, Preguiça, Najafzadeh, et al., 2015a; Kaki, Earanky, et al.,
2018; Houshmand and Lesani, 2019]. Our approach aims to explore a new point in the
design space of consistency optimization systems and provide an end-to-end approach that:

123

1) achieves high levels of flexibility and granularity of the supported consistency through
high-level invariants; 2) supports specifications of multiple practically important distributed
aspects; 3) supports expressive operation executions in the distributed system; 4) maintains
a high degree of automation.

The main inspiration for the work presented in this thesis came from analyzing key
challenges in modern data management systems [Stonebraker and Çetintemel, 2018]. The
idea of an end-to-end programming approach from high-level specification was motivated by
modern multi-tier programming systems [Chlipala, 2015] and program synthesizers [Kneuss
et al., 2013]. Our inference is motivated and takes inspiration from the fundamental concepts
introduced in prior work that introduced the seminal ideas of static analysis of programs for
concurrency [Shasha and Snir, 1988; Shasha, Llirbat, et al., 1995], introduced the problem
of consistency inference [Sivaramakrishnan, Kaki, and Jagannathan, 2015], and formalized
dependencies between consistency models [Terry, Demers, et al., 1994]. Next, we discuss the
related work and group different approaches based on their relations to our approach.

5.1 Consistency Optimization

Prior work explored different points in the design space of consistency optimization of
distributed programs and data-centric applications, focusing on the case where data is fully
replicated across all nodes. Approaches for building and optimizing replicated data stores
generally make tradeoffs in the supported consistency guarantees, and expressiveness for
different behaviors and underlying configurations. In the expressive programming models, to
satisfy the needed integrity constraints of their applications, programmers often choose to use
off-the-shelf data stores, but may also need to implement additional safety mechanisms due
to the limited support for consistency [Sivasubramanian, 2012; Cassandra replication factor
2020; Sivaramakrishnan, Kaki, and Jagannathan, 2015], or default to strong consistency and
accept performance penalties [Deng et al., 2017; Apache Ignite allocation modes 2020; Bailis,
Fekete, et al., 2014]. Our approach aims to bridge the gap between the two extremes and
automate the process of fine-tuning consistency based on the programmers’ needs.

Static Analysis for Consistency Optimization. The idea of using static analysis
to optimize consistency was motivated by a line of work. Quelea [Sivaramakrishnan, Kaki,
and Jagannathan, 2015] introduced static analysis for consistency optimization, using high-
level contracts. Q9 [Kaki, Earanky, et al., 2018] added application-specific invariants and
proposed the use of bounded symbolic reasoning. Hamsaz [Houshmand and Lesani, 2019]
extended the idea with synthesis of replicated objects, and Hampa [X. Li, Houshmand, and
Lesani, 2020] added reasoning about recency. ECROs [De Porre, Ferreira, et al., 2021]

124

avoids coordination further by local reordering. Atropos [Rahmani et al., 2021] introduced
consistency optimization by exploring adjustments in the program’s data layout. Peepco

combines static reasoning with runtime information to realize new optimization opportunities,
while allowing specializing consistency model through integrity, and, in turn controlling and
exposing state after convergence, periodically. Peepco’s protocol, however, is blocking and
requires agreement even for non-conflicting operations. In addition to replicated objects,
Peepco extends the expressiveness to support partial replication.

Run-time Techniques. Sieve [C. Li, Leitão, et al., 2014; C. Li, Porto, et al., 2012] defines
a consistency model called RedBlue which executes operations with two modes of consistency.
Olisipo [C. Li, Preguiça, and R. Rodrigues, 2018], refines the approach and presents two
coordination protocols, where one can be used for infrequent operations. Peepco supports
static analysis in the extended consistency lattice, including weak consistency, automatically
checks that integrity holds, and uses dynamic information to allow concurrent execution of
operations. Homestasis [Roy et al., 2015] infers “treaties”, run-time checks for node-local
state to avoid coordination. By contrast, Peepco’s run time checks optimize operations even
when a treaty might be violated, using dynamic information.

Elaborate Specifications. Some approaches let developers aid the consistency optimiza-
tion by providing, tags and conflicts between tags CISE [Gotsman et al., 2016; Najafzadeh
et al., 2016], counterexample fixes for inductive generalizations [Padon et al., 2017], and
conflict avoidance annotations in Indigo [Balegas, Duarte, Ferreira, R. Rodrigues, Preguiça,
Najafzadeh, et al., 2015a; Balegas, Duarte, Ferreira, R. Rodrigues, Preguiça, Najafzadeh, et
al., 2015b], conflict resolutions in IPA [Balegas, Duarte, Ferreira, R. Rodrigues, and Preguiça,
2018] and consistency guards in Carol [Lewchenko et al., 2019]. By contrast, Peepco provides
automation while only requiring the specification of high-level invariants. While Peepco can-
not provide the guarantees of unbounded full verification ([lesani2016chapar; Wilcox et al.,
2015; Nagar and Jagannathan, 2019]), empirical evidence suggests it provides performance
benefits by leveraging results from a relatively expressive SMT-based bounded-reasoning
procedure, while preserving application-specific integrity at run time.

Type Systems. Disciplined inconsistency [Holt et al., 2016] presents a type system that
disallows flow of weakly consistency values into strongly consistent operations, unless allowed
by the programmer. MixT [Milano and Andrew C. Myers, 2018] introduced transactional
support with types that allow accessing different stores with varying consistency guarantees
and used information flow analysis to limit the influence of weakly-consistent data on
transaction control flow. Some programming models allow mixing consistency levels to some
extent [De Porre, Myter, et al., 2020; Köhler et al., 2020; Holt et al., 2016; Xie, Su, Kapritsos,
et al., 2014]. Peepco splits methods into pieces under data partitioning, but it does not

125

require consistency annotations to be associated with objects and locations, and it infers
consistency of each piece automatically. Peepco, moreover, assigns consistency levels to
particular operation splits, rather than fixing a particular object or memory location with a
specific model. It considers control-flow dependent splits, as well as other operations that
might occur at run-time, but it does not handle loops.

Replicated Objects. Replicated objects and data types have been proposed [Shapiro
et al., 2011b; Burckhardt et al., 2014; Shapiro et al., 2011a; Zakhour, Weisenburger, and
Salvaneschi, 2023], studied in terms of invariant preservation [Bailis, Fekete, et al., 2014;
Alvaro, Conway, Joseph M Hellerstein, et al., 2017; Y. Liu et al., 2020], and used in systems
[I. Zhang et al., 2016; Balakrishnan et al., 2013]. MRDTs [Kaki, Priya, et al., 2019] has shown
that such objects allow deriving merge functions that can alleviate conflicts and provide
safety. Quark [Kaki, Prahladan, and Lewchenko, 2022] then introduced convergence with
run-time assistance, and Peepul [Laddad et al., 2022] verifies their efficient implementations.
Katara [Laddad et al., 2022] used lightweight ordering constraints. The space of consistency
models has been characterized in terms of a partially-ordered lattice [Viotti and Vukolić,
2016; Terry, Demers, et al., 1994]. PRACTI [Belaramani et al., 2006] motivated the partial
replication model and defined flexible consistency as one of its key components. Peepco

follows the approach of encoding different consistency levels as a lattice. Peepco, however,
also supports partial replication by extending reasoning about the system to many different
nodes and includes the flexibility of programmer-specialized consistency models, in addition
to being “tunable” based on the operation semantics [Viotti and Vukolić, 2016].

Databases and Transactional Systems. Prior work has studied correctness conditions
for finding the lowest isolation level for transactions [Lu, A. Bernstein, and P. Lewis, 2004;
Fekete et al., 2005]. Alone-Together [Kaki, Nagar, et al., 2018] formulated a program logic for
automated verification of weakly-isolated transactions. In addition, transaction decomposition
was used to aid such reasoining, with transaction chopping [Shasha, Llirbat, et al., 1995;
Cerone, Gotsman, and Yang, 2015], step-decomposition [A. J. Bernstein, Gerstl, and P. M.
Lewis, 1999], transaction chains [Y. Zhang et al., 2013], locality-aware [Cheung et al., 2012]
and security-aware decomposition [Zdancewic and Andrew C Myers, 2003]. Other work
incorporates run-time heuristics into chopping approaches, to extract concurrency [Mu et al.,
2014; Xie, Su, Littley, et al., 2015; Y. Zhang et al., 2013]. Similarly, Peepco splits methods,
treating them as transactions, and employs bounded exploration for verification to achieve
automation and avoid the pitfalls of limited information analysis of traditional chopping.

There is significant prior work on reducing coordination, by allowing (bounded) stale-
ness in replicas [Yu and Vahdat, 2000; Bailis, Venkataraman, et al., 2012], by providing
applications with a choice between fast inconsistent results and slower consistent results [Guer-

126

raoui, Pavlovic, and Seredinschi, 2016], or by dynamically tuning consistency in response to
load [Kraska et al., 2009; Terry, Prabhakaran, et al., 2013]. In contrast to these approaches,
Peepco reduces coordination only when it can still preserve application integrity, at the
potential cost of some performance. Peepco, however, provides fast local reads, as well as
congruent snapshots that do not slow the system down, regardless of conflicts in the update
methods.

Concurrency synthesis. Similarly to Peepco, prior approaches leveraged bounded
oracles and generalization within small scope of exploration [Wickerson et al., 2017; Solar-
Lezama, Jones, and Bodík, 2008; Vechev and Yahav, 2008]. PSketch [Solar-Lezama, Jones,
and Bodík, 2008] used CEGIS to synthesize concurrent data-structures from partial programs
and test harnesses, using an explicit model checker. Paraglider [Vechev and Yahav, 2008]
focused on partitioning atomic sections by introducing locks. The verified-synthesis loop
inspired a line of work of inferring various concurrency mechanisms [Vechev, Yahav, and
Yorsh, 2009; Kuperstein, Vechev, and Yahav, 2010]. Albeit expressive, practical scalability
in the search space of distribution and partial replication requires mechanisms that go
beyond low-level locks. Combinations of analysis and inference techniques were explored
for memory models [Wickerson et al., 2017] and cache coherence protocols [Udupa et al.,
2013]. Peepco explores a different point of specialization, within the expressive domain of
distributed consistency, which requires specialized mechanisms for capturing and analyzing
distributed executions across fine-grained replication. While avoiding the issues of generality,
our framework specializes in distributed consistency and offers “small-scope” inference but
also multiple directions for extendability.

5.2 Distributed Programming Languages

Prior work introduced approaches that allow programmers to specifying and control distributed
aspects such as location and reactivity, either limited to certain classes of programs without
expressiveness in consistency optimization, or requiring low-level manual implementation.
We believe that our approach offers a new way of specifying reactive distributed programs by
combining specifications of data distribution and triggers, together with high-level invariants
on the system’s state.

Programming models. Our approach shares some of the high-level goals with the
following lines of research on programming distributed systems:

tierless programming models Similar in spirit of avoiding the complexity and complicat-
ing the underlying sequential programming model, tierless programming models focus
on simplifying specification of aspects that cut across different tiers and unify them

127

into a single model (and traditionally, focus on web development) [E. Cooper et al.,
2007; Serrano and Berry, 2012; Chlipala, 2015]. Although these models simplify some
of the aspects considered in this work, including communication, strong consistency
transactional support, storage and interaction, their focus is to remove the complexity
that arises due to handling different tiers of the system, rather than on preserving the
semantics and structure of sequential computation within the same tier. Note that
tierless models usually adopt existing mechanisms and constructs, such as client-server
architecture and RPC for communication [Chlipala, 2015].

actor-based programming models Despite being flexible and providing clean abstrac-
tions for programming distributed event-driven systems that can easily be mapped to
actual physical systems, actor models suffer from being close to the low-level implemen-
tations, where the structure of the system and behaviors need to match closely with the
declared programs, making them complex and hard to reason about [G. Agha, 1986;
Hewitt, Bishop, and Steiger, 1973; Haller and Odersky, 2009; Prokopec and Odersky,
2015]. Interestingly, actor-based programming frameworks represent a good fit for a
low-level model that can be leveraged in the final emitted implementations [Kuraj and
Jackson, 2016; Prokopec and Odersky, 2015].

partitioned global address space Partitioned global address space (PGAS) models aim
to provide a simple programming model, and consequently allow better performance, for
parallel programs by unifying the support for data and task parallelism, and abstracting
the data model through a global address space [Charles et al., 2005; De Wael et al.,
2015]. The concept of a “place” in these models allows allocating computations and data
across the global address space, at a level that can be closer to the intended (sequential)
behavior. Although places allow assigning a cost model to data accesses (based on the
topology), automatic data distribution is usually restricted to partitioning of regular and
dense data structures such as arrays; some PGAS languages require explicit distribution
of data objects to remain expressive for irregular and sparse structures [De Wael et al.,
2015]. Nodes in our model are similar to places in PGAS in that they contain running
computations, which in turn might be spread across multiple different nodes. However,
our model does not rely on specific patterns of data distribution and parallelism; it
analyzes defined behaviors to emit event-driven implementations that need to satisfy
consistency guarantees, and appropriately allocate both computation and data.

Reactive programming. Reactive programming itself has received significant attention
from the research community, including in the context of distributed systems [Drechsler et al.,
2014; Baldini et al., 2016; Dabek et al., 2002]. While allowing clean way of composing reactive

128

values to achieve automatic updates of dependent computations, in distributed reactive
programming, developers need to identify specific points in the graph, usually through a form
of publish-subscribe mechanism, to forward the propagation through the network. In addition,
since reactive values are often encapsulated as signals, adding new and merging existing
functionalities often requires modifications to existing dependency graphs. Moreover, due to
relying on automatic propagation algorithms they are often restricted to weaker consistency
models like glitch-freedom and specialized to certain distributed architectures.

Location types. Location annotations as well as data and computation allocation were
examined in the context of multi-tier programming models. Even though the formalization of
the syntax and types shares similarities with our specifications, our approach differs in that
it covers computations that span arbitrary numbers of nodes, as well as consistency criteria
that naturally arise. In the previous approaches allocation is determined directly, while the
consistency issue does not arise at all, due to the restriction to a two-party multi-tier model.

Multi-tier programming. Many approaches presented in prior work focus on using
sequential computation to some extent while introducing additional abstractions, such as
remote procedure calls, reactive values, and conflict-free replicated data type, for handling
distributed aspects of the system [Chlipala, 2015; JMacroRPC - reactive client/server web
programming n.d.; Meteor - Pure JavaScript web framework n.d.; Czaplicki and Chong, 2013;
Meiklejohn and Van Roy, 2015]. A related line of research includes programming platforms
based on writing sequential programs that aim at abstracting away infrastructure concerns
to allow focusing on the application logic [Baldini et al., 2016; Kiciman et al., 2010]. An
overview of different programming models and the influence of the sequential model on
programming distributed systems is given in [Briot, Guerraoui, and Lohr, 1998; Bal, Steiner,
and Andrew S. Tanenbaum, 1989]. In general, even though these models abstract away some
of the complexity, due to the close match between the program and the final distributed
implementation, expressing certain complex behaviors requires low-level reasoning and careful
structuring of the program [Andrew Stuart Tanenbaum and Renesse, 1987; Prokopec and
Odersky, 2015].

Sequential computation-based approaches. Our approach is aligned with the idea
of using high-level specifications of distributed aspects and offloading the search for low-
level implementations to the compiler. Some approaches lift the abstraction of specifying
behaviors by using similar mechanisms to the ones employed by our approach, including
logical formulas (used for triggering in our approach) in the form of event guards and await
statements, and the concept of location, which allows automatic data distribution according
to specifying computations [Y. A. Liu et al., 2012; Jayaram and Eugster, 2011; De Wael et al.,
2015]. Prior work discusses the importance of preserving semantics of sequential computation

129

and its effects on possible optimizations, as well as the potential role for programming
distributed systems [Marino et al., 2015; Kuraj and Jackson, 2016]. In the similar spirit, this
work tries to motivate lifting the level of abstraction by demonstrating potential gains in
simplicity and performance. Moreover, it provides a different perspective on formalization of
sequential computation and specifications to allow additional means for ensuring correctness
and efficiency of the resulting implementation.

Development of distributed algorithms. While our approach focuses on implementing
behaviors which can be conceptually expressed as sequential programs, it lacks expressiveness
for programming distributed algorithms that inherently require dealing with aspects like
processes and messages, and require control of low-level concerns [Y. A. Liu et al., 2012;
Prokopec and Odersky, 2015]. While reimplementing such algorithms is rarely needed, they
often cannot be used directly via an external library (e.g. if modifications to some of its
internals are needed); our approach aims at utilizing different existing algorithms as means
to an end whenever necessary, even in cases their code needs to be customized for specific
needs of the intended distributed application.

130

Chapter 6

Conclusion

In this thesis, we have introduced a novel approach to the development of distributed
programs, enabling the specification of behaviors in the sequential computation model. This
approach empowers programmers to reason about and test their applications as sequential
executions, while our tool, Peepco, automates the synthesis of low-level distributed code.
By allowing programmers to specify distributed aspects using orthogonal specifications, our
method facilitates a clear separation between concerns. This separation enables developers
to modify functionality and shape distributed behaviors without the need for cross-cutting
code, thereby streamlining the development process. Importantly, our approach implements
the optimal consistency model based on the given input program’s application-level integrity
properties. Leveraging the exploration of bounded executions, we support an expressive
programming model, presenting a unique set of challenges distinct from prior work on
consistency optimization and static analysis for consistency inference. To tackle these
challenges, we draw upon a diverse range of ideas and techniques, from static analysis of
concurrency, model-checking, verification, synthesis, databases, and distributed algorithms.

Our emphasis on code generation establishes an important bar for the expressiveness
of the programming model, the granularity of identified consistency requirements, and the
precision of protocols used in resulting implementations. We believe that the integration
of code synthesis, static analysis, and distributed protocol design can afford the requisite
expressiveness for modern distributed application development. This integration enables our
approach to address the inherent tension between the complexity of operation interleaving
and the expressiveness of properties to be preserved in the resulting program, all while
ensuring the desired distributed aspects. However, achieving the necessary level of automated
reasoning for generating code in practical systems poses challenges. These challenges stem
from the need for specifications expressive for controlling certain low-level aspects, scalability
of static analysis, and efficiency of the run-time protocol that maintains strong guarantees.

131

For some programs, the proposed integrity properties might not be fully capable to specify
the required behaviors of the intended implementations, and thus might require additional
effort from the programmers. Our research demonstrates that our approach is capable of
fully capturing various benchmarks with expressive requirements for the intended distributed
programs, while our consistency inference analysis exhibits sufficient scalability to enable
achieving significant speedups at run time. While our approach does not handle all aspects
that might be needed for practical deployments, such as security and fault-tolerance, we
believe it represents an important step towards the over-reaching goal of achieving a practical
easy-to-use programming system for development of distributed programs.

Peepco’s design offers a significant advantage by giving programmers the ability to
enhance the potential of consistency optimization through extended static analysis, covering
larger bounds as analysis runs longer. Furthermore, the flexibility of Peepco’s consistency
inference allows incorporating existing systems and their internally supported consistency
levels into the execution trace checker. This integration can seamlessly expand the space of
the covered resulting implementations, facilitating the generation of practical compositional
implementations. This is supported by the compositional treatment of integrity and other
distributed aspects specified in Peepco, enabling the combination of different implementations
based on their properties. This compositional approach, coupled with efficient read-only
methods, ensures that overall system requirements, including its integrity, are maintained as
the sum of its individual parts. We believe the design and architecture of Peepco exemplifies
a novel method for combining specifications, static analysis, and run-time protocols, that
can open up new avenues for achieving expressiveness and scalability in modern software
development.

132

References

Zhang, Irene, Niel Lebeck, Pedro Fonseca, Brandon Holt, Raymond Cheng, Ariadna Norberg,
Arvind Krishnamurthy, and Henry M. Levy (2016). “Diamond: Automating Data
Management and Storage for Wide-Area, Reactive Applications”. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). Savannah, GA:
USENIX Association, pp. 723–738. isbn: 978-1-931971-33-1. url: https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-irene.

Viennot, Nicolas, Mathias Lécuyer, Jonathan Bell, Roxana Geambasu, Jason Nieh,
L Mathias, Jonathan Bell, Roxana Geambasu, and Jason Nieh (2015). “Synapse: A
Microservices Architecture for Heterogeneous-Database Web Applications”. In: EuroSys.

Chlipala, Adam (2015). “Ur/Web: A simple model for programming the Web”. In: POPL.
Lesani, Mohsen, Christian J. Bell, and Adam Chlipala (2016). “Chapar: certified causally

consistent distributed key-value stores”. In: POPL.
Sovran, Yair, Russell Power, Marcos K. Aguilera, and Jinyang Li (2011). “Transactional

Storage for Geo-Replicated Systems”. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. SOSP ’11. Cascais, Portugal: Association
for Computing Machinery, pp. 385–400. isbn: 9781450309776. doi:
10.1145/2043556.2043592. url: https://doi.org/10.1145/2043556.2043592.

Bailis, Peter, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and
Ion Stoica (2014). “Coordination avoidance in database systems (Extended version)”. In:
arXiv preprint arXiv:1402.2237.

Papadimitriou, Christos H. (Oct. 1979). “The Serializability of Concurrent Database
Updates”. In: J. ACM 26.4, pp. 631–653. issn: 0004-5411. doi: 10.1145/322154.322158.
url: https://doi.org/10.1145/322154.322158.

Brewer, Eric (2012). “CAP twelve years later: How the "rules" have changed”. In: Computer
45.2, pp. 23–29.

DeCandia, Giuseppe, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels (2007). “Dynamo: Amazon’s Highly Available Key-value Store”. In:

133

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-irene
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-irene
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/322154.322158

Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles.
SOSP ’07. Stevenson, Washington, USA: ACM, pp. 205–220. isbn: 978-1-59593-591-5.
doi: 10.1145/1294261.1294281. url: http://doi.acm.org/10.1145/1294261.1294281.

Kleppmann, Martin, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan (2019).
“Local-First Software: You Own Your Data, in Spite of the Cloud”. In: Proceedings of the
2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. Onward! 2019. Athens, Greece: Association for
Computing Machinery, pp. 154–178. isbn: 9781450369954. doi: 10.1145/3359591.3359737.
url: https://doi.org/10.1145/3359591.3359737.

Sivaramakrishnan, KC, Gowtham Kaki, and Suresh Jagannathan (2015). “Declarative
Programming over Eventually Consistent Data Stores”. In: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’15.
Portland, OR, USA: ACM, pp. 413–424. isbn: 978-1-4503-3468-6. doi:
10.1145/2737924.2737981. url: http://doi.acm.org/10.1145/2737924.2737981.

Stonebraker, Michael, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland (2007). “The end of an Architectural Era: (It’s Time for
a Complete Rewrite)”. In: VLDB ’07: Proceedings of the 33rd international conference on
Very large data bases. Vienna, Austria: VLDB Endowment, pp. 1150–1160. isbn:
978-1-59593-649-3. url: http://hstore.cs.brown.edu/papers/hstore-endofera.pdf.

Kaki, Gowtham, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan (Oct. 2019).
“Mergeable Replicated Data Types”. In: Proc. ACM Program. Lang. 3.OOPSLA. doi:
10.1145/3360580. url: https://doi.org/10.1145/3360580.

Kuraj, Ivan and Armando Solar-Lezama (2020). “Aspect-oriented language for reactive
distributed applications at the edge”. In: Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking, pp. 67–72.

Kuraj, Ivan, Armando Solar-Lezama, and Nadia Polikarpova (2022). “Optimizing consistency
for partially replicated data stores”. In: Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pp. 457–458.

Kuraj, Ivan, John Feser, Nadia Polikarpova, and Armando Solar-Lezama (Nov. 2023).
“PeepCo: Batch-Based Consistency Optimization”. In: PLDI ’24, in submission.

Alur, Rajeev, Emery Berger, Ann W Drobnis, Limor Fix, Kevin Fu, Gregory D Hager,
Daniel Lopresti, Klara Nahrstedt, Elizabeth Mynatt, Shwetak Patel, et al. (2016).
“Systems computing challenges in the Internet of Things”. In: arXiv preprint
arXiv:1604.02980.

134

https://doi.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/2737924.2737981
http://doi.acm.org/10.1145/2737924.2737981
http://hstore.cs.brown.edu/papers/hstore-endofera.pdf
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580

Kaki, Gowtham, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan (Oct. 2018).
“Safe Replication through Bounded Concurrency Verification”. In: Proc. ACM Program.
Lang. 2.OOPSLA. doi: 10.1145/3276534. url: https://doi.org/10.1145/3276534.

Houshmand, Farzin and Mohsen Lesani (2019). “Hamsaz: replication coordination analysis
and synthesis”. In: PACMPL 3.POPL, 74:1–74:32. doi: 10.1145/3290387. url:
https://doi.org/10.1145/3290387.

Belaramani, Nalini Moti, Michael Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani,
Praveen Yalagandula, and Jiandan Zheng (2006). “PRACTI Replication.” In: NSDI.
Vol. 6, pp. 5–5.

Wilcox, James R., Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson (2015). “Verdi: A Framework for Implementing
and Formally Verifying Distributed Systems”. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’15. Portland,
OR, USA: Association for Computing Machinery, pp. 357–368. isbn: 9781450334686. doi:
10.1145/2737924.2737958. url: https://doi.org/10.1145/2737924.2737958.

Gotsman, Alexey, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, Marc Shapiro,
Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro
(2016). “’Cause i’m strong enough: reasoning about consistency choices in distributed
systems”. In: POPL.

Li, Cheng, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and
Viktor Vafeiadis (2014). “Automating the Choice of Consistency Levels in Replicated
Systems”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference. USENIX ATC’14. Philadelphia, PA: USENIX Association, pp. 281–292. isbn:
9781931971102.

Gray, Jim and Leslie Lamport (2006). “Consensus on transaction commit”. In: ACM
Transactions on Database Systems (TODS) 31.1, pp. 133–160.

Thomson, Alexander, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and
Daniel J Abadi (2012). “Calvin: fast distributed transactions for partitioned database
systems”. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pp. 1–12.

Lamport, Leslie (1978a). “The implementation of reliable distributed multiprocess systems”.
In: Computer Networks (1976) 2.2, pp. 95–114. issn: 0376-5075. doi:
https://doi.org/10.1016/0376-5075(78)90045-4. url:
https://www.sciencedirect.com/science/article/pii/0376507578900454.

— (1977-03). “Proving the Correctness of Multiprocess Programs”. In: IEEE transactions on
software engineering SE-3.2, pp. 125–143. issn: 0098-5589.

135

https://doi.org/10.1145/3276534
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3290387
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/https://doi.org/10.1016/0376-5075(78)90045-4
https://www.sciencedirect.com/science/article/pii/0376507578900454

Lamport, Leslie (1978b). “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Commun. ACM.

Fidge, Colin J (1987). Timestamps in message-passing systems that preserve the partial
ordering. Australian National University. Department of Computer Science.

Milano, Mae and Andrew C. Myers (2018). “MixT: a language for mixing consistency in
geodistributed transactions”. In: Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2018. Philadelphia, PA, USA:
Association for Computing Machinery, pp. 226–241. isbn: 9781450356985. doi:
10.1145/3192366.3192375. url: https://doi.org/10.1145/3192366.3192375.

Pnueli, Amir (1981). “The temporal semantics of concurrent programs”. In: Theoretical
computer science 13.1, pp. 45–60.

Saltzer, J. H., D. P. Reed, and D. D. Clark (Nov. 1984). “End-to-end Arguments in System
Design”. In: ACM Trans. Comput. Syst. 2.4, pp. 277–288. issn: 0734-2071. doi:
10.1145/357401.357402. url: http://doi.acm.org/10.1145/357401.357402.

Baker, Jason, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh (2011). “Megastore:
Providing Scalable, Highly Available Storage for Interactive Services”. In: Proceedings of
the Conference on Innovative Data system Research (CIDR), pp. 223–234. url:
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf.

Akka – actor toolkit and runtime, http://akka.io/ (2023). url: http://akka.io/.
Kuraj, Ivan and Armando Solar-Lezama (2017). “Leveraging sequential computation for

programming efficient and reliable distributed systems”. In: 2nd Summit on Advances in
Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

Kuraj, Ivan and Daniel Jackson (2016). “Exploring the role of sequential computation in
distributed systems: motivating a programming paradigm shift”. In: Onward!

Burckhardt, Sebastian, Alexey Gotsman, Hongseok Yang, and Marek Zawirski (2014).
“Replicated Data Types: Specification, Verification, Optimality”. In: Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’14. San Diego, California, USA: Association for Computing Machinery,
pp. 271–284. isbn: 9781450325448. doi: 10.1145/2535838.2535848. url:
https://doi.org/10.1145/2535838.2535848.

Shapiro, Marc, Nuno Preguiça, Carlos Baquero, and Marek Zawirski (2011a). “Conflict-Free
Replicated Data Types”. In: Stabilization, Safety, and Security of Distributed Systems.
Ed. by Xavier Défago, Franck Petit, and Vincent Villain. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 386–400. isbn: 978-3-642-24550-3.

136

https://doi.org/10.1145/3192366.3192375
https://doi.org/10.1145/3192366.3192375
https://doi.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
http://akka.io/
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848

Harding, Rachael, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker (2017). “An
evaluation of distributed concurrency control”. In: Proceedings of the VLDB Endowment
10.5, pp. 553–564.

Abadi, Daniel (2012). “Consistency tradeoffs in modern distributed database system design:
CAP is only part of the story”. In: Computer 45.2, pp. 37–42.

Herlihy, Maurice P. and Jeannette M. Wing (1990). “Linearizability: a correctness condition
for concurrent objects”. In: ACM Transactions on Programming Languages and Systems.
issn: 01640925.

Shapiro, Marc, Nuno Preguiça, Carlos Baquero, and Marek Zawirski (2011b). “A
comprehensive study of convergent and commutative replicated data types”. In.

Fischer, Michael J, Nancy A Lynch, and Michael S Paterson (1985). “Impossibility of
distributed consensus with one faulty process”. In: Journal of the ACM (JACM) 32.2,
pp. 374–382.

Gilbert, Seth and Nancy Lynch (June 2002). “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News 33.2,
pp. 51–59. issn: 0163-5700. doi: 10.1145/564585.564601. url:
https://doi.org/10.1145/564585.564601.

— (2012). “Perspectives on the CAP Theorem”. In: Computer. issn: 0018-9162.
Viotti, Paolo and Marko Vukolić (June 2016). “Consistency in Non-Transactional Distributed

Storage Systems”. In: ACM Comput. Surv. 49.1. issn: 0360-0300. doi: 10.1145/2926965.
url: https://doi.org/10.1145/2926965.

Cachin, Christian, Rachid Guerraoui, and Luís Rodrigues (2011). Introduction to reliable and
secure distributed programming. Springer Science & Business Media.

Flanagan, Cormac and Patrice Godefroid (2005). “Dynamic Partial-Order Reduction for
Model Checking Software”. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’05. Long Beach, California,
USA: Association for Computing Machinery, pp. 110–121. isbn: 158113830X. doi:
10.1145/1040305.1040315. url: https://doi.org/10.1145/1040305.1040315.

Zhang, Yang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and Jinyang Li
(2013). “Transaction chains: achieving serializability with low latency in geo-distributed
storage systems”. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 276–291.

Breitbart, Yuri, Hector Garcia-Molina, and Avi Silberschatz (2010). “Overview of
multidatabase transaction management”. In: CASCON First Decade High Impact Papers,
pp. 93–126.

137

https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/2926965
https://doi.org/10.1145/2926965
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315

Berenson, Hal, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil
(1995). “A critique of ANSI SQL isolation levels”. In: ACM SIGMOD Record 24.2,
pp. 1–10.

Kneuss, Etienne, Ivan Kuraj, Viktor Kuncak, and Philippe Suter (2013). “Synthesis modulo
recursive functions”. In: OOPSLA.

De Moura, Leonardo and Nikolaj Bjørner (2008). “Z3: An efficient SMT solver”. In: Tools
and Algorithms for the Construction and Analysis of Systems: 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings 14. Springer, pp. 337–340.

Emerson, E Allen and A Prasad Sistla (1996). “Symmetry and model checking”. In: Formal
methods in system design 9.1-2, pp. 105–131.

TPC, Transaction Processing Performance Council (2010a). Tpc benchmark™ E.
Cooper, Brian F., Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears

(2010). “Benchmarking Cloud Serving Systems with YCSB”. In: Proceedings of the 1st
ACM Symposium on Cloud Computing. SoCC ’10. Indianapolis, Indiana, USA:
Association for Computing Machinery, pp. 143–154. isbn: 9781450300360. doi:
10.1145/1807128.1807152. url: https://doi.org/10.1145/1807128.1807152.

Shasha, Dennis, Francois Llirbat, Eric Simon, and Patrick Valduriez (Sept. 1995).
“Transaction Chopping: Algorithms and Performance Studies”. In: ACM Trans. Database
Syst. 20.3, pp. 325–363. issn: 0362-5915. doi: 10.1145/211414.211427. url:
http://doi.acm.org/10.1145/211414.211427.

GridGain data store benchmark (n.d.). url: https://github.com/gridgain/yardstick-gridgain.
Shasha, Dennis and Marc Snir (Apr. 1988). “Efficient and Correct Execution of Parallel

Programs That Share Memory”. In: ACM Trans. Program. Lang. Syst. 10.2, pp. 282–312.
issn: 0164-0925. doi: 10.1145/42190.42277. url:
http://doi.acm.org/10.1145/42190.42277.

Kallman, Robert et al. (2008). “H-Store: a High-Performance, Distributed Main Memory
Transaction Processing System”. In: Proc. VLDB Endow. 1.2, pp. 1496–1499. issn:
2150-8097. doi: http://doi.acm.org/10.1145/1454159.1454211. url:
http://hstore.cs.brown.edu/papers/hstore-demo.pdf.

Apache Ignite allocation modes (2020). url:
https://apacheignite.readme.io/docs/cache-modes.

Cassandra replication factor (2020). url:
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useUpdateKeyspaceRF.html.

138

https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/211414.211427
http://doi.acm.org/10.1145/211414.211427
https://github.com/gridgain/yardstick-gridgain
https://doi.org/10.1145/42190.42277
http://doi.acm.org/10.1145/42190.42277
https://doi.org/http://doi.acm.org/10.1145/1454159.1454211
http://hstore.cs.brown.edu/papers/hstore-demo.pdf
https://apacheignite.readme.io/docs/cache-modes
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useUpdateKeyspaceRF.html

Alvaro, Peter, Neil Conway, and Joseph M. Hellerstein (2012). “Distributed Programming
and Consistency: Principles and Practice”. In: Proceedings of the Third ACM Symposium
on Cloud Computing. SoCC ’12. San Jose, California: Association for Computing
Machinery. isbn: 9781450317610. doi: 10.1145/2391229.2391256. url:
https://doi.org/10.1145/2391229.2391256.

Alur, Rajeev, Emery D. Berger, et al. (2016). “Systems Computing Challenges in the
Internet of Things”. In: CoRR abs/1604.02980. arXiv: 1604.02980. url:
http://arxiv.org/abs/1604.02980.

Solar-Lezama, Armando, Rodric M. Rabbah, Rastislav Bodík, and Kemal Ebcioglu (2005).
“Programming by sketching for bit-streaming programs”. In: Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, pp. 281–294. doi: 10.1145/1065010.1065045. url:
https://doi.org/10.1145/1065010.1065045.

Alford, Mack W, Jean-Pierre Ansart, Günter Hommel, Leslie Lamport, Barbara Liskov,
Geoff P Mullery, and Fred B Schneider (1985). Distributed systems: methods and tools for
specification. An advanced course. Springer-Verlag.

Alpern, Bowen and Fred B Schneider (1985). “Defining liveness”. In: Information processing
letters 21.4, pp. 181–185.

Sarkar, Vivek (1998). “Analysis and optimization of explicity parallel programs using the
parallel program graph representation”. In: Languages and Compilers for Parallel
Computing. Ed. by Zhiyuan Li, Pen-Chung Yew, Siddharta Chatterjee,
Chua-Huang Huang, P. Sadayappan, and David Sehr. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 94–113. isbn: 978-3-540-69788-6.

Birrell, Andrew D and Bruce Jay Nelson (1984a). “Implementing remote procedure calls”. In:
ACM Transactions on Computer Systems (TOCS) 2.1, pp. 39–59.

Epstein, Jeff, Andrew P Black, and Simon Peyton-Jones (2011). “Towards Haskell in the
cloud”. In: Proceedings of the 4th ACM symposium on Haskell, pp. 118–129.

Apache Ignite allocation modes (n.d.). url: https://github.com/gridgain/yardstick.
Slither.io game (2023). url: http://slither.io/.
Phaser - A fast, fun and free open source HTML5 game framework (2023). url:

https://phaser.io/.
Scala.js (2023). url: https://www.scala-js.org/.
I Shot You First: Networking the Gameplay of HALO: REACH (2023). url:

https://www.gdcvault.com/play/1014345/I-Shot-You-First-Networking.

139

https://doi.org/10.1145/2391229.2391256
https://doi.org/10.1145/2391229.2391256
https://arxiv.org/abs/1604.02980
http://arxiv.org/abs/1604.02980
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1065010.1065045
https://github.com/gridgain/yardstick
http://slither.io/
https://phaser.io/
https://www.scala-js.org/
https://www.gdcvault.com/play/1014345/I-Shot-You-First-Networking

Jackson, Daniel, Ian Schechter, and Hya Shlyahter (2000). “Alcoa: the Alloy constraint
analyzer”. In: Proceedings of the 22nd international conference on Software engineering,
pp. 730–733.

TPC, Transaction Processing Performance Council (2010b). TPC-C specification.
Kuraj, Ivan, Viktor Kuncak, and Daniel Jackson (2015). “Programming with enumerable sets

of structures”. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pp. 37–56.

Kuraj, Ivan and Viktor Kuncak (2014). “Scife: Scala framework for efficient enumeration of
data structures with invariants”. In: Proceedings of the Fifth Annual Scala Workshop,
pp. 45–49.

Terry, Douglas B., Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and
Brent W. Welch (1994). “Session Guarantees for Weakly Consistent Replicated Data”. In:
Proceedings of the Third International Conference on Parallel and Distributed Information
Systems. PDIS ’94. USA: IEEE Computer Society, pp. 140–149. isbn: 0818664002.

Reynders, Bob, Dominique Devriese, and F Piessens (2014). “Multi-tier Functional Reactive
Programming for the Web”. In: Onward!

Bykov, Sergey, Alan Geller, Gabriel Kliot, James R Larus, Ravi Pandya, and Jorgen Thelin
(2011). “Orleans: Cloud Computing for Everyone”. In: SoCC.

Reynolds, John C. (1972). “Definitional Interpreters for Higher-order Programming
Languages”. In: Proceedings of the ACM Annual Conference - Volume 2. ACM ’72.
Boston, Massachusetts, USA: ACM, pp. 717–740. doi: 10.1145/800194.805852. url:
http://doi.acm.org/10.1145/800194.805852.

Akka persistence layer (2023). url:
https://doc.akka.io/docs/akka/2.3.6/scala/persistence.html.

Lamport, Leslie (2001). “Paxos made simple”. In: ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001), pp. 51–58.

Eclipse Hono IoT framework (2023). url: https://www.eclipse.org/hono/.
Redis - in-memory data structure store (n.d.). url: http://redis.io/.
Agha, Gul A and Wooyoung Kim (1999). “Actors: A unifying model for parallel and

distributed computing”. In: Journal of systems architecture 45.15, pp. 1263–1277.
Christensen, Aske Simon, Anders Møller, and Michael I. Schwartzbach (2003). “Extending

Java for high-level Web service construction”. In: TOPLAS. issn: 01640925.
Birrell, Andrew D. and Bruce Jay Nelson (1984b). “Implementing remote procedure calls”. In:

ACM Transactions on Computer Systems. issn: 07342071.
Haridi, Seif, Peter Van Roy, Per Brand, and Christian Schulte (1998). “Programming

languages for distributed applications”. In: New Generation Computing. issn: 1882-7055.

140

https://doi.org/10.1145/800194.805852
http://doi.acm.org/10.1145/800194.805852
https://doc.akka.io/docs/akka/2.3.6/scala/persistence.html
https://www.eclipse.org/hono/
http://redis.io/

Zakhour, George, Pascal Weisenburger, and Guido Salvaneschi (June 2023). “Type-Checking
CRDT Convergence”. In: Proc. ACM Program. Lang. 7.PLDI. doi: 10.1145/3591276.
url: https://doi.org/10.1145/3591276.

Alvaro, Peter, Neil Conway, Joseph M Hellerstein, and David Maier (2017). “Blazes:
Coordination Analysis and Placement for Distributed Programs”. In: ACM Transactions
on Database Systems (TODS) 42.4, pp. 1–31.

Liu, Yiyun, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou
(2020). “Verifying replicated data types with typeclass refinements in Liquid Haskell”. In:
Proceedings of the ACM on Programming Languages 4.OOPSLA, pp. 1–30.

Balegas, Valter, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Mahsa Najafzadeh, and Marc Shapiro (2015a). “Putting Consistency Back into Eventual
Consistency”. In: Proceedings of the Tenth European Conference on Computer Systems.
EuroSys ’15. Bordeaux, France: Association for Computing Machinery. isbn:
9781450332385. doi: 10.1145/2741948.2741972. url:
https://doi.org/10.1145/2741948.2741972.

Stonebraker, Michael and Uĝur Çetintemel (2018). “"One size fits all" an idea whose time
has come and gone”. In: Making databases work: the pragmatic wisdom of Michael
Stonebraker, pp. 441–462.

Sivasubramanian, Swaminathan (2012). “Amazon DynamoDB: a seamlessly scalable
non-relational database service”. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pp. 729–730.

Deng, Dong, Albert Kim, Samuel Madden, and Michael Stonebraker (2017). “SilkMoth: An
Efficient Method for Finding Related Sets with Maximum Matching Constraints”. In:
Proc. VLDB Endow. 10.10, pp. 1082–1093. doi: 10.14778/3115404.3115413. url:
http://www.vldb.org/pvldb/vol10/p1082-deng.pdf.

Li, Xiao, Farzin Houshmand, and Mohsen Lesani (2020). “Hampa: Solver-Aided
Recency-Aware Replication”. In: Computer Aided Verification. Ed. by Shuvendu K. Lahiri
and Chao Wang. Cham: Springer International Publishing, pp. 324–349. isbn:
978-3-030-53288-8.

De Porre, Kevin, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix (Oct. 2021).
“ECROs: Building Global Scale Systems from Sequential Code”. In: Proc. ACM Program.
Lang. 5.OOPSLA. doi: 10.1145/3485484. url: https://doi.org/10.1145/3485484.

Rahmani, Kia, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan (2021).
“Repairing serializability bugs in distributed database programs via automated schema
refactoring”. In: Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pp. 32–47.

141

https://doi.org/10.1145/3591276
https://doi.org/10.1145/3591276
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.14778/3115404.3115413
http://www.vldb.org/pvldb/vol10/p1082-deng.pdf
https://doi.org/10.1145/3485484
https://doi.org/10.1145/3485484

Li, Cheng, Daniel Charles Ferreira Porto, Allen Clement, Johannes Gehrke,
Nuno M. Preguiça, and Rodrigo Seromenho Miragaia Rodrigues (2012). “Making
Geo-Replicated Systems Fast as Possible, Consistent when Necessary”. In: USENIX
Symposium on Operating Systems Design and Implementation.

Li, Cheng, Nuno Preguiça, and Rodrigo Rodrigues (2018). “Fine-grained consistency for
geo-replicated systems”. In: 2018 USENIX Annual Technical Conference (USENIX ATC
18), pp. 359–372.

Roy, Sudip, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch,
Nate Foster, and Johannes Gehrke (2015). “The homeostasis protocol: Avoiding
transaction coordination through program analysis”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp. 1311–1326.

Najafzadeh, Mahsa, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc Shapiro
(2016). “The CISE tool: proving weakly-consistent applications correct”. In: Proceedings
of the 2nd Workshop on the Principles and Practice of Consistency for Distributed Data,
pp. 1–3.

Padon, Oded, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and
Sharon Shoham (2017). “Reducing liveness to safety in first-order logic”. In: Proceedings
of the ACM on Programming Languages 2.POPL, pp. 1–33.

Balegas, Valter, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Mahsa Najafzadeh, and Marc Shapiro (2015b). “Towards fast invariant preservation in
geo-replicated systems”. In: ACM SIGOPS Operating Systems Review 49.1, pp. 121–125.

Balegas, Valter, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno Preguiça (Dec.
2018). “IPA: Invariant-Preserving Applications for Weakly Consistent Replicated
Databases”. In: Proc. VLDB Endow. 12.4, pp. 404–418. issn: 2150-8097. doi:
10.14778/3297753.3297760. url: https://doi.org/10.14778/3297753.3297760.

Lewchenko, Nicholas V, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černỳ (2019).
“Sequential programming for replicated data stores”. In: Proceedings of the ACM on
Programming Languages 3.ICFP, pp. 1–28.

Nagar, Kartik and Suresh Jagannathan (2019). “Automated parameterized verification of
CRDTs”. In: Computer Aided Verification: 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part II 31. Springer,
pp. 459–477.

Holt, Brandon, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin, and Luis Ceze (2016).
“Disciplined inconsistency with consistency types”. In: Proceedings of the Seventh ACM
Symposium on Cloud Computing, pp. 279–293.

142

https://doi.org/10.14778/3297753.3297760
https://doi.org/10.14778/3297753.3297760

De Porre, Kevin, Florian Myter, Christophe Scholliers, and Elisa Gonzalez Boix (2020).
“CScript: A distributed programming language for building mixed-consistency
applications”. In: Journal of Parallel and Distributed Computing 144, pp. 109–123.

Köhler, Mirko, Nafise Eskandani, Pascal Weisenburger, Alessandro Margara, and
Guido Salvaneschi (2020). “Rethinking safe consistency in distributed object-oriented
programming”. In: Proceedings of the ACM on Programming Languages 4.OOPSLA,
pp. 1–30.

Xie, Chao, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh, Lorenzo Alvisi,
and Prince Mahajan (2014). “Salt: Combining {ACID} and {BASE} in a distributed
database”. In: 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pp. 495–509.

Balakrishnan, Mahesh, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran,
Michael Wei, John D Davis, Sriram Rao, Tao Zou, and Aviad Zuck (2013). “Tango:
Distributed data structures over a shared log”. In: Proceedings of the twenty-fourth ACM
symposium on operating systems principles, pp. 325–340.

Kaki, Gowtham, Prasanth Prahladan, and Nicholas V Lewchenko (2022). “RunTime-assisted
convergence in replicated data types”. In: Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
pp. 364–378.

Laddad, Shadaj, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein (Oct.
2022). “Katara: Synthesizing CRDTs with Verified Lifting”. In: Proc. ACM Program.
Lang. 6.OOPSLA2. doi: 10.1145/3563336. url: https://doi.org/10.1145/3563336.

Lu, Shiyong, Arthur Bernstein, and Philip Lewis (2004). “Correct execution of transactions
at different isolation levels”. In: IEEE Transactions on Knowledge and Data Engineering
16.9, pp. 1070–1081.

Fekete, Alan, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha
(2005). “Making snapshot isolation serializable”. In: ACM Transactions on Database
Systems (TODS) 30.2, pp. 492–528.

Kaki, Gowtham, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan (2018). “Alone
together: compositional reasoning and inference for weak isolation”. In: Proc. ACM
Program. Lang. 2.POPL, 27:1–27:34. doi: 10.1145/3158115. url:
https://doi.org/10.1145/3158115.

Cerone, Andrea, Alexey Gotsman, and Hongseok Yang (2015). “Transaction chopping for
parallel snapshot isolation”. In: International Symposium on Distributed Computing.
Springer, pp. 388–404.

143

https://doi.org/10.1145/3563336
https://doi.org/10.1145/3563336
https://doi.org/10.1145/3158115
https://doi.org/10.1145/3158115

Bernstein, Arthur J, David S Gerstl, and Philip M Lewis (1999). “Concurrency control for
step-decomposed transactions”. In: Information Systems 24.8, pp. 673–698.

Cheung, Alvin, Owen Arden, Samuel Madden, and Andrew C Myers (2012). “Automatic
Partitioning of Database Applications”. In: Proceedings of the VLDB Endowment 5.11.

Zdancewic, Steve and Andrew C Myers (2003). “Observational determinism for concurrent
program security”. In: 16th IEEE Computer Security Foundations Workshop, 2003.
Proceedings. IEEE, pp. 29–43.

Mu, Shuai, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li (2014). “Extracting more
concurrency from distributed transactions”. In: 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pp. 479–494.

Xie, Chao, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, and Yang Wang
(2015). “High-performance ACID via modular concurrency control”. In: Proceedings of the
25th Symposium on Operating Systems Principles, pp. 279–294.

Yu, Haifeng and Amin Vahdat (2000). “Design and Evaluation of a Continuous Consistency
Model for Replicated Services”. In: 4th Symposium on Operating System Design and
Implementation (OSDI 2000), San Diego, California, USA, October 23-25, 2000. Ed. by
Michael B. Jones and M. Frans Kaashoek. USENIX Association, pp. 305–318. url:
http://dl.acm.org/citation.cfm?id=1251250.

Bailis, Peter, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and
Ion Stoica (2012). “Probabilistically Bounded Staleness for Practical Partial Quorums”.
In: Proc. VLDB Endow. 5.8, pp. 776–787. doi: 10.14778/2212351.2212359. url:
http://vldb.org/pvldb/vol5/p776%5C_peterbailis%5C_vldb2012.pdf.

Guerraoui, Rachid, Matej Pavlovic, and Dragos-Adrian Seredinschi (2016). “Incremental
Consistency Guarantees for Replicated Objects”. In: 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016. Ed. by Kimberly Keeton and Timothy Roscoe. USENIX
Association, pp. 169–184. url:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/guerraoui.

Kraska, Tim, Martin Hentschel, Gustavo Alonso, and Donald Kossmann (2009). “Consistency
Rationing in the Cloud: Pay only when it matters”. In: Proc. VLDB Endow. 2.1,
pp. 253–264. doi: 10.14778/1687627.1687657. url:
http://www.vldb.org/pvldb/vol2/vldb09-759.pdf.

Terry, Douglas B., Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K. Aguilera, and Hussam Abu-Libdeh (2013). “Consistency-based service level
agreements for cloud storage”. In: ACM SIGOPS 24th Symposium on Operating Systems
Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013. Ed. by

144

http://dl.acm.org/citation.cfm?id=1251250
https://doi.org/10.14778/2212351.2212359
http://vldb.org/pvldb/vol5/p776%5C_peterbailis%5C_vldb2012.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/guerraoui
https://doi.org/10.14778/1687627.1687657
http://www.vldb.org/pvldb/vol2/vldb09-759.pdf

Michael Kaminsky and Mike Dahlin. ACM, pp. 309–324. doi: 10.1145/2517349.2522731.
url: https://doi.org/10.1145/2517349.2522731.

Wickerson, John, Mark Batty, Tyler Sorensen, and George A Constantinides (2017).
“Automatically comparing memory consistency models”. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, pp. 190–204.

Solar-Lezama, Armando, Christopher Grant Jones, and Rastislav Bodík (2008). “Sketching
concurrent data structures”. In: Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008,
pp. 136–148. doi: 10.1145/1375581.1375599. url:
https://doi.org/10.1145/1375581.1375599.

Vechev, Martin T. and Eran Yahav (2008). “Deriving linearizable fine-grained concurrent
objects”. In: Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, pp. 125–135.
doi: 10.1145/1375581.1375598. url: https://doi.org/10.1145/1375581.1375598.

Vechev, Martin T., Eran Yahav, and Greta Yorsh (2009). “Inferring Synchronization under
Limited Observability”. In: Tools and Algorithms for the Construction and Analysis of
Systems, 15th International Conference, TACAS 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, pp. 139–154. doi: 10.1007/978-3-642-00768-2_13. url:
https://doi.org/10.1007/978-3-642-00768-2%5C_13.

Kuperstein, Michael, Martin T. Vechev, and Eran Yahav (2010). “Automatic inference of
memory fences”. In: Proceedings of 10th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23, pp. 111–119.
url: http://ieeexplore.ieee.org/document/5770939/.

Udupa, Abhishek, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M.K. Martin, and Rajeev Alur (2013). “TRANSIT: Specifying Protocols with
Concolic Snippets”. In: Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’13. Seattle, Washington,
USA: Association for Computing Machinery, pp. 287–296. isbn: 9781450320146. doi:
10.1145/2491956.2462174. url: https://doi.org/10.1145/2491956.2462174.

Cooper, Ezra, Sam Lindley, Philip Wadler, and Jeremy Yallop (2007). “Links: Web
Programming Without Tiers”. In: FMCO.

Serrano, Manuel and Gérard Berry (2012). “Multitier programming in Hop”. In:
Communications of the ACM. issn: 00010782.

Agha, Gul (1986). “Actors: a Model of Concurrent Computation in Distributed Systems”. In:
MIT Press.

145

https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1375581.1375598
https://doi.org/10.1145/1375581.1375598
https://doi.org/10.1007/978-3-642-00768-2_13
https://doi.org/10.1007/978-3-642-00768-2%5C_13
http://ieeexplore.ieee.org/document/5770939/
https://doi.org/10.1145/2491956.2462174
https://doi.org/10.1145/2491956.2462174

Hewitt, Carl, Peter Bishop, and Richard Steiger (1973). “A universal modular ACTOR
formalism for artificial intelligence”. In: IJCAI.

Haller, Philipp and Martin Odersky (2009). “Scala Actors: Unifying thread-based and
event-based programming”. In: Theoretical Computer Science. issn: 03043975.

Prokopec, Aleksandar and Martin Odersky (2015). “Isolates, Channels, and Event Streams
for Composable Distributed Programming”. In: Onward!

Charles, Philippe et al. (2005). “X10: an object-oriented approach to non-uniform cluster
computing”. In: OOPSLA.

De Wael, Mattias, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De
Meuter (2015). “Partitioned Global Address Space Languages”. In: ACM Computing
Surveys. issn: 03600300.

Drechsler, Joscha, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini (2014). “Distributed
REScala: An Update Algorithm for Distributed Reactive Programming”. In: OOPSLA.

Baldini, Ioana, Paul Castro, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick Mitchell,
Vinod Muthusamy, Rodric Rabbah, and Philippe Suter (2016). “Cloud-native,
event-based programming for mobile applications”. In: MOBILESoft.

Dabek, Frank, Nickolai Zeldovich, Frans Kaashoek, David Mazières, and Robert Morris
(2002). “Event-driven programming for robust software”. In: ACM SIGOPS European
workshop: beyond the PC.

JMacroRPC - reactive client/server web programming (n.d.). url:
http://hackage.haskell.org/package/jmacro-rpc.

Meteor - Pure JavaScript web framework (n.d.). url: http://meteor.com.
Czaplicki, Evan and Stephen Chong (2013). “Asynchronous Functional Reactive

Programming for GUIs”. In: PLDI.
Meiklejohn, Christopher and Peter Van Roy (2015). “Lasp: A Language for Distributed,

Coordination-free Programming”. In: PPDP.
Kiciman, Emre, Benjamin Livshits, Madanlal Musuvathi, and Kevin C. Webb (2010). “Fluxo:

a system for internet service programming by non-expert developers”. In: SoCC.
Briot, Jean-Pierre, Rachid Guerraoui, and Klaus-Peter Lohr (1998). “Concurrency and

Distribution in Object-oriented Programming”. In: ACM Computing Surveys. issn:
0360-0300.

Bal, Henri E., Jennifer G. Steiner, and Andrew S. Tanenbaum (1989). “Programming
languages for distributed computing systems”. In: ACM Computing Surveys. issn:
03600300.

Tanenbaum, Andrew Stuart and Robbert van Renesse (1987). A critique of the remote
procedure call paradigm. Tech. rep. Vrije Universiteit.

146

http://hackage.haskell.org/package/jmacro-rpc
http://meteor.com

Liu, Yanhong A., Scott D. Stoller, Bo Lin, Michael Gorbovitski, Yanhong A. Liu,
Scott D. Stoller, Bo Lin, and Michael Gorbovitski (2012). “From clarity to efficiency for
distributed algorithms”. In: OOPSLA.

Jayaram, K. R. and Patrick Eugster (2011). “Program analysis for event-based distributed
systems”. In: DEBS.

Marino, Daniel, Todd Millstein, Madanlal Musuvathi, Satish Narayanasamy, and
Abhayendra Singh (2015). “The Silently Shifting Semicolon”. In: SNAPL. issn: 1868-8969.

147

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview of the Approach
	1.1.1 SyCoord
	1.1.2 Peepco
	1.1.3 System Integration

	1.2 Illustrative Example
	1.2.1 Integrity of Distributed Programs
	1.2.2 Consistency Optimization
	1.2.3 New Point in the Design Space of Consistency Optimization
	1.2.4 Extensions of the Main Approach
	1.2.5 Implementation and Benchmarks

	1.3 Overview
	1.3.1 Discussion and Limitations
	1.3.2 Scientific Journey

	2 PeepCo: Batch-Based Consistency Optimization
	2.1 Motivation
	2.2 Batch-Based Consistency
	2.2.1 Semantics of Batch-Based Consistency
	2.2.2 Batched Operation Execution
	2.2.3 Consistency Constraints and Lattice
	2.2.4 PeepCommit Protocol
	2.2.5 Integrity-Driven Consistency Strengthening

	2.3 Partial Replication
	2.3.1 Motivation
	2.3.2 Finer Grained Batch-Based Consistency

	2.4 Implementation
	2.5 Evaluation
	2.6 Discussion

	3 SyCoord: Optimizing Consistency for Partially Replicated Data-Centric Distributed Applications
	3.1 SyCoord's Data Store Model
	3.2 Coordination Synthesis in SyCoord
	3.3 Cause-Effect Framework
	3.3.1 Executions in Partial Replication
	3.3.2 Elements of Inference
	3.3.3 Cause-Effect Graph Instrumentation
	3.3.4 Consistency Constraints Inference

	3.4 Conflict-Driven Propagation
	3.5 SyCoord Extensions
	3.6 Implementation
	3.6.1 Components of SyCoord

	3.7 Evaluation
	3.7.1 Inference Benchmarks
	3.7.2 Data Store Run-Time Performance
	3.7.3 Game Demo Use Case

	3.8 Discussion

	4 EdgeC: Aspect-Oriented Language for Reactive Distributed Applications at the Edge
	4.1 Overview
	4.2 EdgeC Compilation
	4.3 Language Semantics
	4.4 Evaluation
	4.5 Extensions
	4.6 Discussion

	5 Related Work
	5.1 Consistency Optimization
	5.2 Distributed Programming Languages

	6 Conclusion
	References

